pgBackRest User Guide

Open Source PostgreSQL Backup and Restore Utility

Version 2.31

$2’CRUNCHY

Enterprise PostgreSQL

Crunchy Data Solutions, Inc.
February 5, 2021

TABLE OF CONTENTS

Table of Contents

1 INTRODUCTION 2
[2__CONCEPTS| 3
2.1 BACKUPI e 3
2.2 RESTORE] o o 3
2.3 WRITE AHEAD LOG (WAL)| e 3
2.4 ENCRYPTION o o e s 4
[3__UPGRADING PGBACKREST]| 5
1 PGRADING PGBACKREST FROM VI TO V2| o e e e 5

4 -3 6
5 TNSTALLATIONI 7
(6 QUICK START| 9
.1 SETUP DEM LUSTERI ot e e 9
[6.2 CONFIGURE CLUSTER STANZAl o ot e e e e e e e e e e e e e e 9
6.3 CREATE THE BEPOSITORY]. . .« « + v o o e e e e e e e e e e e e e e e e e e e 11
4 NFIGURE ARCHIVING| o o e e s e s s s 12
[6.5 CONFIGURE BRETENTIONI o o e e e e e e e s s s s 13

. NFIGURE REPOSITORY ENCRYPTION v o o o e e e e e e e s s s 13
[6.7 CREATE THE STANZAL. o o e e e e e e e e e e e e e e e s e e 14
[6.8 CHECK THE CONFIGURATION! . . . v v v e e e e e e e e e e e e e e e e e e e 14
6.9 PERFORM A BACKUP|. o e e e e e e e e e e e e e e s 15
[6.I0SCHEDULE A BACKUP] e 16
6. ITBACKUP INFORMATION! . . . o . v v e e e e e e e e e e e e s s s s, 16
[6.12RESTORE A BACKUPI o o o e e e e e e e e e e e e e e 18
[7_BACKuP| 20
[7.1 FAST START OPTION| o o o e e e e e e e e s s s s 20
(/.2 ARCHIVE TIMEQUTI« o o e o e e e e e e e e e e e s s s s s s 21
8 MONITORING| 22
8.1 INPOSTGRESQLI. 22

9 RETENTION 24
[O.1 FuLL BACKUP BETENTIONI. o o o e e e e e e e s e e s s s s, 24
9.2 DIFFERENTIAL BACKUP BETENTION| . . . v v v vt e e e e e e e e e e e e e e e e e e 25
[9.3 ARCHIVE RETENTION o o ot e 26
10 RESTORE 29
(101 FILE OWNERSHIPl. . . . o v o e e e e e e e e e e e e e e e s s 29
T0.2DELTA OPTION| v o e e e e e e e e e e, 29
[10.3RESTORE SELECTED DATABASESI. e s s s 30
pgBackRest User Guide Crunchy Data Solutions, Inc.

Version 2.31 -1- February 5, 2021

TABLE OF CONTENTS TABLE OF CONTENTS
11 POINT-IN-TIME RECOVERY 34
12 AZURE-COMPATIBLE OBJECT STORE PPORT 40
13 S3-COMPATIBLE OBJECT STORE SUPPORT 42
14 DELETE A STANZA 45
15 DEDICATED REPOSITORY HOST 46
T5 T INSTALLATION . . o v o e e e e e e e e e e e e e e s s s s 46
[15.2 SETUP PASSWORDLESS SSHI 47
5.3 CONFIGURATION . .« v v v e e e e e e e e e e e e e e s 48
15.4PERFORM A BACKUP! o 49
15, 5RESTORE A BACKUPI o e, 49
16 PARALLEL BACKUP / RESTORE 50
17 STARTING AND STOPPING 52
18 REPLICATION 54
T8 T INSTALLATION! . . . v o e e e e e e e e e e e e e e e s s s s s s s 54
18.2 SETUP PASSWORDLE e | 54
18 . 3HOT STANDBY] . . . o o o e o e e e, 55
(18.4 STREAMING REPLICATION| o o v e e e e e e e e e e e e e e e e e s s e e 58
(19 ASYNCHRONOUS ARCHIVING| 61
19 T ARCHIVE PUSHI o e e s s e, 62
19.2 ARCHIVE GETl. o o e e e, 64
20 BACKUP FROM A STANDBY 66
21 UPGRADING POSTGRESQL 68

pgBackRest User Guide
Version 2.31

Crunchy Data Solutions, Inc.
February 5, 2021

1 INTRODUCTION

1 Introduction

This user guide is intended to be followed sequentially from beginning to end — each section depends
on the last. For example, the section relies on setup that is performed in the [QUICK START]
section. Once pgBackRest is up and running then skipping around is possible but following the user
guide in order is recommended the first time through.

Although the examples are targeted at RHEL/CentOS 7-8 and PostgreSQL 9.6-11, it should be fairly
easy to apply this guide to any Unix distribution and PostgreSQL version. The only OS-specific com-
mands are those to create, start, stop, and drop PostgreSQL clusters. The pgBackRest commands will
be the same on any Unix system though the location to install the executable may vary.

Configuration information and documentation for PostgreSQL can be found in the PostgreSQL MANUAL.

A somewhat novel approach is taken to documentation in this user guide. Each command is run on a
virtual machine when the documentation is built from the XML source. This means you can have a high
confidence that the commands work correctly in the order presented. Output is captured and displayed
below the command when appropriate. If the output is not included it is because it was deemed not
relevant or was considered a distraction from the narrative.

All commands are intended to be run as an unprivileged user that has sudo privileges for both the root
and postgres users. It’s also possible to run the commands directly as their respective users without
modification and in that case the sudo commands can be stripped off.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -3- February 5, 2021

http://www.postgresql.org/docs/10/static/index.html

2 CONCEPTS

2 Concepts

The following concepts are defined as they are relevant to pgBackRest, PostgreSQL, and this user
guide.

2.1 Backup

A backup is a consistent copy of a database cluster that can be restored to recover from a hardware
failure, to perform Point-In-Time Recovery, or to bring up a new standby.

Full Backup: pgBackRest copies the entire contents of the database cluster to the backup. The first
backup of the database cluster is always a Full Backup. pgBackRest is always able to restore a full
backup directly. The full backup does not depend on any files outside of the full backup for consistency.

Differential Backup: pgBackRest copies only those database cluster files that have changed since
the last full backup. pgBackRest restores a differential backup by copying all of the files in the chosen
differential backup and the appropriate unchanged files from the previous full backup. The advantage
of a differential backup is that it requires less disk space than a full backup, however, the differential
backup and the full backup must both be valid to restore the differential backup.

Incremental Backup: pgBackRest copies only those database cluster files that have changed since
the last backup (which can be another incremental backup, a differential backup, or a full backup). As an
incremental backup only includes those files changed since the prior backup, they are generally much
smaller than full or differential backups. As with the differential backup, the incremental backup depends
on other backups to be valid to restore the incremental backup. Since the incremental backup includes
only those files since the last backup, all prior incremental backups back to the prior differential, the prior
differential backup, and the prior full backup must all be valid to perform a restore of the incremental
backup. If no differential backup exists then all prior incremental backups back to the prior full backup,
which must exist, and the full backup itself must be valid to restore the incremental backup.

2.2 Restore

A restore is the act of copying a backup to a system where it will be started as a live database cluster.
A restore requires the backup files and one or more WAL segments in order to work correcily.

2.3 Write Ahead Log (WAL)

WAL is the mechanism that PostgreSQL uses to ensure that no committed changes are lost. Transac-
tions are written sequentially to the WAL and a transaction is considered to be committed when those
writes are flushed to disk. Afterwards, a background process writes the changes into the main database
cluster files (also known as the heap). In the event of a crash, the WAL is replayed to make the database
consistent.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -4 - February 5, 2021

2 CONCEPTS 2.4 Encryption

WAL is conceptually infinite but in practice is broken up into individual 16MB files called segments. WAL
segments follow the naming convention 0000000100000A1E000000FE where the first 8 hexadecimal
digits represent the timeline and the next 16 digits are the logical sequence number (LSN).

2.4 Encryption

Encryption is the process of converting data into a format that is unrecognizable unless the appropriate
password (also referred to as passphrase) is provided.

pgBackRest will encrypt the repository based on a user-provided password, thereby preventing unau-
thorized access to data stored within the repository.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -5- February 5, 2021

3 UPGRADING PGBACKREST

3 Upgrading pgBackRest

3.1 Upgrading pgBackRest from v1 to v2

Upgrading from v1 to v2 is fairly straight-forward. The repository format has not changed and all non-
deprecated options from v1 are accepted, so for most installations it is simply a matter of installing the
new version.

However, there are a few caveats:
» The deprecated thread-max option is no longer valid. Use process-max instead.

» The deprecated archive-max-mb option is no longer valid. This has been replaced with the
archive-push-queue-max option which has different semantics.

» The default for the backup-user option has changed from backrest t0 pgbackrest.

* Inv2.02 the default location of the pgBackRest configuration file has changed from /et c/pgbackrest.
to /etc/pgbackrest/pgbackrest.conf. If /etc/pgbackrest/pgbackrest.conf does
not exist, the /etc/pgbackrest.conf file will be loaded instead, if it exists.

Many option names have changed to improve consistency although the old names from v1 are still
accepted. In general, db—~* options have been renamed to pg-* and backup-+*/retention-»* options
have been renamed to repo—* when appropriate.

PostgreSQL and repository options must be indexed when using the new names introduced in v2, e.g.
pgl-host, pgl-path, repol-path, repol-type, etc. Only one repository is allowed currently but
more flexibility is planned for v2.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -6 - February 5, 2021

4 BUILD

4 Build

RHEL/CentOS 7-8 packages for pgBackRest are available from CRUNCHY DATA or YUM.POSTGRESQL.ORG,
but it is also easy to download the source and install manually.

When building from source it is best to use a build host rather than building on production. Many of the
tools required for the build should generally not be installed in production. pgBackRest consists of a
single executable so it is easy to copy to a new host once it is built.

build — Download version 2 . 31 of pgBackRest to pre-created /build path

wget —-g -0 — \
https://github.com/pgbackrest/pgbackrest/archive/release/2.31.tar.gz | \
tar zx -C /build

build — Install build dependencies

sudo yum install make gcc postgresgllO-devel \
openssl-devel libxml2-devel 1lz4-devel libzstd-devel bzip2-devel

build — Configure and compile pgBackRest

cd /build/pgbackrest-release-2.31/src && ./configure && make

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -7- February 5, 2021

http://www.crunchydata.com
http://yum.postgresql.org

5 INSTALLATION

5 Installation

A new host named pg1 is created to contain the demo cluster and run pgBackRest examples.
pgBackRest needs to be installed from a package or installed manually as shown here.

build — Install dependencies

sudo yum install postgresqgl-1libs

pg-primary — Copy pgBackRest binary from build host

sudo scp build:/build/pgbackrest-release-2.31/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

pg-primary — Create pgBackRest configuration file and directories

sudo mkdir -p —-m 770 /var/log/pgbackrest

sudo chown postgres:postgres /var/log/pgbackrest

sudo mkdir -p /etc/pgbackrest

sudo mkdir -p /etc/pgbackrest/conf.d

sudo touch /etc/pgbackrest/pgbackrest.conf

sudo chmod 640 /etc/pgbackrest/pgbackrest.conf

sudo chown postgres:postgres /etc/pgbackrest/pgbackrest.conf

pgBackRest should now be properly installed but it is best to check. If any dependencies were missed
then you will get an error when running pgBackRest from the command line.

pg-primary — Make sure the installation worked

sudo —-u postgres pgbackrest
Output:
pgBackRest 2.31 - General help

Usage:
pgbackrest [options] [command]

Commands :
archive-get Get a WAL segment from the archive.
archive-push Push a WAL segment to the archive.

backup Backup a database cluster.

check Check the configuration.

expire Expire backups that exceed retention.
help Get help.

info Retrieve information about backups.
restore Restore a database cluster.

stanza-create Create the required stanza data.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -8- February 5, 2021

5 INSTALLATION

stanza-delete Delete a stanza.
stanza-upgrade Upgrade a stanza.

start Allow pgBackRest processes to run.
stop Stop pgBackRest processes from running.
version Get version.
Use 'pgbackrest help [command]' for more information.
pgBackRest User Guide Crunchy Data Solutions, Inc.

Version 2.31 -9- February 5, 2021

6 QUICK START

6 Quick Start

The Quick Start section will cover basic configuration of pgBackRest and PostgreSQL and introduce
the backup, restore, and info commands.

6.1 Setup Demo Cluster

Creating the demo cluster is optional but is strongly recommended, especially for new users, since the
example commands in the user guide reference the demo cluster; the examples assume the demo
cluster is running on the default port (i.e. 5432). The cluster will not be started until a later section
because there is still some configuration to do.

pg-primary — Create the demo cluster

sudo —-u postgres /usr/pgsgl-10/bin/initdb \
-D /var/lib/pgsgl/10/data -k —A peer

By default PostgreSQL will only accept local connections. The examples in this guide will require
connections from other servers so 1isten addresses is configured to listen on all interfaces. This
may not be appropriate for secure installations.

pg-primary.:/var/lib/pgsql/10/data/postgresqgl.conf — Set 1isten_addresses

listen_addresses = 'x'

For demonstration purposes the 1og_line prefix setting will be minimally configured. This keeps
the log output as brief as possible to better illustrate important information.

pg-primary:/var/lib/pgsql/10/data/postgresqgl.conf — Set log_line prefix

listen_addresses = 'x*'
log_line_prefix = "'

By default RHEL/CentOS 7-8 includes the day of the week in the log filename. This makes automating
the user guide a bit more complicated so the 1og_filename is set to a constant.

pg-primary:/var/lib/pgsgl/10/data/postgresqgl.conf — Set log_filename

listen_addresses = 'x'
log_filename = 'postgresqgl.log'
log_line_prefix = "'

6.2 Configure Cluster Stanza

A stanza is the configuration for a PostgreSQL database cluster that defines where it is located, how it
will be backed up, archiving options, etc. Most db servers will only have one Postgres database cluster

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -10 - February 5, 2021

6 QUICK START 6.2 Configure Cluster Stanza

and therefore one stanza, whereas backup servers will have a stanza for every database cluster that
needs to be backed up.

It is tempting to name the stanza after the primary cluster but a better name describes the databases
contained in the cluster. Because the stanza name will be used for the primary and all replicas it is
more appropriate to choose a name that describes the actual function of the cluster, such as app or dw,
rather than the local cluster name, such as main or prod.

The name 'demo’ describes the purpose of this cluster accurately so that will also make a good stanza
name.

pgBackRest needs to know where the base data directory for the PostgreSQL cluster is located. The
path can be requested from PostgreSQL directly but in a recovery scenario the PostgreSQL process
will not be available. During backups the value supplied to pgBackRest will be compared against the
path that PostgreSQL is running on and they must be equal or the backup will return an error. Make
sure that pg—path is exactly equal to data_directory in postgresqgl.conf.

By default RHEL/CentOS 7-8 stores clusters in /var/1ib/pgsql/ [version]/data soitis easy to
determine the correct path for the data directory.

