--- title: "check_postgres.pl> " draft: false ---

check _postgres

o NAME
SYNOPSIS
DESCRIPTION
o Output Modes
= Nagios output
= MRTG output
= Simple output
= Cacti output
DATABASE CONNECTION OPTIONS
OTHER OPTIONS
ACTIONS
o archive_ready
autovac freeze
backends
bloat
checkpoint
cluster_id
commitratio
connection
custom_query
database_size
dbstats
disabled_triggers
disk_space
fsm_pages
fsm_relations
hitratio
hot standby delay
index_size
table_siz
relation_size
last_analyze
last vacuum
last_autoanalyze
last_autovacuum
listener
locks
logfile
new_version_bc
new_version_box
new_version_cp
new_version_pg
new_version_tnm
pgb_pool _cl_active
pab_pool_cl_waiting
pgb_pool sv_active
pgb_pool_sv_idle
pgb_pool sv_used
pgb_pool_sv_tested
pab_pool_sv_login
pgb_pool maxwait
pgbouncer_backends
pgbouncer_checksum
pgagent_jobs
prepared_txns
query runtime
query_time
replicate_row
same_schema
sequence
settings_checksum
slony_status
timesync
txn_idle
txn_time
txn_wraparound
version
wal_files
rebuild_symlinks

o rebuild_symlinks force
BASIC FILTERING

USER NAME FILTERING
TEST MODE

FILES

ENVIRONMENT VARIABLES
TIPS AND TRICKS
DEPENDENCIES
DEVELOPMENT

MAILING LIST

HISTORY

B AND LIMITATION

e o

e o o

0O 0 0O 0O OOOOOOOO O OO OO 0 0O 0O 0O O O 0O O OO0 O0OO0OO0OO0O O0OO0OO0OO0OO0OO0OO0O O0OO0O OO O0OO0O O0OO0OO0O O0OO0O O0OO0O O0O 0O O0O O0O 0O O O

® © & o o o ¢ o o o o

e AUTHOR
e NAGIOS EXAMPLES
e LICENSE AND COPYRIGHT

check_postgres.pl - a Postgres monitoring script for Nagios, MRTG, Cacti, and others

This documents describes check_postgres.pl version 2.22.0

SYNOPSIS

Create all symlinks
check_postgres.pl --symlinks

Check connection to Postgres database 'pluto’:
check_postgres.pl --action=connection --db=pluto

Same things, but using the symlink
check_postgres_connection --db=pluto

Warn if > 100 locks, critical if > 200, or > 20 exclusive
check_postgres_locks --warning=100 --critical="total=200:exclusive=20"

Show the current number of idle connections on port 6543:
check_postgres_txn_idle --port=6543 --output=simple

There are many other actions and options, please keep reading.

The latest news and documentation can always be found at:
http://bucardo.org/check_postgres/

DESCRIPTION

check_postgres.pl is a Perl script that runs many different tests against one or more Postgres databases. It uses the psql program to
gather the information, and outputs the results in one of three formats: Nagios, MRTG, or simple.

Output Modes

The output can be changed by use of the --output option. The default output is nagios, although this can be changed at the top of the script
if you wish. The current option choices are nagios , mrtg , and simple . To avoid having to enter the output argument each time, the
type of output is automatically set if no --output argument is given, and if the current directory has one of the output options in its name.
For example, creating a directory named mrtg and populating it with symlinks via the --symlinks argument would ensure that any actions
run from that directory will always default to an output of "mrtg" As a shortcut for --output=simple, you can enter --simple, which also
overrides the directory naming trick.

Nagios output

The default output format is for Nagios, which is a single line of information, along with four specific exit codes:

0 (OK)

1 (WARNING)
2 (CRITICAL)
3 (UNKNOWN)

The output line is one of the words above, a colon, and then a short description of what was measured. Additional statistics information, as
well as the total time the command took, can be output as well: see the documentation on the arguments --showperf , --perflimit , and --
showtime .

MRTG output

The MRTG output is four lines, with the first line always giving a single number of importance. When possible, this number represents an
actual value such as a number of bytes, but it may also be a 1 or a 0 for actions that only return "true" or "false", such as
check_postgres_version. The second line is an additional stat and is only used for some actions. The third line indicates an "uptime" and is
not used. The fourth line is a description and usually indicates the name of the database the stat from the first line was pulled from, but
may be different depending on the action.

Some actions accept an optional --mrtg argument to further control the output.
See the documentation on each action for details on the exact MRTG output for each one.
Simple output
The simple output is simply a truncated version of the MRTG one, and simply returns the first number and nothing else. This is very useful
when you just want to check the state of something, regardless of any threshold. You can transform the numeric output by appending KB,
MB, GB, TB, or EB to the output argument, for example:
--output=simple,MB
Cacti output
The Cacti output consists of one or more items on the same line, with a simple name, a colon, and then a number. At the moment, the

only action with explicit Cacti output is 'dbstats’, and using the --output option is not needed in this case, as Cacti is the only output for
this action. For many other actions, using --simple is enough to make Cacti happy.

DATABASE CONNECTION OPTIONS

All actions accept a common set of database options.

-H NAME or --host=NAME

Connect to the host indicated by NAME. Can be a comma-separated list of names. Multiple host arguments are allowed. If no host is
given, defaults to the PGHOST environment variable or no host at all (which indicates using a local Unix socket). You may also use "--
dbhost".

-p PORT or --port=PORT

Connects using the specified PORT number. Can be a comma-separated list of port numbers, and multiple port arguments are
allowed. If no port number is given, defaults to the PGPORT environment variable. If that is not set, it defaults to 5432. You may also
use "--dbport"

-db NAME or --dbname=NAME

Specifies which database to connect to. Can be a comma-separated list of names, and multiple dbname arguments are allowed. If no
dbname option is provided, defaults to the PGDATABASE environment variable. If that is not set, it defaults to 'postgres' if psql is
version 8 or greater, and 'templatel' otherwise.

-u USERNAME or --dbuser=USERNAME

The name of the database user to connect as. Can be a comma-separated list of usernames, and multiple dbuser arguments are
allowed. If this is not provided, it defaults to the PGUSER environment variable, otherwise it defaults to 'postgres'.

--dbpass=PASSWORD

Provides the password to connect to the database with. Use of this option is highly discouraged. Instead, one should use a .pgpass or
pg_service.conf file.

--dbservice=NAME

The name of a service inside of the pg_service.conf file. Before version 9.0 of Postgres, this is a global file, usually found in
/etc/pg_service.conf. If you are using version 9.0 or higher of Postgres, you can use the file ".pg_service.conf" in the home directory of
the user running the script, e.g. nagios.

This file contains a simple list of connection options. You can also pass additional information when using this option such as --
dbservice="maindatabase ssImode=require"

The documentation for this file can be found at http://www.postgresql.org/docs/current/static/libpg-pgservice.html

The database connection options can be grouped: --host=a,b --host=c --port=1234 --port=3344 would connect to a-1234, b-1234, and c-
3344. Note that once set, an option carries over until it is changed again.

Examples:

--host=a,b --port=5433 --db=c
Connects twice to port 5433, using database c, to hosts a and b: a-5433-c b-5433-c

--host=a,b --port=5433 --db=c,d
Connects four times: a-5433-c a-5433-d b-5433-c b-5433-d

--host=a,b --host=foo --port=1234 --port=5433 --db=e,f
Connects six times: a-1234-e a-1234-f b-1234-e b-1234-f foo-5433-e foo-5433-f

--host=a,b --host=x --port=5432,5433 --dbuser=alice --dbuser=bob -db=baz
Connects three times: a-5432-alice-baz b-5433-alice-baz x-5433-bob-baz

--dbservice="foo" --port=5433
Connects using the named service 'foo' in the pg_service.conf file, but overrides the port

OTHER OPTIONS

Other options include:
--action=NAME

States what action we are running. Required unless using a symlinked file, in which case the name of the file is used to figure out the
action.

--warning=VAL or -w VAL

Sets the threshold at which a warning alert is fired. The valid options for this option depends on the action used.
--critical=VAL or -c VAL

Sets the threshold at which a critical alert is fired. The valid options for this option depends on the action used.
-t VAL or --timeout=VAL

Sets the timeout in seconds after which the script will abort whatever it is doing and return an UNKNOWN status. The timeout is per
Postgres cluster, not for the entire script. The default value is 10; the units are always in seconds.

--assume-standby-mode

If specified, first the check if server in standby mode will be performed (--datadir is required), if so, all checks that require SQL
queries will be ignored and "Server in standby mode" with OK status will be returned instead.

Example:

postgres@db$./check_postgres.pl --action=version --warning=8.1 --datadir /var/lib/postgresql/8.3/main/ --assume-standby-mode
POSTGRES_VERSION OK: Server in standby mode | time=0.00

--assume-prod

If specified, check if server in production mode is performed (--datadir is required). The option is only relevant for (symlink:
check_postgres_checkpoint).

Example:

postgres@db$./check_postgres.pl --action=checkpoint --datadir /var/lib/postgresql/8.3/main/ --assume-prod
POSTGRES_CHECKPOINT OK: Last checkpoint was 72 seconds ago | age=72;;300 mode=MASTER

-h or --help
Displays a help screen with a summary of all actions and options.
--man
Displays the entire manual.
-V or --version
Shows the current version.
-v or --verbose

Set the verbosity level. Can call more than once to boost the level. Setting it to three or higher (in other words, issuing -v -v -v) turns
on debugging information for this program which is sent to stderr.

--showperf=VAL

Determines if we output additional performance data in standard Nagios format (at end of string, after a pipe symbol, using
name=value). VAL should be 0 or 1. The default is 1. Only takes effect if using Nagios output mode.

--perflimit=i

Sets a limit as to how many items of interest are reported back when using the showperf option. This only has an effect for actions
that return a large number of items, such as table_size . The default is 0, or no limit. Be careful when using this with the --include or
--exclude options, as those restrictions are done after the query has been run, and thus your limit may not include the items you
want. Only takes effect if using Nagios output mode.

--showtime=VAL

Determines if the time taken to run each query is shown in the output. VAL should be 0 or 1. The default is 1. No effect unless
showperf is on. Only takes effect if using Nagios output mode.

--test
Enables test mode. See the "TEST MODE" section below.
--PGBINDIR=PATH

Tells the script where to find the psql binaries. Useful if you have more than one version of the PostgreSQL executables on your
system, or if there are not in your path. Note that this option is in all uppercase. By default, this option is not allowed . To enable it,
you must change the $NO_PSQL_OPTION near the top of the script to 0. Avoid using this option if you can, and instead use environment
variable c or hard-coded $PGBINDIR variable, also near the top of the script, to set the path to the PostgreSQL to use.

--PSQL=PATH

(deprecated, this option may be removed in a future release!) Tells the script where to find the psqgl program. Useful if you have more
than one version of the psql executable on your system, or if there is no psql program in your path. Note that this option is in all
uppercase. By default, this option is not allowed . To enable it, you must change the $NO_PSQL_OPTION near the top of the script to 0.
Avoid using this option if you can, and instead hard-code your psql location into the $PsSQL variable, also near the top of the script.

--symlinks
Creates symlinks to the main program for each action.
--output=VAL

Determines the format of the output, for use in various programs. The default is 'nagios'. Available options are 'nagios', 'mrtg',
'simple' and 'cacti'.

--mrtg=VAL
Used only for the MRTG or simple output, for a few specific actions.
--debugoutput=VAL

Outputs the exact string returned by psql, for use in debugging. The value is one or more letters, which determine if the output is
displayed or not, where 'a' = all, 'c' = critical, 'w' = warning, '0' = ok, and 'u' = unknown. Letters can be combined.

