
pgAdmin 4 Documentation
Release 1.3

The pgAdmin Development Team

Jul 25, 2019





CONTENTS

i



ii



pgAdmin 4 Documentation, Release 1.3

Welcome to pgAdmin 4. pgAdmin is the leading Open Source management tool for Postgres, the world’s most
advanced Open Source database. pgAdmin 4 is designed to meet the needs of both novice and experienced Postgres
users alike, providing a powerful graphical interface that simplifies the creation, maintenance and use of database
objects.

Contents:

CONTENTS 1



pgAdmin 4 Documentation, Release 1.3

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments;
we recommend using an installer whenever possible. A standard installation using the pgAdmin installer is a server
deployment.

In a Server Deployment, the pgAdmin application is deployed behind a webserver or with the WSGI interface. If
you install pgAdmin in server mode, you will be prompted to provide a role name and pgAdmin password when you
initially connect to pgAdmin. The first role registered with pgAdmin will be an administrative user; the administrative
role can use the pgAdmin User Management dialog to create and manage additional pgAdmin user accounts. When a
user authenticates with pgAdmin, the pgAdmin tree control displays the server definitions associated with that login
role.

Contents:

1.1 Server Deployment

pgAdmin may be deployed as a web application by configuring the app to run in server mode and then deploying it
either behind a webserver running as a reverse proxy, or using the WSGI interface.

The following instructions demonstrate how pgAdmin may be run as a WSGI application under Apache HTTP,
using mod_wsgi.

1.1.1 Requirements

Important: Some components of pgAdmin require the ability to maintain affinity between client sessions and a
specific database connection (for example, the Query Tool in which the user might run a BEGIN command followed
by a number of DML SQL statements, and then a COMMIT). pgAdmin has been designed with built-in connection
management to handle this, however it requires that only a single Python process is used because it is not easily
possible to maintain affinity between a client session and one of multiple WSGI worker processes.

On Windows systems, the Apache HTTP server uses a single process, multi-threaded architecture. WSGI applications
run in embedded mode, which means that only a single process will be present on this platform in all cases.

On Unix systems, the Apache HTTP server typically uses a multi-process, single threaded architecture (this is depen-
dent on the MPM that is chosen at compile time). If embedded mode is chosen for the WSGI application, then there
will be one Python environment for each Apache process, each with it’s own connection manager which will lead to
loss of connection affinity. Therefore one should use mod_wsgi’s daemon mode, configured to use a single process.
This will launch a single instance of the WSGI application which is utilised by all the Apache worker processes.

Whilst it is true that this is a potential performance bottleneck, in reality pgAdmin is not a web application that’s ever
likely to see heavy traffic unlike a busy website, so in practice should not be an issue.

3



pgAdmin 4 Documentation, Release 1.3

Future versions of pgAdmin may introduce a shared connection manager process to overcome this limitation, however
that is a significant amount of work for little practical gain.

1.1.2 Configuration

In order to configure pgAdmin to run in server mode, it is first necessary to configure the Python code to run in
multi-user mode, and then to configure the web server to find and execute the code.

Note that there are multiple configuration files that are read at startup by pgAdmin. These are as follows:

• config.py: This is the main configuration file, and should not be modified. It can be used as a reference for
configuration settings, that may be overridden in one of the following files.

• config_distro.py: This file is read after config.py and is intended for packagers to change any settings
that are required for their pgAdmin distribution. This may typically include certain paths and file locations.

• config_local.py: This file is read after config_distro.py and is intended for end users to change
any default or packaging specific settings that they may wish to adjust to meet local preferences or standards.

Python

In order to configure the Python code, follow these steps:

1. Create a config_local.py file alongside the existing config.py file.

2. Edit config_local.py and add the following setting:

SERVER_MODE = True

3. In most cases, the default file locations are setup for running in desktop mode. Add settings similar to the
following to config_local.py to use paths suitable for server mode.

NOTE: You must ensure the directories specified are writeable by the user that the web server processes will be
running as, e.g. apache or www-data.

LOG_FILE = '/var/log/pgadmin4/pgadmin4.log'
SQLITE_PATH = '/var/lib/pgadmin4/pgadmin4.db'
SESSION_DB_PATH = '/var/lib/pgadmin4/sessions'
STORAGE_DIR = '/var/lib/pgadmin4/storage'

4. Run the following command to create the configuration database:

# python setup.py

5. Change the ownership of the configuration database to the user that the web server processes will run as, for
example, assuming that the web server runs as user www-data in group www-data, and that the SQLite path is
/var/lib/pgadmin4/pgadmin4.db:

# chown www-data:www-data /var/lib/pgadmin4/pgadmin4.db

Apache HTTPD Configuration (Windows)

Once Apache HTTP has been configured to support mod_wsgi, the pgAdmin application may be configured similarly
to the example below:

4 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

<VirtualHost *>
ServerName pgadmin.example.com
WSGIScriptAlias / "C:\Program Files\pgAdmin4\web\pgAdmin4.wsgi"
<Directory "C:\Program Files\pgAdmin4\web">

Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Apache HTTPD Configuration (Linux/Unix)

Once Apache HTTP has been configured to support mod_wsgi, the pgAdmin application may be configured similarly
to the example below:

<VirtualHost *>
ServerName pgadmin.example.com

WSGIDaemonProcess pgadmin processes=1 threads=25
WSGIScriptAlias / /opt/pgAdmin4/web/pgAdmin4.wsgi

<Directory /opt/pgAdmin4/web>
WSGIProcessGroup pgadmin
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Note: If you’re using Apache HTTPD 2.4 or later, replace the lines:

Order deny,allow
Allow from all

with:

Require all granted

Adjust as needed to suit your access control requirements.

1.2 The pgAdmin Login Dialog

Use the pgAdmin Login dialog to log in to pgAdmin:

1.2. The pgAdmin Login Dialog 5



pgAdmin 4 Documentation, Release 1.3

Use the fields in the pgAdmin Login dialog to authenticate your connection:

1. Provide the email address associated with your account in the Email Address field.

2. Provide your password in the Password field.

3. Click the Login button to securely log into pgAdmin.

Recovering a Lost Password

If you cannot supply your password, click the Forgotten your password? button to launch a password recovery utility.

1. Provide the email address associated with your account in the Email Address field.

2. Click the Recover Password button to initiate recovery. An email, with directions on how to reset a password,
will be sent to the address entered in the Email Address field.

If you have forgotten the email associated with your account, please contact your administrator.

1.3 The User Management Dialog

When invoking pgAdmin in desktop mode, a password is randomly generated, and then ignored. If you install pgAd-
min in server mode, you will be prompted for an administrator email and password for the pgAdmin client.

6 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

When you authenticate with pgAdmin, the server definitions associated with that login role are made available in the
tree control. An administrative user can use the User Management dialog to

• add or delete pgAdmin roles

• assign privileges

• manage the password associated with a role

Use the Filter by email search field to find a user; enter a user’s email address to find a user. If the user exists, the User
Management table will display the user’s current information.

To add a user, click Add to add new role.

Provide information about the new pgAdmin role in the row:

• Click in the Email field, and provide an email address for the user; this address will be used to recover the

1.3. The User Management Dialog 7



pgAdmin 4 Documentation, Release 1.3

password associated with the role should the password be lost.

• Use the drop-down listbox next to Role to select whether a user is an Administrator or a User.

– Select Administrator if the user will have administrative privileges within the pgAdmin client.

– Select User to create a non-administrative user account.

• Move the Active switch to the No position if the account is not currently active; the default is Yes. Use this
switch to disable account activity without deleting an account.

• Use the New password field to provide the password associated with the user specified in the Email field.

• Re-enter the password in the Confirm password field.

To discard a user, and revoke access to pgAdmin, click the trash icon to the left of the row and confirm deletion in the
Delete user? dialog.

Users with the Administrator role are able to add, edit and remove pgAdmin users, but otherwise have the same
capabilities as those with the User role.

• Click the Help button (?) to access online help.

• Click the Close button to save work. You will be prompted to return to the dialog if your selections cannot be
saved.

In a Desktop Deployment, the pgAdmin application is configured to use the desktop runtime environment to host
and display the program on a supported platform. Typically, users will install a pre-built package to run pgAdmin in
desktop mode, but a manual desktop deployment can be installed and though it is more difficult to setup, it may be
useful for developers interested in understanding how pgAdmin works.

Contents:

1.4 Desktop Deployment

pgAdmin may be deployed as a desktop application by configuring the application to run in desktop mode and then
utilising the desktop runtime to host and display the program on a supported Windows, Mac OS X or Linux installation.

Note: Pre-compiled and configured installation packages are available for a number of platforms. These pack-
ages should be used by end-users whereever possible - the following information is useful for the maintainers of
those packages and users interested in understanding how pgAdmin works.

1.4.1 Configuration

In order to configure pgAdmin to run in desktop mode, it is first necessary to configure the Python code to run in
single-user mode, and then to configure the runtime to find and execute the code.

Note that there are multiple configuration files that are read at startup by pgAdmin. These are as follows:

• config.py: This is the main configuration file, and should not be modified. It can be used as a reference for
configuration settings, that may be overridden in one of the following files.

• config_distro.py: This file is read after config.py and is intended for packagers to change any settings
that are required for their pgAdmin distribution. This may typically include certain paths and file locations.

• config_local.py: This file is read after config_distro.py and is intended for end users to change
any default or packaging specific settings that they may wish to adjust to meet local preferences or standards.

8 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

Python

In order to configure the Python code, follow these steps:

1. Ensure that any existing configuration database (pgadmin4.db) is moved out of the way in the web/ directory
containing the pgAdmin Python code.

2. Create a config_local.py file alongside the existing config.py file.

3. Edit config_local.py and add the following setting:

SERVER_MODE = False

4. Run the following command to create the configuration database:

$ python setup.py

Alternatively, you can simply run pgAdmin4.py at this point or aat a later time, and pgadmin4.db will be created
automatically at first run.

Runtime

When executed, the runtime will automatically try to execute the pgAdmin Python application. If execution fails,
it will prompt you to adjust the Python Path to include the directories containing the pgAdmin code as well as any
additional Python dependencies. You can enter a list of paths by separating them with a semi-colon character, for
example:

/Users/dpage/.virtualenvs/pgadmin4/lib/python2.7/site-packages/;/Users/dpage/python-
↪→libs/

The configuration settings are stored using the QSettings class in Qt, which will use an INI file on Unix systems, a
plist file on Mac OS X, and the registry on Windows. The Python Path setting is stored in the PythonPath key.

The pgAdmin 4 client features a highly-customizable display that features drag-and-drop panels that you can arrange
to make the best use of your desktop environment.

The tree control provides an elegant overview of the managed servers, and the objects that reside on each server. Right-
click on a node within the tree control to access context-sensitive menus that provide quick access to management tasks
for the selected object.

The tabbed browser provide quick access to statistical information about each object in the tree control, and pgAdmin
tools and utilities (such as the Query tool and the debugger). pgAdmin opens additional feature tabs each time you
access the extended functionality offered by pgAdmin tools; you can open, close, and re-arrange feature tabs as needed.

Use the Preferences dialog to customize the content and colors of the pgAdmin display. To open the Preferences
dialog, select Preferences from the File menu.

Help buttons in the lower-left corner of each dialog will open the online help for the dialog. You can access additional
Postgres help by navigating through the Help menu, and selecting the name of the resource that you wish to open.

Contents:

1.5 The pgAdmin 4 Client

pgAdmin 4 supports all PostgreSQL features, from writing simple SQL queries to developing complex databases. It
is designed to query an active database (in real-time), allowing you to stay current with modifications and implemen-
tations.

1.5. The pgAdmin 4 Client 9



pgAdmin 4 Documentation, Release 1.3

Features of pgAdmin 4 include:

• auto-detection and support for objects discovered at run-time

• a live SQL query tool with direct data editing

• support for administrative queries

• a syntax-highlighting SQL editor

• redesigned graphical interfaces

• powerful management dialogs and tools for common tasks

• responsive, context-sensitive behavior

• supportive error messages

• helpful hints

• online help and information about using pgAdmin dialogs and tools.

When pgAdmin opens, the interface features a menu bar and a window divided into two panes: the Browser tree
control in the left pane, and a tabbed browser in the right pane.

Select an icon from the Quick Links panel on the Dashboard tab to:

• Click the Add New Server button to open the Create - Server dialog to add a new server definition.

• Click the Configure pgAdmin button to open the Preferences dialog to customize your pgAdmin client.

Links in the Getting Started panel open a new browser tab that provide useful information for Postgres users:

10 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

• Click the PostgreSQL Documentation link to navigate to the Documentation page for the PostgreSQL open-
source project; once at the project site, you can review the manuals for the currently supported versions of the
PostgreSQL server.

• Click the pgAdmin Website link to navigate to the pgAdmin project website. The pgAdmin site features news
about recent pgAdmin releases and other project information.

• Click the Planet PostgreSQL link to navigate to the blog aggregator for Postgres related blogs.

• Click the Community Support link to navigate to the Community page at the PostgreSQL open-source project
site; this page provides information about obtaining support for PostgreSQL features.

1.6 The pgAdmin Menu Bar

The pgAdmin menu bar provides drop-down menus for access to options, commands, and utilities. The menu bar
displays the following selections: File, Object, Tools*, and Help. Selections may be grayed out which indicates they
are disabled for the object currently selected in the pgAdmin tree control.

The File Menu

Use the File menu to access the following options:

Option Action
Change Password. . . Click to open the Change Password. . . dialog to change your password.
Preferences Click to open the Preferences dialog to to customize your pgAdmin settings.
Reset Layout If you have modified the workspace, click to restore the default layout.

The Object Menu

The Object menu is context-sensitive. Use the Object menu to access the following options (in alphabetical order):

1.6. The pgAdmin Menu Bar 11



pgAdmin 4 Documentation, Release 1.3

Option Action
Connect
Server. . .

Click to open the Connect to Server dialog to establish a connection with a server.

Create Click Create to access a context menu that provides context-sensitive selections. Your selection
opens a Create dialog for creating a new object.

Delete/Drop Click to delete the currently selected object from the server.
Disconnect
Server. . .

Click to refresh the currently selected object.

Drop Cas-
cade

Click to delete the currently selected object and all dependent objects from the server.

Proper-
ties. . .

Click to review or modify the currently selected object’s properties.

Refresh. . . Click to refresh the currently selected object.
Scripts Click to open the Query tool to edit or view the selected script from the flyout menu.
Trigger(s) Click to Disable or Enable trigger(s) for the currently selected table. Options are displayed on the

flyout menu.
Truncate Click to remove all rows from a table (Truncate) or to remove all rows from a table and its child

tables (Truncate Cascade). Options are displayed on the flyout menu.
View Data Click to access a context menu that provides several options for viewing data (see below).

The Tools Menu

Use the Tools menu to access the following options (in alphabetical order):

12 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

Option Action
Add named restore
point

Click to open the Add named restore point. . . dialog to take a point-in-time snapshot of the
current server state.

Backup. . . Click to open the Backup. . . dialog to backup database objects.
Backup Globals. . . Click to open the Backup Globals. . . dialog to backup cluster objects.
Backup Server. . . Click to open the Backup Server. . . dialog to backup a server.
Grant Wizard. . . Click to access the Grant Wizard tool.
Import/Export. . . Click to open the Import/Export data. . . dialog to import or export data from a table.
Maintenance. . . Click to open the Maintenance. . . dialog to VACUUM, ANALYZE, REINDEX, or CLUS-

TER.
Pause replay of
WAL

Click to pause the replay of the WAL log.

Query tool Click to open the Query tool for the currently selected object.
Reload Configura-
tion. . .

Click to update configuration files without restarting the server.

Restore. . . Click to access the Restore dialog to restore database files from a backup.
Resume replay of
WAL

Click to resume the replay of the WAL log.

The Help Menu

Use the options on the Help menu to access online help documents, or to review information about the pgAdmin
installation (in alphabetical order):

Option Action
About
pgAdmin
4

Click to open a window where you will find information about pgAdmin; this includes the current
version and the current user.

Online
Help

Click to open documentation support for using pgAdmin utilities, tools and dialogs. Navigate (in the
newly opened tab?) help documents in the left browser pane or use the search bar to specify a topic.

pgAdmin
Website

Click to open the pgAdmin.org website in a browser window.

Post-
greSQL
Website

Click to access the PostgreSQL core documentation hosted at the PostgreSQL site. The site also offers
guides, tutorials, and resources.

1.7 The pgAdmin Tabbed Browser

The right pane of the pgAdmin window features a collection of tabs that display information about the object currently
selected in the pgAdmin tree control in the left window.

1.7. The pgAdmin Tabbed Browser 13



pgAdmin 4 Documentation, Release 1.3

Permanent tabs are named Dashboard, *Properties, SQL, Statistics, Dependencies and Dependents; each tab may be
repositioned as a floating window. Select a tab to access information about the highlighted object in the tree control.

The Dashboard tab provides a graphical analysis of the usage statistics for the selected server or database:

• The Server sessions or Database sessions graph displays the interactions with the server or database.

• The Transactions per second graph displays the commits, rollbacks, and total transactions per second that are
taking place on the server or database.

• The Tuples In graph displays the number of tuples inserted, updated, and deleted on the server or database.

• The Tuples out graph displays the number of tuples fetched and returned from the server or database.

• The Block I/O graph displays the number of blocks read from the filesystem or fetched from the buffer cache
(but not the operating system’s file system cache) for the server or database.

The Server activity panel displays information about sessions, locks, prepared transactions and configuration. The
information is presented in context-sensitive tables.

Click the Properties tab to continue.

14 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

Review properties on expandable windows specific to the Object selected. If multiple boxes are displayed, you can
click the arrow to the left on the blue bar at the top of each box:

• Point the arrow to the right to contract the box.

• Point the arrow down to expand the window.

Click the Edit icon in the toolbar under the browser tabs to launch a dialog.

If you change properties in the opened dialog, save your work. The Properties tab updates to show recent modifica-

1.7. The pgAdmin Tabbed Browser 15



pgAdmin 4 Documentation, Release 1.3

tions.

Click the SQL tab to continue.

The SQL pane on the SQL tab contains an SQL script that creates the highlighted object, and if applicable, a (com-
mented out) SQL statement that will DROP the selected object. You can copy the SQL statements to an editor of your
choice using cut & paste shortcuts.

Click the Statistics tab to continue.

16 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

The Statistics tab displays the statistics gathered for each object on the tree control; the statistics displayed in the table
vary by the type of object that is selected. Click a column heading to sort the table by the data displayed in the column;
click again to reverse the sort order. The following table lists some of the statistics that are available:

1.7. The pgAdmin Tabbed Browser 17



pgAdmin 4 Documentation, Release 1.3

Panel Description
PID The process ID associated with the row.
User The name of the user that owns the object.
Database displays the database name.
Backends displays the number of current connections to the database.
Backend start The start time of the backend process.
Xact Committed displays the number of transactions committed to the database within the last week.
Xact Rolled Back displays the number of transactions rolled back within the last week.
Blocks Read displays the number of blocks read from memory (in megabytes) within the last week.
Blocks Hit displays the number of blocks hit in the cache (in megabytes) within the last week.
Tuples Returned displays the number of tuples returned within the last week.
Tuples Fetched displays the number of tuples fetched within the last week.
Tuples Inserted displays the number of tuples inserted into the database within the last week.
Tuples Updated displays the number of tuples updated in the database within the last week.
Tuples Deleted displays the number of tuples deleted from the database within the last week.
Last statistics reset displays the time of the last statistics reset for the database.
Tablespace con-
flicts

displays the number of queries canceled because of recovery conflict with dropped ta-
blespaces in database.

Lock conflicts displays the number of queries canceled because of recovery conflict with locks in database.
Snapshot conflicts displays the number of queries canceled because of recovery conflict with old snapshots in

database.
Bufferpin conflicts displays the number of queries canceled because of recovery conflict with pinned buffers in

database.
Temporary files displays the total number of temporary files, including those used by the statistics collector.
Size of temporary
files

displays the size of the temporary files.

Deadlocks displays the number of queries canceled because of a recovery conflict with deadlocks in
database.

Block read time displays the number of milliseconds required to read the blocks read.
Block write time displays the number of milliseconds required to write the blocks read.
Size displays the size (in megabytes) of the selected database.

Click the Dependencies tab to continue.

The Dependencies tab displays the objects on which the currently selected object depends. If a dependency is dropped,
the object currently selected in the pgAdmin tree control will be affected. To ensure the integrity of the entire database
structure, the database server makes sure that you do not accidentally drop objects that other objects depend on; you
must use DROP CASCADE to remove an object with a dependency.

18 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

The Dependencies table displays the following information:

• The Type field specifies the parent object type.

• The Name field specifies the identifying name of the parent object.

• The Restriction field describes the dependency relationship between the currently selected object and the parent.

– If the field is auto, the selected object can be dropped separately from the parent object, and will be
dropped if the parent object is dropped.

– If the field is internal, the selected object was created during the creation of the parent object, and will
be dropped if the parent object is dropped.

– If the field is normal, the selected object can be dropped without dropping the parent object.

– If the field is blank, the selected object is required by the system, and cannot be dropped.

Click the Dependents tab to continue.

The Dependents tab displays a table of objects that depend on the object currently selected in the pgAdmin browser. A
dependent object can be dropped without affecting the object currently selected in the pgAdmin tree control.

• The Type field specifies the dependent object type.

• The Name field specifies the identifying name for the dependent object.

• The Database field specifies the database in which the object resides.

Feature Tabs

Additional feature tabs will open in the pgAdmin tabbed browser when you access the extended functionality offered
by pgAdmin tools. For example, if you select the Query tool from Tools in the menu bar, pgAdmin will open the Query
tool on a tab labeled Query-1. These feature tabs are not permanent and you can close them when you are finished
using the tool. Like permanent tabs, these tabs may be repositioned.

1.7. The pgAdmin Tabbed Browser 19



pgAdmin 4 Documentation, Release 1.3

1.8 The pgAdmin Tree Control

The left pane of the main window displays a tree control (the pgAdmin tree control) that provides access to the objects
that reside on a server.

You can expand nodes in the tree control to view the database objects that reside on a selected server. The tree control
expands to display a hierarchical view:

• Use the plus sign (+) to the left of a node to expand a segment of the tree control.

• Click the minus sign (-) to the left of a node to close that node.

Access context-sensitive menus by right-clicking on a node of the tree control to perform common tasks. Menus
display options that include one or more of the following selections (options appear in alphabetical order):

20 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

Option Action
Add named re-
store point

Click to create and enter the name of a restore point.

Backup. . . Click to open the Backup. . . dialog to backup database objects.
Backup Glob-
als. . .

Click to open the Backup Globals. . . dialog to backup cluster objects.

Backup
Server. . .

Click to open the Backup Server. . . dialog to backup a server.

Connect
Server. . .

Click to open the Connect to Server dialog to establish a connection with a server.

Create Click to access a context menu that provides context-sensitive selections. Your selection opens
a Create dialog for creating a new object.

CREATE Script Click to open the Query tool to edit or view the CREATE script.
Debugging Click through to open the Debug tool or to select Set breakpoint to stop or pause a script

execution.
Delete/Drop Click to delete the currently selected object from the server.
Disconnect
Database. . .

Click to terminate a database connection.

Disconnect
Server. . .

Click to refresh the currently selected object.

Drop Cascade Click to delete the currently selected object and all dependent objects from the server.
Debugging Click to access the Debugger tool.
Grant Wizard Click to access the Grant Wizard tool.
Maintenance. . . Click to open the Maintenance. . . dialog to VACUUM, ANALYZE, REINDEX, or CLUSTER.
Properties. . . Click to review or modify the currently selected object’s properties.
Refresh. . . Click to refresh the currently selected object.
Reload Configu-
ration. . .

Click to update configuration files without restarting the server.

Restore. . . Click to access the Restore dialog to restore database files from a backup.
View Data Use the View Data option to access the data stored in a selected table with the Data Output tab

of the Query Tool.

The context-sensitive menus associated with Tables and nested Table nodes provides additional display options (op-
tions appear in alphabetical order):

Option Action
Import/Export. . . Click open the Import/Export. . . dialog to import data to or export data from the selected

table.
Reset Statistics Click to reset statistics for the selected table.
Scripts Click to open the Query tool to edit or view the selected script from the flyout menu.
Truncate Click to remove all rows from a table.
Truncate Cascade Click to remove all rows from a table and its child tables.
View First 100 Rows Click to access a data grid that displays the first 100 rows of the selected table.
View Last 100 Rows Click to access a data grid that displays the last 100 rows of the selected table.
View All Rows Click to access a a data grid that displays all rows of the selected table.
View Filtered
Rows. . .

Click to access the Data Filter popup to apply a filter to a set of data.

1.8. The pgAdmin Tree Control 21



pgAdmin 4 Documentation, Release 1.3

1.9 pgAdmin Preferences

pgAdmin 4 has a selection of configuration options (Preferences) that you can use to customize your pgAdmin client.
To open the Preferences dialog, select Preferences from the File menu.

The left pane of the Preferences dialog displays a tree control; each node of the tree control provides access to options
that are related to the selected node.

• Use the plus sign (+) to the left of a node to expand a segment of the tree control.

• Click the minus sign (-) to the left of a node to close that node.

Expand the Browser node of the tree control to personalize your workspace.

Use the options on the Display dialog to specify general display preferences:

Move the Show system objects switch to the True position to display system objects in the pgAdmin tree control. This

22 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

option instructs pgAdmin to display objects such as system schemas (e.g. pg_temp*) and system columns (e.g. xmin,
ctid) in the tree control.

Use the options on the Nodes dialog to select the object types that will be displayed in the pgAdmin tree control.

The right pane of the Preferences dialog displays a list of database objects. Slide the switch located next to each object
to Show or Hide the database object. When querying system catalogs, you can reduce the number of object types
displayed to increase speed.

Expand the Dashboards node to specify your graphing preferences.

Use the options on the Graphs dialog specify a refresh rate for statistics, transaction throughput and tuples. The rate
you specify will affect a corresponding graph on the Dashboard tab of the pgAdmin tabbed browser.

Expand the Paths node to specify the locations of supporting files.