When creating the /et c/pgbackrest /pgbackrest.conf file, the database owner (usually postgres)
must be granted read privileges.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure the PostgreSQL cluster data directory

[demo]
pgl-path=/var/lib/pgsqgl/10/data

pgBackRest configuration files follow the Windows INI convention. Sections are denoted by text in
brackets and key/value pairs are contained in each section. Lines beginning with # are ignored and can
be used as comments.

There are multiple ways the pgBackRest configuration files can be loaded:

* configand config-include-path are default: the default config file will be loaded, if it exists,
and . conf files in the default config include path will be appended, if they exist.

» config option is specified: only the specified config file will be loaded and is expected to exist.

* config-include-path is specified: x.conf files in the config include path will be loaded and
the path is required to exist. The default config file will be be loaded if it exists. If it is desirable to
load only the files in the specified config include path, then the ——no-config option can also be
passed.

* config and config-include-path are specified: using the user-specified values, the config
file will be loaded and *.conf files in the config include path will be appended. The files are
expected to exist.

» config-path is specified: this setting will override the base path for the default location of the
config file and/or the base path of the default config-include-path setting unless the config and/or
config-include-path option is explicitly set.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -11 - February 5, 2021

6 QUICK START 6.3 Create the Repository

The files are concatenated as if they were one big file; order doesn’t matter, but there is precedence
based on sections. The precedence (highest to lowest) is:

* [stanza:command]
* [stanza]
* [global:command]

* [global]

NOTE: —-config, ——config-include-path and —--config-path are command-line only op-
tions.

pgBackRest can also be configured using environment variables as described in the COMMAND REF-
ERENCE.

pg-primary — Configure 1og—path using the environment

sudo -u postgres bash —-c ' \
export PGBACKREST_ LOG_PATH=/path/set/by/env && \
pgbackrest —--log-level-console=error help backup log-path'
Output:
pgBackRest 2.31 - 'backup' command - 'log-path' option help

Path where log files are stored.

The log path provides a location for pgBackRest to store log files. Note that
if log-level-file=off then no log path is required.

current: /path/set/by/env
default: /var/log/pgbackrest

6.3 Create the Repository

The repository is where pgBackRest stores backups and archives WAL segments.

It may be difficult to estimate in advance how much space you’ll need. The best thing to do is take
some backups then record the size of different types of backups (full/incr/diff) and measure the amount
of WAL generated per day. This will give you a general idea of how much space you’ll need, though of
course requirements will likely change over time as your database evolves.

For this demonstration the repository will be stored on the same host as the PostgreSQL server. This
is the simplest configuration and is useful in cases where traditional backup software is employed to
backup the database host.

pg-primary — Create the pgBackRest repository

sudo mkdir -p /var/lib/pgbackrest

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -12 - February 5, 2021

command.html
command.html

6 QUICK START 6.4 Configure Archiving

sudo chmod 750 /var/lib/pgbackrest
sudo chown postgres:postgres /var/lib/pgbackrest

The repository path must be configured so pgBackRest knows where to find it.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure the pgBackRest repository path

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall]
repol-path=/var/lib/pgbackrest

6.4 Configure Archiving

Backing up a running PostgreSQL cluster requires WAL archiving to be enabled. Note that at least
one WAL segment will be created during the backup process even if no explicit writes are made to the
cluster.

pg-primary:/var/1lib/pgsqgl/10/data/postgresqgl .conf — Configure archive settings

archive_command = 'pgbackrest --stanza=demo archive-push %p'
archive mode = on

listen_addresses = 'x*'

log_filename = 'postgresqgl.log'

log_line_prefix = "'

max_wal_senders = 3

wal_level = replica

Setting wal_level to at least replica and increasing max wal_senders is a good idea even if there
are currently no replicas as this will allow them to be added later without restarting the primary cluster.

The PostgreSQL cluster must be restarted after making these changes and before performing a backup.

pg-primary — Restart the demo cluster

sudo systemctl restart postgresgl-10.service

When archiving a WAL segment is expected to take more than 60 seconds (the default) to reach the
pgBackRest repository, then the pgBackRest archive-timeout option should be increased. Note
that this option is not the same as the PostgreSQL archive_timeout option which is used to force
a WAL segment switch; useful for databases where there are long periods of inactivity. For more
information on the PostgreSQL archive_timeout option, see PostgreSQL WRITE AHEAD LOG.

The archive—-push command can be configured with its own options. For example, a lower compres-
sion level may be set to speed archiving without affecting the compression used for backups.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Config archive-push to use a lower compression
level

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -13 - February 5, 2021

https://www.postgresql.org/docs/current/static/runtime-config-wal.html

6 QUICK START 6.5 Configure Retention

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
repol-path=/var/lib/pgbackrest

[global:archive-push]
compress—level=3

This configuration technique can be used for any command and can even target a specific stanza, e.g.
demo:archive-push.

6.5 Configure Retention

pgBackRest expires backups based on retention options.

pg-primary.:/etc/pgbackrest/pgbackrest.conf — Configure retention to 2 full backups

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
repol-path=/var/lib/pgbackrest
repol-retention-full=2

[global:archive-push]
compress—level=3

More information about retention can be found in the RETENTION] section.

6.6 Configure Repository Encryption

The repository will be configured with a cipher type and key to demonstrate encryption. Encryption
is always performed client-side even if the repository type (e.g. S3 or other object store) supports
encryption.

It is important to use a long, random passphrase for the cipher key. A good way to generate one is to
run: openssl rand -base64 48.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest repository encryption

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTIGirhPygu4 jOKOXf9L04vjfO

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -14 - February 5, 2021

6 QUICK START 6.7 Create the Stanza

repol-cipher-type=aes-256-cbc
repol-path=/var/lib/pgbackrest
repol-retention-full=2

[global:archive—-push]
compress—level=3

Once the repository has been configured and the stanza created and checked, the repository encryption
settings cannot be changed.

6.7 Create the Stanza

The stanza-create command must be run on the host where the repository is located to initialize the
stanza. It is recommended that the check command be run after stanza-create to ensure archiving
and backups are properly configured.

pg-primary — Create the stanza and check the configuration

sudo —-u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create
Output:
P00 INFO: stanza-create command begin 2.31: —-—-exec-1d=1002-6b70a4c3 —--log-level-

console=info --log-level-stderr=off --no-log-timestamp --pgl-path=/var/lib/
pgsgl/10/data —-repol-cipher—-pass=<redacted> —--repol-cipher-type=aes-256-cbc —-—
repol-path=/var/lib/pgbackrest --stanza=demo

P00 INFO: stanza-create command end: completed successfully

6.8 Check the Configuration

The check command validates that pgBackRest and the archive_command setting are configured
correctly for archiving and backups. It detects misconfigurations, particularly in archiving, that result
in incomplete backups because required WAL segments did not reach the archive. The command
can be run on the database or the repository host. The command may also be run on the standby
host, however, since pg_switch_xlog()/pg_switch_wal () cannot be performed on the standby, the
command will only test the repository configuration.

Note that pg_create_restore_point (pgBackRest Archive Check’) andpg_switch_xlog ()/pg_sw
are called to force PostgreSQL to archive a WAL segment. Restore points are only supported in Post-
greSQL > 9.1 so for older versions the check command may fail if there has been no write activity

since the last log rotation, therefore it is recommended that activity be generated by the user if there

have been no writes since the last WAL switch before running the check command.

pg-primary — Check the configuration

sudo -u postgres pgbackrest --stanza=demo --log-level-console=info check

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -15- February 5, 2021

6 QUICK START 6.9 Perform a Backup

Output:

P00 INFO: check command begin 2.31: —-—-exec—-1d=1038-e44fa956 —--log-level-console=
info ——log-level-stderr=off —--no-log-timestamp —--pgl-path=/var/lib/pgsql/10/
data —--repol-cipher-pass=<redacted> —--repol-cipher-type=aes-256-cbc —--repol-

path=/var/lib/pgbackrest —--stanza=demo

P00 INFO: WAL segment 000000010000000000000001 successfully archived to '/var/lib/
pgbackrest/archive/demo/10-1/0000000100000000/000000010000000000000001~
ableead406dbbac822fadec66b07d3c8fc92cacl7.gz’

P00 INFO: check command end: completed successfully

6.9 Perform a Backup

To perform a backup of the PostgreSQL cluster run pgBackRest with the backup command.

pg-primary — Backup the demo cluster

sudo —-u postgres pgbackrest —--stanza=demo \
——log-level-console=info backup

Output:

P00 INFO: backup command begin 2.31: --exec-1d=1075-3d8abab50 —--log-level-console=
info ——log-level-stderr=off —--no-log-timestamp —--pgl-path=/var/lib/pgsql/10/
data —--repol-cipher-pass=<redacted> —--repol-cipher-type=aes-256-cbc —-repol-

path=/var/lib/pgbackrest —--repol-retention-full=2 —--stanza=demo
P00 WARN: no prior backup exists, incr backup has been changed to full
P00 INFO: execute non-exclusive pg_start_backup(): backup begins after the next
regular checkpoint completes
P00 INFO: backup start archive = 000000010000000000000002, 1lsn = 0/2000028
[filtered 946 lines of output]
P01 INFO: backup file /var/lib/pgsqgl/10/data/base/1/12859 (0B, 100%)
P01 INFO: backup file /var/lib/pgsqgl/l0/data/base/1/12854 (0B, 100%)
P00 INFO: full backup size = 22.5MB
P00 INFO: execute non-exclusive pg_stop_backup () and wait for all WAL segments to
archive
POO INFO: backup stop archive = 000000010000000000000002, 1lsn = 0/20000F8
[filtered 4 lines of output]

By default pgBackRest will attempt to perform an incremental backup. However, an incremental backup
must be based on a full backup and since no full backup existed pgBackRest ran a full backup instead.

The type option can be used to specify a full or differential backup.

pg-primary — Differential backup of the demo cluster

sudo —u postgres pgbackrest —--stanza=demo —--type=diff \

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -16 - February 5, 2021

6 QUICK START 6.10 Schedule a Backup

——log-level-console=info backup
Output:

[filtered 5 lines of output]
P01 INFO: backup file /var/lib/pgsqgl/l10/data/log/postgresgl.log (700B, 99%)
checksum 5b3532bac20d5d6465£fc090£f0e6b3e87c7df8910
P01 INFO: backup file /var/lib/pgsqgl/l10/data/pg_logical/replorigin_checkpoint (8B,
100%) checksum 347fc8f2df71bd4436e38bdl516ccd7ea0d46532
P00 INFO: diff backup size = 8.7KB
P00 INFO: execute non-exclusive pg_stop_backup () and wait for all WAL segments to
archive
P00 INFO: backup stop archive = 000000010000000000000004, 1sn = 0/40000F8
[filtered 4 lines of output]

\

This time there was no warning because a full backup already existed. While incremental backups can
be based on a full or differential backup, differential backups must be based on a full backup. A full
backup can be performed by running the backup command with -—type=full.

More information about the backup command can be found in the [BACKUP| section.

6.10 Schedule a Backup

Backups can be scheduled with utilities such as cron.

In the following example, two cron jobs are configured to run; full backups are scheduled for 6:30 AM
every Sunday with differential backups scheduled for 6:30 AM Monday through Saturday. If this crontab
is installed for the first time mid-week, then pgBackRest will run a full backup the first time the differential
job is executed, followed the next day by a differential backup.

crontab:

#m h dom mon dow command
30 06 x « O pgbackrest —--type=full --stanza=demo backup
30 06 » * 1-6 pgbackrest ——type=diff --stanza=demo backup

Once backups are scheduled it's important to configure retention so backups are expired on a regular

schedule, see[RETENTION

6.11 Backup Information

Use the info command to get information about backups.

pg-primary — Get info for the demo cluster

sudo -u postgres pgbackrest info

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -17 - February 5, 2021

6 QUICK START 6.11 Backup Information

Output:

stanza: demo
status: ok
cipher: aes-256-cbc

db (current)
wal archive min/max (10-1):
000000010000000000000001/000000010000000000000004

full backup: 20210205-223833F
timestamp start/stop: 2021-02-05 22:38:33 / 2021-02-05 22:38:37
wal start/stop: 000000010000000000000002 / 000000010000000000000002
database size: 22.5MB, backup size: 22.5MB
repository size: 2.7MB, repository backup size: 2.7MB

diff backup: 20210205-223833F_20210205-223840D
timestamp start/stop: 2021-02-05 22:38:40 / 2021-02-05 22:38:41
wal start/stop: 000000010000000000000004 / 000000010000000000000004
database size: 22.5MB, backup size: 8.9KB
repository size: 2.7MB, repository backup size: 800B
backup reference list: 20210205-223833F

The info command operates on a single stanza or all stanzas. Text output is the default and gives
a human-readable summary of backups for the stanza(s) requested. This format is subject to change
with any release.

For machine-readable output use ——output=json. The JSON output contains far more information
than the text output and is kept stable unless a bug is found.

Each stanza has a separate section and it is possible to limit output to a single stanza with the
—--stanza option. The stanza’status’ gives a brief indication of the stanza’s health. If this is ’ok’ then
pgBackRest is functioning normally. The 'wal archive min/max’ shows the minimum and maximum
WAL currently stored in the archive. Note that there may be gaps due to archive retention policies or
other reasons.

The 'backup/expire running message will appear beside the ’status’ information if one of those
commands is currently running on the host.

The backups are displayed oldest to newest. The oldest backup will always be a full backup (indi-
cated by an F at the end of the label) but the newest backup can be full, differential (ends with D), or
incremental (ends with T).

The 'timestamp start/stop’ defines the time period when the backup ran. The 'timestamp
stop’ can be used to determine the backup to use when performing Point-In-Time Recovery. More
information about Point-In-Time Recovery can be found in the |POINT-IN-TIME RECOVERY|section.

The 'wal start/stop’ defines the WAL range that is required to make the database consistent when
restoring. The backup command will ensure that this WAL range is in the archive before completing.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -18 - February 5, 2021

6 QUICK START 6.12 Restore a Backup

The 'database size’ is the full uncompressed size of the database while 'backup size’ is the
amount of data actually backed up (these will be the same for full backups). The 'repository size’
includes all the files from this backup and any referenced backups that are required to restore the
database while 'repository backup size’includes only the files in this backup (these will also be
the same for full backups). Repository sizes reflect compressed file sizes if compression is enabled in
pgBackRest or the filesystem.

The 'backup reference 1list’ contains the additional backups that are required to restore this
backup.

6.12 Restore a Backup

Backups can protect you from a number of disaster scenarios, the most common of which are hardware
failure and data corruption. The easiest way to simulate data corruption is to remove an important
PostgreSQL cluster file.

pg-primary — Stop the demo cluster and delete the pg_control file

sudo systemctl stop postgresgl-10.service
sudo -u postgres rm /var/lib/pgsqgl/10/data/global/pg_control

Starting the cluster without this important file will result in an error.

pg-primary — Attempt to start the corrupted demo cluster

sudo systemctl start postgresqgl-10.service
sudo systemctl status postgresqgl-10.service

Output:

[filtered 10 lines of output]
Feb 05 22:38:43 pg-primary systemd[l]: postgresql-10.service: Main process exited,
code=exited, status=2/INVALIDARGUMENT
Feb 05 22:38:43 pg-primary systemd[l]: postgresqgl-10.service: Failed with result '
exit-code'.
Feb 05 22:38:43 pg-primary systemd[l]: Failed to start PostgreSQL 10 database
server.

