
pg_featureserv

Contents

pg_featureserv 1

pg_featureserv

pg_featureserv is a PostGIS-based feature server written in Go. It is a
lightweight, low-configuration RESTful web service that provides access to
spatial data stored in PostGIS tables, as well as spatial processing capability
based on PostGIS spatial functions. The service API follows the OGC API
for Features Version 1.0 standard. It extends the API to expose more of the
powerful spatial capabilities of PostGIS.

This guide walks you through how to install and use pg_featureserv for your
spatial applications. The Usage section goes in-depth on how the service works.
We’ll soon be adding more basic examples of web map applications that source
feature data from pg_featureserv.

GIS

• QGIS is a free and open source application for editing, visualizing, and
analyzing spatial data. Get started with the QGIS Training Manual.

• The Introduction to PostGIS Workshop is a full tutorial on the PostGIS
extension.

• Shorter interactive courses on PostGIS are also available on the Crunchy
Data Learning Platform.

• Learn more about practical applications of PostGIS with PostGIS Day
2019 Talks.

Source Code

• GitHub

1

https://postgis.net/
https://golang.org/
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://docs.qgis.org/3.4/en/docs/training_manual/index.html
https://postgis.net/workshops/postgis-intro
https://learn.crunchydata.com/postgis
https://info.crunchydata.com/stl-postgis-day-2019-presentations
https://info.crunchydata.com/stl-postgis-day-2019-presentations
https://github.com/crunchydata/pg_featureserv/

Feature Server

The server outputs logging information to the console. By default, the log level
is set to show errors and warnings only.
To get more information about what is going on behind the scenes, run the
server with the −−debug commandline parameter on
. / pg_ f i l e s e r v −−debug

Or, turn on debugging in the configuration file:
Debug = true

Web Layer

Hitting the service endpoints with a command-line utility like curl can also yield
useful information:
c u r l −I http :// l o c a l h o s t :9000/home . j son

Database Layer

The debug mode of the feature server returns the SQL that is being called on
the database. If you want to delve more deeply into the SQL that is being run
on the database, you can turn on statement logging in PostgreSQL by editing
the postgresql .conf file for your database and restarting.

Bug Reporting

If you find an issue with the feature server, bugs can be reported on GitHub at
the issue tracker:

• https://github.com/crunchydata/pg_featureserv/issues

This section describes how to use pg_featureserv to expose database tables,
views and functions; how to query them using the service API; and how to use
the Web user interface provided by the service.
The basic principle of security is to connect the server to the database with a
user that has just the access you want it to have, and no more. (Note: Postgres
uses the term database role when discussing user access permisions.)
Start with a new, blank user. A blank user has no select privileges on tables it
does not own. It does have execute privileges on functions. However, the user
has no select privileges on tables accessed by functions, so effectively the user
will still have no access to data.

2

https://curl.haxx.se/
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-STATEMENT
https://www.postgresql.org/docs/current/user-manag.html

CREATE USER f e a t u r e s e r v e r ;

To support different access patterns, create different users with access to dif-
ferent tables/functions. Then run multiple service instances, connecting with
those different users.

Table and View Access

If your tables are in a schema other than public, you must also grant usage on
that schema to your user.

GRANT USAGE ON SCHEMA myschema TO f e a t u r e s e r v e r ;

You can then grant access to the user one table at a time.

GRANT SELECT ON TABLE myschema . mytable TO f e a t u r e s e r v e r ;

Alternatively, you can grant access to all the tables at once.

GRANT SELECT ON ALL TABLES IN SCHEMA myschema TO f e a t u r e s e r v e r ;

Function Access

As noted above, functions that access table data effectively are restricted by
the access levels the user has to the tables the function reads. If you want
to completely restrict access to the function, including visibility in the user
interface, you can strip execution privileges from the function.

−− Al l f u n c t i o n s grant execu te to ’ pub l i c ’ and a l l r o l e s are
−− par t o f the ’ pub l i c ’ group , so p u b l i c has to be removed
−− from the execu to r s o f the func t i on
REVOKE EXECUTE ON FUNCTION pos t g i s f tw . myfunction FROM pub l i c ;
−− Just to be sure , a l s o revoke execu te from the user
REVOKE EXECUTE ON FUNCTION pos t g i s f tw . myfunction FROM f e a t u r e s e r v e r ;

Home Page

The home page shows the service title and description, and provides links to
the listings of collections and functions, the OpenAPI definition, and the con-
formance metadata.

http :// l o c a l h o s t :9000/home . html

3

API User Interface

A user interface for the service API is available at the path /api.html.

