
pgBackRest User Guide
Open Source PostgreSQL Backup and Restore Utility

Version 2.54.1

Crunchy Data Solutions, Inc.
December 16, 2024



TABLE OF CONTENTS

Table of Contents

1 INTRODUCTION 2

2 CONCEPTS 3
2.1 BACKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 RESTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 WRITE AHEAD LOG (WAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 ENCRYPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 UPGRADING PGBACKREST 5
3.1 UPGRADING PGBACKREST FROM V1 TO V2 . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 UPGRADING PGBACKREST FROM V2.X TO V2.Y . . . . . . . . . . . . . . . . . . . . . . . . 5

4 BUILD 6

5 INSTALLATION 7

6 QUICK START 9
6.1 SETUP DEMO CLUSTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 CONFIGURE CLUSTER STANZA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.3 CREATE THE REPOSITORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.4 CONFIGURE ARCHIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.5 CONFIGURE RETENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.6 CONFIGURE REPOSITORY ENCRYPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.7 CREATE THE STANZA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.8 CHECK THE CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.9 PERFORMANCE TUNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.10 PERFORM A BACKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.11 SCHEDULE A BACKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.12 BACKUP INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.13 RESTORE A BACKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 MONITORING 21
7.1 IN POSTGRESQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 USING jq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 BACKUP 24
8.1 FILE BUNDLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 BLOCK INCREMENTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 BACKUP ANNOTATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 RETENTION 27
9.1 FULL BACKUP RETENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 DIFFERENTIAL BACKUP RETENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.3 ARCHIVE RETENTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

pgBackRest User Guide
Version 2.54.1 - 1 -

Crunchy Data Solutions, Inc.
December 16, 2024



TABLE OF CONTENTS TABLE OF CONTENTS

10 RESTORE 32
10.1 FILE OWNERSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10.2 DELTA OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10.3 RESTORE SELECTED DATABASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 POINT-IN-TIME RECOVERY 37

12 DELETE A STANZA 41

13 MULTIPLE REPOSITORIES 42

14 AZURE-COMPATIBLE OBJECT STORE SUPPORT 43

15 S3-COMPATIBLE OBJECT STORE SUPPORT 45

16 SFTP SUPPORT 49

17 GCS-COMPATIBLE OBJECT STORE SUPPORT 52

18 TARGET TIME FOR REPOSITORY 54

19 DEDICATED REPOSITORY HOST 57
19.1 INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
19.2 SETUP PASSWORDLESS SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
19.3 CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
19.4 CREATE AND CHECK STANZA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
19.5 PERFORM A BACKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
19.6 RESTORE A BACKUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

20 PARALLEL BACKUP / RESTORE 61

21 STARTING AND STOPPING 63

22 REPLICATION 65
22.1 INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
22.2 SETUP PASSWORDLESS SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
22.3 HOT STANDBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
22.4 STREAMING REPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

23 MULTIPLE STANZAS 73
23.1 INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
23.2 SETUP PASSWORDLESS SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
23.3 CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
23.4 SETUP DEMO CLUSTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
23.5 CREATE THE STANZA AND CHECK CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . 75

24 ASYNCHRONOUS ARCHIVING 77
24.1 ARCHIVE PUSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

pgBackRest User Guide
Version 2.54.1 - 2 -

Crunchy Data Solutions, Inc.
December 16, 2024



TABLE OF CONTENTS TABLE OF CONTENTS

24.2 ARCHIVE GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

25 BACKUP FROM A STANDBY 82

26 UPGRADING POSTGRESQL 84

pgBackRest User Guide
Version 2.54.1 - 3 -

Crunchy Data Solutions, Inc.
December 16, 2024



1 INTRODUCTION

1 Introduction

This user guide is intended to be followed sequentially from beginning to end — each section depends
on the last. For example, the RESTORE section relies on setup that is performed in the QUICK START
section. Once pgBackRest is up and running then skipping around is possible but following the user
guide in order is recommended the first time through.

Although the examples in this guide are targeted at Debian/Ubuntu and PostgreSQL 15, it should
be fairly easy to apply the examples to any Unix distribution and PostgreSQL version. The only OS-
specific commands are those to create, start, stop, and drop PostgreSQL clusters. The pgBackRest
commands will be the same on any Unix system though the location of the executable may vary. While
pgBackRest strives to operate consistently across versions of PostgreSQL, there are subtle differences
between versions of PostgreSQL that may show up in this guide when illustrating certain examples, e.g.
PostgreSQL path/file names and settings.

Configuration information and documentation for PostgreSQL can be found in the PostgreSQL MANUAL.

A somewhat novel approach is taken to documentation in this user guide. Each command is run on a
virtual machine when the documentation is built from the XML source. This means you can have a high
confidence that the commands work correctly in the order presented. Output is captured and displayed
below the command when appropriate. If the output is not included it is because it was deemed not
relevant or was considered a distraction from the narrative.

All commands are intended to be run as an unprivileged user that has sudo privileges for both the root
and postgres users. It’s also possible to run the commands directly as their respective users without
modification and in that case the sudo commands can be stripped off.

pgBackRest User Guide
Version 2.54.1 - 4 -

Crunchy Data Solutions, Inc.
December 16, 2024

http://www.postgresql.org/docs/15/static/index.html


2 CONCEPTS

2 Concepts

The following concepts are defined as they are relevant to pgBackRest, PostgreSQL, and this user
guide.

2.1 Backup

A backup is a consistent copy of a database cluster that can be restored to recover from a hardware
failure, to perform Point-In-Time Recovery, or to bring up a new standby.

Full Backup: pgBackRest copies the entire contents of the database cluster to the backup. The first
backup of the database cluster is always a Full Backup. pgBackRest is always able to restore a full
backup directly. The full backup does not depend on any files outside of the full backup for consistency.

Differential Backup: pgBackRest copies only those database cluster files that have changed since
the last full backup. pgBackRest restores a differential backup by copying all of the files in the chosen
differential backup and the appropriate unchanged files from the previous full backup. The advantage
of a differential backup is that it requires less disk space than a full backup, however, the differential
backup and the full backup must both be valid to restore the differential backup.

Incremental Backup: pgBackRest copies only those database cluster files that have changed since
the last backup (which can be another incremental backup, a differential backup, or a full backup). As an
incremental backup only includes those files changed since the prior backup, they are generally much
smaller than full or differential backups. As with the differential backup, the incremental backup depends
on other backups to be valid to restore the incremental backup. Since the incremental backup includes
only those files since the last backup, all prior incremental backups back to the prior differential, the prior
differential backup, and the prior full backup must all be valid to perform a restore of the incremental
backup. If no differential backup exists then all prior incremental backups back to the prior full backup,
which must exist, and the full backup itself must be valid to restore the incremental backup.

2.2 Restore

A restore is the act of copying a backup to a system where it will be started as a live database cluster.
A restore requires the backup files and one or more WAL segments in order to work correctly.

2.3 Write Ahead Log (WAL)

WAL is the mechanism that PostgreSQL uses to ensure that no committed changes are lost. Transac-
tions are written sequentially to the WAL and a transaction is considered to be committed when those
writes are flushed to disk. Afterwards, a background process writes the changes into the main database
cluster files (also known as the heap). In the event of a crash, the WAL is replayed to make the database
consistent.

WAL is conceptually infinite but in practice is broken up into individual 16MB files called segments. WAL
segments follow the naming convention 0000000100000A1E000000FE where the first 8 hexadecimal
digits represent the timeline and the next 16 digits are the logical sequence number (LSN).

pgBackRest User Guide
Version 2.54.1 - 5 -

Crunchy Data Solutions, Inc.
December 16, 2024



2 CONCEPTS 2.4 Encryption

2.4 Encryption

Encryption is the process of converting data into a format that is unrecognizable unless the appropriate
password (also referred to as passphrase) is provided.

pgBackRest will encrypt the repository based on a user-provided password, thereby preventing unau-
thorized access to data stored within the repository.

pgBackRest User Guide
Version 2.54.1 - 6 -

Crunchy Data Solutions, Inc.
December 16, 2024



3 UPGRADING PGBACKREST

3 Upgrading pgBackRest

3.1 Upgrading pgBackRest from v1 to v2

Upgrading from v1 to v2 is fairly straight-forward. The repository format has not changed and all non-
deprecated options from v1 are accepted, so for most installations it is simply a matter of installing the
new version.

However, there are a few caveats:

• The deprecated thread-max option is no longer valid. Use process-max instead.

• The deprecated archive-max-mb option is no longer valid. This has been replaced with the
archive-push-queue-max option which has different semantics.

• The default for the backup-user option has changed from backrest to pgbackrest.

• In v2.02 the default location of the pgBackRest configuration file has changed from /etc/pgbackrest.conf
to /etc/pgbackrest/pgbackrest.conf. If /etc/pgbackrest/pgbackrest.conf does
not exist, the /etc/pgbackrest.conf file will be loaded instead, if it exists.

Many option names have changed to improve consistency although the old names from v1 are still
accepted. In general, db-* options have been renamed to pg-* and backup-*/retention-* options
have been renamed to repo-* when appropriate.

PostgreSQL and repository options must be indexed when using the new names introduced in v2, e.g.
pg1-host, pg1-path, repo1-path, repo1-type, etc.

3.2 Upgrading pgBackRest from v2.x to v2.y

Upgrading from v2.x to v2.y is straight-forward. The repository format has not changed, so for most
installations it is simply a matter of installing binaries for the new version. It is also possible to downgrade
if you have not used new features that are unsupported by the older version.

pgBackRest User Guide
Version 2.54.1 - 7 -

Crunchy Data Solutions, Inc.
December 16, 2024



4 BUILD

4 Build

Installing pgBackRest from a package is preferable to building from source. See INSTALLATION for more
information about packages.

When building from source it is best to use a build host rather than building on production. Many of the
tools required for the build should generally not be installed in production. pgBackRest consists of a
single executable so it is easy to copy to a new host once it is built.

The preferred build method is meson/ninja as shown below. The autoconf/make method is also
provided for legacy purposes, see BUILD.

build — Download version 2.54.1 of pgBackRest to /build path
mkdir -p /build
wget -q -O - \

https://github.com/pgbackrest/pgbackrest/archive/release/2.54.1.tar.gz | \
tar zx -C /build

build — Install build dependencies
sudo apt-get install python3-distutils meson gcc libpq-dev libssl-dev libxml2-dev

\
pkg-config liblz4-dev libzstd-dev libbz2-dev libz-dev libyaml-dev libssh2-1-dev

build — Configure and compile pgBackRest
meson setup /build/pgbackrest /build/pgbackrest-release-2.54.1
ninja -C /build/pgbackrest

pgBackRest User Guide
Version 2.54.1 - 8 -

Crunchy Data Solutions, Inc.
December 16, 2024

user-guide-rhel.html#build


5 INSTALLATION

5 Installation

A new host named pg-primary is created to contain the demo cluster and run pgBackRest examples.

Installing pgBackRest from a package is preferable to building from source. When installing from a
package the rest of the instructions in this section are generally not required, but it is possible that a
package will skip creating one of the directories or apply incorrect permissions. In that case it may be
necessary to manually create directories or update permissions.

Debian/Ubuntu packages for pgBackRest are available at APT.POSTGRESQL.ORG.

If packages are not provided for your distribution/version you can BUILD FROM SOURCE and then install
manually as shown here.

pg-primary — Install dependencies
sudo apt-get install postgresql-client libxml2 libssh2-1

pg-primary — Copy pgBackRest binary from build host
sudo scp build:/build/pgbackrest/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

pg-primary — Create pgBackRest configuration file and directories
sudo mkdir -p -m 770 /var/log/pgbackrest
sudo chown postgres:postgres /var/log/pgbackrest
sudo mkdir -p /etc/pgbackrest
sudo mkdir -p /etc/pgbackrest/conf.d
sudo touch /etc/pgbackrest/pgbackrest.conf
sudo chmod 640 /etc/pgbackrest/pgbackrest.conf
sudo chown postgres:postgres /etc/pgbackrest/pgbackrest.conf

pgBackRest should now be properly installed but it is best to check. If any dependencies were missed
then you will get an error when running pgBackRest from the command line.

pg-primary — Make sure the installation worked
sudo -u postgres pgbackrest

Output:

pgBackRest 2.54.1 - General help

Usage:
pgbackrest [options] [command]

Commands:
annotate add or modify backup annotation
archive-get get a WAL segment from the archive

pgBackRest User Guide
Version 2.54.1 - 9 -

Crunchy Data Solutions, Inc.
December 16, 2024

https://www.postgresql.org/download/linux/ubuntu/


5 INSTALLATION

archive-push push a WAL segment to the archive
backup backup a database cluster
check check the configuration
expire expire backups that exceed retention
help get help
info retrieve information about backups
repo-get get a file from a repository
repo-ls list files in a repository
restore restore a database cluster
server pgBackRest server
server-ping ping pgBackRest server
stanza-create create the required stanza data
stanza-delete delete a stanza
stanza-upgrade upgrade a stanza
start allow pgBackRest processes to run
stop stop pgBackRest processes from running
verify verify contents of the repository
version get version

Use 'pgbackrest help [command]' for more information.

pgBackRest User Guide
Version 2.54.1 - 10 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START

6 Quick Start

The Quick Start section will cover basic configuration of pgBackRest and PostgreSQL and introduce
the backup, restore, and info commands.

