
pgAdmin 4 Documentation
Release 4.3

The pgAdmin Development Team

Jul 25, 2019

CONTENTS

i

ii

pgAdmin 4 Documentation, Release 4.3

Welcome to pgAdmin 4. pgAdmin is the leading Open Source management tool for Postgres, the world’s most
advanced Open Source database. pgAdmin 4 is designed to meet the needs of both novice and experienced Postgres
users alike, providing a powerful graphical interface that simplifies the creation, maintenance and use of database
objects.

Contents:

CONTENTS 1

pgAdmin 4 Documentation, Release 4.3

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments;
we recommend using an installer whenever possible.

In a Server Deployment, the pgAdmin application is deployed behind a webserver or with the WSGI interface. If
you install pgAdmin in server mode, you will be prompted to provide a role name and pgAdmin password when you
initially connect to pgAdmin. The first role registered with pgAdmin will be an administrative user; the administrative
role can use the pgAdmin User Management dialog to create and manage additional pgAdmin user accounts. When a
user authenticates with pgAdmin, the pgAdmin tree control displays the server definitions associated with that login
role.

Contents:

1.1 Server Deployment

pgAdmin may be deployed as a web application by configuring the app to run in server mode and then deploying it
either behind a webserver running as a reverse proxy, or using the WSGI interface.

The following instructions demonstrate how pgAdmin may be run as a WSGI application under Apache HTTP,
using mod_wsgi.

See also:

For detailed instructions on building and configuring pgAdmin from scratch, please see the README file in the top
level directory of the source code. For convenience, you can find the latest version of the file here, but be aware that
this may differ from the version included with the source code for a specific version of pgAdmin.

1.1.1 Requirements

Important: Some components of pgAdmin require the ability to maintain affinity between client sessions and a
specific database connection (for example, the Query Tool in which the user might run a BEGIN command followed
by a number of DML SQL statements, and then a COMMIT). pgAdmin has been designed with built-in connection
management to handle this, however it requires that only a single Python process is used because it is not easily
possible to maintain affinity between a client session and one of multiple WSGI worker processes.

On Windows systems, the Apache HTTP server uses a single process, multi-threaded architecture. WSGI applications
run in embedded mode, which means that only a single process will be present on this platform in all cases.

On Unix systems, the Apache HTTP server typically uses a multi-process, single threaded architecture (this is depen-
dent on the MPM that is chosen at compile time). If embedded mode is chosen for the WSGI application, then there
will be one Python environment for each Apache process, each with it’s own connection manager which will lead to
loss of connection affinity. Therefore one should use mod_wsgi’s daemon mode, configured to use a single process.
This will launch a single instance of the WSGI application which is utilised by all the Apache worker processes.

3

https://git.postgresql.org/gitweb/?p=pgadmin4.git;a=blob_plain;f=README

pgAdmin 4 Documentation, Release 4.3

Whilst it is true that this is a potential performance bottleneck, in reality pgAdmin is not a web application that’s ever
likely to see heavy traffic unlike a busy website, so in practice should not be an issue.

Future versions of pgAdmin may introduce a shared connection manager process to overcome this limitation, however
that is a significant amount of work for little practical gain.

1.1.2 Configuration

In order to configure pgAdmin to run in server mode, it may be necessary to configure the Python code to run in
multi-user mode, and then to configure the web server to find and execute the code.

Note that there are multiple configuration files that are read at startup by pgAdmin. These are as follows:

• config.py: This is the main configuration file, and should not be modified. It can be used as a reference for
configuration settings, that may be overridden in one of the following files.

• config_distro.py: This file is read after config.py and is intended for packagers to change any settings
that are required for their pgAdmin distribution. This may typically include certain paths and file locations.

• config_local.py: This file is read after config_distro.py and is intended for end users to change
any default or packaging specific settings that they may wish to adjust to meet local preferences or standards.

Python

From pgAdmin 4 v2 onwards, server mode is the default configuration. If running under the desktop runtime, this is
overridden automatically. There should typically be no need to modify the configuration simply to enable server mode
to work, however it may be desirable to adjust some of the paths used.

In order to configure the Python code, follow these steps:

1. Create a config_local.py file alongside the existing config.py file.

2. Edit config_local.py and add the following settings. In most cases, the default file locations should be
appropriate:

NOTE: You must ensure the directories specified are writeable by the user that the web server processes will be
running as, e.g. apache or www-data.

LOG_FILE = '/var/log/pgadmin4/pgadmin4.log'
SQLITE_PATH = '/var/lib/pgadmin4/pgadmin4.db'
SESSION_DB_PATH = '/var/lib/pgadmin4/sessions'
STORAGE_DIR = '/var/lib/pgadmin4/storage'

4. Run the following command to create the configuration database:

python setup.py

5. Change the ownership of the configuration database to the user that the web server processes will run as, for
example, assuming that the web server runs as user www-data in group www-data, and that the SQLite path is
/var/lib/pgadmin4/pgadmin4.db:

chown www-data:www-data /var/lib/pgadmin4/pgadmin4.db

Apache HTTPD Configuration (Windows)

Once Apache HTTP has been configured to support mod_wsgi, the pgAdmin application may be configured similarly
to the example below:

4 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

<VirtualHost *>
ServerName pgadmin.example.com
WSGIScriptAlias / "C:\Program Files\pgAdmin4\web\pgAdmin4.wsgi"
<Directory "C:\Program Files\pgAdmin4\web">

Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Now open the file C:\Program Files\pgAdmin4\web\pgAdmin4.wsgi with your favorite editor and add
the code below which will activate Python virtual environment when Apache server runs.

activate_this = 'C:\Program Files\pgAdmin4\venv\Scripts\activate_this.py'
exec(open(activate_this).read())

Note: The changes made in pgAdmin4.wsgi file will revert when pgAdmin4 is either upgraded or downgraded.

Apache HTTPD Configuration (Linux/Unix)

Once Apache HTTP has been configured to support mod_wsgi, the pgAdmin application may be configured similarly
to the example below:

<VirtualHost *>
ServerName pgadmin.example.com

WSGIDaemonProcess pgadmin processes=1 threads=25 python-home=/path/to/python/
↪→virtualenv

WSGIScriptAlias / /opt/pgAdmin4/web/pgAdmin4.wsgi

<Directory /opt/pgAdmin4/web>
WSGIProcessGroup pgadmin
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Note: If you’re using Apache HTTPD 2.4 or later, replace the lines:

Order deny,allow
Allow from all

with:

Require all granted

Adjust as needed to suit your access control requirements.

1.2 pgAdmin Login Dialog

Use the pgAdmin Login dialog to log in to pgAdmin:

1.2. pgAdmin Login Dialog 5

pgAdmin 4 Documentation, Release 4.3

Use the fields in the pgAdmin Login dialog to authenticate your connection:

1. Provide the email address associated with your account in the Email Address field.

2. Provide your password in the Password field.

3. Click the Login button to securely log into pgAdmin.

Recovering a Lost Password

If you cannot supply your password, click the Forgotten your password? button to launch a password recovery utility.

1. Provide the email address associated with your account in the Email Address field.

2. Click the Recover Password button to initiate recovery. An email, with directions on how to reset a password,
will be sent to the address entered in the Email Address field.

If you have forgotten the email associated with your account, please contact your administrator.

1.3 User Management Dialog

When invoking pgAdmin in desktop mode, a password is randomly generated, and then ignored. If you install pgAd-
min in server mode, you will be prompted for an administrator email and password for the pgAdmin client.

6 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

When you authenticate with pgAdmin, the server definitions associated with that login role are made available in the
tree control. An administrative user can use the User Management dialog to

• add or delete pgAdmin roles

• assign privileges

• manage the password associated with a role

Use the Filter by email search field to find a user; enter a user’s email address to find a user. If the user exists, the User
Management table will display the user’s current information.

To add a user, click Add to add new role.

Provide information about the new pgAdmin role in the row:

• Click in the Email field, and provide an email address for the user; this address will be used to recover the
password associated with the role should the password be lost.

• Use the drop-down listbox next to Role to select whether a user is an Administrator or a User.

1.3. User Management Dialog 7

pgAdmin 4 Documentation, Release 4.3

– Select Administrator if the user will have administrative privileges within the pgAdmin client.

– Select User to create a non-administrative user account.

• Move the Active switch to the No position if the account is not currently active; the default is Yes. Use this
switch to disable account activity without deleting an account.

• Use the New password field to provide the password associated with the user specified in the Email field.

• Re-enter the password in the Confirm password field.

To discard a user, and revoke access to pgAdmin, click the trash icon to the left of the row and confirm deletion in the
Delete user? dialog.

Users with the Administrator role are able to add, edit and remove pgAdmin users, but otherwise have the same
capabilities as those with the User role.

• Click the Help button (?) to access online help.

• Click the Close button to save work. You will be prompted to return to the dialog if your selections cannot be
saved.

1.4 Change User Password Dialog

It is a good policy to routinely change your password to protect data, even in what you may consider a ‘safe’ environ-
ment. In the workplace, failure to apply an appropriate password policy could leave you in breach of Data Protection
laws.

Please consider the following guidelines when selecting a password:

• Ensure that your password is an adequate length; 6 characters should be the absolute minimum number of
characters in the password.

• Ensure that your password is not open to dictionary attacks. Use a mixture of upper and lower case letters and
numerics, and avoid words or names. Consider using the first letter from each word in a phrase that you will
remember easily but is an unfamiliar acronym.

• Ensure that your password is changed regularly; at minimum, change it every ninety days.

The above should be considered a starting point: It is not a comprehensive list and it will not guarantee security.

Use the Change Password dialog to change your password:

8 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

• Enter your existing password in the Current Password field.

• Enter the desired password for in the New Password field.

• Re-enter the new password in the Confirm Password field.

Click the Change Password button to change your password; click Close to exit the dialog.

In a Desktop Deployment, the pgAdmin application is configured to use the desktop runtime environment to host the
program on a supported platform. Typically, users will install a pre-built package to run pgAdmin in desktop mode, but
a manual desktop deployment can be installed and though it is more difficult to setup, it may be useful for developers
interested in understanding how pgAdmin works.

Contents:

1.5 Desktop Deployment

pgAdmin may be deployed as a desktop application by configuring the application to run in desktop mode and then
utilising the desktop runtime to host the program on a supported Windows, Mac OS X or Linux installation.

The desktop runtime is a system-tray application that when launched, runs the pgAdmin server and launches a web
browser to render the user interface. If additional instances of pgAdmin are launched, a new browser tab will be opened
and be served by the existing instance of the server in order to minimise system resource utilisation. Clicking the icon
in the system tray will present a menu offering options to open a new pgAdmin window, configure the runtime, view
the server log and shut down the server.

Note: Pre-compiled and configured installation packages are available for a number of platforms. These packages
should be used by end-users whereever possible - the following information is useful for the maintainers of those
packages and users interested in understanding how pgAdmin works.

See also:

For detailed instructions on building and configuring pgAdmin from scratch, please see the README file in the top
level directory of the source code. For convenience, you can find the latest version of the file here, but be aware that
this may differ from the version included with the source code for a specific version of pgAdmin.

1.5.1 Configuration

From pgAdmin 4 v2 onwards, the default configuration mode is server, however, this is overridden by the desktop
runtime at startup. In most environments, no Python configuration is required unless you wish to override other
default settings.

There are multiple configuration files that are read at startup by pgAdmin. These are as follows:

• config.py: This is the main configuration file, and should not be modified. It can be used as a reference for
configuration settings, that may be overridden in one of the following files.

• config_distro.py: This file is read after config.py and is intended for packagers to change any settings
that are required for their pgAdmin distribution. This may typically include certain paths and file locations.

• config_local.py: This file is read after config_distro.py and is intended for end users to change
any default or packaging specific settings that they may wish to adjust to meet local preferences or standards.

1.5. Desktop Deployment 9

https://git.postgresql.org/gitweb/?p=pgadmin4.git;a=blob_plain;f=README

pgAdmin 4 Documentation, Release 4.3

Note: If the SERVER_MODE setting is changed in config_distro.py or config_local.py, you will most
likely need to re-set the LOG_FILE, SQLITE_PATH, SESSION_DB_PATH and STORAGE_DIR values as well as
they will have been set based on the default configuration or overridden by the runtime.

Runtime

When executed, the runtime will automatically try to execute the pgAdmin Python application. If execution fails,
it will prompt you to adjust the Python Path to include the directories containing the pgAdmin code as well as any
additional Python dependencies. You can enter a list of paths by separating them with a semi-colon character, for
example:

/Users/dpage/.virtualenvs/pgadmin4/lib/python2.7/site-packages/;/Users/dpage/python-
↪→libs/

The configuration settings are stored using the QSettings class in Qt, which will use an INI file on Unix systems
(~/.config/pgadmin/pgadmin4.conf), a plist file on Mac OS X (~/Library/Preferences/org.pgadmin.pgadmin4.plist),
and the registry on Windows (HKEY_CURRENT_USER\Software\pgadmin\pgadmin4).

The configuration settings:

Key Type Purpose
ApplicationPath String The directory containing pgAdmin4.py
BrowserCommand String An alternate command to run instead of the default browser.
ConnectionTimeout Integer The number of seconds to wait for application server startup.
PythonPath String The Python module search path

Note: Pre-compiled and configured installation packages are available for a number of platforms. These packages
should be used by end-users whereever possible - the following information is useful for the maintainers of those
packages and users interested in understanding how pgAdmin works.

The pgAdmin 4 client features a highly-customizable display that features drag-and-drop panels that you can arrange
to make the best use of your desktop environment.

The tree control provides an elegant overview of the managed servers, and the objects that reside on each server. Right-
click on a node within the tree control to access context-sensitive menus that provide quick access to management tasks
for the selected object.

The tabbed browser provide quick access to statistical information about each object in the tree control, and pgAdmin
tools and utilities (such as the Query tool and the debugger). pgAdmin opens additional feature tabs each time you
access the extended functionality offered by pgAdmin tools; you can open, close, and re-arrange feature tabs as needed.

Use the Preferences dialog to customize the content and behaviour of the pgAdmin display. To open the Preferences
dialog, select Preferences from the File menu.

Help buttons in the lower-left corner of each dialog will open the online help for the dialog. You can access additional
Postgres help by navigating through the Help menu, and selecting the name of the resource that you wish to open.

Contents:

10 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

1.6 The pgAdmin 4 Client

pgAdmin 4 supports all PostgreSQL features, from writing simple SQL queries to developing complex databases. It
is designed to query an active database (in real-time), allowing you to stay current with modifications and implemen-
tations.

Features of pgAdmin 4 include:

• auto-detection and support for objects discovered at run-time

• a live SQL query tool with direct data editing

• support for administrative queries

• a syntax-highlighting SQL editor

• redesigned graphical interfaces

• powerful management dialogs and tools for common tasks

• responsive, context-sensitive behavior

• supportive error messages

• helpful hints

• online help and information about using pgAdmin dialogs and tools.

When pgAdmin opens, the interface features a menu bar and a window divided into two panes: the Browser tree
control in the left pane, and a tabbed browser in the right pane.

Select an icon from the Quick Links panel on the Dashboard tab to:

• Click the Add New Server button to open the Create - Server dialog to add a new server definition.

• Click the Configure pgAdmin button to open the Preferences dialog to customize your pgAdmin client.

Links in the Getting Started panel open a new browser tab that provide useful information for Postgres users:

1.6. The pgAdmin 4 Client 11

pgAdmin 4 Documentation, Release 4.3

• Click the PostgreSQL Documentation link to navigate to the Documentation page for the PostgreSQL open-
source project; once at the project site, you can review the manuals for the currently supported versions of the
PostgreSQL server.

• Click the pgAdmin Website link to navigate to the pgAdmin project website. The pgAdmin site features news
about recent pgAdmin releases and other project information.

• Click the Planet PostgreSQL link to navigate to the blog aggregator for Postgres related blogs.

• Click the Community Support link to navigate to the Community page at the PostgreSQL open-source project
site; this page provides information about obtaining support for PostgreSQL features.

1.7 pgAdmin Menu Bar

The pgAdmin menu bar provides drop-down menus for access to options, commands, and utilities. The menu bar
displays the following selections: File, Object, Tools*, and Help. Selections may be grayed out which indicates they
are disabled for the object currently selected in the pgAdmin tree control.

The File Menu

Use the File menu to access the following options:

Option Action
Preferences Click to open the Preferences dialog to to customize your pgAdmin settings.
Reset Layout If you have modified the workspace, click to restore the default layout.

The Object Menu

The Object menu is context-sensitive. Use the Object menu to access the following options (in alphabetical order):

12 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Option Action
Change Pass-
word. . .

Click to open the Change Password. . . dialog to change your password.

Clear Saved
Password

If you have saved the database server password, click to clear the saved password. Enable only
when password is already saved.

Clear SSH Tun-
nel Password

If you have saved the ssh tunnel password, click to clear the saved password. Enable only when
password is already saved.

Connect
Server. . .

Click to open the Connect to Server dialog to establish a connection with a server.

Create Click Create to access a context menu that provides context-sensitive selections. Your selection
opens a Create dialog for creating a new object.

Delete/Drop Click to delete the currently selected object from the server.
Disconnect
Server. . .

Click to refresh the currently selected object.

Drop Cascade Click to delete the currently selected object and all dependent objects from the server.
Properties. . . Click to review or modify the currently selected object’s properties.
Refresh. . . Click to refresh the currently selected object.
Scripts Click to open the Query tool to edit or view the selected script from the flyout menu.
Trigger(s) Click to Disable or Enable trigger(s) for the currently selected table. Options are displayed on

the flyout menu.
Truncate Click to remove all rows from a table (Truncate) or to remove all rows from a table and its child

tables (Truncate Cascade). Options are displayed on the flyout menu.
View Data Click to access a context menu that provides several options for viewing data (see below).

The Tools Menu

Use the Tools menu to access the following options (in alphabetical order):

1.7. pgAdmin Menu Bar 13

pgAdmin 4 Documentation, Release 4.3

Option Action
Add named restore
point

Click to open the Add named restore point. . . dialog to take a point-in-time snapshot of the
current server state.

Backup. . . Click to open the Backup. . . dialog to backup database objects.
Backup Globals. . . Click to open the Backup Globals. . . dialog to backup cluster objects.
Backup Server. . . Click to open the Backup Server. . . dialog to backup a server.
Grant Wizard. . . Click to access the Grant Wizard tool.
Import/Export. . . Click to open the Import/Export data. . . dialog to import or export data from a table.
Maintenance. . . Click to open the Maintenance. . . dialog to VACUUM, ANALYZE, REINDEX, or CLUS-

TER.
Pause replay of
WAL

Click to pause the replay of the WAL log.

Query tool Click to open the Query tool for the currently selected object.
Reload Configura-
tion. . .

Click to update configuration files without restarting the server.

Restore. . . Click to access the Restore dialog to restore database files from a backup.
Resume replay of
WAL

Click to resume the replay of the WAL log.

The Help Menu

Use the options on the Help menu to access online help documents, or to review information about the pgAdmin
installation (in alphabetical order):

Option Action
About
pgAdmin
4

Click to open a window where you will find information about pgAdmin; this includes the current
version and the current user.

Online
Help

Click to open documentation support for using pgAdmin utilities, tools and dialogs. Navigate (in the
newly opened tab?) help documents in the left browser pane or use the search bar to specify a topic.

pgAdmin
Website

Click to open the pgAdmin.org website in a browser window.

Post-
greSQL
Website

Click to access the PostgreSQL core documentation hosted at the PostgreSQL site. The site also offers
guides, tutorials, and resources.

1.8 pgAdmin Toolbar

The pgAdmin toolbar provides shortcut buttons for frequently used features like View Data and the Query Tool which
are most frequently used in pgAdmin. This toolbar is visible on the Browser panel. Buttons get enabled/disabled based
on the selected browser node.

14 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

• Use the Query Tool button to open the Query Tool in the current database context.

• Use the View Data button to view/edit the data stored in a selected table.

• Use the Filtered Rows button to access the Data Filter popup to apply a filter to a set of data for viewing/editing.

1.9 pgAdmin Tabbed Browser

The right pane of the pgAdmin window features a collection of tabs that display information about the object currently
selected in the pgAdmin tree control in the left window. Select a tab to access information about the highlighted object
in the tree control.

The graphs on the Dashboard tab provides an active analysis of the usage statistics for the selected server or database:

• The Server sessions or Database sessions graph displays the interactions with the server or database.

• The Transactions per second graph displays the commits, rollbacks, and total transactions per second that are
taking place on the server or database.

• The Tuples in graph displays the number of tuples inserted, updated, and deleted on the server or database.

• The Tuples out graph displays the number of tuples fetched and returned from the server or database.

• The Block I/O graph displays the number of blocks read from the filesystem or fetched from the buffer cache
(but not the operating system’s file system cache) for the server or database.

The Server activity panel displays information about sessions, locks, prepared transactions, and server configuration
(if applicable). The information is presented in context-sensitive tables. Use controls located above the table to:

• Click the Refresh button to update the information displayed in each table.

1.9. pgAdmin Tabbed Browser 15

pgAdmin 4 Documentation, Release 4.3

• Enter a value in the Search box to restrict the table content to one or more sessions that satisfy the search criteria.
For example, you can enter a process ID to locate a specific session, or a session state (such as idle) to locate all
of the sessions that are in an idle state.

You can use icons in the Sessions table to review or control the state of a session:

• Use the Terminate icon (located in the first column) to stop a session and remove the session from the table.
Before the server terminates the session, you will be prompted to confirm your selection.

• Use the Cancel icon (located in the second column) to terminate an active query without closing the session.
Before canceling the query, the server will prompt you to confirm your selection. When you cancel a query, the
value displayed in the State column of the table will be updated from Active to Idle. The session will remain in
the table until the session is terminated.

• Use the Details icon (located in the third column) to open the Details tab; the tab displays information about the
selected session.

The Properties tab displays information about the object selected.

Click the Delete icon in the toolbar under the browser tab to delete the selected objects in the Properties panel.

Click the Drop Cascade icon in the toolbar under the browser tab to delete the selected objects and all dependent
objects in the Properties panel.

Click the Edit icon in the toolbar under the browser tabs to launch the Properties dialog for the selected object.

To preserve any changes to the Properties dialog, click the Save icon; your modifications will be displayed in the
updated Properties tab.

16 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Details about the object highlighted in the tree control are displayed in one or more collapsible panels. You can use
the arrow to the left of each panel label to open or close a panel.

The SQL tab displays the SQL script that created the highlighted object, and when applicable, a (commented out) SQL
statement that will DROP the selected object. You can copy the SQL statements to the editor of your choice using cut
and paste shortcuts.

1.9. pgAdmin Tabbed Browser 17

pgAdmin 4 Documentation, Release 4.3

The Statistics tab displays the statistics gathered for each object on the tree control; the statistics displayed in the table
vary by the type of object that is selected. Click a column heading to sort the table by the data displayed in the column;
click again to reverse the sort order. The following table lists some of the statistics that are available:

18 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Panel Description
PID The process ID associated with the row.
User The name of the user that owns the object.
Database displays the database name.
Backends displays the number of current connections to the database.
Backend start The start time of the backend process.
Xact Committed displays the number of transactions committed to the database within the last week.
Xact Rolled Back displays the number of transactions rolled back within the last week.
Blocks Read displays the number of blocks read from memory (in megabytes) within the last week.
Blocks Hit displays the number of blocks hit in the cache (in megabytes) within the last week.
Tuples Returned displays the number of tuples returned within the last week.
Tuples Fetched displays the number of tuples fetched within the last week.
Tuples Inserted displays the number of tuples inserted into the database within the last week.
Tuples Updated displays the number of tuples updated in the database within the last week.
Tuples Deleted displays the number of tuples deleted from the database within the last week.
Last statistics reset displays the time of the last statistics reset for the database.
Tablespace con-
flicts

displays the number of queries canceled because of recovery conflict with dropped ta-
blespaces in database.

Lock conflicts displays the number of queries canceled because of recovery conflict with locks in database.
Snapshot conflicts displays the number of queries canceled because of recovery conflict with old snapshots in

database.
Bufferpin conflicts displays the number of queries canceled because of recovery conflict with pinned buffers in

database.
Temporary files displays the total number of temporary files, including those used by the statistics collector.
Size of temporary
files

displays the size of the temporary files.

Deadlocks displays the number of queries canceled because of a recovery conflict with deadlocks in
database.

Block read time displays the number of milliseconds required to read the blocks read.
Block write time displays the number of milliseconds required to write the blocks read.
Size displays the size (in megabytes) of the selected database.

The Dependencies tab displays the objects on which the currently selected object depends. If a dependency is dropped,
the object currently selected in the pgAdmin tree control will be affected. To ensure the integrity of the entire database
structure, the database server makes sure that you do not accidentally drop objects that other objects depend on; you
must use the DROP CASCADE command to remove an object with a dependency.

The Dependencies table displays the following information:

• The Type field specifies the parent object type.

• The Name field specifies the identifying name of the parent object.

• The Restriction field describes the dependency relationship between the currently selected object and the parent.

– If the field is auto, the selected object can be dropped separately from the parent object, and will be
dropped if the parent object is dropped.

– If the field is internal, the selected object was created during the creation of the parent object, and will
be dropped if the parent object is dropped.

1.9. pgAdmin Tabbed Browser 19

pgAdmin 4 Documentation, Release 4.3

– If the field is normal, the selected object can be dropped without dropping the parent object.

– If the field is blank, the selected object is required by the system, and cannot be dropped.

The Dependents tab displays a table of objects that depend on the object currently selected in the pgAdmin browser. A
dependent object can be dropped without affecting the object currently selected in the pgAdmin tree control.

• The Type field specifies the dependent object type.

• The Name field specifies the identifying name for the dependent object.

• The Database field specifies the database in which the object resides.

Additional tabs open when you access the extended functionality offered by pgAdmin tools (such as the Query tool,
Debugger, or SQL editor). Use the close icon (X) located in the upper-right corner of each tab to close the tab when
you are finished using the tool. Like permanent tabs, these tabs may be repositioned in the pgAdmin client window.

By default, each time you open a tool, pgAdmin will open a new browser tab. You can control this behavior by
modifying the Display node of the Preferences dialog for each tool. To open the Preferences dialog, select Preferences
from the File menu.

1.10 pgAdmin Tree Control

The left pane of the main window displays a tree control (the pgAdmin tree control) that provides access to the objects
that reside on a server.

20 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

You can expand nodes in the tree control to view the database objects that reside on a selected server. The tree control
expands to display a hierarchical view:

• Use the plus sign (+) to the left of a node to expand a segment of the tree control.

• Click the minus sign (-) to the left of a node to close that node.

Access context-sensitive menus by right-clicking on a node of the tree control to perform common tasks. Menus
display options that include one or more of the following selections (options appear in alphabetical order):

1.10. pgAdmin Tree Control 21

pgAdmin 4 Documentation, Release 4.3

Option Action
Add named re-
store point

Click to create and enter the name of a restore point.

Backup. . . Click to open the Backup. . . dialog to backup database objects.
Backup Glob-
als. . .

Click to open the Backup Globals. . . dialog to backup cluster objects.

Backup
Server. . .

Click to open the Backup Server. . . dialog to backup a server.

Connect
Server. . .

Click to open the Connect to Server dialog to establish a connection with a server.

Create Click to access a context menu that provides context-sensitive selections. Your selection opens
a Create dialog for creating a new object.

CREATE Script Click to open the Query tool to edit or view the CREATE script.
Debugging Click through to open the Debug tool or to select Set breakpoint to stop or pause a script

execution.
Delete/Drop Click to delete the currently selected object from the server.
Disconnect
Database. . .

Click to terminate a database connection.

Disconnect
Server. . .

Click to refresh the currently selected object.

Drop Cascade Click to delete the currently selected object and all dependent objects from the server.
Debugging Click to access the Debugger tool.
Grant Wizard Click to access the Grant Wizard tool.
Maintenance. . . Click to open the Maintenance. . . dialog to VACUUM, ANALYZE, REINDEX, or CLUSTER.
Properties. . . Click to review or modify the currently selected object’s properties.
Refresh. . . Click to refresh the currently selected object.
Reload Configu-
ration. . .

Click to update configuration files without restarting the server.

Restore. . . Click to access the Restore dialog to restore database files from a backup.
View Data Use the View Data option to access the data stored in a selected table with the Data Output tab

of the Query Tool.

The context-sensitive menus associated with Tables and nested Table nodes provides additional display options (op-
tions appear in alphabetical order):

Option Action
Import/Export. . . Click open the Import/Export. . . dialog to import data to or export data from the selected

table.
Reset Statistics Click to reset statistics for the selected table.
Scripts Click to open the Query tool to edit or view the selected script from the flyout menu.
Truncate Click to remove all rows from a table.
Truncate Cascade Click to remove all rows from a table and its child tables.
View First 100 Rows Click to access a data grid that displays the first 100 rows of the selected table.
View Last 100 Rows Click to access a data grid that displays the last 100 rows of the selected table.
View All Rows Click to access a a data grid that displays all rows of the selected table.
View Filtered
Rows. . .

Click to access the Data Filter popup to apply a filter to a set of data.

22 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

1.11 Preferences Dialog

Use options on the Preferences dialog to customize the behavior of the client. To open the Preferences dialog, select
Preferences from the File menu. The left pane of the Preferences dialog displays a tree control; each node of the tree
control provides access to options that are related to the node under which they are displayed.

• Use the plus sign (+) to the left of a node name to expand a segment of the tree control.

• Use the minus sign (-) to the left of a node name to close that node.

The Browser Node

Use preferences found in the Browser node of the tree control to personalize your workspace.

Use the fields on the Display panel to specify general display preferences:

• When the Auto-expand sole children switch is set to True, child nodes will be automatically expanded if a
treeview node is expanded and has only a single child.

• Use the Browser tree state saving interval field to set the treeview state saving interval. A value of -1 will disable
the treeview state saving functionality.

• When the Confirm on close or refresh switch is set to True, pgAdmin will attempt to catch browser close or
refresh events and prompt before allowing them to continue.

• When the Show system objects? switch is set to True, the client will display system objects such as system
schemas (for example, pg_temp) or system columns (for example, xmin or ctid) in the tree control.

• When the Enable browser tree animation? switch is set to True, the client will display the animated tree control
otherwise it will be unanimated.

• When the Enable dialogue/notification animation? switch is set to True, the client will display the animated
dialogues/notifications otherwise it will be unanimated.

Use the fields on the Keyboard shortcuts panel to configure shortcuts for the main window navigation:

1.11. Preferences Dialog 23

pgAdmin 4 Documentation, Release 4.3

• The panel displays a list of keyboard shortcuts available for the main window; select the combination of the
modifier keys along with the key to configure each shortcut.

Use the fields on the Nodes panel to select the object types that will be displayed in the Browser tree control:

• The panel displays a list of database objects; slide the switch located next to each object to Show or Hide
the database object. When querying system catalogs, you can reduce the number of object types displayed to
increase speed.

Use fields on the Properties panel to specify browser properties:

24 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

• Include a value in the Count rows if estimated less than field to perform a SELECT count(*) if the estimated
number of rows in a table (as read from the table statistics) is below the specified limit. After performing the
SELECT count(*), pgAdmin will display the row count. The default is 2000.

• Provide a value in the Maximum job history rows field to limit the number of rows to show on the statistics tab
for pgAgent jobs. The default is 250.

The Dashboards Node

Expand the Dashboards node to specify your dashboard display preferences.

Use the fields on the Graphs panel to specify your display preferences for the graphs on the Dashboard tab:

1.11. Preferences Dialog 25

pgAdmin 4 Documentation, Release 4.3

• Use the Block I/O statistics refresh rate field to specify the number of seconds between block I/O statistic
samples displayed in graphs.

• Use the Session statistics refresh rate field to specify the number of seconds between session statistic samples
displayed in graphs.

• Use the Transaction throughput refresh rate field to specify the number of seconds between transaction through-
put samples displayed in graphs.

• Use the Tuples in refresh rate field to specify the number of seconds between tuples-in samples displayed in
graphs.

• Use the Tuples out refresh rate field to specify the number of seconds between tuples-out samples displayed in
graphs.

• When the Show activity? switch is set to True, activity tables will be displayed on dashboards.

• When the Show graph data points? switch is set to True, data points will be visible on graph lines.

• When the Show graphs? switch is set to True, graphs will be displayed on dashboards.

• When the Show mouse hover tooltip? switch is set to True, a tooltip will appear on mouse hover on the graph
lines giving the data point details.

The Debugger Node

Expand the Debugger node to specify your debugger display preferences.

26 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

• When the Open in new browser tab switch is set to True, the Debugger will open in a new browser tab when
invoked.

Use the fields on the Keyboard shortcuts panel to configure shortcuts for the debugger window navigation:

The Miscellaneous Node

Expand the Miscellaneous node to specify miscellaneous display preferences.

1.11. Preferences Dialog 27

pgAdmin 4 Documentation, Release 4.3

• Use the User language drop-down listbox to select the display language for the client.

The Paths Node

Expand the Paths node to specify the locations of supporting utility and help files.

Use the fields on the Binary paths panel to specify the path to the directory that contains the utility programs (pg_dump,
pg_restore, and pg_dumpall) for monitored databases:

• Use the PostgreSQL Binary Path field to specify the location of the PostgreSQL utility programs. If this path is
not set, pgAdmin will attempt to find the utilities in standard locations used by PostgreSQL.

28 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Help panel to specify the location of help files.

• Use the PostgreSQL Help Path to specify the path to PostgreSQL documentation.

Please note: the default help paths include the VERSION placeholder; the $VERSION$ placeholder will be replaced
by the current database version.

The Query Tool Node

Expand the Query Tool node to access panels that allow you to specify your preferences for the Query Editor tool.

Use the fields on the Auto Completion panel to set the auto completion options.

1.11. Preferences Dialog 29

pgAdmin 4 Documentation, Release 4.3

• When the Keywords in uppercase switch is set to True then keywords are shown in upper case.

Use the fields on the CSV Output panel to control the CSV output.

• Use the CSV field separator drop-down listbox to specify the separator character that will be used in CSV output.

• Use the CSV quote character drop-down listbox to specify the quote character that will be used in CSV output.

• Use the CSV quoting drop-down listbox to select the fields that will be quoted in the CSV output; select Strings,
All, or None.

• Use the Replace null values with option to replace null values with specified string in the output file. Default is
set to ‘NULL’.

30 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Display panel to specify your preferences for the Query Tool display.

• When the Connection status switch is set to True, each new instance of the Query Tool will display connection
and transaction status.

• Use the Connection status refresh rate field to specify the number of seconds between connection/transaction
status updates.

• When the Open in new browser tab switch is set to True, each new instance of the Query Tool will open in a
new browser tab.

• Use the Query info notifier timeout field to control the behaviour of the notifier that is displayed when query
execution completes. A value of -1 will disable the notifier, and a value of 0 will display it until clicked. If a
positive value above zero is specified, the notifier will be displayed for the specified number of seconds. The
default is 5.

Use the fields on the Explain panel to specify the level of detail included in a graphical EXPLAIN.

• When the Show Buffers? switch is set to True, graphical explain details will include information about buffer
usage.

• When the Show Costs? switch is set to True, graphical explain details will include information about the
estimated startup and total cost of each plan, as well as the estimated number of rows and the estimated width
of each row.

• When the Show Timing? switch is set to True, graphical explain details will include the startup time and time
spent in each node in the output.

• When the Verbose output? switch is set to True, graphical explain details will include extended information
about the query execution plan.

1.11. Preferences Dialog 31

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Options panel to manage editor preferences.

• When the Auto-Commit? switch is set to True, each successful query is committed after execution.

• When the Auto-Rollback? switch is set to True, failed queries are rolled back.

• When the Brace matching? switch is set to True, the editor will highlight pairs of matched braces.

• Use the Font size field to specify the font size that will be used in text boxes and editors.

• When the Insert bracket pairs? switch is set to True, the editor will automatically insert paired brackets.

• When the Line wrapping switch is set to True, the editor will implement line-wrapping behavior.

• When the Prompt to save unsaved data changes? switch is set to True, the editor will prompt the user to saved
unsaved data when exiting the data editor.

• When the Prompt to save unsaved query changes? switch is set to True, the editor will prompt the user to saved
unsaved query modifications when exiting the query tool.

• Use the Tab size field to specify the number of spaces per tab character in the editor.

• When the Use spaces switch is set to True, the editor will insert spaces (instead of tab characters) when the tab
key or auto-indent are used.

32 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Results grid panel to specify your formatting preferences for copied data.

• Use the Result copy field separator drop-down listbox to select the field separator for copied data.

• Use the Result copy quote character drop-down listbox to select the quote character for copied data.

• Use the Result copy quoting drop-down listbox to select which type of fields require quoting; select All, None,
or Strings.

Use the fields on the Keyboard shortcuts panel to configure shortcuts for the query tool window navigation:

The Storage Node

1.11. Preferences Dialog 33

pgAdmin 4 Documentation, Release 4.3

Expand the Storage node to specify your storage preferences.

Use the fields on the Options panel to specify storage preferences.

• Use the File dialog view drop-down listbox to select the style of icons and display format that will be displayed
when you open the file manager; select List to display a list view, or Grid to display folder icons.

• Use the Last directory visited field to specify the name of the folder in which the file manager will open.

• Use the Maximum file upload size(MB) field on the Options panel of the Storage node to specify the maximum
file size for an upload.

• When the Show hidden files and folders? switch is set to True, the file manager will display hidden files and
folders.

1.12 Keyboard Shortcuts

Keyboard shortcuts are provided in pgAdmin to allow easy access to specific functions. Alternate shortcuts can be
configured through File > Preferences if desired.´́

Main Browser Window

When using main browser window, the following keyboard shortcuts are available:

34 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Shortcut for all platforms Function
Alt+Shift+F Open the File menu
Alt+Shift+O Open the Object menu
Alt+Shift+L Open the Tools menu
Alt+Shift+H Open the Help menu
Alt+Shift+B Focus the browser tree
Alt+Shift+[Move tabbed panel backward
Alt+Shift+] Move tabbed panel forward
Alt+Shift+Q Open the Query Tool in the current database
Alt+Shift+V View Data in the selected table/view
Alt+Shift+C Open the context menu
Alt+Shift+N Create an object
Alt+Shift+E Edit object properties
Alt+Shift+D Delete the object
Alt+Shift+G Direct debugging

Dialog tab shortcuts

Use the shortcuts below to navigate the tabsets on dialogs:

Shortcut for all platforms Function
Control+Shift+[Dialog tab backward
Control+Shift+] Dialog tab forward

SQL Editors

When using the syntax-highlighting SQL editors, the following shortcuts are available:

Shortcut (Windows/Linux) Shortcut (Mac) Function
Alt+Left Option+Left Move to the beginning of the line
Alt+Right Option+Right Move to the end of the line
Ctrl+Alt+Left Cmd+Option+Left Move left one word
Ctrl+Alt+Right Cmd+Option+Right Move right one word
Ctrl+/ Cmd+/ Comment selected code (Inline)
Ctrl+. Cmd+. Uncomment selected code (Inline)
Ctrl+Shift+/ Cmd+Shift+/ Comment/Uncomment code (Block)
Ctrl+A Cmd+A Select all
Ctrl+C Cmd+C Copy selected text to the clipboard
Ctrl+R Cmd+R Redo last edit un-done
Ctrl+V Cmd+V Paste text from the clipboard
Ctrl+Z Cmd+Z Undo last edit
Tab Tab Indent selected text
Shift+Tab Shift+Tab Un-indent selected text
Alt+G Alt+G Jump (to line:column)
Ctrl+Space Ctrl+Space Auto-complete
Ctrl+F Cmd+F Find
Ctrl+G Cmd+G Find next
Ctrl+Shift+G Cmd+Shift+G Find previous
Ctrl+Shift+F Cmd+Shift+F Replace

Query Tool

1.12. Keyboard Shortcuts 35

pgAdmin 4 Documentation, Release 4.3

When using the Query Tool, the following shortcuts are available:

Shortcut (Windows/Linux) Shortcut (Mac) Function
F5 F5 Execute query
F7 F7 EXPLAIN query
Shift+F7 Shift+F7 EXPLAIN ANALYZE query
F8 F8 Execute query to CSV file
<accesskey> + o <accesskey> + o Open file
<accesskey> + s <accesskey> + s Save file
<accesskey> + n <accesskey> + n Find option drop down
<accesskey> + c <accesskey> + c Copy row(s)
<accesskey> + p <accesskey> + p Paste row(s)
<accesskey> + d <accesskey> + d Delete row(s)
<accesskey> + f <accesskey> + f Filter dialog
<accesskey> + i <accesskey> + i Filter options drop down
<accesskey> + r <accesskey> + r Row limit
<accesskey> + q <accesskey> + q Cancel query
<accesskey> + l <accesskey> + l Clear option drop down
<accesskey> + x <accesskey> + x Execute option drop down
<accesskey> + t <accesskey> + t Display connection status
<accesskey> + y <accesskey> + y Copy SQL on history panel

Debugger

When using the Debugger, the following shortcuts are available:

Shortcut (Windows/Linux) Shortcut (Mac) Function
<accesskey> + i <accesskey> + i Step in
<accesskey> + o <accesskey> + o Step over
<accesskey> + c <accesskey> + c Continue/Restart
<accesskey> + t <accesskey> + t Toggle breakpoint
<accesskey> + x <accesskey> + x Clear all breakpoints
<accesskey> + s <accesskey> + s Stop
Alt + Shift + q Alt + Shift + q Enter or Edit values in Grid

Inner panel navigation

When using the Query Tool and Debugger, the following shortcuts are available for inner panel navigation:

Shortcut (Windows/Linux) Shortcut (Mac) Function
Alt + Shift + Right Arrow Alt + Shift + Right Arrow Move to next inner panel
Alt + Shift + Left Arrow Alt + Shift + Left Arrow Move to previous inner panel

Note: <accesskey> is browser and platform dependant. The following table lists the default access keys for supported
browsers.