--get_method=VAL

Allows specification of the method used to fetch information for the new_version_cp , new_version_pg , new_version_bc , new_version_box , and
new_version_tnm checks. The following programs are tried, in order, to grab the information from the web: GET, wget, fetch, curl, lynx,
links. To force the use of just one (and thus remove the overhead of trying all the others until one of those works), enter one of the
names as the argument to get_method. For example, a BSD box might enter the following line in their .check_postgresrc file:

get_method=fetch
--language=VAL

Set the language to use for all output messages. Normally, this is detected by examining the environment variables LC_ALL,
LC_MESSAGES, and LANG, but setting this option will override any such detection.

ACTIONS

The script runs one or more actions. This can either be done with the --action flag, or by using a symlink to the main file that contains the
name of the action inside of it. For example, to run the action "timesync", you may either issue:

check_postgres.pl --action=timesync

or use a program named:
check_postgres_timesync

All the symlinks are created for you in the current directory if use the option --symlinks
perl check_postgres.pl --symlinks

If the file name already exists, it will not be overwritten. If the file exists and is a symlink, you can force it to overwrite by using "--
action=build_symlinks_force"

Most actions take a --warning and a --critical option, indicating at what point we change from OK to WARNING, and what point we go to
CRITICAL. Note that because criticals are always checked first, setting the warning equal to the critical is an effective way to turn warnings
off and always give a critical.

The current supported actions are:
archive_ready

(symlink: check_postgres_archive_ready) Checks how many WAL files with extension .ready exist in the pg_xlog/archive_status directory, which
is found off of your data_directory . This action must be run as a superuser, in order to access the contents of the pg_xlog/archive_status
directory. The minimum version to use this action is Postgres 8.1. The --warning and --critical options are simply the number of .ready files
in the pg_xlog/archive_status directory. Usually, these values should be low, turning on the archive mechanism, we usually want it to
archive WAL files as fast as possible.

If the archive command fail, number of WAL in your pg xlog directory will grow until exhausting all the disk space and force PostgreSQL to
stop immediately.

Example 1: Check that the number of ready WAL files is 10 or less on host "pluto"
check_postgres_archive_ready --host=pluto --critical=10

For MRTG output, reports the number of ready WAL files on line 1.
autovac_freeze

(symlink: check_postgres_autovac_freeze) Checks how close each database is to the Postgres autovacuum_freeze_max_age setting. This
action will only work for databases version 8.2 or higher. The --warning and --critical options should be expressed as percentages. The
'age' of the transactions in each database is compared to the autovacuum_freeze_max_age setting (200 million by default) to generate a
rounded percentage. The default values are 90% for the warning and 95% for the critical. Databases can be filtered by use of the --
include and --exclude options. See the "BASIC FILTERING" section for more details.

Example 1: Give a warning when any databases on port 5432 are above 97%
check_postgres_autovac_freeze --port=5432 --warning="97%"

For MRTG output, the highest overall percentage is reported on the first line, and the highest age is reported on the second line. All
databases which have the percentage from the first line are reported on the fourth line, separated by a pipe symbol.

backends

(symlink: check_postgres_backends) Checks the current number of connections for one or more databases, and optionally compares it to the
maximum allowed, which is determined by the Postgres configuration variable max_connections . The --warning and --critical options
can take one of three forms. First, a simple number can be given, which represents the number of connections at which the alert will be
given. This choice does not use the max_connections setting. Second, the percentage of available connections can be given. Third, a
negative number can be given which represents the number of connections left until max_connections is reached. The default values for
--warning and --critical are '90%' and '95%'. You can also filter the databases by use of the --include and --exclude options. See the "BASIC
FILTERING" section for more details.

To view only non-idle processes, you can use the --noidle argument. Note that the user you are connecting as must be a superuser for this
to work properly.

Example 1: Give a warning when the number of connections on host quirm reaches 120, and a critical if it reaches 150.
check_postgres_backends --host=quirm --warning=120 --critical=150

Example 2: Give a critical when we reach 75% of our max_connections setting on hosts lancre or lancre2.
check_postgres_backends --warning='75%" --critical='75%" --host=lancre,lancre2

Example 3: Give a warning when there are only 10 more connection slots left on host plasmid, and a critical when we have only 5 left.
check_postgres_backends --warning=-10 --critical=-5 --host=plasmid

Example 4: Check all databases except those with "test" in their name, but allow ones that are named "pg_greatest". Connect as port
5432 on the first two hosts, and as port 5433 on the third one. We want to always throw a critical when we reach 30 or more connections.

check_postgres_backends --dbhost=hong,kong --dbhost=fooey --dbport=5432 --dbport=5433 --warning=30 --critical=30 --exclude="~test" --include="pg_greatest,~prod"

For MRTG output, the number of connections is reported on the first line, and the fourth line gives the name of the database, plus the
current maximum_connections. If more than one database has been queried, the one with the highest number of connections is output.

bloat

(symlink: check_postgres_bloat) Checks the amount of bloat in tables and indexes. (Bloat is generally the amount of dead unused space taken
up in a table or index. This space is usually reclaimed by use of the VACUUM command.) This action requires that stats collection be
enabled on the target databases, and requires that ANALYZE is run frequently. The --include and --exclude options can be used to filter
out which tables to look at. See the "BASIC FILTERING" section for more details.

The --warning and --critical options can be specified as sizes, percents, or both. Valid size units are bytes, kilobytes, megabytes,
gigabytes, terabytes, exabytes, petabytes, and zettabytes. You can abbreviate all of those with the first letter. [tems without units are
assumed to be 'bytes'. The default values are '1 GB' and '5 GB'. The value represents the number of "wasted bytes", or the difference
between what is actually used by the table and index, and what we compute that it should be.

Note that this action has two hard-coded values to avoid false alarms on smaller relations. Tables must have at least 10 pages, and
indexes at least 15, before they can be considered by this test. If you really want to adjust these values, you can look for the variables
$MINPAGES and $MINIPAGES at the top of the check_bloat subroutine. These values are ignored if either --exclude or --include is used.

Only the top 10 most bloated relations are shown. You can change this number by using the --perflimit option to set your own limit.
The schema named 'information_schema' is excluded from this test, as the only tables it contains are small and do not change.

Please note that the values computed by this action are not precise, and should be used as a guideline only. Great effort was made to
estimate the correct size of a table, but in the end it is only an estimate. The correct index size is even more of a guess than the correct
table size, but both should give a rough idea of how bloated things are.

Example 1: Warn if any table on port 5432 is over 100 MB bloated, and critical if over 200 MB
check_postgres_bloat --port=5432 --warning='100 M' --critical='200 M'

Example 2: Give a critical if table 'orders' on host 'sami' has more than 10 megs of bloat
check_postgres_bloat --host=sami --include=orders --critical='10 MB'

Example 3: Give a critical if table 'g4' on database 'sales' is over 50% bloated
check_postgres_bloat --db=sales --include=qg4 --critical='50%'

Example 4: Give a critical any table is over 20% bloated and has over 150 MB of bloat:
check_postgres_bloat --port=5432 --critical='20% and 150 M'

Example 5: Give a critical any table is over 40% bloated or has over 500 MB of bloat:
check_postgres_bloat --port=5432 --warning='500 M or 40%"

For MRTG output, the first line gives the highest number of wasted bytes for the tables, and the second line gives the highest number of
wasted bytes for the indexes. The fourth line gives the database name, table name, and index name information. If you want to output the
bloat ratio instead (how many times larger the relation is compared to how large it should be), just pass in --mrtg=ratio .

checkpoint

(symlink: check_postgres_checkpoint) Determines how long since the last checkpoint has been run. This must run on the same server as the
database that is being checked (e.g. the -h flag will not work). This check is meant to run on a "warm standby" server that is actively
processing shipped WAL files, and is meant to check that your warm standby is truly 'warm'. The data directory must be set, either by the
environment variable PGDATA , or passing the --datadir argument. It returns the number of seconds since the last checkpoint was run, as
determined by parsing the call to pg_controldata . Because of this, the pg_controldata executable must be available in the current path.
Alternatively, you can specify PGBINDIR as the directory that it lives in. It is also possible to use the special options --assume-prod or --
assume-standby-mode , if the mode found is not the one expected, a CRITICAL is emitted.

At least one warning or critical argument must be set.
This action requires the Date::Parse module.

For MRTG or simple output, returns the number of seconds.
cluster_id

(symlink: check_postgres_cluster-id) Checks that the Database System Identifier provided by pg_controldata is the same as last time you
checked. This must run on the same server as the database that is being checked (e.g. the -h flag will not work). Either the --warning or
the --critical option should be given, but not both. The value of each one is the cluster identifier, an integer value. You can run with the
special --critical=0 option to find out an existing cluster identifier.

Example 1: Find the initial identifier

check_postgres_cluster_id --critical=0 --datadir=/var//lib/postgresql/9.0/main

Example 2: Make sure the cluster is the same and warn if not, using the result from above.
check_postgres_cluster_id --critical=5633695740047915135

For MRTG output, returns a 1 or 0 indicating success of failure of the identifier to match. A identifier must be provided as the --mrtg
argument. The fourth line always gives the current identifier.

commitratio

(symlink: check_postgres_commitratio) Checks the commit ratio of all databases and complains when they are too low. There is no need to run
this command more than once per database cluster. Databases can be filtered with the --include and --exclude options. See the "BASIC
FILTERING" section for more details. They can also be filtered by the owner of the database with the --includeuser and --excludeuser
options. See the "USER NAME FILTERING" section for more details.

The warning and critical options should be specified as percentages. There are not defaults for this action: the warning and critical must
be specified. The warning value cannot be greater than the critical value. The output returns all databases sorted by commitratio,
smallest first.

Example: Warn if any database on host flagg is less than 90% in commitratio, and critical if less then 80%.
check_postgres_database_commitratio --host=flagg --warning='90%" --critical='80%"

For MRTG output, returns the percentage of the database with the smallest commitratio on the first line, and the name of the database on
the fourth line.

connection

(symlink: check_postgres_connection) Simply connects, issues a 'SELECT version()', and leaves. Takes no --warning or --critical options.

For MRTG output, simply outputs a 1 (good connection) or a 0 (bad connection) on the first line.
custom_query

(symlink: check_postgres_custom_query) Runs a custom query of your choosing, and parses the results. The query itself is passed in through the
query argument, and should be kept as simple as possible. If at all possible, wrap it in a view or a function to keep things easier to manage.
The query should return one or two columns. It is required that one of the columns be named "result" and is the item that will be checked
against your warning and critical values. The second column is for the performance data and any name can be used: this will be the
'value' inside the performance data section.

At least one warning or critical argument must be specified. What these are set to depends on the type of query you are running. There
are four types of custom_queries that can be run, specified by the valtype argument. If none is specified, this action defaults to 'integer".
The four types are:

integer : Does a simple integer comparison. The first column should be a simple integer, and the warning and critical values should be
the same.

string : The warning and critical are strings, and are triggered only if the value in the first column matches it exactly. This is case-
sensitive.

time : The warning and the critical are times, and can have units of seconds, minutes, hours, or days. Each may be written singular or
abbreviated to just the first letter. If no units are given, seconds are assumed. The first column should be an integer representing the
number of seconds to check.

size : The warning and the critical are sizes, and can have units of bytes, kilobytes, megabytes, gigabytes, terabytes, or exabytes. Each
may be abbreviated to the first letter. If no units are given, bytes are assumed. The first column should be an integer representing the
number of bytes to check.

Normally, an alert is triggered if the values returned are greater than or equal to the critical or warning value. However, an option of --
reverse will trigger the alert if the returned value is lower than or equal to the critical or warning value.

Example 1: Warn if any relation over 100 pages is named "rad", put the number of pages inside the performance data section.

check_postgres_custom_query --valtype=string -w "rad" --query=
"SELECT relname AS result, relpages AS pages FROM pg_class WHERE relpages > 100"

Example 2: Give a critical if the "foobar" function returns a number over 5MB:
check_postgres_custom_query --critical='5MB'--valtype=size --query="SELECT foobar() AS result"

Example 2: Warn if the function "snazzo" returns less than 42:
check_postgres_custom_query --critical=42 --query="SELECT snazzo() AS result" --reverse

If you come up with a useful custom_query, consider sending in a patch to this program to make it into a standard action that other
people can use.

