pg_parquet
Copy from/to Parquet files in PostgreSQL!
pg_parquet
is a PostgreSQL extension that allows you to read and write Parquet files, which are located in S3
or file system
, from PostgreSQL via COPY TO/FROM
commands. It depends on Apache Arrow project to read and write Parquet files and pgrx project to extend PostgreSQL’s COPY
command.
-- Copy a query result into Parquet in S3
COPY (SELECT * FROM table) TO 's3://mybucket/data.parquet' WITH (format 'parquet');
-- Load data from Parquet in S3
COPY table FROM 's3://mybucket/data.parquet' WITH (format 'parquet');
Quick Reference
- Installation From Source
- Usage
- Object Store Support
- Copy Options
- Configuration
- Supported Types
- Postgres Support Matrix
Installation From Source
After installing Postgres
, you need to set up rustup
, cargo-pgrx
to build the extension.
# install rustup
> curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# install cargo-pgrx
> cargo install cargo-pgrx
# configure pgrx
> cargo pgrx init --pg17 $(which pg_config)
# append the extension to shared_preload_libraries in ~/.pgrx/data-17/postgresql.conf
> echo "shared_preload_libraries = 'pg_parquet'" >> ~/.pgrx/data-17/postgresql.conf
# run cargo-pgrx to build and install the extension
> cargo pgrx run
# create the extension in the database
psql> "CREATE EXTENSION pg_parquet;"
Usage
There are mainly 3 things that you can do with pg_parquet
:
1. You can export Postgres tables/queries to Parquet files,
2. You can ingest data from Parquet files to Postgres tables,
3. You can inspect the schema and metadata of Parquet files.
COPY to/from Parquet files from/to Postgres tables
You can use PostgreSQL’s COPY
command to read and write Parquet files. Below is an example of how to write a PostgreSQL table, with complex types, into a Parquet file and then to read the Parquet file content back into the same table.
-- create composite types
CREATE TYPE product_item AS (id INT, name TEXT, price float4);
CREATE TYPE product AS (id INT, name TEXT, items product_item[]);
-- create a table with complex types
CREATE TABLE product_example (
id int,
product product,
products product[],
created_at TIMESTAMP,
updated_at TIMESTAMPTZ
);
-- insert some rows into the table
insert into product_example values (
1,
ROW(1, 'product 1', ARRAY[ROW(1, 'item 1', 1.0), ROW(2, 'item 2', 2.0), NULL]::product_item[])::product,
ARRAY[ROW(1, NULL, NULL)::product, NULL],
now(),
'2022-05-01 12:00:00-04'
);
-- copy the table to a parquet file
COPY product_example TO '/tmp/product_example.parquet' (format 'parquet', compression 'gzip');
-- show table
SELECT * FROM product_example;
-- copy the parquet file to the table
COPY product_example FROM '/tmp/product_example.parquet';
-- show table
SELECT * FROM product_example;
Inspect Parquet schema
You can call SELECT * FROM parquet.schema(<uri>)
to discover the schema of the Parquet file at given uri.
SELECT * FROM parquet.schema('/tmp/product_example.parquet') LIMIT 10;
uri | name | type_name | type_length | repetition_type | num_children | converted_type | scale | precision | field_id | logical_type
------------------------------+--------------+------------+-------------+-----------------+--------------+----------------+-------+-----------+----------+--------------
/tmp/product_example.parquet | arrow_schema | | | | 5 | | | | |
/tmp/product_example.parquet | id | INT32 | | OPTIONAL | | | | | 0 |
/tmp/product_example.parquet | product | | | OPTIONAL | 3 | | | | 1 |
/tmp/product_example.parquet | id | INT32 | | OPTIONAL | | | | | 2 |
/tmp/product_example.parquet | name | BYTE_ARRAY | | OPTIONAL | | UTF8 | | | 3 | STRING
/tmp/product_example.parquet | items | | | OPTIONAL | 1 | LIST | | | 4 | LIST
/tmp/product_example.parquet | list | | | REPEATED | 1 | | | | |
/tmp/product_example.parquet | element | | | OPTIONAL | 3 | | | | 5 |
/tmp/product_example.parquet | id | INT32 | | OPTIONAL | | | | | 6 |
/tmp/product_example.parquet | name | BYTE_ARRAY | | OPTIONAL | | UTF8 | | | 7 | STRING
(10 rows)
Inspect Parquet metadata
You can call SELECT * FROM parquet.metadata(<uri>)
to discover the detailed metadata of the Parquet file, such as column statistics, at given uri.
