
pgAudit - Open Source PostgreSQL Audit
Logging

Contents

pgAudit Open Source PostgreSQL Audit Logging 2

Introduction . 2

Why pgAudit? . 2

Usage Considerations . 3

PostgreSQL Version Compatibility . 4

Compile and Install . 4

Settings . 5

pgaudit.log . 5

pgaudit.log_catalog . 6

pgaudit.log_client . 6

pgaudit.log_level . 6

pgaudit.log_parameter . 7

pgaudit.log_relation . 7

pgaudit.log_statement_once . 7

pgaudit.role . 7

Session Audit Logging . 7

Configuration . 7

Example . 8

Object Audit Logging . 9

Configuration . 9

Example . 9

1

Format . 11

Caveats . 12

Authors . 12

pgAudit Open Source PostgreSQL Audit Logging

Introduction

The PostgreSQL Audit Extension (pgAudit) provides detailed session and/or
object audit logging via the standard PostgreSQL logging facility.

The goal of the pgAudit is to provide PostgreSQL users with capability to
produce audit logs often required to comply with government, financial, or ISO
certifications.

An audit is an official inspection of an individual’s or organization’s accounts,
typically by an independent body. The information gathered by pgAudit is
properly called an audit trail or audit log. The term audit log is used in this
documentation.

Why pgAudit?

Basic statement logging can be provided by the standard logging facility with
log_statement = all. This is acceptable for monitoring and other usages but
does not provide the level of detail generally required for an audit. It is not
enough to have a list of all the operations performed against the database. It must
also be possible to find particular statements that are of interest to an auditor.
The standard logging facility shows what the user requested, while pgAudit
focuses on the details of what happened while the database was satisfying the
request.

For example, an auditor may want to verify that a particular table was created
inside a documented maintenance window. This might seem like a simple job
for grep, but what if you are presented with something like this (intentionally
obfuscated) example:

DO $$
BEGIN

EXECUTE ’CREATE TABLE import’ || ’ant_table (id INT)’;
END $$;

Standard logging will give you this:

2

LOG: statement: DO $$
BEGIN

EXECUTE ’CREATE TABLE import’ || ’ant_table (id INT)’;
END $$;

It appears that finding the table of interest may require some knowledge of the
code in cases where tables are created dynamically. This is not ideal since it
would be preferable to just search on the table name. This is where pgAudit
comes in. For the same input, it will produce this output in the log:

AUDIT: SESSION,33,1,FUNCTION,DO,,,"DO $$
BEGIN

EXECUTE ’CREATE TABLE import’ || ’ant_table (id INT)’;
END $$;"
AUDIT: SESSION,33,2,DDL,CREATE TABLE,TABLE,public.important_table,CREATE TABLE important_table (id INT)

Not only is the DO block logged, but substatement 2 contains the full text of the
CREATE TABLE with the statement type, object type, and full-qualified name to
make searches easy.

When logging SELECT and DML statements, pgAudit can be configured to log a
separate entry for each relation referenced in a statement. No parsing is required
to find all statements that touch a particular table. In fact, the goal is that
the statement text is provided primarily for deep forensics and should not be
required for an audit.

Usage Considerations

Depending on settings, it is possible for pgAudit to generate an enormous volume
of logging. Be careful to determine exactly what needs to be audit logged in
your environment to avoid logging too much.

For example, when working in an OLAP environment it would probably not be
wise to audit log inserts into a large fact table. The size of the log file will likely
be many times the actual data size of the inserts because the log file is expressed
as text. Since logs are generally stored with the OS this may lead to disk space
being exhausted very quickly. In cases where it is not possible to limit audit
logging to certain tables, be sure to assess the performance impact while testing
and allocate plenty of space on the log volume. This may also be true for OLTP
environments. Even if the insert volume is not as high, the performance impact
of audit logging may still noticeably affect latency.

To limit the number of relations audit logged for SELECT and DML statements,
consider using object audit logging (see Object Auditing). Object audit logging
allows selection of the relations to be logged allowing for reduction of the overall
log volume. However, when new relations are added they must be explicitly

3

added to object audit logging. A programmatic solution where specified tables
are excluded from logging and all others are included may be a good option in
this case.