Windows Linux Mac
Internet Explorer Alt Alt
Chrome Alt Alt Ctrl+Alt
Firefox Alt+Shift Alt+Shift Ctrl+Alt
Safari Alt Ctrl+Alt

36 Chapter 1. Getting Started

pgAdmin 4 Documentation, Release 4.3

Before using pgAdmin to manage objects that reside on a server, you must define a connection to the server; for more
information please see Connecting to a Server in the next section.

1.12. Keyboard Shortcuts 37

pgAdmin 4 Documentation, Release 4.3

38 Chapter 1. Getting Started

CHAPTER

TWO

CONNECTING TO A SERVER

Before you can use the pgAdmin client to manage the objects that reside on your Postgres server, you must define
a connection to the server. You can (optionally) use the Server Group dialog to create server groups to organize the
server connections within the tree control for easier management. To open the Server Group dialog, right-click on the
Servers node of the tree control, and select Server Group from the Create menu.

Contents:

2.1 Server Group Dialog

Use the Server Group dialog to add a new server group. Assign servers to server groups to simplify management of
multiple servers. Server groups are displayed as part of the pgAdmin tree control.

Use the Name field on the Server Group dialog to specify a name that will identify the server group in the pgAdmin
tree control.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

To create server connections in a server group, right click on the named server group and select the Create option to
open the Create - Server dialog.

Use the fields on the Server dialog to define the connection properties for each new server that you wish to manage
with pgAdmin. To open the Server dialog, right-click on the Servers node of the tree control, and select Server from
the Create menu.

Contents:

39

pgAdmin 4 Documentation, Release 4.3

2.2 Server Dialog

Use the Server dialog to describe a connection to a server. Note: you must ensure that the pg_hba.conf file of the
server from which you are connecting allows connections from the host of the client.

Use the fields in the General tab to identify the server:

• Use the Name field to add a descriptive name for the server; the name specified will be displayed in the Browser
tree control.

• Use the drop-down list box in the Server group field to select the parent node for the server; the server will be
displayed in the Browser tree control within the specified group.

• Use the color-picker in the Background field to specify the background color for the server.

• Use the color-picker in the Foreground field to specify the foreground color for the server.

• If the Connect now? checkbox is checked, the client will attempt a connection to the server upon completion of
the dialog; this is the default

• Provide a comment about the server in the Comments field.

Click the Connection tab to continue.

40 Chapter 2. Connecting to a Server

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Connection tab to configure a connection:

• Specify the IP address of the server host, or the fully qualified domain name in the Host name/address field. If
you provide a unix domain socket, the directory name must begin with a “/”.

• Enter the listener port number of the server host in the Port field. The default is 5432.

• Use the Maintenance database field to specify the name of the initial database to which the client will connect.
If you will be using pgAgent or adminpack objects, the pgAgent schema and adminpack objects should be
installed on that database.

• Use the Username field to specify the name of a role that will be used when authenticating with the server.

• Use the Password field to provide a password that will be supplied when authenticating with the server.

• Check the box next to Save password? to instruct pgAdmin to save the password for future use. Use Clear
Saved Password to remove the saved password.

• Use the Role field to specify the name of a role that has privileges that will be conveyed to the client after
authentication with the server. This selection allows you to connect as one role, and then assume the permissions
of this specified role after the connection is established. Note that the connecting role must be a member of the
role specified.

• Use the Service field to specify the service name. For more information, see Section 33.16 of the Postgres
documentation.

Click the SSL tab to continue.

2.2. Server Dialog 41

https://www.postgresql.org/docs/10/static/libpq-pgservice.html
https://www.postgresql.org/docs/10/static/libpq-pgservice.html

pgAdmin 4 Documentation, Release 4.3

Use the fields in the SSL tab to configure SSL:

• Use the drop-down list box in the SSL field to select the type of SSL connection the server should use. For more
information about using SSL encryption, see Section 33.18 of the Postgres documentation.

If pgAdmin is installed in Server mode (the default mode), you can use the platform-specific File manager dialog to
upload files that support SSL encryption to the server. To access the File manager dialog, click the icon that is located
to the right of each of the following fields.

• Use the Client certificate field to specify the file containing the client SSL certificate. This file will
replace the default ~/.postgresql/postgresql.crt if pgAdmin is installed in Desktop mode, and <STOR-
AGE_DIR>/<USERNAME>/.postgresql/postgresql.crt if pgAdmin is installed in Web mode. This parameter
is ignored if an SSL connection is not made.

• Use the Client certificate key field to specify the file containing the secret key used for the client certificate. This
file will replace the default ~/.postgresql/postgresql.key if pgAdmin is installed in Desktop mode, and <STOR-
AGE_DIR>/<USERNAME>/.postgresql/postgresql.key if pgAdmin is installed in Web mode. This parameter is
ignored if an SSL connection is not made.

• Use the Root certificate field to specify the file containing the SSL certificate authority. This file will replace the
default ~/.postgresql/root.crt. This parameter is ignored if an SSL connection is not made.

• Use the Certificate revocation list field to specify the file containing the SSL certificate revocation list. This list
will replace the default list, found in ~/.postgresql/root.crl. This parameter is ignored if an SSL connection is
not made.

• When SSL compression? is set to True, data sent over SSL connections will be compressed. The default value
is False (compression is disabled). This parameter is ignored if an SSL connection is not made.

WARNING: In Server mode, certificates, private keys, and the revocation list are stored in the per-user file storage area
on the server, which is owned by the user account under which the pgAdmin server process is run. This means that
administrators of the server may be able to access those files; appropriate caution should be taken before choosing to
use this feature.

Click the SSH Tunnel tab to continue.

42 Chapter 2. Connecting to a Server

https://www.postgresql.org/docs/current/static/libpq-ssl.html

pgAdmin 4 Documentation, Release 4.3

Use the fields in the SSH Tunnel tab to configure SSH Tunneling:

You can use the “SSH Tunnel” tab to connect pgAdmin (through an intermediary proxy host) to a server that resides
on a network to which the client may not be able to connect directly.

• Set “Use SSH tunneling” to Yes to specify that pgAdmin should use an SSH tunnel when connecting to the
specified server.

• Specify the name or IP address of the SSH host (through which client connections will be forwarded) in the
Tunnel host field.

• Specify the port of the SSH host (through which client connections will be forwarded) in the Tunnel port field.

• Specify the name of a user with login privileges for the SSH host in the Username field.

• Specify the type of authentication that will be used when connecting to the SSH host in the Authentication field.

– Select the Password option to specify that pgAdmin will use a password for authentication to the SSH
host. This is the default.

– Select the Identity file to specify that pgAdmin will use a private key file when connecting.

• If the SSH host is expecting a private key file for authentication, use the Identity file field to specify the location
of the key file.

• If the SSH host is expecting a password of the user name or an identity file if being used, use the Password field
to specify the password.

• Check the box next to Save password? to instruct pgAdmin to save the password for future use. Use Clear SSH
Tunnel Password to remove the saved password.

Click the Advanced tab to continue.

2.2. Server Dialog 43

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Advanced tab to configure a connection:

• Specify the IP address of the server host in the Host address field. Using this field to specify the host IP address
may save time by avoiding a DNS lookup on connection, but it may be useful to specify both a host name and
address when using Kerberos, GSSAPI, or SSPI authentication methods, as well as for verify-full SSL certificate
verification.

• Use the DB restriction field to provide a SQL restriction that will be used against the pg_database table to limit
the databases that you see. For example, you might enter: live_db test_db so that only live_db and test_db are
shown in the pgAdmin browser. Separate entries with a comma or tab as you type.

• Use the Password File field to specify the location of a password file (.pgpass). A .pgpass file allows a user to
login without providing a password when they connect. For more information, see Section 33.15 of the Postgres
documentation.

• Use the Connection timeout field to specify the maximum wait for connection, in seconds. Zero or not specified
means wait indefinitely. It is not recommended to use a timeout of less than 2 seconds.

NOTE: The password file option is only supported when pgAdmin is using libpq v10.0 or later to connect to the server.

• Click the Save button to save your work.

• Click the Cancel button to exit without saving your work.

• Click the Reset button to return the values specified on the Server dialog to their original condition.

2.2.1 Clear Saved Passwords

Use Clear Saved Password functionality to clear the saved password for the database server.

44 Chapter 2. Connecting to a Server

http://www.postgresql.org/docs/current/static/libpq-pgpass.html
http://www.postgresql.org/docs/current/static/libpq-pgpass.html

pgAdmin 4 Documentation, Release 4.3

Clear Saved Password shows in the context menu for the selected server as well as under the Object menu on the top
menu bar.

Use Clear SSH Tunnel Password functionality to clear the saved password of SSH Tunnel to connect to the database
server.

Clear SSH Tunnel Password shows in the context menu for the selected server as well as under the Object menu on
the top menu bar.

Note: It will be enabled/visible when the password for the selected database server is already saved.

After defining a server connection, right-click on the server name, and select Connect to server to authenticate with
the server, and start using pgAdmin to manage objects that reside on the server.

Contents:

2.3 Connect to server

Use the Connect to Server dialog to authenticate with a defined server and access the objects stored on the server
through the pgAdmin tree control. To access the dialog, right click on the server name in the pgAdmin tree control,
and select Connect Server. . . from the context menu.

Provide authentication information for the selected server:

• Use the Password field to provide the password of the user that is associated with the defined server.

• Check the box next to Save Password to instruct the server to save the password for future connections; if you
save the password, you will not be prompted when reconnecting to the database server with this server definition.

In case of SSH Tunneling, Connect to Server dialog will prompt for SSH Tunnel and Database server passwords if not
already saved.

2.3. Connect to server 45

pgAdmin 4 Documentation, Release 4.3

Provide authentication information for the selected server:

• Use the Password field to provide the password of the user that is associated with the defined server.

• Check the box next to respective Save Password to instruct the server to save the password for future connec-
tions; if you save the password, you will not be prompted when reconnecting to the database server with this
server definition.

The pgAdmin client displays a message in a green status bar in the lower right corner when the server connects
successfully.

If you receive an error message while attempting a connection, verify that your network is allowing the pgAdmin host
and the host of the database server to communicate. For detailed information about a specific error message, please
see the Connection Error help page.

To review or modify connection details, right-click on the name of the server, and select Properties. . . from the context
menu.

2.4 Connection error

When connecting to a PostgreSQL server, you may get an error message. If you encounter an error message, please
review the message carefully; each error message attempts to incorporate the information you’ll need to resolve the
problem. For more details about specific errors, please locate the error message in the list below:

Connection to the server has been lost

This error message indicates that the connection attempt has taken longer than the specified threshold; there may be a
problem with the connection properties provided on the Server dialog, network connectivity issues, or the server may
not be running.

could not connect to Server: Connection refused

46 Chapter 2. Connecting to a Server

pgAdmin 4 Documentation, Release 4.3

If pgAdmin displays this message, there are two possible reasons for this:

• the database server isn’t running - simply start it.

• the server isn’t configured to accept TCP/IP requests on the address shown.

For security reasons, a PostgreSQL server “out of the box” doesn’t listen on TCP/IP ports. Instead, it must be enabled
to listen for TCP/IP requests. This can be done by adding tcpip = true to the postgresql.conf file for Versions 7.3.x
and 7.4.x, or listen_addresses=’*’ for Version 8.0.x and above; this will make the server accept connections on any
IP interface.

For further information, please refer to the PostgreSQL documentation about runtime configuration.

FATAL: no pg_hba.conf entry

If pgAdmin displays this message when connecting, your server can be contacted correctly over the network, but is
not configured to accept your connection. Your client has not been detected as a legal user for the database.

To connect to a server, the pg_hba.conf file on the database server must be configured to accept connections from the
host of the pgAdmin client. Modify the pg_hba.conf file on the database server host, and add an entry in the form:

• host template1 postgres 192.168.0.0/24 md5 for an IPV4 network

• host template1 postgres ::ffff:192.168.0.0/120 md5 for an IPV6 network

For more information, please refer to the PostgreSQL documentation about client authentication.

FATAL: password authentication failed

2.4. Connection error 47

http://www.postgresql.org/docs/current/interactive/runtime-config.html
http://www.postgresql.org/docs/current/interactive/client-authentication.html

pgAdmin 4 Documentation, Release 4.3

• The password authentication failed for user error message indicates there may be a problem with the password
you entered. Retry the password to confirm you entered it correctly. If the error message returns, make sure
that you have the correct password, that you are authorized to access the server, and that the access has been
correctly configured in the server’s postgresql.conf configuration file.

Server definitions (and their groups) can be exported to a JSON file and re-imported to the same or a different system
to enable easy pre-configuration of pgAdmin.

2.5 Exporting and importing Servers

Server definitions (and their groups) can be exported to a JSON file and re-imported to the same or a different system
to enable easy pre-configuration of pgAdmin. The setup.py script is used for this purpose.

Note: To export or import servers, you must use the Python interpreter that is normally used to run pgAdmin to ensure
that the required Python packages are available. In most packages, this can be found in the Python Virtual Environment
that can be found in the installation directory. When using platform-native packages, the system installation of Python
may be the one used by pgAdmin.

Exporting Servers

To export the servers defined in an installation, simply invoke setup.py with the --dump-servers command
line option, followed by the name (and if required, path) to the desired output file. By default, servers owned by
the desktop mode user will be dumped (pgadmin4@pgadmin.org by default - see the DESKTOP_USER setting in
config.py). This can be overridden with the --user command line option. For example:

/path/to/python /path/to/setup.py --dump-servers output_file.json

or, to specify a non-default user name:

/path/to/python /path/to/setup.py --dump-servers output_file.json --user user@example.
↪→com

To export only certain servers, use the --servers option and list one or more server IDs. For example:

/path/to/python /path/to/setup.py --dump-servers output_file.json --server 1 2 5

Importing Servers

To import the servers defined in a JSON file, simply invoke setup.py with the --load-servers command
line option, followed by the name (and if required, path) of the JSON file containing the server definitions. Servers

48 Chapter 2. Connecting to a Server

mailto:pgadmin4@pgadmin.org

pgAdmin 4 Documentation, Release 4.3

will be owned by the desktop mode user (pgadmin4@pgadmin.org by default - see the DESKTOP_USER setting in
config.py). This can be overridden with the --user command line option. For example:

/path/to/python /path/to/setup.py --load-servers input_file.json

or, to specify a non-default user name to own the new servers:

/path/to/python /path/to/setup.py --load-servers input_file.json --user user@example.
↪→com

If any Servers are defined with a Server Group that is not already present in the configuration database, the required
Group will be created.

JSON format

The JSON file format used when importing or exporting servers is quite straightforward and simply contains a list
of servers, with a number of attributes. The following attributes are required to be present in every server definition:
Name, Group, Port, Username, SSLMode, MaintenanceDB and one of Host, HostAddr or Service.

Password fields cannot be imported or exported.

The following example shows both a minimally defined and a fully defined server:

{
"Servers": {

"1": {
"Name": "Minimally Defined Server",
"Group": "Server Group 1",
"Port": 5432,
"Username": "postgres",
"Host": "localhost",
"SSLMode": "prefer",
"MaintenanceDB": "postgres"

},
"2": {

"Name: "Fully Defined Server",
"Group": "Server Group 2",
"Host": "host.domain.com",
"HostAddr": "192.168.1.2",
"Port": 5432,
"MaintenanceDB": "postgres",
"Username": "postgres",
"Role": "my_role_name",
"SSLMode": "require",
"Comment": "This server has every option configured in the JSON",
"DBRestriction": "live_db test_db",
"PassFile": "/path/to/pgpassfile",
"SSLCert": "/path/to/sslcert.crt",
"SSLKey": "/path/to/sslcert.key",
"SSLRootCert": "/path/to/sslroot.crt",
"SSLCrl": "/path/to/sslcrl.crl",
"SSLCompression": 1,
"BGColor": "#ff9900",
"FGColor": "#000000",
"Service": "postgresql-10",
"Timeout": 60,
"UseSSHTunnel": 1,
"TunnelHost": "192.168.1.253",
"TunnelPort": 22,

(continues on next page)

2.5. Exporting and importing Servers 49

mailto:pgadmin4@pgadmin.org

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

"TunnelUsername": "username",
"TunnelAuthentication": 0

}
}

}

50 Chapter 2. Connecting to a Server

CHAPTER

THREE

MANAGING CLUSTER LEVEL OBJECTS

Some object definitions reside at the cluster level; pgAdmin 4 provides dialogs that allow you to create these objects,
manage them, and control their relationships to each other. To access a dialog that allows you to create a database
object, right-click on the object type in the pgAdmin tree control, and select the Create option for that object. For
example, to create a new database, right-click on the Databases node, and select Create Database. . .

Contents:

3.1 Database Dialog

Use the Database dialog to define or modify a database. To create a database, you must be a database superuser or
have the CREATE privilege.

The Database dialog organizes the development of a database through the following dialog tabs: General, Definition,
Security, and Parameters. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the database:

51

pgAdmin 4 Documentation, Release 4.3

• Use the Database field to add a descriptive name for the database. The name will be displayed in the pgAdmin
tree control.

• Select the owner of the database from the drop-down listbox in the Owner field.

• Store notes about the database in the Comment field.

Click the Definition tab to continue.

Use the Definition tab to set properties for the database:

• Select a character set from the drop-down listbox in the Encoding field. The default is UTF8.

• Select a template from the drop-down listbox in the Template field. If you do not specify a template, the database
will use template1.

• Select a tablespace from the drop-down listbox in the Tablespace field. The selected tablespace will be the
default tablespace used to contain database objects.

• Select the collation order from the drop-down listbox in the Collation field.

• Select the character classification from the drop-down listbox in the Character Type field. This affects the
categorization of characters, e.g. lower, upper and digit. The default, or a blank field, uses the character
classification of the template database.

• Specify a connection limit in the Connection Limit field to configure the maximum number of connection re-
quests. The default value (-1) allows unlimited connections to the database.

Click the Security tab to continue.

52 Chapter 3. Managing Cluster Level Objects

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click add to set additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the database. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm deletion in the Delete Row popup.

Click the Parameters tab to continue.

3.1. Database Dialog 53

pgAdmin 4 Documentation, Release 4.3

Use the Parameters tab to set parameters for the database. Click the Add icon (+) to add each parameter:

• Use the drop-down listbox in the Name field to select a parameter.

• Use the Value field to set a value for the parameter.

• Use the drop-down listbox next to Role to select a role to which the parameter setting specified will apply.

Follow these steps to add additional parameter value definitions; to discard a parameter, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Database dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Database dialog:

54 Chapter 3. Managing Cluster Level Objects

pgAdmin 4 Documentation, Release 4.3

The example creates a database named hr that is owned by postgres. It allows unlimited connections, and is available
to all authenticated users.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.2 Move Objects Dialog

Use the Move Objects dialog to to move database objects from one tablespace to another tablespace.

The Move Objects dialog organizes the movement of database objects with the General tab; the SQL tab displays the
SQL code generated by dialog selections.

Use the fields in the General tab to identify the items that will be moved and the tablespace to which they will be
moved:

3.2. Move Objects Dialog 55

pgAdmin 4 Documentation, Release 4.3

• Use the New tablespace drop-down listbox to select a pre-existing tablespace to which the object will be moved.
(To create a tablespace, use the Tablespace dialog; access the dialog by right clicking Tablespaces in the pgAd-
min tree control and selecting Create Tablespace. . . from the context-menu.)

• Use the Object type drop-down listbox to select from the following:

– Select All to move all tables, indexes, and materialized views from the current tablespace (currently se-
lected in the pgAdmin tree control) to the new tablespace.

– Select Tables to move tables from the current tablespace to the new tablespace.

– Select Indexes to move indexes from the current tablespace to the new tablespace.

– Select Materialized views to move materialized views from the current tablespace to the new tablespace.

• Use the Object owner drop-down listbox to select the role that owns the objects selected in the Object type field.
This field is optional.

Click the SQL tab to continue.

Your entries in the Move Objects dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit the General tab to modify the SQL command.

Example

The following is an example of the sql command generated by user selections in the Move Objects dialog:

The example shown demonstrates moving materialized views owned by Alice from tablespace tbspace_01 to tb-
space_02.

• Click the Help button (?) to access online help.

• Click the OK button to save work.

• Click the Cancel button to exit without saving work.

3.3 Login/Group Role Dialog

Use the Login/Group Role dialog to define a role. A role may be an individual user (with or without login privileges)
or a group of users. Note that roles defined at the cluster level are shared by all databases in the cluster.

The Login/Group Role dialog organizes the creation and management of roles through the following dialog tabs:
General, Definition, Privileges, Parameters, and Security. The SQL tab displays the SQL code generated by dialog
selections.

56 Chapter 3. Managing Cluster Level Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields on the General tab to identify the role.

• Use the Name field to provide the name of the role. The name will be displayed in the tree control.

• Provide a note about the role in the Comments field.

Click the Definition tab to continue.

Use the Definition tab to set a password and configure connection rules:

3.3. Login/Group Role Dialog 57

pgAdmin 4 Documentation, Release 4.3

• Provide a password that will be associated with the role in the Password field.

• Provide an expiration date for the password in the Account Expires field (the role does not expire). The expiration
date is not enforced when a user logs in with a non-password-based authentication method.

• If the role is a login role, specify how many concurrent connections the role can make in the Connection Limit
field. The default value (-1) allows unlimited connections.

Click the Privileges tab to continue.

Use the Privileges tab to grant privileges to the role.

• Move the Can login? switch to the Yes position if the role has login privileges. The default value is No.

• Move the Superuser switch to the Yes position if the role is a superuser within the database. The default value is
No.

• Move the Create roles? switch to the Yes position to specify whether a role is permitted to create roles. A role
with this privilege can alter and drop roles. The default value is No.

• Move the Create databases switch to the Yes position to control whether a role can create databases. The default
value is No.

• The Update catalog? switch is disabled until the role is given superuser privileges. Move the Update catalogs?
switch to the No position to control whether a role can update catalogs. The default value is Yes when the
Superuser switch is in the Yes position.

• Move the Inherit rights from the parent roles? switch to the No position if a role does not inherit privileges. The
default value is Yes.

• Move the Can initiate streaming replication and backups? switch to the Yes position to control whether a role
can initiate streaming replication or put the system in and out of backup mode. The default value is No.

58 Chapter 3. Managing Cluster Level Objects

pgAdmin 4 Documentation, Release 4.3

• Specify members of the role in the Role Membership field. Click inside the Roles field to select role names
from a drop down list. Confirm each selection by checking the checkbox to the right of the role name; delete
a selection by clicking the x to the left of the role name. Membership conveys the privileges granted to the
specified role to each of its members.

Click the Parameters tab to continue.

Use the fields on the Parameters tab to set session defaults for a selected configuration parameter when the role is
connected to a specified database. This tab invokes the ALTER ROLE. . . SET configuration_parameter syntax. Click

3.3. Login/Group Role Dialog 59

pgAdmin 4 Documentation, Release 4.3

the Add icon (+) to assign a value for a parameter.

• Use the drop-down listbox in the Name field to select a parameter.

• Use the Value field to specify a value for the parameter.

• Use the drop-down listbox in the Database field to select a database.

Click the Add icon (+) to specify each additional parameter; to discard a parameter, click the trash icon to the left of
the row and confirm the deletion in the Delete Row popup.

Click the Security tab to continue.

Use the Security tab to define security labels applied to the role. Click the Add icon (+) to add each security label
selection.

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

To discard a security label, click the trash icon to the left of the row and confirm the deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Login/Group Role dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Login/Group Role dialog:

60 Chapter 3. Managing Cluster Level Objects

pgAdmin 4 Documentation, Release 4.3

The example creates a login role named alice with pem_user privileges; the role can make unlimited connections to
the server at any given time.

• Click the Info button (i) to access online SQL help.

• Click the Help button (?) to access the documentation for the dialog.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

3.3. Login/Group Role Dialog 61

pgAdmin 4 Documentation, Release 4.3

62 Chapter 3. Managing Cluster Level Objects

CHAPTER

FOUR

MANAGING DATABASE OBJECTS

pgAdmin 4 provides simple but powerful dialogs that you can use to design and create database objects. Each dialog
contains a series of tabs that you use to describe the object that will be created by the dialog; the SQL tab displays the
SQL command that the server will execute when creating the object.

To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree
control, and select the Create option for that object. For example, to create a new cast, right-click on the Casts node,
and select Create Cast. . .

Contents:

4.1 Cast Dialog

Use the Cast dialog to define a cast. A cast specifies how to convert a value from one data type to another.

The Cast dialog organizes the development of a cast through the following dialog tabs: General and Definition. The
SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the cast:

63

pgAdmin 4 Documentation, Release 4.3

• The Name field is disabled. The name that will be displayed in the pgAdmin tree control is the Source type
concatenated with the Target type, and is generated automatically when you make selections on the Cast dialog
Definition tab.

• Store notes about the cast in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define parameters:

• Use the drop-down listbox next to Source type to select the name of the source data type of the cast.

• Use the drop-down listbox next to Target type to select the name of the target data type of the cast.

• Use the drop-down listbox next to Function to select the function used to perform the cast. The function’s result
data type must match the target type of the cast.

• Move the Context switch to the Implicit position if the cast is implicit. By default, a cast can be invoked only by
an explicit cast request. If the cast is marked Implicit then it can be invoked implicitly in any context, whether
by assignment or internally in an expression.

Click the SQL tab to continue.

Your entries in the Cast dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Cast dialog:

64 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The cast uses a function named int4(bigint) to convert a biginteger data type to an integer.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.2 Collation Dialog

Use the Collation dialog to define a collation. A collation is an SQL schema object that maps a SQL name to operating
system locales. To create a collation, you must have a CREATE privilege on the destination schema.

The Collation dialog organizes the development of a collation through the following dialog tabs: General and Defini-
tion. The SQL tab displays the SQL code generated by dialog selections.

4.2. Collation Dialog 65

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the collation:

• Use the Name field to provide a name for the collation. The collation name must be unique within a schema.
The name will be displayed in the pgAdmin tree control.

• Select the name of the owner from the drop-down listbox in the Owner field.

• Select the name of the schema in which the collation will reside from the drop-down listbox in the Schema field.

• Store notes about the collation in the Comment field.

Click the Definition tab to continue.

66 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to specify the operating system locale settings:

• Use the drop-down listbox next to Copy collation to select the name of an existing collation to copy. The new
collation will have the same properties as the existing one, but will be an independent object. If you choose to
copy an existing collation, you cannot modify the collation properties displayed on this tab.

• Use the Locale field to specify a locale; a locale specifies language and language formatting characteristics. If
you specify this, you cannot specify either of the following parameters. To view a list of locales supported by
your Linux system use the command locale -a.

• Use the LC_COLLATE field to specify a locale with specified string sort order. The locale must be applicable to
the current database encoding. (See CREATE DATABASE for details.)

• Use the LC_CTYPE field to specify a locale with specified character classification. The locale must be applicable
to the current database encoding. (See CREATE DATABASE for details.)

Click the SQL tab to continue.

Your entries in the Collation dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Collation dialog:

4.2. Collation Dialog 67

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a collation named french that uses the rules specified for the locale, fr-BI-
x-icu. The collation is owned by *postgres.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation. For more information about setting a locale, see Chapter 22.1
Locale Support of the PostgreSQL core documentation:

http://www.postgresql.org/docs/9.5/static/locale.html

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.3 Domain Dialog

Use the Domain dialog to define a domain. A domain is a data type definition that may constrain permissible values.
Domains are useful when you are creating multiple tables that contain comparable columns; you can create a domain
that defines constraints that are common to the columns and re-use the domain definition when creating the columns,
rather than individually defining each set of constraints.

The Domain dialog organizes the development of a domain through the following tabs: General, Definition, Con-
straints, and Security. The SQL tab displays the SQL code generated by dialog selections.

68 Chapter 4. Managing Database Objects

http://www.postgresql.org/docs/9.5/static/locale.html

pgAdmin 4 Documentation, Release 4.3

Use the fields on the General tab to identify a domain:

• Use the Name field to add a descriptive name for the domain. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select a role that will own the domain.

• Select the name of the schema in which the domain will reside from the drop-down listbox in the Schema field.

• Store notes about the domain in the Comment field.

Click the Definition tab to continue.

4.3. Domain Dialog 69

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to describe the domain:

• Use the drop-down listbox next to Base type to specify a data type.

• Use the context-sensitive Length field to specify a numeric length for a numeric type.

• Use the context-sensitive Precision field to specify the total count of significant digits for a numeric type.

• Specify a default value for the domain data type in the Default field. The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default value is the null value.

• Move the Not Null switch to specify the values of this domain are prevented from being null.

• Use the drop-down listbox next to Collation to apply a collation cast. If no collation is specified, the underlying
data type’s default collation is used. The underlying type must be collatable if COLLATE is specified.

Click the Constraints tab to continue.

70 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Constraints tab to specify rules for the domain. Click the Add icon (+) to set constraints:

• Use the Name field to specify a name for the constraint.

• Use the Check field to provide an expression for the constraint.

• Use the Validate checkbox to determine whether the constraint will be validated. The default checkbox is
checked and sets a validation requirement.

A CHECK clause specifies an integrity test which values of the domain must satisfy. Each constraint must be an
expression that produces a Boolean result. Use the key word VALUE to refer to the value being tested. Expressions
evaluating to TRUE or UNKNOWN succeed. If the expression produces a FALSE result, an error is reported and the
value is not allowed to be converted to the domain type. A CHECK expression cannot contain subqueries nor refer to
variables other than VALUE. If a domain has multiple CHECK constraints, they will be tested in alphabetical order
by name.

Click the Add icon (+) to set additional constraints; to discard a constraint, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

4.3. Domain Dialog 71

pgAdmin 4 Documentation, Release 4.3

Use the Security Labels panel to assign security labels. Click the Add icon (+) to add a label:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to specify each additional label; to discard a label, click the trash icon to the left of the row and
confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Domain dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Domain dialog:

72 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a domain named minimum-wage that confirms that the value entered is
greater than or equal to 7.25.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.4 Domain Constraints Dialog

Use the Domain Constraints dialog to create or modify a domain constraint. A domain constraint confirms that the
values provided for a domain meet a defined criteria. The Domain Constraints dialog implements options of the
ALTER DOMAIN command.

The Domain Constraints dialog organizes the development of a domain constraint through the following dialog tabs:
General and Definition. The SQL tab displays the SQL code generated by dialog selections.

4.4. Domain Constraints Dialog 73

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the domain constraint:

• Use the Name field to add a descriptive name for the constraint. The name will be displayed in the pgAdmin tree
control.

• Store notes about the constraint in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the domain constraint:

74 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Use the Check field to provide a CHECK expression. A CHECK expression specifies a constraint that the
domain must satisfy. A constraint must produce a Boolean result; include the key word VALUE to refer to the
value being tested. Only those expressions that evaluate to TRUE or UNKNOWN will succeed. A CHECK
expression cannot contain subqueries or refer to variables other than VALUE. If a domain has multiple CHECK
constraints, they will be tested in alphabetical order.

• Move the Validate? switch to the No position to mark the constraint NOT VALID. If the constraint is marked
NOT VALID, the constraint will not be applied to existing column data. The default value is Yes.

Click the SQL tab to continue.

Your entries in the Domain Constraints dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Domain Constraints dialog:

The example shown demonstrates creating a domain constraint on the domain timesheets named weekday. It constrains
a value to equal Friday.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.5 Event Trigger Dialog

Use the Domain Trigger dialog to define an event trigger. Unlike regular triggers, which are attached to a single
table and capture only DML events, event triggers are global to a particular database and are capable of capturing

4.5. Event Trigger Dialog 75

pgAdmin 4 Documentation, Release 4.3

DDL events. Like regular triggers, event triggers can be written in any procedural language that includes event trigger
support, or in C, but not in SQL.

The Domain Trigger dialog organizes the development of a event trigger through the following dialog tabs: General,
Definition, and Security Labels. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the event trigger:

• Use the Name field to add a descriptive name for the event trigger. The name will be displayed in the pgAdmin
tree control.

• Use the drop-down listbox next to Owner to specify the owner of the event trigger.

• Store notes about the event trigger in the Comment field.

Click the Definition tab to continue.

76 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the event trigger:

• Select a radio button in the Enabled Status field to specify a status for the trigger: Enable Disable, Replica
Always.

• Use the drop-down listbox next to Trigger function to specify an existing function. A trigger function takes an
empty argument list, and returns a value of type event_trigger.

• Select a radio button in the Events field to specify when the event trigger will fire: DDL COMMAND START,
DDL COMMAND END, or SQL DROP.

• Use the When field to write a condition for the event trigger that must be satisfied before the event trigger can
execute.

Click the Security Labels tab to continue.

4.5. Event Trigger Dialog 77

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to define security labels applied to the trigger. Click the Add icon (+) to add each security label.

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Domain Trigger dialog generate a generate a SQL command. Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Domain Trigger dialog:

78 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The command creates an event trigger named accounts that invokes the procedure named acct_due.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.6 Extension Dialog

Use the Extension dialog to install a new extension into the current database. An extension is a collection of SQL
objects that add targeted functionality to your Postgres installation. The Extension dialog adds the functionality of an
extension to the current database only; you must register the extension in each database that use the extension. Before
you load an extension into a database, you should confirm that any pre-requisite files are installed.

The Extension dialog allows you to implement options of the CREATE EXTENSION command through the following
dialog tabs: General and Definition. The SQL tab displays the SQL code generated by dialog selections.

4.6. Extension Dialog 79

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify an extension:

• Use the drop-down listbox in the Name field to select the extension. Each extension must have a unique name.

• Store notes about the extension in the Comment field.

Click the Definition tab to continue.

Use the Definition tab to select the Schema and Version:

80 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox next to Schema to select the name of the schema in which to install the extension’s
objects.

• Use the drop-down listbox next to Version to select the version of the extension to install.

Click the SQL tab to continue.

Your entries in the Extension dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Extension dialog:

The command creates the chkpass extension in the public schema. It is version 1.0 of chkpass.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.7 Foreign Data Wrapper Dialog

Use the Foreign Data Wrapper dialog to create or modify a foreign data wrapper. A foreign data wrapper is an adapter
between a Postgres database and data stored on another data source.

You must be a superuser to create a foreign data wrapper.

The Foreign Data Wrapper dialog organizes the development of a foreign data wrapper through the following dialog
tabs: General, Definition, Options, and Security. The SQL tab displays the SQL code generated by dialog selections.

4.7. Foreign Data Wrapper Dialog 81

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the foreign data wrapper:

• Use the Name field to add a descriptive name for the foreign data wrapper. A foreign data wrapper name must
be unique within the database. The name will be displayed in the pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the name of the role that will own the foreign data wrapper.

• Store notes about the foreign data wrapper in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to set parameters:

• Select the name of the handler function from the drop-down listbox in the Handler field. This is the name of an
existing function that will be called to retrieve the execution functions for foreign tables.

• Select the name of the validator function from the drop-down listbox in the Validator field. This is the name of
an existing function that will be called to check the generic options given to the foreign data wrapper, as well as
options for foreign servers, user mappings and foreign tables using the foreign data wrapper.

82 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Click the Options tab to continue.

Use the fields in the Options tab to specify options:

• Click the the Add icon (+) button to add an option/value pair for the foreign data wrapper. Supported option/value
pairs will be specific to the selected foreign data wrapper.

• Specify the option name in the Option field and provide a corresponding value in the Value field.

Click the Add icon (+) to specify each additional pair; to discard an option, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

Use the Security tab to assign security privileges. Click the Add icon (+) to assign a set of privileges.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

4.7. Foreign Data Wrapper Dialog 83

pgAdmin 4 Documentation, Release 4.3

• Select the name of the role granting the privileges from the drop-down listbox in the Grantor field. The default
grantor is the owner of the foreign data wrapper.

Click add to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Foreign Data Wrapper dialog generate a SQL command (see an example below). Use the SQL tab
for review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign Data Wrapper dialog:

The example creates a foreign data wrapper named libpq_debug that uses pre-existing validator and handler functions,
dblink_fdw_validator and libpg_fdw_handler. Selections on the Options tab set debug equal to true. The foreign data
wrapper is owned by postgres.

• Click the Help button (?) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.8 Foreign Server Dialog

Use the Foreign Server dialog to create a foreign server. A foreign server typically encapsulates connection information
that a foreign-data wrapper uses to access an external data resource. Each foreign data wrapper may connect to a
different foreign server; in the pgAdmin tree control, expand the node of the applicable foreign data wrapper to launch
the Foreign Server dialog.

The Foreign Server dialog organizes the development of a foreign server through the following dialog tabs: General,
Definition, Options, and Security. The SQL tab displays the SQL code generated by dialog selections.

84 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the foreign server:

• Use the Name field to add a descriptive name for the foreign server. The name will be displayed in the pgAdmin
tree control. It must be unique within the database.

• Use the drop-down listbox next to Owner to select a role.

• Store notes about the foreign server in the Comment field.

Click the Definition tab to continue.

4.8. Foreign Server Dialog 85

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to set parameters:

• Use the Type field to specify a server type.

• Use the Version field to specify a server version.

Click the Options tab to continue.

Use the fields in the Options tab to specify options. Click the Add button to create an option clause for the foreign
server.

86 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Specify the option name in the Option field.

• Provide a corresponding value in the Value field.

Click Add to create each additional clause; to discard an option, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the Security tab to continue.

Use the Security tab to assign security privileges to the foreign server. Click Add before you assign a set of privileges.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the foreign server. This is a required field.

Click Add to assign a new set of privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row dialog.

Click the SQL tab to continue.

Your entries in the Foreign Server dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign Server dialog:

4.8. Foreign Server Dialog 87

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a foreign server for the foreign data wrapper hdfs_fdw. It has the name
hdfs_server; its type is hiveserver2. Options for the foreign server include a host and a port.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.9 Foreign Table Dialog

Use the Foreign Table dialog to define a foreign table in the current database. Foreign tables define the structure of an
external data source that resides on a foreign server.

The Foreign Table dialog organizes the development of a foreign table through the following dialog tabs: General,
Definition, Columns, Constraints, Options, and Security. The SQL tab displays the SQL code generated by dialog
selections.

88 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the foreign table:

• Use the Name field to add a descriptive name for the foreign table. The name of the foreign table must be distinct
from the name of any other foreign table, table, sequence, index, view, existing data type, or materialized view
in the same schema. The name will be displayed in the pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the name of the role that will own the foreign table.

• Select the name of the schema in which the foreign table will reside from the drop-down listbox in the Schema
field.

• Store notes about the foreign table in the Comment field.

Click the Definition tab to continue.

4.9. Foreign Table Dialog 89

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the external data source:

• Use the drop-down listbox next to Foreign server to select a foreign server. This list is populated with servers
defined through the Foreign Server dialog.

• Use the drop-down listbox next to Inherits to specify a parent table. The foreign table will inherit all of its
columns. This field is optional.

Click the Columns tab to continue.

90 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Columns tab to to add columns and their attributes to the table. Click the Add icon (+) to define a
column:

• Use the Name field to add a descriptive name for the column.

• Use the drop-down listbox in the Data Type field to select a data type for the column. This can include array
specifiers. For more information on which data types are supported by PostgreSQL, refer to Chapter 8 of the
core documentation.

Click the Add icon (+) to specify each additional column; to discard a column, click the trash icon to the left of the
row and confirm deletion in the Delete Row popup.

Click the Constraints tab to continue.

Use the fields in the Constraints tab to apply a table constraint to the foreign table. Click the Add icon (+) to define a
constraint:

• Use the Name field to add a descriptive name for the constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used to communicate helpful
information.

• Use the Check field to write a check expression producing a Boolean result. Each row in the foreign table is
expected to satisfy the check expression.

• Check the No Inherit checkbox to specify that the constraint will not propagate to child tables.

• Uncheck the Validate checkbox to disable validation. The database will not assume that the constraint holds for
all rows in the table.

Click the Add icon (+) to specify each additional constraint; to discard a constraint, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Options tab to continue.

4.9. Foreign Table Dialog 91

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Options tab to specify options to be associated with the new foreign table or one of its columns;
the accepted option names and values are specific to the foreign data wrapper associated with the foreign server. Click
the Add icon (+) to add an option/value pair.

• Specify the option name in the Option field. Duplicate option names are not allowed.

• Provide a corresponding value in the Value field.

Click the Add icon (+) to specify each additional option/value pair; to discard an option, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

92 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role to which privileges will be assigned from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role that owns the foreign table from the drop-down listbox in the Grantor field. The
default grantor is the owner of the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Foreign Table dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign Table dialog:

4.9. Foreign Table Dialog 93

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a foreign table weblogs with multiple columns and two options.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.10 FTS Configuration dialog

Use the FTS Configuration dialog to configure a full text search. A text search configuration specifies a text search
parser that can divide a string into tokens, along with dictionaries that can identify searchable tokens.

The FTS Configuration dialog organizes the development of a FTS configuration through the following dialog tabs:
“General, Definition, and Tokens. The SQL tab displays the SQL code generated by dialog selections.

Click the General tab to begin.

94 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a FTS configuration:

• Use the Name field to add a descriptive name for the FTS configuration. The name will be displayed in the
pgAdmin tree control.

• Use the drop-down listbox next to Owner to specify the role that will own the configuration.

• Select the name of the schema in which the FTS configuration will reside from the drop-down listbox in the
Schema field.

• Store notes about the FTS configuration in the Comment field.

Click the Definition tab to continue.

4.10. FTS Configuration dialog 95

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define parameters:

• Select the name of the text search parser from the drop-down listbox in the Parser field.

• Select a language from the drop-down listbox in the Copy Config field.

Click the Tokens tab to continue.

Use the fields in the Tokens tab to add a token:

96 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Use the Tokens field to specify the name of a token.

• Click the Add icon (+) to create a token.

• Use the Dictionaries field to specify a dictionary.

