Contents

Crunchy Data Container Suite
Overview

User Guide

Running the Examples
pgBackRest Examples
pgBaseBackup Examples
pgDump & pgRestore Examples
pPgAdmind with TLS
Requirements

Project Environment

Installation

Configuring Namespace and Permissions

Storage Configuration

Build From Source

Crunchy Data Container Suite

Introduction

16

27

31

40

41

41

42

44

46

63

Crunchy Container Suite is a collection of container images for PostgreSQL databases and various tools to manage them. The container
images provided aim to be highly configurable, easy to deploy and reliable.

The suite is cloud agnostic and certified for production deployment with leading container platform technologies. Crunchy Container Suite

supports all major public clouds and enables enables hybrid cloud deployments.

Crunchy Container Suite includes:

e Compatibility with Docker, Kubernetes and OpenShift

e Cloud-agnostic: build your own database-as-a-service in any public, private, or hybrid cloud
o No forks: 100% open source, native PostgreSQL

o Backup, restore, & disaster recovery for terabytes of data

e Graphical database administration tools for simple point-and-click database management
e Open source database monitoring and graphing tools to help analyze and create administration strategies

o PostGIS, robust open source GIS functionality, included by default
o Access to certified builds for Crunchy Certified PostgreSQL

e No proprietary software licensing fees

Why Crunchy Containers?

Enterprise production PostgreSQL deployments require more than just a database. Advanced capabilities like high availability, high-
performant disaster recovery for terabytes of data, and monitoring solutions are requirements for your enterprise database cluster.

By providing the necessary microservices, including containers for scaling, high-availability, disaster recovery, monitoring, and more,
Crunchy Container Suite will meet your production compliance, security, and performance requirements and give you a trusted open
source database experience.

Elastic PostgreSQL
From creating uniformly managed, cloud-native production deployments to allowing your engineering team to provision databases that

meet your compliance requirements, Crunchy Container Suite gives your organization the flexibility to deploy your own personalized
database-as-a-service tailored to your needs.

Open Source For Enterprise

Crunchy Container Suite comes with essential open source tools for PostgreSQL management at scale, and lets you use powerful extensions
like geospatial management with PostGIS.

Compliance At Scale

Deploy Crunchy Certified PostgreSQL with Crunchy Container Suite to harness the security of a Common Criteria EAL 2+ certified
database on trusted platforms such as Red Hat OpenShift or Pivotal Container Service.

Overview

The following provides a high level overview of each of the container images.

CentOS vs RHEL Images

The Crunchy Container suite provides two different OS images: centos7 and rhel7. These images are indentical except for the packages
used by yum to install the software.

The centos7 images, yum is configured to use PostgreSQL RPM Building Project.

The rhel7 images use Crunchy Certified RPMs and are only available to active Crunchy Data customers.

Database Images

Crunchy Container Suite provides two types of PostgreSQL database images:

e Crunchy PostgreSQL
e Crunchy PostGIS

Supported major versions of these images are:

e 9.5
e 9.6
e 10
e 11

Crunchy PostgreSQL
Crunchy PostgreSQL is an unmodified deployment of the PostgreSQL relational database. It supports the following features:

e Asynchronous and synchronous replication

e Mounting custom configuration files such as pg_hba.conf, postgresql.conf and setup.sql

e Can be configured to use SSL authentication

e Logging to container logs

o Dedicated users for: administration, monitoring, connection pooler authentication, replication and user applications.
o pgBackRest backups built into the container

e Archiving WAL to dedicated volume mounts

o FExtensions available in the PostgreSQL contrib module.

e Enhanced audit logging from the pgAudit extension

e Enhanced database statistics from the pg stat_ tatements extensions

Crunchy PostgreSQL PostGIS

The Crunchy PostgreSQL PostGIS mirrors all the features of the Crunchy PostgreSQL image but additionally provides the following
geospatial extensions:

e PostGIS

e PostGIS Topology

o PostGIS Tiger Geocoder
o FuzzyStrMatch

« PLR

Backup and Restoration Images
Crunchy Container Suite provides two types of backup images:

o Physical - backups of the files that comprise the database
e Logical - an export of the SQL that recreates the database

Physical backup and restoration tools included in the Crunchy Container suite are:

o pgBackRest PostgreSQL images
e pg basebackup - provided by the Crunchy Backup image

Logical backup and restoration tools are:

e pg dump - provided by the Crunchy pgDump image
e pg_restore - provided by the Crunchy pgRestore image

Crunchy Backup

The Crunchy Backup image allows users to create pg_basebackup physical backups. The backups created by Crunchy Backup can be
mounted to the Crunchy PostgreSQL container to restore databases.

Crunchy BackRest Restore

The Crunchy BackRest Restore image restores a PostgreSQL database from pgBackRest physical backups. This image supports the
following types of restores:

o Full - all database cluster files are restored and PostgreSQL replays Write Ahead Logs (WAL) to the latest point in time. Requires
an empty data directory.

o Delta - missing files for the database cluster are restored and PostgreSQL replays Write Ahead Logs (WAL) to the latest point in
time.

o PITR - missing files for the database cluster are restored and PostgreSQL replays Write Ahead Logs (WAL) to a specific point in
time.

Visit the official pgBackRest website for more information: https://pgbackrest.org/

https://www.postgresql.org/docs/current/contrib.html
2.x
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html

Crunchy pgDump

The Crunchy pgDump image creates a logical backup of the database using the pg_dump tool. It supports the following features:

o pg_dump individual databases

o pg_dump all databases

o various formats of backups: plain (SQL), custom (compressed archive), directory (directory with one file for each table and blob
being dumped with a table of contents) and tar (uncompressed tar archive)
e Logical backups of database sections such as: DDL, data only, indexes, schema

Crunchy pgRestore

The Crunchy pgRestore image allows users to restore a PostgreSQL database from pg_dump logical backups using the pg_ restore tool.

Administration

The following images can be used to administer and maintain Crunchy PostgreSQL database containers.

Crunchy pgAdmin4

The Crunchy pgAdmind images allows users to administer their Crunchy PostgreSQL containers via a graphical user interface web

application.

i} Browser b
=+ £3 Servers (1)
= GF primary

' £ Databases (2)

- == postgres

@ Dashboard ## Properties

[B SQL |+~ Statistics

<y Dependencies

Transactions per second

43 Dependents

]

-1 == userdb

- [Casts

i 99 Catalogs

+ [T Event Triggers

41) Extensions

4 = Foreign Data Wraj

+ Languages

= € Schemas (2)

- % public

i A1 Collations
+ @ Domains
i+ [FTS Config
£ [lf, FTS Dictior
+ Aa FTS Parser:
+ FTS Templ:
+ [F] Foreign Tal
+ {Z Functions
+ Materialize
+ {{"y Procedure:
+ 1.3 Sequences
+ [FTables
i {2 Trigger Fur

1.00 4.0
WActive BlCommits
0.80| Tidle 3.0/ ““Rollbacks
0.60 WTotal M Transactions
2.0
0.40
0.20 1.0
0.00 0.0

1.00 1200 400
Winserts 1000 Wiretched 350 | IMReads
Updates Returned 300 Hits

WlDeletes 800 250
0.50 600 200
400 150
100

200 50 '
0.00 0 0

Database activity
Sessions Locks Prepared Transactions

~ Q

[
.llmm Application Backend start Wait Event Blocking PIDs

© W » 319 postgres pgAdmin 4 - DB:userdb 10.44.0.63 2018-12-26 20:05:15 UTC idle Client: ClientRead

Figure 1: pgadmin4

Visit the official pgAdmind website for more information: https://www.pgadmin.org/

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html

Crunchy Scheduler

The Crunchy Scheduler image provides a cronlike microservice for automating pg_basebackup and pgBackRest backups within a single
Kubernetes namespace.

The scheduler watches Kubernetes for config maps with the label crunchy-scheduler=true. If found the scheduler parses a JSON object
contained in the config map and converts it into an scheduled task.

Crunchy Upgrade

The Crunchy Upgrade image allows users to perform major upgrades of their Crunchy PostgreSQL containers. The following upgrade
versions of PostgreSQL are available:

e 9.5
e 9.6
« 10
e 11

Performance and Monitoring

The following images can be used to understand how Crunchy PostgreSQL containers are performing over time using tools such as Grafana,
Prometheus and pgBadger.

Crunchy Collect

The Crunchy Collect image exports metric data of Crunchy PostgreSQL containers which can is scraped and stored by Crunchy Prometheus
timeseries database via a web API.

Crunchy Collect contains the following exporters:

e Node Exporter - hardware and OS metrics
o PostgreSQL Exporter - postgres specific metrics

This image also contains custom PostgreSQL queries for additional metrics provided by Crunchy pgMonitor.

Crunchy Grafana

The Crunchy Grafana image provides a web interface for users to explore metric data gathered and stored by Prometheus. Crunchy
Grafana comes with the following features:

e Premade dashboards tuned for PostgreSQL metrics
e Automatic datasource registration
o Automatic administrator user setup

Visit the official Grafana website for more information: https://grafana.com

Crunchy Prometheus

The Crunchy Prometheus image provides a time series databases for storing metric data gathered from Crunchy PostgreSQL containers.
Metrics can be explored via queries in the Prometheus graphical user interface and visualized using Crunchy Grafana. Crunchy Prometheus
supports the following features:

e Auto discovers metric exporters in Kubernetes by searching for pods with the label crunchy-collect=true
¢ Relabels metrics metadata for easier Crunchy Grafana integration

Visit the official Prometheus website for more information: https://prometheus.io

https://github.com/prometheus/node_exporter
https://github.com/wrouesnel/postgres_exporter
https://github.com/CrunchyData/pgmonitor

PostgreSQLDetails ~

demo: primary-metrics

Connections

- Max
== Active
== |dleTrn
- Idle

16:53:20 16:53:25 16:53:30 16:53:35 16:53:40 16:53:45 16:53:50 16:53:55 16:54:00 16:54:05 16:54:10 16:54:15

Database Size Transactions Per Minute (TPM)

5MiB
16:53:20 16:53:30 16:53:40 16:53:50 16:54:00 16:54:10

== total size == postgres == userdb 16:53:20 16:53:30 16:53:40 16:53:50 16:54:00 16:54:10

Figure 2: grafana

Crunchy pgBadger

The Crunchy pgBadger image provides a tool that parses PostgreSQL logs and generates an in-depth statistical report. Crunchy pgBadger
reports include:

o Connections
e Sessions

e Checkpoints
e Vacuum

e Locks

e Queries

Additionally Crunchy pgBadger can be configured to store reports for analysis over time.

Overview v~ Connections ~ Sessions ~ Checkpoints ~ Temp Files ~ Vacuums ~ Locks v Queries ~ Top ~ Events ~

@& QOverview

@ Global Stats

© Queries ! Events # Vacuums ks Temporary files () Sessions Connections
0 25 308ms 2018-12-27 2018-12-27 17 queries/s at
Number of unique Number of queries Total query duration 22:00:26 22:02:19 2018-12-27
normalized queries First query Last query 22:00:26
Query peak
A SQL Traffic
KEY VALUES 201 « QUERIES PER SECOND (5 MINUTES AVERAGE)
17 queries/s B Maximum
| Average
Query Peak EMinimum
15.0 ~
2018-12-27 22:00:26
Date
10.0

Figure 3: pgbadger

Visit the official pgBadger website for more information: https://pgbadger.darold.net/

Connection Pooling and Logical Routers
Crunchy pgBouncer

The Crunchy pgBouncer image provides a lightweight PostgreSQL connection pooler. Using pgBouncer, users can lower overhead of
opening new connections and control traffic to their PostgreSQL databases. Crunchy pgBouncer supports the following features:

e Connection pooling

e Drain, Pause, Stop connections to Crunchy PostgreSQL containers
¢ Dedicated pgBouncer user for authentication queries

e Dynamic user authentication

Visit the official pgBouncer website for more information: https://pgbouncer.github.io

Crunchy pgPool 11

The Crunchy pgPool image provides a logical router and connection pooler for Crunchy PostgreSQL containers. pgPool examines SQL
queries and redirects write queries to the primary and read queries to replicas. This allows users to setup a single entrypoint for their
applications without requiring knowledge of read replicas. Additionally pgPool provides connection pooling to lower overhead of opening
new connections to Crunchy PostgreSQL containers.

Visit the official pgPool II website for more information: http://www.pgpool.net

Supported Platforms
Crunchy Container Suite supports the following platforms:

e Docker 1.13+
o Kubernetes 1.8+
o OpenShift Container Platform 3.11

User Guide

Overview

This guide is intended to get you up and running with the Crunchy Container Suite, and therefore provides guidance for deploying the
Crunchy Container Suite within your own environment. This includes guidance for standing-up and configuring your environment in order
to run Crunchy Containers examples that can be found in the next section.

Please see the following sections in order to properly setup and configure your environment for the Crunchy Container Suite (please feel
free to skip any sections that have already been completed within your environment):

Platform Installation

Crunchy Container Suite Installation
Storage Configuration

Example Guidance

AR

Crunchy Container Suite Examples

Once your environment has been configured according to instructions provided above, you will be able to run the Crunchy Container Suite
examples. These examples will demonstrate the various capabilities provided by the Crunchy Container Suite, including how to properly
configure and deploy the various containers within the suite, and then utilize the features and services provided by those containers. The
examples therefore demonstrate how the Crunchy Container Suite can be utilized to effectively deploy a PostgreSQL database cluster
within your own environment, that meets your specific needs and contains the PostgreSQL features and services that you require.

Platform Installation

In order to run the examples and deploy various containers within the Crunchy Container Suite, you will first need access to an environment
containing one of the following supported platforms:

o Docker 1.13+ (https://www.docker.com/)
o Kubernetes 1.84 (https://kubernetes.io/)
o OpenShift Container Platform 3.11 (https://www.openshift.com/products/container-platform/)

Links to the official website for each of these platform are provided above. Please consult the official documentation for instructions on
how to install and configure these platforms in your environment.

Crunchy Container Suite Installation

Once you have access to an environment containing one of the supported platforms, it is then necessary to properly configure that
environment in order to run the examples, and therefore deploy the various containers included in the Crunchy Container Suite. This can
be done by following the Crunchy Container Suite Installation Guide.

Please note that as indicated within the Installation Guide, certain steps may require administrative access and/or privileges. Therefore,
please work with your local System Administrator(s) as needed to setup and configure your environment according to the steps defined
within this guide. Additionally, certain steps are only applicable to certain platforms and/or environments, so please be sure to follow all
instructions that are applicable to your target environment.

Storage Configuration

Once you have completed all applicable steps in the Installation Guide, you can then proceed with configuring storage in your environment.
The specific forms of storage supported by the Crunchy Containers Suite, as well as instructions for configuring and enabling those forms
of storage, can be found in the Storage Configuration guide. Therefore, please review and follow steps in the Storage Configuration guide
in order to properly configure storage in your environment according to your specific storage needs.

Example Guidance

With the Installation Guide and Storage Configuration complete, you are almost ready to run the examples. However, prior to doing so
it is recommended that you first review the documentation for Running the Examples, which describes various conventions utilized in
the examples, while also providing any other information, resources and guidance relevant to successfully running the Crunchy Container
Suite examples in your environment. The documentation for running the examples can be found here.

Running the Examples

The Kubernetes and OpenShift examples in this guide have been designed using single-node Kubernetes/OCP clusters whose host machines
provide any required supporting infrastructure or services (e.g. local HostPath storage or access to an NFS share). Therefore, for the best
results when running these examples, it is recommended that you utilize a single-node architecture as well.

Additionally, the examples located in the kube directory work on both Kubernetes and OpenShift. Please ensure the CCP_CLI environment
variable is set to the correct binary for your environment, as shown below:

Kubernetes
export CCP_CLI=kubectl

OpenShift
export CCP_CLI=oc

NOTE: Set the CCP_CLI environment variable in .bashrc to ensure the examples will work properly in your environment

Example Conventions

The examples provided in Crunchy Container Suite are simple examples that are meant to demonstrate key Crunchy Container Suite
features. These examples can be used to build more production level deployments as dictated by user requirements specific to their
operating environments.

The examples generally follow these conventions: - There is a run.sh script that you will execute to start the example - There is a
cleanup.sh script that you will execute to shutdown and cleanup the example - Each example will create resources such as Secrets,
ConfigMaps, Services, and PersistentVolumeClaims, all which follow a naming convention of <example name>-<optional description
suffix>. For example, an example called primary might have a Persistent VolumeClaim called primary-pgconf to describe the purpose
of that particular PVC. - The folder names for each example give a clue as to which Container Suite feature it demonstrates. For instance,
the examples/kube/pgaudit example demonstrates how to enable the pg__audit capability in the crunchy-postgres container.

Helpful Resources

Here are some useful resources for finding the right commands to troubleshoot and modify containers in the various environments shown
in this guide:

e Docker Cheat Sheet

e Kubectl Cheat Sheet

e OpenShift Cheat Sheet
e Helm Cheat Sheet

Crunchy Container Suite Examples

Now that your environment has been properly configured for the Crunchy Container Suite and you have reviewed the guidance for running
the examples, you are ready to run the Crunchy Container Suite examples. Therefore, please proceed to the next section in order to
find the examples that can now be run in your environment. — title: “Examples” date: draft: false weight: 4 — — title: “PostgreSQL
Primary” date: draft: false weight: 1 — # PostgreSQL Container Example

This example starts a single PostgreSQL container and service, the most simple of examples.

http://www.bogotobogo.com/DevOps/Docker/Docker-Cheat-Sheet.php
https://kubernetes.io/docs/user-guide/kubectl-cheatsheet/
https://github.com/nekop/openshift-sandbox/blob/master/docs/command-cheatsheet.md
https://github.com/kubernetes/helm/blob/master/docs/using_helm.md

The container creates a default database called userdb, a default user called testuser and a default password of password.

For all environments, the script additionally creates:

o A persistent volume claim
e A crunchy-postgres container named primary
e The database using predefined environment variables

And specifically for the Kubernetes and OpenShift environments:

e A pod named primary

e A service named primary

e A PVC named primary-pgdata

o The database using predefined environment variables

To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

To create the example and run the container:
cd $CCPRO0T/examples/docker/primary
./run.sh

Connect from your local host as follows:

psql -h localhost -U testuser -W userdb

Kubernetes and OpenShift

To create the example:

cd $CCPROOT/examples/kube/primary
./run.sh

Connect from your local host as follows:

psql -h primary -U postgres postgres

Helm

This example resides under the $CCPRO0T/examples/helm directory. View the README to run this example using Helm here.

