
pg_tileserv

Contents

pg_tileserv 1

Spatial filters 5

Figure 1: Crunchy Spatial

pg_tileserv

pg_tileserv is a PostGIS-only tile server in Go. Strip away all the other require-
ments – it just has to take in HTTP tile requests and form and execute SQL. In
a sincere act of flattery, the API and design look a lot like that of the Martin
tile server.

1

https://postgis.net/
https://golang.org/
https://github.com/urbica/martin

This guide will walk you through how to install and use pg_tileserv for your
spatial applications. The Usage section goes in-depth on how the service works.
We also include some basic examples of web maps that render tiles from the
pg_tileserv application.

The purpose of pg_tileserv is to turn a set of spatial records into tiles, on the
fly. The tile server reads two different layers of data:

• Table layers are what they sound like: tables and views in the database
that have a spatial column with a spatial reference system defined on it.

• Function layers hide the source of data from the server, and
allow the HTTP client to send in optional parameters to al-
low more complex SQL functionality. Any function of the form
function(z integer , x integer , y integer , ...) that returns an MVT
bytea result can serve as a function layer.

The features returned by items queries can be filtered using the filter query pa-
rameter with an expression written using the Common Query Language (CQL).
CQL expressions return a value of true or false . Only features which evaluate
to true are returned.

The filter expression is evaluated by the database, which will take advantage of
indexes (attribute and spatial) to make filter evaluation very efficient.

This section describes the CQL query language subset supported. Note that
some special characters may need to be URL-encoded in some clients.

Property and Literal Values

The basic elements of filter expressions are values obtained from feature collec-
tion properties, and literals (constants).

Properties are referred to by name. Property names can be quoted, to support
including special characters.

propname
”quoted_name$”

Literals can be numbers, boolean or text values. To include single quotes in
text values use repeated single quotes.

1 .234
true
’ a t ext value ’
’ i t ’ ’ s easy ’

2

https://portal.ogc.org/files/96288
https://en.wikipedia.org/wiki/Percent-encoding

Arithmetic expressions

Values of numeric expressions can be computed using the arithmetic operators
+,−,*,/ and % (modulo), with parentheses to specify operator precedence.

NOTE: + needs to be URL-encoded as %2B.

x + 3
2 * (y − 3)
p % 10

Comparisons

Values can be compared using conditional operators:
a = b a <> b a > b a >= b a < b a <= b

pop_est >= 1000000
name = ’ Finland ’
count % 10 = 1

BETWEEN predicate

The BETWEEN predicate tests if a value (a property, literal or expression) lies
in the range defined by a start and end value (inclusive):
e1 [NOT] BETWEEN e2 AND e3

pop_est BETWEEN 1000000 AND 9000000
name NOT BETWEEN ’ Chile ’ AND ’Denmark ’

IN predicate

The IN predicate tests if a value lies in a list of constant values.
property [NOT] IN (val1 , val2 , . . .)

3

id IN (1 , 2 , 3)
name IN (’ Chile ’ , ’Kenya ’ , ’Denmark ’)

LIKE predicate

The LIKE predicate tests if a text value matches a pattern. The character % is
a wildcard. (Note that this may need to be URL-encoded as %25.) ILIKE can
be used for case-independent matching.

property [NOT] LIKE | ILIKE pattern

name LIKE ’Ch%’
cont inent ILIKE ’%america ’

IS NULL predicate

The IS NULL predicate tests if a property value is (or is not) null.

property IS [NOT] NULL

name IS NULL

Boolean combinations

Comparisons and predicates can be combined with the boolean operators AND,
OR and NOT. Operators are evaluated in the order NOT, AND, OR. Evaluation
order can be controlled by enclosing subexpressions in parentheses.

(cont inent = ’Europe ’ OR cont inent = ’ Afr ica ’) AND pop_est < 1000000

4

Spatial filters

CQL supports spatial filtering by providing geometry literals and spatial
predicates.

Geometry Literals

Geometry literals use Well-Known Text (WKT) to describe values for points,
lines, polygons (with holes), and collections.

POINT (1 2)
LINESTRING (0 0 , 1 1)
POLYGON ((0 0 , 0 9 , 9 0 , 0 0))
POLYGON ((0 0 , 0 9 , 9 0 , 0 0) , (1 1 , 1 8 , 8 1 , 1 1))
MULTIPOINT ((0 0) , (0 9))
MULTILINESTRING ((0 0 , 1 1) , (1 1 , 2 2))
MULTIPOLYGON (((1 4 , 4 1 , 1 1 , 1 4)) , ((1 9 , 4 9 , 1 6 , 1 9)))
GEOMETRYCOLLECTION(POLYGON ((1 4 , 4 1 , 1 1 , 1 4)) , LINESTRING (3 3 , 5 5) , POINT (1 5))

CQL also provides a syntax for concisely representing a rectangular polygon by
the X and Y ordinates at the lower-left and upper-right corners:

ENVELOPE (1 , 2 , 3 , 4)

By default the coordinate system of geometry literal values is assumed to be
geodetic (SRID = 4326). The filter −crs=SRID query parameter can be used
to specify that the geometry literals in a filter expression are in a different
coordinate system.

Spatial predicates

Spatial predicates allow filtering features via spatial conditions on the feature
geometry. Spatial predicates are defined in the form of spatial functions. Pred-
icates for spatial relationships include:

• INTERSECTS - tests whether two geometries intersect
• DISJOINT - tests whether two geometries have no points in common

5

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

• CONTAINS - tests whether a geometry contains another
• WITHIN - tests whether a geometry is within another
• EQUALS - tests whether two geometries are topologically equal
• CROSSES - tests whether the geometries cross
• OVERLAPS - tests whether the geometries overlap
• TOUCHES - tests whether the geometries touch

For detailed definitions of the spatial predicates see the CQL standard and the
PostGIS function reference.

Typically a spatial predicate is used to test the relationship between the spatial
column of the queried collection and a geometry literal value.