PostgreSQL Version Compatibility

pgAudit was developed to support PostgreSQL 9.5 or greater.

In order to support new functionality introduced in each PostgreSQL release,
pgAudit maintains a separate branch for each PostgreSQL major version (cur-
rently PostgreSQL 9.5 - 11) which will be maintained in a manner similar to the
PostgreSQL project.

Aside from bug fixes, no further development is planned for stable branches.
New development, if any, will be strictly for next unreleased major version of
PostgreSQL.

pgAudit versions relate to PostgreSQL major versions as follows:

• pgAudit v1.5.X is intended to support PostgreSQL 13.

• pgAudit v1.4.X is intended to support PostgreSQL 12.

• pgAudit v1.3.X is intended to support PostgreSQL 11.

• pgAudit v1.2.X is intended to support PostgreSQL 10.

• pgAudit v1.1.X is intended to support PostgreSQL 9.6.

• pgAudit v1.0.X is intended to support PostgreSQL 9.5.

Compile and Install

pgAudit can be compiled against an installed copy of PostgreSQL with develop-
ment packages using PGXS.

Clone the pgAudit extension:

git clone https://github.com/pgaudit/pgaudit.git

Change to pgAudit directory:

cd pgaudit

Checkout REL_12_STABLE branch (note that the stable branch may not exist for
unreleased versions of PostgreSQL):

4

git checkout REL_12_STABLE

Build pgAudit and run regression tests:

make check USE_PGXS=1

Install pgAudit:

make install USE_PGXS=1

Detailed instructions can be found in test/Vagrantfile.

Settings

Settings may be modified only by a superuser. Allowing normal users to change
their settings would defeat the point of an audit log.

Settings can be specified globally (in postgresql.conf or using ALTER SYSTEM
... SET), at the database level (using ALTER DATABASE ... SET), or at the
role level (using ALTER ROLE ... SET). Note that settings are not inherited
through normal role inheritance and SET ROLE will not alter a user’s pgAudit
settings. This is a limitation of the roles system and not inherent to pgAudit.

The pgAudit extension must be loaded in shared_preload_libraries. Otherwise,
an error will be raised at load time and no audit logging will occur. In addition,
CREATE EXTENSION pgaudit must be called before pgaudit.log is set. If the
pgaudit extension is dropped and needs to be recreated then pgaudit.log must
be unset first otherwise an error will be raised.

pgaudit.log

Specifies which classes of statements will be logged by session audit logging.
Possible values are:

• READ: SELECT and COPY when the source is a relation or a query.

• WRITE: INSERT, UPDATE, DELETE, TRUNCATE, and COPY when the desti-
nation is a relation.

• FUNCTION: Function calls and DO blocks.

• ROLE: Statements related to roles and privileges: GRANT, REVOKE,
CREATE/ALTER/DROP ROLE.

• DDL: All DDL that is not included in the ROLE class.

5

http://www.postgresql.org/docs/12/runtime-config-client.html#GUC-SHARED-PRELOAD-LIBRARIES

• MISC: Miscellaneous commands, e.g. DISCARD, FETCH, CHECKPOINT,
VACUUM, SET.

• MISC_SET: Miscellaneous SET commands, e.g. SET ROLE.

• ALL: Include all of the above.

Multiple classes can be provided using a comma-separated list and classes can
be subtracted by prefacing the class with a - sign (see Session Audit Logging).

The default is none.

pgaudit.log_catalog

Specifies that session logging should be enabled in the case where all relations in
a statement are in pg_catalog. Disabling this setting will reduce noise in the log
from tools like psql and PgAdmin that query the catalog heavily.

The default is on.

pgaudit.log_client

Specifies whether log messages will be visible to a client process such as psql.
This setting should generally be left disabled but may be useful for debugging or
other purposes.

Note that pgaudit.log_level is only enabled when pgaudit.log_client is
on.

The default is off.

pgaudit.log_level

Specifies the log level that will be used for log entries (see Message Severity
Levels for valid levels) but note that ERROR, FATAL, and PANIC are not allowed).
This setting is used for regression testing and may also be useful to end users
for testing or other purposes.