1.9. pgAdmin Preferences 23



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Binary paths node to specify paths to the PostgreSQL binary utilities and EnterpriseDB Postgres
Advanced Server binary utilities.

Use the Help dialog to customize links to support documentation.

• Use the EDB Advanced Server Help Path to find a link path for EnterpriseDB Postgres Advanced Server docu-
mentation on the company website. This link is editable: substitute the applicable PostgreSQL version number
for $VERSION$, or provide an alternate link path.

• Use the PostgreSQL Help Path to find a link path to the current set of PostgreSQL core documentation. This
link is editable: substitute the applicable PostgreSQL version number for $VERSION$, or provide an alternate
link path.

Expand the SQL Editor node to specify your preferences for the SQL Editor tool.

Use the Display dialog to specify your preferences for the SQL Editor display.

24 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

• Use the Query info notifier timeout to control the behaviour of the notifier that is displayed when query execution
completes. A value of -1 will disable the notifier, and a value of 0 will display it until clicked. If a positive value
above zero is specified, the notifier will be displayed for the specified number of seconds. The default is 5.

Use the options on the Explain Options dialog to specify the level of detail included in a graphical EXPLAIN.

• Move the Buffers switch to the True position to include information on buffer usage.

• Move the Costs switch to the True position to include information on the estimated startup and total cost of each
plan, as well as the estimated number of rows and the estimated width of each row.

• Move the Timing switch to the True position to include actual startup time and time spent in each node in the
output.

• Move the Verbose switch to the True position to display additional information regarding the plan.

Use the options in the Options dialog to manage modifications to a SQL statement.

• Move the Auto-Commit switch to the True position to commit a SQL statement upon completion.

• Move the Auto-Rollback switch to the True to rollback a SQL statement to the beginning of the statement or to
a prior rollback.

Expand the Storage node to specify a maximum file size for uploads.

1.9. pgAdmin Preferences 25



pgAdmin 4 Documentation, Release 1.3

Use the Maximum file upload size(MB) in the Options node of the Storage node to specify the maximum file size for
an upload.

1.10 Keyboard Shortcuts

Keyboard shortcuts are provided in pgAdmin to allow easy access to specific functions.

Desktop Runtime

When running in the Desktop Runtime, the following keyboard shortcuts are available:

Shortcut (Windows/Linux) Shortcut (Mac) Function
Alt+Shift+A Option+Shift+A Display the runtime’s About box
Alt+Shift+P Option+Shift+U Open the runtime preferences dialogue
Alt+Shift+U Option+Shift+U Open an arbitrary URL
Ctrl+Q Cmd+Q Quit
Ctrl+Plus Cmd+Plus Zoom in
Ctrl+Minus Cmd+Minus Zoom out

SQL Editors

When using the syntax-highlighting SQL editors, the following shortcuts are available:

Shortcut (Windows/Linux) Shortcut (Mac) Function
Alt+Left Option+Left Move to the beginning of the line
Alt+Right Option+Right Move to the end of the line
Ctrl+Alt+Left Cmd+Option+Left Move left one word
Ctrl+Alt+Right Cmd+Option+Right Move right one word
Ctrl+A Cmd+A Select all
Ctrl+C Cmd+C Copy selected text to the clipboard
Ctrl+R Cmd+R Redo last edit un-done
Ctrl+V Cmd+V Paste text from the clipboard
Ctrl+Z Cmd+Z Undo last edit
Ctrl+Plus Cmd+Plus Zoom in
Ctrl+Minus Cmd+Minus Zoom out

Query Tool

When using the Query Tool, the following shortcuts are available:

26 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

Shortcut (Windows/Linux) Shortcut (Mac) Function
F5 F5 Execute query
F7 F7 EXPLAIN query
Shift+F7 Shift+F7 EXPLAIN ANALYZE query
F8 F8 Execute query to CSV file
Alt+G Alt+G Jump (to line:column)
Ctrl+Space Ctrl+Space Auto-complete
Ctrl+F Cmd+F Find
Ctrl+G Cmd+G Find next
Shift+Ctrl+G Shift+Cmd+G Find previous
Shift+Ctrl+F Shift+Cmd+F Replace
Shift+Ctrl+R Shift+Cmd+Option+F Replace all

Before using pgAdmin to manage objects that reside on a server, you must define a connection to the server; for more
information please see Connecting to a Server:

Contents:

1.11 Connecting to a Server

Before you can use the pgAdmin client to manage the objects that reside on your Postgres server, you must define
a connection to the server. You can (optionally) use the Server Group dialog to create server groups to organize the
server connections within the tree control for easier management. To open the Server Group dialog, right-click on the
Servers node of the tree control, and select Server Group from the Create menu.

Contents:

1.11.1 The Server Group Dialog

Use the Server Group dialog to add a new server group. Assign servers to server groups to simplify management of
multiple servers. Server groups are displayed as part of the pgAdmin tree control.

Use the Name field on the Server Group dialog to specify a name that will identify the server group in the pgAdmin
tree control.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

1.11. Connecting to a Server 27



pgAdmin 4 Documentation, Release 1.3

• Click the Reset button to restore configuration parameters.

To create server connections in a server group, right click on the named server group and select the Create option to
open the Create - Server dialog.

Use the fields on the Server dialog to define the connection properties for each new server that you wish to manage
with pgAdmin. To open the Server dialog, right-click on the Servers node of the tree control, and select Server from
the Create menu.

Contents:

1.11.2 The Server Dialog

Use the Server dialog to describe a connection to a server. Note: you must ensure the pg_hba.conf file of the server
from which you are connecting allows connections from the host of the client.

The Server dialog organizes the connection of a server through the following dialog tabs: General, and Connection.

Use the fields in the General tab to identify the server:

• Use the Name field to add a descriptive name for the server; the name specified will be displayed in the pgAdmin
tree control of the client.

• Use the drop-down list box in the Server group field to specify the pgAdmin tree control parent node for the
server.

• Uncheck the checkbox next to Connect now? to instruct pgAdmin not to attempt a connection upon completion
of the dialog. The default enables connection.

• Provide a comment about the server in the Comments field.

Click the Connection tab to continue.

28 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Connection tab to configure a connection:

• Specify the IP address of the server host, or the fully qualified domain name in the Host name/address field. On
Unix based systems, the address field may be left blank to use the default PostgreSQL Unix Domain Socket on
the local machine, or may be set to an alternate path containing a PostgreSQL socket. If you enter a path, the
path must begin with a “/”.

• Enter the listener port number of the server host in the Port field. The default is 5432.

• Use the Maintenance database field to specify the name of the initial database to which the client will connect.
If you will be using pgAgent or adminpack objects, the pgAgent schema and adminpack objects should be
installed on that database.

• Use the User name field to specify the name of a role that will be used when authenticating with the server.

• Use the Password field to provide a password that will be supplied when authenticating with the server.

• Check the box next to Save password to instruct pgAdmin to save the password for future use.

• Use the Role field to specify the name of a role that has privileges that will be conveyed to the client after
authentication with the server. This selection allows you to connect as one role, and then assume the permissions
of this specified role after the connection is established. Note that the connecting role must be a member of the
role specified.

• Use the drop-down list box in the SSL field to select the type of SSL connection the server should use. For more
information about using SSL encryption, see Section 31.18 of the Postgres documentation:

http://www.postgresql.org/docs/9.5/static/libpq-ssl.html

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

1.11. Connecting to a Server 29

http://www.postgresql.org/docs/9.5/static/libpq-ssl.html


pgAdmin 4 Documentation, Release 1.3

After defining a server connection, right-click on the server name, and select Connect to server to authenticate with
the server, and start using pgAdmin to manage objects that reside on the server.

Contents:

1.11.3 Connect to server

Use the Connect to Server dialog to authenticate with a defined server and access the objects stored on the server
through the pgAdmin tree control. To access the dialog, right click on the server name in the pgAdmin tree control,
and select Connect Server. . . from the context menu.

Provide authentication information for the selected server:

• Use the Password field to provide the password of the user that is associated with the defined server.

• Check the box next to Save Password to instruct the server to save the password for future connections; if you
save the password, you will not be prompted when reconnecting to the database server with this server definition.

The pgAdmin client displays a message in a green status bar in the lower right corner when the server connects
successfully.

If you receive an error message while attempting a connection, verify that your network is allowing the pgAdmin host
and the host of the database server to communicate. For detailed information about a specific error message, please
see the Connection Error help page.

To review or modify connection details, right-click on the name of the server, and select Properties. . . from the context
menu.

1.11.4 Connection error

When connecting to a PostgreSQL server, you may get an error message. If you encounter an error message, please
review the message carefully; each error message attempts to incorporate the information you’ll need to resolve the
problem. For more details about specific errors, please locate the error message in the list below:

Connection to the server has been lost

This error message indicates that the connection attempt has taken longer than the specified threshold; there may be a
problem with the connection properties provided on the Server dialog, network connectivity issues, or the server may
not be running.

30 Chapter 1. Getting Started



pgAdmin 4 Documentation, Release 1.3

could not connect to Server: Connection refused

If pgAdmin displays this message, there are two possible reasons for this:

• the database server isn’t running - simply start it.

• the server isn’t configured to accept TCP/IP requests on the address shown.

For security reasons, a PostgreSQL server “out of the box” doesn’t listen on TCP/IP ports. Instead, it must be enabled
to listen for TCP/IP requests. This can be done by adding tcpip = true to the postgresql.conf file for Versions 7.3.x
and 7.4.x, or listen_addresses=’*’ for Version 8.0.x and above; this will make the server accept connections on any
IP interface.

For further information, please refer to the PostgreSQL documentation about runtime configuration.

FATAL: no pg_hba.conf entry

1.11. Connecting to a Server 31

http://www.postgresql.org/docs/current/interactive/runtime-config.html


pgAdmin 4 Documentation, Release 1.3

If pgAdmin displays this message when connecting, your server can be contacted correctly over the network, but is
not configured to accept your connection. Your client has not been detected as a legal user for the database.

To connect to a server, the pg_hba.conf file on the database server must be configured to accept connections from the
host of the pgAdmin client. Modify the pg_hba.conf file on the database server host, and add an entry in the form:

• host template1 postgres 192.168.0.0/24 md5 for an IPV4 network

• host template1 postgres ::ffff:192.168.0.0/120 md5 for an IPV6 network

For more information, please refer to the PostgreSQL documentation about client authentication.

FATAL: password authentication failed

• The password authentication failed for user error message indicates there may be a problem with the password
you entered. Retry the password to confirm you entered it correctly. If the error message returns, make sure
that you have the correct password, that you are authorized to access the server, and that the access has been
correctly configured in the server’s postgresql.conf configuration file.

32 Chapter 1. Getting Started

http://www.postgresql.org/docs/current/interactive/client-authentication.html


CHAPTER

TWO

MANAGING CLUSTER LEVEL OBJECTS

Some object definitions reside at the cluster level; pgAdmin 4 provides dialogs that allow you to create these objects,
manage them, and control their relationships to each other. To access a dialog that allows you to create a database
object, right-click on the object type in the pgAdmin tree control, and select the Create option for that object. For
example, to create a new database, right-click on the Databases node, and select Create Database. . .

Contents:

2.1 The Database Dialog

Use the Database dialog to define or modify a database. To create a database, you must be a database superuser or
have the CREATE privilege.

The Database dialog organizes the development of a database through the following dialog tabs: General, Definition,
Security, and Parameters. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the database:

• Use the Database field to add a descriptive name for the database. The name will be displayed in the pgAdmin
tree control.

• Select the owner of the database from the drop-down listbox in the Owner field.

• Store notes about the database in the Comment field.

Click the Definition tab to continue.

33



pgAdmin 4 Documentation, Release 1.3

Use the Definition tab to set properties for the database:

• Select a character set from the drop-down listbox in the Encoding field. The default is UTF8.

• Select a template from the drop-down listbox in the Template field. If you do not specify a template, the database
will use template1.

• Select a tablespace from the drop-down listbox in the Tablespace field. The selected tablespace will be the
default tablespace used to contain database objects.

• Select the collation order from the drop-down listbox in the Collation field.

• Select the character classification from the drop-down listbox in the Character Type field. This affects the
categorization of characters, e.g. lower, upper and digit. The default, or a blank field, uses the character
classification of the template database.

• Specify a connection limit in the Connection Limit field to configure the maximum number of connection re-
quests. The default value (-1) allows unlimited connections to the database.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

34 Chapter 2. Managing Cluster Level Objects



pgAdmin 4 Documentation, Release 1.3

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click add to set additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the database. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm deletion in the Delete Row popup.

Click the Parameters tab to continue.

Use the Parameters tab to set parameters for the database. Click the Add icon (+) to add each parameter:

• Use the drop-down listbox in the Name field to select a parameter.

• Use the Value field to set a value for the parameter.

• Use the drop-down listbox next to Role to select a role to which the parameter setting specified will apply.

Follow these steps to add additional parameter value definitions; to discard a parameter, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Database dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Database dialog:

2.1. The Database Dialog 35



pgAdmin 4 Documentation, Release 1.3

The example creates a database named hr that is owned by postgres. It allows unlimited connections, and is available
to all authenticated users.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

2.2 The Move Objects Dialog

Use the Move Objects dialog to to move database objects from one tablespace to another tablespace.

The Move Objects dialog organizes the movement of database objects with the General tab; the SQL tab displays the
SQL code generated by dialog selections.

36 Chapter 2. Managing Cluster Level Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify the items that will be moved and the tablespace to which they will be
moved:

• Use the New tablespace drop-down listbox to select a pre-existing tablespace to which the object will be moved.
(To create a tablespace, use the Tablespace dialog; access the dialog by right clicking Tablespaces in the pgAd-
min tree control and selecting Create Tablespace. . . from the context-menu.)

• Use the Object type drop-down listbox to select from the following:

– Select All to move all tables, indexes, and materialized views from the current tablespace (currently se-
lected in the pgAdmin tree control) to the new tablespace.

– Select Tables to move tables from the current tablespace to the new tablespace.

– Select Indexes to move indexes from the current tablespace to the new tablespace.

– Select Materialized views to move materialized views from the current tablespace to the new tablespace.

• Use the Object owner drop-down listbox to select the role that owns the objects selected in the Object type field.
This field is optional.

Click the SQL tab to continue.

Your entries in the Move Objects dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit the General tab to modify the SQL command.

Example

The following is an example of the sql command generated by user selections in the Move Objects dialog:

The example shown demonstrates moving materialized views owned by Alice from tablespace tbspace_01 to tb-
space_02.

• Click the Help button (?) to access online help.

• Click the OK button to save work.

2.2. The Move Objects Dialog 37



pgAdmin 4 Documentation, Release 1.3

• Click the Cancel button to exit without saving work.

2.3 The Resource Group Dialog

Use the Resource Group dialog to create a resource group and set values for its resources. A resource group is a
named, global group on which various resource usage limits can be defined. The resource group is accessible from
all databases in the cluster. To use the Resource Group dialog, you must have superuser privileges. Please note that
resource groups are supported when connected to EDB Postgres Advanced Server; for more information about using
resource groups, please see the EDB Postgres Advanced Server Guide, available at:

http://www.enterprisedb.com/

The Resource Group dialog organizes the development of a resource group through the General dialog tab. The SQL
tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to specify resource group parameters:

• Use the Group Name field to add a descriptive name for the resource group. This name will be displayed in the
pgAdmin tree control.

• Use the CPU Rate Limit (%) field to set the value of the CPU rate limit resource type assigned to the resource
group. The valid range for a CPU rate limit is from 0 to 1.67772e+07. The default value is 0.

• Use the Dirty Rate Limit (KB) field to set the value of the dirty rate limit resource type assigned to the resource
group. The valid range for a dirty rate limit is from 0 to 1.67772e+07. The default value is 0.

Click the SQL tab to continue.

Your entries in the Resource Group dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit the General tab to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Resource Group dialog:

38 Chapter 2. Managing Cluster Level Objects

http://www.enterprisedb.com/


pgAdmin 4 Documentation, Release 1.3

The example creates a resource group named acctg that sets cpu_rate_limit to 2, and dirty_rate_limit to 6144.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

2.4 The Login/Group Role Dialog

Use the Login/Group Role dialog to define a role. A role may be an individual user (with or without login privileges)
or a group of users. Note that roles defined at the cluster level are shared by all databases in the cluster.

The dialog Login/Group Role organizes the creation of roles through the following dialog tabs: General, Definition,
Role Privileges, Parameters, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the role.

• Use the Name field to provide the name of the role. The name will be displayed in the pgAdmin tree control.

• Provide a note about the role in the Comments field.

Click the Definition tab to continue.

2.4. The Login/Group Role Dialog 39



pgAdmin 4 Documentation, Release 1.3

Use the Definition tab to set a password and configure connection rules:

• Provide a password that will be associated with the role in the Password field.

• Provide an expiration date for the password in the Account Expires field (the role does not expire). Provide the
date in a mm/dd/yyyy format. The expiration date is not enforced when a user logs in with a non-password-based
authentication method.

• If the role is a login role, specify how many concurrent connections the role can make in the Connection Limit
field. The default value (-1) allows unlimited connections.

Click the Role Privileges tab to continue.

Use the Role Privileges tab to grant privileges to the role.

40 Chapter 2. Managing Cluster Level Objects



pgAdmin 4 Documentation, Release 1.3

• Move the Can login? switch to the Yes position if the role has login privileges. The default value is No.

• Move the Superuser switch to the Yes position if the role is a superuser within the database. The default value is
No.

• Move the Create roles? switch to the Yes position to specify whether a role is permitted to create roles. A role
with this privilege can alter and drop roles. The default value is No.

• Move the Create databases switch to the Yes position to control whether a role can create databases. The default
value is No.

• The Update catalog? switch is disabled until the role is given superuser privileges. Move the Update catalogs?
switch to the No position to control whether a role can update catalogs. The default value is Yes when the
Superuser switch is in the Yes position.

• Move the Inherit rights from the parent roles? switch to the No position if a role does not inherit privileges. The
default value is Yes.

• Move the Can initiate streaming replication and backups? switch to the Yes position to control whether a role
can initiate streaming replication or put the system in and out of backup mode. The default value is No.

• Specify members of the role in the Role Membership field. Click inside the Role Membership field to select role
names from a drop down list. Confirm each selection by checking the checkbox to the right of the role name;
delete a selection by clicking the x to the left of the role name. Membership conveys the privileges granted to a
role to each of its members.

Click the Parameters tab to continue.

Use the fields on the Parameters tab to set session defaults for a selected configuration parameter when the role is
connected to a specified database. This tab invokes the ALTER ROLE. . . SET configuration_parameter syntax. Click
the Add icon (+) to create a parameter.

• Use the drop-down listbox in the Name field to select a parameter.

• Use the Value field to specify a value for the parameter.

• Use the drop-down listbox in the Database field to select a database.

Click the Add icon (+) to specify each additional parameter; to discard a parameter, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

2.4. The Login/Group Role Dialog 41



pgAdmin 4 Documentation, Release 1.3

Use the Security tab to define security labels applied to the role. Click the Add icon (+) to add each security label
selection.

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Login/Group Role dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Login/Group Role dialog:

The example creates a login role named alice with CREATE ROLE privileges; the role is limited to 3 connections to
the server at any given time.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

42 Chapter 2. Managing Cluster Level Objects



pgAdmin 4 Documentation, Release 1.3

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

2.5 The Tablespace Dialog

Use The Tablespace dialog to define a tablespace. A tablespace allows superusers to define an alternative location on
the file system where the data files containing database objects (such as tables and indexes) reside. Tablespaces are
only supported on systems that support symbolic links. Note that a tablespace cannot be used independently of the
cluster in which it is defined.

The Tablespace dialog organizes the definition of a tablespace through the following tabs: General, Definition, Pa-
rameters, and Security. The SQL tab displays the SQL code generated by dialog selections.

• Use the Name field to identify the tablespace with a descriptive name. The name cannot begin with pg_; these
names are reserved for system tablespaces.

• Select the owner of the tablespace from the drop-down listbox in the Owner field.

• Store notes about the tablespace in the Comment field.

Click the Definition tab to continue.

• Use the Location field to specify an absolute path to a directory that will contain the tablespace.

Click the Parameters tab to continue.

2.5. The Tablespace Dialog 43



pgAdmin 4 Documentation, Release 1.3

Use the Parameters tab to set parameters for the tablespace. Click the Add icon (+) to add a row to the table below.

• Use the drop-down listbox next to Name to select a parameter.

• Use the Value field to set a value for the parameter.

Click the Add icon (+) to specify each additional parameter; to discard a parameter, click the trash icon to the left of
the row and confirm deletion in the Delete Row dialog.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels for the tablespace.

Use the Privileges panel to assign security privileges. Click the Add icon (+) to assign a set of privileges:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the owner of the tablespace.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

Click the Add icon to assign additional sets of privileges; to discard a privilege, click the trash icon to the left of the
row and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the tablespace. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it

44 Chapter 2. Managing Cluster Level Objects



pgAdmin 4 Documentation, Release 1.3

merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Tablespace dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Tablespace dialog:

The example shown demonstrates creating a tablespace named space_01. It has a random_page_cost value equal to 4.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

2.5. The Tablespace Dialog 45



pgAdmin 4 Documentation, Release 1.3

46 Chapter 2. Managing Cluster Level Objects



CHAPTER

THREE

MANAGING DATABASE OBJECTS

pgAdmin 4 provides simple but powerful dialogs that you can use to design and create database objects. Each dialog
contains a series of tabs that you use to describe the object that will be created by the dialog; the SQL tab displays the
SQL command that the server will execute when creating the object.

To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree
control, and select the Create option for that object. For example, to create a new cast, right-click on the Casts node,
and select Create Cast. . .

Contents:

3.1 The Cast Dialog

Use the Cast dialog to define a cast. A cast specifies how to convert a value from one data type to another.

The Cast dialog organizes the development of a cast through the following dialog tabs: General and Definition. The
SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the cast:

• The Name field is disabled. The name that will be displayed in the pgAdmin tree control is the Source type
concatenated with the Target type, and is generated automatically when you make selections on the Cast dialog
Definition tab.

• Store notes about the cast in the Comment field.

Click the Definition tab to continue.

47



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define parameters:

• Use the drop-down listbox next to Source type to select the name of the source data type of the cast.

• Use the drop-down listbox next to Target type to select the name of the target data type of the cast.

• Use the drop-down listbox next to Function to select the function used to perform the cast. The function’s result
data type must match the target type of the cast.

• Move the Context switch to the Implicit position if the cast is implicit. By default, a cast can be invoked only by
an explicit cast request. If the cast is marked Implicit then it can be invoked implicitly in any context, whether
by assignment or internally in an expression.

Click the SQL tab to continue.

Your entries in the Cast dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Cast dialog:

The cast uses a function named int4(bigint) to convert a biginteger data type to an integer.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

48 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

3.2 The Collation Dialog

Use the Collation dialog to define a collation. A collation is an SQL schema object that maps a SQL name to operating
system locales. To create a collation, you must have a CREATE privilege on the destination schema.

The Collation dialog organizes the development of a collation through the following dialog tabs: General and Defini-
tion. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the collation:

• Use the Name field to provide a name for the collation. The collation name must be unique within a schema.
The name will be displayed in the pgAdmin tree control.

• Select the name of the owner from the drop-down listbox in the Owner field.

• Select the name of the schema in which the collation will reside from the drop-down listbox in the Schema field.

• Store notes about the collation in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to specify the operating system locale settings:

3.2. The Collation Dialog 49



pgAdmin 4 Documentation, Release 1.3

• Use the drop-down listbox next to Copy collation to select the name of an existing collation to copy. The new
collation will have the same properties as the existing one, but will be an independent object. If you choose to
copy an existing collation, you cannot modify the collation properties displayed on this tab.

• Use the Locale field to specify a locale; a locale specifies language and language formatting characteristics. If
you specify this, you cannot specify either of the following parameters. To view a list of locales supported by
your Linux system use the command locale -a.

• Use the LC_COLLATE field to specify a locale with specified string sort order. The locale must be applicable to
the current database encoding. (See CREATE DATABASE for details.)

• Use the LC_CTYPE field to specify a locale with specified character classification. The locale must be applicable
to the current database encoding. (See CREATE DATABASE for details.)

Click the SQL tab to continue.

Your entries in the Collation dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Collation dialog:

The example shown demonstrates creating a collation named french that uses the rules specified for the locale,
fr_FR.utf8. The collation is owned by *postgres.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation. For more information about setting a locale, see Chapter 22.1
Locale Support of the PostgreSQL core documentation:

http://www.postgresql.org/docs/9.5/static/locale.html

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.3 The Domain Dialog

Use the Domain dialog to define a domain. A domain is a data type definition that may constrain permissible values.
Domains are useful when you are creating multiple tables that contain comparable columns; you can create a domain
that defines constraints that are common to the columns and re-use the domain definition when creating the columns,
rather than individually defining each set of constraints.

50 Chapter 3. Managing Database Objects

http://www.postgresql.org/docs/9.5/static/locale.html


pgAdmin 4 Documentation, Release 1.3

The Domain dialog organizes the development of a domain through the following tabs: General, Definition, Con-
straints, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields on the General tab to identify a domain:

• Use the Name field to add a descriptive name for the domain. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select a role that will own the domain.

• Select the name of the schema in which the domain will reside from the drop-down listbox in the Schema field.

• Store notes about the domain in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to describe the domain:

• Use the drop-down listbox next to Base type to specify a data type.

3.3. The Domain Dialog 51



pgAdmin 4 Documentation, Release 1.3

• Use the context-sensitive Length field to specify a numeric length for a numeric type.

• Use the context-sensitive Precision field to specify the total count of significant digits for a numeric type.

• Specify a default value for the domain data type in the Default field. The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default value is the null value.

• Move the Not Null switch to specify the values of this domain are prevented from being null.

• Use the drop-down listbox next to Collation to apply a collation cast. If no collation is specified, the underlying
data type’s default collation is used. The underlying type must be collatable if COLLATE is specified.

Click the Constraints tab to continue.

Use the fields in the Constraints tab to specify rules for the domain. Click the Add icon (+) to set constraints:

• Use the Name field to specify a name for the constraint.

• Use the Check field to provide an expression for the constraint.

• Use the Validate checkbox to determine whether the constraint will be validated. The default checkbox is
checked and sets a validation requirement.

