

    
      
          
            
  
Introduction

Patroni is a template for you to create your own customized, high-availability solution using Python and - for maximum accessibility - a distributed configuration store like ZooKeeper [https://zookeeper.apache.org/], etcd [https://github.com/coreos/etcd], Consul [https://github.com/hashicorp/consul] or Kubernetes [https://kubernetes.io]. Database engineers, DBAs, DevOps engineers, and SREs who are looking to quickly deploy HA PostgreSQL in the datacenter-or anywhere else-will hopefully find it useful.

We call Patroni a “template” because it is far from being a one-size-fits-all or plug-and-play replication system. It will have its own caveats. Use wisely. There are many ways to run high availability with PostgreSQL; for a list, see the PostgreSQL Documentation [https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling].

Currently supported PostgreSQL versions: 9.3 to 14.

Note to Kubernetes users: Patroni can run natively on top of Kubernetes. Take a look at the Kubernetes chapter of the Patroni documentation.


Contents:


	Introduction
	Development Status

	Technical Requirements/Installation

	Planning the Number of PostgreSQL Nodes

	Running and Configuring

	YAML Configuration

	Environment Configuration

	Replication Choices

	Applications Should Not Use Superusers

	Testing Your HA Solution





	Patroni configuration

	Patroni REST API
	Health check endpoints

	Monitoring endpoint

	Cluster status endpoints

	Config endpoint

	Switchover and failover endpoints

	Restart endpoint

	Reload endpoint

	Reinitialize endpoint





	Convert a Standalone to a Patroni Cluster
	Procedure





	Major Upgrade of PostgreSQL Version
	FAQ





	Environment Configuration Settings
	Global/Universal

	Log

	Bootstrap configuration

	Consul

	Etcd

	Etcdv3

	ZooKeeper

	Exhibitor

	Kubernetes

	Raft

	PostgreSQL

	REST API

	CTL





	YAML Configuration Settings
	Dynamic configuration settings

	Global/Universal

	Log

	Bootstrap configuration

	Consul

	Etcd

	Etcdv3

	ZooKeeper

	Exhibitor

	Kubernetes

	Raft

	PostgreSQL

	REST API

	CTL

	Watchdog

	Tags





	Security Considerations
	Protecting DCS

	Protecting the REST API





	Replica imaging and bootstrap
	Bootstrap

	Building replicas

	Standby cluster





	Replication modes
	Asynchronous mode durability

	PostgreSQL synchronous replication

	Synchronous mode

	Synchronous Replication Factor

	Synchronous mode implementation





	Pause/Resume mode for the cluster
	The goal

	The implementation

	User guide





	Using Patroni with Kubernetes
	Use Endpoints

	Use ConfigMaps

	Configuration

	Examples





	Watchdog support
	Setting up software watchdog on Linux





	Release notes
	Version 2.1.4

	Version 2.1.3

	Version 2.1.2

	Version 2.1.1

	Version 2.1.0

	Version 2.0.2

	Version 2.0.1

	Version 2.0.0

	Version 1.6.5

	Version 1.6.4

	Version 1.6.3

	Version 1.6.2

	Version 1.6.1

	Version 1.6.0

	Version 1.5.6

	Version 1.5.5

	Version 1.5.4

	Version 1.5.3

	Version 1.5.2

	Version 1.5.1

	Version 1.5.0

	Version 1.4.6

	Version 1.4.5

	Version 1.4.4

	Version 1.4.3

	Version 1.4.2

	Version 1.4.1

	Version 1.4

	Version 1.3.6

	Version 1.3.5

	Version 1.3.4

	Version 1.3.3

	Version 1.3.2

	Version 1.3.1

	Version 1.3

	Version 1.2

	Version 1.1

	Version 1.0

	Version 0.90

	Version 0.80





	Contributing guidelines
	Chatting

	Running tests

	Reporting issues

	Contributing a pull request











Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
Introduction

Patroni originated as a fork of Governor [https://github.com/compose/governor], the project from Compose. It includes plenty of new features.

For an example of a Docker-based deployment with Patroni, see Spilo [https://github.com/zalando/spilo], currently in use at Zalando.

For additional background info, see:


	PostgreSQL HA with Kubernetes and Patroni [https://www.youtube.com/watch?v=iruaCgeG7qs], talk by Josh Berkus at KubeCon 2016 (video)


	Feb. 2016 Zalando Tech blog post [https://tech.zalando.de/blog/zalandos-patroni-a-template-for-high-availability-postgresql/]





Development Status

Patroni is in active development and accepts contributions. See our Contributing section below for more details.

We report new releases information here.



Technical Requirements/Installation

Pre-requirements for Mac OS

To install requirements on a Mac, run the following:

brew install postgresql etcd haproxy libyaml python





Psycopg

Starting from psycopg2-2.8 [http://initd.org/psycopg/articles/2019/04/04/psycopg-28-released/] the binary version of psycopg2 will no longer be installed by default. Installing it from the source code requires C compiler and postgres+python dev packages.
Since in the python world it is not possible to specify dependency as psycopg2 OR psycopg2-binary you will have to decide how to install it.

There are a few options available:


	Use the package manager from your distro




sudo apt-get install python-psycopg2   # install python2 psycopg2 module on Debian/Ubuntu
sudo apt-get install python3-psycopg2  # install python3 psycopg2 module on Debian/Ubuntu
sudo yum install python-psycopg2       # install python2 psycopg2 on RedHat/Fedora/CentOS






	Install psycopg2 from the binary package




pip install psycopg2-binary






	Install psycopg2 from source




pip install psycopg2>=2.5.4






	Use psycopg 3.0 instead of psycopg2




pip install psycopg[binary]>=3.0.0





General installation for pip

Patroni can be installed with pip:

pip install patroni[dependencies]





where dependencies can be either empty, or consist of one or more of the following:


	etcd or etcd3
	python-etcd module in order to use Etcd as Distributed Configuration Store (DCS)



	consul
	python-consul module in order to use Consul as DCS



	zookeeper
	kazoo module in order to use Zookeeper as DCS



	exhibitor
	kazoo module in order to use Exhibitor as DCS (same dependencies as for Zookeeper)



	kubernetes
	kubernetes module in order to use Kubernetes as DCS in Patroni



	raft
	pysyncobj module in order to use python Raft implementation as DCS



	aws
	boto in order to use AWS callbacks





For example, the command in order to install Patroni together with dependencies for Etcd as a DCS and AWS callbacks is:

pip install patroni[etcd,aws]





Note that external tools to call in the replica creation or custom bootstrap scripts (i.e. WAL-E) should be installed
independently of Patroni.



Planning the Number of PostgreSQL Nodes

Patroni/PostgreSQL nodes are decoupled from DCS nodes (except when Patroni implements RAFT on its own) and therefore
there is no requirement on the minimal number of nodes. Running a cluster consisting of one master and one standby is
perfectly fine. You can add more standby nodes later.



Running and Configuring

The following section assumes Patroni repository as being cloned from https://github.com/zalando/patroni. Namely, you
will need example configuration files postgres0.yml and postgres1.yml. If you installed Patroni with pip, you can
obtain those files from the git repository and replace ./patroni.py below with patroni command.

To get started, do the following from different terminals:

> etcd --data-dir=data/etcd --enable-v2=true
> ./patroni.py postgres0.yml
> ./patroni.py postgres1.yml





You will then see a high-availability cluster start up. Test different settings in the YAML files to see how the cluster’s behavior changes. Kill some of the components to see how the system behaves.

Add more postgres*.yml files to create an even larger cluster.

Patroni provides an HAProxy [http://www.haproxy.org/] configuration, which will give your application a single endpoint for connecting to the cluster’s leader. To configure,
run:

> haproxy -f haproxy.cfg





> psql --host 127.0.0.1 --port 5000 postgres







YAML Configuration

Go here for comprehensive information about settings for etcd, consul, and ZooKeeper. And for an example, see postgres0.yml [https://github.com/zalando/patroni/blob/master/postgres0.yml].



Environment Configuration

Go here for comprehensive information about configuring(overriding) settings via environment variables.



Replication Choices

Patroni uses Postgres’ streaming replication, which is asynchronous by default. Patroni’s asynchronous replication configuration allows for maximum_lag_on_failover settings. This setting ensures failover will not occur if a follower is more than a certain number of bytes behind the leader. This setting should be increased or decreased based on business requirements. It’s also possible to use synchronous replication for better durability guarantees. See replication modes documentation for details.



Applications Should Not Use Superusers

When connecting from an application, always use a non-superuser. Patroni requires access to the database to function properly. By using a superuser from an application, you can potentially use the entire connection pool, including the connections reserved for superusers, with the superuser_reserved_connections setting. If Patroni cannot access the Primary because the connection pool is full, behavior will be undesirable.



Testing Your HA Solution

Testing an HA solution is a time consuming process, with many variables. This is particularly true considering a cross-platform application. You need a trained system administrator or a consultant to do this work. It is not something we can cover in depth in the documentation.

That said, here are some pieces of your infrastructure you should be sure to test:


	Network (the network in front of your system as well as the NICs [physical or virtual] themselves)


	Disk IO


	file limits (nofile in Linux)


	RAM. Even if you have oomkiller turned off as suggested, the unavailability of RAM could cause issues.


	CPU


	Virtualization Contention (overcommitting the hypervisor)


	Any cgroup limitation (likely to be related to the above)


	kill -9 of any postgres process (except postmaster!). This is a decent simulation of a segfault.




One thing that you should not do is run kill -9 on a postmaster process. This is because doing so does not mimic any real life scenario. If you are concerned your infrastructure is insecure and an attacker could run kill -9, no amount of HA process is going to fix that. The attacker will simply kill the process again, or cause chaos in another way.





            

          

      

      

    

  

    
      
          
            
  
Patroni configuration

Patroni configuration is stored in the DCS (Distributed Configuration Store). There are 3 types of configuration:


	
	Dynamic configuration.
	These options can be set in DCS at any time. If the options changed are not part of the startup configuration,
they are applied asynchronously (upon the next wake up cycle) to every node, which gets subsequently reloaded.
If the node requires a restart to apply the configuration (for options with context postmaster, if their values
have changed), a special flag, pending_restart indicating this, is set in the members.data JSON.
Additionally, the node status also indicates this, by showing "restart_pending": true.







	
	Local configuration (patroni.yml).
	These options are defined in the configuration file and take precedence over dynamic configuration.
patroni.yml could be changed and reloaded in runtime (without restart of Patroni) by sending SIGHUP to the Patroni process, performing POST /reload REST-API request or executing patronictl reload.







	
	Environment configuration.
	It is possible to set/override some of the “Local” configuration parameters with environment variables.
Environment configuration is very useful when you are running in a dynamic environment and you don’t know some of the parameters in advance (for example it’s not possible to know your external IP address when you are running inside docker).









The local configuration can be either a single YAML file or a directory. When it is a directory, all YAML files in that directory are loaded one by one in sorted order. In case a key is defined in multiple files, the occurrence in the last file takes precedence.

Some of the PostgreSQL parameters must hold the same values on the master and the replicas. For those, values set either in the local patroni configuration files or via the environment variables take no effect. To alter or set their values one must change the shared configuration in the DCS. Below is the actual list of such parameters together with the default values:


	max_connections: 100


	max_locks_per_transaction: 64


	max_worker_processes: 8


	max_prepared_transactions: 0


	wal_level: hot_standby


	wal_log_hints: on


	track_commit_timestamp: off




For the parameters below, PostgreSQL does not require equal values among the master and all the replicas. However, considering the possibility of a replica to become the master at any time, it doesn’t really make sense to set them differently; therefore, Patroni restricts setting their values to the Dynamic configuration


	max_wal_senders: 5


	max_replication_slots: 5


	wal_keep_segments: 8


	wal_keep_size: 128MB




These parameters are validated to ensure they are sane, or meet a minimum value.

There are some other Postgres parameters controlled by Patroni:


	listen_addresses - is set either from postgresql.listen or from PATRONI_POSTGRESQL_LISTEN environment variable


	port - is set either from postgresql.listen or from PATRONI_POSTGRESQL_LISTEN environment variable


	cluster_name - is set either from scope or from PATRONI_SCOPE environment variable


	hot_standby: on




To be on the safe side parameters from the above lists are not written into postgresql.conf, but passed as a list of arguments to the pg_ctl start which gives them the highest precedence, even above ALTER SYSTEM [https://www.postgresql.org/docs/current/static/sql-altersystem.html]

When applying the local or dynamic configuration options, the following actions are taken:


	The node first checks if there is a postgresql.base.conf or if the custom_conf parameter is set.


	If the custom_conf parameter is set, it will take the file specified on it as a base configuration, ignoring postgresql.base.conf and postgresql.conf.


	If the custom_conf parameter is not set and postgresql.base.conf exists, it contains the renamed “original” configuration and it will be used as a base configuration.


	If there is no custom_conf nor postgresql.base.conf, the original postgresql.conf is taken and renamed to postgresql.base.conf.


	The dynamic options (with the exceptions above) are dumped into the postgresql.conf and an include is set in
postgresql.conf to the used base configuration (either postgresql.base.conf or what is on custom_conf). Therefore, we would be able to apply new options without re-reading the configuration file to check if the include is present not.


	Some parameters that are essential for Patroni to manage the cluster are overridden using the command line.


	If some of the options that require restart are changed (we should look at the context in pg_settings and at the actual
values of those options), a pending_restart flag of a given node is set. This flag is reset on any restart.




The parameters would be applied in the following order (run-time are given the highest priority):


	load parameters from file postgresql.base.conf (or from a custom_conf file, if set)


	load parameters from file postgresql.conf


	load parameters from file postgresql.auto.conf


	run-time parameter using -o –name=value




This allows configuration for all the nodes (2), configuration for a specific node using ALTER SYSTEM (3) and ensures that parameters essential to the running of Patroni are enforced (4), as well as leaves room for configuration tools that manage postgresql.conf directly without involving Patroni (1).

Also, the following Patroni configuration options can be changed only dynamically:


	ttl: 30


	loop_wait: 10


	retry_timeouts: 10


	maximum_lag_on_failover: 1048576


	max_timelines_history: 0


	check_timeline: false


	postgresql.use_slots: true




Upon changing these options, Patroni will read the relevant section of the configuration stored in DCS and change its
run-time values.

Patroni nodes are dumping the state of the DCS options to disk upon for every change of the configuration into the file patroni.dynamic.json located in the Postgres data directory. Only the master is allowed to restore these options from the on-disk dump if these are completely absent from the DCS or if they are invalid.




            

          

      

      

    

  

    
      
          
            
  
Patroni REST API

Patroni has a rich REST API, which is used by Patroni itself during the leader race, by the patronictl tool in order to perform failovers/switchovers/reinitialize/restarts/reloads, by HAProxy or any other kind of load balancer to perform HTTP health checks, and of course could also be used for monitoring. Below you will find the list of Patroni REST API endpoints.


Health check endpoints

For all health check GET requests Patroni returns a JSON document with the status of the node, along with the HTTP status code. If you don’t want or don’t need the JSON document, you might consider using the OPTIONS method instead of GET.


	The following requests to Patroni REST API will return HTTP status code 200 only when the Patroni node is running as the primary with leader lock:


	GET /


	GET /master


	GET /primary


	GET /read-write






	GET /standby-leader: returns HTTP status code 200 only when the Patroni node is running as the leader in a standby cluster.


	GET /leader: returns HTTP status code 200 when the Patroni node has the leader lock. The major difference from the two previous endpoints is that it doesn’t take into account whether PostgreSQL is running as the primary or the standby_leader.


	GET /replica: replica health check endpoint. It returns HTTP status code 200 only when the Patroni node is in the state running, the role is replica and noloadbalance tag is not set.


	GET /replica?lag=<max-lag>: replica check endpoint. In addition to checks from replica, it also checks replication latency and returns status code 200 only when it is below specified value. The key cluster.last_leader_operation from DCS is used for Leader wal position and compute latency on replica for performance reasons. max-lag can be specified in bytes (integer) or in human readable values, for e.g. 16kB, 64MB, 1GB.


	GET /replica?lag=1048576


	GET /replica?lag=1024kB


	GET /replica?lag=10MB


	GET /replica?lag=1GB






	GET /replica?tag_key1=value1&tag_key2=value2: replica check endpoint. In addition, It will also check for user defined tags key1 and key2 and their respective values in the tags section of the yaml configuration management. If the tag isn’t defined for an instance, or if the value in the yaml configuration doesn’t match the querying value, it will return HTTP Status Code 503.






	In the following requests, since we are checking for the leader or standby-leader status, Patroni doesn’t apply any of the user defined tags and they will be ignored.
	
	GET /?tag_key1=value1&tag_key2=value2


	GET /master?tag_key1=value1&tag_key2=value2


	GET /leader?tag_key1=value1&tag_key2=value2


	GET /primary?tag_key1=value1&tag_key2=value2


	GET /read-write?tag_key1=value1&tag_key2=value2


	GET /standby_leader?tag_key1=value1&tag_key2=value2


	GET /standby-leader?tag_key1=value1&tag_key2=value2












	GET /read-only: like the above endpoint, but also includes the primary.


	GET /synchronous or GET /sync: returns HTTP status code 200 only when the Patroni node is running as a synchronous standby.


	GET /read-only-sync: like the above endpoint, but also includes the primary.


	GET /asynchronous or GET /async: returns HTTP status code 200 only when the Patroni node is running as an asynchronous standby.


	GET /asynchronous?lag=<max-lag> or GET /async?lag=<max-lag>: asynchronous standby check endpoint. In addition to checks from asynchronous or async, it also checks replication latency and returns status code 200 only when it is below specified value. The key cluster.last_leader_operation from DCS is used for Leader wal position and compute latency on replica for performance reasons. max-lag can be specified in bytes (integer) or in human readable values, for e.g. 16kB, 64MB, 1GB.


	GET /async?lag=1048576


	GET /async?lag=1024kB


	GET /async?lag=10MB


	GET /async?lag=1GB






	GET /health: returns HTTP status code 200 only when PostgreSQL is up and running.


	GET /liveness: always returns HTTP status code 200 what only indicates that Patroni is running. Could be used for livenessProbe.


	GET /readiness: returns HTTP status code 200 when the Patroni node is running as the leader or when PostgreSQL is up and running. The endpoint could be used for readinessProbe when it is not possible to use Kubernetes endpoints for leader elections (OpenShift).




Both, readiness and liveness endpoints are very light-weight and not executing any SQL. Probes should be configured in such a way that they start failing about time when the leader key is expiring. With the default value of ttl, which is 30s example probes would look like:

readinessProbe:
  httpGet:
    scheme: HTTP
    path: /readiness
    port: 8008
  initialDelaySeconds: 3
  periodSeconds: 10
  timeoutSeconds: 5
  successThreshold: 1
  failureThreshold: 3
livenessProbe:
  httpGet:
    scheme: HTTP
    path: /liveness
    port: 8008
  initialDelaySeconds: 3
  periodSeconds: 10
  timeoutSeconds: 5
  successThreshold: 1
  failureThreshold: 3







Monitoring endpoint

The GET /patroni is used by Patroni during the leader race. It also could be used by your monitoring system. The JSON document produced by this endpoint has the same structure as the JSON produced by the health check endpoints.

$ curl -s http://localhost:8008/patroni | jq .
{
  "state": "running",
  "postmaster_start_time": "2019-09-24 09:22:32.555 CEST",
  "role": "master",
  "server_version": 110005,
  "cluster_unlocked": false,
  "xlog": {
    "location": 25624640
  },
  "timeline": 3,
  "database_system_identifier": "6739877027151648096",
  "patroni": {
    "version": "1.6.0",
    "scope": "batman"
  }
}







Cluster status endpoints


	The GET /cluster endpoint generates a JSON document describing the current cluster topology and state:




$ curl -s http://localhost:8008/cluster | jq .
{
  "members": [
    {
      "name": "postgresql0",
      "host": "127.0.0.1",
      "port": 5432,
      "role": "leader",
      "state": "running",
      "api_url": "http://127.0.0.1:8008/patroni",
      "timeline": 5,
      "tags": {
        "clonefrom": true
      }
    },
    {
      "name": "postgresql1",
      "host": "127.0.0.1",
      "port": 5433,
      "role": "replica",
      "state": "running",
      "api_url": "http://127.0.0.1:8009/patroni",
      "timeline": 5,
      "tags": {
        "clonefrom": true
      },
      "lag": 0
    }
  ],
  "scheduled_switchover": {
    "at": "2019-09-24T10:36:00+02:00",
    "from": "postgresql0"
  }
}






	The GET /history endpoint provides a view on the history of cluster switchovers/failovers. The format is very similar to the content of history files in the pg_wal directory. The only difference is the timestamp field showing when the new timeline was created.




$ curl -s http://localhost:8008/history | jq .
[
  [
    1,
    25623960,
    "no recovery target specified",
    "2019-09-23T16:57:57+02:00"
  ],
  [
    2,
    25624344,
    "no recovery target specified",
    "2019-09-24T09:22:33+02:00"
  ],
  [
    3,
    25624752,
    "no recovery target specified",
    "2019-09-24T09:26:15+02:00"
  ],
  [
    4,
    50331856,
    "no recovery target specified",
    "2019-09-24T09:35:52+02:00"
  ]
]







Config endpoint

GET /config: Get the current version of the dynamic configuration:

$ curl -s localhost:8008/config | jq .
{
  "ttl": 30,
  "loop_wait": 10,
  "retry_timeout": 10,
  "maximum_lag_on_failover": 1048576,
  "postgresql": {
    "use_slots": true,
    "use_pg_rewind": true,
    "parameters": {
      "hot_standby": "on",
      "wal_log_hints": "on",
      "wal_level": "hot_standby",
      "max_wal_senders": 5,
      "max_replication_slots": 5,
      "max_connections": "100"
    }
  }
}





PATCH /config: Change the existing configuration.

$ curl -s -XPATCH -d \
        '{"loop_wait":5,"ttl":20,"postgresql":{"parameters":{"max_connections":"101"}}}' \
        http://localhost:8008/config | jq .
{
  "ttl": 20,
  "loop_wait": 5,
  "maximum_lag_on_failover": 1048576,
  "retry_timeout": 10,
  "postgresql": {
    "use_slots": true,
    "use_pg_rewind": true,
    "parameters": {
      "hot_standby": "on",
      "wal_log_hints": "on",
      "wal_level": "hot_standby",
      "max_wal_senders": 5,
      "max_replication_slots": 5,
      "max_connections": "101"
    }
  }
}





The above REST API call patches the existing configuration and returns the new configuration.

Let’s check that the node processed this configuration. First of all it should start printing log lines every 5 seconds (loop_wait=5). The change of “max_connections” requires a restart, so the “pending_restart” flag should be exposed:

$ curl -s http://localhost:8008/patroni | jq .
{
  "pending_restart": true,
  "database_system_identifier": "6287881213849985952",
  "postmaster_start_time": "2016-06-13 13:13:05.211 CEST",
  "xlog": {
    "location": 2197818976
  },
  "patroni": {
    "scope": "batman",
    "version": "1.0"
  },
  "state": "running",
  "role": "master",
  "server_version": 90503
}





Removing parameters:

If you want to remove (reset) some setting just patch it with null:

$ curl -s -XPATCH -d \
        '{"postgresql":{"parameters":{"max_connections":null}}}' \
        http://localhost:8008/config | jq .
{
  "ttl": 20,
  "loop_wait": 5,
  "retry_timeout": 10,
  "maximum_lag_on_failover": 1048576,
  "postgresql": {
    "use_slots": true,
    "use_pg_rewind": true,
    "parameters": {
      "hot_standby": "on",
      "unix_socket_directories": ".",
      "wal_level": "hot_standby",
      "wal_log_hints": "on",
      "max_wal_senders": 5,
      "max_replication_slots": 5
    }
  }
}





The above call removes postgresql.parameters.max_connections from the dynamic configuration.

PUT /config: It’s also possible to perform the full rewrite of an existing dynamic configuration unconditionally:

$ curl -s -XPUT -d \
        '{"maximum_lag_on_failover":1048576,"retry_timeout":10,"postgresql":{"use_slots":true,"use_pg_rewind":true,"parameters":{"hot_standby":"on","wal_log_hints":"on","wal_level":"hot_standby","unix_socket_directories":".","max_wal_senders":5}},"loop_wait":3,"ttl":20}' \
        http://localhost:8008/config | jq .
{
  "ttl": 20,
  "maximum_lag_on_failover": 1048576,
  "retry_timeout": 10,
  "postgresql": {
    "use_slots": true,
    "parameters": {
      "hot_standby": "on",
      "unix_socket_directories": ".",
      "wal_level": "hot_standby",
      "wal_log_hints": "on",
      "max_wal_senders": 5
    },
    "use_pg_rewind": true
  },
  "loop_wait": 3
}







Switchover and failover endpoints

POST /switchover or POST /failover. These endpoints are very similar to each other. There are a couple of minor differences though:


	The failover endpoint allows to perform a manual failover when there are no healthy nodes, but at the same time it will not allow you to schedule a switchover.


	The switchover endpoint is the opposite. It works only when the cluster is healthy (there is a leader) and allows to schedule a switchover at a given time.




In the JSON body of the POST request you must specify at least the leader or candidate fields and optionally the scheduled_at field if you want to schedule a switchover at a specific time.

Example: perform a failover to the specific node:

$ curl -s http://localhost:8009/failover -XPOST -d '{"candidate":"postgresql1"}'
Successfully failed over to "postgresql1"





Example: schedule a switchover from the leader to any other healthy replica in the cluster at a specific time:

$ curl -s http://localhost:8008/switchover -XPOST -d \
        '{"leader":"postgresql0","scheduled_at":"2019-09-24T12:00+00"}'
Switchover scheduled





Depending on the situation the request might finish with a different HTTP status code and body. The status code 200 is returned when the switchover or failover successfully completed. If the switchover was successfully scheduled, Patroni will return HTTP status code 202. In case something went wrong, the error status code (one of 400, 412 or 503) will be returned with some details in the response body. For more information please check the source code of patroni/api.py:do_POST_failover() method.


	DELETE /switchover: delete the scheduled switchover




The POST /switchover and POST failover endpoints are used by patronictl switchover and patronictl failover, respectively.
The DELETE /switchover is used by patronictl flush <cluster-name> switchover.



Restart endpoint


	POST /restart: You can restart Postgres on the specific node by performing the POST /restart call. In the JSON body of POST request it is possible to optionally specify some restart conditions:


	restart_pending: boolean, if set to true Patroni will restart PostgreSQL only when restart is pending in order to apply some changes in the PostgreSQL config.


	role: perform restart only if the current role of the node matches with the role from the POST request.


	postgres_version: perform restart only if the current version of postgres is smaller than specified in the POST request.


	timeout: how long we should wait before PostgreSQL starts accepting connections. Overrides master_start_timeout.


	schedule: timestamp with time zone, schedule the restart somewhere in the future.






	DELETE /restart: delete the scheduled restart




POST /restart and DELETE /restart endpoints are used by patronictl restart and patronictl flush <cluster-name> restart respectively.



Reload endpoint

The POST /reload call will order Patroni to re-read and apply the configuration file. This is the equivalent of sending the SIGHUP signal to the Patroni process. In case you changed some of the Postgres parameters which require a restart (like shared_buffers), you still have to explicitly do the restart of Postgres by either calling the POST /restart endpoint or with the help of patronictl restart.

The reload endpoint is used by patronictl reload.



Reinitialize endpoint

POST /reinitialize: reinitialize the PostgreSQL data directory on the specified node. It is allowed to be executed only on replicas. Once called, it will remove the data directory and start pg_basebackup or some alternative replica creation method.