INTERSECTS(geom , ENVELOPE(−100 , 49 , −90, 50))

CONTAINS(geom , POINT(−100 49))

The DWITHIN predicate allows testing whether a geometry lies within a given
distance of another. The distance is in the units of the dataset’s coordinate
system (degrees in the case of data stored in SRID=4326, or a length unit such
as meters for non-geodetic data).

DWITHIN(geom , POINT(−100 49) , 0 . 1)

Temporal filters

Temporal filtering in CQL supports date-time literals and the ability to use them
in conditions against temporal-valued properties (table columns with type date
or timestamp).

Date-time literals specifiy a date, or a timestamp including a date and time
(with optional seconds value):

2001−01−01
2001−01−01T10 :23
2001−01−01T10 : 2 3 : 4 5

Temporal values can be compared using the conditional operators <,<=,>,>=,=,<>:

t > 2001−01−01T00 :00 AND t <= 2002−12−31T11 : 5 9 : 5 9

6

https://portal.ogc.org/files/96288#enhanced-spatial-operators
https://postgis.net/docs/reference.html#Spatial_Relationships
https://www.postgresql.org/docs/current/datatype-datetime.html
https://www.postgresql.org/docs/current/datatype-datetime.html

They can also be used in the BETWEEN predicate. The values used can be
properties or literals:

t BETWEEN 2001−01−01 AND 2001−12−31
2001−01−01 BETWEEN time1 AND time2

Dynamic Geometry Example

So far, all our examples have used simple SQL functions, but using the proce-
dural PL/pgSQL language we can create much more interactive examples.

CREATE OR REPLACE
FUNCTION pub l i c . squares (z integer , x integer , y integer , depth integer default 2)
RETURNS bytea
AS $$
DECLARE

r e s u l t bytea ;
sq_width f l o a t 8 ;
t i le_xmin f l o a t 8 ;
t i le_ymin f l o a t 8 ;
bounds geometry ;

BEGIN
−− Find the t i l e bounds
SELECT ST_TileEnvelope (z , x , y) AS geom INTO bounds ;
−− Find the bottom corner o f the bounds
t i le_xmin := ST_XMin(bounds) ;
t i le_ymin := ST_YMin(bounds) ;
−− We want t i l e d i v i d ed up in t o depth * depth squares per t i l e ,
−− so what i s the width o f a square ?
sq_width := (ST_XMax(bounds) − ST_XMin(bounds)) / depth ;

WITH mvtgeom AS (
SELECT

−− F i l l in the t i l e wi th a l l the squares
ST_AsMVTGeom(ST_MakeEnvelope (

t i le_xmin + sq_width * (a−1) ,
t i le_ymin + sq_width * (b−1) ,
t i le_xmin + sq_width * a ,
t i le_ymin + sq_width * b) , bounds) ,

−− Each square g e t s a proper ty t ha t shows
−− what t i l e i t i s a par t o f and what i t s sub−address
−− in t ha t t i l e i s
Format (’(%s .%s ,%s .%s) ’ , x , a , y , b) AS t i l e c o o r d

−− Drive the square genera tor wi th a two−dimensiona l

7

https://www.postgresql.org/docs/current/plpgsql.html

−− genera t e_ser i e s se tup
FROM gene ra t e_se r i e s (1 , depth) a , g ene r a t e_se r i e s (1 , depth) b
)

SELECT ST_AsMVT(mvtgeom . * , ’ pub l i c . squares ’)
−− Put the query r e s u l t i n t o the r e s u l t v a r i a l e .
INTO r e s u l t FROM mvtgeom ;

−− Return the answer
RETURN r e s u l t ;

END;
$$
LANGUAGE ’ p lpg sq l ’
IMMUTABLE −− Same inpu t s a lways g i v e same outpu t s
STRICT −− Nul l input g e t s n u l l output
PARALLEL SAFE;

COMMENT ON FUNCTION pub l i c . squares IS ’ For␣ each␣ t i l e ␣ requested , ␣ generate ␣and␣ return ␣depth*depth␣ polygons ␣ cover ing ␣ the ␣ t i l e . ␣The␣ e f f e c t ␣ i s ␣one␣ o f ␣ always ␣having␣a␣ g r id ␣ coverage ␣ at ␣ the ␣ appropr ia te ␣ cur rent ␣ s c a l e . ’ ;

Dynamic Hexagons with Spatial join Example

Hexagonal tilings are popular with data visualization experts because they can
be used to summarize point data without adding a visual bias to the output via
different summary area sizes. They also have a nice “non-pointy” shape, while
still providing a complete tiling of the plane.
When you want to provide a hexagonal summary of a data set at multiple scales,
it presents an implementation problem: do you need to create a pile of hexagon
tables, solely for the purpose of summary visualization?
The answer is no: you can generate your hexagons dynamically based on the
scale of the requested map tiles.

Generate hexagons

The first challenge is that a hexagon tile set cannot be perfectly inscribed into a
powers-of-two square tile set. That means that any given tile will contain some
odd combination of full and partial hexagons. In order for the hexagons that
straddle tile boundaries to match up, we need a hexagon tiling that is uniform
over the whole plane.
So, our first function takes a “hexagon grid coordinate” and generates a hexagon
for that coordinate. The size and location of that hexagon are controlled by the
hexagon edge length for this particular tiling.