6.1 Setup Demo Cluster

Creating the demo cluster is optional but is strongly recommended, especially for new users, since the
example commands in the user guide reference the demo cluster; the examples assume the demo
cluster is running on the default port (i.e. 5432). The cluster will not be started until a later section
because there is still some configuration to do.

pg-primary — Create the demo cluster
sudo -u postgres /usr/lib/postgresql/15/bin/initdb \

-D /var/lib/postgresql/15/demo -k -A peer
sudo pg_createcluster 15 demo

Output:

Configuring already existing cluster (configuration: /etc/postgresql/15/demo, data
: /var/lib/postgresql/15/demo, owner: 102:103)

Ver Cluster Port Status Owner Data directory Log file
15 demo 5432 down postgres /var/lib/postgresql/15/demo /var/log/postgresql/

postgresql-15-demo.log

6.2 Configure Cluster Stanza

A stanza is the configuration for a PostgreSQL database cluster that defines where it is located, how
it will be backed up, archiving options, etc. Most db servers will only have one PostgreSQL database
cluster and therefore one stanza, whereas backup servers will have a stanza for every database cluster
that needs to be backed up.

It is tempting to name the stanza after the primary cluster but a better name describes the databases
contained in the cluster. Because the stanza name will be used for the primary and all replicas it is
more appropriate to choose a name that describes the actual function of the cluster, such as app or dw,
rather than the local cluster name, such as main or prod.

The name ’demo’ describes the purpose of this cluster accurately so that will also make a good stanza
name.

pgBackRest needs to know where the base data directory for the PostgreSQL cluster is located. The
path can be requested from PostgreSQL directly but in a recovery scenario the PostgreSQL process
will not be available. During backups the value supplied to pgBackRest will be compared against the
path that PostgreSQL is running on and they must be equal or the backup will return an error. Make
sure that pg-path is exactly equal to data directory as reported by PostgreSQL.

pgBackRest User Guide
Version 2.54.1 - 11 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.2 Configure Cluster Stanza

By default Debian/Ubuntu stores clusters in /var/lib/postgresql/[version]/[cluster] so it
is easy to determine the correct path for the data directory.

When creating the /etc/pgbackrest/pgbackrest.conf file, the database owner (usually
postgres) must be granted read privileges.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure the PostgreSQL cluster data directory
[demo]
pg1-path=/var/lib/postgresql/15/demo

pgBackRest configuration files follow the Windows INI convention. Sections are denoted by text in
brackets and key/value pairs are contained in each section. Lines beginning with # are ignored and can
be used as comments.

There are multiple ways the pgBackRest configuration files can be loaded:

• config and config-include-path are default: the default config file will be loaded, if it exists,
and *.conf files in the default config include path will be appended, if they exist.

• config option is specified: only the specified config file will be loaded and is expected to exist.

• config-include-path is specified: *.conf files in the config include path will be loaded and
the path is required to exist. The default config file will be be loaded if it exists. If it is desirable to
load only the files in the specified config include path, then the --no-config option can also be
passed.

• config and config-include-path are specified: using the user-specified values, the config
file will be loaded and *.conf files in the config include path will be appended. The files are
expected to exist.

• config-path is specified: this setting will override the base path for the default location of the
config file and/or the base path of the default config-include-path setting unless the config and/or
config-include-path option is explicitly set.

The files are concatenated as if they were one big file; order doesn’t matter, but there is precedence
based on sections. The precedence (highest to lowest) is:

• [stanza:command ]

• [stanza]

• [global:command ]

• [global]

NOTE: --config, --config-include-path and --config-path are command-line only op-
tions.

pgBackRest can also be configured using environment variables as described in the COMMAND REF-
ERENCE.

pg-primary — Configure log-path using the environment
sudo -u postgres bash -c ' \

pgBackRest User Guide
Version 2.54.1 - 12 -

Crunchy Data Solutions, Inc.
December 16, 2024

command.html
command.html


6 QUICK START 6.3 Create the Repository

export PGBACKREST_LOG_PATH=/path/set/by/env && \
pgbackrest --log-level-console=error help backup log-path'

Output:

pgBackRest 2.54.1 - 'backup' command - 'log-path' option help

Path where log files are stored.

The log path provides a location for pgBackRest to store log files. Note that
if log-level-file=off then no log path is required.

current: /path/set/by/env
default: /var/log/pgbackrest

6.3 Create the Repository

The repository is where pgBackRest stores backups and archives WAL segments.

It may be difficult to estimate in advance how much space you’ll need. The best thing to do is take
some backups then record the size of different types of backups (full/incr/diff) and measure the amount
of WAL generated per day. This will give you a general idea of how much space you’ll need, though of
course requirements will likely change over time as your database evolves.

For this demonstration the repository will be stored on the same host as the PostgreSQL server. This
is the simplest configuration and is useful in cases where traditional backup software is employed to
backup the database host.

pg-primary — Create the pgBackRest repository
sudo mkdir -p /var/lib/pgbackrest
sudo chmod 750 /var/lib/pgbackrest
sudo chown postgres:postgres /var/lib/pgbackrest

The repository path must be configured so pgBackRest knows where to find it.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure the pgBackRest repository path
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-path=/var/lib/pgbackrest

Multiple repositories may also be configured. See MULTIPLE REPOSITORIES for details.

pgBackRest User Guide
Version 2.54.1 - 13 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.4 Configure Archiving

6.4 Configure Archiving

Backing up a running PostgreSQL cluster requires WAL archiving to be enabled. Note that at least
one WAL segment will be created during the backup process even if no explicit writes are made to the
cluster.

pg-primary:/etc/postgresql/15/demo/postgresql.conf — Configure archive settings
archive_command = 'pgbackrest --stanza=demo archive-push %p'
archive_mode = on
max_wal_senders = 3
wal_level = replica

%p is how PostgreSQL specifies the location of the WAL segment to be archived. Setting wal level
to at least replica and increasing max wal senders is a good idea even if there are currently no
replicas as this will allow them to be added later without restarting the primary cluster.

The PostgreSQL cluster must be restarted after making these changes and before performing a backup.

pg-primary — Restart the demo cluster
sudo pg_ctlcluster 15 demo restart

When archiving a WAL segment is expected to take more than 60 seconds (the default) to reach the
pgBackRest repository, then the pgBackRest archive-timeout option should be increased. Note
that this option is not the same as the PostgreSQL archive timeout option which is used to force
a WAL segment switch; useful for databases where there are long periods of inactivity. For more
information on the PostgreSQL archive timeout option, see PostgreSQL WRITE AHEAD LOG.

The archive-push command can be configured with its own options. For example, a lower compres-
sion level may be set to speed archiving without affecting the compression used for backups.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Config archive-push to use a lower compression
level
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-path=/var/lib/pgbackrest

[global:archive-push]
compress-level=3

This configuration technique can be used for any command and can even target a specific stanza, e.g.
demo:archive-push.

6.5 Configure Retention

pgBackRest expires backups based on retention options.

pgBackRest User Guide
Version 2.54.1 - 14 -

Crunchy Data Solutions, Inc.
December 16, 2024

https://www.postgresql.org/docs/current/static/runtime-config-wal.html


6 QUICK START 6.6 Configure Repository Encryption

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure retention to 2 full backups
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2

[global:archive-push]
compress-level=3

More information about retention can be found in the RETENTION section.

6.6 Configure Repository Encryption

The repository will be configured with a cipher type and key to demonstrate encryption. Encryption
is always performed client-side even if the repository type (e.g. S3 or other object store) supports
encryption.

It is important to use a long, random passphrase for the cipher key. A good way to generate one is to
run: openssl rand -base64 48.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest repository encryption
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2

[global:archive-push]
compress-level=3

Once the repository has been configured and the stanza created and checked, the repository encryption
settings cannot be changed.

6.7 Create the Stanza

The stanza-create command must be run to initialize the stanza. It is recommended that the check
command be run after stanza-create to ensure archiving and backups are properly configured.

pg-primary — Create the stanza and check the configuration
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create

pgBackRest User Guide
Version 2.54.1 - 15 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.8 Check the Configuration

Output:

P00 INFO: stanza-create command begin 2.54.1: --exec-id=1042-55083a83 --log-level-
console=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --repo1-
cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/
pgbackrest --stanza=demo

P00 INFO: stanza-create for stanza 'demo' on repo1
P00 INFO: stanza-create command end: completed successfully

6.8 Check the Configuration

The check command validates that pgBackRest and the archive command setting are configured
correctly for archiving and backups for the specified stanza. It will attempt to check all repositories and
databases that are configured for the host on which the command is run. It detects misconfigurations,
particularly in archiving, that result in incomplete backups because required WAL segments did not
reach the archive. The command can be run on the PostgreSQL or repository host. The command
may also be run on the standby host, however, since pg switch xlog()/pg switch wal() cannot
be performed on the standby, the command will only test the repository configuration.

Note that pg create restore point(’pgBackRest Archive Check’) and
pg switch xlog()/pg switch wal() are called to force PostgreSQL to archive a WAL seg-
ment.

pg-primary — Check the configuration
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info check

Output:

P00 INFO: check command begin 2.54.1: --exec-id=1050-38a41fb9 --log-level-console=
info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --repo1-cipher-
pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/
pgbackrest --stanza=demo

P00 INFO: check repo1 configuration (primary)
P00 INFO: check repo1 archive for WAL (primary)
P00 INFO: WAL segment 000000010000000000000001 successfully archived to '/var/lib/

pgbackrest/archive/demo
/15-1/0000000100000000/000000010000000000000001-975128076458
a721cbec712b0f730e7c7cf71f74.gz' on repo1

P00 INFO: check command end: completed successfully

6.9 Performance Tuning

pgBackRest has a number of performance options that are not enabled by default to maintain backward
compatibility in the repository. However, when creating a new repository the following options are
recommended. They can also be used on an existing repository with the caveat that older versions of

pgBackRest User Guide
Version 2.54.1 - 16 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.10 Perform a Backup

pgBackRest will not be able to read the repository. This incompatibility depends on when the feature
was introduced, which will be noted in the list below.

• compress-type - determines the compression algorithm used by the backup and archive-push
commands. The default is gz (Gzip) but zst (Zstandard) is recommended because it is much
faster and provides compression similar to gz. zst has been supported by the compress-type
option since V2.27. See Or more details.

• repo-bundle - combines small files during backup to save space and improve the speed of both
the backup and restore commands, especially on object stores. The repo-bundle option
was introduced in V2.39. See Or more details.

• repo-block - stores only the portions of of files that have changed rather than the entire file
during diff/incr backup. This saves space and increases the speed of the backup. The
repo-block option was introduced in V2.46 but at least V2.52.1 is recommended. See Or more
details.

There are other performance options that are not enabled by default because they require additional
configuration or because the default is safe (but not optimal). These options are available in all v2
versions of pgBackRest.

• process-max - determines how many processes will be used for commands. The default is 1,
which is almost never the appropriate value. Each command uses process-max differently so
refer to each command’s documentation for details on usage.

• archive-async - archives WAL files to the repository in batch which greatly increases archiving
speed. It is not enabled by default because it requires a spool path to be created. See Or more
details.

• backup-standby - performs the backup on a standby rather than the primary to reduce load
on the primary. It is not enabled by default because it requires additional configuration and the
presence of one or more standby hosts. See Or more details.

6.10 Perform a Backup

By default pgBackRest will wait for the next regularly scheduled checkpoint before starting a backup.
Depending on the checkpoint timeout and checkpoint segments settings in PostgreSQL it may
be quite some time before a checkpoint completes and the backup can begin. Generally, it is best to set
start-fast=y so that the backup starts immediately. This forces a checkpoint, but since backups are
usually run once a day an additional checkpoint should not have a noticeable impact on performance.
However, on very busy clusters it may be best to pass --start-fast on the command-line as needed.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure backup fast start
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc

pgBackRest User Guide
Version 2.54.1 - 17 -

Crunchy Data Solutions, Inc.
December 16, 2024

release.html#2.27
[{http://www.pgbackrest.org}/configuration.html]#Compress Type.f
release.html#2.39
release.html#2.46
release.html#2.52.1


6 QUICK START 6.10 Perform a Backup

repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

[global:archive-push]
compress-level=3

To perform a backup of the PostgreSQL cluster run pgBackRest with the backup command.

pg-primary — Backup the demo cluster
sudo -u postgres pgbackrest --stanza=demo \

--log-level-console=info backup

Output:

P00 INFO: backup command begin 2.54.1: --exec-id=1074-323d70ce --log-level-console
=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --repo1-cipher-
pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/
pgbackrest --repo1-retention-full=2 --stanza=demo --start-fast

P00 WARN: no prior backup exists, incr backup has been changed to full
P00 INFO: execute non-exclusive backup start: backup begins after the requested

immediate checkpoint completes
P00 INFO: backup start archive = 000000010000000000000002, lsn = 0/2000028

[filtered 3 lines of output]
P00 INFO: check archive for segment(s)

000000010000000000000002:000000010000000000000003
P00 INFO: new backup label = 20241216-150925F
P00 INFO: full backup size = 21.8MB, file total = 961
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin 2.54.1: --exec-id=1074-323d70ce --log-level-console

=info --no-log-timestamp --repo1-cipher-pass=<redacted> --repo1-cipher-type=aes
-256-cbc --repo1-path=/var/lib/pgbackrest --repo1-retention-full=2 --stanza=
demo

By default pgBackRest will attempt to perform an incremental backup. However, an incremental backup
must be based on a full backup and since no full backup existed pgBackRest ran a full backup instead.