The call might fail if Patroni is in a loop trying to recover (restart) a failed Postgres. In order to overcome this problem one can specify {"force":true} in the request body.

The reinitialize endpoint is used by patronictl reinit.





            

          

      

      

    

  

    
      
          
            
  
Convert a Standalone to a Patroni Cluster

This section describes the process for converting a standalone PostgreSQL instance into a Patroni cluster.

To deploy a Patroni cluster without using a pre-existing PostgreSQL instance, see Running and Configuring instead.


Procedure

A Patroni cluster can be started with a data directory from a single-node PostgreSQL database. This is achieved by following closely these steps:


	Manually start PostgreSQL daemon


	Create Patroni superuser and replication users as defined in the authentication section of the Patroni configuration. If this user is created in SQL, the following queries achieve this:




CREATE USER $PATRONI_SUPERUSER_USERNAME WITH SUPERUSER ENCRYPTED PASSWORD '$PATRONI_SUPERUSER_PASSWORD';
CREATE USER $PATRONI_REPLICATION_USERNAME WITH REPLICATION ENCRYPTED PASSWORD '$PATRONI_REPLICATION_PASSWORD';






	Start Patroni (e.g. patroni /etc/patroni/patroni.yml). It automatically detects that PostgreSQL daemon is already running but its configuration might be out-of-date.


	Ask Patroni to restart the node with patronictl restart cluster-name node-name. This step is only required if PostgreSQL configuration is out-of-date.







Major Upgrade of PostgreSQL Version

The only possible way to do a major upgrade currently is:


	Stop Patroni


	Upgrade PostgreSQL binaries and perform pg_upgrade [https://www.postgresql.org/docs/current/pgupgrade.html] on the master node


	Update patroni.yml


	Remove the initialize key from DCS or wipe complete cluster state from DCS. The second one could be achieved by running patronictl remove <cluster-name>. It is necessary because pg_upgrade runs initdb which actually creates a new database with a new PostgreSQL system identifier.


	If you wiped the cluster state in the previous step, you may wish to copy patroni.dynamic.json from old data dir to the new one.  It will help you to retain some PostgreSQL parameters you had set before.


	Start Patroni on the master node.


	Upgrade PostgreSQL binaries, update patroni.yml and wipe the data_dir on standby nodes.


	Start Patroni on the standby nodes and wait for the replication to complete.




Running pg_upgrade on standby nodes is not supported by PostgreSQL. If you know what you are doing, you can try the rsync procedure described in https://www.postgresql.org/docs/current/pgupgrade.html instead of wiping data_dir on standby nodes. The safest way is however to let Patroni replicate the data for you.


FAQ


	During Patroni startup, Patroni complains that it cannot bind to the PostgreSQL port.

You need to verify listen_addresses and port in postgresql.conf and postgresql.listen in patroni.yml. Don’t forget that pg_hba.conf should allow such access.



	After asking Patroni to restart the node, PostgreSQL displays the error message could not open configuration file "/etc/postgresql/10/main/pg_hba.conf": No such file or directory

It can mean various things depending on how you manage PostgreSQL configuration. If you specified postgresql.config_dir, Patroni generates the pg_hba.conf based on the settings in the bootstrap section only when it bootstraps a new cluster. In this scenario the PGDATA was not empty, therefore no bootstrap happened. This file must exist beforehand.









            

          

      

      

    

  

    
      
          
            
  
Environment Configuration Settings

It is possible to override some of the configuration parameters defined in the Patroni configuration file using the system environment variables. This document lists all environment variables handled by Patroni. The values set via those variables always take precedence over the ones set in the Patroni configuration file.


Global/Universal


	PATRONI_CONFIGURATION: it is possible to set the entire configuration for the Patroni via PATRONI_CONFIGURATION environment variable. In this case any other environment variables will not be considered!


	PATRONI_NAME: name of the node where the current instance of Patroni is running. Must be unique for the cluster.


	PATRONI_NAMESPACE: path within the configuration store where Patroni will keep information about the cluster. Default value: “/service”


	PATRONI_SCOPE: cluster name






Log


	PATRONI_LOG_LEVEL: sets the general logging level. Default value is INFO (see the docs for Python logging [https://docs.python.org/3.6/library/logging.html#levels])


	PATRONI_LOG_TRACEBACK_LEVEL: sets the level where tracebacks will be visible. Default value is ERROR. Set it to DEBUG if you want to see tracebacks only if you enable PATRONI_LOG_LEVEL=DEBUG.


	PATRONI_LOG_FORMAT: sets the log formatting string. Default value is %(asctime)s %(levelname)s: %(message)s (see the LogRecord attributes [https://docs.python.org/3.6/library/logging.html#logrecord-attributes])


	PATRONI_LOG_DATEFORMAT: sets the datetime formatting string. (see the formatTime() documentation [https://docs.python.org/3.6/library/logging.html#logging.Formatter.formatTime])


	PATRONI_LOG_MAX_QUEUE_SIZE: Patroni is using two-step logging. Log records are written into the in-memory queue and there is a separate thread which pulls them from the queue and writes to stderr or file. The maximum size of the internal queue is limited by default by 1000 records, which is enough to keep logs for the past 1h20m.


	PATRONI_LOG_DIR: Directory to write application logs to. The directory must exist and be writable by the user executing Patroni. If you set this env variable, the application will retain 4 25MB logs by default. You can tune those retention values with PATRONI_LOG_FILE_NUM and PATRONI_LOG_FILE_SIZE (see below).


	PATRONI_LOG_FILE_NUM: The number of application logs to retain.


	PATRONI_LOG_FILE_SIZE: Size of patroni.log file (in bytes) that triggers a log rolling.


	PATRONI_LOG_LOGGERS: Redefine logging level per python module. Example PATRONI_LOG_LOGGERS="{patroni.postmaster: WARNING, urllib3: DEBUG}"






Bootstrap configuration

It is possible to create new database users right after the successful initialization of a new cluster. This process is defined by the following variables:


	PATRONI_<username>_PASSWORD=’<password>’


	PATRONI_<username>_OPTIONS=’list,of,options’




Example: defining PATRONI_admin_PASSWORD=strongpasswd and PATRONI_admin_OPTIONS='createrole,createdb' will cause creation of the user admin with the password strongpasswd that is allowed to create other users and databases.



Consul


	PATRONI_CONSUL_HOST: the host:port for the Consul local agent.


	PATRONI_CONSUL_URL: url for the Consul local agent, in format: http(s)://host:port


	PATRONI_CONSUL_PORT: (optional) Consul port


	PATRONI_CONSUL_SCHEME: (optional) http or https, defaults to http


	PATRONI_CONSUL_TOKEN: (optional) ACL token


	PATRONI_CONSUL_VERIFY: (optional) whether to verify the SSL certificate for HTTPS requests


	PATRONI_CONSUL_CACERT: (optional) The ca certificate. If present it will enable validation.


	PATRONI_CONSUL_CERT: (optional) File with the client certificate


	PATRONI_CONSUL_KEY: (optional) File with the client key. Can be empty if the key is part of certificate.


	PATRONI_CONSUL_DC: (optional) Datacenter to communicate with. By default the datacenter of the host is used.


	PATRONI_CONSUL_CONSISTENCY: (optional) Select consul consistency mode. Possible values are default, consistent, or stale (more details in consul API reference [https://www.consul.io/api/features/consistency.html/])


	PATRONI_CONSUL_CHECKS: (optional) list of Consul health checks used for the session. By default an empty list is used.


	PATRONI_CONSUL_REGISTER_SERVICE: (optional) whether or not to register a service with the name defined by the scope parameter and the tag master, replica or standby-leader depending on the node’s role. Defaults to false


	PATRONI_CONSUL_SERVICE_CHECK_INTERVAL: (optional) how often to perform health check against registered url


	PATRONI_CONSUL_SERVICE_CHECK_TLS_SERVER_NAME: (optional) overide SNI host when connecting via TLS, see also consul agent check API reference [https://www.consul.io/api-docs/agent/check#tlsservername].






Etcd


	PATRONI_ETCD_PROXY: proxy url for the etcd. If you are connecting to the etcd using proxy, use this parameter instead of PATRONI_ETCD_URL


	PATRONI_ETCD_URL: url for the etcd, in format: http(s)://(username:password@)host:port


	PATRONI_ETCD_HOSTS: list of etcd endpoints in format ‘host1:port1’,’host2:port2’,etc…


	PATRONI_ETCD_USE_PROXIES: If this parameter is set to true, Patroni will consider hosts as a list of proxies and will not perform a topology discovery of etcd cluster but stick to a fixed list of hosts.


	PATRONI_ETCD_PROTOCOL: http or https, if not specified http is used. If the url or proxy is specified - will take protocol from them.


	PATRONI_ETCD_HOST: the host:port for the etcd endpoint.


	PATRONI_ETCD_SRV: Domain to search the SRV record(s) for cluster autodiscovery. Patroni will try to query these SRV service names for specified domain (in that order until first success): _etcd-client-ssl, _etcd-client, _etcd-ssl, _etcd, _etcd-server-ssl, _etcd-server. If SRV records for _etcd-server-ssl or _etcd-server are retrieved then ETCD peer protocol is used do query ETCD for available members. Otherwise hosts from SRV records will be used.


	PATRONI_ETCD_SRV_SUFFIX: Configures a suffix to the SRV name that is queried during discovery. Use this flag to differentiate between multiple etcd clusters under the same domain. Works only with conjunction with PATRONI_ETCD_SRV. For example, if PATRONI_ETCD_SRV_SUFFIX=foo and PATRONI_ETCD_SRV=example.org are set, the following DNS SRV query is made:_etcd-client-ssl-foo._tcp.example.com (and so on for every possible ETCD SRV service name).


	PATRONI_ETCD_USERNAME: username for etcd authentication.


	PATRONI_ETCD_PASSWORD: password for etcd authentication.


	PATRONI_ETCD_CACERT: The ca certificate. If present it will enable validation.


	PATRONI_ETCD_CERT: File with the client certificate.


	PATRONI_ETCD_KEY: File with the client key. Can be empty if the key is part of certificate.






Etcdv3

Environment names for Etcdv3 are similar as for Etcd, you just need to use ETCD3 instead of ETCD in the variable name. Example: PATRONI_ETCD3_HOST, PATRONI_ETCD3_CACERT, and so on.


Warning

Keys created with protocol version 2 are not visible with protocol version 3 and the other way around, therefore it is not possible to switch from Etcd to Etcdv3 just by updating Patroni configuration.





ZooKeeper


	PATRONI_ZOOKEEPER_HOSTS: Comma separated list of ZooKeeper cluster members: “‘host1:port1’,’host2:port2’,’etc…’”. It is important to quote every single entity!


	PATRONI_ZOOKEEPER_USE_SSL: (optional) Whether SSL is used or not. Defaults to false. If set to false, all SSL specific parameters are ignored.


	PATRONI_ZOOKEEPER_CACERT: (optional) The CA certificate. If present it will enable validation.


	PATRONI_ZOOKEEPER_CERT: (optional) File with the client certificate.


	PATRONI_ZOOKEEPER_KEY: (optional) File with the client key.


	PATRONI_ZOOKEEPER_KEY_PASSWORD: (optional) The client key password.


	PATRONI_ZOOKEEPER_VERIFY: (optional) Whether to verify certificate or not. Defaults to true.


	PATRONI_ZOOKEEPER_SET_ACLS: (optional) If set, configure Kazoo to apply a default ACL to each ZNode that it creates. ACLs will assume ‘x509’ schema and should be specified as a dictionary with the principal as the key and one or more permissions as a list in the value.  Permissions may be one of CREATE, READ, WRITE, DELETE or ADMIN.  For example, set_acls: {CN=principal1: [CREATE, READ], CN=principal2: [ALL]}.





Note

It is required to install kazoo>=2.6.0 to support SSL.





Exhibitor


	PATRONI_EXHIBITOR_HOSTS: initial list of Exhibitor (ZooKeeper) nodes in format: ‘host1,host2,etc…’. This list updates automatically whenever the Exhibitor (ZooKeeper) cluster topology changes.


	PATRONI_EXHIBITOR_PORT: Exhibitor port.






Kubernetes


	PATRONI_KUBERNETES_BYPASS_API_SERVICE: (optional) When communicating with the Kubernetes API, Patroni is usually relying on the kubernetes service, the address of which is exposed in the pods via the KUBERNETES_SERVICE_HOST environment variable. If PATRONI_KUBERNETES_BYPASS_API_SERVICE is set to true, Patroni will resolve the list of API nodes behind the service and connect directly to them.


	PATRONI_KUBERNETES_NAMESPACE: (optional) Kubernetes namespace where the Patroni pod is running. Default value is default.


	PATRONI_KUBERNETES_LABELS: Labels in format {label1: value1, label2: value2}. These labels will be used to find existing objects (Pods and either Endpoints or ConfigMaps) associated with the current cluster. Also Patroni will set them on every object (Endpoint or ConfigMap) it creates.


	PATRONI_KUBERNETES_SCOPE_LABEL: (optional) name of the label containing cluster name. Default value is cluster-name.


	PATRONI_KUBERNETES_ROLE_LABEL: (optional) name of the label containing Postgres role (master or replica). Patroni will set this label on the pod it is running in. Default value is role.


	PATRONI_KUBERNETES_USE_ENDPOINTS: (optional) if set to true, Patroni will use Endpoints instead of ConfigMaps to run leader elections and keep cluster state.


	PATRONI_KUBERNETES_POD_IP: (optional) IP address of the pod Patroni is running in. This value is required when PATRONI_KUBERNETES_USE_ENDPOINTS is enabled and is used to populate the leader endpoint subsets when the pod’s PostgreSQL is promoted.


	PATRONI_KUBERNETES_PORTS: (optional) if the Service object has the name for the port, the same name must appear in the Endpoint object, otherwise service won’t work. For example, if your service is defined as {Kind: Service, spec: {ports: [{name: postgresql, port: 5432, targetPort: 5432}]}}, then you have to set PATRONI_KUBERNETES_PORTS='[{"name": "postgresql", "port": 5432}]' and Patroni will use it for updating subsets of the leader Endpoint. This parameter is used only if PATRONI_KUBERNETES_USE_ENDPOINTS is set.


	PATRONI_KUBERNETES_CACERT: (optional) Specifies the file with the CA_BUNDLE file with certificates of trusted CAs to use while verifying Kubernetes API SSL certs. If not provided, patroni will use the value provided by the ServiceAccount secret.






Raft


	PATRONI_RAFT_SELF_ADDR: ip:port to listen on for Raft connections. The self_addr must be accessible from other nodes of the cluster. If not set, the node will not participate in consensus.


	PATRONI_RAFT_BIND_ADDR: (optional) ip:port to listen on for Raft connections. If not specified the self_addr will be used.


	PATRONI_RAFT_PARTNER_ADDRS: list of other Patroni nodes in the cluster in format "'ip1:port1','ip2:port2'". It is important to quote every single entity!


	PATRONI_RAFT_DATA_DIR: directory where to store Raft log and snapshot. If not specified the current working directory is used.


	PATRONI_RAFT_PASSWORD: (optional) Encrypt Raft traffic with a specified password, requires cryptography python module.






PostgreSQL


	PATRONI_POSTGRESQL_LISTEN: IP address + port that Postgres listens to. Multiple comma-separated addresses are permitted, as long as the port component is appended after to the last one with a colon, i.e. listen: 127.0.0.1,127.0.0.2:5432. Patroni will use the first address from this list to establish local connections to the PostgreSQL node.


	PATRONI_POSTGRESQL_CONNECT_ADDRESS: IP address + port through which Postgres is accessible from other nodes and applications.


	PATRONI_POSTGRESQL_DATA_DIR: The location of the Postgres data directory, either existing or to be initialized by Patroni.


	PATRONI_POSTGRESQL_CONFIG_DIR: The location of the Postgres configuration directory, defaults to the data directory. Must be writable by Patroni.


	PATRONI_POSTGRESQL_BIN_DIR: Path to PostgreSQL binaries. (pg_ctl, pg_rewind, pg_basebackup, postgres) The  default value is an empty string meaning that PATH environment variable will be used to find the executables.


	PATRONI_POSTGRESQL_PGPASS: path to the .pgpass [https://www.postgresql.org/docs/current/static/libpq-pgpass.html] password file. Patroni creates this file before executing pg_basebackup and under some other circumstances. The location must be writable by Patroni.


	PATRONI_REPLICATION_USERNAME: replication username; the user will be created during initialization. Replicas will use this user to access master via streaming replication


	PATRONI_REPLICATION_PASSWORD: replication password; the user will be created during initialization.


	PATRONI_REPLICATION_SSLMODE: (optional) maps to the sslmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE] connection parameter, which allows a client to specify the type of TLS negotiation mode with the server. For more information on how each mode works, please visit the PostgreSQL documentation [https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]. The default mode is prefer.


	PATRONI_REPLICATION_SSLKEY: (optional) maps to the sslkey [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLKEY] connection parameter, which specifies the location of the secret key used with the client’s certificate.


	PATRONI_REPLICATION_SSLPASSWORD: (optional) maps to the sslpassword [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLPASSWORD] connection parameter, which specifies the password for the secret key specified in PATRONI_REPLICATION_SSLKEY.


	PATRONI_REPLICATION_SSLCERT: (optional) maps to the sslcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERT] connection parameter, which specifies the location of the client certificate.


	PATRONI_REPLICATION_SSLROOTCERT: (optional) maps to the sslrootcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT] connection parameter, which specifies the location of a file containing one ore more certificate authorities (CA) certificates that the client will use to verify a server’s certificate.


	PATRONI_REPLICATION_SSLCRL: (optional) maps to the sslcrl [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRL] connection parameter, which specifies the location of a file containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	PATRONI_REPLICATION_SSLCRLDIR: (optional) maps to the sslcrldir [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRLDIR] connection parameter, which specifies the location of a directory with files containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	PATRONI_REPLICATION_GSSENCMODE: (optional) maps to the gssencmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-GSSENCMODE] connection parameter, which determines whether or with what priority a secure GSS TCP/IP connection will be negotiated with the server


	PATRONI_REPLICATION_CHANNEL_BINDING: (optional) maps to the channel_binding [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-CHANNEL-BINDING] connection parameter, which controls the client’s use of channel binding.


	PATRONI_SUPERUSER_USERNAME: name for the superuser, set during initialization (initdb) and later used by Patroni to connect to the postgres. Also this user is used by pg_rewind.


	PATRONI_SUPERUSER_PASSWORD: password for the superuser, set during initialization (initdb).


	PATRONI_SUPERUSER_SSLMODE: (optional) maps to the sslmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE] connection parameter, which allows a client to specify the type of TLS negotiation mode with the server. For more information on how each mode works, please visit the PostgreSQL documentation [https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]. The default mode is prefer.


	PATRONI_SUPERUSER_SSLKEY: (optional) maps to the sslkey [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLKEY] connection parameter, which specifies the location of the secret key used with the client’s certificate.


	PATRONI_SUPERUSER_SSLPASSWORD: (optional) maps to the sslpassword [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLPASSWORD] connection parameter, which specifies the password for the secret key specified in PATRONI_SUPERUSER_SSLKEY.


	PATRONI_SUPERUSER_SSLCERT: (optional) maps to the sslcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERT] connection parameter, which specifies the location of the client certificate.


	PATRONI_SUPERUSER_SSLROOTCERT: (optional) maps to the sslrootcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT] connection parameter, which specifies the location of a file containing one ore more certificate authorities (CA) certificates that the client will use to verify a server’s certificate.


	PATRONI_SUPERUSER_SSLCRL: (optional) maps to the sslcrl [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRL] connection parameter, which specifies the location of a file containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	PATRONI_SUPERUSER_SSLCRLDIR: (optional) maps to the sslcrldir [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRLDIR] connection parameter, which specifies the location of a directory with files containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	PATRONI_SUPERUSER_GSSENCMODE: (optional) maps to the gssencmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-GSSENCMODE] connection parameter, which determines whether or with what priority a secure GSS TCP/IP connection will be negotiated with the server


	PATRONI_SUPERUSER_CHANNEL_BINDING: (optional) maps to the channel_binding [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-CHANNEL-BINDING] connection parameter, which controls the client’s use of channel binding.


	PATRONI_REWIND_USERNAME: name for the user for pg_rewind; the user will be created during initialization of postgres 11+ and all necessary permissions [https://www.postgresql.org/docs/11/app-pgrewind.html#id-1.9.5.8.8] will be granted.


	PATRONI_REWIND_PASSWORD: password for the user for pg_rewind; the user will be created during initialization.


	PATRONI_REWIND_SSLMODE: (optional) maps to the sslmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE] connection parameter, which allows a client to specify the type of TLS negotiation mode with the server. For more information on how each mode works, please visit the PostgreSQL documentation [https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]. The default mode is prefer.


	PATRONI_REWIND_SSLKEY: (optional) maps to the sslkey [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLKEY] connection parameter, which specifies the location of the secret key used with the client’s certificate.


	PATRONI_REWIND_SSLPASSWORD: (optional) maps to the sslpassword [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLPASSWORD] connection parameter, which specifies the password for the secret key specified in PATRONI_REWIND_SSLKEY.


	PATRONI_REWIND_SSLCERT: (optional) maps to the sslcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERT] connection parameter, which specifies the location of the client certificate.


	PATRONI_REWIND_SSLROOTCERT: (optional) maps to the sslrootcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT] connection parameter, which specifies the location of a file containing one ore more certificate authorities (CA) certificates that the client will use to verify a server’s certificate.


	PATRONI_REWIND_SSLCRL: (optional) maps to the sslcrl [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRL] connection parameter, which specifies the location of a file containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	PATRONI_REWIND_SSLCRLDIR: (optional) maps to the sslcrldir [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRLDIR] connection parameter, which specifies the location of a directory with files containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	PATRONI_REWIND_GSSENCMODE: (optional) maps to the gssencmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-GSSENCMODE] connection parameter, which determines whether or with what priority a secure GSS TCP/IP connection will be negotiated with the server


	PATRONI_REWIND_CHANNEL_BINDING: (optional) maps to the channel_binding [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-CHANNEL-BINDING] connection parameter, which controls the client’s use of channel binding.






REST API


	PATRONI_RESTAPI_CONNECT_ADDRESS: IP address and port to access the REST API.


	PATRONI_RESTAPI_LISTEN: IP address and port that Patroni will listen to, to provide health-check information for HAProxy.


	PATRONI_RESTAPI_USERNAME: Basic-auth username to protect unsafe REST API endpoints.


	PATRONI_RESTAPI_PASSWORD: Basic-auth password to protect unsafe REST API endpoints.


	PATRONI_RESTAPI_CERTFILE: Specifies the file with the certificate in the PEM format. If the certfile is not specified or is left empty, the API server will work without SSL.


	PATRONI_RESTAPI_KEYFILE: Specifies the file with the secret key in the PEM format.


	PATRONI_RESTAPI_KEYFILE_PASSWORD: Specifies a password for decrypting the keyfile.


	PATRONI_RESTAPI_CAFILE: Specifies the file with the CA_BUNDLE with certificates of trusted CAs to use while verifying client certs.


	PATRONI_RESTAPI_CIPHERS: (optional) Specifies the permitted cipher suites (e.g. “ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES128-GCM-SHA256:!SSLv1:!SSLv2:!SSLv3:!TLSv1:!TLSv1.1”)


	PATRONI_RESTAPI_VERIFY_CLIENT: none (default), optional or required. When none REST API will not check client certificates. When required client certificates are required for all REST API calls. When optional client certificates are required for all unsafe REST API endpoints. When required is used, then client authentication succeeds, if the certificate signature verification succeeds. For optional the client cert will only be checked for PUT, POST, PATCH, and DELETE requests.


	PATRONI_RESTAPI_ALLOWLIST: (optional): Specifies the set of hosts that are allowed to call unsafe REST API endpoints. The single element could be a host name, an IP address or a network address using CIDR notation. By default allow all is used. In case if allowlist or allowlist_include_members are set, anything that is not included is rejected.


	PATRONI_RESTAPI_ALLOWLIST_INCLUDE_MEMBERS: (optional): If set to true it allows accessing unsafe REST API endpoints from other cluster members registered in DCS (IP address or hostname is taken from the members api_url). Be careful, it might happen that OS will use a different IP for outgoing connections.


	PATRONI_RESTAPI_HTTP_EXTRA_HEADERS: (optional) HTTP headers let the REST API server pass additional information with an HTTP response.


	PATRONI_RESTAPI_HTTPS_EXTRA_HEADERS: (optional) HTTPS headers let the REST API server pass additional information with an HTTP response when TLS is enabled. This will also pass additional information set in http_extra_headers.






CTL


	PATRONICTL_CONFIG_FILE: location of the configuration file.


	PATRONI_CTL_INSECURE: Allow connections to REST API without verifying SSL certs.


	PATRONI_CTL_CACERT: Specifies the file with the CA_BUNDLE file or directory with certificates of trusted CAs to use while verifying REST API SSL certs. If not provided patronictl will use the value provided for REST API “cafile” parameter.


	PATRONI_CTL_CERTFILE: Specifies the file with the client certificate in the PEM format. If not provided patronictl will use the value provided for REST API “certfile” parameter.


	PATRONI_CTL_KEYFILE: Specifies the file with the client secret key in the PEM format. If not provided patronictl will use the value provided for REST API “keyfile” parameter.