8

−− Given coord ina t e s in the hexagon t i l i n g t ha t has t h i s
−− edge s i z e , re turn the b u i l t −out hexagon
CREATE OR REPLACE
FUNCTION hexagon (i integer , j integer , edge f l o a t 8)
RETURNS geometry
AS $$
DECLARE
h f l o a t 8 := edge* cos (p i () / 6 . 0) ;
cx f l o a t 8 := 1 .5* i * edge ;
cy f l o a t 8 := h*(2* j+abs (i %2));
BEGIN
RETURN ST_MakePolygon(ST_MakeLine(ARRAY[

ST_MakePoint (cx − 1 .0* edge , cy + 0) ,
ST_MakePoint (cx − 0 .5* edge , cy + −1*h) ,
ST_MakePoint (cx + 0.5* edge , cy + −1*h) ,
ST_MakePoint (cx + 1.0* edge , cy + 0) ,
ST_MakePoint (cx + 0.5* edge , cy + h) ,
ST_MakePoint (cx − 0 .5* edge , cy + h) ,
ST_MakePoint (cx − 1 .0* edge , cy + 0)

])) ;
END;
$$
LANGUAGE ’ p lpg sq l ’
IMMUTABLE
STRICT
PARALLEL SAFE;

SELECT ST_AsText(hexagon (2 , 2 , 1 0 . 0)) ;

POLYGON((20 34.6410161513775 ,25 25.9807621135332 ,
35 25.9807621135332 ,40 34.6410161513775 ,
35 43.3012701892219 ,25 43.3012701892219 ,
20 34 .6410161513775))

Find hexagon coordinates within the map tile

Now we need a function that, given a square input (a map tile), can figure out
all the hexagon coordinates that fall within the tile. Again, the edge size of the
hexagon tiling determines the overall geometry of the hex tiling. More than one
hexagon will be required most times, so this is a set-returning function.
−− Given a square bounds , f i nd a l l the hexagonal c e l l s
−− o f a hex t i l i n g (determined by edge s i z e)
−− t h a t might cover t ha t square (s l i g h t l y over−determined)

9

CREATE OR REPLACE
FUNCTION hexagoncoord inates (bounds geometry , edge f l o a t 8 ,

OUT i integer , OUT j integer)
RETURNS SETOF record
AS $$

DECLARE
h f l o a t 8 := edge* cos (p i () / 6) ;
mini integer := f l o o r (st_xmin (bounds) / (1 . 5* edge)) ;
minj integer := f l o o r (st_ymin (bounds) / (2*h)) ;
maxi integer := c e i l (st_xmax(bounds) / (1 . 5* edge)) ;
maxj integer := c e i l (st_ymax(bounds) / (2*h)) ;

BEGIN
FOR i , j IN
SELECT a , b
FROM gene ra t e_se r i e s (mini , maxi) a ,

g ene r a t e_se r i e s (minj , maxj) b
LOOP

RETURN NEXT;
END LOOP;
END;

$$
LANGUAGE ’ p lpg sq l ’
IMMUTABLE
STRICT
PARALLEL SAFE;

SELECT * FROM hexagoncoord inates (ST_TileEnvelope (15 , 1 , 1) , 1 0 0 0 . 0) ;

i | j
−−−−−−−−+−−−−−−−

−13358 | 11567
−13358 | 11568
−13357 | 11567
−13357 | 11568
−13356 | 11567
−13356 | 11568

Generate hexagons that cover the map tile

Next, we need a function that puts the two parts together: with tile coordinates
and edge size as input, generate the set of all the hexagons that cover the tile.
The output here is basically a spatial table: a set of rows, each row containing
a geometry (hexagon) and some properties (hexagon coordinates). This is the
input we need for a spatial join.

10

−− Given an input ZXY t i l e coordinate , output a s e t o f hexagons
−− (and hexagon coord ina t e s) in web mercator t ha t cover t ha t t i l e
CREATE OR REPLACE
FUNCTION t i l eh exagon s (z integer , x integer , y integer , s t ep integer ,

OUT geom geometry (Polygon , 3857) , OUT i integer , OUT j integer)
RETURNS SETOF record
AS $$

DECLARE
bounds geometry ;
maxbounds geometry := ST_TileEnvelope (0 , 0 , 0) ;
edge f l o a t 8 ;

BEGIN
bounds := ST_TileEnvelope (z , x , y) ;
edge := (ST_XMax(bounds) − ST_XMin(bounds)) / pow(2 , s tep) ;
FOR geom , i , j IN
SELECT ST_SetSRID(hexagon (h . i , h . j , edge) , 3857) , h . i , h . j
FROM hexagoncoord inates (bounds , edge) h
LOOP

IF maxbounds ~ geom AND bounds && geom THEN
RETURN NEXT;

END IF ;
END LOOP;
END;

$$
LANGUAGE ’ p lpg sq l ’
IMMUTABLE
STRICT
PARALLEL SAFE;

The function that the tile server actually calls looks like all other tile server
functions: tile coordinates and optional parameter as input, bytea MVT as
output.

−− Given an input t i l e , genera te the cover ing hexagons ,
−− s p a t i a l l y j o i n to popu la t i on t a b l e , summarize
−− popu la t i on in each hexagon , and genera te MVT
−− output o f the r e s u l t . Step parameter determines
−− how many hexagons to genera te per t i l e .
CREATE OR REPLACE
FUNCTION pub l i c . hexpopulationsummary (z integer , x integer , y integer , s t ep integer default 4)
RETURNS bytea
AS $$
WITH
bounds AS (

−− Convert t i l e coord ina t e s to web mercator t i l e bounds
SELECT ST_TileEnvelope (z , x , y) AS geom

11

) ,
rows AS (

−− Summary o f popu la ted p l a c e s grouped by hex
SELECT Sum(pop_max) AS pop_max , Sum(pop_min) AS pop_min , h . i , h . j , h . geom
−− Al l the hexes t ha t i n t e r a c t wi th t h i s t i l e
FROM TileHexagons (z , x , y , s tep) h
−− Al l the popu la ted p l a c e s
JOIN ne_50m_populated_places n
−− Transform the hex in t o the SRS (4326 in t h i s case)
−− o f the t a b l e o f i n t e r e s t
ON ST_Intersects (n . geom , ST_Transform(h . geom , 4326))
GROUP BY h . i , h . j , h . geom

) ,
mvt AS (

−− Usual t i l e process ing , ST_AsMVTGeom s imp l i f i e s , quant i z e s ,
−− and c l i p s to t i l e boundary
SELECT ST_AsMVTGeom(rows . geom , bounds . geom) AS geom ,

rows . pop_max , rows . pop_min , rows . i , rows . j
FROM rows , bounds

)
−− Generate MVT encoding o f f i n a l input record
SELECT ST_AsMVT(mvt , ’ d e f au l t ’) FROM mvt
$$
LANGUAGE ’ s q l ’
STABLE
STRICT
PARALLEL SAFE;

COMMENT ON FUNCTION pub l i c . hexpopulationsummary IS ’Hex␣summary␣ o f ␣ the ␣ne_50m_populated_places␣ t ab l e . ␣Step␣parameter ␣ determines ␣how␣approximately ␣many␣hexes ␣ (2^ step) ␣ to ␣ generate ␣per ␣ t i l e . ’ ;

Function Layer Detail JSON

In the detail JSON, each function declares information relevant to setting up a
map interface for the layer.