Repeat these steps to add additional tokens; to discard a token, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the FTS Configuration dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the FTS Configuration dialog:

The example shown demonstrates creating a FTS configuration named meme_phrases. It uses the default parser.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.11 FTS Dictionary Dialog

Use the FTS Dictionary dialog to create a full text search dictionary. You can use a predefined templates or create a
new dictionary with custom parameters.

The FTS Dictionary dialog organizes the development of a FTS dictionary through the following dialog tabs: General,
Definition, and Options. The SQL tab displays the SQL code generated by dialog selections.

4.11. FTS Dictionary Dialog 97

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the dictionary:

• Use the Name field to add a descriptive name for the dictionary. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select the role that will own the FTS Dictionary.

• Select the name of the schema in which the dictionary will reside from the drop-down listbox in the Schema
field.

• Store notes about the dictionary in the Comment field.

Click the Definition tab to continue.

98 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the field in the Definition tab to choose a template from the drop-down listbox:

Select *ispell to select the Ispell template. The Ispell dictionary template supports morphological dictionaries, which
can normalize many different linguistic forms of a word into the same lexeme. For example, an English Ispell dictio-
nary can match all declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks’, and
bank’s. Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader dic-
tionary; for example, a Snowball dictionary, which recognizes everything. Select *simple to select the simple template.
The simple dictionary template operates by converting the input token to lower case and checking it against a file of
stop words. If it is found in the file then an empty array is returned, causing the token to be discarded. If not, the lower-
cased form of the word is returned as the normalized lexeme. Alternatively, the dictionary can be configured to report
non-stop-words as unrecognized, allowing them to be passed on to the next dictionary in the list. Select *snowball to
select the Snowball template. The Snowball dictionary template is based on a project by Martin Porter, inventor of the
popular Porter’s stemming algorithm for the English language. Snowball now provides stemming algorithms for many
languages (see the Snowball site for more information). Each algorithm understands how to reduce common variant
forms of words to a base, or stem, spelling within its language. A Snowball dictionary recognizes everything, whether
or not it is able to simplify the word, so it should be placed at the end of the dictionary list. It is useless to have it
before any other dictionary because a token will never pass through it to the next dictionary. Select *synonym to select
the synonym template. This dictionary template is used to create dictionaries that replace a word with a synonym.
Phrases are not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used to
overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing the word Paris to
pari. Select *thesaurus to select the thesaurus template. A thesaurus dictionary replaces all non-preferred terms by one
preferred term and, optionally, preserves the original terms for indexing as well. PostgreSQL’s current implementation
of the thesaurus dictionary is an extension of the synonym dictionary with added phrase support.

Click the Options tab to continue.

4.11. FTS Dictionary Dialog 99

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Options tab to provide template-specific options. Click the Add icon (+) to add an option clause:

• Specify the name of an option in the Option field

• Provide a value for the option in the Value field.

Click the Add icon (+) to specify each additional option/value pair; to discard an option, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the FTS Dictionary dialog generate a generate a SQL command. Use the SQL tab for review; revisit or
switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the FTS Dictionary dialog:

100 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a custom dictionary named more_stopwords which is based on the simple
template and is configured to use standard English.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.12 FTS Parser Dialog

Use the FTS Parser dialog to create a new text search parser. A text search parser defines a method for splitting a text
string into tokens and assigning types (categories) to the tokens.

The FTS Parser dialog organizes the development of a text search parser through the following dialog tabs: General,
and Definition. The SQL tab displays the SQL code generated by dialog selections.

4.12. FTS Parser Dialog 101

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a text search parser:

• Use the Name field to add a descriptive name for the parser. The name will be displayed in the pgAdmin tree
control.

• Select the name of the schema in which the parser will reside from the drop-down listbox in the Schema field.

• Store notes about the domain in the Comment field.

Click the Definition tab to continue.

102 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define parameters:

• Use the drop-down listbox next to Start function to select the name of the function that will initialize the parser.

• Use the drop-down listbox next to Get next token function to select the name of the function that will return the
next token.

• Use the drop-down listbox next to End function to select the name of the function that is called when the parser
is finished.

• Use the drop-down listbox next to Lextypes function to select the name of the lextypes function for the parser.
The lextypes function returns an array that contains the id, alias, and a description of the tokens used by the
parser.

• Use the drop-down listbox next to Headline function to select the name of the headline function for the parser.
The headline function returns an excerpt from the document in which the terms of the query are highlighted.

Click the SQL tab to continue.

Your entries in the FTS Parser dialog generate a generate a SQL command. Use the SQL tab for review; revisit or
switch tabs to make any changes to the SQL command.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.13 FTS Template Dialog

Use the FTS Template dialog to create a new text search template. A text search template defines the functions that
implement text search dictionaries.

4.13. FTS Template Dialog 103

pgAdmin 4 Documentation, Release 4.3

The FTS Template dialog organizes the development of a text search Template through the following dialog tabs:
General, and Definition. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify a template:

• Use the Name field to add a descriptive name for the template. The name will be displayed in the pgAdmin tree
control.

• Select the name of the schema in which the template will reside from the drop-down listbox in the Schema field.

• Store notes about the template in the Comment field.

Click the Definition tab to continue.

104 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define function parameters:

• Use the drop-down listbox next to Init function to select the name of the init function for the template. The init
function is optional.

• Use the drop-down listbox next to Lexize function to select the name of the lexize function for the template. The
lexize function is required.

Click the SQL tab to continue.

Your entries in the FTS Template dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the FTS Template dialog:

4.13. FTS Template Dialog 105

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a fts template named ru_template that uses the ispell dictionary.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.14 Function Dialog

Use the Function dialog to define a function. If you drop and then recreate a function, the new function is not the same
entity as the old; you must drop existing rules, views, triggers, etc. that refer to the old function.

The Function dialog organizes the development of a function through the following dialog tabs: General, Definition,
Options, Arguments, Parameters, and Security. The SQL tab displays the SQL code generated by dialog selections.

106 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a function:

• Use the Name field to add a descriptive name for the function. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select the name of the role that will own the function.

• Use the drop-down listbox next to Schema to select the schema in which the function will be created.

• Store notes about the function in the Comment field.

Click the Definition tab to continue.

4.14. Function Dialog 107

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the function:

• Use the drop-down listbox next to Return type to select the data type returned by the function, if any.

• Use the drop-down listbox next to Language to select the implementation language. The default is sql.

• Use the Code field to write the code that will execute when the function is called.

Click the Options tab to continue.

108 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Options tab to describe or modify the action of the function:

• Use the drop-down listbox next to Volatility to select one of the following. VOLATILE is the default value.

– VOLATILE indicates that the function value can change even within a single table scan, so no optimizations
can be made.

– STABLE indicates that the function cannot modify the database, and that within a single table scan it will
consistently return the same result for the same argument values.

– IMMUTABLE indicates that the function cannot modify the database and always returns the same result
when given the same argument values.

• Move the Returns a Set? switch to indicate if the function returns a set that includes multiple rows. The default
is No.

• Move the Strict? switch to indicate if the function always returns NULL whenever any of its arguments are
NULL. If Yes, the function is not executed when there are NULL arguments; instead a NULL result is assumed
automatically. The default is No.

• Move the Security of definer? switch to specify that the function is to be executed with the privileges of the user
that created it. The default is No.

• Move the Window? switch to indicate that the function is a window function rather than a plain function.
The default is No. This is currently only useful for functions written in C. The WINDOW attribute cannot be
changed when replacing an existing function definition. For more information about the CREATE FUNCTION
command, see the PostgreSQL core documentation available at:

http://www.postgresql.org/docs/9.5/static/functions-window.html

• Use the Estimated cost field to specify a positive number representing the estimated execution cost for the
function, in units of cpu_operator_cost. If the function returns a set, this is the cost per returned row.

• Use the Estimated rows field to specify a positive number giving the estimated number of rows that the query
planner should expect the function to return. This is only allowed when the function is declared to return a set.
The default assumption is 1000 rows.

• Move the Leak proof? switch to indicate whether the function has side effects. The default is No. This option
can only be set by the superuser.

Click the Arguments tab to continue.

4.14. Function Dialog 109

http://www.postgresql.org/docs/9.5/static/functions-window.html

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Arguments tab to define an argument. Click the Add icon (+) to set parameters and values for the
argument:

• Use the drop-down listbox in the Data type field to select a data type.

• Use the drop-down listbox in the Mode field to select a mode. Select IN for an input parameter; select OUT for
an output parameter; select INOUT for both an input and an output parameter; or, select VARIADIC to specify a
VARIADIC parameter.

• Provide a name for the argument in the Argument Name field.

• Specify a default value for the argument in the Default Value field.

Click the Add icon (+) to define another argument; to discard an argument, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Parameters tab to continue.

110 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Parameters tab to specify settings that will be applied when the function is invoked. Click the Add
icon (+) to add a Name/Value field in the table.

• Use the drop-down listbox in the Name column in the Parameters panel to select a parameter.

• Use the Value field to specify the value that will be associated with the selected variable. This field is context-
sensitive.

Click the Security tab to continue.

4.14. Function Dialog 111

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign usage privileges for the function to a role.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Function dialog generate a generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

4.15 Language Dialog

Use the CREATE LANGUAGE dialog to register a new procedural language.

The Language dialog organizes the registration of a procedural language through the following dialog tabs: General,
Definition, and Security. The SQL tab displays the SQL code generated by dialog selections.

112 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a language:

• Use the drop-down listbox next to Name to select a language script.

• Use the drop-down listbox next to Owner to select a role.

• Store notes about the language in the Comment field.

Click the Definition tab to continue.

4.15. Language Dialog 113

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define parameters:

• Move the Trusted? switch to the No position to specify only users with PostgreSQL superuser privilege can use
this language. The default is Yes.

• When enabled, use the drop-down listbox next to Handler Function to select the function that will be called to
execute the language’s functions.

• When enabled, use the drop-down listbox next to Inline Function to select the function that will be called to
execute an anonymous code block (DO command) in this language.

• When enabled, use the drop-down listbox next to Validator Function to select the function that will be called
when a new function in the language is created, to validate the new function.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

114 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Language dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Language dialog:

“The example shown demonstrates creating the procedural language named plperl.”

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.16 Materialized View Dialog

Use the Materialized View dialog to define a materialized view. A materialized view is a stored or cached view that
contains the result set of a query. Use the REFRESH MATERIALIZED VIEW command to update the content of a
materialized view.

4.16. Materialized View Dialog 115

pgAdmin 4 Documentation, Release 4.3

The Materialized View dialog organizes the development of a materialized_view through the following dialog tabs:
General, Definition, Storage, Parameter, and Security. The SQL tab displays the SQL code generated by dialog
selections.

Use the fields in the General tab to identify the materialized view:

• Use the Name field to add a descriptive name for the materialized view. The name will be displayed in the
pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the role that will own the materialized view.

• Select the name of the schema in which the materialized view will reside from the drop-down listbox in the
Schema field.

• Store notes about the materialized view in the Comment field.

Click the Definition tab to continue.

116 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the text editor field in the Definition tab to provide the query that will populate the materialized view.

Click the Storage tab to continue.

Use the fields in the Storage tab to maintain the materialized view:

• Move the With Data switch to the Yes position to specify the materialized view should be populated at creation
time. If not, the materialized view cannot be queried until you invoke REFRESH MATERIALIZED VIEW.

• Use the drop-down listbox next to Tablespace to select a location for the materialized view.

4.16. Materialized View Dialog 117

pgAdmin 4 Documentation, Release 4.3

• Use the Fill Factor field to specify a fill factor for the materialized view. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

Click the Parameter tab to continue.

Use the tabs nested inside the Parameter tab to specify VACUUM and ANALYZE thresholds; use the Table tab and
the Toast Table tab to customize values for the table and the associated toast table. To change the default values:

• Move the Custom auto-vacuum? switch to the Yes position to perform custom maintenance on the materialized
view.

• Move the Enabled? switch to the Yes position to select values in the Vacuum table. Provide values for each row
in the Value column.

Click the Security tab to continue.

118 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for the materialized
view:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the materialized view. Click the Add icon (+) to add
each security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Materialized View dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Materialized View dialog:

4.16. Materialized View Dialog 119

pgAdmin 4 Documentation, Release 4.3

The example shown creates a query named new_hires that stores the result of the displayed query in the pg_default
tablespace.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.17 Procedure Dialog

Use the Procedure dialog to create a procedure; procedures are supported by PostgreSQL v11+. The Procedure dialog
allows you to implement options of the CREATE PROCEDURE command.

The Procedure dialog organizes the development of a procedure through the following dialog tabs: General, Definition,
Options, Arguments, Parameters, and Security. The SQL tab displays the SQL code generated by dialog selections.

120 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a procedure:

• Use the Name field to add a descriptive name for the procedure. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Owner to select a role.

• Select the name of the schema in which the procedure will reside from the drop-down listbox in the Schema
field.

• Store notes about the procedure in the Comment field.

Click the Definition tab to continue.

4.17. Procedure Dialog 121

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the procedure:

• Use the drop-down listbox next to Language to select a language. The default is sql.

• Use the Code field to specify the code that will execute when the procedure is called.

Click the Options tab to continue.

Use the fields in the Options tab to describe or modify the behavior of the procedure:

122 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox under Volatility to select one of the following. VOLATILE is the default value.

– VOLATILE indicates that the value can change even within a single table scan, so no optimizations can be
made.

– STABLE indicates that the procedure cannot modify the database, and that within a single table scan it will
consistently return the same result for the same argument values, but that its result could change across
SQL statements.

– IMMUTABLE indicates that the procedure cannot modify the database and always returns the same result
when given the same argument values.

• Move the Strict? switch to indicate if the procedure always returns NULL whenever any of its arguments are
NULL. If Yes, the procedure is not executed when there are NULL arguments; instead a NULL result is assumed
automatically. The default is No.

• Move the Security of definer? switch to specify that the procedure is to be executed with the privileges of the
user that created it. The default is No.

• Use the Estimated cost field to specify a positive number representing the estimated execution cost for the
procedure, in units of cpu_operator_cost. If the procedure returns a set, this is the cost per returned row.

• Move the Leak proof? switch to indicate whether the procedure has side effects — it reveals no information
about its arguments other than by its return value. The default is No.

Click the Arguments tab to continue.

Use the fields in the Arguments tab to define an argument. Click Add to set parameters and values for the argument:

• Use the drop-down listbox next to Data type to select a data type.

• Use the drop-down listbox next to Mode to select a mode. Select IN for an input parameter; select OUT for an
output parameter; select INOUT for both an input and an output parameter; or, select VARIADIC to specify a
VARIADIC parameter.

• Write a name for the argument in the Argument Name field.

4.17. Procedure Dialog 123

pgAdmin 4 Documentation, Release 4.3

• Specify a default value for the argument in the Default Value field.

Click Add to define another argument; to discard an argument, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Click the Parameters tab to continue.

Use the fields in the Parameters tab to specify settings that will be applied when the procedure is invoked:

• Use the drop-down listbox next to Parameter Name in the Parameters panel to select a parameter.

• Click the Add button to add the variable to Name field in the table.

• Use the Value field to specify the value that will be associated with the selected variable. This field is context-
sensitive.

Click the Security tab to continue.

124 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign execute privileges for the procedure to a role:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click Add to assign additional privileges; to discard a privilege, click the trash icon to the left of the row and confirm
deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the procedure. Click Add to add each security label
selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click Add to assign additional security labels; to discard a security label, click the trash icon to the left of the row and
confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Procedure dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Procedure dialog:

4.17. Procedure Dialog 125

pgAdmin 4 Documentation, Release 4.3

The example demonstrates creating a procedure that returns a list of employees from a table named emp. The procedure
is a SECURITY DEFINER, and will execute with the privileges of the role that defined the procedure.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.18 Schema Dialog

Use the Schema dialog to define a schema. A schema is the organizational workhorse of a database, similar to direc-
tories or namespaces. To create a schema, you must be a database superuser or have the CREATE privilege.

The Schema dialog organizes the development of schema through the following dialog tabs: General and Security.
The SQL tab displays the SQL code generated by dialog selections.

126 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields on the General tab to identify the schema.

• Use the Name field to add a descriptive name for the schema. The name will be displayed in the pgAdmin tree
control.

• Select the owner of the schema from the drop-down listbox in the Owner field.

• Store notes about the schema in the Comment field.

Click the Security tab to continue.

4.18. Schema Dialog 127

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and security labels for the schema.

Click the Add icon (+) to assign a set of privileges in the Privileges panel:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

• Select the name of the role that is granting the privilege from the drop-down listbox in the Grantor field. The
default grantor is the owner of the schema.

Click the Add icon (+) to assign additional sets of privileges; to discard a privilege, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Add icon (+) to assign a security label in the Security Labels panel:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Default Privileges tab to continue.

Use the Default Privileges tab to grant privileges for tables, sequences, functions and types. Use the tabs nested inside
the Default Privileges tab to specify the database object and click the Add icon (+) to assign a set of privileges:

• Select the name of a role that will be granted privileges in the schema from the drop-down listbox in the Grantee
field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user.

128 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Select the name of the role that is granting the privilege from the drop-down listbox in the Grantor field. The
default grantor is the owner of the schema.

Click the SQL tab to continue.

Your entries in the Schema dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by selections made in the Schema dialog:

The example creates a schema named hr; the command grants USAGE privileges to public and assigns the ability to
grant privileges to alice.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.19 Sequence Dialog

Use the Sequence dialog to create a sequence. A sequence generates unique values in a sequential order (not necessarily
contiguous).

The Sequence dialog organizes the development of a sequence through the following dialog tabs: General, Definition,
and Security. The SQL tab displays the SQL code generated by dialog selections.

4.19. Sequence Dialog 129

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a sequence:

• Use the Name field to add a descriptive name for the sequence. The name will be displayed in the pgAdmin tree
control. The sequence name must be distinct from the name of any other sequence, table, index, view, or foreign
table in the same schema.

• Use the drop-down listbox next to Owner to select the name of the role that will own the sequence.

• Use the drop-down listbox next to Schema to select the schema in which the sequence will reside.

• Store notes about the sequence in the Comment field.

Click the Definition tab to continue.

130 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the sequence:

• Use the Increment field to specify which value is added to the current sequence value to create a new value.

• Provide a value in the Start field to specify the beginning value of the sequence. The default starting value is
MINVALUE for ascending sequences and MAXVALUE for descending ones.

• Provide a value in the Minimum field to specify the minimum value a sequence can generate. If this clause is not
supplied or NO MINVALUE is specified, then defaults will be used. The defaults are 1 and -263-1 for ascending
and descending sequences, respectively.

• Provide a value in the Maximum field to specify the maximum value for the sequence. If this clause is not
supplied or NO MAXVALUE is specified, then default values will be used. The defaults are 263-1 and -1 for
ascending and descending sequences, respectively.

• Provide a value in the Cache field to specify how many sequence numbers are to be preallocated and stored in
memory for faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache),
and this is also the default.

• Move the Cycled switch to the Yes position to allow the sequence to wrap around when the MAXVALUE or the
MINVALUE has been reached by an ascending or descending sequence respectively. If the limit is reached, the
next number generated will be the MINVALUE or MAXVALUE, respectively. The default is No.

Click the Security tab to continue.

4.19. Sequence Dialog 131

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels for the sequence.

Use the Privileges panel to assign privileges. Click the Add icon (+) to set privileges:

• Select the name of a role that will be granted privileges from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the sequence. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Sequence dialog generate a generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Sequence dialog:

132 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates a sequence named seconds. The sequence will increase in 5 second increments, and
stop when it reaches a maximum value equal of 60.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.20 Trigger function Dialog

Use the Trigger function dialog to create or manage a trigger_function. A trigger function defines the action that will
be invoked when a trigger fires.

The Trigger function dialog organizes the development of a trigger function through the following dialog tabs: General,
Definition, Options, Parameters and Security. The SQL tab displays the SQL code generated by dialog selections.

4.20. Trigger function Dialog 133

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the trigger function:

• Use the Name field to add a descriptive name for the trigger function. The name will be displayed in the pgAdmin
tree control. Please note that trigger functions will be invoked in alphabetical order.

• Use the drop-down listbox next to Owner to select the role that will own the trigger function.

• Select the name of the schema in which the trigger function will reside from the drop-down listbox in the Schema
field.

• Store notes about the trigger function in the Comment field.

Click the Definition tab to continue.

134 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the trigger function:

• Use the drop-down listbox next to Return type to specify the pseudotype that is associated with the trigger
function:

– Select trigger if you are creating a DML trigger.

– Select event_trigger if you are creating a DDL trigger.

• Use the drop-down listbox next to Language to select the implementation language. The default is plpgsql.

• Use the Code field to write the code that will execute when the trigger function is called.

Click the Options tab to continue.

4.20. Trigger function Dialog 135

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Options tab to describe or modify the action of the trigger function:

• Use the drop-down listbox next to Volatility to select one of the following:

– VOLATILE indicates that the trigger function value can change even within a single table scan.

– STABLE indicates that the trigger function cannot modify the database, and that within a single table scan
it will consistently return the same result for the same argument values.

– IMMUTABLE indicates that the trigger function cannot modify the database and always returns the same
result when given the same argument values.

• Move the Returns a Set? switch to indicate if the trigger function returns a set that includes multiple rows. The
default is No.

• Move the Strict? switch to indicate if the trigger function always returns NULL whenever any of its arguments
are NULL. If Yes, the function is not executed when there are NULL arguments; instead a NULL result is
assumed automatically. The default is No.

• Move the Security of definer? switch to specify that the trigger function is to be executed with the privileges of
the user that created it. The default is No.

• Move the Window? switch to indicate that the trigger function is a window function rather than a plain function.
The default is No. This is currently only useful for trigger functions written in C.

• Use the Estimated cost field to specify a positive number representing the estimated execution cost for the trigger
function, in units of cpu_operator_cost. If the function returns a set, this is the cost per returned row.

• Use the Estimated rows field to specify a positive number giving the estimated number of rows that the query
planner should expect the trigger function to return. This is only allowed when the function is declared to return
a set. The default assumption is 1000 rows.

• Move the Leak proof? switch to indicate whether the trigger function has side effects. The default is No. This
option can only be set by the superuser.

Click the Parameters tab to continue.

136 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Parameters tab to specify settings that will be applied when the trigger function is invoked. Click
the Add icon (+) to add a Name/Value pair to the table below.

• Use the drop-down listbox in the Name field to select a parameter.

• Use the Value field to specify the value that will be associated with the selected parameter. This field is context-
sensitive.

Click the Add icon (+) to set additional parameters; to discard a parameter, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

4.20. Trigger function Dialog 137

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign usage privileges for the trigger function to a role. Click the Add icon (+) to to add a
role to the table.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of a role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the trigger function. Click the Add icon (+) to add
each security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Trigger function dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit other tabs to modify the SQL command.

Example

The following is an example of the sql command generated by user selections in the Trigger function dialog:

138 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a trigger function named emp_stamp that checks for a new employee’s
name, and checks that the employee’s salary is a positive value.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.21 Type Dialog

Use the Type dialog to register a custom data type.

The Type dialog organizes the development of a data type through the following dialog tabs: General, Definition, and
Security. The SQL tab displays the SQL code generated by dialog selections.

4.21. Type Dialog 139

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the custom data type:

• Use the Name field to add a descriptive name for the type. The name will be displayed in the pgAdmin tree
control. The type name must be distinct from the name of any existing type, domain, or table in the same
schema.

• Use the drop-down listbox next to Owner to select the role that will own the type.

• Select the name of the schema in which the type will reside from the drop-down listbox in the Schema field.

• Store notes about the type in the Comments field.

Click the Definition tab to continue.

Select a data type from the drop-down listbox next to Type on the Definition tab; the panel below changes to display
the options appropriate for the selected data type. Use the fields in the panel to define the data type.

There are five data types:

• Composite Type

• Enumeration Type

• Range Type

• External Type (or Base Type)

• Shell Type

If you select Composite in the Type field, the Definition tab displays the Composite Type panel:

140 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Click the Add icon (+) to provide attributes of the type. Fields on the General panel are context sensitive and may be
disabled.

• Use the Member Name field to add an attribute name.

• Use the drop-down listbox in the Type field to select a datatype.

• Use the Length/Precision field to specify the maximum length of a non-numeric type, or the total count of
significant digits in a numeric type.

• Use the Scale field to specify the number of digits to the right of the decimal point.

• Use the drop-down listbox in the Collation field to select a collation (if applicable).

Click the Add icon (+) to define an additional member; click the trash icon to the left of the row to discard a row.

If you select the Enumeration in the Type field, the Definition tab displays the Enumeration Type panel:

4.21. Type Dialog 141

pgAdmin 4 Documentation, Release 4.3

Click the Add icon (+) to provide a label for the type.

• Use the Label field to add a label, which must be less than 64 bytes long.

Click the Add icon (+) after each selection to create additional labels; to discard a label, click the trash icon to the left
of the row.

If you select External, the Definition tab displays the External Type panel:

On the Required tab:

142 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox next to the Input function field to add an input_function. The input_function con-
verts the type’s external textual representation to the internal representation used by the operators and functions
defined for the type.

• Use the drop-down listbox next to the Output function field to add an output_function. The output_function
converts the type’s internal representation used by the operators and functions defined for the type to the type’s
external textual representation.

On the Optional-1 tab:

• Use the drop-down listbox next to the optional Receive Function field to select a receive_function. The optional
receive_function converts the type’s external binary representation to the internal representation. If this function
is not supplied, the type cannot participate in binary input.

• Use the drop-down listbox next to the optional Send function field to select a send_function. The optional
send_function converts from the internal representation to the external binary representation. If this function is
not supplied, the type cannot participate in binary output.

• Use the drop-down listbox next to the optional Typmod in function field tab to select a
type_modifier_input_function.

• Use the drop-down listbox next to the optional Typmod out function field tab to select a
type_modifier_output_function. It is allowed to omit the type_modifier_output_function, in which case the
default display format is the stored typmod integer value enclosed in parentheses.

• Use the optional Internal length to specify a value for internal representation.

• Move the Variable? switch to specify the internal representation is of variable length (VARIABLE). The default
is a fixed length positive integer.

• Specify a default value in the optional Default field in cases where a column of the data type defaults to some-
thing other than the null value. Specify the default with the DEFAULT key word. (A default can be overridden
by an explicit DEFAULT clause attached to a particular column.)

• Use the drop-down listbox next to the optional Analyze function field to select a function for performing type-
specific statistics collection for columns of the data type.

• Use the drop-down listbox next to the optional Category type field to help control which implicit cast will be
applied in ambiguous situations.

• Move the Preferred? switch to Yes to specify the selected category type is preferred. The default is No.

On the Optional-2 tab:

• Use the drop-down listbox next to the optional Element type field to specify a data type.

• Use the optional Delimiter field to indicate the delimiter to be used between values in the external representation
of arrays for this data type. The default delimiter is the comma (,). Note that the delimiter is associated with the
array element type, not the array type itself.

• Use the drop-down listbox next to Alignment type to specify the storage alignment required for the data type.
The allowed values (char, int2, int4, and double) correspond with alignment on 1, 2, 4, or 8 byte boundaries.

• Use the drop-down listbox next to optional Storage type to select a strategy for storing data.

• Move the Passed by value? switch to Yes to override the existing data type value. The default is No.

• Move the Collatable? switch to Yes to specify column definitions and expressions of the type may carry collation
information through use of the COLLATE clause. The default is No.

If you select Range in the Type field, the Definition tab displays the Range panel. Fields on the Range panel are
context-sensitive and may be disabled.

4.21. Type Dialog 143

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox next to Sub-type to select an associated b-tree operator class (to determine the order-
ing of values for the range type).

• Use the drop-down listbox next to Sub-type operator class to use a non-default operator class.

• Use the drop-down listbox next to Collation to use a non-default collation in the range’s ordering if the sub-type
is collatable.

• Use the drop-down listbox next to Canonical function to convert range values to a canonical form.

• Use the drop-down listbox next to Sub-type diff function to select a user-defined subtype_diff function.

If you select Shell in the Type field, the Definition tab displays the Shell panel:

144 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

A shell type is a placeholder for a type and has no parameters.

Click the Security tab to continue.

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges for the type; click the Add icon (+) to grant privileges:

• Select the name of the role that will be granted privileges on the type from the drop-down listbox in the Grantee
field.

4.21. Type Dialog 145

pgAdmin 4 Documentation, Release 4.3

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role that is granting privileges from the drop-down listbox in the Grantor field. The
default grantor is the owner of the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the type. Click the Add icon (+) to add each security
label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Type dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of a sql command generated by user selections made in the Type dialog:

The example shown demonstrates creating a data type named work_order. The data type is an enumerated type with
three labels: new, open and closed.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

146 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.22 User Mapping Dialog

Use the User Mapping dialog to define a new mapping of a user to a foreign server.

The User Mapping dialog organizes the development of a user mapping through the following dialog tabs: General
and Options. The SQL tab displays the SQL code generated by dialog selections.

Use the drop-down listbox in the User field in the General tab to identify the connecting role:

• Select CURRENT_USER to use the name of the current role.

• Select PUBLIC if no other user-specific mapping is applicable.

• Select a pre-defined role name to specify the name of an existing user.

Click the Options tab to continue.

4.22. User Mapping Dialog 147

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Options tab to specify connection options; the accepted option names and values are specific to
the foreign data wrapper associated with the server specified in the user mapping. Click the Add button to add an
option/value pair.

• Specify the option name in the Option field.

• Provide a corresponding value in the Value field.

Click Add to specify each additional option/value pair; to discard an option, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the User Mapping dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the User Mapping dialog:

148 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates a user mapping for the hdfs_server. The user is CURRENT_USER with a password
secret.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.23 View Dialog

Use the View dialog to define a view. The view is not physically materialized; the query is executed each time the view
is referenced in a query.

The View dialog organizes the development of a View through the following dialog tabs: General, Definition, and
Security”. The SQL tab displays the SQL code generated by dialog selections.

Click the General tab to begin.

4.23. View Dialog 149

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify a view:

• Use the Name field to add a descriptive name for the view. The name of the view must be distinct from the name
of any other view, table, sequence, index or foreign table in the same schema. The name will be displayed in the
pgAdmin tree control.

• Use the drop-down listbox next to Owner to select the role that will own the view.

• If applicable, select the name of the schema in which the view will reside from the drop-down listbox in the
Schema field.

• Store notes about the view in the Comments field.

Click the Definition tab to continue.

150 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define properties of the view:

• Set the Security Barrier switch to Yes to indicate that the view is to act as a security barrier. For more information
about defining and using a security barrier rule, see Section 38.5 of the PostgreSQL documentation.

• Use the drop-down listbox next to Check options to select from No, Local or Cascaded. The Local option
specifies that new rows are only checked against the conditions defined in the view. Any conditions de-
fined on underlying base views are not checked (unless you specify the CHECK OPTION). The Cascaded
option specifies new rows are checked against the conditions of the view and all underlying base views.

• Use the workspace in the Definition field to write a query to create a view.

Click the Security tab to continue.

4.23. View Dialog 151

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for the view:

• Select the name of the role that will be granted privileges from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of a role with sufficient privileges to grant privileges on the view from the drop-down listbox in
the Grantor field. The default grantor is the owner of the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the view. Click the Add icon (+) to add each security
label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the View dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the View dialog:

152 Chapter 4. Managing Database Objects

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a view named distributor_codes that includes the content of the code
column from the distributors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

4.23. View Dialog 153

pgAdmin 4 Documentation, Release 4.3

154 Chapter 4. Managing Database Objects

CHAPTER

FIVE

CREATING OR MODIFYING A TABLE

pgAdmin 4 provides dialogs that allow you to modify all table properties and attributes.

To access a dialog that allows you to create a database object, right-click on the object type in the pgAdmin tree
control, and select the Create option for that object. For example, to create a new database, right-click on the Casts
node, and select Create Cast. . .

Contents:

5.1 Check Dialog

Use the Check dialog to define or modify a check constraint. A check constraint specifies an expression that produces
a Boolean result that new or updated rows must satisfy for an insert or update operation to succeed.

The Check dialog organizes the development of a check constraint through the General and Definition tabs. The SQL
tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the check constraint:

155

pgAdmin 4 Documentation, Release 4.3

• Use the Name field to provide a descriptive name for the check constraint that will be displayed in the pgAdmin
tree control. With PostgreSQL 9.5 forward, when a table has multiple check constraints, they will be tested for
each row in alphabetical order by name and after NOT NULL constraints.

• Store notes about the check constraint in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the check constraint:

• Provide the expression that a row must satisfy in the Check field.

• Move the No Inherit? switch to the Yes position to specify this constraint is automatically inherited by a table’s
children. The default is No.

• Move the Don’t validate? switch to the No position to skip validation of existing data; the constraint may not
hold for all rows in the table. The default is Yes.

Click the SQL tab to continue.

Your entries in the Check dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Check dialog:

156 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a check constraint named check_price on the price column of the products
table. The constraint confirms that any values added to the column are greater than 0.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.2 Column Dialog

Use the Column dialog to add a column to an existing table or modify a column definition.

The Column dialog organizes the development of a column through the following dialog tabs: General, Definition,
and Security. The SQL tab displays the SQL code generated by dialog selections.

5.2. Column Dialog 157

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the column:

• Use the Name field to add a descriptive name for the column. The name will be displayed in the pgAdmin tree
control. This field is required.

• Store notes about the column in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to add parameters for the column. (Fields are disabled if inapplicable.)

• Use the drop-down listbox next to Data Type to select a data type for the column. For more information on the
data types that are supported by PostgreSQL, refer to Chapter 8 of the Postgres core documentation. This field
is required.

• Use the Length and Precision fields to specify the maximum number of significant digits in a numeric value, or
the maximum number of characters in a text value.

158 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox next to Collation to apply a collation setting to the column.

• Use the Default Value field to specify a default data value.

• Move the Not Null switch to the Yes position to specify the column may not contain null values. The default is
No.

Click the Variables tab to continue.

Use the Variables tab to to specify the number of distinct values that may be present in the column; this value overrides
estimates made by the ANALYZE command. Click the Add icon (+) to add a Name/Value pair:

• Select the name of the variable from the drop-down listbox in the Name field.

– Select n_distinct to specify the number of distinct values for the column.

– Select n_distinct_inherited to specify the number of distinct values for the table and its children.

• Specify the number of distinct values in the Value field. For more information, see the documentation for ALTER
TABLE.

Click the Add icon (+) to specify each additional Name/Value pair; to discard a variable, click the trash icon to the left
of the row and confirm deletion in the Delete Row popup.

Click the Security tab to continue.

5.2. Column Dialog 159

http://www.postgresql.org/docs/9.6/static/sql_altertable.html
http://www.postgresql.org/docs/9.6/static/sql_altertable.html

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign attributes and define security labels. Click the Add icon (+) to add each security label
selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Column dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Column dialog:

160 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a column named territory in the table named distributors.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.3 Exclusion constraint Dialog

Use the Exclusion constraint dialog to define or modify the behavior of an exclusion constraint. An exclusion con-
straint guarantees that if any two rows are compared on the specified column or expression (using the specified opera-
tor), at least one of the operator comparisons will return false or null.

The Exclusion constraint dialog organizes the development of an exclusion constraint through the following dialog
tabs: General, Definition, and Columns. The SQL tab displays the SQL code generated by dialog selections.

5.3. Exclusion constraint Dialog 161

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the exclusion constraint:

• Use the Name field to provide a descriptive name for the exclusion constraint. The name will be displayed in
the pgAdmin tree control.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the exclusion constraint:

162 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox next to Tablespace to select the tablespace in which the index associated with the
exclude constraint will reside.

• Use the drop-down listbox next to Access method to specify the type of index that will be used when imple-
menting the exclusion constraint:

– Select gist to specify a GiST index.

– Select spgist to specify a space-partitioned GiST index.

– Select btree to specify a B-tree index.

– Select hash to specify a hash index.

• Use the Fill Factor field to specify a fill factor for the table and associated index. The fill factor is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify that the timing of the constraint is deferrable, and
can be postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Use the Constraint field to provide a condition that a row must satisfy to be included in the table.

Click the Columns tab to continue.

Use the fields in the Columns tab to to specify the column(s) to which the constraint applies. Use the drop-down
listbox next to Column to select a column and click the Add icon (+) to provide details of the action on the column:

• The Column field is populated with the selection made in the Column drop-down listbox.

• If applicable, use the drop-down listbox in the Operator class to specify the operator class that will be used by
the index for the column.

• Move the DESC switch to DESC to specify a descending sort order. The default is ASC which specifies an
ascending sort order.

5.3. Exclusion constraint Dialog 163

pgAdmin 4 Documentation, Release 4.3

• Use the NULLs order column to specify the placement of NULL values (when sorted). Specify FIRST or LAST.

• Use the drop-down list next to Operator to specify a comparison or conditional operator.

Use Include columns field to specify columns for INCLUDE clause of the constraint. This option is available in
Postgres 11 and later.

Click the SQL tab to continue.

Your entries in the Exclusion Constraint dialog generate a SQL command (see an example below). Use the SQL tab
for review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Exclusion Constraint dialog:

The example shown demonstrates creating an exclusion constraint named exclude_department that restricts additions
to the dept table to those additions that are not equal to the value of the deptno column. The constraint uses a btree
index.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.4 Foreign key Dialog

Use the Foreign key dialog to specify the behavior of a foreign key constraint. A foreign key constraint maintains
referential integrity between two tables. A foreign key constraint cannot be defined between a temporary table and a
permanent table.

164 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

The Foreign key dialog organizes the development of a foreign key constraint through the following dialog tabs:
General, Definition, Columns, and Action. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the foreign key constraint:

• Use the Name field to add a descriptive name for the foreign key. The name will be displayed in the pgAdmin
tree control.

• Store notes about the foreign key constraint in the Comment field.

Click the Definition tab to continue.

5.4. Foreign key Dialog 165

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the foreign key constraint:

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Move the Match type switch specify the type of matching that is enforced by the constraint:

– Select Full to indicate that all columns of a multicolumn foreign key must be null if any column is null; if
all columns are null, the row is not required to have a match in the referenced table.

– Select Simple to specify that a single foreign key column may be null; if any column is null, the row is not
required to have a match in the referenced table.

• Move the Validated switch to the Yes position to instruct the server to validate the existing table content (against
a foreign key or check constraint) when you save modifications to this dialog.

• Move the Auto FK Index switch to the No position to disable the automatic index feature.

• The field next to Covering Index generates the name of an index if the Auto FK Index switch is in the Yes
position; or, this field is disabled.

Click the Columns tab to continue.

166 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Columns tab to specify one or more reference column(s). A Foreign Key constraint requires that
one or more columns of a table must only contain values that match values in the referenced column(s) of a row of a
referenced table:

• Use the drop-down listbox next to Local column to specify the column in the current table that will be compared
to the foreign table.

• Use the drop-down listbox next to References to specify the name of the table in which the comparison column(s)
resides.

• Use the drop-down listbox next to Referencing to specify a column in the foreign table.

Click the Add icon (+) to add a column to the list; repeat the steps above and click the Add icon (+) to add additional
columns. To discard an entry, click the trash icon to the left of the entry and confirm deletion in the Delete Row popup.

Click the Action tab to continue.

5.4. Foreign key Dialog 167

pgAdmin 4 Documentation, Release 4.3

Use the drop-down listboxes on the Action tab to specify behavior related to the foreign key constraint that will be
performed when data within the table is updated or deleted:

• Use the drop-down listbox next to On update to select an action that will be performed when data in the table is
updated.

• Use the drop-down listbox next to On delete to select an action that will be performed when data in the table is
deleted.

The supported actions are:

NO
AC-
TION

Produce an error indicating that the deletion or update will create a foreign key constraint violation. If
the constraint is deferred, this error will be produced at constraint check time if any referencing rows still
exist. This is the default.

RE-
STRICT

Throw an error indicating that the deletion or update would create a foreign key constraint violation. This
is the same as NO ACTION except that the check is not deferrable.

CAS-
CADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new
values of the referenced columns, respectively.

SET
NULL

Set the referencing column(s) to null.

SET
DE-
FAULT

Set the referencing column(s) to their default values. There must be a row in the referenced table that
matches the default values (if they are not null), or the operation will fail.

Click the SQL tab to continue.

Your entries in the Foreign key dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Foreign key dialog:

168 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a foreign key constraint named territory_fkey that matches values in the
distributors table territory column with those of the sales_territories table region column.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.5 Index Dialog

Use the Index dialog to create an index on a specified table or materialized view.

The Index dialog organizes the development of a index through the following dialog tabs: General and Definition. The
SQL tab displays the SQL code generated by dialog selections.

5.5. Index Dialog 169

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the index:

• Use the Name field to add a descriptive name for the index. The name will be displayed in the pgAdmin tree
control.

• Use the drop-down listbox next to Tablespace to select the tablespace in which the index will reside.

• Store notes about the index in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the index:

• Use the drop-down listbox next to Access Method to select an index type:

– Select btree to create a B-tree index. A B-tree index may improve performance when managing equality
and range queries on data that can be sorted into some ordering (the default).

170 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

– Select hash to create a hash index. A hash index may improve performance when managing simple equality
comparisons.

– Select gist to create a GiST index. A GiST index may improve performance when managing values with
more than one key.

– Select gin to create a GIN index. A GIN index may improve performance when managing two-dimensional
geometric data types and nearest-neighbor searches.

– Select spgist to create a space-partitioned GiST index. A SP-GiST index may improve performance when
managing non-balanced data structures.

– Select brin to create a BRIN index. A BRIN index may improve performance when managing minimum
and maximum values and ranges.

• Use the Fill Factor field to specify a fill factor for the index. The fill factor specifies how full the selected method
will try to fill each index page.

• Move the Unique? switch to the Yes position to check for duplicate values in the table when the index is created
and when data is added. The default is No.