            

          

      

      

    

  

    
      
          
            
  
YAML Configuration Settings


Dynamic configuration settings

Dynamic configuration is stored in the DCS (Distributed Configuration Store) and applied on all cluster nodes. Some parameters, like loop_wait, ttl, postgresql.parameters.max_connections, postgresql.parameters.max_worker_processes and so on could be set only in the dynamic configuration. Some other parameters like postgresql.listen, postgresql.data_dir could be set only locally, i.e. in the Patroni config file or via configuration variable. In most cases the local configuration will override the dynamic configuration. In order to change the dynamic configuration you can use either patronictl edit-config tool or Patroni REST API.


	loop_wait: the number of seconds the loop will sleep. Default value: 10


	ttl: the TTL to acquire the leader lock (in seconds). Think of it as the length of time before initiation of the automatic failover process. Default value: 30


	retry_timeout: timeout for DCS and PostgreSQL operation retries (in seconds). DCS or network issues shorter than this will not cause Patroni to demote the leader. Default value: 10


	maximum_lag_on_failover: the maximum bytes a follower may lag to be able to participate in leader election.


	maximum_lag_on_syncnode: the maximum bytes a synchronous follower may lag before it is considered as an unhealthy candidate and swapped by healthy asynchronous follower. Patroni utilize the max replica lsn if there is more than one follower, otherwise it will use leader’s current wal lsn. Default is -1, Patroni will not take action to swap synchronous unhealthy follower when the value is set to 0 or below. Please set the value high enough so Patroni won’t swap synchrounous follower fequently during high transaction volume.


	max_timelines_history: maximum number of timeline history items kept in DCS.  Default value: 0. When set to 0, it keeps the full history in DCS.


	master_start_timeout: the amount of time a master is allowed to recover from failures before failover is triggered (in seconds). Default is 300 seconds. When set to 0 failover is done immediately after a crash is detected if possible. When using asynchronous replication a failover can cause lost transactions. Worst case failover time for master failure is: loop_wait + master_start_timeout + loop_wait, unless master_start_timeout is zero, in which case it’s just loop_wait. Set the value according to your durability/availability tradeoff.


	master_stop_timeout: The number of seconds Patroni is allowed to wait when stopping Postgres and effective only when synchronous_mode is enabled. When set to > 0 and the synchronous_mode is enabled, Patroni sends SIGKILL to the postmaster if the stop operation is running for more than the value set by master_stop_timeout. Set the value according to your durability/availability tradeoff. If the parameter is not set or set <= 0, master_stop_timeout does not apply.


	synchronous_mode: turns on synchronous replication mode. In this mode a replica will be chosen as synchronous and only the latest leader and synchronous replica are able to participate in leader election. Synchronous mode makes sure that successfully committed transactions will not be lost at failover, at the cost of losing availability for writes when Patroni cannot ensure transaction durability. See replication modes documentation for details.


	synchronous_mode_strict: prevents disabling synchronous replication if no synchronous replicas are available, blocking all client writes to the master. See replication modes documentation for details.


	
	postgresql:
	
	use_pg_rewind: whether or not to use pg_rewind. Defaults to false.


	use_slots: whether or not to use replication slots. Defaults to true on PostgreSQL 9.4+.


	recovery_conf: additional configuration settings written to recovery.conf when configuring follower. There is no recovery.conf anymore in PostgreSQL 12, but you may continue using this section, because Patroni handles it transparently.


	parameters: list of configuration settings for Postgres.










	
	standby_cluster: if this section is defined, we want to bootstrap a standby cluster.
	
	host: an address of remote master


	port: a port of remote master


	primary_slot_name: which slot on the remote master to use for replication. This parameter is optional, the default value is derived from the instance name (see function slot_name_from_member_name).


	create_replica_methods: an ordered list of methods that can be used to bootstrap standby leader from the remote master, can be different from the list defined in PostgreSQL


	restore_command: command to restore WAL records from the remote master to standby leader, can be different from the list defined in PostgreSQL


	archive_cleanup_command: cleanup command for standby leader


	recovery_min_apply_delay: how long to wait before actually apply WAL records on a standby leader










	
	slots: define permanent replication slots. These slots will be preserved during switchover/failover. The logical slots are copied from the primary to a standby with restart, and after that their position advanced every loop_wait seconds (if necessary). Copying logical slot files performed via libpq connection and using either rewind or superuser credentials (see postgresql.authentication section). There is always a chance that the logical slot position on the replica is a bit behind the former primary, therefore application should be prepared that some messages could be received the second time after the failover. The easiest way of doing so - tracking confirmed_flush_lsn. Enabling permanent logical replication slots requires postgresql.use_slots to be set and will also automatically enable the hot_standby_feedback. Since the failover of logical replication slots is unsafe on PostgreSQL 9.6 and older and PostgreSQL version 10 is missing some important functions, the feature only works with PostgreSQL 11+.
	
	
	my_slot_name: the name of replication slot. If the permanent slot name matches with the name of the current primary it will not be created. Everything else is the responsibility of the operator to make sure that there are no clashes in names between replication slots automatically created by Patroni for members and permanent replication slots.
	
	type: slot type. Could be physical or logical. If the slot is logical, you have to additionally define database and plugin.


	database: the database name where logical slots should be created.


	plugin: the plugin name for the logical slot.


















	
	ignore_slots: list of sets of replication slot properties for which Patroni should ignore matching slots. This configuration/feature/etc. is useful when some replication slots are managed outside of Patroni. Any subset of matching properties will cause a slot to be ignored.
	
	name: the name of the replication slot.


	type: slot type. Can be physical or logical. If the slot is logical, you may additionally define database and/or plugin.


	database: the database name (when matching a logical slot).


	plugin: the logical decoding plugin (when matching a logical slot).












Note: slots is a hashmap while ignore_slots is an array. For example:

slots:
  permanent_logical_slot_name:
    type: logical
    database: my_db
    plugin: test_decoding
  permanent_physical_slot_name:
    type: physical
  ...
ignore_slots:
  - name: ignored_logical_slot_name
    type: logical
    database: my_db
    plugin: test_decoding
  - name: ignored_physical_slot_name
    type: physical
  ...







Global/Universal


	name: the name of the host. Must be unique for the cluster.


	namespace: path within the configuration store where Patroni will keep information about the cluster. Default value: “/service”


	scope: cluster name






Log


	level: sets the general logging level. Default value is INFO (see the docs for Python logging [https://docs.python.org/3.6/library/logging.html#levels])


	traceback_level: sets the level where tracebacks will be visible. Default value is ERROR. Set it to DEBUG if you want to see tracebacks only if you enable log.level=DEBUG.


	format: sets the log formatting string. Default value is %(asctime)s %(levelname)s: %(message)s (see the LogRecord attributes [https://docs.python.org/3.6/library/logging.html#logrecord-attributes])


	dateformat: sets the datetime formatting string. (see the formatTime() documentation [https://docs.python.org/3.6/library/logging.html#logging.Formatter.formatTime])


	max_queue_size: Patroni is using two-step logging. Log records are written into the in-memory queue and there is a separate thread which pulls them from the queue and writes to stderr or file. The maximum size of the internal queue is limited by default by 1000 records, which is enough to keep logs for the past 1h20m.


	dir: Directory to write application logs to. The directory must exist and be writable by the user executing Patroni. If you set this value, the application will retain 4 25MB logs by default. You can tune those retention values with file_num and file_size (see below).


	file_num: The number of application logs to retain.


	file_size: Size of patroni.log file (in bytes) that triggers a log rolling.


	
	loggers: This section allows redefining logging level per python module
	
	patroni.postmaster: WARNING


	urllib3: DEBUG














Bootstrap configuration


	
	bootstrap:
	
	dcs: This section will be written into /<namespace>/<scope>/config of the given configuration store after initializing of new cluster. The global dynamic configuration for the cluster. Under the bootstrap.dcs you can put any of the parameters described in the Dynamic Configuration settings and after Patroni initialized (bootstrapped) the new cluster, it will write this section into /<namespace>/<scope>/config of the configuration store. All later changes of bootstrap.dcs will not take any effect! If you want to change them please use either patronictl edit-config or Patroni REST API.


	method: custom script to use for bootstrapping this cluster.
See custom bootstrap methods documentation for details.
When initdb is specified revert to the default initdb command. initdb is also triggered when no method
parameter is present in the configuration file.


	
	initdb: List options to be passed on to initdb.
	
	- data-checksums: Must be enabled when pg_rewind is needed on 9.3.


	- encoding: UTF8: default encoding for new databases.


	- locale: UTF8: default locale for new databases.










	
	pg_hba: list of lines that you should add to pg_hba.conf.
	
	- host all all 0.0.0.0/0 md5.


	- host replication replicator 127.0.0.1/32 md5: A line like this is required for replication.










	
	users: Some additional users which need to be created after initializing new cluster
	
	
	admin: the name of user
	
	password: zalando:


	
	options: list of options for CREATE USER statement
	
	- createrole


	- createdb


























	post_bootstrap or post_init: An additional script that will be executed after initializing the cluster. The script receives a connection string URL (with the cluster superuser as a user name). The PGPASSFILE variable is set to the location of pgpass file.














Consul

Most of the parameters are optional, but you have to specify one of the host or url


	host: the host:port for the Consul local agent.


	url: url for the Consul local agent, in format: http(s)://host:port.


	port: (optional) Consul port.


	scheme: (optional) http or https, defaults to http.


	token: (optional) ACL token.


	verify: (optional) whether to verify the SSL certificate for HTTPS requests.


	cacert: (optional) The ca certificate. If present it will enable validation.


	cert: (optional) file with the client certificate.


	key: (optional) file with the client key. Can be empty if the key is part of cert.


	dc: (optional) Datacenter to communicate with. By default the datacenter of the host is used.


	consistency: (optional) Select consul consistency mode. Possible values are default, consistent, or stale (more details in consul API reference [https://www.consul.io/api/features/consistency.html/])


	checks: (optional) list of Consul health checks used for the session. By default an empty list is used.


	register_service: (optional) whether or not to register a service with the name defined by the scope parameter and the tag master, replica or standby-leader depending on the node’s role. Defaults to false.


	service_tags: (optional) additional static tags to add to the Consul service apart from the role (master/replica/standby-leader).  By default an empty list is used.


	service_check_interval: (optional) how often to perform health check against registered url.


	service_check_tls_server_name: (optional) overide SNI host when connecting via TLS, see also consul agent check API reference [https://www.consul.io/api-docs/agent/check#tlsservername].




The token needs to have the following ACL permissions:

service_prefix "${scope}" {
    policy = "write"
}
key_prefix "${namespace}/${scope}" {
    policy = "write"
}
session_prefix "" {
    policy = "write"
}







Etcd

Most of the parameters are optional, but you have to specify one of the host, hosts, url, proxy or srv


	host: the host:port for the etcd endpoint.


	hosts: list of etcd endpoint in format host1:port1,host2:port2,etc… Could be a comma separated string or an actual yaml list.


	use_proxies: If this parameter is set to true, Patroni will consider hosts as a list of proxies and will not perform a topology discovery of etcd cluster.


	url: url for the etcd.


	proxy: proxy url for the etcd. If you are connecting to the etcd using proxy, use this parameter instead of url.


	srv: Domain to search the SRV record(s) for cluster autodiscovery. Patroni will try to query these SRV service names for specified domain (in that order until first success): _etcd-client-ssl, _etcd-client, _etcd-ssl, _etcd, _etcd-server-ssl, _etcd-server. If SRV records for _etcd-server-ssl or _etcd-server are retrieved then ETCD peer protocol is used do query ETCD for available members. Otherwise hosts from SRV records will be used.


	srv_suffix: Configures a suffix to the SRV name that is queried during discovery. Use this flag to differentiate between multiple etcd clusters under the same domain. Works only with conjunction with srv. For example, if srv_suffix: foo and srv: example.org are set, the following DNS SRV query is made:_etcd-client-ssl-foo._tcp.example.com (and so on for every possible ETCD SRV service name).


	protocol: (optional) http or https, if not specified http is used. If the url or proxy is specified - will take protocol from them.


	username: (optional) username for etcd authentication.


	password: (optional) password for etcd authentication.


	cacert: (optional) The ca certificate. If present it will enable validation.


	cert: (optional) file with the client certificate.


	key: (optional) file with the client key. Can be empty if the key is part of cert.






Etcdv3

If you want that Patroni works with Etcd cluster via protocol version 3, you need to use the etcd3 section in the Patroni configuration file. All configuration parameters are the same as for etcd.


Warning

Keys created with protocol version 2 are not visible with protocol version 3 and the other way around, therefore it is not possible to switch from etcd to etcd3 just by updating Patroni config file.





ZooKeeper


	hosts: List of ZooKeeper cluster members in format: [‘host1:port1’, ‘host2:port2’, ‘etc…’].


	use_ssl: (optional) Whether SSL is used or not. Defaults to false. If set to false, all SSL specific parameters are ignored.


	cacert: (optional) The CA certificate. If present it will enable validation.


	cert: (optional) File with the client certificate.


	key: (optional) File with the client key.


	key_password: (optional) The client key password.


	verify: (optional) Whether to verify certificate or not. Defaults to true.


	set_acls: (optional) If set, configure Kazoo to apply a default ACL to each ZNode that it creates. ACLs will assume ‘x509’ schema and should be specified as a dictionary with the principal as the key and one or more permissions as a list in the value.  Permissions may be one of CREATE, READ, WRITE, DELETE or ADMIN.  For example, set_acls: {CN=principal1: [CREATE, READ], CN=principal2: [ALL]}.





Note

It is required to install kazoo>=2.6.0 to support SSL.





Exhibitor


	hosts: initial list of Exhibitor (ZooKeeper) nodes in format: ‘host1,host2,etc…’. This list updates automatically whenever the Exhibitor (ZooKeeper) cluster topology changes.


	poll_interval: how often the list of ZooKeeper and Exhibitor nodes should be updated from Exhibitor.


	port: Exhibitor port.






Kubernetes


	bypass_api_service: (optional) When communicating with the Kubernetes API, Patroni is usually relying on the kubernetes service, the address of which is exposed in the pods via the KUBERNETES_SERVICE_HOST environment variable. If bypass_api_service is set to true, Patroni will resolve the list of API nodes behind the service and connect directly to them.


	namespace: (optional) Kubernetes namespace where Patroni pod is running. Default value is default.


	labels: Labels in format {label1: value1, label2: value2}. These labels will be used to find existing objects (Pods and either Endpoints or ConfigMaps) associated with the current cluster. Also Patroni will set them on every object (Endpoint or ConfigMap) it creates.


	scope_label: (optional) name of the label containing cluster name. Default value is cluster-name.


	role_label: (optional) name of the label containing role (master or replica). Patroni will set this label on the pod it runs in. Default value is role.


	use_endpoints: (optional) if set to true, Patroni will use Endpoints instead of ConfigMaps to run leader elections and keep cluster state.


	pod_ip: (optional) IP address of the pod Patroni is running in. This value is required when use_endpoints is enabled and is used to populate the leader endpoint subsets when the pod’s PostgreSQL is promoted.


	ports: (optional) if the Service object has the name for the port, the same name must appear in the Endpoint object, otherwise service won’t work. For example, if your service is defined as {Kind: Service, spec: {ports: [{name: postgresql, port: 5432, targetPort: 5432}]}}, then you have to set kubernetes.ports: [{"name": "postgresql", "port": 5432}] and Patroni will use it for updating subsets of the leader Endpoint. This parameter is used only if kubernetes.use_endpoints is set.


	cacert: (optional) Specifies the file with the CA_BUNDLE file with certificates of trusted CAs to use while verifying Kubernetes API SSL certs. If not provided, patroni will use the value provided by the ServiceAccount secret.






Raft


	self_addr: ip:port to listen on for Raft connections. The self_addr must be accessible from other nodes of the cluster. If not set, the node will not participate in consensus.


	bind_addr: (optional) ip:port to listen on for Raft connections. If not specified the self_addr will be used.


	partner_addrs: list of other Patroni nodes in the cluster in format: [‘ip1:port’, ‘ip2:port’, ‘etc…’]


	data_dir: directory where to store Raft log and snapshot. If not specified the current working directory is used.


	password: (optional) Encrypt Raft traffic with a specified password, requires cryptography python module.





Short FAQ about Raft implementation


	Q: How to list all the nodes providing consensus?

A: syncobj_admin -conn host:port -status where the host:port is the address of one of the cluster nodes



	Q: Node that was a part of consensus and has gone and I can’t reuse the same IP for other node. How to remove this node from the consensus?

A: syncobj_admin -conn host:port -remove host2:port2 where the host2:port2 is the address of the node you want to remove from consensus.



	Q: Where to get the syncobj_admin utility?

A: It is installed together with pysyncobj module (python RAFT implementation), which is Patroni dependency.



	Q: it is possible to run Patroni node without adding in to the consensus?

A: Yes, just comment out or remove raft.self_addr from Patroni configuration.



	Q: It is possible to run Patroni and PostgreSQL only on two nodes?

A: Yes, on the third node you can run patroni_raft_controller (without Patroni and PostgreSQL). In such a setup, one can temporarily lose one node without affecting the primary.










PostgreSQL


	
	postgresql:
	
	
	authentication:
	
	
	superuser:
	
	username: name for the superuser, set during initialization (initdb) and later used by Patroni to connect to the postgres.


	password: password for the superuser, set during initialization (initdb).


	sslmode: (optional) maps to the sslmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE] connection parameter, which allows a client to specify the type of TLS negotiation mode with the server. For more information on how each mode works, please visit the PostgreSQL documentation [https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]. The default mode is prefer.


	sslkey: (optional) maps to the sslkey [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLKEY] connection parameter, which specifies the location of the secret key used with the client’s certificate.


	sslpassword: (optional) maps to the sslpassword [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLPASSWORD] connection parameter, which specifies the password for the secret key specified in sslkey.


	sslcert: (optional) maps to the sslcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERT] connection parameter, which specifies the location of the client certificate.


	sslrootcert: (optional) maps to the sslrootcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT] connection parameter, which specifies the location of a file containing one ore more certificate authorities (CA) certificates that the client will use to verify a server’s certificate.


	sslcrl: (optional) maps to the sslcrl [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRL] connection parameter, which specifies the location of a file containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	sslcrldir: (optional) maps to the sslcrldir [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRLDIR] connection parameter, which specifies the location of a directory with files containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	gssencmode: (optional) maps to the gssencmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-GSSENCMODE] connection parameter, which determines whether or with what priority a secure GSS TCP/IP connection will be negotiated with the server


	channel_binding: (optional) maps to the channel_binding [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-CHANNEL-BINDING] connection parameter, which controls the client’s use of channel binding.










	
	replication:
	
	username: replication username; the user will be created during initialization. Replicas will use this user to access master via streaming replication


	password: replication password; the user will be created during initialization.


	sslmode: (optional) maps to the sslmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE] connection parameter, which allows a client to specify the type of TLS negotiation mode with the server. For more information on how each mode works, please visit the PostgreSQL documentation [https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]. The default mode is prefer.


	sslkey: (optional) maps to the sslkey [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLKEY] connection parameter, which specifies the location of the secret key used with the client’s certificate.


	sslpassword: (optional) maps to the sslpassword [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLPASSWORD] connection parameter, which specifies the password for the secret key specified in sslkey.


	sslcert: (optional) maps to the sslcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERT] connection parameter, which specifies the location of the client certificate.


	sslrootcert: (optional) maps to the sslrootcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT] connection parameter, which specifies the location of a file containing one ore more certificate authorities (CA) certificates that the client will use to verify a server’s certificate.


	sslcrl: (optional) maps to the sslcrl [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRL] connection parameter, which specifies the location of a file containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	sslcrldir: (optional) maps to the sslcrldir [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRLDIR] connection parameter, which specifies the location of a directory with files containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	gssencmode: (optional) maps to the gssencmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-GSSENCMODE] connection parameter, which determines whether or with what priority a secure GSS TCP/IP connection will be negotiated with the server


	channel_binding: (optional) maps to the channel_binding [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-CHANNEL-BINDING] connection parameter, which controls the client’s use of channel binding.










	
	rewind:
	
	username: name for the user for pg_rewind; the user will be created during initialization of postgres 11+ and all necessary permissions [https://www.postgresql.org/docs/11/app-pgrewind.html#id-1.9.5.8.8] will be granted.


	password: password for the user for pg_rewind; the user will be created during initialization.


	sslmode: (optional) maps to the sslmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE] connection parameter, which allows a client to specify the type of TLS negotiation mode with the server. For more information on how each mode works, please visit the PostgreSQL documentation [https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]. The default mode is prefer.


	sslkey: (optional) maps to the sslkey [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLKEY] connection parameter, which specifies the location of the secret key used with the client’s certificate.


	sslpassword: (optional) maps to the sslpassword [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLPASSWORD] connection parameter, which specifies the password for the secret key specified in sslkey.


	sslcert: (optional) maps to the sslcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERT] connection parameter, which specifies the location of the client certificate.


	sslrootcert: (optional) maps to the sslrootcert [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLROOTCERT] connection parameter, which specifies the location of a file containing one ore more certificate authorities (CA) certificates that the client will use to verify a server’s certificate.


	sslcrl: (optional) maps to the sslcrl [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRL] connection parameter, which specifies the location of a file containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	sslcrldir: (optional) maps to the sslcrldir [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCRLDIR] connection parameter, which specifies the location of a directory with files containing a certificate revocation list. A client will reject connecting to any server that has a certificate present in this list.


	gssencmode: (optional) maps to the gssencmode [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-GSSENCMODE] connection parameter, which determines whether or with what priority a secure GSS TCP/IP connection will be negotiated with the server


	channel_binding: (optional) maps to the channel_binding [https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-CHANNEL-BINDING] connection parameter, which controls the client’s use of channel binding.


















	
	callbacks: callback scripts to run on certain actions. Patroni will pass the action, role and cluster name. (See scripts/aws.py as an example of how to write them.)
	
	on_reload: run this script when configuration reload is triggered.


	on_restart: run this script when the postgres restarts (without changing role).


	on_role_change: run this script when the postgres is being promoted or demoted.


	on_start: run this script when the postgres starts.


	on_stop: run this script when the postgres stops.










	connect_address: IP address + port through which Postgres is accessible from other nodes and applications.


	create_replica_methods: an ordered list of the create methods for turning a Patroni node into a new replica.
“basebackup” is the default method; other methods are assumed to refer to scripts, each of which is configured as its
own config item. See custom replica creation methods documentation for further explanation.


	data_dir: The location of the Postgres data directory, either existing or to be initialized by Patroni.


	config_dir: The location of the Postgres configuration directory, defaults to the data directory. Must be writable by Patroni.


	bin_dir: Path to PostgreSQL binaries (pg_ctl, pg_rewind, pg_basebackup, postgres). The default value is an empty string meaning that PATH environment variable will be used to find the executables.


	listen: IP address + port that Postgres listens to; must be accessible from other nodes in the cluster, if you’re using streaming replication. Multiple comma-separated addresses are permitted, as long as the port component is appended after to the last one with a colon, i.e. listen: 127.0.0.1,127.0.0.2:5432. Patroni will use the first address from this list to establish local connections to the PostgreSQL node.


	use_unix_socket: specifies that Patroni should prefer to use unix sockets to connect to the cluster. Default value is false. If unix_socket_directories is defined, Patroni will use the first suitable value from it to connect to the cluster and fallback to tcp if nothing is suitable. If unix_socket_directories is not specified in postgresql.parameters, Patroni will assume that the default value should be used and omit host from the connection parameters.


	use_unix_socket_repl: specifies that Patroni should prefer to use unix sockets for replication user cluster connection. Default value is false. If unix_socket_directories is defined, Patroni will use the first suitable value from it to connect to the cluster and fallback to tcp if nothing is suitable. If unix_socket_directories is not specified in postgresql.parameters, Patroni will assume that the default value should be used and omit host from the connection parameters.


	pgpass: path to the .pgpass [https://www.postgresql.org/docs/current/static/libpq-pgpass.html] password file. Patroni creates this file before executing pg_basebackup, the post_init script and under some other circumstances. The location must be writable by Patroni.


	recovery_conf: additional configuration settings written to recovery.conf when configuring follower.


	custom_conf : path to an optional custom postgresql.conf file, that will be used in place of postgresql.base.conf. The file must exist on all cluster nodes, be readable by PostgreSQL and will be included from its location on the real postgresql.conf. Note that Patroni will not monitor this file for changes, nor backup it. However, its settings can still be overridden by Patroni’s own configuration facilities - see dynamic configuration for details.


	parameters: list of configuration settings for Postgres. Many of these are required for replication to work.


	
	pg_hba: list of lines that Patroni will use to generate pg_hba.conf. This parameter has higher priority than bootstrap.pg_hba. Together with dynamic configuration it simplifies management of pg_hba.conf.
	
	- host all all 0.0.0.0/0 md5.


	- host replication replicator 127.0.0.1/32 md5: A line like this is required for replication.










	
	pg_ident: list of lines that Patroni will use to generate pg_ident.conf. Together with dynamic configuration it simplifies management of pg_ident.conf.
	
	- mapname1 systemname1 pguser1.


	- mapname1 systemname2 pguser2.










	pg_ctl_timeout: How long should pg_ctl wait when doing start, stop or restart. Default value is 60 seconds.


	use_pg_rewind: try to use pg_rewind on the former leader when it joins cluster as a replica.


	remove_data_directory_on_rewind_failure: If this option is enabled, Patroni will remove the PostgreSQL data directory and recreate the replica. Otherwise it will try to follow the new leader. Default value is false.


	remove_data_directory_on_diverged_timelines: Patroni will remove the PostgreSQL data directory and recreate the replica if it notices that timelines are diverging and the former master can not start streaming from the new master. This option is useful when pg_rewind can not be used. While performing timelines divergence check on PostgreSQL v10 and older Patroni will try to connect with replication credential to the “postgres” database. Hence, such access should be allowed in the  pg_hba.conf. Default value is false.


	replica_method: for each create_replica_methods other than basebackup, you would add a configuration section of the same name. At a minimum, this should include “command” with a full path to the actual script to be executed. Other configuration parameters will be passed along to the script in the form “parameter=value”.


	pre_promote: a fencing script that executes during a failover after acquiring the leader lock but before promoting the replica. If the script exits with a non-zero code, Patroni does not promote the replica and removes the leader key from DCS.














REST API


	
	restapi:
	
	connect_address: IP address (or hostname) and port, to access the Patroni’s REST API. All the members of the cluster must be able to connect to this address, so unless the Patroni setup is intended for a demo inside the localhost, this address must be a non “localhost” or loopback address (ie: “localhost” or “127.0.0.1”). It can serve as an endpoint for HTTP health checks (read below about the “listen” REST API parameter), and also for user queries (either directly or via the REST API), as well as for the health checks done by the cluster members during leader elections (for example, to determine whether the master is still running, or if there is a node which has a WAL position that is ahead of the one doing the query; etc.) The connect_address is put in the member key in DCS, making it possible to translate the member name into the address to connect to its REST API.


	listen: IP address (or hostname) and port that Patroni will listen to for the REST API - to provide also the same health checks and cluster messaging between the participating nodes, as described above. to provide health-check information for HAProxy (or any other load balancer capable of doing a HTTP “OPTION” or “GET” checks).


	
	authentication: (optional)
	
	username: Basic-auth username to protect unsafe REST API endpoints.


	password: Basic-auth password to protect unsafe REST API endpoints.










	certfile: (optional): Specifies the file with the certificate in the PEM format. If the certfile is not specified or is left empty, the API server will work without SSL.


	keyfile: (optional): Specifies the file with the secret key in the PEM format.


	keyfile_password: (optional): Specifies a password for decrypting the keyfile.


	cafile: (optional): Specifies the file with the CA_BUNDLE with certificates of trusted CAs to use while verifying client certs.


	ciphers: (optional): Specifies the permitted cipher suites (e.g. “ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES128-GCM-SHA256:!SSLv1:!SSLv2:!SSLv3:!TLSv1:!TLSv1.1”)


	verify_client: (optional): none (default), optional or required. When none REST API will not check client certificates. When required client certificates are required for all REST API calls. When optional client certificates are required for all unsafe REST API endpoints. When required is used, then client authentication succeeds, if the certificate signature verification succeeds.  For optional the client cert will only be checked for PUT, POST, PATCH, and DELETE requests.


	allowlist: (optional): Specifies the set of hosts that are allowed to call unsafe REST API endpoints. The single element could be a host name, an IP address or a network address using CIDR notation. By default allow all is used. In case if allowlist or allowlist_include_members are set, anything that is not included is rejected.


	allowlist_include_members: (optional): If set to true it allows accessing unsafe REST API endpoints from other cluster members registered in DCS (IP address or hostname is taken from the members api_url). Be careful, it might happen that OS will use a different IP for outgoing connections.


	http_extra_headers: (optional): HTTP headers let the REST API server pass additional information with an HTTP response.


	https_extra_headers: (optional): HTTPS headers let the REST API server pass additional information with an HTTP response when TLS is enabled. This will also pass additional information set in http_extra_headers.












Here is an example of both http_extra_headers and https_extra_headers:

restapi:
  listen: <listen>
  connect_address: <connect_address>
  authentication:
    username: <username>
    password: <password>
  http_extra_headers:
    'X-Frame-Options': 'SAMEORIGIN'
    'X-XSS-Protection': '1; mode=block'
    'X-Content-Type-Options': 'nosniff'
  cafile: <ca file>
  certfile: <cert>
  keyfile: <key>
  https_extra_headers:
    'Strict-Transport-Security': 'max-age=31536000; includeSubDomains'







CTL


	
	ctl: (optional)
	
	insecure: Allow connections to REST API without verifying SSL certs.


	cacert: Specifies the file with the CA_BUNDLE file or directory with certificates of trusted CAs to use while verifying REST API SSL certs. If not provided patronictl will use the value provided for REST API “cafile” parameter.


	certfile: Specifies the file with the client certificate in the PEM format. If not provided patronictl will use the value provided for REST API “certfile” parameter.


	keyfile: Specifies the file with the client secret key in the PEM format. If not provided patronictl will use the value provided for REST API “keyfile” parameter.


	keyfile_password: Specifies a password for decrypting the keyfile. If not provided patronictl will use the value provided for REST API “keyfile_password” parameter.














