
Patroni Documentation
Release 1.4.4

Zalando SE

Jul 09, 2019

CONTENTS:

1 Introduction 3
1.1 Development Status . 3
1.2 Technical Requirements/Installation . 3
1.3 Running and Configuring . 4
1.4 YAML Configuration . 4
1.5 Environment Configuration . 4
1.6 Replication Choices . 4
1.7 Applications Should Not Use Superusers . 5

2 Patroni configuration 7

3 REST API 11
3.1 GET /config . 11
3.2 PATCH /config . 11
3.3 PUT /config . 13

4 Environment Configuration Settings 15
4.1 Global/Universal . 15
4.2 Bootstrap configuration . 15
4.3 Consul . 15
4.4 Etcd . 16
4.5 Exhibitor . 16
4.6 Kubernetes . 16
4.7 PostgreSQL . 17
4.8 REST API . 17
4.9 ZooKeeper . 18

5 YAML Configuration Settings 19
5.1 Global/Universal . 19
5.2 Bootstrap configuration . 19
5.3 Consul . 20
5.4 Etcd . 21
5.5 Exhibitor . 21
5.6 Kubernetes . 21
5.7 PostgreSQL . 22
5.8 REST API . 23
5.9 ZooKeeper . 23
5.10 Watchdog . 24

6 Replica imaging and bootstrap 25
6.1 Bootstrap . 25

i

6.2 Building replicas . 26

7 Replication modes 29
7.1 Asynchronous mode durability . 29
7.2 PostgreSQL synchronous replication . 29
7.3 Synchronous mode . 30
7.4 Synchronous mode implementation . 30

8 Pause/Resume mode for the cluster 31
8.1 The goal . 31
8.2 The implementation . 31
8.3 User guide . 31

9 Using Patroni with Kubernetes 33
9.1 Use Endpoints . 33
9.2 Use ConfigMaps . 33
9.3 Configuration . 33
9.4 Examples . 34

10 Watchdog support 35
10.1 Setting up software watchdog on Linux . 36

11 Release notes 37
11.1 Version 1.4.4 . 37
11.2 Version 1.4.3 . 38
11.3 Version 1.4.2 . 39
11.4 Version 1.4.1 . 39
11.5 Version 1.4 . 40
11.6 Version 1.3.6 . 41
11.7 Version 1.3.5 . 42
11.8 Version 1.3.4 . 42
11.9 Version 1.3.3 . 43
11.10 Version 1.3.2 . 43
11.11 Version 1.3.1 . 43
11.12 Version 1.3 . 44
11.13 Version 1.2 . 46
11.14 Version 1.1 . 48
11.15 Version 1.0 . 49
11.16 Version 0.90 . 51
11.17 Version 0.80 . 52

12 Contributing guidelines 55
12.1 Chatting . 55
12.2 Reporting issues . 55
12.3 Contributing a pull request . 55

13 Indices and tables 57

ii

Patroni Documentation, Release 1.4.4

Patroni is a template for you to create your own customized, high-availability solution using Python and - for maximum
accessibility - a distributed configuration store like ZooKeeper, etcd, Consul or Kubernetes. Database engineers,
DBAs, DevOps engineers, and SREs who are looking to quickly deploy HA PostgreSQL in the datacenter-or anywhere
else-will hopefully find it useful.

We call Patroni a “template” because it is far from being a one-size-fits-all or plug-and-play replication system. It will
have its own caveats. Use wisely. There are many ways to run high availability with PostgreSQL; for a list, see the
PostgreSQL Documentation.

Note to Kubernetes users: Patroni can run natively on top of Kubernetes. Take a look at the Kubernetes chapter of
the Patroni documentation.

CONTENTS: 1

https://zookeeper.apache.org/
https://github.com/coreos/etcd
https://github.com/hashicorp/consul
https://kubernetes.io
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling

Patroni Documentation, Release 1.4.4

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Patroni originated as a fork of Governor, the project from Compose. It includes plenty of new features.

For an example of a Docker-based deployment with Patroni, see Spilo, currently in use at Zalando.

For additional background info, see:

• PostgreSQL HA with Kubernetes and Patroni, talk by Josh Berkus at KubeCon 2016 (video)

• Feb. 2016 Zalando Tech blog post

1.1 Development Status

Patroni is in active development and accepts contributions. See our Contributing section below for more details.

We report new releases information here.

1.2 Technical Requirements/Installation

Pre-requirements for Mac OS

To install requirements on a Mac, run the following:

brew install postgresql etcd haproxy libyaml python

General installation for pip

Patroni can be installed with pip:

pip install patroni[dependencies]

where dependencies can be either empty, or consist of one or more of the following:

etcd python-etcd module in order to use Etcd as DCS

consul python-consul module in order to use Consul as DCS

zookeeper kazoo module in order to use Zookeeper as DCS

exhibitor kazoo module in order to use Exhibitor as DCS (same dependencies as for Zookeeper)

kubernetes kubernetes module in order to use Kubernetes as DCS in Patroni

aws boto in order to use AWS callbacks

3

https://github.com/compose/governor
https://github.com/zalando/spilo
https://www.youtube.com/watch?v=iruaCgeG7qs
https://tech.zalando.de/blog/zalandos-patroni-a-template-for-high-availability-postgresql/

Patroni Documentation, Release 1.4.4

For example, the command in order to install Patroni together with dependencies for Etcd as a DCS and AWS callbacks
is:

pip install patroni[etcd,aws]

Note that external tools to call in the replica creation or custom bootstrap scripts (i.e. WAL-E) should be installed
independently of Patroni.

1.3 Running and Configuring

The following section assumes Patroni repository as being cloned from https://github.com/zalando/patroni. Namely,
you will need example configuration files postgres0.yml and postgres1.yml. If you installed Patroni with pip, you can
obtain those files from the git repository and replace ./patroni.py below with patroni command.

To get started, do the following from different terminals:

> etcd --data-dir=data/etcd
> ./patroni.py postgres0.yml
> ./patroni.py postgres1.yml

You will then see a high-availability cluster start up. Test different settings in the YAML files to see how the cluster’s
behavior changes. Kill some of the components to see how the system behaves.

Add more postgres*.yml files to create an even larger cluster.

Patroni provides an HAProxy configuration, which will give your application a single endpoint for connecting to the
cluster’s leader. To configure, run:

> haproxy -f haproxy.cfg

> psql --host 127.0.0.1 --port 5000 postgres

1.4 YAML Configuration

Go here for comprehensive information about settings for etcd, consul, and ZooKeeper. And for an example, see
postgres0.yml.

1.5 Environment Configuration

Go here for comprehensive information about configuring(overriding) settings via environment variables.

1.6 Replication Choices

Patroni uses Postgres’ streaming replication, which is asynchronous by default. Patroni’s asynchronous replication
configuration allows for maximum_lag_on_failover settings. This setting ensures failover will not occur if a
follower is more than a certain number of bytes behind the leader. This setting should be increased or decreased
based on business requirements. It’s also possible to use synchronous replication for better durability guarantees. See
replication modes documentation for details.

4 Chapter 1. Introduction

https://github.com/zalando/patroni
http://www.haproxy.org/
https://github.com/zalando/patroni/blob/master/postgres0.yml

Patroni Documentation, Release 1.4.4

1.7 Applications Should Not Use Superusers

When connecting from an application, always use a non-superuser. Patroni requires access to the database to function
properly. By using a superuser from an application, you can potentially use the entire connection pool, including the
connections reserved for superusers, with the superuser_reserved_connections setting. If Patroni cannot
access the Primary because the connection pool is full, behavior will be undesirable.

1.7. Applications Should Not Use Superusers 5

Patroni Documentation, Release 1.4.4

6 Chapter 1. Introduction

CHAPTER

TWO

PATRONI CONFIGURATION

Patroni configuration is stored in the DCS (Distributed Configuration Store). There are 3 types of configuration:

• Dynamic configuration. These options can be set in DCS at any time. If the options changed are not part
of the startup configuration, they are applied asynchronously (upon the next wake up cycle) to every
node, which gets subsequently reloaded. If the node requires a restart to apply the configuration (for
options with context postmaster, if their values have changed), a special flag, pending_restart indi-
cating this, is set in the members.data JSON. Additionally, the node status also indicates this, by showing
"restart_pending": true.

• Local configuration (patroni.yml). These options are defined in the configuration file and take precedence over
dynamic configuration. patroni.yml could be changed and reload in runtime (without restart of Patroni) by
sending SIGHUP to the Patroni process or by performing POST /reload REST-API request.

• Environment configuration. It is possible to set/override some of the “Local” configuration parameters with
environment variables. Environment configuration is very useful when you are running in a dynamic
environment and you don’t know some of the parameters in advance (for example it’s not possible to know
your external IP address when you are running inside docker).

Some of the PostgreSQL parameters must hold the same values on the master and the replicas. For those, values set
either in the local patroni configuration files or via the environment variables take no effect. To alter or set their values
one must change the shared configuration in the DCS. Below is the actual list of such parameters together with the
default values:

• max_connections: 100

• max_locks_per_transaction: 64

• max_worker_processes: 8

• max_prepared_transactions: 0

• wal_level: hot_standby

• wal_log_hints: on

• track_commit_timestamp: off

For the parameters below, PostgreSQL does not require equal values among the master and all the replicas. However,
considering the possibility of a replica to become the master at any time, it doesn’t really make sense to set them
differently; therefore, Patroni restricts setting their values to the Dynamic configuration

• max_wal_senders: 5

• max_replication_slots: 5

• wal_keep_segments: 8

These parameters are validated to ensure they are sane, or meet a minimum value.

7

Patroni Documentation, Release 1.4.4

There are some other Postgres parameters controlled by Patroni:

• listen_addresses - is set either from postgresql.listen or from PATRONI_POSTGRESQL_LISTEN en-
vironment variable

• port - is set either from postgresql.listen or from PATRONI_POSTGRESQL_LISTEN environment
variable

• cluster_name - is set either from scope or from PATRONI_SCOPE environment variable

• hot_standby: on

To be on the safe side parameters from the above lists are not written into postgresql.conf, but passed as a list
of arguments to the pg_ctl start which gives them the highest precedence, even above ALTER SYSTEM

When applying the local or dynamic configuration options, the following actions are taken:

• The node first checks if there is a postgresql.base.conf or if the custom_conf parameter is set.

• If the custom_conf parameter is set, it will take the file specified on it as a base configuration, ignoring post-
gresql.base.conf and postgresql.conf.

• If the custom_conf parameter is not set and postgresql.base.conf exists, it contains the renamed “original”
configuration and it will be used as a base configuration.

• If there is no custom_conf nor postgresql.base.conf, the original postgresql.conf is taken and renamed to post-
gresql.base.conf.

• The dynamic options (with the exceptions above) are dumped into the postgresql.conf and an include is set
in postgresql.conf to the used base configuration (either postgresql.base.conf or what is on custom_conf).
Therefore, we would be able to apply new options without re-reading the configuration file to check if the
include is present not.

• Some parameters that are essential for Patroni to manage the cluster are overridden using the command line.

• If some of the options that require restart are changed (we should look at the context in pg_settings and at the
actual values of those options), a pending_restart flag of a given node is set. This flag is reset on any restart.

The parameters would be applied in the following order (run-time are given the highest priority):

1. load parameters from file postgresql.base.conf (or from a custom_conf file, if set)

2. load parameters from file postgresql.conf

3. load parameters from file postgresql.auto.conf

4. run-time parameter using -o –name=value

This allows configuration for all the nodes (2), configuration for a specific node using ALTER SYSTEM (3) and ensures
that parameters essential to the running of Patroni are enforced (4), as well as leaves room for configuration tools that
manage postgresql.conf directly without involving Patroni (1).

Also, the following Patroni configuration options can be changed only dynamically:

• ttl: 30

• loop_wait: 10

• retry_timeouts: 10

• maximum_lag_on_failover: 1048576

• postgresql.use_slots: true

Upon changing these options, Patroni will read the relevant section of the configuration stored in DCS and change its
run-time values.

8 Chapter 2. Patroni configuration

https://www.postgresql.org/docs/current/static/sql-altersystem.html

Patroni Documentation, Release 1.4.4

Patroni nodes are dumping the state of the DCS options to disk upon for every change of the configuration into the
file patroni.dynamic.json located in the Postgres data directory. Only the master is allowed to restore these
options from the on-disk dump if these are completely absent from the DCS or if they are invalid.

