
What is pg_cron?

pg_cron is a simple cron-based job scheduler for PostgreSQL (9.5 or higher)
that runs inside the database as an extension. It uses the same syntax as regular
cron, but it allows you to schedule PostgreSQL commands directly from the
database:

-- Delete old data on Saturday at 3:30am (GMT)
SELECT cron.schedule(’30 3 * * 6’, $$DELETE FROM events WHERE event_time < now() - interval ’1 week’$$);
schedule

42

-- Vacuum every day at 10:00am (GMT)
SELECT cron.schedule(’nightly-vacuum’, ’0 10 * * *’, ’VACUUM’);
schedule

43

-- Change to vacuum at 3:00am (GMT)
SELECT cron.schedule(’nightly-vacuum’, ’0 3 * * *’, ’VACUUM’);
schedule

43

-- Stop scheduling jobs
SELECT cron.unschedule(’nightly-vacuum’);
unschedule

t

(1 row)

SELECT cron.unschedule(42);
unschedule

t

pg_cron can run multiple jobs in parallel, but it runs at most one instance of a
job at a time. If a second run is supposed to start before the first one finishes,
then the second run is queued and started as soon as the first run completes.

The schedule uses the standard cron syntax, in which * means “run every time
period”, and a specific number means “but only at this time”:

+------------- min (0 - 59)

1

| +-------------- hour (0 - 23)
| | +--------------- day of month (1 - 31)
| | | +---------------- month (1 - 12)
| | | | +----------------- day of week (0 - 6) (0 to 6 are Sunday to
| | | | | Saturday, or use names; 7 is also Sunday)
| | | | |
| | | | |
* * * * *

An easy way to create a cron schedule is: crontab.guru.

The code in pg_cron that handles parsing and scheduling comes directly from
the cron source code by Paul Vixie, hence the same options are supported. Be
aware that pg_cron always uses GMT!

Installing pg_cron

Install on Red Hat, CentOS, Fedora, Amazon Linux with PostgreSQL 12 using
PGDG:

Install the pg_cron extension
sudo yum install -y pg_cron_12

Install on Debian, Ubuntu with PostgreSQL 12 using apt.postgresql.org:

Install the pg_cron extension
sudo apt-get -y install postgresql-12-cron

You can also install pg_cron by building it from source:

git clone https://github.com/citusdata/pg_cron.git
cd pg_cron
Ensure pg_config is in your path, e.g.
export PATH=/usr/pgsql-12/bin:$PATH
make && sudo PATH=$PATH make install

Setting up pg_cron

To start the pg_cron background worker when PostgreSQL starts, you need
to add pg_cron to shared_preload_libraries in postgresql.conf. Note that
pg_cron does not run any jobs as a long a server is in hot standby mode, but it
automatically starts when the server is promoted.

By default, the pg_cron background worker expects its metadata tables to be
created in the “postgres” database. However, you can configure this by setting
the cron.database_name configuration parameter in postgresql.conf.

2

http://crontab.guru/
https://yum.postgresql.org/repopackages/
https://wiki.postgresql.org/wiki/Apt
https://www.postgresql.org/docs/current/static/hot-standby.html

add to postgresql.conf:
shared_preload_libraries = ’pg_cron’
cron.database_name = ’postgres’

After restarting PostgreSQL, you can create the pg_cron functions and metadata
tables using CREATE EXTENSION pg_cron.

-- run as superuser:
CREATE EXTENSION pg_cron;

-- optionally, grant usage to regular users:
GRANT USAGE ON SCHEMA cron TO marco;

Important: Internally, pg_cron uses libpq to open a new connection to the
local database. It may be necessary to enable trust authentication for connec-
tions coming from localhost in pg_hba.conf for the user running the cron job.
Alternatively, you can add the password to a .pgpass file, which libpq will use
when opening a connection.

For security, jobs are executed in the database in which the cron.schedule
function is called with the same permissions as the current user. In addition,
users are only able to see their own jobs in the cron.job table.

Example use cases

Articles showing possible ways of using pg_cron:

• Auto-partitioning using pg_partman
• Computing rollups in an analytical dashboard
• Deleting old data, vacuum
• Feeding cats
• Routinely invoking a function

Managed services

The following table keeps track of which of the major managed Postgres services
support pg_cron.

Service Supported

Aiven :heavy_check_mark:
Alibaba Cloud :heavy_check_mark:

3

https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/static/libpq-pgpass.html
https://www.citusdata.com/blog/2018/01/24/citus-and-pg-partman-creating-a-scalable-time-series-database-on-PostgreSQL/
https://www.citusdata.com/blog/2017/12/27/real-time-analytics-dashboards-with-citus/
https://www.citusdata.com/blog/2016/09/09/pgcron-run-periodic-jobs-in-postgres/
http://bonesmoses.org/2016/09/09/pg-phriday-irrelevant-inclinations/
https://fluca1978.github.io/2019/05/21/pgcron.html
https://aiven.io/postgresql
https://www.alibabacloud.com/help/doc-detail/150355.htm

Service Supported

Amazon RDS :heavy_check_mark:
Azure :heavy_check_mark:
Citus Cloud :heavy_check_mark:
Crunchy Bridge :heavy_check_mark:
DigitalOcean :heavy_check_mark:
Google Cloud :x:
Heroku :x:
ScaleGrid :heavy_check_mark:
Scaleway :heavy_check_mark:
Supabase :heavy_check_mark:

4

https://aws.amazon.com/rds/postgresql/
https://azure.microsoft.com/en-us/services/postgresql/
https://www.citusdata.com/product/cloud
https://www.crunchydata.com/products/crunchy-bridge/?ref=producthunt
https://www.digitalocean.com/products/managed-databases/
https://cloud.google.com/sql/docs/postgres/
https://elements.heroku.com/addons/heroku-postgresql
https://scalegrid.io/postgresql.html
https://www.scaleway.com/en/database/
https://supabase.io/docs/guides/database

	What is pg_cron?
	Installing pg_cron
	Setting up pg_cron
	Example use cases
	Managed services