Watchdog


	mode: off, automatic or required. When off watchdog is disabled. When automatic watchdog will be used if available, but ignored if it is not. When required the node will not become a leader unless watchdog can be successfully enabled.


	device: Path to watchdog device. Defaults to /dev/watchdog.


	safety_margin: Number of seconds of safety margin between watchdog triggering and leader key expiration.






Tags


	nofailover: true or false, controls whether this node is allowed to participate in the leader race and become a leader. Defaults to false


	clonefrom: true or false. If set to true other nodes might prefer to use this node for bootstrap (take pg_basebackup from). If there are several nodes with clonefrom tag set to true the node to bootstrap from will be chosen randomly. The default value is false.


	noloadbalance: true or false. If set to true the node will return HTTP Status Code 503 for the GET /replica REST API health-check and therefore will be excluded from the load-balancing. Defaults to false.


	replicatefrom: The IP address/hostname of another replica. Used to support cascading replication.


	nosync: true or false. If set to true the node will never be selected as a synchronous replica.




In addition to these predefined tags, you can also add your own ones:


	key1: true


	key2: false


	key3: 1.4


	key4: "RandomString"




Tags are visible in the REST API and patronictl list You can also check for an instance health using these tags. If the tag isn’t defined for an instance, or if the respective value doesn’t match the querying value, it will return HTTP Status Code 503.





            

          

      

      

    

  

    
      
          
            
  
Security Considerations

A Patroni cluster has two interfaces to be protected from unauthorized access: the distributed configuration storage (DCS) and the Patroni REST API.


Protecting DCS

Patroni and patronictl both store and retrieve data to/from the DCS.

Despite DCS doesn’t contain any sensitive information, it allows changing some of Patroni/Postgres configuration. Therefore the very first thing that should be protected is DCS itself.

The details of protection depend on the type of DCS used. The authentication and encryption parameters (tokens/basic-auth/client certificates) for the supported types of DCS are covered in SETTINGS

The general recommendation is to enable TLS for all DCS communication.



Protecting the REST API

Protecting the REST API is a more complicated task.

The Patroni REST API is used by Patroni itself during the leader race, by the patronictl tool in order to perform failovers/switchovers/reinitialize/restarts/reloads, by HAProxy or any other kind of load balancer to perform HTTP health checks, and of course could also be used for monitoring.

From the point of view of security, REST API contains safe (GET requests, only retrieve information) and unsafe (PUT, POST, PATCH and DELETE requests, change the state of nodes) endpoints.

The unsafe endpoints can be protected with HTTP basic-auth by setting the restapi.authentication.username and restapi.authentication.password parameters. There is no way to protect the safe endpoints without enabling TLS.

When TLS for the REST API is enabled and a PKI is established, mutual authentication of the API server and API client is possible for all endpoints.

The restapi section parameters enable TLS client authentication to the server. Depending on the value of the verify_client parameter, the API server requires a successful client certificate verification for both safe and unsafe API calls (verify_client: required), or only for unsafe API calls (verify_client: optional), or for no API calls (verify_client: none).

The ctl section parameters enable TLS server authentication to the client (the patronictl tool which uses the same config as patroni). Set insecure: true to disable the server certificate verification by the client. See SETTINGS for a detailed description of the TLS client parameters.

Protecting the PostgreSQL database proper from unauthorized access is beyond the scope of this document and is covered in https://www.postgresql.org/docs/current/client-authentication.html





            

          

      

      

    

  

    
      
          
            
  
Replica imaging and bootstrap

Patroni allows customizing creation of a new replica. It also supports defining what happens when the new empty cluster
is being bootstrapped. The distinction between two is well defined: Patroni creates replicas only if the initialize
key is present in DCS for the cluster. If there is no initialize key - Patroni calls bootstrap exclusively on the
first node that takes the initialize key lock.


Bootstrap

PostgreSQL provides initdb command to initialize a new cluster and Patroni calls it by default. In certain cases,
particularly when creating a new cluster as a copy of an existing one, it is necessary to replace a built-in method with
custom actions. Patroni supports executing user-defined scripts to bootstrap new clusters, supplying some required
arguments to them, i.e. the name of the cluster and the path to the data directory. This is configured in the
bootstrap section of the Patroni configuration. For example:

bootstrap:
    method: <custom_bootstrap_method_name>
    <custom_bootstrap_method_name>:
        command: <path_to_custom_bootstrap_script> [param1 [, ...]]
        keep_existing_recovery_conf: False
        no_params: False
        recovery_conf:
            recovery_target_action: promote
            recovery_target_timeline: latest
            restore_command: <method_specific_restore_command>





Each bootstrap method must define at least a name and a command. A special initdb method is available to trigger
the default behavior, in which case method parameter can be omitted altogether. The command can be specified using either
an absolute path, or the one relative to the patroni command location. In addition to the fixed parameters defined
in the configuration files, Patroni supplies two cluster-specific ones:


	--scope

	Name of the cluster to be bootstrapped



	--datadir

	Path to the data directory of the cluster instance to be bootstrapped





Passing these two additional flags can be disabled by setting a special no_params parameter to True.

If the bootstrap script returns 0, Patroni tries to configure and start the PostgreSQL instance produced by it. If any
of the intermediate steps fail, or the script returns a non-zero value, Patroni assumes that the bootstrap has failed,
cleans up after itself and releases the initialize lock to give another node the opportunity to bootstrap.

If a recovery_conf block is defined in the same section as the custom bootstrap method, Patroni will generate a
recovery.conf before starting the newly bootstrapped instance. Typically, such recovery.conf should contain at least
one of the recovery_target_* parameters, together with the recovery_target_timeline set to promote.

If keep_existing_recovery_conf is defined and set to True, Patroni will not remove the existing recovery.conf file if it exists.
This is useful when bootstrapping from a backup with tools like pgBackRest that generate the appropriate recovery.conf for you.



Note

Bootstrap methods are neither chained, nor fallen-back to the default one in case the primary one fails








Building replicas

Patroni uses tried and proven pg_basebackup in order to create new replicas. One downside of it is that it requires
a running master node. Another one is the lack of ‘on-the-fly’ compression for the backup data and no built-in cleanup
for outdated backup files. Some people prefer other backup solutions, such as WAL-E, pgBackRest, Barman and
others, or simply roll their own scripts. In order to accommodate all those use-cases Patroni supports running custom
scripts to clone a new replica. Those are configured in the postgresql configuration block:

postgresql:
    create_replica_methods:
        - <method name>
    <method name>:
        command: <command name>
        keep_data: True
        no_params: True
        no_master: 1





example: wal_e

postgresql:
    create_replica_methods:
        - wal_e
        - basebackup
    wal_e:
        command: patroni_wale_restore
        no_master: 1
        envdir: {{WALE_ENV_DIR}}
        use_iam: 1
    basebackup:
        max-rate: '100M'





example: pgbackrest

postgresql:
    create_replica_methods:
        - pgbackrest
        - basebackup
    pgbackrest:
        command: /usr/bin/pgbackrest --stanza=<scope> --delta restore
        keep_data: True
        no_params: True
    basebackup:
        max-rate: '100M'





The create_replica_methods defines available replica creation methods and the order of executing them. Patroni will
stop on the first one that returns 0. Each method should define a separate section in the configuration file, listing the command
to execute and any custom parameters that should be passed to that command. All parameters will be passed in a
--name=value format. Besides user-defined parameters, Patroni supplies a couple of cluster-specific ones:


	--scope

	Which cluster this replica belongs to



	--datadir

	Path to the data directory of the replica



	--role

	Always ‘replica’



	--connstring

	Connection string to connect to the cluster member to clone from (master or other replica). The user in the
connection string can execute SQL and replication protocol commands.





A special no_master parameter, if defined, allows Patroni to call the replica creation method even if there is no
running master or replicas. In that case, an empty string will be passed in a connection string. This is useful for
restoring the formerly running cluster from the binary backup.

A special keep_data parameter, if defined, will instruct Patroni to  not clean PGDATA folder before calling restore.

A special no_params parameter, if defined, restricts passing parameters to custom command.

A basebackup method is a special case: it will be used if
create_replica_methods is empty, although it is possible
to list it explicitly among the create_replica_methods methods. This method initializes a new replica with the
pg_basebackup, the base backup is taken from the master unless there are replicas with clonefrom tag, in which case one
of such replicas will be used as the origin for pg_basebackup. It works without any configuration; however, it is
possible to specify a basebackup configuration section. Same rules as with the other method configuration apply,
namely, only long (with –) options should be specified there. Not all parameters make sense, if you override a connection
string or provide an option to created tar-ed or compressed base backups, patroni won’t be able to make a replica out
of it. There is no validation performed on the names or values of the parameters passed to the basebackup section.
Also note that in case symlinks are used for the WAL folder it is up to the user to specify the correct --waldir
path as an option, so that after replica buildup or re-initialization the symlink would persist. This option is supported
only since v10 though.

You can specify basebackup parameters as either a map (key-value pairs) or a list of elements, where each element
could be either a key-value pair or a single key (for options that does not receive any values, for instance, --verbose).
Consider those 2 examples:

postgresql:
    basebackup:
        max-rate: '100M'
        checkpoint: 'fast'





and

postgresql:
    basebackup:
        - verbose
        - max-rate: '100M'
        - waldir: /pg-wal-mount/external-waldir





If all replica creation methods fail, Patroni will try again all methods in order during the next event loop cycle.



Standby cluster

Another available option is to run a “standby cluster”, that contains only of
standby nodes replicating from some remote master. This type of clusters has:


	“standby leader”, that behaves pretty much like a regular cluster leader,
except it replicates from a remote master.


	cascade replicas, that are replicating from standby leader.




Standby leader holds and updates a leader lock in DCS. If the leader lock
expires, cascade replicas will perform an election to choose another leader
from the standbys.

For the sake of flexibility, you can specify methods of creating a replica and
recovery WAL records when a cluster is in the “standby mode” by providing
create_replica_methods key in standby_cluster section. It is distinct from
creating replicas, when cluster is detached and functions as a normal cluster,
which is controlled by create_replica_methods in postgresql section. Both
“standby” and “normal” create_replica_methods reference  keys in postgresql
section.

To configure such cluster you need to specify the section standby_cluster
in a patroni configuration:

bootstrap:
    dcs:
        standby_cluster:
            host: 1.2.3.4
            port: 5432
            primary_slot_name: patroni
            create_replica_methods:
            - basebackup





Note, that these options will be applied only once during cluster bootstrap,
and the only way to change them afterwards is through DCS.

If you use replication slots on the standby cluster, you must also create the corresponding replication slot on the primary cluster.  It will not be done automatically by the standby cluster implementation.  You can use Patroni’s permanent replication slots feature on the primary cluster to maintain a replication slot with the same name as primary_slot_name, or its default value if primary_slot_name is not provided.





            

          

      

      

    

  

    
      
          
            
  
Replication modes

Patroni uses PostgreSQL streaming replication. For more information about streaming replication, see the Postgres documentation [http://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION]. By default Patroni configures PostgreSQL for asynchronous replication. Choosing your replication schema is dependent on your business considerations. Investigate both async and sync replication, as well as other HA solutions, to determine which solution is best for you.


Asynchronous mode durability

In asynchronous mode the cluster is allowed to lose some committed transactions to ensure availability. When the primary server fails or becomes unavailable for any other reason Patroni will automatically promote a sufficiently healthy standby to primary. Any transactions that have not been replicated to that standby remain in a “forked timeline” on the primary, and are effectively unrecoverable [1].

The amount of transactions that can be lost is controlled via maximum_lag_on_failover parameter. Because the primary transaction log position is not sampled in real time, in reality the amount of lost data on failover is worst case bounded by  maximum_lag_on_failover bytes of transaction log plus the amount that is written in the last ttl seconds (loop_wait/2 seconds in the average case). However typical steady state replication delay is well under a second.

By default, when running leader elections, Patroni does not take into account the current timeline of replicas, what in some cases could be undesirable behavior. You can prevent the node not having the same timeline as a former master become the new leader by changing the value of check_timeline parameter to true.



PostgreSQL synchronous replication

You can use Postgres’s synchronous replication [http://www.postgresql.org/docs/current/static/warm-standby.html#SYNCHRONOUS-REPLICATION] with Patroni. Synchronous replication ensures consistency across a cluster by confirming that writes are written to a secondary before returning to the connecting client with a success. The cost of synchronous replication: reduced throughput on writes. This throughput will be entirely based on network performance.

In hosted datacenter environments (like AWS, Rackspace, or any network you do not control), synchronous replication significantly increases the variability of write performance. If followers become inaccessible from the leader, the leader effectively becomes read-only.

To enable a simple synchronous replication test, add the following lines to the parameters section of your YAML configuration files:

synchronous_commit: "on"
synchronous_standby_names: "*"





When using PostgreSQL synchronous replication, use at least three Postgres data nodes to ensure write availability if one host fails.

Using PostgreSQL synchronous replication does not guarantee zero lost transactions under all circumstances. When the primary and the secondary that is currently acting as a synchronous replica fail simultaneously a third node that might not contain all transactions will be promoted.



Synchronous mode

For use cases where losing committed transactions is not permissible you can turn on Patroni’s synchronous_mode. When synchronous_mode is turned on Patroni will not promote a standby unless it is certain that the standby contains all transactions that may have returned a successful commit status to client [2]. This means that the system may be unavailable for writes even though some servers are available. System administrators can still use manual failover commands to promote a standby even if it results in transaction loss.

Turning on synchronous_mode does not guarantee multi node durability of commits under all circumstances. When no suitable standby is available, primary server will still accept writes, but does not guarantee their replication. When the primary fails in this mode no standby will be promoted. When the host that used to be the primary comes back it will get promoted automatically, unless system administrator performed a manual failover. This behavior makes synchronous mode usable with 2 node clusters.

When synchronous_mode is on and a standby crashes, commits will block until next iteration of Patroni runs and switches the primary to standalone mode (worst case delay for writes ttl seconds, average case loop_wait/2 seconds). Manually shutting down or restarting a standby will not cause a commit service interruption. Standby will signal the primary to release itself from synchronous standby duties before PostgreSQL shutdown is initiated.

When it is absolutely necessary to guarantee that each write is stored durably
on at least two nodes, enable synchronous_mode_strict in addition to the
synchronous_mode. This parameter prevents Patroni from switching off the
synchronous replication on the primary when no synchronous standby candidates
are available. As a downside, the primary is not be available for writes
(unless the Postgres transaction explicitly turns of synchronous_mode),
blocking all client write requests until at least one synchronous replica comes
up.

You can ensure that a standby never becomes the synchronous standby by setting nosync tag to true. This is recommended to set for standbys that are behind slow network connections and would cause performance degradation when becoming a synchronous standby.

Synchronous mode can be switched on and off via Patroni REST interface. See dynamic configuration for instructions.

Note: Because of the way synchronous replication is implemented in PostgreSQL it is still possible to lose transactions even when using synchronous_mode_strict. If the PostgreSQL backend is cancelled while waiting to acknowledge replication (as a result of packet cancellation due to client timeout or backend failure) transaction changes become visible for other backends. Such changes are not yet replicated and may be lost in case of standby promotion.



Synchronous Replication Factor

The parameter synchronous_node_count is used by Patroni to manage number of synchronous standby databases. It is set to 1 by default. It has no effect when synchronous_mode is set to off. When enabled, Patroni manages precise number of synchronous standby databases based on parameter synchronous_node_count and adjusts the state in DCS & synchronous_standby_names as members join and leave.



Synchronous mode implementation

When in synchronous mode Patroni maintains synchronization state in the DCS, containing the latest primary and current synchronous standby databases. This state is updated with strict ordering constraints to ensure the following invariants:


	A node must be marked as the latest leader whenever it can accept write transactions. Patroni crashing or PostgreSQL not shutting down can cause violations of this invariant.


	A node must be set as the synchronous standby in PostgreSQL as long as it is published as the synchronous standby.


	A node that is not the leader or current synchronous standby is not allowed to promote itself automatically.




Patroni will only assign one or more synchronous standby nodes based on synchronous_node_count parameter to synchronous_standby_names.

On each HA loop iteration Patroni re-evaluates synchronous standby nodes choice. If the current list of synchronous standby nodes are connected and has not requested its synchronous status to be removed it remains picked. Otherwise the cluster member available for sync that is furthest ahead in replication is picked.



[1]
The data is still there, but recovering it requires a manual recovery effort by data recovery specialists. When Patroni is allowed to rewind with use_pg_rewind the forked timeline will be automatically erased to rejoin the failed primary with the cluster.



[2]
Clients can change the behavior per transaction using PostgreSQL’s synchronous_commit setting. Transactions with synchronous_commit values of off and local may be lost on fail over, but will not be blocked by replication delays.







            

          

      

      

    

  

    
      
          
            
  
Pause/Resume mode for the cluster


The goal

Under certain circumstances Patroni needs to temporary step down from managing the cluster, while still retaining the cluster state in DCS. Possible use cases are uncommon activities on the cluster, such as major version upgrades or corruption recovery. During those activities nodes are often started and stopped for the reason unknown to Patroni, some nodes can be even temporary promoted, violating the assumption of running only one master. Therefore, Patroni needs to be able to “detach” from the running cluster, implementing an equivalent of the maintenance mode in Pacemaker.



The implementation

When Patroni runs in a paused mode, it does not change the state of PostgreSQL, except for the following cases:


	For each node, the member key in DCS is updated with the current information about the cluster. This causes Patroni to run read-only queries on a member node if the member is running.


	For the Postgres master with the leader lock Patroni updates the lock. If the node with the leader lock stops being the master (i.e. is demoted manually), Patroni will release the lock instead of promoting the node back.


	Manual unscheduled restart, reinitialize and manual failover are allowed. Manual failover is only allowed if the node to failover to is specified. In the paused mode, manual failover does not require a running master node.


	If ‘parallel’ masters are detected by Patroni, it emits a warning, but does not demote the masters without the leader lock.


	If there is no leader lock in the cluster, the running master acquires the lock. If there is more than one master node, then the first master to acquire the lock wins. If there are no masters altogether, Patroni does not try to promote any replicas. There is an exception in this rule: if there is no leader lock because the old master has demoted itself due to the manual promotion, then only the candidate node mentioned in the promotion request may take the leader lock. When the new leader lock is granted (i.e. after promoting a replica manually), Patroni makes sure the replicas that were streaming from the previous leader will switch to the new one.


	When Postgres is stopped, Patroni does not try to start it. When Patroni is stopped, it does not try to stop the Postgres instance it is managing.






User guide

patronictl supports pause and resume commands.

One can also issue a PATCH request to the {namespace}/{cluster}/config key with {"pause": true/false/null}





            

          

      

      

    

  

    
      
          
            
  
Using Patroni with Kubernetes

Patroni can use Kubernetes objects in order to store the state of the cluster and manage the leader key. That makes it
capable of operating Postgres in Kubernetes environment without any consistency store, namely, one doesn’t
need to run an extra Etcd deployment. There are two different type of Kubernetes objects Patroni can use to store the
leader and the configuration keys, they are configured with the kubernetes.use_endpoints or PATRONI_KUBERNETES_USE_ENDPOINTS
environment variable.


Use Endpoints

Despite the fact that this is the recommended mode, it is turned off by default for compatibility reasons. When it is on, Patroni stores
the cluster configuration and the leader key in the metadata: annotations fields of the respective Endpoints it creates.
Changing the leader is safer than when using ConfigMaps, since both the annotations, containing the leader information, and the actual addresses
pointing to the running leader pod are updated simultaneously in one go.



Use ConfigMaps

In this mode, Patroni will create ConfigMaps instead of Endpoints and store keys inside meta-data of those ConfigMaps.
Changing the leader takes at least two updates, one to the leader ConfigMap and another to the respective Endpoint.

There are two ways to direct the traffic to the Postgres master:


	use the callback script [https://github.com/zalando/patroni/blob/master/kubernetes/callback.py] provided by Patroni


	configure the Kubernetes Postgres service to use the label selector with the role_label (configured in patroni configuration).




Note that in some cases, for instance, when running on OpenShift, there is no alternative to using ConfigMaps.



Configuration

Patroni Kubernetes settings and environment variables are described in the general chapters of the documentation.



Examples


	The kubernetes [https://github.com/zalando/patroni/tree/master/kubernetes] folder of the Patroni repository contains
examples of the Docker image, the Kubernetes manifest and the callback script in order to test Patroni Kubernetes setup.
Note that in the current state it will not be able to use PersistentVolumes because of permission issues.


	You can find the full-featured Docker image that can use Persistent Volumes in the
Spilo Project [https://github.com/zalando/spilo].


	There is also a Helm chart [https://github.com/kubernetes/charts/tree/master/incubator/patroni]
to deploy the Spilo image configured with Patroni running using Kubernetes.


	In order to run your database clusters at scale using Patroni and Spilo, take a look at the
postgres-operator [https://github.com/zalando-incubator/postgres-operator] project. It implements the operator pattern
to manage Spilo clusters.








            

          

      

      

    

  

    
      
          
            
  
Watchdog support

Having multiple PostgreSQL servers running as master can result in transactions lost due to diverging timelines. This situation is also called a split-brain problem. To avoid split-brain Patroni needs to ensure PostgreSQL will not accept any transaction commits after leader key expires in the DCS. Under normal circumstances Patroni will try to achieve this by stopping PostgreSQL when leader lock update fails for any reason. However, this may fail to happen due to various reasons:


	Patroni has crashed due to a bug, out-of-memory condition or by being accidentally killed by a system administrator.


	Shutting down PostgreSQL is too slow.


	Patroni does not get to run due to high load on the system, the VM being paused by the hypervisor, or other infrastructure issues.




To guarantee correct behavior under these conditions Patroni supports watchdog devices. Watchdog devices are software or hardware mechanisms that will reset the whole system when they do not get a keepalive heartbeat within a specified timeframe. This adds an additional layer of fail safe in case usual Patroni split-brain protection mechanisms fail.

Patroni will try to activate the watchdog before promoting PostgreSQL to master. If watchdog activation fails and watchdog mode is required then the node will refuse to become master. When deciding to participate in leader election Patroni will also check that watchdog configuration will allow it to become leader at all. After demoting PostgreSQL (for example due to a manual failover) Patroni will disable the watchdog again. Watchdog will also be disabled while Patroni is in paused state.

By default Patroni will set up the watchdog to expire 5 seconds before TTL expires. With the default setup of loop_wait=10 and ttl=30 this gives HA loop at least 15 seconds (ttl - safety_margin - loop_wait) to complete before the system gets forcefully reset. By default accessing DCS is configured to time out after 10 seconds. This means that when DCS is unavailable, for example due to network issues, Patroni and PostgreSQL will have at least 5 seconds (ttl - safety_margin - loop_wait - retry_timeout) to come to a state where all client connections are terminated.

Safety margin is the amount of time that Patroni reserves for time between leader key update and watchdog keepalive. Patroni will try to send a keepalive immediately after confirmation of leader key update. If Patroni process is suspended for extended amount of time at exactly the right moment the keepalive may be delayed for more than the safety margin without triggering the watchdog. This results in a window of time where watchdog will not trigger before leader key expiration, invalidating the guarantee. To be absolutely sure that watchdog will trigger under all circumstances set up the watchdog to expire after half of TTL by setting safety_margin to -1 to set watchdog timeout to ttl // 2. If you need this guarantee you probably should increase ttl and/or reduce loop_wait and retry_timeout.

Currently watchdogs are only supported using Linux watchdog device interface.


Setting up software watchdog on Linux

Default Patroni configuration will try to use /dev/watchdog on Linux if it is accessible to Patroni. For most use cases using software watchdog built into the Linux kernel is secure enough.

To enable software watchdog issue the following commands as root before starting Patroni:

modprobe softdog
# Replace postgres with the user you will be running patroni under
chown postgres /dev/watchdog





For testing it may be helpful to disable rebooting by adding soft_noboot=1 to the modprobe command line. In this case the watchdog will just log a line in kernel ring buffer, visible via dmesg.

Patroni will log information about the watchdog when it is successfully enabled.





            

          

      

      

    

  

    
      
          
            
  
Release notes


Version 2.1.4

New features


	Improve pg_rewind behavior on typical Debian/Ubuntu systems (Gunnar “Nick” Bluth)

On Postgres setups that keep postgresql.conf outside of the data directory (e.g. Ubuntu/Debian packages), pg_rewind --restore-target-wal  fails to figure out the value of the restore_command.



	Allow setting TLSServerName on Consul service checks (Michael Gmelin)

Useful when checks are performed by IP and the Consul node_name is not a FQDN.



	Added ppc64le support in watchdog (Jean-Michel Scheiwiler)

And fixed watchdog support on some non-x86 platforms.



	Switched aws.py callback from boto to boto3 (Alexander Kukushkin)





boto  2.x is abandoned since 2018 and fails with python 3.9.





	Periodically refresh service account token on K8s (Haitao Li)

Since Kubernetes v1.21 service account tokens expire in 1 hour.



	Added /read-only-sync monitoring endpoint (Dennis4b)

It is similar to the /read-only but includes only synchronous replicas.





Stability improvements


	Don’t copy the logical replication slot to a replica if there is a configuration mismatch in the logical decoding setup with the primary (Alexander)

A replica won’t copy a logical replication slot from the primary anymore if the slot doesn’t match the plugin or database configuration options. Previously, the check for whether the slot matches those configuration options was not performed until after the replica copied the slot and started with it, resulting in unnecessary and repeated restarts.



	Special handling of recovery configuration parameters for PostgreSQL v12+ (Alexander)

While starting as replica Patroni should be able to update postgresql.conf and restart/reload if the leader address has changed by caching current parameters values instead of querying them from pg_settings.



	Better handling of IPv6 addresses in the postgresql.listen parameters (Alexander)

Since the listen parameter has a port, people try to put IPv6 addresses into square brackets, which were not correctly stripped when there is more than one IP in the list.



	Use replication credentials when performing divergence check only on PostgreSQL v10 and older (Alexander)

If rewind is enabled, Patroni will again use either superuser or rewind credentials on newer Postgres versions.





Bugfixes


	Fixed missing import of dateutil.parser (Wesley Mendes)

Tests weren’t failing only because it was also imported from other modules.



	Ensure that optime annotation is a string (Sebastian Hasler)

In certain cases Patroni was trying to pass it as numeric.



	Better handling of failed pg_rewind attempt (Alexander)

If the primary becomes unavailable during pg_rewind, $PGDATA will be left in a broken state. Following that,  Patroni will remove the data directory even if this is not allowed by the configuration.



	Don’t remove slots annotations from the leader ConfigMap/Endpoint when PostgreSQL isn’t ready (Alexander)

If slots value isn’t passed the annotation will keep the current value.



	Handle concurrency problem with K8s API watchers (Alexander)

Under certain (unknown) conditions watchers might become stale; as a result, attempt_to_acquire_leader() method could fail due to the HTTP status code 409. In that case we reset watchers connections and restart from scratch.







Version 2.1.3

New features


	Added support for encrypted TLS keys for patronictl (Alexander Kukushkin)

It could be configured via ctl.keyfile_password or the PATRONI_CTL_KEYFILE_PASSWORD environment variable.