The type option can be used to specify a full or differential backup.

pg-primary — Differential backup of the demo cluster
sudo -u postgres pgbackrest --stanza=demo --type=diff \

--log-level-console=info backup

Output:

[filtered 7 lines of output]
P00 INFO: check archive for segment(s)

000000010000000000000004:000000010000000000000005

pgBackRest User Guide
Version 2.54.1 - 18 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.11 Schedule a Backup

P00 INFO: new backup label = 20241216-150925F_20241216-150929D
P00 INFO: diff backup size = 8.3KB, file total = 961
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin 2.54.1: --exec-id=1099-5363c32b --log-level-console

=info --no-log-timestamp --repo1-cipher-pass=<redacted> --repo1-cipher-type=aes
-256-cbc --repo1-path=/var/lib/pgbackrest --repo1-retention-full=2 --stanza=
demo

This time there was no warning because a full backup already existed. While incremental backups can
be based on a full or differential backup, differential backups must be based on a full backup. A full
backup can be performed by running the backup command with --type=full.

During an online backup pgBackRest waits for WAL segments that are required for backup consistency
to be archived. This wait time is governed by the pgBackRest archive-timeout option which defaults
to 60 seconds. If archiving an individual segment is known to take longer then this option should be
increased.

6.11 Schedule a Backup

Backups can be scheduled with utilities such as cron.

In the following example, two cron jobs are configured to run; full backups are scheduled for 6:30 AM
every Sunday with differential backups scheduled for 6:30 AM Monday through Saturday. If this crontab
is installed for the first time mid-week, then pgBackRest will run a full backup the first time the differential
job is executed, followed the next day by a differential backup.

crontab:
#m h dom mon dow command

30 06 * * 0 pgbackrest --type=full --stanza=demo backup
30 06 * * 1-6 pgbackrest --type=diff --stanza=demo backup

Once backups are scheduled it’s important to configure retention so backups are expired on a regular
schedule, see RETENTION.

6.12 Backup Information

Use the info command to get information about backups.

pg-primary — Get info for the demo cluster
sudo -u postgres pgbackrest info

Output:

stanza: demo
status: ok
cipher: aes-256-cbc

pgBackRest User Guide
Version 2.54.1 - 19 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.12 Backup Information

db (current)
wal archive min/max (15): 000000010000000000000001/000000010000000000000005

full backup: 20241216-150925F
timestamp start/stop: 2024-12-16 15:09:25+00 / 2024-12-16 15:09:28+00
wal start/stop: 000000010000000000000002 / 000000010000000000000003
database size: 21.8MB, database backup size: 21.8MB
repo1: backup set size: 2.9MB, backup size: 2.9MB

diff backup: 20241216-150925F_20241216-150929D
timestamp start/stop: 2024-12-16 15:09:29+00 / 2024-12-16 15:09:30+00
wal start/stop: 000000010000000000000004 / 000000010000000000000005
database size: 21.8MB, database backup size: 8.3KB
repo1: backup set size: 2.9MB, backup size: 448B
backup reference total: 1 full

The info command operates on a single stanza or all stanzas. Text output is the default and gives
a human-readable summary of backups for the stanza(s) requested. This format is subject to change
with any release.

For machine-readable output use --output=json. The JSON output contains far more information
than the text output and is kept stable unless a bug is found.

Each stanza has a separate section and it is possible to limit output to a single stanza with the
--stanza option. The stanza ’status’ gives a brief indication of the stanza’s health. If this is ’ok’
then pgBackRest is functioning normally. If there are multiple repositories, then a status of ’mixed’ in-
dicates that the stanza is not in a healthy state on one or more of the repositories; in this case the state
of the stanza will be detailed per repository. For cases in which an error on a repository occurred that is
not one of the known error codes, then an error code of ’other’ will be used and the full error details will
be provided. The ’wal archive min/max’ shows the minimum and maximum WAL currently stored
in the archive and, in the case of multiple repositories, will be reported across all repositories unless the
--repo option is set. Note that there may be gaps due to archive retention policies or other reasons.

The ’backup/expire running’ message will appear beside the ’status’ information if one of those
commands is currently running on the host.

The backups are displayed oldest to newest. The oldest backup will always be a full backup (indi-
cated by an F at the end of the label) but the newest backup can be full, differential (ends with D), or
incremental (ends with I).

The ’timestamp start/stop’ defines the time period when the backup ran. The ’timestamp
stop’ can be used to determine the backup to use when performing Point-In-Time Recovery. More
information about Point-In-Time Recovery can be found in the POINT-IN-TIME RECOVERY section.

The ’wal start/stop’ defines the WAL range that is required to make the database consistent when
restoring. The backup command will ensure that this WAL range is in the archive before completing.

The ’database size’ is the full uncompressed size of the database while ’database backup size’
is the amount of data in the database to actually back up (these will be the same for full backups).

pgBackRest User Guide
Version 2.54.1 - 20 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.13 Restore a Backup

The ’repo’ indicates in which repository this backup resides. The ’backup set size’ includes all
the files from this backup and any referenced backups in the repository that are required to restore the
database from this backup while ’backup size’ includes only the files in this backup (these will also
be the same for full backups). Repository sizes reflect compressed file sizes if compression is enabled
in pgBackRest.

The ’backup reference total’ summarizes the list of additional backups that are required to re-
store this backup. Use the --set option to display the complete reference list.

6.13 Restore a Backup

Backups can protect you from a number of disaster scenarios, the most common of which are hardware
failure and data corruption. The easiest way to simulate data corruption is to remove an important
PostgreSQL cluster file.

pg-primary — Stop the demo cluster and delete the pg control file
sudo pg_ctlcluster 15 demo stop
sudo -u postgres rm /var/lib/postgresql/15/demo/global/pg_control

Starting the cluster without this important file will result in an error.

pg-primary — Attempt to start the corrupted demo cluster
sudo pg_ctlcluster 15 demo start

Output:

Error: /usr/lib/postgresql/15/bin/pg_ctl /usr/lib/postgresql/15/bin/pg_ctl start -
D /var/lib/postgresql/15/demo -l /var/log/postgresql/postgresql-15-demo.log -s
-o -c config_file="/etc/postgresql/15/demo/postgresql.conf" exited with status
1:

postgres: could not find the database system
Expected to find it in the directory "/var/lib/postgresql/15/demo",
but could not open file "/var/lib/postgresql/15/demo/global/pg_control": No such

file or directory
Examine the log output.

To restore a backup of the PostgreSQL cluster run pgBackRest with the restore command. The
cluster needs to be stopped (in this case it is already stopped) and all files must be removed from the
PostgreSQL data directory.

pg-primary — Remove old files from demo cluster
sudo -u postgres find /var/lib/postgresql/15/demo -mindepth 1 -delete

pg-primary — Restore the demo cluster and start PostgreSQL
sudo -u postgres pgbackrest --stanza=demo restore
sudo pg_ctlcluster 15 demo start

pgBackRest User Guide
Version 2.54.1 - 21 -

Crunchy Data Solutions, Inc.
December 16, 2024



6 QUICK START 6.13 Restore a Backup

This time the cluster started successfully since the restore replaced the missing pg control file.

More information about the restore command can be found in the RESTORE section.

pgBackRest User Guide
Version 2.54.1 - 22 -

Crunchy Data Solutions, Inc.
December 16, 2024



7 MONITORING

7 Monitoring

Monitoring is an important part of any production system. There are many tools available and pgBack-
Rest can be monitored on any of them with a little work.

pgBackRest can output information about the repository in JSON format which includes a list of all
backups for each stanza and WAL archive info.

7.1 In PostgreSQL

The PostgreSQL COPY command allows pgBackRest info to be loaded into a table. The following
example wraps that logic in a function that can be used to perform real-time queries.

pg-primary — Load pgBackRest info function for PostgreSQL
sudo -u postgres cat \

/var/lib/postgresql/pgbackrest/doc/example/pgsql-pgbackrest-info.sql

Output:

-- An example of monitoring pgBackRest from within PostgreSQL
--
-- Use copy to export data from the pgBackRest info command into the jsonb
-- type so it can be queried directly by PostgreSQL.

-- Create monitor schema
create schema monitor;

-- Get pgBackRest info in JSON format
create function monitor.pgbackrest_info()

returns jsonb AS $$
declare

data jsonb;
begin

-- Create a temp table to hold the JSON data
create temp table temp_pgbackrest_data (data text);

-- Copy data into the table directly from the pgBackRest info command
copy temp_pgbackrest_data (data)

from program
'pgbackrest --output=json info' (format text);

select replace(temp_pgbackrest_data.data, E'\n', '\n')::jsonb
into data
from temp_pgbackrest_data;

drop table temp_pgbackrest_data;

return data;

pgBackRest User Guide
Version 2.54.1 - 23 -

Crunchy Data Solutions, Inc.
December 16, 2024



7 MONITORING 7.2 Using jq

end $$ language plpgsql;
sudo -u postgres psql -f \

/var/lib/postgresql/pgbackrest/doc/example/pgsql-pgbackrest-info.sql

Now the monitor.pgbackrest info() function can be used to determine the last successful
backup time and archived WAL for a stanza.

pg-primary — Query last successful backup time and archived WAL
sudo -u postgres cat \

/var/lib/postgresql/pgbackrest/doc/example/pgsql-pgbackrest-query.sql

Output:

-- Get last successful backup for each stanza
--
-- Requires the monitor.pgbackrest_info function.
with stanza as
(

select data->'name' as name,
data->'backup'->(

jsonb_array_length(data->'backup') - 1) as last_backup,
data->'archive'->(

jsonb_array_length(data->'archive') - 1) as current_archive
from jsonb_array_elements(monitor.pgbackrest_info()) as data

)
select name,

to_timestamp(
(last_backup->'timestamp'->>'stop')::numeric) as last_successful_backup,

current_archive->>'max' as last_archived_wal
from stanza;

sudo -u postgres psql -f \
/var/lib/postgresql/pgbackrest/doc/example/pgsql-pgbackrest-query.sql

Output:

name | last_successful_backup | last_archived_wal
--------+------------------------+--------------------------
"demo" | 2024-12-16 15:09:30+00 | 000000010000000000000005
(1 row)

7.2 Using jq

jq is a command-line utility that can easily extract data from JSON.

pg-primary — Install jq utility
sudo apt-get install jq

pgBackRest User Guide
Version 2.54.1 - 24 -

Crunchy Data Solutions, Inc.
December 16, 2024



7 MONITORING 7.2 Using jq

Now jq can be used to query the last successful backup time for a stanza.

pg-primary — Query last successful backup time
sudo -u postgres pgbackrest --output=json --stanza=demo info | \

jq '.[0] | .backup[-1] | .timestamp.stop'

Output:

1734361770

Or the last archived WAL.

pg-primary — Query last archived WAL
sudo -u postgres pgbackrest --output=json --stanza=demo info | \

jq '.[0] | .archive[-1] | .max'

Output:

"000000010000000000000005"

NOTE: This syntax requires jq v1.5.

NOTE: jq may round large numbers such as system identifiers. Test your queries carefully.

pgBackRest User Guide
Version 2.54.1 - 25 -

Crunchy Data Solutions, Inc.
December 16, 2024



8 BACKUP

8 Backup

When multiple repositories are configured, pgBackRest will backup to the highest priority repository
(e.g. repo1) unless the --repo option is specified.

pgBackRest does not have a built-in scheduler so it’s best to run it from cron or some other scheduling
mechanism.

See PERFORM A BACKUP for more details and examples.

8.1 File Bundling

Bundling files together in the repository saves time during the backup and some space in the repository.
This is especially pronounced when the repository is stored on an object store such as S3. Per-file
creation time on object stores is higher and very small files might cost as much to store as larger files.

The file bundling feature is enabled with the repo-bundle option.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repo1-bundle

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

[global:archive-push]
compress-level=3

A full backup without file bundling will have 1000+ files in the backup path, but with bundling the total
number of files is greatly reduced. An additional benefit is that zero-length files are not stored (except
in the manifest), whereas in a normal backup each zero-length file is stored individually.

pg-primary — Perform a full backup
sudo -u postgres pgbackrest --stanza=demo --type=full backup

pg-primary — Check file total
sudo -u postgres find /var/lib/pgbackrest/backup/demo/latest/ -type f | wc -l

Output:

5

pgBackRest User Guide
Version 2.54.1 - 26 -

Crunchy Data Solutions, Inc.
December 16, 2024



8 BACKUP 8.2 Block Incremental

The repo-bundle-size and repo-bundle-limit options can be used for tuning, though the de-
faults should be optimal in most cases.