9

Patroni Documentation, Release 1.4.4

10 Chapter 2. Patroni configuration

CHAPTER

THREE

REST API

We provide a REST API endpoint for working with dynamic configuration.

3.1 GET /config

Get current version of dynamic configuration.

$ curl -s localhost:8008/config | jq .
{

"ttl": 30,
"loop_wait": 10,
"retry_timeout": 10,
"maximum_lag_on_failover": 1048576,
"postgresql": {
"use_slots": true,
"use_pg_rewind": true,
"parameters": {

"hot_standby": "on",
"wal_log_hints": "on",
"wal_keep_segments": 8,
"wal_level": "hot_standby",
"max_wal_senders": 5,
"max_replication_slots": 5,
"max_connections": "100"

}
}

}

3.2 PATCH /config

Change existing configuration.

$ curl -s -XPATCH -d \
'{"loop_wait":5,"ttl":20,"postgresql":{"parameters":{"max_connections":"101"}}

↪→}' \
http://localhost:8008/config | jq .

{
"ttl": 20,
"loop_wait": 5,
"maximum_lag_on_failover": 1048576,

(continues on next page)

11

Patroni Documentation, Release 1.4.4

(continued from previous page)

"retry_timeout": 10,
"postgresql": {
"use_slots": true,
"use_pg_rewind": true,
"parameters": {

"hot_standby": "on",
"wal_log_hints": "on",
"wal_keep_segments": 8,
"wal_level": "hot_standby",
"max_wal_senders": 5,
"max_replication_slots": 5,
"max_connections": "101"

}
}

}

The above REST API call patches the existing configuration and returns the new configuration.

Let’s check that the node processed this configuration. First of all it should start printing log lines every 5 seconds
(loop_wait=5). The change of “max_connections” requires a restart, so the “restart_pending” flag should be exposed:

$ curl -s http://localhost:8008/patroni | jq .
{

"pending_restart": true,
"database_system_identifier": "6287881213849985952",
"postmaster_start_time": "2016-06-13 13:13:05.211 CEST",
"xlog": {
"location": 2197818976

},
"patroni": {
"scope": "batman",
"version": "1.0"

},
"state": "running",
"role": "master",
"server_version": 90503

}

Removing parameters:

If you want to remove (reset) some setting just patch it with null:

$ curl -s -XPATCH -d \
'{"postgresql":{"parameters":{"max_connections":null}}}' \
http://localhost:8008/config | jq .

{
"ttl": 20,
"loop_wait": 5,
"retry_timeout": 10,
"maximum_lag_on_failover": 1048576,
"postgresql": {
"use_slots": true,
"use_pg_rewind": true,
"parameters": {

"hot_standby": "on",
"unix_socket_directories": ".",
"wal_keep_segments": 8,

(continues on next page)

12 Chapter 3. REST API

Patroni Documentation, Release 1.4.4

(continued from previous page)

"wal_level": "hot_standby",
"wal_log_hints": "on",
"max_wal_senders": 5,
"max_replication_slots": 5

}
}

}

Above call removes postgresql.parameters.max_connections from the dynamic configuration.

3.3 PUT /config

It’s also possible to perform the full rewrite of an existing dynamic configuration unconditionally:

$ curl -s -XPUT -d \
'{"maximum_lag_on_failover":1048576,"retry_timeout":10,"postgresql":{"use_

↪→slots":true,"use_pg_rewind":true,"parameters":{"hot_standby":"on","wal_log_hints":
↪→"on","wal_keep_segments":8,"wal_level":"hot_standby","unix_socket_directories":".",
↪→"max_wal_senders":5}},"loop_wait":3,"ttl":20}' \

http://localhost:8008/config | jq .
{

"ttl": 20,
"maximum_lag_on_failover": 1048576,
"retry_timeout": 10,
"postgresql": {
"use_slots": true,
"parameters": {

"hot_standby": "on",
"unix_socket_directories": ".",
"wal_keep_segments": 8,
"wal_level": "hot_standby",
"wal_log_hints": "on",
"max_wal_senders": 5

},
"use_pg_rewind": true

},
"loop_wait": 3

}

3.3. PUT /config 13

Patroni Documentation, Release 1.4.4

14 Chapter 3. REST API

CHAPTER

FOUR

ENVIRONMENT CONFIGURATION SETTINGS

It is possible to override some of the configuration parameters defined in the Patroni configuration file using the
system environment variables. This document lists all environment variables handled by Patroni. The values set via
those variables always take precedence over the ones set in the Patroni configuration file.

4.1 Global/Universal

• PATRONI_CONFIGURATION: it is possible to set the entire configuration for the Patroni via
PATRONI_CONFIGURATION environment variable. In this case any other environment variables will not
be considered!

• PATRONI_NAME: name of the node where the current instance of Patroni is running. Must be unique for the
cluster.

• PATRONI_NAMESPACE: path within the configuration store where Patroni will keep information about the
cluster. Default value: “/service”

• PATRONI_SCOPE: cluster name

• PATRONI_LOGLEVEL: sets the general logging level (see the docs for Python logging)

• PATRONI_REQUESTS_LOGLEVEL: sets the logging level for all HTTP requests e.g. Kubernetes API calls
(see the docs for Python logging)

4.2 Bootstrap configuration

It is possible to create new database users right after the successful initialization of a new cluster. This process is
defined by the following variables:

• PATRONI_<username>_PASSWORD=’<password>’

• PATRONI_<username>_OPTIONS=’list,of,options’

Example: defining PATRONI_admin_PASSWORD=strongpasswd and PATRONI_admin_OPTIONS='createrole,
createdb' will cause creation of the user admin with the password strongpasswd that is allowed to create other
users and databases.

4.3 Consul

• PATRONI_CONSUL_HOST: the host:port for the Consul endpoint.

15

https://docs.python.org/3.6/library/logging.html#levels
https://docs.python.org/3.6/library/logging.html#levels

Patroni Documentation, Release 1.4.4

• PATRONI_CONSUL_URL: url for the Consul, in format: http(s)://host:port

• PATRONI_CONSUL_PORT: (optional) Consul port

• PATRONI_CONSUL_SCHEME: (optional) http or https, defaults to http

• PATRONI_CONSUL_TOKEN: (optional) ACL token

• PATRONI_CONSUL_VERIFY: (optional) whether to verify the SSL certificate for HTTPS requests

• PATRONI_CONSUL_CACERT: (optional) The ca certificate. If present it will enable validation.

• PATRONI_CONSUL_CERT: (optional) File with the client certificate

• PATRONI_CONSUL_KEY: (optional) File with the client key. Can be empty if the key is part of certificate.

• PATRONI_CONSUL_DC: (optional) Datacenter to communicate with. By default the datacenter of the host
is used.

• PATRONI_CONSUL_CHECKS: (optional) list of Consul health checks used for the session. If not specified
Consul will use “serfHealth” in additional to the TTL based check created by Patroni. Additional checks,
in particular the “serfHealth”, may cause the leader lock to expire faster than in ttl seconds when the leader
instance becomes unavailable.

4.4 Etcd

• PATRONI_ETCD_HOST: the host:port for the etcd endpoint.

• PATRONI_ETCD_HOSTS: list of etcd endpoints in format host1:port1,host2:port2,etc. . .

• PATRONI_ETCD_URL: url for the etcd, in format: http(s)://(username:password@)host:port

• PATRONI_ETCD_PROXY: proxy url for the etcd. If you are connecting to the etcd using proxy, use this
parameter instead of PATRONI_ETCD_URL

• PATRONI_ETCD_SRV: Domain to search the SRV record(s) for cluster autodiscovery.

• PATRONI_ETCD_CACERT: The ca certificate. If present it will enable validation.

• PATRONI_ETCD_CERT: File with the client certificate

• PATRONI_ETCD_KEY: File with the client key. Can be empty if the key is part of certificate.

4.5 Exhibitor

• PATRONI_EXHIBITOR_HOSTS: initial list of Exhibitor (ZooKeeper) nodes in format: ‘host1,host2,etc. . . ’.
This list updates automatically whenever the Exhibitor (ZooKeeper) cluster topology changes.

• PATRONI_EXHIBITOR_PORT: Exhibitor port.

4.6 Kubernetes

• PATRONI_KUBERNETES_NAMESPACE: (optional) Kubernetes namespace where the Patroni pod is run-
ning. Default value is default.

• PATRONI_KUBERNETES_LABELS: Labels in format {label1: value1, label2: value2}.
These labels will be used to find existing objects (Pods and either Endpoints or ConfigMaps) associated with the
current cluster. Also Patroni will set them on every object (Endpoint or ConfigMap) it creates.

16 Chapter 4. Environment Configuration Settings

Patroni Documentation, Release 1.4.4

• PATRONI_KUBERNETES_SCOPE_LABEL: (optional) name of the label containing cluster name. Default
value is cluster-name.

• PATRONI_KUBERNETES_ROLE_LABEL: (optional) name of the label containing Postgres role (master
or replica). Patroni will set this label on the pod it is running in. Default value is role.

• PATRONI_KUBERNETES_USE_ENDPOINTS: (optional) if set to true, Patroni will use Endpoints instead
of ConfigMaps to run leader elections and keep cluster state.

• PATRONI_KUBERNETES_POD_IP: (optional) IP address of the pod Patroni is running in. This value is
required when PATRONI_KUBERNETES_USE_ENDPOINTS is enabled and is used to populate the leader end-
point subsets when the pod’s PostgreSQL is promoted.

• PATRONI_KUBERNETES_PORTS: (optional) if the Service object has the name for the port, the same
name must appear in the Endpoint object, otherwise service won’t work. For example, if your service is
defined as {Kind: Service, spec: {ports: [{name: postgresql, port: 5432,
targetPort: 5432}]}}, then you have to set PATRONI_KUBERNETES_PORTS='{[{"name":
"postgresql", "port": 5432}]}' and Patroni will use it for updating subsets of the leader End-
point. This parameter is used only if PATRONI_KUBERNETES_USE_ENDPOINTS is set.

4.7 PostgreSQL

• PATRONI_POSTGRESQL_LISTEN: IP address + port that Postgres listens to. Multiple comma-separated
addresses are permitted, as long as the port component is appended after to the last one with a colon, i.e.
listen: 127.0.0.1,127.0.0.2:5432. Patroni will use the first address from this list to establish
local connections to the PostgreSQL node.

• PATRONI_POSTGRESQL_CONNECT_ADDRESS: IP address + port through which Postgres is accessible
from other nodes and applications.

• PATRONI_POSTGRESQL_DATA_DIR: The location of the Postgres data directory, either existing or to be
initialized by Patroni.

• PATRONI_POSTGRESQL_CONFIG_DIR: The location of the Postgres configuration directory, defaults to
the data directory. Must be writable by Patroni.

• PATRONI_POSTGRESQL_BIN_DIR: Path to PostgreSQL binaries. (pg_ctl, pg_rewind, pg_basebackup,
postgres) The default value is an empty string meaning that PATH environment variable will be used to find the
executables.

• PATRONI_POSTGRESQL_PGPASS: path to the .pgpass password file. Patroni creates this file before exe-
cuting pg_basebackup and under some other circumstances. The location must be writable by Patroni.

• PATRONI_REPLICATION_USERNAME: replication username; the user will be created during initializa-
tion. Replicas will use this user to access master via streaming replication

• PATRONI_REPLICATION_PASSWORD: replication password; the user will be created during initializa-
tion.

• PATRONI_SUPERUSER_USERNAME: name for the superuser, set during initialization (initdb) and later
used by Patroni to connect to the postgres. Also this user is used by pg_rewind.

• PATRONI_SUPERUSER_PASSWORD: password for the superuser, set during initialization (initdb).

4.8 REST API

• PATRONI_RESTAPI_CONNECT_ADDRESS: IP address and port to access the REST API.

4.7. PostgreSQL 17

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

Patroni Documentation, Release 1.4.4

• PATRONI_RESTAPI_LISTEN: IP address and port that Patroni will listen to, to provide health-check infor-
mation for HAProxy.

• PATRONI_RESTAPI_USERNAME: Basic-auth username to protect unsafe REST API endpoints.

• PATRONI_RESTAPI_PASSWORD: Basic-auth password to protect unsafe REST API endpoints.

• PATRONI_RESTAPI_CERTFILE: Specifies the file with the certificate in the PEM format. If the certfile is
not specified or is left empty, the API server will work without SSL.

• PATRONI_RESTAPI_KEYFILE: Specifies the file with the secret key in the PEM format.