	Added more metrics to the /metrics endpoint (Alexandre Pereira)

Specifically, patroni_pending_restart and patroni_is_paused.



	Make it possible to specify multiple hosts in the standby cluster configuration (Michael Banck)

If the standby cluster is replicating from the Patroni cluster it might be nice to rely on client-side failover which is available in libpq since PostgreSQL v10. That is, the primary_conninfo on the standby leader and pg_rewind setting target_session_attrs=read-write in the connection string. The pgpass file will be generated with multiple lines (one line per host), and instead of calling CHECKPOINT on the primary cluster nodes the standby cluster will wait for pg_control to be updated.





Stability improvements


	Compatibility with legacy psycopg2 (Alexander)

For example, the psycopg2 installed from Ubuntu 18.04 packages doesn’t have the UndefinedFile exception yet.



	Restart etcd3 watcher if all Etcd nodes don’t respond (Alexander)

If the watcher is alive the get_cluster() method continues returning stale information even if all Etcd nodes are failing.



	Don’t remove the leader lock in the standby cluster while paused (Alexander)

Previously the lock was maintained only by the node that was running as a primary and not a standby leader.





Bugfixes


	Fixed bug in the standby-leader bootstrap (Alexander)

Patroni was considering bootstrap as failed if Postgres didn’t start accepting connections after 60 seconds. The bug was introduced in the 2.1.2 release.



	Fixed bug with failover to a cascading standby (Alexander)

When figuring out which slots should be created on cascading standby we forgot to take into account that the leader might be absent.



	Fixed small issues in Postgres config validator (Alexander)

Integer parameters introduced in PostgreSQL v14 were failing to validate because min and max values were quoted in the validator.py



	Use replication credentials when checking leader status (Alexander)

It could be that the remove_data_directory_on_diverged_timelines is set, but there is no rewind_credentials defined and superuser access between nodes is not allowed.



	Fixed “port in use” error on REST API certificate replacement (Ants Aasma)

When switching certificates there was a race condition with a concurrent API request. If there is one active during the replacement period then the replacement will error out with a port in use error and Patroni gets stuck in a state without an active API server.



	Fixed a bug in cluster bootstrap if passwords contain % characters (Bastien Wirtz)

The bootstrap method executes the DO block, with all parameters properly quoted, but the cursor.execute() method didn’t like an empty list with parameters passed.



	Fixed the “AttributeError: no attribute ‘leader’” exception (Hrvoje Milković)

It could happen if the synchronous mode is enabled and the DCS content was wiped out.



	Fix bug in divergence timeline check (Alexander)

Patroni was falsely assuming that timelines have diverged. For pg_rewind it didn’t create any problem, but if pg_rewind is not allowed and the remove_data_directory_on_diverged_timelines is set, it resulted in reinitializing the former leader.







Version 2.1.2

New features


	Compatibility with psycopg>=3.0 (Alexander Kukushkin)

By default psycopg2 is preferred. psycopg>=3.0 will be used only if psycopg2 is not available or its version is too old.



	Add dcs_last_seen field to the REST API (Michael Banck)

This field notes the last time (as unix epoch) a cluster member has successfully communicated with the DCS. This is useful to identify and/or analyze network partitions.



	Release the leader lock when pg_controldata reports “shut down” (Alexander)

To solve the problem of slow switchover/shutdown in case archive_command is slow/failing, Patroni will remove the leader key immediately after pg_controldata started reporting PGDATA as shut down cleanly and it verified that there is at least one replica that received all changes. If there are no replicas that fulfill this condition the leader key is not removed and the old behavior is retained, i.e. Patroni will keep updating the lock.



	Add sslcrldir connection parameter support (Kostiantyn Nemchenko)

The new connection parameter was introduced in the PostgreSQL v14.



	Allow setting ACLs for ZNodes in Zookeeper (Alwyn Davis)

Introduce a new configuration option zookeeper.set_acls so that Kazoo will apply a default ACL for each ZNode that it creates.





Stability improvements


	Delay the next attempt of recovery till next HA loop (Alexander)

If Postgres crashed due to out of disk space (for example) and fails to start because of that Patroni is too eagerly trying to recover it flooding logs.



	Add log before demoting, which can take some time (Michael)

It can take some time for the demote to finish and it might not be obvious from looking at the logs what exactly is going on.



	Improve “I am” status messages (Michael)

no action. I am a secondary ({0}) vs no action. I am ({0}), a secondary



	Cast to int wal_keep_segments when converting to wal_keep_size (Jorge Solórzano)

It is possible to specify wal_keep_segments as a string in the global dynamic configuration and due to Python being a dynamically typed language the string was simply multiplied. Example: wal_keep_segments: "100" was converted to 100100100100100100100100100100100100100100100100MB.



	Allow switchover only to sync nodes when synchronous replication is enabled (Alexander)

In addition to that do the leader race only against known synchronous nodes.



	Use cached role as a fallback when Postgres is slow (Alexander)

In some extreme cases Postgres could be so slow that the normal monitoring query does not finish in a few seconds. The statement_timeout exception not being properly handled could lead to the situation where Postgres was not demoted on time when the leader key expired or the update failed. In case of such exception Patroni will use the cached role to determine whether Postgres is running as a primary.



	Avoid unnecessary updates of the member ZNode (Alexander)

If no values have changed in the members data, the update should not happen.



	Optimize checkpoint after promote (Alexander)

Avoid doing CHECKPOINT if the latest timeline is already stored in pg_control. It helps to avoid unnecessary CHECKPOINT right after initializing the new cluster with initdb.



	Prefer members without nofailover when picking sync nodes (Alexander)

Previously sync nodes were selected only based on the replication lag, hence the node with nofailover tag had the same chances to become synchronous as any other node. That behavior was confusing and dangerous at the same time because in case of a failed primary the failover could not happen automatically.



	Remove duplicate hosts from the etcd machine cache (Michael)

Advertised client URLs in the etcd cluster could be misconfigured. Removing duplicates in Patroni in this case is a low-hanging fruit.





Bugfixes


	Skip temporary replication slots while doing slot management (Alexander)

Starting from v10 pg_basebackup creates a temporary replication slot for WAL streaming and Patroni was trying to drop it because the slot name looks unknown. In order to fix it, we skip all temporary slots when querying pg_stat_replication_slots view.



	Ensure pg_replication_slot_advance() doesn’t timeout (Alexander)

Patroni was using the default statement_timeout in this case and once the call failed there are very high chances that it will never recover, resulting in increased size of pg_wal and pg_catalog bloat.



	The /status wasn’t updated on demote (Alexander)

After demoting PostgreSQL the old leader updates the last LSN in DCS. Starting from 2.1.0 the new /status key was introduced, but the optime was still written to the /optime/leader.



	Handle DCS exceptions when demoting (Alexander)

While demoting the master due to failure to update the leader lock it could happen that DCS goes completely down and the get_cluster() call raises an exception. Not being handled properly it results in Postgres remaining stopped until DCS recovers.



	The use_unix_socket_repl didn’t work is some cases (Alexander)

Specifically, if postgresql.unix_socket_directories is not set. In this case Patroni is supposed to use the default value from libpq.



	Fix a few issues with Patroni REST API (Alexander)

The clusters_unlocked sometimes could be not defined, what resulted in exceptions in the GET /metrics endpoint. In addition to that the error handling method was assuming that the connect_address tuple always has two elements, while in fact there could be more in case of IPv6.



	Wait for newly promoted node to finish recovery before deciding to rewind (Alexander)

It could take some time before the actual promote happens and the new timeline is created. Without waiting replicas could come to the conclusion that rewind isn’t required.



	Handle missing timelines in a history file when deciding to rewind (Alexander)

If the current replica timeline is missing in the history file on the primary the replica was falsely assuming that rewind isn’t required.







Version 2.1.1

New features


	Support for ETCD SRV name suffix (David Pavlicek)

Etcd allows to differentiate between multiple Etcd clusters under the same domain and from now on Patroni also supports it.



	Enrich history with the new leader (huiyalin525)

It adds the new column to the patronictl history output.



	Make the CA bundle configurable for in-cluster Kubernetes config (Aron Parsons)

By default Patroni is using /var/run/secrets/kubernetes.io/serviceaccount/ca.crt and this new feature allows specifying the custom kubernetes.cacert.



	Support dynamically registering/deregistering as a Consul service and changing tags (Tommy Li)

Previously it required Patroni restart.





Bugfixes


	Avoid unnecessary reload of REST API (Alexander Kukushkin)

The previous release added a feature of reloading REST API certificates if changed on disk. Unfortunately, the reload was happening unconditionally right after the start.



	Don’t resolve cluster members when etcd.use_proxies is set (Alexander)

When starting up Patroni checks the healthiness of Etcd cluster by querying the list of members. In addition to that, it also tried to resolve their hostnames, which is not necessary when working with Etcd via proxy and was causing unnecessary warnings.



	Skip rows with NULL values in the pg_stat_replication (Alexander)

It seems that the pg_stat_replication view could contain NULL values in the replay_lsn, flush_lsn, or write_lsn fields even when state = 'streaming'.







Version 2.1.0

This version adds compatibility with PostgreSQL v14, makes logical replication slots to survive failover/switchover, implements support of allowlist for REST API, and also reducing the number of logs to one line per heart-beat.

New features


	Compatibility with PostgreSQL v14 (Alexander Kukushkin)

Unpause WAL replay if Patroni is not in a “pause” mode itself. It could be “paused” due to the change of certain parameters like for example max_connections on the primary.



	Failover logical slots (Alexander)

Make logical replication slots survive failover/switchover on PostgreSQL v11+. The replication slot if copied from the primary to the replica with restart and later the pg_replication_slot_advance() [https://www.postgresql.org/docs/11/functions-admin.html#id-1.5.8.31.8.5.2.2.8.1.1] function is used to move it forward. As a result, the slot will already exist before the failover and no events should be lost, but, there is a chance that some events could be delivered more than once.



	Implemented allowlist for Patroni REST API (Alexander)

If configured, only IP’s that matching rules would be allowed to call unsafe endpoints. In addition to that, it is possible to automatically include IP’s of members of the cluster to the list.



	Added support of replication connections via unix socket (Mohamad El-Rifai)

Previously Patroni was always using TCP for replication connection what could cause some issues with SSL verification. Using unix sockets allows exempt replication user from SSL verification.



	Health check on user-defined tags (Arman Jafari Tehrani)

Along with predefined tags: it is possible to specify any number of custom tags that become visible in the patronictl list output and in the REST API. From now on it is possible to use custom tags in health checks.



	Added Prometheus /metrics endpoint (Mark Mercado, Michael Banck)

The endpoint exposing the same metrics as /patroni.



	Reduced chattiness of Patroni logs (Alexander)

When everything goes normal, only one line will be written for every run of HA loop.





Breaking changes


	The old permanent logical replication slots feature will no longer work with PostgreSQL v10 and older (Alexander)

The strategy of creating the logical slots after performing a promotion can’t guaranty that no logical events are lost and therefore disabled.



	The /leader endpoint always returns 200 if the node holds the lock (Alexander)

Promoting the standby cluster requires updating load-balancer health checks, which is not very convenient and easy to forget. To solve it, we change the behavior of the /leader health check endpoint. It will return 200 without taking into account whether the cluster is normal or the standby_cluster.





Improvements in Raft support


	Reliable support of Raft traffic encryption (Alexander)

Due to the different issues in the PySyncObj the encryption support was very unstable



	Handle DNS issues in Raft implementation (Alexander)

If self_addr and/or partner_addrs are configured using the DNS name instead of IP’s the PySyncObj was effectively doing resolve only once when the object is created. It was causing problems when the same node was coming back online with a different IP.





Stability improvements


	Compatibility with psycopg2-2.9+ (Alexander)

In psycopg2 the autocommit = True is ignored in the with connection block, which breaks replication protocol connections.



	Fix excessive HA loop runs with Zookeeper (Alexander)

Update of member ZNodes was causing a chain reaction and resulted in running the HA loops multiple times in a row.



	Reload if REST API certificate is changed on disk (Michael Todorovic)

If the REST API certificate file was updated in place Patroni didn’t perform a reload.



	Don’t create pgpass dir if kerberos auth is used (Kostiantyn Nemchenko)

Kerberos and password authentication are mutually exclusive.



	Fixed little issues with custom bootstrap (Alexander)

Start Postgres with hot_standby=off only when we do a PITR and restart it after PITR is done.





Bugfixes


	Compatibility with kazoo-2.7+ (Alexander)

Since Patroni is handling retries on its own, it is relying on the old behavior of kazoo that requests to a Zookeeper cluster are immediately discarded when there are no connections available.



	Explicitly request the version of Etcd v3 cluster when it is known that we are connecting via proxy (Alexander)

Patroni is working with Etcd v3 cluster via gPRC-gateway and it depending on the cluster version different endpoints (/v3, /v3beta, or /v3alpha) must be used. The version was resolved only together with the cluster topology, but since the latter was never done when connecting via proxy.







Version 2.0.2

New features


	Ability to ignore externally managed replication slots (James Coleman)

Patroni is trying to remove any replication slot which is unknown to it, but there are certainly cases when replication slots should be managed externally. From now on it is possible to configure slots that should not be removed.



	Added support for cipher suite limitation for REST API (Gunnar “Nick” Bluth)

It could be configured via restapi.ciphers or the PATRONI_RESTAPI_CIPHERS environment variable.



	Added support for encrypted TLS keys for REST API (Jonathan S. Katz)

It could be configured via restapi.keyfile_password or the PATRONI_RESTAPI_KEYFILE_PASSWORD environment variable.



	Constant time comparison of REST API authentication credentials (Alex Brasetvik)

Use hmac.compare_digest() instead of ==, which is vulnerable to timing attack.



	Choose synchronous nodes based on replication lag (Krishna Sarabu)

If the replication lag on the synchronous node starts exceeding the configured threshold it could be demoted to asynchronous and/or replaced by the other node. Behaviour is controlled with maximum_lag_on_syncnode.





Stability improvements


	Start postgres with hot_standby = off when doing custom bootstrap (Igor Yanchenko)

During custom bootstrap Patroni is restoring the basebackup, starting Postgres up, and waiting until recovery finishes. Some PostgreSQL parameters on the standby can’t be smaller than on the primary and if the new value (restored from WAL) is higher than the configured one, Postgres panics and stops. In order to avoid such behavior we will do custom bootstrap without hot_standby mode.



	Warn the user if the required watchdog is not healthy (Nicolas Thauvin)

When the watchdog device is not writable or missing in required mode, the member cannot be promoted. Added a warning to show the user where to search for this misconfiguration.



	Better verbosity for single-user mode recovery (Alexander Kukushkin)

If Patroni notices that PostgreSQL wasn’t shutdown clearly, in certain cases the crash-recovery is executed by starting Postgres in single-user mode. It could happen that the recovery failed (for example due to the lack of space on disk) but errors were swallowed.



	Added compatibility with python-consul2 module (Alexander, Wilfried Roset)

The good old python-consul is not maintained since a few years, therefore someone created a fork with new features and bug-fixes.



	Don’t use bypass_api_service when running patronictl (Alexander)

When a K8s pod is running in a non-default namespace it does not necessarily have enough permissions to query the kubernetes endpoint. In this case Patroni shows the warning and ignores the bypass_api_service setting. In case of patronictl the warning was a bit annoying.



	Create raft.data_dir if it doesn’t exists or make sure that it is writable (Mark Mercado)

Improves user-friendliness and usability.





Bugfixes


	Don’t interrupt restart or promote if lost leader lock in pause (Alexander)

In pause it is allowed to run postgres as primary without lock.



	Fixed issue with shutdown_request() in the REST API (Nicolas Limage)

In order to improve handling of SSL connections and delay the handshake until thread is started Patroni overrides a few methods in the HTTPServer. The shutdown_request() method was forgotten.



	Fixed issue with sleep time when using Zookeeper (Alexander)

There were chances that Patroni was sleeping up to twice longer between running HA code.



	Fixed invalid os.symlink() calls when moving data directory after failed bootstrap (Andrew L’Ecuyer)

If the bootstrap failed Patroni is renaming data directory, pg_wal, and all tablespaces. After that it updates symlinks so filesystem remains consistent. The symlink creation was failing due to the src and dst arguments being swapped.



	Fixed bug in the post_bootstrap() method (Alexander)

If the superuser password wasn’t configured Patroni was failing to call the post_init script and therefore the whole bootstrap was failing.



	Fixed an issues with pg_rewind in the standby cluster (Alexander)

If the superuser name is different from Postgres, the pg_rewind in the standby cluster was failing because the connection string didn’t contain the database name.



	Exit only if authentication with Etcd v3 explicitly failed (Alexander)

On start Patroni performs discovery of Etcd cluster topology and authenticates if it is necessarily. It could happen that one of etcd servers is not accessible, Patroni was trying to perform authentication on this server and failing instead of retrying with the next node.



	Handle case with psutil cmdline() returning empty list (Alexander)

Zombie processes are still postmasters children, but they don’t have cmdline()



	Treat PATRONI_KUBERNETES_USE_ENDPOINTS environment variable as boolean (Alexander)

Not doing so was making impossible disabling kubernetes.use_endpoints via environment.



	Improve handling of concurrent endpoint update errors (Alexander)

Patroni will explicitly query the current endpoint object, verify that the current pod still holds the leader lock and repeat the update.







Version 2.0.1

New features


	Use more as pager in patronictl edit-config if less is not available (Pavel Golub)

On Windows it would be the more.com. In addition to that, cdiff was changed to ydiff in requirements.txt, but patronictl still supports both for compatibility.



	Added support of raft bind_addr and password (Alexander Kukushkin)

raft.bind_addr might be useful when running behind NAT. raft.password enables traffic encryption (requires the cryptography module).



	Added sslpassword connection parameter support (Kostiantyn Nemchenko)

The connection parameter was introduced in PostgreSQL 13.





Stability improvements


	Changed the behavior in pause (Alexander)


	Patroni will not call the bootstrap method if the PGDATA directory is missing/empty.


	Patroni will not exit on sysid mismatch in pause, only log a warning.


	The node will not try to grab the leader key in pause mode if Postgres is running not in recovery (accepting writes) but the sysid doesn’t match with the initialize key.






	Apply master_start_timeout when executing crash recovery (Alexander)

If Postgres crashed on the leader node, Patroni does a crash-recovery by starting Postgres in single-user mode. During the crash-recovery the leader lock is being updated. If the crash-recovery didn’t finish in master_start_timeout seconds, Patroni will stop it forcefully and release the leader lock.



	Removed the secure extra from the urllib3 requirements (Alexander)

The only reason for adding it there was the ipaddress dependency for python 2.7.





Bugfixes


	Fixed a bug in the Kubernetes.update_leader() (Alexander)

An unhandled exception was preventing demoting the primary when the update of the leader object failed.



	Fixed hanging patronictl when RAFT is being used (Alexander)

When using patronictl with Patroni config, self_addr should be added to the partner_addrs.



	Fixed bug in get_guc_value() (Alexander)

Patroni was failing to get the value of restore_command on PostgreSQL 12, therefore fetching missing WALs for pg_rewind didn’t work.







Version 2.0.0

This version enhances compatibility with PostgreSQL 13, adds support of multiple synchronous standbys, has significant improvements in handling of pg_rewind, adds support of Etcd v3 and Patroni on pure RAFT (without Etcd, Consul, or Zookeeper), and makes it possible to optionally call the pre_promote (fencing) script.

PostgreSQL 13 support


	Don’t fire on_reload when promoting to standby_leader on PostgreSQL 13+ (Alexander Kukushkin)

When promoting to standby_leader we change primary_conninfo, update the role and reload Postgres. Since on_role_change and on_reload effectively duplicate each other, Patroni will call only on_role_change.



	Added support for gssencmode and channel_binding connection parameters (Alexander)

PostgreSQL 12 introduced gssencmode and 13 channel_binding connection parameters and now they can be used if defined in the postgresql.authentication section.



	Handle renaming of wal_keep_segments to wal_keep_size (Alexander)

In case of misconfiguration (wal_keep_segments on 13 and wal_keep_size on older versions) Patroni will automatically adjust the configuration.



	Use pg_rewind with --restore-target-wal on 13 if possible (Alexander)

On PostgreSQL 13 Patroni checks if restore_command is configured and tells pg_rewind to use it.





New features


	[BETA] Implemented support of Patroni on pure RAFT (Alexander)

This makes it possible to run Patroni without 3rd party dependencies, like Etcd, Consul, or Zookeeper. For HA you will have to run either three Patroni nodes or two nodes with Patroni and one node with patroni_raft_controller. For more information please check the documentation.



	[BETA] Implemented support for Etcd v3 protocol via gPRC-gateway (Alexander)

Etcd 3.0 was released more than four years ago and Etcd 3.4 has v2 disabled by default. There are also chances that v2 will be completely removed from Etcd, therefore we implemented support of Etcd v3 in Patroni. In order to start using it you have to explicitly create the etcd3 section is the Patroni configuration file.



	Supporting multiple synchronous standbys (Krishna Sarabu)

It allows running a cluster with more than one synchronous replicas. The maximum number of synchronous replicas is controlled by the new parameter synchronous_node_count. It is set to 1 by default and has no effect when the synchronous_mode is set to off.



	Added possibility to call the pre_promote script (Sergey Dudoladov)

Unlike callbacks, the pre_promote script is called synchronously after acquiring the leader lock, but before promoting Postgres. If the script fails or exits with a non-zero exitcode, the current node will release the leader lock.



	Added support for configuration directories (Floris van Nee)

YAML files in the directory loaded and applied in alphabetical order.



	Advanced validation of PostgreSQL parameters (Alexander)

In case the specific parameter is not supported by the current PostgreSQL version or when its value is incorrect, Patroni will remove the parameter completely or try to fix the value.



	Wake up the main thread when the forced checkpoint after promote completed (Alexander)

Replicas are waiting for checkpoint indication via member key of the leader in DCS. The key is normally updated only once per HA loop. Without waking the main thread up, replicas will have to wait up to loop_wait seconds longer than necessary.



	Use of pg_stat_wal_recevier view on 9.6+ (Alexander)

The view contains up-to-date values of primary_conninfo and primary_slot_name, while the contents of recovery.conf could be stale.



	Improved handing of IPv6 addresses in the Patroni config file (Mateusz Kowalski)

The IPv6 address is supposed to be enclosed into square brackets, but Patroni was expecting to get it plain. Now both formats are supported.



	Added Consul service_tags configuration parameter (Robert Edström)

They are useful for dynamic service discovery, for example by load balancers.



	Implemented SSL support for Zookeeper (Kostiantyn Nemchenko)

It requires kazoo>=2.6.0.



	Implemented no_params option for custom bootstrap method (Kostiantyn)

It allows calling wal-g, pgBackRest and other backup tools without wrapping them into shell scripts.



	Move WAL and tablespaces after a failed init (Feike Steenbergen)

When doing reinit, Patroni was already removing not only PGDATA but also the symlinked WAL directory and tablespaces. Now the move_data_directory() method will do a similar job, i.e. rename WAL directory and tablespaces and update symlinks in PGDATA.





Improved in pg_rewind support


	Improved timeline divergence check (Alexander)

We don’t need to rewind when the replayed location on the replica is not ahead of the switchpoint or the end of the checkpoint record on the former primary is the same as the switchpoint. In order to get the end of the checkpoint record we use pg_waldump and parse its output.



	Try to fetch missing WAL if pg_rewind complains about it (Alexander)

It could happen that the WAL segment required for pg_rewind doesn’t exist in the pg_wal directory anymore and therefore pg_rewind can’t find the checkpoint location before the divergence point. Starting from PostgreSQL 13 pg_rewind could use restore_command for fetching missing WALs. For older PostgreSQL versions Patroni parses the errors of a failed rewind attempt and tries to fetch the missing WAL by calling the restore_command on its own.



	Detect a new timeline in the standby cluster and trigger rewind/reinitialize if necessary (Alexander)

The standby_cluster is decoupled from the primary cluster and therefore doesn’t immediately know about leader elections and timeline switches. In order to detect the fact, the standby_leader periodically checks for new history files in pg_wal.



	Shorten and beautify history log output (Alexander)

When Patroni is trying to figure out the necessity of pg_rewind, it could write the content of the history file from the primary into the log. The history file is growing with every failover/switchover and eventually starts taking up too many lines, most of which are not so useful. Instead of showing the raw data, Patroni will show only 3 lines before the current replica timeline and 2 lines after.





Improvements on K8s


	Get rid of kubernetes python module (Alexander)

The official python kubernetes client contains a lot of auto-generated code and therefore very heavy. Patroni uses only a small fraction of K8s API endpoints and implementing support for them wasn’t hard.



	Make it possible to bypass the kubernetes service (Alexander)

When running on K8s, Patroni is usually communicating with the K8s API via the kubernetes service, the address of which is exposed in the KUBERNETES_SERVICE_HOST environment variable. Like any other service, the kubernetes service is handled by kube-proxy, which in turn, depending on the configuration, is either relying on a userspace program or iptables for traffic routing. Skipping the intermediate component and connecting directly to the K8s master nodes allows us to implement a better retry strategy and mitigate risks of demoting Postgres when K8s master nodes are upgraded.



	Sync HA loops of all pods of a Patroni cluster (Alexander)

Not doing so was increasing failure detection time from ttl to ttl + loop_wait.



	Populate references and nodename in the subsets addresses on K8s (Alexander)

Some load-balancers are relying on this information.



	Fix possible race conditions in the update_leader() (Alexander)

The concurrent update of the leader configmap or endpoint happening outside of Patroni might cause the update_leader() call to fail. In this case Patroni rechecks that the current node is still owning the leader lock and repeats the update.



	Explicitly disallow patching non-existent config (Alexander)

For DCS other than kubernetes the PATCH call is failing with an exception due to cluster.config being None, but on Kubernetes it was happily creating the config annotation and preventing writing bootstrap configuration after the bootstrap finished.



	Fix bug in pause (Alexander)

Replicas were removing primary_conninfo and restarting Postgres when the leader key was absent, but they should do nothing.





Improvements in REST API


	Defer TLS handshake until worker thread has started (Alexander, Ben Harris)

If the TLS handshake was done in the API thread and the client-side didn’t send any data, the API thread was blocked (risking DoS).



	Check basic-auth independently from client certificate in REST API (Alexander)

Previously only the client certificate was validated. Doing two checks independently is an absolutely valid use-case.



	Write double CRLF after HTTP headers of the OPTIONS request (Sergey Burladyan)

HAProxy was happy with a single CRLF, while Consul health-check complained about broken connection and unexpected EOF.



	GET /cluster was showing stale members info for Zookeeper (Alexander)

The endpoint was using the Patroni internal cluster view. For Patroni itself it didn’t cause any issues, but when exposed to the outside world we need to show up-to-date information, especially replication lag.



	Fixed health-checks for standby cluster (Alexander)

The GET /standby-leader for a master and GET /master for a standby_leader were incorrectly responding with 200.



	Implemented DELETE /switchover (Alexander)

The REST API call deletes the scheduled switchover.



	Created /readiness and /liveness endpoints (Alexander)

They could be useful to eliminate “unhealthy” pods from subsets addresses when the K8s service is used with label selectors.



	Enhanced GET /replica and GET /async REST API health-checks (Krishna, Alexander)

Checks now support optional keyword ?lag=<max-lag> and will respond with 200 only if the lag is smaller than the supplied value. If relying on this feature please keep in mind that information about WAL position on the leader is updated only every loop_wait seconds!



	Added support for user defined HTTP headers in the REST API response (Yogesh Sharma)

This feature might be useful if requests are made from a browser.





