
 pgAdmin 4 Documentation

 Jul 25, 2019

 pgAdmin 4 Documentation

 	

 pgAdmin 4 Documentation

 	

 Getting Started

 	

 Server Deployment

 	

 Requirements

 	

 Configuration

 	

 pgAdmin Login Dialog

 	

 User Management Dialog

 	

 Change User Password Dialog

 	

 Desktop Deployment

 	

 Configuration

 	

 The pgAdmin 4 Client

 	

 pgAdmin Menu Bar

 	

 pgAdmin Toolbar

 	

 pgAdmin Tabbed Browser

 	

 pgAdmin Tree Control

 	

 Preferences Dialog

 	

 Keyboard Shortcuts

 	

 Connecting to a Server

 	

 Server Group Dialog

 	

 Server Dialog

 	

 Clear Saved Passwords

 	

 Connect to server

 	

 Connection error

 	

 Exporting and importing Servers

 	

 Managing Cluster Level Objects

 	

 Database Dialog

 	

 Move Objects Dialog

 	

 Login/Group Role Dialog

 	

 Managing Database Objects

 	

 Cast Dialog

 	

 Collation Dialog

 	

 Domain Dialog

 	

 Domain Constraints Dialog

 	

 Event Trigger Dialog

 	

 Extension Dialog

 	

 Foreign Data Wrapper Dialog

 	

 Foreign Server Dialog

 	

 Foreign Table Dialog

 	

 FTS Configuration dialog

 	

 FTS Dictionary Dialog

 	

 FTS Parser Dialog

 	

 FTS Template Dialog

 	

 Function Dialog

 	

 Language Dialog

 	

 Materialized View Dialog

 	

 Procedure Dialog

 	

 Schema Dialog

 	

 Sequence Dialog

 	

 Trigger function Dialog

 	

 Type Dialog

 	

 User Mapping Dialog

 	

 View Dialog

 	

 Creating or Modifying a Table

 	

 Check Dialog

 	

 Column Dialog

 	

 Exclusion constraint Dialog

 	

 Foreign key Dialog

 	

 Index Dialog

 	

 Primary key Dialog

 	

 Rule Dialog

 	

 Table Dialog

 	

 Trigger Dialog

 	

 Unique Constraint Dialog

 	

 Management Basics

 	

 Add named restore point Dialog

 	

 Change Password Dialog

 	

 Grant Wizard

 	

 Import/Export data Dialog

 	

 Maintenance Dialog

 	

 Backup and Restore

 	

 Backup Dialog

 	

 Backup Globals Dialog

 	

 Backup Server Dialog

 	

 Restore Dialog

 	

 Developer Tools

 	

 pgAdmin Debugger

 	

 Query Tool

 	

 Reviewing and Editing Data

 	

 pgAdmin Deployment

 	

 Container Deployment

 	

 PostgreSQL Utilities

 	

 Environment Variables

 	

 Mapped Files and Directories

 	

 Examples

 	

 pgAdmin Project Contributions

 	

 Submitting Patches

 	

 Code Overview

 	

 Runtime

 	

 Web Application

 	

 pgAdmin Core

 	

 Modules

 	

 Nodes

 	

 Front End

 	

 Coding Standards

 	

 General

 	

 CSS 3

 	

 HTML 5

 	

 Javascript

 	

 Python

 	

 Code Snippets

 	

 PgAdminModule

 	

 NodeView

 	

 BaseDriver

 	

 BaseConnection

 	

 Code Review Notes

 	

 Translations

 	

 Translation Marking

 	

 Updating and Merging

 	

 Adding a New Language

 	

 pgAgent

 	

 Using pgAgent

 	

 Security concerns

 	

 Installing pgAgent

 	

 Database setup

 	

 Daemon installation on Unix

 	

 Service installation on Windows

 	

 Creating a pgAgent Job

 	

 Licence

 	

 Release Notes

 	

 Version 4.3

 	

 Features

 	

 Bug fixes

 	

 Version 4.2

 	

 Bug fixes

 	

 Version 4.1

 	

 Bug fixes

 	

 Version 4.0

 	

 Features

 	

 Bug fixes

 	

 Version 3.6

 	

 Features

 	

 Bug fixes

 	

 Version 3.5

 	

 Features

 	

 Bug fixes

 	

 Version 3.4

 	

 Features

 	

 Bug fixes

 	

 Version 3.3

 	

 Features

 	

 Bug fixes

 	

 Version 3.2

 	

 Features

 	

 Bug fixes

 	

 Version 3.1

 	

 Features

 	

 Bug fixes

 	

 Version 3.0

 	

 Features

 	

 Bug fixes

 	

 Version 2.1

 	

 Features

 	

 Bug fixes

 	

 Version 2.0

 	

 Features

 	

 Bug fixes

 	

 Version 1.6

 	

 Features

 	

 Bug fixes

 	

 Version 1.5

 	

 Features

 	

 Bug fixes

 	

 Version 1.4

 	

 Features

 	

 Bug fixes

 	

 Version 1.3

 	

 Features

 	

 Bug fixes

 	

 Version 1.2

 	

 Features

 	

 Bug fixes

 	

 Version 1.1

 	

 Features

 	

 Bug fixes

 	

 Version 1.0

pgAdmin 4 Documentation
[]
Welcome to pgAdmin 4. pgAdmin is the leading Open Source management tool for Postgres, the world’s most advanced Open Source database. pgAdmin 4 is designed to meet the needs of both novice and experienced Postgres users alike, providing a powerful graphical interface that simplifies the creation, maintenance and use of database objects.
Contents:

Getting Started
[][] Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments; we recommend using an installer whenever possible.
In a Server Deployment, the pgAdmin application is deployed behind a webserver or with the WSGI interface. If you install pgAdmin in server mode, you will be prompted to provide a role name and pgAdmin password when you initially connect to pgAdmin. The first role registered with pgAdmin will be an administrative user; the administrative role can use the pgAdmin dialog to create and manage additional pgAdmin user accounts. When a user authenticates with pgAdmin, the pgAdmin tree control displays the server definitions associated with that login role.
Contents:
Server Deployment
[][] pgAdmin may be deployed as a web application by configuring the app to run in server mode and then deploying it either behind a webserver running as a reverse proxy, or using the WSGI interface.
The following instructions demonstrate how pgAdmin may be run as a WSGI application under , using .
For detailed instructions on building and configuring pgAdmin from scratch, please see the README file in the top level directory of the source code. For convenience, you can find the latest version of the file , but be aware that this may differ from the version included with the source code for a specific version of pgAdmin.
Requirements
: Some components of pgAdmin require the ability to maintain affinity between client sessions and a specific database connection (for example, the Query Tool in which the user might run a BEGIN command followed by a number of DML SQL statements, and then a COMMIT). pgAdmin has been designed with built-in connection management to handle this, however it requires that only a single Python process is used because it is not easily possible to maintain affinity between a client session and one of multiple WSGI worker processes.
On Windows systems, the Apache HTTP server uses a single process, multi-threaded architecture. WSGI applications run in mode, which means that only a single process will be present on this platform in all cases.
On Unix systems, the Apache HTTP server typically uses a multi-process, single threaded architecture (this is dependent on the that is chosen at compile time). If mode is chosen for the WSGI application, then there will be one Python environment for each Apache process, each with it’s own connection manager which will lead to loss of connection affinity. Therefore one should use ’s mode, configured to use a single process. This will launch a single instance of the WSGI application which is utilised by all the Apache worker processes.
Whilst it is true that this is a potential performance bottleneck, in reality pgAdmin is not a web application that’s ever likely to see heavy traffic unlike a busy website, so in practice should not be an issue.
Future versions of pgAdmin may introduce a shared connection manager process to overcome this limitation, however that is a significant amount of work for little practical gain.

Configuration
In order to configure pgAdmin to run in server mode, it may be necessary to configure the Python code to run in multi-user mode, and then to configure the web server to find and execute the code.
Note that there are multiple configuration files that are read at startup by pgAdmin. These are as follows:
	: This is the main configuration file, and should not be modified. It can be used as a reference for configuration settings, that may be overridden in one of the following files.

	: This file is read after and is intended for packagers to change any settings that are required for their pgAdmin distribution. This may typically include certain paths and file locations.

	: This file is read after and is intended for end users to change any default or packaging specific settings that they may wish to adjust to meet local preferences or standards.

Python
From pgAdmin 4 v2 onwards, server mode is the default configuration. If running under the desktop runtime, this is overridden automatically. There should typically be no need to modify the configuration simply to enable server mode to work, however it may be desirable to adjust some of the paths used.
In order to configure the Python code, follow these steps:
	Create a file alongside the existing file.

	Edit and add the following settings. In most cases, the default file locations should be appropriate:
[commandchars=
{}]

	Run the following command to create the configuration database:
[commandchars=
{}]

	Change the ownership of the configuration database to the user that the web server processes will run as, for example, assuming that the web server runs as user www-data in group www-data, and that the SQLite path is :
[commandchars=
{}]

Apache HTTPD Configuration (Windows)
Once Apache HTTP has been configured to support , the pgAdmin application may be configured similarly to the example below:
[commandchars=
{}] pgadmin.example.com / deny,allow from
Now open the file with your favorite editor and add the code below which will activate Python virtual environment when Apache server runs.
[commandchars=
{}]
The changes made in file will revert when pgAdmin4 is either upgraded or downgraded.

Apache HTTPD Configuration (Linux/Unix)
Once Apache HTTP has been configured to support , the pgAdmin application may be configured similarly to the example below:
[commandchars=
{}] pgadmin.example.com
pgadmin processes=1 threads=25 pythonhome=/path/to/python/virtualenv /
pgadmin GLOBAL deny,allow from
If you’re using Apache HTTPD 2.4 or later, replace the lines:
[commandchars=
{}] deny,allow from
with:
[commandchars=
{}] granted
Adjust as needed to suit your access control requirements.

pgAdmin Login Dialog
[][] Use the dialog to log in to pgAdmin:
Use the fields in the dialog to authenticate your connection:
	Provide the email address associated with your account in the field.

	Provide your password in the field.

	Click the button to securely log into pgAdmin.

If you cannot supply your password, click the button to launch a password recovery utility.
	Provide the email address associated with your account in the field.

	Click the button to initiate recovery. An email, with directions on how to reset a password, will be sent to the address entered in the field.

If you have forgotten the email associated with your account, please contact your administrator.

User Management Dialog
[][] When invoking pgAdmin in desktop mode, a password is randomly generated, and then ignored. If you install pgAdmin in server mode, you will be prompted for an administrator email and password for the pgAdmin client.
When you authenticate with pgAdmin, the server definitions associated with that login role are made available in the tree control. An administrative user can use the dialog to
	add or delete pgAdmin roles

	assign privileges

	manage the password associated with a role

Use the search field to find a user; enter a user’s email address to find a user. If the user exists, the table will display the user’s current information.
To add a user, click to add new role.
Provide information about the new pgAdmin role in the row:
	Click in the field, and provide an email address for the user; this address will be used to recover the password associated with the role should the password be lost.

	Use the drop-down listbox next to to select whether a user is an or a .
	Select if the user will have administrative privileges within the pgAdmin client.

	Select to create a non-administrative user account.

	Move the switch to the position if the account is not currently active; the default is . Use this switch to disable account activity without deleting an account.

	Use the field to provide the password associated with the user specified in the field.

	Re-enter the password in the field.

To discard a user, and revoke access to pgAdmin, click the trash icon to the left of the row and confirm deletion in the dialog.
Users with the role are able to add, edit and remove pgAdmin users, but otherwise have the same capabilities as those with the role.
	Click the button (?) to access online help.

	Click the button to save work. You will be prompted to return to the dialog if your selections cannot be saved.

Change User Password Dialog
[][] It is a good policy to routinely change your password to protect data, even in what you may consider a ‘safe’ environment. In the workplace, failure to apply an appropriate password policy could leave you in breach of Data Protection laws.
Please consider the following guidelines when selecting a password:
	Ensure that your password is an adequate length; 6 characters should be the absolute minimum number of characters in the password.

	Ensure that your password is not open to dictionary attacks. Use a mixture of upper and lower case letters and numerics, and avoid words or names. Consider using the first letter from each word in a phrase that you will remember easily but is an unfamiliar acronym.

	Ensure that your password is changed regularly; at minimum, change it every ninety days.

The above should be considered a starting point: It is not a comprehensive list and it .
Use the dialog to change your password:
	Enter your existing password in the field.

	Enter the desired password for in the field.

	Re-enter the new password in the field.

Click the button to change your password; click to exit the dialog.
In a Desktop Deployment, the pgAdmin application is configured to use the desktop runtime environment to host the program on a supported platform. Typically, users will install a pre-built package to run pgAdmin in desktop mode, but a manual desktop deployment can be installed and though it is more difficult to setup, it may be useful for developers interested in understanding how pgAdmin works.
Contents:

Desktop Deployment
[][] pgAdmin may be deployed as a desktop application by configuring the application to run in desktop mode and then utilising the desktop runtime to host the program on a supported Windows, Mac OS X or Linux installation.
The desktop runtime is a system-tray application that when launched, runs the pgAdmin server and launches a web browser to render the user interface. If additional instances of pgAdmin are launched, a new browser tab will be opened and be served by the existing instance of the server in order to minimise system resource utilisation. Clicking the icon in the system tray will present a menu offering options to open a new pgAdmin window, configure the runtime, view the server log and shut down the server.
noteNote: Pre-compiled and configured installation packages are available for a number of platforms. These packages should be used by end-users whereever possible - the following information is useful for the maintainers of those packages and users interested in understanding how pgAdmin works.
For detailed instructions on building and configuring pgAdmin from scratch, please see the README file in the top level directory of the source code. For convenience, you can find the latest version of the file , but be aware that this may differ from the version included with the source code for a specific version of pgAdmin.
Configuration
From pgAdmin 4 v2 onwards, the default configuration mode is server, however, this is overridden by the desktop runtime at startup. In most environments, no Python configuration is required unless you wish to override other default settings.
There are multiple configuration files that are read at startup by pgAdmin. These are as follows:
	: This is the main configuration file, and should not be modified. It can be used as a reference for configuration settings, that may be overridden in one of the following files.

	: This file is read after and is intended for packagers to change any settings that are required for their pgAdmin distribution. This may typically include certain paths and file locations.

	: This file is read after and is intended for end users to change any default or packaging specific settings that they may wish to adjust to meet local preferences or standards.

noteNote: If the SERVER_MODE setting is changed in or , you will most likely need to re-set the LOG_FILE, SQLITE_PATH, SESSION_DB_PATH and STORAGE_DIR values as well as they will have been set based on the default configuration or overridden by the runtime.
Runtime
When executed, the runtime will automatically try to execute the pgAdmin Python application. If execution fails, it will prompt you to adjust the Python Path to include the directories containing the pgAdmin code as well as any additional Python dependencies. You can enter a list of paths by separating them with a semi-colon character, for example:
[commandchars=
{}] /Users/dpage/.virtualenvs/pgadmin4/lib/python2.7/sitepackages//Users/dpage/pythonlibs/
The configuration settings are stored using the QSettings class in Qt, which will use an INI file on Unix systems (~/.config/pgadmin/pgadmin4.conf), a plist file on Mac OS X (~/Library/Preferences/org.pgadmin.pgadmin4.plist), and the registry on Windows (HKEY_CURRENT_USER\Software\pgadmin\pgadmin4).
The configuration settings:
[t]|T|T|T| Key &Type &Purpose
ApplicationPath & String & The directory containing pgAdmin4.py
BrowserCommand & String & An alternate command to run instead of the default browser.
ConnectionTimeout & Integer & The number of seconds to wait for application server startup.
PythonPath & String & The Python module search path

noteNote: Pre-compiled and configured installation packages are available for a number of platforms. These packages should be used by end-users whereever possible - the following information is useful for the maintainers of those packages and users interested in understanding how pgAdmin works.
The pgAdmin 4 client features a highly-customizable display that features drag-and-drop panels that you can arrange to make the best use of your desktop environment.
The tree control provides an elegant overview of the managed servers, and the objects that reside on each server. Right-click on a node within the tree control to access context-sensitive menus that provide quick access to management tasks for the selected object.
The tabbed browser provide quick access to statistical information about each object in the tree control, and pgAdmin tools and utilities (such as the Query tool and the debugger). pgAdmin opens additional feature tabs each time you access the extended functionality offered by pgAdmin tools; you can open, close, and re-arrange feature tabs as needed.
Use the dialog to customize the content and behaviour of the pgAdmin display. To open the dialog, select from the menu.
buttons in the lower-left corner of each dialog will open the online help for the dialog. You can access additional Postgres help by navigating through the menu, and selecting the name of the resource that you wish to open.
Contents:

The pgAdmin 4 Client
[][] pgAdmin 4 supports all PostgreSQL features, from writing simple SQL queries to developing complex databases. It is designed to query an active database (in real-time), allowing you to stay current with modifications and implementations.
Features of pgAdmin 4 include:
	auto-detection and support for objects discovered at run-time

	a live SQL query tool with direct data editing

	support for administrative queries

	a syntax-highlighting SQL editor

	redesigned graphical interfaces

	powerful management dialogs and tools for common tasks

	responsive, context-sensitive behavior

	supportive error messages

	helpful hints

	online help and information about using pgAdmin dialogs and tools.

When pgAdmin opens, the interface features a menu bar and a window divided into two panes: the tree control in the left pane, and a tabbed browser in the right pane.
Select an icon from the panel on the tab to:
	Click the button to open the to add a new server definition.

	Click the button to open the to customize your pgAdmin client.

Links in the panel open a new browser tab that provide useful information for Postgres users:
	Click the link to navigate to the page for the PostgreSQL open-source project; once at the project site, you can review the manuals for the currently supported versions of the PostgreSQL server.

	Click the link to navigate to the pgAdmin project website. The pgAdmin site features news about recent pgAdmin releases and other project information.

	Click the link to navigate to the blog aggregator for Postgres related blogs.

	Click the link to navigate to the page at the PostgreSQL open-source project site; this page provides information about obtaining support for PostgreSQL features.

pgAdmin Menu Bar
[][] The pgAdmin menu bar provides drop-down menus for access to options, commands, and utilities. The menu bar displays the following selections: , , Tools*, and . Selections may be grayed out which indicates they are disabled for the object currently selected in the tree control.
Use the menu to access the following options:
[t]|T|T| Option &Action
 & Click to open the dialog to to customize your pgAdmin settings.
 & If you have modified the workspace, click to restore the default layout.

The menu is context-sensitive. Use the menu to access the following options (in alphabetical order):
[t]|T|T| Option &Action
 & Click to open the dialog to change your password.
 & If you have saved the database server password, click to clear the saved password. Enable only when password is already saved.
 & If you have saved the ssh tunnel password, click to clear the saved password. Enable only when password is already saved.
 & Click to open the dialog to establish a connection with a server.
 & Click to access a context menu that provides context-sensitive selections. Your selection opens a dialog for creating a new object.
 & Click to delete the currently selected object from the server.
 & Click to refresh the currently selected object.
 & Click to delete the currently selected object and all dependent objects from the server.
 & Click to review or modify the currently selected object’s properties.
 & Click to refresh the currently selected object.
 & Click to open the to edit or view the selected script from the flyout menu.
 & Click to or trigger(s) for the currently selected table. Options are displayed on the flyout menu.
 & Click to remove all rows from a table () or to remove all rows from a table and its child tables (). Options are displayed on the flyout menu.
 & Click to access a context menu that provides several options for viewing data (see below).

Use the menu to access the following options (in alphabetical order):
[t]|T|T| Option &Action
 & Click to open the dialog to take a point-in-time snapshot of the current server state.
 & Click to open the dialog to backup database objects.
 & Click to open the dialog to backup cluster objects.
 & Click to open the dialog to backup a server.
 & Click to access the tool.
 & Click to open the dialog to import or export data from a table.
 & Click to open the dialog to VACUUM, ANALYZE, REINDEX, or CLUSTER.
 & Click to pause the replay of the WAL log.
 & Click to open the for the currently selected object.
 & Click to update configuration files without restarting the server.
 & Click to access the dialog to restore database files from a backup.
 & Click to resume the replay of the WAL log.

Use the options on the menu to access online help documents, or to review information about the pgAdmin installation (in alphabetical order):
[t]|T|T| Option &Action
 & Click to open a window where you will find information about pgAdmin; this includes the current version and the current user.
 & Click to open documentation support for using pgAdmin utilities, tools and dialogs. Navigate (in the newly opened tab?) help documents in the left browser pane or use the search bar to specify a topic.
 & Click to open the website in a browser window.
 & Click to access the PostgreSQL core documentation hosted at the PostgreSQL site. The site also offers guides, tutorials, and resources.

pgAdmin Toolbar
[][] The pgAdmin toolbar provides shortcut buttons for frequently used features like View Data and the Query Tool which are most frequently used in pgAdmin. This toolbar is visible on the Browser panel. Buttons get enabled/disabled based on the selected browser node.
	Use the button to open the Query Tool in the current database context.

	Use the button to view/edit the data stored in a selected table.

	Use the button to access the Data Filter popup to apply a filter to a set of data for viewing/editing.

pgAdmin Tabbed Browser
[][] The right pane of the window features a collection of tabs that display information about the object currently selected in the tree control in the left window. Select a tab to access information about the highlighted object in the tree control.
The graphs on the tab provides an active analysis of the usage statistics for the selected server or database:
	The or graph displays the interactions with the server or database.

	The graph displays the commits, rollbacks, and total transactions per second that are taking place on the server or database.

	The graph displays the number of tuples inserted, updated, and deleted on the server or database.

	The graph displays the number of tuples fetched and returned from the server or database.

	The graph displays the number of blocks read from the filesystem or fetched from the buffer cache (but not the operating system’s file system cache) for the server or database.

The panel displays information about sessions, locks, prepared transactions, and server configuration (if applicable). The information is presented in context-sensitive tables. Use controls located above the table to:
	Click the button to update the information displayed in each table.

	Enter a value in the box to restrict the table content to one or more sessions that satisfy the search criteria. For example, you can enter a process ID to locate a specific session, or a session state (such as) to locate all of the sessions that are in an idle state.

You can use icons in the table to review or control the state of a session:
	Use the icon (located in the first column) to stop a session and remove the session from the table. Before the server terminates the session, you will be prompted to confirm your selection.

	Use the icon (located in the second column) to terminate an active query without closing the session. Before canceling the query, the server will prompt you to confirm your selection. When you cancel a query, the value displayed in the column of the table will be updated from to . The session will remain in the table until the session is terminated.

	Use the icon (located in the third column) to open the tab; the tab displays information about the selected session.

The tab displays information about the object selected.
Click the icon in the toolbar under the browser tab to delete the selected objects in the Properties panel.
Click the icon in the toolbar under the browser tab to delete the selected objects and all dependent objects in the Properties panel.
Click the icon in the toolbar under the browser tabs to launch the dialog for the selected object.
To preserve any changes to the dialog, click the icon; your modifications will be displayed in the updated tab.
Details about the object highlighted in the tree control are displayed in one or more collapsible panels. You can use the arrow to the left of each panel label to open or close a panel.
The tab displays the SQL script that created the highlighted object, and when applicable, a (commented out) SQL statement that will the selected object. You can copy the SQL statements to the editor of your choice using cut and paste shortcuts.
The tab displays the statistics gathered for each object on the tree control; the statistics displayed in the table vary by the type of object that is selected. Click a column heading to sort the table by the data displayed in the column; click again to reverse the sort order. The following table lists some of the statistics that are available:
[t]|T|T| Panel &Description
 & The process ID associated with the row.
 & The name of the user that owns the object.
 & displays the database name.
 & displays the number of current connections to the database.
 & The start time of the backend process.
 & displays the number of transactions committed to the database within the last week.
 & displays the number of transactions rolled back within the last week.
 & displays the number of blocks read from memory (in megabytes) within the last week.
 & displays the number of blocks hit in the cache (in megabytes) within the last week.
 & displays the number of tuples returned within the last week.
 & displays the number of tuples fetched within the last week.
 & displays the number of tuples inserted into the database within the last week.
 & displays the number of tuples updated in the database within the last week.
 & displays the number of tuples deleted from the database within the last week.
 & displays the time of the last statistics reset for the database.
 & displays the number of queries canceled because of recovery conflict with dropped tablespaces in database.
 & displays the number of queries canceled because of recovery conflict with locks in database.
 & displays the number of queries canceled because of recovery conflict with old snapshots in database.
 & displays the number of queries canceled because of recovery conflict with pinned buffers in database.
 & displays the total number of temporary files, including those used by the statistics collector.
 & displays the size of the temporary files.
 & displays the number of queries canceled because of a recovery conflict with deadlocks in database.
 & displays the number of milliseconds required to read the blocks read.
 & displays the number of milliseconds required to write the blocks read.
 & displays the size (in megabytes) of the selected database.

The tab displays the objects on which the currently selected object depends. If a dependency is dropped, the object currently selected in the pgAdmin tree control will be affected. To ensure the integrity of the entire database structure, the database server makes sure that you do not accidentally drop objects that other objects depend on; you must use the DROP CASCADE command to remove an object with a dependency.
The table displays the following information:
	The field specifies the parent object type.

	The field specifies the identifying name of the parent object.

		The field describes the dependency relationship between the currently selected object and the parent.
		If the field is , the selected object can be dropped separately from the parent object, and will be dropped if the parent object is dropped.

	If the field is , the selected object was created during the creation of the parent object, and will be dropped if the parent object is dropped.

	If the field is , the selected object can be dropped without dropping the parent object.

	If the field is , the selected object is required by the system, and cannot be dropped.

The tab displays a table of objects that depend on the object currently selected in the browser. A dependent object can be dropped without affecting the object currently selected in the tree control.
	The field specifies the dependent object type.

	The field specifies the identifying name for the dependent object.

	The field specifies the database in which the object resides.

Additional tabs open when you access the extended functionality offered by pgAdmin tools (such as the Query tool, Debugger, or SQL editor). Use the close icon (X) located in the upper-right corner of each tab to close the tab when you are finished using the tool. Like permanent tabs, these tabs may be repositioned in the pgAdmin client window.
By default, each time you open a tool, pgAdmin will open a new browser tab. You can control this behavior by modifying the node of the dialog for each tool. To open the dialog, select from the menu.

pgAdmin Tree Control
[][] The left pane of the main window displays a tree control (the tree control) that provides access to the objects that reside on a server.
You can expand nodes in the tree control to view the database objects that reside on a selected server. The tree control expands to display a hierarchical view:
	Use the plus sign (+) to the left of a node to expand a segment of the tree control.

	Click the minus sign (-) to the left of a node to close that node.

Access context-sensitive menus by right-clicking on a node of the tree control to perform common tasks. Menus display options that include one or more of the following selections (options appear in alphabetical order):
[t]|T|T| Option &Action
 & Click to create and enter the name of a restore point.
 & Click to open the dialog to backup database objects.
 & Click to open the dialog to backup cluster objects.
 & Click to open the dialog to backup a server.
 & Click to open the dialog to establish a connection with a server.
 & Click to access a context menu that provides context-sensitive selections. Your selection opens a dialog for creating a new object.
 & Click to open the to edit or view the CREATE script.
 & Click through to open the tool or to select to stop or pause a script execution.
 & Click to delete the currently selected object from the server.
 & Click to terminate a database connection.
 & Click to refresh the currently selected object.
 & Click to delete the currently selected object and all dependent objects from the server.
 & Click to access the tool.
 & Click to access the tool.
 & Click to open the dialog to VACUUM, ANALYZE, REINDEX, or CLUSTER.
 & Click to review or modify the currently selected object’s properties.
 & Click to refresh the currently selected object.
 & Click to update configuration files without restarting the server.
 & Click to access the dialog to restore database files from a backup.
 & Use the option to access the data stored in a selected table with the tab of the .