A CHECK clause specifies an integrity test which values of the domain must satisfy. Each constraint must be an
expression that produces a Boolean result. Use the key word VALUE to refer to the value being tested. Expressions
evaluating to TRUE or UNKNOWN succeed. If the expression produces a FALSE result, an error is reported and the
value is not allowed to be converted to the domain type. A CHECK expression cannot contain subqueries nor refer to
variables other than VALUE. If a domain has multiple CHECK constraints, they will be tested in alphabetical order
by name.

Click the Add icon (+) to set additional constraints; to discard a constraint, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

Use the Security Labels panel to assign security labels. Click the Add icon (+) to add a label:

52 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to specify each additional label; to discard a label, click the trash icon to the left of the row and
confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Domain dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Domain dialog:

The example shown demonstrates creating a domain named minimum-wage that confirms that the value entered is
greater than or equal to 7.25.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.4 The Domain Constraints Dialog

Use the Domain Constraints dialog to create or modify a domain constraint. A domain constraint confirms that the
values provided for a domain meet a defined criteria. The Domain Constraints dialog implements options of the
ALTER DOMAIN command.

3.4. The Domain Constraints Dialog 53



pgAdmin 4 Documentation, Release 1.3

The Domain Constraints dialog organizes the development of a domain constraint through the following dialog tabs:
General and Definition. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the domain constraint:

• Use the Name field to add a descriptive name for the constraint. The name will be displayed in the pgAdmin tree
control.

• Store notes about the constraint in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the domain constraint:

• Use the Check field to provide a CHECK expression. A CHECK expression specifies a constraint that the
domain must satisfy. A constraint must produce a Boolean result; include the key word VALUE to refer to the
value being tested. Only those expressions that evaluate to TRUE or UNKNOWN will succeed. A CHECK
expression cannot contain subqueries or refer to variables other than VALUE. If a domain has multiple CHECK
constraints, they will be tested in alphabetical order.

• Move the Validate? switch to the No position to mark the constraint NOT VALID. If the constraint is marked
NOT VALID, the constraint will not be applied to existing column data. The default value is Yes.

Click the SQL tab to continue.

54 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Your entries in the Domain Constraints dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Domain Constraints dialog:

The example shown demonstrates creating a domain constraint on the domain timesheets named weekday. It constrains
a value to equal Friday.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.5 The Event Trigger Dialog

Use the Domain Trigger dialog to define an event trigger. Unlike regular triggers, which are attached to a single
table and capture only DML events, event triggers are global to a particular database and are capable of capturing
DDL events. Like regular triggers, event triggers can be written in any procedural language that includes event trigger
support, or in C, but not in SQL.

The Domain Trigger dialog organizes the development of a event trigger through the following dialog tabs: General,
Definition, and Security Labels. The SQL tab displays the SQL code generated by dialog selections.

3.5. The Event Trigger Dialog 55



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify the event trigger:

• Use the Name field to add a descriptive name for the event trigger. The name will be displayed in the pgAdmin
tree control.

• Use the drop-down listbox next to Owner to specify the owner of the event trigger.

• Store notes about the event trigger in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the event trigger:

• Select a radio button in the Enabled Status field to specify a status for the trigger: Enable Disable, Replica
Always.

• Use the drop-down listbox next to Trigger function to specify an existing function. A trigger function takes an
empty argument list, and returns a value of type event_trigger.

• Select a radio button in the Events field to specify when the event trigger will fire: DDL COMMAND START,
DDL COMMAND END, or SQL DROP.

56 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Use the When field to write a condition for the event trigger that must be satisfied before the event trigger can
execute.

Click the Security Labels tab to continue.

Use the Security tab to define security labels applied to the trigger. Click the Add icon (+) to add each security label.

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Domain Trigger dialog generate a generate a SQL command. Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Domain Trigger dialog:

3.5. The Event Trigger Dialog 57



pgAdmin 4 Documentation, Release 1.3

The command creates an event trigger named accounts that invokes the procedure named acct_due.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.6 The Extension Dialog

Use the Extension dialog to install a new extension into the current database. An extension is a collection of SQL
objects that add targeted functionality to your Postgres installation. The Extension dialog adds the functionality of an
extension to the current database only; you must register the extension in each database that use the extension. Before
you load an extension into a database, you should confirm that any pre-requisite files are installed.

The Extension dialog allows you to implement options of the CREATE EXTENSION command through the following
dialog tabs: General and Definition. The SQL tab displays the SQL code generated by dialog selections.

58 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify an extension:

• Use the drop-down listbox in the Name field to select the extension. Each extension must have a unique name.

• Store notes about the extension in the Comment field.

Click the Definition tab to continue.

Use the Definition tab to select the Schema and Version:

• Use the drop-down listbox next to Schema to select the name of the schema in which to install the extension’s
objects.

• Use the drop-down listbox next to Version to select the version of the extension to install.

Click the SQL tab to continue.

Your entries in the Extension dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Extension dialog:

3.6. The Extension Dialog 59



pgAdmin 4 Documentation, Release 1.3

The command creates the chkpass extension in the public schema. It is version 1.0 of chkpass.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.7 The Foreign Data Wrapper Dialog

Use the Foreign Data Wrapper dialog to create or modify a foreign data wrapper. A foreign data wrapper is an adapter
between a Postgres database and data stored on another data source.

You must be a superuser to create a foreign data wrapper.

The Foreign Data Wrapper dialog organizes the development of a foreign data wrapper through the following dialog
tabs: General, Definition, Options, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the foreign data wrapper:

• Use the Name field to add a descriptive name for the foreign data wrapper. A foreign data wrapper name must
be unique within the database. The name will be displayed in the pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the name of the role that will own the foreign data wrapper.

60 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Store notes about the foreign data wrapper in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to set parameters:

• Select the name of the handler function from the drop-down listbox in the Handler field. This is the name of an
existing function that will be called to retrieve the execution functions for foreign tables.

• Select the name of the validator function from the drop-down listbox in the Validator field. This is the name of
an existing function that will be called to check the generic options given to the foreign data wrapper, as well as
options for foreign servers, user mappings and foreign tables using the foreign data wrapper.

Click the Options tab to continue.

Use the fields in the Options tab to specify options:

• Click the the Add icon (+) button to add an option/value pair for the foreign data wrapper. Supported option/value
pairs will be specific to the selected foreign data wrapper.

• Specify the option name in the Option field and provide a corresponding value in the Value field.

Click the Add icon (+) to specify each additional pair; to discard an option, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

3.7. The Foreign Data Wrapper Dialog 61



pgAdmin 4 Documentation, Release 1.3

Use the Security tab to assign security privileges. Click the Add icon (+) to assign a set of privileges.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

• Select the name of the role granting the privileges from the drop-down listbox in the Grantor field. The default
grantor is the owner of the foreign data wrapper.

Click add to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Foreign Data Wrapper dialog generate a SQL command (see an example below). Use the SQL tab
for review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign Data Wrapper dialog:

The example creates a foreign data wrapper named libpq_debug that uses pre-existing validator and handler functions,
dblink_fdw_validator and libpg_fdw_handler. Selections on the Options tab set debug equal to true. The foreign data
wrapper is owned by postgres.

62 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Click the Help button (?) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.8 The Foreign Server Dialog

Use the Foreign Server dialog to create a foreign server. A foreign server typically encapsulates connection information
that a foreign-data wrapper uses to access an external data resource. Each foreign data wrapper may connect to a
different foreign server; in the pgAdmin tree control, expand the node of the applicable foreign data wrapper to launch
the Foreign Server dialog.

The Foreign Server dialog organizes the development of a foreign server through the following dialog tabs: General,
Definition, Options, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the foreign server:

• Use the Name field to add a descriptive name for the foreign server. The name will be displayed in the pgAdmin
tree control. It must be unique within the database.

• Use the drop-down listbox next to Owner to select a role.

• Store notes about the foreign server in the Comment field.

Click the Definition tab to continue.

3.8. The Foreign Server Dialog 63



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to set parameters:

• Use the Type field to specify a server type.

• Use the Version field to specify a server version.

Click the Options tab to continue.

Use the fields in the Options tab to specify options. Click the Add button to create an option clause for the foreign
server.

• Specify the option name in the Option field.

• Provide a corresponding value in the Value field.

Click Add to create each additional clause; to discard an option, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the Security tab to continue.

64 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the Security tab to assign security privileges to the foreign server. Click Add before you assign a set of privileges.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the foreign server. This is a required field.

Click Add to assign a new set of privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row dialog.

Click the SQL tab to continue.

Your entries in the Foreign Server dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign Server dialog:

The example shown demonstrates creating a foreign server for the foreign data wrapper hdfs_fdw. It has the name
hdfs_server; its type is hiveserver2. Options for the foreign server include a host and a port.

3.8. The Foreign Server Dialog 65



pgAdmin 4 Documentation, Release 1.3

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.9 The Foreign Table Dialog

Use the Foreign Table dialog to define a foreign table in the current database. Foreign tables define the structure of an
external data source that resides on a foreign server.

The Foreign Table dialog organizes the development of a foreign table through the following dialog tabs: General,
Definition, Columns, Constraints, Options, and Security. The SQL tab displays the SQL code generated by dialog
selections.

Use the fields in the General tab to identify the foreign table:

• Use the Name field to add a descriptive name for the foreign table. The name of the foreign table must be distinct
from the name of any other foreign table, table, sequence, index, view, existing data type, or materialized view
in the same schema. The name will be displayed in the pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the name of the role that will own the foreign table.

• Select the name of the schema in which the foreign table will reside from the drop-down listbox in the Schema
field.

• Store notes about the foreign table in the Comment field.

Click the Definition tab to continue.

66 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define the external data source:

• Use the drop-down listbox next to Foreign server to select a foreign server. This list is populated with servers
defined through the Foreign Server dialog.

• Use the drop-down listbox next to Inherits to specify a parent table. The foreign table will inherit all of its
columns. This field is optional.

Click the Columns tab to continue.

Use the fields in the Columns tab to to add columns and their attributes to the table. Click the Add icon (+) to define a
column:

• Use the Name field to add a descriptive name for the column.

• Use the drop-down listbox in the Data Type field to select a data type for the column. This can include array
specifiers. For more information on which data types are supported by PostgreSQL, refer to Chapter 8 of the
core documentation.

Click the Add icon (+) to specify each additional column; to discard a column, click the trash icon to the left of the
row and confirm deletion in the Delete Row popup.

Click the Constraints tab to continue.

3.9. The Foreign Table Dialog 67



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Constraints tab to apply a table constraint to the foreign table. Click the Add icon (+) to define a
constraint:

• Use the Name field to add a descriptive name for the constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used to communicate helpful
information.

• Use the Check field to write a check expression producing a Boolean result. Each row in the foreign table is
expected to satisfy the check expression.

• Check the No Inherit checkbox to specify that the constraint will not propagate to child tables.

• Uncheck the Validate checkbox to disable validation. The database will not assume that the constraint holds for
all rows in the table.

Click the Add icon (+) to specify each additional constraint; to discard a constraint, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Options tab to continue.

Use the fields in the Options tab to specify options to be associated with the new foreign table or one of its columns;
the accepted option names and values are specific to the foreign data wrapper associated with the foreign server. Click
the Add icon (+) to add an option/value pair.

• Specify the option name in the Option field. Duplicate option names are not allowed.

• Provide a corresponding value in the Value field.

Click the Add icon (+) to specify each additional option/value pair; to discard an option, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

68 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role to which privileges will be assigned from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role that owns the foreign table from the drop-down listbox in the Grantor field. The
default grantor is the owner of the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Foreign Table dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign Table dialog:

3.9. The Foreign Table Dialog 69



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating a foreign table weblogs with multiple columns and two options.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.10 The FTS Configuration dialog

Use the FTS Configuration dialog to configure a full text search. A text search configuration specifies a text search
parser that can divide a string into tokens, along with dictionaries that can identify searchable tokens.

The FTS Configuration dialog organizes the development of a FTS configuration through the following dialog tabs:
“General, Definition, and Tokens. The SQL tab displays the SQL code generated by dialog selections.

Click the General tab to begin.

70 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify a FTS configuration:

• Use the Name field to add a descriptive name for the FTS configuration. The name will be displayed in the
pgAdmin tree control.

• Use the drop-down listbox next to Owner to specify the role that will own the configuration.

• Select the name of the schema in which the FTS configuration will reside from the drop-down listbox in the
Schema field.

• Store notes about the FTS configuration in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define parameters:

• Select the name of the text search parser from the drop-down listbox in the Parser field.

• Select a language from the drop-down listbox in the Copy Config field.

Click the Tokens tab to continue.

3.10. The FTS Configuration dialog 71



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Tokens tab to add a token:

• Use the Tokens field to specify the name of a token.

• Click the Add icon (+) to create a token.

• Use the Dictionaries field to specify a dictionary.

Repeat these steps to add additional tokens; to discard a token, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the FTS Configuration dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the FTS Configuration dialog:

The example shown demonstrates creating a FTS configuration named meme_phrases. It uses the default parser.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

72 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Click the Reset button to restore configuration parameters.

3.11 The FTS Dictionary Dialog

Use the FTS Dictionary dialog to create a full text search dictionary. You can use a predefined templates or create a
new dictionary with custom parameters.

The FTS Dictionary dialog organizes the development of a FTS dictionary through the following dialog tabs: General,
Definition, and Options. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the dictionary:

• Use the Name field to add a descriptive name for the dictionary. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select the role that will own the FTS Dictionary.

• Select the name of the schema in which the dictionary will reside from the drop-down listbox in the Schema
field.

• Store notes about the dictionary in the Comment field.

Click the Definition tab to continue.

Use the field in the Definition tab to choose a template from the drop-down listbox:

Select *ispell to select the Ispell template. The Ispell dictionary template supports morphological dictionaries, which
can normalize many different linguistic forms of a word into the same lexeme. For example, an English Ispell dictio-

3.11. The FTS Dictionary Dialog 73



pgAdmin 4 Documentation, Release 1.3

nary can match all declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks’, and
bank’s. Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader dic-
tionary; for example, a Snowball dictionary, which recognizes everything. Select *simple to select the simple template.
The simple dictionary template operates by converting the input token to lower case and checking it against a file of
stop words. If it is found in the file then an empty array is returned, causing the token to be discarded. If not, the lower-
cased form of the word is returned as the normalized lexeme. Alternatively, the dictionary can be configured to report
non-stop-words as unrecognized, allowing them to be passed on to the next dictionary in the list. Select *snowball to
select the Snowball template. The Snowball dictionary template is based on a project by Martin Porter, inventor of the
popular Porter’s stemming algorithm for the English language. Snowball now provides stemming algorithms for many
languages (see the Snowball site for more information). Each algorithm understands how to reduce common variant
forms of words to a base, or stem, spelling within its language. A Snowball dictionary recognizes everything, whether
or not it is able to simplify the word, so it should be placed at the end of the dictionary list. It is useless to have it
before any other dictionary because a token will never pass through it to the next dictionary. Select *synonym to select
the synonym template. This dictionary template is used to create dictionaries that replace a word with a synonym.
Phrases are not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used to
overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing the word Paris to
pari. Select *thesaurus to select the thesaurus template. A thesaurus dictionary replaces all non-preferred terms by one
preferred term and, optionally, preserves the original terms for indexing as well. PostgreSQL’s current implementation
of the thesaurus dictionary is an extension of the synonym dictionary with added phrase support.

Click the Options tab to continue.

Use the fields in the Options tab to provide template-specific options. Click the Add icon (+) to add an option clause:

• Specify the name of an option in the Option field

• Provide a value for the option in the Value field.

Click the Add icon (+) to specify each additional option/value pair; to discard an option, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the FTS Dictionary dialog generate a generate a SQL command. Use the SQL tab for review; revisit or
switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the FTS Dictionary dialog:

74 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating a custom dictionary named more_stopwords which is based on the simple
template and is configured to use standard English.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.12 The FTS Parser Dialog

Use the FTS Parser dialog to create a new text search parser. A text search parser defines a method for splitting a text
string into tokens and assigning types (categories) to the tokens.

The FTS Parser dialog organizes the development of a text search parser through the following dialog tabs: General,
and Definition. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify a text search parser:

3.12. The FTS Parser Dialog 75



pgAdmin 4 Documentation, Release 1.3

• Use the Name field to add a descriptive name for the parser. The name will be displayed in the pgAdmin tree
control.

• Select the name of the schema in which the parser will reside from the drop-down listbox in the Schema field.

• Store notes about the domain in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define parameters:

• Use the drop-down listbox next to Start function to select the name of the function that will initialize the parser.

• Use the drop-down listbox next to Get next token function to select the name of the function that will return the
next token.

• Use the drop-down listbox next to End function to select the name of the function that is called when the parser
is finished.

• Use the drop-down listbox next to Lextypes function to select the name of the lextypes function for the parser.
The lextypes function returns an array that contains the id, alias, and a description of the tokens used by the
parser.

• Use the drop-down listbox next to Headline function to select the name of the headline function for the parser.
The headline function returns an excerpt from the document in which the terms of the query are highlighted.

Click the SQL tab to continue.

76 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Your entries in the FTS Parser dialog generate a generate a SQL command. Use the SQL tab for review; revisit or
switch tabs to make any changes to the SQL command.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.13 The FTS Template Dialog

Use the FTS Template dialog to create a new text search template. A text search template defines the functions that
implement text search dictionaries.

The FTS Template dialog organizes the development of a text search Template through the following dialog tabs:
General, and Definition. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify a template:

• Use the Name field to add a descriptive name for the template. The name will be displayed in the pgAdmin tree
control.

• Select the name of the schema in which the template will reside from the drop-down listbox in the Schema field.

• Store notes about the template in the Comment field.

Click the Definition tab to continue.

3.13. The FTS Template Dialog 77



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define function parameters:

• Use the drop-down listbox next to Init function to select the name of the init function for the template. The init
function is optional.

• Use the drop-down listbox next to Lexize function to select the name of the lexize function for the template. The
lexize function is required.

Click the SQL tab to continue.

Your entries in the FTS Template dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the FTS Template dialog:

The example shown demonstrates creating a fts template named ru_template that uses the ispell dictionary.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.14 The Function Dialog

Use the Function dialog to define a function. If you drop and then recreate a function, the new function is not the same
entity as the old; you must drop existing rules, views, triggers, etc. that refer to the old function.

78 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

The Function dialog organizes the development of a function through the following dialog tabs: General, Definition,
Options, Arguments, Parameters, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify a function:

• Use the Name field to add a descriptive name for the function. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select the name of the role that will own the function.

• Use the drop-down listbox next to Schema to select the schema in which the function will be created.

• Store notes about the function in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the function:

• Use the drop-down listbox next to Return type to select the data type returned by the function, if any.

• Use the drop-down listbox next to Language to select the implementation language. The default is sql.

• Use the Code field to write the code that will execute when the function is called.

Click the Options tab to continue.

3.14. The Function Dialog 79



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Options tab to describe or modify the action of the function:

• Use the drop-down listbox next to Volatility to select one of the following. VOLATILE is the default value.

– VOLATILE indicates that the function value can change even within a single table scan, so no optimizations
can be made.

– STABLE indicates that the function cannot modify the database, and that within a single table scan it will
consistently return the same result for the same argument values.

– IMMUTABLE indicates that the function cannot modify the database and always returns the same result
when given the same argument values.

• Move the Returns a Set? switch to indicate if the function returns a set that includes multiple rows. The default
is No.

• Move the Strict? switch to indicate if the function always returns NULL whenever any of its arguments are
NULL. If Yes, the function is not executed when there are NULL arguments; instead a NULL result is assumed
automatically. The default is No.

• Move the Security of definer? switch to specify that the function is to be executed with the privileges of the user
that created it. The default is No.

• Move the Window? switch to indicate that the function is a window function rather than a plain function.
The default is No. This is currently only useful for functions written in C. The WINDOW attribute cannot be
changed when replacing an existing function definition. For more information about the CREATE FUNCTION
command, see the PostgreSQL core documentation available at:

http://www.postgresql.org/docs/9.5/static/functions-window.html

• Use the Estimated cost field to specify a positive number representing the estimated execution cost for the
function, in units of cpu_operator_cost. If the function returns a set, this is the cost per returned row.

• Use the Estimated rows field to specify a positive number giving the estimated number of rows that the query
planner should expect the function to return. This is only allowed when the function is declared to return a set.
The default assumption is 1000 rows.

80 Chapter 3. Managing Database Objects

http://www.postgresql.org/docs/9.5/static/functions-window.html


pgAdmin 4 Documentation, Release 1.3

• Move the Leak proof? switch to indicate whether the function has side effects. The default is No. This option
can only be set by the superuser.

Click the Arguments tab to continue.

Use the fields in the Arguments tab to define an argument. Click the Add icon (+) to set parameters and values for the
argument:

• Use the drop-down listbox in the Data type field to select a data type.

• Use the drop-down listbox in the Mode field to select a mode. Select IN for an input parameter; select OUT for
an output parameter; select INOUT for both an input and an output parameter; or, select VARIADIC to specify a
VARIADIC parameter.

• Provide a name for the argument in the Argument Name field.

• Specify a default value for the argument in the Default Value field.

Click the Add icon (+) to define another argument; to discard an argument, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Parameters tab to continue.

Use the fields in the Parameters tab to specify settings that will be applied when the function is invoked. Click the Add
icon (+) to add a Name/Value field in the table.

• Use the drop-down listbox in the Name column in the Parameters panel to select a parameter.

• Use the Value field to specify the value that will be associated with the selected variable. This field is context-
sensitive.

Click the Security tab to continue.

3.14. The Function Dialog 81



pgAdmin 4 Documentation, Release 1.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign usage privileges for the function to a role.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Function dialog generate a generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Function dialog:

82 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

The example demonstrates creating an edbspl function named emp_comp. The function adds two columns (p_sal and
p_comm), and then uses the result to compute a yearly salary, returning a NUMERIC value.

• Click the Info button (i) to access online help.View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.15 The Language Dialog

Use the CREATE LANGUAGE dialog to register a new procedural language.

The Language dialog organizes the registration of a procedural language through the following dialog tabs: General,
Definition, and Security. The SQL tab displays the SQL code generated by dialog selections.

3.15. The Language Dialog 83



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify a language:

• Use the drop-down listbox next to Name to select a language script.

• Use the drop-down listbox next to Owner to select a role.

• Store notes about the language in the Comment field.

Click the Definition tab to continue.

84 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define parameters:

• Move the Trusted? switch to the No position to specify only users with PostgreSQL superuser privilege can use
this language. The default is Yes.

• When enabled, use the drop-down listbox next to Handler Function to select the function that will be called to
execute the language’s functions.

• When enabled, use the drop-down listbox next to Inline Function to select the function that will be called to
execute an anonymous code block (DO command) in this language.

• When enabled, use the drop-down listbox next to Validator Function to select the function that will be called

3.15. The Language Dialog 85



pgAdmin 4 Documentation, Release 1.3

when a new function in the language is created, to validate the new function.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

86 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Language dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Language dialog:

3.15. The Language Dialog 87



pgAdmin 4 Documentation, Release 1.3

“The example shown demonstrates creating the procedural language named plperl.”

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

88 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

3.16 The Materialized View Dialog

Use the Materialized View dialog to define a materialized view. A materialized view is a stored or cached view that
contains the result set of a query. Use the REFRESH MATERIALIZED VIEW command to update the content of a
materialized view.

The Materialized View dialog organizes the development of a materialized_view through the following dialog tabs:
General, Definition, Storage, Parameter, and Security. The SQL tab displays the SQL code generated by dialog
selections.

Use the fields in the General tab to identify the materialized view:

• Use the Name field to add a descriptive name for the materialized view. The name will be displayed in the
pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the role that will own the materialized view.

• Select the name of the schema in which the materialized view will reside from the drop-down listbox in the
Schema field.

• Store notes about the materialized view in the Comment field.

Click the Definition tab to continue.

Use the text editor field in the Definition tab to provide the query that will populate the materialized view.

Click the Storage tab to continue.

3.16. The Materialized View Dialog 89



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Storage tab to maintain the materialized view:

• Move the With Data switch to the Yes position to specify the materialized view should be populated at creation
time. If not, the materialized view cannot be queried until you invoke REFRESH MATERIALIZED VIEW.

• Use the drop-down listbox next to Tablespace to select a location for the materialized view.

• Use the Fill Factor field to specify a fill factor for the materialized view. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

Click the Parameter tab to continue.

Use the tabs nested inside the Parameter tab to specify VACUUM and ANALYZE thresholds; use the Table tab and
the Toast Table tab to customize values for the table and the associated toast table. To change the default values:

• Move the Custom auto-vacuum? switch to the Yes position to perform custom maintenance on the materialized
view.

90 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Move the Enabled? switch to the Yes position to select values in the Vacuum table. Provide values for each row
in the Value column.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for the materialized
view:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the materialized view. Click the Add icon (+) to add
each security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Materialized View dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Materialized View dialog:

3.16. The Materialized View Dialog 91



pgAdmin 4 Documentation, Release 1.3

The example shown creates a query named new_hires that stores the result of the displayed query in the pg_default
tablespace.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.17 The Package Dialog

Use the Package dialog to create a (user-defined) package specification.

The Package dialog organizes the management of a package through the following dialog tabs: General, Code, and
Security. The SQL tab displays the SQL code generated by dialog selections.

92 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify the package:

• Use the Name field to add a descriptive name for the package. The name of a new package must not match any
existing package in the same schema.

• Select the schema in which the package will reside from the drop-down listbox in the Schema field.

• Store notes about the package in the Comment field.

Click the Code tab to continue.

3.17. The Package Dialog 93



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Code tab to specify the package contents and to provide implementation details:

• Use the Header field to define the public interface for the package.

• Use the Body field to provide the code that implements each package object.

Click the Security tab to continue.

94 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Security tab to to assign EXECUTE privileges for the package to a role. Click the Add icon (+) to
set privileges for the package:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of a privilege to grant the selected privilege to the
specified user.

• Select the name of a role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the package.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row,

3.17. The Package Dialog 95



pgAdmin 4 Documentation, Release 1.3

and confirm the deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Package dialog generate a SQL command that creates or modifies a package definition:

The example shown demonstrates creating a package named empinfo that includes one function and one procedure.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to delete any changes to the dialog.