While file bundling is generally more efficient, the downside is that it is more difficult to manually re-
trieve files from the repository. It may not be ideal for deduplicated storage since each full backup will
arrange files in the bundles differently. Lastly, file bundles cannot be resumed, so be careful not to set
repo-bundle-size too high.

8.2 Block Incremental

Block incremental backups save space by only storing the parts of a file that have changed since the
prior backup rather than storing the entire file.

The block incremental feature is enabled with the repo-block option and it works best when enabled
for all backup types. File bundling must also be enabled.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repo1-block

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

[global:archive-push]
compress-level=3

8.3 Backup Annotations

Users can attach informative key/value pairs to the backup. This option may be used multiple times to
attach multiple annotations.

pg-primary — Perform a full backup with annotations
sudo -u postgres pgbackrest --stanza=demo --annotation=source="demo backup" \

--annotation=key=value --type=full backup

Annotations are output by the info command text output when a backup is specified with --set and
always appear in the JSON output.

pg-primary — Get info for the demo cluster
sudo -u postgres pgbackrest --stanza=demo --set=20241216-150945F info

pgBackRest User Guide
Version 2.54.1 - 27 -

Crunchy Data Solutions, Inc.
December 16, 2024



8 BACKUP 8.3 Backup Annotations

Output:

stanza: demo
status: ok
cipher: aes-256-cbc

db (current)
wal archive min/max (15): 000000020000000000000007/000000020000000000000009

full backup: 20241216-150945F
timestamp start/stop: 2024-12-16 15:09:45+00 / 2024-12-16 15:09:48+00
wal start/stop: 000000020000000000000008 / 000000020000000000000009
lsn start/stop: 0/8000028 / 0/9000088
database size: 21.8MB, database backup size: 21.8MB
repo1: backup size: 2.9MB
database list: postgres (5)
annotation(s)

key: value
source: demo backup

Annotations included with the backup command can be added, modified, or removed afterwards using
the annotate command.

pg-primary — Change backup annotations
sudo -u postgres pgbackrest --stanza=demo --set=20241216-150945F \

--annotation=key= --annotation=new_key=new_value annotate
sudo -u postgres pgbackrest --stanza=demo --set=20241216-150945F info

Output:

stanza: demo
status: ok
cipher: aes-256-cbc

db (current)
wal archive min/max (15): 000000020000000000000007/000000020000000000000009

full backup: 20241216-150945F
timestamp start/stop: 2024-12-16 15:09:45+00 / 2024-12-16 15:09:48+00
wal start/stop: 000000020000000000000008 / 000000020000000000000009
lsn start/stop: 0/8000028 / 0/9000088
database size: 21.8MB, database backup size: 21.8MB
repo1: backup size: 2.9MB
database list: postgres (5)
annotation(s)

new_key: new_value
source: demo backup

pgBackRest User Guide
Version 2.54.1 - 28 -

Crunchy Data Solutions, Inc.
December 16, 2024



9 RETENTION

9 Retention

Generally it is best to retain as many backups as possible to provide a greater window for POINT-
IN-TIME RECOVERY, but practical concerns such as disk space must also be considered. Retention
options remove older backups once they are no longer needed.

pgBackRest does full backup rotation based on the retention type which can be a count or a time period.
When a count is specified, then expiration is not concerned with when the backups were created but
with how many must be retained. Differential and Incremental backups are count-based but will always
be expired when the backup they depend on is expired. See sections FULL BACKUP RETENTION and
DIFFERENTIAL BACKUP RETENTION for details and examples. Archived WAL is retained by default for
backups that have not expired, however, although not recommended, this schedule can be modified
per repository with the retention-archive options. See section ARCHIVE RETENTION for details and
examples.

The expire command is run automatically after each successful backup and can also be run by the
user. When run by the user, expiration will occur as defined by the retention settings for each configured
repository. If the --repo option is provided, expiration will occur only on the specified repository.
Expiration can also be limited by the user to a specific backup set with the --set option and, unless
the --repo option is specified, all repositories will be searched and any matching the set criteria will
be expired. It should be noted that the archive retention schedule will be checked and performed any
time the expire command is run.

9.1 Full Backup Retention

The repo1-retention-full-type determines how the option repo1-retention-full is in-
terpreted; either as the count of full backups to be retained or how many days to retain
full backups. New backups must be completed before expiration will occur — that means if
repo1-retention-full-type=count and repo1-retention-full=2 then there will be three
full backups stored before the oldest one is expired, or if repo1-retention-full-type=time and
repo1-retention-full=20 then there must be one full backup that is at least 20 days old before
expiration can occur.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repo1-retention-full

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

[global:archive-push]

pgBackRest User Guide
Version 2.54.1 - 29 -

Crunchy Data Solutions, Inc.
December 16, 2024



9 RETENTION 9.2 Differential Backup Retention

compress-level=3

Backup repo1-retention-full=2 but currently there is only one full backup so the next full backup
to run will not expire any full backups.

pg-primary — Perform a full backup
sudo -u postgres pgbackrest --stanza=demo --type=full \

--log-level-console=detail backup

Output:

[filtered 973 lines of output]
P00 INFO: repo1: remove expired backup 20241216-150943F
P00 DETAIL: repo1: 15-1 archive retention on backup 20241216-150945F, start =

000000020000000000000008
P00 INFO: repo1: 15-1 remove archive, start = 000000020000000000000007, stop =

000000020000000000000007
P00 INFO: expire command end: completed successfully

Archive is expired because WAL segments were generated before the oldest backup. These are not
useful for recovery — only WAL segments generated after a backup can be used to recover that backup.

pg-primary — Perform a full backup
sudo -u postgres pgbackrest --stanza=demo --type=full \

--log-level-console=info backup

Output:

[filtered 11 lines of output]
P00 INFO: repo1: expire full backup 20241216-150945F
P00 INFO: repo1: remove expired backup 20241216-150945F
P00 INFO: repo1: 15-1 remove archive, start = 000000020000000000000008, stop =

000000020000000000000009
P00 INFO: expire command end: completed successfully

The 20241216-150925F full backup is expired and archive retention is based on the
20241216-150950F which is now the oldest full backup.

9.2 Differential Backup Retention

Set repo1-retention-diff to the number of differential backups required. Differentials only rely on
the prior full backup so it is possible to create a “rolling” set of differentials for the last day or more. This
allows quick restores to recent points-in-time but reduces overall space consumption.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repo1-retention-diff

[demo]
pg1-path=/var/lib/postgresql/15/demo

pgBackRest User Guide
Version 2.54.1 - 30 -

Crunchy Data Solutions, Inc.
December 16, 2024



9 RETENTION 9.3 Archive Retention

[global]
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-diff=1
repo1-retention-full=2
start-fast=y

[global:archive-push]
compress-level=3

Backup repo1-retention-diff=1 so two differentials will need to be performed before one is ex-
pired. An incremental backup is added to demonstrate incremental expiration. Incremental backups
cannot be expired independently — they are always expired with their related full or differential backup.

pg-primary — Perform differential and incremental backups
sudo -u postgres pgbackrest --stanza=demo --type=diff backup
sudo -u postgres pgbackrest --stanza=demo --type=incr backup

Now performing a differential backup will expire the previous differential and incremental backups leav-
ing only one differential backup.

pg-primary — Perform a differential backup
sudo -u postgres pgbackrest --stanza=demo --type=diff \

--log-level-console=info backup

Output:

[filtered 10 lines of output]
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin 2.54.1: --exec-id=1537-0ebb29d2 --log-level-console

=info --no-log-timestamp --repo1-cipher-pass=<redacted> --repo1-cipher-type=aes
-256-cbc --repo1-path=/var/lib/pgbackrest --repo1-retention-diff=1 --repo1-
retention-full=2 --stanza=demo

P00 INFO: repo1: expire diff backup set 20241216-150952F_20241216-150954D,
20241216-150952F_20241216-150956I

P00 INFO: repo1: remove expired backup 20241216-150952F_20241216-150956I
P00 INFO: repo1: remove expired backup 20241216-150952F_20241216-150954D
P00 INFO: expire command end: completed successfully

9.3 Archive Retention

Although pgBackRest automatically removes archived WAL segments when expiring backups (the de-
fault expires WAL for full backups based on the repo1-retention-full option), it may be useful to

pgBackRest User Guide
Version 2.54.1 - 31 -

Crunchy Data Solutions, Inc.
December 16, 2024



9 RETENTION 9.3 Archive Retention

expire archive more aggressively to save disk space. Note that full backups are treated as differential
backups for the purpose of differential archive retention.

Expiring archive will never remove WAL segments that are required to make a backup consistent. How-
ever, since Point-in-Time-Recovery (PITR) only works on a continuous WAL stream, care should be
taken when aggressively expiring archive outside of the normal backup expiration process. To deter-
mine what will be expired without actually expiring anything, the dry-run option can be provided on
the command line with the expire command.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repo1-retention-diff

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-diff=2
repo1-retention-full=2
start-fast=y

[global:archive-push]
compress-level=3

pg-primary — Perform differential backup
sudo -u postgres pgbackrest --stanza=demo --type=diff \

--log-level-console=info backup

Output:

[filtered 6 lines of output]
P00 INFO: backup stop archive = 000000020000000000000017, lsn = 0/17000050
P00 INFO: check archive for segment(s)

000000020000000000000016:000000020000000000000017
P00 INFO: new backup label = 20241216-150952F_20241216-151000D
P00 INFO: diff backup size = 8.3KB, file total = 961
P00 INFO: backup command end: completed successfully

[filtered 2 lines of output]

pg-primary — Expire archive
sudo -u postgres pgbackrest --stanza=demo --log-level-console=detail \

--repo1-retention-archive-type=diff --repo1-retention-archive=1 expire

Output:

pgBackRest User Guide
Version 2.54.1 - 32 -

Crunchy Data Solutions, Inc.
December 16, 2024



9 RETENTION 9.3 Archive Retention

P00 INFO: expire command begin 2.54.1: --exec-id=1613-78385018 --log-level-console
=detail --no-log-timestamp --repo1-cipher-pass=<redacted> --repo1-cipher-type=
aes-256-cbc --repo1-path=/var/lib/pgbackrest --repo1-retention-archive=1 --
repo1-retention-archive-type=diff --repo1-retention-diff=2 --repo1-retention-
full=2 --stanza=demo

P00 DETAIL: repo1: 15-1 archive retention on backup 20241216-150950F, start =
00000002000000000000000A, stop = 00000002000000000000000B

P00 DETAIL: repo1: 15-1 archive retention on backup 20241216-150952F, start =
00000002000000000000000C, stop = 00000002000000000000000D

P00 DETAIL: repo1: 15-1 archive retention on backup 20241216-150952F_20241216
-150957D, start = 000000020000000000000012, stop = 000000020000000000000013

P00 DETAIL: repo1: 15-1 archive retention on backup 20241216-150952F_20241216
-151000D, start = 000000020000000000000016

P00 INFO: repo1: 15-1 remove archive, start = 00000002000000000000000E, stop =
000000020000000000000011

P00 INFO: repo1: 15-1 remove archive, start = 000000020000000000000014, stop =
000000020000000000000015

P00 INFO: expire command end: completed successfully

The 20241216-150952F 20241216-150957D differential backup has archived WAL segments that
must be retained to make the older backups consistent even though they cannot be played any further
forward with PITR. WAL segments generated after 20241216-150952F 20241216-150957D but be-
fore 20241216-150952F 20241216-151000D are removed. WAL segments generated after the new
backup 20241216-150952F 20241216-151000D remain and can be used for PITR.

Since full backups are considered differential backups for the purpose of differential archive retention,
if a full backup is now performed with the same settings, only the archive for that full backup is retained
for PITR.

pgBackRest User Guide
Version 2.54.1 - 33 -

Crunchy Data Solutions, Inc.
December 16, 2024



10 RESTORE

10 Restore

The restore command automatically defaults to selecting the latest backup from the first repository
where backups exist (see QUICK START - RESTORE A BACKUP). The order in which the repositories
are checked is dictated by the pgbackrest.conf (e.g. repo1 will be checked before repo2). To select
from a specific repository, the --repo option can be passed (e.g. --repo=1). The --set option can
be passed if a backup other than the latest is desired.

When PITR of --type=time or --type=lsn is specified, then the target time or target lsn must
be specified with the --target option. If a backup is not specified via the --set option, then the
configured repositories will be checked, in order, for a backup that contains the requested time or lsn. If
no matching backup is found, the latest backup from the first repository containing backups will be used
for --type=time while no backup will be selected for --type=lsn. For other types of PITR, e.g.
xid, the --set option must be provided if the target is prior to the latest backup. See POINT-IN-TIME
RECOVERY for more details and examples.

Replication slots are not included per recommendation of PostgreSQL. See BACKING UP THE DATA
DIRECTORY in the PostgreSQL documentation for more information.

The following sections introduce additional restore command features.

10.1 File Ownership

If a restore is run as a non-root user (the typical scenario) then all files restored will belong to the
user/group executing pgBackRest. If existing files are not owned by the executing user/group then an
error will result if the ownership cannot be updated to the executing user/group. In that case the file
ownership will need to be updated by a privileged user before the restore can be retried.

