
PG Hint_Plan

pg_hint_plan documentation
Introduction
Markdown format is kept as a main format, relying on python sphinx and
myst_parser to render an HTML documentation if needed.

Note that while markdown is more readable as raw text, it’s a way simpler syntax
that lacks a lot of features that reStructuredText offers. Relying on sphinx gives
us an opportunity to later write parts of the documentation in reStructuredText if
needed, but also offers other appealing features like multilingual documentation.

Readthedocs is the expected target, so use its theme and follow its recommenda-
tion about pinning various requirement versions.

Building the doc locally
The documentation can be built locally easily using

make -C docs/ html

The rendered documentation will be generated in docs/html/_build/html

Note that you need to have all python prerequirements installed, which can be
done using:

pip install -r docs/requirements.txt

If you need to update the requirements (which shouldn’t be needed frequently),
update the docs/requirements.in and generate the target docs/requirements.txt
using pip-compile. See the link about this tool below for more details on how to
use it.

Translation
Note that each translator has to follow all those steps whenever the translation
needs to be updated. Note also that those commands assume that the current
working directory is docs/.

• Bootstrapping the translation (the .pot files) is simply done using

make gettext

This will generate the various .pot file in _build/gettext.

• The per-language translation files (the .po files) can then be generated.
We currently only support Japanese, the rest of the commands will assume
a single Japanese translation. Those files can be generated using:

1

sphinx-intl update -p _build/gettext -l ja

The files are generated (or updated) in the docs/locale/ja/LC_MESSAGES/.

• You can then translate the .po file with any editor (poedit, vim. . .)

• The translated documentation can be built using:

make -e SPHINXOPTS=“-D language=‘ja’ ” html

• If everything is ok, you can commit the modifications in the .po files.

References
References if you’re interested in the various design choices:

• quickstart for RTD with sphinx: https://docs.readthedocs.io/en/stable/intro/getting-
started-with-sphinx.html

• reproducible builds: https://docs.readthedocs.io/en/stable/guides/reproducible-
builds.html

• myst parser: https://myst-parser.readthedocs.io
• pip-tools / pip-compile: https://pip-tools.readthedocs.io
• RTD sphinx theme: https://sphinx-rtd-theme.readthedocs.io
• Internationalization: https://www.sphinx-doc.org/en/master/usage/advanced/intl.html

https://docs.readthedocs.io/en/stable/localization.html#projects-with-
multiple-translations-sphinx-only # Errors

pg_hint_plan stops hint parsing on any error and will uses the hints already
parsed. Here are some typical errors.

Syntax errors
Any syntactical errors or wrong hint names are reported as a syntax error.
These errors are reported in the server log with the message level specified by
pg_hint_plan.message_level if pg_hint_plan.debug_print is on and above.

Incorrect Object definitions
Incorrect object definitions result in silently ignoring the hints. This kind of
error is reported as a “Not Used Hint” in the server logs.

Redundant or conflicting hints
The last hint is considered when redundant hints are defined or hints conflict
with each other. This kind of error is reported as a duplicated hints.

Nested comments
Hint comments cannot be recursive. If detected, hint parsing is immediately
stopped and all the hints already parsed are ignored. (functional-limitations)=

2

Functional limitations
Influence of planner GUC parameters
The planner does not try to consider joining order for FROM clause entries more
than from_collapse_limit. pg_hint_plan cannot affect the joining order in
this case.

Hints trying to enforce non-executable plans
Planner chooses any executable plans when the enforced plan cannot be executed:

• FULL OUTER JOIN to use nested loop.
• Use of indexes that do not have columns used in quals.
• TID scans for queries without ctid conditions.

Queries in ECPG
ECPG removes comments in queries written as embedded SQLs so hints cannot
be passed to it. The only exception EXECUTE, that passes the query string to
the server as-is. The hint table can be used in the case.