The context-sensitive menus associated with and nested nodes provides additional display options (options appear in alphabetical order):
[t]|T|T| Option &Action
 & Click open the dialog to import data to or export data from the selected table.
 & Click to reset statistics for the selected table.
 & Click to open the to edit or view the selected script from the flyout menu.
 & Click to remove all rows from a table.
 & Click to remove all rows from a table and its child tables.
 & Click to access a data grid that displays the first 100 rows of the selected table.
 & Click to access a data grid that displays the last 100 rows of the selected table.
 & Click to access a a data grid that displays all rows of the selected table.
 & Click to access the popup to apply a filter to a set of data.

Preferences Dialog
[][] Use options on the dialog to customize the behavior of the client. To open the dialog, select from the menu. The left pane of the dialog displays a tree control; each node of the tree control provides access to options that are related to the node under which they are displayed.
	Use the plus sign (+) to the left of a node name to expand a segment of the tree control.

	Use the minus sign (-) to the left of a node name to close that node.

Use preferences found in the node of the tree control to personalize your workspace.
Use the fields on the panel to specify general display preferences:
	When the switch is set to , child nodes will be automatically expanded if a treeview node is expanded and has only a single child.

	Use the field to set the treeview state saving interval. A value of will disable the treeview state saving functionality.

	When the switch is set to , pgAdmin will attempt to catch browser close or refresh events and prompt before allowing them to continue.

	When the switch is set to , the client will display system objects such as system schemas (for example,) or system columns (for example, or) in the tree control.

	When the switch is set to , the client will display the animated tree control otherwise it will be unanimated.

	When the switch is set to , the client will display the animated dialogues/notifications otherwise it will be unanimated.

Use the fields on the panel to configure shortcuts for the main window navigation:
	The panel displays a list of keyboard shortcuts available for the main window; select the combination of the modifier keys along with the key to configure each shortcut.

Use the fields on the panel to select the object types that will be displayed in the tree control:
	The panel displays a list of database objects; slide the switch located next to each object to or the database object. When querying system catalogs, you can reduce the number of object types displayed to increase speed.

Use fields on the panel to specify browser properties:
	Include a value in the field to perform a SELECT count(*) if the estimated number of rows in a table (as read from the table statistics) is below the specified limit. After performing the SELECT count(*), pgAdmin will display the row count. The default is 2000.

	Provide a value in the field to limit the number of rows to show on the statistics tab for pgAgent jobs. The default is 250.

Expand the node to specify your dashboard display preferences.
Use the fields on the panel to specify your display preferences for the graphs on the tab:
	Use the field to specify the number of seconds between block I/O statistic samples displayed in graphs.

	Use the field to specify the number of seconds between session statistic samples displayed in graphs.

	Use the field to specify the number of seconds between transaction throughput samples displayed in graphs.

	Use the field to specify the number of seconds between tuples-in samples displayed in graphs.

	Use the field to specify the number of seconds between tuples-out samples displayed in graphs.

	When the switch is set to , activity tables will be displayed on dashboards.

	When the switch is set to , data points will be visible on graph lines.

	When the switch is set to , graphs will be displayed on dashboards.

	When the switch is set to , a tooltip will appear on mouse hover on the graph lines giving the data point details.

Expand the node to specify your debugger display preferences.
	When the switch is set to , the Debugger will open in a new browser tab when invoked.

Use the fields on the panel to configure shortcuts for the debugger window navigation:
Expand the node to specify miscellaneous display preferences.
	Use the drop-down listbox to select the display language for the client.

Expand the node to specify the locations of supporting utility and help files.
Use the fields on the panel to specify the path to the directory that contains the utility programs (pg_dump, pg_restore, and pg_dumpall) for monitored databases:
	Use the field to specify the location of the PostgreSQL utility programs. If this path is not set, pgAdmin will attempt to find the utilities in standard locations used by PostgreSQL.

Use the fields on the panel to specify the location of help files.
	Use the to specify the path to PostgreSQL documentation.

Please note: the default help paths include the placeholder; the $VERSION$ placeholder will be replaced by the current database version.
Expand the node to access panels that allow you to specify your preferences for the Query Editor tool.
Use the fields on the panel to set the auto completion options.
	When the switch is set to then keywords are shown in upper case.

Use the fields on the panel to control the CSV output.
	Use the drop-down listbox to specify the separator character that will be used in CSV output.

	Use the drop-down listbox to specify the quote character that will be used in CSV output.

	Use the drop-down listbox to select the fields that will be quoted in the CSV output; select , , or .

	Use the option to replace null values with specified string in the output file. Default is set to ‘NULL’.

Use the fields on the panel to specify your preferences for the Query Tool display.
	When the switch is set to , each new instance of the Query Tool will display connection and transaction status.

	Use the field to specify the number of seconds between connection/transaction status updates.

	When the switch is set to , each new instance of the Query Tool will open in a new browser tab.

	Use the field to control the behaviour of the notifier that is displayed when query execution completes. A value of will disable the notifier, and a value of 0 will display it until clicked. If a positive value above zero is specified, the notifier will be displayed for the specified number of seconds. The default is .

Use the fields on the panel to specify the level of detail included in a graphical EXPLAIN.
	When the switch is set to , graphical explain details will include information about buffer usage.

	When the switch is set to , graphical explain details will include information about the estimated startup and total cost of each plan, as well as the estimated number of rows and the estimated width of each row.

	When the switch is set to , graphical explain details will include the startup time and time spent in each node in the output.

	When the switch is set to , graphical explain details will include extended information about the query execution plan.

Use the fields on the panel to manage editor preferences.
	When the switch is set to , each successful query is committed after execution.

	When the switch is set to , failed queries are rolled back.

	When the switch is set to , the editor will highlight pairs of matched braces.

	Use the field to specify the font size that will be used in text boxes and editors.

	When the switch is set to , the editor will automatically insert paired brackets.

	When the switch is set to , the editor will implement line-wrapping behavior.

	When the switch is set to , the editor will prompt the user to saved unsaved data when exiting the data editor.

	When the switch is set to , the editor will prompt the user to saved unsaved query modifications when exiting the query tool.

	Use the field to specify the number of spaces per tab character in the editor.

	When the switch is set to , the editor will insert spaces (instead of tab characters) when the tab key or auto-indent are used.

Use the fields on the panel to specify your formatting preferences for copied data.
	Use the drop-down listbox to select the field separator for copied data.

	Use the drop-down listbox to select the quote character for copied data.

	Use the drop-down listbox to select which type of fields require quoting; select , , or .

Use the fields on the panel to configure shortcuts for the query tool window navigation:
Expand the node to specify your storage preferences.
Use the fields on the panel to specify storage preferences.
	Use the drop-down listbox to select the style of icons and display format that will be displayed when you open the file manager; select to display a list view, or to display folder icons.

	Use the field to specify the name of the folder in which the file manager will open.

	Use the field on the panel of the node to specify the maximum file size for an upload.

	When the switch is set to , the file manager will display hidden files and folders.

Keyboard Shortcuts
[] Keyboard shortcuts are provided in pgAdmin to allow easy access to specific functions. Alternate shortcuts can be configured through File > Preferences if desired.˝
When using main browser window, the following keyboard shortcuts are available:
[t]|T|T| Shortcut for all platforms &Function
Alt+Shift+F & Open the File menu
Alt+Shift+O & Open the Object menu
Alt+Shift+L & Open the Tools menu
Alt+Shift+H & Open the Help menu
Alt+Shift+B & Focus the browser tree
Alt+Shift+[& Move tabbed panel backward
Alt+Shift+] & Move tabbed panel forward
Alt+Shift+Q & Open the Query Tool in the current database
Alt+Shift+V & View Data in the selected table/view
Alt+Shift+C & Open the context menu
Alt+Shift+N & Create an object
Alt+Shift+E & Edit object properties
Alt+Shift+D & Delete the object
Alt+Shift+G & Direct debugging

Use the shortcuts below to navigate the tabsets on dialogs:
[t]|T|T| Shortcut for all platforms &Function
Control+Shift+[& Dialog tab backward
Control+Shift+] & Dialog tab forward

When using the syntax-highlighting SQL editors, the following shortcuts are available:
[t]|T|T|T| Shortcut (Windows/Linux) &Shortcut (Mac) &Function
Alt+Left & Option+Left & Move to the beginning of the line
Alt+Right & Option+Right & Move to the end of the line
Ctrl+Alt+Left & Cmd+Option+Left & Move left one word
Ctrl+Alt+Right & Cmd+Option+Right & Move right one word
Ctrl+/ & Cmd+/ & Comment selected code (Inline)
Ctrl+. & Cmd+. & Uncomment selected code (Inline)
Ctrl+Shift+/ & Cmd+Shift+/ & Comment/Uncomment code (Block)
Ctrl+A & Cmd+A & Select all
Ctrl+C & Cmd+C & Copy selected text to the clipboard
Ctrl+R & Cmd+R & Redo last edit un-done
Ctrl+V & Cmd+V & Paste text from the clipboard
Ctrl+Z & Cmd+Z & Undo last edit
Tab & Tab & Indent selected text
Shift+Tab & Shift+Tab & Un-indent selected text
Alt+G & Alt+G & Jump (to line:column)
Ctrl+Space & Ctrl+Space & Auto-complete
Ctrl+F & Cmd+F & Find
Ctrl+G & Cmd+G & Find next
Ctrl+Shift+G & Cmd+Shift+G & Find previous
Ctrl+Shift+F & Cmd+Shift+F & Replace

When using the Query Tool, the following shortcuts are available:
[t]|T|T|T| Shortcut (Windows/Linux) &Shortcut (Mac) &Function
F5 & F5 & Execute query
F7 & F7 & EXPLAIN query
Shift+F7 & Shift+F7 & EXPLAIN ANALYZE query
F8 & F8 & Execute query to CSV file
<accesskey> + o & <accesskey> + o & Open file
<accesskey> + s & <accesskey> + s & Save file
<accesskey> + n & <accesskey> + n & Find option drop down
<accesskey> + c & <accesskey> + c & Copy row(s)
<accesskey> + p & <accesskey> + p & Paste row(s)
<accesskey> + d & <accesskey> + d & Delete row(s)
<accesskey> + f & <accesskey> + f & Filter dialog
<accesskey> + i & <accesskey> + i & Filter options drop down
<accesskey> + r & <accesskey> + r & Row limit
<accesskey> + q & <accesskey> + q & Cancel query
<accesskey> + l & <accesskey> + l & Clear option drop down
<accesskey> + x & <accesskey> + x & Execute option drop down
<accesskey> + t & <accesskey> + t & Display connection status
<accesskey> + y & <accesskey> + y & Copy SQL on history panel

When using the Debugger, the following shortcuts are available:
[t]|T|T|T| Shortcut (Windows/Linux) &Shortcut (Mac) &Function
<accesskey> + i & <accesskey> + i & Step in
<accesskey> + o & <accesskey> + o & Step over
<accesskey> + c & <accesskey> + c & Continue/Restart
<accesskey> + t & <accesskey> + t & Toggle breakpoint
<accesskey> + x & <accesskey> + x & Clear all breakpoints
<accesskey> + s & <accesskey> + s & Stop
Alt + Shift + q & Alt + Shift + q & Enter or Edit values in Grid

When using the Query Tool and Debugger, the following shortcuts are available for inner panel navigation:
[t]|T|T|T| Shortcut (Windows/Linux) &Shortcut (Mac) &Function
Alt + Shift + Right Arrow & Alt + Shift + Right Arrow & Move to next inner panel
Alt + Shift + Left Arrow & Alt + Shift + Left Arrow & Move to previous inner panel

noteNote: <accesskey> is browser and platform dependant. The following table lists the default access keys for supported browsers.
[t]|T|T|T|T| &Windows &Linux &Mac
Internet Explorer & Alt & Alt &
Chrome & Alt & Alt & Ctrl+Alt
Firefox & Alt+Shift & Alt+Shift & Ctrl+Alt
Safari & Alt && Ctrl+Alt

Before using pgAdmin to manage objects that reside on a server, you must define a connection to the server; for more information please see in the next section.

Connecting to a Server
[][] Before you can use the pgAdmin client to manage the objects that reside on your Postgres server, you must define a connection to the server. You can (optionally) use the dialog to create server groups to organize the server connections within the tree control for easier management. To open the dialog, right-click on the node of the tree control, and select from the menu.
Contents:
Server Group Dialog
[][] Use the dialog to add a new server group. Assign servers to server groups to simplify management of multiple servers. Server groups are displayed as part of the tree control.
Use the field on the dialog to specify a name that will identify the server group in the tree control.
	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

To create server connections in a server group, right click on the named server group and select the option to open the dialog.
Use the fields on the dialog to define the connection properties for each new server that you wish to manage with pgAdmin. To open the dialog, right-click on the node of the tree control, and select from the menu.
Contents:

Server Dialog
[][] Use the dialog to describe a connection to a server. Note: you must ensure that the pg_hba.conf file of the server from which you are connecting allows connections from the host of the client.
Use the fields in the tab to identify the server:
	Use the field to add a descriptive name for the server; the name specified will be displayed in the tree control.

	Use the drop-down list box in the field to select the parent node for the server; the server will be displayed in the tree control within the specified group.

	Use the color-picker in the field to specify the background color for the server.

	Use the color-picker in the field to specify the foreground color for the server.

	If the checkbox is checked, the client will attempt a connection to the server upon completion of the dialog; this is the default

	Provide a comment about the server in the field.

Click the tab to continue.
Use the fields in the tab to configure a connection:
	Specify the IP address of the server host, or the fully qualified domain name in the field. If you provide a unix domain socket, the directory name must begin with a “/”.

	Enter the listener port number of the server host in the field. The default is .

	Use the field to specify the name of the initial database to which the client will connect. If you will be using pgAgent or adminpack objects, the pgAgent schema and adminpack objects should be installed on that database.

	Use the field to specify the name of a role that will be used when authenticating with the server.

	Use the field to provide a password that will be supplied when authenticating with the server.

	Check the box next to to instruct pgAdmin to save the password for future use. Use to remove the saved password.

	Use the field to specify the name of a role that has privileges that will be conveyed to the client after authentication with the server. This selection allows you to connect as one role, and then assume the permissions of this specified role after the connection is established. Note that the connecting role must be a member of the role specified.

	Use the field to specify the service name. For more information, see .

Click the tab to continue.
Use the fields in the tab to configure SSL:
	Use the drop-down list box in the field to select the type of SSL connection the server should use. For more information about using SSL encryption, see .

If pgAdmin is installed in Server mode (the default mode), you can use the platform-specific File manager dialog to upload files that support SSL encryption to the server. To access the File manager dialog, click the icon that is located to the right of each of the following fields.
	Use the field to specify the file containing the client SSL certificate. This file will replace the default if pgAdmin is installed in Desktop mode, and if pgAdmin is installed in Web mode. This parameter is ignored if an SSL connection is not made.

	Use the field to specify the file containing the secret key used for the client certificate. This file will replace the default if pgAdmin is installed in Desktop mode, and if pgAdmin is installed in Web mode. This parameter is ignored if an SSL connection is not made.

	Use the field to specify the file containing the SSL certificate authority. This file will replace the default . This parameter is ignored if an SSL connection is not made.

	Use the field to specify the file containing the SSL certificate revocation list. This list will replace the default list, found in . This parameter is ignored if an SSL connection is not made.

	When is set to , data sent over SSL connections will be compressed. The default value is (compression is disabled). This parameter is ignored if an SSL connection is not made.

In Server mode, certificates, private keys, and the revocation list are stored in the per-user file storage area on the server, which is owned by the user account under which the pgAdmin server process is run. This means that administrators of the server may be able to access those files; appropriate caution should be taken before choosing to use this feature.
Click the tab to continue.
Use the fields in the tab to configure SSH Tunneling:
You can use the “SSH Tunnel” tab to connect pgAdmin (through an intermediary proxy host) to a server that resides on a network to which the client may not be able to connect directly.
	Set “Use SSH tunneling” to to specify that pgAdmin should use an SSH tunnel when connecting to the specified server.

	Specify the name or IP address of the SSH host (through which client connections will be forwarded) in the field.

	Specify the port of the SSH host (through which client connections will be forwarded) in the field.

	Specify the name of a user with login privileges for the SSH host in the field.

	Specify the type of authentication that will be used when connecting to the SSH host in the field.
	Select the option to specify that pgAdmin will use a password for authentication to the SSH host. This is the default.

	Select the to specify that pgAdmin will use a private key file when connecting.

	If the SSH host is expecting a private key file for authentication, use the field to specify the location of the key file.

	If the SSH host is expecting a password of the user name or an identity file if being used, use the field to specify the password.

	Check the box next to to instruct pgAdmin to save the password for future use. Use to remove the saved password.

Click the tab to continue.
Use the fields in the tab to configure a connection:
	Specify the IP address of the server host in the field. Using this field to specify the host IP address may save time by avoiding a DNS lookup on connection, but it may be useful to specify both a host name and address when using Kerberos, GSSAPI, or SSPI authentication methods, as well as for verify-full SSL certificate verification.

	Use the field to provide a SQL restriction that will be used against the pg_database table to limit the databases that you see. For example, you might enter: so that only live_db and test_db are shown in the pgAdmin browser. Separate entries with a comma or tab as you type.

	Use the field to specify the location of a password file (.pgpass). A .pgpass file allows a user to login without providing a password when they connect. For more information, see .

	Use the field to specify the maximum wait for connection, in seconds. Zero or not specified means wait indefinitely. It is not recommended to use a timeout of less than 2 seconds.

The password file option is only supported when pgAdmin is using libpq v10.0 or later to connect to the server.
	Click the button to save your work.

	Click the button to exit without saving your work.

	Click the button to return the values specified on the Server dialog to their original condition.

Clear Saved Passwords
[][] Use functionality to clear the saved password for the database server.
shows in the context menu for the selected server as well as under the menu on the top menu bar.
Use functionality to clear the saved password of SSH Tunnel to connect to the database server.
shows in the context menu for the selected server as well as under the menu on the top menu bar.
It will be enabled/visible when the password for the selected database server is already saved.
After defining a server connection, right-click on the server name, and select to authenticate with the server, and start using pgAdmin to manage objects that reside on the server.
Contents:

Connect to server
[][] Use the dialog to authenticate with a defined server and access the objects stored on the server through the pgAdmin tree control. To access the dialog, right click on the server name in the tree control, and select from the context menu.
Provide authentication information for the selected server:
	Use the field to provide the password of the user that is associated with the defined server.

	Check the box next to to instruct the server to save the password for future connections; if you save the password, you will not be prompted when reconnecting to the database server with this server definition.

In case of SSH Tunneling, dialog will prompt for SSH Tunnel and Database server passwords if not already saved.
Provide authentication information for the selected server:
	Use the field to provide the password of the user that is associated with the defined server.

	Check the box next to respective to instruct the server to save the password for future connections; if you save the password, you will not be prompted when reconnecting to the database server with this server definition.

The pgAdmin client displays a message in a green status bar in the lower right corner when the server connects successfully.
If you receive an error message while attempting a connection, verify that your network is allowing the pgAdmin host and the host of the database server to communicate. For detailed information about a specific error message, please see the help page.
To review or modify connection details, right-click on the name of the server, and select from the context menu.

Connection error
[][] When connecting to a PostgreSQL server, you may get an error message. If you encounter an error message, please review the message carefully; each error message attempts to incorporate the information you’ll need to resolve the problem. For more details about specific errors, please locate the error message in the list below:
This error message indicates that the connection attempt has taken longer than the specified threshold; there may be a problem with the connection properties provided on the dialog, network connectivity issues, or the server may not be running.
	If pgAdmin displays this message, there are two possible reasons for this:
		the database server isn’t running - simply start it.

	the server isn’t configured to accept TCP/IP requests on the address shown.

For security reasons, a PostgreSQL server “out of the box” doesn’t listen on TCP/IP ports. Instead, it must be enabled to listen for TCP/IP requests. This can be done by adding to the postgresql.conf file for Versions 7.3.x and 7.4.x, or for Version 8.0.x and above; this will make the server accept connections on any IP interface.
For further information, please refer to the PostgreSQL documentation about .
If pgAdmin displays this message when connecting, your server can be contacted correctly over the network, but is not configured to accept your connection. Your client has not been detected as a legal user for the database.
To connect to a server, the pg_hba.conf file on the database server must be configured to accept connections from the host of the pgAdmin client. Modify the pg_hba.conf file on the database server host, and add an entry in the form:
	for an IPV4 network

	for an IPV6 network

For more information, please refer to the PostgreSQL documentation about .
	The error message indicates there may be a problem with the password you entered. Retry the password to confirm you entered it correctly. If the error message returns, make sure that you have the correct password, that you are authorized to access the server, and that the access has been correctly configured in the server’s postgresql.conf configuration file.

Server definitions (and their groups) can be exported to a JSON file and re-imported to the same or a different system to enable easy pre-configuration of pgAdmin.

Exporting and importing Servers
[][] Server definitions (and their groups) can be exported to a JSON file and re-imported to the same or a different system to enable easy pre-configuration of pgAdmin. The script is used for this purpose.
noteNote: To export or import servers, you must use the Python interpreter that is normally used to run pgAdmin to ensure that the required Python packages are available. In most packages, this can be found in the Python Virtual Environment that can be found in the installation directory. When using platform-native packages, the system installation of Python may be the one used by pgAdmin.
To export the servers defined in an installation, simply invoke with the command line option, followed by the name (and if required, path) to the desired output file. By default, servers owned by the desktop mode user will be dumped (by default - see the DESKTOP_USER setting in). This can be overridden with the command line option. For example:
[commandchars=
{}] /path/to/python /path/to/setup.py dumpservers outputfile.json
/path/to/python /path/to/setup.py dumpservers outputfile.json user user@example.com
To export only certain servers, use the option and list one or more server IDs. For example:
[commandchars=
{}] /path/to/python /path/to/setup.py dumpservers outputfile.json server
To import the servers defined in a JSON file, simply invoke with the command line option, followed by the name (and if required, path) of the JSON file containing the server definitions. Servers will be owned by the desktop mode user (by default - see the DESKTOP_USER setting in). This can be overridden with the command line option. For example:
[commandchars=
{}] /path/to/python /path/to/setup.py loadservers inputfile.json
/path/to/python /path/to/setup.py loadservers inputfile.json user user@example.com
If any Servers are defined with a Server Group that is not already present in the configuration database, the required Group will be created.
The JSON file format used when importing or exporting servers is quite straightforward and simply contains a list of servers, with a number of attributes. The following attributes are required to be present in every server definition: Name, Group, Port, Username, SSLMode, MaintenanceDB and one of Host, HostAddr or Service.
Password fields cannot be imported or exported.
The following example shows both a minimally defined and a fully defined server:
[commandchars=
{}]

Managing Cluster Level Objects
[][] Some object definitions reside at the cluster level; pgAdmin 4 provides dialogs that allow you to create these objects, manage them, and control their relationships to each other. To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree control, and select the option for that object. For example, to create a new database, right-click on the node, and select
Contents:
Database Dialog
[][] Use the dialog to define or modify a database. To create a database, you must be a database superuser or have the CREATE privilege.
The dialog organizes the development of a database through the following dialog tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the database:
	Use the field to add a descriptive name for the database. The name will be displayed in the tree control.

	Select the owner of the database from the drop-down listbox in the field.

	Store notes about the database in the field.

Click the tab to continue.
Use the tab to set properties for the database:
	Select a character set from the drop-down listbox in the field. The default is .

	Select a template from the drop-down listbox in the field. If you do not specify a template, the database will use template1.

	Select a tablespace from the drop-down listbox in the field. The selected tablespace will be the default tablespace used to contain database objects.

	Select the collation order from the drop-down listbox in the field.

	Select the character classification from the drop-down listbox in the field. This affects the categorization of characters, e.g. lower, upper and digit. The default, or a blank field, uses the character classification of the template database.

	Specify a connection limit in the field to configure the maximum number of connection requests. The default value () allows unlimited connections to the database.

Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges to a role. Click the icon (+) to set privileges for database objects:
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click add to set additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the database. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to set parameters for the database. Click the icon (+) to add each parameter:
	Use the drop-down listbox in the field to select a parameter.

	Use the field to set a value for the parameter.

	Use the drop-down listbox next to to select a role to which the parameter setting specified will apply.

Follow these steps to add additional parameter value definitions; to discard a parameter, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example creates a database named that is owned by . It allows unlimited connections, and is available to all authenticated users.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Move Objects Dialog
[][] Use the dialog to to move database objects from one tablespace to another tablespace.
The dialog organizes the movement of database objects with the tab; the tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the items that will be moved and the tablespace to which they will be moved:
	Use the drop-down listbox to select a pre-existing tablespace to which the object will be moved. (To create a tablespace, use the dialog; access the dialog by right clicking in the tree control and selecting from the context-menu.)

	Use the drop-down listbox to select from the following:
	Select to move all tables, indexes, and materialized views from the current tablespace (currently selected in the tree control) to the new tablespace.

	Select to move tables from the current tablespace to the new tablespace.

	Select to move indexes from the current tablespace to the new tablespace.

	Select to move materialized views from the current tablespace to the new tablespace.

	Use the drop-down listbox to select the role that owns the objects selected in the field. This field is optional.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit the tab to modify the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates moving materialized views owned by Alice from tablespace to .
	Click the button (?) to access online help.

	Click the button to save work.

	Click the button to exit without saving work.

Login/Group Role Dialog
[][] Use the dialog to define a role. A role may be an individual user (with or without login privileges) or a group of users. Note that roles defined at the cluster level are shared by all databases in the cluster.
The dialog organizes the creation and management of roles through the following dialog tabs: , , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields on the tab to identify the role.
	Use the field to provide the name of the role. The name will be displayed in the tree control.

	Provide a note about the role in the field.

Click the tab to continue.
Use the tab to set a password and configure connection rules:
	Provide a password that will be associated with the role in the field.

	Provide an expiration date for the password in the field (the role does not expire). The expiration date is not enforced when a user logs in with a non-password-based authentication method.

	If the role is a login role, specify how many concurrent connections the role can make in the field. The default value () allows unlimited connections.

Click the tab to continue.
Use the tab to grant privileges to the role.
	Move the switch to the position if the role has login privileges. The default value is .

	Move the switch to the position if the role is a superuser within the database. The default value is .

	Move the switch to the position to specify whether a role is permitted to create roles. A role with this privilege can alter and drop roles. The default value is .

	Move the switch to the position to control whether a role can create databases. The default value is .

	The switch is disabled until the role is given superuser privileges. Move the switch to the position to control whether a role can update catalogs. The default value is when the switch is in the position.

	Move the switch to the position if a role does not inherit privileges. The default value is .

	Move the switch to the position to control whether a role can initiate streaming replication or put the system in and out of backup mode. The default value is .

	Specify members of the role in the field. Click inside the field to select role names from a drop down list. Confirm each selection by checking the checkbox to the right of the role name; delete a selection by clicking the to the left of the role name. Membership conveys the privileges granted to the specified role to each of its members.

Click the tab to continue.
Use the fields on the tab to set session defaults for a selected configuration parameter when the role is connected to a specified database. This tab invokes the ALTER ROLE… SET configuration_parameter syntax. Click the icon (+) to assign a value for a parameter.
	Use the drop-down listbox in the field to select a parameter.

	Use the field to specify a value for the parameter.

	Use the drop-down listbox in the field to select a database.

Click the icon (+) to specify each additional parameter; to discard a parameter, click the trash icon to the left of the row and confirm the deletion in the popup.
Click the tab to continue.
Use the tab to define security labels applied to the role. Click the icon (+) to add each security label selection.
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm the deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example creates a login role named with privileges; the role can make unlimited connections to the server at any given time.
	Click the Info button () to access online SQL help.