Since functions generate tiles dynamically, the system cannot auto-discover
properties such as extent, or center. However, the custom parameters as well
as defaults can be read from the function definition and exposed in the detail
JSON.

{
”name” : ” parce l s_in_radius ” ,
” id ” : ” pub l i c . parce l s_in_radius ” ,
” schema” : ” pub l i c ” ,

12

” d e s c r i p t i o n ” : ”Given the c l i c k po int (c l i ck_lon , c l i c k_ l a t) and radius , r e tu rn s a l l the pa r c e l s in the radius , c l i pped to the rad iu s c i r c l e . ” ,
”minzoom” : 0 ,
” arguments ” : [

{
” d e f au l t ” : ”−123.13” ,
”name” : ” c l i ck_ lon ” ,
” type ” : ” double p r e c i s i o n ”

} ,
{

” d e f au l t ” : ”49 .25” ,
”name” : ” c l i c k_ l a t ” ,
” type ” : ” double p r e c i s i o n ”

} ,
{

” d e f au l t ” : ”500 .0” ,
” type ” : ” double p r e c i s i o n ” ,
”name” : ” rad iu s ”

}
] ,
”maxzoom” : 22 ,
” t i l e u r l ” : ” http :// l o c a l h o s t :7800/ pub l i c . parce l s_in_radius /{ z }/{x}/{y } . pbf ”

}

• description can be set using the COMMENT ON FUNCTION SQL com-
mand.

• id, schema, and name are the fully qualified name, schema, and function
name, respectively.

• minzoom and maxzoom are the defaults as set in the configuration file.
• arguments is a list of argument names, with the data type and default

value.

Function Layer Examples

Filtering example

This simple example returns a filtered subset of a table (ne_50m_admin_0_countries
EPSG:4326). The filter in this case is the first letter of the name.
Note that the name_prefix parameter includes a default value: this is useful
for clients (like the preview interface for this server) that read arbitrary function
definitions and need a default value to fill into interface fields.

13

https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural/ne_50m_admin_0_countries.zip
https://epsg.io/4326

This example also uses ST_TileEnvelope(), a utility function only available in
PostGIS 3.0 and higher. See the notes below for a workaround using custom
functions.
CREATE OR REPLACE
FUNCTION pub l i c . countries_name (

z integer , x integer , y integer ,
name_prefix t ex t default ’B ’)

RETURNS bytea
AS $$

WITH
bounds AS (

SELECT ST_TileEnvelope (z , x , y) AS geom
) ,
mvtgeom AS (

SELECT ST_AsMVTGeom(ST_Transform(t . geom , 3857) , bounds . geom) AS geom ,
t . name

FROM ne_50m_admin_0_countries t , bounds
WHERE ST_Intersects (t . geom , ST_Transform(bounds . geom , 4326))
AND upper (t . name) LIKE (upper (name_prefix) | | ’%’)

)
SELECT ST_AsMVT(mvtgeom , ’ d e f au l t ’) FROM mvtgeom ;

$$
LANGUAGE ’ s q l ’
STABLE
PARALLEL SAFE;

COMMENT ON FUNCTION pub l i c . countries_name IS ’ F i l t e r s ␣ the ␣ c oun t r i e s ␣ t ab l e ␣by␣ the ␣ i n i t i a l ␣ l e t t e r s ␣ o f ␣ the ␣name␣ us ing ␣ the ␣”name_prefix ”␣parameter . ’ ;

Some notes about this function:

• The ST_AsMVT() function uses the function name (“public.countries_name”)
as the MVT layer name. While this is not required, it allows clients that
auto-configure to use the function name as the layer source name.

• In the filter portion of the query (i.e. in the WHERE clause), the bounds
are transformed to the spatial reference of the table data (in this case,
4326) so that the spatial index on the table geometry can be used.

• In the ST_AsMVTGeom() portion of the query, the table geometry is
transformed into Web Mercator (3857) to match the bounds and the de
facto expectation that MVT tiles are delivered in Web Mercator projec-
tion.

• The LIMIT is hard-coded in this example. If you want a user-defined limit,
you need to add another parameter to your function definition.

• The function “volatility” is declared as STABLE because within one trans-
action context, multiple runs with the same inputs will return the same

14

https://epsg.io/3857
https://www.postgresql.org/docs/current/xfunc-volatility.html

outputs. It is not marked as IMMUTABLE because changes in the base
table can change the outputs over time, even for the same inputs.

• The function is declared as PARALLEL SAFE because it doesn’t depend
on any global state that might get confused by running multiple copies of
the function at once.

• For earlier versions of PostGIS, the following is an example of a
custom function that emulates the behavior of ST_TileEnvelope():
sql CREATE OR REPLACE FUNCTION ST_TileEnvelope(z integer, x integer, y integer) RETURNS geometry AS $$ DECLARE size float8; zp integer = pow(2, z); gx float8 ; gy float8 ; BEGIN IF y >= zp OR y < 0 OR x >= zp OR x < 0 THEN RAISE EXCEPTION ’invalid tile coordinate (%, %, %)’, z, x, y; END IF; size := 40075016.6855784 / zp; gx := (size * x) − (40075016.6855784/2); gy := (40075016.6855784/2) − (size * y); RETURN ST_SetSRID(ST_MakeEnvelope(gx, gy, gx + size, gy − size), 3857); END; $$ LANGUAGE ’plpgsql’ IMMUTABLE STRICT PARALLEL SAFE;

Spatial processing example

This example clips a layer of parcels (EPSG:26910) using a radius and center
point, returning only the parcels in the radius, with the boundary parcels clipped
to the center.