To restore a backup of the PostgreSQL cluster run pgBackRest with the restore command. The
cluster needs to be stopped (in this case it is already stopped) and all files must be removed from the
PostgreSQL data directory.

pg-primary — Remove old files from demo cluster

sudo -u postgres find /var/lib/pgsgl/10/data -mindepth 1 -delete

pg-primary — Restore the demo cluster and start PostgreSQL

sudo —u postgres pgbackrest --stanza=demo restore
sudo systemctl start postgresqgl-10.service

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -19 - February 5, 2021

6 QUICK START 6.12 Restore a Backup

This time the cluster started successfully since the restore replaced the missing pg_control file.
More information about the restore command can be found in the [RESTORE section.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 20 - February 5, 2021

7 BACKUP

7 Backup

The Backup section introduces additional backup command features.

7.1 Fast Start Option

By default pgBackRest will wait for the next regularly scheduled checkpoint before starting a backup.
Depending on the checkpoint_timeout and checkpoint_segments settings in PostgreSQL it may
be quite some time before a checkpoint completes and the backup can begin.

pg-primary — Incremental backup of the demo cluster with the regularly scheduled checkpoint

sudo —-u postgres pgbackrest —--stanza=demo —--type=incr \
——log-level-console=info backup

Output:

P00 INFO: backup command begin 2.31: —-—-exec—-1d=1488-5cfa2951 —--log-level-console=
info ——log-level-stderr=off —--no-log-timestamp —--pgl-path=/var/lib/pgsql/10/
data —--repol-cipher-pass=<redacted> —--repol-cipher-type=aes-256-cbc —-repol-

path=/var/lib/pgbackrest —--repol-retention-full=2 --stanza=demo —--type=incr
P00 INFO: last backup label = 20210205-223833F_20210205-223840D, version = 2.31
P00 INFO: execute non-exclusive pg_start_backup(): backup begins after the next
regular checkpoint completes
P00 INFO: backup start archive = 000000020000000000000006, 1lsn = 0/6000028
P00 WARN: a timeline switch has occurred since the 20210205-223833F_20210205
—223840D backup, enabling delta checksum
[filtered 10 lines of output]

When --start-fast is passed on the command-line or start-fast=yissetin /etc/pgbackrest /pgba:
an immediate checkpoint is requested and the backup will start more quickly. This is convenient for test-

ing and for ad-hoc backups. For instance, if a backup is being taken at the beginning of a release win-

dow it makes no sense to wait for a checkpoint. Since regularly scheduled backups generally only hap-

pen once per day it is unlikely that enabling the start-fast in /etc/pgbackrest/pgbackrest.conf

will negatively affect performance, however for high-volume transactional systems you may want to pass
--start-fast on the command-line instead. Alternately, it is possible to override the setting in the
configuration file by passing -—no-start-fast on the command-line.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Enable the start-fast option

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTGirhPygu4 jOKOXf9L04vjfO
repol-cipher-type=aes-256-cbc

repol-path=/var/lib/pgbackrest

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -21 - February 5, 2021

7 BACKUP 7.2 Archive Timeout

repol-retention-full=2
start—-fast=y

[global:archive—-push]
compress—level=3

pg-primary — Incremental backup of the demo cluster with an immediate checkpoint

sudo —-u postgres pgbackrest —--stanza=demo —--type=incr \
——log-level-console=info backup

Output:

P00 INFO: backup command begin 2.31: --exec-1d=1559-7eab9%9679 --log-level-console=
info ——-log-level-stderr=off --no-log-timestamp —--pgl-path=/var/lib/pgsqgl/10/
data —--repol-cipher-pass=<redacted> —--repol-cipher-type=aes-256-cbc —--repol-

path=/var/lib/pgbackrest —--repol-retention-full=2 --stanza=demo --start-fast --
type=incr
P00 INFO: last backup label = 20210205-223833F_20210205-223850I, version = 2.31
P00 INFO: execute non-exclusive pg_start_backup(): backup begins after the
requested immediate checkpoint completes
P00 INFO: backup start archive = 000000020000000000000007, 1lsn = 0/7000028
P01 INFO: backup file /var/lib/pgsqgl/10/data/global/pg_control (8KB, 84%) checksum
bd96e09177e61eea84£83b48d5d27801584£fb005
[filtered 9 lines of output]

7.2 Archive Timeout

During an online backup pgBackRest waits for WAL segments that are required for backup consistency
to be archived. This wait time is governed by the pgBackRest archive-t imeout option which defaults
to 60 seconds. If archiving an individual segment is known to take longer then this option should be
increased.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -22 - February 5, 2021

8 MONITORING

8 Monitoring

Monitoring is an important part of any production system. There are many tools available and pgBack-
Rest can be monitored on any of them with a little work.

pgBackRest can output information about the repository in JSON format which includes a list of all
backups for each stanza and WAL archive info.

8.1 In PostgreSQL

The PostgreSQL copy command allows pgBackRest info to be loaded into a table. The following
example wraps that logic in a function that can be used to perform real-time queries.

pg-primary — Load pgBackRest info function for PostgreSQL

sudo —u postgres cat \
/var/lib/pgsql/pgbackrest/doc/example/pgsgl-pgbackrest—-info.sqgl

Output:

—— An example of monitoring pgBackRest from within PostgreSQL
—— Use copy to export data from the pgBackRest info command into the Jjsonb
—-— type so it can be queried directly by PostgreSQL.

—— Create monitor schema
create schema monitor;

—-— Get pgBackRest info in JSON format
create function monitor.pgbackrest_info ()
returns Jjsonb AS $$
declare
data jsonb;
begin
—— Create a temp table to hold the JSON data
create temp table temp_pgbackrest_data (data Jjsonb);

—— Copy data into the table directly from the pgBackRest info command
copy temp_pgbackrest_data (data)
from program
'pgbackrest —--output=json info' (format text);

select temp_pgbackrest_data.data
into data

from temp_pgbackrest_data;

drop table temp_pgbackrest_data;

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -23 - February 5, 2021

8 MONITORING 8.1 In PostgreSQL

return data;

end $$ language plpgsqgl;

sudo —-u postgres psql —-f \
/var/1lib/pgsqgl/pgbackrest/doc/example/pgsql-pgbackrest-info.sql

Now the monitor.pgbackrest_info () function can be used to determine the last successful backup
time and archived WAL for a stanza.

pg-primary — Query last successful backup time and archived WAL

sudo —u postgres cat \
/var/lib/pgsql/pgbackrest/doc/example/pgsql-pgbackrest—query.sqgl

Output:

—— Get last successful backup for each stanza
—— Requires the monitor.pgbackrest_info function.
with stanza as
(
select data—->'name' as name,
data->"backup'—>(

Jjsonb_array_length (data->'backup') - 1) as last_backup,
data->'"archive'—> (
Jjsonb_array_length (data->'archive') - 1) as current_archive
from jsonb_array_elements (monitor.pgbackrest_info()) as data

)

select name,
to_timestamp (

(last_backup->'timestamp'->>"'stop') : :numeric) as last_successful_backup,
current_archive->>'max' as last_archived_wal
from stanza;
sudo —-u postgres psqgl —-f \
/var/lib/pgsql/pgbackrest/doc/example/pgsql-pgbackrest—query.sqgl

Output:
name | last_successful_backup | last_archived_wal
________ +________________________+__________________________
"demo" | 2021-02-05 22:38:56+00 | 000000020000000000000007
(1 row)
BackRest User Guide Crunchy Data Solutions, Inc.
y

Version 2.31 -24 - February 5, 2021

9 RETENTION

9 Retention

Generally it is best to retain as many backups as possible to provide a greater window for
[IN-TIME RECOVERY] but practical concerns such as disk space must also be considered. Retention
options remove older backups once they are no longer needed.

9.1 Full Backup Retention

The repol-retention-full-type determines how the option repol-retention-full is inter-
preted; either as the count of full backups to be retained or how many days to retain full backups. New
backups must be completed before expiration will occur — that means if repol-retention-full-type=co
and repol-retention-full=2 then there will be three full backups stored before the oldest one is
expired, or if repol-retention-full-type=time and repol-retention-full=20 then there

must be one full backup that is at least 20 days old before expiration can occur.

pg-primary.:/etc/pgbackrest/pgbackrest.conf — Configure repol-retention—-full

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall]
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTGirhPygu4 jOKOXf9L0O4vjfO
repol-cipher-type=aes—-256-cbc

repol-path=/var/lib/pgbackrest

repol-retention-full=2

start-fast=y

[global:archive—-push]
compress—level=3

Backup repol-retention-full=2 but currently there is only one full backup so the next full backup
to run will not expire any full backups.

pg-primary — Perform a full backup

sudo —-u postgres pgbackrest —--stanza=demo —--type=full \
——-log-level-console=detail backup

Output:

[filtered 957 lines of output]
P00 INFO: backup command end: completed successfully

P00 INFO: expire command begin 2.31: —-—-exec—-1d=1783-646fb64f —--log-level-console=
detail —--log-level-stderr=off —--no-log-timestamp —--repol-cipher-pass=<redacted>
——-repol-cipher-type=aes-256-cbc —--repol-path=/var/lib/pgbackrest —--repol-
retention-full=2 --stanza=demo
pgBackRest User Guide Crunchy Data Solutions, Inc.

Version 2.31 -25 - February 5, 2021

9 RETENTION 9.2 Differential Backup Retention

P00 DETAIL: archive retention on backup 20210205-223833F, archivelId = 10-1, start
= 000000010000000000000002

P00 DETAIL: remove archive: archiveId = 10-1, start = 000000010000000000000001,
stop = 000000010000000000000001

P00 INFO: expire command end: completed successfully

Archive is expired because WAL segments were generated before the oldest backup. These are not
useful for recovery — only WAL segments generated after a backup can be used to recover that backup.

pg-primary — Perform a full backup

sudo —-u postgres pgbackrest —--stanza=demo —-type=full \
——log-level-console=info backup

Output:

[filtered 956 lines of output]
P00 INFO: backup command end: completed successfully

P00 INFO: expire command begin 2.31: —--exec—-1d=1841-14b9%ce81 —--log-level-console=
info --log-level-stderr=off —--no-log-timestamp —--repol-cipher-pass=<redacted>
——repol-cipher-type=aes-256-cbc —-repol-path=/var/lib/pgbackrest —-repol-
retention-full=2 --stanza=demo

P00 INFO: expire full backup set: 20210205-223833F, 20210205-223833F_20210205
-223840D, 20210205-223833F_20210205-223850I, 20210205-223833F_20210205-2238541
P00 INFO: remove expired backup 20210205-223833F_20210205-2238541
P00 INFO: remove expired backup 20210205-223833F_20210205-2238501I
[filtered 2 lines of output]

The 20210205-223833F full backup is expired and archive retention is based onthe 20210205-223900F
which is now the oldest full backup.

9.2 Differential Backup Retention

Set repol-retention-diff to the number of differential backups required. Differentials only rely on
the prior full backup so it is possible to create a “rolling” set of differentials for the last day or more. This
allows quick restores to recent points-in-time but reduces overall space consumption.

pg-primary.:/etc/pgbackrest/pgbackrest.conf — Configure repol-retention-diff

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall]
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTGirhPygu4 jOKOXf9L04vjfO
repol-cipher-type=aes-256-cbc

repol-path=/var/lib/pgbackrest

repol-retention-diff=1

repol-retention-full=2

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 26 - February 5, 2021

9 RETENTION 9.3 Archive Retention

start-fast=y

[global:archive—-push]
compress—level=3

Backup repol-retention-diff=1 so two differentials will need to be performed before one is ex-
pired. An incremental backup is added to demonstrate incremental expiration. Incremental backups
cannot be expired independently — they are always expired with their related full or differential backup.

pg-primary — Perform differential and incremental backups

sudo —-u postgres pgbackrest --stanza=demo --type=diff backup
sudo —u postgres pgbackrest -—-stanza=demo —-—-type=incr backup

Now performing a differential backup will expire the previous differential and incremental backups leav-
ing only one differential backup.

pg-primary — Perform a differential backup

sudo —-u postgres pgbackrest —--stanza=demo —--type=diff \
——log-level-console=info backup

Output:

[filtered 12 lines of output]

P00 INFO: backup command end: completed successfully

P00 INFO: expire command begin 2.31: —--exec-1d=1999-ef297297 —--log-level-console=
info —--log-level-stderr=off —-—-no-log-timestamp —--repol-cipher-pass=<redacted>
——-repol-cipher-type=aes-256-cbc —--repol-path=/var/lib/pgbackrest —--repol-
retention-diff=1 —--repol-retention-full=2 --stanza=demo

P00 INFO: expire diff backup set: 20210205-223906F_20210205-223912D,
20210205-223906F_20210205-223915T

P00 INFO: remove expired backup 20210205-223906F_20210205-2239151T

P00 INFO: remove expired backup 20210205-223906F_20210205-223912D

9.3 Archive Retention

Although pgBackRest automatically removes archived WAL segments when expiring backups (the de-
fault expires WAL for full backups based on the repol-retention-full option), it may be useful to
expire archive more aggressively to save disk space. Note that full backups are treated as differential
backups for the purpose of differential archive retention.

