
PG_Squeeze
PostgreSQL extension that removes unused space from a table and optionally
sorts tuples according to particular index (as if CLUSTER command was executed
concurrently with regular reads / writes). In fact we try to replace pg_repack
extension.

While providing very similar functionality, pg_squeeze takes a different approach
as it:

1. Implements the functionality purely on server side.
2. Utilizes recent improvements of PostgreSQL database server.

While (1) makes both configuration and use simpler (compared to pg_repack
which uses both server and client side code), it also allows for rather smooth
implementation of unattended processing using background workers.

As for (2), one important difference (besides the use of background workers) is
that we use logical decoding instead of triggers to capture concurrent changes.

INSTALL
Install PostgreSQL before proceeding. Make sure to have pg_config binary,
these are typically included in -dev and -devel packages.

git clone https://github.com/cybertec-postgresql/pg_squeeze.git
cd pg_squeeze
make
make install

Add these to postgresql.conf:

wal_level = logical
max_replication_slots = 1 # ... or add 1 to the current value.
shared_preload_libraries = ’pg_squeeze’ # ... or add the library to the existing ones.

Restart the cluster, and invoke:

CREATE EXTENSION pg_squeeze;

Note: when upgrading a database cluster with pg_squeeze installed (either us-
ing pg_dumpall/restore or pg_upgrade), make sure that the new cluster has
pg_squeeze in shared_preload_libraries before* you upgrade, otherwise
the upgrade will fail.*

Register table for regular processing
First, make sure that your table has either primary key or unique constraint. This
is necessary to process changes other transactions might do while pg_squeeze is
doing its work.

1

https://www.postgresql.org/docs/13/static/sql-cluster.html
https://reorg.github.io/pg_repack/
https://reorg.github.io/pg_repack/
https://www.postgresql.org/docs/13/static/bgworker.html
https://www.postgresql.org/docs/13/static/logicaldecoding.html


To make the pg_squeeze extension aware of the table, you need to insert a
record into squeeze.tables table. Once added, statistics of the table are
checked periodically. Whenever the table meets criteria to be “squeezed”, a
“task” is added to a queue. The tasks are processed sequentially, in the order
they were created.

The simplest “registration” looks like:

INSERT INTO squeeze.tables (tabschema, tabname, schedule)
VALUES (’public’, ’foo’, (’{30}’, ’{22}’, NULL, NULL, ’{3, 5}’));

Additional columns can be specified optionally, for example:

INSERT INTO squeeze.tables (
tabschema,
tabname,
schedule,
free_space_extra,
vacuum_max_age,
max_retry

)
VALUES (

’public’,
’bar’,
(’{30}’, ’{22}’, NULL, NULL, ’{3, 5}’),
30,
’2 hours’,
2

);

Following is the complete description of table metadata.

• tabschema and tabname are schema and table name respectively.

• schedule column tells when the table should be checked, and possibly
squeezed. The schedule is described by a value of the following composite
data type, which resembles a crontab entry:

CREATE TYPE schedule AS (
minutes minute[],
hours hour[],
days_of_month dom[],
months month[],
days_of_week dow[]

);

Here, minutes (0-59) and hours (0-23) specify the time of the check within
a day, while days_of_month (1-31), months (1-12) and days_of_week (0-7,
where both 0 and 7 stand for Sunday) determine the day of the check.

2

https://www.freebsd.org/cgi/man.cgi?query=crontab&sektion=5&apropos=0&manpath=FreeBSD+12.1-RELEASE+and+Ports


The check is performed if minute, hour and month all match the current
timestamp, while NULL value means any minute, hour and month respec-
tively. As for days_of_month and days_of_week, at least one of these
needs to match the current timestamp, or both need to be NULL for the
check to take place.

For example, in the entries above tell that table public.bar should be
checked every Wednesday and Friday at 22:30.

• free_space_extra is the minimum percentage of extra free space
needed to trigger processing of the table. The extra adjective refers
to the fact that free space derived from fillfactor is not reason to
squeeze the table.

For example, if fillfactor is equal to 60, then at least 40 percent of
each page should stay free during normal operation. If you want to ensure
that 70 percent of free space makes pg_squeeze interested in the table, set
free_space_extra to 30 (that is 70 percent required to be free minus the
40 percent free due to the fillfactor).