This action does not support MRTG or simple output yet.
database_size

(symlink: check_postgres_database_size) Checks the size of all databases and complains when they are too big. There is no need to run this
command more than once per database cluster. Databases can be filtered with the --include and --exclude options. See the "BASIC
FILTERING" section for more details. They can also be filtered by the owner of the database with the --includeuser and --excludeuser
options. See the "USER NAME FILTERING" section for more details.

The warning and critical options can be specified as bytes, kilobytes, megabytes, gigabytes, terabytes, or exabytes. Each may be
abbreviated to the first letter as well. If no unit is given, the units are assumed to be bytes. There are not defaults for this action: the
warning and critical must be specified. The warning value cannot be greater than the critical value. The output returns all databases
sorted by size largest first, showing both raw bytes and a "pretty" version of the size.

Example 1: Warn if any database on host flagg is over 1 TB in size, and critical if over 1.1 TB.
check_postgres_database_size --host=flagg --warning='1 TB' --critical="1.1 t'
Example 2: Give a critical if the database templatel on port 5432 is over 10 MB.
check_postgres_database_size --port=5432 --include=templatel --warning='10MB' --critical='10MB'
Example 3: Give a warning if any database on host 'tardis' owned by the user 'tom' is over 5 GB
check_postgres_database_size --host=tardis --includeuser=tom --warning='5 GB' --critical='10 GB'
For MRTG output, returns the size in bytes of the largest database on the first line, and the name of the database on the fourth line.
dbstats
(symlink: check_postgres_dbstats) Reports information from the pg_stat_database view, and outputs it in a Cacti-friendly manner. No other

output is supported, as the output is informational and does not lend itself to alerts, such as used with Nagios. If no options are given, all
databases are returned, one per line. You can include a specific database by use of the --include option, or you can use the --dbname option.

Eleven items are returned on each line, in the format name:value, separated by a single space. The items are:
backends
The number of currently running backends for this database.
commits
The total number of commits for this database since it was created or reset.
rollbacks
The total number of rollbacks for this database since it was created or reset.
read
The total number of disk blocks read.
hit
The total number of buffer hits.
ret
The total number of rows returned.
fetch
The total number of rows fetched.
ins
The total number of rows inserted.
upd
The total number of rows updated.
del
The total number of rows deleted.
dbname
The name of the database.

Note that ret, fetch, ins, upd, and del items will always be 0 if Postgres is version 8.2 or lower, as those stats were not available in those
versions.

If the dbname argument is given, seven additional items are returned:
idxscan
Total number of user index scans.
idxtupread
Total number of user index entries returned.
idxtupfetch
Total number of rows fetched by simple user index scans.
idxblksread
Total number of disk blocks read for all user indexes.
idxblkshit
Total number of buffer hits for all user indexes.
seqgscan
Total number of sequential scans against all user tables.
seqtupread
Total number of tuples returned from all user tables.
Example 1: Grab the stats for a database named "products" on host "willow":
check_postgres_dbstats --dbhost willow --dbname products
The output returned will be like this (all on one line, not wrapped):
backends:82 commits:58374408 rollbacks:1651 read:268435543 hit:2920381758 idxscan:310931294 idxtupread:2777040927

idxtupfetch:1840241349 idxblksread:62860110 idxblkshit:1107812216 seqscan:5085305 seqtupread:5370500520
ret:0 fetch:0 ins:0 upd:0 del:0 dbname:willow

disabled_triggers

(symlink: check_postgres_disabled_triggers) Checks on the number of disabled triggers inside the database. The --warning and --critical options
are the number of such triggers found, and both default to "1", as in normal usage having disabled triggers is a dangerous event. If the

database being checked is 8.3 or higher, the check is for the number of triggers that are in a 'disabled' status (as opposed to being
'always' or 'replica'). The output will show the name of the table and the name of the trigger for each disabled trigger.

Example 1: Make sure that there are no disabled triggers
check_postgres_disabled_triggers

For MRTG output, returns the number of disabled triggers on the first line.
disk_space

(symlink: check_postgres_disk_space) Checks on the available physical disk space used by Postgres. This action requires that you have the
executable "/bin/df" available to report on disk sizes, and it also needs to be run as a superuser, so it can examine the data_directory
setting inside of Postgres. The --warning and --critical options are given in either sizes or percentages or both. If using sizes, the standard
unit types are allowed: bytes, kilobytes, gigabytes, megabytes, gigabytes, terabytes, or exabytes. Each may be abbreviated to the first
letter only; no units at all indicates 'bytes'. The default values are '90%' and '95%".

This command checks the following things to determine all of the different physical disks being used by Postgres.
data_directory - The disk that the main data directory is on.

log directory - The disk that the log files are on.

WAL file directory - The disk that the write-ahead logs are on (e.g. symlinked pg_xlog)

tablespaces - Each tablespace that is on a separate disk.

The output shows the total size used and available on each disk, as well as the percentage, ordered by highest to lowest percentage used.
Each item above maps to a file system: these can be included or excluded. See the "BASIC FILTERING" section for more details.

Example 1: Make sure that no file system is over 90% for the database on port 5432.
check_postgres_disk_space --port=5432 --warning='90%" --critical='90%'
Example 2: Check that all file systems starting with /dev/sda are smaller than 10 GB and 11 GB (warning and critical)
check_postgres_disk_space --port=5432 --warning="'10 GB' --critical='11 GB' --include="~"/dev/sda"
Example 4: Make sure that no file system is both over 50% and has over 15 GB
check_postgres_disk_space --critical='50% and 15 GB'
Example 5: Issue a warning if any file system is either over 70% full or has more than 1T
check_postgres_disk_space --warning="'1T or 75'

For MRTG output, returns the size in bytes of the file system on the first line, and the name of the file system on the fourth line.
fsm_pages

(symlink: check_postgres_fsm_pages) Checks how close a cluster is to the Postgres max_fsm_pages setting. This action will only work for
databases of 8.2 or higher, and it requires the contrib module pg_freespacemap be installed. The --warning and --critical options should
be expressed as percentages. The number of used pages in the free-space-map is determined by looking in the
pg_freespacemap_relations view, and running a formula based on the formula used for outputting free-space-map pageslots in the
vacuum verbose command. The default values are 85% for the warning and 95% for the critical.

Example 1: Give a warning when our cluster has used up 76% of the free-space pageslots, with pg_freespacemap installed in database
robert

check_postgres_fsm_pages --dbname=robert --warning="76%"

While you need to pass in the name of the database where pg_freespacemap is installed, you only need to run this check once per cluster.
Also, checking this information does require obtaining special locks on the free-space-map, so it is recommend you do not run this check
with short intervals.

For MRTG output, returns the percent of free-space-map on the first line, and the number of pages currently used on the second line.

fsm_relations

(symlink: check_postgres_fsm_relations) Checks how close a cluster is to the Postgres max_fsm_relations setting. This action will only work for
databases of 8.2 or higher, and it requires the contrib module pg_freespacemap be installed. The --warning and --critical options should
be expressed as percentages. The number of used relations in the free-space-map is determined by looking in the
pg_freespacemap_relations view. The default values are 85% for the warning and 95% for the critical.

Example 1: Give a warning when our cluster has used up 80% of the free-space relations, with pg_freespacemap installed in database
dylan

check_postgres_fsm_relations --dbname=dylan --warning="75%"

While you need to pass in the name of the database where pg_freespacemap is installed, you only need to run this check once per cluster.
Also, checking this information does require obtaining special locks on the free-space-map, so it is recommend you do not run this check
with short intervals.

For MRTG output, returns the percent of free-space-map on the first line, the number of relations currently used on the second line.
hitratio

(symlink: check_postgres_hitratio) Checks the hit ratio of all databases and complains when they are too low. There is no need to run this
command more than once per database cluster. Databases can be filtered with the --include and --exclude options. See the "BASIC
FILTERING" section for more details. They can also be filtered by the owner of the database with the --includeuser and --excludeuser
options. See the "USER NAME FILTERING" section for more details.

The warning and critical options should be specified as percentages. There are not defaults for this action: the warning and critical must
be specified. The warning value cannot be greater than the critical value. The output returns all databases sorted by hitratio, smallest
first.

Example: Warn if any database on host flagg is less than 90% in hitratio, and critical if less then 80%.
check_postgres_hitratio --host=flagg --warning='90%" --critical='80%'

For MRTG output, returns the percentage of the database with the smallest hitratio on the first line, and the name of the database on the
fourth line.

hot_standby_delay

(symlink: check_hot_standby_delay) Checks the streaming replication lag by computing the delta between the current xlog position of a master
server and the replay location of a slave connected to it. The slave server must be in hot_standby (e.g. read only) mode, therefore the
minimum version to use this action is Postgres 9.0. The --warning and --critical options are the delta between the xlog locations. Since
these values are byte offsets in the WAL they should match the expected transaction volume of your application to prevent false positives
or negatives.

The first "--dbname", "--host", and "--port", etc. options are considered the master; the second belongs to the slave.

Byte values should be based on the volume of transactions needed to have the streaming replication disconnect from the master because
of too much lag, determined by the Postgres configuration variable wal_keep_segments . For units of time, valid units are 'seconds’,
'minutes’, 'hours', or 'days'. Each may be written singular or abbreviated to just the first letter. When specifying both, in the form ' bytes
and time ', both conditions must be true for the threshold to be met.

You must provide information on how to reach the databases by providing a comma separated list to the --dbhost and --dbport
parameters, such as "--dbport=5432,5543". If not given, the action fails.

Example 1: Warn a database with a local replica on port 5433 is behind on any xlog replay at all
check_hot_standby_delay --dbport=5432,5433 --warning="1'

Example 2: Give a critical if the last transaction replical receives is more than 10 minutes ago
check_hot_standby_delay --dbhost=master,replical --critical='10 min'

Example 3: Allow replical to be 1 WAL segment behind, if the master is momentarily seeing more activity than the streaming replication
connection can handle, or 10 minutes behind, if the master is seeing very little activity and not processing any transactions, but not both,
which would indicate a lasting problem with the replication connection.

check_hot_standby_delay --dbhost=master,replical --warning='1048576 and 2 min' --critical='16777216 and 10 min'
index_size
table_size

relation_size

(symlinks: check_postgres_index_size , check_postgres_table_size , and check_postgres_relation_size) The actions table_size and index_size are simply
variations of the relation_size action, which checks for a relation that has grown too big. Relations (in other words, tables and indexes)
can be filtered with the --include and --exclude options. See the "BASIC FILTERING" section for more details. Relations can also be filtered
by the user that owns them, by using the --includeuser and --excludeuser options. See the "USER NAME FILTERING" section for more
details.

The values for the --warning and --critical options are file sizes, and may have units of bytes, kilobytes, megabytes, gigabytes, terabytes,
or exabytes. Each can be abbreviated to the first letter. If no units are given, bytes are assumed. There are no default values: both the
warning and the critical option must be given. The return text shows the size of the largest relation found.

If the --showperf option is enabled, all of the relations with their sizes will be given. To prevent this, it is recommended that you set the --
perflimit option, which will cause the query to do a ORDER BY size DESC LIMIT (perflimit) .