Expiring archive will never remove WAL segments that are required to make a backup consistent. How-
ever, since Point-in-Time-Recovery (PITR) only works on a continuous WAL stream, care should be
taken when aggressively expiring archive outside of the normal backup expiration process. To deter-
mine what will be expired without actually expiring anything, the dry-run option can be provided on
the command line with the expire command.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -27 - February 5, 2021

9 RETENTION 9.3 Archive Retention

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repol-retention-diff

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTGirhPygu4 jOKOXf9L04vjfO
repol-cipher-type=aes-256-cbc

repol-path=/var/lib/pgbackrest

repol-retention-diff=2

repol-retention-full=2

start—-fast=y

[global:archive—-push]
compress—level=3

pg-primary — Perform differential backup

sudo —-u postgres pgbackrest —--stanza=demo —-type=diff \
——log-level-console=info backup

Output:

[filtered 9 lines of output]

POO INFO: backup stop archive = 000000020000000000000010, 1lsn = 0/100000F8

P00 INFO: check archive for segment (s)
000000020000000000000010:000000020000000000000010

P00 INFO: new backup label = 20210205-223906F_20210205-223923D

P00 INFO: backup command end: completed successfully

P00 INFO: expire command begin 2.31: —--exec-1d=2124-7ceba674 --log-level-console=
info --log-level-stderr=off —--no-log-timestamp —--repol-cipher-pass=<redacted>
——repol-cipher-type=aes-256-cbc —--repol-path=/var/lib/pgbackrest —--repol-
retention-diff=2 —--repol-retention-full=2 —--stanza=demo

pg-primary — Expire archive

sudo —-u postgres pgbackrest —--stanza=demo —--log-level-console=detail \
——repol-retention-archive-type=diff --repol-retention-archive=1 expire

Output:

P00 INFO: expire command begin 2.31: —--exec-1d=2181-224227cl --log-level-console=

detail --log-level-stderr=off —--no-log-timestamp —--repol-cipher-pass=<redacted>
——repol-cipher—-type=aes-256-cbc —-repol-path=/var/lib/pgbackrest —--repol-

retention—-archive=1l —--repol-retention-archive-type=diff --repol-retention-diff
=2 —-repol-retention-full=2 --stanza=demo

POO DETAIL: archive retention on backup 20210205-223900F, archiveId = 10-1, start
= 000000020000000000000009, stop = 000000020000000000000009

P00 DETAIL: archive retention on backup 20210205-223906F, archivelId = 10-1, start
= 00000002000000000000000A, stop = 00000002000000000000000A

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -28 - February 5, 2021

9 RETENTION 9.3 Archive Retention

P00 DETAIL: archive retention on backup 20210205-223906F_20210205-223918D,
archiveId = 10-1, start = 00000002000000000000000D, stop =
00000002000000000000000D

POO DETAIL: archive retention on backup 20210205-223906F_20210205-223923D,
archiveId = 10-1, start = 000000020000000000000010

P00 DETAIL: remove archive: archiveId = 10-1, start = 00000002000000000000000B,
stop = 00000002000000000000000C

P00 DETAIL: remove archive: archiveId = 10-1, start = 00000002000000000000000E,
stop = 00000002000000000000000F

P00 INFO: expire command end: completed successfully

The 20210205-223906F_20210205-223918D differential backup has archived WAL segments that
must be retained to make the older backups consistent even though they cannot be played any further
forward with PITR. WAL segments generated after 20210205-223906F_20210205-223918D but be-
fore 20210205-223906F_20210205-223923D are removed. WAL segments generated after the new
backup 20210205-223906F_20210205-223923D remain and can be used for PITR.

Since full backups are considered differential backups for the purpose of differential archive retention,
if a full backup is now performed with the same settings, only the archive for that full backup is retained
for PITR.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -29 - February 5, 2021

10 RESTORE

10 Restore

The Restore section introduces additional restore command features.

10.1 File Ownership

If a restore is run as a non-root user (the typical scenario) then all files restored will belong to the
user/group executing pgBackRest. If existing files are not owned by the executing user/group then an
error will result if the ownership cannot be updated to the executing user/group. In that case the file
ownership will need to be updated by a privileged user before the restore can be retried.

Ifa restoreisrun as the root user then pgBackRest will attempt to recreate the ownership recorded
in the manifest when the backup was made. Only user/group names are stored in the manifest so the
same names must exist on the restore host for this to work. If the user/group name cannot be found
locally then the user/group of the PostgreSQL data directory will be used and finally root if the data
directory user/group cannot be mapped to a name.

10.2 Delta Option

[RESTORE A BACKUP| in [QUICK START| required the database cluster directory to be cleaned before
the restore could be performed. The delta option allows pgBackRest to automatically determine
which files in the database cluster directory can be preserved and which ones need to be restored from
the backup — it also removes files not present in the backup manifest so it will dispose of divergent
changes. This is accomplished by calculating a SHA-1 cryptographic hash for each file in the database
cluster directory. If the sHA-1 hash does not match the hash stored in the backup then that file will
be restored. This operation is very efficient when combined with the process-max option. Since the
PostgreSQL server is shut down during the restore, a larger number of processes can be used than
might be desirable during a backup when the PostgreSQL server is running.

pg-primary — Stop the demo cluster, perform delta restore

sudo systemctl stop postgresgl-10.service
sudo —-u postgres pgbackrest —--stanza=demo —--delta \
——log-level-console=detail restore

Output:

[filtered 2 lines of output]

P00 DETAIL: check '/var/lib/pgsgl/10/data' exists

POO DETAIL: remove 'global/pg_control' so cluster will not start if restore does
not complete

P00 INFO: remove invalid files/links/paths from '/var/lib/pgsgl/10/data’

P00 DETAIL: remove invalid file '/var/lib/pgsgl/10/data/backup_label.old’

P00 DETAIL: remove invalid file '/var/lib/pgsgl/10/data/base/13017/pg_internal.
init'

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 30 - February 5, 2021

https://en.wikipedia.org/wiki/SHA-1

10 RESTORE 10.3 Restore Selected Databases

[filtered 996 lines of output]

pg-primary — Restart PostgreSQL

sudo systemctl start postgresql-10.service

10.3 Restore Selected Databases

There may be cases where it is desirable to selectively restore specific databases from a cluster backup.
This could be done for performance reasons or to move selected databases to a machine that does not
have enough space to restore the entire cluster backup.

To demonstrate this feature two databases are created: test1 and test2. A fresh backup is run so
pgBackRest is aware of the new databases.

pg-primary — Create two test databases and perform a backup

sudo —-u postgres psgl —-c "create database testl;"

Output:

CREATE DATABASE
sudo -u postgres psgl —-c "create database test2;"

Output:

CREATE DATABASE
sudo —-u postgres pgbackrest --stanza=demo --type=incr backup

Each test database will be seeded with tables and data to demonstrate that recovery works with selec-
tive restore.

pg-primary — Create a test table in each database

sudo —-u postgres psqgl -c "create table testl_table (id int); \
insert into testl_table (id) wvalues (1);" testl

Output:

INSERT 0 1

sudo —-u postgres psql —-c "create table test2_table (id int); \
insert into test2_table (id) wvalues (2);" test2

Output:

INSERT 0 1

One of the main reasons to use selective restore is to save space. The size of the test1 database is
shown here so it can be compared with the disk utilization after a selective restore.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -31- February 5, 2021

10 RESTORE 10.3 Restore Selected Databases

pg-primary — Show space used by test1 database
sudo -u postgres du -sh /var/lib/pgsqgl/10/data/base/24576

Output:

7.5M /var/lib/pgsql/10/data/base/24576

If the database to restore is not known, use the info command set option to discover databases that
are part of the backup set.

pg-primary — Show database list for backup

sudo —-u postgres pgbackrest —--stanza=demo \
——set=20210205-223906F_20210205-223932I info

Output:

[filtered 11 lines of output]
repository size: 4.4MB, repository backup size: 1.8MB
backup reference list: 20210205-223906F, 20210205-223906F_20210205-223923
D
database list: postgres (13017), testl (24576), test2 (24577)

Stop the cluster and restore only the test2 database. Built-in databases (template0, templatel, and
postgres) are always restored.

pg-primary — Restore from last backup including only the test2 database

sudo systemctl stop postgresgl-10.service

sudo —-u postgres pgbackrest —--stanza=demo —--delta \
——db-include=test2 restore

sudo systemctl start postgresqgl-10.service

Once recovery is complete the test2 database will contain all previously created tables and data.

pg-primary — Demonstrate that the test2 database was recovered

sudo —-u postgres psqgl -c "select * from test2_table;" test2

Output:

id

2
(1 row)

The test1 database, despite successful recovery, is not accessible. This is because the entire database
was restored as sparse, zeroed files. PostgreSQL can successfully apply WAL on the zeroed files but
the database as a whole will not be valid because key files contain no data. This is purposeful to prevent

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -32 - February 5, 2021

10 RESTORE 10.3 Restore Selected Databases

the database from being accidentally used when it might contain partial data that was applied during
WAL replay.

pg-primary — Attempting to connect to the test1 database will produce an error

sudo —-u postgres psgl -c "select x from testl_table;" testl
Output:

psgl: FATAL: relation mapping file "base/24576/pg_filenode.map" contains invalid
data

Since the test1 database is restored with sparse, zeroed files it will only require as much space as the
amount of WAL that is written during recovery. While the amount of WAL generated during a backup
and applied during recovery can be significant it will generally be a small fraction of the total database
size, especially for large databases where this feature is most likely to be useful.

It is clear that the test1 database uses far less disk space during the selective restore than it would have
if the entire database had been restored.

pg-primary — Show space used by test1 database after recovery
sudo -u postgres du -sh /var/lib/pgsqgl/10/data/base/24576

Output:

176K /var/lib/pgsql/10/data/base/24576

At this point the only action that can be taken on the invalid test1 database is drop database. pg-
BackRest does not automatically drop the database since this cannot be done until recovery is complete
and the cluster is accessible.

pg-primary — Drop the test1 database

sudo —-u postgres psgl -c "drop database testl;"

Output:

DROP DATABASE

Now that the invalid test1 database has been dropped only the test2 and built-in databases remain.

pg-primary — List remaining databases

sudo —-u postgres psqgl —-c "select oid, datname from pg_database order by oid;"

Output:

oid | datname
_______ _.|____________
1 | templatel
13016 | templateO

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -33- February 5, 2021

10 RESTORE 10.3 Restore Selected Databases

13017 | postgres
24577 | test2
(4 rows)

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -34 - February 5, 2021

11 POINT-IN-TIME RECOVERY

11 Point-in-Time Recovery

[RESTORE A BACKUP| in |QUICK START| performed default recovery, which is to play all the way to the
end of the WAL stream. In the case of a hardware failure this is usually the best choice but for data
corruption scenarios (whether machine or human in origin) Point-in-Time Recovery (PITR) is often more
appropriate.

Point-in-Time Recovery (PITR) allows the WAL to be played from the last backup to a specified time,
transaction id, or recovery point. For common recovery scenarios time-based recovery is arguably the
most useful. A typical recovery scenario is to restore a table that was accidentally dropped or data that
was accidentally deleted. Recovering a dropped table is more dramatic so that’s the example given
here but deleted data would be recovered in exactly the same way.

pg-primary — Backup the demo cluster and create a table with very important data

sudo —-u postgres pgbackrest --stanza=demo --type=diff backup
sudo —u postgres psql -c "begin; \
create table important_table (message text); \
insert into important_table values ('Important Data'); \
commit; \
select * from important_table;"

Output:

message

Important Data
(1 row)

It is important to represent the time as reckoned by PostgreSQL and to include timezone offsets. This
reduces the possibility of unintended timezone conversions and an unexpected recovery result.

pg-primary — Get the time from PostgreSQL

sudo —-u postgres psgl —-Atc "select current_timestamp"
Output:

2021-02-05 22:39:49.759195+00

Now that the time has been recorded the table is dropped. In practice finding the exact time that the
table was dropped is a lot harder than in this example. It may not be possible to find the exact time, but
some forensic work should be able to get you close.

pg-primary — Drop the important table

sudo —-u postgres psgl -c "begin; \
drop table important_table; \
commit; \
select % from important_table;"

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -35- February 5, 2021

11 POINT-IN-TIME RECOVERY

Output:

ERROR: relation "important_table" does not exist
LINE 1: ...le important_table; commit; select % from important_...

~

Now the restore can be performed with time-based recovery to bring back the missing table.

pg-primary — Stop PostgreSQL, restore the demo cluster to 2021-02-05 22:39:49.759195+00, and dis-
play recovery.conf

sudo systemctl stop postgresgl-10.service

sudo —-u postgres pgbackrest —--stanza=demo —--delta \
——type=time "--target=2021-02-05 22:39:49.759195+00" \
——target-action=promote restore

sudo -u postgres cat /var/lib/pgsgl/10/data/recovery.conf

Output:

Recovery settings generated by pgBackRest restore on 2021-02-05 22:39:52

restore_command = 'pgbackrest —--stanza=demo archive-get %f "%Sp"'
recovery_target_time = '2021-02-05 22:39:49.759195+00"
recovery_target_action = 'promote'

pgBackRest has automatically generated the recovery settings in recovery.conf so PostgreSQL can
be started immediately. Once PostgreSQL has finished recovery the table will exist again and can be
queried.

pg-primary — Start PostgreSQL and check that the important table exists

sudo systemctl start postgresql-10.service
sudo -u postgres psgl -c "select % from important_table"

Output:

message

Important Data
(1 row)

The PostgreSQL log also contains valuable information. It will indicate the time and transaction where
the recovery stopped and also give the time of the last transaction to be applied.

pg-primary — Examine the PostgreSQL log output

sudo -u postgres cat /var/lib/pgsqgl/l10/data/log/postgresgl.log
Output:

LOG: database system was interrupted; last known up at 2021-02-05 22:39:45 UTC

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 36 - February 5, 2021

11 POINT-IN-TIME RECOVERY

LOG: starting point-in-time recovery to 2021-02-05 22:39:49.759195+00
LOG: restored log file "00000004.history" from archive
LOG: restored log file "000000040000000000000015" from archive
[filtered 2 lines of output]
LOG: database system is ready to accept read only connections
LOG: restored log file "000000040000000000000016" from archive
LOG: recovery stopping before commit of transaction 564, time 2021-02-05
22:39:51.461454+00
LOG: redo done at 0/16021718
LOG: last completed transaction was at log time 2021-02-05 22:39:47.902232+00
LOG: selected new timeline ID: 5
LOG: archive recovery complete
[filtered 2 lines of output]

This example was rigged to give the correct result. If a backup after the required time is chosen then
PostgreSQL will not be able to recover the lost table. PostgreSQL can only play forward, not backward.
To demonstrate this the important table must be dropped (again).

pg-primary — Drop the important table (again)

sudo —-u postgres psql -c "begin; \
drop table important_table; \
commit; \
select * from important_table;"

Output:

ERROR: relation "important_table" does not exist
LINE 1: ...le important_table; commit; select % from important_...

