libpgxx

@version 7.10.2 @Qauthor Jeroen T. Vermeulen @see https://pgxx.org/libpgxx/
@see https://github.com/jtv/libpgxx

Welcome to libpgxx, the C++ API to the PostgreSQL database management
system.

Compiling this package requires PostgreSQL to be installed — including the
C headers for client development. The library builds on top of PostgreSQL’s
standard C API, libpg. The libpq headers are not needed to compile client
programs, however.

For a quick introduction to installing and using libpgxx, see the README.md
file. The latest information can be found at http://pgxx.org/.

Some links that should help you find your bearings:

o @ref getting-started

e @ref thread-safety

e Q@ref connections

e @ref transactions

o Q@ref escaping

e Q@ref performance

e Qref transactor

o Qref datatypes Accessing results and result rows {#accessing-results}

A query produces a result set consisting of rows, and each row consists of fields.
There are several ways to receive this data.

The fields are “untyped.” That is to say, libpgxx has no opinion on what their
types are. The database sends the data in a very flexible textual format. When
you read a field, you specify what type you want it to be, and libpgxx converts
the text format to that type for you.

If a value does not conform to the format for the type you specify, the conversion
fails. For example, if you have strings that all happen to contain numbers, you
can read them as int. But if any of the values is empty, or it’s null (for a type
that doesn’t support null), or it’s some string that does not look like an integer,
or it’s too large, you can’t convert it to int.

So usually, reading result data from the database means not just retrieving the
data; it also means converting it to some target type.

Querying rows of data

The simplest way to query rows of data is to call one of a transaction’s “query”
functions, passing as template arguments the types of columns you want to get

http://pqxx.org/

back (e.g. int, std: :string, double, and so on) and as a regular argument the
query itself.

You can then iterate over the result to go over the rows of data:

for (auto [id, value]

tx.query<int, std::string>("SELECT id, name FROM item"))
{

std::cout << id << '\t' << value << '\n';

}

The “query” functions execute your query, load the complete result data from
the database, and then as you iterate, convert each row it received to a tuple of
C++ types that you indicated.

There are different query functions for querying any number of rows (query());
querying just one row of data as a std::tuple and throwing an error if there’s
more than one row (query1()); or querying

Streaming rows

There’s another way to go through the rows coming out of a query. It’s usually
easier and faster if there are a lot of rows, but there are drawbacks.

One, you start getting rows before all the data has come in from the database.
That speeds things up, but what happens if you lose your network connection
while transferring the data? Your application may already have processed some
of the data before finding out that the rest isn’t coming. If that is a problem for
your application, streaming may not be the right choice.

Two, streaming only works for some types of query. The stream() function
wraps your query in a PostgreSQL COPY command, and COPY only supports
a few commands: SELECT, VALUES, or an INSERT, UPDATE, or DELETE with a
RETURNING clause. See the COPY documentation here: https://www.postgresql.
org/docs/current/sql-copy.html.

Three, when you convert a field to a “view” type (such as std::string_view
or pgxx::bytes_view), the view points to underlying data which only stays
valid until you iterate to the next row or exit the loop. So if you want to use
that data for longer than a single iteration of the streaming loop, you’ll have to
store it somewhere yourself.

Now for the good news. Streaming does make it very easy to query data and
loop over it, and often faster than with the “query” or “exec” functions:

for (auto [id, name, x, yJ
tx.stream<int, std::string_view, float, float>(
"SELECT id, name, x, y FROM point"))
process(id + 1, "point-" + name, x * 10.0, y * 10.0);

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

The conversion to C++ types (here int, std: :string_view, and two floats) is
built into the function. You never even see row objects, field objects, iterators,
or conversion methods. You just put in your query and you receive your data.

Results with metadata

Sometimes you want more from a query result than just rows of data. You may
need to know right away how many rows of result data you received, or how
many rows your UPDATE statement has affected, or the names of the columns,
etc.

For that, use the transaction’s “exec” query execution functions. Apart from a
few exceptions, these return a pgxx: :result object. A result is a container of
pgxx: :row objects, so you can iterate them as normal, or index them like you
would index an array. Each row in turn is a container of pqxx::field, Each
field holds a value, but doesn’t know its type. You specify the type when you
read the value.

For example, your code might do:

pgxx::result r = tx.exec("SELECT * FROM mytable");

for (auto const &row: r)

{
for (auto const &field: row) std::cout << field.c_str() << '\t';
std::cout << '\n';

}

But results and rows also support other kinds of access. Array-style indexing,
for instance, such as r [rownum]:

std::size_t const num_rows = std::size(r);
for (std::size_t rownum=0u; rownum < num_rows; -++rownum)
{
paxx::row const row = r[rownum];
std::size_t const num_cols = std::size(row);
for (std::size_t colnum=0u; colnum < num_cols; ++colnum)
{
paxx::field const field = row[colnum];
std::cout << field.c_str() << '"\t';
}

std::cout << '\n';
}

Every row in the result has the same number of columns, so you don’t need to
look up the number of fields again for each one:

std::size_t const num_rows = std::size(r);
std::size_t const num_cols = r.columns();

for (std::size_t rownum=0u; rownum < num_rows; -++rownum)
{
pgxx: :row const row = r[rownum];
for (std::size_t colnum=0u; colnum < num_cols; ++colnum)
{
paxx::field const field = row[colnum];
std::cout << field.c_str() << '"\t';
}

std::cout << '\n';

}
You can even address a field by indexing the row using the field’s name:
std::cout << row["salary"] << '\n';

But try not to do that if speed matters, because looking up the column by name
takes time. At least you’d want to look up the column index before your loop
and then use numerical indexes inside the loop.