List Feature Collections

The path / collections .html shows a list of the feature collections exposed by
the service.

Show Feature Collection Metadata

The path / collections /{collid }.html shows metadata about the specified fea-
ture collection.

View Features on a Map

The path / collections /{collid}/items.html shows the features returned by a
basic query in a web map interface. The map interface provides a simple UI to
allow setting some basic query parameters.

Any applicable query parameters may be appended to the URL.

View a Feature on a Map

The path / collections /{collid}/items/{fid} shows the feature requested by the
query in a web map interface..

Any applicable query parameters may be appended to the URL.

List Functions

The path /functions.html shows a list of the functions exposed by the service.

Show Function Metadata

The path /functions/{funid}.html shows metadata about the specified function.

4

View Function Result Data on a Map

The path /functions/{funid}/items.html shows the features returned by a basic
function query in a web map interface. The map interface provides a simple UI
to allow specifying function arguments and setting some basic query parameters.
Note that only functions with spatial results can be viewed on a map.

Any applicable query parameters may be appended to the URL.

OGC API For Features

• landing page
• collections
• feature collection
• feature
• Conformance
• linked data

OpenAPI

Request Headers

Response formats

• links

Error codes and messages

Following the OCG Features information model, the service API exposes Post-
GIS tables and views as feature collections.

The available feature collections can be listed. Each feature collection can report
metadata about its definition, and can be queried to return datasets of features.
It is also possible to query individual features in tables which have defined
primary keys.

Expose Tables and Views as Feature Collections

pg_featureserv exposes all spatial tables and views which are visible in the
database.

Spatial tables and views are those which:

5

• include a geometry column;
• declare a geometry type; and,
• declare an SRID (spatial reference ID)

Visible tables and views are the available for access by virtue of by the database
access permissions defined for the service database user. See the [Security]({{<
relref “security” >}}) section for more information.

The service relies on the database catalog information to provide metadata
about a table or view. The metadata includes:

• The feature collection id is the schema-qualified name of the table or view
• The feature collection description is provided by the comment on the table

or view
• The feature geometry is provided by the spatial column of the table or

view
• The identifier for features is provided by the primary key column for a

table (if any)
• The property names and types are provided by the non-spatial columsn

of the table or view
• The description for properties is provided by the comments on table/view

columns

List Feature Collections

The path / collections returns a list of the feature collections available in the
service as a JSON document.

http :// l o c a l h o s t :9000/ c o l l e c t i o n s

Each listed feature collection provides a name, title, description and extent. A
set of links provide the URLs for accessing:

• self - the feature collection metadata
• alt - the feature collection metadata as an HTML view
• items - the feature collection items

6

Describe Feature Collection metadata

The path / collections /{coll−name} returns a JSON object describing the meta-
data for a feature collection. The {coll−name} is the schema-qualified name of
the database table or view backing the feature collection.

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries

The response is a JSON document ontaining metadata about the collection,
including:

• The geometry column name
• The geometry type
• The geometry spatial reference code (SRID)
• The extent of the feature collection (if available)
• The column name providing the feature identifiers (if any)
• A list of the properties and their JSON types

A set of links provide the URLs for accessing:

• self - the feature collection metadata
• alt - the feature collection metadata as an HTML view
• items - the feature collection items

List Functions

/functions

/functions. json

Describe Function metadata

/functions/{funid}

/functions/{funid}.json

7

Feature collections can be queried to provide sets of features, or to return a
single feature.

Query features

The path / collections /{collid}/items is the basic query to return a set of fea-
tures from a feature collection.

The response is a GeoJSON feature collection containing the result.

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items

Additional query parameters can be appended to the basic query to provide
control over what sets of features are returned.

These are analagous to using SQL statement clauses to control the results of
a query. In fact the service implements these using exactly that technique.
This provides maximum performance since it allows the Postgres SQL engine
to optimize the query execution plan.

Limiting and paging results

The query parameter limit=N can be added to the query to control the max-
imum number of features returned in a response document. There is also a
server-defined maximum which cannot be exceeded.

The query parameter offset =N specifies the offset in the actual query result at
which the response feature set starts.

Used together these two parameters allow paging through large result sets.

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items ? l im i t=50&o f f s e t =200

8

Ordering results

The result set can be ordered by any property it contains. This allows perform-
ing “greatest N” or “smallest N” queries.