~

Now take a new backup and attempt recovery from the new backup by specifying the —-set option.
The info command can be used to find the new backup label.

pg-primary — Perform a backup and get backup info

sudo —-u postgres pgbackrest --stanza=demo --type=incr backup
sudo —-u postgres pgbackrest info

Output:
stanza: demo
status: ok
cipher: aes-256-cbc
db (current)
wal archive min/max (10-1):

000000020000000000000009/000000050000000000000017

full backup: 20210205-223900F

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -37 - February 5, 2021

11 POINT-IN-TIME RECOVERY

timestamp start/stop: 2021-02-05 22:39:00 / 2021-02-05 22:39:04

wal start/stop: 000000020000000000000009 / 000000020000000000000009
database size: 22.5MB, backup size: 22.5MB

repository size: 2.7MB, repository backup size: 2.7MB

full backup: 20210205-223906F
timestamp start/stop: 2021-02-05 22:39:06 / 2021-02-05 22:39:09
wal start/stop: 00000002000000000000000A / 00000002000000000000000A
database size: 22.5MB, backup size: 22.5MB
repository size: 2.7MB, repository backup size: 2.7MB

diff backup: 20210205-223906F_20210205-223923D
timestamp start/stop: 2021-02-05 22:39:23 / 2021-02-05 22:39:25
wal start/stop: 000000020000000000000010 / 000000020000000000000010
database size: 22.5MB, backup size: 10.7KB
repository size: 2.7MB, repository backup size: 1KB
backup reference list: 20210205-223906F

incr backup: 20210205-223906F_20210205-2239321
timestamp start/stop: 2021-02-05 22:39:32 / 2021-02-05 22:39:36
wal start/stop: 000000030000000000000012 / 000000030000000000000012
database size: 37.2MB, backup size: 15.1MB
repository size: 4.4MB, repository backup size: 1.8MB

backup reference list: 20210205-223906F, 20210205-223906F_20210205-223923
D

diff backup: 20210205-223906F_20210205-223944D
timestamp start/stop: 2021-02-05 22:39:44 / 2021-02-05 22:39:47
wal start/stop: 000000040000000000000015 / 000000040000000000000015
database size: 29.9MB, backup size: 7.8MB
repository size: 3.6MB, repository backup size: 951.2KB
backup reference list: 20210205-223906F

incr backup: 20210205-223906F_20210205-2239571
timestamp start/stop: 2021-02-05 22:39:57 / 2021-02-05 22:40:00
wal start/stop: 000000050000000000000017 / 000000050000000000000017
database size: 29.9MB, backup size: 2.1MB
repository size: 3.6MB, repository backup size: 219KB

backup reference list: 20210205-223906F, 20210205-223906F_20210205-223944
D

pg-primary — Attempt recovery from the specified backup

sudo systemctl stop postgresgl-10.service

sudo —u postgres pgbackrest —--stanza=demo —--delta \
—--set=20210205-223906F_20210205-2239571 \
——type=time "--target=2021-02-05 22:39:49.759195+00" —--target—-action=promote
restore

sudo systemctl start postgresqgl-10.service

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 38 - February 5, 2021

11 POINT-IN-TIME RECOVERY

sudo —-u postgres psgl —-c "select x from important_table"
Output:

ERROR: relation "important_table" does not exist
LINE 1: select » from important_table

Looking at the log output it’s not obvious that recovery failed to restore the table. The key is to look for
the presence of the “recovery stopping before...” and “last completed transaction...” log messages. |f
they are not present then the recovery to the specified point-in-time was not successful.

pg-primary — Examine the PostgreSQL log output to discover the recovery was not successful

sudo —-u postgres cat /var/lib/pgsgl/10/data/log/postgresqgl.log
Output:

LOG: database system was interrupted; last known up at 2021-02-05 22:39:58 UTC
LOG: starting point—-in-time recovery to 2021-02-05 22:39:49.759195+00
LOG: restored log file "00000005.history" from archive
LOG: restored log file "000000050000000000000017" from archive
LOG: redo starts at 0/17000028
LOG: consistent recovery state reached at 0/170000F8
LOG: database system is ready to accept read only connections
LOG: redo done at 0/170000F8
[filtered 7 lines of output]

The default behavior for time-based restore, if the ——set option is not specified, is to attempt to discover
an earlier backup to play forward from. If a backup set cannot be found, then restore will default to the
latest backup which, as shown earlier, may not give the desired result.

pg-primary — Stop PosigreSQL, restore from auto-selected backup, and start PostgreSQL

sudo systemctl stop postgresgl-10.service

sudo —-u postgres pgbackrest —--stanza=demo —--delta \
——type=time "--target=2021-02-05 22:39:49.759195+00" \
——target—-action=promote restore

sudo systemctl start postgresqgl-10.service

sudo —-u postgres psgl —-c "select * from important_table"

Output:

message

Important Data
(1 row)

Now the the log output will contain the expected “recovery stopping before...” and “last completed trans-
action...” messages showing that the recovery was successful.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -39 - February 5, 2021

11 POINT-IN-TIME RECOVERY

pg-primary — Examine the PostgreSQL log output for log messages indicating success

sudo —-u postgres cat /var/lib/pgsqgl/10/data/log/postgresqgl.log
Output:

LOG: database system was interrupted; last known up at 2021-02-05 22:39:45 UTC
LOG: starting point-in-time recovery to 2021-02-05 22:39:49.759195+00
LOG: restored log file "00000004.history" from archive
LOG: restored log file "000000040000000000000015" from archive
[filtered 2 lines of output]
LOG: database system is ready to accept read only connections
LOG: restored log file "000000040000000000000016"™ from archive
LOG: recovery stopping before commit of transaction 564, time 2021-02-05
22:39:51.461454+00
LOG: redo done at 0/16021718
LOG: last completed transaction was at log time 2021-02-05 22:39:47.902232+00
LOG: restored log file "00000005.history" from archive
LOG: restored log file "00000006.history" from archive
[filtered 4 lines of output]

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -40 - February 5, 2021

12 AZURE-COMPATIBLE OBJECT STORE SUPPORT

12 Azure-Compatible Object Store Support

pgBackRest supports locating repositories in Azure-compatible object stores. The container used
to store the repository must be created in advance — pgBackRest will not do it automatically. The
repository can be located in the container root (/) but it's usually best to place it in a subpath so object
store logs or other data can also be stored in the container without conflicts.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure Azure

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall

process-max=4
repol—-azure—account=pgbackrest
repol-azure-container=demo-container
repol-azure—-key=YXpLZXk=
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTGirhPygu4 jOKOXf9L04vjfO
repol-cipher-type=aes-256-cbc
repol-path=/demo-repo
repol-retention-diff=2
repol-retention-full=2
repol-type=azure

start-fast=y

[global:archive—-push]
compress—level=3

Shared access signatures may be used by setting the repol-azure-key-type option to sas and
the repol-azure-key option to the shared access signature token.

Commands are run exactly as if the repository were stored on a local disk.

pg-primary — Create the stanza

sudo —-u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create
Output:

P00 INFO: stanza-create command begin 2.31: —--exec—-1d=3807-c0667eab —--log-level-
console=info —--log-level-stderr=off —-—no-log-timestamp —--pgl-path=/var/lib/
pgsgl/10/data —-repol-azure—account=<redacted> —--repol-azure-container=demo-—
container —--repol-azure-host=blob.core.windows.net —--repol-azure-key=<redacted>

——repol-cipher—-pass=<redacted> —--repol-cipher-type=aes-256-cbc —--repol-path=/
demo-repo —-repol-type=azure —--stanza=demo

P00 INFO: stanza-create command end: completed successfully

File creation time in object stores is relatively slow so commands benefit by increasing process-max
to parallelize file creation.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -41 - February 5, 2021

12 AZURE-COMPATIBLE OBJECT STORE SUPPORT

pg-primary — Backup the demo cluster

sudo —-u postgres pgbackrest —--stanza=demo \
——log-level-console=info backup

Output:

P00 INFO: backup command begin 2.31:

P00
POO

POO
P04
P02
POO
POO

POO

——exec-1d=3833-eadace48 --log-level-console=

info ——-log-level-stderr=off —-—-no-log-timestamp —--pgl-path=/var/lib/pgsqgl/10/
data —--process-max=4 —--repol-azure-account=<redacted> —--repol-azure-container=
demo-container —--repol-azure-host=blob.core.windows.net —--repol-azure-key=<
redacted> —--repol-cipher-pass=<redacted> --repol-cipher-type=aes-256-cbc —-

repol-path=/demo-repo —--repol-retention-diff=2 —--repol-retention-full=2 --repol

—type=azure —--stanza=demo —--start—-fast
incr backup has been changed to full

WARN: no prior backup exists,
INFO: execute non-exclusive pg_start_backup() :

requested immediate checkpoint completes

000000070000000000000017,

and wait

INFO: backup start archive =
[filtered 1243 lines of output]
INFO: backup file /var/lib/pgsgl/10/data/base/1/12859
INFO: backup file /var/lib/pgsqgl/10/data/base/1/12854
INFO: full backup size = 29.9MB
INFO: execute non-exclusive pg_stop_backup ()
archive
INFO: backup stop archive = 000000070000000000000017,

[filtered 4 lines of output]

backup begins after the

lsn = 0/17000028

(0B, 100%)
(0B, 100%)

for all WAL segments to

l1sn = 0/17000130

pgBackRest User Guide
Version 2.31

=42 -

Crunchy Data Solutions, Inc.
February 5, 2021

13 S3-COMPATIBLE OBJECT STORE SUPPORT

13 S3-Compatible Object Store Support

pgBackRest supports locating repositories in S3-compatible object stores. The bucket used to store
the repository must be created in advance — pgBackRest will not do it automatically. The repository
can be located in the bucket root (/) but it's usually best to place it in a subpath so object store logs or
other data can also be stored in the bucket without conflicts.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure S3

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[global]

process-max=4

repol-azure—-account=pgbackrest
repol-azure-container=demo-container
repol-azure—-key=YXpLZXk=
repol-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDF17MxGlgkZSaoPvTIGirhPygu4 jOKOXf9L04vjfO
repol-cipher-type=aes-256-cbc
repol-path=/demo-repo

repol-retention-diff=2
repol-retention-full=2
repol-s3-bucket=demo-bucket
repol-s3-endpoint=s3.us—east-1.amazonaws.com
repol-s3-key=accessKeyl
repol-s3-key-secret=verySecretKeyl
repol-s3-region=us-east-1

repol-type=s3

start—-fast=y

[global:archive—-push]
compress—level=3

NOTE: The region and endpoint will need to be configured to where the bucket is located. The values
given here are for the us—east—-1 region.

A role should be created to run pgBackRest and the bucket permissions should be set as restrictively
as possible. If the role is associated with an instance in 2ws then pgBackRest will automatically retrieve
temporary credentials when repol-s3-key-type=auto, which means that keys do not need to be
explicitly setin /etc/pgbackrest/pgbackrest.conf.

This sample amazon S3 policy will restrict all reads and writes to the bucket and repository path.

Sample Amazon S3 Policy:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
pgBackRest User Guide Crunchy Data Solutions, Inc.

Version 2.31 -43 - February 5, 2021

13 S3-COMPATIBLE OBJECT STORE SUPPORT

"Action": [
"s3:ListBucket"
1,

"Resource": [
"arn:aws:s3:::{[s3-bucket]}"

1y

"Condition": {

"StringEquals": {
"s3:prefix": [
nmnn
4
"{[s3-repo]}"
1,
"s3:delimiter": [

"/"

"Effect": "Allow",
"Action": [

"s3:ListBucket"
1,

"Resource": [
"arn:aws:s3:::{[s3-bucket]}"

1y

"Condition": {

"StringLike": {
"s3:prefix": [
"{[s3-repol}/*"
]

"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject"
]/
"Resource": [
"arn:aws:s3:::{[s3-bucket]}/{[s3-repo]}/*"

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -44 - February 5, 2021

13 S3-COMPATIBLE OBJECT STORE SUPPORT

Commands are run exactly as if the repository were stored on a local disk.

pg-primary — Create the stanza

sudo —-u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create
Output:
P00 INFO: stanza-create command begin 2.31: —-—-exec—-1d=3956-75c7f006 —--log-level-

console=info --log-level-stderr=off --no-log-timestamp --pgl-path=/var/lib/
pgsgl/10/data —-repol-cipher—-pass=<redacted> —--repol-cipher-type=aes-256-cbc —-—

repol-path=/demo-repo —--repol-s3-bucket=demo-bucket —--repol-s3-endpoint=s3.us-
east-1.amazonaws.com —--repol-s3-key=<redacted> —--repol-s3-key-secret=<redacted>
——repol-s3-region=us-east-1 —--repol-type=s3 —--stanza=demo

P00 INFO: stanza-create command end: completed successfully

File creation time in object stores is relatively slow so commands benefit by increasing process-max
to parallelize file creation.

pg-primary — Backup the demo cluster

sudo —u postgres pgbackrest —-—-stanza=demo \
——log-level-console=info backup

Output:

P00 INFO: backup command begin 2.31: —--exec-1d=3983-5cel022d —--log-level-console=
info ——-log-level-stderr=off --no-log-timestamp —--pgl-path=/var/lib/pgsqgl/10/
data —--process-max=4 —--repol-cipher-pass=<redacted> —--repol-cipher-type=aes
-256-cbc —--repol-path=/demo-repo —--repol-retention-diff=2 —--repol-retention-
full=2 —--repol-s3-bucket=demo-bucket —--repol-s3-endpoint=s3.us—-east-1.amazonaws
.com —-repol-s3-key=<redacted> —--repol-s3-key-secret=<redacted> —--repol-s3-
region=us-east-1 —--repol-type=s3 —--stanza=demo —--start-fast

P00 WARN: no prior backup exists, incr backup has been changed to full

P00 INFO: execute non-exclusive pg_start_backup(): backup begins after the
requested immediate checkpoint completes

P00 INFO: backup start archive = 000000070000000000000018, 1sn = 0/18000028

[filtered 1243 lines of output]

P04 INFO: backup file /var/lib/pgsqgl/10/data/base/1/12859 (0B, 100%)

P03 INFO: backup file /var/lib/pgsqgl/10/data/base/1/12854 (0B, 100%)

POO INFO: full backup size = 29.9MB

P00 INFO: execute non-exclusive pg_stop_backup () and wait for all WAL segments to
archive

POO INFO: backup stop archive = 000000070000000000000018, 1lsn = 0/180000F8

[filtered 4 lines of output]

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -45 - February 5, 2021

14 DELETE A STANZA

14 Delete a Stanza

The stanza-delete command removes data in the repository associated with a stanza.

WARNING: Use this command with caution — it will permanently remove all backups and archives
from the pgBackRest repository for the specified stanza.

To delete a stanza:
» Shut down the PostgreSQL cluster associated with the stanza (or use —force to override).
* Run the st op command on the repository host.
* Run the stanza-delete command on the repository host.

Once the command successfully completes, it is the responsibility of the user to remove the stanza
from all pgBackRest configuration files.

pg-primary — Stop PostgreSQL cluster to be removed

sudo systemctl stop postgresgl-10.service

pg-primary — Stop pgBackRest for the stanza

sudo —-u postgres pgbackrest --stanza=demo --log-level-console=info stop

Output:

P00 INFO: stop command begin 2.31: —-—-exec—-1d=4041-£f7812369 —--log-level-console=
info --log-level-stderr=off —--no-log-timestamp —--repol-cipher-pass=<redacted>
——repol-cipher-type=aes-256-cbc ——-repol-path=/demo-repo —-repol-s3-bucket=demo-
bucket —--repol-s3-endpoint=s3.us-east-1.amazonaws.com —--repol-s3-key=<redacted>

——repol-s3-key-secret=<redacted> —--repol-s3-region=us—-east-1 —-repol-type=s3

——-stanza=demo
P00 INFO: stop command end: completed successfully

pg-primary — Delete the stanza

sudo -u postgres pgbackrest --stanza=demo --log-level-console=info stanza-delete
Output:
P00 INFO: stanza-delete command begin 2.31: —--exec-1d=4066-82b669f3 —--log-level-

console=info —--log-level-stderr=off —-—-no-log-timestamp —--pgl-path=/var/lib/
pgsgl/l10/data —--repol-cipher-pass=<redacted> —--repol-cipher-type=aes-256-cbc —-—
repol-path=/demo-repo —--repol-s3-bucket=demo-bucket —--repol-s3-endpoint=s3.us—
east-1l.amazonaws.com —-repol-s3-key=<redacted> —--repol-s3-key-secret=<redacted>
——-repol-s3-region=us—-east-1 —--repol-type=s3 —--stanza=demo
P00 INFO: stanza-delete command end: completed successfully

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -46 - February 5, 2021

15 DEDICATED REPOSITORY HOST

15 Dedicated Repository Host

The configuration described in is suitable for simple installations but for enterprise con-
figurations it is more typical to have a dedicated repository host where the backups and WAL archive
files are stored. This separates the backups and WAL archive from the database server so database
host failures have less impact. It is still a good idea to employ traditional backup software to backup the
repository host.