4.9 ZooKeeper

• PATRONI_ZOOKEEPER_HOSTS: comma separated list of ZooKeeper cluster members:
“‘host1:port1’,’host2:port2’,’etc. . . ’”. It is important to quote every single entity!

18 Chapter 4. Environment Configuration Settings

CHAPTER

FIVE

YAML CONFIGURATION SETTINGS

5.1 Global/Universal

• name: the name of the host. Must be unique for the cluster.

• namespace: path within the configuration store where Patroni will keep information about the cluster. Default
value: “/service”

• scope: cluster name

5.2 Bootstrap configuration

• dcs: This section will be written into /<namespace>/<scope>/config of a given configuration store after initializing of new cluster. This is the global configuration for the cluster. If you want to change some parameters for all cluster nodes - just do it in DCS (or via Patroni API) and all nodes will apply this configuration.

– loop_wait: the number of seconds the loop will sleep. Default value: 10

– ttl: the TTL to acquire the leader lock. Think of it as the length of time before initiation of the
automatic failover process. Default value: 30

– retry_timeout: timeout for DCS and PostgreSQL operation retries. DCS or network issues shorter
than this will not cause Patroni to demote the leader. Default value: 10

– maximum_lag_on_failover: the maximum bytes a follower may lag to be able to participate in leader
election.

– master_start_timeout: the amount of time a master is allowed to recover from failures before failover
is triggered. Default is 300 seconds. When set to 0 failover is done immediately after a crash is
detected if possible. When using asynchronous replication a failover can cause lost transactions.
Best worst case failover time for master failure is: loop_wait + master_start_timeout + loop_wait,
unless master_start_timeout is zero, in which case it’s just loop_wait. Set the value according to your
durability/availability tradeoff.

– synchronous_mode: turns on synchronous replication mode. In this mode a replica will be chosen
as synchronous and only the latest leader and synchronous replica are able to participate in leader
election. Synchronous mode makes sure that successfully committed transactions will not be lost at
failover, at the cost of losing availability for writes when Patroni cannot ensure transaction durability.
See replication modes documentation for details.

– postgresql:

* use_pg_rewind: whether or not to use pg_rewind

* use_slots: whether or not to use replication_slots. Must be False for PostgreSQL 9.3. You
should comment out max_replication_slots before it becomes ineligible for leader status.

19

Patroni Documentation, Release 1.4.4

* recovery_conf: additional configuration settings written to recovery.conf when configuring
follower.

* parameters: list of configuration settings for Postgres. Many of these are required for replica-
tion to work.

• method: custom script to use for bootstrapping this cluster. See custom bootstrap methods documentation for
details. When initdb is specified revert to the default initdb command. initdb is also triggered when no
method parameter is present in the configuration file.

• initdb: List options to be passed on to initdb.

– - data-checksums: Must be enabled when pg_rewind is needed on 9.3.

– - encoding: UTF8: default encoding for new databases.

– - locale: UTF8: default locale for new databases.

• pg_hba: list of lines that you should add to pg_hba.conf.

– - host all all 0.0.0.0/0 md5.

– - host replication replicator 127.0.0.1/32 md5: A line like this is required for replication.

• users: Some additional users which need to be created after initializing new cluster

– admin: the name of user

* password: zalando:

* options: list of options for CREATE USER statement

· - createrole

· - createdb

• post_bootstrap or post_init: An additional script that will be executed after initializing the cluster. The script
receives a connection string URL (with the cluster superuser as a user name). The PGPASSFILE variable is set
to the location of pgpass file.

5.3 Consul

Most of the parameters are optional, but you have to specify one of the host or url

• host: the host:port for the Consul endpoint, in format: http(s)://host:port

• url: url for the Consul endpoint

• port: (optional) Consul port

• scheme: (optional) http or https, defaults to http

• token: (optional) ACL token

• verify: (optional) whether to verify the SSL certificate for HTTPS requests

• cacert: (optional) The ca certificate. If present it will enable validation.

• cert: (optional) file with the client certificate

• key: (optional) file with the client key. Can be empty if the key is part of cert.

• dc: (optional) Datacenter to communicate with. By default the datacenter of the host is used.

20 Chapter 5. YAML Configuration Settings

Patroni Documentation, Release 1.4.4

• checks: (optional) list of Consul health checks used for the session. If not specified Consul will use “serfHealth”
in additional to the TTL based check created by Patroni. Additional checks, in particular the “serfHealth”, may
cause the leader lock to expire faster than in ttl seconds when the leader instance becomes unavailable

5.4 Etcd

Most of the parameters are optional, but you have to specify one of the host, hosts, url, proxy or srv

• host: the host:port for the etcd endpoint.

• hosts: list of etcd endpoint in format host1:port1,host2:port2,etc. . . Could be a comma separated string or an
actual yaml list.

• url: url for the etcd

• proxy: proxy url for the etcd. If you are connecting to the etcd using proxy, use this parameter instead of url

• srv: Domain to search the SRV record(s) for cluster autodiscovery.

• protocol: (optional) http or https, if not specified http is used. If the url or proxy is specified - will take protocol
from them.

• username: (optional) username for etcd authentication

• password: (optional) password for etcd authentication.

• cacert: (optional) The ca certificate. If present it will enable validation.

• cert: (optional) file with the client certificate

• key: (optional) file with the client key. Can be empty if the key is part of cert.

5.5 Exhibitor

• hosts: initial list of Exhibitor (ZooKeeper) nodes in format: ‘host1,host2,etc. . . ’. This list updates automatically
whenever the Exhibitor (ZooKeeper) cluster topology changes.

• poll_interval: how often the list of ZooKeeper and Exhibitor nodes should be updated from Exhibitor

• port: Exhibitor port.

5.6 Kubernetes

• namespace: (optional) Kubernetes namespace where Patroni pod is running. Default value is default.

• labels: Labels in format {label1: value1, label2: value2}. These labels will be used to find
existing objects (Pods and either Endpoints or ConfigMaps) associated with the current cluster. Also Patroni
will set them on every object (Endpoint or ConfigMap) it creates.

• scope_label: (optional) name of the label containing cluster name. Default value is cluster-name.

• role_label: (optional) name of the label containing role (master or replica). Patroni will set this label on the pod
it runs in. Default value is role.

• use_endpoints: (optional) if set to true, Patroni will use Endpoints instead of ConfigMaps to run leader elections
and keep cluster state.

5.4. Etcd 21

Patroni Documentation, Release 1.4.4

• pod_ip: (optional) IP address of the pod Patroni is running in. This value is required when use_endpoints is
enabled and is used to populate the leader endpoint subsets when the pod’s PostgreSQL is promoted.

• ports: (optional) if the Service object has the name for the port, the same name must appear in the Endpoint ob-
ject, otherwise service won’t work. For example, if your service is defined as {Kind: Service, spec:
{ports: [{name: postgresql, port: 5432, targetPort: 5432}]}}, then you have
to set kubernetes.ports: {[{"name": "postgresql", "port": 5432}]} and Patroni
will use it for updating subsets of the leader Endpoint. This parameter is used only if kubernetes.use_endpoints
is set.

5.7 PostgreSQL

• authentication:

– superuser:

* username: name for the superuser, set during initialization (initdb) and later used by Pa-
troni to connect to the postgres.

* password: password for the superuser, set during initialization (initdb).

– replication:

* username: replication username; the user will be created during initialization. Replicas
will use this user to access master via streaming replication

* password: replication password; the user will be created during initialization.

• callbacks: callback scripts to run on certain actions. Patroni will pass the action, role and cluster name. (See scripts/aws.py as an example of how to write them.)

– on_reload: run this script when configuration reload is triggered.

– on_restart: run this script when the cluster restarts.

– on_role_change: run this script when the cluster is being promoted or demoted.

– on_start: run this script when the cluster starts.

– on_stop: run this script when the cluster stops.

• connect_address: IP address + port through which Postgres is accessible from other nodes and applications.

• create_replica_method: an ordered list of the create methods for turning a Patroni node into a new replica.
“basebackup” is the default method; other methods are assumed to refer to scripts, each of which is configured
as its own config item. See custom replica creation methods documentation for further explanation.

• data_dir: The location of the Postgres data directory, either existing or to be initialized by Patroni.

• config_dir: The location of the Postgres configuration directory, defaults to the data directory. Must be writable
by Patroni.

• bin_dir: Path to PostgreSQL binaries (pg_ctl, pg_rewind, pg_basebackup, postgres). The default value is an
empty string meaning that PATH environment variable will be used to find the executables.

• listen: IP address + port that Postgres listens to; must be accessible from other nodes in the cluster, if you’re
using streaming replication. Multiple comma-separated addresses are permitted, as long as the port component
is appended after to the last one with a colon, i.e. listen: 127.0.0.1,127.0.0.2:5432. Patroni
will use the first address from this list to establish local connections to the PostgreSQL node.

• use_unix_socket: specifies that Patroni should prefer to use unix sockets to connect to the cluster. Default
value is false. If unix_socket_directories is definded, Patroni will use first suitable value from it

22 Chapter 5. YAML Configuration Settings

Patroni Documentation, Release 1.4.4

to connect to the cluster and fallback to tcp if nothing is suitable. If unix_socket_directories is not
specified in postgresql.parameters, Patroni will assume that default value should be used and omit
host from connection parameters.

• pgpass: path to the .pgpass password file. Patroni creates this file before executing pg_basebackup, the post_init
script and under some other circumstances. The location must be writable by Patroni.

• recovery_conf: additional configuration settings written to recovery.conf when configuring follower.

• custom_conf : path to an optional custom postgresql.conf file, that will be used in place of
postgresql.base.conf. The file must exist on all cluster nodes, be readable by PostgreSQL and will
be included from its location on the real postgresql.conf. Note that Patroni will not monitor this file for
changes, nor backup it. However, its settings can still be overridden by Patroni’s own configuration facilities -
see dynamic configuration for details.

• parameters: list of configuration settings for Postgres. Many of these are required for replication to work.

• pg_hba: list of lines that Patroni will use to generate pg_hba.conf. This parameter has higher priority than bootstrap.pg_hba. Together with dynamic configuration it simplifies management of pg_hba.conf.

– - host all all 0.0.0.0/0 md5.

– - host replication replicator 127.0.0.1/32 md5: A line like this is required for replication.

• pg_ctl_timeout: How long should pg_ctl wait when doing start, stop or restart. Default value is 60
seconds.

• use_pg_rewind: try to use pg_rewind on the former leader when it joins cluster as a replica.

• remove_data_directory_on_rewind_failure: If this option is enabled, Patroni will remove postgres data di-
rectory and recreate replica. Otherwise it will try to follow the new leader. Default value is false.

• replica_method: for each create_replica_method other than basebackup, you would add a configuration section
of the same name. At a minimum, this should include “command” with a full path to the actual script to be
executed. Other configuration parameters will be passed along to the script in the form “parameter=value”.

5.8 REST API

• connect_address: IP address and port to access the REST API.

• listen: IP address and port that Patroni will listen to, to provide health-check information for HAProxy.

• Optional:

– authentication:

* username: Basic-auth username to protect unsafe REST API endpoints.

* password: Basic-auth password to protect unsafe REST API endpoints.

– certfile: Specifies the file with the certificate in the PEM format. If the certfile is not specified or is
left empty, the API server will work without SSL.

– keyfile: Specifies the file with the secret key in the PEM format.

5.9 ZooKeeper

• hosts: list of ZooKeeper cluster members in format: [‘host1:port1’, ‘host2:port2’, ‘etc. . . ’].

5.8. REST API 23

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

Patroni Documentation, Release 1.4.4

5.10 Watchdog

• mode: off, automatic or required. When off watchdog is disabled. When automatic watchdog
will be used if available, but ignored if it is not. When required the node will not become a leader unless
watchdog can be successfully enabled.

• device: Path to watchdog device. Defaults to /dev/watchdog.

• safety_margin: Number of seconds of safety margin between watchdog triggering and leader key expiration.

24 Chapter 5. YAML Configuration Settings

CHAPTER

SIX

REPLICA IMAGING AND BOOTSTRAP

Patroni allows customizing creation of a new replica. It also supports defining what happens when the new empty
cluster is being bootstrapped. The distinction between two is well defined: Patroni creates replicas only if the
initialize key is present in DCS for the cluster. If there is no initialize key - Patroni calls bootstrap
exclusively on the first node that takes the initialize key lock.