If a restore is run as the root user then pgBackRest will attempt to recreate the ownership recorded
in the manifest when the backup was made. Only user/group names are stored in the manifest so the
same names must exist on the restore host for this to work. If the user/group name cannot be found
locally then the user/group of the PostgreSQL data directory will be used and finally root if the data
directory user/group cannot be mapped to a name.

10.2 Delta Option

RESTORE A BACKUP in QUICK START required the database cluster directory to be cleaned before
the restore could be performed. The delta option allows pgBackRest to automatically determine
which files in the database cluster directory can be preserved and which ones need to be restored from
the backup — it also removes files not present in the backup manifest so it will dispose of divergent
changes. This is accomplished by calculating a SHA-1 cryptographic hash for each file in the database
cluster directory. If the SHA-1 hash does not match the hash stored in the backup then that file will
be restored. This operation is very efficient when combined with the process-max option. Since the
PostgreSQL server is shut down during the restore, a larger number of processes can be used than
might be desirable during a backup when the PostgreSQL server is running.

pg-primary — Stop the demo cluster, perform delta restore

pgBackRest User Guide
Version 2.54.1 - 34 -

Crunchy Data Solutions, Inc.
December 16, 2024

https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-LOWLEVEL-BASE-BACKUP-DATA
https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-LOWLEVEL-BASE-BACKUP-DATA
https://en.wikipedia.org/wiki/SHA-1


10 RESTORE 10.3 Restore Selected Databases

sudo pg_ctlcluster 15 demo stop
sudo -u postgres pgbackrest --stanza=demo --delta \

--log-level-console=detail restore

Output:

[filtered 2 lines of output]
P00 DETAIL: check '/var/lib/postgresql/15/demo' exists
P00 DETAIL: remove 'global/pg_control' so cluster will not start if restore does

not complete
P00 INFO: remove invalid files/links/paths from '/var/lib/postgresql/15/demo'
P00 DETAIL: remove invalid file '/var/lib/postgresql/15/demo/backup_label.old'
P00 DETAIL: remove invalid file '/var/lib/postgresql/15/demo/base/1/pg_internal.

init'
[filtered 15 lines of output]

P01 DETAIL: restore file /var/lib/postgresql/15/demo/backup_label (260B, 0.00%)
checksum 9f9ae79bb90477b96b90a8229341e9ee89f921b2

P01 DETAIL: restore file /var/lib/postgresql/15/demo/pg_multixact/members/0000 -
exists and matches backup (bundle 20241216-150952F/1/0, 8KB, 0.04%) checksum
0631457264ff7f8d5fb1edc2c0211992a67c73e6

P01 DETAIL: restore file /var/lib/postgresql/15/demo/PG_VERSION - exists and
matches backup (bundle 20241216-150952F/1/40, 3B, 0.04%) checksum 587
b596f04f7db9c2cad3d6b87dd2b3a05de4f35

P01 DETAIL: restore file /var/lib/postgresql/15/demo/global/pg_filenode.map -
exists and matches backup (bundle 20241216-150952F/1/64, 512B, 0.04%) checksum
8426f71eec225fb3087aa80427d8e6b4e6a8a65b

P01 DETAIL: restore file /var/lib/postgresql/15/demo/global/6247 - exists and
matches backup (bundle 20241216-150952F/1/232, 8KB, 0.07%) checksum
ea40c8171261ed36b40f1597297f0a111790313c

[filtered 985 lines of output]

pg-primary — Restart PostgreSQL
sudo pg_ctlcluster 15 demo start

10.3 Restore Selected Databases

There may be cases where it is desirable to selectively restore specific databases from a cluster backup.
This could be done for performance reasons or to move selected databases to a machine that does not
have enough space to restore the entire cluster backup.

To demonstrate this feature two databases are created: test1 and test2.

pg-primary — Create two test databases
sudo -u postgres psql -c "create database test1;"

Output:

pgBackRest User Guide
Version 2.54.1 - 35 -

Crunchy Data Solutions, Inc.
December 16, 2024



10 RESTORE 10.3 Restore Selected Databases

CREATE DATABASE
sudo -u postgres psql -c "create database test2;"

Output:

CREATE DATABASE

Each test database will be seeded with tables and data to demonstrate that recovery works with selec-
tive restore.

pg-primary — Create a test table in each database
sudo -u postgres psql -c "create table test1_table (id int); \

insert into test1_table (id) values (1);" test1

Output:

CREATE TABLE
INSERT 0 1
sudo -u postgres psql -c "create table test2_table (id int); \

insert into test2_table (id) values (2);" test2

Output:

CREATE TABLE
INSERT 0 1

A fresh backup is run so pgBackRest is aware of the new databases.

pg-primary — Perform a backup
sudo -u postgres pgbackrest --stanza=demo --type=incr backup

One of the main reasons to use selective restore is to save space. The size of the test1 database is
shown here so it can be compared with the disk utilization after a selective restore.

pg-primary — Show space used by test1 database
sudo -u postgres du -sh /var/lib/postgresql/15/demo/base/32768

Output:

7.3M /var/lib/postgresql/15/demo/base/32768

If the database to restore is not known, use the info command set option to discover databases that
are part of the backup set.

pg-primary — Show database list for backup
sudo -u postgres pgbackrest --stanza=demo \

--set=20241216-150952F_20241216-151010I info

pgBackRest User Guide
Version 2.54.1 - 36 -

Crunchy Data Solutions, Inc.
December 16, 2024



10 RESTORE 10.3 Restore Selected Databases

Output:

[filtered 12 lines of output]
repo1: backup size: 2.0MB
backup reference list: 20241216-150952F, 20241216-150952F_20241216-151000

D
database list: postgres (5), test1 (32768), test2 (32769)

Stop the cluster and restore only the test2 database. Built-in databases (template0, template1, and
postgres) are always restored.

WARNING: Recovery may error unless --type=immediate is specified. This is because after
consistency is reached PostgreSQL will flag zeroed pages as errors even for a full-page write. For
PostgreSQL &ge; 13 the ignore invalid pages setting may be used to ignore invalid pages. In
this case it is important to check the logs after recovery to ensure that no invalid pages were reported
in the selected databases.

pg-primary — Restore from last backup including only the test2 database
sudo pg_ctlcluster 15 demo stop
sudo -u postgres pgbackrest --stanza=demo --delta \

--db-include=test2 --type=immediate --target-action=promote restore
sudo pg_ctlcluster 15 demo start

Once recovery is complete the test2 database will contain all previously created tables and data.

pg-primary — Demonstrate that the test2 database was recovered
sudo -u postgres psql -c "select * from test2_table;" test2

Output:

id
----
2

(1 row)

The test1 database, despite successful recovery, is not accessible. This is because the entire database
was restored as sparse, zeroed files. PostgreSQL can successfully apply WAL on the zeroed files but
the database as a whole will not be valid because key files contain no data. This is purposeful to prevent
the database from being accidentally used when it might contain partial data that was applied during
WAL replay.

pg-primary — Attempting to connect to the test1 database will produce an error
sudo -u postgres psql -c "select * from test1_table;" test1

Output:

pgBackRest User Guide
Version 2.54.1 - 37 -

Crunchy Data Solutions, Inc.
December 16, 2024



10 RESTORE 10.3 Restore Selected Databases

psql: error: connection to server on socket "/var/run/postgresql/.s.PGSQL.5432"
failed: FATAL: relation mapping file "base/32768/pg_filenode.map" contains
invalid data

Since the test1 database is restored with sparse, zeroed files it will only require as much space as the
amount of WAL that is written during recovery. While the amount of WAL generated during a backup
and applied during recovery can be significant it will generally be a small fraction of the total database
size, especially for large databases where this feature is most likely to be useful.

It is clear that the test1 database uses far less disk space during the selective restore than it would have
if the entire database had been restored.

pg-primary — Show space used by test1 database after recovery
sudo -u postgres du -sh /var/lib/postgresql/15/demo/base/32768

Output:

8.0K /var/lib/postgresql/15/demo/base/32768

At this point the only action that can be taken on the invalid test1 database is drop database. pg-
BackRest does not automatically drop the database since this cannot be done until recovery is complete
and the cluster is accessible.

pg-primary — Drop the test1 database
sudo -u postgres psql -c "drop database test1;"

Output:

DROP DATABASE

Now that the invalid test1 database has been dropped only the test2 and built-in databases remain.

pg-primary — List remaining databases
sudo -u postgres psql -c "select oid, datname from pg_database order by oid;"

Output:

oid | datname
-------+-----------

1 | template1
4 | template0
5 | postgres

32769 | test2
(4 rows)

pgBackRest User Guide
Version 2.54.1 - 38 -

Crunchy Data Solutions, Inc.
December 16, 2024



11 POINT-IN-TIME RECOVERY

11 Point-in-Time Recovery

RESTORE A BACKUP in QUICK START performed default recovery, which is to play all the way to the
end of the WAL stream. In the case of a hardware failure this is usually the best choice but for data
corruption scenarios (whether machine or human in origin) Point-in-Time Recovery (PITR) is often more
appropriate.

Point-in-Time Recovery (PITR) allows the WAL to be played from a backup to a specified lsn, time,
transaction id, or recovery point. For common recovery scenarios time-based recovery is arguably the
most useful. A typical recovery scenario is to restore a table that was accidentally dropped or data that
was accidentally deleted. Recovering a dropped table is more dramatic so that’s the example given
here but deleted data would be recovered in exactly the same way.

pg-primary — Create a table with very important data
sudo -u postgres psql -c "begin; \

create table important_table (message text); \
insert into important_table values ('Important Data'); \
commit; \
select * from important_table;"

Output:

[filtered 4 lines of output]
message

----------------
Important Data
(1 row)

It is important to represent the time as reckoned by PostgreSQL and to include timezone offsets. This
reduces the possibility of unintended timezone conversions and an unexpected recovery result.

pg-primary — Get the time from PostgreSQL
sudo -u postgres psql -Atc "select current_timestamp"

Output:

2024-12-16 15:10:20.768816+00

Now that the time has been recorded the table is dropped. In practice finding the exact time that the
table was dropped is a lot harder than in this example. It may not be possible to find the exact time, but
some forensic work should be able to get you close.

pg-primary — Drop the important table
sudo -u postgres psql -c "begin; \

drop table important_table; \
commit; \
select * from important_table;"

pgBackRest User Guide
Version 2.54.1 - 39 -

Crunchy Data Solutions, Inc.
December 16, 2024



11 POINT-IN-TIME RECOVERY

Output:

BEGIN
DROP TABLE
COMMITERROR: relation "important_table" does not exist
LINE 1: ...le important_table; commit; select * from important_...

ˆ

If the wrong backup is selected for restore then recovery to the required time target will fail. To demon-
strate this a new incremental backup is performed where important table does not exist.

pg-primary — Perform an incremental backup
sudo -u postgres pgbackrest --stanza=demo --type=incr backup
sudo -u postgres pgbackrest info

Output:

[filtered 38 lines of output]
backup reference total: 1 full, 1 diff

incr backup: 20241216-150952F_20241216-151022I
timestamp start/stop: 2024-12-16 15:10:22+00 / 2024-12-16 15:10:23+00
wal start/stop: 00000004000000000000001B / 00000004000000000000001B

[filtered 2 lines of output]

It will not be possible to recover the lost table from this backup since PostgreSQL can only play forward,
not backward.

pg-primary — Attempt recovery from an incorrect backup
sudo pg_ctlcluster 15 demo stop
sudo -u postgres pgbackrest --stanza=demo --delta \

--set=20241216-150952F_20241216-151022I --target-timeline=current \
--type=time "--target=2024-12-16 15:10:20.768816+00" --target-action=promote

restore
sudo pg_ctlcluster 15 demo start

Output:

[filtered 13 lines of output]
LOG: database system is ready to accept read-only connections
LOG: redo done at 0/1B000100 system usage: CPU: user: 0.00 s, system: 0.00 s,

elapsed: 0.04 s
FATAL: recovery ended before configured recovery target was reached
LOG: startup process (PID 1985) exited with exit code 1
LOG: terminating any other active server processes

[filtered 3 lines of output]

pgBackRest User Guide
Version 2.54.1 - 40 -

Crunchy Data Solutions, Inc.
December 16, 2024



11 POINT-IN-TIME RECOVERY

A reliable method is to allow pgBackRest to automatically select a backup capable of recovery to the
time target, i.e. a backup that ended before the specified time.