CREATE OR REPLACE
FUNCTION pub l i c . parce l s_in_radius (

z integer , x integer , y integer ,
c l i ck_ lon f l o a t 8 default −123.13 ,
c l i c k_ l a t f l o a t 8 default 49 .25 ,
rad iu s f l o a t 8 default 500 .0)

RETURNS bytea
AS $$

WITH
args AS (

SELECT
ST_TileEnvelope (z , x , y) AS bounds ,
ST_Transform(ST_SetSRID(ST_MakePoint (c l i ck_lon , c l i c k_ l a t) , 4326) , 26910) AS c l i c k

) ,
mvtgeom AS (

SELECT
ST_AsMVTGeom(

ST_Transform(
ST_Intersect ion (

p . geom ,
ST_Buffer (args . c l i c k , r ad iu s)) ,

3857) ,
args . bounds) AS geom ,

p . s i t e_ id
FROM pa r c e l s p , args
WHERE ST_Intersects (p . geom , ST_Transform(args . bounds , 26910))
AND ST_DWithin(p . geom , args . c l i c k , r ad iu s)
LIMIT 10000

15

https://data.vancouver.ca/datacatalogue/propertyInformation.htm
https://epsg.io/26910

)
SELECT ST_AsMVT(mvtgeom , ’ d e f au l t ’) FROM mvtgeom

$$
LANGUAGE ’ s q l ’
STABLE
PARALLEL SAFE;

COMMENT ON FUNCTION pub l i c . parce l s_in_rad ius IS ’ Given␣ the ␣ c l i c k ␣ po int ␣ (c l i ck_lon , ␣ c l i c k_ l a t) ␣and␣ radius , ␣ r e tu rn s ␣ a l l ␣ the ␣ pa r c e l s ␣ in ␣ the ␣ radius , ␣ c l i pped ␣ to ␣ the ␣ rad iu s ␣ c i r c l e . ’ ;

Notes:

• The parcels are stored in a table with spatial reference system 3005, a
planar projection.

• The click parameters are longitude/latitude, so in building a click geome-
try (ST_MakePoint()) to use for querying, we transform the geometry to
the table spatial reference.

• To get the parcel boundaries clipped to the radius, we build a circle in
the native spatial reference (26910) using the ST_Buffer() function on the
click point, then intersect that circle with the parcels.

You can explore the contents of the tile server using:

• an HTML web interface for humans; and
• a JSON API for computers.

The JSON API is useful for clients that auto-configure based on the service
metadata. In fact, the HTML web interface itself is an example of such an
auto-configuring interface: it reads the JSON and uses that to set up the web
map visualization and interface elements.

Web Interface

After start-up, you can connect to the server and explore the published tables
and functions in the database via a web interface at:

• http://localhost:7800

16

https://epsg.io/3005

Click the “preview” link of any of the layer entries to see a web map view of
the layer. The “json” link provides a direct link to the JSON metadata for that
layer.

Layers List

A top-level list of layers is available in JSON at:

• http://localhost:7800/index.json

The index JSON returns the minimum information about each layer.
{

” pub l i c . ne_50m_admin_0_countries” : {
”name” : ”ne_50m_admin_0_countries ” ,
” schema” : ” pub l i c ” ,
” type ” : ” t ab l e ” ,
” id ” : ” pub l i c . ne_50m_admin_0_countries ” ,
” d e s c r i p t i o n ” : ”Natural Earth country data ” ,
” d e t a i l u r l ” : ” http :// l o c a l h o s t :7800/ pub l i c . ne_50m_admin_0_countries . j s on ”

}
}

• The detailurl provides more detailed metadata for table and function
layers.

• The description field is read from the comment value of the ta-
ble. To set a comment on a table, use the COMMENT command:
sql COMMENT ON TABLE ne_50m_admin_0_countries IS ’This is my comment’;

The basic principle of security is to connect your tile server to the database with
a user that has just the access you want it to have, and no more.
Start with a new, blank user. A blank user has no select privileges on tables it
does not own. It does have execute privileges on functions. However, the user
has no select privileges on tables accessed by functions, so effectively the user
will still have no access to data.
CREATE USER t i l e s e r v e r ;

To support different access patterns, create different users with access to differ-
ent tables/functions, and run multiple services, connecting with those different
users.

17

Tables and Views

If your tables and views are in a schema other than public, you will have to also
grant “usage” on that schema to your user.
GRANT USAGE ON SCHEMA myschema TO t i l e s e r v e r ;

You can then grant access to the user one table at a time.
GRANT SELECT ON TABLE myschema . mytable TO t i l e s e r v e r ;

Alternatively, you can grant access to all the tables at once.
GRANT SELECT ON ALL TABLES IN SCHEMA myschema TO t i l e s e r v e r ;

Functions

As noted above, functions that access table data are effectively restricted by
the access levels the user has to the tables the function reads. If you want
to completely restrict access to the function, including visibility in the user
interface, you can strip execution privileges from the function.
−− Al l f unc t i on s grant execu te to ’ pub l i c ’ and a l l r o l e s are
−− par t o f the ’ pub l i c ’ group , so pu b l i c has to be removed
−− from the execu to r s o f the func t i on
REVOKE EXECUTE ON FUNCTION myschema . myfunction FROM pub l i c ;
−− Just to be sure , a l s o revoke execu te from the user
REVOKE EXECUTE ON FUNCTION myschema . myfunction FROM t i l e s e r v e r ;

By default, pg_tileserv will provide access to only those spatial tables and
views that:

• your database connection has SELECT privileges for;
• include a geometry column;
• declare a geometry type; and,
• declare an SRID (spatial reference ID).

For example:
CREATE TABLE mytable (

geom Geometry (Polygon , 4326) ,
pid text ,
address t ex t

) ;
GRANT SELECT ON mytable TO myuser ;

18

To restrict access to a certain set of tables, use database security principles:

• Create a role with limited privileges
• Only grant SELECT to that role for tables you want to publish
• Only grant EXECUTE to that role for functions you want to publish
• Connect pg_tileserv to the database using that role

Table Layer Detail JSON

In the detail JSON, each layer declares information relevant to setting up a map
interface for the layer.