• Move the Clustered? switch to the Yes position to instruct the server to cluster the table.

• Move the Concurrent build? switch to the Yes position to build the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table.

• Use the Constraint field to provide a constraint expression; a constraint expression limits the entries in the index
to those rows that satisfy the constraint.

Use the context-sensitive fields in the Columns panel to specify which column(s) the index queries. Click the Add icon
(+) to add a column:

• Use the drop-down listbox in Column field to select the name of the column from the table.

• If enabled, use the drop-down listbox to select an available Operator class to specify the type of action performed
on the column.

• If enabled, move the Sort order switch to specify the sort order:

– Select ASC to specify an ascending sort order (the default);

– Select DESC to specify a descending sort order.

• If enabled, move the Nulls switch to specify the sort order of nulls:

– Select First to specify nulls sort before non-nulls;

– Select Last to specify nulls sort after non-nulls (the default).

• Use the drop-down listbox in the Collation field to select a collation to use for the index.

Use Include columns field to specify columns for INCLUDE clause of the index. This option is available in Postgres
11 and later.

Click the SQL tab to continue.

Your entries in the Index dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Index dialog:

5.5. Index Dialog 171

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating an index named dist_codes that indexes the values in the code column of
the distributors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.6 Primary key Dialog

Use the Primary key dialog to create or modify a primary key constraint. A primary key constraint indicates that a
column, or group of columns, uniquely identifies rows in a table. This requires that the values in the selected column(s)
be both unique and not null.

The Primary key dialog organizes the development of a primary key constraint through the General and Definition
tabs. The SQL tab displays the SQL code generated by dialog selections.

172 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the primary key:

• Use the Name field to add a descriptive name for the primary key constraint. The name will be displayed in the
pgAdmin tree control.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the primary key constraint:

5.6. Primary key Dialog 173

pgAdmin 4 Documentation, Release 4.3

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The primary key constraint should be different from any
unique constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Use Include columns field to specify columns for INCLUDE clause of the index. This option is available in
Postgres 11 and later.

• Select the name of the tablespace in which the primary key constraint will reside from the drop-down listbox in
the Tablespace field.

• Select the name of an index from the drop-down listbox in the Index field. This field is optional. Adding a
primary key will automatically create a unique B-tree index on the column or group of columns listed in the
primary key, and will force the column(s) to be marked NOT NULL.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

Click the SQL tab to continue.

Your entries in the Primary key dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Primary key dialog:

The example shown demonstrates creating a primary key constraint named dept_pkey on the dept_id column of the
dept table.

174 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.7 Rule Dialog

Use the Rule dialog to define or modify a rule for a specified table or view. A PostgreSQL rule allows you to define
an additional action that will be performed when a SELECT, INSERT, UPDATE, or DELETE is performed against a
table.

The Rule dialog organizes the development of a rule through the General, and Definition tabs. The SQL tab displays
the SQL code generated by dialog selections.

Use the fields in the General tab to identify the rule:

• Use the Name field to add a descriptive name for the rule. The name will be displayed in the pgAdmin tree
control. Multiple rules on the same table are applied in alphabetical name order.

• Store notes about the rule in the Comment field.

Click the Definition tab to continue.

5.7. Rule Dialog 175

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to write parameters:

• Click inside the Event field to select the type of event that will invoke the rule; event may be Select, Insert,
Update, or Delete.

• Move the Do Instead switch to Yes indicate that the commands should be executed instead of the original
command; if Do Instead specifies No, the rule will be invoked in addition to the original command.

• Specify a SQL conditional expression that returns a boolean value in the Condition editor.

• Provide a command in the Commands editor that defines the action performed by the rule.

Click the SQL tab to continue.

Your entries in the Rule dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Rule dialog:

176 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

The example sends a notification when an UPDATE executes against a table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.8 Table Dialog

Use the Table dialog to create or modify a table.

The Table dialog organizes the development of a table through the following dialog tabs: General, Columns, Con-
straints, Advanced, Parameter, and Security. The SQL tab displays the SQL code generated by dialog selections.

5.8. Table Dialog 177

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the table:

• Use the Name field to add a descriptive name for the table. A table cannot have the same name as any existing
table, sequence, index, view, foreign table, or data type in the same schema. The name specified will be displayed
in the pgAdmin tree control. This field is required.

• Select the owner of the table from the drop-down listbox in the Owner field. By default, the owner of the table
is the role that creates the table.

• Select the name of the schema in which the table will reside from the drop-down listbox in the Schema field.

• Use the drop-down listbox in the Tablespace field to specify the tablespace in which the table will be stored.

• Store notes about the table in the Comment field.

Click the Columns tab to continue.

178 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the drop-down listbox next to Inherited from table(s) to specify any parent table(s); the table will inherit columns
from the selected parent table(s). Click inside the Inherited from table(s) field to select a table name from a drop-down
list. Repeat to add any other parent tables. Delete a selected table by clicking the x to the left of the parent name. Note
that inherited column names and datatypes are not editable in the current dialog; they must be modified at the parent
level.

Click the Add icon (+) to specify the names of columns and their datatypes in the Columns table:

• Use the Name field to add a descriptive name for the column.

• Use the drop-down listbox in the Data type field to select a data type for the column. This can include array
specifiers. For more information on the data types supported by PostgreSQL, refer to Chapter 8 of the core
documentation.

• If enabled, use the Length and Precision fields to specify the maximum number of significant digits in a numeric
value, or the maximum number of characters in a text value.

• Move the Not NULL? switch to the Yes position to require a value in the column field.

• Move the Primary key? switch to the Yes position to specify the column is the primary key constraint.

Click the Add icon (+) to add additional columns; to discard a column, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the Constraints tab to continue.

5.8. Table Dialog 179

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Constraints tab to provide a table or column constraint. Optional constraint clauses specify
constraints (tests) that new or updated rows must satisfy for an INSERT or UPDATE operation to succeed. Select the
appropriate constraint type by selecting one of the following tabs on the Constraints panel:

Tab
Name

Constraint

Pri-
mary
Key

Provides a unique identifier for each row in the table.

For-
eign
Key

Maintains referential integrity between two tables.

Check Requires data satisfies an expression or condition before insertion or modification.
Unique Ensures that the data contained in a column, or a group of columns, is unique among all the rows in the

table.
Ex-
clude

Guarantees that if any two rows are compared on the specified column or expression (using the specified
operator), at least one of the operator comparisons will return false or null.

To add a primary key for the table, select the Primary Key tab, and click the Add icon (+). To define the primary key,
click the Edit icon to the left of the Trash icon. A dialog similar to the Primary key dialog (accessed by right clicking
on Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the primary key:

• Use the Name field to add a descriptive name for the primary key constraint. The name will be displayed in the
pgAdmin tree control.

• Provide notes about the primary key in the Comment field.

Click the Definition tab to continue.

180 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the primary key constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The primary key constraint should be different from any
unique constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Select the name of the tablespace in which the primary key constraint will reside from the drop-down listbox in
the Tablespace field.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

5.8. Table Dialog 181

pgAdmin 4 Documentation, Release 4.3

To add a foreign key constraint, select the Foreign Key tab, and click the Add icon (+). To define the constraint, click
the Edit icon to the left of the Trash icon. A dialog similar to the Foreign key dialog (accessed by right clicking on
Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the foreign key constraint:

• Use the Name field to add a descriptive name for the foreign key constraint. The name will be displayed in the
pgAdmin tree control.

• Provide notes about the foreign key in the Comment field.

Click the Definition tab to continue.

182 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the foreign key constraint:

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Move the Match type switch specify the type of matching that is enforced by the constraint:

– Select Full to indicate that all columns of a multicolumn foreign key must be null if any column is null; if
all columns are null, the row is not required to have a match in the referenced table.

– Select Simple to specify that a single foreign key column may be null; if any column is null, the row is not
required to have a match in the referenced table.

• Move the Validated switch to the Yes position to instruct the server to validate the existing table content (against
a foreign key or check constraint) when you save modifications to this dialog.

• Move the Auto FK Index switch to the No position to disable the automatic index feature.

• The field next to Covering Index generates the name of an index if the Auto FK Index switch is in the Yes
position; or, this field is disabled.

Click the Columns tab to continue.

5.8. Table Dialog 183

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Columns tab to specify one or more reference column(s). A Foreign Key constraint requires that
one or more columns of a table must only contain values that match values in the referenced column(s) of a row of a
referenced table:

• Use the drop-down listbox next to Local column to specify the column in the current table that will be compared
to the foreign table.

• Use the drop-down listbox next to References to specify the name of the table in which the comparison column(s)
resides.

• Use the drop-down listbox next to Referencing to specify a column in the foreign table.

Click the Add icon (+) to add a column to the list; repeat the steps above and click the Add icon (+) to add additional
columns. To discard an entry, click the trash icon to the left of the entry and confirm deletion in the Delete Row popup.

Click the Action tab to continue.

184 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the drop-down listboxes on the Action tab to specify behavior related to the foreign key constraint that will be
performed when data within the table is updated or deleted:

• Use the drop-down listbox next to On update to select an action that will be performed when data in the table is
updated.

• Use the drop-down listbox next to On delete to select an action that will be performed when data in the table is
deleted.

The supported actions are:

NO
AC-
TION

Produce an error indicating that the deletion or update will create a foreign key constraint violation. If
the constraint is deferred, this error will be produced at constraint check time if any referencing rows still
exist. This is the default.

RE-
STRICT

Throw an error indicating that the deletion or update would create a foreign key constraint violation. This
is the same as NO ACTION except that the check is not deferrable.

CAS-
CADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s) to the new
values of the referenced columns, respectively.

SET
NULL

Set the referencing column(s) to null.

SET
DE-
FAULT

Set the referencing column(s) to their default values. There must be a row in the referenced table that
matches the default values (if they are not null), or the operation will fail.

5.8. Table Dialog 185

pgAdmin 4 Documentation, Release 4.3

To add a check constraint, select the Check tab on the panel, and click the Add icon (+). To define the check constraint,
click the Edit icon to the left of the Trash icon. A dialog similar to the Check dialog (accessed by right clicking on
Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the check constraint:

• Use the Name field to add a descriptive name for the check constraint. The name will be displayed in the
pgAdmin tree control. With PostgreSQL 9.5 forward, when a table has multiple check constraints, they will be
tested for each row in alphabetical order by name and after NOT NULL constraints.

• Provide notes about the check constraint in the Comment field.

Click the Definition tab to continue.

186 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the check constraint:

• Provide the expression that a row must satisfy in the Check field. This field is required.

• Move the No Inherit? switch to the Yes position to specify this constraint is automatically inherited by a table’s
children. The default is No.

• Move the Don’t validate? switch to the No position to skip validation of existing data; the constraint may not
hold for all rows in the table. The default is Yes.

5.8. Table Dialog 187

pgAdmin 4 Documentation, Release 4.3

To add a unique constraint, select the Unique tab on the panel, and click the Add icon (+). To define the constraint,
click the Edit icon to the left of the Trash icon. A dialog similar to the Unique constraint dialog (accessed by right
clicking on Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the unique constraint:

• Use the Name field to add a descriptive name for the unique constraint. The name will be displayed in the
pgAdmin tree control.

• Provide notes about the unique constraint in the Comment field.

Click the Definition tab to continue.

Use the fields in the Definition tab to define the unique constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The unique constraint should be different from the primary
key constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Select the name of the tablespace in which the unique constraint will reside from the drop-down listbox in the
Tablespace field.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

188 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

To add an exclusion constraint, select the Exclude tab on the panel, and click the Add icon (+). To define the constraint,
click the Edit icon to the left of the Trash icon. A dialog similar to the Exclusion constraint dialog (accessed by right
clicking on Constraints in the pgAdmin tree control) opens.

Use the fields in the General tab to identify the exclusion constraint:

• Use the Name field to provide a descriptive name for the exclusion constraint. The name will be displayed in
the pgAdmin tree control.

• Provide notes about the exclusion constraint in the Comment field.

Click the Definition tab to continue.

5.8. Table Dialog 189

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the exclusion constraint:

• Use the drop-down listbox next to Tablespace to select the tablespace in which the index associated with the
exclude constraint will reside.

• Use the drop-down listbox next to Access method to specify the type of index that will be used when imple-
menting the exclusion constraint:

– Select gist to specify a GiST index (the default).

– Select spgist to specify a space-partitioned GiST index.

– Select btree to specify a B-tree index.

– Select hash to specify a hash index.

• Use the Fill Factor field to specify a fill factor for the table and associated index. The fill factor is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify that the timing of the constraint is deferrable, and
can be postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

• Use the Constraint field to provide a condition that a row must satisfy to be included in the table.

Click the Columns tab to continue.

190 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Columns tab to to specify the column(s) to which the constraint applies. Use the drop-down
listbox next to Column to select a column and click the Add icon (+) to provide details of the action on the column:

• The Column field is populated with the selection made in the Column drop-down listbox.

• If applicable, use the drop-down listbox in the Operator class to specify the operator class that will be used by
the index for the column.

• Move the DESC switch to DESC to specify a descending sort order. The default is ASC which specifies an
ascending sort order.

• Move the NULLs order switch to LAST to define an ascending sort order for NULLs. The default is FIRST
which specifies a descending order.

• Use the drop-down list next to Operator to specify a comparison or conditional operator.

Click the Advanced tab to continue.

5.8. Table Dialog 191

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Advanced tab to define advanced features for the table:

• Use the drop-down listbox next to Of type to copy the table structure from the specified composite type. Please
note that a typed table will be dropped if the type is dropped (with DROP TYPE . . . CASCADE).

• Use the Fill Factor field to specify a fill factor for the table. The fill factor for a table is a percentage between
10 and 100. 100 (complete packing) is the default.

• Move the Has OIDs? switch to the Yes position to specify that each row within a table has a system-assigned
object identifier. The default is No.

• Move the Unlogged? switch to the Yes position to disable logging for the table. Data written to an unlogged
table is not written to the write-ahead log. Any indexes created on an unlogged table are automatically unlogged
as well. The default is No.

Use the fields in the Like box to specify which attributes of an existing table from which a table will automatically
copy column names, data types, and not-null constraints; after saving the new or modified table, any changes to the
original table will not be applied to the new table.

• Use the drop-down listbox next to Relation to select a reference table.

• Move the With default values? switch to the Yes position to copy default values.

• Move the With constraints? switch to the Yes position to copy table and column constraints.

• Move the With indexes? switch to the Yes position to copy indexes.

• Move the With storage? switch to the Yes position to copy storage settings.

• Move the With comments? switch to the Yes position to copy comments.

With PostgreSQL 10 forward, the Partition tab will be visible.

Click the Partition tab to continue.

192 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the partition tab to create the partitions for the table:

• Select a partition type from the Partition Type selection box. There are 3 options available; Range, List and
Hash. Hash option will only enable for PostgreSQL version >= 11.

Use the Partition Keys panel to define the partition keys. Click the Add icon (+) to add each partition keys selection:

• Select a partition key type in the Keytype field.

• Select a partition column in the Column field if Column option selected for Keytype field .

• Specify the expression in the Expression field if Expression option selected for the Keytype field.

Use the Partitions panel to define the partitions of a table. Click the Add icon (+) to add each partition:

• Move the Operation switch to attach to attach the partition, by default it is create.

• Use the Name field to add the name of the partition.

• If partition type is Range then From and To fields will be enabled.

• If partition type is List then In field will be enabled.

• If partition type is Hash then Modulus and Remainder fields will be enabled.

Click the Parameter tab to continue.

5.8. Table Dialog 193

pgAdmin 4 Documentation, Release 4.3

Use the tabs nested inside the Parameter tab to specify VACUUM and ANALYZE thresholds; use the Table tab and
the Toast Table tab to customize values for the table and the associated toast table:

• Move the Custom auto-vacuum? switch to the Yes position to perform custom maintenance on the table.

• Move the Enabled? switch to the Yes position to select values in the Vacuum table. The Vacuum Table provides
default values for maintenance operations.

Provide a custom value in the Value column for each metric listed in the Label column.

Click the Security tab to continue.

194 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the Security tab to assign privileges and define security labels.

Use the Privileges panel to assign privileges to a role. Click the Add icon (+) to set privileges for database objects:

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privilege to the specified user.

• Select the name of the role from the drop-down listbox in the Grantor field. The default grantor is the owner of
the database.

Click the Add icon (+) to assign additional privileges; to discard a privilege, click the trash icon to the left of the row
and confirm deletion in the Delete Row popup.

Use the Security Labels panel to define security labels applied to the function. Click the Add icon (+) to add each
security label selection:

• Specify a security label provider in the Provider field. The named provider must be loaded and must consent to
the proposed labeling operation.

• Specify a a security label in the Security Label field. The meaning of a given label is at the discretion of the label
provider. PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them.

Click the Add icon (+) to assign additional security labels; to discard a security label, click the trash icon to the left of
the row and confirm deletion in the Delete Row popup.

Click the SQL tab to continue.

Your entries in the Table dialog generate a SQL command (see an example below). Use the SQL tab for review; revisit
or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Table dialog:

5.8. Table Dialog 195

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a table named product_category. It has three columns and a primary key
constraint on the category_id column.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.9 Trigger Dialog

Use the Trigger dialog to create a trigger or modify an existing trigger. A trigger executes a specified function when
certain events occur.

The Trigger dialog organizes the development of a trigger through the following dialog tabs: General, Definition,
Events, and Code. The SQL tab displays the SQL code generated by dialog selections.

196 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the General tab to identify the trigger:

• Use the Name field to add a descriptive name for the trigger. This must be distinct from the name of any other
trigger for the same table. The name will be displayed in the pgAdmin tree control. Note that if multiple triggers
of the same kind are defined for the same event, they will be fired in alphabetical order by name.

• Store notes about the trigger in the Comment field.

Click the Definition tab to continue.

5.9. Trigger Dialog 197

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the trigger:

• Move the Row trigger? switch to the No position to disassociate the trigger from firing on each row in a table.
The default is Yes.

• Move the Constraint trigger? switch to the Yes position to specify the trigger is a constraint trigger.

• If enabled, move the Deferrable? switch to the Yes position to specify the timing of the constraint trigger is
deferrable and can be postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint trigger is
deferred to the end of the statement causing the triggering event. The default is No.

• Use the drop-down listbox next to Trigger Function to select a trigger function or procedure.

• Use the Arguments field to provide an optional (comma-separated) list of arguments to the function when the
trigger is executed. The arguments are literal string constants.

Click the Events tab to continue.

Use the fields in the Events tab to specify how and when the trigger fires:

• Use the drop-down listbox next to the Fires fields to determine if the trigger fires BEFORE or AFTER a specified
event. The default is BEFORE.

• Select the type of event(s) that will invoke the trigger; to select an event type, move the switch next to the event
to the YES position. The supported event types are INSERT, UPDATE, DELETE, and TRUNCATE.

• Use the When field to provide a boolean condition that will invoke the trigger.

• If defining a column-specific trigger, use the Columns field to specify the columns or columns that are the target
of the trigger.

Click the Code tab to continue.

198 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the Code field to specify any additional code that will be invoked when the trigger fires.

Click the SQL tab to continue.

Your entries in the Trigger dialog generate a SQL command (see an example below). Use the SQL tab for review;
revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Trigger dialog:

5.9. Trigger Dialog 199

pgAdmin 4 Documentation, Release 4.3

The example demonstrates creating a trigger named log_update that calls a procedure named log_account_update that
logs any updates to the distributors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

5.10 Unique Constraint Dialog

Use the Unique constraint dialog to define a unique constraint for a specified table. Unique constraints ensure that the
data contained in a column, or a group of columns, is unique among all the rows in the table.

The Unique constraint dialog organizes the development of a unique constraint through the following dialog tabs:
General and Definition. The SQL tab displays the SQL code generated by dialog selections.

Use the fields in the General tab to identify the unique constraint:

• Use the Name field to add a descriptive name for the unique constraint. The name will be displayed in the
pgAdmin tree control.

Click the Definition tab to continue.

200 Chapter 5. Creating or Modifying a Table

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Definition tab to define the unique constraint:

• Click inside the Columns field and select one or more column names from the drop-down listbox. To delete a
selection, click the x to the left of the column name. The unique constraint should be different from the primary
key constraint defined for the same table; the selected column(s) for the constraints must be distinct.

• Use Include columns field to specify columns for INCLUDE clause of the constraint. This option is available in
Postgres 11 and later.

• Select the name of the tablespace in which the unique constraint will reside from the drop-down listbox in the
Tablespace field.

• Select the name of an index from the drop-down listbox in the Index field. This field is optional. Adding a
unique constraint will automatically create a unique B-tree index on the column or group of columns listed in
the constraint, and will force the column(s) to be marked NOT NULL.

• Use the Fill Factor field to specify a fill factor for the table and index. The fill factor for a table is a percentage
between 10 and 100. 100 (complete packing) is the default.

• Move the Deferrable? switch to the Yes position to specify the timing of the constraint is deferrable and can be
postponed until the end of the statement. The default is No.

• If enabled, move the Deferred? switch to the Yes position to specify the timing of the constraint is deferred to
the end of the statement. The default is No.

Click the SQL tab to continue.

Your entries in the Unique constraint dialog generate a SQL command (see an example below). Use the SQL tab for
review; revisit or switch tabs to make any changes to the SQL command.

Example

The following is an example of the sql command generated by user selections in the Unique constraint dialog:

5.10. Unique Constraint Dialog 201

pgAdmin 4 Documentation, Release 4.3

The example shown demonstrates creating a unique constraint named name_con on the name column of the distribu-
tors table.

• Click the Info button (i) to access online help. View context-sensitive help in the Tabbed browser, where a new
tab displays the PostgreSQL core documentation.

• Click the Save button to save work.

• Click the Cancel button to exit without saving work.

• Click the Reset button to restore configuration parameters.

202 Chapter 5. Creating or Modifying a Table

CHAPTER

SIX

MANAGEMENT BASICS

pgAdmin provides point and click dialogs that help you perform server management functions. Dialogs simplify
tasks such as managing named restore points, granting user privileges, and performing VACUUM, ANALYZE and
REINDEX functions.

Contents:

6.1 Add named restore point Dialog

Use the Add named restore point dialog to take a named snapshot of the state of the server for use in a recovery file. To
create a named restore point, the server’s postgresql.conf file must specify a wal_level value of archive, hot_standby,
or logical. You must be a database superuser to create a restore point.

When the Restore point name window launches, use the field Enter the name of the restore point to add to provide a
descriptive name for the restore point.

For more information about using a restore point as a recovery target, please see the PostgreSQL documentation.

• Click the OK button to save the restore point.

• Click the Cancel button to exit without saving work.

6.2 Change Password Dialog

It is a good policy to routinely change your password to protect data, even in what you may consider a ‘safe’ environ-
ment. In the workplace, failure to apply an appropriate password policy could leave you in breach of Data Protection
laws.

Please consider the following guidelines when selecting a password:

• Ensure that your password is an adequate length; 6 characters should be the absolute minimum number of
characters in the password.

203

http://www.postgresql.org/docs/9.5/static/recovery-target-settings.html#RECOVERY-TARGET-NAME

pgAdmin 4 Documentation, Release 4.3

• Ensure that your password is not open to dictionary attacks. Use a mixture of upper and lower case letters and
numerics, and avoid words or names. Consider using the first letter from each word in a phrase that you will
remember easily but is an unfamiliar acronym.

• Ensure that your password is changed regularly; at minimum, change it every ninety days.

The above should be considered a starting point: It is not a comprehensive list and it will not guarantee security.

Use the Change Password dialog to change your password:

• The name displayed in the User field is the role for which you are modifying the password; it is the role that is
associated with the server connection that is highlighted in the tree control.

• Enter the password associated with the role in the Current Password field.

• Enter the desired password for in the New Password field.

• Re-enter the new password in the Confirm Password field.

Click the OK button to change your password; click Cancel to exit the dialog without changing your password.

6.3 Grant Wizard

The Grant Wizard tool is a graphical interface that allows you to manage the privileges of one or more database objects
in a point-and-click environment. A search box, dropdown lists, and checkboxes facilitate quick selections of database
objects, roles and privileges.

The wizard organizes privilege management through a sequence of windows: Object Selection (step 1 of 3), Privileges
Selection (step 2 of 3) and Final (Review Selection) (step 3 of 3). The Final (Review Selection) window displays the
SQL code generated by wizard selections.

To launch the Grant Wizard tool, select a database object in the pgAdmin tree control, then navigate through Tools on
the menu bar to click on the Grant Wizard option.

204 Chapter 6. Management Basics

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Object Selection (step 1 of 3) window to select the object or objects on which you are modifying
privileges. Use the Search by object type or name field to locate a database object, or use the scrollbar to scroll through
the list of all accessible objects.

• Each row in the table lists object identifiers; check the checkbox in the left column to include an object as a
target of the Grant Wizard. The table displays:

– The object type in the Object Type field

– The schema in which the object resides in the Schema field

– The object name in the Name field.

Click the Next button to continue, or the Cancel button to close the wizard without modifying privileges.

6.3. Grant Wizard 205

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Privileges Selection (step 2 of 3) window to grant privileges. If you grant a privilege WITH
GRANT OPTION, the Grantee will have the right to grant privileges on the object to others. If WITH GRANT
OPTION is subsequently revoked, any role who received access to that object from that Grantee (directly or through a
chain of grants) will lose thier privileges on the object.

• Click the Add icon (+) to assign a set of privileges.

• Select the name of the role from the drop-down listbox in the Grantee field.

• Click inside the Privileges field. Check the boxes to the left of one or more privileges to grant the selected
privileges to the specified user. If privileges have previously been granted on a database object, unchecking a
privilege for a group or user will result in revoking that privilege.

• If enabled, select the name of the role from the drop-down listbox in the Grantor field. The default grantor is
the owner of the database.

• Click the Add icon (+) to assign a set of privileges to another role; to discard a privilege, click the trash icon to
the left of the row and confirm deletion in the Delete Row dialog.

For more information about granting privileges on database objects, see the PostgreSQL core documentation.

Click the Next button to continue, the Back button to select or deselect additional database objects, or the Cancel
button to close the wizard without modifying privileges.

Your entries in the Grant Wizard tool generate a SQL command; you can review the command in the Final (Review
Selection) (step 3 of 3) window (see an example below).

Example

The following is an example of the sql command generated by user selections in the Grant Wizard tool:

206 Chapter 6. Management Basics

http://www.postgresql.org/docs/9.5/static/sql-grant.html

pgAdmin 4 Documentation, Release 4.3

The commands displayed assign a role named Bob INSERT and UPDATE privileges WITH GRANT OPTION on the
sales_meetings and the sales_territories tables.

• Click the Back button to select or deselect additional database objects, roles and privileges.

• Click the Cancel button to exit without saving work.

• Click the Finish button to save selections and exit the wizard.

6.4 Import/Export data Dialog

Use the Import/Export data dialog to copy data from a table to a file, or copy data from a file into a table.

The Import/Export data dialog organizes the import/export of data through the Options and Columns tabs.

Use the fields in the Options tab to specify import and export preferences:

• Move the Import/Export switch to the Import position to specify that the server should import data to a table
from a file. The default is Export.

• Use the fields in the File Info field box to specify information about the source or target file:

6.4. Import/Export data Dialog 207

pgAdmin 4 Documentation, Release 4.3

– Enter the name of the source or target file in the Filename field. Optionally, select the Browser icon
(ellipsis) to the right to navigate into a directory and select a file.

– Use the drop-down listbox in the Format field to specify the file type. Select:

* binary for a .bin file.

* csv for a .csv file.

* text for a .txt file.

– Use the drop-down listbox in the Encoding field to specify the type of character encoding.

• Use the fields in the Miscellaneous field box to specify additional information:

– Move the OID switch to the Yes position to include the OID column. The OID is a system-assigned value
that may not be modified. The default is No.

– Move the Header switch to the Yes position to include the table header with the data rows. If you include
the table header, the first row of the file will contain the column names.

– If you are exporting data, specify the delimiter that will separate the columns within the target file in the
Delimiter field. The separating character can be a colon, semicolon, a vertical bar, or a tab.

– Specify a quoting character used in the Quote field. Quoting can be applied to string columns only (i.e.
numeric columns will not be quoted) or all columns regardless of data type. The character used for quoting
can be a single quote or a double quote.

– Specify a character that should appear before a data character that matches the QUOTE value in the Escape
field.

Click the Columns tab to continue.

208 Chapter 6. Management Basics

pgAdmin 4 Documentation, Release 4.3

Use the fields in the Columns tab to select the columns that will be imported or exported:

• Click inside the Columns to export/import field to deselect one or more columns from the drop-down listbox.
To delete a selection, click the x to the left of the column name. Click an empty spot inside the field to access
the drop-down list.

• Use the NULL Strings field to specify a string that will represent a null value within the source or target file.

• If enabled, click inside the Not null columns field to select one or more columns that will not be checked for a
NULL value. To delete a column, click the x to the left of the column name.

After completing the Import/Export data dialog, click the OK button to perform the import or export. pgAdmin will
inform you when the background process completes:

Use the Stop Process button to stop the Import/Export process.

Use the Click here for details link on the notification to open the Process Watcher and review detailed information
about the execution of the command that performed the import or export:

6.4. Import/Export data Dialog 209

pgAdmin 4 Documentation, Release 4.3

6.5 Maintenance Dialog

Use the Maintenance dialog to VACUUM, ANALYZE, REINDEX or CLUSTER a database or selected database
objects.

While this utility is useful for ad-hoc maintenance purposes, you are encouraged to perform automatic VACUUM jobs
on a regular schedule.

Select a button next to Maintenance operation to specify the type of maintenance:

• Click VACUUM to scan the selected database or table to reclaim storage used by dead tuples.

– Move the FULL switch to the Yes position to compact tables by writing a completely new version of the
table file without dead space. The default is No.

– Move the FREEZE switch to the Yes position to freeze data in a table when it will have no further updates.
The default is No.

– Move the ANALYZE switch to the Yes position to issue ANALYZE commands whenever the content of a
table has changed sufficiently. The default is No.

210 Chapter 6. Management Basics

pgAdmin 4 Documentation, Release 4.3

• Click ANALYZE to update the stored statistics used by the query planner. This enables the query optimizer to
select the fastest query plan for optimal performance.

• Click REINDEX to rebuild any index in case it has degenerated due to the insertion of unusual data patterns.
This happens, for example, if you insert rows with increasing index values, and delete low index values.

• Click CLUSTER to instruct PostgreSQL to cluster the selected table.

To exclude status messages from the process output, move the Verbose Messages switch to the No position; by default,
status messages are included.

When you’ve completed the dialog, click OK to start the background process; to exit the dialog without performing
maintenance operations, click Cancel.

pgAdmin will inform you when the background process completes:

Use the Stop Process button to stop the Maintenance process.

Use the Click here for details link on the notification to open the Process Watcher and review detailed information
about the execution of the command that performed the import or export:

6.5. Maintenance Dialog 211

pgAdmin 4 Documentation, Release 4.3

212 Chapter 6. Management Basics

CHAPTER

SEVEN

BACKUP AND RESTORE

A powerful, but user-friendly Backup and Restore tool provides an easy way to use pg_dump, pg_dumpall, and
pg_restore to take backups and create copies of databases or database objects for use in a development environment.

Contents:

7.1 Backup Dialog

Using the pg_dump utility, pgAdmin provides an easy way to create a backup in a plain-text or archived format. You
can then use a client application (like psql or the Query Tool) to restore a plain-text backup file, or use the Postgres
pg_restore utility to restore an archived backup. The pg_dump utility must have read access to all database objects
that you want to back up.

You can backup a single table, a schema, or a complete database. Select the name of the backup source in the pgAdmin
tree control, right click to open the context menu, and select Backup. . . to open the Backup dialog. The name of the
object selected will appear in the dialog title bar.

Use the fields in the General tab to specify parameters for the backup:

• Enter the name of the backup file in the Filename field. Optionally, select the Browser icon (. . .) to the right to
navigate into a directory and select a file that will contain the archive.

• Use the drop-down listbox in the Format field to select the format that is best suited for your application. Each
format has advantages and disadvantages:

213

pgAdmin 4 Documentation, Release 4.3

– Select Custom to create a custom archive file that you can use with pg_restore to create a copy of a database.
Custom archive file formats must be restored with pg_restore. This format offers the opportunity to select
which database objects to restore from the backup file. Custom archive format is recommended for medium
to large databases as it is compressed by default.

– Select Tar to generate a tar archive file that you can restore with pg_restore. The tar format does not
support compression.

– Select Plain to create a plain-text script file. A plain-text script file contains SQL statements and commands
that you can execute at the psql command line to recreate the database objects and load the table data. A
plain-text backup file can be edited in a text editor, if desired, before using the psql program to restore
database objects. Plain format is normally recommended for smaller databases; script dumps are not
recommended for blobs. The SQL commands within the script will reconstruct the database to the last
saved state of the database. A plain-text script can be used to reconstruct the database on another machine,
or (with modifications) on other architectures.

– Select Directory to generate a directory-format archive suitable for use with pg_restore. This file format
creates a directory with one file for each table and blob being dumped, plus a Table of Contents file
describing the dumped objects in a machine-readable format that pg_restore can read. This format is
compressed by default.

• Use the Compression Ratio field to select a compression level for the backup. Specify a value of zero to mean
use no compression; specify a maximum compression value of 9. Please note that tar archives do not support
compression.

• Use the Encoding drop-down listbox to select the character encoding method that should be used for the archive.

• Use the Number of Jobs field (when applicable) to specify the number of tables that will be dumped simultane-
ously in a parallel backup.

• Use the dropdown listbox next to Rolename to specify the role that owns the backup.

Click the Dump options tab to continue. Use the box fields in the Dump options tab to provide options for pg_dump.

• Move switches in the Sections field box to select a portion of the object that will be backed up.

– Move the switch next to Pre-data to the Yes position to include all data definition items not included in the
data or post-data item lists.

– Move the switch next to Data to the Yes position to backup actual table data, large-object contents, and
sequence values.

– Move the switch next to Post-data to the Yes position to include definitions of indexes, triggers, rules, and
constraints other than validated check constraints.

214 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

• Move switches in the Type of objects field box to specify details about the type of objects that will be backed
up.

– Move the switch next to Only data to the Yes position to limit the back up to data.

– Move the switch next to Only schema to limit the back up to schema-level database objects.

– Move the switch next to Blobs to the No position to exclude large objects in the backup.

• Move switches in the Do not save field box to select the objects that will not be included in the backup.

– Move the switch next to Owner to the Yes position to exclude commands that set object ownership.

– Move the switch next to Privilege to the Yes position to exclude commands that create access privileges.

– Move the switch next to Tablespace to the Yes position to exclude tablespaces.

– Move the switch next to Unlogged table data to the Yes position to exclude the contents of unlogged tables.

– Move the switch next to Comments to the Yes position to exclude commands that set the comments. Note:
This option is visible only for database server greater than or equal to 11.

7.1. Backup Dialog 215

pgAdmin 4 Documentation, Release 4.3

• Move switches in the Queries field box to specify the type of statements that should be included in the backup.

– Move the switch next to Use Column Inserts to the Yes position to dump the data in the form of INSERT
statements and include explicit column names. Please note: this may make restoration from backup slow.

– Move the switch next to Use Insert commands to the Yes position to dump the data in the form of INSERT
statements rather than using a COPY command. Please note: this may make restoration from backup slow.

– Move the switch next to Include CREATE DATABASE statement to the Yes position to include a command
in the backup that creates a new database when restoring the backup.

– Move the switch next to Include DROP DATABASE statement to the Yes position to include a command
in the backup that will drop any existing database object with the same name before recreating the object
during a backup.

– Move the switch next to Load Via Partition Root to the Yes position, so when dumping a COPY or INSERT
statement for a partitioned table, target the root of the partitioning hierarchy which contains it rather than
the partition itself. Note: This option is visible only for database server greater than or equal to 11.

• Move switches in the Disable field box to specify the type of statements that should be excluded from the
backup.

– Move the switch next to Trigger (active when creating a data-only backup) to the Yes position to include
commands that will disable triggers on the target table while the data is being loaded.

– Move the switch next to $ quoting to the Yes position to enable dollar quoting within function bodies; if
disabled, the function body will be quoted using SQL standard string syntax.

216 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

• Move switches in the Miscellaneous field box to specify miscellaneous backup options.

– Move the switch next to With OIDs to the Yes position to include object identifiers as part of the table data
for each table.

– Move the switch next to Verbose messages to the No position to instruct pg_dump to exclude verbose
messages.

– Move the switch next to Force double quotes on identifiers to the Yes position to force the quoting of all
identifiers.

– Move the switch next to Use SET SESSION AUTHORIZATION to the Yes position to include a statement
that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an
ALTER OWNER command).

When you’ve specified the details that will be incorporated into the pg_dump command:

• Click the Backup button to build and execute a command that builds a backup based on your selections on the
Backup dialog.

• Click the Cancel button to exit without saving work.

Use the Stop Process button to stop the Backup process.

If the backup is successful, a popup window will confirm success. Click Click here for details on the popup window
to launch the Process Watcher. The Process Watcher logs all the activity associated with the backup and provides
additional information for troubleshooting.

7.1. Backup Dialog 217

pgAdmin 4 Documentation, Release 4.3

If the backup is unsuccessful, you can review the error messages returned by the backup command on the Process
Watcher.

7.2 Backup Globals Dialog

Use the Backup Globals dialog to create a plain-text script that recreates all of the database objects within a cluster, and
the global objects that are shared by those databases. Global objects include tablespaces, roles, and object properties.
You can use the pgAdmin Query Tool to play back a plain-text script, and recreate the objects in the backup.

Use the fields in the General tab to specify the following:

• Enter the name of the backup file in the Filename field. Optionally, select the Browser icon (ellipsis) to the right
to navigate into a directory and select a file that will contain the archive.

218 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

• Use the drop-down listbox next to Role name to specify a role with connection privileges on the selected server.
The role will be used for authentication during the backup.

Move switches in the Miscellaneous field box to specify the type of statements that should be included in the backup.

• Move the Verbose messages switch to the No position to exclude status messages from the backup. The default
is Yes.

• Move the Force double quote on identifiers switch to the Yes position to name identifiers without changing case.
The default is No.

Click the Backup button to build and execute a command based on your selections; click the Cancel button to exit
without saving work.

Use the Stop Process button to stop the Backup process.

If the backup is successful, a popup window will confirm success. Click Click here for details on the popup window
to launch the Process Watcher. The Process Watcher logs all the activity associated with the backup and provides
additional information for troubleshooting.

If the backup is unsuccessful, review the error message returned by the Process Watcher to resolve any issue.

7.2. Backup Globals Dialog 219

pgAdmin 4 Documentation, Release 4.3

7.3 Backup Server Dialog

Use the Backup Server dialog to create a plain-text script that will recreate the selected server. You can use the
pgAdmin Query Tool to play back a plain-text script, and recreate the server.

Use the fields in the General tab to specify the following:

• Enter the name of the backup file in the Filename field. Optionally, select the Browser icon (ellipsis) to the right
to navigate into a directory and select a file that will contain the archive.

• Use the Encoding drop-down listbox to select the character encoding method that should be used for the archive.
Note: This option is visible only for database server greater than or equal to 11.

• Use the drop-down listbox next to Role name to specify a role with connection privileges on the selected server.
The role will be used for authentication during the backup.

• Move switches in the Type of objects field box to specify details about the type of objects that will be backed
up.

– Move the switch next to Only data to the Yes position to limit the back up to data.

– Move the switch next to Only schema to limit the back up to schema-level database objects.

220 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

• Move switches in the Do not save field box to select the objects that will not be included in the backup.

– Move the switch next to Owner to the Yes position to exclude commands that set object ownership.

– Move the switch next to Privilege to the Yes position to exclude commands that create access privileges.

– Move the switch next to Tablespace to the Yes position to exclude tablespaces.

– Move the switch next to Unlogged table data to the Yes position to exclude the contents of unlogged tables.

– Move the switch next to Comments to the Yes position to exclude commands that set the comments. Note:
This option is visible only for database server greater than or equal to 11.

• Move switches in the Queries field box to specify the type of statements that should be included in the backup.

– Move the switch next to Use Column Inserts to the Yes position to dump the data in the form of INSERT
statements and include explicit column names. Please note: this may make restoration from backup slow.

– Move the switch next to Use Insert commands to the Yes position to dump the data in the form of INSERT
statements rather than using a COPY command. Please note: this may make restoration from backup slow.

– Move the switch next to Include DROP DATABASE statement to the Yes position to include a command
in the backup that will drop any existing database object with the same name before recreating the object
during a backup.

7.3. Backup Server Dialog 221

pgAdmin 4 Documentation, Release 4.3

• Move switches in the Disable field box to specify the type of statements that should be excluded from the
backup.

– Move the switch next to Trigger (active when creating a data-only backup) to the Yes position to include
commands that will disable triggers on the target table while the data is being loaded.

– Move the switch next to $ quoting to the Yes position to enable dollar quoting within function bodies; if
disabled, the function body will be quoted using SQL standard string syntax.

• Move switches in the Miscellaneous field box to specify miscellaneous backup options.

– Move the switch next to With OIDs to the Yes position to include object identifiers as part of the table data
for each table.

– Move the switch next to Verbose messages to the No position to instruct pg_dump to exclude verbose
messages.

– Move the switch next to Force double quotes on identifiers to the Yes position to force the quoting of all
identifiers.

– Move the switch next to Use SET SESSION AUTHORIZATION to the Yes position to include a statement
that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an
ALTER OWNER command).

Click the Backup button to build and execute a command based on your selections; click the Cancel button to exit
without saving work.

222 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

Use the Stop Process button to stop the Backup process.

If the backup is successful, a popup window will confirm success. Click Click here for details on the popup window
to launch the Process Watcher. The Process Watcher logs all the activity associated with the backup and provides
additional information for troubleshooting.