• orderBy=PROP orders results by PROP in ascending order

The sort order can be specified by appending :A (ascending) or :D (descending)
to the ordering property name. The default is ascending order.

• orderBy=PROP:A orders results by PROP in ascending order
• orderBy=PROP:D orders results by PROP in descending order

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items ? orderBy=name

Filter by bbox

The query parameter bbox=MINX,MINY,MAXX,MAXY can be used to limit
the features returned to those that intersect a specified bounding box. The
bounding box is specified in geographic coordinates (longitude/latitude).

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items ?bbox=10 . 4 , 43 . 3 , 26 . 4 , 47 . 7

Specify result properties

The query parameter properties=PROP1,PROP2,PROP3... can be used to re-
strict the properties which are returned in the response. This allows reducing
the response size of feature collections which have a large number of properties.

9

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items ? p r op e r t i e s=name , abbrev , pop_est

Query a single feature

The path / collections /{collid}/items/{fid} allows querying a single feature in
a feature collection by specifying its ID.
The response is a GeoJSON feature containing the result.

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items /23

Specify properties in result

The query parameter properties=PROP1,PROP2,PROP3... can be used to re-
strict the properties which are returned in the response.

http :// l o c a l h o s t :9000/ c o l l e c t i o n s /ne . admin_0_countries/ items /23? p r op e r t i e s=name , abbrev , pop_est

Query Function features or data

/functions/{funid}/items /functions/{funid}/items.json

• response is GeoJSON for result dataset

Function arguments

param=value
Omitted arguments will use the default specified in the function definition (if
any).

10

Limiting and paging results

limit=N

offset =N

Ordering results

orderBy=PROP

orderBy=PROP:A

orderBy=PROP:D

Filter by bbox

bbox=MINX,MINY,MAXX,MAXY

• extent is in lon/lat (4326)

Specify properties in result

properties=PROP1,PROP2,PROP3...

We’re currently working on adding examples of using pg_featureserv in this
guide.

In the meantime, we’d encourage you to check this Github repository for a heat
map demo and an address autocomplete demo.

This section describes how to obtain, install and run pg_featureserv.

Requirements

• PostgreSQL 9.5 or later
• PostGIS 2.4 or later

11

https://github.com/pramsey/examples-pgsql-full-text

You don’t need advanced knowledge in Postgres/PostGIS or web mapping to
install and deploy pg_featureserv. If you are new to functions in Postgres,
you might try this quick interactive course to better see how you might take
advantage of pg_featureserv’s capabilities.

We also link to further resources at the end of this guide, for your reference.

Configuration File

The configuration file is automatically read from the file config .toml in the
directory the application starts in, if it exists.

If you want to specify a different file, use the −−config commandline parameter
to pass in a full path to the configuration file. When using the −−config option
the local configuration file is ignored.

. / pg_featureserv −−c on f i g /opt/ pg_featureserv / pg_featureserv . toml

If no configuration is specified, the server runs using internal defaults (which
are the same as provided in the example configuration file). Where possible, the
program autodetects values such as the UrlBase.

The only required configuration is the DbConnection setting, if not provided in
the environment variable DATABASE_URL. (Even this can be omitted if the
server is run with the −−test flag.)

The default configuration file is shown below.

[Server]
The hostname to use in l i n k s
HttpHost = ” 0 . 0 . 0 . 0 ”

The IP port to l i s t e n on
HttpPort = 9000

Advert i se URLs r e l a t i v e to t h i s s e r v e r name
de f au l t i s to look t h i s up from incoming reque s t headers
UrlBase = ” http :// l o c a l h o s t :9000/”

Str ing to re turn f o r Access−Control−Allow−Orig in header
CORSOrigins = ”*”

se t Debug to true to run in debug mode (can a l s o be done on cmd−l i n e)
Debug = true

Read html templates from th i s d i r e c t o r y

12

https://learn.crunchydata.com/postgresql-devel/courses/beyond-basics/basicfunctions/

AssetsPath = ” . / a s s e t s ”

[Database]
Database connect ion
po s t g r e s q l : // username : password@host/dbname
DbConnection = ” po s t g r e s q l : // username : password@host/dbname”

Close pooled connec t i ons a f t e r t h i s i n t e r v a l
1d , 1h , 1m, 1s , s e e https : // golang . org /pkg/ time/#ParseDuration
DbPoolMaxConnLifeTime = ”1h”

Hold no more than t h i s number o f connect i ons in the database pool
DbPoolMaxConns = 4

[Paging]
The de f au l t number o f f e a t u r e s in a response
LimitDefau l t = 20
Maxium number o f f e a t u r e s in a response
LimitMax = 10000

[Metadata]
T i t l e f o r t h i s s e r v i c e
#T i t l e = ”pg−f e a t u r e s e r v ”
Desc r ip t i on o f t h i s s e r v i c e
#Desc r ip t i on = ”Crunchy Data Feature Server f o r PostGIS”

Configuration Options

UrlBase

The Base URL is the URL endpoint at which users access the service. It is also
used for any URL paths returned by the service (such as response links).