{
” id ” : ” pub l i c . ne_50m_admin_0_countries ” ,
” geometrytype ” : ”MultiPolygon ” ,
”name” : ”ne_50m_admin_0_countries ” ,
” d e s c r i p t i o n ” : ”Natural Earth c oun t r i e s ” ,
” schema” : ” pub l i c ” ,
”bounds” : [

−180,
−89.9989318847656 ,
180 ,
83.599609375

] ,
” c en t e r ” : [

0 ,
−3.19966125488281

] ,
” t i l e u r l ” : ” http :// l o c a l h o s t :7800/ pub l i c . ne_50m_admin_0_countries/{ z }/{x}/{y } . pbf ” ,
” p r op e r t i e s ” : [

{
”name” : ” g id ” ,
” type ” : ” in t4 ” ,
” d e s c r i p t i o n ” : ””

} ,{
”name” : ” f e a t u r e c l a ” ,
” d e s c r i p t i o n ” : ”” ,
” type ” : ” varchar ”

} ,{
” d e s c r i p t i o n ” : ”” ,
” type ” : ” varchar ” ,

19

”name” : ”name”
} ,{

” type ” : ” varchar ” ,
” d e s c r i p t i o n ” : ”” ,
”name” : ”name_long”

}
] ,
”minzoom” : 0 ,
”maxzoom” : 22

}

• id, name, and schema are the fully qualified, table, and schema name of
the database table.

• bounds and center give the extent and middle of the data collection, in
geographic coordinates. The order of coordinates in bounds is [minlon,
minlat, maxlon, maxlat]. The order of coordinates in center is [lon, lat].

• tileurl is the standard substitution pattern URL consumed by map clients
like Mapbox GL JS and OpenLayers.

• properties is a list of columns in the table, with their data types and
descriptions. The description field can be set using the COMMENT SQL
command, for example:

COMMENT ON COLUMN ne_50m_admin_0_countries . name_long IS ’ This ␣ i s ␣ the ␣ long ␣name ’ ;

Table Tile Request Customization

Most developers will use the tileurl as is, but it’s possible to add parameters
to the URL to customize behaviour at run time:

• limit controls the number of features to write to a tile. The default is
50000.

• resolution controls the resolution of a tile. The default is 4096 units per
side for a tile.

• buffer controls the size of the extra data buffer for a tile. The default is
256 units.

• properties is a comma-separated list of properties to include in the tile.
For wide tables with large numbers of columns, this allows a slimmer tile
to be composed.

20

https://docs.mapbox.com/mapbox-gl-js/api/
https://openlayers.org

For example:

http :// l o c a l h o s t :7800/ pub l i c . ne_50m_admin_0_countries/{ z }/{x}/{y } . pbf ? l im i t =100000&p r op e r t i e s=name , long_name

We recommend avoiding commas in property names. If necessary, you can URL
encode the comma in the name string before composing the comma-separated
string of all names.

• filter is an expression in CQL specifying what features are included in
the tile

• filter −crs is the SRID of the coordinate reference system of any geometry
literals in the CQL expression (the default is 4326)

Multi-Layer Tile Requests

For more complex applications, multi-layer tiles can be useful to cut down on
the amount of HTTP requests to pull in vector tiles. Doing this with pg_tileserv
is easy, just add additional tables to your request. You can add as many tables
as you like to your request, just separate them with a comma.

For example:

http :// l o c a l h o s t :7800/ pub l i c . ne_50m_admin_0_countries , pub l i c . ne_50m_airports /{ z }/{x}/{y } . pbf

The tiles produced by PostGIS and published via pg_tileserv are “Mapbox
vector tiles”, a widely used de facto standard encoding of vector tiles.

The purpose of vector tiles is to efficiently transfer map features over the network,
so they optimize for size, using a variety of techniques while retaining enough
context to be useful to the client mapping environment.

Resolution

Coordinates in tiles are quantized to integer values, and the default resolution
of vector tiles is 4096 by 4096. The default resolution can be altered using the
DefaultResolution configuration parameter.

21

https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Percent-encoding
https://github.com/mapbox/vector-tile-spec
https://github.com/mapbox/vector-tile-spec

Tile Buffer

Tiles are rendered independently. For features with wide styles near borders,
a copy of the feature needs to appear in both neighboring tiles, or a rendering
failure will occur.

Figure 2: Tile rendering failure

The default tile buffer is 256 pixels, which is enough for most rendering cases.
You can make your tiles smaller if you have narrow rendering styles, by reducing
the DefaultBuffer configuration parameter.

22

Unique Identifier

The vector tile specification includes an optional “id” element that provides a
unique feature identifier.

A single feature can end up in multiple tiles, and the unique identifier allows the
client side renderer to do things like roll-overs and highlights on features that
span tile boundaries.

The tile server can automatically populate the “id” element, but only in cases
where:

• PostGIS version is >= 3.0, as the ST_AsMVT() function did not support
feature id until then.

• The table being published has a integer primary key defined. This key
will be used as the “id” automatically.

For function layers, the “id” can be populated, but that task is left to the
function author, who will be calling the ST_AsMVT() function in their code,
and must remember to populate the feature id name field. The column that is
chosen to populate the “id” element must be unique per feature.

Layer Name

The ST_AsMVT() function includes a parameter for the “name”. This is the
“layer name” that client rendering engines will use to identify this particular set
of features, to apply a style to those features.

For example, in MapLibre, the source−layer attribute for a layer must match
the layer name that is in the vector tile source, in order for the rendering rules
in that layer to be applied. If you leave the “name” attribute blank in your
ST_AsMVT() call, the name will be set to “default”, and so your source−layer
must also be set to “default” in order for your tile layer to render.

The web map examples in this section are set up to render a basemap layer
from Wikimedia and vector tiles from pg_tileserver running on a local machine,
using popular open source JavaScript web map components.