On PostgreSQL hosts, pgl-path is required to be the path of the local PostgreSQL cluster and no
pgl-host should be configured. When configuring a repository host, the pgbackrest configuration
file must have the pg-host option configured to connect to the primary and standby (if any) hosts.
The repository host has the only pgbackrest configuration that should be aware of more than one
PostgreSQL host. Order does not matter, e.g. pg1-path/pg1-host, pg2-path/pg2-host can be primary or
standby.

15.1 Installation

A new host named repository is created to store the cluster backups.

NOTE: The pgBackRest version installed on the repository host must exactly match the version
installed on the PostgreSQL host.

The pgbackrest user is created to own the pgBackRest repository. Any user can own the repository
but it is best not to use postgres (if it exists) to avoid confusion.

repository — Create pgbackrest user

sudo groupadd pgbackrest
sudo adduser -gpgbackrest -n pgbackrest

pgBackRest needs to be installed from a package or installed manually as shown here.

build — Install dependencies

sudo yum install postgresgl-libs

repository — Copy pgBackRest binary from build host

sudo scp build:/build/pgbackrest-release-2.31/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

repository — Create pgBackRest configuration file and directories

sudo mkdir -p -m 770 /var/log/pgbackrest

sudo chown pgbackrest:pgbackrest /var/log/pgbackrest
sudo mkdir -p /etc/pgbackrest

sudo mkdir -p /etc/pgbackrest/conf.d

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -47 - February 5, 2021

15 DEDICATED REPOSITORY HOST 15.2 Setup Passwordless SSH

sudo touch /etc/pgbackrest/pgbackrest.conf
sudo chmod 640 /etc/pgbackrest/pgbackrest.conf
sudo chown pgbackrest:pgbackrest /etc/pgbackrest/pgbackrest.conf

repository — Create the pgBackRest repository

sudo mkdir -p /var/lib/pgbackrest
sudo chmod 750 /var/lib/pgbackrest
sudo chown pgbackrest:pgbackrest /var/lib/pgbackrest

15.2 Setup Passwordless SSH

pgBackRest requires passwordless SSH to enable communication between the hosts.

repository — Create repository host key pair

sudo —u pgbackrest mkdir -m 750 /home/pgbackrest/.ssh
sudo —-u pgbackrest ssh-keygen —-f /home/pgbackrest/.ssh/id_rsa \
-t rsa -b 4096 -N ""

pg-primary — Create pg-primary host key pair

sudo —-u postgres mkdir -m 750 -p /var/lib/pgsql/.ssh
sudo —u postgres ssh-keygen —-f /var/lib/pgsqgl/.ssh/id_rsa \
-t rsa -b 4096 -N ""

Exchange keys between repository and pg-primary.

repository — Copy pg-primary public key to repository

(echo -n 'no-agent-forwarding,no-Xll-forwarding, no-port-forwarding, ' && \
echo —n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#x* }" ' && \
sudo ssh root@pg-primary cat /var/lib/pgsqgl/.ssh/id_rsa.pub) | \
sudo -u pgbackrest tee -a /home/pgbackrest/.ssh/authorized_keys

pg-primary — Copy repository public key to pg-primary

(echo -n 'no-agent-forwarding,no-Xll-forwarding, no-port-forwarding, ' && \
echo —n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#x* }" ' && \
sudo ssh root@repository cat /home/pgbackrest/.ssh/id_rsa.pub) | \
sudo —-u postgres tee -a /var/lib/pgsqgl/.ssh/authorized_keys

Test that connections can be made from repository to pg-primary and vice versa.

repository — Test connection from repository to pg-primary

sudo -u pgbackrest ssh postgres@pg-primary

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -48 - February 5, 2021

15 DEDICATED REPOSITORY HOST 15.3 Configuration

pg-primary — Test connection from pg-primary to repository

sudo —-u postgres ssh pgbackrest@repository

NOTE: ssh has been configured to only allow pgBackRest to be run via passwordless ssh. This
enhances security in the event that one of the service accounts is hijacked.

15.3 Configuration
The repository host must be configured with the pg-primary host/user and database path. The primary
will be configured as pg1 to allow a standby to be added later.

repository./etc/pgbackrest /pgbackrest.conf — Configure pgl-host/pgl-host-user and
pgl-path

[demo]
pgl-host=pg-primary
pgl-path=/var/lib/pgsqgl/10/data

[globall
repol-path=/var/lib/pgbackrest
repol-retention-full=2
start-fast=y

The database host must be configured with the repository host/user. The default for the repol-host-user
option is pgbackrest. If the postgres user does restores on the repository host it is best not to also
allow the postgres user to perform backups. However, the postgres user can read the repository
directly if it is in the same group as the pgbackrest user.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repol-host/repol-host-user

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
log-level-file=detail
repol-host=repository

Commands are run the same as on a single host configuration except that some commands such as
backup and expire are run from the repository host instead of the database host.

Create the stanza in the new repository.

repository — Create the stanza

sudo —-u pgbackrest pgbackrest —--stanza=demo stanza-create

Check that the configuration is correct on both the database and repository hosts. More information
about the check command can be found in[CHECK THE CONFIGURATIONL

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -49 - February 5, 2021

15 DEDICATED REPOSITORY HOST 15.4 Perform a Backup

pg-primary — Check the configuration

sudo —-u postgres pgbackrest —--stanza=demo check

repository — Check the configuration

sudo -u pgbackrest pgbackrest —--stanza=demo check

15.4 Perform a Backup

To perform a backup of the PostgreSQL cluster run pgBackRest with the backup command on the
repository host.

repository — Backup the demo cluster

sudo —-u pgbackrest pgbackrest —--stanza=demo backup
Output:

P00 WARN: no prior backup exists, incr backup has been changed to full

Since a new repository was created on the repository host the warning about the incremental backup
changing to a full backup was emitted.

15.5 Restore a Backup

To perform a restore of the PostgreSQL cluster run pgBackRest with the restore command on the
database host.

pg-primary — Stop the demo cluster, restore, and restart PostgreSQL

sudo systemctl stop postgresgl-10.service
sudo —-u postgres pgbackrest —--stanza=demo —--delta restore
sudo systemctl start postgresqgl-10.service

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -50 - February 5, 2021

16 PARALLEL BACKUP /RESTORE

16 Parallel Backup / Restore

pgBackRest offers parallel processing to improve performance of compression and transfer. The num-
ber of processes to be used for this feature is set using the ——process-max option.

It is usually best not to use more than 25% of available CPUs for the backup command. Backups don'’t
have to run that fast as long as they are performed regularly and the backup process should not impact
database performance, if at all possible.

The restore command can and should use all available CPUs because during a restore the PostgreSQL
cluster is shut down and there is generally no other important work being done on the host. If the host
contains multiple clusters then that should be considered when setting restore parallelism.

repository — Perform a backup with single process

sudo —-u pgbackrest pgbackrest —--stanza=demo —--type=full backup

repository:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest to use multiple backup pro-
cesses

[demo]
pgl-host=pg-primary
pgl-path=/var/lib/pgsqgl/10/data

[globall

process—-max=3
repol-path=/var/lib/pgbackrest
repol-retention-full=2
start—-fast=y

repository — Perform a backup with multiple processes

sudo —-u pgbackrest pgbackrest —--stanza=demo —-type=full backup

repository — Get backup info for the demo cluster

sudo —-u pgbackrest pgbackrest info
Output:

stanza: demo
status: ok
cipher: none

db (current)
wal archive min/max (10-1): 00000008000000000000001D/00000008000000000000001
E

full backup: 20210205-224313F
timestamp start/stop: 2021-02-05 22:43:13 / 2021-02-05 22:43:19

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -51 - February 5, 2021

16 PARALLEL BACKUP /RESTORE

wal start/stop: 00000008000000000000001D / 00000008000000000000001D
database size: 29.9MB, backup size: 29.9MB

repository size: 3.5MB, repository backup size: 3.5MB

full backup: 20210205-224322F
timestamp start/stop: 2021-02-05 22:43:22 / 2021-02-05 22:43:29

wal start/stop: 00000008000000000000001E / 00000008000000000000001E
database size: 29.9MB, backup size: 29.9MB

repository size: 3.5MB, repository backup size: 3.5MB

The performance of the last backup should be improved by using multiple processes. For very small

backups the difference may not be very apparent, but as the size of the database increases so will time
savings.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -52 - February 5, 2021

17 STARTING AND STOPPING

17 Starting and Stopping

Sometimes it is useful to prevent pgBackRest from running on a system. For example, when failing
over from a primary to a standby it's best to prevent pgBackRest from running on the old primary in
case PostgreSQL gets restarted or can’t be completely killed. This will also prevent pgBackRest from
running on cron.

pg-primary — Stop the pgBackRest services

sudo -u postgres pgbackrest stop

New pgBackRest processes will no longer run.

repository — Attempt a backup

sudo —-u pgbackrest pgbackrest —--stanza=demo backup
Output:
POO WARN: unable to check pg-1: [StopError] raised from remote-0 protocol on 'pg-

primary': stop file exists for all stanzas
POO ERROR: [056]: unable to find primary cluster - cannot proceed

Specify the ——force option to terminate any pgBackRest process that are currently running. If pg-
BackRest is already stopped then stopping again will generate a warning.

pg-primary — Stop the pgBackRest services again

sudo —-u postgres pgbackrest stop

Output:

P00 WARN: stop file already exists for all stanzas

Start pgBackRest processes again with the start command.

pg-primary — Start the pgBackRest services

sudo -u postgres pgbackrest start

It is also possible to stop pgBackRest for a single stanza.

pg-primary — Stop pgBackRest services for the demo stanza

sudo —-u postgres pgbackrest —--stanza=demo stop

New pgBackRest processes for the specified stanza will no longer run.

repository — Attempt a backup

sudo -u pgbackrest pgbackrest —--stanza=demo backup

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -53 - February 5, 2021

17 STARTING AND STOPPING

Output:

P00 WARN: unable to check pg-1: [StopError] raised from remote-0 protocol on 'pg-
primary': stop file exists for stanza demo
P00 ERROR: [056]: unable to find primary cluster - cannot proceed

The stanza must also be specified when starting the pgBackRest processes for a single stanza.

pg-primary — Start the pgBackRest services for the demo stanza

sudo —-u postgres pgbackrest —--stanza=demo start

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -54 - February 5, 2021

18 REPLICATION

18 Replication

Replication allows multiple copies of a PostgreSQL cluster (called standbys) to be created from a single
primary. The standbys are useful for balancing reads and to provide redundancy in case the primary
host fails.

18.1 Installation

A new host named pg-standby is created to run the standby.
pgBackRest needs to be installed from a package or installed manually as shown here.

build — Install dependencies

sudo yum install postgresqgl-libs

pg-standby — Copy pgBackRest binary from build host

sudo scp build:/build/pgbackrest-release-2.31/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

pg-standby — Create pgBackRest configuration file and directories

sudo mkdir -p -m 770 /var/log/pgbackrest

sudo chown postgres:postgres /var/log/pgbackrest

sudo mkdir -p /etc/pgbackrest

sudo mkdir -p /etc/pgbackrest/conf.d

sudo touch /etc/pgbackrest/pgbackrest.conf

sudo chmod 640 /etc/pgbackrest/pgbackrest.conf

sudo chown postgres:postgres /etc/pgbackrest/pgbackrest.conf

18.2 Setup Passwordless SSH

pgBackRest requires passwordless SSH to enable communication between the hosts.

pg-standby — Create pg-standby host key pair

sudo —-u postgres mkdir -m 750 -p /var/lib/pgsqgl/.ssh
sudo —-u postgres ssh-keygen -f /var/lib/pgsgl/.ssh/id_rsa \
-t rsa -b 4096 -N ""

Exchange keys between repository and pg-standby.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -55 - February 5, 2021

18 REPLICATION 18.3 Hot Standby

repository — Copy pg-standby public key to repository

(echo -n 'no-agent-forwarding,no-Xll-forwarding, no-port-forwarding, ' && \
echo —n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@pg-standby cat /var/lib/pgsqgl/.ssh/id_rsa.pub) | \
sudo -u pgbackrest tee -a /home/pgbackrest/.ssh/authorized_keys

pg-standby — Copy repository public key to pg-standby

(echo -n 'no-agent-forwarding,no-Xll-forwarding, no-port-forwarding, ' && \
echo —n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#x* }" ' && \
sudo ssh root@repository cat /home/pgbackrest/.ssh/id_rsa.pub) | \
sudo -u postgres tee -a /var/lib/pgsqgl/.ssh/authorized_keys

Test that connections can be made from repository to pg-standby and vice versa.

repository — Test connection from repository to pg-standby

sudo -u pgbackrest ssh postgres@pg-standby

pg-standby — Test connection from pg-standby to repository

sudo —-u postgres ssh pgbackrest@repository

18.3 Hot Standby

A hot standby performs replication using the WAL archive and allows read-only queries.

pgBackRest configuration is very similar to pg-primary except that the st andby recovery type will be
used to keep the cluster in recovery mode when the end of the WAL stream has been reached.

pg-standby:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest on the standby

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall
log-level-file=detail
repol-host=repository

Create the path where PostgreSQL will be restored.
pg-standby — Create PostgreSQL path

sudo -u postgres mkdir -p -m 700 /var/lib/pgsgl/10/data

Now the standby can be created with the restore command.

IMPORTANT: If the cluster is intended to be promoted without becoming the new primary (e.g. for re-
porting or testing), use ——archive-mode=off Or set archive mode=off in postgresqgl.conf
to disable archiving. If archiving is not disabled then the repository may be polluted with WAL that
can make restores more difficult.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 56 - February 5, 2021

18 REPLICATION 18.3 Hot Standby

pg-standby — Restore the demo standby cluster

sudo —-u postgres pgbackrest —--stanza=demo —--type=standby restore
sudo -u postgres cat /var/lib/pgsgl/l10/data/recovery.conf

Output:
Recovery settings generated by pgBackRest restore on 2021-02-05 22:43:46

restore_command = 'pgbackrest --stanza=demo archive-get %$f "%p"'
standby_mode = 'on'

The hot_standby setting must be enabled before starting PostgreSQL to allow read-only connections
on pg-standby. Otherwise, connection attempts will be refused. The rest of the configuration is in case
the standby is promoted to a primary.

pg-standby:/var/1ib/pgsgl/10/data/postgresql .conf — Configure PostgreSQL

archive_command = 'pgbackrest --stanza=demo archive-push %p'
archive_mode = on

hot_standby = on

log_filename = 'postgresgl.log'

log_line_prefix = "'
max_wal_senders 3
wal_ level = replica

pg-standby — Start PostgreSQL

sudo systemctl start postgresqgl-10.service

The PostgreSQL log gives valuable information about the recovery. Note especially that the cluster has
entered standby mode and is ready to accept read-only connections.

pg-standby — Examine the PostgreSQL log output for log messages indicating success

sudo -u postgres cat /var/lib/pgsqgl/l10/data/log/postgresgl.log
Output:

LOG: database system was interrupted; last known up at 2021-02-05 22:43:23 UTC
LOG: entering standby mode

LOG: restored log file "00000008.history" from archive

LOG: restored log file "00000008000000000000001E" from archive

LOG: redo starts at 0/1E000028

LOG: consistent recovery state reached at 0/1E000130

LOG: database system is ready to accept read only connections

An easy way to test that replication is properly configured is to create a table on pg-primary.

pg-primary — Create a new table on the primary

sudo -u postgres psgl —-c " \
begin; \

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -57 - February 5, 2021

18 REPLICATION 18.3 Hot Standby

create table replicated_table (message text); \

insert into replicated_table values ('Important Data'); \
commit; \

select * from replicated_table";

Output:

message

Important Data
(1 row)

And then query the same table on pg-standby.
pg-standby — Query new table on the standby

sudo —-u postgres psgl —-c "select x from replicated_table;"

Output:

ERROR: relation "replicated table" does not exist
LINE 1: select x from replicated_table;

So, what went wrong? Since PostgreSQL is pulling WAL segments from the archive to perform repli-
cation, changes won'’t be seen on the standby until the WAL segment that contains those changes is
pushed from pg-primary.