Example 1: Give a critical if any table is larger than 600MB on host burrick.
check_postgres_table_size --critical='600 MB' --warning='600 MB' --host=burrick

Example 2: Warn if the table products is over 4 GB in size, and give a critical at 4.5 GB.
check_postgres_table_size --host=burrick --warning='4 GB' --critical='4.5 GB' --include=products

Example 3: Warn if any index not owned by postgres goes over 500 MB.
check_postgres_index_size --port=5432 --excludeuser=postgres -w 500MB -c 600MB

For MRTG output, returns the size in bytes of the largest relation, and the name of the database and relation as the fourth line.
last_analyze

last_vacuum

last_autoanalyze

last_autovacuum

(symlinks: check_postgres_last_analyze , check_postgres_last_vacuum , check_postgres_last_autoanalyze , and check_postgres_last_autovacuum) Checks how
long it has been since vacuum (or analyze) was last run on each table in one or more databases. Use of these actions requires that the
target database is version 8.3 or greater, or that the version is 8.2 and the configuration variable stats_row_level has been enabled.
Tables can be filtered with the --include and --exclude options. See the "BASIC FILTERING" section for more details. Tables can also be
filtered by their owner by use of the --includeuser and --excludeuser options. See the "USER NAME FILTERING" section for more details.

The units for --warning and --critical are specified as times. Valid units are seconds, minutes, hours, and days; all can be abbreviated to
the first letter. If no units are given, 'seconds' are assumed. The default values are 'l day' and '2 days'. Please note that there are cases in
which this field does not get automatically populated. If certain tables are giving you problems, make sure that they have dead rows to
vacuum, or just exclude them from the test.

The schema named 'information_schema' is excluded from this test, as the only tables it contains are small and do not change.

Note that the non-'auto' versions will also check on the auto versions as well. In other words, using last_vacuum will report on the last
vacuum, whether it was a normal vacuum, or one run by the autovacuum daemon.

Example 1: Warn if any table has not been vacuumed in 3 days, and give a critical at a week, for host wormwood
check_postgres_last_vacuum --host=wormwood --warning="'3d"' --critical="'7d"

Example 2: Same as above, but skip tables belonging to the users 'eve' or 'mallory'
check_postgres_last_vacuum --host=wormwood --warning="'3d"' --critical='7d"' --excludeusers=eve,mallory

For MRTG output, returns (on the first line) the LEAST amount of time in seconds since a table was last vacuumed or analyzed. The fourth
line returns the name of the database and name of the table.

listener

(symlink: check_postgres_listener) Confirm that someone is listening for one or more specific strings (using the LISTEN/NOTIFY system), by
looking at the pg_listener table. Only one of warning or critical is needed. The format is a simple string representing the LISTEN target, or
a tilde character followed by a string for a regular expression check. Note that this check will not work on versions of Postgres 9.0 or
higher.

Example 1: Give a warning if nobody is listening for the string bucardo_mcp_ping on ports 5555 and 5556
check_postgres_listener --port=5555,5556 --warning=bucardo_mcp_ping

Example 2: Give a critical if there are no active LISTEN requests matching 'grimm' on database oskar
check_postgres_listener --db oskar --critical=~grimm

For MRTG output, returns a 1 or a 0 on the first, indicating success or failure. The name of the notice must be provided via the --mrtg
option.

locks

(symlink: check_postgres_locks) Check the total number of locks on one or more databases. There is no need to run this more than once per
database cluster. Databases can be filtered with the --include and --exclude options. See the "BASIC FILTERING" section for more details.

The --warning and --critical options can be specified as simple numbers, which represent the total number of locks, or they can be broken
down by type of lock. Valid lock names are ‘total', 'waiting' , or the name of a lock type used by Postgres. These names are case-insensitive
and do not need the "lock" part on the end, so exclusive will match 'ExclusiveLock'. The format is name=number, with different items
separated by colons or semicolons (or any other symbol).

Example 1: Warn if the number of locks is 100 or more, and critical if 200 or more, on host garrett
check_postgres_locks --host=garrett --warning=100 --critical=200

Example 2: On the host artemus, warn if 200 or more locks exist, and give a critical if over 250 total locks exist, or if over 20 exclusive
locks exist, or if over 5 connections are waiting for a lock.

check_postgres_locks --host=artemus --warning=200 --critical="total=250:waiting=5:exclusive=20"

For MRTG output, returns the number of locks on the first line, and the name of the database on the fourth line.
logfile

(symlink: check_postgres_logfile) Ensures that the lodfile is in the expected location and is being logged to. This action issues a command that
throws an error on each database it is checking, and ensures that the message shows up in the logs. It scans the various log_* settings
inside of Postgres to figure out where the logs should be. If you are using syslog, it does a rough (but not foolproof) scan of
/etc/syslog.conf . Alternatively, you can provide the name of the logfile with the --logfile option. This is especially useful if the logs have a
custom rotation scheme driven be an external program. The --logfile option supports the following escape characters: %Y %m %d %H ,
which represent the current year, month, date, and hour respectively. An error is always reported as critical unless the warning option has
been passed in as a non-zero value. Other than that specific usage, the --warning and --critical options should not be used.

Example 1: On port 5432, ensure the lodfile is being written to the file /home/greg/pg8.2.log
check_postgres_logfile --port=5432 --logfile=/home/greg/pg8.2.log

Example 2: Same as above, but raise a warning, not a critical

check_postgres_logfile --port=5432 --logfile=/home/greg/pg8.2.log -w 1

For MRTG output, returns a 1 or 0 on the first line, indicating success or failure. In case of a failure, the fourth line will provide more detail
on the failure encountered.

new_version_bc

(symlink: check_postgres_new_version_bc) Checks if a newer version of the Bucardo program is available. The current version is obtained by
running bucardo_ctl --version . If @ major upgrade is available, a warning is returned. If a revision upgrade is available, a critical is returned.
(Bucardo is a master to slave, and master to master replication system for Postgres: see http://bucardo.org for more information). See also
the information on the --get_method option.

new_version_box

(symlink: check_postgres_new_version_box) Checks if a newer version of the boxinfo program is available. The current version is obtained by
running boxinfo.pl --version . If @ major upgrade is available, a warning is returned. If a revision upgrade is available, a critical is returned.
(boxinfo is a program for grabbing important information from a server and putting it into a HTML format: see
http://bucardo.org/wiki/boxinfo for more information). See also the information on the --get_method option.

new_version_cp

(symlink: check_postgres_new_version_cp) Checks if a newer version of this program (check_postgres.pl) is available, by grabbing the version
from a small text file on the main page of the home page for the project. Returns a warning if the returned version does not match the one
you are running. Recommended interval to check is once a day. See also the information on the --get_method option.

new_version_pg

(symlink: check_postgres_new_version_pg) Checks if a newer revision of Postgres exists for each database connected to. Note that this only
checks for revision, e.g. going from 8.3.6 to 8.3.7. Revisions are always 100% binary compatible and involve no dump and restore to
upgrade. Revisions are made to address bugs, so upgrading as soon as possible is always recommended. Returns a warning if you do not
have the latest revision. It is recommended this check is run at least once a day. See also the information on the --get_method option.

new_version_tnm

(symlink: check_postgres_new_version_tnm) Checks if a newer version of the tail_n_mail program is available. The current version is obtained by
running tail_n_mail --version . If a major upgrade is available, a warning is returned. If a revision upgrade is available, a critical is returned.
(tail_n_mail is a log monitoring tool that can send mail when interesting events appear in your Postgres logs. See:
http://bucardo.org/wiki/Tail_n_mail for more information). See also the information on the --get_method option.

pgb_pool_cl_active
pgb_pool_cl_waiting
pgb_pool_sv_active
pgb_pool_sv_idle
pgb_pool_sv_used
pgb_pool_sv_tested
pgb_pool_sv_login
pgb_pool_maxwait

(symlinks: check_postgres_pgb_pool_cl_active , check_postgres_pgb_pool_cl_waiting , check_postgres_pgb_pool_sv_active , check_postgres_pgb_pool_sv_idle ,
check_postgres_pgb_pool_sv_used , check_postgres_pgb_pool_sv_tested , check_postgres_pgb_pool_sv_login , and check_postgres_pgb_pool_maxwait)

Examines pgbouncer's pool statistics. Each pool has a set of "client" connections, referring to connections from external clients, and
"server" connections, referring to connections to PostgreSQL itself. The related check_postgres actions are prefixed by "cl_" and "sv_",
respectively. Active client connections are those connections currently linked with an active server connection. Client connections may
also be "waiting", meaning they have not yet been allocated a server connection. Server connections are "active" (linked to a client),
"idle" (standing by for a client connection to link with), "used" (just unlinked from a client, and not yet returned to the idle pool), "tested"
(currently being tested) and "login" (in the process of logging in). The maxwait value shows how long in seconds the oldest waiting client
connection has been waiting.

pgbouncer_backends

(symlink: check_postgres_pgbouncer_backends) Checks the current number of connections for one or more databases through pgbouncer, and
optionally compares it to the maximum allowed, which is determined by the pgbouncer configuration variable max_client_conn . The --
warning and --critical options can take one of three forms. First, a simple number can be given, which represents the number of
connections at which the alert will be given. This choice does not use the max_connections setting. Second, the percentage of available
connections can be given. Third, a negative number can be given which represents the number of connections left until
max_connections is reached. The default values for --warning and --critical are '90%' and '95%'. You can also filter the databases by use
of the --include and --exclude options. See the "BASIC FILTERING" section for more details.

To view only non-idle processes, you can use the --noidle argument. Note that the user you are connecting as must be a superuser for this
to work properly.

Example 1: Give a warning when the number of connections on host quirm reaches 120, and a critical if it reaches 150.
check_postgres_pgbouncer_backends --host=quirm --warning=120 --critical=150 -p 6432 -u pgbouncer

Example 2: Give a critical when we reach 75% of our max_connections setting on hosts lancre or lancre2.
check_postgres_pgbouncer_backends --warning='75%"' --critical='75%' --host=lancre,lancre2 -p 6432 -u pgbouncer

Example 3: Give a warning when there are only 10 more connection slots left on host plasmid, and a critical when we have only 5 left.
check_postgres_pgbouncer_backends --warning=-10 --critical=-5 --host=plasmid -p 6432 -u pgbouncer

For MRTG output, the number of connections is reported on the first line, and the fourth line gives the name of the database, plus the
current max_client_conn. If more than one database has been queried, the one with the highest number of connections is output.

pgbouncer_checksum

(symlink: check_postgres_pgbouncer_checksum) Checks that all the pgBouncer settings are the same as last time you checked. This is done by
generating a checksum of a sorted list of setting names and their values. Note that you shouldn't specify the database name, it will
automatically default to pgbouncer. Either the --warning or the --critical option should be given, but not both. The value of each one is the
checksum, a 32-character hexadecimal value. You can run with the special --critical=0 option to find out an existing checksum.

This action requires the Digest::MD5 module.

Example 1: Find the initial checksum for pgbouncer configuration on port 6432 using the default user (usually postgres)
check_postgres_pgbouncer_checksum --port=6432 --critical=0

Example 2: Make sure no settings have changed and warn if so, using the checksum from above.
check_postgres_pgbouncer_checksum --port=6432 --warning=cd2f3b5e129dc2b4f5c0f6d8d2e64231

For MRTG output, returns a 1 or 0 indicating success of failure of the checksum to match. A checksum must be provided as the -mrtg
argument. The fourth line always gives the current checksum.

pgagent_jobs

(symlink: check_postgres_pgagent_jobs) Checks that all the pgAgent jobs that have executed in the preceding interval of time have succeeded.
This is done by checking for any steps that have a non-zero result.

Either --warning or --critical , or both, may be specified as times, and jobs will be checked for failures withing the specified periods of time
before the current time. Valid units are seconds, minutes, hours, and days; all can be abbreviated to the first letter. If no units are given,
'seconds' are assumed.