96 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

3.18 The Procedure Dialog

Use the Procedure dialog to create a procedure; procedures are supported by EDB Postgres Advanced Server. The
Procedure dialog allows you to implement options of the CREATE PROCEDURE command; for more information
about the CREATE PROCEDURE SQL command, please see the Database Compatibility for Oracle Developer’s,
available at:

http://www.enterprisedb.com

The Procedure dialog organizes the development of a procedure through the following dialog tabs: General, Definition,
Options, Arguments, Parameters, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify a procedure:

• Use the Name field to add a descriptive name for the procedure. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select a role.

• Select the name of the schema in which the procedure will reside from the drop-down listbox in the Schema
field.

• Store notes about the procedure in the Comment field.

Click the Definition tab to continue.

3.18. The Procedure Dialog 97

http://www.enterprisedb.com


pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define the procedure:

• Use the drop-down listbox next to Language to select a language. The default is edbspl.

• Use the Code field to specify the code that will execute when the procedure is called.

Click the Options tab to continue.

Use the fields in the Options tab to describe or modify the behavior of the procedure:

• Use the drop-down listbox under Volatility to select one of the following. VOLATILE is the default value.

– VOLATILE indicates that the value can change even within a single table scan, so no optimizations can be
made.

– STABLE indicates that the procedure cannot modify the database, and that within a single table scan it will
consistently return the same result for the same argument values, but that its result could change across
SQL statements.

– IMMUTABLE indicates that the procedure cannot modify the database and always returns the same result
when given the same argument values.

98 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Move the Strict? switch to indicate if the procedure always returns NULL whenever any of its arguments are
NULL. If Yes, the procedure is not executed when there are NULL arguments; instead a NULL result is assumed
automatically. The default is No.

• Move the Security of definer? switch to specify that the procedure is to be executed with the privileges of the
user that created it. The default is No.

• Use the Estimated cost field to specify a positive number representing the estimated execution cost for the
procedure, in units of cpu_operator_cost. If the procedure returns a set, this is the cost per returned row.

• Move the Leak proof? switch to indicate whether the procedure has side effects — it reveals no information
about its arguments other than by its return value. The default is No.

Click the Arguments tab to continue.

Use the fields in the Arguments tab to define an argument. Click Add to set parameters and values for the argument:

• Use the drop-down listbox next to Data type to select a data type.

• Use the drop-down listbox next to Mode to select a mode. Select IN for an input parameter; select OUT for an
output parameter; select INOUT for both an input and an output parameter; or, select VARIADIC to specify a
VARIADIC parameter.

• Write a name for the argument in the Argument Name field.

• Specify a default value for the argument in the Default Value field.

Click Add to define another argument; to discard an argument, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the Parameters tab to continue.

3.18. The Procedure Dialog 99



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Parameters tab to specify settings that will be applied when the procedure is invoked:

• Use the drop-down listbox next to Parameter Name in the Parameters panel to select a parameter.

• Click the Add button to add the variable to Name field in the table.

• Use the Value field to specify the value that will be associated with the selected variable. This field is context-
sensitive.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign execute privileges for the procedure to a role:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

100 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Click Add to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the procedure. Click Add to add each security label
selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click Add to assign additional security labels; to discard a security label, click the trash icon to the left of the row and
confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Procedure dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Procedure dialog:

The example demonstrates creating a procedure that returns a list of employees from a table named emp. The procedure
is a SECURITY DEFINER, and will execute with the privileges of the role that defined the procedure.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.18. The Procedure Dialog 101



pgAdmin 4 Documentation, Release 1.3

3.19 The Schema Dialog

Use the Schema dialog to define a schema. A schema is the organizational workhorse of a database, similar to direc-
tories or namespaces. To create a schema, you must be a database superuser or have the CREATE privilege.

The Schema dialog organizes the development of schema through the following dialog tabs: General and Security.
The SQL tab displays the SQL code generated by dialog selections.

Use the fields on the General tab to identify the schema.

• Use the Name field to add a descriptive name for the schema. The name will be displayed in the pgAdmin tree
control.

• Select the owner of the schema from the drop-down listbox in the Owner field.

• Store notes about the schema in the Comment field.

Click the Security tab to continue.

Use the Security tab to assign privileges and security labels for the schema.

Click the Add icon (+) to assign a set of privileges in the Privileges panel:

102 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

• Select the name of the role that is granting the privilege from the drop-down listbox in the Grantor field. The
default grantor is the owner of the schema.

Click the Add icon (+) to assign additional sets of privileges; to discard a privilege, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Add icon (+) to assign a security label in the Security Labels panel:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Default Privileges tab to continue.

Use the Default Privileges tab to grant privileges for tables, sequences, functions and types. Use the tabs nested inside
the Default Privileges tab to specify the database object and click the Add icon (+) to assign a set of privileges:

• Select the name of a role that will be granted privileges in the schema from the drop-down listbox in the Grantee
field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

• Select the name of the role that is granting the privilege from the drop-down listbox in the Grantor field. The
default grantor is the owner of the schema.

Click the SQL tab to continue.

Your entries in the Schema dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

3.19. The Schema Dialog 103



pgAdmin 4 Documentation, Release 1.3

The following is an example of the sql command generated by selections made in the Schema dialog:

The example creates a schema named hr; the command grants USAGE privileges to public and assigns the ability to
grant privileges to alice.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.20 The Sequence Dialog

Use the Sequence dialog to create a sequence. A sequence generates unique values in a sequential order (not necessarily
contiguous).

The Sequence dialog organizes the development of a sequence through the following dialog tabs: General, Definition,
and Security. The SQL tab displays the SQL code generated by dialog selections.

104 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify a sequence:

• Use the Name field to add a descriptive name for the sequence. The name will be displayed in the pgAdmin tree
control. The sequence name must be distinct from the name of any other sequence, table, index, view, or foreign
table in the same schema.

• Use the drop-down listbox next to Owner to select the name of the role that will own the sequence.

• Use the drop-down listbox next to Schema to select the schema in which the sequence will reside.

• Store notes about the sequence in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the sequence:

• Use the Increment field to specify which value is added to the current sequence value to create a new value.

• Provide a value in the Start field to specify the beginning value of the sequence. The default starting value is

3.20. The Sequence Dialog 105



pgAdmin 4 Documentation, Release 1.3

MINVALUE for ascending sequences and MAXVALUE for descending ones.

• Provide a value in the Minimum field to specify the minimum value a sequence can generate. If this clause is not
supplied or NO MINVALUE is specified, then defaults will be used. The defaults are 1 and -263-1 for ascending
and descending sequences, respectively.

• Provide a value in the Maximum field to specify the maximum value for the sequence. If this clause is not
supplied or NO MAXVALUE is specified, then default values will be used. The defaults are 263-1 and -1 for
ascending and descending sequences, respectively.

• Provide a value in the Cache field to specify how many sequence numbers are to be preallocated and stored in
memory for faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache),
and this is also the default.

• Move the Cycled switch to the Yes position to allow the sequence to wrap around when the MAXVALUE or the
MINVALUE has been reached by an ascending or descending sequence respectively. If the limit is reached, the
next number generated will be the MINVALUE or MAXVALUE, respectively. The default is No.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels for the sequence.

Use the Privileges panel to assign privileges. Click the Add icon (+) to set privileges:

• Select the name of a role that will be granted privileges from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the sequence. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

106 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Sequence dialog generate a generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Sequence dialog:

The example shown demonstrates a sequence named seconds. The sequence will increase in 5 second increments, and
stop when it reaches a maximum value equal of 60.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.21 The Synonym Dialog

Use the Synonym dialog to substitute the name of a target object with a user-defined synonym.

The Synonym dialog organizes the development of a synonym through the General tab. The SQL tab displays the SQL
code generated by dialog selections.

3.21. The Synonym Dialog 107



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify the synonym:

• Use the Name field to specify the name of synonym. The name will be displayed in the pgAdmin tree control.

• Select the name of the schema in which the synonym will reside from the drop-down listbox in the Schema field.

In the definition panel, identify the target:

• Use the drop-down listbox next to Target Type to select the the type of object referenced by the synonym.

• Use the drop-down listbox next to Target Schema to select the name of the schema in which the object resides.

• Use the drop-down listbox next to Target Object to select the name of the object referenced by the synonym.

108 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Click the SQL tab to continue.

Your selections and entries in the Synonym dialog generate a SQL command.

The example creates a synonym for the emp table named emp_hist.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.21. The Synonym Dialog 109



pgAdmin 4 Documentation, Release 1.3

3.22 The Trigger function Dialog

Use the Trigger function dialog to create or manage a trigger_function. A trigger function defines the action that will
be invoked when a trigger fires.

The Trigger function dialog organizes the development of a trigger function through the following dialog tabs: General,
Definition, Options, Parameters and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the trigger function:

• Use the Name field to add a descriptive name for the trigger function. The name will be displayed in the pgAdmin
tree control. Please note that trigger functions will be invoked in alphabetical order.

• Use the drop-down listbox next to Owner to select the role that will own the trigger function.

• Select the name of the schema in which the trigger function will reside from the drop-down listbox in the Schema
field.

• Store notes about the trigger function in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the trigger function:

110 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Use the drop-down listbox next to Return type to specify the pseudotype that is associated with the trigger
function:

– Select trigger if you are creating a DML trigger.

– Select event_trigger if you are creating a DDL trigger.

• Use the drop-down listbox next to Language to select the implementation language. The default is plpgsql.

• Use the Code field to write the code that will execute when the trigger function is called.

Click the Options tab to continue.

Use the fields in the Options tab to describe or modify the action of the trigger function:

• Use the drop-down listbox next to Volatility to select one of the following:

– VOLATILE indicates that the trigger function value can change even within a single table scan.

– STABLE indicates that the trigger function cannot modify the database, and that within a single table scan
it will consistently return the same result for the same argument values.

– IMMUTABLE indicates that the trigger function cannot modify the database and always returns the same
result when given the same argument values.

• Move the Returns a Set? switch to indicate if the trigger function returns a set that includes multiple rows. The
default is No.

• Move the Strict? switch to indicate if the trigger function always returns NULL whenever any of its arguments
are NULL. If Yes, the function is not executed when there are NULL arguments; instead a NULL result is
assumed automatically. The default is No.

• Move the Security of definer? switch to specify that the trigger function is to be executed with the privileges of
the user that created it. The default is No.

• Move the Window? switch to indicate that the trigger function is a window function rather than a plain function.
The default is No. This is currently only useful for trigger functions written in C.

3.22. The Trigger function Dialog 111



pgAdmin 4 Documentation, Release 1.3

• Use the Estimated cost field to specify a positive number representing the estimated execution cost for the trigger
function, in units of cpu_operator_cost. If the function returns a set, this is the cost per returned row.

• Use the Estimated rows field to specify a positive number giving the estimated number of rows that the query
planner should expect the trigger function to return. This is only allowed when the function is declared to return
a set. The default assumption is 1000 rows.

• Move the Leak proof? switch to indicate whether the trigger function has side effects. The default is No. This
option can only be set by the superuser.

Click the Parameters tab to continue.

Use the fields in the Parameters tab to specify settings that will be applied when the trigger function is invoked. Click
the Add icon (+) to add a Name/Value pair to the table below.

• Use the drop-down listbox in the Name field to select a parameter.

• Use the Value field to specify the value that will be associated with the selected parameter. This field is context-
sensitive.

Click the Add icon (+) to set additional parameters; to discard a parameter, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign usage privileges for the trigger function to a role. Click the Add icon (+) to to add a
role to the table.

• Select the name of the role from the drop-down listbox in the Grantee field.

112 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of a role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the trigger function. Click the Add icon (+) to add
each security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Trigger function dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit other tabs to modify the SQL command.

Example

The following is an example of the sql command generated by user selections in the Trigger function dialog:

3.22. The Trigger function Dialog 113



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating a trigger function named emp_stamp that checks for a new employee’s
name, and checks that the employee’s salary is a positive value.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.23 The Type Dialog

Use the Type dialog to register a custom data type.

The Type dialog organizes the development of a data type through the following dialog tabs: General, Definition, and
Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the custom data type:

• Use the Name field to add a descriptive name for the type. The name will be displayed in the pgAdmin tree
control. The type name must be distinct from the name of any existing type, domain, or table in the same
schema.

• Use the drop-down listbox next to Owner to select the role that will own the type.

• Select the name of the schema in which the type will reside from the drop-down listbox in the Schema field.

• Store notes about the type in the Comments field.

Click the Definition tab to continue.

Select a data type from the drop-down listbox next to Type on the Definition tab; the panel below changes to display
the options appropriate for the selected data type. Use the fields in the panel to define the data type.

There are five data types:

• Composite Type

• Enumeration Type

114 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Range Type

• External Type (or Base Type)

• Shell Type

If you select Composite in the Type field, the Definition tab displays the Composite Type panel:

Click the Add icon (+) to provide attributes of the type. Fields on the General panel are context sensitive and may be
disabled.

• Use the Member Name field to add an attribute name.

• Use the drop-down listbox in the Type field to select a datatype.

• Use the Length/Precision field to specify the maximum length of a non-numeric type, or the total count of
significant digits in a numeric type.

• Use the Scale field to specify the number of digits to the right of the decimal point.

• Use the drop-down listbox in the Collation field to select a collation (if applicable).

Click the Add icon (+) to define an additional member; click the trash icon to the left of the row to discard a row.

If you select the Enumeration in the Type field, the Definition tab displays the Enumeration Type panel:

Click the Add icon (+) to provide a label for the type.

• Use the Label field to add a label, which must be less than 64 bytes long.

Click the Add icon (+) after each selection to create additional labels; to discard a label, click the trash icon to the left
of the row.

3.23. The Type Dialog 115



pgAdmin 4 Documentation, Release 1.3

If you select External, the Definition tab displays the External Type panel:

On the Required tab:

• Use the drop-down listbox next to the Input function field to add an input_function. The input_function con-
verts the type’s external textual representation to the internal representation used by the operators and functions
defined for the type.

• Use the drop-down listbox next to the Output function field to add an output_function. The output_function
converts the type’s internal representation used by the operators and functions defined for the type to the type’s
external textual representation.

On the Optional-1 tab:

• Use the drop-down listbox next to the optional Receive Function field to select a receive_function. The optional
receive_function converts the type’s external binary representation to the internal representation. If this function
is not supplied, the type cannot participate in binary input.

• Use the drop-down listbox next to the optional Send function field to select a send_function. The optional
send_function converts from the internal representation to the external binary representation. If this function is
not supplied, the type cannot participate in binary output.

• Use the drop-down listbox next to the optional Typmod in function field tab to select a
type_modifier_input_function.

• Use the drop-down listbox next to the optional Typmod out function field tab to select a
type_modifier_output_function. It is allowed to omit the type_modifier_output_function, in which case the
default display format is the stored typmod integer value enclosed in parentheses.

• Use the optional Internal length to specify a value for internal representation.

• Move the Variable? switch to specify the internal representation is of variable length (VARIABLE). The default
is a fixed length positive integer.

• Specify a default value in the optional Default field in cases where a column of the data type defaults to some-
thing other than the null value. Specify the default with the DEFAULT key word. (A default can be overridden
by an explicit DEFAULT clause attached to a particular column.)

• Use the drop-down listbox next to the optional Analyze function field to select a function for performing type-
specific statistics collection for columns of the data type.

116 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Use the drop-down listbox next to the optional Category type field to help control which implicit cast will be
applied in ambiguous situations.

• Move the Preferred? switch to Yes to specify the selected category type is preferred. The default is No.

On the Optional-2 tab:

• Use the drop-down listbox next to the optional Element type field to specify a data type.

• Use the optional Delimiter field to indicate the delimiter to be used between values in the external representation
of arrays for this data type. The default delimiter is the comma (,). Note that the delimiter is associated with the
array element type, not the array type itself.

• Use the drop-down listbox next to Alignment type to specify the storage alignment required for the data type.
The allowed values (char, int2, int4, and double) correspond with alignment on 1, 2, 4, or 8 byte boundaries.

• Use the drop-down listbox next to optional Storage type to select a strategy for storing data.

• Move the Passed by value? switch to Yes to override the existing data type value. The default is No.

• Move the Collatable? switch to Yes to specify column definitions and expressions of the type may carry collation
information through use of the COLLATE clause. The default is No.

If you select Range in the Type field, the Definition tab displays the Range panel. Fields on the Range panel are
context-sensitive and may be disabled.

• Use the drop-down listbox next to Sub-type to select an associated b-tree operator class (to determine the order-
ing of values for the range type).

• Use the drop-down listbox next to Sub-type operator class to use a non-default operator class.

• Use the drop-down listbox next to Collation to use a non-default collation in the range’s ordering if the sub-type
is collatable.

• Use the drop-down listbox next to Canonical function to convert range values to a canonical form.

• Use the drop-down listbox next to Sub-type diff function to select a user-defined subtype_diff function.

If you select Shell in the Type field, the Definition tab displays the Shell panel:

3.23. The Type Dialog 117



pgAdmin 4 Documentation, Release 1.3

A shell type is a placeholder for a type and has no parameters.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges for the type; click the Add icon (+) to grant privileges:

• Select the name of the role that will be granted privileges on the type from the drop-down listbox in the Grantee
field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role that is granting privileges from the drop-down listbox in the Grantor field. The
default grantor is the owner of the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the type. Click the Add icon (+) to add each security
label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

118 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

Your entries in the Type dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of a sql command generated by user selections made in the Type dialog:

The example shown demonstrates creating a data type named work_order. The data type is an enumerated type with
three labels: new, open and closed.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.24 The User Mapping Dialog

Use the User Mapping dialog to define a new mapping of a user to a foreign server.

The User Mapping dialog organizes the development of a user mapping through the following dialog tabs: General
and Options. The SQL tab displays the SQL code generated by dialog selections.

Use the drop-down listbox in the User field in the General tab to identify the connecting role:

• Select CURRENT_USER to use the name of the current role.

3.24. The User Mapping Dialog 119



pgAdmin 4 Documentation, Release 1.3

• Select PUBLIC if no other user-specific mapping is applicable.

• Select a pre-defined role name to specify the name of an existing user.

Click the Options tab to continue.

Use the fields in the Options tab to specify connection options; the accepted option names and values are specific to
the foreign data wrapper associated with the server specified in the user mapping. Click the Add button to add an
option/value pair.

• Specify the option name in the Option field.

• Provide a corresponding value in the Value field.

Click Add to specify each additional option/value pair; to discard an option, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the User Mapping dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the User Mapping dialog:

120 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates a user mapping for the hdfs_server. The user is CURRENT_USER with a password
secret.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.25 The View Dialog

Use the View dialog to define a view. The view is not physically materialized; the query is executed each time the view
is referenced in a query.

The View dialog organizes the development of a View through the following dialog tabs: General, Definition, and
Security”. The SQL tab displays the SQL code generated by dialog selections.

Click the General tab to begin.

Use the fields in the General tab to identify a view:

• Use the Name field to add a descriptive name for the view. The name of the view must be distinct from the name
of any other view, table, sequence, index or foreign table in the same schema. The name will be displayed in the
pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the role that will own the view.

• If applicable, select the name of the schema in which the view will reside from the drop-down listbox in the
Schema field.

• Store notes about the view in the Comments field.

Click the Definition tab to continue.

3.25. The View Dialog 121



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define properties of the view:

• Set the Security Barrier switch to Yes to indicate that the view is to act as a security barrier. For more information
about defining and using a security barrier rule, see Section 38.5 of the PostgreSQL documentation.

• Use the drop-down listbox next to Check options to select from No, Local or Cascaded. The Local option
specifies that new rows are only checked against the conditions defined in the view. Any conditions de-
fined on underlying base views are not checked (unless you specify the CHECK OPTION). The Cascaded
option specifies new rows are checked against the conditions of the view and all underlying base views.

• Use the workspace in the Definition field to write a query to create a view.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for the view:

• Select the name of the role that will be granted privileges from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of a role with sufficient privileges to grant privileges on the view from the drop-down listbox in
the Grantor field. The default grantor is the owner of the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the view. Click the Add icon (+) to add each security
label selection:

122 Chapter 3. Managing Database Objects



pgAdmin 4 Documentation, Release 1.3

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the View dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the View dialog:

The example shown demonstrates creating a view named distributor_codes that includes the content of the code
column from the distributors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.25. The View Dialog 123



pgAdmin 4 Documentation, Release 1.3

124 Chapter 3. Managing Database Objects



CHAPTER

FOUR

CREATING OR MODIFYING A TABLE

pgAdmin 4 provides dialogs that allow you to modify all table properties and attributes.

To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree
control, and select the Create option for that object. For example, to create a new database, right-click on the Casts
node, and select Create Cast. . .

Contents:

4.1 The Check Dialog

Use the Check dialog to define or modify a check constraint. A check constraint specifies an expression that produces
a Boolean result that new or updated rows must satisfy for an insert or update operation to succeed.

The Check dialog organizes the development of a check constraint through the General and Definition tabs. The SQL
tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the check constraint:

• Use the Name field to provide a descriptive name for the check constraint that will be displayed in the pgAdmin
tree control. With PostgreSQL 9.5 forward, when a table has multiple check constraints, they will be tested for
each row in alphabetical order by name and after NOT NULL constraints.

• Store notes about the check constraint in the Comment field.

Click the Definition tab to continue.

125



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define the check constraint:

• Provide the expression that a row must satisfy in the Check field.

• Move the No Inherit? switch to the Yes position to specify this constraint is automatically inherited by a table’s
children. The default is No.

• Move the Don’t validate? switch to the No position to skip validation of existing data; the constraint may not
hold for all rows in the table. The default is Yes.

Click the SQL tab to continue.

Your entries in the Check dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Check dialog:

The example shown demonstrates creating a check constraint named check_price on the price column of the products
table. The constraint confirms that any values added to the column are greater than 0.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

126 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.2 The Column Dialog

Use the Column dialog to add a column to an existing table or modify a column definition.

The Column dialog organizes the development of a column through the following dialog tabs: General, Definition,
and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the column:

• Use the Name field to add a descriptive name for the column. The name will be displayed in the pgAdmin tree
control. This field is required.

• Store notes about the column in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to add parameters for the column. (Fields are disabled if inapplicable.)

• Use the drop-down listbox next to Data Type to select a data type for the column. For more information on the
data types that are supported by PostgreSQL, refer to Chapter 8 of the Postgres core documentation. This field

4.2. The Column Dialog 127



pgAdmin 4 Documentation, Release 1.3

is required.

• Use the Length and Precision fields to specify the maximum number of significant digits in a numeric value, or
the maximum number of characters in a text value.

• Use the drop-down listbox next to Collation to apply a collation setting to the column.

• Use the Default Value field to specify a default data value.

• Move the Not Null switch to the Yes position to specify the column may not contain null values. The default is
No.

Click the Variables tab to continue.

Use the Variables tab to to specify the number of distinct values that may be present in the column; this value overrides
estimates made by the ANALYZE command. Click the Add icon (+) to add a Name/Value pair:

• Select the name of the variable from the drop-down listbox in the Name field.

– Select n_distinct to specify the number of distinct values for the column.

– Select n_distinct_inherited to specify the number of distinct values for the table and its children.

• Specify the number of distinct values in the Value field. For more information, see the documentation for ALTER
TABLE.

Click the Add icon (+) to specify each additional Name/Value pair; to discard a variable, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

Use the Security tab to assign attributes and define security labels. Click the Add icon (+) to add each security label
selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

128 Chapter 4. Creating or Modifying a Table

http://www.postgresql.org/docs/9.6/static/sql_altertable.html
http://www.postgresql.org/docs/9.6/static/sql_altertable.html


pgAdmin 4 Documentation, Release 1.3

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Column dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Column dialog:

The example shown demonstrates creating a column named territory in the table named distributors.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.3 The Exclusion constraint Dialog

Use the Exclusion constraint dialog to define or modify the behavior of an exclusion constraint. An exclusion con-
straint guarantees that if any two rows are compared on the specified column or expression (using the specified opera-
tor), at least one of the operator comparisons will return false or null.

The Exclusion constraint dialog organizes the development of an exclusion constraint through the following dialog
tabs: General, Definition, and Columns. The SQL tab displays the SQL code generated by dialog selections.

4.3. The Exclusion constraint Dialog 129



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify the exclusion constraint:

• Use the Name field to provide a descriptive name for the exclusion constraint. The name will be displayed in
the pgAdmin tree control.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the exclusion constraint:

• Use the drop-down listbox next to Tablespace to select the tablespace in which the index associated with the
exclude constraint will reside.

• Use the drop-down listbox next to Access method to specify the type of index that will be used when imple-
menting the exclusion constraint:

– Select gist to specify a GiST index.

– Select spgist to specify a space-partitioned GiST index.

– Select btree to specify a B-tree index.

130 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

– Select hash to specify a hash index.

• Use the Fill Factor field to specify a fill factor for the table and associated index. The fill factor is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify that the timing of the constraint is deferrable, and
can be postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Use the Constraint field to provide a condition that a row must satisfy to be included in the table.

Click the Columns tab to continue.

Use the fields in the Columns tab to to specify the column(s) to which the constraint applies. Use the drop-down
listbox next to Column to select a column and click the Add icon (+) to provide details of the action on the column:

• The Column field is populated with the selection made in the Column drop-down listbox.

• If applicable, use the drop-down listbox in the Operator class to specify the operator class that will be used by
the index for the column.

• Move the DESC switch to DESC to specify a descending sort order. The default is ASC which specifies an
ascending sort order.

• Use the NULLs order column to specify the placement of NULL values (when sorted). Specify FIRST or LAST.

• Use the drop-down list next to Operator to specify a comparison or conditional operator.

Click the SQL tab to continue.

Your entries in the Exclusion Constraint dialog generate a SQL command (see an example below). Use the SQL tab
for review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Exclusion Constraint dialog:

4.3. The Exclusion constraint Dialog 131



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating an exclusion constraint named exclude_department that restricts additions
to the dept table to those additions that are not equal to the value of the deptno column. The constraint uses a btree
index.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.4 The Foreign key Dialog

Use the Foreign key dialog to specify the behavior of a foreign key constraint. A foreign key constraint maintains
referential integrity between two tables. A foreign key constraint cannot be defined between a temporary table and a
permanent table.