Custom Configuration
You can use your own version of the SQL file setup.sql to customize the initialization of database data and objects when the container
and database are created.

This works by placing a file named setup.sql within the /pgconf mounted volume directory. Portions of the setup.sql file are required
for the container to work; please see comments within the sample setup.sql file.

If you mount a /pgconf volume, crunchy-postgres will look at that directory for postgresql.conf, pg_hba.conf, pg_ident.conf, SSL
server/ca certificates and setup.sql. If it finds one of them it will use that file instead of the default files.

Docker

This example can be run as follows for the Docker environment:

cd $CCPROOT/examples/docker/custom-config
./run.sh

https://github.com/CrunchyData/crunchy-containers/blob/master/examples/helm/primary/README.md

Kubernetes and OpenShift

Running the example:

cd $CCPRO0T/examples/kube/custom-config
./run.sh

SSL Authentication

This example shows how you can configure PostgreSQL to use SSL for client authentication.

The example requires SSL certificates and keys to be created. Included in the examples directory is a script to create self-signed certificates
(server and client) for the example: $CCPROOT/examples/ssl-creator.sh.

The example creates a client certificate for the user testuser. Furthermore, the server certificate is created for the server name
custom-config-ssl.

This example can be run as follows for the Docker environment:

cd $CCPRO0T/examples/docker/custom-config-ssl
./run.sh

And the example can be run in the following directory for the Kubernetes and OpenShift environments:

cd $CCPRO0T/examples/kube/custom-config-ssl
./run.sh

A required step to make this example work is to define in your /etc/hosts file an entry that maps custom-config-ssl to the service IP
address for the container.

For instance, if your service has an address as follows:

${CCP_CLI} get service
NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
custom-config-ssl 172.30.211.108 <none> 5432/ TCP

Then your /etc/hosts file needs an entry like this:
172.30.211.108 custom-config-ssl

For production Kubernetes and OpenShift installations, it will likely be preferred for DNS names to resolve to the PostgreSQL service
name and generate server certificates using the DNS names instead of the example name custom-config-ssl.

If as a client it’s required to confirm the identity of the server, verify-full can be specified for ssl-mode in the connection string. This
will check if the server and the server certificate have the same name. Additionally, the proper connection parameters must be specified
in the connection string for the certificate information required to trust and verify the identity of the server (sslrootcert and sslcrl),
and to authenticate the client using a certificate (sslcert and sslkey):

psql "postgresql://testuser@custom-config-ssl:5432/userdb?\
sslmode=verify-full&\
sslrootcert=$CCPROOT/examples/kube/custom-config-ssl/certs/ca.crté&\
sslcrl=$CCPRO0T/examples/kube/custom-config-ssl/certs/ca.crl&\
sslcert=$CCPRO0OT/examples/kube/custom-config-ssl/certs/client.crt&\
sslkey=$CCPRO0OT/examples/kube/custom-config-ssl/certs/client.key"

To connect via IP, sslmode can be changed to require. This will verify the server by checking the certificate chain up to the trusted
certificate authority, but will not verify that the hostname matches the certificate, as occurs with verify-full. The same connection
parameters as above can be then provided for the client and server certificate information.

psql "postgresql://testuser@IP_OF_PGSQL:5432/userdb?\
sslmode=require&\
sslrootcert=$CCPROOT/examples/kube/custom-config-ssl/certs/ca.crté&\
sslcr1l=$CCPRO0OT/examples/kube/custom-config-ssl/certs/ca.crl&\
sslcert=$CCPROOT/examples/kube/custom-config-ssl/certs/client.crt&\
sslkey=$CCPRO0T/examples/kube/custom-config-ssl/certs/client.key"

You should see a connection that looks like the following:

psql (10.8)

SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

Type "help" for help.

userdb=>

Replication

This example starts a primary and a replica pod containing a PostgreSQL database.
The container creates a default database called userdb, a default user called testuser and a default password of password.

For the Docker environment, the script additionally creates:

o A docker volume using the local driver for the primary

o A docker volume using the local driver for the replica

e A container named primary binding to port 12007

e A container named replica binding to port 12008

e A mapping of the PostgreSQL port 5432 within the container to the localhost port 12000
e The database using predefined environment variables

And specifically for the Kubernetes and OpenShift environments:

o emptyDir volumes for persistence
e A pod named pr-primary

e A pod named pr-replica

e A pod named pr-replica-2

e A service named pr-primary

o A service named pr-replica

The database using predefined environment variables

To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

To create the example and run the container:

cd $CCPRO0T/examples/docker/primary-replica
./run.sh

Connect from your local host as follows:

psql -h localhost -p 12007 -U testuser -W userdb
psql -h localhost -p 12008 -U testuser -W userdb

Kubernetes and OpenShift

Run the following command to deploy a primary and replica database cluster:

cd $CCPRO0T/examples/kube/primary-replica

./run.sh

It takes about a minute for the replica to begin replicating with the primary. To test out replication, see if replication is underway with
this command:

${CCP_CLI?} exec -ti pr-primary -- psql -d postgres -c 'table pg_stat_replication'

If you see a line returned from that query it means the primary is replicating to the replica. Try creating some data on the primary:

${CCP_CLI?} exec -ti pr-primary -- psql -d postgres -c 'create table foo (id int)'
${CCP_CLI?} exec -ti pr-primary -- psql -d postgres -c 'insert into foo values (1)'
Then verify that the data is replicated to the replica:

${CCP_CLI?} exec -ti pr-replica -- psql -d postgres -c 'table foo'

primary-replica-dc

If you wanted to experiment with scaling up the number of replicas, you can run the following example:
cd $CCPROOT/examples/kube/primary-replica-dc

./run.sh

You can verify that replication is working using the same commands as above.

${CCP_CLI?} exec -ti primary-dc -- psql -d postgres -c 'table pg_stat_replication'

Helm

This example resides under the $CCPRO0T/examples/helm directory. View the README to run this example using Helm here.

Synchronous Replication

This example deploys a PostgreSQL cluster with a primary, a synchronous replica, and an asynchronous replica. The two replicas share
the same service.

To shutdown the instance and remove the container for each example, run the following:

./cleanup.sh

Docker

To run this example, run the following:

cd $CCPRO0T/examples/docker/sync
./run.sh

You can test the replication status on the primary by using the following command and the password password:

psql -h 127.0.0.1 -p 12010 -U postgres postgres -c 'table pg_stat_replication'

You should see 2 rows; 1 for the asynchronous replica and 1 for the synchronous replica. The sync_state column shows values of async
or sync.

You can test replication to the replicas by first entering some data on the primary, and secondly querying the replicas for that data:

psql -h 127.0.0.1 -p 12010 -U postgres postgres -c 'create table foo (id int)'
psql -h 127.0.0.1 -p 12010 -U postgres postgres -c 'insert into foo values (1)'
psql -h 127.0.0.1 -p 12011 -U postgres postgres -c 'table foo'
psql -h 127.0.0.1 -p 12012 -U postgres postgres -c 'table foo'

Kubernetes and OpenShift

Running the example:

cd $CCPROOT/examples/kube/sync
./run.sh

Connect to the primarysync and replicasync databases as follows for both the Kubernetes and OpenShift environments:

psql -h primarysync -U postgres postgres -c 'create table test (id int)'

psql -h primarysync -U postgres postgres -c 'insert into test values (1)'

psql -h primarysync -U postgres postgres -c 'table pg_stat_replication'

psql -h replicasync -U postgres postgres -c 'select inet_server_addr(), * from test'
psql -h replicasync -U postgres postgres -c 'select inet_server_addr(), * from test'
psql -h replicasync -U postgres postgres -c 'select inet_server_addr(), * from test'

This set of queries will show you the IP address of the PostgreSQL replica container. Note the changing IP address due to the round-robin
service proxy being used for both replicas. The example queries also show that both replicas are replicating successfully from the primary.

https://github.com/CrunchyData/crunchy-containers/blob/master/examples/helm/primary-replica/README.md

Statefulsets

This example deploys a statefulset named statefulset. The statefulset is a new feature in Kubernetes as of version 1.5 and in OpenShift
Origin as of version 3.5. Statefulsets have replaced PetSets going forward.

Please view this Kubernetes description to better understand what a Statefulset is and how it works.

This example creates 2 PostgreSQL containers to form the set. At startup, each container will examine its hostname to determine if it is
the first container within the set of containers.

The first container is determined by the hostname suffix assigned by Kubernetes to the pod. This is an ordinal value starting with 0. If a
container sees that it has an ordinal value of 0, it will update the container labels to add a new label of:

name=$PG_PRIMARY_HOST

In this example, PG_PRIMARY_HOST is specified as statefulset-primary.
By default, the containers specify a value of name=statefulset-replica.

There are 2 services that end user applications will use to access the PostgreSQL cluster, one service (statefulset-primary) routes to the
primary container and the other (statefulset-replica) to the replica containers.

$ ${CCP_CLI} get service

NAME CLUSTER-IP EXTERNAL -IP PORT (S) AGE
kubernetes 10.96.0.1 <none> 443/ TCP 22h
statefulset-primary 10.97.168.138 <none> 5432/ TCP ih
statefulset-replica 10.97.218.221 <none> 5432/ TCP ih

To shutdown the instance and remove the container for each example, run the following:

./cleanup.sh

Kubernetes and OpenShift

First, start the example with the following command:

cd $CCPROOT/examples/kube/statefulset
./run.sh

You can access the primary database as follows:

psql -h statefulset-primary -U postgres postgres

You can access the replica databases as follows:

psql -h statefulset-replica -U postgres postgres

You can scale the number of containers using this command; this will essentially create an additional replica database.

${CCP_CLI} scale --replicas=3 statefulset statefulset

Helm

This example resides under the $CCPRO0T/examples/helm directory. View the README to run this example using Helm here.

Geospatial (PostGIS)

An example is provided that will run a PostgreSQL with PostGIS pod and service in Kubernetes and OpenShift and a container in Docker.
The container creates a default database called userdb, a default user called testuser and a default password of password.
You can view the extensions that postgres-gis has enabled by running the following command and viewing the listed PostGIS packages:

psql -h postgres-gis -U testuser userdb -c '\dx'

To validate that PostGIS is installed and which version is running, run the command:

psql -h postgres-gis -U testuser userdb -c "SELECT postgis_full_version();"

You should expect to see output similar to:

https://kubernetes.io/docs/concepts/abstractions/controllers/statefulsets/
https://github.com/CrunchyData/crunchy-containers/blob/master/examples/helm/statefulset/README.md

postgis_full_version

POSTGIS="2.4.2 r16113" PGSQL="100" GE0S="3.5.0-CAPI-1.9.0 r4084" PR0OJ="Rel. 4.8.0, 6 March 2012"
GDAL="GDAL 1.11.4, released 2016/01/25" LIBXML="2.9.1" LIBJSON="0.11" TOPOLOGY RASTER
(1 row)

As an exercise for invoking some of the basic PostGIS functionality for validation, try defining a 2D geometry point while giving inputs of
longitude and latitude through this command.

psql -h postgres-gis -U testuser userdb -c "select ST_MakePoint (28.385200,-81.563900) ;"

You should expect to see output similar to:

st_makepoint

0101000000516 B9A779C623C40B98D06F0166454C0
(1 row)
To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

Create the container as follows:

cd $CCPROOT/examples/docker/postgres-gis

./run.sh

Enter the following command to connect to the postgres-gis container that is mapped to your local port 12000:

psql -h localhost -U testuser -p 12000 userdb

Kubernetes and OpenShift

Running the example:

cd $CCPROOT/examples/kube/postgres-gis
./run.sh

pgPool Logical Router Example

An example is provided that will run a pgPool II container in conjunction with the primary-replica example provided above.

You can execute both INSERT and SELECT statements after connecting to pgpool. The container will direct INSERT statements to the
primary and SELECT statements will be sent round-robin to both the primary and replica.

The container creates a default database called userdb, a default user called testuser and a default password of password.
You can view the nodes that pgpool is configured for by running;:

psql -h pgpool -U testuser userdb -c 'show pool_nodes

To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

Create the container as follows:

cd $CCPROOT/examples/docker/pgpool

./run.sh

The example is configured to allow the testuser to connect to the userdb database.

psql -h localhost -U testuser -p 12003 userdb

Kubernetes and OpenShift

Run the following command to deploy the pgpool service:

cd $CCPRO0T/examples/kube/pgpool
./run.sh

The example is configured to allow the testuser to connect to the userdb database.

psql -h pgpool -U testuser userdb

pgBackRest Examples

Written and maintained by David Steele, pgBackRest is a utility that provides backup and restore functionality for PostgreSQL databases.
pgBackRest is available for use within the Crunchy Container Suite, and can therefore be utilized to provide an effective backup and
restore solution for any database clusters deployed using the crunchy-postgres or crunchy-postgres-gis containers. The following section
will provide an overview of how pgBackRest can be utilized within the Crunchy Container Suite, including examples for enabling and
configuring pgBackRest, and then utilizing pgBackRest to backup and restore various PostgreSQL database clusters. For more detailed
information about pgBackRest, please visit the official pgBackRest website.

Configuration Overview

In order to enable pgBackRest within a crunchy-postgres or crunchy-postgres-gis container, environment variable PGBACKREST must be
set to true during deployment of the container (PGBACKREST=true). This will setup the proper pgBackRest configuration, ensure any
required pgBackRest repositories and directories are created, and will create the proper pgBackRest stanza.

Please note that setting PGBACKREST=true is all that is needed to configure and enable pgBackRest within a crunchy-postgres or crunchy-
postgres-gis container. When enabled, default environment variables will be set for pgBackRest as follows, unless they are otherwise
explicitly defined and provided during deployment of the container:

export PGBACKREST_STANZA="db"

export PGBACKREST_PG1_PATH="/pgdata/${PGDATA_DIR}"

export PGBACKREST_REP01_PATH="/backrestrepo/${PGDATA_DIR}-backups"
export PGBACKREST_LOG_PATH="/tmp"

As shown above, a stanza named db is created by default, using the default values provided for both PGBACKREST_PG1_PATH and
PGBACKREST_REP01_PATH. Variable PGDATA_DIR represents the name of the database cluster’s data directory, which will either be the
hostname of the container or the value specified for variable PGDATA_PATH_OVERRIDE during deployment of the container. Please see the
crunchy-postgres and/or crunchy-postgres-gis container specifications for additional details.

While setting PGBACKREST to true provides a simple method for enabling pgBackRest within a crunchy-postgres or crunchy-postgres-
gis container, pgBackRest is also fully configurable and customizable via the various environment variables supported by pgBackRest.
This applies to the crunchy-backrest-restore container as well, which is also configured using pgBackRest environment variables when
performing database restores. Therefore, during the deployment of any container container containing pgBackRest (crunchy-postgres,
crunchy-postgres-gis or crunchy-backrest-restore), environment variables should be utilized to configure and customize the pgBackRest
utility as needed and ensure the desired backup and restore functionality is achieved. For instance, the following environment variables
could be specified upon deployment of the crunchy-backrest-restore container in order to perform delta restore to a specific point-in-time:

PGBACKREST_TYPE=time
PITR_TARGET="2018-12-27 16:53:05.590156+00"
PGBACKREST_DELTA=y

Full, incremental and differential backups of PostgreSQL databases deployed using the Crunchy Container Suite can scheduled using
pgBackRest and the crunchy-scheduler container, and/or can also be performed manually by executing pgBackRest commands against
the desired crunchy-postgres or crunchy-postgres-gis container. Database restores, on the other hand, can be performed via the crunchy-
backrest-restore container, which offers full pgBackRest restore capabilities, such as full, point-in-time and delta restores. Further infor-
mation and guidance for performing both backups and restores using the Crunchy Container Suite and pgBackRest will be provided in
the examples below. Additionally, for more information on utilizing the crunchy-scheduler container to schedule and perform pgBackRest
database backups, please see the crunchy-scheduler specifications and examples.

In addition to providing the backup and restoration capabilities discussed above, pgBackRest supports the capability to asynchronously
push and get write ahead logs (WAL) to and from a WAL archive. To enable asychronous WAL archiving within a crunchy-postgres
or crunchy-postgres-gis container, pgBackRest environment variable PGBACKREST_ARCHIVE_ASYNC must be set to "y" during deployment
(PGBACKREST_ARCHIVE_ASYNC=y). This will automatically enable WAL archiving within the container if not otherwise explicitly enabled,
set the proper pgbackrest archive command within the postgresql.conf configuration file, and ensure the proper spool path has been
created.

If a spool path is not explicitly provided using environment variable PGBACKREST_SPOOL_PATH, this variable will default as follows:

https://pgbackrest.org/

Environment wvariable XLOGDIR="true"
export PGBACKREST_SPOOL_PATH="/pgdata/${PGDATA_DIR}"

Environment wvartiable XLOGDIR!=true
export PGBACKREST_SPOOL_PATH="/pgwal/${PGDATA_DIR}/spool"

As shown above, the default location of the spool path depends on whether or not XLOGDIR=true, with XLOGDIR enabling the storage of
WAL to the /pgwal volume within the container. Being that pgBackRest recommends selecting a spool path that is as close to the WAL
as possible, this provides a sensible default for the spool directory. However, PGBACKREST_SPOOL_PATH can also be explicitly configured
during deployment to any path desired. And once again, PGDATA_DIR represents either the hostname of the container or the value specified
for variable PGDATA_PATH_OVERRIDE.

The examples below will demonstrate the pgBackRest backup, restore and asynchronous archiving capabilities described above, while also
providing insight into the proper configuration of pgBackBackrest within the Crunchy Container Suite. For more information on these
pgBackRest capabilities and associated configuration, please consult the official pgBackRest documentation.

Kubernetes and OpenShift

The pgBackRest examples for Kubernetes and OpenShift can be configured to use the PostGIS images by setting the
following environment variable when running the examples:

export CCP_PG_IMAGE='-gis'

Backup

In order to demonstrate the backup and restore capabilities provided by pgBackRest, it is first necessary to deploy a PostgreSQL database,
and then create a full backup of that database. This example will therefore deploy a crunchy-postgres or crunchy-postgres-gis container
containing a PostgreSQL database, which will then be backed up manually by executing a pgbackrest backup command. Please note
that this example serves as a prequisite for the restore examples that follow, and therefore must be run prior to running
those examples.