Default value of free_space_extra is 50.

• min_size is the minimum disk space in megabytes the table must occupy
to be eligible for processing. The default value is 8.

• vacuum_max_age is the maximum time since the completion of the last
VACUUM to consider the free space map (FSM) fresh. Once this interval
has elapsed, the portion of dead tuples might be significant and so more
effort than simply checking the FSM needs to be spent to evaluate the
potential effect pg_squeeze. The default value is 1 hour.

• max_retry is the maximum number of extra attempts to squeeze a table
if the first processing of the corresponding task failed. Typical reason to
retry the processing is that table definition got changed while the table
was being squeezed. If the number of retries is achieved, processing of the
table is considered complete. The next task is created as soon as the next
scheduled time is reached.

The default value of max_retry is 0 (i.e. do not retry).

• clustering_index is an existing index of the processed table. Once the
processing is finished, tuples of the table will be physically sorted by the
key of this index.

• rel_tablespace is an existing tablespace the table should be moved into.
NULL means that the table should stay where it is.

• ind_tablespaces is a two-dimensional array in which each row specifies
tablespace mapping of an index. The first and the second columns represent
index name and tablespace name respectively. All indexes for which no
mapping is specified will stay in the original tablespace.

3



Regarding tablespaces, one special case is worth to mention: if tablespace
is specified for table but not for indexes, the table gets moved to that
tablespace but the indexes stay in the original one (i.e. the tablespace of
the table is not the default for indexes as one might expect).

• skip_analyze indicates that table processing should not be followed by
ANALYZE command. The default value is false, meaning ANALYZE is
performed by default.

squeeze.table is the only table user should modify. If you want to
change anything else, make sure you perfectly understand what you
are doing.

Ad-hoc processing for any table
It’s also possible to squeeze tables manually without registering (i.e. inserting
the corresponding record into squeeze.tables), and without prior checking of
the actual bloat.

Function signature:

squeeze.squeeze_table(
tabchema name,
tabname name,
clustering_index name,
rel_tablespace name,
ind_tablespaces name[]

)

Sample execution:

SELECT squeeze.squeeze_table(’public’, ’pgbench_accounts’);

Note that the function is not transactional: it only starts a background worker,
tells it which table it should process and exits. Rollback of the transaction the
function was called in does not revert the changes done by the worker.

Enable / disable table processing
To enable processing of bloated tables, run this statement as superuser:

SELECT squeeze.start_worker();

The function starts a background worker (scheduler worker) that periodically
checks which of the registered tables should be checked for bloat, and creates a
task for each. Another worker (squeeze worker) is launched whenever a task
exists for particular database.

4



If the scheduler worker is already running for the current database, the function
does not report any error but the new worker will exit immediately.

If the workers are running for the current database, you can use the following
statement to stop them:

SELECT squeeze.stop_worker();

Only the functions mentioned in this documentation are considered
user interface. If you want to call any other one, make sure you
perfectly understand what you’re doing.

If you want the background workers to start automatically during startup of the
whole PostgreSQL cluster, add entries like this to postgresql.conf file:

squeeze.worker_autostart = ’my_database your_database’
squeeze.worker_role = postgres

Next time you start the cluster, two or more workers (i.e. one scheduler worker
and one or more squeeze workers) will be launched for my_database and the
same for your_database. If you take this approach, note that any worker will
either reject to start or will stop without doing any work if either:

1. The pg_squeeze extension does not exist in the database, or

2. squeeze.worker_role parameter specifies role which does not have the
superuser privileges.

The functions/configuration variables explained above use singular form of the
word worker although there are actually two workers. This is because only
one worker existed in the previous versions of pg_squeeze, which ensured both
scheduling and execution of the tasks. This implementation change is probably
not worth to force all users to adjust their configuration files during upgrade.