	Click the Help button () to access the documentation for the dialog.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Managing Database Objects
[][] pgAdmin 4 provides simple but powerful dialogs that you can use to design and create database objects. Each dialog contains a series of tabs that you use to describe the object that will be created by the dialog; the SQL tab displays the SQL command that the server will execute when creating the object.
To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree control, and select the option for that object. For example, to create a new cast, right-click on the node, and select
Contents:
Cast Dialog
[][] Use the dialog to define a cast. A cast specifies how to convert a value from one data type to another.
The dialog organizes the development of a cast through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the cast:
	The field is disabled. The name that will be displayed in the tree control is the type concatenated with the type, and is generated automatically when you make selections on the dialog tab.

	Store notes about the cast in the field.

Click the tab to continue.
Use the fields in the tab to define parameters:
	Use the drop-down listbox next to to select the name of the source data type of the cast.

	Use the drop-down listbox next to to select the name of the target data type of the cast.

	Use the drop-down listbox next to to select the function used to perform the cast. The function’s result data type must match the target type of the cast.

	Move the switch to the position if the cast is implicit. By default, a cast can be invoked only by an explicit cast request. If the cast is marked then it can be invoked implicitly in any context, whether by assignment or internally in an expression.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The cast uses a function named to convert a biginteger data type to an integer.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Collation Dialog
[][] Use the dialog to define a collation. A collation is an SQL schema object that maps a SQL name to operating system locales. To create a collation, you must have a CREATE privilege on the destination schema.
The dialog organizes the development of a collation through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the collation:
	Use the field to provide a name for the collation. The collation name must be unique within a schema. The name will be displayed in the tree control.

	Select the name of the owner from the drop-down listbox in the field.

	Select the name of the schema in which the collation will reside from the drop-down listbox in the field.

	Store notes about the collation in the field.

Click the tab to continue.
Use the fields in the tab to specify the operating system locale settings:
	Use the drop-down listbox next to to select the name of an existing collation to copy. The new collation will have the same properties as the existing one, but will be an independent object. If you choose to copy an existing collation, you cannot modify the collation properties displayed on this tab.

	Use the field to specify a locale; a locale specifies language and language formatting characteristics. If you specify this, you cannot specify either of the following parameters. To view a list of locales supported by your Linux system use the command .

	Use the field to specify a locale with specified string sort order. The locale must be applicable to the current database encoding. (See CREATE DATABASE for details.)

	Use the field to specify a locale with specified character classification. The locale must be applicable to the current database encoding. (See CREATE DATABASE for details.)

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a collation named that uses the rules specified for the locale, .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation. For more information about setting a locale, see Chapter 22.1 Locale Support of the PostgreSQL core documentation:

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Domain Dialog
[][] Use the dialog to define a domain. A domain is a data type definition that may constrain permissible values. Domains are useful when you are creating multiple tables that contain comparable columns; you can create a domain that defines constraints that are common to the columns and re-use the domain definition when creating the columns, rather than individually defining each set of constraints.
The dialog organizes the development of a domain through the following tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields on the tab to identify a domain:
	Use the field to add a descriptive name for the domain. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select a role that will own the domain.

	Select the name of the schema in which the domain will reside from the drop-down listbox in the field.

	Store notes about the domain in the field.

Click the tab to continue.
Use the fields in the tab to describe the domain:
	Use the drop-down listbox next to to specify a data type.

	Use the context-sensitive field to specify a numeric length for a numeric type.

	Use the context-sensitive field to specify the total count of significant digits for a numeric type.

	Specify a default value for the domain data type in the field. The data type of the default expression must match the data type of the domain. If no default value is specified, then the default value is the null value.

	Move the switch to specify the values of this domain are prevented from being null.

	Use the drop-down listbox next to to apply a collation cast. If no collation is specified, the underlying data type’s default collation is used. The underlying type must be collatable if COLLATE is specified.

Click the tab to continue.
Use the fields in the tab to specify rules for the domain. Click the icon (+) to set constraints:
	Use the field to specify a name for the constraint.

	Use the field to provide an expression for the constraint.

	Use the checkbox to determine whether the constraint will be validated. The default checkbox is checked and sets a validation requirement.

A CHECK clause specifies an integrity test which values of the domain must satisfy. Each constraint must be an expression that produces a Boolean result. Use the key word VALUE to refer to the value being tested. Expressions evaluating to TRUE or UNKNOWN succeed. If the expression produces a FALSE result, an error is reported and the value is not allowed to be converted to the domain type. A CHECK expression cannot contain subqueries nor refer to variables other than VALUE. If a domain has multiple CHECK constraints, they will be tested in alphabetical order by name.
Click the icon (+) to set additional constraints; to discard a constraint, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the panel to assign security labels. Click the icon (+) to add a label:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to specify each additional label; to discard a label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by selections made in the dialog:
The example shown demonstrates creating a domain named that confirms that the value entered is greater than or equal to .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Domain Constraints Dialog
[][] Use the dialog to create or modify a domain constraint. A domain constraint confirms that the values provided for a domain meet a defined criteria. The dialog implements options of the ALTER DOMAIN command.
The dialog organizes the development of a domain constraint through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the domain constraint:
	Use the field to add a descriptive name for the constraint. The name will be displayed in the tree control.

	Store notes about the constraint in the field.

Click the tab to continue.
Use the fields in the tab to define the domain constraint:
	Use the field to provide a CHECK expression. A CHECK expression specifies a constraint that the domain must satisfy. A constraint must produce a Boolean result; include the key word VALUE to refer to the value being tested. Only those expressions that evaluate to TRUE or UNKNOWN will succeed. A CHECK expression cannot contain subqueries or refer to variables other than VALUE. If a domain has multiple CHECK constraints, they will be tested in alphabetical order.

	Move the switch to the position to mark the constraint NOT VALID. If the constraint is marked NOT VALID, the constraint will not be applied to existing column data. The default value is .

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a domain constraint on the domain named . It constrains a value to equal .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Event Trigger Dialog
[][] Use the dialog to define an event trigger. Unlike regular triggers, which are attached to a single table and capture only DML events, event triggers are global to a particular database and are capable of capturing DDL events. Like regular triggers, event triggers can be written in any procedural language that includes event trigger support, or in C, but not in SQL.
The dialog organizes the development of a event trigger through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the event trigger:
	Use the field to add a descriptive name for the event trigger. The name will be displayed in the tree control.

	Use the drop-down listbox next to to specify the owner of the event trigger.

	Store notes about the event trigger in the field.

Click the tab to continue.
Use the fields in the tab to define the event trigger:
	Select a radio button in the field to specify a status for the trigger: , .

	Use the drop-down listbox next to to specify an existing function. A trigger function takes an empty argument list, and returns a value of type event_trigger.

	Select a radio button in the field to specify when the event trigger will fire: , , or .

	Use the field to write a condition for the event trigger that must be satisfied before the event trigger can execute.

Click the tab to continue.
Use the tab to define security labels applied to the trigger. Click the icon (+) to add each security label.
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a generate a SQL command. Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The command creates an event trigger named that invokes the procedure named .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Extension Dialog
[][] Use the dialog to install a new extension into the current database. An extension is a collection of SQL objects that add targeted functionality to your Postgres installation. The dialog adds the functionality of an extension to the current database only; you must register the extension in each database that use the extension. Before you load an extension into a database, you should confirm that any pre-requisite files are installed.
The dialog allows you to implement options of the CREATE EXTENSION command through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify an extension:
	Use the drop-down listbox in the field to select the extension. Each extension must have a unique name.

	Store notes about the extension in the field.

Click the tab to continue.
Use the tab to select the and :
	Use the drop-down listbox next to to select the name of the schema in which to install the extension’s objects.

	Use the drop-down listbox next to to select the version of the extension to install.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The command creates the extension in the schema. It is version of .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Foreign Data Wrapper Dialog
[][] Use the dialog to create or modify a foreign data wrapper. A foreign data wrapper is an adapter between a Postgres database and data stored on another data source.
You must be a superuser to create a foreign data wrapper.
The dialog organizes the development of a foreign data wrapper through the following dialog tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the foreign data wrapper:
	Use the field to add a descriptive name for the foreign data wrapper. A foreign data wrapper name must be unique within the database. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the name of the role that will own the foreign data wrapper.

	Store notes about the foreign data wrapper in the field.

Click the tab to continue.
Use the fields in the tab to set parameters:
	Select the name of the handler function from the drop-down listbox in the field. This is the name of an existing function that will be called to retrieve the execution functions for foreign tables.

	Select the name of the validator function from the drop-down listbox in the field. This is the name of an existing function that will be called to check the generic options given to the foreign data wrapper, as well as options for foreign servers, user mappings and foreign tables using the foreign data wrapper.

Click the tab to continue.
Use the fields in the tab to specify options:
	Click the the icon (+) button to add an option/value pair for the foreign data wrapper. Supported option/value pairs will be specific to the selected foreign data wrapper.

	Specify the option name in the field and provide a corresponding value in the field.

Click the icon (+) to specify each additional pair; to discard an option, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to assign security privileges. Click the icon (+) to assign a set of privileges.
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privileges to the specified user.

	Select the name of the role granting the privileges from the drop-down listbox in the field. The default grantor is the owner of the foreign data wrapper.

Click add to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example creates a foreign data wrapper named that uses pre-existing validator and handler functions, and . Selections on the tab set equal to . The foreign data wrapper is owned by .
	Click the button (?) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Foreign Server Dialog
[][] Use the dialog to create a foreign server. A foreign server typically encapsulates connection information that a foreign-data wrapper uses to access an external data resource. Each foreign data wrapper may connect to a different foreign server; in the tree control, expand the node of the applicable foreign data wrapper to launch the dialog.
The dialog organizes the development of a foreign server through the following dialog tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the foreign server:
	Use the field to add a descriptive name for the foreign server. The name will be displayed in the tree control. It must be unique within the database.

	Use the drop-down listbox next to to select a role.

	Store notes about the foreign server in the field.

Click the tab to continue.
Use the fields in the tab to set parameters:
	Use the field to specify a server type.

	Use the field to specify a server version.

Click the tab to continue.
Use the fields in the tab to specify options. Click the button to create an option clause for the foreign server.
	Specify the option name in the field.

	Provide a corresponding value in the field.

Click to create each additional clause; to discard an option, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to assign security privileges to the foreign server. Click before you assign a set of privileges.
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privileges to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the foreign server. This is a required field.

Click to assign a new set of privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the dialog.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a foreign server for the foreign data wrapper . It has the name ; its type is . Options for the foreign server include a host and a port.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Foreign Table Dialog
[][] Use the dialog to define a foreign table in the current database. Foreign tables define the structure of an external data source that resides on a foreign server.
The dialog organizes the development of a foreign table through the following dialog tabs: , , , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the foreign table:
	Use the field to add a descriptive name for the foreign table. The name of the foreign table must be distinct from the name of any other foreign table, table, sequence, index, view, existing data type, or materialized view in the same schema. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the name of the role that will own the foreign table.

	Select the name of the schema in which the foreign table will reside from the drop-down listbox in the field.

	Store notes about the foreign table in the field.

Click the tab to continue.
Use the fields in the tab to define the external data source:
	Use the drop-down listbox next to to select a foreign server. This list is populated with servers defined through the dialog.

	Use the drop-down listbox next to to specify a parent table. The foreign table will inherit all of its columns. This field is optional.

Click the tab to continue.
Use the fields in the tab to to add columns and their attributes to the table. Click the icon (+) to define a column:
	Use the field to add a descriptive name for the column.

	Use the drop-down listbox in the field to select a data type for the column. This can include array specifiers. For more information on which data types are supported by PostgreSQL, refer to Chapter 8 of the core documentation.

Click the icon (+) to specify each additional column; to discard a column, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the fields in the tab to apply a table constraint to the foreign table. Click the icon (+) to define a constraint:
	Use the field to add a descriptive name for the constraint. If the constraint is violated, the constraint name is present in error messages, so constraint names like can be used to communicate helpful information.

	Use the field to write a check expression producing a Boolean result. Each row in the foreign table is expected to satisfy the check expression.

	Check the checkbox to specify that the constraint will not propagate to child tables.

	Uncheck the checkbox to disable validation. The database will not assume that the constraint holds for all rows in the table.

Click the icon (+) to specify each additional constraint; to discard a constraint, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the fields in the tab to specify options to be associated with the new foreign table or one of its columns; the accepted option names and values are specific to the foreign data wrapper associated with the foreign server. Click the icon (+) to add an option/value pair.
	Specify the option name in the field. Duplicate option names are not allowed.

	Provide a corresponding value in the field.

Click the icon (+) to specify each additional option/value pair; to discard an option, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges to a role. Click the icon (+) to set privileges for database objects:
	Select the name of the role to which privileges will be assigned from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role that owns the foreign table from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the function. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a foreign table with multiple columns and two options.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

FTS Configuration dialog
[][] Use the dialog to configure a full text search. A text search configuration specifies a text search parser that can divide a string into tokens, along with dictionaries that can identify searchable tokens.
The dialog organizes the development of a FTS configuration through the following dialog tabs: “, , and . The tab displays the SQL code generated by dialog selections.
Click the tab to begin.
Use the fields in the tab to identify a FTS configuration:
	Use the field to add a descriptive name for the FTS configuration. The name will be displayed in the tree control.

	Use the drop-down listbox next to to specify the role that will own the configuration.

	Select the name of the schema in which the FTS configuration will reside from the drop-down listbox in the field.

	Store notes about the FTS configuration in the field.

Click the tab to continue.
Use the fields in the tab to define parameters:
	Select the name of the text search parser from the drop-down listbox in the field.

	Select a language from the drop-down listbox in the field.

Click the tab to continue.
Use the fields in the tab to add a token:
	Use the field to specify the name of a token.

	Click the icon (+) to create a token.

	Use the field to specify a dictionary.

Repeat these steps to add additional tokens; to discard a token, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a FTS configuration named . It uses the parser.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

FTS Dictionary Dialog
[][] Use the dialog to create a full text search dictionary. You can use a predefined templates or create a new dictionary with custom parameters.
The dialog organizes the development of a FTS dictionary through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the dictionary:
	Use the field to add a descriptive name for the dictionary. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the role that will own the FTS Dictionary.

	Select the name of the schema in which the dictionary will reside from the drop-down listbox in the field.

	Store notes about the dictionary in the field.

Click the tab to continue.
Use the field in the tab to choose a template from the drop-down listbox:
to select the Ispell template. The Ispell dictionary template supports morphological dictionaries, which can normalize many different linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can match all declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks’, and bank’s. Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader dictionary; for example, a Snowball dictionary, which recognizes everything. to select the simple template. The simple dictionary template operates by converting the input token to lower case and checking it against a file of stop words. If it is found in the file then an empty array is returned, causing the token to be discarded. If not, the lower-cased form of the word is returned as the normalized lexeme. Alternatively, the dictionary can be configured to report non-stop-words as unrecognized, allowing them to be passed on to the next dictionary in the list. to select the Snowball template. The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular Porter’s stemming algorithm for the English language. Snowball now provides stemming algorithms for many languages (see the Snowball site for more information). Each algorithm understands how to reduce common variant forms of words to a base, or stem, spelling within its language. A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it should be placed at the end of the dictionary list. It is useless to have it before any other dictionary because a token will never pass through it to the next dictionary. to select the synonym template. This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases are not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used to overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing the word Paris to pari. to select the thesaurus template. A thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally, preserves the original terms for indexing as well. PostgreSQL’s current implementation of the thesaurus dictionary is an extension of the synonym dictionary with added phrase support.
Click the tab to continue.
Use the fields in the tab to provide template-specific options. Click the icon (+) to add an option clause:
	Specify the name of an option in the field

	Provide a value for the option in the field.

Click the icon (+) to specify each additional option/value pair; to discard an option, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a generate a SQL command. Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a custom dictionary named which is based on the simple template and is configured to use standard English.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

FTS Parser Dialog
[][] Use the dialog to create a new text search parser. A text search parser defines a method for splitting a text string into tokens and assigning types (categories) to the tokens.
The dialog organizes the development of a text search parser through the following dialog tabs: , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify a text search parser:
	Use the field to add a descriptive name for the parser. The name will be displayed in the tree control.

	Select the name of the schema in which the parser will reside from the drop-down listbox in the field.

	Store notes about the domain in the field.

Click the tab to continue.
Use the fields in the tab to define parameters:
	Use the drop-down listbox next to to select the name of the function that will initialize the parser.

	Use the drop-down listbox next to to select the name of the function that will return the next token.

	Use the drop-down listbox next to to select the name of the function that is called when the parser is finished.

	Use the drop-down listbox next to to select the name of the lextypes function for the parser. The lextypes function returns an array that contains the id, alias, and a description of the tokens used by the parser.

	Use the drop-down listbox next to to select the name of the headline function for the parser. The headline function returns an excerpt from the document in which the terms of the query are highlighted.

Click the tab to continue.
Your entries in the dialog generate a generate a SQL command. Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

FTS Template Dialog
[][] Use the dialog to create a new text search template. A text search template defines the functions that implement text search dictionaries.
The dialog organizes the development of a text search Template through the following dialog tabs: , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify a template:
	Use the field to add a descriptive name for the template. The name will be displayed in the tree control.

	Select the name of the schema in which the template will reside from the drop-down listbox in the field.

	Store notes about the template in the field.

Click the tab to continue.
Use the fields in the tab to define function parameters:
	Use the drop-down listbox next to to select the name of the init function for the template. The init function is optional.

	Use the drop-down listbox next to to select the name of the lexize function for the template. The lexize function is required.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a fts template named that uses the ispell dictionary.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Function Dialog
[][] Use the dialog to define a function. If you drop and then recreate a function, the new function is not the same entity as the old; you must drop existing rules, views, triggers, etc. that refer to the old function.
The dialog organizes the development of a function through the following dialog tabs: , , , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify a function:
	Use the field to add a descriptive name for the function. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the name of the role that will own the function.

	Use the drop-down listbox next to to select the schema in which the function will be created.

	Store notes about the function in the field.

Click the tab to continue.
Use the fields in the tab to define the function:
	Use the drop-down listbox next to to select the data type returned by the function, if any.

	Use the drop-down listbox next to to select the implementation language. The default is .

	Use the field to write the code that will execute when the function is called.

Click the tab to continue.
Use the fields in the tab to describe or modify the action of the function:
	Use the drop-down listbox next to to select one of the following. is the default value.
	indicates that the function value can change even within a single table scan, so no optimizations can be made.

	indicates that the function cannot modify the database, and that within a single table scan it will consistently return the same result for the same argument values.

	indicates that the function cannot modify the database and always returns the same result when given the same argument values.

	Move the switch to indicate if the function returns a set that includes multiple rows. The default is .

	Move the switch to indicate if the function always returns NULL whenever any of its arguments are NULL. If , the function is not executed when there are NULL arguments; instead a NULL result is assumed automatically. The default is .

	Move the switch to specify that the function is to be executed with the privileges of the user that created it. The default is .

	Move the switch to indicate that the function is a window function rather than a plain function. The default is . This is currently only useful for functions written in C. The WINDOW attribute cannot be changed when replacing an existing function definition. For more information about the CREATE FUNCTION command, see the PostgreSQL core documentation available at:

	Use the field to specify a positive number representing the estimated execution cost for the function, in units of cpu_operator_cost. If the function returns a set, this is the cost per returned row.

	Use the field to specify a positive number giving the estimated number of rows that the query planner should expect the function to return. This is only allowed when the function is declared to return a set. The default assumption is 1000 rows.

	Move the switch to indicate whether the function has side effects. The default is . This option can only be set by the superuser.

Click the tab to continue.
Use the fields in the tab to define an argument. Click the icon (+) to set parameters and values for the argument:
	Use the drop-down listbox in the field to select a data type.

	Use the drop-down listbox in the field to select a mode. Select for an input parameter; select for an output parameter; select for both an input and an output parameter; or, select to specify a VARIADIC parameter.

	Provide a name for the argument in the field.

	Specify a default value for the argument in the field.

Click the icon (+) to define another argument; to discard an argument, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the fields in the tab to specify settings that will be applied when the function is invoked. Click the icon (+) to add a / field in the table.
	Use the drop-down listbox in the column in the panel to select a parameter.

	Use the field to specify the value that will be associated with the selected variable. This field is context-sensitive.

Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign usage privileges for the function to a role.
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the function. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.

Language Dialog
[][] Use the CREATE LANGUAGE dialog to register a new procedural language.
The dialog organizes the registration of a procedural language through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify a language:
	Use the drop-down listbox next to to select a language script.

	Use the drop-down listbox next to to select a role.

	Store notes about the language in the field.

Click the tab to continue.
Use the fields in the tab to define parameters:
	Move the switch to the position to specify only users with PostgreSQL superuser privilege can use this language. The default is .

	When enabled, use the drop-down listbox next to to select the function that will be called to execute the language’s functions.

	When enabled, use the drop-down listbox next to to select the function that will be called to execute an anonymous code block (DO command) in this language.

	When enabled, use the drop-down listbox next to to select the function that will be called when a new function in the language is created, to validate the new function.

Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges to a role. Click the icon (+) to set privileges for database objects:
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the function. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
“The example shown demonstrates creating the procedural language named .”
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Materialized View Dialog
[][] Use the dialog to define a materialized view. A materialized view is a stored or cached view that contains the result set of a query. Use the REFRESH MATERIALIZED VIEW command to update the content of a materialized view.
The dialog organizes the development of a materialized_view through the following dialog tabs: , , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the materialized view:
	Use the field to add a descriptive name for the materialized view. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the role that will own the materialized view.

	Select the name of the schema in which the materialized view will reside from the drop-down listbox in the field.

	Store notes about the materialized view in the field.

Click the tab to continue.
Use the text editor field in the tab to provide the query that will populate the materialized view.
Click the tab to continue.
Use the fields in the tab to maintain the materialized view:
	Move the switch to the position to specify the materialized view should be populated at creation time. If not, the materialized view cannot be queried until you invoke REFRESH MATERIALIZED VIEW.

	Use the drop-down listbox next to to select a location for the materialized view.

	Use the field to specify a fill factor for the materialized view. The fill factor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.

Click the tab to continue.
Use the tabs nested inside the tab to specify VACUUM and ANALYZE thresholds; use the tab and the tab to customize values for the table and the associated toast table. To change the default values:
	Move the switch to the position to perform custom maintenance on the materialized view.

	Move the switch to the position to select values in the . Provide values for each row in the column.

Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges to a role. Click the icon (+) to set privileges for the materialized view:
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the materialized view. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown creates a query named that stores the result of the displayed query in the tablespace.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Procedure Dialog
[][] Use the dialog to create a procedure; procedures are supported by PostgreSQL v11+. The dialog allows you to implement options of the CREATE PROCEDURE command.
The dialog organizes the development of a procedure through the following dialog tabs: , , , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify a procedure:
	Use the field to add a descriptive name for the procedure. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select a role.

	Select the name of the schema in which the procedure will reside from the drop-down listbox in the field.

	Store notes about the procedure in the field.

Click the tab to continue.
Use the fields in the tab to define the procedure:
	Use the drop-down listbox next to to select a language. The default is .

	Use the field to specify the code that will execute when the procedure is called.

Click the tab to continue.
Use the fields in the tab to describe or modify the behavior of the procedure:
	Use the drop-down listbox under to select one of the following. is the default value.
	indicates that the value can change even within a single table scan, so no optimizations can be made.

	indicates that the procedure cannot modify the database, and that within a single table scan it will consistently return the same result for the same argument values, but that its result could change across SQL statements.

	indicates that the procedure cannot modify the database and always returns the same result when given the same argument values.

	Move the switch to indicate if the procedure always returns NULL whenever any of its arguments are NULL. If , the procedure is not executed when there are NULL arguments; instead a NULL result is assumed automatically. The default is .

	Move the switch to specify that the procedure is to be executed with the privileges of the user that created it. The default is .

	Use the field to specify a positive number representing the estimated execution cost for the procedure, in units of cpu_operator_cost. If the procedure returns a set, this is the cost per returned row.

	Move the switch to indicate whether the procedure has side effects — it reveals no information about its arguments other than by its return value. The default is .

Click the tab to continue.
Use the fields in the tab to define an argument. Click to set parameters and values for the argument:
	Use the drop-down listbox next to to select a data type.

	Use the drop-down listbox next to to select a mode. Select for an input parameter; select for an output parameter; select for both an input and an output parameter; or, select to specify a VARIADIC parameter.

	Write a name for the argument in the field.

	Specify a default value for the argument in the field.

Click to define another argument; to discard an argument, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the fields in the tab to specify settings that will be applied when the procedure is invoked:
	Use the drop-down listbox next to in the panel to select a parameter.

	Click the button to add the variable to field in the table.

	Use the field to specify the value that will be associated with the selected variable. This field is context-sensitive.

Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign execute privileges for the procedure to a role:
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the procedure. Click to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by selections made in the dialog:
The example demonstrates creating a procedure that returns a list of employees from a table named . The procedure is a SECURITY DEFINER, and will execute with the privileges of the role that defined the procedure.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Schema Dialog
[][] Use the dialog to define a schema. A schema is the organizational workhorse of a database, similar to directories or namespaces. To create a schema, you must be a database superuser or have the CREATE privilege.
The dialog organizes the development of schema through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields on the tab to identify the schema.
	Use the field to add a descriptive name for the schema. The name will be displayed in the tree control.

	Select the owner of the schema from the drop-down listbox in the field.

	Store notes about the schema in the field.

Click the tab to continue.
Use the tab to assign privileges and security labels for the schema.
Click the icon (+) to assign a set of privileges in the panel:
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privileges to the specified user.

	Select the name of the role that is granting the privilege from the drop-down listbox in the field. The default grantor is the owner of the schema.

Click the icon (+) to assign additional sets of privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Click the icon (+) to assign a security label in the panel:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to grant privileges for tables, sequences, functions and types. Use the tabs nested inside the tab to specify the database object and click the icon (+) to assign a set of privileges:
	Select the name of a role that will be granted privileges in the schema from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privileges to the specified user.

	Select the name of the role that is granting the privilege from the drop-down listbox in the field. The default grantor is the owner of the schema.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by selections made in the dialog:
The example creates a schema named hr; the command grants privileges to and assigns the ability to grant privileges to .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Sequence Dialog
[][] Use the dialog to create a sequence. A sequence generates unique values in a sequential order (not necessarily contiguous).
The dialog organizes the development of a sequence through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify a sequence:
	Use the field to add a descriptive name for the sequence. The name will be displayed in the tree control. The sequence name must be distinct from the name of any other sequence, table, index, view, or foreign table in the same schema.

	Use the drop-down listbox next to to select the name of the role that will own the sequence.

	Use the drop-down listbox next to to select the schema in which the sequence will reside.

	Store notes about the sequence in the field.

Click the tab to continue.
Use the fields in the tab to define the sequence:
	Use the field to specify which value is added to the current sequence value to create a new value.

	Provide a value in the field to specify the beginning value of the sequence. The default starting value is MINVALUE for ascending sequences and MAXVALUE for descending ones.

	Provide a value in the field to specify the minimum value a sequence can generate. If this clause is not supplied or NO MINVALUE is specified, then defaults will be used. The defaults are 1 and -263-1 for ascending and descending sequences, respectively.

	Provide a value in the field to specify the maximum value for the sequence. If this clause is not supplied or NO MAXVALUE is specified, then default values will be used. The defaults are 263-1 and -1 for ascending and descending sequences, respectively.

	Provide a value in the field to specify how many sequence numbers are to be preallocated and stored in memory for faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache), and this is also the default.

	Move the switch to the position to allow the sequence to wrap around when the MAXVALUE or the MINVALUE has been reached by an ascending or descending sequence respectively. If the limit is reached, the next number generated will be the MINVALUE or MAXVALUE, respectively. The default is .