For C++23 or better, there’s also a two-dimensional array access operator:

for (std::size_t rownum=0u; rownum < num_rows; -++rownum)
{
for (std::size_t colnum=0Ou; colnum < num_cols; ++colnum)
std::cout result[rownum, colnum].c_str() << '\t';
std::cout << '\n';

}

And of course you can use classic “begin/end” loops:
for (auto row = std::begin(r); row != std::end(r); row++)
{

for (auto field = std::begin(row); field != std::end(row); field++)
std::cout << field->c_str() << '\t';
std::cout << '\n';

}

Result sets are immutable, so all iterators on results and rows are actually
const_iterators. There are also const_reverse_iterator types, which iter-
ate backwards from rbegin() to rend() exclusive.

All these iterator types provide one extra bit of convenience that you won’t
normally find in C++ iterators: referential transparency. You don’t need to
dereference them to get to the row or field they refer to. That is, instead of
row->end() you can also choose to say row.end (). Similarly, you may prefer
field.c_str() over field->c_str().

This becomes really helpful with the array-indexing operator. With reg-
ular C++ iterators you would need ugly expressions like (*row) [0] or

row->operator [] (0). With the iterator types defined by the result and row
classes you can simply say row[0]. Binary data {#binary} ===========

The database has two ways of storing binary data: BYTEA is like a string, but
containing bytes rather than text characters. And large objects are more like a
separate table containing binary objects.

Generally you’ll want to use BYTEA for reasonably-sized values, and large objects
for very large values.

That’s the database side. On the C++ side, in libpgxx, all binary data must
be either pgxx: :bytes or pgxx: :bytes_view; or if you're building in C++20
or better, anything that’s a block of contiguous std: :byte in memory.

So for example, if you want to write a large object, you’d create a pgxx: :blob
object. And you might use that to write data in the form of pgxx: :bytes_view.

Your particular binary data may look different though. You may have it in a
std::string, or a std::vector<unsigned char>, or a pointer to char accom-
panied by a size (which could be signed or unsigned, and of any of a few different
widths). Sometimes that’s your choice, or sometimes some other library will
dictate what form it takes.

So long as it’s basically still a block of bytes though, you can use
paxx: :binary_cast to construct a pgxx::bytes_view from it.

There are two forms of binary_cast. One takes a single argument that must
support std: :data() and std::size():

std::string hi{"Hello binary world"};
my_blob.write(pgxx: :binary_cast (hi);

The other takes a pointer and a size:

char const greeting[] = "Hello binary world";
char const *hi = greeting;
my_blob.write(pgxx: :binary_cast(hi, sizeof (greeting)));

Caveats
There are some restrictions on binary_cast that you must be aware of.

First, your data must of a type that gives us bytes. So: char, unsigned char,
signed char, int8_t, uint8_t, or of course std::byte. You can’t feed in a
vector of double, or anything like that.

Second, the data must be laid out as a contiguous block in memory. If there’s
no std::data() implementation for your type, it’s not suitable.

Third, binary_cast only constructs something like a std::string_view. It
does not make a copy of your actual data. So, make sure that your data remains

alive and in the same place while you're using it. Supporting additional data
types {#datatypes} S T T T e T e e e e e T e e T T T T T T T T e e e e

Communication with the database mostly happens in a text format. When you
include an integer value in a query, either you use to_string to convert it to
that text format, or under the bonnet, libpgxx does it for you. When you get
a query result field “as a float,” libpgxx converts from the text format to a
floating-point type. These conversions are everywhere in libpgxx.

The conversion system supports many built-in types, but it is also extensible.
You can “teach” libpgxx (in the scope of your own application) to convert
additional types of values to and from PostgreSQL’s string format.

This is massively useful, but it’s not for the faint of heart. You’ll need to
specialise some templates. And, the API for doing this can change with
any major libpgxx release.

If that happens, your code may fail to compile with the newer libpgxx version,
and you’ll have to go through the NEWS file to find the API changes. Usually
it’ll be a small change, like an additional function you need to implement, or a
constant you need to define.

Converting types

In your application, a conversion is driven entirely by a C++ type you specify.
The value’s SQL type on the database side has nothing to do with it. Nor is
there anything in the string that would identify its type. Your code says “convert
to this type” and libpgxx does it.

So, if you've SELECTed a 64-bit integer from the database, and you try to
convert it to a C++ short, one of two things will happen: either the number is
small enough to fit in your short and it just works, or else it throws a conversion
exception. Similarly, if you try to read a 32-bit SQL int as a C++ 32-bit
unsigned int, that’ll work fine, unless the value happens to be negative. In
such cases the conversion will throw a conversion_error.

Or, your database table might have a text column, but a given field may contain
a string that looks just like a number. You can convert that value to an integer
type just fine. Or to a floating-point type. All that matters to the conversion is
the actual value, and the type your code specifies.

In some cases the templates for these conversions can tell the type from the
arguments you pass them:

auto x = to_string(99);
In other cases you may need to instantiate template explicitly:

auto y = from_string<int>("99");

Supporting a new type

Let’s say you have some other SQL type which you want to be able to store in,
or retrieve from, the database. What would it take to support that?

Sometimes you do not need complete support. You might need a conversion to
a string but not from a string, for example. You write out the conversion at
compile time, so don’t be too afraid to be incomplete. If you leave out one of
these steps, it’s not going to crash at run time or mess up your data. The worst
that can happen is that your code won’t build.

So what do you need for a complete conversion?

First off, of course, you need a C++ type. It may be your own, but it doesn’t
have to be. It could be a type from a third-party library, or even one from the
standard library that libpgxx does not yet support.

First thing to do is specialise the pgxx: :type_name variable to give the type a
human-readable name. It’s not strictly needed, but it helps: Human-facing text
such as error messages may need to mention the type by name. If you don’t
define one, libpgxx will try to figure one out with some help from the compiler,
but it may not always be easy to read.

Then, does your type have a built-in null value? For example, a char * can be
null on the C++ side. Or some types are always null, such as nullptr. You
specialise the pgxx: :nullness template to specify the details.

Finally, you specialise the pgxx: :string_traits template. This is where you
define the actual conversions.

Let’s go through these steps one by one.

Your type

You'll need a type for which the conversions are not yet defined, because the C++
type is what determines the right conversion. One type, one set of conversions.