Load Natural Earth Data

23

https://github.com/mapbox/vector-tile-spec
https://github.com/mapbox/vector-tile-spec/blob/master/1.0.1/vector_tile.proto#L30
https://postgis.net/docs/ST_AsMVT.html
https://postgis.net/docs/ST_AsMVT.html
https://postgis.net/docs/ST_AsMVT.html

Database preparation

The following terminal commands will create a database named naturalearth,
assuming that your user account has create database privilege:

createdb natura l ea r th

Load the PostGIS extension as superuser (postgres):

p sq l −U pos tg r e s −d natura l ea r th −c ’CREATE EXTENSION pos tg i s ’

Import shapefile

The data used in the examples are loaded from Natural Earth. Download the
Admin 0 - Countries ZIP and extract to a location on your machine.

In that directory, run the following command in the terminal to load the
shapefile data into the naturalearth database. This creates a new table
ne_50m_admin_0_countries, with the application user as the owner – refer
to Table Layers and Security for more information on access to spatial tables
on pg_tileserv.

shp2pgsql −D −s 4326 ne_50m_admin_0_countries . shp | psq l −U username −d natura l ea r th

You should see the ne_50m_admin_0_countries table with the \dt SQL shell
command.

Make sure that pg_tileserv connection specifies naturalearth, i.e.: DATABASE_URL=postgres://username:password@host/naturalearth.
With the service running, you should also see the layer on the web preview, i.e.:
http://localhost:7800/public.ne_50m_admin_0_countries.html

With the service running, open this HTML in your browser.

With the service running, open this HTML in your browser.

This example demonstrates interactivity where clicking within a boundary dis-
plays a popup that shows feature properties. The web preview for pg_tileserv
also uses Mapbox GL JS.

With the service running, open the HTML in your browser.

Requirements

• PostgreSQL 9.5 or later
• PostGIS 2.4 or later

24

https://www.naturalearthdata.com/downloads/50m-cultural-vectors/
https://github.com/CrunchyData/pg_tileserv/blob/master/examples/leaflet/leaflet-tiles.html
https://github.com/CrunchyData/pg_tileserv/blob/master/examples/openlayers/openlayers-tiles.html
(https://github.com/CrunchyData/pg_tileserv/blob/master/examples/mapbox-gl-js/mapbox-gl-js-tiles.html)

Figure 3: pg_tileserv web interface preview

Figure 4: Leaflet map preview

25

Figure 5: OpenLayers map preview

Figure 6: Mapbox GL JS map preview

26

The tile server depends on the ST_AsMVT() function, which is only available
if PostGIS has been compiled with support for the libprotobuf library. See
the output from PostGIS_Full_Version, for example:

SELECT po s t g i s_ fu l l_ve r s i on ()

POSTGIS=”3.0 .1” [EXTENSION] PGSQL=”121” GEOS=”3.8.0−CAPI−1.13.1 ”
PROJ=”6.1 .0” LIBXML=”2.9 .4” LIBJSON=”0.13”
LIBPROTOBUF=”1.3 .2” WAGYU=”0.4 .3 (I n t e r na l)”

You don’t need advanced knowledge in Postgres/PostGIS or web mapping to
install pg_tileserv and set up the examples in this guide. If you are new to
functions in Postgres, you might try this quick interactive course to better see
how you might take advantage of pg_tileserv’s capabilities.

We also link to further resources at the end of this guide, for your reference.

Installation

To install pg_tileserv, download the binary file. Alternatively, you may run a
container. These first two options will suit most use cases; needing to build the
executable from source is rare.

A. Download binaries

Builds of the latest code:

• Linux
• Windows
• MacOS

Unzip the file, copy the pg_tileserv binary wherever you wish, or use it in place.
If you move the binary, remember to move the assets/ directory to the same
location, or start the server using the AssetsDir configuration option.

27

https://postgis.net/docs/ST_AsMVT.html
https://postgis.net/docs/PostGIS_Full_Version.html
https://learn.crunchydata.com/postgresql-devel/courses/beyond-basics/basicfunctions/
https://postgisftw.s3.amazonaws.com/pg_tileserv_latest_linux.zip
https://postgisftw.s3.amazonaws.com/pg_tileserv_latest_windows.zip
https://postgisftw.s3.amazonaws.com/pg_tileserv_latest_macos.zip

B. Run container

A Docker image is available on DockerHub:

• Docker

When you run the container, provide the database connection information in
the DATABASE_URL environment variable and map the default service port
(7800).
docker run −e DATABASE_URL=pos tg r e s : // user : pass@host /dbname −p 7800:7800 pramsey/ pg_t i l e s e rv

C. Build from source

If you must build from source, install the Go software development environment.
Make sure that the GOPATH environment variable is also set.
SRC=$GOPATH/ s r c / github . com/CrunchyData
mkdir −p $SRC
cd $SRC
g i t c l one git@github . com : CrunchyData/ pg_t i l e s e rv . g i t
cd pg_t i l e s e rv
go bu i ld
go i n s t a l l

To run the build, set the DATABASE_URL environment variable to the
database you want to connect to, and run the binary.
export DATABASE_URL=pos tg r e s : // user : pass@host /dbname
$GOPATH/bin / pg_t i l e s e rv

Deployment

Basic operation

export DATABASE_URL=po s t g r e s q l : // username : password@host/dbname
. / pg_t i l e s e rv

28

https://hub.docker.com/r/pramsey/pg_tileserv/
https://golang.org/doc/install
https://github.com/golang/go/wiki/SettingGOPATH

SET DATABASE_URL=po s t g r e s q l : // username : password@host/dbname
pg_t i l e s e rv . exe

Configuration file

The configuration file will be automatically read from the following locations, if
it exists:

• Relative to the directory from which the program is run, ./ config/pg_tileserv.toml
• In a root volume at /config/pg_tileserv.toml
• In the system configuration directory, at /etc/pg_tileserv.toml

If you want to pass a path directly to the configuration file, use the −−config
command line parameter.