Query Identifiers
When compute_query_id is enabled, PostgreSQL generates a query ID, ignoring
comments. Hence, queries with different hints, still written the same way, may
compute the same query ID. # Details in hinting

Syntax and placement
pg_hint_plan reads hints from only the first block comment and stops pars-
ing from any characters except alphabetical characters, digits, spaces, under-
scores, commas and parentheses. In the following example, HashJoin(a b) and
SeqScan(a) are parsed as hints, but IndexScan(a) and MergeJoin(a b) are
not:

=# /*+
HashJoin(a b)
SeqScan(a)

*/
/*+ IndexScan(a) */
EXPLAIN SELECT /*+ MergeJoin(a b) */ *

FROM pgbench_branches b
JOIN pgbench_accounts a ON b.bid = a.bid
ORDER BY a.aid;

QUERY PLAN

Sort (cost=31465.84..31715.84 rows=100000 width=197)

3

Sort Key: a.aid
-> Hash Join (cost=1.02..4016.02 rows=100000 width=197)

Hash Cond: (a.bid = b.bid)
-> Seq Scan on pgbench_accounts a (cost=0.00..2640.00 rows=100000 width=97)
-> Hash (cost=1.01..1.01 rows=1 width=100)

-> Seq Scan on pgbench_branches b (cost=0.00..1.01 rows=1 width=100)
(7 rows)

Using with PL/pgSQL
pg_hint_plan works for queries in PL/pgSQL scripts with some restrictions.

• Hints affect only on the following kind of queries:
– Queries that return one row (SELECT, INSERT, UPDATE and DELETE)
– Queries that return multiple rows (RETURN QUERY)
– Dynamic SQL statements (EXECUTE)
– Cursor open (OPEN)
– Loop over result of a query (FOR)

• A hint comment has to be placed after the first word in a query as preceding
comments are not sent as a part of this query.

=# CREATE FUNCTION hints_func(integer) RETURNS integer AS $$
DECLARE

id integer;
cnt integer;

BEGIN
SELECT /*+ NoIndexScan(a) */ aid

INTO id FROM pgbench_accounts a WHERE aid = $1;
SELECT /*+ SeqScan(a) */ count(*)

INTO cnt FROM pgbench_accounts a;
RETURN id + cnt;

END;
$$ LANGUAGE plpgsql;

Upper and lower case handling in object names
Unlike the way PostgreSQL handles object names, pg_hint_plan compares
bare object names in hints against the database internal object names in a
case-sensitive manner. Therefore, an object name TBL in a hint matches only
“TBL” in the database and does not match any unquoted names like TBL, tbl
or Tbl.

Escaping special characters in object names
The objects defined in a hint’s parameter can use double quotes if they include
parentheses, double quotes and white spaces. The escaping rules are the same
as PostgreSQL.

4

Distinction between multiple occurences of a table
pg_hint_plan identifies the target object by using aliases if any. This behavior
is useful to point to a specific occurrence among multiple occurrences of one
table.

=# /*+ HashJoin(t1 t1) */
EXPLAIN SELECT * FROM s1.t1

JOIN public.t1 ON (s1.t1.id=public.t1.id);
INFO: hint syntax error at or near "HashJoin(t1 t1)"
DETAIL: Relation name "t1" is ambiguous.
...
=# /*+ HashJoin(pt st) */

EXPLAIN SELECT * FROM s1.t1 st
JOIN public.t1 pt ON (st.id=pt.id);

QUERY PLAN

Hash Join (cost=64.00..1112.00 rows=28800 width=8)

Hash Cond: (st.id = pt.id)
-> Seq Scan on t1 st (cost=0.00..34.00 rows=2400 width=4)
-> Hash (cost=34.00..34.00 rows=2400 width=4)

-> Seq Scan on t1 pt (cost=0.00..34.00 rows=2400 width=4)

Underlying tables of views or rules
Hints are not applicable on views, but they can affect the queries within the
view if the object names match the names in the expanded query on the view.
Assigning aliases to the tables in a view enables them to be manipulated from
outside the view.

=# CREATE VIEW v1 AS SELECT * FROM t2;
=# EXPLAIN /*+ HashJoin(t1 v1) */

SELECT * FROM t1 JOIN v1 ON (c1.a = v1.a);
QUERY PLAN

--
Hash Join (cost=3.27..18181.67 rows=101 width=8)

Hash Cond: (t1.a = t2.a)
-> Seq Scan on t1 (cost=0.00..14427.01 rows=1000101 width=4)
-> Hash (cost=2.01..2.01 rows=101 width=4)

-> Seq Scan on t2 (cost=0.00..2.01 rows=101 width=4)

Inheritance
Hints can only point to the parent of an inheritance tree and the hints affect all
the tables in an inheritance tree. Hints pointing directly to inherited children
have no effect.