SELECT uri, row_group_id, row_group_num_rows, row_group_num_columns, row_group_bytes, column_id, file_offset, num_values, path_in_schema, type_name FROM parquet.metadata('/tmp/product_example.parquet') LIMIT 1;
uri | row_group_id | row_group_num_rows | row_group_num_columns | row_group_bytes | column_id | file_offset | num_values | path_in_schema | type_name
------------------------------+--------------+--------------------+-----------------------+-----------------+-----------+-------------+------------+----------------+-----------
/tmp/product_example.parquet | 0 | 1 | 13 | 842 | 0 | 0 | 1 | id | INT32
(1 row)
SELECT stats_null_count, stats_distinct_count, stats_min, stats_max, compression, encodings, index_page_offset, dictionary_page_offset, data_page_offset, total_compressed_size, total_uncompressed_size FROM parquet.metadata('/tmp/product_example.parquet') LIMIT 1;
stats_null_count | stats_distinct_count | stats_min | stats_max | compression | encodings | index_page_offset | dictionary_page_offset | data_page_offset | total_compressed_size | total_uncompressed_size
------------------+----------------------+-----------+-----------+--------------------+--------------------------+-------------------+------------------------+------------------+-----------------------+-------------------------
0 | | 1 | 1 | GZIP(GzipLevel(6)) | PLAIN,RLE,RLE_DICTIONARY | | 4 | 42 | 101 | 61
(1 row)
You can call SELECT * FROM parquet.file_metadata(<uri>)
to discover file level metadata of the Parquet file, such as format version, at given uri.
SELECT * FROM parquet.file_metadata('/tmp/product_example.parquet')
uri | created_by | num_rows | num_row_groups | format_version
------------------------------+------------+----------+----------------+----------------
/tmp/product_example.parquet | pg_parquet | 1 | 1 | 1
(1 row)
You can call SELECT * FROM parquet.kv_metadata(<uri>)
to query custom key-value metadata of the Parquet file at given uri.
SELECT uri, encode(key, 'escape') as key, encode(value, 'escape') as value FROM parquet.kv_metadata('/tmp/product_example.parquet');
uri | key | value
------------------------------+--------------+---------------------
/tmp/product_example.parquet | ARROW:schema | /////5gIAAAQAAAA ...
(1 row)
Object Store Support
pg_parquet
supports reading and writing Parquet files from/to S3
object store. Only the uris with s3://
scheme is supported.
The simplest way to configure object storage is by creating the standard ~/.aws/credentials
and ~/.aws/config
files:
$ cat ~/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ cat ~/.aws/config
[default]
region = eu-central-1
Alternatively, you can use the following environment variables when starting postgres to configure the S3 client:
- AWS_ACCESS_KEY_ID
: the access key ID of the AWS account
- AWS_SECRET_ACCESS_KEY
: the secret access key of the AWS account
- AWS_SESSION_TOKEN
: the session token for the AWS account
- AWS_REGION
: the default region of the AWS account
- AWS_ENDPOINT_URL
: the endpoint
- AWS_SHARED_CREDENTIALS_FILE
: an alternative location for the credentials file (only via environment variables)
- AWS_CONFIG_FILE
: an alternative location for the config file (only via environment variables)
- AWS_PROFILE
: the name of the profile from the credentials and config file (default profile name is default
) (only via environment variables)
- AWS_ALLOW_HTTP
: allows http endpoints (only via environment variables)
[!NOTE] To be able to write into a object store location, you need to grant
parquet_object_store_write
role to your current postgres user. Similarly, to read from an object store location, you need to grantparquet_object_store_read
role to your current postgres user.