Improvements in patronictl


	Don’t try to call non-existing leader in patronictl pause (Alexander)

While pausing a cluster without a leader on K8s, patronictl was showing warnings that member “None” could not be accessed.



	Handle the case when member conn_url is missing (Alexander)

On K8s it is possible that the pod doesn’t have the necessary annotations because Patroni is not yet running. It was making patronictl to fail.



	Added ability to print ASCII cluster topology (Maxim Fedotov, Alexander)

It is very useful to get overview of the cluster with cascading replication.



	Implement patronictl flush switchover (Alexander)

Before that patronictl flush only supported cancelling scheduled restarts.





Bugfixes


	Attribute error during bootstrap of the cluster with existing PGDATA (Krishna)

When trying to create/update the /history key, Patroni was accessing the ClusterConfig object which wasn’t created in DCS yet.



	Improved exception handling in Consul (Alexander)

Unhandled exception in the touch_member() method caused the whole Patroni process to crash.



	Enforce synchronous_commit=local for the post_init script (Alexander)

Patroni was already doing that when creating users (replication, rewind), but missing it in the case of post_init was an oversight. As a result, if the script wasn’t doing it internally on it’s own the bootstrap in synchronous_mode wasn’t able to finish.



	Increased maxsize in the Consul pool manager (ponvenkates)

With the default size=1 some warnings were generated.



	Patroni was wrongly reporting Postgres as running (Alexander)

The state wasn’t updated when for example Postgres crashed due to an out-of-disk error.



	Put * into pgpass instead of missing or empty values (Alexander)

If for example the standby_cluster.port is not specified, the pgpass file was incorrectly generated.



	Skip physical replication slot creation on the leader node with special characters (Krishna)

Patroni appeared to be creating a dormant slot (when slots defined) for the leader node when the name contained special chars such as ‘-’  (for e.g. “abc-us-1”).



	Avoid removing non-existent pg_hba.conf in the custom bootstrap (Krishna)

Patroni was failing if pg_hba.conf happened to be located outside of the pgdata dir after custom bootstrap.







Version 1.6.5

New features


	Master stop timeout (Krishna Sarabu)

The number of seconds Patroni is allowed to wait when stopping Postgres. Effective only when synchronous_mode is enabled. When set to value greater than 0 and the synchronous_mode is enabled, Patroni sends SIGKILL to the postmaster if the stop operation is running for more than the value set by master_stop_timeout. Set the value according to your durability/availability tradeoff. If the parameter is not set or set to non-positive value, master_stop_timeout does not have an effect.



	Don’t create permanent physical slot with name of the primary (Alexander Kukushkin)

It is a common problem that the primary recycles WAL segments while the replica is down. Now we have a good solution for static clusters, with a fixed number of nodes and names that never change. You just need to list the names of all nodes in the slots so the primary will not remove the slot when the node is down (not registered in DCS).



	First draft of Config Validator (Igor Yanchenko)

Use patroni --validate-config patroni.yaml in order to validate Patroni configuration.



	Possibility to configure max length of timelines history (Krishna)

Patroni writes the history of failovers/switchovers into the /history key in DCS. Over time the size of this key becomes big, but in most cases only the last few lines are interesting. The max_timelines_history parameter allows to specify the maximum number of timeline history items to be kept in DCS.



	Kazoo 2.7.0 compatibility (Danyal Prout)

Some non-public methods in Kazoo changed their signatures, but Patroni was relying on them.





Improvements in patronictl


	Show member tags (Kostiantyn Nemchenko, Alexander)

Tags are configured individually for every node and there was no easy way to get an overview of them



	Improve members output (Alexander)

The redundant cluster name won’t be shown anymore on every line, only in the table header.





$ patronictl list
+ Cluster: batman (6813309862653668387) +---------+----+-----------+---------------------+
|    Member   |      Host      |  Role  |  State  | TL | Lag in MB | Tags                |
+-------------+----------------+--------+---------+----+-----------+---------------------+
| postgresql0 | 127.0.0.1:5432 | Leader | running |  3 |           | clonefrom: true     |
|             |                |        |         |    |           | noloadbalance: true |
|             |                |        |         |    |           | nosync: true        |
+-------------+----------------+--------+---------+----+-----------+---------------------+
| postgresql1 | 127.0.0.1:5433 |        | running |  3 |       0.0 |                     |
+-------------+----------------+--------+---------+----+-----------+---------------------+






	Fail if a config file is specified explicitly but not found (Kaarel Moppel)

Previously patronictl was only reporting a DEBUG message.



	Solved the problem of not initialized K8s pod breaking patronictl (Alexander)

Patroni is relying on certain pod annotations on K8s. When one of the Patroni pods is stopping or starting there is no valid annotation yet and patronictl was failing with an exception.





Stability improvements


	Apply 1 second backoff if LIST call to K8s API server failed (Alexander)

It is mostly necessary to avoid flooding logs, but also helps to prevent starvation of the main thread.



	Retry if the retry-after HTTP header is returned by K8s API (Alexander)

If the K8s API server is overwhelmed with requests it might ask to retry.



	Scrub KUBERNETES_ environment from the postmaster (Feike Steenbergen)

The KUBERNETES_ environment variables are not required for PostgreSQL, yet having them exposed to the postmaster will also expose them to backends and to regular database users (using pl/perl for example).



	Clean up tablespaces on reinitialize (Krishna)

During reinit, Patroni was removing only PGDATA and leaving user-defined tablespace directories. This is causing Patroni to loop in reinit. The previous workarond for the problem was implementing the custom bootstrap script.



	Explicitly execute CHECKPOINT after promote happened (Alexander)

It helps to reduce the time before the new primary is usable for pg_rewind.



	Smart refresh of Etcd members (Alexander)

In case Patroni failed to execute a request on all members of the Etcd cluster, Patroni will re-check A or SRV records for changes of IPs/hosts before retrying the next time.



	Skip missing values from pg_controldata (Feike)

Values are missing when trying to use binaries of a version that doesn’t match PGDATA. Patroni will try to start Postgres anyway, and Postgres will complain that the major version doesn’t match and abort with an error.





Bugfixes


	Disable SSL verification for Consul when required (Julien Riou)

Starting from a certain version of urllib3, the cert_reqs must be explicitly set to ssl.CERT_NONE in order to effectively disable SSL verification.



	Avoid opening replication connection on every cycle of HA loop (Alexander)

Regression was introduced in 1.6.4.



	Call on_role_change callback on failed primary (Alexander)

In certain cases it could lead to the virtual IP remaining attached to the old primary. Regression was introduced in 1.4.5.



	Reset rewind state if postgres started after successful pg_rewind (Alexander)

As a result of this bug Patroni was starting up manually shut down postgres in the pause mode.



	Convert recovery_min_apply_delay to ms when checking recovery.conf

Patroni was indefinitely restarting replica if recovery_min_apply_delay was configured on PostgreSQL older than 12.



	PyInstaller compatibility (Alexander)

PyInstaller freezes (packages) Python applications into stand-alone executables. The compatibility was broken when we switched to the spawn method instead of fork for multiprocessing.







Version 1.6.4

New features


	Implemented --wait option for patronictl reinit (Igor Yanchenko)

Patronictl will wait for reinit to finish is the --wait option is used.



	Further improvements of Windows support (Igor Yanchenko, Alexander Kukushkin)


	All shell scripts which are used for integration testing are rewritten in python


	The pg_ctl kill will be used to stop postgres on non posix systems


	Don’t try to use unix-domain sockets








Stability improvements


	Make sure unix_socket_directories and stats_temp_directory exist (Igor)

Upon the start of Patroni and Postgres make sure that unix_socket_directories and stats_temp_directory exist or try to create them. Patroni will exit if failed to create them.



	Make sure postgresql.pgpass is located in the place where Patroni has write access (Igor)

In case if it doesn’t have a write access Patroni will exit with exception.



	Disable Consul serfHealth check by default (Kostiantyn Nemchenko)

Even in case of little network problems the failing serfHealth leads to invalidation of all sessions associated with the node. Therefore, the leader key is lost much earlier than ttl which causes unwanted restarts of replicas and maybe demotion of the primary.



	Configure tcp keepalives for connections to K8s API (Alexander)

In case if we get nothing from the socket after TTL seconds it can be considered dead.



	Avoid logging of passwords on user creation (Alexander)

If the password is rejected or logging is configured to verbose or not configured at all it might happen that the password is written into postgres logs. In order to avoid it Patroni will change log_statement, log_min_duration_statement, and log_min_error_statement to some safe values before doing the attempt to create/update user.





Bugfixes


	Use restore_command from the standby_cluster config on cascading replicas (Alexander)

The standby_leader was already doing it from the beginning the feature existed. Not doing the same on replicas might prevent them from catching up with standby leader.



	Update timeline reported by the standby cluster (Alexander)

In case of timeline switch the standby cluster was correctly replicating from the primary but patronictl was reporting the old timeline.



	Allow certain recovery parameters be defined in the custom_conf (Alexander)

When doing validation of recovery parameters on replica Patroni will skip archive_cleanup_command, promote_trigger_file, recovery_end_command, recovery_min_apply_delay, and restore_command if they are not defined in the patroni config but in files other than postgresql.auto.conf or postgresql.conf.



	Improve handling of postgresql parameters with period in its name (Alexander)

Such parameters could be defined by extensions where the unit is not necessarily a string. Changing the value might require a restart (for example pg_stat_statements.max).



	Improve exception handling during shutdown (Alexander)

During shutdown Patroni is trying to update its status in the DCS. If the DCS is inaccessible an exception might be raised. Lack of exception handling was preventing logger thread from stopping.







Version 1.6.3

Bugfixes


	Don’t expose password when running pg_rewind (Alexander Kukushkin)

Bug was introduced in the #1301 [https://github.com/zalando/patroni/pull/1301]



	Apply connection parameters specified in the postgresql.authentication to pg_basebackup and custom replica creation methods (Alexander)

They were relying on url-like connection string and therefore parameters never applied.







Version 1.6.2

New features


	Implemented patroni --version (Igor Yanchenko)

It prints the current version of Patroni and exits.



	Set the user-agent http header for all http requests (Alexander Kukushkin)

Patroni is communicating with Consul, Etcd, and Kubernetes API via the http protocol. Having a specifically crafted user-agent (example: Patroni/1.6.2 Python/3.6.8 Linux) might be useful for debugging and monitoring.



	Make it possible to configure log level for exception tracebacks (Igor)

If you set log.traceback_level=DEBUG the tracebacks will be visible only when log.level=DEBUG. The default behavior remains the same.





Stability improvements


	Avoid importing all DCS modules when searching for the module required by the config file (Alexander)

There is no need to import modules for Etcd, Consul, and Kubernetes if we need only e.g. Zookeeper. It helps to reduce memory usage and solves the problem of having INFO messages Failed to import smth.



	Removed python requests module from explicit requirements (Alexander)

It wasn’t used for anything critical, but causing a lot of problems when the new version of urllib3 is released.



	Improve handling of etcd.hosts written as a comma-separated string instead of YAML array (Igor)

Previously it was failing when written in format host1:port1, host2:port2 (the space character after the comma).





Usability improvements


	Don’t force users to choose members from an empty list in patronictl (Igor)

If the user provides a wrong cluster name, we will raise an exception rather than ask to choose a member from an empty list.



	Make the error message more helpful if the REST API cannot bind (Igor)

For an inexperienced user it might be hard to figure out what is wrong from the Python stacktrace.





Bugfixes


	Fix calculation of wal_buffers (Alexander)

The base unit has been changed from 8 kB blocks to bytes in PostgreSQL 11.



	Use passfile in primary_conninfo only on PostgreSQL 10+ (Alexander)

On older versions there is no guarantee that passfile will work, unless the latest version of libpq is installed.







Version 1.6.1

New features


	Added PATRONICTL_CONFIG_FILE environment variable (msvechla)

It allows configuring the --config-file argument for patronictl from the environment.



	Implement patronictl history (Alexander Kukushkin)

It shows the history of failovers/switchovers.



	Pass -c statement_timeout=0 in PGOPTIONS when doing pg_rewind (Alexander Kukushkin)

It protects from the case when statement_timeout on the server is set to some small value and one of the statements executed by pg_rewind is canceled.



	Allow lower values for PostgreSQL configuration (Soulou)

Patroni didn’t allow some of the PostgreSQL configuration parameters be set smaller than some hardcoded values. Now the minimal allowed values are smaller, default values have not been changed.



	Allow for certificate-based authentication (Jonathan S. Katz)

This feature enables certificate-based authentication for superuser, replication, rewind accounts and allows the user to specify the sslmode they wish to connect with.



	Use the passfile in the primary_conninfo instead of password (Alexander Kukushkin)

It allows to avoid setting 600 permissions on postgresql.conf



	Perform pg_ctl reload regardless of config changes (Alexander Kukushkin)

It is possible that some config files are not controlled by Patroni. When somebody is doing a reload via the REST API or by sending SIGHUP to the Patroni process, the usual expectation is that Postgres will also be reloaded. Previously it didn’t happen when there were no changes in the postgresql section of Patroni config.



	Compare all recovery parameters, not only primary_conninfo (Alexander Kukushkin)

Previously the check_recovery_conf() method was only checking whether primary_conninfo has changed, never taking into account all other recovery parameters.



	Make it possible to apply some recovery parameters without restart (Alexander Kukushkin)

Starting from PostgreSQL 12 the following recovery parameters could be changed without restart: archive_cleanup_command, promote_trigger_file, recovery_end_command, and recovery_min_apply_delay. In future Postgres releases this list will be extended and Patroni will support it automatically.



	Make it possible to change use_slots online (Alexander Kukushkin)

Previously it required restarting Patroni and removing slots manually.



	Remove only PATRONI_ prefixed environment variables when starting up Postgres (Cody Coons)

It will solve a lot of problems with running different Foreign Data Wrappers.





Stability improvements


	Use LIST + WATCH when working with K8s API (Alexander Kukushkin)

It allows to efficiently receive object changes (pods, endpoints/configmaps) and makes less stress on K8s master nodes.



	Improve the workflow when PGDATA is not empty during bootstrap (Alexander Kukushkin)

According to the initdb source code it might consider a PGDATA empty when there are only lost+found and .dotfiles in it. Now Patroni does the same. If PGDATA happens to be non-empty, and at the same time not valid from the pg_controldata point of view, Patroni will complain and exit.



	Avoid calling expensive os.listdir() on every HA loop (Alexander Kukushkin)

When the system is under IO stress, os.listdir() could take a few seconds (or even minutes) to execute, badly affecting the HA loop of Patroni. This could even cause the leader key to disappear from DCS due to the lack of updates. There is a better and less expensive way to check that the PGDATA is not empty. Now we check the presence of the global/pg_control file in the PGDATA.



	Some improvements in logging infrastructure (Alexander Kukushkin)

Previously there was a possibility to loose the last few log lines on shutdown because the logging thread was a daemon thread.



	Use spawn multiprocessing start method on python 3.4+ (Maciej Kowalczyk)

It is a known issue [https://bugs.python.org/issue6721] in Python that threading and multiprocessing do not mix well. Switching from the default method fork to the spawn is a recommended workaround. Not doing so might result in the Postmaster starting process hanging and Patroni indefinitely reporting INFO: restarting after failure in progress, while  Postgres is actually up and running.





Improvements in REST API


	Make it possible to check client certificates in the REST API (Alexander Kukushkin)

If the verify_client is set to required, Patroni will check client certificates for all REST API calls. When it is set to optional, client certificates are checked for all unsafe REST API endpoints.



	Return the response code 503 for the GET /replica health check request if Postgres is not running (Alexander Anikin)

Postgres might spend significant time in recovery before it starts accepting client connections.



	Implement /history and /cluster endpoints (Alexander Kukushkin)

The /history endpoint shows the content of the history key in DCS. The /cluster endpoint shows all cluster members and some service info like pending and scheduled restarts or switchovers.





Improvements in Etcd support


	Retry on Etcd RAFT internal error (Alexander Kukushkin)

When the Etcd node is being shut down, it sends response code=300, data='etcdserver: server stopped', which was causing Patroni to demote the primary.



	Don’t give up on Etcd request retry too early (Alexander Kukushkin)

When there were some network problems, Patroni was quickly exhausting the list of Etcd nodes and giving up without using the whole retry_timeout, potentially resulting in demoting the primary.





Bugfixes


	Disable synchronous_commit when granting execute permissions to the pg_rewind user (kremius)

If the bootstrap is done with synchronous_mode_strict: true the GRANT EXECUTE statement was waiting indefinitely due to the non-synchronous nodes being available.



	Fix memory leak on python 3.7 (Alexander Kukushkin)

Patroni is using ThreadingMixIn to process REST API requests and python 3.7 made threads spawn for every request non-daemon by default.



	Fix race conditions in asynchronous actions (Alexander Kukushkin)

There was a chance that patronictl reinit --force could be overwritten by the attempt to recover stopped Postgres. This ended up in a situation when Patroni was trying to start Postgres while basebackup was running.



	Fix race condition in postmaster_start_time() method (Alexander Kukushkin)

If the method is executed from the REST API thread, it requires a separate cursor object to be created.



	Fix the problem of not promoting the sync standby that had a name containing upper case letters (Alexander Kukushkin)

We converted the name to the lower case because Postgres was doing the same while comparing the application_name with the value in synchronous_standby_names.



	Kill all children along with the callback process before starting the new one (Alexander Kukushkin)

Not doing so makes it hard to implement callbacks in bash and eventually can lead to the situation when two callbacks are running at the same time.



	Fix ‘start failed’ issue (Alexander Kukushkin)

Under certain conditions the Postgres state might be set to ‘start failed’ despite Postgres being up and running.







Version 1.6.0

This version adds compatibility with PostgreSQL 12, makes is possible to run pg_rewind without superuser on PostgreSQL 11 and newer, and enables IPv6 support.

New features


	Psycopg2 was removed from requirements and must be installed independently (Alexander Kukushkin)

Starting from 2.8.0 psycopg2 was split into two different packages, psycopg2, and psycopg2-binary, which could be installed at the same time into the same place on the filesystem. In order to decrease dependency hell problem, we let a user choose how to install it. There are a few options available, please consult the documentation.



	Compatibility with PostgreSQL 12 (Alexander Kukushkin)

Starting from PostgreSQL 12 there is no recovery.conf anymore and all former recovery parameters are converted into GUC [https://www.enterprisedb.com/blog/what-is-a-guc-variable]. In order to protect from ALTER SYSTEM SET primary_conninfo or similar, Patroni will parse postgresql.auto.conf and remove all standby and recovery parameters from there. Patroni config remains backward compatible. For example despite restore_command being a GUC, one can still specify it in the postgresql.recovery_conf.restore_command section and Patroni will write it into postgresql.conf for PostgreSQL 12.



	Make it possible to use pg_rewind without superuser on PostgreSQL 11 and newer (Alexander Kukushkin)

If you want to use this feature please define username and password in the postgresql.authentication.rewind section of Patroni configuration file. For an already existing cluster you will have to create the user manually and GRANT EXECUTE permission on a few functions. You can find more details in the PostgreSQL documentation [https://www.postgresql.org/docs/11/app-pgrewind.html#id-1.9.5.8.8].



	Do a smart comparison of actual and desired primary_conninfo values on replicas (Alexander Kukushkin)

It might help to avoid replica restart when you are converting an already existing primary-standby cluster to one managed by Patroni



	IPv6 support (Alexander Kukushkin)

There were two major issues. Patroni REST API service was listening only on 0.0.0.0 and IPv6 IP addresses used in the api_url and conn_url were not properly quoted.



	Kerberos support (Ajith Vilas, Alexander Kukushkin)

It makes possible using Kerberos authentication between Postgres nodes instead of defining passwords in Patroni configuration file



	Manage pg_ident.conf (Alexander Kukushkin)

This functionality works similarly to pg_hba.conf: if the postgresql.pg_ident is defined in the config file or DCS, Patroni will write its value to pg_ident.conf, however, if postgresql.parameters.ident_file is defined, Patroni will assume that pg_ident is managed from outside and not update the file.





Improvements in REST API


	Added /health endpoint (Wilfried Roset)

It will return an HTTP status code only if PostgreSQL is running



	Added /read-only and /read-write endpoints (Julien Riou)

The /read-only endpoint enables reads balanced across replicas and the primary. The /read-write endpoint is an alias for /primary, /leader and /master.



	Use SSLContext to wrap the REST API socket (Julien Riou)

Usage of ssl.wrap_socket() is deprecated and was still allowing soon-to-be-deprecated protocols like TLS 1.1.





Logging improvements


	Two-step logging (Alexander Kukushkin)

All log messages are first written into the in-memory queue and later they are asynchronously flushed into the stderr or file from a separate thread. The maximum queue size is limited (configurable). If the limit is reached, Patroni will start losing logs, which is still better than blocking the HA loop.



	Enable debug logging for GET/OPTIONS API calls together with latency (Jan Tomsa)

It will help with debugging of health-checks performed by HAProxy, Consul or other tooling that decides which node is the primary/replica.



	Log exceptions caught in Retry (Daniel Kucera)

Log the final exception when either the number of attempts or the timeout were reached. It will hopefully help to debug some issues when communication to DCS fails.





Improvements in patronictl


	Enhance dialogues for scheduled switchover and restart (Rafia Sabih)

Previously dialogues did not take into account scheduled actions and therefore were misleading.



	Check if config file exists (Wilfried Roset)

Be verbose about configuration file when the given filename does not exists, instead of ignoring silently (which can lead to misunderstanding).



	Add fallback value for EDITOR (Wilfried Roset)

When the EDITOR environment variable was not defined, patronictl edit-config was failing with PatroniCtlException. The new strategy is to try editor and than vi, which should be available on most systems.





Improvements in Consul support


	Allow to specify Consul consistency mode (Jan Tomsa)

You can read more about consistency mode here [https://www.consul.io/api/features/consistency.html].



	Reload Consul config on SIGHUP (Cameron Daniel, Alexander Kukushkin)

It is especially useful when somebody is changing the value of token.





Bugfixes


	Fix corner case in switchover/failover (Sharoon Thomas)

The variable scheduled_at may be undefined if REST API is not accessible and we are using DCS as a fallback.



	Open trust to localhost in pg_hba.conf during custom bootstrap (Alexander Kukushkin)

Previously it was open only to unix_socket, which was causing a lot of errors: FATAL:  no pg_hba.conf entry for replication connection from host "127.0.0.1", user "replicator"



	Consider synchronous node as healthy even when the former leader is ahead (Alexander Kukushkin)

If the primary loses access to the DCS, it restarts Postgres in read-only, but it might happen that other nodes can still access the old primary via the REST API. Such a situation was causing the synchronous standby not to promote because the old primary was reporting WAL position ahead of the synchronous standby.



	Standby cluster bugfixes (Alexander Kukushkin)

Make it possible to bootstrap a replica in a standby cluster when the standby_leader is not accessible and a few other minor fixes.







Version 1.5.6

New features


	Support work with etcd cluster via set of proxies (Alexander Kukushkin)

It might happen that etcd cluster is not accessible directly but via set of proxies. In this case Patroni will not perform etcd topology discovery but just round-robin via proxy hosts. Behavior is controlled by etcd.use_proxies.



	Changed callbacks behavior when role on the node is changed (Alexander)

If the role was changed from master or standby_leader to replica or from replica to standby_leader, on_restart callback will not be called anymore in favor of on_role_change callback.



	Change the way how we start postgres (Alexander)

Use multiprocessing.Process instead of executing itself and multiprocessing.Pipe to transmit the postmaster pid to the Patroni process. Before that we were using pipes, what was leaving postmaster process with stdin closed.





Bug fixes


	Fix role returned by REST API for the standby leader (Alexander)

It was incorrectly returning replica instead of standby_leader



	Wait for callback end if it could not be killed (Julien Tachoires)

Patroni doesn’t have enough privileges to terminate the callback script running under sudo what was cancelling the new callback. If the running script could not be killed, Patroni will wait until it finishes and then run the next callback.



	Reduce lock time taken by dcs.get_cluster method (Alexander)

Due to the lock being held DCS slowness was affecting the REST API health checks causing false positives.



	Improve cleaning of PGDATA when pg_wal/pg_xlog is a symlink (Julien)

In this case Patroni will explicitly remove files from the target directory.



	Remove unnecessary usage of os.path.relpath (Ants Aasma)

It depends on being able to resolve the working directory, what will fail if Patroni is started in a directory that is later unlinked from the filesystem.



	Do not enforce ssl version when communicating with Etcd (Alexander)

For some unknown reason python3-etcd on debian and ubuntu are not based on the latest version of the package and therefore it enforces TLSv1 which is not supported by Etcd v3. We solved this problem on Patroni side.







Version 1.5.5

This version introduces the possibility of automatic reinit of the former master, improves patronictl list output and fixes a number of bugs.

New features


	Add support of PATRONI_ETCD_PROTOCOL, PATRONI_ETCD_USERNAME and PATRONI_ETCD_PASSWORD environment variables (Étienne M)

Before it was possible to configure them only in the config file or as a part of PATRONI_ETCD_URL, which is not always convenient.



	Make it possible to automatically reinit the former master (Alexander Kukushkin)

If the pg_rewind is disabled or can’t be used, the former master could fail to start as a new replica due to diverged timelines. In this case, the only way to fix it is wiping the data directory and reinitializing. This behavior could be changed by setting postgresql.remove_data_directory_on_diverged_timelines. When it is set, Patroni will wipe the data directory and reinitialize the former master automatically.



	Show information about timelines in patronictl list (Alexander)

It helps to detect stale replicas. In addition to that, Host will include ‘:{port}’ if the port value isn’t default or there is more than one member running on the same host.



	Create a headless service associated with the $SCOPE-config endpoint (Alexander)

The “config” endpoint keeps information about the cluster-wide Patroni and Postgres configuration, history file, and last but the most important, it holds the initialize key. When the Kubernetes master node is restarted or upgraded, it removes endpoints without services. The headless service will prevent it from being removed.





Bug fixes


	Adjust the read timeout for the leader watch blocking query (Alexander)

According to the Consul documentation, the actual response timeout is increased by a small random amount of additional wait time added to the supplied maximum wait time to spread out the wake up time of any concurrent requests. It adds up to wait / 16 additional time to the maximum duration. In our case we are adding wait / 15 or 1 second depending on what is bigger.



	Always use replication=1 when connecting via replication protocol to the postgres (Alexander)

Starting from Postgres 10 the line in the pg_hba.conf with database=replication doesn’t accept connections with the parameter replication=database.



	Don’t write primary_conninfo into recovery.conf for wal-only standby cluster (Alexander)

Despite not having neither host nor port defined in the standby_cluster config, Patroni was putting the primary_conninfo into the recovery.conf, which is useless and generating a lot of errors.







Version 1.5.4

This version implements flexible logging and fixes a number of bugs.

New features


	Improvements in logging infrastructure (Alexander Kukushkin, Lucas Capistrant, Alexander Anikin)

Logging configuration could be configured not only from environment variables but also from Patroni config file. It makes it possible to change logging configuration in runtime by updating config and doing reload or sending SIGHUP to the Patroni process. By default Patroni writes logs to stderr, but now it becomes possible to write logs directly into the file and rotate when it reaches a certain size. In addition to that added support of custom dateformat and the possibility to fine-tune log level for each python module.



	Make it possible to take into account the current timeline during leader elections (Alexander Kukushkin)

It could happen that the node is considering itself as a healthiest one although it is currently not on the latest known timeline. In some cases we want to avoid promoting of such node, which could be achieved by setting check_timeline parameter to true (default behavior remains unchanged).