If the backup is unsuccessful, review the error message returned by the Process Watcher to resolve any issue.

7.4 Restore Dialog

The Restore dialog provides an easy way to use a Custom, tar, or Directory format backup taken with the pgAdmin
Backup dialog to recreate a database or database object. The Backup dialog invokes options of the pg_dump client
utility; the Restore dialog invokes options of the pg_restore client utility.

You can use the Query Tool to play back the script created during a plain-text backup made with the Backup dialog.
For more information about backing up or restoring, please refer to the documentation for pg_dump or pg_restore.

7.4. Restore Dialog 223

https://www.postgresql.org/docs/9.5/static/app-pgdump.html
https://www.postgresql.org/docs/9.5/static/app-pgrestore.html

pgAdmin 4 Documentation, Release 4.3

Use the fields on the General tab to specify general information about the restore process:

• Use the drop-down listbox in the Format field to select the format of your backup file.

– Select Custom or tar to restore from a custom archive file to create a copy of the backed-up object.

– Select Directory to restore from a compressed directory-format archive.

• Enter the complete path to the backup file in the Filename field. Optionally, select the Browser icon (ellipsis) to
the right to navigate into a directory and select the file that contains the archive.

• Use the Number of Jobs field to specify if pg_restore should use multiple (concurrent) jobs to process the restore.
Each job uses a separate connection to the server.

• Use the drop-down listbox next to Rolename to specify the role that will be used to authenticate with the server
during the restore process.

Click the Restore options tab to continue. Use the fields on the Restore options tab to specify options that correspond
to pg_restore options.

• Use the switches in the Sections box to specify the content that will be restored:

– Move the switch next to Pre-data to the Yes position to restore all data definition items not included in the
data or post-data item lists.

– Move the switch next to Data to the Yes position to restore actual table data, large-object contents, and
sequence values.

– Move the switch next to Post-data to the Yes position to restore definitions of indexes, triggers, rules, and
constraints (other than validated check constraints).

224 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

• Use the switches in the Type of objects box to specify the objects that will be restored:

– Move the switch next to Only data to the Yes position to limit the restoration to data.

– Move the switch next to Only schema to limit the restoration to schema-level database objects.

• Use the switches in the Do not save box to specify which objects will not be restored:

– Move the switch next to Owner to the Yes position to exclude commands that set object ownership.

– Move the switch next to Privilege to the Yes position to exclude commands that create access privileges.

– Move the switch next to Tablespace to the Yes position to exclude tablespaces.

– Move the switch next to Comments to the Yes position to exclude commands that set the comments. Note:
This option is visible only for database server greater than or equal to 11.

• Use the switches in the Queries box to specify the type of statements that should be included in the restore:

– Move the switch next to Include CREATE DATABASE statement to the Yes position to include a command
that creates a new database before performing the restore.

7.4. Restore Dialog 225

pgAdmin 4 Documentation, Release 4.3

– Move the switch next to Clean before restore to the Yes position to drop each existing database object (and
data) before restoring.

– Move the switch next to Single transaction to the Yes position to execute the restore as a single transaction
(that is, wrap the emitted commands in BEGIN/COMMIT). This ensures that either all the commands
complete successfully, or no changes are applied. This option implies –exit-on-error.

• Use the switches in the Disable box to specify the type of statements that should be excluded from the restore:

– Move the switch next to Trigger (active when creating a data-only restore) to the Yes position to include
commands that will disable triggers on the target table while the data is being loaded.

– Move the switch next to No data for Failed Tables to the Yes position to ignore data that fails a trigger.

• Use the switches in the Miscellaneous/Behavior box to specify miscellaneous restore options:

– Move the switch next to Verbose messages to the No position to instruct pg_restore to exclude verbose
messages.

– Move the switch next to Use SET SESSION AUTHORIZATION to the Yes position to include a statement
that will use a SET SESSION AUTHORIZATION command to determine object ownership (instead of an
ALTER OWNER command).

– Move the switch next to Exit on error to the Yes position to instruct pg_restore to exit restore if there is an
error in sending SQL commands. The default is to continue and to display a count of errors at the end of
the restore.

When you’ve specified the details that will be incorporated into the pg_restore command, click the Restore button to
start the process, or click the Cancel button to exit without saving your work. A popup will confirm if the restore is
successful.

226 Chapter 7. Backup and Restore

pgAdmin 4 Documentation, Release 4.3

Use the Stop Process button to stop the Restore process.

Click Click here for details on the popup to launch the Process Watcher. The Process Watcher logs all the activ-
ity associated with the restore, and provides additional information for troubleshooting should the restore command
encounter problems.

7.4. Restore Dialog 227

pgAdmin 4 Documentation, Release 4.3

228 Chapter 7. Backup and Restore

CHAPTER

EIGHT

DEVELOPER TOOLS

The pgAdmin Tools menu displays a list of powerful developer tools that you can use to execute and analyze complex
SQL commands, manage data, and debug PL/SQL code.

Contents:

8.1 pgAdmin Debugger

The debugger may be used to debug PL/pgSQL functions in PostgreSQL. The Debugger is available as an extension
for your PostgreSQL installation. You must have superuser privileges to use the debugger.

Before using the debugger, you must modify the postgresql.conf file, adding the server-side debugger components to
the the value of the shared_preload_libraries parameter:

shared_preload_libraries = ‘$libdir/other_libraries/plugin_debugger’

After modifying the shared_preload_libraries parameter, restart the server to apply the changes.

The debugger may be used for either in-context debugging or direct debugging of a target function. When you use
the debugger for in-context debugging, you set a breakpoint at the first line of a program; when a session invokes
the target, control is transferred to the debugger. When using direct debugging, the debugger prompts you for any
parameters required by the target, and then allows you to step through the code.

In-context Debugging

To set a breakpoint at the first line of a program, right-click the name of the object you would like to debug, and select
Set breakpoint from the Debugging sub-menu. The debugger window will open, waiting for another session to invoke
the program.

229

pgAdmin 4 Documentation, Release 4.3

When another session invokes the target, the debugger will display the code, allowing you to add break points, or step
through line-by-line. The other session is suspended until the debugging completes; then control is returned to the
session.

Direct Debugging

To use the debugger for direct debugging, right click on the name of the object that you wish to debug in the pgAdmin
tree control and select Debug from the Debugging sub-menu. The debugger window will open, prompting you for any
values required by the program:

230 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Debugger dialog to provide a value for each parameter:

• The Name field contains the formal parameter name.

• The Type field contains the parameter data type.

• Check the Null? checkbox to indicate that the parameter is a NULL value.

• Check the Expression? checkbox if the Value field contains an expression.

• Use the Value field to provide the parameter value that will be passed to the program. When entering parameter
values, type the value into the appropriate cell on the grid, or, leave the cell empty to represent NULL, enter
‘’ (two single quotes) to represent an empty string, or to enter a literal string consisting of just two single
quotes, enter ‘’. PostgreSQL 8.4 and above supports variadic function parameters. These may be entered as a
comma-delimited list of values, quoted and/or cast as required.

• Check the Use default? checkbox to indicate that the program should use the value in the Default Value field.

• The Default Value field contains the default value of the parameter.

Provide values required by the program, and click the Debug button to start stepping through the program.

Using the Debugger

The main debugger window consists of two panels and a context-sensitive toolbar. Use toolbar icons to manage
breakpoints and step into or through code; hover over an icon for a tooltip that identifies the option associated with the

8.1. pgAdmin Debugger 231

pgAdmin 4 Documentation, Release 4.3

icon. The toolbar options are:

Option Action
Step into Click the Step into icon to execute the currently highlighted line of code.
Step over Click the Step over icon to execute a line of code, stepping over any sub-functions invoked by the

code. The sub-function executes, but is not debugged unless it contains a breakpoint.
Con-
tinue/Start

Click the Continue/Start icon to execute the highlighted code, and continue until the program en-
counters a breakpoint or completes.

Toggle
breakpoint

Use the Toggle breakpoint icon to enable or disable a breakpoint (without removing the breakpoint).

Clear all
break-
points

Click the Clear all breakpoints icon to remove all breakpoints from the program.

Stop Click the Stop icon to halt the execution of a program.

The top panel of the debugger window displays the program body; click in the grey margin next to a line number to
add a breakpoint. The highlighted line in the top panel is the line that is about to execute.

The lower panel of the debugger window provides a set of tabs that allow you to review information about the program:

• The Parameters tab displays the value of each parameter.

• The Local variables tab displays the current value of the program variables.

• The Messages tab displays any messages returned by the server (errors, warnings and informational messages).

• The Results tab displays the server message when the program completes.

• The Stack tab displays the list of functions that have been invoked, but which have not yet completed.

As you step through a program, the Local variables tab displays the current value of each variable:

232 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

When you step into a subroutine, the Stack tab displays the call stack, including the name of each caller, the parameter
values for each caller (if any), and the line number within each caller:

Select a caller to change focus to that stack frame and display the state of the caller in the upper panel.

When the program completes, the Results tab displays the message returned by the server. If the program encounters
an error, the Messages tab displays details:

8.1. pgAdmin Debugger 233

pgAdmin 4 Documentation, Release 4.3

8.2 Query Tool

The Query Tool is a powerful, feature-rich environment that allows you to execute arbitrary SQL commands and
review the result set. You can access the Query Tool via the Query Tool menu option on the Tools menu, or through
the context menu of select nodes of the Browser tree control. The Query Tool allows you to:

• Issue ad-hoc SQL queries.

• Execute arbitrary SQL commands.

• Displays current connection and transaction status as configured by the user.

• Save the data displayed in the output panel to a CSV file.

• Review the execution plan of a SQL statement in either a text or a graphical format.

• View analytical information about a SQL statement.

You can open multiple copies of the Query tool in individual tabs simultaneously. To close a copy of the Query tool,
click the X in the upper-right hand corner of the tab bar.

The Query Tool features two panels:

• The upper panel displays the SQL Editor. You can use the panel to enter, edit, or execute a query. It also shows
the History tab which can be used to view the queries that have been executed in the session, and a Scratch
Pad which can be used to hold text snippets during editing. If the Scratch Pad is closed, it can be re-opened (or
additional ones opened) by right-clicking in the SQL Editor and other panels and adding a new panel.

• The lower panel displays the Data Output panel. The tabbed panel displays the result set returned by a query, in-
formation about a query’s execution plan, server messages related to the query’s execution and any asynchronous
notifications received from the server.

The Query Tool Toolbar

The Query Tool toolbar uses context-sensitive icons that provide shortcuts to frequently performed tasks. If an icon is
highlighted, the option is enabled; if the icon is grayed-out, the task is disabled. Please note that disabled icons may
support functionality accessed via the data editor.

Hover over an icon to display a tooltip that describes the icon’s functionality:

234 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

Icon Behavior Shortcut
Open File Click the Open File icon to display

a previously saved query in the SQL
Editor.

Accesskey + O

Save Click the Save icon to perform a
quick-save of a previously saved
query, or to access the Save menu:

• Select Save to save the se-
lected content of the SQL Ed-
itor panel in a file.

• Select Save As to open a new
browser dialog and specify a
new location to which to save
the selected content of the
SQL Editor panel.

Accesskey + S

Find Use the Find menu to search, re-
place, or navigate the code dis-
played in the SQL Editor:

• Select Find to provide a
search target, and search the
SQL Editor contents.

• Select Find next to locate the
next occurrence of the search
target.

• Select Find previous to move
to the last occurrence of the
search target.

• Select Pesistent find to iden-
tify all occurrences of the
search target within the editor.

• Select Replace to locate and
replace (with prompting) in-
dividual occurrences of the
target.

• Select Replace all to locate
and replace all occurrences of
the target within the editor.

• Select Jump to navigate to the
next occurrence of the search
target.

Cmd+F
Cmd+G
Cmd+Shift+G
Cmd+Shift+F
Alt+G

Copy Click the Copy icon to copy the con-
tent that is currently highlighted in
the Data Output panel. when in
View/Edit data mode.

Accesskey + C

Paste Click the Paste icon to paste a pre-
viously row into a new row when in
View/Edit data mode.

Accesskey + P

Delete Click the Delete icon to delete the
selected rows when in View/Edit
data mode.

Accesskey + D

Edit Use options on the Edit menu to ac-
cess text editing tools; the options
operate on the text displayed in the
SQL Editor panel when in Query
Tool mode:

• Select Indent Selection to in-
dent the currently selected
text.

• Select Unindent Selection to
remove indentation from the
currently selected text.

• Select Inline Comment Selec-
tion to enclose any lines that
contain the selection in SQL
style comment notation.

• Select Inline Uncomment Se-
lection to remove SQL style
comment notation from the
selected line.

• Select Block Comment to en-
close all lines that contain the
selection in C style comment
notation. This option acts as a
toggle.

Tab
Shift+Tab
Cmd+/
Cmd+.
Shift+Cmd+/

Filter Click the Filter icon to set filter-
ing and sorting criteria for the data
when in View/Edit data mode. Click
the down arrow to access other fil-
tering and sorting options:

• Click Sort/Filter to open the
sorting and filtering dialogue.

• Click Filter by Selection to
show only the rows contain-
ing the values in the selected
cells.

• Click Exclude by Selection to
show only the rows that do
not contain the values in the
selected cells.

• Click Remove Sort/Filter to
remove any previously se-
lected sort or filtering options.

Accesskey + F

Limit Selector Select a value in the Limit Selector
to limit the size of the dataset to a
number of rows.

Accesskey + R

Stop Click the Stop icon to cancel the
execution of the currently running
query.

Accesskey + Q

Execute/Refresh Click the Execute/Refresh icon to
either execute or refresh the query
highlighted in the SQL editor panel.
Click the down arrow to access
other execution options:

• Add a check next to Auto-
Rollback to instruct the server
to automatically roll back a
transaction if an error occurs
during the transaction.

• Add a check next to Auto-
Commit to instruct the server
to automatically commit each
transaction. Any changes
made by the transaction will
be visible to others, and
durable in the event of a crash.

F5

Explain
Click the Explain icon to view an explanation plan for the current query. The result of the

EXPLAIN is displayed
graphically on the Explain
tab of the output panel, and in
text form on the Data Output
tab.

F7

Explain analyze Click the Explain analyze icon to
invoke an EXPLAIN ANALYZE
command on the current query.
Navigate through the Explain Op-
tions menu to select options for the
EXPLAIN command:

• Select Verbose to display ad-
ditional information regard-
ing the query plan.

• Select Costs to include in-
formation on the estimated
startup and total cost of each
plan node, as well as the esti-
mated number of rows and the
estimated width of each row.

• Select Buffers to include in-
formation on buffer usage.

• Select Timing to include in-
formation about the startup
time and the amount of time
spent in each node of the
query.

Shift+F7

Commit Click the Commit icon to commit
the transaction.

Shift+CTRL+M

Rollback Click the Rollback icon to rollback
the transaction.

Shift+CTRL+R

Clear Use options on the Clear drop-down
menu to erase display contents:

• Select Clear Query Window
to erase the content of the
SQL Editor panel.

• Select Clear History to erase
the content of the History tab.

Accesskey + L

Download as CSV Click the Download as CSV icon
to download the result set of the
current query to a comma-separated
list. You can specify the CSV set-
tings through Preferences -> SQL
Editor -> CSV output dialogue.

F8

8.2. Query Tool 235

pgAdmin 4 Documentation, Release 4.3

The SQL Editor Panel

The SQL editor panel is a workspace where you can manually provide a query, copy a query from another source, or
read a query from a file. The SQL editor features syntax coloring and autocompletion.

To use autocomplete, begin typing your query; when you would like the Query editor to suggest object names or
commands that might be next in your query, press the Control+Space key combination. For example, type “*SELECT
* FROM* ” (without quotes, but with a trailing space), and then press the Control+Space key combination to select
from a popup menu of autocomplete options.

After entering a query, select the Execute/Refresh icon from the toolbar. The complete contents of the SQL editor
panel will be sent to the database server for execution. To execute only a section of the code that is displayed in the
SQL editor, highlight the text that you want the server to execute, and click the Execute/Refresh icon.

236 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

The message returned by the server when a command executes is displayed on the Messages tab. If the command is
successful, the Messages tab displays execution details.

Options on the Edit menu offer functionality that helps with code formatting and commenting:

• The auto-indent feature will automatically indent text to the same depth as the previous line when you press the
Return key.

• Block indent text by selecting two or more lines and pressing the Tab key.

• Implement or remove SQL style or toggle C style comment notation within your code.

The Data Output Panel

The Data Output panel displays data and statistics generated by the most recently executed query.

8.2. Query Tool 237

pgAdmin 4 Documentation, Release 4.3

The Data Output tab displays the result set of the query in a table format. You can:

• Select and copy from the displayed result set.

• Use the Execute/Refresh options to retrieve query execution information and set query execution options.

• Use the Download as CSV icon to download the content of the Data Output tab as a comma-delimited file.

All rowsets from previous queries or commands that are displayed in the Data Output panel will be discarded when
you invoke another query; open another query tool browser tab to keep your previous results available.

Use the Explain tab to view a graphical representation of a query:

238 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

To generate a graphical explain diagram, open the Explain tab, and select Explain, Explain Analyze, or one or more
options from the Explain options menu on the Execute/Refresh drop-down. Please note that EXPLAIN VERBOSE
cannot be displayed graphically. Hover over an icon on the Explain tab to review information about that item; a popup
window will display information about the selected object:

Use the download button on top left corner of the Explain canvas to download the plan as an SVG file.

Note: Download as SVG is not supported on Internet Explorer.

8.2. Query Tool 239

pgAdmin 4 Documentation, Release 4.3

Note that the query plan that accompanies the Explain analyze is available on the Data Output tab.

Use the Messages tab to view information about the most recently executed query:

If the server returns an error, the error message will be displayed on the Messages tab, and the syntax that caused the
error will be underlined in the SQL editor. If a query succeeds, the Messages tab displays how long the query took to
complete and how many rows were retrieved:

240 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

Use the Query History tab to review activity for the current session:

The Query History tab displays information about recent commands:

• The date and time that a query was invoked.

• The text of the query.

• The number of rows returned by the query.

• The amount of time it took the server to process the query and return a result set.

• Messages returned by the server (not noted on the Messages tab).

To erase the content of the Query History tab, select Clear history from the Clear drop-down menu.

Use the Connection status feature to view the current connection and transaction status by clicking on the status icon
in query tool:

8.2. Query Tool 241

pgAdmin 4 Documentation, Release 4.3

8.3 Reviewing and Editing Data

To review or modify data, right click on a table or view name in the Browser tree control. When the context menu
opens, use the View/Edit Data menu to specify the number of rows you would like to display in the editor panel.

To modify the content of a table, each row in the table must be uniquely identifiable. If the table definition does not
include an OID or a primary key, the displayed data is read only. Note that views cannot be edited; updatable views
(using rules) are not supported.

The editor features a toolbar that allows quick access to frequently used options, and a work environment divided into
two panels:

• The upper panel displays the SQL command that was used to select the content displayed in the lower panel.

• The lower panel (the Data Grid) displays the data selected from the table or view.

The View/Edit Data Toolbar

The toolbar includes context-sensitive icons that provide shortcuts to frequently performed tasks.

Hover over an icon to display a tooltip that describes the icon’s functionality.

242 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

Icon Behavior Shortcut
Save Use the Save icon to save your

changes to the currently displayed
table contents.

Find Use options on the Find menu to ac-
cess Search and Replace functional-
ity or to Jump to another line.

Ctrl/Cmd +F

Copy Click the Copy icon to copy the cur-
rently selected data.

Ctrl+C

Paste Row Click the Paste Row icon to paste
the content that is currently on the
clipboard.

Delete Row Use the Delete Row icon to delete
all the selected rows from the output
panel.

Filter Click the Filter icon to open a dia-
log that allows you to write and ap-
ply a filter for the content currently
displayed in the output panel. Click
the down arrow to open the Filter
drop- down menu and select from
pre-defined options:

Use options on the Fil-
ter menu to quick-sort
or quick-filter the data
set:

• Filter: This
option opens a
dialog that allows
you to define a
filter. A filter
is a condition
that is supplied
to an arbitrary
WHERE clause
that restricts the
result set.

• Remove Fil-
ter: This option
removes all selec-
tion / exclusion
filter conditions.

• By Selection:
This option re-
freshes the data
set and displays
only those rows
whose column
value matches
the value in the
cell currently
selected.

• Exclude Selec-
tion: This option
refreshes the
data set and ex-
cludes those rows
whose column
value matches
the value in the
cell currently
selected.

No limit Use the No limit drop-down listbox
to specify how many rows to display
in the output panel. Select from: No
limit (the default), 1000 rows, 500
rows, or 100 rows.

Execute/Refresh Click the Execute/Refresh icon to
execute the SQL command that is
displayed in the top panel. If you
have not saved modifications to the
content displayed in the data grid,
you will be prompted to confirm
the execution. To preserve your
changes before refreshing the con-
tent, click the Save toolbar button
before executing the refresh.

F5

Stop Click the Stop icon to cancel the
execution of the currently running
query.

Clear History Use the Clear History drop-down
menu to erase the contents of the
History tab.

Download as CSV Click the Download as CSV icon
to download the result set of the
current query to a comma-separated
list. You can control the CSV set-
tings through Preferences -> SQL
Editor -> CSV output dialogue.

F8

8.3. Reviewing and Editing Data 243

pgAdmin 4 Documentation, Release 4.3

The Data Grid

The top row of the data grid displays the name of each column, the data type, and if applicable, the number of
characters allowed. A column that is part of the primary key will additionally be marked with [PK].

To modify the displayed data:

• To change a numeric value within the grid, double-click the value to select the field. Modify the content in the
square in which it is displayed.

• To change a non-numeric value within the grid, double-click the content to access the edit bubble. After modi-
fying the contentof the edit bubble, click the Save button to display your changes in the data grid, or Cancel to
exit the edit bubble without saving.

To enter a newline character, click Ctrl-Enter or Shift-Enter. Newline formatting is only displayed when the field
content is accessed via an edit bubble.

To add a new row to the table, enter data into the last (unnumbered) row of the table. As soon as you store the data,
the row is assigned a row number, and a fresh empty line is added to the data grid.

To write a SQL NULL to the table, simply leave the field empty. When you store the new row, the will server fill in
the default value for that column. If you store a change to an existing row, the value NULL will explicitly be written.

To write an empty string to the table, enter the special string ‘’ (two single quotes) in the field. If you want to write a
string containing solely two single quotes to the table, you need to escape these quotes, by typing ‘’

To delete a row, press the Delete toolbar button. A popup will open, asking you to confirm the deletion.

To commit the changes to the server, select the Save toolbar button. Modifications to a row are written to the server
automatically when you select a different row.

Geometry Data Viewer

If PostGIS is installed, you can view GIS objects in a map by selecting row(s) and clicking the ‘View Geometry’
button in the column. If no rows are selected, the entire data set will be rendered:

244 Chapter 8. Developer Tools

pgAdmin 4 Documentation, Release 4.3

You can adjust the layout by dragging the title of the panel. To view the properties of the geometries directly in map,
just click the specific geometry:

Notes:

• Supported data types: The Geometry Viewer supports 2D and 3DM geometries in EWKB format including
Point, LineString, Polygon MultiPoint, MultiLineString, MultiPolygon and GeometryCollection.

• SRIDs: If there are geometries with different SRIDs in the same column, the viewer will render geometries with
the same SRID in the map. If SRID=4326 the OSM tile layer will be added into the map.

• Data size: For performance reasons, the viewer will render no more than 100000 geometries, totaling up to
20MB.

• Internet access: An internet connection is required for the Geometry Viewer to function correctly.

Sort/Filter options dialog

You can access Sort/Filter options dialog by clicking on Sort/Filter button. This allows you to specify an SQL Filter
to limit the data displayed and data sorting options in the edit grid window:

8.3. Reviewing and Editing Data 245

pgAdmin 4 Documentation, Release 4.3

• Use SQL Filter to provide SQL filtering criteria. These will be added to the “WHERE” clause of the query used
to retrieve the data. For example, you might enter:

id > 25 AND created > '2018-01-01'

• Use Data Sorting to sort the data in the output grid

To add new column(s) in data sorting grid, click on the [+] icon.

• Use the drop-down Column to select the column you want to sort.

• Use the drop-down Order to select the sort order for the column.

To delete a row from the grid, click the trash icon.

• Click the Help button (?) to access online help.

• Click the Ok button to save work.

• Click the Close button to discard current changes and close the dialog.

246 Chapter 8. Developer Tools

CHAPTER

NINE

PGADMIN DEPLOYMENT

Pre-compiled and configured installation packages for pgAdmin 4 are available for a number of desktop environments;
we recommend using an installer whenever possible. If you are interested in learning more about the project, or if
a pgAdmin installer is not available for your environment, the pages listed below will provide detailed information
about creating a custom deployment.

Contents:

9.1 Container Deployment

pgAdmin can be deployed in a container using the image at:

https://hub.docker.com/r/dpage/pgadmin4/

9.1.1 PostgreSQL Utilities

The PostgreSQL utilities pg_dump, pg_dumpall, pg_restore and psql are included in the container to allow backups
to be created and restored and other maintenance functions to be executed. Multiple versions are included in the
following directories to allow use with different versions of the database server:

• PostgreSQL 9.4: /usr/local/pgsql-9.4

• PostgreSQL 9.5: /usr/local/pgsql-9.5

• PostgreSQL 9.6: /usr/local/pgsql-9.6

• PostgreSQL 10: /usr/local/pgsql-10

• PostgreSQL 11: /usr/local/pgsql-11

The most recent version of the utilities is used by default; this may be changed in the Preferences Dialog.

9.1.2 Environment Variables

The container will accept the following variables at startup:

PGADMIN_DEFAULT_EMAIL

This is the email address used when setting up the initial administrator account to login to pgAdmin. This variable is
required and must be set at launch time.

PGADMIN_DEFAULT_PASSWORD

This is the password used when setting up the initial administrator account to login to pgAdmin. This variable is
required and must be set at launch time.

247

https://hub.docker.com/r/dpage/pgadmin4/

pgAdmin 4 Documentation, Release 4.3

PGADMIN_ENABLE_TLS

Default: <null>

If left un-set, the container will listen on port 80 for connections in plain text. If set to any value, the container will
listen on port 443 for TLS connections.

When TLS is enabled, a certificate and key must be provided. Typically these should be stored on the host file system
and mounted from the container. The expected paths are /certs/server.crt and /certs/server.key

PGADMIN_LISTEN_ADDRESS

Default: [::]

Specify the local address that the servers listens on. The default should work for most users - in IPv4-only environ-
ments, this may need to be set to 127.0.0.1.

PGADMIN_LISTEN_PORT

Default: 80 or 443 (if TLS is enabled)

Allows the port that the server listens on to be set to a specific value rather than using the default.

GUNICORN_THREADS

Default: 25

Adjust the number of threads the Gunicorn server uses to handle incoming requests. This should typically be left as-is,
except in highly loaded systems where it may be increased.

9.1.3 Mapped Files and Directories

The following files or directories can be mapped from the container onto the host machine to allow configuration to
be customised and shared between instances:

/var/lib/pgadmin

This is the working directory in which pgAdmin stores session data, user files, configuration files, and it’s configuration
database. Mapping this directory onto the host machine gives you an easy way to maintain configuration between

invocations of the container.

/pgadmin4/config_local.py

This file can be used to override configuration settings in pgAdmin. Settings found in config.py can be overridden
with deployment specific values if required.

/pgadmin4/servers.json

If this file is mapped, server definitions found in it will be loaded at launch time. This allows connection information
to be pre-loaded into the instance of pgAdmin in the container.

/certs/server.cert

If TLS is enabled, this file will be used as the servers TLS certificate.

/certs/server.key

If TLS is enabled, this file will be used as the key file for the servers TLS certificate.

248 Chapter 9. pgAdmin Deployment

pgAdmin 4 Documentation, Release 4.3

9.1.4 Examples

Run a simple container over port 80:

docker pull dpage/pgadmin4
docker run -p 80:80 \

-e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \
-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \
-d dpage/pgadmin4

Run a TLS secured container using a shared config/storage directory in /private/var/lib/pgadmin on the host, and
servers pre-loaded from /tmp/servers.json on the host:

docker pull dpage/pgadmin4
docker run -p 443:443 \

-v "/private/var/lib/pgadmin:/var/lib/pgadmin" \
-v "/path/to/certificate.cert:/certs/server.cert" \
-v "/path/to/certificate.key:/certs/server.key" \
-v "/tmp/servers.json:/servers.json" \
-e "PGADMIN_DEFAULT_EMAIL=user@domain.com" \
-e "PGADMIN_DEFAULT_PASSWORD=SuperSecret" \
-e "PGADMIN_ENABLE_TLS=True" \
-d dpage/pgadmin4

9.1. Container Deployment 249

pgAdmin 4 Documentation, Release 4.3

250 Chapter 9. pgAdmin Deployment

CHAPTER

TEN

PGADMIN PROJECT CONTRIBUTIONS

pgAdmin is an open-source project that invites you to get involved in the development process. For more infor-
mation about contributing to the pgAdmin project, contact the developers on the pgAdmin mailing list pgadmin-
hackers@postgresql.org to discuss any ideas you might have for enhancements or bug fixes.

In the sections listed below, you’ll find detailed information about the development process used to develop, improve,
and maintain the pgAdmin client.

Contents:

10.1 Submitting Patches

Before developing a patch for pgAdmin you should always contact the developers on the mailing list pgadmin-
hackers@postgresql.org to discuss your plans. This ensures that others know if you’re fixing a bug and can then
avoid duplicating your work, and in the case of large patches, gives the community the chance to discuss and refine
your ideas before investing too much time writing code that may later be rejected.

You should always develop patches against a checkout of the source code from the GIT source code repository, and not
a release tarball. This ensures that you’re working with the latest code on the branch and makes it easier to generate
patches correctly. You can checkout the source code with a command like:

$ git clone git://git.postgresql.org/git/pgadmin4.git

Once you’ve made the changes you wish to make, commit them to a private development branch in your local repos-
itory. Then create a patch containing the changes in your development branch against the upstream branch on which
your work is based. For example, if your current branch contains your changes, you might run:

$ git diff origin/master > my_cool_feature.diff

to create a patch between your development branch and the public master branch.

You can also create patches directly from the development tree, for example:

$ git diff > my_cool_feature.diff

If you are adding new files, you may need to stage them for commit, and then create your patch against the staging
area. If any of the files are binary, for example, images, you will need to use the –binary option:

$ git add file1.py file2.py images/image1.png [...]
$ git diff --cached --binary > my_cool_feature.diff

Once you have your patch, check it thoroughly to ensure it meets the pgAdmin Coding Standards, and review it against
the Code Review Notes to minimise the chances of it being rejected. Once you’re happy with your work, mail it as an

251

mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org
mailto:pgadmin-hackers@postgresql.org

pgAdmin 4 Documentation, Release 4.3

attachment to the mailing list pgadmin-hackers@postgresql.org. Please ensure you include a full description of what
the patch does, as well as the rationale for any important design decisions.

10.2 Code Overview

The bulk of pgAdmin is a Python web application written using the Flask framework on the backend, and HTML5
with CSS3, Bootstrap and jQuery on the front end. A desktop runtime is also included for users that prefer a desktop
application to a web application, which is written in C++ using the QT framework.

10.2.1 Runtime

The runtime is essentially a Python webserver and browser in a box. Found in the /runtime directory in the source
tree, it is a relatively simple QT application that is most easily modified using the QT Creator application.

10.2.2 Web Application

The web application forms the bulk of pgAdmin and can be found in the /web directory in the source tree. The
main file is pgAdmin4.py which can be used to run the built-in standalone web server, or as a WSGI application for
production use.

Configuration

The core application configuration is found in config.py. This file includes all configurable settings for the application,
along with descriptions of their use. It is essential that various settings are configured prior to deployent on a web
server; these can be overriden in config_local.py to avoid modifying the main configuration file.

User Settings

When running in desktop mode, pgAdmin has a single, default user account that is used for the desktop user. When
running in server mode, there may be unlimited users who are required to login prior to using the application. pgAdmin
utilised the Flask-Security module to manage application security and users, and provides options for self-service
password reset and password changes etc.

Whether in desktop or server mode, each user’s settings are stored in a SQLite database which is also used to store the
user accounts. This is initially created using the setup.py script which will create the database file and schema within
it, and add the first user account (with administrative privileges) and a default server group for them. A settings table
is also used to store user configuration settings in a key-value fashion. Although not required, setting keys (or names)
are typically formatted using forward slashes to artificially namespace values, much like the pgAdmin 3 settings files
on Linux or Mac.

Note that the local configuration must be setup prior to setup.py being run. The local configuration will determine
how the script sets up the database, particularly with regard to desktop vs. server mode.

10.2.3 pgAdmin Core

The heart of pgAdmin is the pgadmin package. This contains the globally available HTML templates used by the Jinja
engine, as well as any global static files such as images, Javascript and CSS files that are used in multiple modules.

The work of the package is handled in it’s constructor, __init__.py. This is responsible for setting up logging and
authentication, dynamically loading other modules, and a few other tasks.

252 Chapter 10. pgAdmin Project Contributions

mailto:pgadmin-hackers@postgresql.org

pgAdmin 4 Documentation, Release 4.3

10.2.4 Modules

Units of functionality are added to pgAdmin through the addition of modules. Theses are Python object instance of
classes, inherits the PgAdminModule class (a Flask Blueprint implementation), found in web/pgadmin/utils.py. It
provide various hook points for other modules to utilise (primarily the default module - the browser).

To be recognised as a module, a Python package must be created. This must:

1) Be placed within the web/pgadmin/ directory, and

2) Implements pgadmin.utils.PgAdminModule class

3) An instance variable (generally - named blueprint) representing that particular class in that package.

Each module may define a template and static directory for the Blueprint that it implements. To avoid name collisions,
templates should be stored under a directory within the specified template directory, named after the module itself.
For example, the browser module stores it’s templates in web/pgadmin/browser/templates/browser/. This does not
apply to static files which may omit the second module name.

In addition to defining the Blueprint, the views module is typically responsible for defining all the views that will
be rendered in response to client requests, we must provide a REST API url(s) for these views. These must include
appropriate route and security decorators. Take a look at the NodeView class, which uses the same approach as
Flask’s MethodView, it can be found in web/pgadmin/browser/utils.py. This specific class is used by browser nodes
for creating REST API url(s) for different operation on them. i.e. list, create, update, delete, fetch children, get
statistics/reversed SQL/dependencies/dependents list for that node, etc. We can use the same class for other purpose
too. You just need to inherit that class, and overload the member variables operations, parent_ids, ids, node_type, and
then register it as node view with PgAdminModule instance.

Most pgAdmin modules will also implement the hooks provided by the PgAdminModule class. This is responsible
for providing hook points to integrate the module into the rest of the application - for example, a hook might tell the
caller what CSS files need to be included on the rendered page, or what menu options to include and what they should
do. Hook points need not exist if they are not required. It is the responsiblity of the caller to ensure they are present
before attempting to utilise them.

Hooks currently implemented are:

class MyModule(PgAdminModule):
"""
This is class implements the pgadmin.utils.PgAdminModule, and
implements the hooks
"""

...

def get_own_stylesheets(self):
"""
Returns:

list: the stylesheets used by this module, not including any
stylesheet needed by the submodules.

"""
return [url_for('static', 'css/mymodule.css')]

def get_own_javascripts(self):
"""
Returns:

list of dict:
- contains the name (representation for this javascript
module), path (url for it without .js suffix), deps (array of
dependents), exports window object by the javascript module,

(continues on next page)

10.2. Code Overview 253

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

and when (would you like to load this javascript), etc
information for this module, not including any script needed
by submodules.

"""
return [

{
'name': 'pgadmin.extension.mymodule',
'path': url_for('static', filename='js/mymodule'),
'exports': None,
'when': 'server'
}

]

def get_own_menuitems(self):
"""
Returns:

dict: the menuitems for this module, not including
any needed from the submodules.

"""
return {

'help_items': [
MenuItem(

name='mnu_mymodule_help',
priority=999,
We need to create javascript, which registers itself
as module
module="pgAdmin.MyModule",
callback='about_show',
icon='fa fa-info-circle',
label=gettext('About MyModule'
)

]
}

def get_panels(self):
"""
Returns:

list: a list of panel objects to add implemented in javascript
module

"""
return []

...

blueprint = MyModule('mymodule', __name__, static_url_path='/static')

pgAdmin Modules may include any additional Python modules that are required to fulfill their purpose, as required.
They may also reference other dynamically loaded modules, but must use the defined hook points and fail gracefully
in the event that a particular module is not present.

10.2.5 Nodes

Nodes are very similar to modules, it represents an individual node or, collection object on the browser treeview. To
recognised as a node module, a Python package (along with javascript modules) must be created. This must:

1) Be placed within the web/pgadmin/browser/ directory, and

254 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

2) Implements the BrowserPluginModule, and registers the node view, which exposes required the REST APIs

3) An instance of the class object

10.2.6 Front End

pgAdmin uses javascript extensively for the front-end implementation. It uses require.js to allow the lazy loading (or,
say load only when required), bootstrap for UI look and feel, Backbone for data manipulation of a node, Backform
for generating properties/create dialog for selected node. We have divided each module in small chunks as much as
possible. Not all javascript modules are required to be loaded (i.e. loading a javascript module for database will make
sense only when a server node is loaded competely.) Please look at the the javascript files node.js, browser.js, menu.js,
panel.js, etc for better understanding of the code.

10.3 Coding Standards

pgAdmin uses multiple technologies and multiple languages, each of which have their own coding standards.

10.3.1 General

In all languages, indentations should be made with 4 spaces, and excessively long lines wrapped where appropriate to
ensure they can be read on smaller displays (80 characters is used in many places, but this is not a required maximum
size as it’s quite wasteful on modern displays). Typically lines should not be longer than 120 characters.

Comments should be included in all code where required to explain its purpose or how it works if not obvious from a
quick review of the code itself.

10.3.2 CSS 3

CSS3 is used for styling and layout throughout the application. Extensive use is made of the Bootstrap Framework to
aid in that process, however additional styles must still be created from time to time.

Most custom styling comes from individual modules which may advertise static stylesheets to be included in the
module that is loading them via hooks.

Styling overrides (for example, to alter the Bootstrap look and feel) will typically be found in the overrides.css file in
the main static file directory for the application.

Styling should never be applied inline in HTML, always through an external stylesheet, which should contain com-
ments as appropriate to explain the usage or purpose for the style.

Styles should be specified clearly, one per line. For example:

/* iFrames should have no border */
iframe {

border-width: 0;
}

/* Ensure the codemirror editor displays full height gutters when resized */
.CodeMirror, .CodeMirror-gutters {

height: 100% !important;
}

All stylesheets must be CSS3 compliant.

10.3. Coding Standards 255

pgAdmin 4 Documentation, Release 4.3

10.3.3 HTML 5

HTML 5 is used for page structure throughout the application, in most cases being rendered from templates by the
Jinja2 template engine in Flask.

All HTML must be HTML 5 compliant.

10.3.4 Javascript

Client-side code is written in Javascript using jQuery and various plugins. Whilst much of the code is rendered
from static files, there is also code that is rendered from templates using Jinja2 (often to inject the users settings) or
constructed on the fly from module hooks.

A typical Javascript function might be formatted like this (this snipped is from a template):

// Delete a server group
function delete_server_group(item) {

alertify.confirm(
'Delete server group?',
'Are you sure you wish to delete the server group "{0}"?'.replace('{0}', tree.

↪→getLabel(item)),
function() {

var id = tree.getId(item)
$.post("{{ url_for('NODE-server-group.delete') }}", { id: id })

.done(function(data) {
if (data.success == 0) {

report_error(data.errormsg, data.info);
} else {

var next = tree.next(item);
var prev = tree.prev(item);
tree.remove(item);
if (next.length) {

tree.select(next);
} else if (prev.length) {

tree.select(prev);
}

}
}

)
},
null

)
}

Note the use of a descriptive function name, using the underscore character to separate words in all lower case, and
short but descriptive lower case variable names.

Note: From version 3.0 onwards, new or refactored code should be written using ES6 features and conventions.

C++

C++ code is used in the desktop runtime for the application, primarily with the QT framework and an embedded
Python interpreter. Note the use of hanging braces, which may be omitted if on a single statement is present:

256 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

// Ping the application server to see if it's alive
bool PingServer(QUrl url)
{

QNetworkAccessManager manager;
QEventLoop loop;
QNetworkReply *reply;
QVariant redirectUrl;

url.setPath("/utils/ping");

do
{

reply = manager.get(QNetworkRequest(url));

QObject::connect(reply, SIGNAL(finished()), &loop, SLOT(quit()));
loop.exec();

redirectUrl = reply->attribute(QNetworkRequest::RedirectionTargetAttribute);
url = redirectUrl.toUrl();

if (!redirectUrl.isNull())
delete reply;

} while (!redirectUrl.isNull());

if (reply->error() != QNetworkReply::NoError)
return false;

QString response = reply->readAll();

if (response != "PING")
{

qDebug() << "Failed to connect, server response: " << response;
return false;

}

return true;
}

10.3.5 Python

Python is used for the backend web server. All code must be compatible with Python 2.7 and should include PyDoc
comments whilst following the official Python coding standards defined in PEP 8. An example function along with
the required file header is shown below:

##
#
pgAdmin 4 - PostgreSQL Tools
#
Copyright (C) 2013 - 2019, The pgAdmin Development Team
This software is released under the PostgreSQL Licence
#
##

"""Integration hooks for server groups."""