The Foreign key dialog organizes the development of a foreign key constraint through the following dialog tabs:
General, Definition, Columns, and Action. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the foreign key constraint:

• Use the Name field to add a descriptive name for the foreign key. The name will be displayed in the pgAdmin
tree control.

132 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

• Store notes about the foreign key constraint in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the foreign key constraint:

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Move the Match type switch specify the type of matching that is enforced by the constraint:

– Select Full to indicate that all columns of a multicolumn foreign key must be null if any column is null; if
all columns are null, the row is not required to have a match in the referenced table.

– Select Simple to specify that a single foreign key column may be null; if any column is null, the row is not
required to have a match in the referenced table.

• Move the Validated switch to the Yes position to instruct the server to validate the existing table content (against
a foreign key or check constraint) when you save modifications to this dialog.

• Move the Auto FK Index switch to the No position to disable the automatic index feature.

• The field next to Covering Index generates the name of an index if the Auto FK Index switch is in the Yes
position; or, this field is disabled.

Click the Columns tab to continue.

4.4. The Foreign key Dialog 133



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Columns tab to specify one or more reference column(s). A Foreign Key constraint requires that
one or more columns of a table must only contain values that match values in the referenced column(s) of a row of a
referenced table:

• Use the drop-down listbox next to Local column to specify the column in the current table that will be compared
to the foreign table.

• Use the drop-down listbox next to References to specify the name of the table in which the comparison column(s)
resides.

• Use the drop-down listbox next to Referencing to specify a column in the foreign table.

Click the Add icon (+) to add a column to the list; repeat the steps above and click the Add icon (+) to add additional
columns. To discard an entry, click the trash icon to the left of the entry and confirm deletion in the Delete Row popup.

Click the Action tab to continue.

Use the drop-down listboxes on the Action tab to specify behavior related to the foreign key constraint that will be
performed when data within the table is updated or deleted:

• Use the drop-down listbox next to On update to select an action that will be performed when data in the table is
updated.

• Use the drop-down listbox next to On delete to select an action that will be performed when data in the table is
deleted.

The supported actions are:

134 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

NO
AC-
TION

Produce an error indicating that the deletion or update will create a foreign key constraint violation. If
the constraint is deferred, this error will be produced at constraint check time if any referencing rows still
exist. This is the default.

RE-
STRICT

Throw an error indicating that the deletion or update would create a foreign key constraint violation. This
is the same as NO ACTION except that the check is not deferrable.

CAS-
CADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new
values of the referenced columns, respectively.

SET
NULL

Set the referencing column(s) to null.

SET
DE-
FAULT

Set the referencing column(s) to their default values. There must be a row in the referenced table that
matches the default values (if they are not null), or the operation will fail.

Click the SQL tab to continue.

Your entries in the Foreign key dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign key dialog:

The example shown demonstrates creating a foreign key constraint named territory_fkey that matches values in the
distributors table territory column with those of the sales_territories table region column.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.5 The Index Dialog

Use the Index dialog to create an index on a specified table or materialized view.

The Index dialog organizes the development of a index through the following dialog tabs: General and Definition. The
SQL tab displays the SQL code generated by dialog selections.

4.5. The Index Dialog 135



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to identify the index:

• Use the Name field to add a descriptive name for the index. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Tablespace to select the tablespace in which the index will reside.

• Store notes about the index in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the index:

• Use the drop-down listbox next to Access Method to select an index type:

– Select btree to create a B-tree index. A B-tree index may improve performance when managing equality
and range queries on data that can be sorted into some ordering (the default).

– Select hash to create a hash index. A hash index may improve performance when managing simple equality
comparisons.

136 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

– Select gist to create a GiST index. A GiST index may improve performance when managing values with
more than one key.

– Select gin to create a GIN index. A GIN index may improve performance when managing two-dimensional
geometric data types and nearest-neighbor searches.

– Select spgist to create a space-partitioned GiST index. A SP-GiST index may improve performance when
managing non-balanced data structures.

– Select brin to create a BRIN index. A BRIN index may improve performance when managing minimum
and maximum values and ranges.

• Use the Fill Factor field to specify a fill factor for the index. The fill factor specifies how full the selected method
will try to fill each index page.

• Move the Unique? switch to the Yes position to check for duplicate values in the table when the index is created
and when data is added. The default is No.

• Move the Clustered? switch to the Yes position to instruct the server to cluster the table.

• Move the Concurrent build? switch to the Yes position to build the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table.

• Use the Constraint field to provide a constraint expression; a constraint expression limits the entries in the index
to those rows that satisfy the constraint.

Use the context-sensitive fields in the Columns panel to specify which column(s) the index queries. Click the Add icon
(+) to add a column:

• Use the drop-down listbox in Column field to select the name of the column from the table.

• If enabled, use the drop-down listbox to select an available Operator class to specify the type of action performed
on the column.

• If enabled, move the Sort order switch to specify the sort order:

– Select ASC to specify an ascending sort order (the default);

– Select DESC to specify a descending sort order.

• If enabled, move the Nulls switch to specify the sort order of nulls:

– Select First to specify nulls sort before non-nulls;

– Select Last to specify nulls sort after non-nulls (the default).

• Use the drop-down listbox in the Collation field to select a collation to use for the index.

Click the SQL tab to continue.

Your entries in the Index dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Index dialog:

4.5. The Index Dialog 137



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating an index named dist_codes that indexes the values in the code column of
the distributors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.6 The Primary key Dialog

Use the Primary key dialog to create or modify a primary key constraint. A primary key constraint indicates that a
column, or group of columns, uniquely identifies rows in a table. This requires that the values in the selected column(s)
be both unique and not null.

The Primary key dialog organizes the development of a primary key constraint through the General and Definition
tabs. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the primary key:

138 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

• Use the Name field to add a descriptive name for the primary key constraint. The name will be displayed in the
pgAdmin tree control.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the primary key constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The primary key constraint should be different from any
unique constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Select the name of the tablespace in which the primary key constraint will reside from the drop-down listbox in
the Tablespace field.

• Select the name of an index from the drop-down listbox in the Index field. This field is optional. Adding a
primary key will automatically create a unique B-tree index on the column or group of columns listed in the
primary key, and will force the column(s) to be marked NOT NULL.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

Click the SQL tab to continue.

Your entries in the Primary key dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Primary key dialog:

4.6. The Primary key Dialog 139



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating a primary key constraint named dept_pkey on the dept_id column of the
dept table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.7 The Rule Dialog

Use the Rule dialog to define or modify a rule for a specified table or view. A PostgreSQL rule allows you to define
an additional action that will be performed when a SELECT, INSERT, UPDATE, or DELETE is performed against a
table.

The Rule dialog organizes the development of a rule through the General, and Definition tabs. The SQL tab displays
the SQL code generated by dialog selections.

Use the fields in the General tab to identify the rule:

• Use the Name field to add a descriptive name for the rule. The name will be displayed in the pgAdmin tree
control. Multiple rules on the same table are applied in alphabetical name order.

• Store notes about the rule in the Comment field.

Click the Definition tab to continue.

140 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to write parameters:

• Click inside the Event field to select the type of event that will invoke the rule; event may be Select, Insert,
Update, or Delete.

• Move the Do Instead switch to Yes indicate that the commands should be executed instead of the original
command; if Do Instead specifies No, the rule will be invoked in addition to the original command.

• Specify a SQL conditional expression that returns a boolean value in the Condition editor.

• Provide a command in the Commands editor that defines the action performed by the rule.

Click the SQL tab to continue.

Your entries in the Rule dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Rule dialog:

The example sends a notification when an UPDATE executes against a table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

4.7. The Rule Dialog 141



pgAdmin 4 Documentation, Release 1.3

• Click the Reset button to restore configuration parameters.

4.8 The Table Dialog

Use the Table dialog to create or modify a table.

The Table dialog organizes the development of a table through the following dialog tabs: General, Columns, Con-
straints, Advanced, Parameter, and Security. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the table:

• Use the Name field to add a descriptive name for the table. A table cannot have the same name as any existing
table, sequence, index, view, foreign table, or data type in the same schema. The name specified will be displayed
in the pgAdmin tree control. This field is required.

• Select the owner of the table from the drop-down listbox in the Owner field. By default, the owner of the table
is the role that creates the table.

• Select the name of the schema in which the table will reside from the drop-down listbox in the Schema field.

• Use the drop-down listbox in the Tablespace field to specify the tablespace in which the table will be stored.

• Store notes about the table in the Comment field.

Click the Columns tab to continue.

Use the drop-down listbox next to Inherited from table(s) to specify any parent table(s); the table will inherit columns
from the selected parent table(s). Click inside the Inherited from table(s) field to select a table name from a drop-down
list. Repeat to add any other parent tables. Delete a selected table by clicking the x to the left of the parent name. Note

142 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

that inherited column names and datatypes are not editable in the current dialog; they must be modified at the parent
level.

Click the Add icon (+) to specify the names of columns and their datatypes in the Columns table:

• Use the Name field to add a descriptive name for the column.

• Use the drop-down listbox in the Data type field to select a data type for the column. This can include array
specifiers. For more information on the data types supported by PostgreSQL, refer to Chapter 8 of the core
documentation.

• If enabled, use the Length and Precision fields to specify the maximum number of significant digits in a numeric
value, or the maximum number of characters in a text value.

• Move the Not NULL? switch to the Yes position to require a value in the column field.

• Move the Primary key? switch to the Yes position to specify the column is the primary key constraint.

Click the Add icon (+) to add additional columns; to discard a column, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Constraints tab to continue.

Use the fields in the Constraints tab to provide a table or column constraint. Optional constraint clauses specify
constraints (tests) that new or updated rows must satisfy for an INSERT or UPDATE operation to succeed. Select the
appropriate constraint type by selecting one of the following tabs on the Constraints panel:

4.8. The Table Dialog 143



pgAdmin 4 Documentation, Release 1.3

Tab
Name

Constraint

Pri-
mary
Key

Provides a unique identifier for each row in the table.

For-
eign
Key

Maintains referential integrity between two tables.

Check Requires data satisfies an expression or condition before insertion or modification.
Unique Ensures that the data contained in a column, or a group of columns, is unique among all the rows in the

table.
Ex-
clude

Guarantees that if any two rows are compared on the specified column or expression (using the specified
operator), at least one of the operator comparisons will return false or null.

To add a primary key for the table, select the Primary Key tab, and click the Add icon (+). To define the primary key,
click the Edit icon to the left of the Trash icon. A dialog similar to the Primary key dialog (accessed by right clicking
on Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the primary key:

• Use the Name field to add a descriptive name for the primary key constraint. The name will be displayed in the
pgAdmin tree control.

• Provide notes about the primary key in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the primary key constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The primary key constraint should be different from any
unique constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Select the name of the tablespace in which the primary key constraint will reside from the drop-down listbox in
the Tablespace field.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

144 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

To add a foreign key constraint, select the Foreign Key tab, and click the Add icon (+). To define the constraint, click
the Edit icon to the left of the Trash icon. A dialog similar to the Foreign key dialog (accessed by right clicking on
Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the foreign key constraint:

• Use the Name field to add a descriptive name for the foreign key constraint. The name will be displayed in the
pgAdmin tree control.

• Provide notes about the foreign key in the Comment field.

Click the Definition tab to continue.

4.8. The Table Dialog 145



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define the foreign key constraint:

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Move the Match type switch specify the type of matching that is enforced by the constraint:

– Select Full to indicate that all columns of a multicolumn foreign key must be null if any column is null; if
all columns are null, the row is not required to have a match in the referenced table.

– Select Simple to specify that a single foreign key column may be null; if any column is null, the row is not
required to have a match in the referenced table.

• Move the Validated switch to the Yes position to instruct the server to validate the existing table content (against
a foreign key or check constraint) when you save modifications to this dialog.

• Move the Auto FK Index switch to the No position to disable the automatic index feature.

• The field next to Covering Index generates the name of an index if the Auto FK Index switch is in the Yes
position; or, this field is disabled.

Click the Columns tab to continue.

Use the fields in the Columns tab to specify one or more reference column(s). A Foreign Key constraint requires that
one or more columns of a table must only contain values that match values in the referenced column(s) of a row of a

146 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

referenced table:

• Use the drop-down listbox next to Local column to specify the column in the current table that will be compared
to the foreign table.

• Use the drop-down listbox next to References to specify the name of the table in which the comparison column(s)
resides.

• Use the drop-down listbox next to Referencing to specify a column in the foreign table.

Click the Add icon (+) to add a column to the list; repeat the steps above and click the Add icon (+) to add additional
columns. To discard an entry, click the trash icon to the left of the entry and confirm deletion in the Delete Row popup.

Click the Action tab to continue.

Use the drop-down listboxes on the Action tab to specify behavior related to the foreign key constraint that will be
performed when data within the table is updated or deleted:

• Use the drop-down listbox next to On update to select an action that will be performed when data in the table is
updated.

• Use the drop-down listbox next to On delete to select an action that will be performed when data in the table is
deleted.

The supported actions are:

NO
AC-
TION

Produce an error indicating that the deletion or update will create a foreign key constraint violation. If
the constraint is deferred, this error will be produced at constraint check time if any referencing rows still
exist. This is the default.

RE-
STRICT

Throw an error indicating that the deletion or update would create a foreign key constraint violation. This
is the same as NO ACTION except that the check is not deferrable.

CAS-
CADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new
values of the referenced columns, respectively.

SET
NULL

Set the referencing column(s) to null.

SET
DE-
FAULT

Set the referencing column(s) to their default values. There must be a row in the referenced table that
matches the default values (if they are not null), or the operation will fail.

4.8. The Table Dialog 147



pgAdmin 4 Documentation, Release 1.3

To add a check constraint, select the Check tab on the panel, and click the Add icon (+). To define the check constraint,
click the Edit icon to the left of the Trash icon. A dialog similar to the Check dialog (accessed by right clicking on
Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the check constraint:

• Use the Name field to add a descriptive name for the check constraint. The name will be displayed in the
pgAdmin tree control. With PostgreSQL 9.5 forward, when a table has multiple check constraints, they will be
tested for each row in alphabetical order by name and after NOT NULL constraints.

• Provide notes about the check constraint in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the check constraint:

• Provide the expression that a row must satisfy in the Check field. This field is required.

148 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

• Move the No Inherit? switch to the Yes position to specify this constraint is automatically inherited by a table’s
children. The default is No.

• Move the Don’t validate? switch to the No position to skip validation of existing data; the constraint may not
hold for all rows in the table. The default is Yes.

To add a unique constraint, select the Unique tab on the panel, and click the Add icon (+). To define the constraint,
click the Edit icon to the left of the Trash icon. A dialog similar to the Unique constraint dialog (accessed by right
clicking on Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the unique constraint:

• Use the Name field to add a descriptive name for the unique constraint. The name will be displayed in the
pgAdmin tree control.

• Provide notes about the unique constraint in the Comment field.

Click the Definition tab to continue.

4.8. The Table Dialog 149



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define the unique constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The unique constraint should be different from the primary
key constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Select the name of the tablespace in which the unique constraint will reside from the drop-down listbox in the
Tablespace field.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

150 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

To add an exclusion constraint, select the Exclude tab on the panel, and click the Add icon (+). To define the constraint,
click the Edit icon to the left of the Trash icon. A dialog similar to the Exclusion constraint dialog (accessed by right
clicking on Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the exclusion constraint:

• Use the Name field to provide a descriptive name for the exclusion constraint. The name will be displayed in
the pgAdmin tree control.

• Provide notes about the exclusion constraint in the Comment field.

Click the Definition tab to continue.

4.8. The Table Dialog 151



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Definition tab to define the exclusion constraint:

• Use the drop-down listbox next to Tablespace to select the tablespace in which the index associated with the
exclude constraint will reside.

• Use the drop-down listbox next to Access method to specify the type of index that will be used when imple-
menting the exclusion constraint:

– Select gist to specify a GiST index (the default).

– Select spgist to specify a space-partitioned GiST index.

– Select btree to specify a B-tree index.

– Select hash to specify a hash index.

• Use the Fill Factor field to specify a fill factor for the table and associated index. The fill factor is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify that the timing of the constraint is deferrable, and
can be postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Use the Constraint field to provide a condition that a row must satisfy to be included in the table.

Click the Columns tab to continue.

152 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Columns tab to to specify the column(s) to which the constraint applies. Use the drop-down
listbox next to Column to select a column and click the Add icon (+) to provide details of the action on the column:

• The Column field is populated with the selection made in the Column drop-down listbox.

• If applicable, use the drop-down listbox in the Operator class to specify the operator class that will be used by
the index for the column.

• Move the DESC switch to DESC to specify a descending sort order. The default is ASC which specifies an
ascending sort order.

• Move the NULLs order switch to LAST to define an ascending sort order for NULLs. The default is FIRST
which specifies a descending order.

• Use the drop-down list next to Operator to specify a comparison or conditional operator.

Click the Advanced tab to continue.

Use the fields in the Advanced tab to define advanced features for the table:

4.8. The Table Dialog 153



pgAdmin 4 Documentation, Release 1.3

• Use the drop-down listbox next to Of type to copy the table structure from the specified composite type. Please
note that a typed table will be dropped if the type is dropped (with DROP TYPE . . . CASCADE).

• Use the Fill Factor field to specify a fill factor for the table. The fill factor for a table is a percentage between
10 and 100. 100 (complete packing) is the default.

• Move the Has OIDs? switch to the Yes position to specify that each row within a table has a system-assigned
object identifier. The default is No.

• Move the Unlogged? switch to the Yes position to disable logging for the table. Data written to an unlogged
table is not written to the write-ahead log. Any indexes created on an unlogged table are automatically unlogged
as well. The default is No.

Use the fields in the Like box to specify which attributes of an existing table from which a table will automatically
copy column names, data types, and not-null constraints; after saving the new or modified table, any changes to the
original table will not be applied to the new table.

• Use the drop-down listbox next to Relation to select a reference table.

• Move the With default values? switch to the Yes position to copy default values.

• Move the With constraints? switch to the Yes position to copy table and column constraints.

• Move the With indexes? switch to the Yes position to copy indexes.

• Move the With storage? switch to the Yes position to copy storage settings.

• Move the With comments? switch to the Yes position to copy comments.

Click the Parameter tab to continue.

Use the tabs nested inside the Parameter tab to specify VACUUM and ANALYZE thresholds; use the Table tab and
the Toast Table tab to customize values for the table and the associated toast table:

• Move the Custom auto-vacuum? switch to the Yes position to perform custom maintenance on the table.

• Move the Enabled? switch to the Yes position to select values in the Vacuum table. The Vacuum Table provides
default values for maintenance operations.

154 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

Provide a custom value in the Value column for each metric listed in the Label column.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Table dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Table dialog:

4.8. The Table Dialog 155



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating a table named product_category. It has three columns and a primary key
constraint on the category_id column.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.9 The Trigger Dialog

Use the Trigger dialog to create a trigger or modify an existing trigger. A trigger executes a specified function when
certain events occur.

The Trigger dialog organizes the development of a trigger through the following dialog tabs: General, Definition,
Events, and Code. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the trigger:

156 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

• Use the Name field to add a descriptive name for the trigger. This must be distinct from the name of any other
trigger for the same table. The name will be displayed in the pgAdmin tree control. Note that if multiple triggers
of the same kind are defined for the same event, they will be fired in alphabetical order by name.

• Store notes about the trigger in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the trigger:

• Move the Row trigger? switch to the No position to disassociate the trigger from firing on each row in a table.
The default is Yes.

• Move the Constraint trigger? switch to the Yes position to specify the trigger is a constraint trigger.

• If enabled, move the Deferrable? switch to the Yes position to specify the timing of the constraint trigger is
deferrable and can be postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint trigger is
deferred to the end of the statement causing the triggering event. The default is No.

• Use the drop-down listbox next to Trigger Function to select a trigger function or procedure.

• Use the Arguments field to provide an optional (comma-separated) list of arguments to the function when the
trigger is executed. The arguments are literal string constants.

Click the Events tab to continue.

4.9. The Trigger Dialog 157



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Events tab to specify how and when the trigger fires:

• Use the drop-down listbox next to the Fires fields to determine if the trigger fires BEFORE or AFTER a specified
event. The default is BEFORE.

• Select the type of event(s) that will invoke the trigger; to select an event type, move the switch next to the event
to the YES position. The supported event types are INSERT, UPDATE, DELETE, and TRUNCATE.

• Use the When field to provide a boolean condition that will invoke the trigger.

• If defining a column-specific trigger, use the Columns field to specify the columns or columns that are the target
of the trigger.

Click the Code tab to continue.

Use the Code field to specify any additional code that will be invoked when the trigger fires.

Click the SQL tab to continue.

Your entries in the Trigger dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Trigger dialog:

158 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

The example demonstrates creating a trigger named log_update that calls a procedure named log_account_update that
logs any updates to the distributors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.10 The Unique Constraint Dialog

Use the Unique constraint dialog to define a unique constraint for a specified table. Unique constraints ensure that the
data contained in a column, or a group of columns, is unique among all the rows in the table.

The Unique constraint dialog organizes the development of a unique constraint through the following dialog tabs:
General and Definition. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the unique constraint:

4.10. The Unique Constraint Dialog 159



pgAdmin 4 Documentation, Release 1.3

• Use the Name field to add a descriptive name for the unique constraint. The name will be displayed in the
pgAdmin tree control.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the unique constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The unique constraint should be different from the primary
key constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Select the name of the tablespace in which the unique constraint will reside from the drop-down listbox in the
Tablespace field.

• Select the name of an index from the drop-down listbox in the Index field. This field is optional. Adding a
unique constraint will automatically create a unique B-tree index on the column or group of columns listed in
the constraint, and will force the column(s) to be marked NOT NULL.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

Click the SQL tab to continue.

Your entries in the Unique constraint dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Unique constraint dialog:

160 Chapter 4. Creating or Modifying a Table



pgAdmin 4 Documentation, Release 1.3

The example shown demonstrates creating a unique constraint named name_con on the name column of the distribu-
tors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.10. The Unique Constraint Dialog 161



pgAdmin 4 Documentation, Release 1.3

162 Chapter 4. Creating or Modifying a Table



CHAPTER

FIVE

MANAGEMENT BASICS

pgAdmin provides a graphical interface that you can use to manage security issues related to your Postgres servers.
Point and click dialogs allow you to create login or group roles, administer object privileges, and control access to the
server.

The configuration editor provides a graphical interface that allows a sufficiently-privileged user to set configuration
parameters in the postgresql.conf, pg_hba.conf, and .pgpass.conf files:

• The postgresql.conf file contains parameters that you can use to control the server and server behaviors.

• The pg_hba.conf file contains settings that specify client authentication behavior enforced by the server.

• The .pgpass.conf file specifies passwords that can be used to satisfy authentication requirements.

To modify the postgresql.conf or pg_hba.conf file, you must have sufficient privileges to modify and save files in the
Postgres data directory. Please note that incorrect configuration can slow performance, or prevent the server from
restarting without reverting your changes. Please consult the PostgreSQL core documentation for detailed information
about configuring your server.

Contents:

5.1 The Add named restore point Dialog

Use the Add named restore point dialog to take a named snapshot of the state of the server for use in a recovery file. To
create a named restore point, the server’s postgresql.conf file must specify a wal_level value of archive, hot_standby,
or logical. You must be a database superuser to create a restore point.

When the Restore point name window launches, use the field Enter the name of the restore point to add to provide a
descriptive name for the restore point.

For more information about using a restore point as a recovery target, please see the PostgreSQL documentation.

• Click the OK button to save the restore point.

• Click the Cancel button to exit without saving work.

163

http://www.postgresql.org/docs/9.5/static/recovery-target-settings.html#RECOVERY-TARGET-NAME


pgAdmin 4 Documentation, Release 1.3

5.2 The Change Password Dialog

It is a good policy to routinely change your password to protect data, even in what you may consider a ‘safe’ environ-
ment. In the workplace, failure to apply an appropriate password policy could leave you in breach of Data Protection
laws.

Please consider the following guidelines when selecting a password:

• Ensure that your password is an adequate length; 6 characters should be the absolute minimum number of
characters in the password.

• Ensure that your password is not open to dictionary attacks. Use a mixture of upper and lower case letters and
numerics, and avoid words or names. Consider using the first letter from each word in a phrase that you will
remember easily but is an unfamiliar acronym.

• Ensure that your password is changed regularly; at minimum, change it every ninety days.

The above should be considered a starting point: It is not a comprehensive list and it will not guarantee security.

Use the Change Password dialog to change your password:

• The name displayed in the User field is the role for which you are modifying the password; it is the role that is
associated with the server connection that is highlighted in the tree control.

• Enter the password associated with the role in the Current Password field.

• Enter the desired password for in the New Password field.

• Re-enter the new password in the Confirm Password field.

Click the OK button to change your password; click Cancel to exit the dialog without changing your password.

164 Chapter 5. Management Basics



pgAdmin 4 Documentation, Release 1.3

5.3 Grant Wizard

The Grant Wizard tool is a graphical interface that allows you to manage the privileges of one or more database objects
in a point-and-click environment. A search box, dropdown lists, and checkboxes facilitate quick selections of database
objects, roles and privileges.

The wizard organizes privilege management through a sequence of windows: Object Selection (step 1 of 3), Privileges
Selection (step 2 of 3) and Final (Review Selection) (step 3 of 3). The Final (Review Selection) window displays the
SQL code generated by wizard selections.

To launch the Grant Wizard tool, select a database object in the pgAdmin tree control, then navigate through Tools on
the menu bar to click on the Grant Wizard option.

Use the fields in the Object Selection (step 1 of 3) window to select the object or objects on which you are modifying
privileges. Use the Search by object type or name field to locate a database object, or use the scrollbar to scroll through
the list of all accessible objects.

• Each row in the table lists object identifiers; check the checkbox in the left column to include an object as a
target of the Grant Wizard. The table displays:

– The object type in the Object Type field

– The schema in which the object resides in the Schema field

– The object name in the Name field.

Click the Next button to continue, or the Cancel button to close the wizard without modifying privileges.