Note that pgaudit.log_level is only enabled when pgaudit.log_client is
on; otherwise the default will be used.

The default is log.

6

http://www.postgresql.org/docs/12/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS
http://www.postgresql.org/docs/12/runtime-config-logging.html#RUNTIME-CONFIG-SEVERITY-LEVELS

pgaudit.log_parameter

Specifies that audit logging should include the parameters that were passed with
the statement. When parameters are present they will be included in CSV format
after the statement text.

The default is off.

pgaudit.log_relation

Specifies whether session audit logging should create a separate log entry for
each relation (TABLE, VIEW, etc.) referenced in a SELECT or DML statement. This
is a useful shortcut for exhaustive logging without using object audit logging.

The default is off.

pgaudit.log_statement_once

Specifies whether logging will include the statement text and parameters with
the first log entry for a statement/substatement combination or with every
entry. Disabling this setting will result in less verbose logging but may make it
more difficult to determine the statement that generated a log entry, though the
statement/substatement pair along with the process id should suffice to identify
the statement text logged with a previous entry.

The default is off.

pgaudit.role

Specifies the master role to use for object audit logging. Multiple audit roles
can be defined by granting them to the master role. This allows multiple groups
to be in charge of different aspects of audit logging.

There is no default.

Session Audit Logging

Session audit logging provides detailed logs of all statements executed by a user
in the backend.

Configuration

Session logging is enabled with the pgaudit.log setting.

Enable session logging for all DML and DDL and log all relations in DML statements:

7

set pgaudit.log = ’write, ddl’;
set pgaudit.log_relation = on;

Enable session logging for all commands except MISC and raise audit log messages
as NOTICE:

set pgaudit.log = ’all, -misc’;
set pgaudit.log_level = notice;

Example

In this example session audit logging is used for logging DDL and SELECT state-
ments. Note that the insert statement is not logged since the WRITE class is not
enabled

SQL:

set pgaudit.log = ’read, ddl’;

create table account
(

id int,
name text,
password text,
description text

);

insert into account (id, name, password, description)
values (1, ’user1’, ’HASH1’, ’blah, blah’);

select *
from account;

Log Output:

AUDIT: SESSION,1,1,DDL,CREATE TABLE,TABLE,public.account,create table account
(

id int,
name text,
password text,
description text

);,<not logged>
AUDIT: SESSION,2,1,READ,SELECT,,,select *

from account,,<not logged>

8

Object Audit Logging

Object audit logging logs statements that affect a particular relation. Only
SELECT, INSERT, UPDATE and DELETE commands are supported. TRUNCATE is not
included in object audit logging.

Object audit logging is intended to be a finer-grained replacement for
pgaudit.log = ’read, write’. As such, it may not make sense to use them
in conjunction but one possible scenario would be to use session logging to
capture each statement and then supplement that with object logging to get
more detail about specific relations.

Configuration

Object-level audit logging is implemented via the roles system. The pgaudit.role
setting defines the role that will be used for audit logging. A relation (TABLE,
VIEW, etc.) will be audit logged when the audit role has permissions for the
command executed or inherits the permissions from another role. This allows
you to effectively have multiple audit roles even though there is a single master
role in any context.

Set pgaudit.role to auditor and grant SELECT and DELETE privileges on the
account table. Any SELECT or DELETE statements on the account table will
now be logged:

set pgaudit.role = ’auditor’;

grant select, delete
on public.account
to auditor;

Example

In this example object audit logging is used to illustrate how a granular approach
may be taken towards logging of SELECT and DML statements. Note that logging
on the account table is controlled by column-level permissions, while logging on
the account_role_map table is table-level.