The type doesn’t have to be one that you create. The conversion logic was
designed such that you can build it around any type. So you can just as easily
build a conversion for a type that’s defined somewhere else. There’s no need to
include any special methods or other members inside the type itself. That’s also
why libpgxx can convert built-in types like int.

By the way, if the type is an enum, you don’t need to do any of this. Just
invoke the preprocessor macro PQXX_DECLARE_ENUM_CONVERSION, from the global
namespace near the top of your translation unit, and pass the type as an
argument.

The library also provides specialisations for std: : optional<T>, std: :shared_ptr<T>,
and std: :unique_ptr<T>. If you have conversions for T, you’ll also automati-
cally have conversions for those.

Specialise type_name

When errors happen during conversion, libpgxx will an compose error message
for the user. Sometimes this message will mentio the name of the type that’s
being converted.

By default, this will probably work fine on some compilers, or the name may
come out a little strange on other compilers, but some may make it harder to
recognise. So it can help to define a name yourself.

To tell libpgxx the name of a given type T, there’s a template variable called
paxx: :type_name<T>. It should contain T’s human-readable name:

// T is your type.
namespace pgxx

{

template<> inline std::string view const type_name<T>{"My T type's name"};

}

Define this early on in your translation unit, before any code that might cause
libpgxx to need the name. That way, the libpgxx code which needs to know the
type’s name can see your definition.

In cases where the name is not a simple compile-time constant but needs code
to compute, you may need to make its type std: :string. A string_view does
not maintain storage space for the text it contains. However, some code analysis
tools may report false posiives when initialising such strings at initialisation
time.

Specialise nullness

A struct template pgxx::nullness defines whether your type has a natural
“null value” built in. If so, it also provides member functions for producing and
recognising null values.

The simplest scenario is also the most common: most types don’t have a null
value built in. There is no “null int” in C++4. In that kind of case, just derive
your nullness traits from pgxx: :no_null as a shorthand:

// T is your type.
namespace pgxx

{

template<> struct nullness<T> : pgxx::no_null<T> {};

}
(Here again you're defining this in the pgxx namespace.)

If your type does have a natural null value, the definition gets a little more
complex:

namespace pgxx

{

// T is your type.

template<> struct nullness<T>

{
// Does T have a value that should translate to an SQL null?
static constexpr bool has_null{true};

// Does this C++ type always denote an SQL null, like with nullptr_t?
static constexpr bool always_null{false};

static bool is_null(T const &value)

{
// Return whether "value'" is null.
return ...;
}
[[nodiscard]] static T null()
{
// Return a null wvalue.
return ...;
}
}s
}

You may be wondering why there’s a function to produce a null value, but also
a function to check whether a value is null. Why not just compare the value to
the result of null()? Because two null values may not be equal (like in SQL,
where NULL <> NULL). Or T may have multiple different null values. Or T may
override the comparison operator to behave in some unusual way.

As a third case, your type may be one that always represents a null value. This
is the case for std::nullptr_t and std::nullopt_t. In that case, you set
nullness<TYPE>::always_null to true (as well as has_null of course), and
you won’t need to define any actual conversions.

Specialise string_traits

This part is the most work. You can skip it for types that are always null, but
those will be rare.

The APIs for doing this are designed so that you don’t need to allocate memory
on the free store, also known as “the heap”: new/delete. Memory allocation can
be hidden inside std: :string, std: :vector, etc. The conversion API allows
you to use std: :string for convenience, or memory buffers for speed.

Start by specialising the pgxx: :string_traits template. You don’t absolutely
have to implement all parts of this API. Generally, if it compilers, you're OK for

the time being. Just bear in mind that future libpgxx versions may change the
API — or how it uses the API internally.

namespace pgxx

{

// T ts your type.

template<> struct string_traits<T>

{
// Do you support converting T to PostgreSQL string format?
static constexpr bool converts_to_string{true};
// Do you support converting PostgreSQL string format to T?
static constexpr bool converts_from_string{true};

// If converts_to_string is true:

// Write string version into buffer, or return a constant string.
static zview to_buf (char *begin, char *end, T const &value);

// Write string verston into buffer.
static char *into_buf (char *begin, char *end, T const &value) ;

// Converting value to string may require this much buffer space at most.
static std::size_t size_buffer(T const &value) noexcept;

// If converts_from_string is true:

// Parse text as a T walue.

static T from_string(std::string_view text);
s
}

You’ll also need to write those member functions, or as many of them as needed
to get your code to build.

from_string

We start off simple: from_string parses a string as a value of T, and returns
that value.

The string may or may not be zero-terminated; it’s just the string_view from
beginning to end (with end being exclusive). In your tests, be sure to cover cases
where the string does not end in a zero byte!

It’s perfectly possible that the string doesn’t actually represent a T value. Mis-
takes happen. There can be corner cases. When you run into this, throw a
PgXX::conversion_error.

(Of course it’s also possible that you run into some other error, so it’s fine to

10

throw different exceptions as well. But when it’s definitely “this is not the right
format for a T,” throw conversion_error.)

to_buf

In this function, you convert a value of T into a string that the postgres server
will understand.

The caller will provide you with a buffer where you can write the string, if you
need it: from begin to end exclusive. It’s a half-open interval, so don’t access
*end.

If the buffer is insufficient for you to do the conversion, throw a
paxx::conversion_overrun. It doesn’t have to be exact: you can be a
little pessimistic and demand a bit more space than you need. Just be sure to
throw the exception if there’s any risk of overrunning the buffer.

You don’t have to use the buffer for this function though. For example,
pgxx::string_traits<bool>::to_buf returns a compile-time constant string
and completely ignores the buffer.

Even if you do use the buffer, your string does not have to start at the beginning
of the buffer. For example, the integer conversions may work from right to left,
if that’s easier: they can start by writing the least significant digit to the end of
the buffer, divide the remainder by 10, and repeat for the next digit.

Return a pgxx::zview. This is basically a std::string_view, but with one
difference: when you create a zview you guarantee that there is a valid zero byte
right after the string_view. The zero byte does not count as part of its size,
but it has to be there.