5.3. Grant Wizard 165



pgAdmin 4 Documentation, Release 1.3

Use the fields in the Privileges Selection (step 2 of 3) window to grant privileges. If you grant a privilege WITH
GRANT OPTION, the Grantee will have the right to grant privileges on the object to others. If WITH GRANT
OPTION is subsequently revoked, any role who received access to that object from that Grantee (directly or through a
chain of grants) will lose thier privileges on the object.

• Click the Add icon (+) to assign a set of privileges.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user. If privileges have previously been granted on a database object, unchecking a
privilege for a group or user will result in revoking that privilege.

• If enabled, select the name of the role from the drop-down listbox in the Grantor field. The default grantor is
the owner of the database.

• Click the Add icon (+) to assign a set of privileges to another role; to discard a privilege, click the trash icon to
the left of the row and confirm deletion in the Delete Row dialog.

For more information about granting privileges on database objects, see the PostgreSQL core documentation.

Click the Next button to continue, the Back button to select or deselect additional database objects, or the Cancel
button to close the wizard without modifying privileges.

Your entries in the Grant Wizard tool generate a SQL command; you can review the command in the Final (Review
Selection) (step 3 of 3) window (see an example below).

Example

The following is an example of the sql command generated by user selections in the Grant Wizard tool:

The commands displayed assign a role named Bob INSERT and UPDATE privileges WITH GRANT OPTION on the
sales_meetings and the sales_territories tables.

• Click the Back button to select or deselect additional database objects, roles and privileges.

• Click the Cancel button to exit without saving work.

• Click the Finish button to save selections and exit the wizard.

5.4 The Import/Export data Dialog

Use the Import/Export data dialog to copy data from a table to a file, or copy data from a file into a table.

166 Chapter 5. Management Basics

http://www.postgresql.org/docs/9.5/static/sql-grant.html


pgAdmin 4 Documentation, Release 1.3

The Import/Export data dialog organizes the import/export of data through the Options and Columns tabs.

Use the fields in the Options tab to specify import and export preferences:

• Move the Import/Export switch to the Import position to specify that the server should import data to a table
from a file. The default is Export.

• Use the fields in the File Info field box to specify information about the source or target file:

– Enter the name of the source or target file in the Filename field. Optionally, select the Browser icon
(ellipsis) to the right to navigate into a directory and select a file.

– Use the drop-down listbox in the Format field to specify the file type. Select:

* binary for a .bin file.

* csv for a .csv file.

* text for a .txt file.

– Use the drop-down listbox in the Encoding field to specify the type of character encoding.

• Use the fields in the Miscellaneous field box to specify additional information:

– Move the OID switch to the Yes position to include the OID column. The OID is a system-assigned value
that may not be modified. The default is No.

– Move the Header switch to the Yes position to include the table header with the data rows. If you include
the table header, the first row of the file will contain the column names.

5.4. The Import/Export data Dialog 167



pgAdmin 4 Documentation, Release 1.3

– If you are exporting data, specify the delimiter that will separate the columns within the target file in the
Delimiter field. The separating character can be a colon, semicolon, a vertical bar, or a tab.

– Specify a quoting character used in the Quote field. Quoting can be applied to string columns only (i.e.
numeric columns will not be quoted) or all columns regardless of data type. The character used for quoting
can be a single quote or a double quote.

– Specify a character that should appear before a data character that matches the QUOTE value in the Escape
field.

Click the Columns tab to continue.

Use the fields in the Columns tab to select the columns that will be imported or exported:

• Click inside the Columns to export/import field to deselect one or more columns from the drop-down listbox.
To delete a selection, click the x to the left of the column name. Click an empty spot inside the field to access
the drop-down list.

• Use the NULL Strings field to specify a string that will represent a null value within the source or target file.

• If enabled, click inside the Not null columns field to select one or more columns that will not be checked for a
NULL value. To delete a column, click the x to the left of the column name.

After completing the Import/Export data dialog, click the OK button to perform the import or export. pgAdmin will
inform you when the background process completes:

168 Chapter 5. Management Basics



pgAdmin 4 Documentation, Release 1.3

Use the Click here for details link on the notification to open the Process Watcher and review detailed information
about the execution of the command that performed the import or export:

5.5 The Maintenance Dialog

Use the Maintenance dialog to VACUUM, ANALYZE, REINDEX or CLUSTER a database or selected database
objects.

5.5. The Maintenance Dialog 169



pgAdmin 4 Documentation, Release 1.3

While this utility is useful for ad-hoc maintenance purposes, you are encouraged to perform automatic VACUUM jobs
on a regular schedule.

Select a button next to Maintenance operation to specify the type of maintenance:

• Click VACUUM to scan the selected database or table to reclaim storage used by dead tuples.

– Move the FULL switch to the Yes position to compact tables by writing a completely new version of the
table file without dead space. The default is No.

– Move the FREEZE switch to the Yes position to freeze data in a table when it will have no further updates.
The default is No.

– Move the ANALYZE switch to the Yes position to issue ANALYZE commands whenever the content of a
table has changed sufficiently. The default is No.

• Click ANALYZE to update the stored statistics used by the query planner. This enables the query optimizer to
select the fastest query plan for optimal performance.

• Click REINDEX to rebuild any index in case it has degenerated due to the insertion of unusual data patterns.
This happens, for example, if you insert rows with increasing index values, and delete low index values.

• Click CLUSTER to instruct PostgreSQL to cluster the selected table.

To exclude status messages from the process output, move the Verbose Messages switch to the No position; by default,
status messages are included.

When you’ve completed the dialog, click OK to start the background process; to exit the dialog without performing
maintenance operations, click Cancel.

pgAdmin will inform you when the background process completes:

170 Chapter 5. Management Basics



pgAdmin 4 Documentation, Release 1.3

Use the Click here for details link on the notification to open the Process Watcher and review detailed information
about the execution of the command that performed the import or export:

5.5. The Maintenance Dialog 171



pgAdmin 4 Documentation, Release 1.3

172 Chapter 5. Management Basics



CHAPTER

SIX

BACKUP AND RESTORE

A powerful, but user-friendly Backup and Restore tool provides an easy way to use pg_dump, pg_dumpall, and
pg_restore to take backups and create copies of databases or database objects for use in a development environment.

Contents:

6.1 The Backup Dialog

Using the pg_dump utility, pgAdmin provides an easy way to create a backup in a plain-text or archived format. You
can then use a client application (like psql or the Query Tool) to restore a plain-text backup file, or use the Postgres
pg_restore utility to restore an archived backup. The pg_dump utility must have read access to all database objects
that you want to back up.

You can backup a single table, a schema, or a complete database. Select the name of the backup source in the pgAdmin
tree control, right click to open the context menu, and select Backup. . . to open the Backup dialog. The name of the
object selected will appear in the dialog title bar.

Use the fields in the General tab to specify parameters for the backup:

• Enter the name of the backup file in the Filename field. Optionally, select the Browser icon (. . . ) to the right to
navigate into a directory and select a file that will contain the archive.

• Use the drop-down listbox in the Format field to select the format that is best suited for your application. Each
format has advantages and disadvantages:

– Select Custom to create a custom archive file that you can use with pg_restore to create a copy of a database.
Custom archive file formats must be restored with pg_restore. This format offers the opportunity to select
which database objects to restore from the backup file. Custom archive format is recommended for medium
to large databases as it is compressed by default.

173



pgAdmin 4 Documentation, Release 1.3

– Select Tar to generate a tar archive file that you can restore with pg_restore. The tar format does not
support compression.

– Select Plain to create a plain-text script file. A plain-text script file contains SQL statements and commands
that you can execute at the psql command line to recreate the database objects and load the table data. A
plain-text backup file can be edited in a text editor, if desired, before using the psql program to restore
database objects. Plain format is normally recommended for smaller databases; script dumps are not
recommended for blobs. The SQL commands within the script will reconstruct the database to the last
saved state of the database. A plain-text script can be used to reconstruct the database on another machine,
or (with modifications) on other architectures.

– Select Directory to generate a directory-format archive suitable for use with pg_restore. This file format
creates a directory with one file for each table and blob being dumped, plus a Table of Contents file
describing the dumped objects in a machine-readable format that pg_restore can read. This format is
compressed by default.

• Use the Compression Ratio field to select a compression level for the backup. Specify a value of zero to mean
use no compression; specify a maximum compression value of 9. Please note that tar archives do not support
compression.

• Use the Encoding drop-down listbox to select the character encoding method that should be used for the archive.

• Use the Number of Jobs field (when applicable) to specify the number of tables that will be dumped simultane-
ously in a parallel backup.

• Use the dropdown listbox next to Rolename to specify the role that owns the backup.

Click the Dump options tab to continue. Use the box fields in the Dump options tab to provide options for pg_dump.

• Move switches in the Sections field box to select a portion of the object that will be backed up.

– Move the switch next to Pre-data to the Yes position to include all data definition items not included in the
data or post-data item lists.

– Move the switch next to Data to the Yes position to backup actual table data, large-object contents, and
sequence values.

– Move the switch next to Post-data to the Yes position to include definitions of indexes, triggers, rules, and
constraints other than validated check constraints.

174 Chapter 6. Backup and Restore



pgAdmin 4 Documentation, Release 1.3

• Move switches in the Type of objects field box to specify details about the type of objects that will be backed
up.

– Move the switch next to Only data to the Yes position to limit the back up to data.

– Move the switch next to Only schema to limit the back up to schema-level database objects.

– Move the switch next to Blobs to the No position to exclude large objects in the backup.

• Move switches in the Do not save field box to select the objects that will not be included in the backup.

– Move the switch next to Owner to the Yes position to include commands that set object ownership.

– Move the switch next to Privilege to the Yes position to include commands that create access privileges.

– Move the switch next to Tablespace to the Yes position to include tablespaces.

– Move the switch next to Unlogged table data to the Yes position to include the contents of unlogged tables.

• Move switches in the Queries field box to specify the type of statements that should be included in the backup.

– Move the switch next to Use Column Inserts to the Yes position to dump the data in the form of INSERT
statements and include explicit column names. Please note: this may make restoration from backup slow.

– Move the switch next to Use Insert commands to the Yes position to dump the data in the form of INSERT
statements rather than using a COPY command. Please note: this may make restoration from backup slow.

– Move the switch next to Include CREATE DATABASE statement to the Yes position to include a command
in the backup that creates a new database when restoring the backup.

– Move the switch next to Include DROP DATABASE statement to the Yes position to include a command
in the backup that will drop any existing database object with the same name before recreating the object
during a backup.

6.1. The Backup Dialog 175



pgAdmin 4 Documentation, Release 1.3

• Move switches in the Disable field box to specify the type of statements that should be excluded from the
backup.

– Move the switch next to Trigger (active when creating a data-only backup) to the Yes position to include
commands that will disable triggers on the target table while the data is being loaded.

– Move the switch next to $ quoting to the Yes position to enable dollar quoting within function bodies; if
disabled, the function body will be quoted using SQL standard string syntax.

• Move switches in the Miscellaneous field box to specify miscellaneous backup options.

– Move the switch next to With OIDs to the Yes position to include object identifiers as part of the table data
for each table.

– Move the switch next to Verbose messages to the No position to instruct pg_dump to exclude verbose
messages.

– Move the switch next to Force double quotes on identifiers to the Yes position to force the quoting of all
identifiers.

– Move the switch next to Use SET SESSION AUTHORIZATION to the Yes position to include a statement
that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an
ALTER OWNER command).

When you’ve specified the details that will be incorporated into the pg_dump command:

• Click the Backup button to build and execute a command that builds a backup based on your selections on the
Backup dialog.

• Click the Cancel button to exit without saving work.

176 Chapter 6. Backup and Restore



pgAdmin 4 Documentation, Release 1.3

If the backup is successful, a popup window will confirm success. Click Click here for details on the popup window
to launch the Process Watcher. The Process Watcher logs all the activity associated with the backup and provides
additional information for troubleshooting.

If the backup is unsuccessful, you can review the error messages returned by the backup command on the Process
Watcher.

6.2 The Backup Globals Dialog

Use the Backup Globals dialog to create a plain-text script that recreates all of the database objects within a cluster, and
the global objects that are shared by those databases. Global objects include tablespaces, roles, and object properties.
You can use the pgAdmin Query Tool to play back a plain-text script, and recreate the objects in the backup.

6.2. The Backup Globals Dialog 177



pgAdmin 4 Documentation, Release 1.3

Use the fields in the General tab to specify the following:

• Enter the name of the backup file in the Filename field. Optionally, select the Browser icon (ellipsis) to the right
to navigate into a directory and select a file that will contain the archive.

• Use the drop-down listbox next to Role name to specify a role with connection privileges on the selected server.
The role will be used for authentication during the backup.

Move switches in the Miscellaneous field box to specify the type of statements that should be included in the backup.

• Move the Verbose messages switch to the No position to exclude status messages from the backup. The default
is Yes.

• Move the Force double quote on identifiers switch to the Yes position to name identifiers without changing case.
The default is No.

Click the Backup button to build and execute a command based on your selections; click the Cancel button to exit
without saving work.

If the backup is successful, a popup window will confirm success. Click Click here for details on the popup window
to launch the Process Watcher. The Process Watcher logs all the activity associated with the backup and provides
additional information for troubleshooting.

178 Chapter 6. Backup and Restore



pgAdmin 4 Documentation, Release 1.3

If the backup is unsuccessful, review the error message returned by the Process Watcher to resolve any issue.

6.3 The Backup Server Dialog

Use the Backup Server dialog to create a plain-text script that will recreate the selected server. You can use the
pgAdmin Query Tool to play back a plain-text script, and recreate the server.

Use the fields in the General tab to specify the following:

• Enter the name of the backup file in the Filename field. Optionally, select the Browser icon (ellipsis) to the right
to navigate into a directory and select a file that will contain the archive.

• Use the drop-down listbox next to Role name to specify a role with connection privileges on the selected server.
The role will be used for authentication during the backup.

6.3. The Backup Server Dialog 179



pgAdmin 4 Documentation, Release 1.3

Move switches in the Miscellaneous box to specify the type of statements that should be included in the backup.

• Move the Verbose messages switch to the No position to exclude status messages from the backup. The default
is Yes.

• Move the Force double quote on identifiers switch to the Yes position to name identifiers without changing case.
The default is No.

Click the Backup button to build and execute a command based on your selections; click the Cancel button to exit
without saving work.

If the backup is successful, a popup window will confirm success. Click Click here for details on the popup window
to launch the Process Watcher. The Process Watcher logs all the activity associated with the backup and provides
additional information for troubleshooting.

If the backup is unsuccessful, review the error message returned by the Process Watcher to resolve any issue.

180 Chapter 6. Backup and Restore



pgAdmin 4 Documentation, Release 1.3

6.4 The Restore Dialog

The Restore dialog provides an easy way to use a Custom, tar, or Directory format backup taken with the pgAdmin
Backup dialog to recreate a database or database object. The Backup dialog invokes options of the pg_dump client
utility; the Restore dialog invokes options of the pg_restore client utility.

You can use the Query Tool to play back the script created during a plain-text backup made with the Backup dialog.
For more information about backing up or restoring, please refer to the documentation for pg_dump or pg_restore.

Use the fields on the General tab to specify general information about the restore process:

• Use the drop-down listbox in the Format field to select the format of your backup file.

– Select Custom or tar to restore from a custom archive file to create a copy of the backed-up object.

– Select Directory to restore from a compressed directory-format archive.

• Enter the complete path to the backup file in the Filename field. Optionally, select the Browser icon (ellipsis) to
the right to navigate into a directory and select the file that contains the archive.

• Use the Number of Jobs field to specify if pg_restore should use multiple (concurrent) jobs to process the restore.
Each job uses a separate connection to the server.

• Use the drop-down listbox next to Rolename to specify the role that will be used to authenticate with the server
during the restore process.

Click the Restore options tab to continue. Use the fields on the Restore options tab to specify options that correspond
to pg_restore options.

• Use the switches in the Sections box to specify the content that will be restored:

– Move the switch next to Pre-data to the Yes position to restore all data definition items not included in the
data or post-data item lists.

– Move the switch next to Data to the Yes position to restore actual table data, large-object contents, and
sequence values.

– Move the switch next to Post-data to the Yes position to restore definitions of indexes, triggers, rules, and
constraints (other than validated check constraints).

6.4. The Restore Dialog 181

https://www.postgresql.org/docs/9.5/static/app-pgdump.html
https://www.postgresql.org/docs/9.5/static/app-pgrestore.html


pgAdmin 4 Documentation, Release 1.3

• Use the switches in the Type of objects box to specify the objects that will be restored:

– Move the switch next to Only data to the Yes position to limit the restoration to data.

– Move the switch next to Only schema to limit the restoration to schema-level database objects.

• Use the switches in the Do not save box to specify which objects will not be restored:

– Move the switch next to Owner to the Yes position to exclude commands that set object ownership.

– Move the switch next to Privilege to the Yes position to exclude commands that create access privileges.

– Move the switch next to Tablespace to the Yes position to exclude tablespaces.

• Use the switches in the Queries box to specify the type of statements that should be included in the restore:

– Move the switch next to Include CREATE DATABASE statement to the Yes position to include a command
that creates a new database before performing the restore.

– Move the switch next to Clean before restore to the Yes position to drop each existing database object (and
data) before restoring.

– Move the switch next to Single transaction to the Yes position to execute the restore as a single transaction
(that is, wrap the emitted commands in BEGIN/COMMIT). This ensures that either all the commands
complete successfully, or no changes are applied. This option implies –exit-on-error.

182 Chapter 6. Backup and Restore



pgAdmin 4 Documentation, Release 1.3

• Use the switches in the Disable box to specify the type of statements that should be excluded from the restore:

– Move the switch next to Trigger (active when creating a data-only restore) to the Yes position to include
commands that will disable triggers on the target table while the data is being loaded.

– Move the switch next to No data for Failed Tables to the Yes position to ignore data that fails a trigger.

• Use the switches in the Miscellaneous/Behavior box to specify miscellaneous restore options:

– Move the switch next to Verbose messages to the No position to instruct pg_restore to exclude verbose
messages.

– Move the switch next to Use SET SESSION AUTHORIZATION to the Yes position to include a statement
that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an
ALTER OWNER command).

– Move the switch next to Exit on error to the Yes position to instruct pg_restore to exit restore if there is an
error in sending SQL commands. The default is to continue and to display a count of errors at the end of
the restore.

When you’ve specified the details that will be incorporated into the pg_restore command, click the Restore button to
start the process, or click the Cancel button to exit without saving your work. A popup will confirm if the restore is
successful.

6.4. The Restore Dialog 183



pgAdmin 4 Documentation, Release 1.3

Click Click here for details on the popup to launch the Process Watcher. The Process Watcher logs all the activ-
ity associated with the restore, and provides additional information for troubleshooting should the restore command
encounter problems.

184 Chapter 6. Backup and Restore



CHAPTER

SEVEN

DEVELOPER TOOLS

The pgAdmin Tools menu displays a list of powerful developer tools that you can use to execute and analyze complex
SQL commands, manage data, and debug PL/SQL code.

Contents:

7.1 pgAdmin Debugger

The debugger may be used to debug PL/pgSQL functions in PostgreSQL, as well as EDB-SPL functions, stored proce-
dures and packages in Advanced Server. The Debugger is available as an extension for your PostgreSQL installation,
and is distributed as part of Advanced Server. You must have superuser privileges to use the debugger.

Before using the debugger, you must modify the postgresql.conf file, adding the server-side debugger components to
the the value of the shared_preload_libraries parameter:

shared_preload_libraries = ‘$libdir/other_libraries/plugin_debugger’

185



pgAdmin 4 Documentation, Release 1.3

After modifying the shared_preload_libraries parameter, restart the server to apply the changes.

The debugger may be used for either in-context debugging or direct debugging of a target function or procedure.
When you use the debugger for in-context debugging, you set a breakpoint at the first line of a program; when a
session invokes the target, control is transferred to the debugger. When using direct debugging, the debugger prompts
you for any parameters required by the target, and then allows you to step through the code.

In-context Debugging

To set a breakpoint at the first line of a program, right-click the name of the object you would like to debug, and select
Set breakpoint from the Debugging sub-menu. The debugger window will open, waiting for another session to invoke
the program.

When another session invokes the target, the debugger will display the code, allowing you to add break points, or step
through line-by-line. The other session is suspended until the debugging completes; then control is returned to the
session.

186 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

Direct Debugging

To use the debugger for direct debugging, right click on the name of the object that you wish to debug in the pgAdmin
tree control and select Debug from the Debugging sub-menu. The debugger window will open, prompting you for any
values required by the program:

7.1. pgAdmin Debugger 187



pgAdmin 4 Documentation, Release 1.3

Use the fields on the Debugger dialog to provide a value for each parameter:

• The Name field contains the formal parameter name.

• The Type field contains the parameter data type.

• Check the Null? checkbox to indicate that the parameter is a NULL value.

• Check the Expression? checkbox if the Value field contains an expression.

• Use the Value field to provide the parameter value that will be passed to the program. When entering parameter
values, type the value into the appropriate cell on the grid, or, leave the cell empty to represent NULL, enter
‘’ (two single quotes) to represent an empty string, or to enter a literal string consisting of just two single
quotes, enter ‘’. PostgreSQL 8.4 and above supports variadic function parameters. These may be entered as a
comma-delimited list of values, quoted and/or cast as required.

• Check the Use default? checkbox to indicate that the program should use the value in the Default Value field.

• The Default Value field contains the default value of the parameter.

Provide values required by the program, and click the Debug button to start stepping through the program.

188 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

Using the Debugger

The main debugger window consists of two panels and a context-sensitive toolbar. Use toolbar icons to manage
breakpoints and step into or through code; hover over an icon for a tooltip that identifies the option associated with the
icon. The toolbar options are:

Option Action
Step into Click the Step into icon to execute the currently highlighted line of code.
Step over Click the Step over icon to execute a line of code, stepping over any sub-functions invoked by the

code. The sub-function executes, but is not debugged unless it contains a breakpoint.
Con-
tinue/Start

Click the Continue/Start icon to execute the highlighted code, and continue until the program en-
counters a breakpoint or completes.

Toggle
breakpoint

Use the Toggle breakpoint icon to enable or disable a breakpoint (without removing the breakpoint).

Clear all
break-
points

Click the Clear all breakpoints icon to remove all breakpoints from the program.

Stop Click the Stop icon to halt the execution of a program.

7.1. pgAdmin Debugger 189



pgAdmin 4 Documentation, Release 1.3

The top panel of the debugger window displays the program body; click in the grey margin next to a line number to
add a breakpoint. The highlighted line in the top panel is the line that is about to execute.

The lower panel of the debugger window provides a set of tabs that allow you to review information about the program:

• The Parameters tab displays the value of each parameter.

• The Local variables tab displays the current value of the program variables.

• The Messages tab displays any messages returned by the server (errors, warnings and informational messages).

• The Results tab displays the server message when the program completes.

• The Stack tab displays the list of functions that have been invoked, but which have not yet completed.

As you step through a program, the Local variables tab displays the current value of each variable:

When you step into a subroutine, the Stack tab displays the call stack, including the name of each caller, the parameter
values for each caller (if any), and the line number within each caller:

190 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

Select a caller to change focus to that stack frame and display the state of the caller in the upper panel.

When the program completes, the Results tab displays the message returned by the server. If the program encounters
an error, the Messages tab displays details:

7.2 The Query tool

The Query tool is a powerful, feature-rich environment that allows you to execute arbitrary SQL commands and review
the result set. If you access the Query tool via the Query Tool menu option on the Tools menu, you can:

• Issue ad-hoc SQL queries.

• Execute arbitrary SQL commands.

• Save the data displayed in the output panel to a CSV file.

• Review the execution plan of a SQL statement in either a text or a graphical format.

• View analytical information about a SQL statement.

If you open the Query tool via the View Data context-menu, the Query tool acts as a data editor, allowing you to:

• View or modify the data that is stored in a table.

• Filter the result set.

• Save the data displayed in the output panel to a CSV file.

• Review the execution plan of a SQL statement in either a text or a graphical format.

• View analytical information about a SQL statement.

7.2. The Query tool 191



pgAdmin 4 Documentation, Release 1.3

The Query tool features a toolbar that allows quick access to frequently used options, and a work environment divided
into two panels:

• The upper panel of the Query tool contains the SQL Editor. You can use the panel to manually enter a query, or
review the query that generated the result set displayed in the lower panel.

• The lower panel of the Query tool contains the Data Output panel. The output panel displays the result of a
query, or information about a query’s execution plan.

pgAdmin allows you to open multiple copies of the Query tool (in individual tabs) simultaneously. For example, if
you select Query tool from the Tools menu, the Query tool opens in a tab labeled Query-1; if you open the Query tool
again (without closing Query-1), a second copy will open in Query-2. To close a copy of the Query tool, click the X
in the upper-right hand corner of the tab bar.

The Query tool Toolbar

The Query tool toolbar uses context-sensitive icons that provide shortcuts to frequently performed tasks. If an icon is
highlighted, the option is enabled; if the icon is grayed-out, the task is disabled.

Hover over an icon to display a tooltip that describes the icon’s functionality:

192 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

Icon Behavior
Open File Click the Open File icon to display a previously saved

query in the SQL Editor.
Save Click the Save icon to save the query that is currently

displayed in the SQL Editor.
Copy Click the Copy icon to copy the currently selected row.
Paste Click the Paste icon to paste the content that is currently

on the clipboard.
Add New Row Use the Add New Row icon to add a new row in the

output panel.
Filter Click the Filter icon to open a dialog that allows you

to write and apply a filter for the content currently dis-
played in the output panel. Click the down arrow to
open the Filter drop- down menu and select from pre-
defined options:

Select Remove to remove the currently ap-
plied filter and display the complete result
set.
Select By selection to refresh the displayed
data, displaying only those rows that have
columns that match the currently high-
lighted value.
Select Exclude selection to refresh the dis-
played data, excluding those rows that have
columns that match the currently high-
lighted value.

No limit Use the No limit drop-down listbox to specify how many
rows to display in the output panel. Select from: No
limit (the default), 1000 rows, 500 rows, or 100 rows.