This can be done manually by calling pg_switch_-wal () which pushes the current WAL segment to
the archive (a new WAL segment is created to contain further changes).

pg-primary — Call pg_switch_wal ()

sudo —-u postgres psgl —-c "select %, current_timestamp from pg_switch_wal()";
Output:

pg_switch_wal | current_timestamp
_______________ o
0/1F02B888 | 2021-02-05 22:43:53.339112+00

(1 row)

Now after a short delay the table will appear on pg-standby.

pg-standby — Now the new table exists on the standby (may require a few retries)

sudo -u postgres psgl —-c " \
select %, current_timestamp from replicated_table"

Output:

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 58 - February 5, 2021

18 REPLICATION 18.4 Streaming Replication

message | current_timestamp
________________ _|________________________________
Important Data | 2021-02-05 22:43:56.269886+00
(1 row)

Check the standby configuration for access to the repository.

pg-standby — Check the configuration

sudo —-u postgres pgbackrest —--stanza=demo --log-level-console=info check
Output:
P00 INFO: check command begin 2.31: --exec-1d=1011-43ac74ab --log-level-console=

info ——-log-level-file=detail --log-level-stderr=off —--no-log-timestamp —--pgl-
path=/var/lib/pgsgl/10/data —-repol-host=repository --stanza=demo

P00 INFO: switch wal not performed because this is a standby

P00 INFO: check command end: completed successfully

18.4 Streaming Replication

Instead of relying solely on the WAL archive, streaming replication makes a direct connection to the
primary and applies changes as soon as they are made on the primary. This results in much less lag
between the primary and standby.

Streaming replication requires a user with the replication privilege.

pg-primary — Create replication user

sudo —u postgres psgl —-c " \
create user replicator password 'jw8sOF4' replication";

Output:

CREATE ROLE

The pg_hba.conf file must be updated to allow the standby to connect as the replication user. Be
sure to replace the IP address below with the actual IP address of your pg-primary. A reload will be
required after modifying the pg_hba. conf file.

pg-primary — Create pg_hba.conf entry for replication user

sudo —-u postgres sh -c 'echo \
"host replication replicator 172.17.0.6/32 md5" \
>> /var/lib/pgsqgl/10/data/pg_hba.conf'

sudo systemctl reload postgresqgl-10.service

The standby needs to know how to contact the primary so the primary_conninfo setting will be
configured in pgBackRest.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -59 - February 5, 2021

18 REPLICATION 18.4 Streaming Replication

pg-standby:/etc/pgbackrest/pgbackrest.conf — Set primary_conninfo

[demo]
pgl-path=/var/lib/pgsqgl/10/data
recovery-option=primary_conninfo=host=172.17.0.4 port=5432 user=replicator

[globall
log-level-file=detail
repol-host=repository

It is possible to configure a password in the primary_conninfo setting but using a .pgpass file is
more flexible and secure.

pg-standby — Configure the replication password in the .pgpass file.

sudo —-u postgres sh -c 'echo \
"172.17.0.4:%:replication:replicator: jw8s0F4" \
>> /var/lib/pgsql/.pgpass'

sudo —-u postgres chmod 600 /var/lib/pgsgl/.pgpass

Now the standby can be created with the restore command.

pg-standby — Stop PostgreSQL and restore the demo standby cluster

sudo systemctl stop postgresgl-10.service

sudo -u postgres pgbackrest —--stanza=demo --delta —--type=standby restore
sudo —-u postgres cat /var/lib/pgsqgl/10/data/recovery.conf

Output:

Recovery settings generated by pgBackRest restore on 2021-02-05 22:44:01

primary_conninfo = 'host=172.17.0.4 port=5432 user=replicator'
restore_command = 'pgbackrest --stanza=demo archive-get $f "%p"'
standby_mode = 'on'

NOTE: The primary_conninfo setting has been written into the recovery.conf file because it
was configured as a recovery-option in pgbackrest.conf. The ——type=preserve option
can be used with the restore to leave the existing recovery.conf file in place if that behavior is
preferred.

By default RHEL/CentOS 7-8 stores the postgresgl.conf file in the PostgreSQL data directory.

That means the change made to postgresqgl.conf was overwritten by the last restore and the

hot _standby setting must be enabled again. Other solutions to this problem are to store the postgresqgl . co
file elsewhere or to enable the hot _standby setting on the pg-primary host where it will be ignored.

pg-standby:/var/1ib/pgsqgl/10/data/postgresql.conf — Enable hot _standby

archive_command = 'pgbackrest --stanza=demo archive-push %p'
archive _mode = on

hot_standby = on

log_filename = 'postgresqgl.log'

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 60 - February 5, 2021

18 REPLICATION 18.4 Streaming Replication

log_line_prefix = "'
max_wal senders = 3
wal_level = replica

pg-standby — Start PostgreSQL

sudo systemctl start postgresqgl-10.service

The PostgreSQL log will confirm that streaming replication has started.

pg-standby — Examine the PostgreSQL log output for log messages indicating success

sudo —-u postgres cat /var/lib/pgsgl/10/data/log/postgresqgl.log
Output:

[filtered 6 lines of output]
LOG: database system is ready to accept read only connections
LOG: restored log file "00000008000000000000001F" from archive
LOG: started streaming WAL from primary at 0/20000000 on timeline 8

Now when a table is created on pg-primary it will appear on pg-standby quickly and without the need
to call pg_switch_wal ().

pg-primary — Create a new table on the primary

sudo -u postgres psgl —-c " \

begin; \
create table stream_table (message text); \
insert into stream_table values ('Important Data'); \

commit; \
select %, current_timestamp from stream_ table";

Output:

message | current_timestamp
________________ _|________________________________
Important Data | 2021-02-05 22:44:07.441539+00
(1 row)

pg-standby — Query table on the standby

sudo -u postgres psgl -c " \
select %, current_timestamp from stream table"

Output:
message | current_timestamp
________________ _I________________________________
Important Data | 2021-02-05 22:44:07.897891+00
(1 row)
pgBackRest User Guide Crunchy Data Solutions, Inc.

Version 2.31 -61 - February 5, 2021

19 ASYNCHRONOUS ARCHIVING

19 Asynchronous Archiving

Asynchronous archiving is enabled with the archive-async option. This option enables asynchronous
operation for both the archive-push and archive-get commands.

A spool path is required. The commands will store transient data here but each command works quite
a bit differently so spool path usage is described in detail in each section.

pg-primary — Create the spool directory

sudo mkdir -p -m 750 /var/spool/pgbackrest
sudo chown postgres:postgres /var/spool/pgbackrest

pg-standby — Create the spool directory

sudo mkdir -p —-m 750 /var/spool/pgbackrest
sudo chown postgres:postgres /var/spool/pgbackrest

The spool path must be configured and asynchronous archiving enabled. Asynchronous archiving
automatically confers some benefit by reducing the number of connections made to remote storage,
but setting process—-max can drastically improve performance by parallelizing operations. Be sure not
to set process-max so high that it affects normal database operations.

pg-primary./etc/pgbackrest/pgbackrest.conf — Configure the spool path and asynchronous archiving

[demo]
pgl-path=/var/lib/pgsqgl/10/data

[globall

archive-async=y
log-level-file=detail
repol-host=repository
spool-path=/var/spool/pgbackrest

[global:archive—-get]
process-max=2

[global:archive—-push]
process-max=2

pg-standby:/etc/pgbackrest/pgbackrest.conf — Configure the spool path and asynchronous archiving

[demo]
pgl-path=/var/lib/pgsgl/10/data
recovery-option=primary_conninfo=host=172.17.0.4 port=5432 user=replicator

[globall
archive-async=y
log-level-file=detail
repol-host=repository

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -62 - February 5, 2021

19 ASYNCHRONOUS ARCHIVING 19.1 Archive Push

spool-path=/var/spool/pgbackrest

[global:archive-get]
process—-max=2

[global:archive—-push]
process-max=2

NOTE: process—max Is configured using command sections so that the option is not used by backup
and restore. This also allows different values for archive—-push and archive-get.

For demonstration purposes streaming replication will be broken to force PostgreSQL to get WAL using
the restore_command.

pg-primary — Break streaming replication by changing the replication password

sudo -u postgres psgl -c "alter user replicator password 'bogus'"
Output:

ALTER ROLE

pg-standby — Restart standby to break connection

sudo systemctl restart postgresgl-10.service

19.1 Archive Push

The asynchronous archive-push command offloads WAL archiving to a separate process (or pro-
cesses) to improve throughput. It works by “looking ahead” to see which WAL segments are ready to
be archived beyond the request that PostgreSQL is currently making via the archive_command. WAL
segments are transferred to the archive directly from the pg_x1og/pg_wal directory and success is only
returned by the archive _command when the WAL segment has been safely stored in the archive.

The spool path holds the current status of WAL archiving. Status files written into the spool directory
are typically zero length and should consume a minimal amount of space (a few MB at most) and very
little 10. All the information in this directory can be recreated so it is not necessary to preserve the spool
directory if the cluster is moved to new hardware.

IMPORTANT: In the original implementation of asynchronous archiving, WAL segments were copied
to the spool directory before compression and transfer. The new implementation copies WAL directly
from the pg_x1og directory. If asynchronous archiving was utilized inv1 .12 or prior, read the v1 .13
release notes carefully before upgrading.

The [stanza]-archive-push-async.log file can be used to monitor the activity of the asyn-
chronous process. A good way to test this is to quickly push a number of WAL segments.

pg-primary — Test parallel asynchronous archiving

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 63 - February 5, 2021

19 ASYNCHRONOUS ARCHIVING 19.1 Archive Push

sudo -u postgres psgl -c " \

select pg_create_restore_point ('test async push'); select pg_switch_wal(); \
select pg_create_restore_point ('test async push'); select pg_switch_wal(); \
select pg_create_restore_point ('test async push'); select pg_switch_wal(); \
select pg_create_restore_point ('test async push'); select pg_switch_wal(); \
select pg_create_restore_point ('test async push'); select pg_switch_wal();"

sudo —-u postgres pgbackrest --stanza=demo --log-level-console=info check

Output:

P00 INFO: check command begin 2.31: --exec-1d=5015-4dd0c05f --log-level-console=

info —--log-level-file=detail --log-level-stderr=off --no-log-timestamp —--pgl-
path=/var/lib/pgsqgl/10/data —-repol-host=repository —--stanza=demo

P00 INFO: WAL segment 000000080000000000000025 successfully archived to '/var/lib/
pgbackrest/archive/demo/10-1/0000000800000000/000000080000000000000025-011859
d03bb384597523c1515f0bbda2£f0439fd7.gz"

P00 INFO: check command end: completed successfully

Now the log file will contain parallel, asynchronous activity.

pg-primary — Check results in the log

sudo —-u postgres cat /var/log/pgbackrest/demo-archive-push-async.log

Output:

P00 INFO: archive-push:async command begin 2.31: [/var/lib/pgsqgl/10/data/pg_wal]
——archive—-async —-—-exec-i1d=4984-1a8e7446 —--log-level-console=off —--log-level-
file=detail --log-level-stderr=off --no-log-timestamp —--pgl-path=/var/lib/pgsqgl
/10/data —-process—-max=2 —-repol-host=repository —-—-spool-path=/var/spool/
pgbackrest —--stanza=demo

POO INFO: push 1 WAL file(s) to archive: 000000080000000000000020

P01 DETAIL: pushed WAL file '000000080000000000000020' to the archive

P00 INFO: archive-push:async command end: completed successfully

P00 INFO: archive-push:async command begin 2.31: [/var/lib/pgsql/10/data/pg_wal]
——archive—-async —--exec-id=5019-adfleObf --log-level-console=off --log-level-
file=detail --log-level-stderr=off —-—no-log-timestamp —--pgl-path=/var/lib/pgsqgl
/10/data —-process-max=2 —--repol-host=repository —--spool-path=/var/spool/
pgbackrest —--stanza=demo

POO INFO: push 5 WAL file(s) to archive:
000000080000000000000021...000000080000000000000025

P01 DETAIL: pushed WAL file '000000080000000000000021' to the archive

P02 DETAIL: pushed WAL file '000000080000000000000022' to the archive

P01 DETAIL: pushed WAL file '000000080000000000000023' to the archive

P02 DETAIL: pushed WAL file '000000080000000000000024" to the archive

P01 DETAIL: pushed WAL file '000000080000000000000025' to the archive

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 64 - February 5, 2021

19 ASYNCHRONOUS ARCHIVING 19.2 Archive Get

P00 INFO: archive-push:async command end: completed successfully

19.2 Archive Get

The asynchronous archive—-get command maintains a local queue of WAL to improve throughput. If a
WAL segment is not found in the queue it is fetched from the repository along with enough consecutive
WAL to fill the queue. The maximum size of the queue is defined by archive-get—-queue-max.
Whenever the queue is less than half full more WAL will be fetched to fill it.

Asynchronous operation is most useful in environments that generate a lot of WAL or have a high
latency connection to the repository storage (i.e., S3 or other object stores). In the case of a high
latency connection it may be a good idea to increase process-max.