Click the tab to continue.
Use the tab to assign privileges and define security labels for the sequence.
Use the panel to assign privileges. Click the icon (+) to set privileges:
	Select the name of a role that will be granted privileges from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the sequence. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates a sequence named . The sequence will increase in second increments, and stop when it reaches a maximum value equal of .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Trigger function Dialog
[][] Use the dialog to create or manage a trigger_function. A trigger function defines the action that will be invoked when a trigger fires.
The dialog organizes the development of a trigger function through the following dialog tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the trigger function:
	Use the field to add a descriptive name for the trigger function. The name will be displayed in the tree control. Please note that trigger functions will be invoked in alphabetical order.

	Use the drop-down listbox next to to select the role that will own the trigger function.

	Select the name of the schema in which the trigger function will reside from the drop-down listbox in the field.

	Store notes about the trigger function in the field.

Click the tab to continue.
Use the fields in the tab to define the trigger function:
	Use the drop-down listbox next to to specify the pseudotype that is associated with the trigger function:
	Select if you are creating a DML trigger.

	Select if you are creating a DDL trigger.

	Use the drop-down listbox next to to select the implementation language. The default is .

	Use the field to write the code that will execute when the trigger function is called.

Click the tab to continue.
Use the fields in the tab to describe or modify the action of the trigger function:
	Use the drop-down listbox next to to select one of the following:
	indicates that the trigger function value can change even within a single table scan.

	indicates that the trigger function cannot modify the database, and that within a single table scan it will consistently return the same result for the same argument values.

	indicates that the trigger function cannot modify the database and always returns the same result when given the same argument values.

	Move the switch to indicate if the trigger function returns a set that includes multiple rows. The default is .

	Move the switch to indicate if the trigger function always returns NULL whenever any of its arguments are NULL. If , the function is not executed when there are NULL arguments; instead a NULL result is assumed automatically. The default is .

	Move the switch to specify that the trigger function is to be executed with the privileges of the user that created it. The default is .

	Move the switch to indicate that the trigger function is a window function rather than a plain function. The default is . This is currently only useful for trigger functions written in C.

	Use the field to specify a positive number representing the estimated execution cost for the trigger function, in units of cpu_operator_cost. If the function returns a set, this is the cost per returned row.

	Use the field to specify a positive number giving the estimated number of rows that the query planner should expect the trigger function to return. This is only allowed when the function is declared to return a set. The default assumption is 1000 rows.

	Move the switch to indicate whether the trigger function has side effects. The default is . This option can only be set by the superuser.

Click the tab to continue.
Use the fields in the tab to specify settings that will be applied when the trigger function is invoked. Click the icon (+) to add a / pair to the table below.
	Use the drop-down listbox in the field to select a parameter.

	Use the field to specify the value that will be associated with the selected parameter. This field is context-sensitive.

Click the icon (+) to set additional parameters; to discard a parameter, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign usage privileges for the trigger function to a role. Click the icon (+) to to add a role to the table.
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of a role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the trigger function. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit other tabs to modify the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a trigger function named that checks for a new employee’s name, and checks that the employee’s salary is a positive value.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Type Dialog
[][] Use the dialog to register a custom data type.
The dialog organizes the development of a data type through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the custom data type:
	Use the field to add a descriptive name for the type. The name will be displayed in the tree control. The type name must be distinct from the name of any existing type, domain, or table in the same schema.

	Use the drop-down listbox next to to select the role that will own the type.

	Select the name of the schema in which the type will reside from the drop-down listbox in the field.

	Store notes about the type in the field.

Click the tab to continue.
Select a data type from the drop-down listbox next to on the tab; the panel below changes to display the options appropriate for the selected data type. Use the fields in the panel to define the data type.
There are five data types:
	
	
	
	(or)

	

If you select in the field, the tab displays the panel:
Click the icon (+) to provide attributes of the type. Fields on the panel are context sensitive and may be disabled.
	Use the field to add an attribute name.

	Use the drop-down listbox in the field to select a datatype.

	Use the field to specify the maximum length of a non-numeric type, or the total count of significant digits in a numeric type.

	Use the field to specify the number of digits to the right of the decimal point.

	Use the drop-down listbox in the field to select a collation (if applicable).

Click the icon (+) to define an additional member; click the trash icon to the left of the row to discard a row.
If you select the in the field, the tab displays the panel:
Click the icon (+) to provide a label for the type.
	Use the field to add a label, which must be less than 64 bytes long.

Click the icon (+) after each selection to create additional labels; to discard a label, click the trash icon to the left of the row.
If you select , the tab displays the panel:
On the tab:
	Use the drop-down listbox next to the field to add an input_function. The input_function converts the type’s external textual representation to the internal representation used by the operators and functions defined for the type.

	Use the drop-down listbox next to the field to add an output_function. The output_function converts the type’s internal representation used by the operators and functions defined for the type to the type’s external textual representation.

On the tab:
	Use the drop-down listbox next to the optional field to select a receive_function. The optional receive_function converts the type’s external binary representation to the internal representation. If this function is not supplied, the type cannot participate in binary input.

	Use the drop-down listbox next to the optional field to select a send_function. The optional send_function converts from the internal representation to the external binary representation. If this function is not supplied, the type cannot participate in binary output.

	Use the drop-down listbox next to the optional field tab to select a type_modifier_input_function.

	Use the drop-down listbox next to the optional field tab to select a type_modifier_output_function. It is allowed to omit the type_modifier_output_function, in which case the default display format is the stored typmod integer value enclosed in parentheses.

	Use the optional to specify a value for internal representation.

	Move the switch to specify the internal representation is of variable length (VARIABLE). The default is a fixed length positive integer.

	Specify a default value in the optional field in cases where a column of the data type defaults to something other than the null value. Specify the default with the DEFAULT key word. (A default can be overridden by an explicit DEFAULT clause attached to a particular column.)

	Use the drop-down listbox next to the optional field to select a function for performing type-specific statistics collection for columns of the data type.

	Use the drop-down listbox next to the optional field to help control which implicit cast will be applied in ambiguous situations.

	Move the switch to to specify the selected category type is preferred. The default is .

On the tab:
	Use the drop-down listbox next to the optional field to specify a data type.

	Use the optional field to indicate the delimiter to be used between values in the external representation of arrays for this data type. The default delimiter is the comma (,). Note that the delimiter is associated with the array element type, not the array type itself.

	Use the drop-down listbox next to to specify the storage alignment required for the data type. The allowed values (char, int2, int4, and double) correspond with alignment on 1, 2, 4, or 8 byte boundaries.

	Use the drop-down listbox next to optional to select a strategy for storing data.

	Move the switch to to override the existing data type value. The default is .

	Move the switch to to specify column definitions and expressions of the type may carry collation information through use of the COLLATE clause. The default is .

If you select in the field, the tab displays the panel. Fields on the panel are context-sensitive and may be disabled.
	Use the drop-down listbox next to to select an associated b-tree operator class (to determine the ordering of values for the range type).

	Use the drop-down listbox next to to use a non-default operator class.

	Use the drop-down listbox next to to use a non-default collation in the range’s ordering if the sub-type is collatable.

	Use the drop-down listbox next to to convert range values to a canonical form.

	Use the drop-down listbox next to to select a user-defined subtype_diff function.

If you select in the field, the tab displays the panel:
A shell type is a placeholder for a type and has no parameters.
Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges for the type; click the icon (+) to grant privileges:
	Select the name of the role that will be granted privileges on the type from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role that is granting privileges from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the type. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of a sql command generated by user selections made in the dialog:
The example shown demonstrates creating a data type named . The data type is an enumerated type with three labels: new, open and closed.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

User Mapping Dialog
[][] Use the dialog to define a new mapping of a user to a foreign server.
The dialog organizes the development of a user mapping through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the drop-down listbox in the field in the tab to identify the connecting role:
	Select to use the name of the current role.

	Select if no other user-specific mapping is applicable.

	Select a pre-defined role name to specify the name of an existing user.

Click the tab to continue.
Use the fields in the tab to specify connection options; the accepted option names and values are specific to the foreign data wrapper associated with the server specified in the user mapping. Click the button to add an option/value pair.
	Specify the option name in the field.

	Provide a corresponding value in the field.

Click to specify each additional option/value pair; to discard an option, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates a user mapping for the . The user is with a password .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

View Dialog
[][] Use the dialog to define a view. The view is not physically materialized; the query is executed each time the view is referenced in a query.
The dialog organizes the development of a View through the following dialog tabs: , , and ”. The tab displays the SQL code generated by dialog selections.
Click the tab to begin.
Use the fields in the tab to identify a view:
	Use the field to add a descriptive name for the view. The name of the view must be distinct from the name of any other view, table, sequence, index or foreign table in the same schema. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the role that will own the view.

	If applicable, select the name of the schema in which the view will reside from the drop-down listbox in the field.

	Store notes about the view in the field.

Click the tab to continue.
Use the fields in the tab to define properties of the view:
	Set the switch to to indicate that the view is to act as a security barrier. For more information about defining and using a security barrier rule, see Section 38.5 of the PostgreSQL documentation.

		Use the drop-down listbox next to to select from , or .
	The option specifies that new rows are only checked against the conditions defined in the view. Any conditions defined on underlying base views are not checked (unless you specify the CHECK OPTION). The option specifies new rows are checked against the conditions of the view and all underlying base views.

	Use the workspace in the field to write a query to create a view.

Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges to a role. Click the icon (+) to set privileges for the view:
	Select the name of the role that will be granted privileges from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of a role with sufficient privileges to grant privileges on the view from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the view. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a view named that includes the content of the column from the table.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Creating or Modifying a Table
[][] pgAdmin 4 provides dialogs that allow you to modify all table properties and attributes.
To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree control, and select the option for that object. For example, to create a new database, right-click on the node, and select
Contents:
Check Dialog
[][] Use the dialog to define or modify a check constraint. A check constraint specifies an expression that produces a Boolean result that new or updated rows must satisfy for an insert or update operation to succeed.
The dialog organizes the development of a check constraint through the and tabs. The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the check constraint:
	Use the field to provide a descriptive name for the check constraint that will be displayed in the tree control. With PostgreSQL 9.5 forward, when a table has multiple check constraints, they will be tested for each row in alphabetical order by name and after NOT NULL constraints.

	Store notes about the check constraint in the field.

Click the tab to continue.
Use the fields in the tab to define the check constraint:
	Provide the expression that a row must satisfy in the field.

	Move the switch to the position to specify this constraint is automatically inherited by a table’s children. The default is .

	Move the switch to the position to skip validation of existing data; the constraint may not hold for all rows in the table. The default is .

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a check constraint named on the column of the table. The constraint confirms that any values added to the column are greater than 0.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Column Dialog
[][] Use the dialog to add a column to an existing table or modify a column definition.
The dialog organizes the development of a column through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the column:
	Use the field to add a descriptive name for the column. The name will be displayed in the tree control. This field is required.

	Store notes about the column in the field.

Click the tab to continue.
Use the fields in the tab to add parameters for the column. (Fields are disabled if inapplicable.)
	Use the drop-down listbox next to to select a data type for the column. For more information on the data types that are supported by PostgreSQL, refer to Chapter 8 of the Postgres core documentation. This field is required.

	Use the and fields to specify the maximum number of significant digits in a numeric value, or the maximum number of characters in a text value.

	Use the drop-down listbox next to to apply a collation setting to the column.

	Use the field to specify a default data value.

	Move the switch to the position to specify the column may not contain null values. The default is .

Click the tab to continue.
Use the tab to to specify the number of distinct values that may be present in the column; this value overrides estimates made by the ANALYZE command. Click the icon (+) to add a / pair:
	Select the name of the variable from the drop-down listbox in the field.
	Select to specify the number of distinct values for the column.

	Select to specify the number of distinct values for the table and its children.

	Specify the number of distinct values in the field. For more information, see the documentation for .

Click the icon (+) to specify each additional / pair; to discard a variable, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Use the tab to assign attributes and define security labels. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a column named in the table named .
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Exclusion constraint Dialog
[][] Use the dialog to define or modify the behavior of an exclusion constraint. An exclusion constraint guarantees that if any two rows are compared on the specified column or expression (using the specified operator), at least one of the operator comparisons will return false or null.
The dialog organizes the development of an exclusion constraint through the following dialog tabs: , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the exclusion constraint:
	Use the field to provide a descriptive name for the exclusion constraint. The name will be displayed in the tree control.

Click the tab to continue.
Use the fields in the tab to define the exclusion constraint:
	Use the drop-down listbox next to to select the tablespace in which the index associated with the exclude constraint will reside.

	Use the drop-down listbox next to to specify the type of index that will be used when implementing the exclusion constraint:
	Select to specify a GiST index.

	Select to specify a space-partitioned GiST index.

	Select to specify a B-tree index.

	Select to specify a hash index.

	Use the field to specify a fill factor for the table and associated index. The fill factor is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify that the timing of the constraint is deferrable, and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

	Use the field to provide a condition that a row must satisfy to be included in the table.

Click the tab to continue.
Use the fields in the tab to to specify the column(s) to which the constraint applies. Use the drop-down listbox next to to select a column and click the icon (+) to provide details of the action on the column:
	The field is populated with the selection made in the drop-down listbox.

	If applicable, use the drop-down listbox in the to specify the operator class that will be used by the index for the column.

	Move the switch to to specify a descending sort order. The default is which specifies an ascending sort order.

	Use the column to specify the placement of NULL values (when sorted). Specify or .

	Use the drop-down list next to to specify a comparison or conditional operator.

Use field to specify columns for clause of the constraint. This option is available in Postgres 11 and later.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating an exclusion constraint named that restricts additions to the dept table to those additions that are not equal to the value of the column. The constraint uses a btree index.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Foreign key Dialog
[][] Use the dialog to specify the behavior of a foreign key constraint. A foreign key constraint maintains referential integrity between two tables. A foreign key constraint cannot be defined between a temporary table and a permanent table.
The dialog organizes the development of a foreign key constraint through the following dialog tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the foreign key constraint:
	Use the field to add a descriptive name for the foreign key. The name will be displayed in the tree control.

	Store notes about the foreign key constraint in the field.

Click the tab to continue.
Use the fields in the tab to define the foreign key constraint:
	Move the switch to the position to specify the timing of the constraint is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

	Move the switch specify the type of matching that is enforced by the constraint:
	Select to indicate that all columns of a multicolumn foreign key must be null if any column is null; if all columns are null, the row is not required to have a match in the referenced table.

	Select to specify that a single foreign key column may be null; if any column is null, the row is not required to have a match in the referenced table.

	Move the switch to the position to instruct the server to validate the existing table content (against a foreign key or check constraint) when you save modifications to this dialog.

	Move the switch to the position to disable the automatic index feature.

	The field next to generates the name of an index if the switch is in the position; or, this field is disabled.

Click the tab to continue.
Use the fields in the tab to specify one or more reference column(s). A Foreign Key constraint requires that one or more columns of a table must only contain values that match values in the referenced column(s) of a row of a referenced table:
	Use the drop-down listbox next to to specify the column in the current table that will be compared to the foreign table.

	Use the drop-down listbox next to to specify the name of the table in which the comparison column(s) resides.

	Use the drop-down listbox next to to specify a column in the foreign table.

Click the icon (+) to add a column to the list; repeat the steps above and click the icon (+) to add additional columns. To discard an entry, click the trash icon to the left of the entry and confirm deletion in the popup.
Click the tab to continue.
Use the drop-down listboxes on the tab to specify behavior related to the foreign key constraint that will be performed when data within the table is updated or deleted:
	Use the drop-down listbox next to to select an action that will be performed when data in the table is updated.

	Use the drop-down listbox next to to select an action that will be performed when data in the table is deleted.

The supported actions are:
[t]|T|T|
NO ACTION & Produce an error indicating that the deletion or update will create a foreign key constraint violation. If the constraint is deferred, this error will be produced at constraint check time if any referencing rows still exist. This is the default.
RESTRICT & Throw an error indicating that the deletion or update would create a foreign key constraint violation. This is the same as NO ACTION except that the check is not deferrable.
CASCADE & Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new values of the referenced columns, respectively.
SET NULL & Set the referencing column(s) to null.
SET DEFAULT & Set the referencing column(s) to their default values. There must be a row in the referenced table that matches the default values (if they are not null), or the operation will fail.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a foreign key constraint named that matches values in the table column with those of the table column.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Index Dialog
[][] Use the dialog to create an index on a specified table or materialized view.
The dialog organizes the development of a index through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the index:
	Use the field to add a descriptive name for the index. The name will be displayed in the tree control.

	Use the drop-down listbox next to to select the tablespace in which the index will reside.

	Store notes about the index in the field.

Click the tab to continue.
Use the fields in the tab to define the index:
	Use the drop-down listbox next to to select an index type:
	Select to create a B-tree index. A B-tree index may improve performance when managing equality and range queries on data that can be sorted into some ordering (the default).

	Select to create a hash index. A hash index may improve performance when managing simple equality comparisons.

	Select to create a GiST index. A GiST index may improve performance when managing values with more than one key.

	Select to create a GIN index. A GIN index may improve performance when managing two-dimensional geometric data types and nearest-neighbor searches.

	Select to create a space-partitioned GiST index. A SP-GiST index may improve performance when managing non-balanced data structures.

	Select to create a BRIN index. A BRIN index may improve performance when managing minimum and maximum values and ranges.

	Use the field to specify a fill factor for the index. The fill factor specifies how full the selected method will try to fill each index page.

	Move the switch to the position to check for duplicate values in the table when the index is created and when data is added. The default is .

	Move the switch to the position to instruct the server to cluster the table.

	Move the switch to the position to build the index without taking any locks that prevent concurrent inserts, updates, or deletes on the table.

	Use the field to provide a constraint expression; a constraint expression limits the entries in the index to those rows that satisfy the constraint.

Use the context-sensitive fields in the panel to specify which column(s) the index queries. Click the icon (+) to add a column:
	Use the drop-down listbox in field to select the name of the column from the table.

	If enabled, use the drop-down listbox to select an available to specify the type of action performed on the column.

	If enabled, move the switch to specify the sort order:
	Select to specify an ascending sort order (the default);

	Select to specify a descending sort order.

	If enabled, move the switch to specify the sort order of nulls:
	Select to specify nulls sort before non-nulls;

	Select to specify nulls sort after non-nulls (the default).

	Use the drop-down listbox in the field to select a collation to use for the index.

Use field to specify columns for clause of the index. This option is available in Postgres 11 and later.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating an index named that indexes the values in the column of the table.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Primary key Dialog
[][] Use the dialog to create or modify a primary key constraint. A primary key constraint indicates that a column, or group of columns, uniquely identifies rows in a table. This requires that the values in the selected column(s) be both unique and not null.
The dialog organizes the development of a primary key constraint through the and tabs. The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the primary key:
	Use the field to add a descriptive name for the primary key constraint. The name will be displayed in the tree control.

Click the tab to continue.
Use the fields in the tab to define the primary key constraint:
	Click inside the field and select one or more column names from the drop-down listbox. To delete a selection, click the to the left of the column name. The primary key constraint should be different from any unique constraint defined for the same table; the selected column(s) for the constraints must be distinct.

	Use field to specify columns for clause of the index. This option is available in Postgres 11 and later.

	Select the name of the tablespace in which the primary key constraint will reside from the drop-down listbox in the field.

	Select the name of an index from the drop-down listbox in the field. This field is optional. Adding a primary key will automatically create a unique B-tree index on the column or group of columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

	Use the field to specify a fill factor for the table and index. The fill factor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify the timing of the constraint is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a primary key constraint named on the column of the table.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Rule Dialog
[][] Use the dialog to define or modify a rule for a specified table or view. A PostgreSQL rule allows you to define an additional action that will be performed when a SELECT, INSERT, UPDATE, or DELETE is performed against a table.
The dialog organizes the development of a rule through the , and tabs. The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the rule:
	Use the field to add a descriptive name for the rule. The name will be displayed in the tree control. Multiple rules on the same table are applied in alphabetical name order.

	Store notes about the rule in the field.

Click the tab to continue.
Use the fields in the tab to write parameters:
	Click inside the field to select the type of event that will invoke the rule; event may be , , , or .

	Move the switch to indicate that the commands should be executed instead of the original command; if Do Instead specifies , the rule will be invoked in addition to the original command.

	Specify a SQL conditional expression that returns a boolean value in the editor.

	Provide a command in the editor that defines the action performed by the rule.

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example sends a notification when an UPDATE executes against a table.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Table Dialog
[][] Use the dialog to create or modify a table.
The dialog organizes the development of a table through the following dialog tabs: , , , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the table:
	Use the field to add a descriptive name for the table. A table cannot have the same name as any existing table, sequence, index, view, foreign table, or data type in the same schema. The name specified will be displayed in the tree control. This field is required.

	Select the owner of the table from the drop-down listbox in the field. By default, the owner of the table is the role that creates the table.

	Select the name of the schema in which the table will reside from the drop-down listbox in the field.

	Use the drop-down listbox in the field to specify the tablespace in which the table will be stored.

	Store notes about the table in the field.

Click the tab to continue.
Use the drop-down listbox next to to specify any parent table(s); the table will inherit columns from the selected parent table(s). Click inside the field to select a table name from a drop-down list. Repeat to add any other parent tables. Delete a selected table by clicking the to the left of the parent name. Note that inherited column names and datatypes are not editable in the current dialog; they must be modified at the parent level.
Click the icon (+) to specify the names of columns and their datatypes in the table:
	Use the field to add a descriptive name for the column.

	Use the drop-down listbox in the field to select a data type for the column. This can include array specifiers. For more information on the data types supported by PostgreSQL, refer to Chapter 8 of the core documentation.

	If enabled, use the and fields to specify the maximum number of significant digits in a numeric value, or the maximum number of characters in a text value.

	Move the switch to the position to require a value in the column field.

	Move the switch to the position to specify the column is the primary key constraint.

Click the icon (+) to add additional columns; to discard a column, click the trash icon to the left of the row and confirm deletion in the popup.

Click the tab to continue.
Use the fields in the tab to provide a table or column constraint. Optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an or operation to succeed. Select the appropriate constraint type by selecting one of the following tabs on the panel:
[t]|T|T| Tab Name &Constraint
 & Provides a unique identifier for each row in the table.
 & Maintains referential integrity between two tables.
 & Requires data satisfies an expression or condition before insertion or modification.
 & Ensures that the data contained in a column, or a group of columns, is unique among all the rows in the table.
 & Guarantees that if any two rows are compared on the specified column or expression (using the specified operator), at least one of the operator comparisons will return false or null.

To add a primary key for the table, select the tab, and click the icon (+). To define the primary key, click the icon to the left of the icon. A dialog similar to the dialog (accessed by right clicking on in the tree control) opens.
Use the fields in the tab to identify the primary key:
	Use the field to add a descriptive name for the primary key constraint. The name will be displayed in the tree control.

	Provide notes about the primary key in the field.

Click the tab to continue.
Use the fields in the tab to define the primary key constraint:
	Click inside the field and select one or more column names from the drop-down listbox. To delete a selection, click the to the left of the column name. The primary key constraint should be different from any unique constraint defined for the same table; the selected column(s) for the constraints must be distinct.

	Select the name of the tablespace in which the primary key constraint will reside from the drop-down listbox in the field.

	Use the field to specify a fill factor for the table and index. The fill factor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify the timing of the constraint is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

To add a foreign key constraint, select the tab, and click the icon (+). To define the constraint, click the icon to the left of the icon. A dialog similar to the dialog (accessed by right clicking on in the tree control) opens.
Use the fields in the tab to identify the foreign key constraint:
	Use the field to add a descriptive name for the foreign key constraint. The name will be displayed in the tree control.

	Provide notes about the foreign key in the field.

Click the tab to continue.
Use the fields in the tab to define the foreign key constraint:
	Move the switch to the position to specify the timing of the constraint is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

	Move the switch specify the type of matching that is enforced by the constraint:
	Select to indicate that all columns of a multicolumn foreign key must be null if any column is null; if all columns are null, the row is not required to have a match in the referenced table.

	Select to specify that a single foreign key column may be null; if any column is null, the row is not required to have a match in the referenced table.

	Move the switch to the position to instruct the server to validate the existing table content (against a foreign key or check constraint) when you save modifications to this dialog.

	Move the switch to the position to disable the automatic index feature.

	The field next to generates the name of an index if the switch is in the position; or, this field is disabled.

Click the tab to continue.
Use the fields in the tab to specify one or more reference column(s). A Foreign Key constraint requires that one or more columns of a table must only contain values that match values in the referenced column(s) of a row of a referenced table:
	Use the drop-down listbox next to to specify the column in the current table that will be compared to the foreign table.

	Use the drop-down listbox next to to specify the name of the table in which the comparison column(s) resides.

	Use the drop-down listbox next to to specify a column in the foreign table.

Click the icon (+) to add a column to the list; repeat the steps above and click the icon (+) to add additional columns. To discard an entry, click the trash icon to the left of the entry and confirm deletion in the popup.
Click the tab to continue.
Use the drop-down listboxes on the tab to specify behavior related to the foreign key constraint that will be performed when data within the table is updated or deleted:
	Use the drop-down listbox next to to select an action that will be performed when data in the table is updated.

	Use the drop-down listbox next to to select an action that will be performed when data in the table is deleted.

The supported actions are:
[t]|T|T|
NO ACTION & Produce an error indicating that the deletion or update will create a foreign key constraint violation. If the constraint is deferred, this error will be produced at constraint check time if any referencing rows still exist. This is the default.
RESTRICT & Throw an error indicating that the deletion or update would create a foreign key constraint violation. This is the same as NO ACTION except that the check is not deferrable.
CASCADE & Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new values of the referenced columns, respectively.
SET NULL & Set the referencing column(s) to null.
SET DEFAULT & Set the referencing column(s) to their default values. There must be a row in the referenced table that matches the default values (if they are not null), or the operation will fail.

To add a check constraint, select the tab on the panel, and click the icon (+). To define the check constraint, click the icon to the left of the icon. A dialog similar to the dialog (accessed by right clicking on in the tree control) opens.
Use the fields in the tab to identify the check constraint:
	Use the field to add a descriptive name for the check constraint. The name will be displayed in the tree control. With PostgreSQL 9.5 forward, when a table has multiple check constraints, they will be tested for each row in alphabetical order by name and after NOT NULL constraints.

	Provide notes about the check constraint in the field.

Click the tab to continue.
Use the fields in the tab to define the check constraint:
	Provide the expression that a row must satisfy in the field. This field is required.

	Move the switch to the position to specify this constraint is automatically inherited by a table’s children. The default is .

	Move the switch to the position to skip validation of existing data; the constraint may not hold for all rows in the table. The default is .

To add a unique constraint, select the tab on the panel, and click the icon (+). To define the constraint, click the icon to the left of the icon. A dialog similar to the dialog (accessed by right clicking on in the tree control) opens.
Use the fields in the tab to identify the unique constraint:
	Use the field to add a descriptive name for the unique constraint. The name will be displayed in the tree control.

	Provide notes about the unique constraint in the field.

Click the tab to continue.
Use the fields in the tab to define the unique constraint:
	Click inside the field and select one or more column names from the drop-down listbox. To delete a selection, click the to the left of the column name. The unique constraint should be different from the primary key constraint defined for the same table; the selected column(s) for the constraints must be distinct.

	Select the name of the tablespace in which the unique constraint will reside from the drop-down listbox in the field.

	Use the field to specify a fill factor for the table and index. The fill factor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify the timing of the constraint is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

To add an exclusion constraint, select the tab on the panel, and click the icon (+). To define the constraint, click the icon to the left of the icon. A dialog similar to the dialog (accessed by right clicking on in the tree control) opens.
Use the fields in the tab to identify the exclusion constraint:
	Use the field to provide a descriptive name for the exclusion constraint. The name will be displayed in the tree control.

	Provide notes about the exclusion constraint in the field.

Click the tab to continue.
Use the fields in the tab to define the exclusion constraint:
	Use the drop-down listbox next to to select the tablespace in which the index associated with the exclude constraint will reside.