5

Hints in multistatements
One multistatement can have exactly one hint comment and the hint affects all
of the individual statements in the multistatement.

VALUES expressions
VALUES expressions in FROM clause are named as *VALUES* internally these can
be hinted if it is the only VALUES of a query. Two or more VALUES expressions in
a query cannot be distinguished by looking at an EXPLAIN result, resulting in
ambiguous results:

=# /*+ MergeJoin(*VALUES*_1 *VALUES*) */
EXPLAIN SELECT * FROM (VALUES (1, 1), (2, 2)) v (a, b)

JOIN (VALUES (1, 5), (2, 8), (3, 4)) w (a, c) ON v.a = w.a;
INFO: pg_hint_plan: hint syntax error at or near "MergeJoin(*VALUES*_1 *VALUES*) "
DETAIL: Relation name "*VALUES*" is ambiguous.

QUERY PLAN

Hash Join (cost=0.05..0.12 rows=2 width=16)

Hash Cond: ("*VALUES*_1".column1 = "*VALUES*".column1)
-> Values Scan on "*VALUES*_1" (cost=0.00..0.04 rows=3 width=8)
-> Hash (cost=0.03..0.03 rows=2 width=8)

-> Values Scan on "*VALUES*" (cost=0.00..0.03 rows=2 width=8)

Subqueries
Subqueries context can be occasionally hinted using the name ANY_subquery:

IN (SELECT ... {LIMIT | OFFSET ...} ...)
= ANY (SELECT ... {LIMIT | OFFSET ...} ...)
= SOME (SELECT ... {LIMIT | OFFSET ...} ...)

For these syntaxes, the planner internally assigns the name to the subquery
when planning joins on tables including it, so join hints are applicable on such
joins using the implicit name. For example:

=# /*+HashJoin(a1 ANY_subquery)*/
EXPLAIN SELECT *

FROM pgbench_accounts a1
WHERE aid IN (SELECT bid FROM pgbench_accounts a2 LIMIT 10);

QUERY PLAN

Hash Semi Join (cost=0.49..2903.00 rows=1 width=97)

Hash Cond: (a1.aid = a2.bid)
-> Seq Scan on pgbench_accounts a1 (cost=0.00..2640.00 rows=100000 width=97)
-> Hash (cost=0.36..0.36 rows=10 width=4)

6

-> Limit (cost=0.00..0.26 rows=10 width=4)
-> Seq Scan on pgbench_accounts a2 (cost=0.00..2640.00 rows=100000 width=4)

Using IndexOnlyScan hint
Index scan may be unexpectedly performed on another index when the index
specified in IndexOnlyScan hint cannot perform an index only scan.

About NoIndexScan

A NoIndexScan hint implies NoIndexOnlyScan.

Parallel hints and UNION

A UNION can run in parallel only when all underlying subqueries are parallel-safe.
Hence, enforcing parallel on any of the subqueries will let a parallel-executable
UNION run in parallel. Meanwhile, a parallel hint with zero workers prevents a
scan from being executed in parallel.

Setting pg_hint_plan parameters by Set hints
pg_hint_plan parameters influence their own behavior so some parameters will
not work as one could expect:

• Hints to change enable_hint, enable_hint_table are ignored even
though they are reported as “used hints” in debug logs.

• Setting debug_print and message_level in the middle of query processing.
(hint-list)= # Hint list

The available hints are listed below.

Group Format Description
Scan method SeqScan(table) Forces sequential scan on the

table.
TidScan(table) Forces TID scan on the table.
IndexScan(table[
index...])

Forces index scan on the table.
Restricts to specified indexes if
any.

IndexOnlyScan(table[
index...])

Forces index-only scan on the
table. Restricts to specified
indexes if any. Index scan may be
used if index-only scan is not
available.

BitmapScan(table[
index...])

Forces bitmap scan on the table.
Restricts to specified indexes if
any.

7

Group Format Description
IndexScanRegexp(table[
POSIX
Regexp...])IndexOnlyScanRegexp(table[
POSIX
Regexp...])BitmapScanRegexp(table[
POSIX Regexp...])