Start the example as follows:

cd $CCPROOT/examples/kube/backrest/backup
./run.sh

This will create the following in your Kubernetes environment:

o A deployment named backrest containing a PostgreSQL database with pgBackRest configured
e A service named backrest for the PostgreSQL database

e« A PV and PVC for the PGDATA directory

e« A PV and PVC for the pgBackRest backups and archives directories

Once the backrest deployment is running, use the pgbackrest info command to verify that pgbackrest has been properly configured
and WAL archiving is working properly:

$ ${CCP_CLI} exec <backrest pod name> -- pgbackrest info \
--stanza=db \
--repol-path=/backrestrepo/backrest-backups

pg_pid=126

stanza: db
status: error (no valid backups)
cipher: none

db (current)
wal archive min/max (11-1): 000000010000000000000001 / 000000010000000000000003

An output similar to the above indicates that pgBackRest was properly configured upon deployment of the pod, the db stanza has been
created, and WAL archiving is working properly. The error next to status is expected being that a backup has not yet been generated.

Now that we have verified that pgBackRest is properly configured and enabled, a backup of the database can be generated. Being that
this is the first backup of the database, we will take create a full backup:

https://pgbackrest.org/

$ ${CCP_CLI} exec <backrest pod name> -- pgbackrest backup \
--stanza=db \
--pgl-path=/pgdata/backrest \
--repol-path=/backrestrepo/backrest-backups \
--log-path=/tmp \
-—type=full

pg_pid=138
WARN: option repol-retention-full is not set, the repository may run out of space
HINT: to retain full backups indefinitely (without warning), set option
'repol-retention-full' to the maximum.

The warning displayed is expected, since backup retention has not been configured for this example. Assuming no errors are displayed, a
full backup has now been successfully created.

Restore

pgBackRest provides numerous methods and strategies for restoring a PostgreSQL database. The following section will demonstrate three
forms of database restores that can be accomplished when using pgBackRest with the Crunchy Container Suite:

e Full: restore all database files into an empty PGDATA directory
o point-in-time Recovery (PITR): restore a database to a specific point-in-time using an empty PGDATA directory
e Delta: restore a database to a specific point-in-time using an existing PGDATA directory

Full This example will demonstrate a full database restore to an empty PGDATA directory. Please ensure the Backup example is
currently running and a full backup has been generated prior to running this example.

Prior to running the full restore, we will first make a change to the currently running database, which will we will then verify still exists
following the restore. Create a simple table in the database as follows:

$ ${CCP_CLI} exec <backrest pod name> -- psql -c "create table backrest_test_table (id int)"
CREATE TABLE

Now verify that the new table exists:

$ ${CCP_CLI} exec <backrest pod name> -- psql -c "table backrest_test_table"
id

(0 rows)

With the table in place, we can now start the full restore as follows:

cd $CCPROOT/examples/kube/backrest/full
./run.sh

This will create the following in your Kubernetes environment:

e A Kubernetes job named backrest-full-restore-job which will perform the restore using the crunchy-backrest-restore container
e« A PV and PVC for the new PGDATA directory that will contain the restored database. The directory will initially be empty, as
required pgBackRest when performing a full restore, and will then contain the restored database upon completion of the restore.

Please note that a brand new PV and PVC are created when running the restore to clearly indicate that the database will be restored
into an entirely new (i.e. empty) volume as required by pgBackRest. The names of the new PV and PVC are as follows:

o PV: ${CCP_NAMESPACE}-br-new-pgdata
e« PVC: br-new-pgdata

You can verify that the restore has completed successfully by verifying that the Kubernetes job has completed successfully:

$ ${CCP_CLI} get jobs
NAME COMPLETIONS DURATION AGE
backrest-full-restore-job 1/1 15s 58s

Once the job is complete, the post restore script can then be run, which will create a new deployment named backrest-full-restored
containing the restored database:

cd $CCPRO0T/examples/kube/backrest/full
./post-restore.sh

Finally, once the backrest-full-restored deployment is running we can verify that the restore was successful by verifying that the table
created prior to the restore still exists:

$ ${CCP_CLI} exec <backrest restored pod name> -- psql -c "table backrest_test_table"
id

(0 rows)

Please note that the default behavior of pgBackRest is to recover to the end of the WAL archive stream, which is why the full restore
contained all changes made since the initial full backup was taken, including the creation of table backrest_ test_ table. pgBackRest
therefore played the entire WAL archive stream for all changes that occurred up until the restore.

As a reminder, please remember to run the cleanup script for the Backup example after running the cleanup script for this example.

PITR As demonstrated with the full restore above, the default behavior of pgBackRest is to recover to the end of the WAL archive
stream. However, pgBackRest also provides the ability to recover to a specific point-in-time utilizing the WAL archives created since the
last backup. This example will demonstrate how pgBackRest can be utilized to perform a point-in-time recovery (PITR) and therefore
recover the database to specific point-in-time specified by the user. Please ensure that the Backup example is currently running
and a full backup has been generated prior to running this example.

Prior to running the PITR restore, we will first verify the current state of the database, after which we will then make a change to the
database. This will allow us to verify that the PITR is successful by providing a method of verifying that the database has been restored
to its current state following the restore.

To verify the current state of the database, we will first verify that a table called backrest_ test_ table does not exist in the database.

$ ${CCP_CLI} exec <backrest pod name> -- psql -c " table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

Next, capture the current timestamp, which will be used later in the example when performing the restore:

$ ${CCP_CLI} exec <backrest pod name> -- psql -c "select current_timestamp"
current_timestamp

2018-12-27 16:53:05.590156+00
(1 row)

Now create table backrest__test_ table:

$ ${CCP_CLI} exec <backrest pod name> -- psql -c "create table backrest_test_table (id int)"
CREATE TABLE

Then verify that the new table exists:

$ ${CCP_CLI} exec <backrest pod name> -- psql -c "table backrest_test_table"
id

(0 rows)

With the table in place, we can now start the PITR. However, the timestamp captured above must also be provided in order to instruct
pgBackRest to recover to that specific point-in-time. This is done using the CCP_BACKREST_TIMESTAMP variable, which allows us to then
start the PITR as follows (replace the timestamp in the command below with the timestamp you captured above):

cd $CCPRO0T/examples/kube/backrest/pitr
CCP_BACKREST_TIMESTAMP="2018-12-20 09:49:02.275701+00" ./run.sh

This will create the following in your Kubernetes environment: - A Kubernetes job named backrest-pitr-restore-job which will perform
the restore using the crunchy-backrest-restore container

Additionally, when this example is run, the following pgBackRest environment variables are provided to the crunchy-backrest-restore
container in order to initiate PITR restore to the point-in-time specified by the timestamp (in additional to any other pgBackRest
variables required by the Crunchy Container Suite and pgBackRest):

PGBACKREST TYPE=time
PITR_TARGET="${CCP_BACKREST_TIMESTAMP}"

As can be seen above, the timestamp provided for CCP_BACKREST_TIMESTAMP is used to populate variable PITR_TARGET, and therefore
specify the point-in-time to restore the database to, while PGBACKREST_TYPE is set to time to indicate that a PITR should be performed.

Please note that the following pgBackRest environment variable is also set when performing the PITR, which results in a restore to a
new/empty directory within an existing PV:

PGBACKREST_PG1_PATH=/pgdata/backrest-pitr-restored

You can verify that the restore has completed successfully by verifying that the Kubernetes job has completed successfully:

$ ${CCP_CLI} get jobs
NAME COMPLETIONS DURATION AGE
backrest-pitr-restore-job 1/1 15s 58s

Once the job is complete, the post restore script can then be run, which will create a new deployment named backrest-pitr-restored
containing the restored database:

cd $CCPRO0T/examples/kube/backrest/pitr
./post-restore.sh

Finally, once the backrest-pitr-restored deployment is running we can verify that the restore was successful by verifying that the table
created prior to the restore no longer exists:

$ ${CCP_CLI} exec <backrest restored pod name> -- psql -c " table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

As a reminder, please remember to run the cleanup script for the Backup example after running the cleanup script for this example.

Delta By default, pgBackRest requires a clean/empty directory in order to perform a restore. However, pgBackRest also provides an
another option when performing the restore in the form of the delta option, which allows the restore to be run against an existing PGDATA
directory. With the delta option enabled, pgBackRest will use checksums to determine which files in the directory can be preserved, and
which need to be restored (please note that pgBackRest will also remove any files that are not present in the backup). This example
will again demonstrate a point-in-time recovery (PITR), only this time the restore will occur within the existing PGDATA directory by
specifying the delta option during the restore. Please ensure that the Backup example is currently running and a full backup
has been generated prior to running this example.

Prior to running the delta restore, we will first verify the current state of the database, and we will then make a change to the database.
This will allow us to verify that the delta restore is successful by providing a method of verifying that the database has been restored to
its current state following the restore.

To verify the current state of the database, we will first verify that a table called backrest_ test_ table does not exist in the database.

$ ${CCP_CLI} exec <backrest pod name> -- psql -c " table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

Next, capture the current timestamp, which will be used later in the example when performing the restore:

$ ${CCP_CLI} exec <backrest pod name> -- psql -c "select current_timestamp"
current_timestamp

2018-12-27 16:53:05.590156+00
(1 row)

Now create table backrest__test_ table:
$ ${CCP_CLI} exec <backrest pod name> -- psql -c "create table backrest_test_table (id int)"
CREATE TABLE
Then verify that the new table exists:
$ ${CCP_CLI} exec <backrest pod name> -- psql -c "table backrest_test_table"
id

(0 rows)

With the table in place, we can now start the delta restore. When running the restore example the timestamp captured above must also
be provided in order to instruct pgBackRest to recover to that specific point-in-time. This is done using the CCP_BACKREST_TIMESTAMP
variable, which allows us to then start the delta restore as follows (replace the timestamp in the command below with the timestamp you
captured above):

cd $CCPRO0T/examples/kube/backrest/delta
CCP_BACKREST_TIMESTAMP="2018-12-20 09:49:02.275701+00" ./run.sh

This will create the following in your Kubernetes environment: - A Kubernetes job named backrest-delta-restore-job which will perform
the restore using the crunchy-backrest-restore container

Additionally, when this example is run, the following pgBackRest environment variables are provided to the crunchy-backrest-restore
container in order to initiate a delta restore to the point-in-time specified by the timestamp (in additional to any other pgBackRest
variables required by the Crunchy Container Suite and pgBackRest):

PGBACKREST_TYPE=time
PITR_TARGET="${CCP_BACKREST_TIMESTAMP}"
PGBACKREST _DELTA=y

As can be seen above, the timestamp provided for CCP_BACKREST_TIMESTAMP is used to populate variable PITR_TARGET, and therefore spec-
ify the point-in-time to restore to, while PGBACKREST_TYPE is set to time to indicate that a PITR should be performed. PGBACKREST_DELTA
is set to y to indicate that the delta option should be utilized when performing the restore.

It’s also worth noting that the following pgBackRest environment variable is also set when performing the delta restore, which results in
a restore within the existing PGDATA directory utilized by the database deployed when running the Backup example:

PGBACKREST _PG1_PATH=/pgdata/backrest

You can then verify that the restore has completed successfully by verifying that the Kubernetes job has completed successfully:

$ ${CCP_CLI} get jobs
NAME COMPLETIONS DURATION AGE
backrest-delta-restore-job 1/1 15s 58s

Once the job is complete, the post restore script can then be run, which will create a new deployment named backrest-delta-restored
containing the restored database:

cd $CCPRO0T/examples/kube/backrest/delta
./post-restore.sh

Finally, once the backrest-delta-restored deployment is running we can verify that the restore was successful by verifying that the table
created prior to the restore no longer exists:

$ ${CCP_CLI} exec <backrest restored pod name> -- psql -c " table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

As a reminder, please remember to run the cleanup script for the Backup example after running the cleanup script for this example.

Async Archiving

pgBackRest supports the capability to asynchronously push and get write ahead logs (WAL) to and from a WAL archive. Asynchronous
archiving can improve performance by parallelizing operations, while also reducing the number of connections to remote storage. For more
information on async archiving and its benefits, please see the official pgBackRest documentation. This example will demonstrate how
asynchronous archiving can be enabled within a crunchy-postgres or crunchy-postgres-gis container, while then also demonstrating the
creation of a differential backup.

Start the example as follows:
cd $CCPRO0T/examples/kube/backrest/async-archiving

./run.sh

This will create the following in your Kubernetes environment: - A deployment named backrest-async-archive containing a PostgreSQL
database with pgBackRest configured - A service named backrest-async-archive for the PostgreSQL database - A PV and PVC for the
PGDATA directory - A PV and PVC for the pgBackRest backups and archives directories

Additionally, the following variable will be set during deployment of the pod in order to enable asynchronous archiving:

PGBACKREST_ARCHIVE_ASYNC=y

https://pgbackrest.org/

This will also result in the creation of the required spool path, which we can see by listing the contents of the /pgdata directory in the
backrest-async-archive deployment:

$ ${CCP_CLI} exec <backrest async archive pod name> -- 1ls /pgdata
backrest -async-archive

backrest -async-archive-backups

backrest-async-archive-spool

Once the database is up an running, a full backup can be taken:

${CCP_CLI} exec <backrest async archive pod name> -- pgbackrest backup \
--stanza=db \
--pgl-path=/pgdata/backrest-async-archive \
--repol-path=/backrestrepo/backrest-async-archive-backups \
--log-path=/tmp \
-—-type=full

And once a full backup has been taken, other types of backups can also be taken using pgBackRest, such as a differential backup:

${CCP_CLI} exec <backrest async archive pod name> -- pgbackrest backup \
--stanza=db \
--pgl-path=/pgdata/backrest-async-archive \
--repol-path=/backrestrepo/backrest-async-archive-backups \
--log-path=/tmp \
--type=diff

The following command can then be run to verify that both backups were created successfully:

${CCP_CLI} exec <backrest async archive pod name> -- pgbackrest info \
--stanza=db \
--repol-path=/backrestrepo/backrest-async-archive-backups

Docker

Backup

In order to demonstrate the backup and restore capabilities provided by pgBackRest, it is first necessary to deploy a PostgreSQL database,
and then create a full backup of that database. This example will therefore deploy a crunchy-postgres or crunchy-postgres-gis container
containing a PostgreSQL database, which will then be backed up manually by executing a pgbackrest backup command. Please note
that this example serves as a prequisite for the restore examples that follow, and therefore must be run prior to running
those examples.

Start the example as follows:

cd $CCPRO0T/examples/docker/backrest/backup
./run.sh

This will create the following in your Docker environment: - A container named backrest containing a PostgreSQL database with
pgBackRest configured - A volume for the PGDATA directory - A volume for the pgBackRest backups and archives directories

Once the backrest container is running, use the pgbackrest info command to verify that pgbackrest has been properly configured and
WAL archiving is working properly:

$ docker exec backrest pgbackrest info \
--stanza=db \
--repol-path=/backrestrepo/backrest-backups

pg_pid=126

stanza: db
status: error (no valid backups)
cipher: none

db (current)
wal archive min/max (11-1): 000000010000000000000001 / 000000010000000000000003

An output similar to the above indicates that pgBackRest was properly configured upon deployment of the container, the db stanza
has been created, and WAL archiving is working properly. The error next to status is expected being that a backup has not yet been
generated.

Now that we have verified that pgBackRest is properly configured and enabled, a backup of the database can be generated. Being that
this is the first backup of the database, we will take create a full backup:

$ docker exec backrest pgbackrest backup \
--stanza=db \
--pgl-path=/pgdata/backrest \
--repol-path=/backrestrepo/backrest-backups \
--log-path=/tmp \
-—-type=full

pg_pid=138
WARN: option repol-retention-full is not set, the repository may run out of space
HINT: to retain full backups indefinitely (without warning), set option
'repol-retention-full' to the maximum.

The warning displayed is expected, since backup retention has not been configured for this example. Assuming no errors are displayed, a
full backup has now been successfully created.

Restore

pgBackRest provides numerous methods and strategies for restoring a PostgreSQL database. The following section will demonstrate
three forms of database restores that can be accomplished when using pgBackRest with the Crunchy Container Suite: - Full: restore all
database files into an empty PGDATA directory - point-in-time Recovery (PITR): restore a database to a specific point-in-time using
an empty PGDATA directory - Delta: restore a database to a specific point-in-time using an existing PGDATA directory

Full This example will demonstrate a full database restore to an empty PGDATA directory. Please ensure the Backup example is
currently running and a full backup has been generated prior to running this example.

Prior to running the full restore, we will first make a change to the currently running database, which will we will then verify still exists
following the restore. Create a simple table in the database as follows:

$ docker exec backrest psql -c "create table backrest_test_table (id int)"
CREATE TABLE

Now verify that the new table exists:

$ docker exec backrest psql -c "table backrest_test_table"
id

(0 rows)

With the table in place, we can now start the full restore as follows:

cd $CCPRO0T/examples/docker/backrest/full
./run.sh

This will create the following in your Docker environment: - A container named backrest-full-restore which will perform the restore
using the crunchy-backrest-restore container - A volume for the new PGDATA directory that will contain the restored database. The
directory will initially be empty, as required pgBackRest when performing a full restore, and will then contain the restored database upon
completion of the restore.

Please note that a brand new PV and PVC are created when running the restore to clearly indicate that the database will be restored
into an entirely new (i.e. empty) volume as required by pgBackRest. The names of the new PV and PVC are as follows: - PV:
${CCP_NAMESPACE}-br-new-pgdata - PVC: br-new-pgdata

You can verify that the restore has completed successfully by verifying that the container has finished running and has exited without
errors:

docker ps -a

Once the container has finished running, the post restore script can then be run, which will create a new container named backrest-full-
restored containing the restored database:

cd $CCPROOT/examples/docker/backrest/full

./post-restore.sh

Finally, once the backrest-full-restored container is running we can verify that the restore was successful by verifying that the table
created prior to the restore still exists:

$ docker exec backrest-full-restored psql -c "table backrest_test_table"
id

(0 rows)

Please note that the default behavior of pgBackRest is to recover to the end of the WAL archive stream, which is why the full restore
contained all changes made since the initial full backup was taken, including the creation of table backrest_ test_ table. pgBackRest
therefore played the entire WAL archive stream for all changes that occurred up until the restore.