	Use the drop-down listbox next to to specify the type of index that will be used when implementing the exclusion constraint:
	Select to specify a GiST index (the default).

	Select to specify a space-partitioned GiST index.

	Select to specify a B-tree index.

	Select to specify a hash index.

	Use the field to specify a fill factor for the table and associated index. The fill factor is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify that the timing of the constraint is deferrable, and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

	Use the field to provide a condition that a row must satisfy to be included in the table.

Click the tab to continue.
Use the fields in the tab to to specify the column(s) to which the constraint applies. Use the drop-down listbox next to to select a column and click the icon (+) to provide details of the action on the column:
	The field is populated with the selection made in the drop-down listbox.

	If applicable, use the drop-down listbox in the to specify the operator class that will be used by the index for the column.

	Move the switch to to specify a descending sort order. The default is which specifies an ascending sort order.

	Move the switch to to define an ascending sort order for NULLs. The default is which specifies a descending order.

	Use the drop-down list next to to specify a comparison or conditional operator.

Click the tab to continue.
Use the fields in the tab to define advanced features for the table:
	Use the drop-down listbox next to to copy the table structure from the specified composite type. Please note that a typed table will be dropped if the type is dropped (with DROP TYPE … CASCADE).

	Use the field to specify a fill factor for the table. The fill factor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify that each row within a table has a system-assigned object identifier. The default is .

	Move the switch to the position to disable logging for the table. Data written to an unlogged table is not written to the write-ahead log. Any indexes created on an unlogged table are automatically unlogged as well. The default is .

Use the fields in the box to specify which attributes of an existing table from which a table will automatically copy column names, data types, and not-null constraints; after saving the new or modified table, any changes to the original table will not be applied to the new table.
	Use the drop-down listbox next to to select a reference table.

	Move the switch to the position to copy default values.

	Move the switch to the position to copy table and column constraints.

	Move the switch to the position to copy indexes.

	Move the switch to the position to copy storage settings.

	Move the switch to the position to copy comments.

With PostgreSQL 10 forward, the tab will be visible.
Click the tab to continue.
Use the fields in the tab to create the partitions for the table:
	Select a partition type from the selection box. There are 3 options available; Range, List and Hash. Hash option will only enable for PostgreSQL version >= 11.

Use the panel to define the partition keys. Click the icon (+) to add each partition keys selection:
	Select a partition key type in the field.

	Select a partition column in the field if Column option selected for field .

	Specify the expression in the field if Expression option selected for the field.

Use the panel to define the partitions of a table. Click the icon (+) to add each partition:
	Move the switch to to attach the partition, by default it is .

	Use the field to add the name of the partition.

	If partition type is Range then and fields will be enabled.

	If partition type is List then field will be enabled.

	If partition type is Hash then and fields will be enabled.

Click the tab to continue.
Use the tabs nested inside the tab to specify VACUUM and ANALYZE thresholds; use the tab and the tab to customize values for the table and the associated toast table:
	Move the switch to the position to perform custom maintenance on the table.

	Move the switch to the position to select values in the . The provides default values for maintenance operations.

Provide a custom value in the column for each metric listed in the column.
Click the tab to continue.
Use the tab to assign privileges and define security labels.
Use the panel to assign privileges to a role. Click the icon (+) to set privileges for database objects:
	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privilege to the specified user.

	Select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

Click the icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the popup.
Use the panel to define security labels applied to the function. Click the icon (+) to add each security label selection:
	Specify a security label provider in the field. The named provider must be loaded and must consent to the proposed labeling operation.

	Specify a a security label in the field. The meaning of a given label is at the discretion of the label provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it merely provides a mechanism for storing them.

Click the icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of the row and confirm deletion in the popup.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a table named . It has three columns and a primary key constraint on the column.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Trigger Dialog
[][] Use the dialog to create a trigger or modify an existing trigger. A trigger executes a specified function when certain events occur.
The dialog organizes the development of a trigger through the following dialog tabs: , , , and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the trigger:
	Use the field to add a descriptive name for the trigger. This must be distinct from the name of any other trigger for the same table. The name will be displayed in the tree control. Note that if multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical order by name.

	Store notes about the trigger in the field.

Click the tab to continue.
Use the fields in the tab to define the trigger:
	Move the switch to the position to disassociate the trigger from firing on each row in a table. The default is .

	Move the switch to the position to specify the trigger is a constraint trigger.

	If enabled, move the switch to the position to specify the timing of the constraint trigger is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint trigger is deferred to the end of the statement causing the triggering event. The default is .

	Use the drop-down listbox next to to select a trigger function or procedure.

	Use the field to provide an optional (comma-separated) list of arguments to the function when the trigger is executed. The arguments are literal string constants.

Click the tab to continue.
Use the fields in the tab to specify how and when the trigger fires:
	Use the drop-down listbox next to the fields to determine if the trigger fires or a specified event. The default is .

	Select the type of event(s) that will invoke the trigger; to select an event type, move the switch next to the event to the position. The supported event types are , , , and .

	Use the field to provide a boolean condition that will invoke the trigger.

	If defining a column-specific trigger, use the field to specify the columns or columns that are the target of the trigger.

Click the tab to continue.
Use the field to specify any additional code that will be invoked when the trigger fires.
Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example demonstrates creating a trigger named that calls a procedure named that logs any updates to the table.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Unique Constraint Dialog
[][] Use the dialog to define a unique constraint for a specified table. Unique constraints ensure that the data contained in a column, or a group of columns, is unique among all the rows in the table.
The dialog organizes the development of a unique constraint through the following dialog tabs: and . The tab displays the SQL code generated by dialog selections.
Use the fields in the tab to identify the unique constraint:
	Use the field to add a descriptive name for the unique constraint. The name will be displayed in the tree control.

Click the tab to continue.
Use the fields in the tab to define the unique constraint:
	Click inside the field and select one or more column names from the drop-down listbox. To delete a selection, click the to the left of the column name. The unique constraint should be different from the primary key constraint defined for the same table; the selected column(s) for the constraints must be distinct.

	Use field to specify columns for clause of the constraint. This option is available in Postgres 11 and later.

	Select the name of the tablespace in which the unique constraint will reside from the drop-down listbox in the field.

	Select the name of an index from the drop-down listbox in the field. This field is optional. Adding a unique constraint will automatically create a unique B-tree index on the column or group of columns listed in the constraint, and will force the column(s) to be marked NOT NULL.

	Use the field to specify a fill factor for the table and index. The fill factor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.

	Move the switch to the position to specify the timing of the constraint is deferrable and can be postponed until the end of the statement. The default is .

	If enabled, move the switch to the position to specify the timing of the constraint is deferred to the end of the statement. The default is .

Click the tab to continue.
Your entries in the dialog generate a SQL command (see an example below). Use the tab for review; revisit or switch tabs to make any changes to the SQL command.
The following is an example of the sql command generated by user selections in the dialog:
The example shown demonstrates creating a unique constraint named on the column of the table.
	Click the button (i) to access online help. View context-sensitive help in the , where a new tab displays the PostgreSQL core documentation.

	Click the button to save work.

	Click the button to exit without saving work.

	Click the button to restore configuration parameters.

Management Basics
[][] pgAdmin provides point and click dialogs that help you perform server management functions. Dialogs simplify tasks such as managing named restore points, granting user privileges, and performing VACUUM, ANALYZE and REINDEX functions.
Contents:
Add named restore point Dialog
[][] Use the dialog to take a named snapshot of the state of the server for use in a recovery file. To create a named restore point, the server’s postgresql.conf file must specify a value of , , or . You must be a database superuser to create a restore point.
When the window launches, use the field to provide a descriptive name for the restore point.
For more information about using a restore point as a recovery target, please see the .
	Click the button to save the restore point.

	Click the button to exit without saving work.

Change Password Dialog
[][] It is a good policy to routinely change your password to protect data, even in what you may consider a ‘safe’ environment. In the workplace, failure to apply an appropriate password policy could leave you in breach of Data Protection laws.
Please consider the following guidelines when selecting a password:
	Ensure that your password is an adequate length; 6 characters should be the absolute minimum number of characters in the password.

	Ensure that your password is not open to dictionary attacks. Use a mixture of upper and lower case letters and numerics, and avoid words or names. Consider using the first letter from each word in a phrase that you will remember easily but is an unfamiliar acronym.

	Ensure that your password is changed regularly; at minimum, change it every ninety days.

The above should be considered a starting point: It is not a comprehensive list and it .
Use the dialog to change your password:
	The name displayed in the field is the role for which you are modifying the password; it is the role that is associated with the server connection that is highlighted in the tree control.

	Enter the password associated with the role in the field.

	Enter the desired password for in the field.

	Re-enter the new password in the field.

Click the button to change your password; click to exit the dialog without changing your password.

Grant Wizard
[][] The tool is a graphical interface that allows you to manage the privileges of one or more database objects in a point-and-click environment. A search box, dropdown lists, and checkboxes facilitate quick selections of database objects, roles and privileges.
The wizard organizes privilege management through a sequence of windows: , and . The window displays the SQL code generated by wizard selections.
To launch the tool, select a database object in the tree control, then navigate through on the menu bar to click on the option.
Use the fields in the window to select the object or objects on which you are modifying privileges. Use the field to locate a database object, or use the scrollbar to scroll through the list of all accessible objects.
	Each row in the table lists object identifiers; check the checkbox in the left column to include an object as a target of the Grant Wizard. The table displays:
	The object type in the field

	The schema in which the object resides in the field

	The object name in the field.

Click the button to continue, or the button to close the wizard without modifying privileges.
Use the fields in the window to grant privileges. If you grant a privilege WITH GRANT OPTION, the Grantee will have the right to grant privileges on the object to others. If WITH GRANT OPTION is subsequently revoked, any role who received access to that object from that Grantee (directly or through a chain of grants) will lose thier privileges on the object.
	Click the icon (+) to assign a set of privileges.

	Select the name of the role from the drop-down listbox in the field.

	Click inside the field. Check the boxes to the left of one or more privileges to grant the selected privileges to the specified user. If privileges have previously been granted on a database object, unchecking a privilege for a group or user will result in revoking that privilege.

	If enabled, select the name of the role from the drop-down listbox in the field. The default grantor is the owner of the database.

	Click the icon (+) to assign a set of privileges to another role; to discard a privilege, click the trash icon to the left of the row and confirm deletion in the dialog.

For more information about granting privileges on database objects, see the .
Click the button to continue, the button to select or deselect additional database objects, or the button to close the wizard without modifying privileges.
Your entries in the tool generate a SQL command; you can review the command in the window (see an example below).
The following is an example of the sql command generated by user selections in the tool:
The commands displayed assign a role named and privileges on the and the tables.
	Click the button to select or deselect additional database objects, roles and privileges.

	Click the button to exit without saving work.

	Click the button to save selections and exit the wizard.

Import/Export data Dialog
[][] Use the dialog to copy data from a table to a file, or copy data from a file into a table.
The dialog organizes the import/export of data through the and tabs.
Use the fields in the tab to specify import and export preferences:
	Move the switch to the position to specify that the server should import data to a table from a file. The default is .

	Use the fields in the field box to specify information about the source or target file:
	Enter the name of the source or target file in the field. Optionally, select the icon (ellipsis) to the right to navigate into a directory and select a file.

	Use the drop-down listbox in the field to specify the file type. Select:
	for a .bin file.

	for a .csv file.

	for a .txt file.

	Use the drop-down listbox in the field to specify the type of character encoding.

	Use the fields in the field box to specify additional information:
	Move the switch to the position to include the column. The is a system-assigned value that may not be modified. The default is .

	Move the switch to the position to include the table header with the data rows. If you include the table header, the first row of the file will contain the column names.

	If you are exporting data, specify the delimiter that will separate the columns within the target file in the field. The separating character can be a colon, semicolon, a vertical bar, or a tab.

	Specify a quoting character used in the field. Quoting can be applied to string columns only (i.e. numeric columns will not be quoted) or all columns regardless of data type. The character used for quoting can be a single quote or a double quote.

	Specify a character that should appear before a data character that matches the value in the field.

Click the tab to continue.
Use the fields in the tab to select the columns that will be imported or exported:
	Click inside the field to deselect one or more columns from the drop-down listbox. To delete a selection, click the to the left of the column name. Click an empty spot inside the field to access the drop-down list.

	Use the field to specify a string that will represent a null value within the source or target file.

	If enabled, click inside the field to select one or more columns that will not be checked for a NULL value. To delete a column, click the to the left of the column name.

After completing the dialog, click the button to perform the import or export. pgAdmin will inform you when the background process completes:
Use the button to stop the Import/Export process.
Use the link on the notification to open the and review detailed information about the execution of the command that performed the import or export:

Maintenance Dialog
[][] Use the dialog to VACUUM, ANALYZE, REINDEX or CLUSTER a database or selected database objects.
While this utility is useful for ad-hoc maintenance purposes, you are encouraged to perform automatic VACUUM jobs on a regular schedule.
Select a button next to to specify the type of maintenance:
	Click to scan the selected database or table to reclaim storage used by dead tuples.
	Move the switch to the position to compact tables by writing a completely new version of the table file without dead space. The default is .

	Move the switch to the position to freeze data in a table when it will have no further updates. The default is .

	Move the switch to the position to issue ANALYZE commands whenever the content of a table has changed sufficiently. The default is .

	Click to update the stored statistics used by the query planner. This enables the query optimizer to select the fastest query plan for optimal performance.

	Click to rebuild any index in case it has degenerated due to the insertion of unusual data patterns. This happens, for example, if you insert rows with increasing index values, and delete low index values.

	Click to instruct PostgreSQL to cluster the selected table.

To exclude status messages from the process output, move the switch to the position; by default, status messages are included.
When you’ve completed the dialog, click to start the background process; to exit the dialog without performing maintenance operations, click .
pgAdmin will inform you when the background process completes:
Use the button to stop the Maintenance process.
Use the link on the notification to open the and review detailed information about the execution of the command that performed the import or export:

Backup and Restore
[][] A powerful, but user-friendly Backup and Restore tool provides an easy way to use pg_dump, pg_dumpall, and pg_restore to take backups and create copies of databases or database objects for use in a development environment.
Contents:
Backup Dialog
[][] Using the utility, provides an easy way to create a backup in a plain-text or archived format. You can then use a client application (like or the) to restore a plain-text backup file, or use the Postgres utility to restore an archived backup. The utility must have read access to all database objects that you want to back up.
You can backup a single table, a schema, or a complete database. Select the name of the backup source in the tree control, right click to open the context menu, and select to open the dialog. The name of the object selected will appear in the dialog title bar.
Use the fields in the tab to specify parameters for the backup:
	Enter the name of the backup file in the field. Optionally, select the icon (…) to the right to navigate into a directory and select a file that will contain the archive.

	Use the drop-down listbox in the field to select the format that is best suited for your application. Each format has advantages and disadvantages:
	Select to create a custom archive file that you can use with to create a copy of a database. Custom archive file formats must be restored with . This format offers the opportunity to select which database objects to restore from the backup file. archive format is recommended for medium to large databases as it is compressed by default.

	Select to generate a tar archive file that you can restore with . The tar format does not support compression.

	Select to create a plain-text script file. A plain-text script file contains SQL statements and commands that you can execute at the command line to recreate the database objects and load the table data. A plain-text backup file can be edited in a text editor, if desired, before using the program to restore database objects. format is normally recommended for smaller databases; script dumps are not recommended for blobs. The SQL commands within the script will reconstruct the database to the last saved state of the database. A plain-text script can be used to reconstruct the database on another machine, or (with modifications) on other architectures.

	Select to generate a directory-format archive suitable for use with . This file format creates a directory with one file for each table and blob being dumped, plus a file describing the dumped objects in a machine-readable format that can read. This format is compressed by default.

	Use the field to select a compression level for the backup. Specify a value of zero to mean use no compression; specify a maximum compression value of 9. Please note that tar archives do not support compression.

	Use the drop-down listbox to select the character encoding method that should be used for the archive.

	Use the field (when applicable) to specify the number of tables that will be dumped simultaneously in a parallel backup.

	Use the dropdown listbox next to to specify the role that owns the backup.

Click the tab to continue. Use the box fields in the tab to provide options for .
	Move switches in the field box to select a portion of the object that will be backed up.
	Move the switch next to to the position to include all data definition items not included in the data or post-data item lists.

	Move the switch next to to the position to backup actual table data, large-object contents, and sequence values.

	Move the switch next to to the position to include definitions of indexes, triggers, rules, and constraints other than validated check constraints.

	Move switches in the field box to specify details about the type of objects that will be backed up.
	Move the switch next to to the position to limit the back up to data.

	Move the switch next to to limit the back up to schema-level database objects.

	Move the switch next to to the position to exclude large objects in the backup.

	Move switches in the field box to select the objects that will not be included in the backup.
	Move the switch next to to the position to exclude commands that set object ownership.

	Move the switch next to to the position to exclude commands that create access privileges.

	Move the switch next to to the position to exclude tablespaces.

	Move the switch next to to the position to exclude the contents of unlogged tables.

	Move the switch next to to the position to exclude commands that set the comments. This option is visible only for database server greater than or equal to 11.

	Move switches in the field box to specify the type of statements that should be included in the backup.
	Move the switch next to to the position to dump the data in the form of INSERT statements and include explicit column names. Please note: this may make restoration from backup slow.

	Move the switch next to to the position to dump the data in the form of INSERT statements rather than using a COPY command. Please note: this may make restoration from backup slow.

	Move the switch next to to the position to include a command in the backup that creates a new database when restoring the backup.

	Move the switch next to to the position to include a command in the backup that will drop any existing database object with the same name before recreating the object during a backup.

	Move the switch next to to the position, so when dumping a COPY or INSERT statement for a partitioned table, target the root of the partitioning hierarchy which contains it rather than the partition itself. This option is visible only for database server greater than or equal to 11.

	Move switches in the field box to specify the type of statements that should be excluded from the backup.
	Move the switch next to (active when creating a data-only backup) to the position to include commands that will disable triggers on the target table while the data is being loaded.

	Move the switch next to to the position to enable dollar quoting within function bodies; if disabled, the function body will be quoted using SQL standard string syntax.

	Move switches in the field box to specify miscellaneous backup options.
	Move the switch next to to the position to include object identifiers as part of the table data for each table.

	Move the switch next to to the position to instruct to exclude verbose messages.

	Move the switch next to to the position to force the quoting of all identifiers.

	Move the switch next to to the position to include a statement that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an ALTER OWNER command).

When you’ve specified the details that will be incorporated into the pg_dump command:
	Click the button to build and execute a command that builds a backup based on your selections on the dialog.

	Click the button to exit without saving work.

Use the button to stop the Backup process.
If the backup is successful, a popup window will confirm success. Click on the popup window to launch the . The logs all the activity associated with the backup and provides additional information for troubleshooting.
If the backup is unsuccessful, you can review the error messages returned by the backup command on the .

Backup Globals Dialog
[][] Use the dialog to create a plain-text script that recreates all of the database objects within a cluster, and the global objects that are shared by those databases. Global objects include tablespaces, roles, and object properties. You can use the pgAdmin to play back a plain-text script, and recreate the objects in the backup.
Use the fields in the tab to specify the following:
	Enter the name of the backup file in the field. Optionally, select the icon (ellipsis) to the right to navigate into a directory and select a file that will contain the archive.

	Use the drop-down listbox next to to specify a role with connection privileges on the selected server. The role will be used for authentication during the backup.

Move switches in the field box to specify the type of statements that should be included in the backup.
	Move the switch to the position to exclude status messages from the backup. The default is .

	Move the switch to the position to name identifiers without changing case. The default is .

Click the button to build and execute a command based on your selections; click the button to exit without saving work.
Use the button to stop the Backup process.
If the backup is successful, a popup window will confirm success. Click on the popup window to launch the . The logs all the activity associated with the backup and provides additional information for troubleshooting.
If the backup is unsuccessful, review the error message returned by the to resolve any issue.

Backup Server Dialog
[][] Use the dialog to create a plain-text script that will recreate the selected server. You can use the pgAdmin to play back a plain-text script, and recreate the server.
Use the fields in the tab to specify the following:
	Enter the name of the backup file in the field. Optionally, select the icon (ellipsis) to the right to navigate into a directory and select a file that will contain the archive.

	Use the drop-down listbox to select the character encoding method that should be used for the archive. This option is visible only for database server greater than or equal to 11.

	Use the drop-down listbox next to to specify a role with connection privileges on the selected server. The role will be used for authentication during the backup.

	Move switches in the field box to specify details about the type of objects that will be backed up.
	Move the switch next to to the position to limit the back up to data.

	Move the switch next to to limit the back up to schema-level database objects.

	Move switches in the field box to select the objects that will not be included in the backup.
	Move the switch next to to the position to exclude commands that set object ownership.

	Move the switch next to to the position to exclude commands that create access privileges.

	Move the switch next to to the position to exclude tablespaces.

	Move the switch next to to the position to exclude the contents of unlogged tables.

	Move the switch next to to the position to exclude commands that set the comments. This option is visible only for database server greater than or equal to 11.

	Move switches in the field box to specify the type of statements that should be included in the backup.
	Move the switch next to to the position to dump the data in the form of INSERT statements and include explicit column names. Please note: this may make restoration from backup slow.

	Move the switch next to to the position to dump the data in the form of INSERT statements rather than using a COPY command. Please note: this may make restoration from backup slow.

	Move the switch next to to the position to include a command in the backup that will drop any existing database object with the same name before recreating the object during a backup.

	Move switches in the field box to specify the type of statements that should be excluded from the backup.
	Move the switch next to (active when creating a data-only backup) to the position to include commands that will disable triggers on the target table while the data is being loaded.

	Move the switch next to to the position to enable dollar quoting within function bodies; if disabled, the function body will be quoted using SQL standard string syntax.

	Move switches in the field box to specify miscellaneous backup options.
	Move the switch next to to the position to include object identifiers as part of the table data for each table.

	Move the switch next to to the position to instruct to exclude verbose messages.

	Move the switch next to to the position to force the quoting of all identifiers.

	Move the switch next to to the position to include a statement that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an ALTER OWNER command).

Click the button to build and execute a command based on your selections; click the button to exit without saving work.
Use the button to stop the Backup process.
If the backup is successful, a popup window will confirm success. Click on the popup window to launch the . The logs all the activity associated with the backup and provides additional information for troubleshooting.
If the backup is unsuccessful, review the error message returned by the to resolve any issue.

Restore Dialog
[][] The dialog provides an easy way to use a Custom, tar, or Directory format backup taken with the pgAdmin dialog to recreate a database or database object. The dialog invokes options of the pg_dump client utility; the dialog invokes options of the pg_restore client utility.
You can use the to play back the script created during a plain-text backup made with the dialog. For more information about backing up or restoring, please refer to the documentation for or .
Use the fields on the tab to specify general information about the restore process:
	Use the drop-down listbox in the field to select the format of your backup file.
	Select to restore from a custom archive file to create a copy of the backed-up object.

	Select to restore from a compressed directory-format archive.

	Enter the complete path to the backup file in the field. Optionally, select the icon (ellipsis) to the right to navigate into a directory and select the file that contains the archive.

	Use the field to specify if pg_restore should use multiple (concurrent) jobs to process the restore. Each job uses a separate connection to the server.

	Use the drop-down listbox next to to specify the role that will be used to authenticate with the server during the restore process.

Click the tab to continue. Use the fields on the tab to specify options that correspond to options.
	Use the switches in the box to specify the content that will be restored:
	Move the switch next to to the position to restore all data definition items not included in the data or post-data item lists.

	Move the switch next to to the position to restore actual table data, large-object contents, and sequence values.

	Move the switch next to to the position to restore definitions of indexes, triggers, rules, and constraints (other than validated check constraints).

	Use the switches in the box to specify the objects that will be restored:
	Move the switch next to to the position to limit the restoration to data.

	Move the switch next to to limit the restoration to schema-level database objects.

	Use the switches in the box to specify which objects will not be restored:
	Move the switch next to to the position to exclude commands that set object ownership.

	Move the switch next to to the position to exclude commands that create access privileges.

	Move the switch next to to the position to exclude tablespaces.

	Move the switch next to to the position to exclude commands that set the comments. This option is visible only for database server greater than or equal to 11.

	Use the switches in the box to specify the type of statements that should be included in the restore:
	Move the switch next to to the position to include a command that creates a new database before performing the restore.

	Move the switch next to to the position to drop each existing database object (and data) before restoring.

	Move the switch next to to the position to execute the restore as a single transaction (that is, wrap the emitted commands in). This ensures that either all the commands complete successfully, or no changes are applied. This option implies .

	Use the switches in the box to specify the type of statements that should be excluded from the restore:
	Move the switch next to (active when creating a data-only restore) to the position to include commands that will disable triggers on the target table while the data is being loaded.

	Move the switch next to to the position to ignore data that fails a trigger.

	Use the switches in the box to specify miscellaneous restore options:
	Move the switch next to to the position to instruct to exclude verbose messages.

	Move the switch next to to the position to include a statement that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an ALTER OWNER command).

	Move the switch next to to the position to instruct to exit restore if there is an error in sending SQL commands. The default is to continue and to display a count of errors at the end of the restore.

When you’ve specified the details that will be incorporated into the pg_restore command, click the button to start the process, or click the button to exit without saving your work. A popup will confirm if the restore is successful.
Use the button to stop the Restore process.
Click on the popup to launch the . The logs all the activity associated with the restore, and provides additional information for troubleshooting should the restore command encounter problems.

Developer Tools
[][] The pgAdmin menu displays a list of powerful developer tools that you can use to execute and analyze complex SQL commands, manage data, and debug PL/SQL code.
Contents:
pgAdmin Debugger
[][]
The debugger may be used to debug PL/pgSQL functions in PostgreSQL. The Debugger is available as an extension for your PostgreSQL installation. You must have superuser privileges to use the debugger.
Before using the debugger, you must modify the file, adding the server-side debugger components to the the value of the parameter:
shared_preload_libraries = ‘$libdir//plugin_debugger’

After modifying the parameter, restart the server to apply the changes.
The debugger may be used for either in-context debugging or direct debugging of a target function. When you use the debugger for in-context debugging, you set a breakpoint at the first line of a program; when a session invokes the target, control is transferred to the debugger. When using direct debugging, the debugger prompts you for any parameters required by the target, and then allows you to step through the code.
To set a breakpoint at the first line of a program, right-click the name of the object you would like to debug, and select from the sub-menu. The debugger window will open, waiting for another session to invoke the program.
When another session invokes the target, the debugger will display the code, allowing you to add break points, or step through line-by-line. The other session is suspended until the debugging completes; then control is returned to the session.
To use the debugger for direct debugging, right click on the name of the object that you wish to debug in the pgAdmin tree control and select from the sub-menu. The debugger window will open, prompting you for any values required by the program:
Use the fields on the dialog to provide a value for each parameter:
	The field contains the formal parameter name.

	The field contains the parameter data type.

	Check the checkbox to indicate that the parameter is a NULL value.

	Check the checkbox if the Value field contains an expression.

	Use the field to provide the parameter value that will be passed to the program. When entering parameter values, type the value into the appropriate cell on the grid, or, leave the cell empty to represent NULL, enter ‘’ (two single quotes) to represent an empty string, or to enter a literal string consisting of just two single quotes, enter ‘’. PostgreSQL 8.4 and above supports variadic function parameters. These may be entered as a comma-delimited list of values, quoted and/or cast as required.

	Check the checkbox to indicate that the program should use the value in the Default Value field.

	The field contains the default value of the parameter.