SQL:

set pgaudit.role = ’auditor’;

create table account
(

id int,

9

name text,
password text,
description text

);

grant select (password)
on public.account
to auditor;

select id, name
from account;

select password
from account;

grant update (name, password)
on public.account
to auditor;

update account
set description = ’yada, yada’;

update account
set password = ’HASH2’;

create table account_role_map
(

account_id int,
role_id int

);

grant select
on public.account_role_map
to auditor;

select account.password,
account_role_map.role_id

from account
inner join account_role_map

on account.id = account_role_map.account_id

Log Output:

AUDIT: OBJECT,1,1,READ,SELECT,TABLE,public.account,select password
from account,<not logged>

10

AUDIT: OBJECT,2,1,WRITE,UPDATE,TABLE,public.account,update account
set password = ’HASH2’,<not logged>

AUDIT: OBJECT,3,1,READ,SELECT,TABLE,public.account,select account.password,
account_role_map.role_id

from account
inner join account_role_map

on account.id = account_role_map.account_id,<not logged>
AUDIT: OBJECT,3,1,READ,SELECT,TABLE,public.account_role_map,select account.password,

account_role_map.role_id
from account

inner join account_role_map
on account.id = account_role_map.account_id,<not logged>

Format

Audit entries are written to the standard logging facility and contain the following
columns in comma-separated format. Output is compliant CSV format only if
the log line prefix portion of each log entry is removed.

• AUDIT_TYPE - SESSION or OBJECT.

• STATEMENT_ID - Unique statement ID for this session. Each state-
ment ID represents a backend call. Statement IDs are sequential even
if some statements are not logged. There may be multiple entries for a
statement ID when more than one relation is logged.

• SUBSTATEMENT_ID - Sequential ID for each sub-statement within
the main statement. For example, calling a function from a query. Sub-
statement IDs are continuous even if some sub-statements are not logged.
There may be multiple entries for a sub-statement ID when more than one
relation is logged.

• CLASS - e.g. READ, ROLE (see pgaudit.log).

• COMMAND - e.g. ALTER TABLE, SELECT.

• OBJECT_TYPE - TABLE, INDEX, VIEW, etc. Available for SELECT, DML
and most DDL statements.

• OBJECT_NAME - The fully-qualified object name (e.g. public.account).
Available for SELECT, DML and most DDL statements.

• STATEMENT - Statement executed on the backend.

• PARAMETER - If pgaudit.log_parameter is set then this field will
contain the statement parameters as quoted CSV or <none> if there are
no parameters. Otherwise, the field is <not logged>.

11

Use log_line_prefix to add any other fields that are needed to satisfy your audit
log requirements. A typical log line prefix might be ’%m %u %d [%p]: ’ which
would provide the date/time, user name, database name, and process id for each
audit log.

Caveats

Object renames are logged under the name they were renamed to. For example,
renaming a table will produce the following result:

ALTER TABLE test RENAME TO test2;

AUDIT: SESSION,36,1,DDL,ALTER TABLE,TABLE,public.test2,ALTER TABLE test RENAME TO test2,<not logged>

It is possible to have a command logged more than once. For example, when a
table is created with a primary key specified at creation time the index for the
primary key will be logged independently and another audit log will be made for
the index under the create entry. The multiple entries will however be contained
within one statement ID.

Autovacuum and Autoanalyze are not logged.

Statements that are executed after a transaction enters an aborted state will
not be audit logged. However, the statement that caused the error and any
subsequent statements executed in the aborted transaction will be logged as
ERRORs by the standard logging facility.

Authors

The PostgreSQL Audit Extension is based on the 2ndQuadrant pgaudit project
authored by Simon Riggs, Abhijit Menon-Sen, and Ian Barwick and submitted
as an extension to PostgreSQL core. Additional development has been done by
David Steele of Crunchy Data.

12

http://www.postgresql.org/docs/12/runtime-config-logging.html#GUC-LOG-LINE-PREFIX
http://www.2ndquadrant.com
https://github.com/2ndQuadrant/pgaudit
http://www.crunchydata.com

	pgAudit Open Source PostgreSQL Audit Logging
	Introduction
	Why pgAudit?
	Usage Considerations
	PostgreSQL Version Compatibility
	Compile and Install
	Settings
	pgaudit.log
	pgaudit.log_catalog
	pgaudit.log_client
	pgaudit.log_level
	pgaudit.log_parameter
	pgaudit.log_relation
	pgaudit.log_statement_once
	pgaudit.role

	Session Audit Logging
	Configuration
	Example

	Object Audit Logging
	Configuration
	Example

	Format
	Caveats
	Authors