Copy Options
pg_parquet
supports the following options in the COPY TO
command:
- format parquet
: you need to specify this option to read or write Parquet files which does not end with .parquet[.<compression>]
extension,
- row_group_size <int>
: the number of rows in each row group while writing Parquet files. The default row group size is 122880
,
- row_group_size_bytes <int>
: the total byte size of rows in each row group while writing Parquet files. The default row group size bytes is row_group_size * 1024
,
- compression <string>
: the compression format to use while writing Parquet files. The supported compression formats are uncompressed
, snappy
, gzip
, brotli
, lz4
, lz4raw
and zstd
. The default compression format is snappy
. If not specified, the compression format is determined by the file extension,
- compression_level <int>
: the compression level to use while writing Parquet files. The supported compression levels are only supported for gzip
, zstd
and brotli
compression formats. The default compression level is 6
for gzip (0-10)
, 1
for zstd (1-22)
and 1
for brotli (0-11)
.
pg_parquet
supports the following options in the COPY FROM
command:
- format parquet
: you need to specify this option to read or write Parquet files which does not end with .parquet[.<compression>]
extension,
- match_by <string>
: method to match Parquet file fields to PostgreSQL table columns. The available methods are position
and name
. The default method is position
. You can set it to name
to match the columns by their name rather than by their position in the schema (default). Match by name
is useful when field order differs between the Parquet file and the table, but their names match.
Configuration
There is currently only one GUC parameter to enable/disable the pg_parquet
:
- pg_parquet.enable_copy_hooks
: you can set this parameter to on
or off
to enable or disable the pg_parquet
extension. The default value is on
.
Supported Types
pg_parquet
has rich type support, including PostgreSQL’s primitive, array, and composite types. Below is the table of the supported types in PostgreSQL and their corresponding Parquet types.
PostgreSQL Type | Parquet Physical Type | Logical Type |
---|---|---|
bool |
BOOLEAN | |
smallint |
INT16 | |
integer |
INT32 | |
bigint |
INT64 | |
real |
FLOAT | |
oid |
INT32 | |
double |
DOUBLE | |
numeric (1) |
FIXED_LEN_BYTE_ARRAY(16) | DECIMAL(128) |
text |
BYTE_ARRAY | STRING |
json |
BYTE_ARRAY | STRING |
bytea |
BYTE_ARRAY | |
date (2) |
INT32 | DATE |
timestamp |
INT64 | TIMESTAMP_MICROS |
timestamptz (3) |
INT64 | TIMESTAMP_MICROS |
time |
INT64 | TIME_MICROS |
timetz (3) |
INT64 | TIME_MICROS |
geometry (4) |
BYTE_ARRAY |
Nested Types
PostgreSQL Type | Parquet Physical Type | Logical Type |
---|---|---|
composite |
GROUP | STRUCT |
array |
element’s physical type | LIST |
crunchy_map (5) |
GROUP | MAP |
[!WARNING] - (1)
numeric
type is written the smallest possible memory width to parquet file as follows: *numeric(P <= 9, S)
is represented asINT32
withDECIMAL
logical type *numeric(9 < P <= 18, S)
is represented asINT64
withDECIMAL
logical type *numeric(18 < P <= 38, S)
is represented asFIXED_LEN_BYTE_ARRAY(9-16)
withDECIMAL
logical type *numeric(38 < P, S)
is represented asBYTE_ARRAY
withSTRING
logical type *numeric
is allowed by Postgres. (precision and scale not specified). These are represented by a default precision (38) and scale (9) instead of writing them as string. You get runtime error if your table tries to read or write a numeric value which is not allowed by the default precision and scale (29 integral digits before decimal point, 9 digits after decimal point). - (2) Thedate
type is represented according toUnix epoch
when writing to Parquet files. It is converted back according toPostgreSQL epoch
when reading from Parquet files. - (3) Thetimestamptz
andtimetz
types are adjusted toUTC
when writing to Parquet files. They are converted back withUTC
timezone when reading from Parquet files. - (4) Thegeometry
type is represented asBYTE_ARRAY
encoded asWKB
whenpostgis
extension is created. Otherwise, it is represented asBYTE_ARRAY
withSTRING
logical type. - (5)crunchy_map
is dependent on functionality provided by Crunchy Bridge. Thecrunchy_map
type is represented asGROUP
withMAP
logical type whencrunchy_map
extension is created. Otherwise, it is represented asBYTE_ARRAY
withSTRING
logical type.[!WARNING] Any type that does not have a corresponding Parquet type will be represented, as a fallback mechanism, as
BYTE_ARRAY
withSTRING
logical type. e.g.enum
Postgres Support Matrix
pg_parquet
supports the following PostgreSQL versions:
| PostgreSQL Major Version | Supported |
|————————–|———–|
| 14 | ✅ |
| 15 | ✅ |
| 16 | ✅ |
| 17 | ✅ |