Expressed in code, this rule must hold:

void invariant(zview z)
{
assert(z[std::size(z)] == 0);

}

The trailing zero should not go inside the zview, but if you convert into the buffer,
do make sure you that trailing stays inside the buffer, i.e. before the end. (If
there’s no room for that zero inside the buffer, throw pgxx: : conversion_error).

Beware of locales when converting. If you use standard library features like
sprintf, they may obey whatever locale is currently set on the system where
the code runs. That means that a simple integer like 1000000 may come out
as “1000000” on your system, but as “1,000,000” on mine, or as “1.000.000” for
somebody else, and on an Indian system it may be “1,00,000”. Don’t let that
happen, or it will confuse things. Use only non-locale-sensitive library functions.
Values coming from or going to the database should be in fixed, non-localised
formats.

11

If your conversions need to deal with fields in types that libpgxx already sup-
ports, you can use the conversion functions for those: pgqxx::from_string,
paxx::to_string, pgxx::to_buf. They in turn will call the string_traits
specialisations for those types. Or, you can call their string_traits directly.

into_buf

This is a stricter version of to_buf. All the same requirements apply, but in
addition you must write your string into the given buffer, starting exactly at
begin.

That’s why this function returns just a simple pointer: the address right behind
the trailing zero. If the caller wants to use the string, they can find it at begin.
If they want to write another value into the rest of the buffer, they can continue
writing at the location you returned.

size_buffer

Here you estimate how much buffer space you need for converting a T to a string.
Be precise if you can, but pessimistic if you must. It’s usually better to waste a
few bytes of space than to spend a lot of time computing the exact buffer space
you need. And failing the conversion because you under-budgeted the buffer is
worst of all.

Include the trailing zero in the buffer size. If your to_buf takes more space than
just what’s needed to store the result, include that too.

Make size_buffer a constexpr function if you can. It can allow the caller to
allocate the buffer on the stack, with a size known at compile time.

Optional: Specialise is_unquoted_safe

When converting arrays or composite values to strings, libpgxx may need to
quote values and escape any special characters. This takes time.

Some types though, such as integral or floating-point types, can never have
any special characters such as quotes, commas, or backslashes in their string
representations. In such cases, there’s no need to quote or escape such values in
SQL arrays or composite types.

If your type is like that, you can tell libpgxx about this by defining;:

namespace pgxx
{

// T is your type.

template<> inline constexpr bool is_unquoted_safe<T>{truel};

}

The code that converts this type of field to strings in an array or a composite
type can then use a simpler, more efficient variant of the code. It’s always safe

12

to leave this out; it’s just an optimisation for when you’re completely sure that
it’s safe.

Do not do this if a string representation of your type may contain a comma;
semicolon; parenthesis; brace; quote; backslash; newline; or any other character
that might need escaping.

Optional: Specialise param_format

This one you don’t generally need to worry about. Read on if you're writing a
type which represents raw binary data, or if you're writing a template where
some specialisations may contain raw binary data.

When you call parameterised statements, or prepared statements with parameters,
libpgxx needs to pass your parameters on to libpq, the underlying C-level
PostgreSQL client library.

There are two formats for doing that: text and binary. In the first, we represent
all values as strings in the PostgreSQL text format, and the server then converts
them into its own internal binary representation. That’s what those string
conversions above are all about, and it’s what we do for almost all types of
parameters.

But we do it differently when the parameter is a contiguous series of raw bytes
and the corresponding SQL type is BYTEA. There is a text format for those, but
we bypass it for efficiency. The server can use the binary data in the exact same
form, without any conversion or extra processing. The binary data is also twice
as compact during transport.

(People sometimes ask why we can’t just treat all types as binary. However
the general case isn’t so clear-cut. The binary formats are not documented,
there are no guarantees that they will be platform-independent or that they will
remain stable across postgres releases, and there’s no really solid way to detect
when we might get the format wrong. On top of all that, the conversions aren’t
necessarily as straightforward and efficient as they sound. So, for the general
case, libpgxx sticks with the text formats. Raw binary data alone stands out as
a clear win.)

Long story short, the machinery for passing parameters needs to know: is this
parameter a binary string, or not? In the normal case it can assume “no,” and
that’s what it does. The text format is always a safe choice; we just try to use
the binary format where it’s faster.

The param_format function template is what makes the decision. We specialise
it for types which may be binary strings, and use the default for all other types.

“Types which may be binary”? You might think we know whether a type is a
binary type or not. But there are some complications with generic types.

Templates like std: :shared_ptr, std: :optional, and so on act like “wrappers”

13

for another type. A std::optional<T> is binary if T is binary. Otherwise, it’s
not. If you’re building support for a template of this nature, you’ll probably
want to implement param_format for it.

The decision to use binary format is made based on a given object, not nec-
essarily based on the type in general. Look at std::variant. If you have a
std::variant type which can hold an int or a binary string, is that a binary
parameter? We can’t decide without knowing the individual object.

Containers are another hard case. Should we pass std: :vector<T> in binary?
Even when T is a binary type, we don’t currently have any way to pass an array
in binary format, so we always pass it as text. String escaping {#escaping}

Writing queries as strings is easy. But sometimes you need a variable in there:
"SELECT id FROM user WHERE name = '" + name + "'".

This is dangerous. See the bug? If name can contain quotes, you may have an
SQL injection vulnerability there, where users can enter nasty stuff like “.';
DROP TABLE user”. Or if you're lucky, it’s just a nasty bug that you discover
when name happens to be “d’Arcy”. Or... Well, I was born in a place called
’s-Gravenhage. . .

There are two ways of dealing with this. One is statement Qref parameters —
many SQL execution functions in libpgxx let you write placeholders for variable
values in your SQL, like $1, $2, etc. When you then pass your variables as the
parameter values, they get substituted into the query, but in a safe form.

