HypoPG

HypoPG is a PostgreSQL extension adding support for hypothetical indexes.

A hypothetical — or virtual — index is an index that doesn’t really exist, and
thus doesn’t cost CPU, disk or any resource to create. They’re useful to know
if specific indexes can increase performance for problematic queries, since you
can know if PostgreSQL will use these indexes or not without having to spend
resources to create them.

For more thorough information, please consult the official documentation.

For other general information, you can also consult this blog post.

Installation

¢ Compatible with PostgreSQL 9.2 and above

e Needs PostgreSQL header files

e Decompress the tarball

e sudo make install

e In every needed database: CREATE EXTENSION hypopg;

Updating the extension

Note that hypopg doesn’t provide extension upgrade scripts, as there’s no data
saved in any of the objects created. Therefore, you need to first drop the
extension then create it again to get the new version.

Usage

NOTE: The hypothetical indexes are contained in a single backend. Therefore,
if you add multiple hypothetical indexes, concurrent connections doing EXPLAIN
won’t be bothered by your hypothetical indexes.

Assuming a simple test case:

rjuju=# CREATE TABLE hypo AS SELECT id, ’line ’ || id AS val FROM generate_series(1,10000) :
rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN

Seq Scan on hypo (cost=0.00..180.00 rows=1 width=13)
Filter: (id = 1)
(2 rows)

The easiest way to create an hypothetical index is to use the hypopg_create_index
functions with a regular CREATE INDEX statement as arg.

For instance:

rjuju=# SELECT * FROM hypopg_create_index(’CREATE INDEX ON hypo (id)’);

https://hypopg.readthedocs.io
https://rjuju.github.io/postgresql/2015/07/02/how-about-hypothetical-indexes.html

NOTE: Some information from the CREATE INDEX statement will be ignored,
such as the index name if provided. Some of the ignored information will be
handled in a future release.

You can check the available hypothetical indexes in your own backend:

rjuju=# SELECT * FROM hypopg_list_indexes ;
indexrelid | index_name schema_name | table_name | am_name

50573 | <50573>btree_hypo_id public | hypo | btree

If the CREATE INDEX command you want to use also needs quoting, using the
dollar quoting syntax is recommended. For instance:

rjuju=# SELECT * FROM hypopg_create_index($$CREATE INDEX ON hypo (id) WHERE val = ’line 1’°$:

If you need more technical information on the hypothetical indexes, the hypopg ()
function will return the hypothetical indexes in a similar way as pg_index system
catalog.

And now, let’s see if your previous EXPLAIN statement would use such an index:

rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN
Index Scan using <41072>hypo_btree_hypo_id on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

Of course, only EXPLAIN without ANALYZE will use hypothetical indexes:

rjuju=# EXPLAIN ANALYZE SELECT * FROM hypo WHERE id = 1;
QUERY PLAN
Seq Scan on hypo (cost=0.00..180.00 rows=1 width=13) (actual time=0.036..6.072 rows=1 looj
Filter: (id = 1)
Rows Removed by Filter: 9999
Planning time: 0.109 ms
Execution time: 6.113 ms
(5 rows)

To remove your backend’s hypothetical indexes, you can use the function
hypopg_drop_index(indexrelid) with the OID that the hypopg_list_indexes
view returns and call hypopg_reset () to remove all at once, or just close your
current connection.

Continuing with the above case, you can hide existing indexes, but should
be use hypopg_reset () to clear the previous effects of other indexes at first.

Create two real indexes and run EXPLAIN:

rjuju=# SELECT hypopg_reset();

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-DOLLAR-QUOTING

rjuju=# CREATE INDEX ON hypo(id);
rjuju=# CREATE INDEX ON hypo(id, val);
rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN
Index Only Scan using hypo_id_val_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

The query plan is using the hypo_id_val_idx index. Use hypopg_hide_index (0id)
to hide one of the indexes:

rjuju=# SELECT hypopg_hide_index(’hypo_id_val_idx’::REGCLASS);
rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN
Index Scan using hypo_id_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

The query plan is using the other index hypo_id_idx now. Use
hypopg_hide_index(oid) to hide it:

rjuju=# SELECT hypopg_hide_index(’hypo_id_idx’: :REGCLASS);
rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;

QUERY PLAN
Seq Scan on hypo (cost=0.00..180.00 rows=1 width=13)
Filter: (id = 1)
(2 rows)

And now the query plan changes back to Seq Scan. Use hypopg_unhide_index(oid)
to restore index:

rjuju=# SELECT hypopg_unhide_index(’hypo_id_idx’::regclass);
rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN
Index Scan using hypo_id_idx on hypo (cost=0.29..8.30 rows=1 width=13)
Index Cond: (id = 1)
(2 rows)

Of course, you can also hide hypothetical indexes:

rjuju=# SELECT hypopg_create_index(’CREATE INDEX ON hypo(id)’);
rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN
Index Scan using "<12659>btree_hypo_id" on hypo (cost=0.04..8.05 rows=1 width=13)
Index Cond: (id = 1)

(2 rows)

rjuju=# SELECT hypopg_hide_index(12659) ;

rjuju=# EXPLAIN SELECT * FROM hypo WHERE id = 1;
QUERY PLAN

Seq Scan on hypo (cost=0.00..180.00 rows=1 width=13)

Filter: (id = 1)

(2 rows)

You can check which indexes are hidden using hypopg_hidden_indexes() or
the hypopg_hidden_indexes view

rjuju=# SELECT * FROM hypopg_hidden_indexes();
indexid

526604

526603

12659

(3 rows)

rjuju=# SELECT * FROM hypopg_hidden_indexes;

indexrelid | index_name | schema_name | table_name | am_name | is_hypo
———————————— T St S ettt S LR
12659 | <12659>btree_hypo_id | public | hypo | btree | t
526603 | hypo_id_idx | public | hypo | btree | f
526604 | hypo_id_val_idx | public | hypo | btree | £
(3 rows)

To restore all existing indexes, you can use the function hypopg_unhide_all_indexes().
Note that the functionality to hide existing indexes only applies to the EXPLAIN
command in the current session and will not affect other sessions.

	HypoPG
	Installation
	Updating the extension
	Usage