Provide values required by the program, and click the button to start stepping through the program.
The main debugger window consists of two panels and a context-sensitive toolbar. Use toolbar icons to manage breakpoints and step into or through code; hover over an icon for a tooltip that identifies the option associated with the icon. The toolbar options are:
[t]|T|T| Option &Action
 & Click the icon to execute the currently highlighted line of code.
 & Click the icon to execute a line of code, stepping over any sub-functions invoked by the code. The sub-function executes, but is not debugged unless it contains a breakpoint.
 & Click the icon to execute the highlighted code, and continue until the program encounters a breakpoint or completes.
 & Use the icon to enable or disable a breakpoint (without removing the breakpoint).
 & Click the icon to remove all breakpoints from the program.
 & Click the icon to halt the execution of a program.

The top panel of the debugger window displays the program body; click in the grey margin next to a line number to add a breakpoint. The highlighted line in the top panel is the line that is about to execute.
The lower panel of the debugger window provides a set of tabs that allow you to review information about the program:
	The tab displays the value of each parameter.

	The variables tab displays the current value of the program variables.

	The tab displays any messages returned by the server (errors, warnings and informational messages).

	The tab displays the server message when the program completes.

	The tab displays the list of functions that have been invoked, but which have not yet completed.

As you step through a program, the tab displays the current value of each variable:
When you step into a subroutine, the tab displays the call stack, including the name of each caller, the parameter values for each caller (if any), and the line number within each caller:
Select a caller to change focus to that stack frame and display the state of the caller in the upper panel.
When the program completes, the tab displays the message returned by the server. If the program encounters an error, the tab displays details:

Query Tool
[][] The Query Tool is a powerful, feature-rich environment that allows you to execute arbitrary SQL commands and review the result set. You can access the Query Tool via the menu option on the menu, or through the context menu of select nodes of the Browser tree control. The Query Tool allows you to:
	Issue ad-hoc SQL queries.

	Execute arbitrary SQL commands.

	Displays current connection and transaction status as configured by the user.

	Save the data displayed in the output panel to a CSV file.

	Review the execution plan of a SQL statement in either a text or a graphical format.

	View analytical information about a SQL statement.

You can open multiple copies of the Query tool in individual tabs simultaneously. To close a copy of the Query tool, click the in the upper-right hand corner of the tab bar.
The Query Tool features two panels:
	The upper panel displays the . You can use the panel to enter, edit, or execute a query. It also shows the tab which can be used to view the queries that have been executed in the session, and a which can be used to hold text snippets during editing. If the Scratch Pad is closed, it can be re-opened (or additional ones opened) by right-clicking in the SQL Editor and other panels and adding a new panel.

	The lower panel displays the panel. The tabbed panel displays the result set returned by a query, information about a query’s execution plan, server messages related to the query’s execution and any asynchronous notifications received from the server.

The toolbar uses context-sensitive icons that provide shortcuts to frequently performed tasks. If an icon is highlighted, the option is enabled; if the icon is grayed-out, the task is disabled. Please note that disabled icons may support functionality accessed via the .
Hover over an icon to display a tooltip that describes the icon’s functionality:
[t]|*3| Icon &Behavior &Shortcut
 & Click the icon to display a previously saved query in the SQL Editor. & Accesskey + O
 & Click the icon to perform a quick-save of a previously saved query, or to access the menu:
	Select to save the selected content of the SQL Editor panel in a file.

	Select to open a new browser dialog and specify a new location to which to save the selected content of the SQL Editor panel.

& Accesskey + S
 & Use the menu to search, replace, or navigate the code displayed in the SQL Editor:
	Select to provide a search target, and search the SQL Editor contents.

	Select to locate the next occurrence of the search target.

	Select to move to the last occurrence of the search target.

	Select to identify all occurrences of the search target within the editor.

	Select to locate and replace (with prompting) individual occurrences of the target.

	Select to locate and replace all occurrences of the target within the editor.

	Select to navigate to the next occurrence of the search target.

& Cmd+F
Cmd+G
Cmd+Shift+G
Cmd+Shift+F
Alt+G
 & Click the icon to copy the content that is currently highlighted in the Data Output panel. when in View/Edit data mode. & Accesskey + C
 & Click the icon to paste a previously row into a new row when in View/Edit data mode. & Accesskey + P
 & Click the icon to delete the selected rows when in View/Edit data mode. & Accesskey + D
 & Use options on the menu to access text editing tools; the options operate on the text displayed in the SQL Editor panel when in Query Tool mode:
	Select to indent the currently selected text.

	Select to remove indentation from the currently selected text.

	Select to enclose any lines that contain the selection in SQL style comment notation.

	Select to remove SQL style comment notation from the selected line.

	Select to enclose all lines that contain the selection in C style comment notation. This option acts as a toggle.

& Tab
Shift+Tab
Cmd+/
Cmd+.
Shift+Cmd+/
 & Click the icon to set filtering and sorting criteria for the data when in View/Edit data mode. Click the down arrow to access other filtering and sorting options:
	Click to open the sorting and filtering dialogue.

	Click to show only the rows containing the values in the selected cells.

	Click to show only the rows that do not contain the values in the selected cells.

	Click to remove any previously selected sort or filtering options.

& Accesskey + F
Limit Selector & Select a value in the to limit the size of the dataset to a number of rows. & Accesskey + R
 & Click the icon to cancel the execution of the currently running query. & Accesskey + Q
 & Click the icon to either execute or refresh the query highlighted in the SQL editor panel. Click the down arrow to access other execution options:
	Add a check next to to instruct the server to automatically roll back a transaction if an error occurs during the transaction.

	Add a check next to to instruct the server to automatically commit each transaction. Any changes made by the transaction will be visible to others, and durable in the event of a crash.

& F5
 &
	Click the icon to view an explanation plan for the current query. The result of the
	EXPLAIN is displayed graphically on the tab of the output panel, and in text form on the tab.

& F7
 & Click the icon to invoke an EXPLAIN ANALYZE command on the current query.
Navigate through the menu to select options for the EXPLAIN command:
	Select to display additional information regarding the query plan.

	Select to include information on the estimated startup and total cost of each plan node, as well as the estimated number of rows and the estimated width of each row.

	Select to include information on buffer usage.

	Select to include information about the startup time and the amount of time spent in each node of the query.

& Shift+F7
 & Click the icon to commit the transaction. & Shift+CTRL+M
 & Click the icon to rollback the transaction. & Shift+CTRL+R
 & Use options on the drop-down menu to erase display contents:
	Select to erase the content of the SQL Editor panel.

	Select to erase the content of the tab.

& Accesskey + L
 & Click the icon to download the result set of the current query to a comma-separated list. You can specify the CSV settings through dialogue. & F8

The panel is a workspace where you can manually provide a query, copy a query from another source, or read a query from a file. The SQL editor features syntax coloring and autocompletion.
To use autocomplete, begin typing your query; when you would like the Query editor to suggest object names or commands that might be next in your query, press the Control+Space key combination. For example, type “*SELECT * FROM* ” (without quotes, but with a trailing space), and then press the Control+Space key combination to select from a popup menu of autocomplete options.
After entering a query, select the icon from the toolbar. The complete contents of the SQL editor panel will be sent to the database server for execution. To execute only a section of the code that is displayed in the SQL editor, highlight the text that you want the server to execute, and click the icon.
The message returned by the server when a command executes is displayed on the tab. If the command is successful, the tab displays execution details.
Options on the menu offer functionality that helps with code formatting and commenting:
	The auto-indent feature will automatically indent text to the same depth as the previous line when you press the Return key.

	Block indent text by selecting two or more lines and pressing the Tab key.

	Implement or remove SQL style or toggle C style comment notation within your code.

The panel displays data and statistics generated by the most recently executed query.
The tab displays the result set of the query in a table format. You can:
	Select and copy from the displayed result set.

	Use the options to retrieve query execution information and set query execution options.

	Use the icon to download the content of the tab as a comma-delimited file.

All rowsets from previous queries or commands that are displayed in the panel will be discarded when you invoke another query; open another query tool browser tab to keep your previous results available.
Use the tab to view a graphical representation of a query:
To generate a graphical explain diagram, open the tab, and select , , or one or more options from the menu on the drop-down. Please note that cannot be displayed graphically. Hover over an icon on the tab to review information about that item; a popup window will display information about the selected object:
Use the download button on top left corner of the canvas to download the plan as an SVG file.
Download as SVG is not supported on Internet Explorer.
Note that the query plan that accompanies the is available on the tab.
Use the tab to view information about the most recently executed query:
If the server returns an error, the error message will be displayed on the tab, and the syntax that caused the error will be underlined in the SQL editor. If a query succeeds, the tab displays how long the query took to complete and how many rows were retrieved:
Use the tab to review activity for the current session:
The Query History tab displays information about recent commands:
	The date and time that a query was invoked.

	The text of the query.

	The number of rows returned by the query.

	The amount of time it took the server to process the query and return a result set.

	Messages returned by the server (not noted on the tab).

To erase the content of the tab, select from the drop-down menu.
Use the feature to view the current connection and transaction status by clicking on the status icon in query tool:

Reviewing and Editing Data
[][] To review or modify data, right click on a table or view name in the tree control. When the context menu opens, use the menu to specify the number of rows you would like to display in the editor panel.
To modify the content of a table, each row in the table must be uniquely identifiable. If the table definition does not include an OID or a primary key, the displayed data is read only. Note that views cannot be edited; updatable views (using rules) are not supported.
The editor features a toolbar that allows quick access to frequently used options, and a work environment divided into two panels:
	The upper panel displays the SQL command that was used to select the content displayed in the lower panel.

	The lower panel (the Data Grid) displays the data selected from the table or view.

The toolbar includes context-sensitive icons that provide shortcuts to frequently performed tasks.
Hover over an icon to display a tooltip that describes the icon’s functionality.
[t]|*3| Icon &Behavior &Shortcut
 & Use the icon to save your changes to the currently displayed table contents. &
 & Use options on the menu to access Search and Replace functionality or to Jump to another line. & Ctrl/Cmd +F
 & Click the icon to copy the currently selected data. & Ctrl+C
 & Click the icon to paste the content that is currently on the clipboard. &
 & Use the icon to delete all the selected rows from the output panel. &
 & Click the icon to open a dialog that allows you to write and apply a filter for the content currently displayed in the output panel. Click the down arrow to open the drop- down menu and select from pre-defined options:
Use options on the menu to quick-sort or quick-filter the data set:
	Filter: This option opens a dialog that allows you to define a filter. A filter is a condition that is supplied to an arbitrary WHERE clause that restricts the result set.

	Remove Filter: This option removes all selection / exclusion filter conditions.

	By Selection: This option refreshes the data set and displays only those rows whose column value matches the value in the cell currently selected.

	Exclude Selection: This option refreshes the data set and excludes those rows whose column value matches the value in the cell currently selected.

&
 & Use the drop-down listbox to specify how many rows to display in the output panel. Select from: (the default), , , or . &
 & Click the icon to execute the SQL command that is displayed in the top panel. If you have not saved modifications to the content displayed in the data grid, you will be prompted to confirm the execution. To preserve your changes before refreshing the content, click the toolbar button before executing the refresh. & F5
 & Click the icon to cancel the execution of the currently running query. &
 & Use the drop-down menu to erase the contents of the tab. &
 & Click the icon to download the result set of the current query to a comma-separated list. You can control the CSV settings through dialogue. & F8

The top row of the data grid displays the name of each column, the data type, and if applicable, the number of characters allowed. A column that is part of the primary key will additionally be marked with [PK].
To modify the displayed data:
	To change a numeric value within the grid, double-click the value to select the field. Modify the content in the square in which it is displayed.

	To change a non-numeric value within the grid, double-click the content to access the edit bubble. After modifying the contentof the edit bubble, click the button to display your changes in the data grid, or to exit the edit bubble without saving.

To enter a newline character, click Ctrl-Enter or Shift-Enter. Newline formatting is only displayed when the field content is accessed via an edit bubble.
To add a new row to the table, enter data into the last (unnumbered) row of the table. As soon as you store the data, the row is assigned a row number, and a fresh empty line is added to the data grid.
To write a SQL NULL to the table, simply leave the field empty. When you store the new row, the will server fill in the default value for that column. If you store a change to an existing row, the value NULL will explicitly be written.
To write an empty string to the table, enter the special string ‘’ (two single quotes) in the field. If you want to write a string containing solely two single quotes to the table, you need to escape these quotes, by typing ‘’
To delete a row, press the toolbar button. A popup will open, asking you to confirm the deletion.
To commit the changes to the server, select the toolbar button. Modifications to a row are written to the server automatically when you select a different row.
If PostGIS is installed, you can view GIS objects in a map by selecting row(s) and clicking the ‘View Geometry’ button in the column. If no rows are selected, the entire data set will be rendered:
You can adjust the layout by dragging the title of the panel. To view the properties of the geometries directly in map, just click the specific geometry:
Notes:
	The Geometry Viewer supports 2D and 3DM geometries in EWKB format including .

	If there are geometries with different SRIDs in the same column, the viewer will render geometries with the same SRID in the map. If SRID=4326 the OSM tile layer will be added into the map.

	For performance reasons, the viewer will render no more than 100000 geometries, totaling up to 20MB.

	An internet connection is required for the Geometry Viewer to function correctly.

You can access by clicking on Sort/Filter button. This allows you to specify an SQL Filter to limit the data displayed and data sorting options in the edit grid window:
	Use to provide SQL filtering criteria. These will be added to the “WHERE” clause of the query used to retrieve the data. For example, you might enter:

[commandchars=
{}]
	Use to sort the data in the output grid

To add new column(s) in data sorting grid, click on the [+] icon.
	Use the drop-down to select the column you want to sort.

	Use the drop-down to select the sort order for the column.

To delete a row from the grid, click the trash icon.
	Click the button (?) to access online help.

	Click the button to save work.

	Click the button to discard current changes and close the dialog.

pgAdmin Deployment
[][] Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments; we recommend using an installer whenever possible. If you are interested in learning more about the project, or if a pgAdmin installer is not available for your environment, the pages listed below will provide detailed information about creating a custom deployment.
Contents:
Container Deployment
[][] pgAdmin can be deployed in a container using the image at:

PostgreSQL Utilities
The PostgreSQL utilities , , and are included in the container to allow backups to be created and restored and other maintenance functions to be executed. Multiple versions are included in the following directories to allow use with different versions of the database server:
	PostgreSQL 9.4: /usr/local/pgsql-9.4

	PostgreSQL 9.5: /usr/local/pgsql-9.5

	PostgreSQL 9.6: /usr/local/pgsql-9.6

	PostgreSQL 10: /usr/local/pgsql-10

	PostgreSQL 11: /usr/local/pgsql-11

The most recent version of the utilities is used by default; this may be changed in the .

Environment Variables
The container will accept the following variables at startup:
This is the email address used when setting up the initial administrator account to login to pgAdmin. This variable is required and must be set at launch time.
This is the password used when setting up the initial administrator account to login to pgAdmin. This variable is required and must be set at launch time.
Default: <null>
If left un-set, the container will listen on port 80 for connections in plain text. If set to any value, the container will listen on port 443 for TLS connections.
When TLS is enabled, a certificate and key must be provided. Typically these should be stored on the host file system and mounted from the container. The expected paths are /certs/server.crt and /certs/server.key
Default: [::]
Specify the local address that the servers listens on. The default should work for most users - in IPv4-only environments, this may need to be set to 127.0.0.1.
Default: 80 or 443 (if TLS is enabled)
Allows the port that the server listens on to be set to a specific value rather than using the default.
Default: 25
Adjust the number of threads the Gunicorn server uses to handle incoming requests. This should typically be left as-is, except in highly loaded systems where it may be increased.

Mapped Files and Directories
The following files or directories can be mapped from the container onto the host machine to allow configuration to be customised and shared between instances:
This is the working directory in which pgAdmin stores session data, user files, configuration files, and it’s configuration database. Mapping this directory onto the host machine gives you an easy way to maintain configuration between
invocations of the container.
This file can be used to override configuration settings in pgAdmin. Settings found in config.py can be overridden with deployment specific values if required.
If this file is mapped, server definitions found in it will be loaded at launch time. This allows connection information to be pre-loaded into the instance of pgAdmin in the container.
If TLS is enabled, this file will be used as the servers TLS certificate.
If TLS is enabled, this file will be used as the key file for the servers TLS certificate.

Examples
Run a simple container over port 80:
[commandchars=
{}] docker pull dpage/pgadmin4 docker run p :80 e e d dpage/pgadmin4
Run a TLS secured container using a shared config/storage directory in /private/var/lib/pgadmin on the host, and servers pre-loaded from /tmp/servers.json on the host:
[commandchars=
{}] docker pull dpage/pgadmin4 docker run p :443 v v v v e e e d dpage/pgadmin4

pgAdmin Project Contributions
[][] pgAdmin is an open-source project that invites you to get involved in the development process. For more information about contributing to the pgAdmin project, contact the developers on the pgAdmin mailing list to discuss any ideas you might have for enhancements or bug fixes.
In the sections listed below, you’ll find detailed information about the development process used to develop, improve, and maintain the pgAdmin client.
Contents:
Submitting Patches
[][] Before developing a patch for pgAdmin you should always contact the developers on the mailing list to discuss your plans. This ensures that others know if you’re fixing a bug and can then avoid duplicating your work, and in the case of large patches, gives the community the chance to discuss and refine your ideas before investing too much time writing code that may later be rejected.
You should always develop patches against a checkout of the source code from the GIT source code repository, and not a release tarball. This ensures that you’re working with the latest code on the branch and makes it easier to generate patches correctly. You can checkout the source code with a command like:
[commandchars=
{}] git clone git://git.postgresql.org/git/pgadmin4.git
Once you’ve made the changes you wish to make, commit them to a private development branch in your local repository. Then create a patch containing the changes in your development branch against the upstream branch on which your work is based. For example, if your current branch contains your changes, you might run:
[commandchars=
{}] git diff origin/master mycoolfeature.diff
to create a patch between your development branch and the public master branch.
You can also create patches directly from the development tree, for example:
[commandchars=
{}] git diff mycoolfeature.diff
If you are adding new files, you may need to stage them for commit, and then create your patch against the staging area. If any of the files are binary, for example, images, you will need to use the option:
[commandchars=
{}] git add file1.py file2.py images/image1.png [...] git diff cached binary mycoolfeature.diff
Once you have your patch, check it thoroughly to ensure it meets the pgAdmin , and review it against the to minimise the chances of it being rejected. Once you’re happy with your work, mail it as an attachment to the mailing list . Please ensure you include a full description of what the patch does, as well as the rationale for any important design decisions.

Code Overview
[][] The bulk of pgAdmin is a Python web application written using the Flask framework on the backend, and HTML5 with CSS3, Bootstrap and jQuery on the front end. A desktop runtime is also included for users that prefer a desktop application to a web application, which is written in C++ using the QT framework.
Runtime
The runtime is essentially a Python webserver and browser in a box. Found in the directory in the source tree, it is a relatively simple QT application that is most easily modified using the application.

Web Application
The web application forms the bulk of pgAdmin and can be found in the directory in the source tree. The main file is which can be used to run the built-in standalone web server, or as a WSGI application for production use.
Configuration
The core application configuration is found in . This file includes all configurable settings for the application, along with descriptions of their use. It is essential that various settings are configured prior to deployent on a web server; these can be overriden in to avoid modifying the main configuration file.

User Settings
When running in desktop mode, pgAdmin has a single, default user account that is used for the desktop user. When running in server mode, there may be unlimited users who are required to login prior to using the application. pgAdmin utilised the module to manage application security and users, and provides options for self-service password reset and password changes etc.
Whether in desktop or server mode, each user’s settings are stored in a SQLite database which is also used to store the user accounts. This is initially created using the script which will create the database file and schema within it, and add the first user account (with administrative privileges) and a default server group for them. A table is also used to store user configuration settings in a key-value fashion. Although not required, setting keys (or names) are typically formatted using forward slashes to artificially namespace values, much like the pgAdmin 3 settings files on Linux or Mac.
Note that the local configuration must be setup prior to being run. The local configuration will determine how the script sets up the database, particularly with regard to desktop vs. server mode.

pgAdmin Core
The heart of pgAdmin is the package. This contains the globally available HTML templates used by the Jinja engine, as well as any global static files such as images, Javascript and CSS files that are used in multiple modules.
The work of the package is handled in it’s constructor, . This is responsible for setting up logging and authentication, dynamically loading other modules, and a few other tasks.

Modules
Units of functionality are added to pgAdmin through the addition of modules. Theses are Python object instance of classes, inherits the PgAdminModule class (a Flask Blueprint implementation), found in . It provide various hook points for other modules to utilise (primarily the default module - the browser).
To be recognised as a module, a Python package must be created. This must:
	Be placed within the directory, and

	Implements pgadmin.utils.PgAdminModule class

	An instance variable (generally - named) representing that particular class in that package.

Each module may define a and directory for the Blueprint that it implements. To avoid name collisions, templates should be stored under a directory within the specified template directory, named after the module itself. For example, the module stores it’s templates in . This does not apply to static files which may omit the second module name.
In addition to defining the Blueprint, the module is typically responsible for defining all the views that will be rendered in response to client requests, we must provide a REST API url(s) for these views. These must include appropriate route and security decorators. Take a look at the NodeView class, which uses the same approach as Flask’s MethodView, it can be found in . This specific class is used by browser nodes for creating REST API url(s) for different operation on them. i.e. list, create, update, delete, fetch children, get statistics/reversed SQL/dependencies/dependents list for that node, etc. We can use the same class for other purpose too. You just need to inherit that class, and overload the member variables operations, parent_ids, ids, node_type, and then register it as node view with PgAdminModule instance.
Most pgAdmin modules will also implement the provided by the PgAdminModule class. This is responsible for providing hook points to integrate the module into the rest of the application - for example, a hook might tell the caller what CSS files need to be included on the rendered page, or what menu options to include and what they should do. Hook points need not exist if they are not required. It is the responsiblity of the caller to ensure they are present before attempting to utilise them.
Hooks currently implemented are:
[commandchars=
{}]
pgAdmin Modules may include any additional Python modules that are required to fulfill their purpose, as required. They may also reference other dynamically loaded modules, but must use the defined hook points and fail gracefully in the event that a particular module is not present.

Nodes
Nodes are very similar to modules, it represents an individual node or, collection object on the browser treeview. To recognised as a node module, a Python package (along with javascript modules) must be created. This must:
	Be placed within the directory, and

	Implements the BrowserPluginModule, and registers the node view, which exposes required the REST APIs

	An instance of the class object

Front End
pgAdmin uses javascript extensively for the front-end implementation. It uses require.js to allow the lazy loading (or, say load only when required), bootstrap for UI look and feel, Backbone for data manipulation of a node, Backform for generating properties/create dialog for selected node. We have divided each module in small chunks as much as possible. Not all javascript modules are required to be loaded (i.e. loading a javascript module for database will make sense only when a server node is loaded competely.) Please look at the the javascript files node.js, browser.js, menu.js, panel.js, etc for better understanding of the code.

Coding Standards
[][] pgAdmin uses multiple technologies and multiple languages, each of which have their own coding standards.
General
In all languages, indentations should be made with 4 spaces, and excessively long lines wrapped where appropriate to ensure they can be read on smaller displays (80 characters is used in many places, but this is not a required maximum size as it’s quite wasteful on modern displays). Typically lines should not be longer than 120 characters.
Comments should be included in all code where required to explain its purpose or how it works if not obvious from a quick review of the code itself.

CSS 3
CSS3 is used for styling and layout throughout the application. Extensive use is made of the Bootstrap Framework to aid in that process, however additional styles must still be created from time to time.
Most custom styling comes from individual modules which may advertise static stylesheets to be included in the module that is loading them via hooks.
Styling overrides (for example, to alter the Bootstrap look and feel) will typically be found in the file in the main static file directory for the application.
Styling should never be applied inline in HTML, always through an external stylesheet, which should contain comments as appropriate to explain the usage or purpose for the style.
Styles should be specified clearly, one per line. For example:
[commandchars=
{}]
All stylesheets must be CSS3 compliant.

HTML 5
HTML 5 is used for page structure throughout the application, in most cases being rendered from templates by the Jinja2 template engine in Flask.
All HTML must be HTML 5 compliant.

Javascript
Client-side code is written in Javascript using jQuery and various plugins. Whilst much of the code is rendered from static files, there is also code that is rendered from templates using Jinja2 (often to inject the users settings) or constructed on the fly from module hooks.
A typical Javascript function might be formatted like this (this snipped is from a template):
[commandchars=
{}]
Note the use of a descriptive function name, using the underscore character to separate words in all lower case, and short but descriptive lower case variable names.
noteNote: From version 3.0 onwards, new or refactored code should be written using ES6 features and conventions.
C++
C++ code is used in the desktop runtime for the application, primarily with the QT framework and an embedded Python interpreter. Note the use of hanging braces, which may be omitted if on a single statement is present:
[commandchars=
{}]

Python
Python is used for the backend web server. All code must be compatible with Python 2.7 and should include PyDoc comments whilst following the official Python coding standards defined in . An example function along with the required file header is shown below:
[commandchars=
{}]

Code Snippets
[] This document contains code for some of the important classes, listed as below:
	
	
	
	

PgAdminModule
[] PgAdminModule is inherted from Flask.Blueprint module. This module defines a set of methods, properties and attributes, that every module should implement.
[commandchars=
{}]

NodeView
[] NodeView class helps exposing basic REST APIs for different operations used by pgAdmin Browser. The basic idea has been taken from the class. Because - we need a lot more operations (not, just CRUD), we can not use it directly.
[commandchars=
{}]

BaseDriver
[]
[commandchars=
{}]

BaseConnection
[]
[commandchars=
{}]

Code Review Notes
[][] This document lists a number of standard items that will be checked during the review process for any patches submitted for inclusion in pgAdmin.
	Ensure all code follows the pgAdmin .

	Ensure all code has unit test coverage and API/feature test coverage where appropriate.

	Copyright years must be correct and properly formatted (to make it easy to make bulk updates every year). The start date should always be 2013, and the end year the current year, e.g.
Copyright (C) 2013 - 2019, The pgAdmin Development Team

	Ensure there’s a blank line immediately following any copyright headers.

	Include PyDoc comments for functions, classes and modules. Node modules should be “””Implements the XXXX node”””.

	Ensure that any generated SQL does not have any leading or trailing blank lines and consistently uses 4 space indents for nice formatting.

	Don’t special-case any Slony objects. pgAdmin 4 will have no direct knowledge of Slony, unlike pgAdmin 3.

	If you copy/paste modules, please ensure any comments are properly updated.

	Read all comments, and ensure they make sense and provide useful commentary on the code.

	Ensure that field labels both use PostgreSQL parlance, but also are descriptive. A good example is the “Init” field on an FTS Template - Init is the PG term, but adding the word “Function” after it makes it much more descriptive.

	Re-use code whereever possible, but factor it out into a suitably central location - don’t copy and paste it unless modifications are required!

	Format code nicely to make it readable. Break up logical chunks of code with blank lines, and comment well to describe what different sections of code are for or pertain to.

	Ensure that form validation works correctly and is consistent with other dialogues in the way errors are displayed.

	On dialogues with Schema or Owner fields, pre-set the default values to the current schema/user as appropriate. In general, if there are common or sensible default values available, put them in the fields for the user.

	1 patch == 1 feature. If you need to fix/update existing infrastructure in your patch, it’s usually easier if it’s in a separate patch. Patches containing multiple new features or unrelated changes are likely to be rejected.

	Ensure the patch is fully functional, and works! If a patch is being sent as a work in progress, not intended for commit, clearly state that it’s a WIP, and note what does or does not yet work.