Example 1: Give a critical when any jobs executed in the last day have failed.

check_postgres_pgagent_jobs --critical=1d

Example 2: Give a warning when any jobs executed in the last week have failed.

check_postgres_pgagent_jobs --warning=7d

Example 3: Give a critical for jobs that have failed in the last 2 hours and a warning for jobs that have failed in the last 4 hours:

check_postgres_pgagent_jobs --critical=2h --warning=4h
prepared_txns

(symlink: check_postgres_prepared_txns) Check on the age of any existing prepared transactions. Note that most people will NOT use prepared
transactions, as they are part of two-part commit and complicated to maintain. They should also not be confused with prepared
STATEMENTS, which is what most people think of when they hear prepare. The default value for a warning is 1 second, to detect any use
of prepared transactions, which is probably a mistake on most systems. Warning and critical are the number of seconds a prepared
transaction has been open before an alert is given.

Example 1: Give a warning on detecting any prepared transactions:
check_postgres_prepared_txns -w 0

Example 2: Give a critical if any prepared transaction has been open longer than 10 seconds, but allow up to 360 seconds for the database
'shrike':

check_postgres_prepared_txns --critical=10 --exclude=shrike
check_postgres_prepared_txns --critical=360 --include=shrike

For MRTG output, returns the number of seconds the oldest transaction has been open as the first line, and which database is came from
as the final line.

query_runtime

(symlink: check_postgres_query_runtime) Checks how long a specific query takes to run, by executing a "EXPLAIN ANALYZE" against it. The --
warning and --critical options are the maximum amount of time the query should take. Valid units are seconds, minutes, and hours; any
can be abbreviated to the first letter. If no units are given, 'seconds' are assumed. Both the warning and the critical option must be given.
The name of the view or function to be run must be passed in to the --queryname option. It must consist of a single word (or
schema.word), with optional parens at the end.

Example 1: Give a critical if the function named "speedtest" fails to run in 10 seconds or less.
check_postgres_query_runtime --queryname='speedtest()' --critical=10 --warning=10

For MRTG output, reports the time in seconds for the query to complete on the first line. The fourth line lists the database.
query_time

(symlink: check_postgres_query_time) Checks the length of running queries on one or more databases. There is no need to run this more than
once on the same database cluster. Note that this already excludes queries that are "idle in transaction". Databases can be filtered by
using the --include and --exclude options. See the "BASIC FILTERING" section for more details. You can also filter on the user running the
query with the --includeuser and --excludeuser options. See the "USER NAME FILTERING" section for more details.

The values for the --warning and --critical options are amounts of time, and default to '2 minutes' and '5 minutes' respectively. Valid units
are 'seconds', 'minutes’, 'hours', or 'days'. Each may be written singular or abbreviated to just the first letter. If no units are given, the unit
is assumed to be seconds.

This action requires Postgres 8.1 or better.

Example 1: Give a warning if any query has been running longer than 3 minutes, and a critical if longer than 5 minutes.
check_postgres_query_time --port=5432 --warning='3 minutes' --critical='5 minutes'

Example 2: Using default values (2 and 5 minutes), check all databases except those starting with 'template'.
check_postgres_query_time --port=5432 --exclude=~"~template

Example 3: Warn if user 'don' has a query running over 20 seconds

check_postgres_query_time --port=5432 --includeuser=don --warning=20s

For MRTG output, returns the length in seconds of the longest running query on the first line. The fourth line gives the name of the
database.

replicate_row
(symlink: check_postgres_replicate_row) Checks that master-slave replication is working to one or more slaves.

The first "--dbname", "--host", and "--port", etc. options are considered the master; subsequent uses are the slaves. The values or the --
warning and --critical options are units of time, and at least one must be provided (no defaults). Valid units are 'seconds', 'minutes’,
'hours', or 'days'. Each may be written singular or abbreviated to just the first letter. If no units are given, the units are assumed to be
seconds.

This check updates a single row on the master, and then measures how long it takes to be applied to the slaves. To do this, you need to
pick a table that is being replicated, then find a row that can be changed, and is not going to be changed by any other process. A specific
column of this row will be changed from one value to another. All of this is fed to the repinfo option, and should contain the following
options, separated by commas: table name, primary key, key id, column, first value, second value.

Example 1: Slony is replicating a table named 'orders' from host 'alpha' to host 'beta’, in the database 'sales'. The primary key of the table
is named id, and we are going to test the row with an id of 3 (which is historical and never changed). There is a column named 'salesrep'
that we are going to toggle from a value of 'slon' to 'nols' to check on the replication. We want to throw a warning if the replication does
not happen within 10 seconds.

check_postgres_replicate_row --host=alpha --dbname=sales --host=beta
--dbname=sales --warning=10 --repinfo=orders,id,3,salesrep,slon,nols

Example 2: Bucardo is replicating a table named 'receipt' from host 'green' to hosts 'red’, 'blue’, and 'yellow'. The database for both sides
is 'public'. The slave databases are running on port 5455. The primary key is named 'receipt_id', the row we want to use has a value of 9,
and the column we want to change for the test is called 'zone'. We'll toggle between 'north' and 'south' for the value of this column, and
throw a critical if the change is not on all three slaves within 5 seconds.

check_postgres_replicate_row --host=green --port=5455 --host=red,blue,yellow
--critical=>5 --repinfo=receipt,receipt_id,9,zone,north,south

For MRTG output, returns on the first line the time in seconds the replication takes to finish. The maximum time is set to 4 minutes 30
seconds: if no replication has taken place in that long a time, an error is thrown.

same_schema

(symlink: check_postgres_same_schema) Verifies that two or more databases are identical as far as their schema (but not the data within). This
is particularly handy for making sure your slaves have not been modified or corrupted in any way when using master to slave replication.
Unlike most other actions, this has no warning or critical criteria - the databases are either in sync, or are not. If they are different, a
detailed list of the differences is presented.

You may want to exclude or filter out certain differences. The way to do this is to add strings to the --filter option. To exclude a type of
object, use "noname", where 'name' is the type of object, for example, "noschema". To exclude objects of a certain type by a regular
expression against their name, use "noname=regex". See the examples below for a better understanding.

The types of objects that can be filtered include:

user
schema
table

view
index
sequence
constraint
trigger
function

The filter option "noposition" prevents verification of the position of columns within a table.
The filter option "nofuncbody" prevents comparison of the bodies of all functions.
The filter option "noperm" prevents comparison of object permissions.

To provide the second database, just append the differences to the first one by a call to the appropriate connection argument. For
example, to compare databases on hosts alpha and bravo, use "--dbhost=alpha,bravo". Also see the examples below.

If only a single host is given, it is assumed we are doing a "time-based" report. The first time this is run a snapshot of all the items in the
database is saved to a local file. When you run it again, that snapshot is read in and becomes "database #2" and is compared to the
current database.

To replace the old stored file with the new version, use the --replace argument.

To enable snapshots at various points in time, you can use the "--suffix" argument to make the filenames unique to each run. See the
examples below.

Example 1: Verify that two databases on hosts star and line are the same:
check_postgres_same_schema --dbhost=star,line

Example 2: Same as before, but exclude any triggers with "slony" in their name
check_postgres_same_schema --dbhost=star,line --filter="notrigger=slony"

Example 3: Same as before, but also exclude all indexes

check_postgres_same_schema --dbhost=star,line --filter="notrigger=slony noindexes"

Example 4: Check differences for the database "battlestar" on different ports
check_postgres_same_schema --dbname=battlestar --dbport=5432,5544
Example 5: Create a daily and weekly snapshot file

check_postgres_same_schema --dbname=cylon --suffix=daily
check_postgres_same_schema --dbname=cylon --suffix=weekly

Example 6: Run a historical comparison, then replace the file

check_postgres_same_schema --dbname=cylon --suffix=daily --replace

sequence

(symlink: check_postgres_sequence) Checks how much room is left on all sequences in the database. This is measured as the percent of total
possible values that have been used for each sequence. The --warning and --critical options should be expressed as percentages. The
default values are 85% for the warning and 95% for the critical. You may use --include and --exclude to control which sequences are to be
checked. Note that this check does account for unusual minvalue and increment by values, but does not care if the sequence is set to
cycle or not.

The output for Nagios gives the name of the sequence, the percentage used, and the number of 'calls' left, indicating how many more
times nextval can be called on that sequence before running into the maximum value.

The output for MRTG returns the highest percentage across all sequences on the first line, and the name of each sequence with that
percentage on the fourth line, separated by a "|" (pipe) if there are more than one sequence at that percentage.

Example 1: Give a warning if any sequences are approaching 95% full.
check_postgres_sequence --dbport=5432 --warning=95%
Example 2: Check that the sequence named "orders_id_seq" is not more than half full.

check_postgres_sequence --dbport=5432 --critical=50% --include=orders_id_seq
settings_checksum

(symlink: check_postgres_settings_checksum) Checks that all the Postgres settings are the same as last time you checked. This is done by
generating a checksum of a sorted list of setting names and their values. Note that different users in the same database may have
different checksums, due to ALTER USER usage, and due to the fact that superusers see more settings than ordinary users. Either the --
warning or the --critical option should be given, but not both. The value of each one is the checksum, a 32-character hexadecimal value.
You can run with the special --critical=0 option to find out an existing checksum.

This action requires the Digest::MD5 module.

Example 1: Find the initial checksum for the database on port 5555 using the default user (usually postgres)
check_postgres_settings_checksum --port=5555 --critical=0

Example 2: Make sure no settings have changed and warn if so, using the checksum from above.
check_postgres_settings_checksum --port=5555 --warning=cd2f3b5e129dc2b4f5c0f6d8d2e64231

For MRTG output, returns a 1 or 0 indicating success of failure of the checksum to match. A checksum must be provided as the -mrtg
argument. The fourth line always gives the current checksum.

slony_status

(symlink: check_postgres_slony_status) Checks in the status of a Slony cluster by looking at the results of Slony's sl_status view. This is returned
as the number of seconds of "lag time". The --warning and --critical options should be expressed as times. The default values are 60
seconds for the warning and 300 seconds for the critical.

The optional argument --schema indicated the schema that Slony is installed under. If it is not given, the schema will be determined
automatically each time this check is run.

Example 1: Give a warning if any Slony is lagged by more than 20 seconds
check_postgres_slony_status --warning 20
Example 2: Give a critical if Slony, installed under the schema "_slony", is over 10 minutes lagged

check_postgres_slony_status --schema=_slony --critical=600
timesync

(symlink: check_postgres_timesync) Compares the local system time with the time reported by one or more databases. The --warning and --
critical options represent the number of seconds between the two systems before an alert is given. If neither is specified, the default
values are used, which are '2' and '5'. The warning value cannot be greater than the critical value. Due to the non-exact nature of this
test, values of '0' or '1' are not recommended.

The string returned shows the time difference as well as the time on each side written out.
Example 1: Check that databases on hosts ankh, morpork, and klatch are no more than 3 seconds off from the local time:
check_postgres_timesync --host=ankh,morpork,klatch --critical=3

For MRTG output, returns one the first line the number of seconds difference between the local time and the database time. The fourth
line returns the name of the database.

txn_idle

(symlink: check_postgres_txn_idle) Checks the number and duration of "idle in transaction" queries on one or more databases. There is no need
to run this more than once on the same database cluster. Databases can be filtered by using the --include and --exclude options. See the
"BASIC FILTERING" section below for more details.

The --warning and --critical options are given as units of time, signed integers, or integers for units of time, and both must be provided
(there are no defaults). Valid units are 'seconds', 'minutes', 'hours', or 'days'. Each may be written singular or abbreviated to just the first
letter. If no units are given and the numbers are unsigned, the units are assumed to be seconds.

This action requires Postgres 8.3 or better.

Example 1: Give a warning if any connection has been idle in transaction for more than 15 seconds:
check_postgres_txn_idle --port=5432 --warning="'15 seconds'

Example 2: Give a warning if there are 50 or more transactions
check_postgres_txn_idle --port=5432 --warning="'+50'

Example 3: Give a critical if 5 or more connections have been idle in transaction for more than 10 seconds:
check_postgres_txn_idle --port=5432 --critical='5 for 10 seconds'

For MRTG output, returns the time in seconds the longest idle transaction has been running. The fourth line returns the name of the
database and other information about the longest transaction.

txn_time

(symlink: check_postgres_txn_time) Checks the length of open transactions on one or more databases. There is no need to run this command
more than once per database cluster. Databases can be filtered by use of the --include and --exclude options. See the "BASIC FILTERING"
section for more details. The owner of the transaction can also be filtered, by use of the --includeuser and --excludeuser options. See the
"USER NAME FILTERING" section for more details.