The other is to escape the values yourself, before inserting them into your SQL.
This isn’t as safe as using parameters, since you need to be really conscientious
about it. Use @Qref parameters if you can... and libpgxx will do the escaping
for you.

In escaping, quotes and other problematic characters are marked as “this is
just a character inside the string, not the end of the string.” There are several
functions in libpgxx to do this for you.

SQL injection

To understand what SQL injection vulnerabilities are and why they should be
prevented, imagine you use the following SQL statement somewhere in your
program:

tx.exec(
"SELECT number, amount "
"FROM account "
"WHERE allowed_to_see('" + userid + "','" + password + "')");

This shows a logged-in user important information on all accounts he is authorized
to view. The userid and password strings are variables entered by the user himself.

14

Now, if the user is actually an attacker who knows (or can guess) the general
shape of this SQL statement, imagine getting the following password:

x’) OR (x’ = ’x

Does that make sense to you? Probably not. But if this is inserted into the SQL
string by the C++ code above, the query becomes:

SELECT number, amount
FROM account
WHERE allowed_to_see('user','x') OR ('x' = 'x")

Is this what you wanted to happen? Probably not! The neat allowed_to_see()
clause is completely circumvented by the “OR ('x' = 'x')” clause, which is
always true. Therefore, the attacker will get to see all accounts in the database!

Using the esc functions
Here’s how you can fix the problem in the example above:

tx.exec(
"SELECT number, amount "
"FROM account "
"WHERE allowed_to_see('" + tx.esc(userid) + "', "
"o+ tx.esc(password) + "')");

Now, the quotes embedded in the attacker’s string will be neatly escaped so they
can’t “break out” of the quoted SQL string they were meant to go into:

SELECT number, amount
FROM account
WHERE allowed_to_see('user', 'x'') OR (''x'' = "'x")

If you look carefully, you’ll see that thanks to the added escape characters (a
single-quote is escaped in SQL by doubling it) all we get is a very strange-looking
password string — but not a change in the SQL statement.

In practice, of course, it would be better to use parameters:

tx.exec(

" SELECT number, amount "

"FROM account "

"WHERE allowed_to_see($1, $2)",
pgxx: :params{userid, password});

Getting started

The most basic three types in libpgxx are the connection, the transaction, and
the result.

They fit together as follows:

15

¢ You connect to the database by creating a pgxx: :connection object (see
@ref connections).

« You create a transaction object (see @ref transactions) operating on that
connection. You’ll usually want the pgxx: :work variety.

Once you’re done you call the transaction’s commit function to make its
work final. If you don’t call this, the work will be rolled back when the
transaction object is destroyed.

e Until then, use the transaction’s exec, query_value, and stream func-
tions (and variants) to execute SQL statements. You pass the statements
themselves in as simple strings. (See Qref streams for more about data
streaming).

e Most of the exec functions return a pgxx: :result object, which acts as a
standard container of rows: pgxx::row.

Each row in a result, in turn, acts as a container of fields: pgxx::field.
See Qref accessing-results for more about results, rows, and fields.

o Each field’s data is stored internally as a text string, in a format defined
by PostgreSQL. You can convert field or row values using their as() and
to() member functions.

o After you've closed the transaction, the connection is free to run a next
transaction.

Here’s a very basic example. It connects to the default database (you’ll need to
have one set up), queries it for a very simple result, converts it to an int, and
prints it out. It also contains some basic error handling.

#include <iostream>
#include <pgqxx/pqxx>

int main()
{
try
{
// Connect to the database. In practice we may have to pass some
// arquments to say where the database server is, and so on.
// The constructor parses options exzactly like libpg's
// PQconnectdb/P(connect, see:
// https://www.postgresql.org/docs/10/static/libpg-connect.html
pgxx::connection cx;

// Start a transaction. In libpgzz, you always work in one.
paxx: :work tx(cx);

// work::execl() exzecutes a query returning a single row of data.

16

// We'll just ask the database to return the number 1 to us.
paxx::row r = tx.execl("SELECT 1");

// Commit your transaction. If an exception occurred before this
// point, execution will have left the block, and the transaction will

// have been destroyed along the way. In that case, the failed

// transaction would tmplicitly abort instead of getting to this point.

tx.commit () ;

// Look at the first and only field in the row, parse it as an integer,

// and print it.
//

// "r[0]" returns the first field, which has an "as<...>()" member
// function template to convert its contents from their string format

// to a type of your choice.
std::cout << r[0].as<int>() << std::endl;

}

catch (std::exception const &e)

{
std::cerr << e.what() << std::endl;
return 1;

}

}

This prints the number 1. Notice that you can keep the result object around
after you've closed the transaction or even the connection. There are situations
where you can’t do it, but generally it’s fine. If you’re interested: you can install
your own callbacks for receiving error messages from the database, and in that
case you’ll have to keep the connection object alive. But otherwise, it’s nice to
be able to “fire and forget” your connection and deal with the data.

You can also convert an entire row to a series of C++-side types in one go, using
the @Qc as member function on the row:

Pgxx: :connection cx;

paxx: :work tx(cx);

pgxx::row r = tx.execl("SELECT 1, 2, 'Hello'");

auto [one, two, hello] = r.as<int, int, std::string>();

std::cout << (one + two) << ' ' << std::strlen(hello) << std::endl;

Here’s a slightly more complicated example. It takes an argument from the
command line and retrieves a string with that value. The interesting part is that
it uses the escaping-and-quoting function quote to embed this string value in
SQL safely. It also reads the result field’s value as a plain C-style string using
its c¢_str function.

#include <iostream>
#include <stdexcept>

17

#include <pqxx/pgqxx>

int main(int argc, char *argvl[])

{

try

{
if (largv[i]) throw std::runtime_error("Give me a string!");
pgxx::connection cx;
paxx: :work tx(cx);
// work: :exec() returns a full result set, which can consist of any
// number of rows.
paxx::result r = tx.exec("SELECT $1", pgxx::params{argv[1]});
// End our transaction here. We can still use the result afterwards.
tx.commit () ;
// Print the first field of the first row. Read it as a C string,
// just like std::string::c_str() does.
std::cout << r[0][0].c_str() << std::endl;

}

catch (std::exception const &e)

{
std::cerr << e.what() << std::endl;
return 1;

}

}

You can find more about converting field values to native types, or converting
values to strings for use with libpgxx, under @ref stringconversion. More about
getting to the rows and fields of a result is under @ref accessing-results.