Translations
[] pgAdmin supports multiple languages using the Python module. A list of supported languages is included in the configuration file and must be updated whenever languages are added or removed with (two letter) language codes. The codes are named in this document.
Translation Marking
Strings can be marked for translation in either Python code (using) or Jinja templates (using). Here are some examples that show how this is achieved.
Python:
[commandchars=
{}]
Jinja:
[commandchars=
{}]
[commandchars=
{}] ((appname)s Password Change, appname=config.APPNAME)
[commandchars=
{}]

Updating and Merging
Whenever new strings are added to the application, the template catalogue () and the existing translation catalogues () must be updated and compiled. This can be achieved using the following commands from the directory in the Python virtual environment for pgAdmin:
[commandchars=
{}] pgadmin4 user pybabel extract F babel.cfg o pgadmin/messages.pot pgadmin
Once the template has been updated it needs to be merged into the existing message catalogues:
[commandchars=
{}] pgadmin4 user pybabel update i pgadmin/messages.pot d pgadmin/translations
Finally, the message catalogues can be compiled for use:
[commandchars=
{}] pgadmin4 user pybabel compile d pgadmin/translations

Adding a New Language
Adding a new language is simple. First, add the language name and identifier to :
[commandchars=
{}]
Then, create the new message catalogue from the directory in the source tree in the Python virtual environment for pgAdmin:
[commandchars=
{}] pgadmin4 user pybabel init i pgadmin/messages.pot d pgadmin/translations l

pgAgent
[][] pgAgent is a job scheduling agent for Postgres databases, capable of running multi-step batch or shell scripts and SQL tasks on complex schedules.
pgAgent is distributed independently of pgAdmin. You can download pgAgent from the of the pgAdmin website.
Contents:
Using pgAgent
[][] pgAgent is a scheduling agent that runs and manages jobs; each job consists of one or more steps and schedules. If two or more jobs are scheduled to execute concurrently, pgAgent will execute the jobs in parallel (each with it’s own thread).
A step may be a series of SQL statements or an operating system batch/shell script. Each step in a given job is executed when the previous step completes, in alphanumeric order by name. Switches on the dialog (accessed through the context menu) allow you to modify a job, enabling or disabling individual steps as needed.
Each job is executed according to one or more schedules. Each time the job or any of its schedules are altered, the next runtime of the job is re-calculated. Each instance of pgAgent periodically polls the database for jobs with the next runtime value in the past. By polling at least once every minute, all jobs will normally start within one minute of the specified start time. If no pgAgent instance is running at the next runtime of a job, it will run as soon as pgAgent is next started, following which it will return to the normal schedule.
When you highlight the name of a defined job in the pgAdmin tree control, the tab of the main pgAdmin window will display details about the job, and the tab will display details about the job’s execution.
Security concerns
pgAgent is a very powerful tool, but does have some security considerations that you should be aware of:
- be tempted to include a password in the pgAgent connection string - on Unix systems it may be visible to all users in ‘ps’ output, and on Windows systems it will be stored in the registry in plain text. Instead, use a libpq file to store the passwords for every database that pgAgent must access. Details of this technique may be found in the .
- all jobs run by pgAgent will run with the security privileges of the pgAgent user. SQL steps will run as the user that pgAgent connects to the database as, and batch/shell scripts will run as the operating system user that the pgAgent service or daemon is running under. Because of this, it is essential to maintain control over the users that are able to create and modify jobs. By default, only the user that created the pgAgent database objects will be able to do this - this will normally be the PostgreSQL superuser.

Installing pgAgent
[][] pgAgent runs as a daemon on Unix systems, and a service on Windows systems. In most cases it will run on the database server itself - for this reason, pgAgent is not automatically configured when pgAdmin is installed. In some cases however, it may be preferable to run pgAgent on multiple systems, against the same database; individual jobs may be targeted at a particular host, or left for execution by any host. Locking prevents execution of the same instance of a job by multiple hosts.
Database setup
Before using pgAdmin to manage pgAgent, you must create the pgAgent extension in the maintenance database registered with pgAdmin. To install pgAgent on a PostgreSQL host, connect to the database, and navigate through the menu to open the Query tool. For server versions 9.1 or later, and pgAgent 3.4.0 or later, enter the following command in the query window, and click the icon:
[commandchars=
{}]
This command will create a number of tables and other objects in a schema called ‘pgagent’.
The database must also have the pl/pgsql procedural language installed - use the PostgreSQL CREATE LANGUAGE command to install pl/pgsql if necessary. To install pl/pgsql, enter the following command in the query window, and click the icon:
[commandchars=
{}]
If you are using an earlier version of PostgreSQL or pgAgent, use the icon on the Query Tool toolbar to open a browser window and locate the script. The installation script is installed by pgAdmin, and the installation location varies from operating system to operating system:
	On Windows, it is usually located under (or if installed with the PostgreSQL server installer).

	On Linux, it is usually located under or .

After loading the file into the Query Tool, click the icon to execute the script. The script will create a number of tables and other objects in a schema named .

Daemon installation on Unix
noteNote: pgAgent is available in Debian/Ubuntu (DEB) and Redhat/Fedora (RPM) packages for Linux users, as well as source code. See the . for more information.
To install the pgAgent daemon on a Unix system, you will normally need to have root privileges to modify the system startup scripts. Modifying system startup scripts is quite system-specific so you should consult your system documentation for further information.
The program itself takes few command line options, most of which are only needed for debugging or specialised configurations:
[commandchars=
{}]
The connection string is a standard PostgreSQL libpq connection string (see the for further details). For example, the following command line will run pgAgent against a server listening on the localhost, using a database called ‘pgadmin’, connecting as the user ‘postgres’:
[commandchars=
{}]

Service installation on Windows
pgAgent can install itself as a service on Windows systems. The command line options available are similar to those on Unix systems, but include an additional parameter to tell the service what to do:
[commandchars=
{}]
The service may be quite simply installed from the command line as follows (adjust the path as required):
[commandchars=
{}]
You can then start the service at the command line using , or from the control panel applet. Any logging output or errors will be reported in the Application event log. The DEBUG mode may be used to run pgAgent from a command prompt. When run this way, log messages will output to the command window.

Creating a pgAgent Job
[][] pgAgent is a scheduling agent that runs and manages jobs; each job consists of steps and schedules.
To create or manage a job, use the pgAdmin tree control to browse to the server on which the pgAgent database objects were created. The tree control will display a node, under which currently defined jobs are displayed. To add a new job, right click on the node, and select from the context menu.
When the pgAgent dialog opens, use the tabs on the dialog to define the steps and schedule that make up a pgAgent job.
Use the fields on the tab to provide general information about a job:
	Provide a name for the job in the field.

	Move the switch to the position to enable a job, or to disable a job.

	Use the drop-down to select a class (for job categorization).

	Use the field to specify the name of a machine that is running pgAgent to indicate that only that machine may execute the job. Leave the field blank to specify that any machine may perform the job.
It is not always obvious what value to specify for the Host Agent in order to target a job step to a specific machine. With pgAgent running on the required machines and connected to the scheduler database, you can use the following query to view the hostnames as reported by each agent:
[commandchars=
{}]
Use the hostname exactly as reported by the query in the Host Agent field.

	Use the field to store notes about the job.

Use the tab to define and manage the steps that the job will perform. Click the Add icon (+) to add a new step; then click the compose icon (located at the left side of the header) to open the step definition dialog:
Use fields on the step definition dialog to define the step:
	Provide a name for the step in the field; please note that steps will be performed in alphanumeric order by name.

	Use the switch to include the step when executing the job () or to disable the step ().

	Use the switch to indicate if the job step invokes SQL code () or a batch script ().

	If you select , use the tab to provide SQL code for the step.

	If you select , use the tab to provide the batch script that will be executed during the step.

	Use the switch to indicate if the step is performed on a local server () or on a remote host (). If you specify a remote connection should be used for the step, the field will be enabled, and you must provide a libpq-style connection string.

	Use the drop-down to select the database on which the job step will be performed.

	Use the field to specify a libpq-style connection string to the remote server on which the step will be performed. For more information about writing a connection string, please see the .

	Use the drop-down to specify the behavior of pgAgent if it encounters an error while executing the step. Select from:

	- Stop the job if you encounter an error while processing this step.

	- Mark the step as completing successfully, and continue.

	- Ignore the error, and continue.

	Use the field to provide a comment about the step.

Use the context-sensitive field on the step definition dialog’s tab to provide the SQL code or batch script that will be executed during the step:
	If the step invokes SQL code, provide one or more SQL statements in the field.

	If the step performs a batch script, provide the script in the field. If you are running on a Windows server, standard batch file syntax must be used. When running on a Linux server, any shell script may be used, provided that a suitable interpreter is specified on the first line (e.g.).

When you’ve provided all of the information required by the step, click the compose icon to close the step definition dialog. Click the add icon (+) to add each additional step, or select the tab to define the job schedule.
Click the Add icon (+) to add a schedule for the job; then click the compose icon (located at the left side of the header) to open the schedule definition dialog:
Use the fields on the schedule definition tab to specify the days and times at which the job will execute.
	Provide a name for the schedule in the field.

	Use the switch to indicate that pgAgent should use the schedule () or to disable the schedule ().

	Use the calendar selector in the field to specify the starting date and time for the schedule.

	Use the calendar selector in the field to specify the ending date and time for the schedule.

	Use the field to provide a comment about the schedule.

Select the tab to define the days on which the schedule will execute.
Use the fields on the tab to specify the details about the schedule in a cron-style format. The job will execute on each date or time element selected on the tab.
Click within a field to open a list of valid values for that field; click on a specific value to add that value to the list of selected values for the field. To clear the values from a field, click the X located at the right-side of the field.
Use the fields within the box to specify the days on which the job will execute:
	Use the field to select the days on which the job will execute.

	Use the field to select the numeric days on which the job will execute. Specify the to indicate that the job should be performed on the last day of the month, irregardless of the date.

	Use the field to select the months in which the job will execute.

Use the fields within the box to specify the times at which the job will execute:
	Use the field to select the hour at which the job will execute.

	Use the field to select the minute at which the job will execute.

Select the tab to specify any days on which the schedule will execute.
Use the fields on the tab to specify days on which you wish the job to not execute; for example, you may wish for jobs to not execute on national holidays.
Click the Add icon (+) to add a row to the exception table, then:
	Click within the column to open a calendar selector, and select a date on which the job will not execute. Specify in the column to indicate that the job should not execute on any day at the time selected.

	Click within the column to open a time selector, and specify a time on which the job will not execute. Specify in the column to indicate that the job should not execute at any time on the day selected.

When you’ve finished defining the schedule, you can use the tab to review the code that will create or modify your job.
Click the button to save the job definition, or to exit the job without saving. Use the button to remove your unsaved entries from the dialog.
After saving a job, the job will be listed under the node of the pgAdmin tree control of the server on which it was defined. The tab in the main pgAdmin window will display a high-level overview of the selected job, and the tab will show the details of each run of the job.
To modify an existing job or to review detailed information about a job, right-click on a job name, and select from the context menu.

Licence
[][] pgAdmin is released under the , which is a liberal Open Source licence similar to BSD or MIT, and approved by the Open Source Initiative. The copyright for the project source code, website and documentation is attributed to the .

Release Notes
[] pgAdmin release notes provide information on the features and improvements in each release. This page includes release notes for major releases and minor (bugfix) releases. Select your version from the list below to see the release notes for it.
Version 4.3
[] Release date: 2019-03-07
This release contains a number of new features and fixes reported since the release of pgAdmin4 4.2
Features
0em
- Install a script to start pgAdmin (pgadmin4) from the command line when installed from the Python wheel.
- Add a “scratch pad” to the Query Tool to hold text snippets whilst editing.
- Add Commit and Rollback buttons to the Query Tool.
- Allow X-FRAME-OPTIONS to be set for security. Default to SAMEORIGIN.
- Automatically expand child nodes as well as the selected node on the treeview if there is only one.
- Include multiple versions of the PG utilties in containers.
- Update Alpine Linux version in the docker container.
- Support double-click on Query Tool result grid column resize handles to auto-size to the content.

Bug fixes
0em
- Ensure size stats are prettified on the statistics tab when the UI language is not English.
- Handle display of roles with expiration set to infinity correctly.
- Allow editing of values in columns with the oid datatype which are not an actual row OID.
- Make the Query Tool tab titles more concise and useful.
- Fix support for bigint’s in JSONB data.
- Update CodeMirror to 5.43.0 to resolve issues with auto-indent.
- Ensure JSON data isn’t modified in-flight by psycopg2 when using View/Edit data.
- Modify the Download as CSV option to use the same connection as the Query Tool its running in so temporary tables etc. can be used.
- Fix context sub-menu alignment on Safari.
- Update documentation screenshots as per new design.
- Fix alignment of Close and Maximize button of Grant Wizard.
- Add full support and testsfor all PG server side encodings.
- Fix editing of table data with a JSON primary key.
- Ignore exceptions in the logger.
- Close connections gracefully when the user logs out of pgAdmin.
- Fix alignment of checkbox to drop multiple schedules of pgAgent job.
- Don’t exclude SELECT statements from transaction management in the Query Tool in case they call data-modifying functions.
- Optimise display of Dependencies and Dependents, and use on-demand loading of rows in batches of 100.
- Fix alignment of import/export toggle switch.
- Prevent an error when closing the Sort/Filter dialogue with an empty filter string.
- Fix alignment of Connection type toggle switch of pgagent.
- Fix the query to set bytea_output so that read-only standbys don’t consider it a write query.
- Add full support and testsfor all PG server side encodings.
- Don’t embed docs and external sites in iframes, to allow the external sites to set X-FRAME-OPTIONS = DENY for security.
- Add full support and testsfor all PG server side encodings.
- Custom-encode forward slashes in URL parameters as Apache HTTPD doesn’t allow them in some cases.
- Update CodeMirror to 5.43.0 to resolve issues with tab indent with use spaces enabled.
- Ensure long queries don’t cause errors when downloading CSV in the Query Tool.
- Disable the editor and execute functions whilst queries are executing.
- Fix an issue where importing servers fails if a group already exists for a different user.

Version 4.2
[] Release date: 2019-02-07
This release contains a number of fixes reported since the release of pgAdmin4 4.1
Bug fixes
0em
- Replace Bootstrap switch with Bootstrap4 toggle to improve the performance.
- Replace the PyCrypto module with the cryptography module.
- Fixed SQL for foreign table options.
- Fixed execution time to show Hours part for long running queries in Query Tool.
- Messages tab of query tool should be clear on subsequent execution of table/view using View/Edit Data.
- Clear drop-down menu should be disabled for View/Edit Data.
- Fixed Statistics panel hang issue for 1000+ tables.
- Proper error should be thrown when server group is created with existing name.
- Ensure long string should be wrap in alertify dialogs.
- Ensure that output of the query should be displayed even if Data Output window is detached from the Query Tool.
- Proper SQL should be generated when create function with return type as custom type argument.
- Ensure that database restriction of server dialog should work with special characters.
- Ensure that Backup/Restore button should work on single click.
- Fixed SQL for when clause while creating Trigger.
- Proper SQL should be generated when creating/changing column with custom type argument.
- Ensure that file format combo box value should be retained when hidden files checkbox is toggled.
- Proper SQL should be generated when create procedure with custom type arguments.
- Ensure that browser should warn before close or refresh.
- Fixed EXEC script for procedures.
- Proper SQL should be generated when create domain of type interval with precision.
- Drop-down should be closed when click on any other toolbar button.
- Fixed keyboard navigation for dialog tabs.
- Increase frames splitter mouse hover area to make it easier to resize.
- Fixed alignment of tree arrow icons for Internet Explorer.
- Ensure object names in external process dialogues are properly escaped.
- Correct order of Save and Cancel button for json/jsonb editing.
- Data should be updated properly for FTS Configurations, FTS Dictionaries, FTS Parsers and FTS Templates.
- Fixed unable to drop multiple Rules and Foreign Tables from properties tab.
- Fixed Query Tool Initialization Error.
- Fixed keyboard navigation for Select2 and Privilege cell in Backgrid.
- Correct schema should be displayed in Materialized View dialog.
- Fix alignment of help messages in properties panels.
- Fix alignment of submenu for Internet Explorer.
- Dashboard graph optimization.
- Remove Python 2.6 code that’s now obsolete.
- Expose the bind address in the Docker container via PGADMIN_BIND_ADDRESS.
- Exclude HTTPExceptions from the all_exception_handler as they should be returned as-is.

Version 4.1
[] Release date: 2019-01-15
This release contains a number of fixes reported since the release of pgAdmin4 4.0
Bug fixes
0em
- Fix SQL generated for tables with inherited columns.
- Ensure the context menu works after a server is renamed.
- Fix ordering of VACUUM options which changed in PG11.
- Don’t show system catalogs in the schemas property list unless show system objects is enabled.
- Fix help for the backup/restore dialogues.
- Ensure that last row of table data should be visible and user will be able to add new row.
- Make the browser more robust in the face of multibyte characters in SQL_ASCII databases.

Version 4.0
[] Release date: 2019-01-10
This release contains a number of features and fixes reported since the release of pgAdmin4 3.6
Features
0em
- Allow query plans to be downloaded as an SVG file.
- New UI design.
- Allow servers to be pre-loaded into container deployments.

Bug fixes
0em
- Increase the size of the resize handle of the edit grid text pop-out.
- Fix handling of array types as inputs to the debugger.
- Fix an issue that could cause the Query Tool to fail to render.
- Further improvements to treeview restoration.
- Run Postfix in the container build so passwords can be reset etc.
- Add titles to the code areas of the Query Tool and Debugger to ensure that panels can be re-docked within them.
- Fix a webpack issue that could cause the Query Tool to fail to render.
- Ensure we display the relation name (and not the OID) in the locks table wherever possible.
- Fix an encoding issue in the query tool.
- Include the WHERE clause on EXCLUDE constraints in RE-SQL.
- Fix an issue when user define Cast from smallint->text is created.
- Hide Radio buttons that should not be shown on the maintenance dialogue.
- Ensure that null values handled properly in CSV download.
- Tweak the wording on the Grant Wizard.
- Prevent attempts to bulk-drop schema objects.
- Ensure the browser toolbar buttons work in languages other than English.
- Allow horizontal sizing of the edit grid text pop-out.
- Ensure auto complete should works when first identifier in the FROM clause needs quoting.
- Ensure auto complete should works for columns from a schema-qualified table.
- Ensure identifiers are properly displayed in the plan viewer.
- Make the setup process more robust against aborted executions.
- Fixed an issue while creating export job.

Version 3.6
[] Release date: 2018-11-29
This release contains a number of features and fixes reported since the release of pgAdmin4 3.5
Features
0em
- Add support for dropping multiple objects at once from the collection Properties panel.
- Add the ability to import and export server definitions from a config database.

Bug fixes
0em
- Ensure previous notices are not removed from the Messages tab in the Query Tool if an error occurs during query execution.
- Allow the selection order to be preserved in the Select2 control to fix column ordering in data Import/Export.
- Allow use of 0 (integer) and empty strings as parameters in the debugger.
- Properly report errors when debugging cannot be started.
- Prevent the debugger controls being pressed again before previous processing is complete.
- Fix toggle breakpoints buttons in the debugger.
- Fix changes to the NOT NULL and default value options in the Table Dialogue.
- Fix dropping of multiple functions/procedures at once.

Version 3.5
[] Release date: 2018-11-01
This release contains a number of features and fixes reported since the release of pgAdmin4 3.4
Features
0em
- Save the treeview state periodically, and restore it automatically when reconnecting.
- Migrate from Bootstrap 3 to Bootstrap 4.

Bug fixes
0em
- Ensure that Utilities(Backup/Restore/Maintenence/Import-Export) should not be started if binary path is wrong and also added ‘Stop Process’ button to cancel the process.
- Fix syntax error when creating new pgAgent schedules with a start date/time and exception.
- Cleanup session files periodically.
- Rename the ‘SQL Editor’ section of the Preferences to ‘Query Tool’ as it applies to the whole tool, not just the editor.
- Fix connection garbage collector.
- Purge connections from the cache on logout.
- Ensure that utility existence check should work for schema and other child objects while taking Backup/Restore.
- Fixed fatal error while launching the pgAdmin4 3.5. Update the version of the Flask to 0.12.4 for release.

Version 3.4
[] Release date: 2018-10-04
This release contains a number of features and fixes reported since the release of pgAdmin4 3.3
Features
0em
- Move all CSS into SCSS files for consistency and ease of colour maintenance etc.
- Add optional data point markers and mouse-over tooltips to display values on graphs.
- Add shortcuts for View Data and the Query tool to the Browser header bar.

Bug fixes
0em
- Ensure the runtime can startup properly if there are wide characters in the logfile path on Windows.
- Fix handling of backslashes in the edit grid.
- Ensure queries are no longer executed when dashboards are closed.
- Fix logic around validation and highlighting of Sort/Filter in the Query Tool.
- Ensure auto-complete works for objects in schemas other than public and pg_catalog.
- Ensure changes to Query Tool settings from the Preferences dialogue are applied before executing queries.
- Swap the Schema and Schemas icons and Catalog and Catalogs icons that had been used the wrong way around.

Version 3.3
[] Release date: 2018-09-06
This release contains a number of features and fixes reported since the release of pgAdmin4 3.2
Features
0em
- Add a geometry viewer that can render PostGIS data on a blank canvas or various map sources.
- Added new backup/restore options for PostgreSQL 11. Added dump options for ‘pg_dumpall’.
- Add a Spanish translation.

Bug fixes
0em
- Stabilise feature tests for continuous running on CI systems.
- Fixed debugger execution issues.
- Ensure ‘select all’ and ‘unselect all’ working properly for pgAgent schedule.
- Fix sort/filter dialog issue where it incorrectly requires ASC/DESC.
- Ensure backup should work with ‘data-only’ and ‘schema-only’ for any format.
- Fix keyboard shortcuts layout in the preferences panel.
- Merge pgcli code with version 1.10.3, which is used for auto complete feature.
- Ensure that refreshing a node also updates the Property list.
- Ensure that refresh button on dashboard should refresh the table.
- Handle connection errors properly in the query tool.
- Make session implementation thread safe
- Fix auto scrolling issue in debugger on step in and step out.
- Fix sort/filter dialog editing issue.
- Ensure sort/filter dialog should display proper message after losing database connection.
- When building the Windows installer, copy system Python packages before installing dependencies to ensure we don’t end up with older versions than intended.
- Correct the documentation of View/Edit data.

Version 3.2
[] Release date: 2018-08-09
This release contains a number of features and fixes reported since the release of pgAdmin4 3.1
Features
0em
- Added version number for URL’s to ensure that files are only cached on a per-version basis.
- Add support for SCRAM password changes (requires psycopg2 >= 2.8).
- Add support for reset saved password.
- Add support for Trigger and JIT stats in the graphical query plan viewer.
- Add support for primary key, foreign key, unique key, indexes and triggers on partitioned tables for PG 11.
- Allow the user to specify a fixed port number in the runtime to aid cookie whitelisting etc.
- Add a menu option to the runtime to copy the appserver URL to the clipboard.

Bug fixes
0em
- Fix the upgrade check on macOS.
- Fix a number of debugger execution issues.
- Infrastructure (and changes to the Query Tool, Dashboards and Debugger) for realtime preference handling.
- Fix Directory format support for backups.
- Support running on systems without a system tray.
- Cleanup and fix handling of Query Tool Cancel button status.
- Fix restoring of restore options for sections.
- Don’t create a session when the /misc/ping test endpoint is called.
- Various procedure/function related fixes for PG 11.
- Exclude system columns in Import/Export.
- pgAdmin4 should work with python 3.7.
- Support SSH tunneling with keys that don’t have a passphrase.
- Ensure the SSH tunnel port number is honoured.
- Add support to save and clear SSH Tunnel password.
- COST statement should not be automatically duplicated after creating trigger function.
- View Data->Filtered Rows dialog should be displayed.

Version 3.1
[] Release date: 2018-06-28
This release contains a number of features and fixes reported since the release of pgAdmin4 3.0
Features
0em
- Add support for SSH tunneled connections
- Add an option to auto-complete keywords in upper case
- Add support for LISTEN/NOTIFY in the query tool
- Allow sorting in the file dialogue
- Function and procedure support for PG11
- Allow the connection timeout to be configured on a per-server basis

Bug fixes
0em
- Backup and Restore should not be started if database name contains “=” symbol
- Maintenance should not be started if database name contains “=” symbol
- Fix an error generating SQL for trigger functions
- Standardise the error handling for parsing of JSON response messages from the server
- Fix handling of SQL_ASCII data in the Query Tool
- Catch errors when trying to EXPLAIN an invalid query
- Ensure server cleanup on exit only happens if the server actually started up
- F5 key should work to refresh Browser tree
- Fix handling of SQL_ASCII data in the Query Tool
- Close button added to the alertify message box, which pops up in case of backend error
- Ensure the debugger gets focus when loaded so shortcut keys work as expected
- Fixed query tool keyboard issue where arrow keys were not behaving as expected for execute options dropdown
- Fix a Japanese translation error that could prevent the server starting up
- Allow connections to servers with port numbers < 1024 which may be seen in container environments
- Fixed layout of the alertify error message in the query tool
- Ensure the runtime core application is setup before trying to access any settings
- Set SESSION_COOKIE_SAMESITE=’Lax’ per Flask recommendation to prevents sending cookies with CSRF-prone requests from external sites, such as submitting a form
- Handle errors properly if they occur when renaming a database
- Include the schema name on RE-SQL for packages
- Fix autocomplete
- Fix IPv6 support in the container build
- Fix a French translation error that could prevent the server starting up

Version 3.0
[] Release date: 2018-03-22
This release contains a number of features and fixes reported since the release of pgAdmin4 2.1
Features
0em
- Allow sorting when viewing/editing data
- Add the ability to enable/disable UI animations
- Add keyboard navigation options for the main browser windows
- Add keyboard navigation in Query tool module via Tab/Shift-Tab key
- Support keyboard navigation in the debugger
- Support tab navigation in dialogs
- Add configurable shortcut keys for various common options in the main window
- Configurable shortcuts in the Debugger
- Ensure clickable images/buttons have appropriate tooltips for screen readers
- Add a marker (//) to the dashboard queries to allow them to be more easily filtered from server logs
- Allow dashboard tables and charts to be enabled/disabled
- Rewrite the runtime as a tray-based server which can launch a web browser
- Unvendorize REACT so no longer required in our source tree
- Add support for connecting using pg_service.conf files
- Update Jasmine to v3
- Add a French translation
- Pass the service name to external processes
- Update container build to use Alpine Linux and Gunicorn instead of CentOS/Apache
0em