6.1 Bootstrap

PostgreSQL provides initdb command to initialize a new cluster and Patroni calls it by default. In certain cases,
particularly when creating a new cluster as a copy of an existing one, it is necessary to replace a built-in method with
custom actions. Patroni supports executing user-defined scripts to bootstrap new clusters, supplying some required
arguments to them, i.e. the name of the cluster and the path to the data directory. This is configured in the bootstrap
section of the Patroni configuration. For example:

bootstrap:
method: <custom_bootstrap_method_name>
<custom_bootstrap_method_name>:

command: <path_to_custom_bootstrap_script> [param1 [, ...]]
keep_existing_recovery_conf: False
recovery_conf:

recovery_target_action: promote
recovery_target_timeline: latest
restore_command: <method_specific_restore_command>

Each bootstrap method must define at least a name and a command. A special initdb method is available to
trigger the default behavior, in which case method parameter can be omitted altogether. The command can be
specified using either an absolute path, or the one relative to the patroni command location. In addition to the fixed
parameters defined in the configuration files, Patroni supplies two cluster-specific ones:

--scope Name of the cluster to be bootstrapped

--datadir Path to the data directory of the cluster instance to be bootstrapped

If the bootstrap script returns 0, Patroni tries to configure and start the PostgreSQL instance produced by it. If any of
the intermediate steps fail, or the script returns a non-zero value, Patroni assumes that the bootstrap has failed, cleans
up after itself and releases the initialize lock to give another node the opportunity to bootstrap.

If a recovery_conf block is defined in the same section as the custom bootstrap method, Patroni will generate
a recovery.conf before starting the newly bootstrapped instance. Typically, such recovery.conf should contain
at least one of the recovery_target_* parameters, together with the recovery_target_timeline set to
promote.

25

Patroni Documentation, Release 1.4.4

If keep_existing_recovery_conf is defined and set to True, Patroni will not remove the existing
recovery.conf file if it exists. This is useful when bootstrapping from a backup with tools like pgBackRest
that generate the appropriate recovery.conf for you.

Note: Bootstrap methods are neither chained, nor fallen-back to the default one in case the primary one
fails

6.2 Building replicas

Patroni uses tried and proven pg_basebackup in order to create new replicas. One downside of it is that it requires
a running master node. Another one is the lack of ‘on-the-fly’ compression for the backup data and no built-in cleanup
for outdated backup files. Some people prefer other backup solutions, such as WAL-E, pgBackRest, Barman and
others, or simply roll their own scripts. In order to accommodate all those use-cases Patroni supports running custom
scripts to clone a new replica. Those are configured in the postgresql configuration block:

postgresql:
create_replica_method:

- wal_e
- basebackup

wal_e:
command: patroni_wale_restore
no_master: 1
envdir: {{WALE_ENV_DIR}}
use_iam: 1

basebackup:
max-rate: '100M'

The create_replica_method defines available replica creation methods and the order of executing them. Pa-
troni will stop on the first one that returns 0. Each method should define a separate section in the configuration file,
listing the command to execute and any custom parameters that should be passed to that command. All parameters will
be passed in a --name=value format. Besides user-defined parameters, Patroni supplies a couple of cluster-specific
ones:

--scope Which cluster this replica belongs to

--datadir Path to the data directory of the replica

--role Always ‘replica’

--connstring Connection string to connect to the cluster member to clone from (master or other
replica). The user in the connection string can execute SQL and replication pro-
tocol commands.

A special no_master parameter, if defined, allows Patroni to call the replica creation method even if there is no
running master or replicas. In that case, an empty string will be passed in a connection string. This is useful for
restoring the formerly running cluster from the binary backup.

A basebackup method is a special case: it will be used if create_replica_method is empty, although it is
possible to list it explicitly among the create_replica_method methods. This method initializes a new replica
with the pg_basebackup, the base backup is taken from the master unless there are replicas with clonefrom tag,
in which case one of such replicas will be used as the origin for pg_basebackup. It works without any configuration;
however, it is possible to specify a basebackup configuration section. Same rules as with the other method con-
figuration apply, namely, only long (with –) options should be specified there. Not all parameters make sense, if you
override a connection string or provide an option to created tar-ed or compressed base backups, patroni won’t be able
to make a replica out of it. There is no validation performed on the names or values of the parameters passed to the

26 Chapter 6. Replica imaging and bootstrap

Patroni Documentation, Release 1.4.4

basebackup section. You can specify basebackup parameters as either a map (key-value pairs) or a list of elements,
where each element could be either a key-value pair or a single key (for options that does not receive any values, for
instance, --verbose). Consider those 2 examples:

postgresql:
basebackup:

max-rate: '100M'
checkpoint: 'fast'

and

postgresql:
basebackup:

- verbose
- max-rate: '100M'

If all replica creation methods fail, Patroni will try again all methods in order during the next event loop cycle.

6.2. Building replicas 27

Patroni Documentation, Release 1.4.4

28 Chapter 6. Replica imaging and bootstrap

CHAPTER

SEVEN

REPLICATION MODES

Patroni uses PostgreSQL streaming replication. For more information about streaming replication, see the Postgres
documentation. By default Patroni configures PostgreSQL for asynchronous replication. Choosing your replication
schema is dependent on your business considerations. Investigate both async and sync replication, as well as other HA
solutions, to determine which solution is best for you.

7.1 Asynchronous mode durability

In asynchronous mode the cluster is allowed to lose some committed transactions to ensure availability. When the
primary server fails or becomes unavailable for any other reason Patroni will automatically promote a sufficiently
healthy standby to primary. Any transactions that have not been replicated to that standby remain in a “forked timeline”
on the primary, and are effectively unrecoverable1.

The amount of transactions that can be lost is controlled via maximum_lag_on_failover parameter. Because the
primary transaction log position is not sampled in real time, in reality the amount of lost data on failover is worst case
bounded by maximum_lag_on_failover bytes of transaction log plus the amount that is written in the last ttl
seconds (loop_wait/2 seconds in the average case). However typical steady state replication delay is well under a
second.

7.2 PostgreSQL synchronous replication

You can use Postgres’s synchronous replication with Patroni. Synchronous replication ensures consistency across a
cluster by confirming that writes are written to a secondary before returning to the connecting client with a success.
The cost of synchronous replication: reduced throughput on writes. This throughput will be entirely based on network
performance.

In hosted datacenter environments (like AWS, Rackspace, or any network you do not control), synchronous replication
significantly increases the variability of write performance. If followers become inaccessible from the leader, the leader
effectively becomes read-only.

To enable a simple synchronous replication test, add the following lines to the parameters section of your YAML
configuration files:

synchronous_commit: "on"
synchronous_standby_names: "*"

When using PostgreSQL synchronous replication, use at least three Postgres data nodes to ensure write availability if
one host fails.

1 The data is still there, but recovering it requires a manual recovery effort by data recovery specialists. When Patroni is allowed to rewind with
use_pg_rewind the forked timeline will be automatically erased to rejoin the failed primary with the cluster.

29

http://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION
http://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION
http://www.postgresql.org/docs/current/static/warm-standby.html#SYNCHRONOUS-REPLICATION

Patroni Documentation, Release 1.4.4

Using PostgreSQL synchronous replication does not guarantee zero lost transactions under all circumstances. When
the primary and the secondary that is currently acting as a synchronous replica fail simultaneously a third node that
might not contain all transactions will be promoted.

7.3 Synchronous mode

For use cases where losing committed transactions is not permissible you can turn on Patroni’s
synchronous_mode. When synchronous_mode is turned on Patroni will not promote a standby unless it
is certain that the standby contains all transactions that may have returned a successful commit status to client2. This
means that the system may be unavailable for writes even though some servers are available. System administrators
can still use manual failover commands to promote a standby even if it results in transaction loss.

Turning on synchronous_mode does not guarantee multi node durability of commits under all circumstances.
When no suitable standby is available, primary server will still accept writes, but does not guarantee their replication.
When the primary fails in this mode no standby will be promoted. When the host that used to be the primary comes
back it will get promoted automatically, unless system administrator performed a manual failover. This behavior
makes synchronous mode usable with 2 node clusters.

When synchronous_mode is on and a standby crashes, commits will block until next iteration of Patroni runs
and switches the primary to standalone mode (worst case delay for writes ttl seconds, average case loop_wait/2
seconds). Manually shutting down or restarting a standby will not cause a commit service interruption. Standby will
signal the primary to release itself from synchronous standby duties before PostgreSQL shutdown is initiated.

You can ensure that a standby never becomes the synchronous standby by setting nosync tag to true. This is recom-
mended to set for standbys that are behind slow network connections and would cause performance degradation when
becoming a synchronous standby.

Synchronous mode can be switched on and off via Patroni REST interface. See dynamic configuration for instructions.

7.4 Synchronous mode implementation

When in synchronous mode Patroni maintains synchronization state in the DCS, containing the latest primary and
current synchronous standby. This state is updated with strict ordering constraints to ensure the following invariants:

• A node must be marked as the latest leader whenever it can accept write transactions. Patroni crashing or
PostgreSQL not shutting down can cause violations of this invariant.

• A node must be set as the synchronous standby in PostgreSQL as long as it is published as the synchronous
standby.

• A node that is not the leader or current synchronous standby is not allowed to promote itself automatically.

Patroni will only ever assign one standby to synchronous_standby_names because with multiple candidates it
is not possible to know which node was acting as synchronous during the failure.

On each HA loop iteration Patroni re-evaluates synchronous standby choice. If the current synchronous standby
is connected and has not requested its synchronous status to be removed it remains picked. Otherwise the cluster
member available for sync that is furthest ahead in replication is picked.

2 Clients can change the behavior per transaction using PostgreSQL’s synchronous_commit setting. Transactions with
synchronous_commit values of off and local may be lost on fail over, but will not be blocked by replication delays.

30 Chapter 7. Replication modes

CHAPTER

EIGHT

PAUSE/RESUME MODE FOR THE CLUSTER

8.1 The goal

Under certain circumstances Patroni needs to temporary step down from managing the cluster, while still retaining the
cluster state in DCS. Possible use cases are uncommon activities on the cluster, such as major version upgrades or cor-
ruption recovery. During those activities nodes are often started and stopped for the reason unknown to Patroni, some
nodes can be even temporary promoted, violating the assumption of running only one master. Therefore, Patroni needs
to be able to “detach” from the running cluster, implementing an equivalent of the maintenance mode in Pacemaker.

8.2 The implementation

When Patroni runs in a paused mode, it does not change the state of PostgreSQL, except for the following cases:

• For each node, the member key in DCS is updated with the current information about the cluster. This causes
Patroni to run read-only queries on a member node if the member is running.

• For the Postgres master with the leader lock Patroni updates the lock. If the node with the leader lock stops
being the master (i.e. is demoted manually), Patroni will release the lock instead of promoting the node back.

• Manual unscheduled restart, reinitialize and manual failover are allowed. Manual failover is only allowed if the
node to failover to is specified. In the paused mode, manual failover does not require a running master node.

• If ‘parallel’ masters are detected by Patroni, it emits a warning, but does not demote the masters without the
leader lock.

• If there is no leader lock in the cluster, the running master acquires the lock. If there is more than one master
node, then the first master to acquire the lock wins. If there are no masters altogether, Patroni does not try to
promote any replicas. There is an exception in this rule: if there is no leader lock because the old master has
demoted itself due to the manual promotion, then only the candidate node mentioned in the promotion request
may take the leader lock. When the new leader lock is granted (i.e. after promoting a replica manually), Patroni
makes sure the replicas that were streaming from the previous leader will switch to the new one.

• When Postgres is stopped, Patroni does not try to start it. When Patroni is stopped, it does not try to stop the
Postgres instance it is managing.

8.3 User guide

patronictl supports pause and resume commands.

One can also issue a PATCH request to the {namespace}/{cluster}/config key with {"pause": true/
false/null}

31

Patroni Documentation, Release 1.4.4

32 Chapter 8. Pause/Resume mode for the cluster

CHAPTER

NINE

USING PATRONI WITH KUBERNETES

Patroni can use Kubernetes objects in order to store the state of the cluster and manage the leader key. That
makes it capable of operating Postgres in Kubernetes environment without any consistency store, namely, one
doesn’t need to run an extra Etcd deployment. There are two different type of Kubernetes objects Patroni can
use to store the leader and the configuration keys, they are configured with the kubernetes.use_endpoints or PA-
TRONI_KUBERNETES_USE_ENDPOINTS environment variable.