The values or the --warning and --critical options are units of time, and must be provided (no default). Valid units are 'seconds', 'minutes',
'hours', or 'days'. Each may be written singular or abbreviated to just the first letter. If no units are given, the units are assumed to be
seconds.

This action requires Postgres 8.3 or better.

Example 1: Give a critical if any transaction has been open for more than 10 minutes:
check_postgres_txn_time --port=5432 --critical="'10 minutes'

Example 1: Warn if user 'warehouse' has a transaction open over 30 seconds
check_postgres_txn_time --port-5432 --warning=30s --includeuser=warehouse

For MRTG output, returns the maximum time in seconds a transaction has been open on the first line. The fourth line gives the name of
the database.

txn_wraparound

(symlink: check_postgres_txn_wraparound) Checks how close to transaction wraparound one or more databases are getting. The --warning and --
critical options indicate the number of transactions done, and must be a positive integer. If either option is not given, the default values of
1.3 and 1.4 billion are used. There is no need to run this command more than once per database cluster. For a more detailed discussion of
what this number represents and what to do about it, please visit the page http://www.postgresqgl.org/docs/current/static/routine-
vacuuming.html#VACUUM-FOR-WRAPAROUND

The warning and critical values can have underscores in the number for legibility, as Perl does.
Example 1: Check the default values for the localhost database
check_postgres_txn_wraparound --host=localhost
Example 2: Check port 6000 and give a critical when 1.7 billion transactions are hit:
check_postgres_txn_wraparound --port=6000 --critical=1_700_000_000

For MRTG output, returns the highest number of transactions for all databases on line one, while line 4 indicates which database it is.
version

(symlink: check_postgres_version) Checks that the required version of Postgres is running. The --warning and --critical options (only one is
required) must be of the format X.Y or X.Y.Z where X is the major version number, Y is the minor version number, and Z is the revision.

Example 1: Give a warning if the database on port 5678 is not version 8.4.10:
check_postgres_version --port=5678 -w=8.4.10

Example 2: Give a warning if any databases on hosts valley,grain, or sunshine is not 8.3:
check_postgres_version -H valley,grain,sunshine --critical=8.3

For MRTG output, reports a 1 or a 0 indicating success or failure on the first line. The fourth line indicates the current version. The version
must be provided via the --mrtg option.

wal_files

(symlink: check_postgres_wal_files) Checks how many WAL files exist in the pg xlog directory, which is found off of your data_directory ,
sometimes as a symlink to another physical disk for performance reasons. This action must be run as a superuser, in order to access the
contents of the pg_xlog directory. The minimum version to use this action is Postgres 8.1. The --warning and --critical options are simply
the number of files in the pg_xlog directory. What number to set this to will vary, but a general guideline is to put a number slightly higher

http://www.postgresql.org/docs/current/static/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND

than what is normally there, to catch problems early.

Normally, WAL files are closed and then re-used, but a long-running open transaction, or a faulty archive_command script, may cause
Postgres to create too many files. Ultimately, this will cause the disk they are on to run out of space, at which point Postgres will shut
down.

Example 1: Check that the number of WAL files is 20 or less on host "pluto"
check_postgres_wal_files --host=pluto --critical=20

For MRTG output, reports the number of WAL files on line 1.
rebuild_symlinks
rebuild_symlinks_force

This action requires no other arguments, and does not connect to any databases, but simply creates symlinks in the current directory for
each action, in the form check_postgres_ . If the file already exists, it will not be overwritten. If the action is rebuild_symlinks_force, then
symlinks will be overwritten. The option --symlinks is a shorter way of saying --action=rebuild_symlinks

BASIC FILTERING

The options --include and --exclude can be combined to limit which things are checked, depending on the action. The name of the
database can be filtered when using the following actions: backends, database_size, locks, query_time, txn_idle, and txn_time. The name
of a relation can be filtered when using the following actions: bloat, index_size, table_size, relation_size, last_vacuum, last_autovacuum,
last_analyze, and last_autoanalyze. The name of a setting can be filtered when using the settings_checksum action. The name of a file
system can be filtered when using the disk_space action.

If only an include option is given, then ONLY those entries that match will be checked. However, if given both exclude and include, the
exclusion is done first, and the inclusion after, to reinstate things that may have been excluded. Both --include and --exclude can be given
multiple times, and/or as comma-separated lists. A leading tilde will match the following word as a regular expression.

To match a schema, end the search term with a single period. Leading tildes can be used for schemas as well.

Be careful when using filtering: an inclusion rule on the backends, for example, may report no problems not only because the matching
database had no backends, but because you misspelled the name of the database!

Examples:

Only checks items named pg_class:
--include=pg_class

Only checks items containing the letters 'pg_":
--include=~pg_

Only check items beginning with 'pg_":
--include=~"pg_

Exclude the item named 'test":

--exclude=test

Exclude all items containing the letters 'test:
--exclude=~test

Exclude all items in the schema 'pg_catalog":
--exclude="'pg_catalog.'

Exclude all items containing the letters 'ace', but allow the item 'faceoff":
--exclude=~ace --include=faceoff

Exclude all items which start with the letters 'pg_', which contain the letters 'slon’, or which are named 'sqgl_settings' or 'green’.
Specifically check items with the letters 'prod' in their names, and always check the item named 'pg_relname":

--exclude=~"pg_,~slon,sql_settings --exclude=green --include=~prod,pg_relname

USER NAME FILTERING

The options --includeuser and --excludeuser can be used on some actions to only examine database objects owned by (or not owned by)
one or more users. An --includeuser option always trumps an --excludeuser option. You can give each option more than once for multiple
users, or you can give a comma-separated list. The actions that currently use these options are:

database_size
last_analyze
last_autoanalyze
last_vacuum
last_autovacuum
query_time
relation_size
txn_time

Examples:

Only check items owned by the user named greg:

--includeuser=greg

Only check items owned by either watson or crick:
--includeuser=watson,crick

Only check items owned by crick,franklin, watson, or wilkins:
--includeuser=watson --includeuser=franklin --includeuser=crick,wilkins
Check all items except for those belonging to the user scott:

--excludeuser=scott

TEST MODE

To help in setting things up, this program can be run in a "test mode" by specifying the --test option. This will perform some basic tests to
make sure that the databases can be contacted, and that certain per-action prerequisites are met, such as whether the user is a
superuser, if the version of Postgres is new enough, and if stats_row_level is enabled.

FILES

In addition to command-line configurations, you can put any options inside of a file. The file .check_postgresrc in the current directory will
be used if found. If not found, then the file ~/.check_postgresrc will be used. Finally, the file /etc/check_postgresrc will be used if available.
The format of the file is option = value, one per line. Any line starting with a '#' will be skipped. Any values loaded from a
check_postgresrc file will be overwritten by command-line options. All check_postgresrc files can be ignored by supplying a --no-
checkpostgresrc argument.

ENVIRONMENT VARIABLES

The environment variable $ENV{HOME?} is used to look for a .check_postgresrc file. The environment variable $ENV{PGBINDIR} is used to
look for PostgreSQL binaries.

TIPS AND TRICKS

Since this program uses the psql program, make sure it is accessible to the user running the script. If run as a cronjob, this often means
modifying the PATH environment variable.

If you are using Nagios in embedded Perl mode, use the --action argument instead of symlinks, so that the plugin only gets compiled one
time.

DEPENDENCIES

Access to a working version of psql, and the following very standard Perl modules:

Cwd

Getopt::Long

File::Basename

File::Temp

Time::HiRes (if sopt{showtime} is set to true, which is the default)

The "settings_checksum" action requires the Digest::MD5 module.

The "checkpoint" action requires the Date::Parse module.

Some actions require access to external programs. If psql is not explicitly specified, the command which is used to find it. The program
/bin/df is needed by the "disk_space" action.

DEVELOPMENT

Development happens using the git system. You can clone the latest version by doing:

git clone git://bucardo.org/check_postgres.git

MAILING LIST

Three mailing lists are available. For discussions about the program, bug reports, feature requests, and commit notices, send email to
check_postgres@bucardo.org

https://mail.endcrypt.com/mailman/listinfo/check_postgres

A low-volume list for announcement of new versions and important notices is the 'check_postgres-announce' list:
https://mail.endcrypt.com/mailman/listinfo/check_postgres-announce

Source code changes (via git-commit) are sent to the 'check_postgres-commit' list:

https://mail.endcrypt.com/mailman/listinfo/check_postgres-commit

HISTORY

Iltems not specifically attributed are by GSM (Greg Sabino Mullane).
Version 2.22.0

Add xact timestamp support to hot_standby_delay.

Allow the hot_standby_delay check to accept xlog byte position or
timestamp lag intervals as thresholds, or even both at the same time.
(Josh Williams)

Query all sequences per DB in parallel for action=sequence.
(Christoph Berg)

Fix bloat check to use correct SQL depending on the server version.
(Adrian Vondendriesch)

Show actual long-running query in query_time output
(Peter Eisentraut)

Add explicit ORDER BY to the slony_status check to get the most lagged server.
(Jeff Frost)

Improved multi-slave support in replicate_row.
(Andrew Yochum)

Change the way tables are quoted in replicate_row.
(Glyn Astill)

Don't swallow space before the -c flag when reporting errors
(Jeff Janes)

Fix and extend hot_standby_delay documentation
(Michael Renner)

Declare POD encoding to be utf8.
(Christoph Berg)

Version 2.21.0 September 24, 2013

Fix issue with SQL steps in check_pgagent_jobs for sql steps which perform deletes
(Rob Emery via github pull)

Install man page in section 1.
(Peter Eisentraut, bug 53, github issue 26)

Order lock types in check_locks output to make the ordering predictable;
setting SKIP_NETWORK_TESTS will skip the new_version tests; other minor test
suite fixes.

(Christoph Berg)

Fix same_schema check on 9.3 by ignoring relminmxid differences in pg_class
(Christoph Berg)

Version 2.20.1 June 24, 2013

Make connection check failures return CRITICAL not UNKNOWN
(Dominic Hargreaves)

Fix --reverse option when using string comparisons in custom queries
(Nathaniel Waisbrot)

Compute correct 'totalwastedbytes' in the bloat query
(Michael Renner)

Do not use pg_stats "inherited" column in bloat query, if the
database is 8.4 or older. (Greg Sabino Mullane, per bug 121)

Remove host reordering in hot_standby_delay check
(Josh Williams, with help from Jacobo Blasco)

Better output for the "simple" flag
(Greg Sabino Mullane)

Force same_schema to ignore the 'relallvisible' column
(Greg Sabino Mullane)

Version 2.20.0 March 13, 2013

Add check for pgagent jobs (David E. Wheeler)

Force STDOUT to use utf8 for proper output
(Greg Sabino Mullane; reported by Emmanuel Lesouef)

Fixes for Postgres 9.2: new pg_stat_activity view,
and use pg_tablespace_location, (Josh Williams)

Allow for spaces in item lists when doing same_schema.
Allow txn_idle to work again for < 8.3 servers by switching to query_time.