Bug fixes
0em
- Add a comment to the existing node
- Fix issue resizing column widths not resizable in Query Tool after first query
- Runtime update display file version and copyright year under installers properties
- Application no longer hangs after reload in runtime
- Runtime fixed OSX html scroll direction ignored in MacOS setup
- Allow text selection/copying from disabled CodeMirror instances
- Runtime update fix to Context Menus on Mac that do not work
- Runtime update fix to HTML access keys that don’t work
- Fix keyboard shortcut for text selection
- Update Elephant icon for pgAdmin4 on Windows
- Fix unreadable font via Remote Desktop
- Fix spacing issue on server tree
- Runtime update fixed blank screen on Windows Desktop
- Correct display issues on HiDPI screens
- Issues when creating a pgAgent Schedule
- Fix unicode handling in the external process tools and show the complete command in the process viewer
- Copy text from the Query tool into the clipboard adds invisible characters
- Support keyboard navigation in the debugger
- Fix intermittent specified_version_number ValueError issue on restart
- Fix drag and drop issues
- Don’t listen on port 443 if TLS is not enabled when launching the container
- Runtime update fix scrolling with mouse wheel on mac pgAdmin 4.2.1
- Fix block indent/outdent with configurable width
- Runtime update fix copy to clipboard
- Runtime update fix unable to select tabs in pgAdmin 4.2.1
- Fix a minor UI issue on dashboard while displaying subnode control in Backgrid
- Fix validation of sequence parameters
- Ensure debug messages are available in “messages” window when error occurs
- Update scan and index scan EXPLAIN icons for greater clarity
- Ensure we capture notices raised by queries
- Runtime issue causing double and single quotes not to work
- Runtime issue causing wrong row counts on count column
- Runtime issue causing empty dialog box when refreshing
- Runtime issue causing word sizing in macOS High Sierra
- Runtime issue causing copy cells issues copying cells for key binding
- Fix connection status indicator on IE/FF
- Don’t include sizes on primitive data types that shouldn’t have them when modifying columns
- Ensure the user can use keyboard shortcuts after using button controls such as Cancel, Open and Save
- Update the regression tests to fix issues with Python 3.5 and PG 9.2
- Fix on-click handling of treeview nodes that wasn’t refreshing SQL/Dependencies/Dependents in some circumstances
- Fix quoting of function names in RE-SQL
- Ensure column names on indexes on views are properly quoted in RE-SQL
- Prevent the filter dialog CodeMirror from overflowing onto the button bar of the dialog
- Add a (configurable) limit to the number of pgAgent job history rows displayed on the statistics tab
- Ensure the pgAgent job start/end time grid fields synchronise with the subnode control and validate correctly
- Runtime issue causing Select, Update, and Insert script generation for a table fails to load
- Remove dependency on standards_conforming_strings being enabled
- Fix handling of tie/datetime array types when adding columns to a table
- Fix alignment issues in keyboard shortcut options
- Add missing reverse-engineered SQL header and drop statement for sequences
- Ensure message severity is decoded when necessary by the driver
- Ensure all messages are retrieved from the server in the Query Tool
- Ensure we can properly update rows with upper-case primary key columns
- Insert rows correctly when a table has OIDs and a Primary Key in uppercase
- Ensure SSL options are pushed down to external tools like pg_dump
- Handle opening of non-UTF8 compatible files
- Allow copying of SQL from the dashboard tables
- Fix tablespace tests for Python 3.x
- Fix unicode handling in the external process tools and show the complete command in the process viewer
- Runtime issue causing inability to scroll in File Selector with trackpad on OSX
- Ensure Indexes are displayed on PG 10 tables
- Ensure the file manager properly escapes file & directory names
- Appropriately set the cookie path
- Ensure the host parameter is correctly pickup up from the service file
- Update required ChromeDriver version for current versions of Chrome
- Move the field error indicators in front of the affected fields so they don’t obscure spinners or drop downs etc.
- Show more granular timing info in the query tool history panel
- Ensure Alertify dialogues are modal to prevent them being closed by mis-click

Version 2.1
[] Release date: 2018-01-11
This release contains a number of features and fixes reported since the release of pgAdmin4 2.0
Features
0em
- Allow connections to be coloured in the treeview and query tool
- Improve user interface for selection query in Data Filter window
- Improve data entry in Query Tool
- Allow configuration of CSV and clipboard formatting of query results
- Allow connections to be coloured in the treeview and query tool.
- Allow files to be opened by double clicking on them within Query Tool
- Make the “Save Changes” prompts in the query tool optional
- Add support for editing data in tables with OIDs but no primary keys and updates the editor to retrieve all row values on save, thus immediately showing default values and allowing subsequent editing without a refresh

Bug fixes
0em
- Prevent the Windows installer accepting paths containing invalid characters
- Fix /NOICONS switch in the windows installer
- Fixes in pgAgent module including; 1) allowing start date earlier than end date when scheduling job, 2) Datetime picker not displaying in grid and 3) validation error not displaying propertly for Datetime control
- Display relevant error messages when access is denied creating a schema
- Cleanup some inconsistent error dialog titles
- Fix handling of DATERANGE[] type
- Display long names appropriately in dialogue headers
- Confirm with the user before exiting the runtime
- Fix debugging of self-referencing functions
- Fix the Pause/Resume Replay of WAL files for PostgreSQL 10
- Ensure the switch animation is consistent on the table dialogue and avoid displaying an error incorrectly
- Ensure estimated rows are included correctly in CREATE script for functions
- Getting started links does not open second time if User open any URL and Click on Close button with cross bar
- User can add expirty date on Windows
- Ensure we can download large files and keep the user informed about progress
- Ensure password changes are successful if authenticating using a pgpass file
- Ensure the auto-complete selection list can display longer names
- Ensure line numbers form CodeMirror don’t appear on top of menus
- Format JSON/JSONB nicely when displaying it in the grid editor pop-up
- When selecting an SSL cert or key, update only the expected path in the UI, not all of them
- Do not decrypt the password when the password is ‘None’. This should avoid the common but harmless exception “ValueError: IV must be 16 bytes long while decrypting the password.”
- Only allow specification of a pgpass file if libpq >= 10
- Correct keyboard shortcut. Don’t un-comment code with alt+. in the query tool. It’s only supposed to respond to ctrl/cmd+
- Remove external links from Panel’s context menu
- Ensure the datatype cache is updated when a domain is added
- Ensure column collation isn’t lost when changing field size
- Ensure auto-indent honours the spaces/tabs config setting
- Re-hash the way that we handle rendering of special types such as arrays
- Quote the owner name when creating types
- Attempt to decode database errors based on lc_messages
- Display process output as it happens
- Logs available when executing backup and restore
- Attempt to decode database errors based on lc_messages
- Re-hash the way that we handle rendering of special types such as arrays.
- Fix a number of graphical explain rendering issues
- Fix counted rows display in table properties
- Fix a number of graphical explain rendering issues
- Add an option to manually count rows in tables to render the properties
- Fix utility output capture encoding
- Allow form validation messages to be close in case the eclipse anything on the form
- Ensure we don’t show the full path on the server when using virtual filesystem roots in server mode for SSL certs
- Ensure the scroll location is retains in the query tool data grid if the user changes tab and then returns
- Remove the artificial limit of 4000 characters from text areas
- Honour whitespace properly in the data grid
- Fix support for time without timezone
- Resolve issue where Insert failed when tried with default primary key value
- Allow changing of the users password without leaving the app
- Refuse password changes (and tell the user) if the notification email cannot be sent
- Fix bundle creation on Windows which was failing due to rn line endings in code mirror
- Add missing init.py to backports.csv when building the MSVC windows build
- Push HTTPD logs to container stdout/stderr as appropriate
- Fixes in pgAgent module including; 1) allowing start date earlier than end date when scheduling job, 2) Datetime picker not displaying in grid and 3) validation error not displaying propertly for Datetime control
- Don’t login the user with every request in desktop mode. Just do it once
- Prevent the user pressing the select button in the file manager when it is supposed to be disabled
- Cleanup the layout of the filter data dialogue
- Prevent multiple connections to new slow-to-respond servers being initiated in error
- Fix a reference before assignment error in the file dialogue
- Prevent attempts to select directories as files in the file dialogue
- Ensure invalid options can’t be selected on triggers on views
- Display complete SQL for FTS dictionaries
- Don’t try to render security URLs in desktop mode
- Allow selection of validation error text
- Clear the messages tab when running EXPLAIN/EXPLAIN ANALYZE
- Fix view data for views/mat views

Version 2.0
[] Release date: 2017-10-05
This release contains a number of features and fixes reported since the release of pgAdmin4 1.6
Features
0em
- Add a field to the Server Dialogue allowing users to specify a subset of databases they’d like to see in the treeview
- Significantly speed up loading of the application
- Allow for slow vs. fast connection failures
- Default the file browser view to list, and make it configurable
- Allow queries to be cancelled from the dashboard and display additional info in the subnode control
- Support use of SSL certificates for authentication
- Support use of pgpass files
- Ship with pre-configured paths that can work in both Server and Desktop modes out of the box
- Update icons with new designs and remove from menus to de-clutter the UI

Bug fixes
0em
- Prevent continual polling for graph data on the dashboard if the server is disconnected
- Update CodeMirror version
- Properly handle trigger functions with parameters
- Make $ quoting consistent
- Fix issue where Browser hangs/crashes when loading data (using sql editor) from table which contains large blob data
- Fix handline of large file uploads and properly show any errors that may occur
- Update CodeMirror version
- Support SSL in the regression tests
- Fix PostGIS Datatypes in SQL tab, Create / Update dialogues for Table, Column, Foreign Table and Type node
- Update CodeMirror version
- Install pgadmin4-v1 1.5 on Centos7
- Fix collation tests on Windows, replace use of default ‘POSIX’ collation with ‘C’ collation for testing
- Fix issues using special keys on MacOS
- Correct malformed query generated when using custom type
- Show tablespace on partitions
- Fix issue in query tool where messages were not displaying from functions/procedures properly
- Tidy up tab styling
- Prevent the tab bar being hidden when detached tabs are being closed
- Stop tool buttons from changing their styling unexpectedly
- Fix View ‘CREATE Script’ Problem
- Update CodeMirror version
- Fix paths under non-standard virtual directories
- Fix Pause/Resume Replay of WAL files for PostgreSQL 10
- Use the proper database connection to fetch the default priviledges in the properties tab of the database
- Unset compression ratio if it is an empty string in Backup module
- Cleanup feature tests
- Allow navigation of query history using the arrow keys
- Stop Flask from initialising service twice in Debug mode
- Ensure babel-polyfill is loaded in older qWebKits
- Fix disconnection of new databases
- Define the proper NODE_ENV environment during running the webpack
- Ensure role names are escaped in the membership control
- Domain create dialog do not open and Font size issue in Security label control
- Add missing pgagent file in webpack.config.js
- Fix quoting of index column names on tables
- Set database name to blank(‘’) when job type is set to batch, while creating pgAgent job
- Change mapping of cell from ‘numeric’ to ‘integer’ for integer control as numeric cell has been removed from the code
- Fix pgAgent job step issues
- Add New Server through Quick links
- Fix Copy so it still works after query results have been copied
- User management issues - styling and inability to edit users properly
- Fix alertify notification messages where checkmark box disconnected from frame
- Fix the path reference of load-node.gif which was referencing to vendor directory
- Update datetime picker
- Fix connection string validation for pgAgent jobs
- Change Datetimepicker to expand from bottom in pgAgent so calendar does not get hidden
- Fix syntax error while saving changes for start/end time, weekdays, monthdays, month, hours, minutes while updating the pgAgent Job
- Fix issue where unable to add/update variables for columns of a table
- Not able to select rows in History Tab
- Fix RE-SQL for triggers with a single arg
- Improve datamodel validations for default Validator if user (developer) does not implement validate function in datamodel
- Fix array data type formating for bigint, real, float, double precision
- Reset query tool options before running tests
- Fix layout of password prompt dialogue
- View data option is missing from pgAdmin4 2.0 version
- Base type is missing for Domain on pgAdmin4
- User list is not available on User mapping pgAdmin4
- User can not create function due to missing return type
- Filtered Rows issue on pgAdmin4
- Cancel button is visible after query executed succesfully
- Disable trigger button does not work on pgAdmin4
- Tablespace name should displayed instead of %s(new_tablespace)s with Move Objects to another tablespace
- Display user relations in schema prefixed by ‘pg’
- Fix an exception seen sometimes when the server is restarted
- Ensure using an alternate role to connect to a database doesn’t cause an error when checking recovery state.

Version 1.6
[] Release date: 2017-07-13
This release contains a number of features and fixes reported since the release of pgAdmin4 1.5
Features
0em
- Allow the Query Tool, Debugger and web browser tabs to be moved to different monitors as desired
- Set focus on the first enabled field when a dialogue is opened
- Teach dialogues about Escape to cancel, Enter to Save/OK, and F1 for help
- Retain column sizing in the query tool results grid when the same query is re-run multiple times in a row
- Prompt the user to save dirty queries rather than discard them for a more natural workflow
- On-demand loading for the query tool results
- Add support for the hostaddr connection parameter. This helps us play nicely with Kerberos/SSPI and friends
- Overhaul the query history tab to allow browsing of the history and full query text
- Support inserting multiple new rows into a table without clicking Save for each row
- Add a shortcut to reset the zoom level in the runtime
- Allow the user to close the dashboard panel
- Add preferences to enable brace matching and brace closing in the SQL editors

Bug fixes
0em
- Various FTS dictionary cleanups
- Fix default values and SQL formatting for event triggers
- Make $ quoting consistent
- Properly display security labels
- Fix validation for external and range types
- Reverse engineer SQL for table-returning functions correctly
- Ensure default values are honoured when adding/editing columns
- Fix various issues with pgAgent job steps and schedules
- Fix various issues with pgAgent job steps and schedules
- Fix various issues with pgAgent job steps and schedules
- Ensure saved passwords are effective immediately, not just following a restart when first saved
- Fix the handling of double precision[] type
- Fix import/export to work as expected with TSV data
- Handle warning correctly when saving query results to an unmounted USB drive
- Increase the default size of the Grant Wizard to enable it to properly display privileges at the default size on smaller displays
- Properly handle trigger functions with parameters
- Refresh the SQL editor view on resize to ensure the contents are re-rendered for the new viewport
- Allow editing of the WITH ADMIN option of role membership
- Correct the validation logic when modifying indexes/exclusion constraints
- Enable dialogue help buttons on Language and Foreign Table dialogues
- Fix canceling of Grant Wizard on Windows
- Fix removal of sizes from column definitions
- Allow non-superusers to debug their own functions and prevent them from setting global breakpoints
- Fix an issue in NodeAjaxControl caching with cache-node field and add cache-node field in Trigger & Event trigger node so that whenever the user creates new Trigger Function we get new data from server in NodeAjaxControl
- Fix the PostGIS Datatypes in SQL tab, Create / Update dialogues for Table, Column, Foreign Table and Type node
- Fix issue with ctrl-c / ctrl-v not working in query tool
- Fix issue when resizing columns in Query Too/View Data where all row/colums will select/deselect
- Properly refresh the parent node when renaming children
- Cache statistics more reliably
- Fix the RE-SQL for for views to properly qualify trigger function names
- Display and allow toggling of trigger enable/disable status from the trigger dialogue
- Bypass the proxy server for local addresses on Windows
- Cleanup handling of default/null values when data editing
- Improve error handling in cases where the user tries to rename or create a server group that would duplicate an existing group
- Order columns in multi-column pkeys correctly
- Fix RE-SQL for rules which got the table name wrong in the header and DROP statement
- Handle composite primary keys correctly when deleting rows in the Edit Grid
- Allow creation of ENUM types with no members
- Add numerous missing checks to ensure objects really exist when we think they do
- Pass the database ID to the query tool when using the Script options
- Ensure the last placeholder is included when generating UPDATE scripts for tables
- Ensure that boolean checkboxes cycle values in the correct order
- Fix error on the stats tab with PG10. Also, rename the 10.0_plus template directory to 10_plus to match the new versioning
- Allow users to remove default values from columns properly
- Fix issue where function create script won’t compile
- Fix an intermittent error seen during result polling
- Improvements to the Query Results grid including improvements to the UI and allow copy/paste from sets of rows, columns or arbitrary blocks of cells
- Ensure text editors render in an appropriate place on the results grid
- No need for the menu icon to link to the homepage, as pgAdmin is a SPA
- Use a more sensible name for Query Tool tabs
- Ensure the feature tests use the correct test settings database
- Maintain a client-side cache of preference values, populated using an async call
- Fix clipboard handling with large datasets
- Ensure the initial password is properly hashed during setup in web mode
- Properly handle bytea[], and ‘infinity’::real/real[]
- Properly handle bytea[], and ‘infinity’::real/real[]
- Update MatView and pgAgent modules to work with recent integer/numeric changes
- Ensure revoked public privileges are displayed in the RE-SQL for functions
- Fix encoding issue when saving servers
- Improve speed of Select All in the results grid
- Fix deletion of table rows with the column definition having NOT NULL TRUE and HAS NO DEFAULT VALUE
- Allow breakpoints to be set on triggers on views
- Resolve a number of issues with domains and domain constraints
- Refresh nodes correctly when there is a single child that is updated
- Fix handling of CREATE TABLE OF <type>
- Fix clear history functionality
- Ensure the save password option is enabled when creating a server

Version 1.5
[] Release date: 2017-05-19
This release contains a number of features and fixes reported since the release of pgAdmin4 1.4.
Features
0em
- Allow column or row selection in the query tool

Bug fixes
0em
- Hide menu options for creating objects, if the object type is set to hidden. Includes Jasmine tests
- Fix various issues in CSV file download feature
- Improve handling of nulls and default values in the data editor
- Don’t change the trigger icon back to “enabled” when the trigger is updated when it’s disabled
- Allow creation of tables with pure numeric names
- Only reconnect to databases that were previously connected
- Fix various issues in CSV file download feature
- Fix sorting of sizes on the statistics views by sorting raw values and prettifying on the client side. Includes Jasmine tests for the prettyfying function
- Order foreign table columns correctly
- Fix binary search algorithm so new treeview nodes are added in the correct position
- Update inode info when refreshing treeview nodes.
- Ensure the treeview can be scrolled horizontally
- Fix handling of default parameters ordering in functions
- Fix the Backup module where it was not working if user changes its preference language other than English
- Ensure errors thrown when deleting rows in the query tool in edit mode are shown properly
- Fix various issues in CSV file download feature
- Support loading files with Unicode BOMs
- Update psycopg2 version for PostgreSQL 10 compatibility
- Make various improvements to the NULL/DEFAULT handling in the data editor
- Ensure object names are properly escaped for external process management
- Fix PostgreSQL 10.0 compatibility issues

Version 1.4
[] Release date: 2017-04-13
This release contains a number of features and fixes reported since the release of pgAdmin4 1.3.
Features
0em
- Add the ability to gray-out/disable the “Save Password” option when creating a connection to a server
- Added German translation

Bug fixes
0em
- Add missing “Run Now” option for pgAdmin jobs
- Fix validation on the table dialogue so the Save button isn’t enabled if the name is removed and autovac custom settings are enabled
- Resolve the issue for restoring the table from the backup
- Ensure the web/ directory is cleared before upgrading Windows installations
- Allow users to select UI language at login or from Preferences rather than unpredictable behaviour from browsers
- Show tooltips for disabled buttons to help user learning
- Fix numeric control validation in nested schemas
- Fix dropping of databases with Unicode names
- Prevent an error being displayed if the user views data on a table with no columns
- Add missing braces to reverse engineered SQL header block for Functions
- Fix handling of DATERANGE[] type
- Resolve error message displayed on new pgAdmin4 setup for Python 3.4 on ubuntu 14.04 Linux 64
- Resolved import/Export issue for a table
- Properly handle truncated table names
- Resolved various file-system encoding/decoding related cases
- Ensure menus are updated after disconnecting a server
- Check if cell is in multiselect mode before setting default selection of multiple values
- Properly handle EXPLAIN queries entered directly by the user in the query tool
- Fix error highlighting in the query tool
- Fix usage of QString
- Fix ascending/descending sort order in backgrid while clicking on the headers
- Resolve the issue for restoring the table from the backup
- Resolve the issue where Generic function qtLiteral was not adapting values properly when they contain non ascii characters
- Fix Dialog Help where query tool/Debugger opens in new browser tab
- Resolve issue where Click on pgAdmin4 logo leads to unauthorized error
- Improved functionality of browser tree when adding new nodes if parent collection node has not loaded
- Ensure the query tool displays but does not render HTML returned by the server in the results grid

Version 1.3
[] Release date: 2017-03-10
This release contains a number of features and fixes reported since the release of pgAdmin4 1.2.
Features
0em
- Query tool efficiency - SlickGrid result set format efficiency
- Query tool efficiency - Incremental back off when polling
- Make syntax highlighting more visible
- Build a universal Python wheel instead of per-python-version ones
- Improve visibility of syntax highlighting colours

Bug fixes
0em
- Add missing “Run Now” option for pgAdmin jobs
- Resolve encoding issues with DATA_DIR
- Resolved error utf8’ codec can’t decode byte
- Fix bug in Sql query contains Arabic Charaters
- Add PARALLEL SAFEUNSAFERESTRICTED support
- Fix exclusion constraint reverse engineered SQL
- Fix display of long integers and decimals
- Display un-sized varlen column types correctly in the query tool
- Fix display of long integers and decimals
- Resolve issue where Query editor is not working with Python2.6
- Various encoding fixes to allow ‘ascii’ codec to decode byte 0xc3 in position 66: ordinal not in range(128)
- Resolved import/Export issue for a table
- Resolved issues where Sequences API test cases are not working in PG9.2
- Resolved various file-system encoding/decoding related cases
- Removed sorting columns on the treeview
- Fix startup complete tests to ensure we properly poll the server for completed startup
- Fix function arguments when generating create SQL
- Properly handle event trigger functions in different schemas
- Fix renaming of check constraints when the table name is changed at the same time
- Fix issue where Dependents query fails due to non ascii characters
- Fixed issue where pgadmin 4 jobs not showing any activity
- Fix display of boolean nulls in the query tool
- Ensure primary key column names are quoted in View Data mode of the Query Tool
- Ensure servers are deleted when their parent group is deleted
- Enable right click on browser tree
- Show the correct indeterminate state when editing new boolean values
- Authenticate the runtime to the server
- Prevent the Slonik logo obscuring the login dialogue on small displays in server mode

Version 1.2
[] Release date: 2017-02-10
This release contains a number of features and fixes reported since the release of pgAdmin4 1.1.
Features
0em
- Migrate the runtime to QtWebEngine from QtWebKit
- Find and replace functionality with regexp and group replacement
- Column width of data output panel should fit to data (as pgAdmin III)
- [Web] Support setting a field’s value to “null”
- macOS appbundle is missing postgresql binaries for import etc.
- Remember last used directory in the file manager
- Direct path navigation in the file manager
- Improve handling of corrupt configuration databases
- Add a Chinese (Simplified) translation
- Create a docs tarball along with the source tarball
- Allow the SQL Editors to word-wrap
- Create a template loader to simplify SQL template location, and remove duplicate templates

Bug fixes
0em
- Display improved error message for Debugger listener starting error and reset between executions
- Fix issue where MINIFY_HTML doesn’t work with the docs
- Ensure dialogue control buttons are consistent
- Fix Table dialogue column specification issues
- Enhanced OSX File Browser
- Cannot save scripts to the network
- Ensure the grant wizard works with objects with special characters in the name
- Fix quoting of objects names for external utilities.
- Re-engineer the background process executor to avoid using sqlite as some builds of components it relies on do not support working in forked children
- Render column headers at the correct width in the query tool under Firefox
- Improve display of role options
- Improve the display of role membership on both the properties panel and role dialogue
- Ensure breakpoints are cleared properly when working with Debugger
- Add newly created triggers to the treeview
- Properly size the SQL Editor gutter as the width of the line numbers increases
- List files and folders alphabetically
- Handle the template property on databases appropriately
- Handle databases with datallowconn == false
- Properly detect when files have changed in the query tool and set flag accordingly
- Prevent attempts to access what may be an empty list in Dependancies tab
- Enable/disable NULLs and ASC/DESC options for index columns and exclusion constraints appropriately
- Show index columns in the correct order in RE-SQL
- Ensure dialogue panels show their errors themselves, and not in the properties panel when creating Trigger Function
- Properly schema qualify domains when reverse engineering SQL
- Add file resources to the windows runtime
- Fix refreshing of Unique constraints
- Use the correct OID for retrieving properties of freshly created exclusion constraints
- Properly quote role names when specifying function ownership
- Handle startup errors more gracefully in the runtime
- Properly format arguments passed by triggers to functions
- Ensure all changes to rows are stored in the data editor
- Ensure the check_option is only set when editing views when appropriate
- Don’t strip rn from “Download as CSV” batches of rows, as it leads to malformed data
- Generate mSQL for new schemas correctly
- Fix sorting of numerics in the statistics grids
- Updated dynamic default for the window size (90% x 90%)
- Ensure trigger function names are schema qualified in trigger RE-SQL
- Fix issue where nnable to browse table columns when oid values exceeed max int
- Add display messages and notices received in the query tool
- Fix upgrade check on Python 3
- Ensure treeview collection nodes are translated in the UI
- Store layout changes on each adjustment
- Prevent users selecting elements of the UI that shouldn’t be selectable
- Deal with Function arguments correctly in the properties dialogue
- Fix various encoding issues with multibyte paths and filenames resulting in empty file save
- Quote identifiers correctly in auto-complete
- Update to show modifications in edit grid
- Allow setting of effective_io_concurrency on tablespaces in 9.6+
- Fix various mis-spellings of VACUUM
- Fix error when modifying table name or set schema on tables with postgis geometry column
- Correctly sort rows by the pkey when viewing first/last 100
- Reset the column list properly if the access method is changed on an index to ensure error handling works correctly
- Prevent attempts to create server groups with no name
- Enable trigger option when user tries to change Row trigger value through properties section
- Properly handle setting comments and other options on databases with allowconn = False
- Improve detection of the pldbgapi extension and functions before allowing debugging
- Fix inconsistent table styling
- Fix display of double scrollbars on the grant wizard
- Fix time formatting on dashboards
- Show icons for unique and exclusion constraints in the dependency/dependents panels
- Update copyright year on doc page
- Fix error when setting up regression on Windows for pgadmin4
- Ensure dialogues cannot be moved under the navbar
- Enable/disable NULLs and ASC/DESC options for index columns and exclusion constraints appropriately
- Improve display of columns of exclusion contraints and foreign keys in the properties lists
- Correct tablespace displayed in table properties
- Handle sized time/timestamp columns correctly
- Update copyright year
- Handle saved directories that no longer exist gracefully
- Enable comments on Initial database through right Click
- Fix display of graphical query plans for UPDATE/DELETE queries
- Fix display of zeros in read-only grid editors
- Fixed issue causing Message (Connection to the server has been lost.) displayed with Materialized view and view under sql tab
- Fix handling of “char” columns
- Added compatibility fixes for newer versions of Jinja2 (e.g. 2.9.5+)

Version 1.1
[] Release date: 2016-10-27
This release contains a number of features and fixes reported since the release of pgAdmin4 1.0;
Features
0em
- Add Python 3.5 Support
- Include wait information on the activity tab of the dashboards

Bug fixes
0em
- Display the start value when the user creates sequence
- Fix to update privileges for Views and Materials Views where “string indices must be integers error” displayed
- Display SQL in SQL pane for security label
- Correct spelling error from evnt_turncate to evnt_truncate
- Ensure the grant wizard works with objects with special characters in the name
- Properties refreshing after objects are edited
- Prevent the user from trying to…..
- Correctly identify server type upon first connection
- Ensure errorModel unset property is set correctly when adding a new server
- Set seconds to valid value in pgAgent job schedule
- Display message “server does not support ssl” if server with ca-cert or ca-full added
- Optionally sign both the Mac app bundle and the disk image
- Handle non-ascii responses from the server when connecting
- Attempt to sign the Windows installer, failing with a warning if there’s no cert available
- Add documenation for pgAgent
- Allow users to choose SELECT permissions for tables and sequences in the grant wizard
- Fix refreshing of FTS dictionaries which was causing error “Connection to the server has been lost”
- Don’t append new objects with the wrong parent in tree browser if the correct one isn’t loaded
- Function definition matches value returned from pg_get_functiondef()
- Identify the collation correctly when reverse engineering table SQL. ERROR: schema “default” does not exist no longer displayed
- Remove security keys from config.py/config_local.py
- Fix error while renaming FTS dictionary and FTS template nodes
- Ensure the File Manager honours the file type while traversing the directories.
- Properly generate exclusion constraint SQL.
- Correctly quote type names in reverse engineered SQL for tables
- Fix layout of DateTimePicker control help message.
- Resolved issue where Integer type of preferences are not updated
- Fix the file manager when used under Python 3.
- Ensure preferences values are stored properly.
- Ensure steps and schedules can be created in empty jobs. ProgrammingError: can’t adapt type ‘Undefined’ was displayed
- Add new indexes to the correct parent on the treeview.

Version 1.0
[] Release date: 2016-09-29
The first major release of pgAdmin 4. With a more modern look and feel, this release includes the following features;
	Multiplatform

	Designed for multiple PostgreSQL versions and derivatives

	Extensive documentation

	Multiple deployment models

	Tools

	Routine maintenance

	Create, view and edit all common PostgreSQL objects

	Multibyte support