(continues on next page)

10.3. Coding Standards 257

https://www.python.org/dev/peps/pep-0008/

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

from flask import render_template, url_for
from flask.ext.security import current_user

from pgadmin.settings.settings_model import db, ServerGroup

def get_nodes():
"""Return a JSON document listing the server groups for the user"""
groups = ServerGroup.query.filter_by(user_id=current_user.id)

value = ''
for group in groups:

value += '{"id":%d,"label":"%s","icon":"icon-server-group","inode":true},' \
% (group.id, group.name)

value = value[:-1]

return value

10.4 Code Snippets

This document contains code for some of the important classes, listed as below:

• PgAdminModule

• NodeView

• BaseDriver

• BaseConnection

10.4.1 PgAdminModule

PgAdminModule is inherted from Flask.Blueprint module. This module defines a set of methods, properties and
attributes, that every module should implement.

class PgAdminModule(Blueprint):
"""
Base class for every PgAdmin Module.

This class defines a set of method and attributes that
every module should implement.
"""

def __init__(self, name, import_name, **kwargs):
kwargs.setdefault('url_prefix', '/' + name)
kwargs.setdefault('template_folder', 'templates')
kwargs.setdefault('static_folder', 'static')
self.submodules = []
self.parentmodules = []

super(PgAdminModule, self).__init__(name, import_name, **kwargs)

def create_module_preference():

(continues on next page)

258 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

Create preference for each module by default
if hasattr(self, 'LABEL'):

self.preference = Preferences(self.name, self.LABEL)
else:

self.preference = Preferences(self.name, None)

self.register_preferences()

Create and register the module preference object and preferences for
it just before the first request
self.before_app_first_request(create_module_preference)

def register_preferences(self):
pass

def register(self, app, options, first_registration=False):
"""
Override the default register function to automagically register
sub-modules at once.
"""
if first_registration:

self.submodules = list(app.find_submodules(self.import_name))

super(PgAdminModule, self).register(app, options, first_registration)

for module in self.submodules:
if first_registration:

module.parentmodules.append(self)
app.register_blueprint(module)
app.register_logout_hook(module)

def get_own_stylesheets(self):
"""
Returns:

list: the stylesheets used by this module, not including any
stylesheet needed by the submodules.

"""
return []

def get_own_messages(self):
"""
Returns:

dict: the i18n messages used by this module, not including any
messages needed by the submodules.

"""
return dict()

def get_own_javascripts(self):
"""
Returns:

list: the javascripts used by this module, not including
any script needed by the submodules.

"""
return []

def get_own_menuitems(self):
"""

(continues on next page)

10.4. Code Snippets 259

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

Returns:
dict: the menuitems for this module, not including

any needed from the submodules.
"""
return defaultdict(list)

def get_panels(self):
"""
Returns:

list: a list of panel objects to add
"""
return []

def get_exposed_url_endpoints(self):
"""
Returns:

list: a list of url endpoints exposed to the client.
"""
return []

@property
def stylesheets(self):

stylesheets = self.get_own_stylesheets()
for module in self.submodules:

stylesheets.extend(module.stylesheets)
return stylesheets

@property
def messages(self):

res = self.get_own_messages()

for module in self.submodules:
res.update(module.messages)

return res

@property
def javascripts(self):

javascripts = self.get_own_javascripts()
for module in self.submodules:

javascripts.extend(module.javascripts)
return javascripts

@property
def menu_items(self):

menu_items = self.get_own_menuitems()
for module in self.submodules:

for key, value in module.menu_items.items():
menu_items[key].extend(value)

menu_items = dict((key, sorted(value, key=attrgetter('priority')))
for key, value in menu_items.items())

return menu_items

@property
def exposed_endpoints(self):

res = self.get_exposed_url_endpoints()

for module in self.submodules:
(continues on next page)

260 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

res += module.exposed_endpoints

return res

10.4.2 NodeView

NodeView class helps exposing basic REST APIs for different operations used by pgAdmin Browser. The basic idea
has been taken from the Flask’s MethodView class. Because - we need a lot more operations (not, just CRUD), we
can not use it directly.

class NodeView(with_metaclass(MethodViewType, View)):
"""
A PostgreSQL Object has so many operaions/functions apart from CRUD
(Create, Read, Update, Delete):
i.e.
- Reversed Engineered SQL
- Modified Query for parameter while editing object attributes

i.e. ALTER TABLE ...
- Statistics of the objects
- List of dependents
- List of dependencies
- Listing of the children object types for the certain node

It will used by the browser tree to get the children nodes

This class can be inherited to achieve the diffrent routes for each of the
object types/collections.

OPERATION | URL | HTTP Method | Method
---------------+-----------------------------+-------------+--------------
List | /obj/[Parent URL]/ | GET | list
Properties | /obj/[Parent URL]/id | GET | properties
Create | /obj/[Parent URL]/ | POST | create
Delete | /obj/[Parent URL]/id | DELETE | delete
Update | /obj/[Parent URL]/id | PUT | update

SQL (Reversed | /sql/[Parent URL]/id | GET | sql
Engineering) |
SQL (Modified | /msql/[Parent URL]/id | GET | modified_sql
Properties) |

Statistics | /stats/[Parent URL]/id | GET | statistics
Dependencies | /dependency/[Parent URL]/id | GET | dependencies
Dependents | /dependent/[Parent URL]/id | GET | dependents

Nodes | /nodes/[Parent URL]/ | GET | nodes
Current Node | /nodes/[Parent URL]/id | GET | node

Children | /children/[Parent URL]/id | GET | children

NOTE:
Parent URL can be seen as the path to identify the particular node.

i.e.
In order to identify the TABLE object, we need server -> database -> schema
information.

(continues on next page)

10.4. Code Snippets 261

http://flask.pocoo.org/docs/0.10/api/#flask.views.MethodView

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

"""
operations = dict({

'obj': [
{'get': 'properties', 'delete': 'delete', 'put': 'update'},
{'get': 'list', 'post': 'create'}

],
'nodes': [{'get': 'node'}, {'get': 'nodes'}],
'sql': [{'get': 'sql'}],
'msql': [{'get': 'modified_sql'}],
'stats': [{'get': 'statistics'}],
'dependency': [{'get': 'dependencies'}],
'dependent': [{'get': 'dependents'}],
'children': [{'get': 'children'}]

})

@classmethod
def generate_ops(cls):

cmds = []
for op in cls.operations:

idx = 0
for ops in cls.operations[op]:

meths = []
for meth in ops:

meths.append(meth.upper())
if len(meths) > 0:

cmds.append({
'cmd': op, 'req': (idx == 0),
'with_id': (idx != 2), 'methods': meths

})
idx += 1

return cmds

Inherited class needs to modify these parameters
node_type = None
This must be an array object with attributes (type and id)
parent_ids = []
This must be an array object with attributes (type and id)
ids = []

@classmethod
def get_node_urls(cls):

assert cls.node_type is not None, \
"Please set the node_type for this class ({0})".format(

str(cls.__class__.__name__))
common_url = '/'
for p in cls.parent_ids:

common_url += '<{0}:{1}>/'.format(str(p['type']), str(p['id']))

id_url = None
for p in cls.ids:

id_url = '{0}<{1}:{2}>'.format(
common_url if not id_url else id_url,
p['type'], p['id'])

return id_url, common_url

def __init__(self, **kwargs):
(continues on next page)

262 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

self.cmd = kwargs['cmd']

Check the existance of all the required arguments from parent_ids
and return combination of has parent arguments, and has id arguments
def check_args(self, **kwargs):

has_id = has_args = True
for p in self.parent_ids:

if p['id'] not in kwargs:
has_args = False
break

for p in self.ids:
if p['id'] not in kwargs:

has_id = False
break

return has_args, has_id and has_args

def dispatch_request(self, *args, **kwargs):
http_method = flask.request.method.lower()
if http_method == 'head':

http_method = 'get'

assert self.cmd in self.operations, \
'Unimplemented command ({0}) for {1}'.format(

self.cmd,
str(self.__class__.__name__)

)

has_args, has_id = self.check_args(**kwargs)

assert (
self.cmd in self.operations and
(has_id and len(self.operations[self.cmd]) > 0 and
http_method in self.operations[self.cmd][0]) or

(not has_id and len(self.operations[self.cmd]) > 1 and
http_method in self.operations[self.cmd][1]) or

(len(self.operations[self.cmd]) > 2 and
http_method in self.operations[self.cmd][2])

), \
'Unimplemented method ({0}) for command ({1}), which {2} ' \
'an id'.format(http_method,

self.cmd,
'requires' if has_id else 'does not require')

meth = None
if has_id:

meth = self.operations[self.cmd][0][http_method]
elif has_args and http_method in self.operations[self.cmd][1]:

meth = self.operations[self.cmd][1][http_method]
else:

meth = self.operations[self.cmd][2][http_method]

method = getattr(self, meth, None)

if method is None:
return make_json_response(

status=406,
(continues on next page)

10.4. Code Snippets 263

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

success=0,
errormsg=gettext(

'Unimplemented method ({0}) for this url ({1})'.format(
meth, flask.request.path)

)
)

return method(*args, **kwargs)

@classmethod
def register_node_view(cls, blueprint):

cls.blueprint = blueprint
id_url, url = cls.get_node_urls()

commands = cls.generate_ops()

for c in commands:
cmd = c['cmd'].replace('.', '-')
if c['with_id']:

blueprint.add_url_rule(
'/{0}{1}'.format(

c['cmd'], id_url if c['req'] else url
),
view_func=cls.as_view(

'{0}{1}'.format(
cmd, '_id' if c['req'] else ''

),
cmd=c['cmd']

),
methods=c['methods']

)
else:

blueprint.add_url_rule(
'/{0}'.format(c['cmd']),
view_func=cls.as_view(

cmd, cmd=c['cmd']
),
methods=c['methods']

)

def module_js(self, **kwargs):
"""
This property defines (if javascript) exists for this node.
Override this property for your own logic.
"""
return flask.make_response(

flask.render_template(
"{0}/js/{0}.js".format(self.node_type)

),
200, {'Content-Type': 'application/x-javascript'}

)

def children(self, *args, **kwargs):
"""Build a list of treeview nodes from the child nodes."""
children = []

for module in self.blueprint.submodules:
(continues on next page)

264 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

children.extend(module.get_nodes(*args, **kwargs))
Return sorted nodes based on label
return make_json_response(

data=sorted(
children, key=lambda c: c['label']

)
)

10.4.3 BaseDriver

class BaseDriver(object):
"""
class BaseDriver(object):

This is a base class for different server types.
Inherit this class to implement different type of database driver
implementation.

(For PostgreSQL, we will be using psycopg2)

Abstract Properties:
-------- ----------

* Version (string):
Current version string for the database server

* libpq_version (string):
Current version string for the used libpq library

Abstract Methods:
-------- -------

* get_connection(*args, **kwargs)
- It should return a Connection class object, which may/may not be

connected to the database server.

* release_connection(*args, **kwargs)
- Implement the connection release logic

* gc()
- Implement this function to release the connections assigned in the

session, which has not been pinged from more than the idle timeout
configuration.

"""

@abstractproperty
def Version(cls):

pass

@abstractproperty
def libpq_version(cls):

pass

@abstractmethod
def get_connection(self, *args, **kwargs):

pass

(continues on next page)

10.4. Code Snippets 265

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

@abstractmethod
def release_connection(self, *args, **kwargs):

pass

@abstractmethod
def gc(self):

pass

10.4.4 BaseConnection

class BaseConnection(object):
"""
class BaseConnection(object)

It is a base class for database connection. A different connection
drive must implement this to expose abstract methods for this server.

General idea is to create a wrapper around the actual driver
implementation. It will be instantiated by the driver factory
basically. And, they should not be instantiated directly.

Abstract Methods:
-------- -------

* connect(**kwargs)
- Define this method to connect the server using that particular driver

implementation.

* execute_scalar(query, params, formatted_exception_msg)
- Implement this method to execute the given query and returns single

datum result.

* execute_async(query, params, formatted_exception_msg)
- Implement this method to execute the given query asynchronously and
returns result.

* execute_void(query, params, formatted_exception_msg)
- Implement this method to execute the given query with no result.

* execute_2darray(query, params, formatted_exception_msg)
- Implement this method to execute the given query and returns the result

as a 2 dimensional array.

* execute_dict(query, params, formatted_exception_msg)
- Implement this method to execute the given query and returns the result

as an array of dict (column name -> value) format.

* def async_fetchmany_2darray(records=-1, formatted_exception_msg=False):
- Implement this method to retrieve result of asynchronous connection and

polling with no_result flag set to True.
This returns the result as a 2 dimensional array.
If records is -1 then fetchmany will behave as fetchall.

* connected()
- Implement this method to get the status of the connection. It should

(continues on next page)

266 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

return True for connected, otherwise False

* reset()
- Implement this method to reconnect the database server (if possible)

* transaction_status()
- Implement this method to get the transaction status for this

connection. Range of return values different for each driver type.

* ping()
- Implement this method to ping the server. There are times, a connection

has been lost, but - the connection driver does not know about it. This
can be helpful to figure out the actual reason for query failure.

* _release()
- Implement this method to release the connection object. This should not

be directly called using the connection object itself.

NOTE: Please use BaseDriver.release_connection(...) for releasing the
connection object for better memory management, and connection pool
management.

* _wait(conn)
- Implement this method to wait for asynchronous connection to finish the

execution, hence - it must be a blocking call.

* _wait_timeout(conn, time)
- Implement this method to wait for asynchronous connection with timeout.

This must be a non blocking call.

* poll(formatted_exception_msg, no_result)
- Implement this method to poll the data of query running on asynchronous

connection.

* cancel_transaction(conn_id, did=None)
- Implement this method to cancel the running transaction.

* messages()
- Implement this method to return the list of the messages/notices from

the database server.

* rows_affected()
- Implement this method to get the rows affected by the last command

executed on the server.
"""

ASYNC_OK = 1
ASYNC_READ_TIMEOUT = 2
ASYNC_WRITE_TIMEOUT = 3
ASYNC_NOT_CONNECTED = 4
ASYNC_EXECUTION_ABORTED = 5
ASYNC_TIMEOUT = 0.2
ASYNC_WAIT_TIMEOUT = 2
ASYNC_NOTICE_MAXLENGTH = 100000

@abstractmethod
def connect(self, **kwargs):

(continues on next page)

10.4. Code Snippets 267

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

pass

@abstractmethod
def execute_scalar(self, query, params=None,

formatted_exception_msg=False):
pass

@abstractmethod
def execute_async(self, query, params=None,

formatted_exception_msg=True):
pass

@abstractmethod
def execute_void(self, query, params=None,

formatted_exception_msg=False):
pass

@abstractmethod
def execute_2darray(self, query, params=None,

formatted_exception_msg=False):
pass

@abstractmethod
def execute_dict(self, query, params=None,

formatted_exception_msg=False):
pass

@abstractmethod
def async_fetchmany_2darray(self, records=-1,

formatted_exception_msg=False):
pass

@abstractmethod
def connected(self):

pass

@abstractmethod
def reset(self):

pass

@abstractmethod
def transaction_status(self):

pass

@abstractmethod
def ping(self):

pass

@abstractmethod
def _release(self):

pass

@abstractmethod
def _wait(self, conn):

pass

@abstractmethod
(continues on next page)

268 Chapter 10. pgAdmin Project Contributions

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

def _wait_timeout(self, conn, time):
pass

@abstractmethod
def poll(self, formatted_exception_msg=True, no_result=False):

pass

@abstractmethod
def status_message(self):

pass

@abstractmethod
def rows_affected(self):

pass

@abstractmethod
def cancel_transaction(self, conn_id, did=None):

pass

10.5 Code Review Notes

This document lists a number of standard items that will be checked during the review process for any patches sub-
mitted for inclusion in pgAdmin.

• Ensure all code follows the pgAdmin Coding Standards.

• Ensure all code has unit test coverage and API/feature test coverage where appropriate.

• Copyright years must be correct and properly formatted (to make it easy to make bulk updates every year). The
start date should always be 2013, and the end year the current year, e.g.

Copyright (C) 2013 - 2019, The pgAdmin Development Team

• Ensure there’s a blank line immediately following any copyright headers.

• Include PyDoc comments for functions, classes and modules. Node modules should be “””Implements the
XXXX node”””.

• Ensure that any generated SQL does not have any leading or trailing blank lines and consistently uses 4 space
indents for nice formatting.

• Don’t special-case any Slony objects. pgAdmin 4 will have no direct knowledge of Slony, unlike pgAdmin 3.

• If you copy/paste modules, please ensure any comments are properly updated.

• Read all comments, and ensure they make sense and provide useful commentary on the code.

• Ensure that field labels both use PostgreSQL parlance, but also are descriptive. A good example is the “Init”
field on an FTS Template - Init is the PG term, but adding the word “Function” after it makes it much more
descriptive.

• Re-use code whereever possible, but factor it out into a suitably central location - don’t copy and paste it unless
modifications are required!

• Format code nicely to make it readable. Break up logical chunks of code with blank lines, and comment well to
describe what different sections of code are for or pertain to.

• Ensure that form validation works correctly and is consistent with other dialogues in the way errors are dis-
played.

10.5. Code Review Notes 269

pgAdmin 4 Documentation, Release 4.3

• On dialogues with Schema or Owner fields, pre-set the default values to the current schema/user as appropriate.
In general, if there are common or sensible default values available, put them in the fields for the user.

• 1 patch == 1 feature. If you need to fix/update existing infrastructure in your patch, it’s usually easier if it’s in a
separate patch. Patches containing multiple new features or unrelated changes are likely to be rejected.

• Ensure the patch is fully functional, and works! If a patch is being sent as a work in progress, not intended for
commit, clearly state that it’s a WIP, and note what does or does not yet work.

10.6 Translations

pgAdmin supports multiple languages using the Flask-Babel Python module. A list of supported languages is included
in the web/config.py configuration file and must be updated whenever languages are added or removed with ISO 639-1
(two letter) language codes. The codes are named $LANG in this document.

10.6.1 Translation Marking

Strings can be marked for translation in either Python code (using gettext()) or Jinja templates (using _()). Here are
some examples that show how this is achieved.

Python:

errormsg = gettext('No server group name was specified')

Jinja:

<input type="submit" value="{{ _('Change Password') }}">

<title>{{ _('%(appname)s Password Change', appname=config.APP_NAME) }}</title>

define(['sources/gettext', ...], function(gettext, ...){
...
var alert = alertify.prompt(

gettext('Password Change'),
gettext('New password for %(userName)s', {userName: 'jsmith' }),
...

)
})

10.6.2 Updating and Merging

Whenever new strings are added to the application, the template catalogue (web/pgadmin/messages.pot) and the ex-
isting translation catalogues (web/pgadmin/translations/$LANG/LC_MESSAGES/messages.po) must be updated
and compiled. This can be achieved using the following commands from the web directory in the Python virtual
environment for pgAdmin:

(pgadmin4) user$ pybabel extract -F babel.cfg -o pgadmin/messages.pot pgadmin

Once the template has been updated it needs to be merged into the existing message catalogues:

(pgadmin4) user$ pybabel update -i pgadmin/messages.pot -d pgadmin/translations

Finally, the message catalogues can be compiled for use:

270 Chapter 10. pgAdmin Project Contributions

https://pythonhosted.org/Flask-Babel/
https://en.wikipedia.org/wiki/ISO_639-1

pgAdmin 4 Documentation, Release 4.3

(pgadmin4) user$ pybabel compile -d pgadmin/translations

10.6.3 Adding a New Language

Adding a new language is simple. First, add the language name and identifier to web/config.py:

Languages we support in the UI
LANGUAGES = {

'en': 'English',
'zh': 'Chinese (Simplified)',
'de': 'German',
'pl': 'Polish'

}

Then, create the new message catalogue from the web directory in the source tree in the Python virtual environment
for pgAdmin:

(pgadmin4) user$ pybabel init -i pgadmin/messages.pot -d pgadmin/translations -l $LANG

10.6. Translations 271

pgAdmin 4 Documentation, Release 4.3

272 Chapter 10. pgAdmin Project Contributions

CHAPTER

ELEVEN

PGAGENT

pgAgent is a job scheduling agent for Postgres databases, capable of running multi-step batch or shell scripts and SQL
tasks on complex schedules.

pgAgent is distributed independently of pgAdmin. You can download pgAgent from the download area of the pgAd-
min website.

Contents:

11.1 Using pgAgent

pgAgent is a scheduling agent that runs and manages jobs; each job consists of one or more steps and schedules. If
two or more jobs are scheduled to execute concurrently, pgAgent will execute the jobs in parallel (each with it’s own
thread).

A step may be a series of SQL statements or an operating system batch/shell script. Each step in a given job is
executed when the previous step completes, in alphanumeric order by name. Switches on the pgAgent Job dialog
(accessed through the Properties context menu) allow you to modify a job, enabling or disabling individual steps as
needed.

Each job is executed according to one or more schedules. Each time the job or any of its schedules are altered, the
next runtime of the job is re-calculated. Each instance of pgAgent periodically polls the database for jobs with the
next runtime value in the past. By polling at least once every minute, all jobs will normally start within one minute of
the specified start time. If no pgAgent instance is running at the next runtime of a job, it will run as soon as pgAgent
is next started, following which it will return to the normal schedule.

When you highlight the name of a defined job in the pgAdmin tree control, the Properties tab of the main pgAdmin
window will display details about the job, and the Statistics tab will display details about the job’s execution.

11.1.1 Security concerns

pgAgent is a very powerful tool, but does have some security considerations that you should be aware of:

Database password - DO NOT be tempted to include a password in the pgAgent connection string - on Unix systems
it may be visible to all users in ‘ps’ output, and on Windows systems it will be stored in the registry in plain text.
Instead, use a libpq ~/.pgpass file to store the passwords for every database that pgAgent must access. Details of this
technique may be found in the PostgreSQL documentation on .pgpass file.

System/database access - all jobs run by pgAgent will run with the security privileges of the pgAgent user. SQL steps
will run as the user that pgAgent connects to the database as, and batch/shell scripts will run as the operating system
user that the pgAgent service or daemon is running under. Because of this, it is essential to maintain control over the
users that are able to create and modify jobs. By default, only the user that created the pgAgent database objects will
be able to do this - this will normally be the PostgreSQL superuser.

273

http://www.pgadmin.org/download
http://www.postgresql.org/docs/current/static/libpq-pgpass.html

pgAdmin 4 Documentation, Release 4.3

11.2 Installing pgAgent

pgAgent runs as a daemon on Unix systems, and a service on Windows systems. In most cases it will run on the
database server itself - for this reason, pgAgent is not automatically configured when pgAdmin is installed. In some
cases however, it may be preferable to run pgAgent on multiple systems, against the same database; individual jobs
may be targeted at a particular host, or left for execution by any host. Locking prevents execution of the same instance
of a job by multiple hosts.

11.2.1 Database setup

Before using pgAdmin to manage pgAgent, you must create the pgAgent extension in the maintenance database
registered with pgAdmin. To install pgAgent on a PostgreSQL host, connect to the postgres database, and navigate
through the Tools menu to open the Query tool. For server versions 9.1 or later, and pgAgent 3.4.0 or later, enter the
following command in the query window, and click the Execute icon:

CREATE EXTENSION pgagent;

This command will create a number of tables and other objects in a schema called ‘pgagent’.

The database must also have the pl/pgsql procedural language installed - use the PostgreSQL CREATE LANGUAGE
command to install pl/pgsql if necessary. To install pl/pgsql, enter the following command in the query window, and
click the Execute icon:

CREATE LANGUAGE plpgsql;

If you are using an earlier version of PostgreSQL or pgAgent, use the Open file icon on the Query Tool toolbar to
open a browser window and locate the pgagent.sql script. The installation script is installed by pgAdmin, and the
installation location varies from operating system to operating system:

• On Windows, it is usually located under C:\Program files\pgAdmin III (or C:\Program
files\PostgreSQL\8.x\pgAdmin III if installed with the PostgreSQL server installer).

• On Linux, it is usually located under /usr/local/pgadmin3/share/pgadmin3 or /usr/share/pgadmin3.

After loading the file into the Query Tool, click the Execute icon to execute the script. The script will create a number
of tables and other objects in a schema named pgagent.

11.2.2 Daemon installation on Unix

Note: pgAgent is available in Debian/Ubuntu (DEB) and Redhat/Fedora (RPM) packages for Linux users, as well as
source code. See the pgAdmin Website. for more information.

To install the pgAgent daemon on a Unix system, you will normally need to have root privileges to modify the
system startup scripts. Modifying system startup scripts is quite system-specific so you should consult your system
documentation for further information.

The program itself takes few command line options, most of which are only needed for debugging or specialised
configurations:

Usage:
/path/to/pgagent [options] <connect-string>

options:

(continues on next page)

274 Chapter 11. pgAgent

https://www.pgadmin.org/download/

pgAdmin 4 Documentation, Release 4.3

(continued from previous page)

-f run in the foreground (do not detach from the terminal)
-t <poll time interval in seconds (default 10)>
-r <retry period after connection abort in seconds (>=10, default 30)>
-s <log file (messages are logged to STDOUT if not specified)>
-l <logging verbosity (ERROR=0, WARNING=1, DEBUG=2, default 0)>

The connection string is a standard PostgreSQL libpq connection string (see the PostgreSQL documentation on the
connection string for further details). For example, the following command line will run pgAgent against a server
listening on the localhost, using a database called ‘pgadmin’, connecting as the user ‘postgres’:

/path/to/pgagent hostaddr=127.0.0.1 dbname=postgres user=postgres

11.2.3 Service installation on Windows

pgAgent can install itself as a service on Windows systems. The command line options available are similar to those
on Unix systems, but include an additional parameter to tell the service what to do:

Usage:
pgAgent REMOVE <serviceName>
pgAgent INSTALL <serviceName> [options] <connect-string>
pgAgent DEBUG [options] <connect-string>

options:
-u <user or DOMAIN\user>
-p <password>
-d <displayname>
-t <poll time interval in seconds (default 10)>
-r <retry period after connection abort in seconds (>=10, default 30)>
-l <logging verbosity (ERROR=0, WARNING=1, DEBUG=2, default 0)>

The service may be quite simply installed from the command line as follows (adjust the path as required):

"C:\Program Files\pgAgent\bin\pgAgent" INSTALL pgAgent -u postgres -p secret
↪→hostaddr=127.0.0.1 dbname=postgres user=postgres

You can then start the service at the command line using net start pgAgent, or from the Services control panel applet.
Any logging output or errors will be reported in the Application event log. The DEBUG mode may be used to run
pgAgent from a command prompt. When run this way, log messages will output to the command window.

11.3 Creating a pgAgent Job

pgAgent is a scheduling agent that runs and manages jobs; each job consists of steps and schedules.

To create or manage a job, use the pgAdmin tree control to browse to the server on which the pgAgent database objects
were created. The tree control will display a pgAgent Jobs node, under which currently defined jobs are displayed. To
add a new job, right click on the pgAgent Jobs node, and select Create pgAgent Job. . . from the context menu.

When the pgAgent dialog opens, use the tabs on the pgAgent Job dialog to define the steps and schedule that make up
a pgAgent job.

11.3. Creating a pgAgent Job 275

http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect
http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect

pgAdmin 4 Documentation, Release 4.3

Use the fields on the General tab to provide general information about a job:

• Provide a name for the job in the Name field.

• Move the Enabled switch to the Yes position to enable a job, or No to disable a job.

• Use the Job Class drop-down to select a class (for job categorization).

• Use the Host Agent field to specify the name of a machine that is running pgAgent to indicate that only that
machine may execute the job. Leave the field blank to specify that any machine may perform the job.

Note: It is not always obvious what value to specify for the Host Agent in order to target a job step to a specific
machine. With pgAgent running on the required machines and connected to the scheduler database, you can use
the following query to view the hostnames as reported by each agent:

SELECT jagstation FROM pgagent.pga_jobagent

Use the hostname exactly as reported by the query in the Host Agent field.

• Use the Comment field to store notes about the job.

276 Chapter 11. pgAgent

pgAdmin 4 Documentation, Release 4.3

Use the Steps tab to define and manage the steps that the job will perform. Click the Add icon (+) to add a new step;
then click the compose icon (located at the left side of the header) to open the step definition dialog:

11.3. Creating a pgAgent Job 277

pgAdmin 4 Documentation, Release 4.3

Use fields on the step definition dialog to define the step:

• Provide a name for the step in the Name field; please note that steps will be performed in alphanu-
meric order by name.

• Use the Enabled switch to include the step when executing the job (True) or to disable the step
(False).

• Use the Kind switch to indicate if the job step invokes SQL code (SQL) or a batch script (Batch).

• If you select SQL, use the Code tab to provide SQL code for the step.

• If you select Batch, use the Code tab to provide the batch script that will be executed during the step.

• Use the Connection type switch to indicate if the step is performed on a local server (Local) or
on a remote host (Remote). If you specify a remote connection should be used for the step, the
Connection string field will be enabled, and you must provide a libpq-style connection string.

• Use the Database drop-down to select the database on which the job step will be performed.

• Use the Connection string field to specify a libpq-style connection string to the remote server on
which the step will be performed. For more information about writing a connection string, please
see the PostgreSQL documentation.

• Use the On error drop-down to specify the behavior of pgAgent if it encounters an error while
executing the step. Select from:

• Fail - Stop the job if you encounter an error while processing this step.

• Success - Mark the step as completing successfully, and continue.

• Ignore - Ignore the error, and continue.

• Use the Comment field to provide a comment about the step.

278 Chapter 11. pgAgent

http://www.postgresql.org/docs/current/static/libpq.html#libpq-connect

pgAdmin 4 Documentation, Release 4.3

Use the context-sensitive field on the step definition dialog’s Code tab to provide the SQL code or batch script that
will be executed during the step:

• If the step invokes SQL code, provide one or more SQL statements in the SQL query field.

• If the step performs a batch script, provide the script in the Script field. If you are running on a Windows server,
standard batch file syntax must be used. When running on a Linux server, any shell script may be used, provided
that a suitable interpreter is specified on the first line (e.g. #!/bin/sh).

When you’ve provided all of the information required by the step, click the compose icon to close the step definition
dialog. Click the add icon (+) to add each additional step, or select the Schedules tab to define the job schedule.

11.3. Creating a pgAgent Job 279

pgAdmin 4 Documentation, Release 4.3

Click the Add icon (+) to add a schedule for the job; then click the compose icon (located at the left side of the header)
to open the schedule definition dialog:

280 Chapter 11. pgAgent

pgAdmin 4 Documentation, Release 4.3

Use the fields on the schedule definition tab to specify the days and times at which the job will execute.

• Provide a name for the schedule in the Name field.

• Use the Enabled switch to indicate that pgAgent should use the schedule (Yes) or to disable the schedule (No).

• Use the calendar selector in the Start field to specify the starting date and time for the schedule.

• Use the calendar selector in the End field to specify the ending date and time for the schedule.

• Use the Comment field to provide a comment about the schedule.

Select the Repeat tab to define the days on which the schedule will execute.

11.3. Creating a pgAgent Job 281

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Repeat tab to specify the details about the schedule in a cron-style format. The job will execute
on each date or time element selected on the Repeat tab.

Click within a field to open a list of valid values for that field; click on a specific value to add that value to the list of
selected values for the field. To clear the values from a field, click the X located at the right-side of the field.

Use the fields within the Days box to specify the days on which the job will execute:

• Use the Week Days field to select the days on which the job will execute.

• Use the Month Days field to select the numeric days on which the job will execute. Specify the Last Day to
indicate that the job should be performed on the last day of the month, irregardless of the date.

• Use the Months field to select the months in which the job will execute.

Use the fields within the Times box to specify the times at which the job will execute:

• Use the Hours field to select the hour at which the job will execute.

• Use the Minutes field to select the minute at which the job will execute.

Select the Exceptions tab to specify any days on which the schedule will not execute.

282 Chapter 11. pgAgent

pgAdmin 4 Documentation, Release 4.3

Use the fields on the Exceptions tab to specify days on which you wish the job to not execute; for example, you may
wish for jobs to not execute on national holidays.

Click the Add icon (+) to add a row to the exception table, then:

• Click within the Date column to open a calendar selector, and select a date on which the job will not execute.
Specify <Any> in the Date column to indicate that the job should not execute on any day at the time selected.

• Click within the Time column to open a time selector, and specify a time on which the job will not execute.
Specify <Any> in the Time column to indicate that the job should not execute at any time on the day selected.

When you’ve finished defining the schedule, you can use the SQL tab to review the code that will create or modify
your job.

11.3. Creating a pgAgent Job 283

pgAdmin 4 Documentation, Release 4.3

Click the Save button to save the job definition, or Cancel to exit the job without saving. Use the Reset button to
remove your unsaved entries from the dialog.

After saving a job, the job will be listed under the pgAgent Jobs node of the pgAdmin tree control of the server on
which it was defined. The Properties tab in the main pgAdmin window will display a high-level overview of the
selected job, and the Statistics tab will show the details of each run of the job.

284 Chapter 11. pgAgent

pgAdmin 4 Documentation, Release 4.3

To modify an existing job or to review detailed information about a job, right-click on a job name, and select Properties
from the context menu.

11.3. Creating a pgAgent Job 285

pgAdmin 4 Documentation, Release 4.3

286 Chapter 11. pgAgent

CHAPTER

TWELVE

LICENCE

pgAdmin is released under the PostgreSQL Licence, which is a liberal Open Source licence similar to BSD or MIT,
and approved by the Open Source Initiative. The copyright for the project source code, website and documentation is
attributed to the pgAdmin Development Team.

287

http://www.postgresql.org/about/licence
https://www.pgadmin.org/development/team.php

pgAdmin 4 Documentation, Release 4.3

288 Chapter 12. Licence

CHAPTER

THIRTEEN

RELEASE NOTES

pgAdmin release notes provide information on the features and improvements in each release. This page includes
release notes for major releases and minor (bugfix) releases. Select your version from the list below to see the release
notes for it.

13.1 Version 4.3

Release date: 2019-03-07

This release contains a number of new features and fixes reported since the release of pgAdmin4 4.2

13.1.1 Features

Feature #1825 - Install a script to start pgAdmin (pgadmin4) from the command line when installed from the Python
wheel.
Feature #2233 - Add a “scratch pad” to the Query Tool to hold text snippets whilst editing.
Feature #2418 - Add Commit and Rollback buttons to the Query Tool.
Feature #3439 - Allow X-FRAME-OPTIONS to be set for security. Default to SAMEORIGIN.
Feature #3559 - Automatically expand child nodes as well as the selected node on the treeview if there is only one.
Feature #3886 - Include multiple versions of the PG utilties in containers.
Feature #3991 - Update Alpine Linux version in the docker container.
Feature #4034 - Support double-click on Query Tool result grid column resize handles to auto-size to the content.

13.1.2 Bug fixes

Bug #3096 - Ensure size stats are prettified on the statistics tab when the UI language is not English.
Bug #3352 - Handle display of roles with expiration set to infinity correctly.
Bug #3418 - Allow editing of values in columns with the oid datatype which are not an actual row OID.
Bug #3544 - Make the Query Tool tab titles more concise and useful.
Bug #3587 - Fix support for bigint’s in JSONB data.
Bug #3583 - Update CodeMirror to 5.43.0 to resolve issues with auto-indent.
Bug #3600 - Ensure JSON data isn’t modified in-flight by psycopg2 when using View/Edit data.
Bug #3673 - Modify the Download as CSV option to use the same connection as the Query Tool its running in so
temporary tables etc. can be used.
Bug #3873 - Fix context sub-menu alignment on Safari.
Bug #3890 - Update documentation screenshots as per new design.

289

https://redmine.postgresql.org/issues/1825
https://redmine.postgresql.org/issues/2233
https://redmine.postgresql.org/issues/2418
https://redmine.postgresql.org/issues/3439
https://redmine.postgresql.org/issues/3559
https://redmine.postgresql.org/issues/3886
https://redmine.postgresql.org/issues/3991
https://redmine.postgresql.org/issues/4034
https://redmine.postgresql.org/issues/3096
https://redmine.postgresql.org/issues/3352
https://redmine.postgresql.org/issues/3418
https://redmine.postgresql.org/issues/3544
https://redmine.postgresql.org/issues/3587
https://redmine.postgresql.org/issues/3583
https://redmine.postgresql.org/issues/3600
https://redmine.postgresql.org/issues/3673
https://redmine.postgresql.org/issues/3873
https://redmine.postgresql.org/issues/3890

pgAdmin 4 Documentation, Release 4.3

Bug #3906 - Fix alignment of Close and Maximize button of Grant Wizard.
Bug #3911 - Add full support and testsfor all PG server side encodings.
Bug #3912 - Fix editing of table data with a JSON primary key.
Bug #3933 - Ignore exceptions in the logger.
Bug #3942 - Close connections gracefully when the user logs out of pgAdmin.
Bug #3946 - Fix alignment of checkbox to drop multiple schedules of pgAgent job.
Bug #3958 - Don’t exclude SELECT statements from transaction management in the Query Tool in case they call
data-modifying functions.
Bug #3959 - Optimise display of Dependencies and Dependents, and use on-demand loading of rows in batches of
100.
Bug #3963 - Fix alignment of import/export toggle switch.
Bug #3970 - Prevent an error when closing the Sort/Filter dialogue with an empty filter string.
Bug #3974 - Fix alignment of Connection type toggle switch of pgagent.
Bug #3981 - Fix the query to set bytea_output so that read-only standbys don’t consider it a write query.
Bug #3982 - Add full support and testsfor all PG server side encodings.
Bug #3985 - Don’t embed docs and external sites in iframes, to allow the external sites to set X-FRAME-OPTIONS
= DENY for security.
Bug #3992 - Add full support and testsfor all PG server side encodings.
Bug #3998 - Custom-encode forward slashes in URL parameters as Apache HTTPD doesn’t allow them in some
cases.
Bug #4000 - Update CodeMirror to 5.43.0 to resolve issues with tab indent with use spaces enabled.
Bug #4013 - Ensure long queries don’t cause errors when downloading CSV in the Query Tool.
Bug #4021 - Disable the editor and execute functions whilst queries are executing.
Bug #4022 - Fix an issue where importing servers fails if a group already exists for a different user.

13.2 Version 4.2

Release date: 2019-02-07

This release contains a number of fixes reported since the release of pgAdmin4 4.1

13.2.1 Bug fixes

Bug #3051 - Replace Bootstrap switch with Bootstrap4 toggle to improve the performance.
Bug #3272 - Replace the PyCrypto module with the cryptography module.
Bug #3453 - Fixed SQL for foreign table options.
Bug #3475 - Fixed execution time to show Hours part for long running queries in Query Tool.
Bug #3608 - Messages tab of query tool should be clear on subsequent execution of table/view using View/Edit Data.
Bug #3609 - Clear drop-down menu should be disabled for View/Edit Data.
Bug #3664 - Fixed Statistics panel hang issue for 1000+ tables.
Bug #3693 - Proper error should be thrown when server group is created with existing name.
Bug #3695 - Ensure long string should be wrap in alertify dialogs.
Bug #3697 - Ensure that output of the query should be displayed even if Data Output window is detached from the
Query Tool.
Bug #3774 - Proper SQL should be generated when create function with return type as custom type argument.
Bug #3800 - Ensure that database restriction of server dialog should work with special characters.
Bug #3811 - Ensure that Backup/Restore button should work on single click.

290 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/3906
https://redmine.postgresql.org/issues/3911
https://redmine.postgresql.org/issues/3912
https://redmine.postgresql.org/issues/3933
https://redmine.postgresql.org/issues/3942
https://redmine.postgresql.org/issues/3946
https://redmine.postgresql.org/issues/3958
https://redmine.postgresql.org/issues/3959
https://redmine.postgresql.org/issues/3963
https://redmine.postgresql.org/issues/3970
https://redmine.postgresql.org/issues/3974
https://redmine.postgresql.org/issues/3981
https://redmine.postgresql.org/issues/3982
https://redmine.postgresql.org/issues/3985
https://redmine.postgresql.org/issues/3992
https://redmine.postgresql.org/issues/3998
https://redmine.postgresql.org/issues/4000
https://redmine.postgresql.org/issues/4013
https://redmine.postgresql.org/issues/4021
https://redmine.postgresql.org/issues/4022
https://redmine.postgresql.org/issues/3051
https://redmine.postgresql.org/issues/3272
https://redmine.postgresql.org/issues/3453
https://redmine.postgresql.org/issues/3475
https://redmine.postgresql.org/issues/3608
https://redmine.postgresql.org/issues/3609
https://redmine.postgresql.org/issues/3664
https://redmine.postgresql.org/issues/3693
https://redmine.postgresql.org/issues/3695
https://redmine.postgresql.org/issues/3697
https://redmine.postgresql.org/issues/3774
https://redmine.postgresql.org/issues/3800
https://redmine.postgresql.org/issues/3811

pgAdmin 4 Documentation, Release 4.3

Bug #3837 - Fixed SQL for when clause while creating Trigger.
Bug #3838 - Proper SQL should be generated when creating/changing column with custom type argument.
Bug #3840 - Ensure that file format combo box value should be retained when hidden files checkbox is toggled.
Bug #3846 - Proper SQL should be generated when create procedure with custom type arguments.
Bug #3849 - Ensure that browser should warn before close or refresh.
Bug #3850 - Fixed EXEC script for procedures.
Bug #3853 - Proper SQL should be generated when create domain of type interval with precision.
Bug #3858 - Drop-down should be closed when click on any other toolbar button.
Bug #3862 - Fixed keyboard navigation for dialog tabs.
Bug #3865 - Increase frames splitter mouse hover area to make it easier to resize.
Bug #3871 - Fixed alignment of tree arrow icons for Internet Explorer.
Bug #3872 - Ensure object names in external process dialogues are properly escaped.
Bug #3891 - Correct order of Save and Cancel button for json/jsonb editing.
Bug #3897 - Data should be updated properly for FTS Configurations, FTS Dictionaries, FTS Parsers and FTS
Templates.
Bug #3899 - Fixed unable to drop multiple Rules and Foreign Tables from properties tab.
Bug #3903 - Fixed Query Tool Initialization Error.
Bug #3908 - Fixed keyboard navigation for Select2 and Privilege cell in Backgrid.
Bug #3916 - Correct schema should be displayed in Materialized View dialog.
Bug #3929 - Fix alignment of help messages in properties panels.
Bug #3932 - Fix alignment of submenu for Internet Explorer.
Bug #3941 - Dashboard graph optimization.
Bug #3954 - Remove Python 2.6 code that’s now obsolete.
Bug #3955 - Expose the bind address in the Docker container via PGADMIN_BIND_ADDRESS.
Bug #3961 - Exclude HTTPExceptions from the all_exception_handler as they should be returned as-is.