9.1 Use Endpoints

Despite the fact that this is the recommended mode, it is turned off by default for compatibility reasons. When it is
on, Patroni stores the cluster configuration and the leader key in the metadata: annotations fields of the respective
Endpoints it creates. Changing the leader is safer than when using ConfigMaps, since both the annotations, containing
the leader information, and the actual addresses pointing to the running leader pod are updated simultaneously in one
go.

9.2 Use ConfigMaps

In this mode, Patroni will create ConfigMaps instead of Endpoints and store keys inside meta-data of those Con-
figMaps. Changing the leader takes at least two updates, one to the leader ConfigMap and another to the respective
Endpoint.

There are two ways to direct the traffic to the Postgres master:

• use the callback script provided by Patroni

• configure the Kubernetes Postgres service to use the label selector with the role_label (configured in patroni
configuration).

Note that in some cases, for instance, when running on OpenShift, there is no alternative to using ConfigMaps.

9.3 Configuration

Patroni Kubernetes settings and environment variables are described in the general chapters of the documentation.

33

https://github.com/zalando/patroni/blob/master/kubernetes/callback.py

Patroni Documentation, Release 1.4.4

9.4 Examples

• The kubernetes folder of the Patroni repository contains examples of the Docker image, the Kubernetes manifest
and the callback script in order to test Patroni Kubernetes setup. Note that in the current state it will not be able
to use PersistentVolumes because of permission issues.

• You can find the full-featured Docker image that can use Persistent Volumes in the Spilo Project.

• There is also a Helm chart to deploy the Spilo image configured with Patroni running using Kubernetes.

• In order to run your database clusters at scale using Patroni and Spilo, take a look at the postgres-operator
project. It implements the operator pattern to manage Spilo clusters.

34 Chapter 9. Using Patroni with Kubernetes

https://github.com/zalando/patroni/tree/master/kubernetes
https://github.com/zalando/spilo
https://github.com/kubernetes/charts/tree/master/incubator/patroni
https://github.com/zalando-incubator/postgres-operator

CHAPTER

TEN

WATCHDOG SUPPORT

Having multiple PostgreSQL servers running as master can result in transactions lost due to diverging timelines. This
situation is also called a split-brain problem. To avoid split-brain Patroni needs to ensure PostgreSQL will not accept
any transaction commits after leader key expires in the DCS. Under normal circumstances Patroni will try to achieve
this by stopping PostgreSQL when leader lock update fails for any reason. However, this may fail to happen due to
various reasons:

• Patroni has crashed due to a bug, out-of-memory condition or by being accidentally killed by a system adminis-
trator.

• Shutting down PostgreSQL is too slow.

• Patroni does not get to run due to high load on the system, the VM being paused by the hypervisor, or other
infrastructure issues.

To guarantee correct behavior under these conditions Patroni supports watchdog devices. Watchdog devices are soft-
ware or hardware mechanisms that will reset the whole system when they do not get a keepalive heartbeat within a
specified timeframe. This adds an additional layer of fail safe in case usual Patroni split-brain protection mechanisms
fail.

Patroni will try to activate the watchdog before promoting PostgreSQL to master. If watchdog activation fails and
watchdog mode is required then the node will refuse to become master. When deciding to participate in leader
election Patroni will also check that watchdog configuration will allow it to become leader at all. After demoting
PostgreSQL (for example due to a manual failover) Patroni will disable the watchdog again. Watchdog will also be
disabled while Patroni is in paused state.

By default Patroni will set up the watchdog to expire 5 seconds before TTL expires. With the default setup of
loop_wait=10 and ttl=30 this gives HA loop at least 15 seconds (ttl - safety_margin - loop_wait)
to complete before the system gets forcefully reset. By default accessing DCS is configured to time out after 10 sec-
onds. This means that when DCS is unavailable, for example due to network issues, Patroni and PostgreSQL will have
at least 5 seconds (ttl - safety_margin - loop_wait - retry_timeout) to come to a state where all client
connections are terminated.

Safety margin is the amount of time that Patroni reserves for time between leader key update and watchdog keepalive.
Patroni will try to send a keepalive immediately after confirmation of leader key update. If Patroni process is suspended
for extended amount of time at exactly the right moment the keepalive may be delayed for more than the safety margin
without triggering the watchdog. This results in a window of time where watchdog will not trigger before leader key
expiration, invalidating the guarantee. To be absolutely sure that watchdog will trigger under all circumstances set up
the watchdog to expire after half of TTL by setting safety_margin to -1 to set watchdog timeout to ttl // 2.
If you need this guarantee you probably should increase ttl and/or reduce loop_wait and retry_timeout.

Currently watchdogs are only supported using Linux watchdog device interface.

35

Patroni Documentation, Release 1.4.4

10.1 Setting up software watchdog on Linux

Default Patroni configuration will try to use /dev/watchdog on Linux if it is accessible to Patroni. For most use
cases using software watchdog built into the Linux kernel is secure enough.

To enable software watchdog issue the following commands as root before starting Patroni:

modprobe softdog
Replace postgres with the user you will be running patroni under
chown postgres /dev/watchdog

For testing it may be helpful to disable rebooting by adding soft_noboot=1 to the modprobe command line. In
this case the watchdog will just log a line in kernel ring buffer, visible via dmesg.

Patroni will log information about the watchdog when it is successfully enabled.

36 Chapter 10. Watchdog support

CHAPTER

ELEVEN

RELEASE NOTES

11.1 Version 1.4.4

Stability improvements

• Fix race condition in poll_failover_result (Alexander Kukushkin)

It didn’t affect directly neither failover nor switchover, but in some rare cases it was reporting success too
early, when the former leader released the lock, producing a ‘Failed over to “None”’ instead of ‘Failed over to
“desired-node”’ message.

• Treat Postgres parameter names as case insensitive (Alexander)

Most of the Postgres parameters have snake_case names, but there are three exceptions from this rule: Dat-
eStyle, IntervalStyle and TimeZone. Postgres accepts those parameters when written in a different case (e.g.
timezone = ‘some/tzn’); however, Patroni was unable to find case-insensitive matches of those parameter names
in pg_settings and ignored such parameters as a result.

• Abort start if attaching to running postgres and cluster not initialized (Alexander)

Patroni can attach itself to an already running Postgres instance. It is imperative to start running Patroni on the
master node before getting to the replicas.

• Fix behavior of patronictl scaffold (Alexander)

Pass dict object to touch_member instead of json encoded string, DCS implementation will take care of encoding
it.

• Don’t demote master if failed to update leader key in pause (Alexander)

During maintenance a DCS may start failing write requests while continuing to responds to read ones. In that
case, Patroni used to put the Postgres master node to a read-only mode after failing to update the leader lock in
DCS.

• Sync replication slots when Patroni notices a new postmaster process (Alexander)

If Postgres has been restarted, Patroni has to make sure that list of replication slots matches its expectations.

• Verify sysid and sync replication slots after coming out of pause (Alexander)

During the maintenance mode it may happen that data directory was completely rewritten and therefore we have
to make sure that Database system identifier still belongs to our cluster and replication slots are in sync with
Patroni expectations.

• Fix a possible failure to start not running Postgres on a data directory with postmaster lock file present (Alexan-
der)

Detect reuse of PID from the postmaster lock file. More likely to hit such problem if you run Patroni and
Postgres in the docker container.

37

Patroni Documentation, Release 1.4.4

• Improve protection of DCS being accidentally wiped (Alexander)

Patroni has a lot of logic in place to prevent failover in such case; it can also restore all keys back; however, until
this change an accidental removal of /config key was switching off pause mode for 1 cycle of HA loop.

• Do not exit when encountering invalid system ID (Oleksii Kliukin)

Do not exit when the cluster system ID is empty or the one that doesn’t pass the validation check. In that case,
the cluster most likely needs a reinit; mention it in the result message. Avoid terminating Patroni, as otherwise
reinit cannot happen.

Compatibility with Kubernetes 1.10+

• Added check for empty subsets (Cody Coons)

Kubernetes 1.10.0+ started returning Endpoints.subsets set to None instead of [].

Bootstrap improvements

• Make deleting recovery.conf optional (Brad Nicholson)

If bootstrap.<custom_bootstrap_method_name>.keep_existing_recovery_conf is defined and set to True, Pa-
troni will not remove the existing recovery.conf file. This is useful when bootstrapping from a backup
with tools like pgBackRest that generate the appropriate recovery.conf for you.

• Allow options to the basebackup built-in method (Oleksii)

It is now possible to supply options to the built-in basebackup method by defining the basebackup section
in the configuration, similar to how those are defined for custom replica creation methods. The difference is
in the format accepted by the basebackup section: since pg_basebackup accepts both –key=value and –key
options, the contents of the section could be either a dictionary of key-value pairs, or a list of either one-element
dictionaries or just keys (for the options that don’t accept values). See replica creation method section for
additional examples.

11.2 Version 1.4.3

Improvements in logging

• Make log level configurable from environment variables (Andy Newton, Keyvan Hedayati)

PATRONI_LOGLEVEL - sets the general logging level PATRONI_REQUESTS_LOGLEVEL - sets the
logging level for all HTTP requests e.g. Kubernetes API calls See the docs for Python logging
<https://docs.python.org/3.6/library/logging.html#levels> to get the names of possible log levels

Stability improvements and bug fixes

• Don’t rediscover etcd cluster topology when watch timed out (Alexander Kukushkin)

If we have only one host in etcd configuration and exactly this host is not accessible, Patroni was starting
discovery of cluster topology and never succeeding. Instead it should just switch to the next available node.

• Write content of bootstrap.pg_hba into a pg_hba.conf after custom bootstrap (Alexander)

Now it behaves similarly to the usual bootstrap with initdb

• Single user mode was waiting for user input and never finish (Alexander)

Regression was introduced in https://github.com/zalando/patroni/pull/576

38 Chapter 11. Release notes

https://github.com/zalando/patroni/pull/576

Patroni Documentation, Release 1.4.4

11.3 Version 1.4.2

Improvements in patronictl

• Rename scheduled failover to scheduled switchover (Alexander Kukushkin)

Failover and switchover functions were separated in version 1.4, but patronictl list was still reporting Scheduled
failover instead of Scheduled switchover.

• Show information about pending restarts (Alexander)

In order to apply some configuration changes sometimes it is necessary to restart postgres. Patroni was already
giving a hint about that in the REST API and when writing node status into DCS, but there were no easy way to
display it.

• Make show-config to work with cluster_name from config file (Alexander)

It works similar to the patronictl edit-config

Stability improvements

• Avoid calling pg_controldata during bootstrap (Alexander)

During initdb or custom bootstrap there is a time window when pgdata is not empty but pg_controldata has not
been written yet. In such case pg_controldata call was failing with error messages.

• Handle exceptions raised from psutil (Alexander)

cmdline is read and parsed every time when cmdline() method is called. It could happen that the process being
examined has already disappeared, in that case NoSuchProcess is raised.

Kubernetes support improvements

• Don’t swallow errors from k8s API (Alexander)

A call to Kubernetes API could fail for a different number of reasons. In some cases such call should be retried,
in some other cases we should log the error message and the exception stack trace. The change here will help
debug Kubernetes permission issues.

• Update Kubernetes example Dockerfile to install Patroni from the master branch (Maciej Szulik)

Before that it was using feature/k8s, which became outdated.

• Add proper RBAC to run patroni on k8s (Maciej)

Add the Service account that is assigned to the pods of the cluster, the role that holds only the necessary permis-
sions, and the rolebinding that connects the Service account and the Role.

11.4 Version 1.4.1

Fixes in patronictl

• Don’t show current leader in suggested list of members to failover to. (Alexander Kukushkin)

patronictl failover could still work when there is leader in the cluster and it should be excluded from the list of
member where it is possible to failover to.

• Make patronictl switchover compatible with the old Patroni api (Alexander)

In case if POST /switchover REST API call has failed with status code 501 it will do it once again, but to
/failover endpoint.

11.3. Version 1.4.2 39

Patroni Documentation, Release 1.4.4

11.5 Version 1.4

This version adds support for using Kubernetes as a DCS, allowing to run Patroni as a cloud-native agent in Kubernetes
without any additional deployments of Etcd, Zookeeper or Consul.

Upgrade notice

Installing Patroni via pip will no longer bring in dependencies for (such as libraries for Etcd, Zookeper, Consul or
Kubernetes, or support for AWS). In order to enable them one need to list them in pip install command explicitely, for
instance pip install patroni[etcd,kubernetes].