	Relaxed requirements on superuser credentials

Libpq allows opening connections without explicitly specifying neither username nor password. Depending on situation it relies either on pgpass file or trust authentication method in pg_hba.conf. Since pg_rewind is also using libpq, it will work the same way.



	Implemented possibility to configure Consul Service registration and check interval via environment variables (Alexander Kukushkin)

Registration of service in Consul was added in the 1.5.0, but so far it was only possible to turn it on via patroni.yaml.





Stability Improvements


	Set archive_mode to off during the custom bootstrap (Alexander Kukushkin)

We want to avoid archiving wals and history files until the cluster is fully functional.  It really helps if the custom bootstrap involves pg_upgrade.



	Apply five seconds backoff when loading global config on start (Alexander Kukushkin)

It helps to avoid hammering DCS when Patroni just starting up.



	Reduce amount of error messages generated on shutdown (Alexander Kukushkin)

They were harmless but rather annoying and sometimes scary.



	Explicitly secure rw perms for recovery.conf at creation time (Lucas)

We don’t want anybody except patroni/postgres user reading this file, because it contains replication user and password.



	Redirect HTTPServer exceptions to logger (Julien Riou)

By default, such exceptions were logged on standard output messing with regular logs.





Bug fixes


	Removed stderr pipe to stdout on pg_ctl process (Cody Coons)

Inheriting stderr from the main Patroni process allows all Postgres logs to be seen along with all patroni logs. This is very useful in a container environment as Patroni and Postgres logs may be consumed using standard tools (docker logs, kubectl, etc). In addition to that, this change fixes a bug with Patroni not being able to catch postmaster pid when postgres writing some warnings into stderr.



	Set Consul service check deregister timeout in Go time format (Pavel Kirillov)

Without explicitly mentioned time unit registration was failing.



	Relax checks of standby_cluster cluster configuration (Dmitry Dolgov, Alexander Kukushkin)

It was accepting only strings as valid values and therefore it was not possible to specify the port as integer and create_replica_methods as a list.







Version 1.5.3

Compatibility and bugfix release.


	Improve stability when running with python3 against zookeeper (Alexander Kukushkin)

Change of loop_wait was causing Patroni to disconnect from zookeeper and never reconnect back.



	Fix broken compatibility with postgres 9.3 (Alexander)

When opening a replication connection we should specify replication=1, because 9.3 does not understand replication=’database’



	Make sure we refresh Consul session at least once per HA loop and improve handling of consul sessions exceptions (Alexander)

Restart of local consul agent invalidates all sessions related to the node. Not calling session refresh on time and not doing proper handling of session errors was causing demote of the primary.







Version 1.5.2

Compatibility and bugfix release.


	Compatibility with kazoo-2.6.0 (Alexander Kukushkin)

In order to make sure that requests are performed with an appropriate timeout, Patroni redefines create_connection method from python-kazoo module. The last release of kazoo slightly changed the way how create_connection method is called.



	Fix Patroni crash when Consul cluster loses the leader (Alexander)

The crash was happening due to incorrect implementation of touch_member method, it should return boolean and not raise any exceptions.







Version 1.5.1

This version implements support of permanent replication slots, adds support of pgBackRest and fixes number of bugs.

New features


	Permanent replication slots (Alexander Kukushkin)

Permanent replication slots are preserved on failover/switchover, that is, Patroni on the new primary will create configured replication slots right after doing promote. Slots could be configured with the help of patronictl edit-config. The initial configuration could be also done in the bootstrap.dcs.



	Add pgbackrest support (Yogesh Sharma)

pgBackrest can restore in existing $PGDATA folder, this allows speedy restore as files which have not changed since last backup are skipped, to support this feature new parameter keep_data has been introduced. See replica creation method section for additional examples.





Bug fixes


	A few bugfixes in the “standby cluster” workflow (Alexander)

Please see https://github.com/zalando/patroni/pull/823 for more details.



	Fix REST API health check when cluster management is paused and DCS is not accessible (Alexander)

Regression was introduced in https://github.com/zalando/patroni/commit/90cf930036a9d5249265af15d2b787ec7517cf57







Version 1.5.0

This version enables Patroni HA cluster to operate in a standby mode, introduces experimental support for running on Windows, and provides a new configuration parameter to register PostgreSQL service in Consul.

New features


	Standby cluster (Dmitry Dolgov)

One or more Patroni nodes can form a standby cluster that runs alongside the primary one (i.e. in another datacenter) and consists of standby nodes that replicate from the master in the primary cluster. All PostgreSQL nodes in the standby cluster are replicas; one of those replicas elects itself to replicate directly from the remote master, while the others replicate from it in a cascading manner. More detailed description of this feature and some configuration examples can be found at here.



	Register Services in Consul (Pavel Kirillov, Alexander Kukushkin)

If register_service parameter in the consul configuration is enabled, the node will register a service with the name scope and the tag master, replica or standby-leader.



	Experimental Windows support (Pavel Golub)

From now on it is possible to run Patroni on Windows, although Windows support is brand-new and hasn’t received as much real-world testing as its Linux counterpart. We welcome your feedback!





Improvements in patronictl


	Add patronictl -k/–insecure flag and support for restapi cert (Wilfried Roset)

In the past if the REST API was protected by the self-signed certificates patronictl would fail to verify them. There was no way to  disable that verification. It is now possible to configure patronictl to skip the certificate verification altogether or provide CA and client certificates in the ctl: section of configuration.



	Exclude members with nofailover tag from patronictl switchover/failover output (Alexander Anikin)

Previously, those members were incorrectly proposed as candidates when performing interactive switchover or failover via patronictl.





Stability improvements


	Avoid parsing non-key-value output lines of pg_controldata (Alexander Anikin)

Under certain circuimstances pg_controldata outputs lines without a colon character. That would trigger an error in Patroni code that parsed pg_controldata output, hiding the actual problem; often such lines are emitted in a warning shown by pg_controldata before the regular output, i.e. when the binary major version does not match the one of the PostgreSQL data directory.



	Add member name to the error message during the leader election (Jan Mussler)

During the leader election, Patroni connects to all known members of the cluster and requests their status. Such status is written to the Patroni log and includes the name of the member. Previously, if the member was not accessible, the error message did not indicate its name, containing only the URL.



	Immediately reserve the WAL position upon creation of the replication slot (Alexander Kukushkin)

Starting from 9.6, pg_create_physical_replication_slot function provides an additional boolean parameter immediately_reserve. When it is set to false, which is also the default, the slot doesn’t reserve the WAL position until it receives the first client connection, potentially losing some segments required by the client in a time window between the slot creation and the initial client connection.



	Fix bug in strict synchronous replication (Alexander Kukushkin)

When running with synchronous_mode_strict: true, in some cases Patroni puts * into the synchronous_standby_names, changing the sync state for most of the replication connections to potential. Previously, Patroni couldn’t pick a synchronous candidate under such curcuimstances, as it only considered those with the state async.







Version 1.4.6

Bug fixes and stability improvements

This release fixes a critical issue with Patroni API /master endpoint returning 200 for the non-master node. This is a
reporting issue, no actual split-brain, but under certain circumstances clients might be directed to the read-only node.


	Reset is_leader status on demote (Alexander Kukushkin, Oleksii Kliukin)

Make sure demoted cluster member stops responding with code 200 on the /master API call.



	Add new “cluster_unlocked” field to the API output (Dmitry Dolgov)

This field indicates whether the cluster has the master running. It can be used when it is not possible to query any
other node but one of the replicas.







Version 1.4.5

New features


	Improve logging when applying new postgres configuration (Don Seiler)

Patroni logs changed parameter names and values.



	Python 3.7 compatibility (Christoph Berg)

async is a reserved keyword in python3.7



	Set state to “stopped” in the DCS when a member is shut down (Tony Sorrentino)

This shows the member state as “stopped” in “patronictl list” command.



	Improve the message logged when stale postmaster.pid matches a running process (Ants Aasma)

The previous one was beyond confusing.



	Implement patronictl reload functionality (Don Seiler)

Before that it was only possible to reload configuration by either calling REST API or by sending SIGHUP signal to the Patroni process.



	Take and apply some parameters from controldata when starting as a replica (Alexander Kukushkin)

The value of max_connections and some other parameters set in the global configuration may be lower than the one actually used by the primary; when this happens, the replica cannot start and should be fixed manually. Patroni takes care of that now by reading and applying the value from  pg_controldata, starting postgres and setting pending_restart flag.



	If set, use LD_LIBRARY_PATH when starting postgres (Chris Fraser)

When starting up Postgres, Patroni was passing along PATH, LC_ALL and LANG env vars if they are set. Now it is doing the same with LD_LIBRARY_PATH. It should help if somebody installed PostgreSQL to non-standard place.



	Rename create_replica_method to create_replica_methods (Dmitry Dolgov)

To make it clear that it’s actually an array. The old name is still supported for backward compatibility.





Bug fixes and stability improvements


	Fix condition for the replica start due to pg_rewind in paused state (Oleksii  Kliukin)

Avoid starting the replica that had already executed pg_rewind before.



	Respond 200 to the master health-check only if update_lock has been successful (Alexander)

Prevent Patroni from reporting itself a master on the former (demoted) master if DCS is partitioned.



	Fix compatibility with the new consul module (Alexander)

Starting from v1.1.0 python-consul changed internal API and started using list instead of dict to pass query parameters.



	Catch exceptions from Patroni REST API thread during shutdown (Alexander)

Those uncaught exceptions kept PostgreSQL running at shutdown.



	Do crash recovery only when Postgres runs as the master (Alexander)

Require pg_controldata to report  ‘in production’ or ‘shutting down’ or ‘in crash recovery’. In all other cases no crash recovery is necessary.



	Improve handling of configuration errors (Henning Jacobs, Alexander)

It is possible to change a lot of parameters in runtime (including restapi.listen) by updating Patroni config file and sending SIGHUP to Patroni process. This fix eliminates obscure exceptions from the ‘restapi’ thread when some of the parameters receive invalid values.







Version 1.4.4

Stability improvements


	Fix race condition in poll_failover_result (Alexander Kukushkin)

It didn’t affect directly neither failover nor switchover, but in some rare cases it was reporting success too early, when the former leader released the lock, producing a ‘Failed over to “None”’ instead of ‘Failed over to “desired-node”’ message.



	Treat Postgres parameter names as case insensitive (Alexander)

Most of the Postgres parameters have snake_case names, but there are three exceptions from this rule: DateStyle, IntervalStyle and TimeZone. Postgres accepts those parameters when written in a different case (e.g. timezone = ‘some/tzn’); however, Patroni was unable to find case-insensitive matches of those parameter names in pg_settings and ignored such parameters as a result.



	Abort start if attaching to running postgres and cluster not initialized (Alexander)

Patroni can attach itself to an already running Postgres instance. It is imperative to start running Patroni on the master node before getting to the replicas.



	Fix behavior of patronictl scaffold (Alexander)

Pass dict object to touch_member instead of json encoded string, DCS implementation will take care of encoding it.



	Don’t demote master if failed to update leader key in pause (Alexander)

During maintenance a DCS may start failing write requests while continuing to responds to read ones. In that case, Patroni used to put the Postgres master node to a read-only mode after failing to update the leader lock in DCS.



	Sync replication slots when Patroni notices a new postmaster process (Alexander)

If Postgres has been restarted, Patroni has to make sure that list of replication slots matches its expectations.



	Verify sysid and sync replication slots after coming out of pause (Alexander)

During the maintenance mode it may happen that data directory was completely rewritten and therefore we have to make sure that Database system identifier still belongs to our cluster and replication slots are in sync with Patroni expectations.



	Fix a possible failure to start not running Postgres on a data directory with postmaster lock file present (Alexander)

Detect reuse of PID from the postmaster lock file. More likely to hit such problem if you run Patroni and Postgres in the docker container.



	Improve protection of DCS being accidentally wiped (Alexander)

Patroni has a lot of logic in place to prevent failover in such case; it can also restore all keys back; however, until this change an accidental removal of /config key was switching off pause mode for 1 cycle of HA loop.



	Do not exit when encountering invalid system ID (Oleksii Kliukin)

Do not exit when the cluster system ID is empty or the one that doesn’t pass the validation check. In that case, the cluster most likely needs a reinit; mention it in the result message. Avoid terminating Patroni, as otherwise reinit cannot happen.





Compatibility with Kubernetes 1.10+


	Added check for empty subsets (Cody Coons)

Kubernetes 1.10.0+ started returning Endpoints.subsets set to None instead of [].





Bootstrap improvements


	Make deleting recovery.conf optional (Brad Nicholson)

If bootstrap.<custom_bootstrap_method_name>.keep_existing_recovery_conf is defined and set to True, Patroni will not remove the existing recovery.conf file. This is useful when bootstrapping from a backup with tools like pgBackRest that generate the appropriate recovery.conf for you.



	Allow options to the basebackup built-in method (Oleksii)

It is now possible to supply options to the built-in basebackup method by defining the basebackup section in the configuration, similar to how those are defined for custom replica creation methods. The difference is in the format accepted by the basebackup section: since pg_basebackup accepts both –key=value and –key options, the contents of the section could be either a dictionary of key-value pairs, or a list of either one-element dictionaries or just keys (for the options that don’t accept values). See replica creation method section for additional examples.







Version 1.4.3

Improvements in logging


	Make log level configurable from environment variables (Andy Newton, Keyvan Hedayati)

PATRONI_LOGLEVEL - sets the general logging level
PATRONI_REQUESTS_LOGLEVEL - sets the logging level for all HTTP requests e.g. Kubernetes API calls
See the docs for Python logging <https://docs.python.org/3.6/library/logging.html#levels> to get the names of possible log levels





Stability improvements and bug fixes


	Don’t rediscover etcd cluster topology when watch timed out (Alexander Kukushkin)

If we have only one host in etcd configuration and exactly this host is not accessible, Patroni was starting discovery of cluster topology and never succeeding. Instead it should just switch to the next available node.



	Write content of bootstrap.pg_hba into a pg_hba.conf after custom bootstrap (Alexander)

Now it behaves similarly to the usual bootstrap with initdb



	Single user mode was waiting for user input and never finish (Alexander)

Regression was introduced in https://github.com/zalando/patroni/pull/576







Version 1.4.2

Improvements in patronictl


	Rename scheduled failover to scheduled switchover (Alexander Kukushkin)

Failover and switchover functions were separated in version 1.4, but patronictl list was still reporting Scheduled failover instead of Scheduled switchover.



	Show information about pending restarts (Alexander)

In order to apply some configuration changes sometimes it is necessary to restart postgres. Patroni was already giving a hint about that in the REST API and when writing node status into DCS, but there were no easy way to display it.



	Make show-config to work with cluster_name from config file (Alexander)

It works similar to the patronictl edit-config





Stability improvements


	Avoid calling pg_controldata during bootstrap (Alexander)

During initdb or custom bootstrap there is a time window when pgdata is not empty but pg_controldata has not been written yet. In such case pg_controldata call was failing with error messages.



	Handle exceptions raised from psutil (Alexander)

cmdline is read and parsed every time when cmdline() method is called. It could happen that the process being examined
has already disappeared, in that case NoSuchProcess is raised.





Kubernetes support improvements


	Don’t swallow errors from k8s API (Alexander)

A call to Kubernetes API could fail for a different number of reasons. In some cases such call should be retried, in some other cases we should log the error message and the exception stack trace. The change here will help debug Kubernetes permission issues.



	Update Kubernetes example Dockerfile to install Patroni from the master branch (Maciej Szulik)

Before that it was using feature/k8s, which became outdated.



	Add proper RBAC to run patroni on k8s (Maciej)

Add the Service account that is assigned to the pods of the cluster, the role that holds only the necessary permissions, and the rolebinding that connects the Service account and the Role.







Version 1.4.1

Fixes in patronictl


	Don’t show current leader in suggested list of members to failover to. (Alexander Kukushkin)

patronictl failover could still work when there is leader in the cluster and it should be excluded from the list of member where it is possible to failover to.



	Make patronictl switchover compatible with the old Patroni api (Alexander)

In case if POST /switchover REST API call has failed with status code 501 it will do it once again, but to /failover endpoint.







Version 1.4

This version adds support for using Kubernetes as a DCS, allowing to run Patroni as a cloud-native agent in Kubernetes without any additional deployments of Etcd, Zookeeper or Consul.

Upgrade notice

Installing Patroni via pip will no longer bring in dependencies for (such as libraries for Etcd, Zookeper, Consul or Kubernetes, or support for AWS). In order to enable them one need to list them in pip install command explicitly, for instance pip install patroni[etcd,kubernetes].

Kubernetes support

Implement Kubernetes-based DCS. The endpoints meta-data is used in order to store the configuration and the leader key. The meta-data field inside the pods definition is used to store the member-related data.
In addition to using Endpoints, Patroni supports ConfigMaps. You can find more information about this feature in the Kubernetes chapter of the documentation

Stability improvements


	Factor out postmaster process into a separate object (Ants Aasma)

This object identifies a running postmaster process via pid and start time and simplifies detection (and resolution) of situations when the postmaster was restarted behind our back or when postgres directory disappeared from the file system.



	Minimize the amount of SELECT’s issued by Patroni on every loop of HA cylce (Alexander Kukushkin)

On every iteration of HA loop Patroni needs to know recovery status and absolute wal position. From now on Patroni will run only single SELECT to get this information instead of two on the replica and three on the master.



	Remove leader key on shutdown only when we have the lock (Ants)

Unconditional removal was generating unnecessary and misleading exceptions.





Improvements in patronictl


	Add version command to patronictl (Ants)

It will show the version of installed Patroni and versions of running Patroni instances (if the cluster name is specified).



	Make optional specifying cluster_name argument for some of patronictl commands (Alexander, Ants)

It will work if patronictl is using usual Patroni configuration file with the scope defined.



	Show information about scheduled switchover and maintenance mode (Alexander)

Before that it was possible to get this information only from Patroni logs or directly from DCS.



	Improve patronictl reinit (Alexander)

Sometimes patronictl reinit refused to proceed when Patroni was busy with other actions, namely trying to start postgres. patronictl didn’t provide any commands to cancel such long running actions and the only (dangerous) workarond was removing a data directory manually. The new implementation of reinit forcefully cancells other long-running actions before proceeding with reinit.



	Implement --wait flag in patronictl pause and patronictl resume (Alexander)

It will make patronictl wait until the requested action is acknowledged by all nodes in the cluster.
Such behaviour is achieved by exposing the pause flag for every node in DCS and via the REST API.



	Rename patronictl failover into patronictl switchover (Alexander)

The previous failover was actually only capable of doing a switchover; it refused to proceed in a cluster without the leader.



	Alter the behavior of patronictl failover (Alexander)

It will work even if there is no leader, but in that case you will have to explicitly specify a node which should become the new leader.





Expose information about timeline and history


	Expose current timeline in DCS and via API (Alexander)

Store information about the current timeline for each member of the cluster. This information is accessible via the API and is stored in the DCS



	Store promotion history in the /history key in DCS (Alexander)

In addition, store the timeline history enriched with the timestamp of the corresponding promotion in the /history key in DCS and update it with each promote.





Add endpoints for getting synchronous and asynchronous replicas


	Add new /sync and /async endpoints (Alexander, Oleksii Kliukin)





Those endpoints (also accessible as /synchronous and /asynchronous) return 200 only for synchronous and asynchronous replicas correspondingly (exclusing those marked as noloadbalance).




Allow multiple hosts for Etcd


	Add a new hosts parameter to Etcd configuration (Alexander)

This parameter should contain the initial list of hosts that will be used to discover and populate the list of the running etcd cluster members. If for some reason during work this list of discovered hosts is exhausted (no available hosts from that list), Patroni will return to the initial list from the hosts parameter.







Version 1.3.6

Stability improvements


	Verify process start time when checking if postgres is running. (Ants Aasma)

After a crash that doesn’t clean up postmaster.pid there could be a new process with the same pid, resulting in a false positive for is_running(), which will lead to all kinds of bad behavior.



	Shutdown postgresql before bootstrap when we lost data directory (ainlolcat)

When data directory on the master is forcefully removed, postgres process can still stay alive for some time and prevent the replica created in place of that former master from starting or replicating.
The fix makes Patroni cache the postmaster pid and its start time and let it terminate the old postmaster in case it is still running after the corresponding data directory has been removed.



	Perform crash recovery in a single user mode if postgres master dies (Alexander Kukushkin)

It is unsafe to start immediately as a standby and not possible to run pg_rewind if postgres hasn’t been shut down cleanly.
The single user crash recovery only kicks in if pg_rewind is enabled or there is no master at the moment.





Consul improvements


	Make it possible to provide datacenter configuration for Consul (Vilius Okockis, Alexander)

Before that Patroni was always communicating with datacenter of the host it runs on.



	Always send a token in X-Consul-Token http header (Alexander)

If consul.token is defined in Patroni configuration, we will always send it in the ‘X-Consul-Token’ http header.
python-consul module tries to be “consistent” with Consul REST API, which doesn’t accept token as a query parameter for session API [https://www.consul.io/api/session.html], but it still works with ‘X-Consul-Token’ header.



	Adjust session TTL if supplied value is smaller than the minimum possible (Stas Fomin, Alexander)

It could happen that the TTL provided in the Patroni configuration is smaller than the minimum one supported by Consul. In that case, Consul agent fails to create a new session.
Without a session Patroni cannot create member and leader keys in the Consul KV store, resulting in an unhealthy cluster.





Other improvements


	Define custom log format via environment variable PATRONI_LOGFORMAT (Stas)

Allow disabling timestamps and other similar fields in Patroni logs if they are already added by the system logger (usually when Patroni runs as a service).







Version 1.3.5

Bugfix


	Set role to ‘uninitialized’ if data directory was removed (Alexander Kukushkin)

If the node was running as a master it was preventing from failover.





Stability improvement


	Try to run postmaster in a single-user mode if we tried and failed to start postgres (Alexander)

Usually such problem happens when node running as a master was terminated and timelines were diverged.
If recovery.conf has restore_command defined, there are really high chances that postgres will abort startup and leave controldata unchanged.
It makes impossible to use pg_rewind, which requires a clean shutdown.





Consul improvements


	Make it possible to specify health checks when creating session (Alexander)

If not specified, Consul will use “serfHealth”. From one side it allows fast detection of isolated master, but from another side it makes it impossible for Patroni to tolerate short network lags.





Bugfix


	Fix watchdog on Python 3 (Ants Aasma)

A misunderstanding of the ioctl() call interface. If mutable=False then fcntl.ioctl() actually returns the arg buffer back.
This accidentally worked on Python2 because int and str comparison did not return an error.
Error reporting is actually done by raising IOError on Python2 and OSError on Python3.







Version 1.3.4

Different Consul improvements


	Pass the consul token as a header (Andrew Colin Kissa)

Headers are now the preferred way to pass the token to the consul API [https://www.consul.io/api/index.html#authentication].



	Advanced configuration for Consul (Alexander Kukushkin)

possibility to specify scheme, token, client and ca certificates details.



	compatibility with python-consul-0.7.1 and above (Alexander)

new python-consul module has changed signature of some methods



	“Could not take out TTL lock” message was never logged (Alexander)

Not a critical bug, but lack of proper logging complicates investigation in case of problems.





Quote synchronous_standby_names using quote_ident


	When writing synchronous_standby_names into the postgresql.conf its value must be quoted (Alexander)

If it is not quoted properly, PostgreSQL will effectively disable synchronous replication and continue to work.





Different bugfixes around pause state, mostly related to watchdog (Alexander)


	Do not send keepalives if watchdog is not active


	Avoid activating watchdog in a pause mode


	Set correct postgres state in pause mode


	Do not try to run queries from API if postgres is stopped






Version 1.3.3

Bugfixes


	synchronous replication was disabled shortly after promotion even when synchronous_mode_strict was turned on (Alexander Kukushkin)


	create empty pg_ident.conf file if it is missing after restoring from the backup (Alexander)


	open access in pg_hba.conf to all databases, not only postgres (Franco Bellagamba)






Version 1.3.2

Bugfix


	patronictl edit-config didn’t work with ZooKeeper (Alexander Kukushkin)






Version 1.3.1

Bugfix


	failover via API was broken due to change in _MemberStatus (Alexander Kukushkin)






Version 1.3

Version 1.3 adds custom bootstrap possibility, significantly improves support for pg_rewind, enhances the
synchronous mode support, adds configuration editing to patronictl and implements watchdog support on Linux.
In addition, this is the first version to work correctly with PostgreSQL 10.

Upgrade notice

There are no known compatibility issues with the new version of Patroni. Configuration from version 1.2 should work
without any changes. It is possible to upgrade by installing new packages and either  restarting Patroni (will cause
PostgreSQL restart), or by putting Patroni into a pause mode first and then restarting Patroni on all
nodes in the cluster (Patroni in a pause mode will not attempt to stop/start PostgreSQL), resuming from the pause mode
at the end.

Custom bootstrap


	Make the process of bootstrapping the cluster configurable (Alexander Kukushkin)

Allow custom bootstrap scripts instead of initdb when initializing the very first node in the cluster.
The bootstrap command receives the name of the cluster and the path to the data directory. The resulting cluster can
be configured to perform recovery, making it possible to bootstrap from a backup and do point in time recovery. Refer
to the documentaton page for more detailed description of this feature.





Smarter pg_rewind support


	Decide on whether to run pg_rewind by looking at the timeline differences from the current master (Alexander)

Previously, Patroni had a fixed set of conditions to trigger pg_rewind, namely when starting a former master, when
doing a switchover to the designated node for every other node in the cluster or when there is a replica with the
nofailover tag. All those cases have in common a chance that some replica may be ahead of the new master. In some cases,
pg_rewind did nothing, in some other ones it was not running when necessary. Instead of relying on this limited list
of rules make Patroni compare the master and the replica WAL positions (using the streaming replication protocol)
in order to reliably decide if rewind is necessary for the replica.





Synchronous replication mode strict


	Enhance synchronous replication support by adding the strict mode (James Sewell, Alexander)

Normally, when synchronous_mode is enabled and there are no replicas attached to the master, Patroni will disable
synchronous replication in order to keep the master available for writes. The synchronous_mode_strict option
changes that, when it is set Patroni will not disable the synchronous replication in a lack of replicas, effectively
blocking all clients writing data to the master. In addition to the synchronous mode guarantee of preventing any data
loss due to automatic failover, the strict mode ensures that each write is either durably stored on two nodes or not
happening altogether if there is only one node in the cluster.





Configuration editing with patronictl


	Add configuration editing to patronictl (Ants Aasma, Alexander)

Add the ability to patronictl of editing dynamic cluster configuration stored in DCS. Support either specifying the
parameter/values from the command-line, invoking the $EDITOR, or applying configuration from the yaml file.





Linux watchdog support


	Implement watchdog support for Linux (Ants)

Support Linux software watchdog in order to reboot the node where Patroni is not running or not responding (e.g because
of the high load) The Linux software watchdog reboots the non-responsive node. It is possible to configure the watchdog
device to use (/dev/watchdog by default) and the mode (on, automatic, off) from the watchdog section of the Patroni
configuration. You can get more information from the watchdog documentation.





Add support for PostgreSQL 10


	Patroni is compatible with all beta versions of PostgreSQL 10 released so far and we expect it to be compatible with
the PostgreSQL 10 when it will be released.




PostgreSQL-related minor improvements


	Define pg_hba.conf via the Patroni configuration file or the dynamic configuration in DCS (Alexander)

Allow to define the contents of pg_hba.conf in the pg_hba sub-section of the postgresql section of the
configuration. This simplifies managing pg_hba.conf on multiple nodes, as one needs to define it only ones in DCS
instead of logging to every node, changing it manually and reload the configuration.