The UrlBase can specify a value for the Base URL. This accomodates running
the service behind a reverse proxy.

If UrlBase is not set, pg_featureserv dynamically detects the base URL.
Also, if the HTTP headers Forwarded or X−Forwarded−Proto and
X−Forwarded−Host are present they are respected. Otherwise the base
URL is determined by inspecting the incoming request.

13

Basic Operation

The service can be run with minimal configuration. Only the database connec-
tion information is required. (Even that can be omitted if run with the −−test
option.) The database connection information can be provided in an environ-
ment variable DATABASE_URL containing a Postgres connection string.

Linux or OSX

export DATABASE_URL=po s t g r e s q l : // username : password@host/dbname
. / pg_featureserv

Windows

SET DATABASE_URL=po s t g r e s q l : // username : password@host/dbname
pg_featureserv . exe

Command options

Option Description

−? Show command usage
−−config <file>.toml Specify configuration file to use.
−−debug Set logging level to TRACE (can also be set in config file).
−−devel Run in development mode. Assets are reloaded on every request.
−−test Run in test mode. Uses an internal catalog of sample tables and data. Does not require a database.

Installation

To install pg_featureserv, download the binary file. Alternatively, you may run
a container. These first two options will suit most use cases; needing to build
the executable from source is rare.

14

https://www.postgresql.org/docs/12/libpq-connect.html#LIBPQ-CONNSTRING

A. Download binaries

Builds of the latest code:

• Linux
• Windows
• OSX

Unzip the file, copy the pg_featureserv binary wherever you wish, or use it in
place. If you move the binary, remember to move the assets/ directory to the
same location, or start the server using the AssetsDir configuration option.

B. Run container

A Docker image is available on DockerHub:

• Docker

When you run the container, provide the database connection information in
the DATABASE_URL environment variable and map the default service port
(9000).

docker run −e DATABASE_URL=pos tg r e s : // user : pass@host /dbname −p 9000:9000 pramsey/ pg_featureserv

C. Build from source

If not already installed, install the Go software development environment. Make
sure that the GOPATH environment variable is also set.

The application can downloaded and built with the following commands:

mkdir −p $GOPATH/ s r c / github . com/CrunchyData
cd $GOPATH/ s r c / github . com/CrunchyData
g i t c l one git@github . com : CrunchyData/ pg_featureserv . g i t
cd pg_featureserv
go bu i ld

To run the build to verify it, set the DATABASE_URL environment variable
to the database you want to connect to, and run the binary.

15

https://postgisftw.s3.amazonaws.com/pg_featureserv_latest_linux.zip
https://postgisftw.s3.amazonaws.com/pg_featureserv_latest_windows.zip
https://postgisftw.s3.amazonaws.com/pg_featureserv_latest_osx.zip
https://hub.docker.com/r/pramsey/pg_featureserv/
https://golang.org/doc/install
https://github.com/golang/go/wiki/SettingGOPATH

export DATABASE_URL=pos tg r e s : // user : pass@host /dbname
$GOPATH/bin / pg_featureserv

Motivation

There are numerous services available which can be used to serve features, such
as Geoserver, Mapserver, and pygeoapi. These applications typically provide
the capability to read from multiple data sources and generate feature datasets
in various formats. They tend to be large, complex applications which require
significnat expertise to install, configure, secure and tune.

PostGIS-Only

In contrast, pg_featureserv works exclusively with PostGIS, which allows for
greater flexibility of usage. By targetting PostGIS as the sole data provider,
pg_featureserv gains significant capabilties:

• Automatic configuration. Just point the server at a PostgreSQL /
PostGIS database, and the server discovers and automatically publishes
all tables it has access to.
The Postgres system catalog provides all the metadata needed to support
publishing datasets (such as primary key columns and table descriptions).
Changes to the database are then published automatically without needing
to restart the service. It is also straightforward to take advantage of
Postgres’ clustering capabilites to provide scale-out and high availability.