Kubernetes support

Implement Kubernetes-based DCS. The endpoints meta-data is used in order to store the configuration and the leader
key. The meta-data field inside the pods definition is used to store the member-related data. In addition to using
Endpoints, Patroni supports ConfigMaps. You can find more information about this feature in the Kubernetes chapter
of the documentation

Stability improvements

• Factor out postmaster process into a separate object (Ants Aasma)

This object identifies a running postmaster process via pid and start time and simplifies detection (and resolution)
of situations when the postmaster was restarted behind our back or when postgres directory disappeared from
the file system.

• Minimize the amount of SELECT’s issued by Patroni on every loop of HA cylce (Alexander Kukushkin)

On every iteration of HA loop Patroni needs to know recovery status and absolute wal position. From now
on Patroni will run only single SELECT to get this information instead of two on the replica and three on the
master.

• Remove leader key on shutdown only when we have the lock (Ants)

Unconditional removal was generating unnecessary and missleading exceptions.

Improvements in patronictl

• Add version command to patronictl (Ants)

It will show the version of installed Patroni and versions of running Patroni instances (if the cluster name is
specified).

• Make optional specifying cluster_name argument for some of patronictl commands (Alexander, Ants)

It will work if patronictl is using usual Patroni configuration file with the scope defined.

• Show information about scheduled switchover and maintenance mode (Alexander)

Before that it was possible to get this information only from Patroni logs or directly from DCS.

• Improve patronictl reinit (Alexander)

Sometimes patronictl reinit refused to proceed when Patroni was busy with other actions, namely
trying to start postgres. patronictl didn’t provide any commands to cancel such long running actions and the only
(dangerous) workarond was removing a data directory manually. The new implementation of reinit forcefully
cancells other long-running actions before proceeding with reinit.

• Implement --wait flag in patronictl pause and patronictl resume (Alexander)

It will make patronictl wait until the requested action is acknowledged by all nodes in the cluster. Such
behaviour is achieved by exposing the pause flag for every node in DCS and via the REST API.

40 Chapter 11. Release notes

Patroni Documentation, Release 1.4.4

• Rename patronictl failover into patronictl switchover (Alexander)

The previous failover was actually only capable of doing a switchover; it refused to proceed in a cluster
without the leader.

• Alter the behavior of patronictl failover (Alexander)

It will work even if there is no leader, but in that case you will have to explicitely specify a node which should
become the new leader.

Expose information about timeline and history

• Expose current timeline in DCS and via API (Alexander)

Store information about the current timeline for each member of the cluster. This information is accessible via
the API and is stored in the DCS

• Store promotion history in the /history key in DCS (Alexander)

In addition, store the timeline history enriched with the timestamp of the corresponding promotion in the /history
key in DCS and update it with each promote.

Add endpoints for getting synchronous and asynchronous replicas

• Add new /sync and /async endpoints (Alexander, Oleksii Kliukin)

Those endpoints (also accessible as /synchronous and /asynchronous) return 200 only for synchronous
and asynchornous replicas correspondingly (exclusing those marked as noloadbalance).

Allow multiple hosts for Etcd

• Add a new hosts parameter to Etcd configuration (Alexander)

This parameter should contain the initial list of hosts that will be used to discover and populate the list of the
running etcd cluster members. If for some reason during work this list of discovered hosts is exhausted (no
available hosts from that list), Patroni will return to the initial list from the hosts parameter.

11.6 Version 1.3.6

Stability improvements

• Verify process start time when checking if postgres is running. (Ants Aasma)

After a crash that doesn’t clean up postmaster.pid there could be a new process with the same pid, resulting in a
false positive for is_running(), which will lead to all kinds of bad behavior.

• Shutdown postgresql before bootstrap when we lost data directory (ainlolcat)

When data directory on the master is forcefully removed, postgres process can still stay alive for some time and
prevent the replica created in place of that former master from starting or replicating. The fix makes Patroni
cache the postmaster pid and its start time and let it terminate the old postmaster in case it is still running after
the corresponding data directory has been removed.

• Perform crash recovery in a single user mode if postgres master dies (Alexander Kukushkin)

It is unsafe to start immediately as a standby and not possible to run pg_rewind if postgres hasn’t been shut
down cleanly. The single user crash recovery only kicks in if pg_rewind is enabled or there is no master at
the moment.

Consul improvements

• Make it possible to provide datacenter configuration for Consul (Vilius Okockis, Alexander)

Before that Patroni was always communicating with datacenter of the host it runs on.

11.6. Version 1.3.6 41

Patroni Documentation, Release 1.4.4

• Always send a token in X-Consul-Token http header (Alexander)

If consul.token is defined in Patroni configuration, we will always send it in the ‘X-Consul-Token’ http
header. python-consul module tries to be “consistent” with Consul REST API, which doesn’t accept token as a
query parameter for session API, but it still works with ‘X-Consul-Token’ header.

• Adjust session TTL if supplied value is smaller than the minimum possible (Stas Fomin, Alexander)

It could happen that the TTL provided in the Patroni configuration is smaller than the minimum one supported
by Consul. In that case, Consul agent fails to create a new session. Without a session Patroni cannot create
member and leader keys in the Consul KV store, resulting in an unhealthy cluster.

Other improvements

• Define custom log format via environment variable PATRONI_LOGFORMAT (Stas)

Allow disabling timestamps and other similar fields in Patroni logs if they are already added by the system
logger (usually when Patroni runs as a service).

11.7 Version 1.3.5

Bugfix

• Set role to ‘uninitialized’ if data directory was removed (Alexander Kukushkin)

If the node was running as a master it was preventing from failover.

Stability improvement

• Try to run postmaster in a single-user mode if we tried and failed to start postgres (Alexander)

Usually such problem happens when node running as a master was terminated and timelines were diverged.
If recovery.conf has restore_command defined, there are really high chances that postgres will abort
startup and leave controldata unchanged. It makes impossible to use pg_rewind, which requires a clean
shutdown.

Consul improvements

• Make it possible to specify health checks when creating session (Alexander)

If not specified, Consul will use “serfHealth”. From one side it allows fast detection of isolated master, but from
another side it makes it impossible for Patroni to tolerate short network lags.

Bugfix

• Fix watchdog on Python 3 (Ants Aasma)

A misunderstanding of the ioctl() call interface. If mutable=False then fcntl.ioctl() actually returns the arg
buffer back. This accidentally worked on Python2 because int and str comparison did not return an error. Error
reporting is actually done by raising IOError on Python2 and OSError on Python3.

11.8 Version 1.3.4

Different Consul improvements

• Pass the consul token as a header (Andrew Colin Kissa)

Headers are now the prefered way to pass the token to the consul API.

42 Chapter 11. Release notes

https://www.consul.io/api/session.html
https://www.consul.io/api/index.html#authentication

Patroni Documentation, Release 1.4.4

• Advanced configuration for Consul (Alexander Kukushkin)

possibility to specify scheme, token, client and ca certificates details.

• compatibility with python-consul-0.7.1 and above (Alexander)

new python-consul module has changed signature of some methods

• “Could not take out TTL lock” message was never logged (Alexander)

Not a critical bug, but lack of proper logging complicates investigation in case of problems.

Quote synchronous_standby_names using quote_ident

• When writing synchronous_standby_names into the postgresql.conf its value must be quoted
(Alexander)

If it is not quoted properly, PostgreSQL will effectively disable synchronous replication and continue to work.

Different bugfixes around pause state, mostly related to watchdog (Alexander)

• Do not send keepalives if watchdog is not active

• Avoid activating watchdog in a pause mode

• Set correct postgres state in pause mode

• Do not try to run queries from API if postgres is stopped

11.9 Version 1.3.3

Bugfixes

• synchronous replication was disabled shortly after promotion even when synchronous_mode_strict was turned
on (Alexander Kukushkin)

• create empty pg_ident.conf file if it is missing after restoring from the backup (Alexander)

• open access in pg_hba.conf to all databases, not only postgres (Franco Bellagamba)

11.10 Version 1.3.2

Bugfix

• patronictl edit-config didn’t work with ZooKeeper (Alexander Kukushkin)

11.11 Version 1.3.1

Bugfix

• failover via API was broken due to change in _MemberStatus (Alexander Kukushkin)

11.9. Version 1.3.3 43

Patroni Documentation, Release 1.4.4

11.12 Version 1.3

Version 1.3 adds custom bootstrap possibility, significantly improves support for pg_rewind, enhances the synchronous
mode support, adds configuration editing to patronictl and implements watchdog support on Linux. In addition, this is
the first version to work correctly with PostgreSQL 10.

Upgrade notice

There are no known compatibility issues with the new version of Patroni. Configuration from version 1.2 should work
without any changes. It is possible to upgrade by installing new packages and either restarting Patroni (will cause
PostgreSQL restart), or by putting Patroni into a pause mode first and then restarting Patroni on all nodes in the cluster
(Patroni in a pause mode will not attempt to stop/start PostgreSQL), resuming from the pause mode at the end.

Custom bootstrap

• Make the process of bootstrapping the cluster configurable (Alexander Kukushkin)

Allow custom bootstrap scripts instead of initdb when initializing the very first node in the cluster. The
bootstrap command receives the name of the cluster and the path to the data directory. The resulting cluster can
be configured to perform recovery, making it possible to bootstrap from a backup and do point in time recovery.
Refer to the documentaton page for more detailed description of this feature.

Smarter pg_rewind support

• Decide on whether to run pg_rewind by looking at the timeline differences from the current master (Alexander)

Previously, Patroni had a fixed set of conditions to trigger pg_rewind, namely when starting a former master,
when doing a switchover to the designated node for every other node in the cluster or when there is a replica
with the nofailover tag. All those cases have in common a chance that some replica may be ahead of the new
master. In some cases, pg_rewind did nothing, in some other ones it was not running when necessary. Instead of
relying on this limited list of rules make Patroni compare the master and the replica WAL positions (using the
streaming replication protocol) in order to reliably decide if rewind is necessary for the replica.

Synchronous replication mode strict

• Enhance synchronous replication support by adding the strict mode (James Sewell, Alexander)

Normally, when synchronous_mode is enabled and there are no replicas attached to the master,
Patroni will disable synchronous replication in order to keep the master available for writes. The
synchronous_mode_strict option changes that, when it is set Patroni will not disable the synchronous
replication in a lack of replicas, effectively blocking all clients writing data to the master. In addition to the
synchronous mode guarantee of preventing any data loss due to automatic failover, the strict mode ensures that
each write is either durably stored on two nodes or not happening altogether if there is only one node in the
cluster.

Configuration editing with patronictl

• Add configuration editing to patronictl (Ants Aasma, Alexander)

Add the ability to patronictl of editing dynamic cluster configuration stored in DCS. Support either specifying
the parameter/values from the command-line, invoking the $EDITOR, or applying configuration from the yaml
file.

Linux watchdog support

• Implement watchdog support for Linux (Ants)

Support Linux software watchdog in order to reboot the node where Patroni is not running or not responding
(e.g because of the high load) The Linux software watchdog reboots the non-responsive node. It is possible
to configure the watchdog device to use (/dev/watchdog by default) and the mode (on, automatic, off) from the
watchdog section of the Patroni configuration. You can get more information from the watchdog documentation.

44 Chapter 11. Release notes

Patroni Documentation, Release 1.4.4

Add support for PostgreSQL 10

• Patroni is compatible with all beta versions of PostgreSQL 10 released so far and we expect it to be compatible
with the PostgreSQL 10 when it will be released.

PostgreSQL-related minor improvements

• Define pg_hba.conf via the Patroni configuration file or the dynamic configuration in DCS (Alexander)

Allow to define the contents of pg_hba.conf in the pg_hba sub-section of the postgresql section of the
configuration. This simplifies managing pg_hba.conf on multiple nodes, as one needs to define it only ones
in DCS instead of logging to every node, changing it manually and reload the configuration.

When defined, the contents of this section will replace the current pg_hba.conf completely. Patroni ignores
it if hba_file PostgreSQL parameter is set.

• Support connecting via a UNIX socket to the local PostgreSQL cluster (Alexander)

Add the use_unix_socket option to the postgresql section of Patroni configuration. When set to true
and the PostgreSQL unix_socket_directories option is not empty, enables Patroni to use the first value
from it to connect to the local PostgreSQL cluster. If unix_socket_directories is not defined, Patroni
will assume its default value and omit the host parameter in the PostgreSQL connection string altogether.