If you want to handle exceptions thrown by libpgxx in more detail, for example
to print the SQL contents of a query that failed, see @Qref exception. libpgxx
{#mainpage} ==

@version QPQXXVERSION@ @author Jeroen T. Vermeulen Qsee
https://pgxx.org/libpgxx/ @see https://github.com/jtv/libpgxx

Welcome to libpgxx, the C++ API to the PostgreSQL database management
system.

Compiling this package requires PostgreSQL to be installed — including the
C headers for client development. The library builds on top of PostgreSQL’s
standard C API, libpq. The libpq headers are not needed to compile client
programs, however.

For a quick introduction to installing and using libpgxx, see the README.md

18

file. The latest information can be found at http://pgxx.org/.
Some links that should help you find your bearings:

o @ref getting-started

e @ref thread-safety

e Q@ref connections

e @ref transactions

o Q@ref escaping

e @ref performance

e @ref transactor

o @ref datatypes Statement parameters {#parameters} ==============s===c==

In an SQL statement (including a prepared statemen), you may write special
placeholders in the query text. They look like $1, $2, and so on.

When executing the query later, you pass parameter values. The call will
respectively substitute the first parameter value where it finds $1 in the query,
the second where it finds $2, et cetera.

For example, let’s say you have a transaction called tx. Here’s how you execute
a plain statement:

pgxx::result r = tx.exec("SELECT name FROM employee where id=101");

Inserting the 101 in there is awkward and even dangerous. We’ll get to that in
a moment. Here’s how you do it better, using parameters:

pgxx::result r = tx.exec("SELECT name FROM employee WHERE id=$1", {101});

That second argument to exec(), the {101}, constructs a pgxx: : params object.
The exec() call will fill this value in where the query says $1.

Doing this saves you work. If you don’t use statement parameters, you’ll need
to quote and escape your values (see connection: :quote() and friends) as you
insert them into your query as literal values.

Or if you forget to do that, you leave yourself open to horrible SQL injection
attacks. Trust me, I was born in a town whose name started with an apostrophel!

With parameters you can pass your values as they are, and they will go across
the wire to the database in a safe format.

In some cases it may even be faster! When a parameter represents binary data
(as in the SQL BYTEA type), libpgxx will send it directly as binary, which is a
bit more efficient than the standard textual format in which the data normally
gets sent to the database. If you insert the binary data directly in your query
text, your CPU will have some extra work to do, converting the data into a text
format, escaping it, and adding quotes; and the data will take up more bytes,
which take time to transmit.

19

http://pqxx.org/
https://xkcd.com/327/
https://xkcd.com/327/

Multiple parameters

The pgxx: :params class is quite flexible. It can contain any number of parameter
values, of many different types.

You can pass them in while constructing the params object:
paxx: :params{23, "acceptance", 3.14159}
Or you can add them one by one:

Pgxx: :params p;
p.append(23) ;
p.append("acceptance") ;
p.append(3.14159);

You can also combine the two, passing some values int the constructor and
adding the rest later. You can even insert a params into a params:

paxx: :params p{23};
p-append(params{"acceptance", 3.14159});

Each of these examples will produce the same list of parameters.

Generating placeholders

If your code gets particularly complex, it may sometimes happen that it becomes
hard to track which parameter value belongs with which placeholder. Did you
intend to pass this numeric value as $7, or as $87 The answer may depend on
an if that happened earlier in a different function.

(Generally if things get that complex, it’s a good idea to look for simpler solutions.
But especially when performance matters, sometimes you can’t avoid complexity
like that.)

There’s a little helper class called placeholders. You can use it as a counter
which produces those placeholder strings, $1, $2, $3, et cetera. When you
start generating a complex statement, you can create both a params and a
placeholders:

paxx::params values;
paxx::placeholders name;

Let’s say you’ve got some complex code to generate the conditions for an SQL
“WHERE” clause. You'll generally want to do these things close together in
your, so that you don’t accidentally update one part and forget another:

if (extra_clause)

{
// Extend the query text, using the current placeholder.
query += " AND x = " + name.get();
// Add the parameter value.

20

values.append (my_x) ;
// Move on to the next placeholder wvalue.
name.next () ;

}

Depending on the starting value of name, this might add to query a fragment
like 7 AND x = $3 ” or ” AND x = $5 “ Performance features {#performance}

If your program’s database interaction is not as efficient as it needs to be, the
first place to look is usually the SQL you're executing. But libpgxx has a few
specialized features to help you squeeze more performance out of how you issue
commands and retrieve data:

o @ref streams. Use these as a faster way to transfer data between your code
and the database.

e std::string view and pgxx::zview. In places where traditional
C++ worked with std::string, see whether std::string_view or
paxx: :zview will do. Of course that means that you’ll have to look at the
data’s lifetime more carefully, but it’ll save the computer a lot of copying.

e @ref prepared. These can be executed many times without the server
parsing and planning them anew each time. They also save you having to
escape string parameters.

e pgxx::pipeline lets you send queries to the database in batches, and
continue other processing while they are executing.

e pgxx::connecting lets you start setting up a database connection, but
without blocking the thread.

As always of course, don’t risk the quality of your code for optimizations that you
don’t need! Prepared statements {#prepared} ===================

Prepared statements are SQL queries that you define once and then invoke as
many times as you like, typically with varying parameters. It’s a lot like a
function that you can define ad hoc, within the scope of one connection.

If you have an SQL statement that you’re going to execute many times in quick
succession, it may (but see below!) be more efficient to prepare it once and reuse
it. This saves the database backend the effort of parsing the SQL and figuring
out an efficient execution plan.