Fix the check_bloat SQL to take inherited tables into account,
and assume 2k for non-analyzed columns. (Geert Pante)

Cache sequence information to speed up same_schema runs.
Fix --excludeuser in check_txn_idle (Mika Eloranta)
Fix user clause handling in check_txn_idle (Michael van Bracht)

Adjust docs to show colon as a better separator inside args for locks
(Charles Sprickman)

Fix undefined $SQL2 error in check_txn_idle [github issue 16] (Patric Bechtel)

Prevent "uninitialized value" warnings when showing the port (Henrik Ahlgren)

Do not assume everyone has a HOME [github issue 23]
Version 2.19.0 January 17, 2012

Add the --assume-prod option (Cédric Villemain)
Add the cluster_id check (Cédric Villemain)
Improve settings_checksum and checkpoint tests (Cédric Villemain)

Do not do an inner join to pg_user when checking database size
(Greg Sabino Mullane; reported by Emmanuel Lesouef)

Use the full path when getting sequence information for same_schema.
(Greg Sabino Mullane; reported by Cindy Wise)

Fix the formula for calculating xlog positions (Euler Taveira de Oliveira)

Better ordering of output for bloat check - make indexes as important
as tables (Greg Sabino Mullane; reported by Jens Wilke)

Show the dbservice if it was used at top of same_schema output
(Mike Blackwell)

Better installation paths (Greg Sabino Mullane, per bug 53)
Version 2.18.0 October 2, 2011
Redo the same_schema action. Use new --filter argument for all filtering.
Allow comparisons between any number of databases.
Remove the dbname2, dbport2, etc. arguments.
Allow comparison of the same db over time.
Swap dbl and db2 if the slave is 1 for the hot standby check (David E. Wheeler)
Allow multiple --schema arguments for the slony_status action (GSM and Jehan-Guillaume de Rorthais)
Fix ORDER BY in the last vacuum/analyze action (Nicolas Thauvin)
Fix check_hot_standby_delay perfdata output (Nicolas Thauvin)
Look in the correct place for the .ready files with the archive_ready action (Nicolas Thauvin)
New action: commitratio (Guillaume Lelarge)
New action: hitratio (Guillaume Lelarge)
Make sure --action overrides the symlink naming trick.
Set defaults for archive_ready and wal_files (Thomas Guettler, GSM)
Better output for wal_files and archive_ready (GSM)
Fix warning when client_port set to empty string (bug #79)
Account for "empty row" in -x output (i.e. source of functions).
Fix some incorrectly named data fields (Andy Lester)

Expand the number of pgbouncer actions (Ruslan Kabalin)

Give detailed information and refactor txn_idle, txn_time, and query_time
(Per request from bug #61)

Set maxalign to 8 in the bloat check if box identified as '64-bit'
(Michel Sijmons, bug #66)

Support non-standard version strings in the bloat check.
(Michel Sijmons and Gurjeet Singh, bug #66)

Do not show excluded databases in some output (Ruslan Kabalin)
Allow "and", "or" inside arguments (David E. Wheeler)

Add the "new_version_box" action.

Fix psql version regex (Peter Eisentraut, bug #69)

Add the --assume-standby-mode option (Ruslan Kabalin)

Note that txn_idle and query_time require 8.3 (Thomas Guettler)
Standardize and clean up all perfdata output (bug #52)

Exclude "idle in transaction" from the query_time check (bug #43)
Fix the perflimit for the bloat action (bug #50)

Clean up the custom_query action a bit.

Fix space in perfdata for hot_standby_delay action (Nicolas Thauvin)
Handle undef percents in check_fsm_relations (Andy Lester)

Fix typo in dbstats action (Stas Vitkovsky)

Fix MRTG for last vacuum and last_analyze actions.

Version 2.17.0 no public release
Version 2.16.0 January 20, 2011

Add new action 'hot_standby_delay' (Nicolas Thauvin)

Add cache-busting for the version-grabbing utilities.

Fix problem with going to next method for new_version_pg
(Greg Sabino Mullane, reported by Hywel Mallett in bug #65)

Allow /usr/local/etc as an alternative location for the
check_postgresrc file (Hywel Mallett)

Do not use tgisconstraint in same_schema if Postgres >= 9
(Guillaume Lelarge)

Version 2.15.4 January 3, 2011

Fix warning when using symlinks
(Greg Sabino Mullane, reported by Peter Eisentraut in bug #63)

Version 2.15.3 December 30, 2010
Show OK for no matching txn_idle entries.
Version 2.15.2 December 28, 2010

Better formatting of sizes in the bloat action output.

Remove duplicate perfs in bloat action output.
Version 2.15.1 December 27, 2010

Fix problem when examining items in pg_settings (Greg Sabino Mullane)

For connection test, return critical, not unknown, on FATAL errors
(Greg Sabino Mullane, reported by Peter Eisentraut in bug #62)

Version 2.15.0 November 8, 2010

Add --quiet argument to suppress output on OK Nagios results

Add index comparison for same_schema (Norman Yamada and Greg Sabino Mullane)
Use $ENV{PGSERVICE} instead of "service=" to prevent problems (Guillaume Lelarge)
Add --man option to show the entire manual. (Andy Lester)

Redo the internal run_command() sub to use -x and hashes instead of regexes.

Fix error in custom logic (Andreas Mager)

Add the "pgbouncer_checksum" action (Guillaume Lelarge)

Fix regex to work on WIN32 for check_fsm_relations and check_fsm_pages (Luke Koops)
Don't apply a LIMIT when using --exclude on the bloat action (Marti Raudsepp)

Change the output of query_time to show pid,user,port, and address (Giles Westwood)
Fix to show database properly when using slony_status (Guillaume Lelarge)

Allow warning items for same_schema to be comma-separated (Guillaume Lelarge)
Constraint definitions across Postgres versions match better in same_schema.

Work against "EnterpriseDB" databases (Sivakumar Krishnamurthy and Greg Sabino Mullane)
Separate perfdata with spaces (Jehan-Guillaume (ioguix) de Rorthais)

Add new action "archive_ready" (Jehan-Guillaume (ioguix) de Rorthais)

Version 2.14.3 (March 1, 2010)

Allow slony_status action to handle more than one slave.
Use commas to separate function args in same_schema output (Robert Treat)

Version 2.14.2 (February 18, 2010)

Change autovac_freeze default warn/critical back to 90%/95% (Robert Treat)
Put all items one-per-line for relation size actions if --verbose=1

Version 2.14.1 (February 17, 2010)

Don't use $7°T in logfile check, as script may be long-running
Change the error string for the logfile action for easier exclusion
by programs like tail_n_mail

Version 2.14.0 (February 11, 2010)

Added the 'slony_status' action.
Changed the logfile sleep from 0.5 to 1, as 0.5 gets rounded to 0 on some boxes!

Version 2.13.2 (February 4, 2010)
Allow timeout option to be used for logtime 'sleep' time.
Version 2.13.2 (February 4, 2010)

Show offending database for query_time action.
Apply perflimit to main output for sequence action.
Add 'noowner' option to same_schema action.
Raise sleep timeout for logfile check to 15 seconds.

Version 2.13.1 (February 2, 2010)

Fix bug preventing column constraint differences from 2 > 1 for same_schema from being shown.
Allow aliases 'dbnamel’, 'dbhost1', ‘dbport1',etc.

Added "nolanguage" as a filter for the same_schema option.

Don't track "generic" table constraints (e.. $1, $2) using same_schema

Version 2.13.0 (January 29, 2010)

Allow "nofunctions" as a filter for the same_schema option.
Added "noperm" as a filter for the same_schema option.
Ignore dropped columns when considered positions for same_schema (Guillaume Lelarge)

Version 2.12.1 (December 3, 2009)

Change autovac_freeze default warn/critical from 90%/95% to 105%/120% (Marti Raudsepp)
Version 2.12.0 (December 3, 2009)

Allow the temporary directory to be specified via the "tempdir" argument,
for systems that need it (e.g. /tmp is not owned by root).
Fix so old versions of Postgres (< 8.0) use the correct default database (Giles Westwood)
For "same_schema" trigger mismatches, show the attached table.
Add the new_version_bc check for Bucardo version checking.
Add database name to perf output for last_vacuum|analyze (Guillaume Lelarge)
Fix for bloat action against old versions of Postgres without the 'block_size' param.

Version 2.11.1 (August 27, 2009)

Proper Nagios output for last_vacuum|analyze actions. (Cédric Villemain)
Proper Nagios output for locks action. (Cédric Villemain)

Proper Nagios output for txn_wraparound action. (Cédric Villemain)

Fix for constraints with embedded newlines for same_schema.

Allow --exclude for all items when using same_schema.

Version 2.11.0 (August 23, 2009)

Add Nagios perf output to the wal_files check (Cédric Villemain)

Add support for .check_postgresrc, per request from Albe Laurenz.

Allow list of web fetch methods to be changed with the --get_method option.

Add support for the --language argument, which overrides any ENV.

Add the --no-check_postgresrc flag.

Ensure check_postgresrc options are completely overridden by command-line options.
Fix incorrect warning > critical logic in replicate_rows (Glyn Astill)

Version 2.10.0 (August 3, 2009)

For same_schema, compare view definitions, and compare languages.

Make script into a global executable via the Makefile.PL file.

Better output when comparing two databases.

Proper Nagios output syntax for autovac_freeze and backends checks (Cédric Villemain)

Version 2.9.5 (July 24, 2009)

Don't use a LIMIT in check_bloat if --include is used. Per complaint from Jeff Frost.
Version 2.9.4 (July 21, 2009)

More French translations (Guillaume Lelarge)
Version 2.9.3 (July 14, 2009)

Quote dbname in perf output for the backends check. (Davide Abrigo)
Add 'fetch' as an alternative method for new_version checks, as this
comes by default with FreeBSD. (Hywel Mallett)

Version 2.9.2 (July 12, 2009)

Allow dots and dashes in database name for the backends check (Davide Abrigo)
Check and display the database for each match in the bloat check (Cédric Villemain)
Handle 'too many connections' FATAL error in the backends check with a critical,
rather than a generic error (Greg, idea by Jirgen Schulz-Brissel)
Do not allow perflimit to interfere with exclusion rules in the vacuum and
analyze tests. (Greg, bug reported by Jeff Frost)

Version 2.9.1 (June 12, 2009)

Fix for multiple databases with the check_bloat action (Mark Kirkwood)
Fixes and improvements to the same_schema action (Jeff Boes)
Write tests for same_schema, other minor test fixes (Jeff Boes)

Version 2.9.0 (May 28, 2009)

Added the same_schema action (Greg)
Version 2.8.1 (May 15, 2009)

Added timeout via statement_timeout in addition to perl alarm (Greg)
Version 2.8.0 (May 4, 2009)

Added internationalization support (Greg)
Added the 'disabled_triggers' check (Greg)
Added the 'prepared_txns' check (Greg)
Added the 'new_version_cp' and 'new_version_pg' checks (Greg)
French translations (Guillaume Lelarge)
Make the backends search return ok if no matches due to inclusion rules,
per report by Guillaume Lelarge (Greg)
Added comprehensive unit tests (Greg, Jeff Boes, Selena Deckelmann)
Make fsm_pages and fsm_relations handle 8.4 servers smoothly. (Greg)
Fix missing 'upd' field in show_dbstats (Andras Fabian)
Allow ENV{PGCONTROLDATA} and ENV{PGBINDIR}. (Greg)
Add various Perl module infrastructure (e.g. Makefile.PL) (Greg)
Fix incorrect regex in txn_wraparound (Greg)
For txn_wraparound: consistent ordering and fix duplicates in perf output (Andras Fabian)
Add in missing exabyte regex check (Selena Deckelmann)
Set stats to zero if we bail early due to USERWHERECLAUSE (Andras Fabian)
Add additional items to dbstats output (Andras Fabian)
Remove --schema option from the fsm_ checks. (Greg Mullane and Robert Treat)
Handle case when ENV{PGUSER} is set. (Andy Lester)
Many various fixes. (Jeff Boes)
Fix --dbservice: check version and use ENV{PGSERVICE} for old versions (Cédric Villemain)

Version 2.7.3 (February 10, 2009)

Make the sequence action check if sequence being used for a int4 column and

react appropriately. (Michael Glaesemann)
Version 2.7.2 (February 9, 2009)

Fix to prevent multiple groupings if db arguments given.
Version 2.7.1 (February 6, 2009)

Allow the -p argument for port to work again.
Version 2.7.0 (February 4, 2009)

Do not require a connection argument, but use defaults and ENV variables when
possible: PGHOST, PGPORT, PGUSER, PGDATABASE.