• Support change of superuser and replication credentials on reload (Alexander)

• Support storing of configuration files outside of PostgreSQL data directory (@jouir)

Add the new configuration postgresql configuration directive config_dir. It defaults to the data direc-
tory and must be writable by Patroni.

Bug fixes and stability improvements

• Handle EtcdEventIndexCleared and EtcdWatcherCleared exceptions (Alexander)

Faster recovery when the watch operation is ended by Etcd by avoiding useless retries.

• Remove error spinning on Etcd failure and reduce log spam (Ants)

Avoid immediate retrying and emitting stack traces in the log on the second and subsequent Etcd connection
failures.

• Export locale variables when forking PostgreSQL processes (Oleksii Kliukin)

Avoid the postmaster became multithreaded during startup fatal error on non-English locales for PostgreSQL
built with NLS.

• Extra checks when dropping the replication slot (Alexander)

In some cases Patroni is prevented from dropping the replication slot by the WAL sender.

• Truncate the replication slot name to 63 (NAMEDATALEN - 1) characters to comply with PostgreSQL naming
rules (Nick Scott)

• Fix a race condition resulting in extra connections being opened to the PostgreSQL cluster from Patroni (Alexan-
der)

• Release the leader key when the node restarts with an empty data directory (Alex Kerney)

• Set asynchronous executor busy when running bootstrap without a leader (Alexander)

Failure to do so could have resulted in errors stating the node belonged to a different cluster, as Patroni proceeded
with the normal business while being bootstrapped by a bootstrap method that doesn’t require a leader to be
present in the cluster.

• Improve WAL-E replica creation method (Joar Wandborg, Alexander).

11.12. Version 1.3 45

Patroni Documentation, Release 1.4.4

– Use csv.DictReader when parsing WAL-E base backup, accepting ISO dates with space-delimited date
and time.

– Support fetching current WAL position from the replica to estimate the amount of WAL to restore. Previ-
ously, the code used to call system information functions that were available only on the master node.

11.13 Version 1.2

This version introduces significant improvements over the handling of synchronous replication, makes the startup pro-
cess and failover more reliable, adds PostgreSQL 9.6 support and fixes plenty of bugs. In addition, the documentation,
including these release notes, has been moved to https://patroni.readthedocs.io.

Synchronous replication

• Add synchronous replication support. (Ants Aasma)

Adds a new configuration variable synchronous_mode. When enabled, Patroni will manage
synchronous_standby_names to enable synchronous replication whenever there are healthy standbys
available. When synchronous mode is enabled, Patroni will automatically fail over only to a standby that was
synchronously replicating at the time of the master failure. This effectively means that no user visible trans-
action gets lost in such a case. See the feature documentation for the detailed description and implementation
details.

Reliability improvements

• Do not try to update the leader position stored in the leader optime key when PostgreSQL is not 100%
healthy. Demote immediately when the update of the leader key failed. (Alexander Kukushkin)

• Exclude unhealthy nodes from the list of targets to clone the new replica from. (Alexander)

• Implement retry and timeout strategy for Consul similar to how it is done for Etcd. (Alexander)

• Make --dcs and --config-file apply to all options in patronictl. (Alexander)

• Write all postgres parameters into postgresql.conf. (Alexander)

It allows starting PostgreSQL configured by Patroni with just pg_ctl.

• Avoid exceptions when there are no users in the config. (Kirill Pushkin)

• Allow pausing an unhealthy cluster. Before this fix, patronictl would bail out if the node it tries to execute
pause on is unhealthy. (Alexander)

• Improve the leader watch functionality. (Alexander)

Previously the replicas were always watching the leader key (sleeping until the timeout or the leader key
changes). With this change, they only watch when the replica’s PostgreSQL is in the running state and
not when it is stopped/starting or restarting PostgreSQL.

• Avoid running into race conditions when handling SIGCHILD as a PID 1. (Alexander)

Previously a race condition could occur when running inside the Docker containers, since the same process
inside Patroni both spawned new processes and handled SIGCHILD from them. This change uses fork/execs
for Patroni and leaves the original PID 1 process responsible for handling signals from children.

• Fix WAL-E restore. (Oleksii Kliukin)

Previously WAL-E restore used the no_master flag to avoid consulting with the master altogether, making
Patroni always choose restoring from WAL over the pg_basebackup. This change reverts it to the original
meaning of no_master, namely Patroni WAL-E restore may be selected as a replication method if the master
is not running. The latter is checked by examining the connection string passed to the method. In addition, it
makes the retry mechanism more robust and handles other minutia.

46 Chapter 11. Release notes

https://patroni.readthedocs.io

Patroni Documentation, Release 1.4.4

• Implement asynchronous DNS resolver cache. (Alexander)

Avoid failing when DNS is temporary unavailable (for instance, due to an excessive traffic received by the node).

• Implement starting state and master start timeout. (Ants, Alexander)

Previously pg_ctl waited for a timeout and then happily trodded on considering PostgreSQL to be running.
This caused PostgreSQL to show up in listings as running when it was actually not and caused a race condition
that resulted in either a failover, or a crash recovery, or a crash recovery interrupted by failover and a missed
rewind. This change adds a master_start_timeout parameter and introduces a new state for the main
HA loop: starting. When master_start_timeout is 0 we will failover immediately when the master
crashes as soon as there is a failover candidate. Otherwise, Patroni will wait after attempting to start PostgreSQL
on the master for the duration of the timeout; when it expires, it will failover if possible. Manual failover requests
will be honored during the crash of the master even before the timeout expiration.

Introduce the timeout parameter to the restart API endpoint and patronictl. When it is set and restart
takes longer than the timeout, PostgreSQL is considered unhealthy and the other nodes becomes eligible to take
the leader lock.

• Fix pg_rewind behavior in a pause mode. (Ants)

Avoid unnecessary restart in a pause mode when Patroni thinks it needs to rewind but rewind is not possible
(i.e. pg_rewind is not present). Fallback to default libpq values for the superuser (default OS user) if
superuser authentication is missing from the pg_rewind related Patroni configuration section.

• Serialize callback execution. Kill the previous callback of the same type when the new one is about to run. Fix
the issue of spawning zombie processes when running callbacks. (Alexander)

• Avoid promoting a former master when the leader key is set in DCS but update to this leader key fails. (Alexan-
der)

This avoids the issue of a current master continuing to keep its role when it is partitioned together with the
minority of nodes in Etcd and other DCSs that allow “inconsistent reads”.

Miscellaneous

• Add post_init configuration option on bootstrap. (Alejandro Martínez)

Patroni will call the script argument of this option right after running initdb and starting up PostgreSQL for
a new cluster. The script receives a connection URL with superuser and sets PGPASSFILE to point to the
.pgpass file containing the password. If the script fails, Patroni initialization fails as well. It is useful for
adding new users or creating extensions in the new cluster.

• Implement PostgreSQL 9.6 support. (Alexander)

Use wal_level = replica as a synonym for hot_standby, avoiding pending_restart flag when it
changes from one to another. (Alexander)

Documentation improvements

• Add a Patroni main loop workflow diagram. (Alejandro, Alexander)

• Improve README, adding the Helm chart and links to release notes. (Lauri Apple)

• Move Patroni documentation to Read the Docs. The up-to-date documentation is available at https:
//patroni.readthedocs.io. (Oleksii)

Makes the documentation easily viewable from different devices (including smartphones) and searchable.

• Move the package to the semantic versioning. (Oleksii)

Patroni will follow the major.minor.patch version schema to avoid releasing the new minor version on small but
critical bugfixes. We will only publish the release notes for the minor version, which will include all patches.

11.13. Version 1.2 47

https://raw.githubusercontent.com/zalando/patroni/master/docs/ha_loop_diagram.png
https://patroni.readthedocs.io
https://patroni.readthedocs.io

Patroni Documentation, Release 1.4.4

11.14 Version 1.1

This release improves management of Patroni cluster by bring in pause mode, improves maintenance with sched-
uled and conditional restarts, makes Patroni interaction with Etcd or Zookeeper more resilient and greatly enhances
patronictl.

Upgrade notice

When upgrading from releases below 1.0 read about changing of credentials and configuration format at 1.0 release
notes.

Pause mode

• Introduce pause mode to temporary detach Patroni from managing PostgreSQL instance (Murat Kabilov,
Alexander Kukushkin, Oleksii Kliukin).

Previously, one had to send SIGKILL signal to Patroni to stop it without terminating PostgreSQL. The new
pause mode detaches Patroni from PostgreSQL cluster-wide without terminating Patroni. It is similar to the
maintenance mode in Pacemaker. Patroni is still responsible for updating member and leader keys in DCS, but it
will not start, stop or restart PostgreSQL server in the process. There are a few exceptions, for instance, manual
failovers, reinitializes and restarts are still allowed. You can read a detailed description of this feature.

In addition, patronictl supports new pause and resume commands to toggle the pause mode.

Scheduled and conditional restarts

• Add conditions to the restart API command (Oleksii)

This change enhances Patroni restarts by adding a couple of conditions that can be verified in order to do the
restart. Among the conditions are restarting when PostgreSQL role is either a master or a replica, checking the
PostgreSQL version number or restarting only when restart is necessary in order to apply configuration changes.

• Add scheduled restarts (Oleksii)

It is now possible to schedule a restart in the future. Only one scheduled restart per node is supported. It is
possible to clear the scheduled restart if it is not needed anymore. A combination of scheduled and conditional
restarts is supported, making it possible, for instance, to scheduled minor PostgreSQL upgrades in the night,
restarting only the instances that are running the outdated minor version without adding postgres-specific logic
to administration scripts.

• Add support for conditional and scheduled restarts to patronictl (Murat).

patronictl restart supports several new options. There is also patronictl flush command to clean the scheduled
actions.

Robust DCS interaction

• Set Kazoo timeouts depending on the loop_wait (Alexander)

Originally, ping_timeout and connect_timeout values were calculated from the negotiated session timeout. Pa-
troni loop_wait was not taken into account. As a result, a single retry could take more time than the session
timeout, forcing Patroni to release the lock and demote.

This change set ping and connect timeout to half of the value of loop_wait, speeding up detection of connection
issues and leaving enough time to retry the connection attempt before loosing the lock.

• Update Etcd topology only after original request succeed (Alexander)

Postpone updating the Etcd topology known to the client until after the original request. When retrieving the
cluster topology, implement the retry timeouts depending on the known number of nodes in the Etcd cluster.
This makes our client prefer to get the results of the request to having the up-to-date list of nodes.

Both changes make Patroni connections to DCS more robust in the face of network issues.

48 Chapter 11. Release notes

Patroni Documentation, Release 1.4.4

Patronictl, monitoring and configuration

• Return information about streaming replicas via the API (Feike Steenbergen)

Previously, there was no reliable way to query Patroni about PostgreSQL instances that fail to stream changes (for
instance, due to connection issues). This change exposes the contents of pg_stat_replication via the /patroni endpoint.

• Add patronictl scaffold command (Oleksii)

Add a command to create cluster structure in Etcd. The cluster is created with user-specified sysid and leader,
and both leader and member keys are made persistent. This command is useful to create so-called master-less
configurations, where Patroni cluster consisting of only replicas replicate from the external master node that
is unaware of Patroni. Subsequently, one may remove the leader key, promoting one of the Patroni nodes and
replacing the original master with the Patroni-based HA cluster.

• Add configuration option bin_dir to locate PostgreSQL binaries (Ants Aasma)

It is useful to be able to specify the location of PostgreSQL binaries explicitly when Linux distros that support
installing multiple PostgreSQL versions at the same time.

• Allow configuration file path to be overridden using custom_conf of (Alejandro Martínez)

Allows for custom configuration file paths, which will be unmanaged by Patroni, details.

Bug fixes and code improvements

• Make Patroni compatible with new version schema in PostgreSQL 10 and above (Feike)

Make sure that Patroni understand 2-digits version numbers when doing conditional restarts based on the Post-
greSQL version.

• Use pkgutil to find DCS modules (Alexander)

Use the dedicated python module instead of traversing directories manually in order to find DCS modules.

• Always call on_start callback when starting Patroni (Alexander)

Previously, Patroni did not call any callbacks when attaching to the already running node with the correct role.
Since callbacks are often used to route client connections that could result in the failure to register the running
node in the connection routing scheme. With this fix, Patroni calls on_start callback even when attaching to the
already running node.