Forces index scan, index-only scan
(For PostgreSQL 9.2 and later) or
bitmap scan on the table.
Restricts to indexes that matches
the specified POSIX regular
expression pattern.

NoSeqScan(table) Forces to not do sequential scan
on the table.

NoTidScan(table) Forces to not do TID scan on the
table.

NoIndexScan(table) Forces to not do index scan and
index-only scan on the table.

NoIndexOnlyScan(table)Forces to not do index only scan
on the table.

NoBitmapScan(table) Forces to not do bitmap scan on
the table.

Join method NestLoop(table
table[table...])

Forces nested loop for the joins on
the tables specified.

HashJoin(table
table[table...])

Forces hash join for the joins on
the tables specified.

MergeJoin(table
table[table...])

Forces merge join for the joins on
the tables specified.

NoNestLoop(table
table[table...])

Forces to not do nested loop for
the joins on the tables specified.

NoHashJoin(table
table[table...])

Forces to not do hash join for the
joins on the tables specified.

NoMergeJoin(table
table[table...])

Forces to not do merge join for
the joins on the tables specified.

Join order Leading(table
table[table...])

Forces join order as specified.

Leading(<join
pair>)

Forces join order and directions as
specified. A join pair is a pair of
tables and/or other join pairs
enclosed by parentheses, which
can make a nested structure.

Behavior control
on Join

Memoize(table
table[table...])

Allows the topmost join of a join
among the specified tables to
Memoize the inner result. Not
enforced.

NoMemoize(table
table[table...])

Inhibits the topmost join of a join
among the specified tables from
Memoizing the inner result.

8

Group Format Description
Row number
correction

Rows(table table[
table...]
correction)

Corrects row number of a result of
the joins on the tables specified.
The available correction methods
are absolute (#), addition (+),
subtract (-) and multiplication (*).
should be a string that strtod()
can understand.

Parallel query
configuration

Parallel(table <#
of workers>
[soft\|hard])

Enforces or inhibits parallel
execution of the specified table.
<# of workers> is the desired
number of parallel workers, where
zero means inhibiting parallel
execution. If the third parameter
is soft (default), it just changes
max_parallel_workers_per_gather
and leaves everything else to the
planner. Hard enforces the
specified number of workers.

GUC Set(GUC-param
value)

Sets GUC parameter to the value
defined while planner is running.

The hint table
Hints can be specified in a comment, still this can be inconvenient in the case
where queries cannot be edited. In the case, hints can be placed in a special
table named "hint_plan.hints". The table consists of the following columns:

column description
id Unique number to identify a row for a hint.

This column is filled automatically by sequence.
query_id A unique query ID, generated by the backend

when the GUC compute_query_id is enabled
application_name The value of application_name where sessions

can apply a hint. The hint in the example
below applies to sessions connected from psql.
An empty string implies that all sessions will
apply the hint.

hints Hint phrase. This must be a series of hints
excluding surrounding comment marks.

The following example shows how to operate with the hint table.

9

=# EXPLAIN (VERBOSE, COSTS false) SELECT * FROM t1 WHERE t1.id = 1;
QUERY PLAN

--
Seq Scan on public.t1

Output: id, id2
Filter: (t1.id = 1)

Query Identifier: -7164653396197960701
(4 rows)
=# INSERT INTO hint_plan.hints(query_id, application_name, hints)

VALUES (-7164653396197960701, '', 'SeqScan(t1)');
INSERT 0 1
=# UPDATE hint_plan.hints

SET hints = 'IndexScan(t1)'
WHERE id = 1;

UPDATE 1
=# DELETE FROM hint_plan.hints WHERE id = 1;
DELETE 1

The hint table is owned by the extension owner and has the same default
privileges as of the time of its creation, during CREATE EXTENSION. Hints in the
hint table are prioritized over hints in comments.

The query ID can be retrieved with pg_stat_statements or with EXPLAIN
(VERBOSE).

Types of hints
Hinting phrases are classified in multiple types based on what kind of object and
how they can affect the planner. See Hint list for more details.

Hints for Scan methods

Scan method hints enforce specific scanning methods on the target table.
pg_hint_plan recognizes the target table by alias names if any. These are
for example SeqScan or IndexScan.