Preparing a statement

You create a prepared statement by preparing it on the connection (using the
pgxx: :connection: :prepare functions), passing an identifying name for the
statement, and its SQL text.

The statement’s name should consist of ASCII letters, digits, and underscores
only, and start with an ASCII letter. The name is case-sensitive.

21

void prepare_my_statement (pgxx::connection &cx)
{
cx.prepare(
"my_statement",
"SELECT * FROM Employee WHERE name = 'Xavier'");
b

Once you’'ve done this, youll be able to call my_statement from
any transaction you execute on the same connection. For this, call
pgxx::transaction_base: :exec() and pass a pgxx: :prepped object instead
of an SQL statement string. The pgxx: :prepped type is just a wrapper that
tells the library “this is not SQL text, it’s the name of a prepared statement.”

pgxx::result execute_my_statement (pgxx::transaction_base &t)

{
return t.exec(pgxx::prepped{'my_statement"});

}

Parameters

You can pass parameters to a prepared statement, just like you can with a
regular statement. The query text can contain $1, $2 etc. as placeholders for
parameter values that you will provide when you invoke the prepared statement.

See Qref parameters for more about this. And here’s a simple example of
preparing a statement and invoking it with parameters:

void prepare_find(pgxx::connection &cx)
{
// Prepare a statement called "find" that looks for employees with a
// given name (parameter 1) whose salary exceeds a given number
// (parameter 2).
cx.prepare (
"find",
"SELECT * FROM Employee WHERE name = $1 AND salary > $2");
}

This example looks up the prepared statement “find,” passes name and
min_salary as parameters, and invokes the statement with those values:

pgxx: :result execute_find(
pgxx::transaction_base &tx, std::string name, int min_salary)

{
return tx.exec(pgxx::prepped{"find"}, pqgxx::params{name, min_salary});

}

22

A special prepared statement

There is one special case: the nameless prepared statement. You may prepare a
statement without a name, i.e. whose name is an empty string. The unnamed
statement can be redefined at any time, without un-preparing it first.

Performance note

Don’t assume that using prepared statements will speed up your application.
There are cases where prepared statements are actually slower than plain SQL.

The reason is that the backend can often produce a better execution plan when
it knows the statement’s actual parameter values.

For example, say you’ve got a web application and you’re querying for users
with status “inactive” who have email addresses in a given domain name X.
If X is a very popular provider, the best way for the database engine to plan
the query may be to list the inactive users first and then filter for the email
addresses you’re looking for. But in other cases, it may be much faster to find
matching email addresses first and then see which of their owners are “inactive.
A prepared statement must be planned to fit either case, but a direct query will
be optimised based on table statistics, partial indexes, etc.

)

So, as with any optimisation... measure where your real performance problems
are before you start making changes, and then afterwards, measure whether
your changes actually helped. Don’t complicate your code unless it solves a real
problem. Knuth’s Law applies.

Zero bytes
@warning Beware of zero (“nul”) bytes!

Since libpgxx is a wrapper around libpq, the C-level client library, most strings
you pass to the library should be compatible with C-style strings. So they must
end with a single byte with value 0, and the text within them cannot contain
any such zero bytes.

(The paxx: :zview type exists specifically to tell libpgxx: “this is a C-compatible
string, containing no zero bytes but ending in a zero byte.”)

One example is prepared statement names. But the same also goes for the
parameters values. Any string you pass as a parameter will end at the first char
with value zero. If you pass a string that contains a zero byte, the last byte in
the value will be the one just before the zero.

So, if you need a zero byte in a string, consider that it’s really a binary string,
which is not the same thing as a text string. SQL represents binary data as the
BYTEA type, or in binary large objects (“blobs”).

23

In libpgxx, you represent binary data as a range of std::byte. They must
be contiguous in memory, so that libpgxx can pass pointers to the under-
lying C library. So you might use pgxx::bytes, or pgxx::bytes_view, or
std: :vector<std::byte>. Streams {#streams} =======

Most of the time it’s fine to retrieve data from the database using SELECT
queries, and store data using INSERT. But for those cases where efficiency
matters, there are two data streaming mechanisms to help you do this more
efficiently: “streaming queries,” for reading query results from the database; and
the @ref pgxx::stream_ to class, for writing data from the client into a table.

These are less flexible than SQL queries. Also, depending on your needs, it may
be a problem to lose your connection while you’re in mid-stream, not knowing
that the query may not complete. But, you get some scalability and memory
efficiencies in return.

Just like regular querying, these streaming mechanisms do data conversion for
you. You deal with the C++ data types, and the database deals with the SQL
data types.

Interlude: null values

So how do you deal with nulls? It depends on the C++ type you’re using. Some
types may have a built-in null value. For instance, if you have a char const
* value and you convert it to an SQL string, then converting a nullptr will
produce a NULL SQL value.

But what do you do about C++ types which don’t have a built-in null value,
such as int? The trick is to wrap it in std: :optional. The difference between
int and std::optional<int> is that the former always has an int value, and
the latter doesn’t have to.

Actually it’s not just std::optional. You can do the same thing with
std::unique_ptr or std::shared_ptr. A smart pointer is less efficient than
std: :optional in most situations because they allocate their value on the heap,
but sometimes that’s what you want in order to save moving or copying large
values around.

This part is not generic though. It won’t work with just any smart-pointer type,
just the ones which are explicitly supported: shared_ptr and unique_ptr. If
you really need to, you can build support for additional wrappers and smart
pointers by copying the implementation patterns from the existing smart-pointer
support.

Streaming data from a query

Use @ref transaction_ base::stream to read large amounts of data directly from
the database. In terms of API it works just like @ref transaction_ base::query,
but it’s faster than the exec and query functions For larger data sets. Also, you

24

won’t need to keep your full result set in memory. That can really matter with
larger data sets.

Another performance advantage is that with a streaming query, you can start
processing your data right after the first row of data comes in from the server.
With exec() or query() you need to wait to receive all data, and only then can
you begin processing. With streaming queries you can be processing data on the
client side while the server is still sending you the rest.