• Full SQL power. The server relies on the database to conduct all data
operations, including converting geometry records into GeoJSON. Since
the database is optimized to perform operations such as filtering and sort-
ing, this increases your application’s performance.
By using functions as data sources, the server can run any SQL at all to
generate features. Any data processing, feature filtering, or record aggre-
gation that you can express in SQL can be exposed as feature datasets.
Function parameters are also exposed as URL query parameters, which
allows dynamically changing the data returned.
Using the full power of SQL means that it is easy to expose any already-
developed database functionality via the service, and the learning curve
for developers can be minimized.

16

https://geoserver.org
https://mapserver.org
https://pygeoapi.io/

• Database security model. You can restrict access to tables and func-
tions using standard database access control. This means you can also use
advanced access control techniques like row-level security to dynamically
filter access based on the login role.

By utilizing a single powerful spatial data source, the pg_featureserv codebase
is significantly smaller and simpler. This means more rapid development, fewer
software defects, a more secure interface, and easier deployment on a wider
variety of platforms.

Modern Web Service Architecture

pg_featureserv follows the modern architectural paradigm of web-friendly,
RESTful microservices.

A key benefit of following the lightweight OGC API for Features Core standard
is the ease of extending it to expose service-specific capabilities. For instance,
pg_featureserv allows querying spatial functions as well as static collections,
using a similar API.

By focussing on the single aspect of serving spatial features, pg_featureserv
makes it easier to deploy, provision, manage, and secure feature services within
a containerized environment.

PostGIS for the Web

pg_featureserv is one component of PostGIS for the Web (aka “PostGIS
FTW”), a growing family of spatial micro-services. Database-centric applica-
tions naturally have a central source of coordinating state, the database, which
allows otherwise independent microservices to provide HTTP-level access to the
database with minimal middleware complexity.

• pg_tileserv provides MVT tiles for interactive clients and smooth render-
ing

• pg_featureserv provides GeoJSON feature services for reading and writing
vector and attribute data from tables

PostGIS for the Web makes it possible to stand up a spatial services archi-
tecture of stateless microservices surrounding a PostgreSQL/PostGIS database

17

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https:access.crunchydata.com/documentation/pg_tileserv/latest/

cluster, in a standard container environment, on any cloud platform or internal
datacenter.
pg_featureserv has a simple architecture. It consists of a single server applica-
tion, written in Go. It is configured via static (read-only) information sourced
from a file, command-line and/or environment variables.
pg_featureserv can run stand-alone or inside a containerized environment. It
connects to a Postgres database using an internal database pool (which can
itself connect to a database load-balancer such as pgbouncer). It contains an in-
tegrated web server which provides the HTTP interface to clients. The interface
provides both a data-centric REST API and a HTML-based user interface.
The pg_featureserv server integrates with the following:

• a PostGIS-enabled Postgres database instance or cluster, containing the
data being served and the catalog metadata describing it.

• client software which accesses the HTTP interface. Typically this is a
web-mapping application running in a web browser, but it could also be
a non-browser application (ranging from a simple data access utility such
as curl or OGR to a desktop GIS application such as QGIS), or a web
proxy mediating access to the service.

The context diagram below shows pg_featureserv running alongside pg_tileserv
to provide a PostGIS-centric “platform for the spatial web”.

Figure 1: pg_feaureserv Architecture

18

Feature

A representation of a real-world spatial phenomenon which can be modelled by
a geometry and zero or more scalar-valued properties.

Feature collection

A set of features from a spatial dataset. In pg_featureserv, these are mapped
to database tables and views.

Spatial database

A database that includes a “geometry” column type. The PostGIS extension to
PostgreSQL adds a geometry column type, as well as hundreds of functions to
operate on that type. For example, it provides the ST_AsGeoJSON() function
that pg_featureserv uses.

Web API

An Application Program Interface (API) allows client software to make pro-
grammatic requests to a service and retrieve information from it.

A Web API is an API founded on Web technologies. These include:

• Use of the HTTP protocol to provide high-level semantics for operations,
as well as efficient mechanisms for querying, security and transporting
data to clients

• Following the REST paradigm to simplify the model of interacting with
data

• Using the standard JSON and GeoJSON formats as the primary way of
encoding data

19

https://postgis.net/docs/ST_AsGeoJSON.html

	pg_featureserv