NOTE: pgBackRest cannot automatically select a backup when the restore type is xid or name.

pg-primary — Restore the demo cluster to 2024-12-16 15:10:20.768816+00

sudo -u postgres pgbackrest --stanza=demo --delta \
--type=time "--target=2024-12-16 15:10:20.768816+00" \
--target-action=promote restore

sudo -u postgres cat /var/lib/postgresql/15/demo/postgresql.auto.conf

Output:

[filtered 9 lines of output]
# Recovery settings generated by pgBackRest restore on 2024-12-16 15:10:26
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'
recovery_target_time = '2024-12-16 15:10:20.768816+00'
recovery_target_action = 'promote'

pgBackRest has generated the recovery settings in postgresql.auto.conf so PostgreSQL can be
started immediately. %f is how PostgreSQL specifies the WAL segment it needs and %p is the location
where it should be copied. Once PostgreSQL has finished recovery the table will exist again and can
be queried.

pg-primary — Start PostgreSQL and check that the important table exists
sudo pg_ctlcluster 15 demo start
sudo -u postgres psql -c "select * from important_table"

Output:

message
----------------
Important Data
(1 row)

The PostgreSQL log also contains valuable information. It will indicate the time and transaction where
the recovery stopped and also give the time of the last transaction to be applied.

pg-primary — Examine the PostgreSQL log output
sudo -u postgres cat /var/log/postgresql/postgresql-15-demo.log

Output:

[filtered 4 lines of output]
LOG: database system was interrupted; last known up at 2024-12-16 15:10:10 UTC
LOG: restored log file "00000004.history" from archive
LOG: starting point-in-time recovery to 2024-12-16 15:10:20.768816+00

pgBackRest User Guide
Version 2.54.1 - 41 -

Crunchy Data Solutions, Inc.
December 16, 2024



11 POINT-IN-TIME RECOVERY

LOG: starting backup recovery with redo LSN 0/1A000028, checkpoint LSN 0/1A000060,
on timeline ID 3

LOG: restored log file "00000004.history" from archive
[filtered 5 lines of output]

LOG: database system is ready to accept read-only connections
LOG: restored log file "00000004000000000000001B" from archive
LOG: recovery stopping before commit of transaction 734, time 2024-12-16

15:10:22.191871+00
LOG: redo done at 0/1A0253C8 system usage: CPU: user: 0.00 s, system: 0.01 s,

elapsed: 0.10 s
LOG: last completed transaction was at log time 2024-12-16 15:10:19.456101+00
LOG: restored log file "00000004000000000000001A" from archive
LOG: selected new timeline ID: 5

[filtered 5 lines of output]

pgBackRest User Guide
Version 2.54.1 - 42 -

Crunchy Data Solutions, Inc.
December 16, 2024



12 DELETE A STANZA

12 Delete a Stanza

The stanza-delete command removes data in the repository associated with a stanza.

WARNING: Use this command with caution — it will permanently remove all backups and archives
from the pgBackRest repository for the specified stanza.

To delete a stanza:

• Shut down the PostgreSQL cluster associated with the stanza (or use –force to override).

• Run the stop command on the host where the stanza-delete command will be run.

• Run the stanza-delete command.

Once the command successfully completes, it is the responsibility of the user to remove the stanza
from all pgBackRest configuration files and/or environment variables.

A stanza may only be deleted from one repository at a time. To delete the stanza from multiple reposi-
tories, repeat the stanza-delete command for each repository while specifying the --repo option.

pg-primary — Stop PostgreSQL cluster to be removed
sudo pg_ctlcluster 15 demo stop

pg-primary — Stop pgBackRest for the stanza
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info stop

Output:

P00 INFO: stop command begin 2.54.1: --exec-id=2107-9ec16802 --log-level-console=
info --no-log-timestamp --stanza=demo

P00 INFO: stop command end: completed successfully

pg-primary — Delete the stanza from one repository
sudo -u postgres pgbackrest --stanza=demo --repo=1 \

--log-level-console=info stanza-delete

Output:

P00 INFO: stanza-delete command begin 2.54.1: --exec-id=2114-93d0eb9a --log-level-
console=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --repo=1
--repo1-cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/

var/lib/pgbackrest --stanza=demo
P00 INFO: stanza-delete command end: completed successfully

pgBackRest User Guide
Version 2.54.1 - 43 -

Crunchy Data Solutions, Inc.
December 16, 2024



13 MULTIPLE REPOSITORIES

13 Multiple Repositories

Multiple repositories may be configured as demonstrated in S3 SUPPORT. A potential benefit is the
ability to have a local repository for fast restores and a remote repository for redundancy.

Some commands, e.g. stanza-create/stanza-upgrade, will automatically work with all configured
repositories while others, e.g. STANZA-DELETE, will require a repository to be specified using the repo
option. See the COMMAND REFERENCE for details on which commands require the repository to be
specified.

Note that the repo option is not required when only repo1 is configured in order to maintain backward
compatibility. However, the repo option is required when a single repo is configured as, e.g. repo2.
This is to prevent command breakage if a new repository is added later.

The archive-push command will always push WAL to the archive in all configured repositories. When
a repository cannot be reached, WAL will still be pushed to other repositories. However, for this to work
effectively, archive-async=y must be enabled; otherwise, the other repositories can only get one
WAL segment ahead of the unreachable repository. Also, note that if WAL cannot be pushed to any
repository, then PostgreSQL will not remove it from the pg wal directory, which may cause the volume
to run out of space.

Backups need to be scheduled individually for each repository. In many cases this is desirable since
backup types and retention will vary by repository. Likewise, restores must specify a repository. It is
generally better to specify a repository for restores that has low latency/cost even if that means more
recovery time. Only restore testing can determine which repository will be most efficient.

pgBackRest User Guide
Version 2.54.1 - 44 -

Crunchy Data Solutions, Inc.
December 16, 2024

command.html


14 AZURE-COMPATIBLE OBJECT STORE SUPPORT

14 Azure-Compatible Object Store Support

pgBackRest supports locating repositories in Azure-compatible object stores. The container used
to store the repository must be created in advance — pgBackRest will not do it automatically. The
repository can be located in the container root (/) but it’s usually best to place it in a subpath so object
store logs or other data can also be stored in the container without conflicts.

WARNING: Do not enable “hierarchical namespace” as this will cause errors during expire.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure Azure

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
process-max=4
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-diff=2
repo1-retention-full=2
repo2-azure-account=pgbackrest
repo2-azure-container=demo-container
repo2-azure-key=YXpLZXk=
repo2-path=/demo-repo
repo2-retention-full=4
repo2-type=azure
start-fast=y

[global:archive-push]
compress-level=3

Shared access signatures may be used by setting the repo2-azure-key-type option to sas and
the repo2-azure-key option to the shared access signature token.

Commands are run exactly as if the repository were stored on a local disk.

pg-primary — Create the stanza
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create

Output:

P00 INFO: stanza-create command begin 2.54.1: --exec-id=2184-3469c962 --log-level-
console=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --repo2-
azure-account=<redacted> --repo2-azure-container=demo-container --repo2-azure-
key=<redacted> --repo1-cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc
--repo1-path=/var/lib/pgbackrest --repo2-path=/demo-repo --repo2-type=azure --

pgBackRest User Guide
Version 2.54.1 - 45 -

Crunchy Data Solutions, Inc.
December 16, 2024



14 AZURE-COMPATIBLE OBJECT STORE SUPPORT

stanza=demo
P00 INFO: stanza-create for stanza 'demo' on repo1
P00 INFO: stanza-create for stanza 'demo' on repo2
P00 INFO: stanza-create command end: completed successfully

File creation time in object stores is relatively slow so commands benefit by increasing process-max
to parallelize file creation.

pg-primary — Backup the demo cluster
sudo -u postgres pgbackrest --stanza=demo --repo=2 \

--log-level-console=info backup

Output:

P00 INFO: backup command begin 2.54.1: --exec-id=2193-c0242312 --log-level-console
=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --process-max=4
--repo=2 --repo2-azure-account=<redacted> --repo2-azure-container=demo-

container --repo2-azure-key=<redacted> --repo1-block --repo1-bundle --repo1-
cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/
pgbackrest --repo2-path=/demo-repo --repo1-retention-diff=2 --repo1-retention-
full=2 --repo2-retention-full=4 --repo2-type=azure --stanza=demo --start-fast

P00 WARN: no prior backup exists, incr backup has been changed to full
P00 INFO: execute non-exclusive backup start: backup begins after the requested

immediate checkpoint completes
P00 INFO: backup start archive = 00000005000000000000001C, lsn = 0/1C000028

[filtered 3 lines of output]
P00 INFO: check archive for segment(s) 00000005000000000000001C

:00000005000000000000001C
P00 INFO: new backup label = 20241216-151038F
P00 INFO: full backup size = 29.0MB, file total = 1263
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin 2.54.1: --exec-id=2193-c0242312 --log-level-console

=info --no-log-timestamp --repo=2 --repo2-azure-account=<redacted> --repo2-
azure-container=demo-container --repo2-azure-key=<redacted> --repo1-cipher-pass
=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/pgbackrest --
repo2-path=/demo-repo --repo1-retention-diff=2 --repo1-retention-full=2 --repo2
-retention-full=4 --repo2-type=azure --stanza=demo

pgBackRest User Guide
Version 2.54.1 - 46 -

Crunchy Data Solutions, Inc.
December 16, 2024



15 S3-COMPATIBLE OBJECT STORE SUPPORT

15 S3-Compatible Object Store Support

pgBackRest supports locating repositories in S3-compatible object stores. The bucket used to store
the repository must be created in advance — pgBackRest will not do it automatically. The repository
can be located in the bucket root (/) but it’s usually best to place it in a subpath so object store logs or
other data can also be stored in the bucket without conflicts.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure S3

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
process-max=4
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-diff=2
repo1-retention-full=2
repo2-azure-account=pgbackrest
repo2-azure-container=demo-container
repo2-azure-key=YXpLZXk=
repo2-path=/demo-repo
repo2-retention-full=4
repo2-type=azure
repo3-path=/demo-repo
repo3-retention-full=4
repo3-s3-bucket=demo-bucket
repo3-s3-endpoint=s3.us-east-1.amazonaws.com
repo3-s3-key=accessKey1
repo3-s3-key-secret=verySecretKey1
repo3-s3-region=us-east-1
repo3-type=s3
start-fast=y

[global:archive-push]
compress-level=3

NOTE: The region and endpoint will need to be configured to where the bucket is located. The values
given here are for the us-east-1 region.

A role should be created to run pgBackRest and the bucket permissions should be set as restrictively
as possible. If the role is associated with an instance in AWS then pgBackRest will automatically retrieve
temporary credentials when repo3-s3-key-type=auto, which means that keys do not need to be
explicitly set in /etc/pgbackrest/pgbackrest.conf.

This sample Amazon S3 policy will restrict all reads and writes to the bucket and repository path.

pgBackRest User Guide
Version 2.54.1 - 47 -

Crunchy Data Solutions, Inc.
December 16, 2024



15 S3-COMPATIBLE OBJECT STORE SUPPORT

Sample Amazon S3 Policy:
{

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"s3:ListBucket"
],
"Resource": [

"arn:aws:s3:::{[s3-bucket]}"
],
"Condition": {

"StringEquals": {
"s3:prefix": [

"",
"{[s3-repo]}"

],
"s3:delimiter": [

"/"
]

}
}

},
{

"Effect": "Allow",
"Action": [

"s3:ListBucket"
],
"Resource": [

"arn:aws:s3:::{[s3-bucket]}"
],
"Condition": {

"StringLike": {
"s3:prefix": [

"{[s3-repo]}/*"
]

}
}

},
{

"Effect": "Allow",
"Action": [

"s3:PutObject",
"s3:PutObjectTagging",
"s3:GetObject",
"s3:GetObjectVersion",
"s3:DeleteObject"

pgBackRest User Guide
Version 2.54.1 - 48 -

Crunchy Data Solutions, Inc.
December 16, 2024



15 S3-COMPATIBLE OBJECT STORE SUPPORT

],
"Resource": [

"arn:aws:s3:::{[s3-bucket]}/{[s3-repo]}/*"
]

}
]

}

Commands are run exactly as if the repository were stored on a local disk.

pg-primary — Create the stanza
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create

Output:

[filtered 4 lines of output]
P00 INFO: stanza 'demo' already exists on repo2 and is valid
P00 INFO: stanza-create for stanza 'demo' on repo3
P00 INFO: stanza-create command end: completed successfully

File creation time in object stores is relatively slow so commands benefit by increasing process-max
to parallelize file creation.

pg-primary — Backup the demo cluster
sudo -u postgres pgbackrest --stanza=demo --repo=3 \

--log-level-console=info backup

Output:

P00 INFO: backup command begin 2.54.1: --exec-id=2243-ef9e1153 --log-level-console
=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --process-max=4
--repo=3 --repo2-azure-account=<redacted> --repo2-azure-container=demo-

container --repo2-azure-key=<redacted> --repo1-block --repo1-bundle --repo1-
cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/
pgbackrest --repo2-path=/demo-repo --repo3-path=/demo-repo --repo1-retention-
diff=2 --repo1-retention-full=2 --repo2-retention-full=4 --repo3-retention-full
=4 --repo3-s3-bucket=demo-bucket --repo3-s3-endpoint=s3.us-east-1.amazonaws.com
--repo3-s3-key=<redacted> --repo3-s3-key-secret=<redacted> --repo3-s3-region=

us-east-1 --repo2-type=azure --repo3-type=s3 --stanza=demo --start-fast
P00 WARN: no prior backup exists, incr backup has been changed to full
P00 INFO: execute non-exclusive backup start: backup begins after the requested

immediate checkpoint completes
P00 INFO: backup start archive = 00000005000000000000001D, lsn = 0/1D000028