Not all kinds of queries will work in a stream. Internally the streams make use
of PostgreSQL’s COPY command, so see the PostgreSQL documentation for COPY
for the exact limitations. Basic SELECT and UPDATE ... RETURNING queries will
just work, but fancier constructs may not.

As you read a row, the stream converts its fields to a tuple type containing the
value types you ask for:

for (auto [name, scorel
tx.stream<std::string_view, int>("SELECT name, points FROM score")
)

process(name, score);

On each iteration, the stream gives you a std: :tuple of the column types you
specify. It converts the row’s fields (which internally arrive at the client in text
format) to your chosen types.

The auto [name, score] in the example is a structured binding which unpacks
the tuple’s fields into separate variables. If you prefer, you can choose to receive
the tuple instead: for (std::tuple<int, std::string view> :.

Is streaming right for my query?

Here are the things you need to be aware of when deciding whether to stream a
query, or just execute it normally.

First, when you stream a query, there is no metadata describing how many rows
it returned, what the columns are called, and so on. With a regular query you
get a Qref result object which contains this metadata as well as the data itself.
If you absolutely need this metadata for a particular query, then that means you
can’t stream the query.

Second, under the bonnet, streaming from a query uses a PostgreSQL-specific
SQL command COPY (...) TO STDOUT. There are some limitations on what
kinds of queries this command can handle. These limitations may change
over time, so I won’t describe them here. Instead, see PostgreSQL’s COPY
documentation for the details. (Look for the TO variant, with a query as the
data source.)

Third: when you stream a query, you start receiving and processing data before
you even know whether you will receive all of the data. If you lose your connection

25

https://www.postgresql.org/docs/current/sql-copy.html
https://www.postgresql.org/docs/current/sql-copy.html

to the database halfway through, you will have processed half your data, unaware
that the query may never execute to completion. If this is a problem for your
application, don’t stream that query!

The fourth and final factor is performance. If you’re interested in streaming,
obviously you care about this one.

I can’t tell you a priori whether streaming will make your query faster. It
depends on how many rows you’re retrieving, how much data there is in those
rows, the speed of your network connection to the database, your client encoding,
how much processing you do per row, and the details of the client-side system:
hardware speed, CPU load, and available memory.

Ultimately, no amount of theory beats real-world measurement for your specific
situation so... if it really matters, measure. (And as per Knuth’s Law: if it
doesn’t really matter, don’t optimise.)

That said, here are a few data points from some toy benchmarks:

If your query returns e.g. a hundred small rows, it’s not likely to make up a
significant portion of your application’s run time. Streaming is likely to be slower
than regular querying, but most likely the difference just won’t amtter.

If your query returns a thousand small rows, streaming is probably still going to
be a bit slower than regular querying, though “your mileage may vary.”

If you're querying ten thousand small rows, however, it becomes more likely
that streaming will speed it up. The advantage increases as the number of rows
increases.

That’s for small rows, based on a test where each row consisted of just one
integer number. If your query returns larger rows, with more columns, I find that
streaming seems to become more attractive. In a simple test with 4 columns (two
integers and two strings), streaming even just a thousand rows was considerably
faster than a regular query.

If your network connection to the database is slow, however, that may make
streaming a bit less effcient. There is a bit more communication back and forth
between the client and the database to set up a stream. This overhead takes
a more or less constant amount of time, so for larger data sets it will tend to
become insignificant compared to the other performance costs.

Streaming data into a table

Use stream_to to write data directly to a database table. This saves you having
to perform an INSERT for every row, and so it can be significantly faster if you
want to insert more than just one or two rows at a time.

As with stream_from, you can specify the table and the columns, and not much
else. You insert tuple-like objects of your choice:

26

pgxx: :stream_to stream{

tx,
"score",
std::vector<std::string>{"name", "points"}};

for (auto const &entry: scores)
Stream << entry;
stream.complete() ;

Each row is processed as you provide it, and not retained in memory after that.

The call to complete () is more important here than it is for stream_from. It’s
a lot like a “commit” or “abort” at the end of a transaction. If you omit it, it
will be done automatically during the stream’s destructor. But since destructors
can’t throw exceptions, any failures at that stage won’t be visible in your code.
So, always call complete() on a stream_to to close it off properly! Thread
safety {#thread-safety} =============

This library does not contain any locking code to protect objects against simul-
taneous modification in multi-threaded programs. Therefore it is up to you, the
user of the library, to ensure that your threaded client programs perform no
conflicting operations concurrently.

Most of the time this isn’t hard. Result sets are immutable, so you can share
them between threads without problem. The main rule is:

@li Treat a connection, together with any and all objects related to it, as a
“world” of its own. You should generally make sure that the same “world” is
never accessed by another thread while you're doing anything non-const in there.

That means: don’t issue a query on a transaction while you're also opening a
subtransaction, don’t access a cursor while you may also be committing, and so
on.

In particular, cursors are tricky. It’s easy to perform a non-const operation
without noticing. So, if you’re going to share cursors or cursor-related objects
between threads, lock very conservatively!

Use pgxx::describe_thread_safety to find out at runtime what level of
thread safety is implemented in your build and version of libpgxx. It returns a
paxx: :thread_safety_model describing what you can and cannot rely on. A
command-line utility tools/pgxxthreadsafety prints out the same information.

27

	libpqxx
	Querying rows of data
	Streaming rows
	Results with metadata
	Caveats
	Converting types
	Supporting a new type
	Your type
	Specialise type_name
	Specialise nullness
	Specialise string_traits
	from_string
	to_buf
	into_buf
	size_buffer

	Optional: Specialise is_unquoted_safe
	Optional: Specialise param_format
	SQL injection
	Using the esc functions

	Getting started
	Multiple parameters
	Generating placeholders
	Preparing a statement
	Parameters
	A special prepared statement
	Performance note
	Zero bytes
	Interlude: null values
	Streaming data from a query
	Is streaming right for my query?

	Streaming data into a table

