
pg_bloat_check
pg_bloat_check is a script to provide a bloat report for PostgreSQL tables
and/or indexes. It requires at least Python 3 and the pgstattuple contrib
module - https://www.postgresql.org/docs/current/static/pgstattuple.html

Note that using pgstattuple to check for bloat can be extremely expensive on
very large databases or those with many tables. The script first requires running
--create_stats_table to create a table for storing the bloat statistics. This
makes it easier for reviewing the bloat statistics or running a regular monitoring
interval without having to rescan the database again. The expense of this method
of bloat checking means this script is not meant to be run often to provide any
sort of real-time bloat monitoring. At most, it’s recommended to run this once
a week or once a month during off-peak hours to search for objects that need
major maintenance. Continuous runnning of this script could cause performance
issues since it can cause higher priority data in shared buffers to be flushed out
if run too frequently.

Output
• a simple text listing, ordered by wasted space. Good for email reports.
• a JSON blob that provides more detail and can be used by other tools

that require a structured format
• a python dictionary with the same details as JSON, but can be more easily

used with other python scripts

Filters
Filters are available for bloat percentage, wasted size and object size. Object size
allows reporting on only those objects of a designated size or larger. The bloat
percentage & wasted size reported are a combination of dead tuples and free
space per object, while also accounting for their fillfactor setting. The simple
output format automatically takes into account an object’s fillfactor setting
when calculating the wasted space & percentage values it gives. Use the JSON
or python dictionary output to see the distinction between dead tuples and free
space for a more accurate picture of the bloat situation. If dead tuples is high,
this means autovacuum is likely not able to run frequently enough on the given
table or index. If dead tuples is low but free space is high, this indicates a
vacuum full or reindex is likely required to clear the bloat and return the disk
space to the system. Note that free space may never be completely empty due
to fillfactor settings, so both that setting and the estimated number of pages for
that object are also included. By default, tables have very little reserved space
(fillfactor=100) so it shouldn’t affect their free space values much. Indexes by
default have 10% reserved space (fillfactor=90), so that should be taken into
account when looking at the raw free percent and free space values.

The --exclude_object_file (-e) option can make the monitoring of bloat much

1

more fine-grained for certain objects. The -s, -z and -p options are filters that
are applied against all objects scanned. However, sometimes very large objects
will have a very high amount of wasted space, but it’s a very low percentage.
Additionally, other relatively small objects always have a very high amount of
bloat. Seeing them in the report every time isn’t ideal, but you likely don’t want
to completely ignore these objects because if their bloat size got out of hand
you would never know. To help create clearer bloat reports of things that need
immediate attention, each line in the file for the -e option is a comma separated
value entry of the following format:

objectname,bytes_wasted,percent_wasted

The bytes_wasted and percent_wasted are additional filters on top of -s, -z and
-p that tell the exclude option to ignore the given object unless these additional
filter values are exceeded as well.

Examples
First, the setup.

admin@mydb=# CREATE EXTENSION pgstattuple;

pg_bloat_check.py -c dbname=mydb --create_stats_table

pg_bloat_check.py -c "host=192.168.1.201 dbname=mydb user=admin" --create_stats_table --bloat_schema=monitoring

pg_bloat_check.py -c "host=db.example.com dbname=prod_db user=prod_role options=’-c statement_timeout=0’" --create_stats_table --bloat_schema=monitoring

The first example above installs the stats tables to the default schema in your
search path. You only have to run that once per database and if you run it again,
it just drops the table if it exists and recreates it. If you want it in a different
schema, --bloat_schema lets you set that, but you must then use that option
every time you run the script or add that schema to your search path. The
second example shows that as well as connecting to a remote system. The third
example shows how you can disable a server side statement_timeouts using the
psycopg2 connection options for the session.

pg_bloat_check.py -c dbname=mydb -z 10485760 -p 45 -s 5242880

1. pg_catalog.pg_attribute..(83.76%) 4697 kB wasted

The above finds any tables or indexes that are at least 5MB in size with either
10MB of bloat space or are at least 45% bloated. Since it’s over 45%, this table
is returned in the report.

Next, an example using the -e option with a file containing the following:

pg_catalog.pg_attribute,5000000,85

pg_bloat_check.py -c host=localhost -z 10485760 -p 45 -s 5242880 -e filterfile

2

No bloat found for given parameters

First, the -s, -z and -p filters are applied. The exclude file is processed and
the pg_attribute table is excluded if its bloat is either over 5 million bytes or
exceeds 85%. Looking above, you can see none of these are true, so the report
comes back empty. This now keeps the bloat report clear until we’re sure specific
conditions for this table are met. A more realistic example condition would be:

pg_bloat_check.py -c "dbname=prod" --min_wasted_size=5368709120 -p 45 -s 1073741824

1. public.exclusions...(24.31%) 8866 MB wasted

Here, we’re looking for objects that are at least 1GB in size and have either at
least 5GB of bloat or are 45% bloated. The table returned has 8GB of bloat, but
it’s quite a low percentage of the whole table. This is likely a good candidate to
be excluded from the regular report, but since it’s such a large table, we wouldn’t
want to ignore it if it got out of hand. So, an exclude filter line that watches for
it to be at least 55% bloated or have over 20GB of bloat could work here:

public.exclusions,21474836480,55

If an object needs to be excluded entirely, no matter its bloat, either just list
the object name by itself or set the additional parameters to zero.

pg_catalog.pg_attribute

OR

pg_catalog.pg_attribute,0,0

See --help for more information.

NOTE: The 1.x version of this script used the bloat query found in
check_postgres.pl. While that query runs much faster than using pgstattuple,
it can be inaccurate, at times missing large amounts of table and index bloat.
Using pgstattuple provides the best method known to obtain the most
accurate bloat statistics. Version 2.x of this script is not a drop-in replacement
for 1.x. Please review the options and update any existing jobs accordingly.

3

	pg_bloat_check
	Output
	Filters
	Examples