As a reminder, please remember to run the cleanup script for the Backup example after running the cleanup script for this example.

PITR As demonstrated with the full restore above, the default behavior of pgBackRest is to recover to the end of the WAL archive
stream. However, pgBackRest also provides the ability to recover to a specific point-in-time utilizing the WAL archives created since the
last backup. This example will demonstrate how pgBackRest can be utilized to perform a point-in-time recovery (PITR) and therefore
recover the database to specific point-in-time specified by the user. Please ensure that the Backup example is currently running
and a full backup has been generated prior to running this example.

Prior to running the PITR restore, we will first verify the current state of the database, after which we will then make a change to the
database. This will allow us to verify that the PITR is successful by providing a method of verifying that the database has been restored
to its current state following the restore.

To verify the current state of the database, we will first verify that a table called backrest_ test_ table does not exist in the database.

$ docker exec backrest psql -c "table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

Next, capture the current timestamp, which will be used later in the example when performing the restore:

$ docker exec backrest psql -c "select current_timestamp"
current_timestamp

2018-12-27 16:53:05.590156+00
(1 row)

Now create table backrest__test_ table:

$ docker exec backrest psql -c "create table backrest_test_table (id int)"
CREATE TABLE

Then verify that the new table exists:

$ docker exec backrest psql -c "table backrest_test_table"
id

(0 rows)

With the table in place, we can now start the PITR. However, the timestamp captured above must also be provided in order to instruct
pgBackRest to recover to that specific point-in-time. This is done using the CCP_BACKREST_TIMESTAMP variable, which allows us to then
start the PITR as follows (replace the timestamp in the command below with the timestamp you captured above):

cd $CCPRO0T/examples/docker/backrest/pitr
CCP_BACKREST_TIMESTAMP="2018-12-20 09:49:02.275701+00" ./run.sh

This will create the following in your Docker environment: - A container named backrest-pitr-restore which will perform the restore
using the crunchy-backrest-restore container

Additionally, when this example is run, the following pgBackRest environment variables are provided to the crunchy-backrest-restore
container in order to initiate PITR to the point-in-time specified by the timestamp (in additional to any other pgBackRest variables
required by the Crunchy Container Suite and pgBackRest):

PGBACKREST _TYPE=time
PITR_TARGET="${CCP_BACKREST_TIMESTAMP}"

As can be seen above, the timestamp provided for CCP_BACKREST_TIMESTAMP is used to populate variable PITR_TARGET, and therefore
specify the point-in-time to restore the database to, while PGBACKREST_TYPE is set to time to indicate that a PITR should be performed.

Please note that the following pgBackRest environment variable is also set when performing the PITR, which results in a restore to a
new/empty directory within an existing PV:

PGBACKREST_PG1_PATH=/pgdata/backrest-pitr-restored

You can verify that the restore has completed successfully by verifying that the container has finished running and has exited without
€ITOorS:

docker ps -a

Once the container has finished running, the post restore script can then be run, which will create a new container named backrest-pitr-
restored containing the restored database:

cd $CCPRO0T/examples/docker/backrest/pitr
./post-restore.sh

Finally, once the backrest-pitr-restored container is running we can verify that the restore was successful by verifying that the table
created prior to the restore no longer exists:

$ docker exec backrest-pitr-restored psql -c "table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

As a reminder, please remember to run the cleanup script for the Backup example after running the cleanup script for this example.

Delta By default, pgBackRest requires a clean/empty directory in order to perform a restore. However, pgBackRest also provides an
another option when performing the restore in the form of the delta option, which allows the restore to be run against an existing PGDATA
directory. With the delta option enabled, pgBackRest will use checksums to determine which files in the directory can be preserved, and
which need to be restored (please note that pgBackRest will also remove any files that are not present in the backup). This example
will again demonstrate a point-in-time recovery (PITR), only this time the restore will occur within the existing PGDATA directory by
specifying the delta option during the restore. Please ensure that the Backup example is currently running and a full backup
has been generated prior to running this example.

Prior to running the delta restore, we will first verify the current state of the database, and we will then make a change to the database.
This will allow us to verify that the delta restore is successful by providing a method of verifying that the database has been restored to
its current state following the restore.

To verify the current state of the database, we will first verify that a table called backrest_ test_ table does not exist in the database.

$ docker exec backrest psql -c "table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

Next, capture the current timestamp, which will be used later in the example when performing the restore:

$ docker exec backrest psql -c "select current_timestamp"
current_timestamp

2018-12-27 16:53:05.590156+00
(1 row)

Now create table backrest_test_ table:

$ docker exec backrest psql -c "create table backrest_test_table (id int)"
CREATE TABLE

Then verify that the new table exists:

$ docker exec backrest psql -c "table backrest_test_table"
id

(0 rows)

With the table in place, we can now start the delta restore. When running the restore example the timestamp captured above must also
be provided in order to instruct pgBackRest to recover to that specific point-in-time. This is done using the CCP_BACKREST_TIMESTAMP
variable, which allows us to then start the delta restore as follows (replace the timestamp in the command below with the timestamp you
captured above):

cd $CCPRO0T/examples/docker/backrest/delta
CCP_BACKREST_TIMESTAMP="2018-12-20 09:49:02.275701+00" ./run.sh

This will create the following in your Docker environment: - A container named backrest-delta-restore which will perform the restore
using the crunchy-backrest-restore container

Additionally, when this example is run, the following pgBackRest environment variables are provided to the crunchy-backrest-restore
container in order to initiate a delta restore to the point-in-time specified by the timestamp (in additional to any other pgBackRest
variables required by the Crunchy Container Suite and pgBackRest):

PGBACKREST_TYPE=time
PITR_TARGET="${CCP_BACKREST_TIMESTAMP}"
PGBACKREST _DELTA=y

As can be seen above, the timestamp provided for CCP_BACKREST_TIMESTAMP is used to populate variable PITR_TARGET, and therefore spec-
ify the point-in-time to restore to, while PGBACKREST_TYPE is set to time to indicate that a PITR should be performed. PGBACKREST_DELTA
is set to y to indicate that the delta option should be utilized when performing the restore.

It’s also worth noting that the following pgBackRest environment variable is also set when performing the delta restore, which results in
a restore within the existing PGDATA directory utilized by the database deployed when running the Backup example:

PGBACKREST_PG1_PATH=/pgdata/backrest

You can verify that the restore has completed successfully by verifying that the container has finished running and has exited without
errors:

docker ps -a

Once the container has finished running, the post restore script can then be run, which will create a new container named backrest-delta-
restored containing the restored database:

cd $CCPRO0T/examples/docker/backrest/delta
./post-restore.sh

Finally, once the backrest-delta-restored container is running we can verify that the restore was successful by verifying that the table
created prior to the restore no longer exists:

$ docker exec backrest-delta-restored psql -c "table backrest_test_table"
ERROR: relation "backrest_test_table" does not exist
LINE 1: table backrest_test_table

command terminated with exit code 1

As a reminder, please remember to run the cleanup script for the Backup example after running the cleanup script for this example.

Async Archiving

pgBackRest supports the capability to asynchronously push and get write ahead logs (WAL) to and from a WAL archive. Asynchronous
archiving can improve performance by parallelizing operations, while also reducing the number of connections to remote storage. For more
information on async archiving and its benefits, please see the official pgBackRest documentation. This example will demonstrate how
asynchronous archiving can be enabled within a crunchy-postgres or crunchy-postgres-gis container, while then also demonstrating the
creation of a differential backup.

Start the example as follows:
cd $CCPRO0T/examples/docker/backrest/async-archive

./run.sh

This will create the following in your Docker environment:

e A container named backrest-async-archive containing a PostgreSQL database with pgBackRest configured
e A volume for the PGDATA directory
e A volume for the pgBackRest backups and archives directories

Additionally, the following variable will be set during deployment of the container in order to enable asynchronous archiving:

PGBACKREST_ARCHIVE_ASYNC=y

This will also result in the creation of the required spool path, which we can see by listing the contents of the /pgdata directory in the
backrest-async-archive container:

https://pgbackrest.org/

$ docker exec backrest-async-archive 1ls /pgdata
backrest -async-archive

backrest -async-archive-backups
backrest-async-archive-spool

Once the database is up an running, a full backup can be taken:

docker exec backrest-async-archive pgbackrest backup \
--stanza=db \
--pgl-path=/pgdata/backrest-async-archive \
--repol-path=/backrestrepo/backrest-async-archive-backups \
--log-path=/tmp \
-—type=full

And once a full backup has been taken, other types of backups can also be taken using pgBackRest, such as a differential backup:

docker exec backrest-async-archive pgbackrest backup \
--stanza=db \
--pgl-path=/pgdata/backrest-async-archive \
--repol-path=/backrestrepo/backrest-async-archive-backups \
--log-path=/tmp \
-—type=diff

The following command can then be run to verify that both backups were created successfully:

docker exec backrest-async-archive pgbackrest info \
--stanza=db \
--repol-path=/backrestrepo/backrest-async-archive-backups

pgBaseBackup Examples

The script assumes you are going to backup the primary container created in the first example, so you need to ensure that container is
running. This example assumes you have configured storage as described in the Storage Configuration documentation. Things to point
out with this example include its use of persistent volumes and volume claims to store the backup data files.

A successful backup will perform pg_basebackup on the primary container and store the backup in the $CCP_STORAGE_PATH volume under
a directory named $CCP_NAMESPACE-primary-backups. Each backup will be stored in a subdirectory with a timestamp as the name,
allowing any number of backups to be kept.

The backup script will do the following:

e Start up a backup container named backup

o Run pg_basebackup on the container named primary

o Store the backup in the /tmp/backups/primary-backups directory
o Exit after the backup

When you are ready to restore from the backup, the restore example runs a PostgreSQL container using the backup location. Upon
initialization, the container will use rsync to copy the backup data to this new container and then launch PostgreSQL using the original
backed-up data.

The restore script will do the following:

e Start up a container named restore

Copy the backup files from the previous backup example into /pgdata

Start up the container using the backup files

e Map the PostgreSQL port of 5432 in the container to your local host port of 12001

To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

Run the backup with this command:

cd $CCPRO0T/examples/docker/pgbasebackup/backup

./run.sh

When you're ready to restore, a restore example is provided.

It’s required to specified a backup path for this example. To get the correct path check the backup job logs or a timestamp:

docker logs backup-vpk9l | grep BACKUP_PATH

Wed May 9 20:32:00 UTC 2018 INFO: BACKUP_PATH is set to
/pgdata/primary-backups/2018-05-09-20-32-00.

BACKUP_ PATH can also be discovered by looking at the backup mount directly (if access to the storage is available to the user).

An example of BACKUP__PATH is as followed:

"name": "BACKUP_PATH",

"value": "primary-backups/2018-05-09-20-32-00"

When you are ready to restore from the backup created, run the following example:

cd $CCPRO0T/examples/docker/pgbasebackup/full
./run.sh

Kubernetes and OpenShift

Running the example:

cd $CCPRO0T/examples/kube/pgbasebackup/backup

./run.sh

The Kubernetes Job type executes a pod and then the pod exits. You can view the Job status using this command:

${CCP_CLI} get job

When you're ready to restore, a restore example is provided.

It’s required to specified a backup path for this example. To get the correct path check the backup job logs or a timestamp:

kubectl logs backup-vpk9l | grep BACKUP_PATH

Wed May 9 20:32:00 UTC 2018 INFO: BACKUP_PATH is set to
/pgdata/primary-backups/2018-05-09-20-32-00.

BACKUP_PATH can also be discovered by looking at the backup mount directly (if access to the storage is available to the user).

An example of BACKUP__PATH defined as a variable within the JSON script is as follows:

"name": "BACKUP_PATH",

"value": "primary-backups/2018-05-09-20-32-00"

Running the example:

cd $CCPRO0T/examples/kube/pgbasebackup/full

./run.sh

Test the restored database as follows:

psql -h restore -U postgres postgres

Point in Time Recovery (PITR)

PITR (point-in-time-recovery) is a feature that allows for recreating a database from backup and log files at a certain point in time. This
is done using a write ahead log (WAL) which is kept in the pg_wal directory within PGDATA. Changes made to the database files over time
are recorded in these log files, which allows it to be used for disaster recovery purposes.

When using PITR as a backup method, in order to restore from the last checkpoint in the event of a database or system failure, it is only
necessary to save these log files plus a full backup. This provides an additional advantage in that it is not necessary to keep multiple full

backups on hand, which consume space and time to create. This is because point in time recovery allows you to “replay” the log files and
recover your database to any point since the last full backup.

More detailed information about Write Ahead Log (WAL) archiving can be found here.

By default in the crunchy-postgres container, WAL logging is not enabled. To enable WAL logging outside of this example, set the following
environment variables when starting the crunchy-postgres container:

ARCHIVE_MODE=on

ARCHIVE_TIMEOUT=60

These variables set the same name settings within the postgresql.conf file that is used by the database. When set, WAL files generated
by the database will be written out to the /pgwal mount point.

A full backup is required to do a PITR. crunchy-backup currently performs this role within the example, running a pg_basebackup on
the database. This is a requirement for PITR. After a backup is performed, code is added into crunchy-postgres which will also check to
see if you want to do a PITR.

There are three volume mounts used with the PITR example.

e /recover - When specified within a crunchy-postgres container, PITR is activated during container startup.
e /backup - This is used to find the base backup you want to recover from.
e /pgwal - This volume is used to write out new WAL files from the newly restored database container.

Some environment variables used to manipulate the point in time recovery logic:

e The RECOVERY_TARGET_NAME environment variable is used to tell the PITR logic what the name of the target is.
e RECOVERY_TARGET_TIME is also an optional environment variable that restores using a known time stamp.

If you don’t specify either of these environment variables, then the PITR logic will assume you want to restore using all the WAL files or
essentially the last known recovery point.

The RECOVERY_TARGET_INCLUSIVE environment variable is also available to let you control the setting of the recovery.conf setting
recovery_target_inclusive. If you do not set this environment variable the default is true.

Once you recover a database using PITR, it will be in read-only mode. To make the database resume as a writable database, run the
following SQL command:

postgres=# select pg_wal_replay_resume();

If you're running the PITR example for PostgreSQL versions 9.5 or 9.6, please note that starting in PostgreSQL version 10, the pg_xlog di-
rectory was renamed to pg_wal. Additionally, all usages of the function pg_xlog_replay_resume were changed to pg_wal_replay_resume.
It takes about 1 minute for the database to become ready for use after initially starting.

WAL segment files are written to the /tmp directory. Leaving the example running for a long time could fill up your /tmp directory.

To shutdown the instance and remove the container for each example, run the following:

./cleanup.sh

Docker

Create a database container as follows:

cd $CCPRO0T/examples/docker/pgbasebackup/pitr

./run-pitr.sh

Next, we will create a base backup of that database using this:

./run-backup-pitr.sh

After creating the base backup of the database, WAL segment files are created every 60 seconds that contain any database changes. These
segments are stored in the /tmp/pitr/pitr/pg_wal directory.

Next, create some recovery targets within the database by running the SQL commands against the pitr database as follows:

./run-sql.sh

https://www.postgresql.org/docs/10/static/continuous-archiving.html

This will create recovery targets named beforechanges, afterchanges, and nomorechanges. It will create a table, pitrtest, between the
beforechanges and afterchanges targets. It will also run a SQL CHECKPOINT to flush out the changes to WAL segments. These labels
can be used to mark the points in the recovery process that will be referenced when creating the restored database.

Next, now that we have a base backup and a set of WAL files containing our database changes, we can shut down the pitr database to
simulate a database failure. Do this by running the following:

docker stop pitr
Next, let’s edit the restore script to use the base backup files created in the step above. You can view the backup path name under the

/tmp/backups/pitr-backups/ directory. You will see another directory inside of this path with a name similar to 2018-03-21-21-03-29.
Copy and paste that value into the run-restore-pitr.sh script in the BACKUP environment variable.

After that, run the script.

vi ./run-restore-pitr.sh

./run-restore-pitr.sh

The WAL segments are read and applied when restoring from the database backup. At this point, you should be able to verify that the
database was restored to the point before creating the test table:

psql -h 127.0.0.1 -p 12001 -U postgres postgres -c 'table pitrtest'

This SQL command should show that the pitrtest table does not exist at this recovery time. The output should be similar to:
ERROR: relation "pitrtest" does not exist
PostgreSQL allows you to pause the recovery process if the target name or time is specified. This pause would allow a DBA a chance to

review the recovery time/name and see if this is what they want or expect. If so, the DBA can run the following command to resume and
complete the recovery:

psql -h 127.0.0.1 -p 12001 -U postgres postgres -c 'select pg_wal_replay_resume()'

Until you run the statement above, the database will be left in read-only mode.

Next, run the script to restore the database to the afterchanges restore point. Update the RECOVERY_TARGET_NAME to afterchanges:
vi ./run-restore-pitr.sh

./run-restore-pitr.sh

After this restore, you should be able to see the test table:

psql -h 127.0.0.1 -p 12001 -U postgres postgres -c 'table pitrtest'

psql -h 127.0.0.1 -p 12001 -U postgres postgres -c 'select pg_wal_replay_resume()'

Lastly, start a recovery using all of the WAL files. This will get the restored database as current as possible. To do so, edit the script to
remove the RECOVERY_TARGET_NAME environment setting completely:

./run-restore-pitr.sh

sleep 30

psql -h 127.0.0.1 -p 12001 -U postgres postgres -c 'table pitrtest'

psql -h 127.0.0.1 -p 12001 -U postgres postgres -c 'create table foo (id int)'

At this point, you should be able to create new data in the restored database and the test table should be present. When you recover the
entire WAL history, resuming the recovery is not necessary to enable writes.

Kubernetes and OpenShift

Start by running the example database container:

cd $CCPRO0T/examples/kube/pgbasebackup/pitr

./run-pitr.sh

This step will create a database container, pitr. This container is configured to continuously write WAL segment files to a mounted volume
(/pgwal).

After you start the database, you will create a base backup using this command:

./run-backup-pitr.sh

This will create a backup and write the backup files to a persistent volume (/pgbackup).

Next, create some recovery targets within the database by running the SQL commands against the pitr database as follows:

./run-sql.sh
This will create recovery targets named beforechanges, afterchanges, and nomorechanges. It will create a table, pitrtest, between the
beforechanges and afterchanges targets. It will also run a SQL CHECKPOINT to flush out the changes to WAL segments.

Next, now that we have a base backup and a set of WAL files containing our database changes, we can shut down the pitr database to
simulate a database failure. Do this by running the following;:

${CCP_CLI} delete pod pitr

Next, we will create 3 different restored database containers based upon the base backup and the saved WAL files.

First, get the BACKUP__PATH created by the backup-pitr example by viewing the pods logs:

${CCP_CLI} logs backup-pitr-8sfkh | grep PATH

Thu May 10 18:07:58 UTC 2018 INFO: BACKUP_PATH is set to /pgdata/pitr-backups/2018-05-10-18-07-58.

Edit the restore-pitr. json file and change the BACKUP_PATH environment variable using the path discovered above (note: /pgdata/ is
not required and should be excluded in the variable):

{

"name": "BACKUP_PATH",

"value": "pitr-backups/2018-05-10-18-07-58"
{

Next, we restore prior to the beforechanges recovery target. This recovery point is before the pitrtest table is created.

Edit the restore-pitr. json file, and edit the environment variable to indicate we want to use the beforechanges recovery point:

{
"name": "RECOVERY_TARGET_NAME",
"value": "beforechanges"

{

Then run the following to create the restored database container:

./run-restore-pitr.sh

After the database has restored, you should be able to perform a test to see if the recovery worked as expected:

psql -h restore-pitr -U postgres postgres -c 'table pitrtest'

psql -h restore-pitr -U postgres postgres -c 'create table foo (id int)'

The output of these commands should show that the pitrtest table is not present. It should also show that you can not create a new table
because the database is paused in read-only mode.

To make the database resume as a writable database, run the following SQL command:

select pg_wal_replay_resume() ;

It should then be possible to write to the database:

psql -h restore-pitr -U postgres postgres -c 'create table foo (id int)'

You can also test that if afterchanges is specified, that the pitrtest table is present but that the database is still in recovery mode.
Lastly, you can test a full recovery using all of the WAL files, if you remove the RECOVERY_TARGET_NAME environment variable completely.
The storage portions of this example can all be found under $CCP_STORAGE_PATH/$CCP_NAMESPACE-restore-pitr.

pgDump & pgRestore Examples

The following examples will demonstrate how the crunchy-pgdump container can be utilized to create a database backup using the
pg_ dump utility, while also demonstrating how the backup created can then be utilized to restore the database using the pg_ restore
utility.

Backup (pg__dump)

The script assumes you are going to backup the primary example and that container is running.
This example assumes you have configured a storage filesystem as described in the Storage Configuration document.

A successful backup will perform pg_dump/pg_dumpall on the primary and store the resulting files in the mounted volume under a
directory named <HOSTNAME>-backups as a sub-directory, then followed by a unique backup directory based upon a date and timestamp
- allowing any number of backups to be kept.

For more information on how to configure this container, please see the Container Specifications document.
To shutdown the instance and remove the container for each example, run the following:

./cleanup.sh

Docker

Run the backup with this command:

cd $CCPROOT/examples/docker/pgdump/backup
./run.sh

Kubernetes and OpenShift

Running the example:

cd $CCPROOT/examples/kube/pgdump/backup

./run.sh

The Kubernetes Job type executes a pod and then the pod exits. You can view the Job status using this command:
${CCP_CLI} get job

The pgdump . json file within that directory specifies options that control the behavior of the pgdump job. Examples of this include whether
to run pg dump vs pg dumpall and advanced options for specific backup use cases.

Restore (pg_ restore)

The script assumes that the pg dump backup example above has been run. Therefore, the primary example should still be running and
pg_ dump backup should have been successfully created.

This example assumes you have configured a storage filesystem as described in the Storage Configuration document.

Successful use of the crunchy-pgrestore container will run a job to restore files generated by pg dump/pg dumpall to a container via
psql/pg_restore; then container will terminate successfully and signal job completion.

For more information on how to configure this container, please see the Container Specifications document.
To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

Run the restore with this command:

cd $CCPRO0T/examples/docker/pgdump/pgrestore
./run.sh

Kubernetes and OpenShift

By default, the crunchy-pgrestore container will automatically restore from the most recent backup. If you want to restore to a specific
backup, edit the pgrestore. json file and update the PGRESTORE_BACKUP_TIMESTAMP setting to specify the backup path you want to
restore with. For example:

"name":"PGRESTORE_BACKUP_TIMESTAMP",

"value":"2018-03-27-14-35-33"

Running the example:

cd $CCPROOT/examples/kube/pgdump/pgrestore

./run.sh

The Kubernetes Job type executes a pod and then the pod exits. You can view the Job status using this command:

${CCP_CLI} get job

The pgrestore. json file within that directory specifies options that control the behavior of the pgrestore
job.

title: “Scheduler” date: draft: false weight: 34 —

Crunchy Scheduler

The Crunchy Scheduler container implements a cronlike microservice within a namespace to automate backups of a PostgreSQL database.

Currently Crunchy Scheduler only supports two types of tasks:

o pgBackRest
o pgBaseBackup

This service watches Kubernetes for config maps with the label crunchy-scheduler=true. If found the scheduler will parse the data
found in the config map (json object) and convert it to a scheduled task. If the config map is removed, the scheduler will delete the task.

See the following examples for creating config maps that Crunchy Scheduler can parse:

o pgBackRest Diff Backup
o pgBackRest Full Backup
o pgBaseBackup Backup

The Crunchy Scheduler requires a Service Account to create jobs (pgBaseBackup) and to exec (pgBackRest). See the scheduler example
for the required permissions on this account.

Crunchy Scheduler uses the UTC timezone for all schedules.
pgBackRest Schedules
To configure Crunchy Scheduler to create pgBackRest backups the following is required:

e pgBackRest schedule definition requires a deployment name. The PostgreSQL pod should be created by a deployment.

pgBaseBackup Schedules
To configure Crunchy Scheduler to create pgBaseBackup scheduled backups, the following is required:

e The name of the secret that contains the username and password the Scheduler will use to configure the job template. See the
primary secret example for the structure required by the Scheduler.
e The name of the PVC created for the backups. This should be created by the user prior to scheduling the task.

When using pgBaseBackup schedules, it may be required to apply specific supplementalGroups or an fsGroup to the backup job created
by the scheduler. To apply a specific securityContext for your storage provider, mount a backup-template.json to /configs on the
scheduler pod.

For an example of applying a custom template, see the scheduler example.

https://github.com/CrunchyData/crunchy-containers/blob/master/examples/kube/scheduler/configs/schedule-backrest-diff.json
https://github.com/CrunchyData/crunchy-containers/blob/master/examples/kube/scheduler/configs/schedule-backrest-full.json
https://github.com/CrunchyData/crunchy-containers/blob/master/examples/kube/scheduler/configs/schedule-pgbasebackup.json
https://github.com/CrunchyData/crunchy-containers/tree/master/examples/kube/scheduler/scheduler-sa.json
https://github.com/CrunchyData/crunchy-containers/blob/master/examples/kube/secret/secret.json
https://github.com/CrunchyData/crunchy-containers/blob/master/examples/kube/secret/secret.json
https://github.com/CrunchyData/crunchy-containers/tree/master/examples/kube/scheduler

Kubernetes and OpenShift

First, start the PostgreSQL example created for the Scheduler by running the following commands:
Kubernetes

cd $CCPROOT/examples/kube/scheduler/primary

./run.sh

The pod created should show a ready status before proceeding.

Next, start the scheduler by running the following command:

Kubernetes

cd $CCPRO0T/examples/kube/scheduler

./run.sh

Once the scheduler is deployed, register the backup tasks by running the following command:

Kubernetes
cd $CCPRO0T/examples/kube/scheduler
./add-schedules.sh

The scheduled tasks will (these are just for fast results, not recommended for production):

e take a backup every minute using pgBaseBackup
« take a full pgBackRest backup every even minute
« take a diff pgBackRest backup every odd minute

View the logs for the scheduler pod until the tasks run:
${CCP_CLI?} logs scheduler -f

View the pgBaseBackup pods results after the backup completes:
${CCP_CLI?} logs <basebackup pod name>

View the pgBackRest backups via exec after the backup completes:
${CCP_CLI?} exec -ti <primary deployment pod name> -- pgbackrest info

Clean up the examples by running the following commands:

$CCPROOT/examples/kube/scheduler/primary/cleanup.sh
$CCPROOT/examples/kube/scheduler/cleanup.sh

pgBouncer Connection Pooling Example

Crunchy pgBouncer is a lightweight connection pooler for PostgreSQL databases.

The following examples create the following containers:

o pgBouncer Primary
e pgBouncer Replica
PostgreSQL Primary
PostgreSQL Replica

In Kubernetes and OpenShift, this example will also create:

e pgBouncer Primary Service
e pgBouncer Replica Service
e Primary Service

e Replica Service

e PostgreSQL Secrets

e pgBouncer Secrets

To cleanup the objects created by this example, run the following in the pgbouncer example directory:

./cleanup.sh

For more information on pgBouncer, see the official website.

https://pgbouncer.github.io

Docker

Run the pgbouncer example:

cd $CCPRO0T/examples/docker/pgbouncer

./run.sh

Once all containers have deployed and are ready for use, psql to the target databases through pgBouncer:
psql -d userdb -h 0.0.0.0 -p 6432 -U testuser

psql -d userdb -h 0.0.0.0 -p 6433 -U testuser

To connect to the administration database within pgbouncer, connect using psql:

psql -d pgbouncer -h 0.0.0.0 -p 6432 -U pgbouncer
psql -d pgbouncer -h 0.0.0.0 -p 6433 -U pgbouncer

Kubernetes and OpenShift

OpenShift: If custom configurations aren’t being mounted, an emptydir volume is required to be mounted at /pgconf.
Run the pgbouncer example:

cd $CCPRO0T/examples/kube/pgbouncer

./run.sh

Once all containers have deployed and are ready for use, psql to the target databases through pgBouncer:

psql -d userdb -h pgbouncer-primary -p 6432 -U testuser

psql -d userdb -h pgbouncer-replica -p 6432 -U testuser

To connect to the administration database within pgbouncer, connect using psql:

psql -d pgbouncer -h pgbouncer-primary -p 6432 -U pgbouncer -c "SHOW SERVERS"
psql -d pgbouncer -h pgbouncer-replica -p 6432 -U pgbouncer -c "SHOW SERVERS"

Metrics Collection

You can collect various PostgreSQL metrics from your database container by running a crunchy-collect container that points to your
database container.

This example starts up 5 containers:

e Collect (crunchy-collect)

o Grafana (crunchy-grafana)
PostgreSQL (crunchy-postgres)

o Prometheus (crunchy-prometheus)

Every 5 seconds by default, Prometheus will scrape the Collect container for metrics. These metrics will then be visualized by Grafana,
which by default can be accessed with the following credentials:

e Username : admin
e Password: password

By default, Prometheus detects which environment its running on (Docker, Kubernetes, or OpenShift Container Platform) and applies a
default configuration.

When running in Kuberenetes and OpenShift, the following two labels are required by the deployments:

e "crunchy_collect": "true"
¢ "name": "some-pod-name-here"

The crunchy_collect label allows Prometheus to find all pods that are serving metrics to be scraped for storage.
The name label allows Prometheus to rewrite the name of the pod so if it changes there’s not duplicate entries.

Additionally, the collect container uses a special PostgreSQL role ccp_monitoring. This user is created by setting the PGMONITOR_PASSWORD
environment variable on the PostgreSQL container.

Discovering pods requires a cluster role service account. See the Kubernetes and OpenShift metrics JSON file for more details.
For Docker environments the collect hostname must be specified as an environment variable.
To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

To delete the cluster role required by the Prometheus, as an administrator, run the following;:

./cleanup-rbac.sh

Docker

To start this set of containers, run the following:
cd $CCPRO0T/examples/docker/metrics

./run.sh

You will be able to access the Grafana and Prometheus services from the following web addresses:

o Grafana (http://0.0.0.0:3000)
o Prometheus (http://0.0.0.0:9090)

The crunchy-postgres container is accessible on port 5432.

Kubernetes and OpenShift

Running the example:

cd $CCPROOT/examples/kube/metrics

./run.sh

It’s required to use port-forward to access the Grafana dashboard. To start the port-forward, run the following command:

${CCP_CLI} port-forward metrics 3000:3000
${CCP_CLI} port-forward metrics 9090:9090

o Grafana dashboard can be then accessed from http://127.0.0.01:3000
e Prometheus dashboard can be then accessed from http://127.0.0.01:9090

You can view the container logs using these command:

${CCP_CLI} logs -c grafana metrics
${CCP_CLI} logs -c prometheus metrics
${CCP_CLI} logs -c collect primary-metrics
${CCP_CLI} logs -c postgres primary-metrics
${CCP_CLI} logs -c collect replica-metrics
${CCP_CLI} logs -c postgres replica-metrics

pgBadger Example

pgbadger is a PostgreSQL tool that reads the log files from a specified database in order to produce a HTML report that shows various
PostgreSQL statistics and graphs. This example runs the pgbadger HI'TP server against a crunchy-postgres container and illustrates how
to view the generated reports.

The port utilized for this tool is port 14000 for Docker environments and port 10000 for Kubernetes and OpenShift environments.
The container creates a default database called userdb, a default user called testuser and a default password of password.
To shutdown the instance and remove the container for each example, run the following:

./cleanup.sh

https://github.com/crunchydata/crunchy-containers/blob/master/examples/kube/metrics/metrics.json

Docker

Run the example as follows:

cd $CCPRO0T/examples/docker/pgbadger

./run.sh

After execution, the container will run and provide a simple HTTP command you can browse to view the report. As you run queries

against the database, you can invoke this URL to generate updated reports:

curl -L http://127.0.0.1:14000/api/badgergenerate

Kubernetes and OpenShift

Running the example:

cd $CCPRO0T/examples/kube/pgbadger

./run.sh

After execution, the container will run and provide a simple HTTP command you can browse to view the report. As you run queries
against the database, you can invoke this URL to generate updated reports:

curl -L http://pgbadger:10000/api/badgergenerate

You can view the database container logs using these commands:

${CCP_CLI} logs pgbadger -c pgbadger
${CCP_CLI} logs pgbadger -c postgres

Centralized Logging Example

The logs generated by containers are critical for deployments because they provide insights into the health of the system. PostgreSQL
logs are very detailed and there is some information that can only be obtained from logs (but not limited to):

¢ Connections and Disconnections of users
e Checkpoint Statistics
e PostgreSQL Server Errors

Aggregrating container logs across multiple hosts allows administrators to audit, debug problems and prevent repudiation of misconduct.

In the following example we will demonstrate how to setup Kubernetes and OpenShift to use centralized logging by using an EFK
(Elasticsearch, Fluentd and Kibana) stack. Fluentd will run as a daemonset on each host within the Kubernetes cluster and extract
container logs, Elasticsearch will consume and index the logs gathered by Fluentd and Kibana will allow users to explore and visualize the
logs via a web dashboard.

To learn more about the EFK stack, see the following:

o https://www.elastic.co/products/elasticsearch
o https://www.fluentd.org/architecture
o https://www.elastic.co/products/kibana

Configure PostgreSQL for Centralized Logging

By default, Crunchy PostgreSQL logs to files in the /pgdata directory. In order to get the logs out of the container we need to configure
PostgreSQL to log to stdout.

The following settings should be configured in postgresql.conf to make PostgreSQL log to stdout:

log_destination = 'stderr'

logging_collector = off

Changes to logging settings require a restart of the PostgreSQL container to take effect.

Deploying the EFK Stack On OpenShift Container Platform

OpenShift Container Platform can be installed with an EFK stack. For more information about configuring OpenShift to create an EFK
stack, see the official documentation:

o https://docs.openshift.com/container-platform/3.11/install__config/aggregate_logging.html

Deploying the EFK Stack On Kubernetes

First, deploy the EFK stack by running the example using the following commands:

cd $CCPROOT/examples/kube/centralized-logging/efk

./run.sh

Elasticsearch is configured to use an emptyDir volume in this example. Configure this example to provide a persistent volume when
deploying into production.

Next, verify the pods are running in the kube-system namespace:

${CCP_CLI?} get pods -n kube-system --selector=k8s-app=elasticsearch-logging
${CCP_CLI?} get pods -n kube-system --selector=k8s-app=fluentd-es
${CCP_CLI?} get pods -n kube-system --selector=k8s-app=kibana-logging

If all pods deployed successfully, Elasticsearch should already be receiving container logs from Fluentd.

Next we will deploy a PostgreSQL Cluster (primary and replica deployments) to demonstrate PostgreSQL logs are being captured by
Fluentd.

Deploy the PostgreSQL cluster by running the following:

cd $CCPROOT/examples/kube/centralized-logging/postgres-cluster
./run.sh

Next, verify the pods are running:

${CCP_CLI?} get pods --selector=k8s-app=postgres-cluster

With the PostgreSQL successfully deployed, we can now query the logs in Kibana.

We will need to setup a port-forward to the Kibana pod to access it. To do that we first get the name of the pod by running the following
command:

${CCP_CLI?} get pod --selector=k8s-app=kibana-logging -n kube-system

Next, start the port-forward:
${CCP_CLI?} port-forward <KIBANA POD NAME> 5601:5601 -n kube-system

To access the web dashboard navigate in a browser to 127.0.0.1:5601.

First, click the Discover tab and setup an index pattern to use for queries.

The index pattern name we will use is logstash—* because Fluentd is configured to generate logstash style logs.
Next we will configure the Time Filter field name to be @timestamp.

Now that our index pattern is created, we can query for the container logs.

Click the Discover tab and use the following queries:

KUBERNETES

CONTAINER_NAME: *primary* AND MESSAGE: ".xLOGx"
OpenShift
kubernetes.pod_name: "primary" AND log

For more information about querying Kibana, see the official documentation: https://www.elastic.co/guide/en/beats/packetbeat/current /kil
queries-filters.html

To delete the centralized logging example run the following;:

${CCP_ROOT?}/examples/kube/centralized-logging/efk/cleanup.sh

To delete the cluster roles required by the EFK stack, as an administrator, run the following;:

${CCP_ROOT?}/examples/kube/centralized-logging/efk/cleanup-rbac.sh

pgAudit Enhanced Logging
This example provides an example of enabling pg_audit output. As of release 1.3, pg_ audit is included in the crunchy-postgres container
and is added to the PostgreSQL shared library list in postgresql.conf.

Given the numerous ways pg_ audit can be configured, the exact pg_audit configuration is left to the user to define. pg_audit allows you
to configure auditing rules either in postgresql.conf or within your SQL script.

For this test, we place pg_audit statements within a SQL script and verify that auditing is enabled and working. If you choose to
configure pg_audit via a postgresql.conf file, then you will need to define your own custom file and mount it to override the default
postgresql.conf file.

Docker

Run the following to create a database container:

cd $CCPRO0T/examples/docker/pgaudit

./run.sh

This starts an instance of the pg_audit container (running crunchy-postgres) on port 12005 on localhost. The test script is then automat-
ically executed.

This test executes a SQL file which contains pg_audit configuration statements as well as executes some basic SQL commands. These
SQL commands will cause pg_ audit to create log messages in the pg_log log file created by the database container.

Kubernetes and OpenShift

Run the following:

cd $CCPRO0T/examples/kube/pgaudit

./run.sh

This script will create a PostgreSQL pod with the pgAudit extension configured and ready to use

Once the pod is deployed successfully run the following command to test the extension:

cd $CCPRO0T/examples/kube/pgaudit

./test-pgaudit.sh

This example has been configured to log directly to stdout of the pod. To view the PostgreSQL logs, run the following:
$CCP_CLI logs pgaudit

pgAdmin4 example

This example deploys the pgadmind v2 web user interface for PostgreSQL without TLS.

After running the example, you should be able to browse to http://127.0.0.1:5050 and log into the web application with the following
configured credentials:

e Username : admin@admin.com
e Password: password

If you are running this example using Kubernetes or OpenShift, it is required to use a port-forward proxy to access the dashboard.
To start the port-forward proxy run the following:

${CCP_CLI} port-forward pgadmind-http 5050:5050

To access the pgAdmind dashboard through the proxy, navigate to hittp://127.0.0.1:5050 in a browser.
See the pgAdmind documentation for more details.
To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

http://pgadmin.org

Docker

To run this example, run the following:

cd $CCPRO0T/examples/docker/pgadmind-http
./run.sh

Kubernetes and OpenShift

Start the container as follows:
cd $CCPROOT/examples/kube/pgadmind-http

./run.sh

An emptyDir with write access must be mounted to the /run/httpd directory in OpenShift.

pgAdmin4 with TLS

This example deploys the pgadmind v2 web user interface for PostgreSQL with TLS.

After running the example, you should be able to browse to https://127.0.0.1:5050 and log into the web application with the following
configured credentials:

e Username : admin@admin.com
e Password: password

If you are running this example using Kubernetes or OpenShift, it is required to use a port-forward proxy to access the dashboard.
To start the port-forward proxy run the following:

${CCP_CLI} port-forward pgadmind-https 5050:5050

To access the pgAdmind dashboard through the proxy, navigate to https://127.0.0.1:5050 in a browser.
See the pgadmind documentation for more details.
To shutdown the instance and remove the container for each example, run the following;:

./cleanup.sh

Docker

To run this example, run the following:

cd $CCPROOT/examples/docker/pgadmind-https
./run.sh

Kubernetes and OpenShift

Start the container as follows:

cd $CCPROOT/examples/kube/pgadmind-https
./run.sh

An emptyDir with write access must be mounted to the /run/httpd directory in OpenShift.

http://pgadmin.org

Major Upgrade

This example assumes you have run primary using a PG 9.5 or 9.6 image such as centos7-9.5.15-2.2.0 prior to running this upgrade.

Starting in release 1.3.1, the upgrade container will let you perform a pg_upgrade either from a PostgreSQL version 9.5 database to 9.6
or from 9.6 to 10.

Prior to running this example, make sure your CCP_IMAGE_TAG environment variable is using the next major version of PostgreSQL that
you want to upgrade to. For example, if you're upgrading from 9.5 to 9.6, make sure the variable references a PG 9.6 image such as
centos7-9.6.11-2.2.0.

This will create the following in your Kubernetes environment:

e a Kubernetes Job running the crunchy-upgrade container
e a new data directory name upgrade found in the pgnewdata PVC

Data checksums on the Crunchy PostgreSQL container were enabled by default in version 2.1.0. When trying to upgrade, it’s required
that both the old database and the new database have the same data checksums setting. Prior to upgrade, check if data_checksums were
enabled on the database by running the following SQL: SHOW data_checksums

Kubernetes and OpenShift

Before running the example, ensure you edit upgrade. json and update the OLD_VERSION and NEW_VERSION parameters to the ones relevant
to your situation.

Start the upgrade as follows:

cd $CCPRO0T/examples/kube/upgrade
./run.sh

If successful, the Job will end with a successful status. Verify the results of the Job by examining the Job’s pod log:

${CCP_CLI} get pod -1 job-name=upgrade
${CCP_CLI} logs -1 job-name=upgrade

You can verify the upgraded database by running the post-upgrade.sh script in the examples/kube/upgrade directory. This will create
a PostgreSQL pod that mounts the upgraded volume.

Requirements
These installation instructions are developed and tested for the following operating systems:

e« CentOS 7
« RHEL 7

The Crunchy Container Suite can run on different environments including;:

e Docker 1.13+
e OpenShift Container Platform 3.11

¢ Kubernetes 1.8+

In this document we list the basic installation steps required for these environments.

Project Environment

If your goal is to simply run the containers any properly configured user account should work. If your goal is for development and/or
building the containers, we recommend a user whose environment is dedicated for that purpose.

First add the following lines to your .bashrc file to set the project paths:

export GOPATH=$HOME/cdev

export GOBIN=$GOPATH/bin

export PATH=$PATH:$GOBIN

export CCP_BASEOS=centos7 # centos7 for Centos, rhel7 for Redhat
export CCP_PGVERSION=10

export CCP_PG_FULLVERSION=10.8

export CCP_VERSION=2.3.2

export CCP_IMAGE_PREFIX=crunchydata

export CCP_IMAGE_TAG=$CCP_BASEOS-$CCP_PG_FULLVERSION-$CCP_VERSION
export CCPROOT=$GOPATH/src/github.com/crunchydata/crunchy-containers
export CCP_SECURITY_CONTEXT=""

export CCP_CLI=kubectl # kubectl for K8s, oc for OpenShift
export CCP_NAMESPACE=demo

You will need to add environment variables for storage configuration as well. Please see the Storage Configuration document for configuring
storage using environment variables set in .bashrc.

It will be necessary to refresh your .bashrec file in order for the changes to take effect.

~/ .bashrc

Next, set up a project directory structure and pull down the project from github:

mkdir -p $HOME/cdev/src/github.com/crunchydata $HOME/cdev/pkg $HOME/cdev/bin

Installation

The installation for Centos 7 and RHEL 7 are similar, but there are several steps which require slightly different commands related to
location of repositories, etc. These are highlighted below where necessary.

Install Supporting Software
CentOS 7 only

sudo yum -y install epel-release --enablerepo=extras
sudo yum -y install golang git

RHEL 7 only
sudo subscription-manager repos --enable=rhel-7-server-optional-rpms
sudo yum-config-manager --enable rhel-7-server-extras-rpms

sudo yum -y install git golang
Clone GitHub repository

cd $GOPATH/src/github.com/crunchydata

git clone https://github.com/crunchydata/crunchy-containers
cd crunchy-containers

git checkout 2.3.2

go get github.com/blang/expenv

If you are a Crunchy Enterprise Customer running on RHEL, you will place the Crunchy repository key and yum repository file into the
$CCPROOT/conf directory at this point. These files can be obtained through https://access.crunchydata.com/ on the downloads page.

Install PostgreSQL

These installation instructions assume the installation of PostgreSQL 10 through the official PGDG repository. View the documentation
located here in order to view more detailed notes or install a different version of PostgreSQL.

Locate and edit your distribution’s .repo file, located:

o On CentOS: /etc/yum.repos.d/CentOS-Base.repo, [base] and [updates] sections

o On RHEL: /etc/yum/pluginconf.d/rhnplugin.conf [main| section

https://access.crunchydata.com/
https://wiki.postgresql.org/wiki/YUM_Installation

To the section(s) identified above, depending on OS being used, you need to append a line to prevent dependencies from getting resolved
to the PostgreSQL supplied by the base repository:

exclude=postgresqlx*

Next, install the RPM relating to the base operating system and PostgreSQL version you wish to install. The RPMs can be found here.

Below we chose Postgresql 10 for the example (change if you need different version):

On CentOS system:

sudo yum -y install
https://download.postgresql.org/pub/repos/yum/10/redhat/rhel-7-x86_64/pgdg-centos10-10-2.noarch.rp

On RHEL system:

sudo yum -y install
https://download.postgresql.org/pub/repos/yum/testing/10/redhat/rhel-7-x86_64/pgdg-redhat10-10-2.n

Update the system:

sudo yum -y update

Install the PostgreSQL server package.

sudo yum -y install postgresqllO-server.x86_64

Update the system:

sudo yum -y update

Install Docker

The OpenShift and Kubernetes (KubeAdm) instructions both have a section for installing docker. Installing docker now won’t cause any
issues but you may wish to configure Docker storage before bringing everything up. Configuring Docker Storage is different from Storage
Configuration referenced earlier in the instructions and is not covered here.

For a basic docker installation, you can follow the instructions below. Please refer to the respective installation guide for the version of
Kubernetes you are installing for more specific details.

sudo yum -y install docker

It is necessary to add the docker group and give your user access to that group:
sudo groupadd docker

sudo usermod -a -G docker <username>

Logout and login again as the same user to allow group settings to take effect.
Enable Docker service and start Docker (once all configuration is complete):

sudo systemctl enable docker.service
sudo systemctl start docker.service

OpenShift Installation

Use the OpenShift installation guide to install OpenShift Enterprise on your host. Make sure to choose the proper version of OpenShift
you want to install. The main instructions for 3.11 are here and you’ll be able to select a different version there, if needed:

https://docs.openshift.com/container-platform/3.11 /install /index.html

Kubernetes Installation

Make sure your hostname resolves to a single IP address in your /etc/hosts file. The NFS examples will not work otherwise and other
problems with installation can occur unless you have a resolving hostname.

You should see a single IP address returned from this command:

$ hostname --ip-address

https://yum.postgresql.org/repopackages.php
https://docs.openshift.com/container-platform/3.11/install/index.html

Installing Kubernetes

We suggest using Kubeadm as a simple way to install Kubernetes.
See Kubeadm for installing the latest version of Kubeadm.

See Create a Cluster for creating the Kuberenetes cluster using Kubeadm. Note: We find that Weave networking works particularly well
with the container suite.

Please see here to view the official documentation regarding configuring DNS for your Kubernetes cluster.

Post Kubernetes Configuration

In order to run the various examples, Role Based Account Control will need to be set up. Specifically, the cluster-admin role will need to
be assigned to the Kubernetes user that will be utilized to run the examples. This is done by creating the proper ClusterRoleBinding:
$ kubectl create clusterrolebinding cluster-admin-binding \

--clusterrole cluster-admin --user someuser

If you are running on GKE, the following command can be utilized to auto-populate the user option with the account that is currently
logged into Google Cloud:

$ kubectl create clusterrolebinding cluster-admin-binding \

--clusterrole cluster-admin --user $(gcloud config get-value account)

If more than one user will be running the examples on the same Kubernetes cluster, a unique name will need to be provided for each
new ClusterRoleBinding created in order to assign the cluster-admin role to every user. The example below will create a Cluster-
RoleBinding with a unique value:

$ kubectl create clusterrolebinding <unique>-cluster-admin-binding \
--clusterrole cluster-admin \
--user someuser

If you are running on GKE, the following can be utilized to create a unique ClusterRoleBinding for each user, with the user’s Google
Cloud account prepended to the name of each new ClusterRoleBinding:

$ kubectl create clusterrolebinding "$(gcloud config get-value account)-cluster-admin-binding" \
--clusterrole cluster-admin \
--user $(gcloud config get-value account)

Helm

Some Kubernetes Helm examples are provided in the following directory as one option for deploying the Container Suite.
$CCPROOT/examples/helm/

Once you have your Kubernetes environment configured, it is simple to get Helm up and running. Please refer to this document to get
Helm installed and configured properly.

Configuring Namespace and Permissions

In Kubernetes, a concept called a namespace provides the means to separate created resources or components into individual logically
grouped partitions. In OpenShift, namespace is referred to as a project.

It is considered a best practice to have dedicated namespaces for projects in both testing and production environments.

All examples in the Crunchy Container Suite operate within the namespace defined by the environment variable $CCP_NAMESPACE. The
default we use for namespace is ‘demo’ but it can be set to any valid namespace name. The instructions below illustrate how to set up
and work within new namespaces or projects in both Kubernetes and OpenShift.

https://kubernetes.io/docs/setup/independent/install-kubeadm/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://github.com/kubernetes/helm/blob/master/docs/install.md

Kubernetes

This section will illustrate how to set up a new Kubernetes namespace called demo, and will then show how to provide permissions to
that namespace to allow the Kubernetes examples to run within that namespace.

First, view currently existing namespaces:

$ kubectl get namespace

NAME STATUS AGE
default Active 21d
kube-public Active 21d
kube-system Active 21d

Then, create a new namespace called demo:

$ kubectl create -f $CCPROOT/conf/demo-namespace.json
namespace "demo" created

$ kubectl get namespace demo

NAME STATUS AGE

demo Active Ts

Then set the namespace as the default for the current context:

When a namespace is not explicitly stated for a command, Kubernetes uses the namespace specified by the currently set context.

$ kubectl config set-context $(kubectl config current-context) --namespace=demo

We can verify that the namespace was set correctly through the following command:

$ kubectl config view | grep namespace:
namespace: demo

OpenShift

This section assumes an administrator has already logged in first as the system:admin user as directed by the OpenShift Installation
Guide.

For our development purposes only, we typically specify the OCP Authorization policy of A1lowAll as documented here:
https://docs.openshift.com/container-platform/3.11/install config/configuring authentication.html#AllowAllPasswordIdentityProvider
We do not recommend this authentication policy for a production deployment of OCP.

For the best results, it is recommended that you run the examples with a user that has NOT been assigned the cluster-admin cluster
role.

Log into the system as a user:

$ oc login -u <user>

The next step is to create a demo namespace to run the examples within. The name of this OCP project will be what you supply in the
CCP_NAMESPACE environment variable:

$ oc new-project demo --description="Crunchy Containers project"
--display-name="Crunchy-Containers"
Now using project "demo" on server "https://127.0.0.1:8443".

$ export CCP_NAMESPACE=demo

If we view the list of projects, we can see the new project has been added and is “active”.

$ oc get projects

NAME DISPLAY NAME STATUS
demo Crunchy-Containers Active
myproject My Project Active

If you were on a different project and wanted to switch to the demo project, you would do so by running the following:

$ oc project demo
Now using project "demo" on server "https://127.0.0.1:8443".

https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#AllowAllPasswordIdentityProvider

When self-provisioning a new project using the oc new-project command, the current user (i.e., the user you used when logging into
OCP with the oc login command) will automatically be assigned to the admin role for that project. This will allow the user to create
the majority of the objects needed to successfully run the examples. However, in order to create the Persistent Volume objects needed
to properly configure storage for the examples, an additional role is needed. Specifically, a new role is needed that can both create and
delete Persistent Volumes.

Using the following two commands, create a new Cluster Role that has the ability to create and delete persistent volumes, and then assign
that role to your current user:

Please be aware that the following two commands require privileges that your current user may not have. In the event that you are unable
to run these commands, and do not have access to a user that is able to run them (e.g., the system:admin user that is created by default
when installing OCP), please contact your local OCP administrator to run the commands on your behalf, or grant you the access required
to run them yourself.

$ oc create clusterrole crunchytester --verb="list,create,delete" --resource=persistentvolumes

clusterrole "crunchytester" created

$ oc adm policy add-cluster-role-to-user crunchytester someuser
cluster role "crunchytester" added: "someuser"

Your user should now have the roles and privileges required to run the examples.

Storage Configuration

Available Storage Types

The Crunchy Container Suite is officially tested using two different storage backends:

o HostPath (single node testing)
e NFS (single and multi-node testing)

Other storage backends work as well, including GCE, EBS, ScalelO, and others, but may require you to modify various examples or
configuration.

The Crunchy Container Suite is tested, developed, and examples are provided that use the various storage types listed above. This ensures
that customers have a high degree of choices when it comes to choosing a volume type. HostPath and NFS allow precise host path choices
for where database volumes are persisted. HostPath and NFS also allow governance models where volume creation is performed by an
administrator instead of the application/developer team.

Where customers desire a dynamic form of volume creation (e.g. self service), storage classes are also supported within the example set.
Environment variables are set to determine how and what storage is to be used.

NOTE: When running the examples using HostPath or NFS storage, the run scripts provided in the examples will create directories using
the following pattern:

$CCP_STORAGE PATH/$CCP_NAMESPACE-<EXAMPLE NAME>

HostPath

HostPath is the simplest storage backend to setup. It is only feasible on a single node but is sufficient for testing the examples. In your
.bashrec file, add the following variables to specify the proper settings for your the HostPath storage volume:

export CCP_SECURITY_CONTEXT=""

export CCP_STORAGE_PATH=/data

export CCP_STORAGE_MODE=ReadWriteMany
export CCP_STORAGE_CAPACITY=400M

NOTE: It may be necessary to grant your user in OpenShift or Kubernetes the rights to modify the hostaccess SCC. This can be done
with the following command:

oadm policy add-scc-to-user hostaccess $(oc whoami)

NF'S

NF'S can also be utilized as a storage mechanism. Instructions for setting up a NFS can be found in the Configuration Notes for NF'S
section below.

For testing with NFS, include the following variables in your .bashrc file, providing the proper configuration details for your NFS:

export CCP_SECURITY_CONTEXT='"supplementalGroups": [65534]'
export CCP_STORAGE_PATH=/nfsfileshare

export CCP_NFS_IP=<IP OF NFS SERVER>

export CCP_STORAGE_MODE=ReadWriteMany

export CCP_STORAGE_CAPACITY=400M

In the example above the group ownership of the NFS mount is assumed to be nfsnobody or 65534. Additionally, it is recommended
that root not be squashed on the NFS share (using no_root_squash) in order to ensure the proper directories can be created, modified
and removed as needed for the various container examples.

Additionally, the examples in the Crunchy Container suite need access to the NFS in order to create the directories utilized by the examples.
The NFS should therefore be mounted locally so that the run.sh scripts contained within the examples can complete the proper setup.

Configuration Notes for NFS

o Most of the Crunchy containers run as the postgres UID (26), but you will notice that when supplementalGroups is specified, the
pod will include the nfsnobody group in the list of groups for the pod user

e If you are running your NFS system with SELinux in enforcing mode, you will need to run the following command to allow NFS
write permissions:

sudo setsebool -P virt_use_nfs 1

e Detailed instructions for setting up a NFS server on Centos 7 can be found using the following link:
http://www.itzgeek.com/how-tos/linux/centos-how-tos/how-to-setup-nfs-server-on-centos-7-rhel-7-fedora-22.html

e If you are running your client on a VM, you will need to add insecure to the exportfs file on the NFS server due to the way port
translation is done between the VM host and the VM instance. For more details on this bug, please see the following link:

http://serverfault.com/questions/107546 /mount-nfs-access-denied-by-server-while-mounting

e A suggested best practice for tuning NFS for PostgreSQL is to configure the PostgreSQL fstab mount options like so:

proto=tcp,suid,rw,vers=3,proto=tcp,timeo=600,retrans=2,hard,fg,rsize=8192,wsize=8192

And to then change your network options as follows:

MTU=9000

« If interested in mounting the same NFS share multiple times on the same mount point, look into the noac mount option

Dynamic Storage

Dynamic storage classes can be used for the examples. There are various providers and solutions for dynamic storage, so please consult
the Kubernetes documentation for additional details regarding supported storage choices. The environment variable CCP_STORAGE_CLASS
is used in the examples to determine whether or not to create a PersistentVolume manually, or if it will be created dynamically using a
StorageClass. In the case of GKE, the default StorageClass is named default. Storage class names are determined by the Kubernetes
administrator and can vary.

Using block storage requires a security context to be set as follows:

export CCP_SECURITY_CONTEXT='"fsGroup":26'
export CCP_STORAGE_CLASS=standard

export CCP_STORAGE_MODE=ReadWriteOnce
export CCP_STORAGE_CAPACITY=400M

e Crunchy backrest restore
e Crunchy backup

e Crunchy collect

e Crunchy grafana

e Crunchy pgadmin4

https://www.novell.com/support/kb/doc.php?id=7010210

e Crunchy pgbadger

e Crunchy pgbouncer
e Crunchy pgdump

e Crunchy pgpool

e Crunchy pgrestore

e Crunchy postgres-gis
e Crunchy postgres

e Crunchy prometheus
e Crunchy scheduler

e Crunchy upgrade

The crunchy-backrest-restore container executes the pgBackRest utility, allowing FULL and DELTA restore capability. See the pgBackRest
guide for more details.

Features

The following features are supported and required by the crunchy-backrest-restore container:

e Mounted pgbackrest.conf configuration file via the /pgconf volume
e Mounted /backrestrepo for access to pgBackRest archives

Packages

The crunchy-backrest-restore Docker image contains the following packages (versions vary depending on PostgreSQL version):

PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
pgBackRest (2.x)

e CentOS7 - publicly available

e RHELTY - customers only

Environment Variables

Required

Name Default Description

PGBACKREST STANZA None Must be set to the desired stanza for restore.
Optional
Name Default Description
PGBACKREST_DELTA None Enables pgBackRest delta restore mode. Used when a user needs to restore to a volum
PGBACKREST TARGET None PostgreSQL timestamp used when restoring up to a point in time. Required for Point |
PGBACKREST PG1_PATH None Path where PostgreSQL data directory can be found. This variable can also be used to
BACKREST_CUSTOM_ OPTS None Custom pgBackRest options can be added here to customize pgBackRest restores.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

The crunchy-backup container executes a full backup against another database container using the standard pg_basebackup utility that
is included with PostgreSQL.

Features

The following features are supported by the crunchy-backup container:

https://github.com/pgbackrest/pgbackrest
https://pgbackrest.org/

e Backup and restoration from: pg_basebackup

Packages

The crunchy-backup Docker image contains the following packages (versions vary depending on PostgreSQL version):

o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e CentOS7 - publicly available
o RHELY - customers only

Environment Variables

Required
Name Default Description
BACKUP_LABEL crunchy-backup The label for the backup.
BACKUP__HOST None Name of the database the backup is being performed on.
BACKUP__USER None Username for the PostgreSQL role being used.
BACKUP__PASS None Password for the PostgreSQL role being used.
BACKUP__PORT 5432 Database port used to do the backup.

Optional

Name Default Description

CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.
BACKUP__ OPTS None Optional parameters to pass to pg_ basebackup.

Volumes

Name Description

/backup Volume used by the pg_basebackup backup tool to store physical backups.

/pgdata Volume used to store the data directory contents for the PostgreSQL database.

Backup Location

Backups are stored in a mounted backup volume location, using the database host name plus -backups as a sub-directory, then followed
by a unique backup directory based upon a date/timestamp. It is left to the user to perform database backup archives in this current

version of the container. This backup location is referenced when performing a database restore.

The crunchy-collect container provides real time metrics about the PostgreSQL database via an API. These metrics are scraped and stored

by a Prometheus time-series database and are then graphed and visualized through the open source data visualizer Grafana.

The crunchy-collect container uses pgMonitor for advanced metric collection. It is required that the crunchy-postgres container has the

PGMONITOR_PASSWORD environment variable to create the appropriate user (ccp_monitoring) to collect metrics.

Custom queries to collect metrics can be specified by the user. By mounting a queries.yml file to /conf on the container, additional

metrics can be specified for the APT to collect. For an example of a queries.yml file, see here

Packages

The crunchy-collect Docker image contains the following packages (versions vary depending on PostgreSQL version):

https://prometheus.io
https://grafana.com/
https://github.com/CrunchyData/pgmonitor
https://github.com/CrunchyData/pgmonitor/blob/master/exporter/postgres/queries_common.yml

o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e CentOST7 - publicly available

e RHELTY - customers only

e PostgreSQL Exporter

e Node Exporter

Environment Variables

Required

Name Default Description

DATA_SOURCE_NAME None The URL for the PostgreSQL server’s data source name. This is required to be in the form of

Optional

Name Default Description

DISABLE_NODE__EXPORTER false Set this to true to disable node exporter in the collect container.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs

Visual dashboards are created from the collected and stored data that crunchy-collect and crunchy-prometheus provide for the crunchy-
grafana container, which hosts an open source web-based graphing dashboard called Grafana.

Grafana is a platform which can then apply the defined metrics and visualize information through various tools. It is extremely flexible
with a powerful query and transformation language, producing beautiful and easily understandable graphics to analyze and monitor your
data.

By default, crunchy-grafana will register the Prometheus datasource within Grafana and import a pre-made dashboard for PostgreSQL
monitoring.

The crunchy-grafana container must be able to reach the crunchy-prometheus container.

Users must specify an administrator username and password to provide basic authentication for the web frontend. Additionally, the
Prometheus hostname and port number are required. If Prometheus uses basic authentication, users must specify the username and
password to access Prometheus via environment variables.

A user may define a custom defaults.ini file and mount to /conf for custom configuration. For configuration examples, see here.

The following port is exposed by the crunchy-grafana container:

e crunchy-grafana:3000 - the Grafana web user interface

Packages

The crunchy-grafana Docker image contains the following packages:

e Grafana
e CentOS7 - publicly available
o« RHELY - customers only

Environment Variables

Required
Name Default Description
ADMIN__USER None Specifies the administrator user to be used when logging into the web frontend.

ADMIN_PASS None Specifies the administrator password to be used when logging into the web frontend.

https://github.com/wrouesnel/postgres_exporter
https://github.com/prometheus/node_exporter
https://grafana.com/
https://prometheus.io
https://github.com/crunchydata/crunchy-containers/blob/master/conf/grafana/defaults.ini
https://grafana.com/

Name Default Description

PROM_HOST None
PROM_ PORT None

Specifies the Prometheus container hostname for auto registering the Prometheus datasource.

Specifies the Prometheus container port for auto registering the Prometheus datasource.

Optional

Name

Default Description

INSTALL__DASHBOARDS
PROM__USER
PROM__PASS
CRUNCHY_DEBUG

true Set this option to false to prevent the Grafana container from installing the preinstalled pgV
58 Specifies the Prometheus username, if one is required.
5s Specifies the Prometheus password, if one is required.

FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

The crunchy-pgadmind container executes the pgAdmind web application.

pgAdmind provides a web user interface to PostgreSQL databases. A sample screenshot is below:

W pgAdmin 4 X

E} Q Servers

&« C | 0 192.168.0.103:5050/brows
it! Apps ¢ Bookmarks @@ Panoramio - Phot

er "?‘ﬁ?ﬂ v]

Sz

I8 security B software architect & Spotify Web Player s KITS - Live 105 10 @ how to make a c » | [Other bookmarks

i Browser @ Dashboard ©§ Properties

- W 172.17.03 Server sessions Transactions per second

it

B SQL |+ Statistics {9 Dependencies 43 Dependents

1.00 125

WActive WCommits
0.80 Idle 10.0 Rollbacks

WTotal WlTransactions
0.60 7.5
ol A A
0.20 25

0.0

a0

Frocess D

1.00 2000
Winsers WFetched WReads
Updates 1500 Eeturned 50 Hits
WCeletes o B
0.50 1000 40
500 20
0.00 0 0
Server activity
Sessions Locks Frepared Transactions Configuration

Database Application name Client address Backend start

107 postgres postgres pogAdmin 4 - DB:postgres 172.17.0.2 2016-08-02 14:21:28 655728-04 active

Features

Figure 4: pgAdmin4

The following features are supported by the crunchy-pgadmin4 container:

o Expose port (5050 by default) which is the web server port.
e Mount a certificate and key to the /certs directory and set ENABLE_TLS to true to activate HTTPS mode.
e Set username and password for login via environment variables.

https://www.pgadmin.org/

Restrictions

e An emptyDir, with write access, must be mounted to the /run/httpd directory in OpenShift.

Packages

The crunchy-pgadmind Docker image contains the following packages (versions vary depending on PostgreSQL version):

o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e pgAdming

e CentOST7 - publicly available

e RHELTY - customers only

Environment Variables

Required
Name Default Description
PGADMIN_SETUP_ EMAIL None Set this value to the email address used for pgAdming login.
PGADMIN_SETUP_PASSWORD None Set this value to a password used for pgAdmin4 login. This should be a strong pas:
SERVER__ PORT 5050 Set this value to a change the port pgAdmind listens on.
SERVER__PATH / Set this value to customize the path of the URL that will be utilized to access the |
ENABLE_TLS FALSE Set this value to true to enable HTTPS on the pgAdmind container. This requires
Optional

Name Default Description

CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

The crunchy-pgbadger container executes the pgBadger utility, which generates a PostgreSQL log analysis report using a small HT'TP
server running on the container. This log report can be accessed through the URL http://<>:10000/api/badgergenerate.

Features
The following features are supported by the crunchy-pgbadger container:
e Generate a full report by default

o Optional custom options for more advanced use cases (such as incremental reports)
e Report persistence on a volume

Packages

The crunchy-badger Docker image contains the following packages:
e pgBadger

e CentOST7 - publicly available
o RHELTY - customers only

Environment Variables

Optional

https://www.pgadmin.org/
http://dalibo.github.io/pgbadger
http://dalibo.github.io/pgbadger

Name Default Description

BADGER_TARGET None Only used in standalone mode to specify the name of the container. Also used to find the
BADGER_ CUSTOM_ OPTS None For a list of optional flags, see the official pgBadger documentation.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

pgBouncer is a lightweight connection pooler for PostgreSQL databases.

Features

The following features are supported by the crunchy-pgbouncer container:

e crunchy-pgbouncer uses auth_query to authenticate users. This requires only the pgbouncer username and password in users.txt.
Automatically generated from environment variables.

e Mount a custom users.txt and pgbouncer.ini configurations for advanced usage.

e Tune pooling parameters via environment variables.

e Connect to the administration database in pgBouncer to view statistics of the target databases.

Packages

The crunchy-pgbouncer Docker image contains the following packages (versions vary depending on PostgreSQL version):

o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e pgBouncer

e CentOS7 - publicly available

o RHELY - customers only

Restrictions

e OpenShift: If custom configurations aren’t being mounted, an emptydir volume is required to be mounted at /pgconf.
e Superusers cannot connect through the connection pooler.

Environment Variables

Required

Name Default Description

PGBOUNCER_ PASSWORD None The password of the pgBouncer role in PostgreSQL. Must be also set on the primary data

PG_SERVICE None The hostname of the database service.

Optional

Name Default Description

DEFAULT_POOL_SIZE 20 How many server connections to allow per user/database pair.
MAX_CLIENT_CONN 100 Maximum number of client connections allowed.

MAX_DB_ CONNECTIONS Unlimited Do not allow more than this many connections per-database.
MIN_POOL_SIZE 0 Adds more server connections to pool if below this number.
POOL_MODE Session When a server connection can be reused by other clients. Possible va
RESERVE_POOL_ SIZE 0 How many additional connections to allow per pool. 0 disables.
RESERVE_POOL_TIMEOUT 5 If a client has not been serviced in this many seconds, pgbouncer en:

QUERY TIMEOUT 0 Queries running longer than that are canceled.

http://dalibo.github.io/pgbadger
https://pgbouncer.github.io/
https://pgbouncer.github.io/

Name Default Description

IGNORE_ STARTUP_ PARAMETERS extra_float_digits Set to ignore particular parameters in startup packets.
PG_PORT 5432 The port to use when connecting to the database.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can rex

The crunchy-pgdump container executes either a pg_dump or pg_dumpall database backup against another PostgreSQL database.

Packages

The crunchy-pgdump Docker image contains the following packages (versions vary depending on PostgreSQL version):
o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)

e CentOS7 - publicly available
e RHEL?Y - customers only

Environment Variables

Required
Name Default Description
PGDUMP_DB None Name of the database the backup is being performed on.
PGDUMP__HOST None Hostname of the database the backup is being performed on.
PGDUMP_ PASS None Password for the PostgreSQL role being used.
PGDUMP_USER None Username for the PostgreSQL role being used.
Optional
Name Default Description
PGDUMP__ALL TRUE Run pg_dump instead of pg_dumpall. Set to false to enable pg_dump.
PGDUMP__ CUSTOM_ OPTS None Advanced options to pass into pg_dump or pg_dumpall.
PGDUMP__ FILENAME dump Name of the file created by the pgdump container.
PGDUMP__ PORT 5432 Port of the PostgreSQL database to connect to.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

For a list of advanced options for configuring the PGDUMP_CUSTOM_OPTS variable, see the official documentation:
https://www.postgresql.org/docs/current /static/app-pgdump.html
https://www.postgresql.org/docs/current /static/app-pg-dumpall.html

Volumes

Name Description

/pgdata Volume used to store the data directory contents for the PostgreSQL database.

Dump Location

Backups are stored in a mounted backup volume location, using the database host name plus -backups as a sub-directory, then followed
by a unique backup directory based upon a date/timestamp. It is left to the user to perform database backup archives in this current
version of the container. This backup location is referenced when performing a database restore.

The crunchy-pgpool container executes the pgPool II utility. pgPool can be used to provide a smart PostgreSQL-aware proxy to a
PostgreSQL cluster, both primary and replica, so that applications only have to work with a single database connection.

PostgreSQL replicas are read-only whereas a primary is capable of receiving both read and write actions.

The default pgPool examples use a Secret to hold the set of pgPool configuration files used by the examples. The Secret is mounted into
the pgconf volume mount where the container will look to find configuration files. If you do not specify your own configuration files via
a Secret then you can specify environment variables to the container that it will attempt to use to configure pgPool, although this is not
recommended for production environments.

Features

The following features are supported by the crunchy-postgres container:

« Basic invocation of pgPool II

Packages

The crunchy-pgpool Docker image contains the following packages (versions vary depending on PostgreSQL version):

o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e pgPool 11

e CentOS7 - publicly available

e RHELTY - customers only

Environment Variables

Required
Name Default Description
PG_USERNAME None Username for the PostgreSQL role being used.
PG_PASSWORD None Password for the PostgreSQL role being used.
PG_PRIMARY_ SERVICE NAME None Database host to connect to for the primary node.
PG_REPLICA_SERVICE_NAME None Database host to connect to for the replica node.

Optional

Name Default Description

CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

The restore image provides a means of performing a restore of a dump from pg_dump or pg_dumpall via psql or pg_restore to a
PostgreSQL container database.

Packages

The crunchy-pgrestore Docker image contains the following packages (versions vary depending on PostgreSQL version):

o PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e CentOS7 - publicly available

http://www.pgpool.net/mediawiki/index.php/Main_Page
http://www.pgpool.net/mediawiki/index.php/Main_Page

e RHELTY - customers only

Environment Variables

Required
Name Default Description
PGRESTORE_DB None Name of the database to connect to.
PGRESTORE_ HOST None Hostname of the database to connect to.
PGRESTORE_PASS None Password for the PostgreSQL role being used.
PGRESTORE_USER None Username for the PostgreSQL role being used.
Optional
Name Default Description
PGDUMP_BACKUP_HOST None Hostname of the PostgreSQL server that was backed up by pgdump containe
PGRESTORE_BACKUP_TIMESTAMP Empty Timestamp of the backup to restore from.
PGRESTORE__CUSTOM_ OPTS Empty Advanced options to pass into pg_restore.
PGRESTORE_ PORT 5432 Port of the PostgreSQL database to connect to.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal seci

For a list of advanced options for configuring the PGRESTORE_CUSTOM_OPTS variable, see the official documentation.

Volumes

Name Description

/pgdata Volume used to store the data directory contents for the PostgreSQL database.

Dump-file Input Location

As the input files for crunchy-pgrestore, files generated by crunchy-pgdump are retrieved in a mounted backup volume location, using the
database host name plus -backups as a sub-directory, then followed by a unique backup directory based upon a date/timestamp. It is left
to the user to restore database dump archives in this current version of the container.

PostgreSQL (pronounced “post-gress-Q-L”) is an open source, ACID compliant, relational database management system (RDBMS) devel-
oped by a worldwide team of volunteers. The crunchy-postgres-gis container image is unmodified, open source PostgreSQL packaged and
maintained by professionals. This image is identical to the crunchy-postgres image except it includes the open source geospatial extension
PostGIS for PostgreSQL in addition to the language extension PL/R which allows for writing functions in the R statistical computing
language.

Features

The following features are supported by the crunchy-postgres-gis container:

e Kubernetes and OpenShift secrets

o Backup and restoration from various tools: pgbackrest, pg_basebackup and pg_dump/pg_restore.
o Custom mounted configuration files (see below)

e Async and Sync Replication

o PostGIS

« PL/R

https://www.postgresql.org/docs/current/static/app-pgrestore.html
https://postgis.net/
http://www.joeconway.com/plr.html

Packages

The crunchy-postgres-gis Docker image contains the following packages (versions vary depending on PostgreSQL version):

pgBackRest (2.x)
e CentOS7 - publicly available
« RHEL?Y - customers only

Environment Variables

PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)

Required

Name Default Description

PG_DATABASE None Set this value to create an initial database

PG_PRIMARY_ PORT None Set this value to configure the primary PostgreSQL port. It is recommended to use 5432
PG_MODE None Set to primary, replica or set to specify the mode of the database

PG_USER None Set this value to specify the username of the general user account

PG_PASSWORD None Set this value to specify the password of the user role

PG_PRIMARY_USER None Set this value to specify the username of the replication user
PG_PRIMARY_PASSWORD None Set this value to specify the password of the replication user
PG_ROOT_PASSWORD None Set this value to specify the password of the superuser role

Optional

Name Default Description

ARCHIVE__MODE Off Set this value to on to enable continuous WAL archiving
ARCHIVE__TIMEOUT 60 Set to a number (in seconds) to configure archive_timeout in postgresql
CHECKSUMS Off Enables data-checksums during initialization of the database. Can only be
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal sec
LOG_STATEMENT none Sets the log_statement value in postgresql.conf
LOG_MIN_DURATION_STATEMENT 60000 Sets the log_min_duration_statement value in postgresql.conf
MAX_CONNECTIONS 100 Sets the max_connections value in postgresql.conf

MAX_ WAL_SENDERS 6 Set this value to configure the max number of WAL senders (replication)
PG_LOCALE UTF-8 Set the locale of the database

PG_PRIMARY_HOST None Set this value to specify primary host. Note: only used when PG_MODE != p
PG_REPLICA_HOST None Set this value to specify the replica host label. Note; used when PG_MODE is
PGAUDIT_ANALYZE None Set this to enable pgaudit_analyze

PGBOUNCER_ PASSWORD None Set this to enable pgBouncer support by creating a special pgbouncer user
PGDATA_PATH__OVERRIDE None Set this value to override the /pgdata directory name. By default /pgdata
SHARED_BUFFERS 128MB Set this value to configure shared_buffers in postgresql.conf
SYNC__REPLICA None Set this value to specify the names of replicas that should use synchronized
TEMP__BUFFERS 8MB Set this value to configure temp_buffers in postgresql.conf
WORK__MEM 4MB Set this value to configure work_mem in postgresql.conf

XLOGDIR None Set this value to configure PostgreSQL to send WAL to the /pgwal volume
PGBACKREST false Set this value to true in order to enable and initialize pgBackRest in the co
BACKREST SKIP_CREATE_STANZA false Set this value to true in order to skip the configuration check and the auton

https://pgbackrest.org/

Name Default Description

PG_CTL_ OPTS None Set this value to supply custom pg_ctl options (ex: -c shared_preload_li
Volumes
Name Description

/backrestrepo Volume used by the pgbackrest backup tool to store physical backups.

/backup Volume used by the pg_basebackup backup tool to store physical backups.

/pgconf Volume used to store custom configuration files mounted to the container.

/pgdata Volume used to store the data directory contents for the PostgreSQL database.

/pgwal Volume used to store Write Ahead Log (WAL) when XLOGDIR environment variable is set to true.
/recover Volume used for Point In Time Recovery (PITR) during startup of the PostgreSQL database.

Custom Configuration

The following configuration files can be mounted to the /pgconf volume in the crunchy-postgres container to customize the runtime:

Name Description

ca.crt Certificate of the CA used by the server when using SSL authentication
ca.crl Revocation list of the CA used by the server when using SSL authentication
pg_hba.conf Client authentication rules for the database

pg_ident.conf Mapping of external users (such as SSL certs, GSSAPI, LDAP) to database users
postgresql.conf PostgreSQL settings

server.key Key used by the server when using SSL authentication
server.crt Certificate used by the server when using SSL authentication
setup.sql Custom SQL to execute against the database. Note: only run during the first startup (initialization)

Verifying PL/R

In order to verify the successful initialization of the PL/R extension, the following commands can be run:

create extension plr;

SELECT * FROM plr_environ();

SELECT load_r_typenames () ;

SELECT * FROM r_typenames () ;

SELECT plr_array_accum('{23,35}', 42);

CREATE OR REPLACE FUNCTION plr_array (text, text)
RETURNS text []

AS '$libdir/plr','plr_array'

LANGUAGE 'c' WITH (isstrict);

select plr_array('hello', 'world');

PostgreSQL (pronounced “post-gress-Q-L”) is an open source, ACID compliant, relational database management system (RDBMS) de-
veloped by a worldwide team of volunteers. The crunchy-postgres container image is unmodified, open source PostgreSQL packaged and
maintained by professionals.

Features
The following features are supported by the crunchy-postgres container:

e Kubernetes and OpenShift secrets

o Backup and restoration from various tools: pgbackrest, pg_basebackup and pg_dump/pg_restore.
o Custom mounted configuration files (see below)

e Async and Sync Replication

Packages

The crunchy-postgres Docker image contains the following packages (versions vary depending on PostgreSQL version):

pgBackRest (2.x)
e CentOS7 - publicly available
« RHELY - customers only

Environment Variables

PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)

Required

Name Default Description

PG_DATABASE None Set this value to create an initial database

PG_PRIMARY_PORT None Set this value to configure the primary PostgreSQL port. It is recommended to use 5432
PG_MODE None Set to primary, replica or set to specify the mode of the database

PG_USER None Set this value to specify the username of the general user account

PG_PASSWORD None Set this value to specify the password of the user role

PG_PRIMARY__USER None Set this value to specify the username of the replication user
PG_PRIMARY_PASSWORD None Set this value to specify the password of the replication user
PG_ROOT_PASSWORD None Set this value to specify the password of the superuser role

Optional

Name Default Description

ARCHIVE__MODE Off Set this value to on to enable continuous WAL archiving
ARCHIVE__TIMEOUT 60 Set to a number (in seconds) to configure archive_timeout in postgresql
CHECKSUMS true Enables data-checksums during initialization of the database. Can only be
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal sec
LOG_STATEMENT none Sets the log_statement value in postgresql.conf
LOG_MIN_DURATION_STATEMENT 60000 Sets the log_min_duration_statement value in postgresql.conf
MAX_CONNECTIONS 100 Sets the max_connections value in postgresql.conf
MAX_WAL_SENDERS 6 Set this value to configure the max number of WAL senders (replication)
PG_LOCALE UTF-8 Set the locale of the database

PG_PRIMARY_HOST None Set this value to specify primary host. Note: only used when PG_MODE != p
PG_REPLICA_HOST None Set this value to specify the replica host label. Note; used when PG_MODE is
PGAUDIT_ANALYZE None Set this to enable pgaudit_analyze

PGBOUNCER__PASSWORD None Set this to enable pgBouncer support by creating a special pgbouncer user
PGMONITOR_PASSWORD None Set this to enable pgMonitor support by creating a special ccp_monitoring
PGDATA_PATH_OVERRIDE None Set this value to override the /pgdata directory name. By default /pgdata
SHARED__BUFFERS 128MB Set this value to configure shared_buffers in postgresql.conf
SYNC_REPLICA None Set this value to specify the names of replicas that should use synchronized
TEMP__BUFFERS SMB Set this value to configure temp_buffers in postgresql.conf

https://pgbackrest.org/

Name Default Description

WORK_MEM 4MB Set this value to configure work_mem in postgresql.conf
XLOGDIR None Set this value to configure PostgreSQL to send WAL to the /pgwal volume
PGBACKREST false Set this value to true in order to enable and initialize pgBackRest in the co
BACKREST_SKIP_CREATE_STANZA false Set this value to true in order to skip the configuration check and the auton
PG_CTL_OPTS None Set this value to supply custom pg_ctl options (ex: -c shared_preload_li
Volumes

Name Description

/backrestrepo Volume used by the pgbackrest backup tool to store physical backups.

/backup Volume used by the pg_basebackup backup tool to store physical backups.

/pgconf Volume used to store custom configuration files mounted to the container.

/pgdata Volume used to store the data directory contents for the PostgreSQL database.

/pgwal Volume used to store Write Ahead Log (WAL) when XLOGDIR environment variable is set to true.
/recover Volume used for Point In Time Recovery (PITR) during startup of the PostgreSQL database.

Custom Configuration

The following configuration files can be mounted to the /pgconf volume in the crunchy-postgres container to customize the runtime:

Name Description

ca.crt Certificate of the CA used by the server when using SSL authentication
ca.crl Revocation list of the CA used by the server when using SSL authentication
pg_hba.conf Client authentication rules for the database

pg_ident.conf Mapping of external users (such as SSL certs, GSSAPI, LDAP) to database users
postgresql.conf PostgreSQL settings

server.key Key used by the server when using SSL authentication
server.crt Certificate used by the server when using SSL authentication
setup.sql Custom SQL to execute against the database. Note: only run during the first startup (initialization)

Prometheus is a multi-dimensional time series data model with an elastic query language. It is used in collaboration with Grafana in
this metrics suite. Overall, it’s reliable, manageable, and operationally simple for efficiently storing and analyzing data for large-scale
environments. It scraps metrics from exporters such as the ones utilized by the crunchy-collect container. The crunchy-prometheus
container must be able to reach the crunchy-collect container in order to to scrape metrics.

By default, crunchy-prometheus detects which environment its running on (Docker, Kubernetes, or OpenShift) and applies a default
configuration. If this container is running on Kubernetes or OpenShift, it will use the Kubernetes API to discover pods with the label
"crunchy-collect": "true". The crunchy-collect container must have this label defined in order to be discovered.

For Docker environments the crunchy-collect hostname must be specified as an environment variable.
A user may define a custom prometheus.yml file and mount to /conf for custom configuration. For configuration examples, see here.

The following port is exposed by the crunchy-prometheus container:

e crunchy-prometheus:9090 - the Prometheus web user interface

Packages

The crunchy-prometheus Docker image contains the following packages:

https://prometheus.io
https://grafana.com/
https://github.com/crunchydata/crunchy-containers/blob/master/conf/prometheus

o Prometheus
e CentOST7 - publicly available
o RHELTY - customers only

Environment Variables

Required
Name Default Description
COLLECT_HOST None Hostname of Crunchy Collect container. Only required in Docker environments.
Optional
Name Default Description
SCRAPE_INTERVAL 5s Set this value to the number of seconds to scrape metrics from exporters.
SCRAPE__TIMEOUT 5s Set this value to the number of seconds to timeout when scraping metrics from exporters.

CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

Permissions

Crunchy Prometheus queries Kubernetes to discover metric exporters and additional Kubernetes metadata. Due to the integration with
Kubernetes, Crunchy Prometheus requires a service account with the following permissions:

e Cluster Role
e Pods: get, 1list, watch

The Crunchy Scheduler container provides a cronlike microservice for automating pgBaseBackup and pgBackRest backups within a single
namespace. The scheduler watches Kubernetes for config maps with the label crunchy-scheduler=true. If found the scheduler parses a
JSON object contained in the config map and converts it into an scheduled task.

Packages

The Crunchy Scheduler Docker image contains the following packages:
e CentOST7 - publicly available

e RHELTY - customers only
e Scheduler App

Environment Variables

Required
Name Default Description
NAMESPACE None The namespace the microservice should watch. Crunchy Scheduler only works in a single namespace.
TIMEOUT 300 The time (in seconds) the scheduler should wait before timing out on a backup job.
Optional
Name Default Description

CRUNCHY DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

https://prometheus.io

Name Default Description

Permissions

Crunchy Scheduler queries Kubernetes to discover schedules and perform scheduled tasks (either creating a job or running commands
against a PostgreSQL container). Due to the integration with Kubernetes, Crunchy Scheduler requires a service account with the following
permissions:

e Role

e ConfigMaps: get, list, watch

e Deployments: get, list, watch

o Jobs: get, 1list, watch, create,delete’
o Pods: get, list, watch

o Pods/Exec: create

e Secrets: get, list, watch

Timezone

Crunchy Scheduler uses the UTC timezone for all schedules.

Schedule Expression Format

Schedules are expressed using the following rules:

Field name | Mandatory? | Allowed values | Allowed special characters
—————————— | -~-——---- | - | -
Seconds | Yes | 0-59 |/ , -

Minutes | Yes | 0-59 l =/ , -

Hours | Yes | 0-23 Il */ , -

Day of month | Yes | 1-31 | =/ , -7

Month | Yes | 1-12 or JAN-DEC | * / , -

Day of week | Yes | 0-6 or SUN-SAT | *x / , - 7

The crunchy-upgrade container contains both the 9.5 / 9.6 and 9.6 / 10 PostgreSQL packages in order to perform a pg_upgrade from 9.5
to 9.6 or 9.6 to 10 versions.

Features

The following features are supported by the crunchy-upgrade container:

e Supports a pg_upgrade of the PostgreSQL database.
e Doesn’t alter the old database files.
e Creates the new database directory.

Restrictions

e Does not currently support a PostGIS upgrade.
e Supports upgrades from only 9.5 to 9.6, or 9.6 to 10.

Packages

The crunchy-upgrade Docker image contains the following packages (versions vary depending on PostgreSQL version):

e PostgreSQL (11.3, 10.8, 9.6.13 and 9.5.17)
e CentOS7 - publicly available
« RHELY - customers only

Environment Variables

Required

Name Default Description

OLD_DATABASE_NAME None Refers to the database (pod) name that we want to convert.
NEW_DATABASE_NAME None Refers to the database (pod) name that is given to the upgraded database.

OLD_ VERSION None The PostgreSQL version of the old database.
NEW_ VERSION None The PostgreSQL version of the new database.
Optional
Name Default Description
PG_LOCALE Default locale If set, the locale you want to create the database with.
CHECKSUMS true Enables data-checksums during initialization of the database. Can only be set during initial
XLOGDIR None If set, initdb will use the specified directory for WAL.
CRUNCHY_DEBUG FALSE Set this to true to enable debugging in logs. Note: this mode can reveal secrets in logs.

Data checksums on the Crunchy PostgreSQL container were enabled by default in version 2.1.0. When trying to upgrade, it’s required
that both the old database and the new database have the same data checksums setting. Prior to upgrade, check if data_checksums were
enabled on the database by running the following SQL: SHOW data_checksums

Build From Source

This section of the documentation assumes you have followed the Installation Guide. You should do the following in order to build the
containers locally and be able to submit patches:

1. Fork the Crunchy-Containers GitHub repository.
2. Containers builds are installed via a Makefile. You will need to run the following commands:

cd $CCPROOT
make setup
make all

After this, you will have all the Crunchy containers built and are ready for use in a standalone Docker environment.

Documentation

The documentation website (located at https://crunchydata.github.io/crunchy-containers/) is generated using Hugo and GitHub Pages.

Hosting Hugo Locally (Optional)

If you would like to build the documentation locally, view the official Installing Hugo guide to set up Hugo locally.
You can then start the server by running the following commands -
cd $CCPROOT/hugo/

hugo server

The local version of the Hugo server is accessible by default from localhost:1313. Once you've run hugo server, that will let you
interactively make changes to the documentation as desired and view the updates in real-time.

https://github.com/CrunchyData/crunchy-containers
https://gohugo.io/
https://pages.github.com/
https://gohugo.io/getting-started/installing/

Contributing to the Documentation

All documentation is in Markdown format and uses Hugo weights for positioning of the pages.

The current production release documentation is updated for every tagged major release.

When you're ready to commit a change, please verify that the documentation generates locally.

If you would like to submit an feature / issue for us to consider please submit an issue to the official GitHub Repository.

If you would like to work any current or open issues, please update the issue with your efforts so that we can avoid redundant or unnecessary
work.

If you have any questions, you can submit a Support - Question and Answer issue and we will work with you on how you can get more
involved.

So you decided to submit an issue and work it. Great! Let’s get it merged in to the codebase. The following will go a long way to helping
get the fix merged in quicker:

1. Create a Pull Request from your Fork to the Develop branch.
2. Update the checklists in the Pull Request description.
3. Reference which issues this Pull Request is resolving.

Kubernetes

Troubleshooting kubeadm

509 Certificate Errors

If you see Unable to connect to the server: x509: certificate has expired or is not yet valid, try resetting ntp. This gen-
erally indicates that the date/time is not set on local system correctly.

If you see Unable to connect to the server: x509: certificate signed by unknown authority (possibly because of
"crypto/rsa: verification error" while trying to verify candidate authority certificate "kubernetes"), try running
these commands as a regular user:

mv $HOME/.kube $HOME/.kube.bak

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

gcloud Errors
If you see the error ERROR: (gcloud.container.clusters.get-credentials)Unable to create private file [/etc/kubernetes/adm

[Errno 1] Operation not permitted: '/etc/kubernetes/admin.conf', create a backup of admin.conf and delete the admin.conf
before attempting to reconnect to the cluster.

gcloud Authentication Example

The commands used to authenticate to gcloud are the following:

gcloud auth login
gcloud config set project <your gcloud project>
gcloud auth configure-docker

If you see gcloud authentication errors, execute gcloud config list then re-authenticate using the commands from above. Finally, rerun
gcloud config list - the results should show different values if authentication was indeed the issue.

OpenShift Container Platform

Troubleshooting OpenShift Container Platform: Basics

https://github.com/CrunchyData/crunchy-containers/issues/new/choose
https://kubernetes.io/docs/setup/independent/troubleshooting-kubeadm/
https://access.redhat.com/solutions/1542293

	Crunchy Data Container Suite
	Overview
	User Guide
	Running the Examples
	pgBackRest Examples
	pgBaseBackup Examples
	pgDump & pgRestore Examples
	pgAdmin4 with TLS
	Requirements
	Project Environment
	Installation
	Configuring Namespace and Permissions
	Storage Configuration
	Build From Source