13.3 Version 4.1

Release date: 2019-01-15

This release contains a number of fixes reported since the release of pgAdmin4 4.0

13.3.1 Bug fixes

Bug #3505 - Fix SQL generated for tables with inherited columns.
Bug #3575 - Ensure the context menu works after a server is renamed.
Bug #3836 - Fix ordering of VACUUM options which changed in PG11.
Bug #3842 - Don’t show system catalogs in the schemas property list unless show system objects is enabled.
Bug #3861 - Fix help for the backup/restore dialogues.
Bug #3866 - Ensure that last row of table data should be visible and user will be able to add new row.
Bug #3877 - Make the browser more robust in the face of multibyte characters in SQL_ASCII databases.

13.4 Version 4.0

Release date: 2019-01-10

13.3. Version 4.1 291

https://redmine.postgresql.org/issues/3837
https://redmine.postgresql.org/issues/3838
https://redmine.postgresql.org/issues/3840
https://redmine.postgresql.org/issues/3846
https://redmine.postgresql.org/issues/3849
https://redmine.postgresql.org/issues/3850
https://redmine.postgresql.org/issues/3853
https://redmine.postgresql.org/issues/3858
https://redmine.postgresql.org/issues/3862
https://redmine.postgresql.org/issues/3865
https://redmine.postgresql.org/issues/3871
https://redmine.postgresql.org/issues/3872
https://redmine.postgresql.org/issues/3891
https://redmine.postgresql.org/issues/3897
https://redmine.postgresql.org/issues/3899
https://redmine.postgresql.org/issues/3903
https://redmine.postgresql.org/issues/3908
https://redmine.postgresql.org/issues/3916
https://redmine.postgresql.org/issues/3929
https://redmine.postgresql.org/issues/3932
https://redmine.postgresql.org/issues/3941
https://redmine.postgresql.org/issues/3954
https://redmine.postgresql.org/issues/3955
https://redmine.postgresql.org/issues/3961
https://redmine.postgresql.org/issues/3505
https://redmine.postgresql.org/issues/3575
https://redmine.postgresql.org/issues/3836
https://redmine.postgresql.org/issues/3842
https://redmine.postgresql.org/issues/3861
https://redmine.postgresql.org/issues/3866
https://redmine.postgresql.org/issues/3877

pgAdmin 4 Documentation, Release 4.3

This release contains a number of features and fixes reported since the release of pgAdmin4 3.6

13.4.1 Features

Feature #3589 - Allow query plans to be downloaded as an SVG file.
Feature #3692 - New UI design.
Feature #3801 - Allow servers to be pre-loaded into container deployments.

13.4.2 Bug fixes

Bug #3083 - Increase the size of the resize handle of the edit grid text pop-out.
Bug #3354 - Fix handling of array types as inputs to the debugger.
Bug #3433 - Fix an issue that could cause the Query Tool to fail to render.
Bug #3559 - Further improvements to treeview restoration.
Bug #3599 - Run Postfix in the container build so passwords can be reset etc.
Bug #3619 - Add titles to the code areas of the Query Tool and Debugger to ensure that panels can be re-docked
within them.
Bug #3679 - Fix a webpack issue that could cause the Query Tool to fail to render.
Bug #3702 - Ensure we display the relation name (and not the OID) in the locks table wherever possible.
Bug #3711 - Fix an encoding issue in the query tool.
Bug #3726 - Include the WHERE clause on EXCLUDE constraints in RE-SQL.
Bug #3753 - Fix an issue when user define Cast from smallint->text is created.
Bug #3757 - Hide Radio buttons that should not be shown on the maintenance dialogue.
Bug #3780 - Ensure that null values handled properly in CSV download.
Bug #3796 - Tweak the wording on the Grant Wizard.
Bug #3797 - Prevent attempts to bulk-drop schema objects.
Bug #3798 - Ensure the browser toolbar buttons work in languages other than English.
Bug #3805 - Allow horizontal sizing of the edit grid text pop-out.
Bug #3809 - Ensure auto complete should works when first identifier in the FROM clause needs quoting.
Bug #3810 - Ensure auto complete should works for columns from a schema-qualified table.
Bug #3821 - Ensure identifiers are properly displayed in the plan viewer.
Bug #3830 - Make the setup process more robust against aborted executions.
Bug #3856 - Fixed an issue while creating export job.

13.5 Version 3.6

Release date: 2018-11-29

This release contains a number of features and fixes reported since the release of pgAdmin4 3.5

13.5.1 Features

Feature #1513 - Add support for dropping multiple objects at once from the collection Properties panel.
Feature #3772 - Add the ability to import and export server definitions from a config database.

292 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/3589
https://redmine.postgresql.org/issues/3692
https://redmine.postgresql.org/issues/3801
https://redmine.postgresql.org/issues/3083
https://redmine.postgresql.org/issues/3354
https://redmine.postgresql.org/issues/3433
https://redmine.postgresql.org/issues/3559
https://redmine.postgresql.org/issues/3599
https://redmine.postgresql.org/issues/3619
https://redmine.postgresql.org/issues/3679
https://redmine.postgresql.org/issues/3702
https://redmine.postgresql.org/issues/3711
https://redmine.postgresql.org/issues/3726
https://redmine.postgresql.org/issues/3753
https://redmine.postgresql.org/issues/3757
https://redmine.postgresql.org/issues/3780
https://redmine.postgresql.org/issues/3796
https://redmine.postgresql.org/issues/3797
https://redmine.postgresql.org/issues/3798
https://redmine.postgresql.org/issues/3805
https://redmine.postgresql.org/issues/3809
https://redmine.postgresql.org/issues/3810
https://redmine.postgresql.org/issues/3821
https://redmine.postgresql.org/issues/3830
https://redmine.postgresql.org/issues/3856
https://redmine.postgresql.org/issues/1513
https://redmine.postgresql.org/issues/3772

pgAdmin 4 Documentation, Release 4.3

13.5.2 Bug fixes

Bug #3016 - Ensure previous notices are not removed from the Messages tab in the Query Tool if an error occurs
during query execution.
Bug #3029 - Allow the selection order to be preserved in the Select2 control to fix column ordering in data
Import/Export.
Bug #3629 - Allow use of 0 (integer) and empty strings as parameters in the debugger.
Bug #3723 - Properly report errors when debugging cannot be started.
Bug #3734 - Prevent the debugger controls being pressed again before previous processing is complete.
Bug #3736 - Fix toggle breakpoints buttons in the debugger.
Bug #3742 - Fix changes to the NOT NULL and default value options in the Table Dialogue.
Bug #3746 - Fix dropping of multiple functions/procedures at once.

13.6 Version 3.5

Release date: 2018-11-01

This release contains a number of features and fixes reported since the release of pgAdmin4 3.4

13.6.1 Features

Feature #1253 - Save the treeview state periodically, and restore it automatically when reconnecting.
Feature #3562 - Migrate from Bootstrap 3 to Bootstrap 4.

13.6.2 Bug fixes

Bug #3232 - Ensure that Utilities(Backup/Restore/Maintenence/Import-Export) should not be started if binary path is
wrong and also added ‘Stop Process’ button to cancel the process.
Bug #3638 - Fix syntax error when creating new pgAgent schedules with a start date/time and exception.
Bug #3674 - Cleanup session files periodically.
Bug #3660 - Rename the ‘SQL Editor’ section of the Preferences to ‘Query Tool’ as it applies to the whole tool, not
just the editor.
Bug #3700 - Fix connection garbage collector.
Bug #3703 - Purge connections from the cache on logout.
Bug #3722 - Ensure that utility existence check should work for schema and other child objects while taking
Backup/Restore.
Bug #3730 - Fixed fatal error while launching the pgAdmin4 3.5. Update the version of the Flask to 0.12.4 for
release.

13.7 Version 3.4

Release date: 2018-10-04

This release contains a number of features and fixes reported since the release of pgAdmin4 3.3

13.6. Version 3.5 293

https://redmine.postgresql.org/issues/3016
https://redmine.postgresql.org/issues/3029
https://redmine.postgresql.org/issues/3629
https://redmine.postgresql.org/issues/3723
https://redmine.postgresql.org/issues/3734
https://redmine.postgresql.org/issues/3736
https://redmine.postgresql.org/issues/3742
https://redmine.postgresql.org/issues/3746
https://redmine.postgresql.org/issues/1253
https://redmine.postgresql.org/issues/3562
https://redmine.postgresql.org/issues/3232
https://redmine.postgresql.org/issues/3638
https://redmine.postgresql.org/issues/3674
https://redmine.postgresql.org/issues/3660
https://redmine.postgresql.org/issues/3700
https://redmine.postgresql.org/issues/3703
https://redmine.postgresql.org/issues/3722
https://redmine.postgresql.org/issues/3730

pgAdmin 4 Documentation, Release 4.3

13.7.1 Features

Feature #2927 - Move all CSS into SCSS files for consistency and ease of colour maintenance etc.
Feature #3514 - Add optional data point markers and mouse-over tooltips to display values on graphs.
Feature #3564 - Add shortcuts for View Data and the Query tool to the Browser header bar.

13.7.2 Bug fixes

Bug #3464 - Ensure the runtime can startup properly if there are wide characters in the logfile path on Windows.
Bug #3551 - Fix handling of backslashes in the edit grid.
Bug #3576 - Ensure queries are no longer executed when dashboards are closed.
Bug #3607 - Fix logic around validation and highlighting of Sort/Filter in the Query Tool.
Bug #3630 - Ensure auto-complete works for objects in schemas other than public and pg_catalog.
Bug #3657 - Ensure changes to Query Tool settings from the Preferences dialogue are applied before executing
queries.
Bug #3658 - Swap the Schema and Schemas icons and Catalog and Catalogs icons that had been used the wrong way
around.

13.8 Version 3.3

Release date: 2018-09-06

This release contains a number of features and fixes reported since the release of pgAdmin4 3.2

13.8.1 Features

Feature #1407 - Add a geometry viewer that can render PostGIS data on a blank canvas or various map sources.
Feature #3503 - Added new backup/restore options for PostgreSQL 11. Added dump options for ‘pg_dumpall’.
Feature #3553 - Add a Spanish translation.

13.8.2 Bug fixes

Bug #3136 - Stabilise feature tests for continuous running on CI systems.
Bug #3191 - Fixed debugger execution issues.
Bug #3313 - Ensure ‘select all’ and ‘unselect all’ working properly for pgAgent schedule.
Bug #3325 - Fix sort/filter dialog issue where it incorrectly requires ASC/DESC.
Bug #3347 - Ensure backup should work with ‘–data-only’ and ‘–schema-only’ for any format.
Bug #3407 - Fix keyboard shortcuts layout in the preferences panel.
Bug #3420 - Merge pgcli code with version 1.10.3, which is used for auto complete feature.
Bug #3461 - Ensure that refreshing a node also updates the Property list.
Bug #3525 - Ensure that refresh button on dashboard should refresh the table.
Bug #3528 - Handle connection errors properly in the query tool.
Bug #3547 - Make session implementation thread safe
Bug #3554 - Fix auto scrolling issue in debugger on step in and step out.
Bug #3558 - Fix sort/filter dialog editing issue.
Bug #3561 - Ensure sort/filter dialog should display proper message after losing database connection.

294 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/2927
https://redmine.postgresql.org/issues/3514
https://redmine.postgresql.org/issues/3564
https://redmine.postgresql.org/issues/3464
https://redmine.postgresql.org/issues/3551
https://redmine.postgresql.org/issues/3576
https://redmine.postgresql.org/issues/3607
https://redmine.postgresql.org/issues/3630
https://redmine.postgresql.org/issues/3657
https://redmine.postgresql.org/issues/3658
https://redmine.postgresql.org/issues/1407
https://redmine.postgresql.org/issues/3503
https://redmine.postgresql.org/issues/3553
https://redmine.postgresql.org/issues/3136
https://redmine.postgresql.org/issues/3191
https://redmine.postgresql.org/issues/3313
https://redmine.postgresql.org/issues/3325
https://redmine.postgresql.org/issues/3347
https://redmine.postgresql.org/issues/3407
https://redmine.postgresql.org/issues/3420
https://redmine.postgresql.org/issues/3461
https://redmine.postgresql.org/issues/3525
https://redmine.postgresql.org/issues/3528
https://redmine.postgresql.org/issues/3547
https://redmine.postgresql.org/issues/3554
https://redmine.postgresql.org/issues/3558
https://redmine.postgresql.org/issues/3561

pgAdmin 4 Documentation, Release 4.3

Bug #3579 - When building the Windows installer, copy system Python packages before installing dependencies to
ensure we don’t end up with older versions than intended.
Bug #3604 - Correct the documentation of View/Edit data.

13.9 Version 3.2

Release date: 2018-08-09

This release contains a number of features and fixes reported since the release of pgAdmin4 3.1

13.9.1 Features

Feature #2136 - Added version number for URL’s to ensure that files are only cached on a per-version basis.
Feature #2214 - Add support for SCRAM password changes (requires psycopg2 >= 2.8).
Feature #3074 - Add support for reset saved password.
Feature #3397 - Add support for Trigger and JIT stats in the graphical query plan viewer.
Feature #3412 - Add support for primary key, foreign key, unique key, indexes and triggers on partitioned tables for
PG 11.
Feature #3506 - Allow the user to specify a fixed port number in the runtime to aid cookie whitelisting etc.
Feature #3510 - Add a menu option to the runtime to copy the appserver URL to the clipboard.

13.9.2 Bug fixes

Bug #3185 - Fix the upgrade check on macOS.
Bug #3191 - Fix a number of debugger execution issues.
Bug #3294 - Infrastructure (and changes to the Query Tool, Dashboards and Debugger) for realtime preference
handling.
Bug #3309 - Fix Directory format support for backups.
Bug #3316 - Support running on systems without a system tray.
Bug #3319 - Cleanup and fix handling of Query Tool Cancel button status.
Bug #3363 - Fix restoring of restore options for sections.
Bug #3371 - Don’t create a session when the /misc/ping test endpoint is called.
Bug #3446 - Various procedure/function related fixes for PG 11.
Bug #3448 - Exclude system columns in Import/Export.
Bug #3458 - pgAdmin4 should work with python 3.7.
Bug #3468 - Support SSH tunneling with keys that don’t have a passphrase.
Bug #3471 - Ensure the SSH tunnel port number is honoured.
Bug #3511 - Add support to save and clear SSH Tunnel password.
Bug #3526 - COST statement should not be automatically duplicated after creating trigger function.
Bug #3527 - View Data->Filtered Rows dialog should be displayed.

13.10 Version 3.1

Release date: 2018-06-28

This release contains a number of features and fixes reported since the release of pgAdmin4 3.0

13.9. Version 3.2 295

https://redmine.postgresql.org/issues/3579
https://redmine.postgresql.org/issues/3604
https://redmine.postgresql.org/issues/2136
https://redmine.postgresql.org/issues/2214
https://redmine.postgresql.org/issues/3074
https://redmine.postgresql.org/issues/3397
https://redmine.postgresql.org/issues/3412
https://redmine.postgresql.org/issues/3506
https://redmine.postgresql.org/issues/3510
https://redmine.postgresql.org/issues/3185
https://redmine.postgresql.org/issues/3191
https://redmine.postgresql.org/issues/3294
https://redmine.postgresql.org/issues/3309
https://redmine.postgresql.org/issues/3316
https://redmine.postgresql.org/issues/3319
https://redmine.postgresql.org/issues/3363
https://redmine.postgresql.org/issues/3371
https://redmine.postgresql.org/issues/3446
https://redmine.postgresql.org/issues/3448
https://redmine.postgresql.org/issues/3458
https://redmine.postgresql.org/issues/3468
https://redmine.postgresql.org/issues/3471
https://redmine.postgresql.org/issues/3511
https://redmine.postgresql.org/issues/3526
https://redmine.postgresql.org/issues/3527

pgAdmin 4 Documentation, Release 4.3

13.10.1 Features

Feature #1447 - Add support for SSH tunneled connections
Feature #2686 - Add an option to auto-complete keywords in upper case
Feature #3204 - Add support for LISTEN/NOTIFY in the query tool
Feature #3273 - Allow sorting in the file dialogue
Feature #3362 - Function and procedure support for PG11
Feature #3388 - Allow the connection timeout to be configured on a per-server basis

13.10.2 Bug fixes

Bug #1220 - Backup and Restore should not be started if database name contains “=” symbol
Bug #1221 - Maintenance should not be started if database name contains “=” symbol
Bug #3179 - Fix an error generating SQL for trigger functions
Bug #3238 - Standardise the error handling for parsing of JSON response messages from the server
Bug #3250 - Fix handling of SQL_ASCII data in the Query Tool
Bug #3257 - Catch errors when trying to EXPLAIN an invalid query
Bug #3277 - Ensure server cleanup on exit only happens if the server actually started up
Bug #3284 - F5 key should work to refresh Browser tree
Bug #3289 - Fix handling of SQL_ASCII data in the Query Tool
Bug #3290 - Close button added to the alertify message box, which pops up in case of backend error
Bug #3295 - Ensure the debugger gets focus when loaded so shortcut keys work as expected
Bug #3298 - Fixed query tool keyboard issue where arrow keys were not behaving as expected for execute options
dropdown
Bug #3303 - Fix a Japanese translation error that could prevent the server starting up
Bug #3307 - Allow connections to servers with port numbers < 1024 which may be seen in container environments
Bug #3310 - Fixed layout of the alertify error message in the query tool
Bug #3333 - Ensure the runtime core application is setup before trying to access any settings
Bug #3342 - Set SESSION_COOKIE_SAMESITE=’Lax’ per Flask recommendation to prevents sending cookies
with CSRF-prone requests from external sites, such as submitting a form
Bug #3353 - Handle errors properly if they occur when renaming a database
Bug #3356 - Include the schema name on RE-SQL for packages
Bug #3374 - Fix autocomplete
Bug #3392 - Fix IPv6 support in the container build
Bug #3411 - Fix a French translation error that could prevent the server starting up

13.11 Version 3.0

Release date: 2018-03-22

This release contains a number of features and fixes reported since the release of pgAdmin4 2.1

13.11.1 Features

Feature #1894 - Allow sorting when viewing/editing data
Feature #1978 - Add the ability to enable/disable UI animations

296 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/1447
https://redmine.postgresql.org/issues/2686
https://redmine.postgresql.org/issues/3204
https://redmine.postgresql.org/issues/3273
https://redmine.postgresql.org/issues/3362
https://redmine.postgresql.org/issues/3388
https://redmine.postgresql.org/issues/1220
https://redmine.postgresql.org/issues/1221
https://redmine.postgresql.org/issues/3179
https://redmine.postgresql.org/issues/3238
https://redmine.postgresql.org/issues/3250
https://redmine.postgresql.org/issues/3257
https://redmine.postgresql.org/issues/3277
https://redmine.postgresql.org/issues/3284
https://redmine.postgresql.org/issues/3289
https://redmine.postgresql.org/issues/3290
https://redmine.postgresql.org/issues/3295
https://redmine.postgresql.org/issues/3298
https://redmine.postgresql.org/issues/3303
https://redmine.postgresql.org/issues/3307
https://redmine.postgresql.org/issues/3310
https://redmine.postgresql.org/issues/3333
https://redmine.postgresql.org/issues/3342
https://redmine.postgresql.org/issues/3353
https://redmine.postgresql.org/issues/3356
https://redmine.postgresql.org/issues/3374
https://redmine.postgresql.org/issues/3392
https://redmine.postgresql.org/issues/3411
https://redmine.postgresql.org/issues/1894
https://redmine.postgresql.org/issues/1978

pgAdmin 4 Documentation, Release 4.3

Feature #2895 - Add keyboard navigation options for the main browser windows
Feature #2896 - Add keyboard navigation in Query tool module via Tab/Shift-Tab key
Feature #2897 - Support keyboard navigation in the debugger
Feature #2898 - Support tab navigation in dialogs
Feature #2899 - Add configurable shortcut keys for various common options in the main window
Feature #2901 - Configurable shortcuts in the Debugger
Feature #2904 - Ensure clickable images/buttons have appropriate tooltips for screen readers
Feature #2950 - Add a marker (/pga4dash/) to the dashboard queries to allow them to be more easily filtered from
server logs
Feature #2951 - Allow dashboard tables and charts to be enabled/disabled
Feature #3086 - Rewrite the runtime as a tray-based server which can launch a web browser
Feature #3098 - Unvendorize REACT so no longer required in our source tree
Feature #3140 - Add support for connecting using pg_service.conf files
Feature #3182 - Update Jasmine to v3
Feature #3184 - Add a French translation
Feature #3195 - Pass the service name to external processes
Feature #3246 - Update container build to use Alpine Linux and Gunicorn instead of CentOS/Apache

In addition, various changes were made for PEP8 compliance

13.11.2 Bug fixes

Bug #1173 - Add a comment to the existing node
Bug #1925 - Fix issue resizing column widths not resizable in Query Tool after first query
Bug #2104 - Runtime update display file version and copyright year under installers properties
Bug #2249 - Application no longer hangs after reload in runtime
Bug #2251 - Runtime fixed OSX html scroll direction ignored in MacOS setup
Bug #2309 - Allow text selection/copying from disabled CodeMirror instances
Bug #2480 - Runtime update fix to Context Menus on Mac that do not work
Bug #2578 - Runtime update fix to HTML access keys that don’t work
Bug #2581 - Fix keyboard shortcut for text selection
Bug #2677 - Update Elephant icon for pgAdmin4 on Windows
Bug #2776 - Fix unreadable font via Remote Desktop
Bug #2777 - Fix spacing issue on server tree
Bug #2783 - Runtime update fixed blank screen on Windows Desktop
Bug #2906 - Correct display issues on HiDPI screens
Bug #2961 - Issues when creating a pgAgent Schedule
Bug #2963 - Fix unicode handling in the external process tools and show the complete command in the process
viewer
Bug #2980 - Copy text from the Query tool into the clipboard adds invisible characters
Bug #2981 - Support keyboard navigation in the debugger
Bug #2983 - Fix intermittent specified_version_number ValueError issue on restart
Bug #2985 - Fix drag and drop issues
Bug #2998 - Don’t listen on port 443 if TLS is not enabled when launching the container
Bug #3001 - Runtime update fix scrolling with mouse wheel on mac pgAdmin 4.2.1
Bug #3002 - Fix block indent/outdent with configurable width

13.11. Version 3.0 297

https://redmine.postgresql.org/issues/2895
https://redmine.postgresql.org/issues/2896
https://redmine.postgresql.org/issues/2897
https://redmine.postgresql.org/issues/2898
https://redmine.postgresql.org/issues/2899
https://redmine.postgresql.org/issues/2901
https://redmine.postgresql.org/issues/2904
https://redmine.postgresql.org/issues/2950
https://redmine.postgresql.org/issues/2951
https://redmine.postgresql.org/issues/3086
https://redmine.postgresql.org/issues/3098
https://redmine.postgresql.org/issues/3140
https://redmine.postgresql.org/issues/3182
https://redmine.postgresql.org/issues/3184
https://redmine.postgresql.org/issues/3195
https://redmine.postgresql.org/issues/3246
https://redmine.postgresql.org/issues/1173
https://redmine.postgresql.org/issues/1925
https://redmine.postgresql.org/issues/2104
https://redmine.postgresql.org/issues/2249
https://redmine.postgresql.org/issues/2251
https://redmine.postgresql.org/issues/2309
https://redmine.postgresql.org/issues/2480
https://redmine.postgresql.org/issues/2578
https://redmine.postgresql.org/issues/2581
https://redmine.postgresql.org/issues/2677
https://redmine.postgresql.org/issues/2776
https://redmine.postgresql.org/issues/2777
https://redmine.postgresql.org/issues/2783
https://redmine.postgresql.org/issues/2906
https://redmine.postgresql.org/issues/2961
https://redmine.postgresql.org/issues/2963
https://redmine.postgresql.org/issues/2980
https://redmine.postgresql.org/issues/2981
https://redmine.postgresql.org/issues/2983
https://redmine.postgresql.org/issues/2985
https://redmine.postgresql.org/issues/2998
https://redmine.postgresql.org/issues/3001
https://redmine.postgresql.org/issues/3002

pgAdmin 4 Documentation, Release 4.3

Bug #3003 - Runtime update fix copy to clipboard
Bug #3005 - Runtime update fix unable to select tabs in pgAdmin 4.2.1
Bug #3013 - Fix a minor UI issue on dashboard while displaying subnode control in Backgrid
Bug #3014 - Fix validation of sequence parameters
Bug #3016 - Ensure debug messages are available in “messages” window when error occurs
Bug #3021 - Update scan and index scan EXPLAIN icons for greater clarity
Bug #3027 - Ensure we capture notices raised by queries
Bug #3031 - Runtime issue causing double and single quotes not to work
Bug #3039 - Runtime issue causing wrong row counts on count column
Bug #3042 - Runtime issue causing empty dialog box when refreshing
Bug #3043 - Runtime issue causing word sizing in macOS High Sierra
Bug #3045 - Runtime issue causing copy cells issues copying cells for key binding
Bug #3046 - Fix connection status indicator on IE/FF
Bug #3052 - Don’t include sizes on primitive data types that shouldn’t have them when modifying columns
Bug #3054 - Ensure the user can use keyboard shortcuts after using button controls such as Cancel, Open and Save
Bug #3057 - Update the regression tests to fix issues with Python 3.5 and PG 9.2
Bug #3058 - Fix on-click handling of treeview nodes that wasn’t refreshing SQL/Dependencies/Dependents in some
circumstances
Bug #3060 - Fix quoting of function names in RE-SQL
Bug #3066 - Ensure column names on indexes on views are properly quoted in RE-SQL
Bug #3067 - Prevent the filter dialog CodeMirror from overflowing onto the button bar of the dialog
Bug #3072 - Add a (configurable) limit to the number of pgAgent job history rows displayed on the statistics tab
Bug #3073 - Ensure the pgAgent job start/end time grid fields synchronise with the subnode control and validate
correctly
Bug #3075 - Runtime issue causing Select, Update, and Insert script generation for a table fails to load
Bug #3077 - Remove dependency on standards_conforming_strings being enabled
Bug #3079 - Fix handling of tie/datetime array types when adding columns to a table
Bug #3080 - Fix alignment issues in keyboard shortcut options
Bug #3081 - Add missing reverse-engineered SQL header and drop statement for sequences
Bug #3090 - Ensure message severity is decoded when necessary by the driver
Bug #3094 - Ensure all messages are retrieved from the server in the Query Tool
Bug #3105 - Ensure we can properly update rows with upper-case primary key columns
Bug #3135 - Insert rows correctly when a table has OIDs and a Primary Key in uppercase
Bug #3122 - Ensure SSL options are pushed down to external tools like pg_dump
Bug #3129 - Handle opening of non-UTF8 compatible files
Bug #3137 - Allow copying of SQL from the dashboard tables
Bug #3138 - Fix tablespace tests for Python 3.x
Bug #3157 - Fix unicode handling in the external process tools and show the complete command in the process
viewer
Bug #3171 - Runtime issue causing inability to scroll in File Selector with trackpad on OSX
Bug #3180 - Ensure Indexes are displayed on PG 10 tables
Bug #3196 - Ensure the file manager properly escapes file & directory names
Bug #3197 - Appropriately set the cookie path
Bug #3200 - Ensure the host parameter is correctly pickup up from the service file
Bug #3219 - Update required ChromeDriver version for current versions of Chrome
Bug #3226 - Move the field error indicators in front of the affected fields so they don’t obscure spinners or drop
downs etc.

298 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/3003
https://redmine.postgresql.org/issues/3005
https://redmine.postgresql.org/issues/3013
https://redmine.postgresql.org/issues/3014
https://redmine.postgresql.org/issues/3016
https://redmine.postgresql.org/issues/3021
https://redmine.postgresql.org/issues/3027
https://redmine.postgresql.org/issues/3031
https://redmine.postgresql.org/issues/3039
https://redmine.postgresql.org/issues/3042
https://redmine.postgresql.org/issues/3043
https://redmine.postgresql.org/issues/3045
https://redmine.postgresql.org/issues/3046
https://redmine.postgresql.org/issues/3052
https://redmine.postgresql.org/issues/3054
https://redmine.postgresql.org/issues/3057
https://redmine.postgresql.org/issues/3058
https://redmine.postgresql.org/issues/3060
https://redmine.postgresql.org/issues/3066
https://redmine.postgresql.org/issues/3067
https://redmine.postgresql.org/issues/3072
https://redmine.postgresql.org/issues/3073
https://redmine.postgresql.org/issues/3075
https://redmine.postgresql.org/issues/3077
https://redmine.postgresql.org/issues/3079
https://redmine.postgresql.org/issues/3080
https://redmine.postgresql.org/issues/3081
https://redmine.postgresql.org/issues/3090
https://redmine.postgresql.org/issues/3094
https://redmine.postgresql.org/issues/3105
https://redmine.postgresql.org/issues/3135
https://redmine.postgresql.org/issues/3122
https://redmine.postgresql.org/issues/3129
https://redmine.postgresql.org/issues/3137
https://redmine.postgresql.org/issues/3138
https://redmine.postgresql.org/issues/3157
https://redmine.postgresql.org/issues/3171
https://redmine.postgresql.org/issues/3180
https://redmine.postgresql.org/issues/3196
https://redmine.postgresql.org/issues/3197
https://redmine.postgresql.org/issues/3200
https://redmine.postgresql.org/issues/3219
https://redmine.postgresql.org/issues/3226

pgAdmin 4 Documentation, Release 4.3

Bug #3244 - Show more granular timing info in the query tool history panel
Bug #3248 - Ensure Alertify dialogues are modal to prevent them being closed by mis-click

13.12 Version 2.1

Release date: 2018-01-11

This release contains a number of features and fixes reported since the release of pgAdmin4 2.0

13.12.1 Features

Feature #1383 - Allow connections to be coloured in the treeview and query tool
Feature #1489 - Improve user interface for selection query in Data Filter window
Feature #2368 - Improve data entry in Query Tool
Feature #2781 - Allow configuration of CSV and clipboard formatting of query results
Feature #2802 - Allow connections to be coloured in the treeview and query tool.
Feature #2810 - Allow files to be opened by double clicking on them within Query Tool
Feature #2845 - Make the “Save Changes” prompts in the query tool optional
Feature #2849 - Add support for editing data in tables with OIDs but no primary keys and updates the editor to
retrieve all row values on save, thus immediately showing default values and allowing subsequent editing without a
refresh

13.12.2 Bug fixes

Bug #1365 - Prevent the Windows installer accepting paths containing invalid characters
Bug #1366 - Fix /NOICONS switch in the windows installer
Bug #1749 - Fixes in pgAgent module including; 1) allowing start date earlier than end date when scheduling job, 2)
Datetime picker not displaying in grid and 3) validation error not displaying propertly for Datetime control
Bug #2094 - Display relevant error messages when access is denied creating a schema
Bug #2098 - Cleanup some inconsistent error dialog titles
Bug #2258 - Fix handling of DATERANGE[] type
Bug #2278 - Display long names appropriately in dialogue headers
Bug #2443 - Confirm with the user before exiting the runtime
Bug #2524 - Fix debugging of self-referencing functions
Bug #2566 - Fix the Pause/Resume Replay of WAL files for PostgreSQL 10
Bug #2624 - Ensure the switch animation is consistent on the table dialogue and avoid displaying an error incorrectly
Bug #2651 - Ensure estimated rows are included correctly in CREATE script for functions
Bug #2679 - Getting started links does not open second time if User open any URL and Click on Close button with
cross bar
Bug #2705 - User can add expirty date on Windows
Bug #2715 - Ensure we can download large files and keep the user informed about progress
Bug #2720 - Ensure password changes are successful if authenticating using a pgpass file
Bug #2726 - Ensure the auto-complete selection list can display longer names
Bug #2738 - Ensure line numbers form CodeMirror don’t appear on top of menus
Bug #2748 - Format JSON/JSONB nicely when displaying it in the grid editor pop-up
Bug #2760 - When selecting an SSL cert or key, update only the expected path in the UI, not all of them

13.12. Version 2.1 299

https://redmine.postgresql.org/issues/3244
https://redmine.postgresql.org/issues/3248
https://redmine.postgresql.org/issues/1383
https://redmine.postgresql.org/issues/1489
https://redmine.postgresql.org/issues/2368
https://redmine.postgresql.org/issues/2781
https://redmine.postgresql.org/issues/2802
https://redmine.postgresql.org/issues/2810
https://redmine.postgresql.org/issues/2845
https://redmine.postgresql.org/issues/2849
https://redmine.postgresql.org/issues/1365
https://redmine.postgresql.org/issues/1366
https://redmine.postgresql.org/issues/1749
https://redmine.postgresql.org/issues/2094
https://redmine.postgresql.org/issues/2098
https://redmine.postgresql.org/issues/2258
https://redmine.postgresql.org/issues/2278
https://redmine.postgresql.org/issues/2443
https://redmine.postgresql.org/issues/2524
https://redmine.postgresql.org/issues/2566
https://redmine.postgresql.org/issues/2624
https://redmine.postgresql.org/issues/2651
https://redmine.postgresql.org/issues/2679
https://redmine.postgresql.org/issues/2705
https://redmine.postgresql.org/issues/2715
https://redmine.postgresql.org/issues/2720
https://redmine.postgresql.org/issues/2726
https://redmine.postgresql.org/issues/2738
https://redmine.postgresql.org/issues/2748
https://redmine.postgresql.org/issues/2760

pgAdmin 4 Documentation, Release 4.3

Bug #2765 - Do not decrypt the password when the password is ‘None’. This should avoid the common but harmless
exception “ValueError: IV must be 16 bytes long while decrypting the password.”
Bug #2768 - Only allow specification of a pgpass file if libpq >= 10
Bug #2769 - Correct keyboard shortcut. Don’t un-comment code with alt+. in the query tool. It’s only supposed to
respond to ctrl/cmd+
Bug #2772 - Remove external links from Panel’s context menu
Bug #2778 - Ensure the datatype cache is updated when a domain is added
Bug #2779 - Ensure column collation isn’t lost when changing field size
Bug #2780 - Ensure auto-indent honours the spaces/tabs config setting
Bug #2782 - Re-hash the way that we handle rendering of special types such as arrays
Bug #2787 - Quote the owner name when creating types
Bug #2806 - Attempt to decode database errors based on lc_messages
Bug #2811 - Display process output as it happens
Bug #2820 - Logs available when executing backup and restore
Bug #2821 - Attempt to decode database errors based on lc_messages
Bug #2822 - Re-hash the way that we handle rendering of special types such as arrays.
Bug #2824 - Fix a number of graphical explain rendering issues
Bug #2836 - Fix counted rows display in table properties
Bug #2842 - Fix a number of graphical explain rendering issues
Bug #2846 - Add an option to manually count rows in tables to render the properties
Bug #2854 - Fix utility output capture encoding
Bug #2859 - Allow form validation messages to be close in case the eclipse anything on the form
Bug #2866 - Ensure we don’t show the full path on the server when using virtual filesystem roots in server mode for
SSL certs
Bug #2875 - Ensure the scroll location is retains in the query tool data grid if the user changes tab and then returns
Bug #2877 - Remove the artificial limit of 4000 characters from text areas
Bug #2880 - Honour whitespace properly in the data grid
Bug #2881 - Fix support for time without timezone
Bug #2886 - Resolve issue where Insert failed when tried with default primary key value
Bug #2891 - Allow changing of the users password without leaving the app
Bug #2892 - Refuse password changes (and tell the user) if the notification email cannot be sent
Bug #2908 - Fix bundle creation on Windows which was failing due to rn line endings in code mirror
Bug #2918 - Add missing init.py to backports.csv when building the MSVC windows build
Bug #2920 - Push HTTPD logs to container stdout/stderr as appropriate
Bug #2921 - Fixes in pgAgent module including; 1) allowing start date earlier than end date when scheduling job, 2)
Datetime picker not displaying in grid and 3) validation error not displaying propertly for Datetime control
Bug #2922 - Don’t login the user with every request in desktop mode. Just do it once
Bug #2923 - Prevent the user pressing the select button in the file manager when it is supposed to be disabled
Bug #2924 - Cleanup the layout of the filter data dialogue
Bug #2928 - Prevent multiple connections to new slow-to-respond servers being initiated in error
Bug #2934 - Fix a reference before assignment error in the file dialogue
Bug #2937 - Prevent attempts to select directories as files in the file dialogue
Bug #2945 - Ensure invalid options can’t be selected on triggers on views
Bug #2949 - Display complete SQL for FTS dictionaries
Bug #2952 - Don’t try to render security URLs in desktop mode
Bug #2954 - Allow selection of validation error text
Bug #2974 - Clear the messages tab when running EXPLAIN/EXPLAIN ANALYZE

300 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/2765
https://redmine.postgresql.org/issues/2768
https://redmine.postgresql.org/issues/2769
https://redmine.postgresql.org/issues/2772
https://redmine.postgresql.org/issues/2778
https://redmine.postgresql.org/issues/2779
https://redmine.postgresql.org/issues/2780
https://redmine.postgresql.org/issues/2782
https://redmine.postgresql.org/issues/2787
https://redmine.postgresql.org/issues/2806
https://redmine.postgresql.org/issues/2811
https://redmine.postgresql.org/issues/2820
https://redmine.postgresql.org/issues/2821
https://redmine.postgresql.org/issues/2822
https://redmine.postgresql.org/issues/2824
https://redmine.postgresql.org/issues/2636
https://redmine.postgresql.org/issues/2842
https://redmine.postgresql.org/issues/2846
https://redmine.postgresql.org/issues/2854
https://redmine.postgresql.org/issues/2859
https://redmine.postgresql.org/issues/2866
https://redmine.postgresql.org/issues/2875
https://redmine.postgresql.org/issues/2877
https://redmine.postgresql.org/issues/2880
https://redmine.postgresql.org/issues/2881
https://redmine.postgresql.org/issues/2886
https://redmine.postgresql.org/issues/2891
https://redmine.postgresql.org/issues/2892
https://redmine.postgresql.org/issues/2908
https://redmine.postgresql.org/issues/2918
https://redmine.postgresql.org/issues/2920
https://redmine.postgresql.org/issues/2921
https://redmine.postgresql.org/issues/2922
https://redmine.postgresql.org/issues/2923
https://redmine.postgresql.org/issues/2924
https://redmine.postgresql.org/issues/2928
https://redmine.postgresql.org/issues/2934
https://redmine.postgresql.org/issues/2937
https://redmine.postgresql.org/issues/2945
https://redmine.postgresql.org/issues/2949
https://redmine.postgresql.org/issues/2952
https://redmine.postgresql.org/issues/2954
https://redmine.postgresql.org/issues/2974

pgAdmin 4 Documentation, Release 4.3

Bug #2993 - Fix view data for views/mat views

13.13 Version 2.0

Release date: 2017-10-05

This release contains a number of features and fixes reported since the release of pgAdmin4 1.6

13.13.1 Features

Feature #1918 - Add a field to the Server Dialogue allowing users to specify a subset of databases they’d like to see in
the treeview
Feature #2135 - Significantly speed up loading of the application
Feature #2556 - Allow for slow vs. fast connection failures
Feature #2579 - Default the file browser view to list, and make it configurable
Feature #2597 - Allow queries to be cancelled from the dashboard and display additional info in the subnode control
Feature #2649 - Support use of SSL certificates for authentication
Feature #2650 - Support use of pgpass files
Feature #2662 - Ship with pre-configured paths that can work in both Server and Desktop modes out of the box
Feature #2689 - Update icons with new designs and remove from menus to de-clutter the UI

13.13.2 Bug fixes

Bug #1165 - Prevent continual polling for graph data on the dashboard if the server is disconnected
Bug #1697 - Update CodeMirror version
Bug #2043 - Properly handle trigger functions with parameters
Bug #2074 - Make $ quoting consistent
Bug #2080 - Fix issue where Browser hangs/crashes when loading data (using sql editor) from table which contains
large blob data
Bug #2153 - Fix handline of large file uploads and properly show any errors that may occur
Bug #2168 - Update CodeMirror version
Bug #2170 - Support SSL in the regression tests
Bug #2324 - Fix PostGIS Datatypes in SQL tab, Create / Update dialogues for Table, Column, Foreign Table and
Type node
Bug #2447 - Update CodeMirror version
Bug #2452 - Install pgadmin4-v1 1.5 on Centos7
Bug #2501 - Fix collation tests on Windows, replace use of default ‘POSIX’ collation with ‘C’ collation for testing
Bug #2541 - Fix issues using special keys on MacOS
Bug #2544 - Correct malformed query generated when using custom type
Bug #2551 - Show tablespace on partitions
Bug #2555 - Fix issue in query tool where messages were not displaying from functions/procedures properly
Bug #2557 - Tidy up tab styling
Bug #2558 - Prevent the tab bar being hidden when detached tabs are being closed
Bug #2559 - Stop tool buttons from changing their styling unexpectedly
Bug #2560 - Fix View ‘CREATE Script’ Problem
Bug #2562 - Update CodeMirror version

13.13. Version 2.0 301

https://redmine.postgresql.org/issues/2993
https://redmine.postgresql.org/issues/1918
https://redmine.postgresql.org/issues/2135
https://redmine.postgresql.org/issues/2556
https://redmine.postgresql.org/issues/2579
https://redmine.postgresql.org/issues/2597
https://redmine.postgresql.org/issues/2649
https://redmine.postgresql.org/issues/2650
https://redmine.postgresql.org/issues/2662
https://redmine.postgresql.org/issues/2689
https://redmine.postgresql.org/issues/1165
https://redmine.postgresql.org/issues/1697
https://redmine.postgresql.org/issues/2043
https://redmine.postgresql.org/issues/2074
https://redmine.postgresql.org/issues/2080
https://redmine.postgresql.org/issues/2153
https://redmine.postgresql.org/issues/2168
https://redmine.postgresql.org/issues/2170
https://redmine.postgresql.org/issues/2324
https://redmine.postgresql.org/issues/2447
https://redmine.postgresql.org/issues/2452
https://redmine.postgresql.org/issues/2501
https://redmine.postgresql.org/issues/2541
https://redmine.postgresql.org/issues/2544
https://redmine.postgresql.org/issues/2551
https://redmine.postgresql.org/issues/2555
https://redmine.postgresql.org/issues/2557
https://redmine.postgresql.org/issues/2558
https://redmine.postgresql.org/issues/2559
https://redmine.postgresql.org/issues/2560
https://redmine.postgresql.org/issues/2562

pgAdmin 4 Documentation, Release 4.3

Bug #2563 - Fix paths under non-standard virtual directories
Bug #2566 - Fix Pause/Resume Replay of WAL files for PostgreSQL 10
Bug #2567 - Use the proper database connection to fetch the default priviledges in the properties tab of the database
Bug #2582 - Unset compression ratio if it is an empty string in Backup module
Bug #2586 - Cleanup feature tests
Bug #2590 - Allow navigation of query history using the arrow keys
Bug #2592 - Stop Flask from initialising service twice in Debug mode
Bug #2593 - Ensure babel-polyfill is loaded in older qWebKits
Bug #2594 - Fix disconnection of new databases
Bug #2596 - Define the proper NODE_ENV environment during running the webpack
Bug #2606 - Ensure role names are escaped in the membership control
Bug #2616 - Domain create dialog do not open and Font size issue in Security label control
Bug #2617 - Add missing pgagent file in webpack.config.js
Bug #2619 - Fix quoting of index column names on tables
Bug #2620 - Set database name to blank(‘’) when job type is set to batch, while creating pgAgent job
Bug #2631 - Change mapping of cell from ‘numeric’ to ‘integer’ for integer control as numeric cell has been
removed from the code
Bug #2633 - Fix pgAgent job step issues
Bug #2634 - Add New Server through Quick links
Bug #2637 - Fix Copy so it still works after query results have been copied
Bug #2641 - User management issues - styling and inability to edit users properly
Bug #2644 - Fix alertify notification messages where checkmark box disconnected from frame
Bug #2646 - Fix the path reference of load-node.gif which was referencing to vendor directory
Bug #2654 - Update datetime picker
Bug #2655 - Fix connection string validation for pgAgent jobs
Bug #2656 - Change Datetimepicker to expand from bottom in pgAgent so calendar does not get hidden
Bug #2657 - Fix syntax error while saving changes for start/end time, weekdays, monthdays, month, hours, minutes
while updating the pgAgent Job
Bug #2659 - Fix issue where unable to add/update variables for columns of a table
Bug #2660 - Not able to select rows in History Tab
Bug #2668 - Fix RE-SQL for triggers with a single arg
Bug #2670 - Improve datamodel validations for default Validator if user (developer) does not implement validate
function in datamodel
Bug #2671 - Fix array data type formating for bigint, real, float, double precision
Bug #2681 - Reset query tool options before running tests
Bug #2684 - Fix layout of password prompt dialogue
Bug #2691 - View data option is missing from pgAdmin4 2.0 version
Bug #2692 - Base type is missing for Domain on pgAdmin4
Bug #2693 - User list is not available on User mapping pgAdmin4
Bug #2698 - User can not create function due to missing return type
Bug #2699 - Filtered Rows issue on pgAdmin4
Bug #2700 - Cancel button is visible after query executed succesfully
Bug #2707 - Disable trigger button does not work on pgAdmin4
Bug #2708 - Tablespace name should displayed instead of %s(new_tablespace)s with Move Objects to another
tablespace
Bug #2709 - Display user relations in schema prefixed by ‘pg’
Bug #2713 - Fix an exception seen sometimes when the server is restarted

302 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/2563
https://redmine.postgresql.org/issues/2566
https://redmine.postgresql.org/issues/2567
https://redmine.postgresql.org/issues/2582
https://redmine.postgresql.org/issues/2586
https://redmine.postgresql.org/issues/2590
https://redmine.postgresql.org/issues/2592
https://redmine.postgresql.org/issues/2593
https://redmine.postgresql.org/issues/2594
https://redmine.postgresql.org/issues/2596
https://redmine.postgresql.org/issues/2606
https://redmine.postgresql.org/issues/2616
https://redmine.postgresql.org/issues/2617
https://redmine.postgresql.org/issues/2619
https://redmine.postgresql.org/issues/2620
https://redmine.postgresql.org/issues/2631
https://redmine.postgresql.org/issues/2633
https://redmine.postgresql.org/issues/2634
https://redmine.postgresql.org/issues/2637
https://redmine.postgresql.org/issues/2641
https://redmine.postgresql.org/issues/2644
https://redmine.postgresql.org/issues/2646
https://redmine.postgresql.org/issues/2654
https://redmine.postgresql.org/issues/2655
https://redmine.postgresql.org/issues/2656
https://redmine.postgresql.org/issues/2657
https://redmine.postgresql.org/issues/2659
https://redmine.postgresql.org/issues/2660
https://redmine.postgresql.org/issues/2668
https://redmine.postgresql.org/issues/2670
https://redmine.postgresql.org/issues/2671
https://redmine.postgresql.org/issues/2681
https://redmine.postgresql.org/issues/2684
https://redmine.postgresql.org/issues/2691
https://redmine.postgresql.org/issues/2692
https://redmine.postgresql.org/issues/2693
https://redmine.postgresql.org/issues/2698
https://redmine.postgresql.org/issues/2699
https://redmine.postgresql.org/issues/2700
https://redmine.postgresql.org/issues/2707
https://redmine.postgresql.org/issues/2708
https://redmine.postgresql.org/issues/2709
https://redmine.postgresql.org/issues/2713

pgAdmin 4 Documentation, Release 4.3

Bug #2742 - Ensure using an alternate role to connect to a database doesn’t cause an error when checking recovery
state.