[filtered 3 lines of output]
P00 INFO: check archive for segment(s) 00000005000000000000001D

:00000005000000000000001E
P00 INFO: new backup label = 20241216-151047F
P00 INFO: full backup size = 29.0MB, file total = 1263

pgBackRest User Guide
Version 2.54.1 - 49 -

Crunchy Data Solutions, Inc.
December 16, 2024



15 S3-COMPATIBLE OBJECT STORE SUPPORT

P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin 2.54.1: --exec-id=2243-ef9e1153 --log-level-console

=info --no-log-timestamp --repo=3 --repo2-azure-account=<redacted> --repo2-
azure-container=demo-container --repo2-azure-key=<redacted> --repo1-cipher-pass
=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/pgbackrest --
repo2-path=/demo-repo --repo3-path=/demo-repo --repo1-retention-diff=2 --repo1-
retention-full=2 --repo2-retention-full=4 --repo3-retention-full=4 --repo3-s3-
bucket=demo-bucket --repo3-s3-endpoint=s3.us-east-1.amazonaws.com --repo3-s3-
key=<redacted> --repo3-s3-key-secret=<redacted> --repo3-s3-region=us-east-1 --
repo2-type=azure --repo3-type=s3 --stanza=demo

pgBackRest User Guide
Version 2.54.1 - 50 -

Crunchy Data Solutions, Inc.
December 16, 2024



16 SFTP SUPPORT

16 SFTP Support

pgBackRest supports locating repositories on SFTP hosts. SFTP file transfer is relatively slow so com-
mands benefit by increasing process-max to parallelize file transfer.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure SFTP

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
process-max=4
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-diff=2
repo1-retention-full=2
repo2-azure-account=pgbackrest
repo2-azure-container=demo-container
repo2-azure-key=YXpLZXk=
repo2-path=/demo-repo
repo2-retention-full=4
repo2-type=azure
repo3-path=/demo-repo
repo3-retention-full=4
repo3-s3-bucket=demo-bucket
repo3-s3-endpoint=s3.us-east-1.amazonaws.com
repo3-s3-key=accessKey1
repo3-s3-key-secret=verySecretKey1
repo3-s3-region=us-east-1
repo3-type=s3
repo4-bundle=y
repo4-path=/demo-repo
repo4-sftp-host=sftp-server
repo4-sftp-host-key-hash-type=sha1
repo4-sftp-host-user=pgbackrest
repo4-sftp-private-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp
repo4-sftp-public-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp.pub
repo4-type=sftp
start-fast=y

[global:archive-push]
compress-level=3

When utilizing SFTP, if libssh2 is compiled against OpenSSH then repo4-sftp-public-key-file
is optional.

pgBackRest User Guide
Version 2.54.1 - 51 -

Crunchy Data Solutions, Inc.
December 16, 2024



16 SFTP SUPPORT

pg-primary — Generate SSH keypair for SFTP backup
sudo -u postgres mkdir -m 750 -p /var/lib/postgresql/.ssh
sudo -u postgres ssh-keygen -f /var/lib/postgresql/.ssh/id_rsa_sftp \

-t rsa -b 4096 -N "" -m PEM

sftp-server — Copy pg-primary SFTP backup public key to sftp-server
sudo -u pgbackrest mkdir -m 750 -p /home/pgbackrest/.ssh
(sudo ssh root@pg-primary cat /var/lib/postgresql/.ssh/id_rsa_sftp.pub) | \

sudo -u pgbackrest tee -a /home/pgbackrest/.ssh/authorized_keys

Commands are run exactly as if the repository were stored on a local disk.

pg-primary — Add sftp-server fingerprint to known hosts file since repo4-sftp-host-key-check-type de-
faults to “strict”
ssh-keyscan -H sftp-server >> /var/lib/postgresql/.ssh/known_hosts 2>/dev/null

pg-primary — Create the stanza
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info stanza-create

Output:

[filtered 6 lines of output]
P00 INFO: stanza 'demo' already exists on repo3 and is valid
P00 INFO: stanza-create for stanza 'demo' on repo4
P00 INFO: stanza-create command end: completed successfully

pg-primary — Backup the demo cluster
sudo -u postgres pgbackrest --stanza=demo --repo=4 \

--log-level-console=info backup

Output:

P00 INFO: backup command begin 2.54.1: --exec-id=2326-7914539c --log-level-console
=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --process-max=4
--repo=4 --repo2-azure-account=<redacted> --repo2-azure-container=demo-

container --repo2-azure-key=<redacted> --repo1-block --repo1-bundle --repo4-
bundle --repo1-cipher-pass=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-
path=/var/lib/pgbackrest --repo2-path=/demo-repo --repo3-path=/demo-repo --
repo4-path=/demo-repo --repo1-retention-diff=2 --repo1-retention-full=2 --repo2
-retention-full=4 --repo3-retention-full=4 --repo3-s3-bucket=demo-bucket --
repo3-s3-endpoint=s3.us-east-1.amazonaws.com --repo3-s3-key=<redacted> --repo3-
s3-key-secret=<redacted> --repo3-s3-region=us-east-1 --repo4-sftp-host=sftp-
server --repo4-sftp-host-key-hash-type=sha1 --repo4-sftp-host-user=pgbackrest
--repo4-sftp-private-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp --repo4-sftp
-public-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp.pub --repo2-type=azure --
repo3-type=s3 --repo4-type=sftp --stanza=demo --start-fast

pgBackRest User Guide
Version 2.54.1 - 52 -

Crunchy Data Solutions, Inc.
December 16, 2024



16 SFTP SUPPORT

P00 WARN: option 'repo4-retention-full' is not set for 'repo4-retention-full-type=
count', the repository may run out of space

HINT: to retain full backups indefinitely (without warning), set option '
repo4-retention-full' to the maximum.

P00 WARN: no prior backup exists, incr backup has been changed to full
P00 INFO: execute non-exclusive backup start: backup begins after the requested

immediate checkpoint completes
P00 INFO: backup start archive = 00000005000000000000001F, lsn = 0/1F000028

[filtered 3 lines of output]
P00 INFO: check archive for segment(s) 00000005000000000000001F

:000000050000000000000020
P00 INFO: new backup label = 20241216-151055F
P00 INFO: full backup size = 29.0MB, file total = 1263
P00 INFO: backup command end: completed successfully
P00 INFO: expire command begin 2.54.1: --exec-id=2326-7914539c --log-level-console

=info --no-log-timestamp --repo=4 --repo2-azure-account=<redacted> --repo2-
azure-container=demo-container --repo2-azure-key=<redacted> --repo1-cipher-pass
=<redacted> --repo1-cipher-type=aes-256-cbc --repo1-path=/var/lib/pgbackrest --
repo2-path=/demo-repo --repo3-path=/demo-repo --repo4-path=/demo-repo --repo1-
retention-diff=2 --repo1-retention-full=2 --repo2-retention-full=4 --repo3-
retention-full=4 --repo3-s3-bucket=demo-bucket --repo3-s3-endpoint=s3.us-east
-1.amazonaws.com --repo3-s3-key=<redacted> --repo3-s3-key-secret=<redacted> --
repo3-s3-region=us-east-1 --repo4-sftp-host=sftp-server --repo4-sftp-host-key-
hash-type=sha1 --repo4-sftp-host-user=pgbackrest --repo4-sftp-private-key-file
=/var/lib/postgresql/.ssh/id_rsa_sftp --repo4-sftp-public-key-file=/var/lib/
postgresql/.ssh/id_rsa_sftp.pub --repo2-type=azure --repo3-type=s3 --repo4-type
=sftp --stanza=demo

P00 INFO: expire command end: completed successfully

pgBackRest User Guide
Version 2.54.1 - 53 -

Crunchy Data Solutions, Inc.
December 16, 2024



17 GCS-COMPATIBLE OBJECT STORE SUPPORT

17 GCS-Compatible Object Store Support

pgBackRest supports locating repositories in GCS-compatible object stores. The bucket used to
store the repository must be created in advance — pgBackRest will not do it automatically. The repos-
itory can be located in the bucket root (/) but it’s usually best to place it in a subpath so object store
logs or other data can also be stored in the bucket without conflicts.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure GCS

[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
process-max=4
repo1-block=y
repo1-bundle=y
repo1-cipher-pass=zWaf6XtpjIVZC5444yXB+cgFDFl7MxGlgkZSaoPvTGirhPygu4jOKOXf9LO4vjfO
repo1-cipher-type=aes-256-cbc
repo1-path=/var/lib/pgbackrest
repo1-retention-diff=2
repo1-retention-full=2
repo2-azure-account=pgbackrest
repo2-azure-container=demo-container
repo2-azure-key=YXpLZXk=
repo2-path=/demo-repo
repo2-retention-full=4
repo2-type=azure
repo3-path=/demo-repo
repo3-retention-full=4
repo3-s3-bucket=demo-bucket
repo3-s3-endpoint=s3.us-east-1.amazonaws.com
repo3-s3-key=accessKey1
repo3-s3-key-secret=verySecretKey1
repo3-s3-region=us-east-1
repo3-type=s3
repo4-bundle=y
repo4-path=/demo-repo
repo4-sftp-host=sftp-server
repo4-sftp-host-key-hash-type=sha1
repo4-sftp-host-user=pgbackrest
repo4-sftp-private-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp
repo4-sftp-public-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp.pub
repo4-type=sftp
repo5-gcs-bucket=demo-bucket
repo5-gcs-key=/etc/pgbackrest/gcs-key.json
repo5-path=/demo-repo
repo5-type=gcs
start-fast=y

pgBackRest User Guide
Version 2.54.1 - 54 -

Crunchy Data Solutions, Inc.
December 16, 2024



17 GCS-COMPATIBLE OBJECT STORE SUPPORT

[global:archive-push]
compress-level=3

When running in GCE set repo5-gcs-key-type=auto to automatically authenticate using the in-
stance service account.

Commands are run exactly as if the repository were stored on a local disk.

File creation time in object stores is relatively slow so commands benefit by increasing process-max
to parallelize file creation.

pgBackRest User Guide
Version 2.54.1 - 55 -

Crunchy Data Solutions, Inc.
December 16, 2024



18 TARGET TIME FOR REPOSITORY

18 Target Time for Repository

The target time defines the time that commands use to read a repository on versioned storage. This
allows the command to read the repository as it was at a point-in-time in order to recover data that has
been deleted or corrupted by user accident or malware.

Versioned storage is supported by S3, GCS, and Azure but is generally not enabled by default. In
addition to enabling versioning, it may be useful to enable object locking for S3 and soft delete for GCS
or Azure.

When the repo-target-time option is specified then the repo option must also be provided. It is
likely that not all repository types will support versioning and in general it makes sense to target a single
repository for recovery.

Note that comparisons to the storage timestamp are ≤ the timestamp provided and milliseconds are
truncated from the timestamp when provided.

To demonstrate this feature the demo stanza in the S3 repo is deleted.

pg-primary — Delete stanza in S3 repository
sudo pg_ctlcluster 15 demo stop
sudo -u postgres pgbackrest --stanza=demo stop
sudo -u postgres pgbackrest --stanza=demo --repo=3 stanza-delete

Once the stanza is deleted the info command will show the repository in an error state.

pg-primary — Error on info
sudo -u postgres pgbackrest --stanza=demo --repo=3 info

Output:

stanza: demo
status: error (missing stanza data)
cipher: none

However, since the storage is versioned, it is possible to look at the repository at a time before the stanza
was deleted. Finding the target time can be tricky depending on the situation, but in this case the time
when the stanza was deleted can be determined by checking when backup.info was deleted.

s3-server — Use mc to list versions of backup.info in the bucket
mc ls --versions s3/demo-bucket/demo-repo/backup/demo/backup.info

Output:

[2024-12-16 15:11:01 UTC] 0B STANDARD 7f1a6b60-c216-4b27-b20b-eac66bd9414b v3 DEL
backup.info

[2024-12-16 15:10:52 UTC] 1.0KiB STANDARD 8c787d18-e0fb-4b81-a99e-be0aafccc48f v2
PUT backup.info

pgBackRest User Guide
Version 2.54.1 - 56 -

Crunchy Data Solutions, Inc.
December 16, 2024



18 TARGET TIME FOR REPOSITORY

[2024-12-16 15:10:47 UTC] 372B STANDARD fcd64a54-6d60-4106-8d07-a2c4c9fba75d v1
PUT backup.info

[2024-12-16 15:11:01 UTC] 0B STANDARD 13c1b7e1-22bb-453c-bc3e-f5262f113743 v3 DEL
backup.info.copy

[2024-12-16 15:10:52 UTC] 1.0KiB STANDARD 7aaa1925-53fb-4321-b077-944032075072 v2
PUT backup.info.copy

Now the info command can be run with a target time that will show the repository before it was deleted.

pg-primary — Info with target time
sudo -u postgres pgbackrest --stanza=demo --repo=3 \

--repo-target-time="2024-12-16 15:10:52+00" info

Output:

[filtered 5 lines of output]
wal archive min/max (15): 00000005000000000000001D/00000005000000000000001E

full backup: 20241216-151047F
timestamp start/stop: 2024-12-16 15:10:47+00 / 2024-12-16 15:10:51+00
wal start/stop: 00000005000000000000001D / 00000005000000000000001E
repo3: backup set size: 3.9MB, backup size: 3.9MB

If the required backup is shown by the info command then it can be restored using the same target
time.

pg-primary — Restore with target time
sudo -u postgres pgbackrest --stanza=demo --repo=3 --delta \

--repo-target-time="2024-12-16 15:10:52+00" --log-level-console=info restore

Output:

P00 INFO: restore command begin 2.54.1: --delta --exec-id=2403-58129653 --log-
level-console=info --no-log-timestamp --pg1-path=/var/lib/postgresql/15/demo --
process-max=4 --repo=3 --repo2-azure-account=<redacted> --repo2-azure-container
=demo-container --repo2-azure-key=<redacted> --repo1-cipher-pass=<redacted> --
repo1-cipher-type=aes-256-cbc --repo5-gcs-bucket=demo-bucket --repo5-gcs-key=<
redacted> --repo1-path=/var/lib/pgbackrest --repo2-path=/demo-repo --repo3-path
=/demo-repo --repo4-path=/demo-repo --repo5-path=/demo-repo --repo3-s3-bucket=
demo-bucket --repo3-s3-endpoint=s3.us-east-1.amazonaws.com --repo3-s3-key=<
redacted> --repo3-s3-key-secret=<redacted> --repo3-s3-region=us-east-1 --repo4-
sftp-host=sftp-server --repo4-sftp-host-key-hash-type=sha1 --repo4-sftp-host-
user=pgbackrest --repo4-sftp-private-key-file=/var/lib/postgresql/.ssh/
id_rsa_sftp --repo4-sftp-public-key-file=/var/lib/postgresql/.ssh/id_rsa_sftp.
pub --repo-target-time="2024-12-16 15:10:52+00" --repo2-type=azure --repo3-type
=s3 --repo4-type=sftp --repo5-type=gcs --stanza=demo

P00 INFO: repo3: restore backup set 20241216-151047F, recovery will start at
2024-12-16 15:10:47

pgBackRest User Guide
Version 2.54.1 - 57 -

Crunchy Data Solutions, Inc.
December 16, 2024



18 TARGET TIME FOR REPOSITORY

P00 INFO: remove invalid files/links/paths from '/var/lib/postgresql/15/demo'
P00 INFO: write updated /var/lib/postgresql/15/demo/postgresql.auto.conf

[filtered 2 lines of output]
sudo pg_ctlcluster 15 demo start

pgBackRest User Guide
Version 2.54.1 - 58 -

Crunchy Data Solutions, Inc.
December 16, 2024



19 DEDICATED REPOSITORY HOST

19 Dedicated Repository Host

The configuration described in QUICKSTART is suitable for simple installations but for enterprise con-
figurations it is more typical to have a dedicated repository host where the backups and WAL archive
files are stored. This separates the backups and WAL archive from the database server so database
host failures have less impact. It is still a good idea to employ traditional backup software to backup the
repository host.

On PostgreSQL hosts, pg1-path is required to be the path of the local PostgreSQL cluster and no
pg1-host should be configured. When configuring a repository host, the pgbackrest configuration
file must have the pg-host option configured to connect to the primary and standby (if any) hosts.
The repository host has the only pgbackrest configuration that should be aware of more than one
PostgreSQL host. Order does not matter, e.g. pg1-path/pg1-host, pg2-path/pg2-host can be primary or
standby.

19.1 Installation

A new host named repository is created to store the cluster backups.

NOTE: The pgBackRest version installed on the repository host must exactly match the version
installed on the PostgreSQL host.

The pgbackrest user is created to own the pgBackRest repository. Any user can own the repository
but it is best not to use postgres (if it exists) to avoid confusion.

repository — Create pgbackrest user
sudo adduser --disabled-password --gecos "" pgbackrest

Installing pgBackRest from a package is preferable to building from source. When installing from a
package the rest of the instructions in this section are generally not required, but it is possible that a
package will skip creating one of the directories or apply incorrect permissions. In that case it may be
necessary to manually create directories or update permissions.

Debian/Ubuntu packages for pgBackRest are available at APT.POSTGRESQL.ORG.

If packages are not provided for your distribution/version you can BUILD FROM SOURCE and then install
manually as shown here.

repository — Install dependencies
sudo apt-get install postgresql-client libxml2 libssh2-1

repository — Copy pgBackRest binary from build host
sudo scp build:/build/pgbackrest/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

pgBackRest User Guide
Version 2.54.1 - 59 -

Crunchy Data Solutions, Inc.
December 16, 2024

https://www.postgresql.org/download/linux/ubuntu/


19 DEDICATED REPOSITORY HOST 19.2 Setup Passwordless SSH

repository — Create pgBackRest configuration file and directories
sudo mkdir -p -m 770 /var/log/pgbackrest
sudo chown pgbackrest:pgbackrest /var/log/pgbackrest
sudo mkdir -p /etc/pgbackrest
sudo mkdir -p /etc/pgbackrest/conf.d
sudo touch /etc/pgbackrest/pgbackrest.conf
sudo chmod 640 /etc/pgbackrest/pgbackrest.conf
sudo chown pgbackrest:pgbackrest /etc/pgbackrest/pgbackrest.conf

repository — Create the pgBackRest repository
sudo mkdir -p /var/lib/pgbackrest
sudo chmod 750 /var/lib/pgbackrest
sudo chown pgbackrest:pgbackrest /var/lib/pgbackrest

19.2 Setup Passwordless SSH

pgBackRest can use passwordless SSH to enable communication between the hosts. It is also possible
to use TLS, see SETUP TLS.

repository — Create repository host key pair
sudo -u pgbackrest mkdir -m 750 /home/pgbackrest/.ssh
sudo -u pgbackrest ssh-keygen -f /home/pgbackrest/.ssh/id_rsa \

-t rsa -b 4096 -N ""

pg-primary — Create pg-primary host key pair
sudo -u postgres mkdir -m 750 -p /var/lib/postgresql/.ssh
sudo -u postgres ssh-keygen -f /var/lib/postgresql/.ssh/id_rsa \

-t rsa -b 4096 -N ""

Exchange keys between repository and pg-primary.

repository — Copy pg-primary public key to repository
(echo -n 'no-agent-forwarding,no-X11-forwarding,no-port-forwarding,' && \

echo -n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@pg-primary cat /var/lib/postgresql/.ssh/id_rsa.pub) | \
sudo -u pgbackrest tee -a /home/pgbackrest/.ssh/authorized_keys

pg-primary — Copy repository public key to pg-primary
(echo -n 'no-agent-forwarding,no-X11-forwarding,no-port-forwarding,' && \

echo -n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@repository cat /home/pgbackrest/.ssh/id_rsa.pub) | \
sudo -u postgres tee -a /var/lib/postgresql/.ssh/authorized_keys

Test that connections can be made from repository to pg-primary and vice versa.

pgBackRest User Guide
Version 2.54.1 - 60 -

Crunchy Data Solutions, Inc.
December 16, 2024

user-guide-rhel.html#repo-host/config


19 DEDICATED REPOSITORY HOST 19.3 Configuration

repository — Test connection from repository to pg-primary
sudo -u pgbackrest ssh postgres@pg-primary

pg-primary — Test connection from pg-primary to repository
sudo -u postgres ssh pgbackrest@repository

NOTE: ssh has been configured to only allow pgBackRest to be run via passwordless ssh. This
enhances security in the event that one of the service accounts is hijacked.

19.3 Configuration

The repository host must be configured with the pg-primary host/user and database path. The primary
will be configured as pg1 to allow a standby to be added later.

repository:/etc/pgbackrest/pgbackrest.conf — Configure pg1-host/pg1-host-user and
pg1-path

[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/15/demo

[global]
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

The database host must be configured with the repository host/user. The default for the
repo1-host-user option is pgbackrest. If the postgres user does restores on the repository
host it is best not to also allow the postgres user to perform backups. However, the postgres user
can read the repository directly if it is in the same group as the pgbackrest user.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure repo1-host/repo1-host-user
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
log-level-file=detail
repo1-host=repository

PostgreSQL configuration may be found in the CONFIGURE ARCHIVING section.

Commands are run the same as on a single host configuration except that some commands such as
backup and expire are run from the repository host instead of the database host.

19.4 Create and Check Stanza

Create the stanza in the new repository.

pgBackRest User Guide
Version 2.54.1 - 61 -

Crunchy Data Solutions, Inc.
December 16, 2024



19 DEDICATED REPOSITORY HOST 19.5 Perform a Backup

repository — Create the stanza
sudo -u pgbackrest pgbackrest --stanza=demo stanza-create

Check that the configuration is correct on both the database and repository hosts. More information
about the check command can be found in CHECK THE CONFIGURATION.

pg-primary — Check the configuration
sudo -u postgres pgbackrest --stanza=demo check

repository — Check the configuration
sudo -u pgbackrest pgbackrest --stanza=demo check

19.5 Perform a Backup

To perform a backup of the PostgreSQL cluster run pgBackRest with the backup command on the
repository host.

repository — Backup the demo cluster
sudo -u pgbackrest pgbackrest --stanza=demo backup

Output:

P00 WARN: no prior backup exists, incr backup has been changed to full

Since a new repository was created on the repository host the warning about the incremental backup
changing to a full backup was emitted.

19.6 Restore a Backup

To perform a restore of the PostgreSQL cluster run pgBackRest with the restore command on the
database host.

pg-primary — Stop the demo cluster, restore, and restart PostgreSQL
sudo pg_ctlcluster 15 demo stop
sudo -u postgres pgbackrest --stanza=demo --delta restore
sudo pg_ctlcluster 15 demo start

pgBackRest User Guide
Version 2.54.1 - 62 -

Crunchy Data Solutions, Inc.
December 16, 2024



20 PARALLEL BACKUP / RESTORE

20 Parallel Backup / Restore

pgBackRest offers parallel processing to improve performance of compression and transfer. The num-
ber of processes to be used for this feature is set using the --process-max option.

It is usually best not to use more than 25% of available CPUs for the backup command. Backups don’t
have to run that fast as long as they are performed regularly and the backup process should not impact
database performance, if at all possible.

The restore command can and should use all available CPUs because during a restore the PostgreSQL
cluster is shut down and there is generally no other important work being done on the host. If the host
contains multiple clusters then that should be considered when setting restore parallelism.

repository — Perform a backup with single process
sudo -u pgbackrest pgbackrest --stanza=demo --type=full backup

repository:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest to use multiple backup pro-
cesses
[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/15/demo

[global]
process-max=3
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

repository — Perform a backup with multiple processes
sudo -u pgbackrest pgbackrest --stanza=demo --type=full backup

repository — Get backup info for the demo cluster
sudo -u pgbackrest pgbackrest info

Output:

stanza: demo
status: ok
cipher: none

db (current)
wal archive min/max (15): 000000070000000000000024/000000070000000000000026

full backup: 20241216-151135F
timestamp start/stop: 2024-12-16 15:11:35+00 / 2024-12-16 15:11:40+00
wal start/stop: 000000070000000000000024 / 000000070000000000000024
database size: 29.0MB, database backup size: 29.0MB

pgBackRest User Guide
Version 2.54.1 - 63 -

Crunchy Data Solutions, Inc.
December 16, 2024



20 PARALLEL BACKUP / RESTORE

repo1: backup set size: 3.9MB, backup size: 3.9MB

full backup: 20241216-151141F
timestamp start/stop: 2024-12-16 15:11:41+00 / 2024-12-16 15:11:46+00
wal start/stop: 000000070000000000000025 / 000000070000000000000026
database size: 29.0MB, database backup size: 29.0MB
repo1: backup set size: 3.9MB, backup size: 3.9MB

The performance of the last backup should be improved by using multiple processes. For very small
backups the difference may not be very apparent, but as the size of the database increases so will time
savings.

pgBackRest User Guide
Version 2.54.1 - 64 -

Crunchy Data Solutions, Inc.
December 16, 2024



21 STARTING AND STOPPING

21 Starting and Stopping

If a standby is promoted for testing, or a test cluster is restored from a production backup, then it is a
good idea to prevent those clusters from writing to pgBackRest repositories. This can be accomplished
with the stop command.

The commands that write and are blocked by stop are: archive-push, backup, expire,
stanza-create, and stanza-upgrade. Note that stanza-delete is an exception to this rule
(see DELETE A STANZA for more details).

pg-primary — Stop pgBackRest write commands
sudo -u postgres pgbackrest stop

New pgBackRest write commands will no longer run.

repository — Attempt a backup
sudo -u pgbackrest pgbackrest --stanza=demo backup

Output:

P00 WARN: unable to check pg1: [StopError] raised from remote-0 ssh protocol on '
pg-primary': stop file exists for all stanzas

P00 ERROR: [056]: unable to find primary cluster - cannot proceed
HINT: are all available clusters in recovery?

Specify the --force option to terminate any pgBackRest write commands that are currently running.
This includes asynchronous archive-get (though it will run again if PostgreSQL requires it). If pgBack-
Rest is already stopped then stopping again will generate a warning.

pg-primary — