
h3-pg: Uber’s H3 Hexagonal Hierarchical
Geospatial Indexing System in PostgreSQL
This library provides PostgreSQL bindings for the H3 Core Library. For API
reference, please see the H3 Documentation.

Developed in collaboration with Scandinavian Highlands.

Prerequisites
• PostgreSQL 11+ (including server headers, e.g. postgresql-server-dev-14)
• C compiler (e.g., gcc)
• CMake 3.20+
• GNU Make

Quick Overview
If the prerequisites are met you can use the PGXN Client to download, build,
and install, e.g.:

$ pgxn install h3
$ pgxn load h3
$ psql
=# SELECT h3_lat_lng_to_cell(POINT('37.3615593,-122.0553238'), 5);
h3_lat_lng_to_cell

85e35e73fffffff

(1 row)

(You can install a specific version using pgxn install 'h3=3.7.2' and pgxn
load 'h3=3.7.2' for example)

See Building for other installation methods.

Usage
:tada: Note: The following usage docs apply to H3 v4, which was
released on August 23, 2022.

• For v3 docs, see the latest v3.x.x release.
• For breaking changes in v4, see the CHANGELOG. In particu-

lar, most function names have changed.

Generally, all functions have been renamed from camelCase in H3 to snake_case
in SQL.

See API reference for all provided functions.

1

https://github.com/uber/h3
https://uber.github.io/h3
http://www.scandinavian-highlands.com
https://cmake.org/
docs/pgxnclient.md
https://github.com/zachasme/h3-pg/blob/v3.7.2/README.md
./CHANGELOG.md
https://h3geo.org/docs/library/migration-3.x/functions
https://pgxn.org/dist/h3/docs/api.html

Building
Generate native build system
cmake -B build -DCMAKE_BUILD_TYPE=Release

Build extension(s)
cmake --build build

Install extensions (might require sudo)
cmake --install build --component h3-pg

Contributing
Pull requests and GitHub issues are welcome. Please include tests for new work.
Please note that the purpose of this extension is to expose the API of the H3
Core library, so we will rarely accept new features that are not part of that API.
New proposed feature work is more appropriate in the core C library or in a
new extension that depends on h3-pg.

See Development.

License
This project is released under the Apache 2.0 License. # API Reference The
h3 extension wraps the H3 Core Library. The detailed API reference is in the
core H3 Documentation under the API Reference section. The h3 core functions
have been renamed from camelCase in H3 core to snake_case in SQL. The SQL
function name is prefixed with h3_.

Base type
An unsigned 64-bit integer representing any H3 object (hexagon, pentagon,
directed edge …) represented as a (or 16-character) hexadecimal string, like
‘8928308280fffff’.

Indexing functions
These function are used for finding the H3 index containing coordinates, and
for finding the center and boundary of H3 indexes.

h3_lat_lng_to_cell(latlng point, resolution integer) � h3index

Since v4.0.0

See also: h3_lat_lng_to_cell(geometry, integer), h3_lat_lng_to_cell(geography,
integer)

2

docs/development.md
LICENSE.md
https://github.com/uber/h3
https://uber.github.io/h3

Indexes the location at the specified resolution.

h3_cell_to_lat_lng(cell h3index) � point

Since v4.0.0

See also: h3_cell_to_geometry(h3index), h3_cell_to_geography(h3index)

Finds the centroid of the index.

h3_cell_to_boundary(cell h3index) � polygon

Since v4.0.0

See also: h3_cell_to_boundary_geometry(h3index), h3_cell_to_boundary_geography(h3index)

Finds the boundary of the index.

Use SET h3.extend_antimeridian TO true to extend coordinates when cross-
ing 180th meridian.

Index inspection functions
These functions provide metadata about an H3 index, such as its resolution or
base cell, and provide utilities for converting into and out of the 64-bit repre-
sentation of an H3 index.

h3_get_resolution(h3index) � integer

Since v1.0.0

Returns the resolution of the index.

h3_get_base_cell_number(h3index) � integer

Since v4.0.0

Returns the base cell number of the index.

h3_is_valid_cell(h3index) � boolean

Since v1.0.0

Returns true if the given H3Index is valid.

h3_is_res_class_iii(h3index) � boolean

Since v1.0.0

Returns true if this index has a resolution with Class III orientation.

3

h3_is_pentagon(h3index) � boolean

Since v1.0.0

Returns true if this index represents a pentagonal cell.

h3_get_icosahedron_faces(h3index) � integer[]

Since v4.0.0

Find all icosahedron faces intersected by a given H3 index.

Grid traversal functions
Grid traversal allows finding cells in the vicinity of an origin cell, and determin-
ing how to traverse the grid from one cell to another.

h3_grid_disk(origin h3index, [k integer = 1]) � SETOF h3index

Since v4.0.0

Produces indices within “k” distance of the origin index.

h3_grid_disk_distances(origin h3index, [k integer = 1], OUT index
h3index, OUT distance int) � SETOF record

Since v4.0.0

Produces indices within “k” distance of the origin index paired with their dis-
tance to the origin.

h3_grid_ring_unsafe(origin h3index, [k integer = 1]) � SETOF
h3index

Since v4.0.0

Returns the hollow hexagonal ring centered at origin with distance “k”.

h3_grid_path_cells(origin h3index, destination h3index) � SETOF
h3index

Since v4.0.0

See also: h3_grid_path_cells_recursive(h3index, h3index)

Given two H3 indexes, return the line of indexes between them (inclusive).

This function may fail to find the line between two indexes, for example if they
are very far apart. It may also fail when finding distances for indexes on opposite
sides of a pentagon.

4

h3_grid_distance(origin h3index, destination h3index) � bigint

Since v4.0.0

Returns the distance in grid cells between the two indices.

h3_cell_to_local_ij(origin h3index, index h3index) � point

Since v0.2.0

Produces local IJ coordinates for an H3 index anchored by an origin.

h3_local_ij_to_cell(origin h3index, coord point) � h3index

Since v0.2.0

Produces an H3 index from local IJ coordinates anchored by an origin.

Hierarchical grid functions
These functions permit moving between resolutions in the H3 grid system. The
functions produce parent (coarser) or children (finer) cells.

h3_cell_to_parent(cell h3index, resolution integer) � h3index

Since v4.0.0

Returns the parent of the given index.

h3_cell_to_children(cell h3index, resolution integer) � SETOF
h3index

Since v4.0.0

Returns the set of children of the given index.

h3_cell_to_center_child(cell h3index, resolution integer) � h3index

Since v4.0.0

Returns the center child (finer) index contained by input index at given resolu-
tion.

h3_compact_cells(cells h3index[]) � SETOF h3index

Since v4.0.0

Compacts the given array as best as possible.

5

h3_cell_to_child_pos(child h3index, parentRes integer) � int8

Since v4.1.0

Returns the position of the child cell within an ordered list of all children of
the cells parent at the specified resolution parentRes. The order of the ordered
list is the same as that returned by cellToChildren. This is the complement of
childPosToCell.

h3_child_pos_to_cell(childPos int8, parent h3index, childRes int) �
h3index

Since v4.1.0

Returns the child cell at a given position within an ordered list of all children
of parent at the specified resolution childRes. The order of the ordered list
is the same as that returned by cellToChildren. This is the complement of
cellToChildPos.

h3_uncompact_cells(cells h3index[], resolution integer) � SETOF
h3index

Since v4.0.0

Uncompacts the given array at the given resolution.

h3_cell_to_parent(cell h3index) � h3index

Since v4.0.0

Returns the parent of the given index.

h3_cell_to_children(cell h3index) � SETOF h3index

Since v4.0.0

Returns the set of children of the given index.

h3_cell_to_center_child(cell h3index) � h3index

Since v4.0.0

Returns the center child (finer) index contained by input index at next resolu-
tion.

h3_uncompact_cells(cells h3index[]) � SETOF h3index

Since v4.0.0

Uncompacts the given array at the resolution one higher than the highest reso-
lution in the set.

6

h3_cell_to_children_slow(index h3index, resolution integer) �
SETOF h3index

Since v4.0.0

Slower version of H3ToChildren but allocates less memory.

h3_cell_to_children_slow(index h3index) � SETOF h3index

Slower version of H3ToChildren but allocates less memory.

Region functions
These functions convert H3 indexes to and from polygonal areas.

h3_polygon_to_cells(exterior polygon, holes polygon[], [resolution
integer = 1]) � SETOF h3index

Since v4.0.0

See also: h3_polygon_to_cells(geometry, integer), h3_polygon_to_cells(geography,
integer)

Takes an exterior polygon [and a set of hole polygon] and returns the set of
hexagons that best fit the structure.

h3_cells_to_multi_polygon(h3index[], OUT exterior polygon, OUT
holes polygon[]) � SETOF record

Since v4.0.0

See also: h3_cells_to_multi_polygon_geometry(h3index[]), h3_cells_to_multi_polygon_geography(h3index[]),
h3_cells_to_multi_polygon_geometry(setof h3index), h3_cells_to_multi_polygon_geography(setof
h3index)

Create a LinkedGeoPolygon describing the outline(s) of a set of hexagons. Poly-
gon outlines will follow GeoJSON MultiPolygon order: Each polygon will have
one outer loop, which is first in the list, followed by any holes.

Unidirectional edge functions
Unidirectional edges allow encoding the directed edge from one cell to a neigh-
boring cell.

h3_are_neighbor_cells(origin h3index, destination h3index) � boolean

Since v4.0.0

Returns true if the given indices are neighbors.

7

h3_cells_to_directed_edge(origin h3index, destination h3index) �
h3index

Since v4.0.0

Returns a unidirectional edge H3 index based on the provided origin and desti-
nation.

h3_is_valid_directed_edge(edge h3index) � boolean

Since v4.0.0

Returns true if the given edge is valid.

h3_get_directed_edge_origin(edge h3index) � h3index

Since v4.0.0

Returns the origin index from the given edge.

h3_get_directed_edge_destination(edge h3index) � h3index

Since v4.0.0

Returns the destination index from the given edge.

h3_directed_edge_to_cells(edge h3index, OUT origin h3index, OUT
destination h3index) � record

Since v4.0.0

Returns the pair of indices from the given edge.

h3_origin_to_directed_edges(h3index) � SETOF h3index

Since v4.0.0

Returns all unidirectional edges with the given index as origin.

h3_directed_edge_to_boundary(edge h3index) � polygon

Since v4.0.0

Provides the coordinates defining the unidirectional edge.

H3 Vertex functions
Functions for working with cell vertexes.

8

h3_cell_to_vertex(cell h3index, vertexNum integer) � h3index

Since v4.0.0

Returns a single vertex for a given cell, as an H3 index.

h3_cell_to_vertexes(cell h3index) � SETOF h3index

Since v4.0.0

Returns all vertexes for a given cell, as H3 indexes.

h3_vertex_to_lat_lng(vertex h3index) � point

Since v4.0.0

Get the geocoordinates of an H3 vertex.

h3_is_valid_vertex(vertex h3index) � boolean

Since v4.0.0

Whether the input is a valid H3 vertex.

Miscellaneous H3 functions
These functions include descriptions of the H3 grid system.

h3_great_circle_distance(a point, b point, [unit text = km]) � double
precision

Since v4.0.0

The great circle distance in radians between two spherical coordinates.

h3_get_hexagon_area_avg(resolution integer, [unit text = km]) �
double precision

Since v4.0.0

Average hexagon area in square (kilo)meters at the given resolution.

h3_cell_area(cell h3index, [unit text = km^2]) � double precision

Since v4.0.0

Exact area for a specific cell (hexagon or pentagon).

9

h3_get_hexagon_edge_length_avg(resolution integer, [unit text =
km]) � double precision

Since v4.0.0

Average hexagon edge length in (kilo)meters at the given resolution.

h3_edge_length(edge h3index, [unit text = km]) � double precision

Since v4.0.0

Exact length for a specific unidirectional edge.

h3_get_num_cells(resolution integer) � bigint

Since v4.0.0

Number of unique H3 indexes at the given resolution.

h3_get_res_0_cells() � SETOF h3index

Since v4.0.0

Returns all 122 resolution 0 indexes.

h3_get_pentagons(resolution integer) � SETOF h3index

Since v4.0.0

All the pentagon H3 indexes at the specified resolution.

Operators
Operator: h3index <-> h3index

Since v3.7.0

Returns the distance in grid cells between the two indices (at the lowest resolu-
tion of the two).

B-tree operators
Operator: h3index = h3index

Since v0.1.0

Returns true if two indexes are the same.

Operator: h3index <> h3index

Since v0.1.0

10

R-tree Operators
Operator: h3index && h3index

Since v3.6.1

Returns true if the two H3 indexes intersect.

Operator: h3index @> h3index

Since v3.6.1

Returns true if A contains B.

Operator: h3index <@ h3index

Since v3.6.1

Returns true if A is contained by B.

Type casts
h3index :: bigint

Convert H3 index to bigint, which is useful when you need a decimal represen-
tation.

bigint :: h3index

Convert bigint to H3 index.

h3index :: point

Convert H3 index to point.

Extension specific functions
h3_get_extension_version() � text

Since v1.0.0

Get the currently installed version of the extension.

h3_pg_migrate_pass_by_reference(h3index) � h3index

Since v4.1.0

Migrate h3index from pass-by-reference to pass-by-value.

11

Deprecated functions
h3_cell_to_boundary(cell h3index, extend_antimeridian boolean) �
polygon

DEPRECATED: Use SET h3.extend_antimeridian TO true instead.

PostGIS Integration
The GEOMETRY data passed to h3-pg PostGIS functions should be in SRID 4326.
This is an expectation of the core H3 library. Using other SRIDs, such as 3857,
can result in either errors or invalid data depending on the function. For exam-
ple, the h3_polygon_to_cells() function will fail with an error in this scenario
while the h3_lat_lng_to_cell() function will return an invalid geometry.

PostGIS Indexing Functions
h3_lat_lng_to_cell(geometry, resolution integer) � h3index

Since v4.0.0

Indexes the location at the specified resolution.

h3_lat_lng_to_cell(geography, resolution integer) � h3index

Since v4.0.0

Indexes the location at the specified resolution.

h3_cell_to_geometry(h3index) � geometry

Since v4.0.0

Finds the centroid of the index.

h3_cell_to_geography(h3index) � geography

Since v4.0.0

Finds the centroid of the index.

h3_cell_to_boundary_geometry(h3index) � geometry

Since v4.0.0

Finds the boundary of the index.

Splits polygons when crossing 180th meridian.

12

h3_cell_to_boundary_geography(h3index) � geography

Since v4.0.0

Finds the boundary of the index.

Splits polygons when crossing 180th meridian.

PostGIS Grid Traversal Functions
h3_grid_path_cells_recursive(origin h3index, destination h3index) �
SETOF h3index

Since v4.1.0

PostGIS Region Functions
h3_polygon_to_cells(multi geometry, resolution integer) � SETOF
h3index

Since v4.0.0

h3_polygon_to_cells(multi geography, resolution integer) � SETOF
h3index

Since v4.0.0

h3_cells_to_multi_polygon_geometry(h3index[]) � geometry

Since v4.1.0

h3_cells_to_multi_polygon_geography(h3index[]) � geography

Since v4.1.0

h3_cells_to_multi_polygon_geometry(setof h3index)

Since v4.1.0

h3_cells_to_multi_polygon_geography(setof h3index)

Since v4.1.0

PostGIS Operators
Operator: geometry @ integer

Since v4.1.3

13

Index geometry at specified resolution.

Operator: geography @ integer

Since v4.1.3

Index geography at specified resolution.

PostGIS casts
h3index :: geometry

Since v0.3.0

h3index :: geography

Since v0.3.0

WKB indexing functions
h3_cell_to_boundary_wkb(cell h3index) � bytea

Since v4.1.0

Finds the boundary of the index, converts to EWKB.

Splits polygons when crossing 180th meridian.

This function has to return WKB since Postgres does not provide multipolygon
type.

WKB regions functions
h3_cells_to_multi_polygon_wkb(h3index[]) � bytea

Since v4.1.0

Create a LinkedGeoPolygon describing the outline(s) of a set of hexagons, con-
verts to EWKB.

Splits polygons when crossing 180th meridian.

Raster processing functions
Continuous raster data
For rasters with pixel values representing continuous data (temperature, hu-
midity, elevation), the data inside H3 cells can be summarized by calculating

14

number of pixels, sum, mean, standard deviation, min and max for each cell
inside a raster and grouping these stats across multiple rasters by H3 index.

SELECT
(summary).h3 AS h3,
(h3_raster_summary_stats_agg((summary).stats)).*

FROM (
SELECT h3_raster_summary(rast, 8) AS summary
FROM rasters

) t
GROUP BY 1;

h3 | count | sum | mean | stddev | min | max
-----------------+-------+--------------------+---------------------+--------------------+-------+------------------
882d638189fffff | 10 | 4.607657432556152 | 0.46076574325561526 | 1.3822972297668457 | 0 | 4.607657432556152
882d64c4d1fffff | 10 | 3.6940908953547478 | 0.3694090895354748 | 1.099336879464068 | 0 | 3.667332887649536
882d607431fffff | 11 | 6.219290263950825 | 0.5653900239955295 | 1.7624673707119065 | 0 | 6.13831996917724

<...>

Since v4.1.1

h3_raster_summary_stats_agg(setof h3_raster_summary_stats)

Since v4.1.1

h3_raster_summary_clip(rast raster, resolution integer, [nband
integer = 1]) � TABLE (h3 h3index, stats h3_raster_summary_stats)

Since v4.1.1

Returns h3_raster_summary_stats for each H3 cell in raster for a given band.
Clips the raster by H3 cell geometries and processes each part separately.

h3_raster_summary_centroids(rast raster, resolution integer,
[nband integer = 1]) � TABLE (h3 h3index, stats h3_raster_summary_stats)

Since v4.1.1

Returns h3_raster_summary_stats for each H3 cell in raster for a given band.
Finds corresponding H3 cell for each pixel, then groups values by H3 index.

h3_raster_summary_subpixel(rast raster, resolution integer,
[nband integer = 1]) � TABLE (h3 h3index, stats h3_raster_summary_stats)

Since v4.1.1

Returns h3_raster_summary_stats for each H3 cell in raster for a given band.
Assumes H3 cell is smaller than a pixel. Finds corresponding pixel for each H3
cell in raster.

15

h3_raster_summary(rast raster, resolution integer, [nband integer
= 1]) � TABLE (h3 h3index, stats h3_raster_summary_stats)

Since v4.1.1

Returns h3_raster_summary_stats for each H3 cell in raster for a given band.
Attempts to select an appropriate method based on number of pixels per H3
cell.

Discrete raster data
For rasters where pixels have discrete values corresponding to different classes
of land cover or land use, H3 cell data summary can be represented by a JSON
object with separate fields for each class. First, value, number of pixels and
approximate area are calculated for each H3 cell and value in a raster, then the
stats are grouped across multiple rasters by H3 index and value, and after that
stats for different values in a cell are combined into a single JSON object. The
following example query additionally calculates a fraction of H3 cell pixels for
each value, using a window function to get a total number of pixels:

WITH
summary AS (

-- get aggregated summary for each H3 index/value pair
SELECT h3, val, h3_raster_class_summary_item_agg(summary) AS item
FROM

rasters,
h3_raster_class_summary(rast, 8)

GROUP BY 1, 2),
summary_total AS (

-- add total number of pixels per H3 cell
SELECT h3, val, item, sum((item).count) OVER (PARTITION BY h3) AS total
FROM summary)

SELECT
h3,
jsonb_object_agg(

concat('class_', val::text),
h3_raster_class_summary_item_to_jsonb(item) -- val, count, area

|| jsonb_build_object('fraction', (item).count / total) -- add fraction value
ORDER BY val

) AS summary
FROM summary_total
GROUP BY 1;

h3 | summary
----------------+--
88194e6f3bfffff | {"class_1": {"area": 75855.5748, "count": 46, "value": 1, "fraction": 0.4509}, "class_2": {"area": 92345.9171, "count": 56, "value": 2, "fraction": 0.5490}}
88194e6f37fffff | {"class_1": {"area": 255600.3064, "count": 155, "value": 1, "fraction": 0.5}, "class_2": {"area": 255600.3064, "count": 155, "value": 2, "fraction": 0.5}}
88194e6f33fffff | {"class_1": {"area": 336402.9840, "count": 204, "value": 1, "fraction": 0.5125}, "class_2": {"area": 319912.6416, "count": 194, "value": 2, "fraction": 0.4874}}

16

<...>

Area covered by pixels with the most frequent value in each cell:

SELECT DISTINCT ON (h3)
h3, val, (item).area

FROM (
SELECT

h3, val, h3_raster_class_summary_item_agg(summary) AS item
FROM

rasters,
h3_raster_class_summary(rast, 8)

GROUP BY 1, 2
) t
ORDER BY h3, (item).count DESC;

h3 | val | area
-----------------+-----+--------------------
88194e6f3bfffff | 5 | 23238.699360251427
88194e6f37fffff | 9 | 60863.26022922993
88194e6f33fffff | 8 | 76355.72646939754

<...>

Since v4.1.1

h3_raster_class_summary_item_to_jsonb(item h3_raster_class_summary_item)
� jsonb

Since v4.1.1

Convert raster summary to JSONB, example: {"count": 10, "value": 2,
"area": 16490.3423}

h3_raster_class_summary_item_agg(setof h3_raster_class_summary_item)

Since v4.1.1

h3_raster_class_summary_clip(rast raster, resolution integer,
[nband integer = 1]) � TABLE (h3 h3index, val integer, summary
h3_raster_class_summary_item)

Since v4.1.1

Returns h3_raster_class_summary_item for each H3 cell and value for a given
band. Clips the raster by H3 cell geometries and processes each part separately.

17

h3_raster_class_summary_centroids(rast raster, resolution
integer, [nband integer = 1]) � TABLE (h3 h3index, val integer,
summary h3_raster_class_summary_item)

Since v4.1.1

Returns h3_raster_class_summary_item for each H3 cell and value for a given
band. Finds corresponding H3 cell for each pixel, then groups by H3 and value.

h3_raster_class_summary_subpixel(rast raster, resolution integer,
[nband integer = 1]) � TABLE (h3 h3index, val integer, summary
h3_raster_class_summary_item)

Since v4.1.1

Returns h3_raster_class_summary_item for each H3 cell and value for a given
band. Assumes H3 cell is smaller than a pixel. Finds corresponding pixel for
each H3 cell in raster.

h3_raster_class_summary(rast raster, resolution integer, [nband
integer = 1]) � TABLE (h3 h3index, val integer, summary
h3_raster_class_summary_item)

Since v4.1.1

Returns h3_raster_class_summary_item for each H3 cell and value for a given
band. Attempts to select an appropriate method based on number of pixels per
H3 cell.

Development
In order to build and test your changes, simply run ./scripts/develop.

Documentation is generated from the sql files, using the script scripts/documentaion
(requires poetry).

Release Process
1. Update version number

• Don’t follow semver, simply use major and minor from H3 core and
increment patch.

• Version number should be changed in root CMakeLists.txt.
• Set INSTALL_VERSION to “${PROJECT_VERSION}”.
• Update files (and cmake references) suffixed --unreleased should

be renamed.
• Installer .sql files should have @ availability comments updated.
• Update changelog by moving from Unreleased to a new section
• Push and merge changes in release-x.y.z branch.

2. Create a release on GitHub

18

• Draft new release “vX.Y.Z”
• Copy CHANGELOG.md entry into release description

3. Distribute the extension on PGXN
• Run scripts/bundle to package the release
• Upload the distribution on PGXN Manager (username: bytesandbrains)

4. Prepare for development
• Set INSTALL_VERSION to unreleased in root CMakeLists.txt.
• Create new update files with --unreleased suffix.
• Add them to relevant CMakeLists.txt files. # PGXN Client

pgxnclient does not normally ship with PostgreSQL, so you will
probably have to install it manually.

The PGXN Client is a command line tool designed to interact with the Post-
greSQL Extension Network allowing searching, compiling, installing, and remov-
ing extensions in PostgreSQL databases.

Ubuntu
On Ubuntu you can install using apt

apt-get install pgxnclient

MacOS
On MacOs you can install using brew

brew install pgxnclient

19

https://manager.pgxn.org/
https://pgxn.github.io/pgxnclient/
https://pgxn.org/
https://pgxn.org/

	h3-pg: Uber’s H3 Hexagonal Hierarchical Geospatial Indexing System in PostgreSQL
	Prerequisites
	Quick Overview
	Usage
	Building
	Contributing
	License

	Base type
	Indexing functions
	h3_lat_lng_to_cell(latlng point, resolution integer) ⇒ h3index
	h3_cell_to_lat_lng(cell h3index) ⇒ point
	h3_cell_to_boundary(cell h3index) ⇒ polygon

	Index inspection functions
	h3_get_resolution(h3index) ⇒ integer
	h3_get_base_cell_number(h3index) ⇒ integer
	h3_is_valid_cell(h3index) ⇒ boolean
	h3_is_res_class_iii(h3index) ⇒ boolean
	h3_is_pentagon(h3index) ⇒ boolean
	h3_get_icosahedron_faces(h3index) ⇒ integer[]

	Grid traversal functions
	h3_grid_disk(origin h3index, [k integer = 1]) ⇒ SETOF h3index
	h3_grid_disk_distances(origin h3index, [k integer = 1], OUT index h3index, OUT distance int) ⇒ SETOF record
	h3_grid_ring_unsafe(origin h3index, [k integer = 1]) ⇒ SETOF h3index
	h3_grid_path_cells(origin h3index, destination h3index) ⇒ SETOF h3index
	h3_grid_distance(origin h3index, destination h3index) ⇒ bigint
	h3_cell_to_local_ij(origin h3index, index h3index) ⇒ point
	h3_local_ij_to_cell(origin h3index, coord point) ⇒ h3index

	Hierarchical grid functions
	h3_cell_to_parent(cell h3index, resolution integer) ⇒ h3index
	h3_cell_to_children(cell h3index, resolution integer) ⇒ SETOF h3index
	h3_cell_to_center_child(cell h3index, resolution integer) ⇒ h3index
	h3_compact_cells(cells h3index[]) ⇒ SETOF h3index
	h3_cell_to_child_pos(child h3index, parentRes integer) ⇒ int8
	h3_child_pos_to_cell(childPos int8, parent h3index, childRes int) ⇒ h3index
	h3_uncompact_cells(cells h3index[], resolution integer) ⇒ SETOF h3index
	h3_cell_to_parent(cell h3index) ⇒ h3index
	h3_cell_to_children(cell h3index) ⇒ SETOF h3index
	h3_cell_to_center_child(cell h3index) ⇒ h3index
	h3_uncompact_cells(cells h3index[]) ⇒ SETOF h3index
	h3_cell_to_children_slow(index h3index, resolution integer) ⇒ SETOF h3index
	h3_cell_to_children_slow(index h3index) ⇒ SETOF h3index

	Region functions
	h3_polygon_to_cells(exterior polygon, holes polygon[], [resolution integer = 1]) ⇒ SETOF h3index
	h3_cells_to_multi_polygon(h3index[], OUT exterior polygon, OUT holes polygon[]) ⇒ SETOF record

	Unidirectional edge functions
	h3_are_neighbor_cells(origin h3index, destination h3index) ⇒ boolean
	h3_cells_to_directed_edge(origin h3index, destination h3index) ⇒ h3index
	h3_is_valid_directed_edge(edge h3index) ⇒ boolean
	h3_get_directed_edge_origin(edge h3index) ⇒ h3index
	h3_get_directed_edge_destination(edge h3index) ⇒ h3index
	h3_directed_edge_to_cells(edge h3index, OUT origin h3index, OUT destination h3index) ⇒ record
	h3_origin_to_directed_edges(h3index) ⇒ SETOF h3index
	h3_directed_edge_to_boundary(edge h3index) ⇒ polygon

	H3 Vertex functions
	h3_cell_to_vertex(cell h3index, vertexNum integer) ⇒ h3index
	h3_cell_to_vertexes(cell h3index) ⇒ SETOF h3index
	h3_vertex_to_lat_lng(vertex h3index) ⇒ point
	h3_is_valid_vertex(vertex h3index) ⇒ boolean

	Miscellaneous H3 functions
	h3_great_circle_distance(a point, b point, [unit text = km]) ⇒ double precision
	h3_get_hexagon_area_avg(resolution integer, [unit text = km]) ⇒ double precision
	h3_cell_area(cell h3index, [unit text = km^2]) ⇒ double precision
	h3_get_hexagon_edge_length_avg(resolution integer, [unit text = km]) ⇒ double precision
	h3_edge_length(edge h3index, [unit text = km]) ⇒ double precision
	h3_get_num_cells(resolution integer) ⇒ bigint
	h3_get_res_0_cells() ⇒ SETOF h3index
	h3_get_pentagons(resolution integer) ⇒ SETOF h3index

	Operators
	Operator: h3index <-> h3index
	B-tree operators
	Operator: h3index = h3index
	Operator: h3index <> h3index

	R-tree Operators
	Operator: h3index && h3index
	Operator: h3index @> h3index
	Operator: h3index <@ h3index

	Type casts
	h3index :: bigint
	bigint :: h3index
	h3index :: point

	Extension specific functions
	h3_get_extension_version() ⇒ text
	h3_pg_migrate_pass_by_reference(h3index) ⇒ h3index

	Deprecated functions
	h3_cell_to_boundary(cell h3index, extend_antimeridian boolean) ⇒ polygon

	PostGIS Integration
	PostGIS Indexing Functions
	h3_lat_lng_to_cell(geometry, resolution integer) ⇒ h3index
	h3_lat_lng_to_cell(geography, resolution integer) ⇒ h3index
	h3_cell_to_geometry(h3index) ⇒ geometry
	h3_cell_to_geography(h3index) ⇒ geography
	h3_cell_to_boundary_geometry(h3index) ⇒ geometry
	h3_cell_to_boundary_geography(h3index) ⇒ geography

	PostGIS Grid Traversal Functions
	h3_grid_path_cells_recursive(origin h3index, destination h3index) ⇒ SETOF h3index

	PostGIS Region Functions
	h3_polygon_to_cells(multi geometry, resolution integer) ⇒ SETOF h3index
	h3_polygon_to_cells(multi geography, resolution integer) ⇒ SETOF h3index
	h3_cells_to_multi_polygon_geometry(h3index[]) ⇒ geometry
	h3_cells_to_multi_polygon_geography(h3index[]) ⇒ geography
	h3_cells_to_multi_polygon_geometry(setof h3index)
	h3_cells_to_multi_polygon_geography(setof h3index)

	PostGIS Operators
	Operator: geometry @ integer
	Operator: geography @ integer

	PostGIS casts
	h3index :: geometry
	h3index :: geography

	WKB indexing functions
	h3_cell_to_boundary_wkb(cell h3index) ⇒ bytea

	WKB regions functions
	h3_cells_to_multi_polygon_wkb(h3index[]) ⇒ bytea

	Raster processing functions
	Continuous raster data
	h3_raster_summary_stats_agg(setof h3_raster_summary_stats)
	h3_raster_summary_clip(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, stats h3_raster_summary_stats)
	h3_raster_summary_centroids(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, stats h3_raster_summary_stats)
	h3_raster_summary_subpixel(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, stats h3_raster_summary_stats)
	h3_raster_summary(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, stats h3_raster_summary_stats)

	Discrete raster data
	h3_raster_class_summary_item_to_jsonb(item h3_raster_class_summary_item) ⇒ jsonb
	h3_raster_class_summary_item_agg(setof h3_raster_class_summary_item)
	h3_raster_class_summary_clip(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, val integer, summary h3_raster_class_summary_item)
	h3_raster_class_summary_centroids(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, val integer, summary h3_raster_class_summary_item)
	h3_raster_class_summary_subpixel(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, val integer, summary h3_raster_class_summary_item)
	h3_raster_class_summary(rast raster, resolution integer, [nband integer = 1]) ⇒ TABLE (h3 h3index, val integer, summary h3_raster_class_summary_item)

	Development
	Release Process
	Ubuntu
	MacOS