Execute/Refresh Click the Execute/Refresh icon to either execute or re-
fresh the query highlighted in the SQL editor panel.
Click the down arrow to access other execution options:

Select Execute/Refresh to in-
voke the SQL command and re-
fresh the result set.
Select Explain to view an ex-
planation plan for the current
query. The result of the EX-
PLAIN is displayed graphically
on the Explain tab of the output
panel, and in text form on the
Data Output tab.
Select Explain analyze to invoke
an EXPLAIN ANALYZE com-
mand on the current query.
Navigate through the Explain
Options menu to select options
for the EXPLAIN command:

Select Verbose to dis-
play additional infor-
mation regarding the
query plan.
Select Costs to include
information on the es-
timated startup and to-
tal cost of each plan
node, as well as the
estimated number of
rows and the estimated
width of each row.
Select Buffers to in-
clude information on
buffer usage.
Select Timing to
include information
about the startup time
and the amount of
time spent in each
node of the query.

Add a check next to Auto-Rollback to in-
struct the server to automatically roll back
a transaction if an error occurs during the
transaction.
Add a check next to Auto-Commit to in-
struct the server to automatically commit
each transaction. Any changes made by
the transaction will be visible to others, and
durable in the event of a crash.

Stop Click the Stop icon to cancel the execution of the cur-
rently running query.

Clear query window Use options on the Clear query window drop-down
menu to erase the contents of the SQL editor panel or
the History tab.

Download as CSV Click the Download as CSV icon to download the result
set of the current query to a comma-separated list.

7.2. The Query tool 193



pgAdmin 4 Documentation, Release 1.3

The SQL Editor Panel

The SQL editor panel contains a workspace for entering commands; you can read a query from a file, or type a query.
The SQL editor features syntax coloring and autocompletion to help you develop queries.

To use autocomplete, begin typing your query; when you would like the Query editor to suggest object names or
commands that might be next in your query, press the Control+Space key combination. For example, type “*SELECT
* FROM* ” (without quotes, but with a trailing space), and then press the Control+Space key combination to select
from a popup menu of autocomplete options.

After entering a query, select the Execute/Refresh icon from the toolbar. The complete contents of the SQL editor
panel will be sent to the database server for execution. To execute only a section of the code that is displayed in the
SQL editor, highlight the text that you want the server to execute, and click the Execute/Refresh icon:

194 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

The message returned by the server when a command executes is displayed on the Messages tab of the output panel.
If the command is successful, the Messages tab displays execution details:

The editor also offers several features that help with code formatting:

• The auto-indent feature will automatically indent text to the same depth as the previous line when you press the
Return key.

• Block indent text by selecting two or more lines and pressing the Tab key.

The Data Output Panel

Use the Data Output panel of the Query tool to view data and information generated by a query in the SQL editor, or
to View Data for an object currently selected in the pgAdmin tree control.

The Data Output panel organizes output through the following tabs: Data Output, Explain, Messages, and History.

7.2. The Query tool 195



pgAdmin 4 Documentation, Release 1.3

If the Query tool is opened through the Query tool menu option on the Tools menu, you can use the Data Output tab to
view the results of an arbitrary query in a table format. If the Query tool is opened through a View Data context menu,
the Data Output tab will display the data stored in the table from which the Query tool was opened.

• If enabled, use the Filter options from the Query tool toolbar to refine the result set displayed on the Data Output
tab.

• If enabled, use the No limit drop-down to specify how many rows to display on the Data Output tab.

• If enabled, use the Execute/Refresh options to retrieve query execution information and set query execution
options.

• Use the Download as CSV icon to download the content of the Data Output tab as a comma-delimited file.

All rowsets from previous queries or commands that are displayed in the Data Output panel will be discarded when
you invoke another query; open another query tool browser tab to keep your previous results available.

If the Query Tool is opened using the View Data menu option and the data is updatable and has a primary key, then
you can double-click on values on the Data Output tab and edit them:

• To enter a NULL, clear the value of the string.

• To enter a blank set the value of the cell to ‘’.

• To enter the string ‘’. enter the value ‘’.

Once the data has been edited as required, use the Save button to save the changes to the database.

Use the Explain tab to view a graphical representation of a query:

196 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

To generate a graphical explain diagram, open the Explain tab, and select Explain, Explain Analyze, or one or more
options from the Explain options menu on the Execute/Refresh drop-down. Please note that EXPLAIN VERBOSE
cannot be displayed graphically. Hover over an icon on the Explain tab to review information about that item; a popup
window will display information about the selected object:

Note that the query plan that accompanies the Explain analyze is available on the Data Output tab.

Use the Messages tab to view information about the last-executed query:

7.2. The Query tool 197



pgAdmin 4 Documentation, Release 1.3

If the server returns an error, the error message will be displayed on the Messages tab, and the syntax that cause the
error will be underlined in the SQL editor.

If a query succeeds, the Messages tab displays how long the query took to complete and how many rows were retrieved:

Use the History tab to review activity for the current session:

198 Chapter 7. Developer Tools



pgAdmin 4 Documentation, Release 1.3

The History tab displays:

• The date and time that a query was invoked.

• The text of the query.

• The number of rows returned by the query.

• The amount of time it took the server to process the query and return a result set.

• Messages returned by the server (not noted on the Messages tab).

To erase the content of the History tab, select Clear history from the Clear query window drop-down menu.

7.2. The Query tool 199



pgAdmin 4 Documentation, Release 1.3

200 Chapter 7. Developer Tools



CHAPTER

EIGHT

PGADMIN DEPLOYMENT

Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments;
we recommend using an installer whenever possible. If you are interested in learning more about the project, or if
a pgAdmin installer is not available for your environment, the pages listed below will provide detailed information
about creating a custom deployment.

Contents:

201



pgAdmin 4 Documentation, Release 1.3

202 Chapter 8. pgAdmin Deployment



CHAPTER

NINE

PGADMIN PROJECT CONTRIBUTIONS

pgAdmin is an open-source project that invites you to get involved in the development process. For more infor-
mation about contributing to the pgAdmin project, contact the developers on the pgAdmin mailing list pgadmin-
hackers@postgresql.org to discuss any ideas you might have for enhancements or bug fixes.

In the sections listed below, you’ll find detailed information about the development process used to develop, improve,
and maintain the pgAdmin client.

Contents:

9.1 Submitting Patches

Before developing a patch for pgAdmin you should always contact the developers on the mailing list pgadmin-
hackers@postgresql.org to discuss your plans. This ensures that others know if you’re fixing a bug and can then
avoid duplicating your work, and in the case of large patches, gives the community the chance to discuss and refine
your ideas before investing too much time writing code that may later be rejected.

You should always develop patches against a checkout of the source code from the GIT source code repository, and not
a release tarball. This ensures that you’re working with the latest code on the branch and makes it easier to generate
patches correctly. You can checkout the source code with a command like:

$ git clone git://git.postgresql.org/git/pgadmin4.git

Once you’ve made the changes you wish to make, commit them to a private development branch in your local repos-
itory. Then create a patch containing the changes in your development branch against the upstream branch on which
your work is based. For example, if your current branch contains your changes, you might run:

$ git diff origin/master > my_cool_feature.diff

to create a patch between your development branch and the public master branch.

Once you have your patch, check it thoroughly to ensure it meets the pgAdmin Coding Standards, and review it against
the Code Review Notes to minimise the chances of it being rejected. Once you’re happy with your work, mail it as an
attachment to the mailing list pgadmin-hackers@postgresql.org. Please ensure you include a full description of what
the patch does, as well as the rationale for any important design decisions.

9.2 Code Overview

The bulk of pgAdmin is a Python web application written using the Flask framework on the backend, and HTML5
with CSS3, Bootstrap and jQuery on the front end. A desktop runtime is also included for users that prefer a desktop
application to a web application, which is written in C++ using the QT framework.

203

mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org


pgAdmin 4 Documentation, Release 1.3

9.2.1 Runtime

The runtime is essentially a Python webserver and browser in a box. Found in the /runtime directory in the source
tree, it is a relatively simple QT application that is most easily modified using the QT Creator application.

9.2.2 Web Application

The web application forms the bulk of pgAdmin and can be found in the /web directory in the source tree. The
main file is pgAdmin4.py which can be used to run the built-in standalone web server, or as a WSGI application for
production use.

Configuration

The core application configuration is found in config.py. This file includes all configurable settings for the application,
along with descriptions of their use. It is essential that various settings are configured prior to deployent on a web
server; these can be overriden in config_local.py to avoid modifying the main configuration file.

User Settings

When running in desktop mode, pgAdmin has a single, default user account that is used for the desktop user. When
running in server mode, there may be unlimited users who are required to login prior to using the application. pgAdmin
utilised the Flask-Security module to manage application security and users, and provides options for self-service
password reset and password changes etc.

Whether in desktop or server mode, each user’s settings are stored in a SQLite database which is also used to store the
user accounts. This is initially created using the setup.py script which will create the database file and schema within
it, and add the first user account (with administrative privileges) and a default server group for them. A settings table
is also used to store user configuration settings in a key-value fashion. Although not required, setting keys (or names)
are typically formatted using forward slashes to artificially namespace values, much like the pgAdmin 3 settings files
on Linux or Mac.

Note that the local configuration must be setup prior to setup.py being run. The local configuration will determine
how the script sets up the database, particularly with regard to desktop vs. server mode.

9.2.3 pgAdmin Core

The heart of pgAdmin is the pgadmin package. This contains the globally available HTML templates used by the Jinja
engine, as well as any global static files such as images, Javascript and CSS files that are used in multiple modules.

The work of the package is handled in it’s constructor, __init__.py. This is responsible for setting up logging and
authentication, dynamically loading other modules, and a few other tasks.

9.2.4 Modules

Units of functionality are added to pgAdmin through the addition of modules. Theses are Python object instance of
classes, inherits the PgAdminModule class (a Flask Blueprint implementation), found in web/pgadmin/utils.py. It
provide various hook points for other modules to utilise (primarily the default module - the browser).

To be recognised as a module, a Python package must be created. This must:

1) Be placed within the web/pgadmin/ directory, and

2) Implements pgadmin.utils.PgAdminModule class

204 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

3) An instance variable (generally - named blueprint) representing that particular class in that package.

Each module may define a template and static directory for the Blueprint that it implements. To avoid name collisions,
templates should be stored under a directory within the specified template directory, named after the module itself.
For example, the browser module stores it’s templates in web/pgadmin/browser/templates/browser/. This does not
apply to static files which may omit the second module name.

In addition to defining the Blueprint, the views module is typically responsible for defining all the views that will
be rendered in response to client requests, we must provide a REST API url(s) for these views. These must include
appropriate route and security decorators. Take a look at the NodeView class, which uses the same approach as
Flask’s MethodView, it can be found in web/pgadmin/browser/utils.py. This specific class is used by browser nodes
for creating REST API url(s) for different operation on them. i.e. list, create, update, delete, fetch children, get
statistics/reversed SQL/dependencies/dependents list for that node, etc. We can use the same class for other purpose
too. You just need to inherit that class, and overload the member variables operations, parent_ids, ids, node_type, and
then register it as node view with PgAdminModule instance.

Most pgAdmin modules will also implement the hooks provided by the PgAdminModule class. This is responsible
for providing hook points to integrate the module into the rest of the application - for example, a hook might tell the
caller what CSS files need to be included on the rendered page, or what menu options to include and what they should
do. Hook points need not exist if they are not required. It is the responsiblity of the caller to ensure they are present
before attempting to utilise them.

Hooks currently implemented are:

class MyModule(PgAdminModule):
"""
This is class implements the pgadmin.utils.PgAdminModule, and
implements the hooks
"""

...

def get_own_stylesheets(self):
"""
Returns:

list: the stylesheets used by this module, not including any
stylesheet needed by the submodules.

"""
return [url_for('static', 'css/mymodule.css')]

def get_own_javascripts(self):
"""
Returns:

list of dict:
- contains the name (representation for this javascript
module), path (url for it without .js suffix), deps (array of
dependents), exports window object by the javascript module,
and when (would you like to load this javascript), etc
information for this module, not including any script needed
by submodules.

"""
return [

{
'name': 'pgadmin.extension.mymodule',
'path': url_for('static', filename='js/mymodule'),
'exports': None,
'when': 'server'
}

(continues on next page)

9.2. Code Overview 205



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

]

def get_own_menuitems(self):
"""
Returns:

dict: the menuitems for this module, not including
any needed from the submodules.

"""
return {

'help_items': [
MenuItem(

name='mnu_mymodule_help',
priority=999,
# We need to create javascript, which registers itself
# as module
module="pgAdmin.MyModule",
callback='about_show',
icon='fa fa-info-circle',
label=gettext('About MyModule'
)

]
}

def get_panels(self):
"""
Returns:

list: a list of panel objects to add implemented in javascript
module

"""
return []

...

blueprint = MyModule('mymodule', __name__, static_url_path='/static')

pgAdmin Modules may include any additional Python modules that are required to fulfill their purpose, as required.
They may also reference other dynamically loaded modules, but must use the defined hook points and fail gracefully
in the event that a particular module is not present.

9.2.5 Nodes

Nodes are very similar to modules, it represents an individual node or, collection object on the browser treeview. To
recognised as a node module, a Python package (along with javascript modules) must be created. This must:

1) Be placed within the web/pgadmin/browser/ directory, and

2) Implements the BrowserPluginModule, and registers the node view, which exposes required the REST APIs

3) An instance of the class object

9.2.6 Front End

pgAdmin uses javascript extensively for the front-end implementation. It uses require.js to allow the lazy loading (or,
say load only when required), bootstrap for UI look and feel, Backbone for data manipulation of a node, Backform
for generating properties/create dialog for selected node. We have divided each module in small chunks as much as

206 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

possible. Not all javascript modules are required to be loaded (i.e. loading a javascript module for database will make
sense only when a server node is loaded competely.) Please look at the the javascript files node.js, browser.js, menu.js,
panel.js, etc for better understanding of the code.

9.3 Coding Standards

pgAdmin uses multiple technologies and multiple languages, each of which have their own coding standards.

9.3.1 General

In all languages, indentations should be made with 4 spaces, and excessively long lines wrapped where appropriate to
ensure they can be read on smaller displays (80 characters is used in many places, but this is not a required maximum
size as it’s quite wasteful on modern displays). Typically lines should not be longer than 120 characters.

Comments should be included in all code where required to explain its purpose or how it works if not obvious from a
quick review of the code itself.

9.3.2 CSS 3

CSS3 is used for styling and layout throughout the application. Extensive use is made of the Bootstrap Framework to
aid in that process, however additional styles must still be created from time to time.

Most custom styling comes from individual modules which may advertise static stylesheets to be included in the
module that is loading them via hooks.

Styling overrides (for example, to alter the Bootstrap look and feel) will typically be found in the overrides.css file in
the main static file directory for the application.

Styling should never be applied inline in HTML, always through an external stylesheet, which should contain com-
ments as appropriate to explain the usage or purpose for the style.

Styles should be specified clearly, one per line. For example:

/* iFrames should have no border */
iframe {

border-width: 0;
}

/* Ensure the codemirror editor displays full height gutters when resized */
.CodeMirror, .CodeMirror-gutters {

height: 100% !important;
}

All stylesheets must be CSS3 compliant.

9.3.3 HTML 5

HTML 5 is used for page structure throughout the application, in most cases being rendered from templates by the
Jinja2 template engine in Flask.

All HTML must be HTML 5 compliant.

9.3. Coding Standards 207



pgAdmin 4 Documentation, Release 1.3

9.3.4 Javascript

Client-side code is written in Javascript using jQuery and various plugins. Whilst much of the code is rendered
from static files, there is also code that is rendered from templates using Jinja2 (often to inject the users settings) or
constructed on the fly from module hooks.

A typical Javascript function might be formatted like this (this snipped is from a template):

// Delete a server group
function delete_server_group(item) {

alertify.confirm(
'Delete server group?',
'Are you sure you wish to delete the server group "{0}"?'.replace('{0}', tree.

↪→getLabel(item)),
function() {

var id = tree.getId(item)
$.post("{{ url_for('NODE-server-group.delete') }}", { id: id })

.done(function(data) {
if (data.success == 0) {

report_error(data.errormsg, data.info);
} else {

var next = tree.next(item);
var prev = tree.prev(item);
tree.remove(item);
if (next.length) {

tree.select(next);
} else if (prev.length) {

tree.select(prev);
}

}
}

)
},
null

)
}

Note the use of a descriptive function name, using the underscore character to separate words in all lower case, and
short but descriptive lower case variable names.

C++

C++ code is used in the desktop runtime for the application, primarily with the QT framework and an embedded
Python interpreter. Note the use of hanging braces, which may be omitted if on a single statement is present:

// Ping the application server to see if it's alive
bool PingServer(QUrl url)
{

QNetworkAccessManager manager;
QEventLoop loop;
QNetworkReply *reply;
QVariant redirectUrl;

url.setPath("/utils/ping");

do
{

(continues on next page)

208 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

reply = manager.get(QNetworkRequest(url));

QObject::connect(reply, SIGNAL(finished()), &loop, SLOT(quit()));
loop.exec();

redirectUrl = reply->attribute(QNetworkRequest::RedirectionTargetAttribute);
url = redirectUrl.toUrl();

if (!redirectUrl.isNull())
delete reply;

} while (!redirectUrl.isNull());

if (reply->error() != QNetworkReply::NoError)
return false;

QString response = reply->readAll();

if (response != "PING")
{

qDebug() << "Failed to connect, server response: " << response;
return false;

}

return true;
}

9.3.5 Python

Python is used for the backend web server. All code must be compatible with Python 2.7 and should include PyDoc
comments whilst following the official Python coding standards defined in PEP 8. An example function along with
the required file header is shown below:

##########################################################################
#
# pgAdmin 4 - PostgreSQL Tools
#
# Copyright (C) 2013 - 2017, The pgAdmin Development Team
# This software is released under the PostgreSQL Licence
#
##########################################################################

"""Integration hooks for server groups."""

from flask import render_template, url_for
from flask.ext.security import current_user

from pgadmin.settings.settings_model import db, ServerGroup

def get_nodes():
"""Return a JSON document listing the server groups for the user"""
groups = ServerGroup.query.filter_by(user_id=current_user.id)

value = ''
for group in groups:

(continues on next page)

9.3. Coding Standards 209

https://www.python.org/dev/peps/pep-0008/


pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

value += '{"id":%d,"label":"%s","icon":"icon-server-group","inode":true},' \
% (group.id, group.name)

value = value[:-1]

return value

9.4 Code Snippets

This document contains code for some of the important classes, listed as below:

• PgAdminModule

• NodeView

• BaseDriver

• BaseConnection

9.4.1 PgAdminModule

PgAdminModule is inherted from Flask.Blueprint module. This module defines a set of methods, properties and
attributes, that every module should implement.

class PgAdminModule(Blueprint):
"""
Base class for every PgAdmin Module.

This class defines a set of method and attributes that
every module should implement.
"""

def __init__(self, name, import_name, **kwargs):
kwargs.setdefault('url_prefix', '/' + name)
kwargs.setdefault('template_folder', 'templates')
kwargs.setdefault('static_folder', 'static')
self.submodules = []

super(PgAdminModule, self).__init__(name, import_name, **kwargs)

def create_module_preference():
# Create preference for each module by default
if hasattr(self, 'LABEL'):

self.preference = Preferences(self.name, self.LABEL)
else:

self.preference = Preferences(self.name, None)

self.register_preferences()

# Create and register the module preference object and preferences for
# it just before the first request
self.before_app_first_request(create_module_preference)

def register_preferences(self):

(continues on next page)

210 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

pass

def register(self, app, options, first_registration=False):
"""
Override the default register function to automagically register
sub-modules at once.
"""
if first_registration:

self.submodules = list(app.find_submodules(self.import_name))

super(PgAdminModule, self).register(app, options, first_registration)

for module in self.submodules:
app.register_blueprint(module)

def get_own_stylesheets(self):
"""
Returns:

list: the stylesheets used by this module, not including any
stylesheet needed by the submodules.

"""
return []

def get_own_messages(self):
"""
Returns:

dict: the i18n messages used by this module, not including any
messages needed by the submodules.

"""
return dict()

def get_own_javascripts(self):
"""
Returns:

list: the javascripts used by this module, not including
any script needed by the submodules.

"""
return []

def get_own_menuitems(self):
"""
Returns:

dict: the menuitems for this module, not including
any needed from the submodules.

"""
return defaultdict(list)

def get_panels(self):
"""
Returns:

list: a list of panel objects to add
"""
return []

@property
def stylesheets(self):

stylesheets = self.get_own_stylesheets()
(continues on next page)

9.4. Code Snippets 211



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

for module in self.submodules:
stylesheets.extend(module.stylesheets)

return stylesheets

@property
def messages(self):

res = self.get_own_messages()

for module in self.submodules:
res.update(module.messages)

return res

@property
def javascripts(self):

javascripts = self.get_own_javascripts()
for module in self.submodules:

javascripts.extend(module.javascripts)
return javascripts

@property
def menu_items(self):

menu_items = self.get_own_menuitems()
for module in self.submodules:

for key, value in module.menu_items.items():
menu_items[key].extend(value)

menu_items = dict((key, sorted(value, key=attrgetter('priority')))
for key, value in menu_items.items())

return menu_items

9.4.2 NodeView

NodeView class helps exposing basic REST APIs for different operations used by pgAdmin Browser. The basic idea
has been taken from the Flask’s MethodView class. Because - we need a lot more operations (not, just CRUD), we
can not use it directly.

class NodeView(with_metaclass(MethodViewType, View)):
"""
A PostgreSQL Object has so many operaions/functions apart from CRUD
(Create, Read, Update, Delete):
i.e.
- Reversed Engineered SQL
- Modified Query for parameter while editing object attributes

i.e. ALTER TABLE ...
- Statistics of the objects
- List of dependents
- List of dependencies
- Listing of the children object types for the certain node

It will used by the browser tree to get the children nodes

This class can be inherited to achieve the diffrent routes for each of the
object types/collections.

OPERATION | URL | HTTP Method | Method
---------------+-----------------------------+-------------+--------------
List | /obj/[Parent URL]/ | GET | list

(continues on next page)

212 Chapter 9. pgAdmin Project Contributions

http://flask.pocoo.org/docs/0.10/api/#flask.views.MethodView


pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

Properties | /obj/[Parent URL]/id | GET | properties
Create | /obj/[Parent URL]/ | POST | create
Delete | /obj/[Parent URL]/id | DELETE | delete
Update | /obj/[Parent URL]/id | PUT | update

SQL (Reversed | /sql/[Parent URL]/id | GET | sql
Engineering) |
SQL (Modified | /msql/[Parent URL]/id | GET | modified_sql
Properties) |

Statistics | /stats/[Parent URL]/id | GET | statistics
Dependencies | /dependency/[Parent URL]/id | GET | dependencies
Dependents | /dependent/[Parent URL]/id | GET | dependents

Nodes | /nodes/[Parent URL]/ | GET | nodes
Current Node | /nodes/[Parent URL]/id | GET | node

Children | /children/[Parent URL]/id | GET | children

NOTE:
Parent URL can be seen as the path to identify the particular node.

i.e.
In order to identify the TABLE object, we need server -> database -> schema
information.
"""
operations = dict({

'obj': [
{'get': 'properties', 'delete': 'delete', 'put': 'update'},
{'get': 'list', 'post': 'create'}

],
'nodes': [{'get': 'node'}, {'get': 'nodes'}],
'sql': [{'get': 'sql'}],
'msql': [{'get': 'modified_sql'}],
'stats': [{'get': 'statistics'}],
'dependency': [{'get': 'dependencies'}],
'dependent': [{'get': 'dependents'}],
'children': [{'get': 'children'}],
'module.js': [{}, {}, {'get': 'module_js'}]

})

@classmethod
def generate_ops(cls):

cmds = []
for op in cls.operations:

idx = 0
for ops in cls.operations[op]:

meths = []
for meth in ops:

meths.append(meth.upper())
if len(meths) > 0:

cmds.append({
'cmd': op, 'req': (idx == 0),
'with_id': (idx != 2), 'methods': meths

})
idx += 1

return cmds
(continues on next page)

9.4. Code Snippets 213



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

# Inherited class needs to modify these parameters
node_type = None
# This must be an array object with attributes (type and id)
parent_ids = []
# This must be an array object with attributes (type and id)
ids = []

@classmethod
def get_node_urls(cls):

assert cls.node_type is not None, \
"Please set the node_type for this class ({0})".format(

str(cls.__class__.__name__))
common_url = '/'
for p in cls.parent_ids:

common_url += '<{0}:{1}>/'.format(str(p['type']), str(p['id']))

id_url = None
for p in cls.ids:

id_url = '{0}<{1}:{2}>'.format(common_url if not id_url else id_url,
p['type'], p['id'])

return id_url, common_url

def __init__(self, **kwargs):
self.cmd = kwargs['cmd']

# Check the existance of all the required arguments from parent_ids
# and return combination of has parent arguments, and has id arguments
def check_args(self, **kwargs):

has_id = has_args = True
for p in self.parent_ids:

if p['id'] not in kwargs:
has_args = False
break

for p in self.ids:
if p['id'] not in kwargs:

has_id = False
break

return has_args, has_id and has_args

def dispatch_request(self, *args, **kwargs):
meth = flask.request.method.lower()
if meth == 'head':

meth = 'get'

assert self.cmd in self.operations, \
"Unimplemented command ({0}) for {1}".format(

self.cmd,
str(self.__class__.__name__)

)

has_args, has_id = self.check_args(**kwargs)

assert (self.cmd in self.operations and
(continues on next page)

214 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

(has_id and len(self.operations[self.cmd]) > 0 and
meth in self.operations[self.cmd][0]) or

(not has_id and len(self.operations[self.cmd]) > 1 and
meth in self.operations[self.cmd][1]) or

(len(self.operations[self.cmd]) > 2 and
meth in self.operations[self.cmd][2])), \

"Unimplemented method ({0}) for command ({1}), which {2} an id".format(
meth, self.cmd,
'requires' if has_id else 'does not require'

)

meth = self.operations[self.cmd][0][meth] if has_id else \
self.operations[self.cmd][1][meth] if has_args and \

meth in self.operations[self.
↪→cmd][1] else \

self.operations[self.cmd][2][meth]

method = getattr(self, meth, None)

if method is None:
return make_json_response(

status=406,
success=0,
errormsg=gettext(

"Unimplemented method ({0}) for this url ({1})".format(
meth, flask.request.path)

)
)

return method(*args, **kwargs)

@classmethod
def register_node_view(cls, blueprint):

cls.blueprint = blueprint
id_url, url = cls.get_node_urls()

commands = cls.generate_ops()

for c in commands:
if c['with_id']:

blueprint.add_url_rule(
'/{0}{1}'.format(

c['cmd'], id_url if c['req'] else url
),
view_func=cls.as_view(

'{0}{1}'.format(
c['cmd'], '_id' if c['req'] else ''

),
cmd=c['cmd']

),
methods=c['methods']

)
else:

blueprint.add_url_rule(
'/{0}'.format(c['cmd']),
view_func=cls.as_view(

'{0}'.format(c['cmd']), cmd=c['cmd']
(continues on next page)

9.4. Code Snippets 215



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

),
methods=c['methods']

)

def module_js(self, **kwargs):
"""
This property defines (if javascript) exists for this node.
Override this property for your own logic.
"""
return flask.make_response(

flask.render_template(
"{0}/js/{0}.js".format(self.node_type)

),
200, {'Content-Type': 'application/x-javascript'}

)

def children(self, *args, **kwargs):
"""Build a list of treeview nodes from the child nodes."""
children = []

for module in self.blueprint.submodules:
children.extend(module.get_nodes(*args, **kwargs))

# Return sorted nodes based on label
return make_json_response(

data=sorted(
children, key=lambda c: c['label']

)
)

9.4.3 BaseDriver

class BaseDriver(object):
"""
class BaseDriver(object):

This is a base class for different server types.
Inherit this class to implement different type of database driver
implementation.