Version 2.6.1 (February 4, 2009)

Only require Date::Parse to be loaded if using the checkpoint action.
Version 2.6.0 (January 26, 2009)

Add the 'checkpoint' action.
Version 2.5.4 (January 7, 2009)

Better checking of $opt{dbservice} structure (Cédric Villemain)
Fix time display in timesync action output (Selena Deckelmann)
Fix documentation typos (Josh Tolley)

Version 2.5.3 (December 17, 2008)

Minor fix to regex in verify_version (Lee Jensen)
Version 2.5.2 (December 16, 2008)

Minor documentation tweak.
Version 2.5.1 (December 11, 2008)

Add support for --noidle flag to prevent backends action from counting idle processes.
Patch by Selena Deckelmann.

Fix small undefined warning when not using --dbservice.
Version 2.5.0 (December 4, 2008)

Add support for the pg_Service.conf file with the --dbservice option.
Version 2.4.3 (November 7, 2008)

Fix options for replicate_row action, per report from Jason Gordon.
Version 2.4.2 (November 6, 2008)

Wrap File::Temp::cleanup() calls in eval, in case File::Temp is an older version.
Patch by Chris Butler.

Version 2.4.1 (November 5, 2008)

Cast numbers to numeric to support sequences ranges > bigint in check_sequence action.
Thanks to Scott Marlowe for reporting this.

Version 2.4.0 (October 26, 2008)

Add Cacti support with the dbstats action.
Pretty up the time output for last vacuum and analyze actions.
Show the percentage of backends on the check_backends action.

Version 2.3.10 (October 23, 2008)

Fix minor warning in action check_bloat with multiple databases.
Allow warning to be greater than critical when using the --reverse option.
Support the --perflimit option for the check_sequence action.

Version 2.3.9 (October 23, 2008)
Minor tweak to way we store the default port.
Version 2.3.8 (October 21, 2008)

Allow the default port to be changed easily.
Allow transform of simple output by MB, GB, etc.

Version 2.3.7 (October 14, 2008)

Allow multiple databases in 'sequence' action. Reported by Christoph Zwerschke.
Version 2.3.6 (October 13, 2008)

Add missing $schema to check_fsm_pages. (Robert Treat)
Version 2.3.5 (October 9, 2008)

Change option 'checktype' to 'valtype' to prevent collisions with -c[riticall
Better handling of errors.

Version 2.3.4 (October 9, 2008)
Do explicit cleanups of the temp directory, per problems reported by sb@nnx.com.
Version 2.3.3 (October 8, 2008)

Account for cases where some rounding queries give -0 instead of 0.
Thanks to Glyn Astill for helping to track this down.

Version 2.3.2 (October 8, 2008)

Always quote identifiers in check_replicate_row action.
Version 2.3.1 (October 7, 2008)

Give a better error if one of the databases cannot be reached.
Version 2.3.0 (October 4, 2008)

Add the "sequence" action, thanks to Gavin M. Roy for the idea.

Fix minor problem with autovac_freeze action when using MRTG output.
Allow output argument to be case-insensitive.

Documentation fixes.

Version 2.2.4 (October 3, 2008)
Fix some minor typos
Version 2.2.3 (October 1, 2008)

Expand range of allowed names for --repinfo argument (Glyn Astill)
Documentation tweaks.

Version 2.2.2 (September 30, 2008)
Fixes for minor output and scoping problems.
Version 2.2.1 (September 28, 2008)

Add MRTG output to fsm_pages and fsm_relations.

Force error messages to one-line for proper Nagios output.

Check for invalid preregs on failed command. From conversations with Euler Taveira de Oliveira.
Tweak the fsm_pages formula a little.

Version 2.2.0 (September 25, 2008)
Add fsm_pages and fsm_relations actions. (Robert Treat)
Version 2.1.4 (September 22, 2008)

Fix for race condition in txn_time action.
Add --debugoutput option.

Version 2.1.3 (September 22, 2008)

Allow alternate arguments "dbhost" for "host" and "dbport" for "port".
Output a zero as default value for second line of MRTG output.

Version 2.1.2 (July 28, 2008)

Fix sorting error in the "disk_space" action for non-Nagios output.
Allow --simple as a shortcut for --output=simple.

Version 2.1.1 (July 22, 2008)
Don't check databases with datallowconn false for the "autovac_freeze" action.
Version 2.1.0 (July 18, 2008)

Add the "autovac_freeze" action, thanks to Robert Treat for the idea and design.
Put an ORDER BY on the "txn_wraparound" action.

Version 2.0.1 (July 16, 2008)

Optimizations to speed up the "bloat" action quite a bit.
Fix "version" action to not always output in mrtg mode.

Version 2.0.0 (July 15, 2008)

Add support for MRTG and "simple" output options.
Many small improvements to nearly all actions.

Version 1.9.1 (June 24, 2008)

Fix an error in the bloat SQL in 1.9.0
Allow percentage arguments to be over 99%
Allow percentages in the bloat --warning and --critical (thanks to Robert Treat for the idea)

Version 1.9.0 (June 22, 2008)

Don't include information_schema in certain checks. (Jeff Frost)
Allow --include and --exclude to use schemas by using a trailing period.

Version 1.8.5 (June 22, 2008)

Output schema name before table name where appropriate.
Thanks to Jeff Frost.

Version 1.8.4 (June 19, 2008)
Better detection of problems in --replicate_row.
Version 1.8.3 (June 18, 2008)

Fix 'backends' action: there may be no rows in pg_stat_activity, so run a second
query if needed to find the max_connections setting.
Thanks to Jeff Frost for the bug report.

Version 1.8.2 (June 10, 2008)
Changes to allow working under Nagios' embedded Perl mode. (loannis Tambouras)

Version 1.8.1 (June 9, 2008)

Allow 'bloat' action to work on Postgres version 8.0.
Allow for different commands to be run for each action depending on the server version.
Give better warnings when running actions not available on older Postgres servers.

Version 1.8.0 (June 3, 2008)
Add the --reverse option to the custom_query action.
Version 1.7.1 (June 2, 2008)

Fix 'query_time' action: account for race condition in which zero rows appear in pg_stat_activity.
Thanks to Dustin Black for the bug report.

Version 1.7.0 (May 11, 2008)

Add --replicate_row action
Version 1.6.1 (May 11, 2008)

Add --symlinks option as a shortcut to --action=rebuild_symlinks
Version 1.6.0 (May 11, 2008)

Add the custom_query action.
Version 1.5.2 (May 2, 2008)

Fix problem with too eager creation of custom pgpass file.
Version 1.5.1 (April 17, 2008)

Add example Nagios configuration settings (Brian A. Seklecki)
Version 1.5.0 (April 16, 2008)

Add the --includeuser and --excludeuser options. Documentation cleanup.
Version 1.4.3 (April 16, 2008)

Add in the 'output' concept for future support of non-Nagios programs.
Version 1.4.2 (April 8, 2008)

Fix bug preventing --dbpass argument from working (Robert Treat).
Version 1.4.1 (April 4, 2008)

Minor documentation fixes.
Version 1.4.0 (April 2, 2008)

Have 'wal_files' action use pg_|s_dir (idea by Robert Treat).
For last_vacuum and last_analyze, respect autovacuum effects, add separate
autovacuum checks (ideas by Robert Treat).

Version 1.3.1 (April 2, 2008)

Have txn_idle use query_start, not xact_start.
Version 1.3.0 (March 23, 2008)

Add in txn_idle and txn_time actions.
Version 1.2.0 (February 21, 2008)

Add the 'wal_files' action, which counts the number of WAL files
in your pg_xlog directory.

Fix some typos in the docs.

Explicitly allow -v as an argument.

Allow for a null syslog_facility in the 'logfile’ action.

Version 1.1.2 (February 5, 2008)

Fix error preventing --action=rebuild_symlinks from working.
Version 1.1.1 (February 3, 2008)

Switch vacuum and analyze date output to use 'DD', not 'D'. (Glyn Astill)
Version 1.1.0 (December 16, 2008)

Fixes, enhancements, and performance tracking.

Add performance data tracking via --showperf and --perflimit

Lots of refactoring and cleanup of how actions handle arguments.

Do basic checks to figure out syslog file for 'logfile' action.

Allow for exact matching of beta versions with 'version' action.

Redo the default arguments to only populate when neither 'warning' nor ‘critical' is provided.
Allow just warning OR critical to be given for the 'timesync' action.

Remove 'redirect_stderr' requirement from 'logfile' due to 8.3 changes.

Actions 'last_vacuum' and 'last_analyze' are 8.2 only (Robert Treat)

Version 1.0.16 (December 7, 2007)

First public release, December 2007

BUGS AND LIMITATIONS

The index bloat size optimization is rough.
Some actions may not work on older versions of Postgres (before 8.0).

Please report any problems to check_postgres@bucardo.org

AUTHOR

Greg Sabino Mullane

NAGIOS EXAMPLES

Some example Nagios configuration settings using this script:

define command {

command_name check_postgres_size

command_line $USER2$/check_postgres.pl -H $HOSTADDRESS$ -u pgsql -db postgres --action database_size -w $ARG1$ -c $ARG2$
}

define command {

command_name check_postgres_locks

command_line $USER2$/check_postgres.pl -H $HOSTADDRESS$ -u pgsql -db postgres --action locks -w $ARG1$ -c $ARG2$
}

define service {

use generic-other
host_name dbhost.gtld
service_description dbhost PostgreSQL Service Database Usage Size
check_command check_postgres_size!256000000!512000000
}
define service {
use generic-other
host_name dbhost.gtld
service_description dbhost PostgreSQL Service Database Locks
check_command check_postgres_locks!2!3

}

LICENSE AND COPYRIGHT

Copyright (c) 2007-2015 Greg Sabino Mullane .

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	Table of Contents
	check_postgres
	SYNOPSIS
	DESCRIPTION
	Output Modes
	Nagios output
	MRTG output
	Simple output
	Cacti output

	DATABASE CONNECTION OPTIONS
	OTHER OPTIONS
	ACTIONS
	archive_ready
	autovac_freeze
	backends
	bloat
	checkpoint
	cluster_id
	commitratio
	connection
	custom_query
	database_size
	dbstats
	disabled_triggers
	disk_space
	fsm_pages
	fsm_relations
	hitratio
	hot_standby_delay
	index_size
	table_size
	relation_size
	last_analyze
	last_vacuum
	last_autoanalyze
	last_autovacuum
	listener
	locks
	logfile
	new_version_bc
	new_version_box
	new_version_cp
	new_version_pg
	new_version_tnm
	pgb_pool_cl_active
	pgb_pool_cl_waiting
	pgb_pool_sv_active
	pgb_pool_sv_idle
	pgb_pool_sv_used
	pgb_pool_sv_tested
	pgb_pool_sv_login
	pgb_pool_maxwait
	pgbouncer_backends
	pgbouncer_checksum
	pgagent_jobs
	prepared_txns
	query_runtime
	query_time
	replicate_row
	same_schema
	sequence
	settings_checksum
	slony_status
	timesync
	txn_idle
	txn_time
	txn_wraparound
	version
	wal_files
	rebuild_symlinks
	rebuild_symlinks_force

	BASIC FILTERING
	USER NAME FILTERING
	TEST MODE
	FILES
	ENVIRONMENT VARIABLES
	TIPS AND TRICKS
	DEPENDENCIES
	DEVELOPMENT
	MAILING LIST
	HISTORY
	BUGS AND LIMITATIONS
	AUTHOR
	NAGIOS EXAMPLES
	LICENSE AND COPYRIGHT