Configuration files in other locations will be ignored when using the −−config
option.

. / pg_t i l e s e rv −−c on f i g /opt/ pg_t i l e s e rv / pg_t i l e s e rv . toml

The default settings will suit most uses, and the program autodetects values
such as the server name.

Database connect ion
DbConnection = ” user=you host=l o c a l h o s t dbname=yourdb”
Close pooled connec t i ons a f t e r t h i s i n t e r v a l
DbPoolMaxConnLifeTime = ”1h”
Hold no more than t h i s number o f connect i ons in the database pool
DbPoolMaxConns = 4
Look to read html templates from th i s d i r e c t o r y
AssetsPath = ” . / a s s e t s ”
Accept connec t i ons on t h i s subnet (d e f au l t accept s on a l l subnets)
HttpHost = ” 0 . 0 . 0 . 0 ”
Accept connec t i ons on t h i s port
HttpPort = 7800
Advert i se URLs r e l a t i v e to t h i s s e r v e r name
de f au l t i s to look t h i s up from incoming reque s t headers
UrlBase = ” http :// your se rve r . com/”
Reso lut ion to quant ize vec to r t i l e s to
De fau l tReso lu t i on = 4096
Rendering bu f f e r to add to vec to r t i l e s
De fau l tBu f f e r = 256
Limit number o f f e a t u r e s reques ted (−1 = no l im i t)

29

MaxFeaturesPerTile = 50000
Advert i se t h i s minimum zoom l e v e l
DefaultMinZoom = 0
Advert i se t h i s maximum zoom l e v e l
DefaultMaxZoom = 22
Allow any page to consume these t i l e s
CORSOrigins = *
Output ext ra l ogg ing in fo rmat ion ?
Debug = f a l s e

Motivation

There are numerous tile generators available (such as Tegola, Geoserver,
Mapserver) that read from multiple data sources and generate vector tiles.
pg_tileserv works exclusively with PostGIS data, but this also allows more
flexibility of usage.

By restricting itself to only using PostGIS as a data source, pg_tileserv gains
the following features:

• Automatic configuration. The server can discover and automatically
publish as tiles sources all tables it has read access to: just point it at a
PostgreSQL/PostGIS database.

• Full SQL flexibility. Using function layers, the server can run any SQL
to generate tile outputs. Any data processing, feature filtering, or record
aggregation that can be expressed in SQL, can be exposed as parameter-
ized tile sources.

• Database security model. You can restrict access to tables and func-
tions using standard database access control. This means you can also use
advanced access control techniques, like row-level security to dynamically
filter access based on the login role.

Architecture

pg_tileserv is one component in “PostGIS for the Web” (aka “PostGIS FTW”),
a growing family of Go spatial microservices. Database-centric applications nat-
urally have a central source of coordinating state, the database, which allows
otherwise independent microservices to coordinate and provide HTTP-level ac-
cess to the database with less middleware software complexity.

30

https://tegola.io/
https://geoserver.org
https://mapserver.org

• pg_tileserv provides MVT tiles for interactive clients and smooth render-
ing

• pg_featureserv provides GeoJSON feature services for reading and writing
vector and attribute data from tables

PostGIS for the Web makes it possible to stand up a spatial services archi-
tecture of stateless microservices surrounding a PostgreSQL/PostGIS database
cluster, in a standard container environment, on any cloud platform or internal
datacenter.

Definitions

• Map tiles are a way of representing a multi-scale, zoomable cartographic
map by regularly subidividing the plane into independent tiles that can
then be rendered on a server and retrieved by a map client in parallel.

• Vector tiles are a specific format of map tile that encode the features as
vectors and delegate to the client web browser the rendering of the features
into cartography. Client side vector rendering uses less bandwidth, which
is good for mobile clients, and allow more options for client side dynamic
data visualizations.

• A spatial database is a database that includes a “geometry” column
type. The PostGIS extension to PostgreSQL adds a geometry column
type, as well as hundreds of functions to operate on that type, including
the ST_AsMVT() function that pg_tileserv depends upon.

GIS

• QGIS is a free and open source application for editing, visualizing, and
analyzing spatial data. Get started with the QGIS Training Manual.

• The Introduction to PostGIS Workshop is a full tutorial on the PostGIS
extension.

• Shorter interactive courses on PostGIS are also available on the Crunchy
Data Learning Platform.

• Learn more about practical applications of PostGIS with PostGIS Day
2019 Talks.

31

https://access.crunchydata.com/documentation/pg_featureserv/latest/
https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Tiled_web_map
https://docs.mapbox.com/vector-tiles/specification/
https://postgis.net/docs/ST_AsMVT.html
https://docs.qgis.org/3.4/en/docs/training_manual/index.html
https://postgis.net/workshops/postgis-intro
https://learn.crunchydata.com/postgis
https://info.crunchydata.com/stl-postgis-day-2019-presentations
https://info.crunchydata.com/stl-postgis-day-2019-presentations

Web Mapping

• OpenLayers
• Leaflet
• Mapbox GL JS

Source Code

• GitHub

Tile Server

To get more information about what’s going on behind the scenes, run the server
with the −−debug command line parameter:

. / pg_t i l e s e rv −−debug

Or, turn on debugging in the configuration file.

Web Layer

Hitting your service end points with a command-line utility like curl can also
yield useful information:

c u r l −I http :// l o c a l h o s t :7800/ index . j son

Database Layer

The debug mode of the tile server returns the SQL that is being called on the
database. If you want to delve more deeply into all the SQL that is being run
on the database, you can turn on statement logging in PostgreSQL by editing
the postgresql .conf file for your database and restarting.

32

https://openlayers.org
https://leafletjs.com/
https://docs.mapbox.com/mapbox-gl-js/api/
https://github.com/crunchydata/pg_tileserv/
https://curl.haxx.se/
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-STATEMENT

Bug Reporting

If you find an issue with the tile server, bugs can be reported on GitHub at the
issue tracker:

• https://github.com/crunchydata/pg_tileserv/issues

33

	pg_tileserv
	Spatial filters