(For PostgreSQL/Postgres Plus Advanced Server, we will be using psycopg2)

Abstract Properties:
-------- ----------

* Version (string):
Current version string for the database server

Abstract Methods:
-------- -------

* get_connection(*args, **kwargs)
- It should return a Connection class object, which may/may not be

connected to the database server.

* release_connection(*args, **kwargs)
- Implement the connection release logic

(continues on next page)

216 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

* gc()
- Implement this function to release the connections assigned in the

session, which has not been pinged from more than the idle timeout
configuration.

"""

@abstractproperty
def Version(cls):

pass

@abstractmethod
def get_connection(self, *args, **kwargs):

pass

@abstractmethod
def release_connection(self, *args, **kwargs):

pass

@abstractmethod
def gc(self):

pass

9.4.4 BaseConnection

class BaseConnection(object):
"""
class BaseConnection(object)

It is a base class for database connection. A different connection
drive must implement this to expose abstract methods for this server.

General idea is to create a wrapper around the actual driver
implementation. It will be instantiated by the driver factory
basically. And, they should not be instantiated directly.

Abstract Methods:
-------- -------

* connect(**kwargs)
- Define this method to connect the server using that particular driver

implementation.

* execute_scalar(query, params, formatted_exception_msg)
- Implement this method to execute the given query and returns single

datum result.

* execute_async(query, params, formatted_exception_msg)
- Implement this method to execute the given query asynchronously and returns

↪→result.

* execute_void(query, params, formatted_exception_msg)
- Implement this method to execute the given query with no result.

* execute_2darray(query, params, formatted_exception_msg)
- Implement this method to execute the given query and returns the result

(continues on next page)

9.4. Code Snippets 217



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

as a 2 dimensional array.

* execute_dict(query, params, formatted_exception_msg)
- Implement this method to execute the given query and returns the result

as an array of dict (column name -> value) format.

* connected()
- Implement this method to get the status of the connection. It should

return True for connected, otherwise False

* reset()
- Implement this method to reconnect the database server (if possible)

* transaction_status()
- Implement this method to get the transaction status for this

connection. Range of return values different for each driver type.

* ping()
- Implement this method to ping the server. There are times, a connection

has been lost, but - the connection driver does not know about it. This
can be helpful to figure out the actual reason for query failure.

* _release()
- Implement this method to release the connection object. This should not

be directly called using the connection object itself.

NOTE: Please use BaseDriver.release_connection(...) for releasing the
connection object for better memory management, and connection pool
management.

* _wait(conn)
- Implement this method to wait for asynchronous connection to finish the

execution, hence - it must be a blocking call.

* _wait_timeout(conn, time)
- Implement this method to wait for asynchronous connection with timeout.

This must be a non blocking call.

* poll(formatted_exception_msg)
- Implement this method to poll the data of query running on asynchronous

connection.

* cancel_transaction(conn_id, did=None)
- Implement this method to cancel the running transaction.

* messages()
- Implement this method to return the list of the messages/notices from

the database server.

* rows_affected()
- Implement this method to get the rows affected by the last command

executed on the server.
"""

ASYNC_OK = 1
ASYNC_READ_TIMEOUT = 2
ASYNC_WRITE_TIMEOUT = 3

(continues on next page)

218 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

ASYNC_NOT_CONNECTED = 4
ASYNC_EXECUTION_ABORTED = 5

@abstractmethod
def connect(self, **kwargs):

pass

@abstractmethod
def execute_scalar(self, query, params=None, formatted_exception_msg=False):

pass

@abstractmethod
def execute_async(self, query, params=None, formatted_exception_msg=True):

pass

@abstractmethod
def execute_void(self, query, params=None, formatted_exception_msg=False):

pass

@abstractmethod
def execute_2darray(self, query, params=None, formatted_exception_msg=False):

pass

@abstractmethod
def execute_dict(self, query, params=None, formatted_exception_msg=False):

pass

@abstractmethod
def connected(self):

pass

@abstractmethod
def reset(self):

pass

@abstractmethod
def transaction_status(self):

pass

@abstractmethod
def ping(self):

pass

@abstractmethod
def _release(self):

pass

@abstractmethod
def _wait(self, conn):

pass

@abstractmethod
def _wait_timeout(self, conn, time):

pass

@abstractmethod
def poll(self, formatted_exception_msg=True):

(continues on next page)

9.4. Code Snippets 219



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

pass

@abstractmethod
def status_message(self):

pass

@abstractmethod
def rows_affected(self):

pass

@abstractmethod
def cancel_transaction(self, conn_id, did=None):

pass

9.5 Code Review Notes

This document lists a number of standard items that will be checked during the review process for any patches sub-
mitted for inclusion in pgAdmin.

• Ensure all code follows the pgAdmin Coding Standards.

• Copyright years must be correct and properly formatted (to make it easy to make bulk updates every year). The
start date should always be 2013, and the end year the current year, e.g.

Copyright (C) 2013 - 2017, The pgAdmin Development Team

• Ensure there’s a blank line immediately following any copyright headers.

• Include PyDoc comments for functions, classes and modules. Node modules should be “””Implements the
XXXX node”””.

• Ensure that any generated SQL does not have any leading or trailing blank lines and consistently uses 4 space
indents for nice formatting.

• Don’t special-case any Slony objects. pgAdmin 4 will have no direct knowledge of Slony, unlike pgAdmin 3.

• If you copy/paste modules, please ensure any comments are properly updated.

• Read all comments, and ensure they make sense and provide useful commentary on the code.

• Ensure that field labels both use PostgreSQL parlance, but also are descriptive. A good example is the “Init”
field on an FTS Template - Init is the PG term, but adding the word “Function” after it makes it much more
descriptive.

• Re-use code whereever possible, but factor it out into a suitably central location - don’t copy and paste it unless
modifications are required!

• Format code nicely to make it readable. Break up logical chunks of code with blank lines, and comment well to
describe what different sections of code are for or pertain to.

• Ensure that form validation works correctly and is consistent with other dialogues in the way errors are dis-
played.

• On dialogues with Schema or Owner fields, pre-set the default values to the current schema/user as appropriate.
In general, if there are common or sensible default values available, put them in the fields for the user.

• 1 patch == 1 feature. If you need to fix/update existing infrastructure in your patch, it’s usually easier if it’s in a
separate patch. Patches containing multiple new features or unrelated changes are likely to be rejected.

220 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

• Ensure the patch is fully functional, and works! If a patch is being sent as a work in progress, not intended for
commit, clearly state that it’s a WIP, and note what does or does not yet work.

9.6 Translations

pgAdmin supports multiple languages using the Flask-Babel Python module. A list of supported languages is included
in the web/config.py configuration file and must be updated whenever langauges are added or removed.

9.6.1 Translation Marking

Strings can be marked for translation in either Python code (using gettext()) or Jinja templates (using _()). Here are
some examples that show how this is achieved.

Python:

errormsg = gettext('No server group name was specified')

Jinja:

<input type="submit" value="{{ _('Change Password') }}">

<title>{{ _('%(appname)s Password Change', appname=config.APP_NAME) }}</title>

var alert = alertify.prompt(
'{{ _('Add a server group') }}',
'{{ _('Enter a name for the new server group') }}',
''
...

)

9.6.2 Updating and Merging

Whenever new strings are added to the application, the template catalogues (web/pgadmin/messages.pot) must be
updated and the existing catalogues merged with the updated template and compiled. This can be achieved using the
following command from the web directory, in the Python virtual environment used for pgAdmin:

(pgadmin4)piranha:web dpage$ pybabel extract -F babel.cfg -o pgadmin/messages.pot
↪→pgadmin

For example:

(pgadmin4)piranha:web dpage$ pybabel extract -F babel.cfg -o pgadmin/messages.pot
↪→pgadmin
extracting messages from pgadmin/__init__.py
extracting messages from pgadmin/about/__init__.py
extracting messages from pgadmin/about/hooks.py
extracting messages from pgadmin/about/views.py
extracting messages from pgadmin/about/templates/about/index.html (extensions="jinja2.
↪→ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/browser/__init__.py
extracting messages from pgadmin/browser/hooks.py
extracting messages from pgadmin/browser/views.py

(continues on next page)

9.6. Translations 221

https://pythonhosted.org/Flask-Babel/


pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

extracting messages from pgadmin/browser/nodes/CollectionNode.py
extracting messages from pgadmin/browser/nodes/ObjectNode.py
extracting messages from pgadmin/browser/nodes/__init__.py
extracting messages from pgadmin/browser/nodes/server_groups/__init__.py
extracting messages from pgadmin/browser/nodes/server_groups/hooks.py
extracting messages from pgadmin/browser/nodes/server_groups/views.py
extracting messages from pgadmin/browser/templates/browser/body.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/browser/templates/browser/index.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/browser/templates/browser/messages.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/help/__init__.py
extracting messages from pgadmin/help/hooks.py
extracting messages from pgadmin/help/views.py
extracting messages from pgadmin/redirects/__init__.py
extracting messages from pgadmin/redirects/views.py
extracting messages from pgadmin/settings/__init__.py
extracting messages from pgadmin/settings/hooks.py
extracting messages from pgadmin/settings/settings_model.py
extracting messages from pgadmin/settings/views.py
extracting messages from pgadmin/templates/base.html (extensions="jinja2.ext.
↪→autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/change_password.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/fields.html (extensions="jinja2.
↪→ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/forgot_password.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/login_user.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/messages.html (extensions="jinja2.
↪→ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/panel.html (extensions="jinja2.
↪→ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/reset_password.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/templates/security/watermark.html (extensions=
↪→"jinja2.ext.autoescape,jinja2.ext.with_")
extracting messages from pgadmin/test/__init__.py
extracting messages from pgadmin/test/hooks.py
extracting messages from pgadmin/test/views.py
extracting messages from pgadmin/utils/__init__.py
extracting messages from pgadmin/utils/views.py
writing PO template file to pgadmin/messages.pot

Once the template has been updated, it needs to be merged into the existing message catalogues, for example:

(pgadmin4)piranha:web dpage$ pybabel update -i pgadmin/messages.pot -d pgadmin/
↪→translations
updating catalog 'pgadmin/translations/fr/LC_MESSAGES/messages.po' based on 'pgadmin/
↪→messages.pot'

Finally, the message catalogues can be compiled for use:

(pgadmin4)piranha:web dpage$ pybabel compile -d pgadmin/translations
compiling catalog 'pgadmin/translations/fr/LC_MESSAGES/messages.po' to 'pgadmin/
↪→translations/fr/LC_MESSAGES/messages.mo' (continues on next page)

222 Chapter 9. pgAdmin Project Contributions



pgAdmin 4 Documentation, Release 1.3

(continued from previous page)

9.6.3 Adding a new Language

Adding a new language is simple. First, add the language name and identifier to web/config.py:

# Languages we support in the UI
LANGUAGES = {

'en': 'English',
'fr': 'Français'

}

Then, create the new message catalogue from the web directory in the source tree, in the Python virtual environment
used for pgAdmin:

(pgadmin4)piranha:web dpage$ pybabel init -i pgadmin/messages.pot -d pgadmin/
↪→translations -l fr

This will initialise a new catalogue for a French translation.

9.6. Translations 223



pgAdmin 4 Documentation, Release 1.3

224 Chapter 9. pgAdmin Project Contributions



CHAPTER

TEN

PGAGENT

pgAgent is a job scheduling agent for Postgres databases, capable of running multi-step batch or shell scripts and SQL
tasks on complex schedules.

pgAgent is distributed independently of pgAdmin. You can download pgAgent from the download area of the pgAd-
min website.

Contents:

10.1 Using pgAgent

pgAgent is a scheduling agent that runs and manages jobs; each job consists of one or more steps and schedules. If
two or more jobs are scheduled to execute concurrently, pgAgent will execute the jobs in parallel (each with it’s own
thread).

A step may be a series of SQL statements or an operating system batch/shell script. Each step in a given job is
executed when the previous step completes, in alphanumeric order by name. Switches on the pgAgent Job dialog
(accessed through the Properties context menu) allow you to modify a job, enabling or disabling individual steps as
needed.

Each job is executed according to one or more schedules. Each time the job or any of its schedules are altered, the
next runtime of the job is re-calculated. Each instance of pgAgent periodically polls the database for jobs with the
next runtime value in the past. By polling at least once every minute, all jobs will normally start within one minute of
the specified start time. If no pgAgent instance is running at the next runtime of a job, it will run as soon as pgAgent
is next started, following which it will return to the normal schedule.

When you highlight the name of a defined job in the pgAdmin tree control, the Properties tab of the main pgAdmin
window will display details about the job, and the Statistics tab will display details about the job’s execution.

10.1.1 Security concerns

pgAgent is a very powerful tool, but does have some security considerations that you should be aware of:

Database password - DO NOT be tempted to include a password in the pgAgent connection string - on Unix systems
it may be visible to all users in ‘ps’ output, and on Windows systems it will be stored in the registry in plain text.
Instead, use a libpq ~/.pgpass file to store the passwords for every database that pgAgent must access. Details of this
technique may be found in the PostgreSQL documentation on .pgpass file.

System/database access - all jobs run by pgAgent will run with the security privileges of the pgAgent user. SQL steps
will run as the user that pgAgent connects to the database as, and batch/shell scripts will run as the operating system
user that the pgAgent service or daemon is running under. Because of this, it is essential to maintain control over the
users that are able to create and modify jobs. By default, only the user that created the pgAgent database objects will
be able to do this - this will normally be the PostgreSQL superuser.

225

http://www.pgadmin.org/download
http://www.postgresql.org/docs/current/static/libpq-pgpass.html


pgAdmin 4 Documentation, Release 1.3

10.2 Installing pgAgent

pgAgent runs as a daemon on Unix systems, and a service on Windows systems. In most cases it will run on the
database server itself - for this reason, pgAgent is not automatically configured when pgAdmin is installed. In some
cases however, it may be preferable to run pgAgent on multiple systems, against the same database; individual jobs
may be targeted at a particular host, or left for execution by any host. Locking prevents execution of the same instance
of a job by multiple hosts.

10.2.1 Database setup

Before using pgAdmin to manage pgAgent, you must create the pgAgent extension in the maintenance database
registered with pgAdmin. To install pgAgent on a PostgreSQL host, connect to the postgres database, and navigate
through the Tools menu to open the Query tool. For server versions 9.1 or later, and pgAgent 3.4.0 or later, enter the
following command in the query window, and click the Execute icon:

CREATE EXTENSION pgagent;

This command will create a number of tables and other objects in a schema called ‘pgagent’.

The database must also have the pl/pgsql procedural language installed - use the PostgreSQL CREATE LANGUAGE
command to install pl/pgsql if necessary. To install pl/pgsql, enter the following command in the query window, and
click the Execute icon:

CREATE LANGUAGE plpgsql;

If you are using an earlier version of PostgreSQL or pgAgent, use the Open file icon on the Query Tool toolbar to open a browser window and locate the pgagent.sql script. The installation script is installed by pgAdmin, and the installation location varies from operating system to operating system:

• On Windows, it is usually located under C:Program filespgAdmin III (or C:Program filesPost-
greSQL8.xpgAdmin III if installed with the PostgreSQL server installer).

• On Linux, it is usually located under /usr/local/pgadmin3/share/pgadmin3 or /usr/share/pgadmin3.

After loading the file into the Query Tool, click the Execute icon to execute the script. The script will create a number
of tables and other objects in a schema named pgagent.

10.2.2 Daemon installation on Unix

To install the pgAgent daemon on a Unix system, you will normally need to have root privileges to modify the
system startup scripts. Modifying system startup scripts is quite system-specific so you should consult your system
documentation for further information.

The program itself takes few command line options, most of which are only needed for debugging or specialised
configurations:

Usage:
/path/to/pgagent [options] <connect-string>

options:
-f run in the foreground (do not detach from the terminal)
-t <poll time interval in seconds (default 10)>
-r <retry period after connection abort in seconds (>=10, default 30)>
-s <log file (messages are logged to STDOUT if not specified)>
-l <logging verbosity (ERROR=0, WARNING=1, DEBUG=2, default 0)>

226 Chapter 10. pgAgent



pgAdmin 4 Documentation, Release 1.3

The connection string is a standard PostgreSQL libpq connection string (see the PostgreSQL documentation on the
connection string for further details). For example, the following command line will run pgAgent against a server
listening on the localhost, using a database called ‘pgadmin’, connecting as the user ‘postgres’:

/path/to/pgagent hostaddr=127.0.0.1 dbname=postgres user=postgres

10.2.3 Service installation on Windows

pgAgent can install itself as a service on Windows systems. The command line options available are similar to those
on Unix systems, but include an additional parameter to tell the service what to do:

Usage:
pgAgent REMOVE <serviceName>
pgAgent INSTALL <serviceName> [options] <connect-string>
pgAgent DEBUG [options] <connect-string>

options:
-u <user or DOMAIN\user>
-p <password>
-d <displayname>
-t <poll time interval in seconds (default 10)>
-r <retry period after connection abort in seconds (>=10, default 30)>
-l <logging verbosity (ERROR=0, WARNING=1, DEBUG=2, default 0)>

The service may be quite simply installed from the command line as follows (adjust the path as required):

"C:\Program Files\pgAdmin III\pgAgent" INSTALL pgAgent -u postgres -p secret
↪→hostaddr=127.0.0.1 dbname=postgres user=postgres

You can then start the service at the command line using net start pgAgent, or from the Services control panel applet.
Any logging output or errors will be reported in the Application event log. The DEBUG mode may be used to run
pgAgent from a command prompt. When run this way, log messages will output to the command window.

10.3 Creating a pgAgent Job

pgAgent is a scheduling agent that runs and manages jobs; each job consists of steps and schedules.

To create or manage a job, use the pgAdmin tree control to browse to the server on which the pgAgent database objects
were created. The tree control will display a pgAgent Jobs node, under which currently defined jobs are displayed. To
add a new job, right click on the pgAgent Jobs node, and select Create pgAgent Job. . . from the context menu.

When the pgAgent dialog opens, use the tabs on the pgAgent Job dialog to define the steps and schedule that make up
a pgAgent job.

10.3. Creating a pgAgent Job 227

http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect
http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect


pgAdmin 4 Documentation, Release 1.3

Use the fields on the General tab to provide general information about a job:

• Provide a name for the job in the Name field.

• Move the Enabled switch to the Yes position to enable a job, or No to disable a job.

• Use the Job Class drop-down to select a class (for job categorization).

• Use the Host Agent field to specify the name of a machine that is running pgAgent to indicate that only that
machine may execute the job. Leave the field blank to specify that any machine may perform the job.

Note: It is not always obvious what value to specify for the Host Agent in order to target a job step to a specific
machine. With pgAgent running on the required machines and connected to the scheduler database, you can use
the following query to view the hostnames as reported by each agent:

SELECT jagstation FROM pgagent.pga_jobagent

Use the hostname exactly as reported by the query in the Host Agent field.

• Use the Comment field to store notes about the job.

228 Chapter 10. pgAgent



pgAdmin 4 Documentation, Release 1.3

Use the Steps tab to define and manage the steps that the job will perform. Click the Add icon (+) to add a new step;
then click the compose icon (located at the left side of the header) to open the step definition dialog:

10.3. Creating a pgAgent Job 229



pgAdmin 4 Documentation, Release 1.3

Use fields on the step definition dialog to define the step:

• Provide a name for the step in the Name field; please note that steps will be performed in alphanu-
meric order by name.

• Use the Enabled switch to include the step when executing the job (True) or to disable the step
(False).

• Use the Kind switch to indicate if the job step invokes SQL code (SQL) or a batch script (Batch).

• If you select SQL, use the Code tab to provide SQL code for the step.

• If you select Batch, use the Code tab to provide the batch script that will be executed during the step.

• Use the Connection type switch to indicate if the step is performed on a local server (Local) or
on a remote host (Remote). If you specify a remote connection should be used for the step, the
Connection string field will be enabled, and you must provide a libpq-style connection string.

• Use the Database drop-down to select the database on which the job step will be performed.

• Use the Connection string field to specify a libpq-style connection string to the remote server on
which the step will be performed. For more information about writing a connection string, please

230 Chapter 10. pgAgent



pgAdmin 4 Documentation, Release 1.3

see the PostgreSQL documentation.

• Use the On error drop-down to specify the behavior of pgAgent if it encounters an error while
executing the step. Select from:

• Fail - Stop the job if you encounter an error while processing this step.

• Success - Mark the step as completing successfully, and continue.

• Ignore - Ignore the error, and continue.

• Use the Comment field to provide a comment about the step.

Use the context-sensitive field on the step definition dialog’s Code tab to provide the SQL code or batch script that
will be executed during the step:

• If the step invokes SQL code, provide one or more SQL statements in the SQL query field.

• If the step performs a batch script, provide the script in the Script field. If you are running on a Windows server,
standard batch file syntax must be used. When running on a Linux server, any shell script may be used, provided
that a suitable interpreter is specified on the first line (e.g. #!/bin/sh).

10.3. Creating a pgAgent Job 231

http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect


pgAdmin 4 Documentation, Release 1.3

When you’ve provided all of the information required by the step, click the compose icon to close the step definition
dialog. Click the add icon (+) to add each additional step, or select the Schedules tab to define the job schedule.

Click the Add icon (+) to add a schedule for the job; then click the compose icon (located at the left side of the header)
to open the schedule definition dialog:

Use the fields on the schedule definition tab to specify the days and times at which the job will execute.

232 Chapter 10. pgAgent



pgAdmin 4 Documentation, Release 1.3

• Provide a name for the schedule in the Name field.

• Use the Enabled switch to indicate that pgAgent should use the schedule (Yes) or to disable the schedule (No).

• Use the calendar selector in the Start field to specify the starting date and time for the schedule.

• Use the calendar selector in the End field to specify the ending date and time for the schedule.

• Use the Comment field to provide a comment about the schedule.

Select the Repeat tab to define the days on which the schedule will execute.

Use the fields on the Repeat tab to specify the details about the schedule in a cron-style format. The job will execute
on each date or time element selected on the Repeat tab.

Click within a field to open a list of valid values for that field; click on a specific value to add that value to the list of
selected values for the field. To clear the values from a field, click the X located at the right-side of the field.

Use the fields within the Days box to specify the days on which the job will execute:

• Use the Week Days field to select the days on which the job will execute.

• Use the Month Days field to select the numeric days on which the job will execute. Specify the Last Day to
indicate that the job should be performed on the last day of the month, irregardless of the date.

• Use the Months field to select the months in which the job will execute.

Use the fields within the Times box to specify the times at which the job will execute:

10.3. Creating a pgAgent Job 233



pgAdmin 4 Documentation, Release 1.3

• Use the Hours field to select the hour at which the job will execute.

• Use the Minutes field to select the minute at which the job will execute.

Select the Exceptions tab to specify any days on which the schedule will not execute.

Use the fields on the Exceptions tab to specify days on which you wish the job to not execute; for example, you may
wish for jobs to not execute on national holidays.

Click the Add icon (+) to add a row to the exception table, then:

• Click within the Date column to open a calendar selector, and select a date on which the job will not execute.
Specify <Any> in the Date column to indicate that the job should not execute on any day at the time selected.

• Click within the Time column to open a time selector, and specify a time on which the job will not execute.
Specify <Any> in the Time column to indicate that the job should not execute at any time on the day selected.

When you’ve finished defining the schedule, you can use the SQL tab to review the code that will create or modify
your job.

234 Chapter 10. pgAgent



pgAdmin 4 Documentation, Release 1.3

Click the Save button to save the job definition, or Cancel to exit the job without saving. Use the Reset button to
remove your unsaved entries from the dialog.

After saving a job, the job will be listed under the pgAgent Jobs node of the pgAdmin tree control of the server on
which it was defined. The Properties tab in the main pgAdmin window will display a high-level overview of the
selected job, and the Statistics tab will show the details of each run of the job.

To modify an existing job or to review detailed information about a job, right-click on a job name, and select Properties
from the context menu.

10.3. Creating a pgAgent Job 235



pgAdmin 4 Documentation, Release 1.3

236 Chapter 10. pgAgent



CHAPTER

ELEVEN

LICENCE

pgAdmin is released under the PostgreSQL Licence, which is a liberal Open Source licence similar to BSD or MIT,
and approved by the Open Source Initiative. The copyright for the project source code, website and documentation is
attributed to the pgAdmin Development Team.

237

http://www.postgresql.org/about/licence
https://www.pgadmin.org/development/team.php