Control the impact on other backends
Although the table being squeezed is available for both read and write operations
by other transactions most of the time, exclusive lock is needed to finalize the
processing. If pg_squeeze occasionally seems to block access to tables too much,
consider setting squeeze.max_xlock_time GUC parameter. For example:

SET squeeze.max_xlock_time TO 100;

Tells that the exclusive lock shouldn’t be held for more than 0.1 second (100
milliseconds). If more time is needed for the final stage, pg_squeeze releases the
exclusive lock, processes changes committed by other transactions in between
and tries the final stage again. Error is reported if the lock duration is exceeded
a few more times. If that happens, you should either increase the setting or
schedule processing of the problematic table to a different daytime, when the
write activity is lower.

5



Running multiple workers per database
If you think that a single squeeze worker does not cope with the load, consider set-
ting the squeeze.workers_per_database configuration variable to value higher
than 1. Then the pg_squeeze extension will be able to process multiple tables at
a time - one table per squeeze worker. However, be aware that this setting affects
all databases in which you actively use the pg_squeeze extension. The total num-
ber of all the squeeze workers in the cluster (including the “scheduler workers”)
cannot exceed the in-core configuration variable max_worker_processes.

Monitoring
• squeeze.log table contains one entry per successfully squeezed table.

The columns tabschema and tabname identify the processed table. The
columns started and finished tell when the processing started and
finished. ins_initial is the number of tuples inserted into the new table
storage during the “initial load stage”, i.e. the number of tuples present in
the table before the processing started. On the other hand, ins, upd and
del are the numbers of tuples inserted, updated and deleted by applications
during the table processing. (These “concurrent data changes” must also
be incorporated into the squeezed table, otherwise they’d get lost.)

• squeeze.errors table contains errors that happened during squeezing. An
usual problem reported here is that someone changed definition (e.g. added
or removed column) of the table whose processing was just in progress.

• squeeze.get_active_workers() function returns a table of squeeze work-
ers which are just processing tables in the current database.

The pid column contains the system PID of the worker process. The other
columns have the same meaning as their counterparts in the squeeze.log
table. While the squeeze.log table only shows information on the com-
pleted squeeze operations, the squeeze.get_active_workers() function
lets you check the progress during the processing.

Unregister table
If particular table should no longer be subject to periodical squeeze, simply
delete the corresponding row from squeeze.tables table.

It’s also a good practice to unregister table that you’re going to drop, although
the background worker does unregister non-existing tables periodically.

Upgrade
Make sure to install PostgreSQL and pg_config, see install section.

6



make # Compile the newer version.
pg_ctl -D /path/to/cluster stop # Stop the cluster.
make install
pg_ctl -D /path/to/cluster start # Start the cluster.

Connect to each database containing pg_squeeze and run this command:

ALTER EXTENSION pg_squeeze UPDATE;

Upgrade from 1.2.x
As there’s no straightforward way to migrate the scheduling infor-
mation (see the notes on the schedule column of the squeeze.tables
table) automatically, and as the schedule column must not contain
NULL values, the upgrade deletes the contents of the squeeze.tables
table. Please export the table contents to a file before you perform
the upgrade and configure the checks of those tables again as soon as
the upgrade is done.

Concurrency
1. The extension does not prevent other transactions from altering table at

certain stages of the processing. If a “disruptive command” (i.e. ALTER
TABLE, VACUUM FULL, CLUSTER or TRUNCATE) manages to commit before
the squeeze could finish, the squeeze_table() function aborts and all
changes done to the table are rolled back. The max_retry column of
squeeze.tables table determines how many times the squeeze worker will
retry. Besides that, change of schedule might help you to avoid disruptions.

2. Like pg_repack, pg_squeeze also changes visibility of rows and thus allows
for MVCC-unsafe behavior described in the first paragraph of mvcc-caveats.

Disk Space Requirements
Performing a full-table squeeze requires free disk space about twice as large as
the target table and its indexes. For example, if the total size of the tables and
indexes to be squeezed is 1GB, an additional 2GB of disk space is required.

7

https://reorg.github.io/pg_repack/
https://www.postgresql.org/docs/13/static/mvcc-caveats.html

	PG_Squeeze
	INSTALL
	Register table for regular processing
	Ad-hoc processing for any table
	Enable / disable table processing
	Control the impact on other backends
	Running multiple workers per database
	Monitoring
	Unregister table
	Upgrade
	Upgrade from 1.2.x
	Concurrency
	Disk Space Requirements