Scan hints work on ordinary tables, inheritance tables, UNLOGGED tables,
temporary tables and system catalogs. External (foreign) tables, table functions,
VALUES clause, CTEs, views and subqueries are not affected.

=# /*+
SeqScan(t1)
IndexScan(t2 t2_pkey)

*/
SELECT * FROM table1 t1 JOIN table table2 t2 ON (t1.key = t2.key);

10

Hints for Join methods

Join method hints enforce the join methods of the joins involving the specified
tables.

This can affect joins only on ordinary tables. Inheritance tables, UNLOGGED
tables, temporary tables, external (foreign) tables, system catalogs, table func-
tions, VALUES command results and CTEs are allowed to be in the parameter
list. Joins on views and subqueries are not affected.

Hints for Joining order

This hint, named “Leading”, enforces the order of join on two or more tables.
There are two methods of enforcing it. The first method enforces a specific
order of joining but does not restrict the direction at each join level. The second
method enforces the join direction additionally. See hint list for more details.
For example:

=# /*+
NestLoop(t1 t2)
MergeJoin(t1 t2 t3)
Leading(t1 t2 t3)

*/
SELECT * FROM table1 t1

JOIN table table2 t2 ON (t1.key = t2.key)
JOIN table table3 t3 ON (t2.key = t3.key);

Hints for Row number corrections

This hint, named “Rows”, changes the row number estimation of joins that
comes from restrictions in the planner. For example:

=# /*+ Rows(a b #10) */ SELECT... ; Sets rows of join result to 10
=# /*+ Rows(a b +10) */ SELECT... ; Increments row number by 10
=# /*+ Rows(a b -10) */ SELECT... ; Subtracts 10 from the row number.
=# /*+ Rows(a b *10) */ SELECT... ; Makes the number 10 times larger.

Hints for parallel plans

This hint, named Parallel, enforces parallel execution configuration on scans.
The third parameter specifies the strength of the enforcement. soft means that
pg_hint_plan only changes max_parallel_worker_per_gather and leaves all
the others to the planner to set. hard changes other planner parameters so as to
forcibly apply the update. This can affect ordinary tables, inheritance parents,
unlogged tables and system catalogs. External tables, table functions, VALUES
clauses, CTEs, views and subqueries are not affected. Internal tables of a view
can be specified by its real name or its alias as the target object. The following
example shows that the query is enforced differently on each table:

11

=# EXPLAIN /*+ Parallel(c1 3 hard) Parallel(c2 5 hard) */
SELECT c2.a FROM c1 JOIN c2 ON (c1.a = c2.a);

QUERY PLAN

Hash Join (cost=2.86..11406.38 rows=101 width=4)

Hash Cond: (c1.a = c2.a)
-> Gather (cost=0.00..7652.13 rows=1000101 width=4)

Workers Planned: 3
-> Parallel Seq Scan on c1 (cost=0.00..7652.13 rows=322613 width=4)

-> Hash (cost=1.59..1.59 rows=101 width=4)
-> Gather (cost=0.00..1.59 rows=101 width=4)

Workers Planned: 5
-> Parallel Seq Scan on c2 (cost=0.00..1.59 rows=59 width=4)

=# EXPLAIN /*+ Parallel(tl 5 hard) */ SELECT sum(a) FROM tl;
QUERY PLAN

Finalize Aggregate (cost=693.02..693.03 rows=1 width=8)

-> Gather (cost=693.00..693.01 rows=5 width=8)
Workers Planned: 5
-> Partial Aggregate (cost=693.00..693.01 rows=1 width=8)

-> Parallel Seq Scan on tl (cost=0.00..643.00 rows=20000 width=4)

GUC parameters set during planning

Set hints change GUC parameters just while planning. GUC parameter shown
in Query Planning can have the expected effects on planning unless an other
hint conflicts with the planner method configuration parameters. When multiple
hints change the same GUC, the last hint takes effect. GUC parameters for
pg_hint_plan are also settable by this hint but it may not work as expected.
See Functional limitations for details.

=# /*+ Set(random_page_cost 2.0) */
SELECT * FROM table1 t1 WHERE key = 'value';

...