The [stanza]-archive-get-async. log file can be used to monitor the activity of the asynchronous
process.

pg-standby — Check results in the log

sudo —-u postgres cat /var/log/pgbackrest/demo-archive-get—-async.log

Output:

P00 INFO: archive—-get:async command begin 2.31: [00000008000000000000001E,
00000008000000000000001F, 000000080000000000000020, 000000080000000000000021,
000000080000000000000022, 000000080000000000000023, 000000080000000000000024,
000000080000000000000025] ——archive—-async —--exec-id=1519-c996af0b --log-level-
console=o0ff --log-level-file=detail —--log-level-stderr=o0ff --no-log-timestamp
——pgl-path=/var/lib/pgsqgl/10/data —--process-max=2 —--repol-host=repository —-—
spool-path=/var/spool/pgbackrest --stanza=demo

P00 INFO: get 8 WAL file(s) from archive: 00000008000000000000001E
...000000080000000000000025

P01 DETAIL: found 00000008000000000000001E in the archive

P01l DETAIL: unable to find 000000080000000000000020 in the archive

P01l DETAIL: unable to find 000000080000000000000021 in the archive

POl DETAIL: unable to find 000000080000000000000022 in the archive

P02 DETAIL: found 00000008000000000000001F in the archive

P01 DETAIL: unable to find 000000080000000000000023 in the archive

P02 DETAIL: unable to find 000000080000000000000025 in the archive

[filtered 17 lines of output]

P00 INFO: archive—get:async command begin 2.31: [000000080000000000000020,
000000080000000000000021, 000000080000000000000022, 000000080000000000000023,
000000080000000000000024, 000000080000000000000025, 000000080000000000000026,
000000080000000000000027] —-—-archive-async —-—-exec-1d=1540-£f95205e7 —--log-level-
console=off —--log-level-file=detail —--log-level-stderr=off —--no-log-timestamp
——pgl-path=/var/lib/pgsqgl/10/data —--process—-max=2 —--repol-host=repository —-
spool-path=/var/spool/pgbackrest —-—-stanza=demo

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 65 - February 5, 2021

19 ASYNCHRONOUS ARCHIVING

19.2 Archive Get

P00 INFO: get 8 WAL file(s) from archive:
000000080000000000000020...000000080000000000000027

P02
PO1
P02
PO1
P02
P02
P02
PO1
P00

DETATIL:
DETAIL:
DETATIL:
DETATIL:
DETATIL:
DETATL:
DETAIL:
DETATIL:
archive-get:async command end:

INFO:

found
found
found
found
found

000000080000000000000021
000000080000000000000020
000000080000000000000022
000000080000000000000023
000000080000000000000024

in
in
in
in
in

the
the
the
the
the

archive
archive
archive
archive
archive

unable to find 000000080000000000000026 in the archive
unable to find 000000080000000000000027 in the archive
found 000000080000000000000025 in the archive

[filtered 11 lines of output]

completed successfully

pg-primary — Fix streaming replication by changing the replication password

sudo —-u postgres psgl —-c "alter user replicator password

Output:

ALTER ROLE

'Jw8sOF4'"

pgBackRest User Guide
Version 2.31

- 66 -

Crunchy Data Solutions, Inc.
February 5, 2021

20 BACKUP FROM A STANDBY

20 Backup from a Standby

pgBackRest can perform backups on a standby instead of the primary. Standby backups require the
pg-standby host to be configured and the backup-standby option enabled. If more than one standby
is configured then the first running standby found will be used for the backup.

repository./etc/pgbackrest/pgbackrest.conf — Configure pg2-host/pg2-host-user and
prg2-path

[demo]

pgl-host=pg-primary
pgl-path=/var/lib/pgsqgl/10/data
pg2-host=pg-standby
pg2-path=/var/lib/pgsql/10/data

[globall

backup-standby=y

process-max=3
repol-path=/var/lib/pgbackrest
repol-retention-full=2
start-fast=y

Both the primary and standby databases are required to perform the backup, though the vast majority
of the files will be copied from the standby to reduce load on the primary. The database hosts can be
configured in any order. pgBackRest will automatically determine which is the primary and which is the
standby.

repository — Backup the demo cluster from pg2

sudo -u pgbackrest pgbackrest —--stanza=demo --log-level-console=detail backup
Output:

[filtered 2 lines of output]

P00 INFO: execute non-exclusive pg_start_backup(): backup begins after the
requested immediate checkpoint completes

POO INFO: backup start archive = 000000080000000000000027, 1lsn = 0/27000028

P00 INFO: wait for replay on the standby to reach 0/27000028

P00 INFO: replay on the standby reached 0/27000028

POl INFO: backup file pg-primary:/var/lib/pgsgl/10/data/log/postgresgl.log (8.6KB,
0%) checksum 8480cdd437d6e005006b4dal07fee72e045be3£f5d

POl INFO: backup file pg-primary:/var/lib/pgsqgl/10/data/global/pg_control (8KB,
0%) checksum 12d5c0f3df8de7f24cbd0eled461400d1df91fbcf

P01 INFO: backup file pg-primary:/var/lib/pgsqgl/10/data/pg_hba.conf (4.2KB, 0%)
checksum ce8al0fbfd9d7770a3£2d40e38d8b0a8al3cb853e

P01 INFO: backup file pg-primary:/var/lib/pgsql/10/data/current_logfiles (26B, 0%)
checksum 78a9f5c10960£0d91£cd313937469824861795a2

P01 INFO: backup file pg-primary:/var/lib/pgsgl/10/data/pg_logical/
replorigin_checkpoint (8B, 0%) checksum 347

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 67 - February 5, 2021

20 BACKUP FROM A STANDBY

fc8f2df71bd4436e38bd1516ccd7ea0d46532
P02 INFO: backup file pg-standby:/var/lib/pgsql/10/data/base/13017/2608 (440KB,
19%) checksum 3ce265fb497d331bbaaz2d3f5c3c4fc7/aed4d44c3b
P03 INFO: backup file pg-standby:/var/lib/pgsql/10/data/base/13017/1249 (392KB,
36%) checksum 49d3aafcalb5bd73d5d2e37743e0aa234e75cedf
[filtered 1254 lines of output]

This incremental backup shows that most of the files are copied from the pg-standby host and only a
few are copied from the pg-primary host.

pgBackRest creates a standby backup that is identical to a backup performed on the primary. It does
this by starting/stopping the backup on the pg-primary host, copying only files that are replicated from
the pg-standby host, then copying the remaining few files from the pg-primary host. This means that
logs and statistics from the primary database will be included in the backup.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 68 - February 5, 2021

21 UPGRADING POSTGRESQL

21 Upgrading PostgreSQL

Immediately after upgrading PostgreSQL to a newer major version, the pg-path for all pgBackRest
configurations must be set to the new database location and the stanza-upgrade run on the reposi-
tory host. If the database is offline use the ——no-online option.

The following instructions are not meant to be a comprehensive guide for upgrading PostgreSQL, rather
they outline the general process for upgrading a primary and standby with the intent of demonstrating
the steps required to reconfigure pgBackRest. It is recommended that a backup be taken prior to
upgrading.

pg-primary — Stop old cluster

sudo systemctl stop postgresgl-10.service

Stop the old cluster on the standby since it will be restored from the newly upgraded cluster.

pg-standby — Stop old cluster

sudo systemctl stop postgresgl-10.service

Create the new cluster and perform upgrade.

pg-primary — Create new cluster and perform the upgrade

sudo —-u postgres /usr/pgsqgl-11/bin/initdb \
-D /var/lib/pgsqgl/ll/data -k —A peer

sudo -u postgres sh -c 'cd /var/lib/pgsgl && \
/usr/pgsqgl-11/bin/pg_upgrade \
——o0ld-bindir=/usr/pgsgl-10/bin \
——new-bindir=/usr/pgsql-11/bin \
—-old-datadir=/var/lib/pgsgl/10/data \
—-—new-datadir=/var/lib/pgsqgl/11/data \

——old-options=" -c config_file=/var/lib/pgsgl/10/data/postgresgl.conf" \
—-—-new-options=" -c config file=/var/lib/pgsgl/ll/data/postgresqgl.conf""’
Output:

[filtered 69 lines of output]
Creating script to delete old cluster ok

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade so,
[filtered 4 lines of output]

Configure the new cluster settings and port.

pg-primary:/var/1lib/pgsqgl/11/data/postgresqgl.conf — Configure PostgreSQL

archive_command = 'pgbackrest --stanza=demo archive-push %p'

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 - 69 - February 5, 2021

21 UPGRADING POSTGRESQL

archive_mode = on
listen_addresses = '«*'
log_line_prefix = "'
max_wal_ senders = 3
port = 5432

wal_ level = replica

Update the pgBackRest configuration on all systems to point to the new cluster.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Upgrade the pgl-path

[demo]
pgl-path=/var/lib/pgsqgl/11/data

[globall

archive-async=y
log-level-file=detail
repol-host=repository
spool-path=/var/spool/pgbackrest

[global:archive—-get]
process-max=2

[global:archive—-push]
process-max=2

pg-standby:/etc/pgbackrest/pgbackrest.conf — Upgrade the pg-path

[demo]
pgl-path=/var/lib/pgsqgl/1l1/data
recovery-option=primary_conninfo=host=172.17.0.4 port=5432 user=replicator

[globall

archive-async=y
log—level-file=detail
repol-host=repository
spool-path=/var/spool/pgbackrest

[global:archive—-get]
process-max=2

[global:archive—-push]
process-max=2

repository:/etc/pgbackrest/pgbackrest.conf — Upgrade pgl-path and pg2-path, disable backup
from standby

[demo]
pgl-host=pg-primary
pgl-path=/var/lib/pgsqgl/11/data

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -70 - February 5, 2021

21 UPGRADING POSTGRESQL

pg2-host=pg-standby
pg2-path=/var/lib/pgsqgl/11/data

[globall]

backup-standby=n

process-max=3
repol-path=/var/lib/pgbackrest
repol-retention-full=2
start-fast=y

pg-primary — Copy hba configuration

sudo cp /var/lib/pgsqgl/10/data/pg_hba.conf \
/var/lib/pgsql/11/data/pg_hba.conf

Before starting the new cluster, the stanza—-upgrade command must be run on the server where the
pgBackRest repository is located.

repository — Upgrade the stanza

sudo -u pgbackrest pgbackrest —--stanza=demo —--no-online \
——log-level-console=info stanza-upgrade

Output:
P00 INFO: stanza-upgrade command begin 2.31: --no-backup-standby --exec-1d=2408-1
ab9%plv7a —--log-level-console=info --log-level-stderr=off --no-log-timestamp —--no

-online --pgl-host=pg-primary —--pg2-host=pg-standby —--pgl-path=/var/lib/pgsqgl
/11/data —--pg2-path=/var/lib/pgsql/l11/data —--repol-path=/var/lib/pgbackrest —-—
stanza=demo

P00 INFO: stanza-upgrade command end: completed successfully

Start the new cluster and confirm it is successfully installed.

pg-primary — Start new cluster

sudo systemctl start postgresgl-11.service

Test configuration using the check command.

pg-primary — Check configuration

sudo —-u postgres systemctl status postgresgl-11.service
Output:

postgresgl-11.service — PostgreSQL 11 database server
Loaded: loaded (/usr/lib/systemd/system/postgresqgl-11.service; disabled; vendor
preset: disabled)
Active: active (running) since Fri 2021-02-05 22:44:42 UTC; 308ms ago
Docs: https://www.postgresqgl.org/docs/11/static/

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -71- February 5, 2021

21 UPGRADING POSTGRESQL

Process: 5488 ExecStartPre=/usr/pgsql-11/bin/postgresqgl-11-check-db-dir ${PGDATA}
(code=exited, status=0/SUCCESS)
Main PID: 5493 (postmaster)
Tasks: 9 (limit: 26213)
Memory: 13.9M
CGroup: /docker/2032e7c2dbf826cc8005684d32d17c65b730bc596ac9cb8fe7529a1913ba321b
/system.slice/postgresgl-11.service
5493 /usr/pgsqgl-11/bin/postmaster -D /var/lib/pgsqgl/1l1l/data/
5494 postgres: logger
5496 postgres: checkpointer
5497 postgres: background writer
5498 postgres: walwriter
5499 postgres: autovacuum launcher
5500 postgres: archiver
5501 postgres: stats collector
5502 postgres: logical replication launcher
sudo —-u postgres pgbackrest —--stanza=demo check

Remove the old cluster.

pg-primary — Remove old cluster
sudo rm -rf /var/lib/pgsqgl/10/data

Install the new PostgreSQL binaries on the standby and create the cluster.

pg-standby — Remove old cluster and create the new cluster

sudo rm -rf /var/lib/pgsqgl/10/data
sudo —-u postgres mkdir -p -m 700 /usr/pgsql-11/bin

Run the check on the repository host. The warning regarding the standby being down is expected
since the standby cluster is down. Running this command demonstrates that the repository server is
aware of the standby and is configured properly for the primary server.

repository — Check configuration

sudo -u pgbackrest pgbackrest —--stanza=demo check
Output:

P00 WARN: unable to check pg-2: [DbConnectError] raised from remote-0 protocol on
'pg-standby': unable to connect to 'dbname='postgres' port=5432': could not
connect to server: No such file or directory

Is the server running locally and accepting
connections on Unix domain socket "/var/run/postgresqgl/.s.PGSQL.5432"?

Run a full backup on the new cluster and then restore the standby from the backup. The backup type
will automatically be changed to full if incr or diff is requested.

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -72 - February 5, 2021

21 UPGRADING POSTGRESQL

repository — Run a full backup

sudo —-u pgbackrest pgbackrest —--stanza=demo —--type=full backup

pg-standby — Restore the demo standby cluster

sudo —-u postgres pgbackrest —--stanza=demo --type=standby restore

pg-standby:/var/lib/pgsqgl/11/data/postgresql.conf — Configure PostgreSQL

hot_standby = on

pg-standby — Start PostgreSQL and check the pgBackRest configuration

sudo systemctl start postgresqgl-1l1l.service
sudo —-u postgres pgbackrest —--stanza=demo check

Backup from standby can be enabled now that the standby is restored.

repository:/etc/pgbackrest/pgbackrest.conf — Reenable backup from standby

[demo]

pgl-host=pg-primary
pgl-path=/var/lib/pgsqgl/11/data
prg2-host=pg-standby
pg2-path=/var/lib/pgsqgl/11/data

[global]

backup-standby=y

process—-max=3
repol-path=/var/lib/pgbackrest
repol-retention-full=2
start—-fast=y

pgBackRest User Guide Crunchy Data Solutions, Inc.
Version 2.31 -73 - February 5, 2021

	Introduction
	Concepts
	Backup
	Restore
	Write Ahead Log (WAL)
	Encryption

	Upgrading pgBackRest
	Upgrading pgBackRest from v1 to v2

	Build
	Installation
	Quick Start
	Setup Demo Cluster
	Configure Cluster Stanza
	Create the Repository
	Configure Archiving
	Configure Retention
	Configure Repository Encryption
	Create the Stanza
	Check the Configuration
	Perform a Backup
	Schedule a Backup
	Backup Information
	Restore a Backup

	Backup
	Fast Start Option
	Archive Timeout

	Monitoring
	In PostgreSQL

	Retention
	Full Backup Retention
	Differential Backup Retention
	Archive Retention

	Restore
	File Ownership
	Delta Option
	Restore Selected Databases

	Point-in-Time Recovery
	Azure-Compatible Object Store Support
	S3-Compatible Object Store Support
	Delete a Stanza
	Dedicated Repository Host
	Installation
	Setup Passwordless SSH
	Configuration
	Perform a Backup
	Restore a Backup

	Parallel Backup / Restore
	Starting and Stopping
	Replication
	Installation
	Setup Passwordless SSH
	Hot Standby
	Streaming Replication

	Asynchronous Archiving
	Archive Push
	Archive Get

	Backup from a Standby
	Upgrading PostgreSQL