13.14 Version 1.6

Release date: 2017-07-13

This release contains a number of features and fixes reported since the release of pgAdmin4 1.5

13.14.1 Features

Feature #1344 - Allow the Query Tool, Debugger and web browser tabs to be moved to different monitors as desired
Feature #1533 - Set focus on the first enabled field when a dialogue is opened
Feature #1535 - Teach dialogues about Escape to cancel, Enter to Save/OK, and F1 for help
Feature #1971 - Retain column sizing in the query tool results grid when the same query is re-run multiple times in a
row
Feature #1972 - Prompt the user to save dirty queries rather than discard them for a more natural workflow
Feature #2137 - On-demand loading for the query tool results
Feature #2191 - Add support for the hostaddr connection parameter. This helps us play nicely with Kerberos/SSPI
and friends
Feature #2282 - Overhaul the query history tab to allow browsing of the history and full query text
Feature #2379 - Support inserting multiple new rows into a table without clicking Save for each row
Feature #2485 - Add a shortcut to reset the zoom level in the runtime
Feature #2506 - Allow the user to close the dashboard panel
Feature #2513 - Add preferences to enable brace matching and brace closing in the SQL editors

13.14.2 Bug fixes

Bug #1126 - Various FTS dictionary cleanups
Bug #1229 - Fix default values and SQL formatting for event triggers
Bug #1525 - Make $ quoting consistent
Bug #1575 - Properly display security labels
Bug #1795 - Fix validation for external and range types
Bug #1851 - Reverse engineer SQL for table-returning functions correctly
Bug #1860 - Ensure default values are honoured when adding/editing columns
Bug #1888 - Fix various issues with pgAgent job steps and schedules
Bug #1889 - Fix various issues with pgAgent job steps and schedules
Bug #1890 - Fix various issues with pgAgent job steps and schedules
Bug #1920 - Ensure saved passwords are effective immediately, not just following a restart when first saved
Bug #1928 - Fix the handling of double precision[] type
Bug #1934 - Fix import/export to work as expected with TSV data
Bug #1999 - Handle warning correctly when saving query results to an unmounted USB drive
Bug #2013 - Increase the default size of the Grant Wizard to enable it to properly display privileges at the default size
on smaller displays
Bug #2043 - Properly handle trigger functions with parameters
Bug #2078 - Refresh the SQL editor view on resize to ensure the contents are re-rendered for the new viewport

13.14. Version 1.6 303

https://redmine.postgresql.org/issues/2742
https://redmine.postgresql.org/issues/1344
https://redmine.postgresql.org/issues/1533
https://redmine.postgresql.org/issues/1535
https://redmine.postgresql.org/issues/1971
https://redmine.postgresql.org/issues/1972
https://redmine.postgresql.org/issues/2137
https://redmine.postgresql.org/issues/2191
https://redmine.postgresql.org/issues/2282
https://redmine.postgresql.org/issues/2379
https://redmine.postgresql.org/issues/2485
https://redmine.postgresql.org/issues/2506
https://redmine.postgresql.org/issues/2513
https://redmine.postgresql.org/issues/1126
https://redmine.postgresql.org/issues/1229
https://redmine.postgresql.org/issues/1525
https://redmine.postgresql.org/issues/1575
https://redmine.postgresql.org/issues/1795
https://redmine.postgresql.org/issues/1851
https://redmine.postgresql.org/issues/1860
https://redmine.postgresql.org/issues/1888
https://redmine.postgresql.org/issues/1889
https://redmine.postgresql.org/issues/1890
https://redmine.postgresql.org/issues/1920
https://redmine.postgresql.org/issues/1928
https://redmine.postgresql.org/issues/1934
https://redmine.postgresql.org/issues/1999
https://redmine.postgresql.org/issues/2013
https://redmine.postgresql.org/issues/2043
https://redmine.postgresql.org/issues/2078

pgAdmin 4 Documentation, Release 4.3

Bug #2086 - Allow editing of the WITH ADMIN option of role membership
Bug #2113 - Correct the validation logic when modifying indexes/exclusion constraints
Bug #2116 - Enable dialogue help buttons on Language and Foreign Table dialogues
Bug #2142 - Fix canceling of Grant Wizard on Windows
Bug #2155 - Fix removal of sizes from column definitions
Bug #2162 - Allow non-superusers to debug their own functions and prevent them from setting global breakpoints
Bug #2242 - Fix an issue in NodeAjaxControl caching with cache-node field and add cache-node field in Trigger &
Event trigger node so that whenever the user creates new Trigger Function we get new data from server in
NodeAjaxControl
Bug #2324 - Fix the PostGIS Datatypes in SQL tab, Create / Update dialogues for Table, Column, Foreign Table and
Type node
Bug #2344 - Fix issue with ctrl-c / ctrl-v not working in query tool
Bug #2348 - Fix issue when resizing columns in Query Too/View Data where all row/colums will select/deselect
Bug #2355 - Properly refresh the parent node when renaming children
Bug #2357 - Cache statistics more reliably
Bug #2381 - Fix the RE-SQL for for views to properly qualify trigger function names
Bug #2386 - Display and allow toggling of trigger enable/disable status from the trigger dialogue
Bug #2398 - Bypass the proxy server for local addresses on Windows
Bug #2400 - Cleanup handling of default/null values when data editing
Bug #2414 - Improve error handling in cases where the user tries to rename or create a server group that would
duplicate an existing group
Bug #2417 - Order columns in multi-column pkeys correctly
Bug #2422 - Fix RE-SQL for rules which got the table name wrong in the header and DROP statement
Bug #2425 - Handle composite primary keys correctly when deleting rows in the Edit Grid
Bug #2426 - Allow creation of ENUM types with no members
Bug #2427 - Add numerous missing checks to ensure objects really exist when we think they do
Bug #2435 - Pass the database ID to the query tool when using the Script options
Bug #2436 - Ensure the last placeholder is included when generating UPDATE scripts for tables
Bug #2448 - Ensure that boolean checkboxes cycle values in the correct order
Bug #2450 - Fix error on the stats tab with PG10. Also, rename the 10.0_plus template directory to 10_plus to match
the new versioning
Bug #2461 - Allow users to remove default values from columns properly
Bug #2468 - Fix issue where function create script won’t compile
Bug #2470 - Fix an intermittent error seen during result polling
Bug #2476 - Improvements to the Query Results grid including improvements to the UI and allow copy/paste from
sets of rows, columns or arbitrary blocks of cells
Bug #2477 - Ensure text editors render in an appropriate place on the results grid
Bug #2479 - No need for the menu icon to link to the homepage, as pgAdmin is a SPA
Bug #2482 - Use a more sensible name for Query Tool tabs
Bug #2486 - Ensure the feature tests use the correct test settings database
Bug #2487 - Maintain a client-side cache of preference values, populated using an async call
Bug #2489 - Fix clipboard handling with large datasets
Bug #2492 - Ensure the initial password is properly hashed during setup in web mode
Bug #2498 - Properly handle bytea[], and ‘infinity’::real/real[]
Bug #2502 - Properly handle bytea[], and ‘infinity’::real/real[]
Bug #2504 - Update MatView and pgAgent modules to work with recent integer/numeric changes
Bug #2507 - Ensure revoked public privileges are displayed in the RE-SQL for functions
Bug #2518 - Fix encoding issue when saving servers

304 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/2086
https://redmine.postgresql.org/issues/2113
https://redmine.postgresql.org/issues/2116
https://redmine.postgresql.org/issues/2142
https://redmine.postgresql.org/issues/2155
https://redmine.postgresql.org/issues/2162
https://redmine.postgresql.org/issues/2242
https://redmine.postgresql.org/issues/2324
https://redmine.postgresql.org/issues/2344
https://redmine.postgresql.org/issues/2348
https://redmine.postgresql.org/issues/2355
https://redmine.postgresql.org/issues/2355
https://redmine.postgresql.org/issues/2381
https://redmine.postgresql.org/issues/2386
https://redmine.postgresql.org/issues/2398
https://redmine.postgresql.org/issues/2400
https://redmine.postgresql.org/issues/2414
https://redmine.postgresql.org/issues/2417
https://redmine.postgresql.org/issues/2422
https://redmine.postgresql.org/issues/2425
https://redmine.postgresql.org/issues/2426
https://redmine.postgresql.org/issues/2427
https://redmine.postgresql.org/issues/2435
https://redmine.postgresql.org/issues/2436
https://redmine.postgresql.org/issues/2448
https://redmine.postgresql.org/issues/2450
https://redmine.postgresql.org/issues/2461
https://redmine.postgresql.org/issues/2468
https://redmine.postgresql.org/issues/2470
https://redmine.postgresql.org/issues/2476
https://redmine.postgresql.org/issues/2477
https://redmine.postgresql.org/issues/2479
https://redmine.postgresql.org/issues/2482
https://redmine.postgresql.org/issues/2486
https://redmine.postgresql.org/issues/2487
https://redmine.postgresql.org/issues/2489
https://redmine.postgresql.org/issues/2492
https://redmine.postgresql.org/issues/2498
https://redmine.postgresql.org/issues/2502
https://redmine.postgresql.org/issues/2504
https://redmine.postgresql.org/issues/2507
https://redmine.postgresql.org/issues/2518

pgAdmin 4 Documentation, Release 4.3

Bug #2522 - Improve speed of Select All in the results grid
Bug #2527 - Fix deletion of table rows with the column definition having NOT NULL TRUE and HAS NO
DEFAULT VALUE
Bug #2528 - Allow breakpoints to be set on triggers on views
Bug #2529 - Resolve a number of issues with domains and domain constraints
Bug #2532 - Refresh nodes correctly when there is a single child that is updated
Bug #2534 - Fix handling of CREATE TABLE OF <type>
Bug #2535 - Fix clear history functionality
Bug #2540 - Ensure the save password option is enabled when creating a server

13.15 Version 1.5

Release date: 2017-05-19

This release contains a number of features and fixes reported since the release of pgAdmin4 1.4.

13.15.1 Features

Feature #2216 - Allow column or row selection in the query tool

13.15.2 Bug fixes

Bug #2225 - Hide menu options for creating objects, if the object type is set to hidden. Includes Jasmine tests
Bug #2253 - Fix various issues in CSV file download feature
Bug #2257 - Improve handling of nulls and default values in the data editor
Bug #2271 - Don’t change the trigger icon back to “enabled” when the trigger is updated when it’s disabled
Bug #2284 - Allow creation of tables with pure numeric names
Bug #2292 - Only reconnect to databases that were previously connected
Bug #2314 - Fix various issues in CSV file download feature
Bug #2315 - Fix sorting of sizes on the statistics views by sorting raw values and prettifying on the client side.
Includes Jasmine tests for the prettyfying function
Bug #2318 - Order foreign table columns correctly
Bug #2331 - Fix binary search algorithm so new treeview nodes are added in the correct position
Bug #2336 - Update inode info when refreshing treeview nodes.
Bug #2339 - Ensure the treeview can be scrolled horizontally
Bug #2350 - Fix handling of default parameters ordering in functions
Bug #2354 - Fix the Backup module where it was not working if user changes its preference language other than
English
Bug #2356 - Ensure errors thrown when deleting rows in the query tool in edit mode are shown properly
Bug #2360 - Fix various issues in CSV file download feature
Bug #2369 - Support loading files with Unicode BOMs
Bug #2377 - Update psycopg2 version for PostgreSQL 10 compatibility
Bug #2379 - Make various improvements to the NULL/DEFAULT handling in the data editor
Bug #2405 - Ensure object names are properly escaped for external process management
Bug #2410 - Fix PostgreSQL 10.0 compatibility issues

13.15. Version 1.5 305

https://redmine.postgresql.org/issues/2522
https://redmine.postgresql.org/issues/2527
https://redmine.postgresql.org/issues/2528
https://redmine.postgresql.org/issues/2529
https://redmine.postgresql.org/issues/2532
https://redmine.postgresql.org/issues/2534
https://redmine.postgresql.org/issues/2535
https://redmine.postgresql.org/issues/2540
https://redmine.postgresql.org/issues/2216
https://redmine.postgresql.org/issues/2225
https://redmine.postgresql.org/issues/2253
https://redmine.postgresql.org/issues/2257
https://redmine.postgresql.org/issues/2271
https://redmine.postgresql.org/issues/2284
https://redmine.postgresql.org/issues/2292
https://redmine.postgresql.org/issues/2314
https://redmine.postgresql.org/issues/2315
https://redmine.postgresql.org/issues/2318
https://redmine.postgresql.org/issues/2331
https://redmine.postgresql.org/issues/2336
https://redmine.postgresql.org/issues/2339
https://redmine.postgresql.org/issues/2350
https://redmine.postgresql.org/issues/2354
https://redmine.postgresql.org/issues/2356
https://redmine.postgresql.org/issues/2360
https://redmine.postgresql.org/issues/2369
https://redmine.postgresql.org/issues/2377
https://redmine.postgresql.org/issues/2379
https://redmine.postgresql.org/issues/2405
https://redmine.postgresql.org/issues/2410

pgAdmin 4 Documentation, Release 4.3

13.16 Version 1.4

Release date: 2017-04-13

This release contains a number of features and fixes reported since the release of pgAdmin4 1.3.

13.16.1 Features

Feature #2232 - Add the ability to gray-out/disable the “Save Password” option when creating a connection to a server
Feature #2320 - Added German translation

13.16.2 Bug fixes

Bug #2077 - Add missing “Run Now” option for pgAdmin jobs
Bug #2105 - Fix validation on the table dialogue so the Save button isn’t enabled if the name is removed and autovac
custom settings are enabled
Bug #2145 - Resolve the issue for restoring the table from the backup
Bug #2187 - Ensure the web/ directory is cleared before upgrading Windows installations
Bug #2190 - Allow users to select UI language at login or from Preferences rather than unpredictable behaviour from
browsers
Bug #2226 - Show tooltips for disabled buttons to help user learning
Bug #2241 - Fix numeric control validation in nested schemas
Bug #2243 - Fix dropping of databases with Unicode names
Bug #2244 - Prevent an error being displayed if the user views data on a table with no columns
Bug #2246 - Add missing braces to reverse engineered SQL header block for Functions
Bug #2258 - Fix handling of DATERANGE[] type
Bug #2264 - Resolve error message ExtDeprecationWarning displayed on new pgAdmin4 setup for Python 3.4 on
ubuntu 14.04 Linux 64
Bug #2265 - Resolved import/Export issue for a table
Bug #2274 - Properly handle truncated table names
Bug #2277 - Resolved various file-system encoding/decoding related cases
Bug #2281 - Ensure menus are updated after disconnecting a server
Bug #2283 - Check if cell is in multiselect mode before setting default selection of multiple values
Bug #2287 - Properly handle EXPLAIN queries entered directly by the user in the query tool
Bug #2291 - Fix error highlighting in the query tool
Bug #2299 - Fix usage of QString
Bug #2303 - Fix ascending/descending sort order in backgrid while clicking on the headers
Bug #2304 - Resolve the issue for restoring the table from the backup
Bug #2305 - Resolve the issue where Generic function qtLiteral was not adapting values properly when they contain
non ascii characters
Bug #2310 - Fix Dialog Help where query tool/Debugger opens in new browser tab
Bug #2319 - Resolve issue where Click on pgAdmin4 logo leads to unauthorized error
Bug #2321 - Improved functionality of browser tree when adding new nodes if parent collection node has not loaded
Bug #2330 - Ensure the query tool displays but does not render HTML returned by the server in the results grid

306 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/2232
https://redmine.postgresql.org/issues/2163
https://redmine.postgresql.org/issues/2077
https://redmine.postgresql.org/issues/2105
https://redmine.postgresql.org/issues/2145
https://redmine.postgresql.org/issues/2187
https://redmine.postgresql.org/issues/2190
https://redmine.postgresql.org/issues/2226
https://redmine.postgresql.org/issues/2241
https://redmine.postgresql.org/issues/2243
https://redmine.postgresql.org/issues/2244
https://redmine.postgresql.org/issues/2246
https://redmine.postgresql.org/issues/2258
https://redmine.postgresql.org/issues/2264
https://redmine.postgresql.org/issues/2265
https://redmine.postgresql.org/issues/2274
https://redmine.postgresql.org/issues/2277
https://redmine.postgresql.org/issues/2281
https://redmine.postgresql.org/issues/2283
https://redmine.postgresql.org/issues/2287
https://redmine.postgresql.org/issues/2291
https://redmine.postgresql.org/issues/2299
https://redmine.postgresql.org/issues/2303
https://redmine.postgresql.org/issues/2304
https://redmine.postgresql.org/issues/2305
https://redmine.postgresql.org/issues/2310
https://redmine.postgresql.org/issues/2319
https://redmine.postgresql.org/issues/2321
https://redmine.postgresql.org/issues/2330

pgAdmin 4 Documentation, Release 4.3

13.17 Version 1.3

Release date: 2017-03-10

This release contains a number of features and fixes reported since the release of pgAdmin4 1.2.

13.17.1 Features

Feature #2036 - Query tool efficiency - SlickGrid result set format efficiency
Feature #2038 - Query tool efficiency - Incremental back off when polling
Feature #2163 - Make syntax highlighting more visible
Feature #2210 - Build a universal Python wheel instead of per-python-version ones
Feature #2215 - Improve visibility of syntax highlighting colours

13.17.2 Bug fixes

Bug #1796 - Add missing “Run Now” option for pgAdmin jobs
Bug #1797 - Resolve encoding issues with DATA_DIR
Bug #1914 - Resolved error utf8’ codec can’t decode byte
Bug #1983 - Fix bug in Sql query contains Arabic Charaters
Bug #2089 - Add PARALLEL SAFE|UNSAFE|RESTRICTED support
Bug #2115 - Fix exclusion constraint reverse engineered SQL
Bug #2119 - Fix display of long integers and decimals
Bug #2151 - Display un-sized varlen column types correctly in the query tool
Bug #2154 - Fix display of long integers and decimals
Bug #2159 - Resolve issue where Query editor is not working with Python2.6
Bug #2160 - Various encoding fixes to allow ‘ascii’ codec to decode byte 0xc3 in position 66: ordinal not in
range(128)
Bug #2166 - Resolved import/Export issue for a table
Bug #2173 - Resolved issues where Sequences API test cases are not working in PG9.2
Bug #2174 - Resolved various file-system encoding/decoding related cases
Bug #2185 - Removed sorting columns on the treeview
Bug #2192 - Fix startup complete tests to ensure we properly poll the server for completed startup
Bug #2198 - Fix function arguments when generating create SQL
Bug #2200 - Properly handle event trigger functions in different schemas
Bug #2201 - Fix renaming of check constraints when the table name is changed at the same time
Bug #2202 - Fix issue where Dependents query fails due to non ascii characters
Bug #2204 - Fixed issue where pgadmin 4 jobs not showing any activity
Bug #2205 - Fix display of boolean nulls in the query tool
Bug #2208 - Ensure primary key column names are quoted in View Data mode of the Query Tool
Bug #2212 - Ensure servers are deleted when their parent group is deleted
Bug #2213 - Enable right click on browser tree
Bug #2218 - Show the correct indeterminate state when editing new boolean values
Bug #2228 - Authenticate the runtime to the server
Bug #2230 - Prevent the Slonik logo obscuring the login dialogue on small displays in server mode

13.17. Version 1.3 307

https://redmine.postgresql.org/issues/2036
https://redmine.postgresql.org/issues/2038
https://redmine.postgresql.org/issues/2163
https://redmine.postgresql.org/issues/2210
https://redmine.postgresql.org/issues/2215
https://redmine.postgresql.org/issues/1796
https://redmine.postgresql.org/issues/1797
https://redmine.postgresql.org/issues/1914
https://redmine.postgresql.org/issues/1983
https://redmine.postgresql.org/issues/2089
https://redmine.postgresql.org/issues/2115
https://redmine.postgresql.org/issues/2119
https://redmine.postgresql.org/issues/2151
https://redmine.postgresql.org/issues/2154
https://redmine.postgresql.org/issues/2159
https://redmine.postgresql.org/issues/2160
https://redmine.postgresql.org/issues/2166
https://redmine.postgresql.org/issues/2173
https://redmine.postgresql.org/issues/2174
https://redmine.postgresql.org/issues/2185
https://redmine.postgresql.org/issues/2192
https://redmine.postgresql.org/issues/2198
https://redmine.postgresql.org/issues/2200
https://redmine.postgresql.org/issues/2201
https://redmine.postgresql.org/issues/2202
https://redmine.postgresql.org/issues/2204
https://redmine.postgresql.org/issues/2205
https://redmine.postgresql.org/issues/2208
https://redmine.postgresql.org/issues/2212
https://redmine.postgresql.org/issues/2213
https://redmine.postgresql.org/issues/2218
https://redmine.postgresql.org/issues/2228
https://redmine.postgresql.org/issues/2230

pgAdmin 4 Documentation, Release 4.3

13.18 Version 1.2

Release date: 2017-02-10

This release contains a number of features and fixes reported since the release of pgAdmin4 1.1.

13.18.1 Features

Feature #1375 - Migrate the runtime to QtWebEngine from QtWebKit
Feature #1765 - Find and replace functionality with regexp and group replacement
Feature #1789 - Column width of data output panel should fit to data (as pgAdmin III)
Feature #1790 - [Web] Support setting a field’s value to “null”
Feature #1848 - macOS appbundle is missing postgresql binaries for import etc.
Feature #1910 - Remember last used directory in the file manager
Feature #1911 - Direct path navigation in the file manager
Feature #1922 - Improve handling of corrupt configuration databases
Feature #1963 - Add a Chinese (Simplified) translation
Feature #1964 - Create a docs tarball along with the source tarball
Feature #2025 - Allow the SQL Editors to word-wrap
Feature #2124 - Create a template loader to simplify SQL template location, and remove duplicate templates

13.18.2 Bug fixes

Bug #1227 - Display improved error message for Debugger listener starting error and reset between executions
Bug #1267 - Fix issue where MINIFY_HTML doesn’t work with the docs
Bug #1364 - Ensure dialogue control buttons are consistent
Bug #1394 - Fix Table dialogue column specification issues
Bug #1432 - Enhanced OSX File Browser
Bug #1585 - Cannot save scripts to the network
Bug #1599 - Ensure the grant wizard works with objects with special characters in the name
Bug #1603 - Fix quoting of objects names for external utilities.
Bug #1679 - Re-engineer the background process executor to avoid using sqlite as some builds of components it
relies on do not support working in forked children
Bug #1680 - Render column headers at the correct width in the query tool under Firefox
Bug #1729 - Improve display of role options
Bug #1730 - Improve the display of role membership on both the properties panel and role dialogue
Bug #1745 - Ensure breakpoints are cleared properly when working with Debugger
Bug #1747 - Add newly created triggers to the treeview
Bug #1780 - Properly size the SQL Editor gutter as the width of the line numbers increases
Bug #1792 - List files and folders alphabetically
Bug #1800 - Handle the template property on databases appropriately
Bug #1801 - Handle databases with datallowconn == false
Bug #1807 - Properly detect when files have changed in the query tool and set flag accordingly
Bug #1832 - Prevent attempts to access what may be an empty list in Dependancies tab
Bug #1840 - Enable/disable NULLs and ASC/DESC options for index columns and exclusion constraints
appropriately
Bug #1842 - Show index columns in the correct order in RE-SQL

308 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/1375
https://redmine.postgresql.org/issues/1765
https://redmine.postgresql.org/issues/1789
https://redmine.postgresql.org/issues/1790
https://redmine.postgresql.org/issues/1848
https://redmine.postgresql.org/issues/1910
https://redmine.postgresql.org/issues/1911
https://redmine.postgresql.org/issues/1922
https://redmine.postgresql.org/issues/1963
https://redmine.postgresql.org/issues/1964
https://redmine.postgresql.org/issues/2025
https://redmine.postgresql.org/issues/2124
https://redmine.postgresql.org/issues/1227
https://redmine.postgresql.org/issues/1267
https://redmine.postgresql.org/issues/1364
https://redmine.postgresql.org/issues/1394
https://redmine.postgresql.org/issues/1432
https://redmine.postgresql.org/issues/1585
https://redmine.postgresql.org/issues/1599
https://redmine.postgresql.org/issues/1603
https://redmine.postgresql.org/issues/1679
https://redmine.postgresql.org/issues/1680
https://redmine.postgresql.org/issues/1729
https://redmine.postgresql.org/issues/1730
https://redmine.postgresql.org/issues/1745
https://redmine.postgresql.org/issues/1747
https://redmine.postgresql.org/issues/1780
https://redmine.postgresql.org/issues/1792
https://redmine.postgresql.org/issues/1800
https://redmine.postgresql.org/issues/1801
https://redmine.postgresql.org/issues/1807
https://redmine.postgresql.org/issues/1832
https://redmine.postgresql.org/issues/1840
https://redmine.postgresql.org/issues/1842

pgAdmin 4 Documentation, Release 4.3

Bug #1855 - Ensure dialogue panels show their errors themselves, and not in the properties panel when creating
Trigger Function
Bug #1865 - Properly schema qualify domains when reverse engineering SQL
Bug #1874 - Add file resources to the windows runtime
Bug #1893 - Fix refreshing of Unique constraints
Bug #1896 - Use the correct OID for retrieving properties of freshly created exclusion constraints
Bug #1899 - Properly quote role names when specifying function ownership
Bug #1909 - Handle startup errors more gracefully in the runtime
Bug #1912 - Properly format arguments passed by triggers to functions
Bug #1919 - Ensure all changes to rows are stored in the data editor
Bug #1924 - Ensure the check_option is only set when editing views when appropriate
Bug #1936 - Don’t strip rn from “Download as CSV” batches of rows, as it leads to malformed data
Bug #1937 - Generate mSQL for new schemas correctly
Bug #1938 - Fix sorting of numerics in the statistics grids
Bug #1939 - Updated dynamic default for the window size (90% x 90%)
Bug #1949 - Ensure trigger function names are schema qualified in trigger RE-SQL
Bug #1951 - Fix issue where nnable to browse table columns when oid values exceeed max int
Bug #1953 - Add display messages and notices received in the query tool
Bug #1961 - Fix upgrade check on Python 3
Bug #1962 - Ensure treeview collection nodes are translated in the UI
Bug #1967 - Store layout changes on each adjustment
Bug #1976 - Prevent users selecting elements of the UI that shouldn’t be selectable
Bug #1979 - Deal with Function arguments correctly in the properties dialogue
Bug #1986 - Fix various encoding issues with multibyte paths and filenames resulting in empty file save
Bug #1992 - Quote identifiers correctly in auto-complete
Bug #1994 - Update to show modifications in edit grid
Bug #2000 - Allow setting of effective_io_concurrency on tablespaces in 9.6+
Bug #2005 - Fix various mis-spellings of VACUUM
Bug #2006 - Fix error when modifying table name or set schema on tables with postgis geometry column
Bug #2007 - Correctly sort rows by the pkey when viewing first/last 100
Bug #2009 - Reset the column list properly if the access method is changed on an index to ensure error handling
works correctly
Bug #2012 - Prevent attempts to create server groups with no name
Bug #2015 - Enable trigger option when user tries to change Row trigger value through properties section
Bug #2024 - Properly handle setting comments and other options on databases with allowconn = False
Bug #2026 - Improve detection of the pldbgapi extension and functions before allowing debugging
Bug #2027 - Fix inconsistent table styling
Bug #2028 - Fix display of double scrollbars on the grant wizard
Bug #2032 - Fix time formatting on dashboards
Bug #2033 - Show icons for unique and exclusion constraints in the dependency/dependents panels
Bug #2045 - Update copyright year on doc page
Bug #2046 - Fix error when setting up regression on Windows for pgadmin4
Bug #2047 - Ensure dialogues cannot be moved under the navbar
Bug #2061 - Enable/disable NULLs and ASC/DESC options for index columns and exclusion constraints
appropriately
Bug #2065 - Improve display of columns of exclusion contraints and foreign keys in the properties lists
Bug #2069 - Correct tablespace displayed in table properties

13.18. Version 1.2 309

https://redmine.postgresql.org/issues/1855
https://redmine.postgresql.org/issues/1865
https://redmine.postgresql.org/issues/1874
https://redmine.postgresql.org/issues/1893
https://redmine.postgresql.org/issues/1896
https://redmine.postgresql.org/issues/1899
https://redmine.postgresql.org/issues/1909
https://redmine.postgresql.org/issues/1912
https://redmine.postgresql.org/issues/1919
https://redmine.postgresql.org/issues/1924
https://redmine.postgresql.org/issues/1936
https://redmine.postgresql.org/issues/1937
https://redmine.postgresql.org/issues/1938
https://redmine.postgresql.org/issues/1939
https://redmine.postgresql.org/issues/1949
https://redmine.postgresql.org/issues/1951
https://redmine.postgresql.org/issues/1953
https://redmine.postgresql.org/issues/1961
https://redmine.postgresql.org/issues/1962
https://redmine.postgresql.org/issues/1967
https://redmine.postgresql.org/issues/1976
https://redmine.postgresql.org/issues/1979
https://redmine.postgresql.org/issues/1986
https://redmine.postgresql.org/issues/1992
https://redmine.postgresql.org/issues/1994
https://redmine.postgresql.org/issues/2000
https://redmine.postgresql.org/issues/2005
https://redmine.postgresql.org/issues/2006
https://redmine.postgresql.org/issues/2007
https://redmine.postgresql.org/issues/2009
https://redmine.postgresql.org/issues/2012
https://redmine.postgresql.org/issues/2015
https://redmine.postgresql.org/issues/2024
https://redmine.postgresql.org/issues/2026
https://redmine.postgresql.org/issues/2027
https://redmine.postgresql.org/issues/2028
https://redmine.postgresql.org/issues/2032
https://redmine.postgresql.org/issues/2033
https://redmine.postgresql.org/issues/2045
https://redmine.postgresql.org/issues/2046
https://redmine.postgresql.org/issues/2047
https://redmine.postgresql.org/issues/2061
https://redmine.postgresql.org/issues/2065
https://redmine.postgresql.org/issues/2069

pgAdmin 4 Documentation, Release 4.3

Bug #2076 - Handle sized time/timestamp columns correctly
Bug #2109 - Update copyright year
Bug #2110 - Handle saved directories that no longer exist gracefully
Bug #2112 - Enable comments on Initial database through right Click
Bug #2133 - Fix display of graphical query plans for UPDATE/DELETE queries
Bug #2138 - Fix display of zeros in read-only grid editors
Bug #2139 - Fixed issue causing Message (Connection to the server has been lost.) displayed with Materialized view
and view under sql tab
Bug #2152 - Fix handling of “char” columns
Bug #2156 - Added compatibility fixes for newer versions of Jinja2 (e.g. 2.9.5+)

13.19 Version 1.1

Release date: 2016-10-27

This release contains a number of features and fixes reported since the release of pgAdmin4 1.0;

13.19.1 Features

Feature #1328 - Add Python 3.5 Support
Feature #1859 - Include wait information on the activity tab of the dashboards

13.19.2 Bug fixes

Bug #1155 - Display the start value when the user creates sequence
Bug #1531 - Fix to update privileges for Views and Materials Views where “string indices must be integers error”
displayed
Bug #1574 - Display SQL in SQL pane for security label
Bug #1596 - Correct spelling error from evnt_turncate to evnt_truncate
Bug #1599 - Ensure the grant wizard works with objects with special characters in the name
Bug #1728 - Properties refreshing after objects are edited
Bug #1739 - Prevent the user from trying to.
Bug #1785 - Correctly identify server type upon first connection
Bug #1786 - Ensure errorModel unset property is set correctly when adding a new server
Bug #1808 - Set seconds to valid value in pgAgent job schedule
Bug #1817 - Display message “server does not support ssl” if server with ca-cert or ca-full added
Bug #1821 - Optionally sign both the Mac app bundle and the disk image
Bug #1822 - Handle non-ascii responses from the server when connecting
Bug #1823 - Attempt to sign the Windows installer, failing with a warning if there’s no cert available
Bug #1824 - Add documenation for pgAgent
Bug #1835 - Allow users to choose SELECT permissions for tables and sequences in the grant wizard
Bug #1837 - Fix refreshing of FTS dictionaries which was causing error “Connection to the server has been lost”
Bug #1838 - Don’t append new objects with the wrong parent in tree browser if the correct one isn’t loaded
Bug #1843 - Function definition matches value returned from pg_get_functiondef()
Bug #1847 - Identify the collation correctly when reverse engineering table SQL. ERROR: schema “default” does not
exist no longer displayed

310 Chapter 13. Release Notes

https://redmine.postgresql.org/issues/2076
https://redmine.postgresql.org/issues/2109
https://redmine.postgresql.org/issues/2110
https://redmine.postgresql.org/issues/2026
https://redmine.postgresql.org/issues/2133
https://redmine.postgresql.org/issues/2138
https://redmine.postgresql.org/issues/2139
https://redmine.postgresql.org/issues/2152
https://redmine.postgresql.org/issues/2156
https://redmine.postgresql.org/issues/1328
https://redmine.postgresql.org/issues/1859
https://redmine.postgresql.org/issues/1155
https://redmine.postgresql.org/issues/1531
https://redmine.postgresql.org/issues/1574
https://redmine.postgresql.org/issues/1596
https://redmine.postgresql.org/issues/1599
https://redmine.postgresql.org/issues/1728
https://redmine.postgresql.org/issues/1739
https://redmine.postgresql.org/issues/1785
https://redmine.postgresql.org/issues/1786
https://redmine.postgresql.org/issues/1808
https://redmine.postgresql.org/issues/1817
https://redmine.postgresql.org/issues/1821
https://redmine.postgresql.org/issues/1822
https://redmine.postgresql.org/issues/1823
https://redmine.postgresql.org/issues/1824
https://redmine.postgresql.org/issues/1835
https://redmine.postgresql.org/issues/1837
https://redmine.postgresql.org/issues/1838
https://redmine.postgresql.org/issues/1843
https://redmine.postgresql.org/issues/1847

pgAdmin 4 Documentation, Release 4.3

Bug #1849 - Remove security keys from config.py/config_local.py
Bug #1857 - Fix error while renaming FTS dictionary and FTS template nodes
Bug #1858 - Ensure the File Manager honours the file type while traversing the directories.
Bug #1861 - Properly generate exclusion constraint SQL.
Bug #1863 - Correctly quote type names in reverse engineered SQL for tables
Bug #1864 - Fix layout of DateTimePicker control help message.
Bug #1868 - Resolved issue where Integer type of preferences are not updated
Bug #1872 - Fix the file manager when used under Python 3.
Bug #1877 - Ensure preferences values are stored properly.
Bug #1878 - Ensure steps and schedules can be created in empty jobs. ProgrammingError: can’t adapt type
‘Undefined’ was displayed
Bug #1880 - Add new indexes to the correct parent on the treeview.

13.20 Version 1.0

Release date: 2016-09-29

The first major release of pgAdmin 4. With a more modern look and feel, this release includes the following features;

• Multiplatform

• Designed for multiple PostgreSQL versions and derivatives

• Extensive documentation

• Multiple deployment models

• Tools

• Routine maintenance

• Create, view and edit all common PostgreSQL objects

• Multibyte support

13.20. Version 1.0 311

https://redmine.postgresql.org/issues/1849
https://redmine.postgresql.org/issues/1857
https://redmine.postgresql.org/issues/1858
https://redmine.postgresql.org/issues/1861
https://redmine.postgresql.org/issues/1863
https://redmine.postgresql.org/issues/1864
https://redmine.postgresql.org/issues/1868
https://redmine.postgresql.org/issues/1872
https://redmine.postgresql.org/issues/1877
https://redmine.postgresql.org/issues/1878
https://redmine.postgresql.org/issues/1880