(guc-parameters-for-pg_hint_plan)= ## GUC parameters for pg_hint_plan

The following GUC parameters affect the behavior of pg_hint_plan:

Parameter name Description Default
pg_hint_plan.enable_hint True enables

pg_hint_plan.
on

pg_hint_plan.enable_hint_tableTrue enables hinting by
table.

off

12

http://www.postgresql.org/docs/current/static/runtime-config-query.html

Parameter name Description Default
pg_hint_plan.parse_messages Specifies the log level of

hint parse error. Valid
values are error,
warning, notice, info,
log, debug.

INFO

pg_hint_plan.debug_print Controls debug print and
verbosity. Valid values
are off, on, detailed
and verbose.

off

pg_hint_plan.message_level Specifies message level of
debug print. Valid values
are error, warning,
notice, info, log,
debug.

INFO

Installation
This section describes the installation steps.

Building binary module
Simply run make at the top of the source tree, then make install as an appro-
priate user. The PATH environment variable should be set properly to point to a
PostgreSQL set of binaries:

$ tar xzvf pg_hint_plan-1.x.x.tar.gz
$ cd pg_hint_plan-1.x.x
$ make
$ su
$ make install

Installing from a binary package
On Debian and Ubuntu pg_hint_plan is available as a binary package from the
pgdg (PostgreSQL Global Development Group) repository. Assuming you’ve
already added the repository to apt sources, installing the package is as simple
as:

sudo apt install postgresql-<postgres version>-pg-hint-plan

Please visit https://www.postgresql.org/download/linux/ if you need help at
adding the repository.

13

Loading pg_hint_plan

pg_hint_plan does not require CREATE EXTENSION. Loading it with a LOAD
command will activate it and of course you can load it globally by setting
shared_preload_libraries in postgresql.conf. Or you might be interested
in ALTER USER SET/ALTER DATABASE SET for automatic loading in specific ses-
sions.

postgres=# LOAD 'pg_hint_plan';
LOAD

Run CREATE EXTENSION and SET pg_hint_plan.enable_hint_table TO on if
you are planning to use the hint table. # Requirements

pg_hint_plan 1.7 requires PostgreSQL 17.

PostgreSQL versions tested

• Version 17

OS versions tested

• CentOS 8.5

See also
References

• EXPLAIN
• SET
• Server Config
• Parallel Plans # Synopsis

pg_hint_plan makes it possible to tweak PostgreSQL execution plans using
“hints” in SQL comments, as of /*+ SeqScan(a) */.

PostgreSQL uses a cost-based optimizer, which utilizes data statistics, not static
rules. The planner (optimizer) estimates costs of each possible execution plans for
a SQL statement then the execution plan with the lowest cost is executed. The
planner does its best to select the best execution plan, but is not always perfect,
since it doesn’t take into account some of the data properties or correlations
between columns. # Uninstallation

make uninstall in the top directory of source tree will uninstall the installed
files if you installed from the source tree and it is left available. Setting the
environment variable PATH may be necessary.

$ cd pg_hint_plan-1.x.x
$ su
$ make uninstall

14

http://www.postgresql.org/docs/current/static/sql-explain.html
http://www.postgresql.org/docs/current/static/sql-set.html
http://www.postgresql.org/docs/current/static/runtime-config.html
http://www.postgresql.org/docs/current/static/parallel-plans.html

	PG Hint_Plan
	pg_hint_plan documentation
	Introduction
	Building the doc locally
	Translation
	References
	Syntax errors
	Incorrect Object definitions
	Redundant or conflicting hints
	Nested comments

	Functional limitations
	Influence of planner GUC parameters
	Hints trying to enforce non-executable plans
	Queries in ECPG
	Query Identifiers
	Syntax and placement
	Using with PL/pgSQL
	Upper and lower case handling in object names
	Escaping special characters in object names
	Distinction between multiple occurences of a table
	Underlying tables of views or rules
	Inheritance
	Hints in multistatements
	VALUES expressions
	Subqueries
	Using IndexOnlyScan hint
	About NoIndexScan
	Parallel hints and UNION
	Setting pg_hint_plan parameters by Set hints

	The hint table
	Types of hints
	Hints for Scan methods
	Hints for Join methods
	Hints for Joining order
	Hints for Row number corrections
	Hints for parallel plans
	GUC parameters set during planning

	Installation
	Building binary module
	Installing from a binary package
	Loading pg_hint_plan
	See also
	References