When defined, the contents of this section will replace the current pg_hba.conf completely. Patroni ignores it
if hba_file PostgreSQL parameter is set.



	Support connecting via a UNIX socket to the local PostgreSQL cluster (Alexander)

Add the use_unix_socket option to the postgresql section of Patroni configuration. When set to true and the
PostgreSQL unix_socket_directories option is not empty, enables Patroni to use the first value from it to connect
to the local PostgreSQL cluster. If unix_socket_directories is not defined, Patroni will assume its default value
and omit the host parameter in the PostgreSQL connection string altogether.



	Support change of superuser and replication credentials on reload (Alexander)


	Support storing of configuration files outside of PostgreSQL data directory (@jouir)

Add the new configuration postgresql configuration directive config_dir.
It defaults to the data directory and must be writable by Patroni.





Bug fixes and stability improvements


	Handle EtcdEventIndexCleared and EtcdWatcherCleared exceptions (Alexander)

Faster recovery when the watch operation is ended by Etcd by avoiding useless retries.



	Remove error spinning on Etcd failure and reduce log spam (Ants)

Avoid immediate retrying and emitting stack traces in the log on the second and subsequent Etcd connection failures.



	Export locale variables when forking PostgreSQL processes (Oleksii Kliukin)

Avoid the postmaster became multithreaded during startup fatal error on non-English locales for PostgreSQL built with NLS.



	Extra checks when dropping the replication slot (Alexander)

In some cases Patroni is prevented from dropping the replication slot by the WAL sender.



	Truncate the replication slot name to 63  (NAMEDATALEN - 1) characters to comply with PostgreSQL naming rules (Nick Scott)


	Fix a race condition resulting in extra connections being opened to the PostgreSQL cluster from Patroni (Alexander)


	Release the leader key when the node restarts with an empty data directory (Alex Kerney)


	Set asynchronous executor busy when running bootstrap without a leader (Alexander)

Failure to do so could have resulted in errors stating the node belonged to a different cluster, as Patroni proceeded with
the normal business while being bootstrapped by a bootstrap method that doesn’t require a leader to be present in the
cluster.



	Improve WAL-E replica creation method (Joar Wandborg, Alexander).


	Use csv.DictReader when parsing WAL-E base backup, accepting ISO dates with space-delimited date and time.


	Support fetching current WAL position from the replica to estimate the amount of WAL to restore. Previously, the code used to call system information functions that were available only on the master node.










Version 1.2

This version introduces significant improvements over the handling of synchronous replication, makes the startup process and failover more reliable, adds PostgreSQL 9.6 support and fixes plenty of bugs.
In addition, the documentation, including these release notes, has been moved to https://patroni.readthedocs.io.

Synchronous replication


	Add synchronous replication support. (Ants Aasma)

Adds a new configuration variable synchronous_mode. When enabled, Patroni will manage synchronous_standby_names to enable synchronous replication whenever there are healthy standbys available. When synchronous mode is enabled, Patroni will automatically fail over only to a standby that was synchronously replicating at the time of the master failure. This effectively means that no user visible transaction gets lost in such a case. See the
feature documentation for the detailed description and implementation details.





Reliability improvements


	Do not try to update the leader position stored in the leader optime key when PostgreSQL is not 100% healthy. Demote immediately when the update of the leader key failed. (Alexander Kukushkin)


	Exclude unhealthy nodes from the list of targets to clone the new replica from. (Alexander)


	Implement retry and timeout strategy for Consul similar to how it is done for Etcd. (Alexander)


	Make --dcs and --config-file apply to all options in patronictl. (Alexander)


	Write all postgres parameters into postgresql.conf. (Alexander)

It allows starting PostgreSQL configured by Patroni with just pg_ctl.



	Avoid exceptions when there are no users in the config. (Kirill Pushkin)


	Allow pausing an unhealthy cluster. Before this fix, patronictl would bail out if the node it tries to execute pause on is unhealthy. (Alexander)


	Improve the leader watch functionality. (Alexander)

Previously the replicas were always watching the leader key (sleeping until the timeout or the leader key changes). With this change, they only watch
when the replica’s PostgreSQL is in the running state and not when it is stopped/starting or restarting PostgreSQL.



	Avoid running into race conditions when handling SIGCHILD as a PID 1. (Alexander)

Previously a race condition could occur when running inside the Docker containers, since the same process inside Patroni both spawned new processes
and handled SIGCHILD from them. This change uses fork/execs for Patroni and leaves the original PID 1 process responsible for handling signals from children.



	Fix WAL-E restore. (Oleksii Kliukin)

Previously WAL-E restore used the no_master flag to avoid consulting with the master altogether, making Patroni always choose restoring
from WAL over the pg_basebackup. This change reverts it to the original meaning of no_master, namely Patroni WAL-E restore may be selected as a replication method if the master is not running.
The latter is checked by examining the connection string passed to the method. In addition, it makes the retry mechanism more robust and handles other minutia.



	Implement asynchronous DNS resolver cache. (Alexander)

Avoid failing when DNS is temporary unavailable (for instance, due to an excessive traffic received by the node).



	Implement starting state and master start timeout. (Ants, Alexander)

Previously pg_ctl waited for a timeout and then happily trodded on considering PostgreSQL to be running. This caused PostgreSQL to show up in listings as running when it was actually not and caused a race condition that   resulted in either a failover, or a crash recovery, or a crash recovery interrupted by failover and a missed rewind.
This change adds a master_start_timeout parameter and introduces a new state for the main HA loop: starting. When master_start_timeout is 0 we will failover immediately when the master crashes as soon as there is a failover candidate. Otherwise, Patroni will wait after attempting to start PostgreSQL on the master for the duration of the timeout; when it expires, it will failover if possible. Manual failover requests will be honored during the crash of the master even before the timeout expiration.

Introduce the timeout parameter to the restart API endpoint and patronictl. When it is set and restart takes longer than the timeout, PostgreSQL is considered unhealthy and the other nodes becomes eligible to take the leader lock.



	Fix pg_rewind behavior in a pause mode. (Ants)

Avoid unnecessary restart in a pause mode when Patroni thinks it needs to rewind but rewind is not possible (i.e. pg_rewind is not present). Fallback to default libpq values for the superuser (default OS user) if superuser authentication is missing from the pg_rewind related Patroni configuration section.



	Serialize callback execution. Kill the previous callback of the same type when the new one is about to run. Fix the issue of spawning zombie processes when running callbacks. (Alexander)


	Avoid promoting a former master when the leader key is set in DCS but update to this leader key fails. (Alexander)

This avoids the issue of a current master continuing to keep its role when it is partitioned together with the minority of nodes in Etcd and other DCSs that allow “inconsistent reads”.





Miscellaneous


	Add post_init configuration option on bootstrap. (Alejandro Martínez)

Patroni will call the script argument of this option right after running initdb and starting up PostgreSQL for a new cluster. The script receives a connection URL with superuser
and sets PGPASSFILE to point to the .pgpass file containing the password. If the script fails, Patroni initialization fails as well. It is useful for adding
new users or creating extensions in the new cluster.



	Implement PostgreSQL 9.6 support. (Alexander)

Use wal_level = replica as a synonym for hot_standby, avoiding pending_restart flag when it changes from one to another. (Alexander)





Documentation improvements


	Add a Patroni main loop workflow diagram [https://raw.githubusercontent.com/zalando/patroni/master/docs/ha_loop_diagram.png]. (Alejandro, Alexander)


	Improve README, adding the Helm chart and links to release notes. (Lauri Apple)


	Move Patroni documentation to Read the Docs. The up-to-date documentation is available at https://patroni.readthedocs.io. (Oleksii)

Makes the documentation easily viewable from different devices (including smartphones) and searchable.



	Move the package to the semantic versioning. (Oleksii)

Patroni will follow the major.minor.patch version schema to avoid releasing the new minor version on small but critical bugfixes. We will only publish the release notes for the minor version, which will include all patches.







Version 1.1

This release improves management of Patroni cluster by bring in pause mode, improves maintenance with scheduled and conditional restarts, makes Patroni interaction with Etcd or Zookeeper more resilient and greatly enhances patronictl.

Upgrade notice

When upgrading from releases below 1.0 read about changing of credentials and configuration format at 1.0 release notes.

Pause mode


	Introduce pause mode to temporary detach Patroni from managing PostgreSQL instance (Murat Kabilov, Alexander Kukushkin, Oleksii Kliukin).

Previously, one had to send SIGKILL signal to Patroni to stop it without terminating PostgreSQL. The new pause mode detaches Patroni from PostgreSQL cluster-wide without terminating Patroni. It is similar to the maintenance mode in Pacemaker. Patroni is still responsible for updating member and leader keys in DCS, but it will not start, stop or restart PostgreSQL server in the process. There are a few exceptions, for instance, manual failovers, reinitializes and restarts are still allowed. You can read a detailed description of this feature.





In addition, patronictl supports new pause and resume commands to toggle the pause mode.

Scheduled and conditional restarts


	Add conditions to the restart API command (Oleksii)

This change enhances Patroni restarts by adding a couple of conditions that can be verified in order to do the restart. Among the conditions are restarting when PostgreSQL role is either a master or a replica, checking the PostgreSQL version number or restarting only when restart is necessary in order to apply configuration changes.



	Add scheduled restarts (Oleksii)

It is now possible to schedule a restart in the future. Only one scheduled restart per node is supported. It is possible to clear the scheduled restart if it is not needed anymore. A combination of scheduled and conditional restarts is supported, making it possible, for instance, to scheduled minor PostgreSQL upgrades in the night, restarting only the instances that are running the outdated minor version without adding postgres-specific logic to administration scripts.



	Add support for conditional and scheduled restarts to patronictl (Murat).

patronictl restart supports several new options. There is also patronictl flush command to clean the scheduled actions.





Robust DCS interaction


	Set Kazoo timeouts depending on the loop_wait (Alexander)

Originally, ping_timeout and connect_timeout values were calculated from the negotiated session timeout. Patroni loop_wait was not taken into account. As
a result, a single retry could take more time than the session timeout, forcing Patroni to release the lock and demote.

This change set ping and connect timeout to half of the value of loop_wait, speeding up detection of connection issues and  leaving enough time to retry the connection attempt before losing the lock.



	Update Etcd topology only after original request succeed (Alexander)

Postpone updating the Etcd topology known to the client until after the original request. When retrieving the cluster topology, implement the retry timeouts depending on the known number of nodes in the Etcd cluster. This makes our client prefer to get the results of the request to having the up-to-date list of nodes.

Both changes make Patroni connections to DCS more robust in the face of network issues.





Patronictl, monitoring and configuration


	Return information about streaming replicas via the API (Feike Steenbergen)




Previously, there was no reliable way to query Patroni about PostgreSQL instances that fail to stream changes (for instance, due to connection issues). This change exposes the contents of pg_stat_replication via the /patroni endpoint.


	Add patronictl scaffold command (Oleksii)

Add a command to create cluster structure in Etcd. The cluster is created with user-specified sysid and leader, and both leader and member keys are made persistent. This command is useful to create so-called master-less configurations, where Patroni cluster consisting of only replicas replicate  from the external master node that is unaware of Patroni. Subsequently, one
may remove the leader key, promoting one of the Patroni nodes and replacing
the original master with the Patroni-based HA cluster.



	Add configuration option bin_dir to locate PostgreSQL binaries (Ants Aasma)

It is useful to be able to specify the location of PostgreSQL binaries explicitly when Linux distros that support installing multiple PostgreSQL versions at the same time.



	Allow configuration file path to be overridden using custom_conf of (Alejandro Martínez)

Allows for custom configuration file paths, which will be unmanaged by Patroni, details.





Bug fixes and code improvements


	Make Patroni compatible with new version schema in PostgreSQL 10 and above (Feike)

Make sure that Patroni understand 2-digits version numbers when doing conditional restarts based on the PostgreSQL version.



	Use pkgutil to find DCS modules (Alexander)

Use the dedicated python module instead of traversing directories manually in order to find DCS modules.



	Always call on_start callback when starting Patroni (Alexander)

Previously, Patroni did not call any callbacks when attaching to the already running node with the correct role. Since callbacks are often used to route
client connections that could result in the failure to register the running
node in the connection routing scheme. With this fix, Patroni calls on_start
callback even when attaching to the already running node.



	Do not drop active replication slots (Murat, Oleksii)

Avoid dropping active physical replication slots on master. PostgreSQL cannot
drop such slots anyway. This change makes possible to run non-Patroni managed
replicas/consumers on the master.



	Close Patroni connections during start of the PostgreSQL instance (Alexander)

Forces Patroni to close all former connections when PostgreSQL node is started. Avoids the trap of reusing former connections if postmaster was killed with SIGKILL.



	Replace invalid characters when constructing slot names from member names (Ants)

Make sure that standby names that do not comply with the slot naming rules don’t cause the slot creation and standby startup to fail. Replace the dashes in the slot names with underscores and all other characters not allowed in slot names with their unicode codepoints.







Version 1.0

This release introduces the global dynamic configuration that allows dynamic changes of the PostgreSQL and Patroni configuration parameters for the entire HA cluster. It also delivers numerous bugfixes.

Upgrade notice

When upgrading from v0.90 or below, always upgrade all replicas before the master. Since we don’t store replication credentials in DCS anymore, an old replica won’t be able to connect to the new master.

Dynamic Configuration


	Implement the dynamic global configuration (Alexander Kukushkin)

Introduce new REST API endpoint /config to provide PostgreSQL and Patroni configuration parameters that should be set globally for the entire HA cluster (master and all the replicas). Those parameters are set in DCS and in many cases can be applied without disrupting PostgreSQL or Patroni. Patroni sets a special flag called “pending restart” visible via the API when some of the values require the PostgreSQL restart. In that case, restart should be issued manually via the API.

Patroni SIGHUP or POST to /reload will make it re-read the configuration file.

See the dynamic configuration  for the details on which parameters can be changed and the order of processing difference configuration sources.

The configuration file format has changed since the v0.90. Patroni is still compatible with the old configuration files, but in order to take advantage of the bootstrap parameters one needs to change it. Users are encourage to update them by referring to the dynamic configuration documentation page.





More flexible configuration*


	Make postgresql configuration and database name Patroni connects to configurable (Misja Hoebe)

Introduce database and config_base_name configuration parameters. Among others, it makes possible to run Patroni with PipelineDB and other PostgreSQL forks.



	Implement possibility to configure some Patroni configuration parameters via environment (Alexander)

Those include the scope, the node name and the namespace, as well as the secrets and makes it easier to run Patroni in a dynamic environment, i.e. Kubernetes  Please, refer to the supported environment variables for further details.



	Update the built-in Patroni docker container  to take advantage of environment-based configuration (Feike Steenbergen).


	Add Zookeeper support to Patroni docker image (Alexander)


	Split the Zookeeper and Exhibitor configuration options (Alexander)


	Make patronictl reuse the code from Patroni to read configuration (Alexander)

This allows patronictl to take advantage of environment-based configuration.



	Set application name to node name in primary_conninfo (Alexander)

This simplifies identification and configuration of synchronous replication for a given node.





Stability, security and usability improvements


	Reset sysid and do not call pg_controldata when restore of backup in progress (Alexander)

This change reduces the amount of noise generated by Patroni API health checks during the lengthy initialization of this node from the backup.



	Fix a bunch of pg_rewind corner-cases (Alexander)

Avoid running pg_rewind if the source cluster is not the master.

In addition, avoid removing the data directory on an unsuccessful rewind, unless the new parameter remove_data_directory_on_rewind_failure is set to true. By default it is false.



	Remove passwords from the replication connection string in DCS (Alexander)

Previously, Patroni always used the replication credentials from the Postgres URL in DCS. That is now changed to take the credentials from the patroni configuration. The secrets (replication username and password) and no longer exposed in DCS.



	Fix the asynchronous machinery around the demote call (Alexander)

Demote now runs totally asynchronously without blocking the DCS interactions.



	Make patronictl always send the authorization header if it is configured (Alexander)

This allows patronictl to issue “protected” requests, i.e. restart or reinitialize, when Patroni is configured to require authorization on those.



	Handle the SystemExit exception correctly (Alexander)

Avoids the issues of Patroni not stopping properly when receiving the SIGTERM



	Sample haproxy templates for confd (Alexander)

Generates and dynamically changes haproxy configuration from the patroni state in the DCS using confide



	Improve and restructure the documentation to make it more friendly to the new users (Lauri Apple)


	API must report role=master during pg_ctl stop (Alexander)

Makes the callback calls more reliable, particularly in the cluster stop case. In addition, introduce the pg_ctl_timeout option to set the timeout for the start, stop and restart calls via the pg_ctl.



	Fix the retry logic in etcd (Alexander)

Make retries more predictable and robust.



	Make Zookeeper code more resilient against short network hiccups (Alexander)

Reduce the connection timeouts to make Zookeeper connection attempts more frequent.







Version 0.90

This releases adds support for Consul, includes a new noloadbalance tag, changes the behavior of the clonefrom tag, improves pg_rewind handling and improves patronictl control program.

Consul support


	Implement Consul support (Alexander Kukushkin)

Patroni runs against Consul, in addition to Etcd and Zookeeper. the connection parameters can be configured in the YAML file.





New and improved tags


	Implement noloadbalance tag (Alexander)

This tag makes Patroni always return that the replica is not available to the load balancer.



	Change the implementation of the clonefrom tag (Alexander)

Previously, a node name had to be supplied to the clonefrom, forcing a tagged replica to clone from the specific node. The new implementation makes clonefrom a boolean tag: if it is set to true, the replica becomes a candidate for other replicas to clone from it. When multiple candidates are present, the replicas picks one randomly.





Stability and security improvements


	Numerous reliability improvements (Alexander)

Removes some spurious error messages, improves the stability of the failover, addresses some corner cases with reading data from DCS, shutdown, demote and reattaching of the former leader.



	Improve systems script to avoid killing Patroni children on stop (Jan Keirse, Alexander Kukushkin)

Previously, when stopping Patroni, systemd also sent a signal to PostgreSQL. Since Patroni also tried to stop PostgreSQL by itself, it resulted in sending to different shutdown requests (the smart shutdown, followed by the fast shutdown). That resulted in replicas disconnecting too early and a former master not being able to rejoin after demote. Fix by Jan with prior research by Alexander.



	Eliminate some cases where the former master was unable to call pg_rewind before rejoining as a replica (Oleksii Kliukin)

Previously, we only called pg_rewind if the former master had crashed. Change this to always run pg_rewind for the former master as long as pg_rewind is present in the system. This fixes the case when the master is shut down before the replicas managed to get the latest changes (i.e. during the “smart” shutdown).



	Numerous improvements to unit- and acceptance- tests, in particular, enable support for Zookeeper and Consul (Alexander).


	Make Travis CI faster and implement support for running tests against Zookeeper (Exhibitor) and Consul (Alexander)

Both unit and acceptance tests run automatically against Etcd, Zookeeper and Consul on each commit or pull-request.



	Clear environment variables before calling PostgreSQL commands from Patroni (Feike Steenbergen)

This prevents  a possibility of reading system environment variables by connecting to the PostgreSQL cluster managed by Patroni.





Configuration and control changes


	Unify patronictl and Patroni configuration (Feike)

patronictl can use the same configuration file as Patroni itself.



	Enable Patroni to read the configuration from the environment variables (Oleksii)

This simplifies generating configuration for Patroni automatically, or merging a single configuration from different sources.



	Include database system identifier in the information returned by the API (Feike)


	Implement delete_cluster for all available DCSs (Alexander)

Enables support for DCSs other than Etcd in patronictl.







Version 0.80

This release adds support for cascading replication and simplifies Patroni management by providing scheduled failovers. One may use older versions of Patroni (in particular, 0.78) combined with this one in order to migrate to the new release. Note that the scheduled failover and cascading replication related features will only work with Patroni 0.80 and above.

Cascading replication



	Add support for the replicatefrom and clonefrom tags for the patroni node (Oleksii Kliukin).




The tag replicatefrom  allows a replica to use an arbitrary node a source, not necessary the master. The clonefrom does the same for the initial backup. Together, they enable Patroni to fully support cascading replication.





	Add support for running replication methods to initialize the replica even without a running replication connection (Oleksii).





This is useful in order to create replicas from the snapshots stored on S3 or FTP.  A replication method that does not require a running replication connection should supply no_master: true in the yaml configuration. Those scripts will still be called in order if the replication connection is present.




Patronictl, API and DCS improvements


	Implement scheduled failovers (Feike Steenbergen).

Failovers can be scheduled to happen at a certain time in the future, using either patronictl, or API calls.



	Add support for dbuser and password parameters in patronictl (Feike).


	Add PostgreSQL version to the health check output (Feike).


	Improve Zookeeper support in patronictl (Oleksandr Shulgin)


	Migrate to python-etcd 0.43 (Alexander Kukushkin)




Configuration


	Add a sample systems configuration script for Patroni (Jan Keirse).


	Fix the problem of Patroni ignoring the superuser name specified in the configuration file for DB connections  (Alexander).


	Fix the handling of CTRL-C by creating a separate session ID and process group for the postmaster launched by Patroni (Alexander).




Tests


	Add acceptance tests with behave in order to check real-world scenarios of running Patroni (Alexander, Oleksii).

The tests can be launched manually using the behave command. They are also launched automatically for pull requests and after commits.

Release notes for some older versions can be found on project’s github page [https://github.com/zalando/patroni/releases].









            

          

      

      

    

  

    
      
          
            
  
Contributing guidelines

Wanna contribute to Patroni? Yay - here is how!


Chatting

Just want to chat with other Patroni users?  Looking for interactive troubleshooting help? Join us on channel #patroni in the PostgreSQL Slack [https://postgres-slack.herokuapp.com/].



Running tests

Requirements for running behave tests:


	PostgreSQL packages need to be installed.


	PostgreSQL binaries must be available in your PATH. You may need to add them to the path with something like PATH=/usr/lib/postgresql/11/bin:$PATH python -m behave.


	If you’d like to test with external DCSs (e.g., Etcd, Consul, and Zookeeper) you’ll need the packages installed and respective services running and accepting unencrypted/unprotected connections on localhost and default port. In the case of Etcd or Consul, the behave test suite could start them up if binaries are available in the PATH.





Install dependencies:




# You may want to use Virtualenv or specify pip3.
pip install -r requirements.txt
pip install -r requirements.dev.txt





After you have all dependencies installed, you can run the various test suites:

# You may want to use Virtualenv or specify python3.

# Run flake8 to check syntax and formatting:
python setup.py flake8

# Run the pytest suite in tests/:
python setup.py test

# Run the behave (https://behave.readthedocs.io/en/latest/) test suite in features/;
# modify DCS as desired (raft has no dependencies so is the easiest to start with):
DCS=raft python -m behave







Reporting issues

If you have a question about patroni or have a problem using it, please read the README before filing an issue.
Also double check with the current issues on our Issues Tracker [https://github.com/zalando/patroni/issues].



Contributing a pull request


	Submit a comment to the relevant issue or create a new issue describing your proposed change.


	Do a fork, develop and test your code changes.


	Include documentation


	Submit a pull request.




You’ll get feedback about your pull request as soon as possible.

Happy Patroni hacking ;-)





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Introduction
        


        		
          Introduction
          
            		
              Development Status
            


            		
              Technical Requirements/Installation
            


            		
              Planning the Number of PostgreSQL Nodes
            


            		
              Running and Configuring
            


            		
              YAML Configuration
            


            		
              Environment Configuration
            


            		
              Replication Choices
            


            		
              Applications Should Not Use Superusers
            


            		
              Testing Your HA Solution
            


          


        


        		
          Patroni configuration
        


        		
          Patroni REST API
          
            		
              Health check endpoints
            


            		
              Monitoring endpoint
            


            		
              Cluster status endpoints
            


            		
              Config endpoint
            


            		
              Switchover and failover endpoints
            


            		
              Restart endpoint
            


            		
              Reload endpoint
            


            		
              Reinitialize endpoint
            


          


        


        		
          Convert a Standalone to a Patroni Cluster
          
            		
              Procedure
            


          


        


        		
          Major Upgrade of PostgreSQL Version
          
            		
              FAQ
            


          


        


        		
          Environment Configuration Settings
          
            		
              Global/Universal
            


            		
              Log
            


            		
              Bootstrap configuration
            


            		
              Consul
            


            		
              Etcd
            


            		
              Etcdv3
            


            		
              ZooKeeper
            


            		
              Exhibitor
            


            		
              Kubernetes
            


            		
              Raft
            


            		
              PostgreSQL
            


            		
              REST API
            


            		
              CTL
            


          


        


        		
          YAML Configuration Settings
          
            		
              Dynamic configuration settings
            


            		
              Global/Universal
            


            		
              Log
            


            		
              Bootstrap configuration
            


            		
              Consul
            


            		
              Etcd
            


            		
              Etcdv3
            


            		
              ZooKeeper
            


            		
              Exhibitor
            


            		
              Kubernetes
            


            		
              Raft
            


            		
              PostgreSQL
            


            		
              REST API
            


            		
              CTL
            


            		
              Watchdog
            


            		
              Tags
            


          


        


        		
          Security Considerations
          
            		
              Protecting DCS
            


            		
              Protecting the REST API
            


          


        


        		
          Replica imaging and bootstrap
          
            		
              Bootstrap
            


            		
              Building replicas
            


            		
              Standby cluster
            


          


        


        		
          Replication modes
          
            		
              Asynchronous mode durability
            


            		
              PostgreSQL synchronous replication
            


            		
              Synchronous mode
            


            		
              Synchronous Replication Factor
            


            		
              Synchronous mode implementation
            


          


        


        		
          Pause/Resume mode for the cluster
          
            		
              The goal
            


            		
              The implementation
            


            		
              User guide
            


          


        


        		
          Using Patroni with Kubernetes
          
            		
              Use Endpoints
            


            		
              Use ConfigMaps
            


            		
              Configuration
            


            		
              Examples
            


          


        


        		
          Watchdog support
          
            		
              Setting up software watchdog on Linux
            


          


        


        		
          Release notes
          
            		
              Version 2.1.4
            


            		
              Version 2.1.3
            


            		
              Version 2.1.2
            


            		
              Version 2.1.1
            


            		
              Version 2.1.0
            


            		
              Version 2.0.2
            


            		
              Version 2.0.1
            


            		
              Version 2.0.0
            


            		
              Version 1.6.5
            


            		
              Version 1.6.4
            


            		
              Version 1.6.3
            


            		
              Version 1.6.2
            


            		
              Version 1.6.1
            


            		
              Version 1.6.0
            


            		
              Version 1.5.6
            


            		
              Version 1.5.5
            


            		
              Version 1.5.4
            


            		
              Version 1.5.3
            


            		
              Version 1.5.2
            


            		
              Version 1.5.1
            


            		
              Version 1.5.0
            


            		
              Version 1.4.6
            


            		
              Version 1.4.5
            


            		
              Version 1.4.4
            


            		
              Version 1.4.3
            


            		
              Version 1.4.2
            


            		
              Version 1.4.1
            


            		
              Version 1.4
            


            		
              Version 1.3.6
            


            		
              Version 1.3.5
            


            		
              Version 1.3.4
            


            		
              Version 1.3.3
            


            		
              Version 1.3.2
            


            		
              Version 1.3.1
            


            		
              Version 1.3
            


            		
              Version 1.2
            


            		
              Version 1.1
            


            		
              Version 1.0
            


            		
              Version 0.90
            


            		
              Version 0.80
            


          


        


        		
          Contributing guidelines
          
            		
              Chatting
            


            		
              Running tests
            


            		
              Reporting issues
            


            		
              Contributing a pull request
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