• Do not drop active replication slots (Murat, Oleksii)

Avoid dropping active physical replication slots on master. PostgreSQL cannot drop such slots anyway. This
change makes possible to run non-Patroni managed replicas/consumers on the master.

• Close Patroni connections during start of the PostgreSQL instance (Alexander)

Forces Patroni to close all former connections when PostgreSQL node is started. Avoids the trap of reusing
former connections if postmaster was killed with SIGKILL.

• Replace invalid characters when constructing slot names from member names (Ants)

Make sure that standby names that do not comply with the slot naming rules don’t cause the slot creation and
standby startup to fail. Replace the dashes in the slot names with underscores and all other characters not allowed
in slot names with their unicode codepoints.

11.15 Version 1.0

This release introduces the global dynamic configuration that allows dynamic changes of the PostgreSQL and Patroni
configuration parameters for the entire HA cluster. It also delivers numerous bugfixes.

11.15. Version 1.0 49

Patroni Documentation, Release 1.4.4

Upgrade notice

When upgrading from v0.90 or below, always upgrade all replicas before the master. Since we don’t store replication
credentials in DCS anymore, an old replica won’t be able to connect to the new master.

Dynamic Configuration

• Implement the dynamic global configuration (Alexander Kukushkin)

Introduce new REST API endpoint /config to provide PostgreSQL and Patroni configuration parameters that
should be set globally for the entire HA cluster (master and all the replicas). Those parameters are set in DCS
and in many cases can be applied without disrupting PostgreSQL or Patroni. Patroni sets a special flag called
“pending restart” visible via the API when some of the values require the PostgreSQL restart. In that case,
restart should be issued manually via the API.

Patroni SIGHUP or POST to /reload will make it re-read the configuration file.

See the dynamic configuration for the details on which parameters can be changed and the order of processing
difference configuration sources.

The configuration file format has changed since the v0.90. Patroni is still compatible with the old configuration
files, but in order to take advantage of the bootstrap parameters one needs to change it. Users are encourage to
update them by referring to the dynamic configuraton documentation page.

More flexible configuration*

• Make postgresql configuration and database name Patroni connects to configurable (Misja Hoebe)

Introduce database and config_base_name configuration parameters. Among others, it makes possible to run
Patroni with PipelineDB and other PostgreSQL forks.

• Implement possibility to configure some Patroni configuration parameters via environment (Alexander)

Those include the scope, the node name and the namespace, as well as the secrets and makes it easier to run
Patroni in a dynamic environment, i.e. Kubernetes Please, refer to the supported environment variables for
further details.

• Update the built-in Patroni docker container to take advantage of environment-based configuration (Feike Steen-
bergen).

• Add Zookeeper support to Patroni docker image (Alexander)

• Split the Zookeeper and Exhibitor configuration options (Alexander)

• Make patronictl reuse the code from Patroni to read configuration (Alexander)

This allows patronictl to take advantage of environment-based configuration.

• Set application name to node name in primary_conninfo (Alexander)

This simplifies identification and configuration of synchronous replication for a given node.

Stability, security and usability improvements

• Reset sysid and do not call pg_controldata when restore of backup in progress (Alexander)

This change reduces the amount of noise generated by Patroni API health checks during the lengthy initialization
of this node from the backup.

• Fix a bunch of pg_rewind corner-cases (Alexander)

Avoid running pg_rewind if the source cluster is not the master.

In addition, avoid removing the data directory on an unsuccessful rewind, unless the new parameter re-
move_data_directory_on_rewind_failure is set to true. By default it is false.

50 Chapter 11. Release notes

Patroni Documentation, Release 1.4.4

• Remove passwords from the replication connection string in DCS (Alexander)

Previously, Patroni always used the replication credentials from the Postgres URL in DCS. That is now changed
to take the credentials from the patroni configuration. The secrets (replication username and password) and no
longer exposed in DCS.

• Fix the asynchronous machinery around the demote call (Alexander)

Demote now runs totally asynchronously without blocking the DCS interactions.

• Make patronictl always send the authorization header if it is configured (Alexander)

This allows patronictl to issue “protected” requests, i.e. restart or reinitialize, when Patroni is configured to
require authorization on those.

• Handle the SystemExit exception correctly (Alexander)

Avoids the issues of Patroni not stopping properly when receiving the SIGTERM

• Sample haproxy templates for confd (Alexander)

Generates and dynamically changes haproxy configuration from the patroni state in the DCS using confide

• Improve and restructure the documentation to make it more friendly to the new users (Lauri Apple)

• API must report role=master during pg_ctl stop (Alexander)

Makes the callback calls more reliable, particularly in the cluster stop case. In addition, introduce the
pg_ctl_timeout option to set the timeout for the start, stop and restart calls via the pg_ctl.

• Fix the retry logic in etcd (Alexander)

Make retries more predictable and robust.

• Make Zookeeper code more resilient against short network hiccups (Alexander)

Reduce the connection timeouts to make Zookeeper connection attempts more frequent.

11.16 Version 0.90

This releases adds support for Consul, includes a new noloadbalance tag, changes the behavior of the clonefrom tag,
improves pg_rewind handling and improves patronictl control program.

Consul support

• Implement Consul support (Alexander Kukushkin)

Patroni runs against Consul, in addition to Etcd and Zookeeper. the connection parameters can be configured in
the YAML file.

New and improved tags

• Implement noloadbalance tag (Alexander)

This tag makes Patroni always return that the replica is not available to the load balancer.

• Change the implementation of the clonefrom tag (Alexander)

Previously, a node name had to be supplied to the clonefrom, forcing a tagged replica to clone from the specific
node. The new implementation makes clonefrom a boolean tag: if it is set to true, the replica becomes a candidate
for other replicas to clone from it. When multiple candidates are present, the replicas picks one randomly.

Stability and security improvements

11.16. Version 0.90 51

Patroni Documentation, Release 1.4.4

• Numerous reliability improvements (Alexander)

Removes some spurious error messages, improves the stability of the failover, addresses some corner cases with
reading data from DCS, shutdown, demote and reattaching of the former leader.

• Improve systems script to avoid killing Patroni children on stop (Jan Keirse, Alexander Kukushkin)

Previously, when stopping Patroni, systemd also sent a signal to PostgreSQL. Since Patroni also tried to stop
PostgreSQL by itself, it resulted in sending to different shutdown requests (the smart shutdown, followed by the
fast shutdown). That resulted in replicas disconnecting too early and a former master not being able to rejoin
after demote. Fix by Jan with prior research by Alexander.

• Eliminate some cases where the former master was unable to call pg_rewind before rejoining as a replica (Oleksii
Kliukin)

Previously, we only called pg_rewind if the former master had crashed. Change this to always run pg_rewind
for the former master as long as pg_rewind is present in the system. This fixes the case when the master is shut
down before the replicas managed to get the latest changes (i.e. during the “smart” shutdown).

• Numerous improvements to unit- and acceptance- tests, in particular, enable support for Zookeeper and Consul
(Alexander).

• Make Travis CI faster and implement support for running tests against Zookeeper (Exhibitor) and Consul
(Alexander)

Both unit and acceptance tests run automatically against Etcd, Zookeeper and Consul on each commit or pull-
request.

• Clear environment variables before calling PostgreSQL commands from Patroni (Feike Steenbergen)

This prevents a possibility of reading system environment variables by connecting to the PostgreSQL cluster
managed by Patroni.

Configuration and control changes

• Unify patronictl and Patroni configuration (Feike)

patronictl can use the same configuration file as Patroni itself.

• Enable Patroni to read the configuration from the environment variables (Oleksii)

This simplifies generating configuration for Patroni automatically, or merging a single configuration from dif-
ferent sources.

• Include database system identifier in the information returned by the API (Feike)

• Implement delete_cluster for all available DCSs (Alexander)

Enables support for DCSs other than Etcd in patronictl.

11.17 Version 0.80

This release adds support for cascading replication and simplifies Patroni management by providing scheduled
failovers. One may use older versions of Patroni (in particular, 0.78) combined with this one in order to migrate
to the new release. Note that the scheduled failover and cascading replication related features will only work with
Patroni 0.80 and above.

Cascading replication

• Add support for the replicatefrom and clonefrom tags for the patroni node (Oleksii Kliukin).

52 Chapter 11. Release notes

Patroni Documentation, Release 1.4.4

The tag replicatefrom allows a replica to use an arbitrary node a source, not necessary the master. The
clonefrom does the same for the initial backup. Together, they enable Patroni to fully support cascading
replication.

• Add support for running replication methods to initialize the replica even without a running replication connec-
tion (Oleksii).

This is useful in order to create replicas from the snapshots stored on S3 or FTP. A replication method
that does not require a running replication connection should supply no_master: true in the yaml config-
uration. Those scripts will still be called in order if the replication connection is present.

Patronictl, API and DCS improvements

• Implement scheduled failovers (Feike Steenbergen).

Failovers can be scheduled to happen at a certain time in the future, using either patronictl, or API calls.

• Add support for dbuser and password parameters in patronictl (Feike).

• Add PostgreSQL version to the health check output (Feike).

• Improve Zookeeper support in patronictl (Oleksandr Shulgin)

• Migrate to python-etcd 0.43 (Alexander Kukushkin)

Configuration

• Add a sample systems configuration script for Patroni (Jan Keirse).

• Fix the problem of Patroni ignoring the superuser name specified in the configuration file for DB connections
(Alexander).

• Fix the handling of CTRL-C by creating a separate session ID and process group for the postmaster launched
by Patroni (Alexander).

Tests

• Add acceptance tests with behave in order to check real-world scenarios of running Patroni (Alexander, Oleksii).

The tests can be launched manually using the behave command. They are also launched automatically for pull
requests and after commits.

Release notes for some older versions can be found on project’s github page.

11.17. Version 0.80 53

https://github.com/zalando/patroni/releases

Patroni Documentation, Release 1.4.4

54 Chapter 11. Release notes

CHAPTER

TWELVE

CONTRIBUTING GUIDELINES

Wanna contribute to Patroni? Yay - here is how!

12.1 Chatting

Just want to chat with other Patroni users? Looking for interactive troubleshooting help? Join us on channel #patroni
in the PostgreSQL Slack.

12.2 Reporting issues

If you have a question about patroni or have a problem using it, please read the README before filing an issue. Also
double check with the current issues on our Issues Tracker.

12.3 Contributing a pull request

1) Submit a comment to the relevant issue or create a new issue describing your proposed change.

2) Do a fork, develop and test your code changes.

3) Include documentation

4) Submit a pull request.

You’ll get feedback about your pull request as soon as possible.

Happy Patroni hacking ;-)

55

https://postgres-slack.herokuapp.com/
https://github.com/zalando/patroni/issues

Patroni Documentation, Release 1.4.4

56 Chapter 12. Contributing guidelines

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

57

	Introduction
	Development Status
	Technical Requirements/Installation
	Running and Configuring
	YAML Configuration
	Environment Configuration
	Replication Choices
	Applications Should Not Use Superusers

	Patroni configuration
	REST API
	GET /config
	PATCH /config
	PUT /config

	Environment Configuration Settings
	Global/Universal
	Bootstrap configuration
	Consul
	Etcd
	Exhibitor
	Kubernetes
	PostgreSQL
	REST API
	ZooKeeper

	YAML Configuration Settings
	Global/Universal
	Bootstrap configuration
	Consul
	Etcd
	Exhibitor
	Kubernetes
	PostgreSQL
	REST API
	ZooKeeper
	Watchdog

	Replica imaging and bootstrap
	Bootstrap
	Building replicas

	Replication modes
	Asynchronous mode durability
	PostgreSQL synchronous replication
	Synchronous mode
	Synchronous mode implementation

	Pause/Resume mode for the cluster
	The goal
	The implementation
	User guide

	Using Patroni with Kubernetes
	Use Endpoints
	Use ConfigMaps
	Configuration
	Examples

	Watchdog support
	Setting up software watchdog on Linux

	Release notes
	Version 1.4.4
	Version 1.4.3
	Version 1.4.2
	Version 1.4.1
	Version 1.4
	Version 1.3.6
	Version 1.3.5
	Version 1.3.4
	Version 1.3.3
	Version 1.3.2
	Version 1.3.1
	Version 1.3
	Version 1.2
	Version 1.1
	Version 1.0
	Version 0.90
	Version 0.80

	Contributing guidelines
	Chatting
	Reporting issues
	Contributing a pull request

	Indices and tables

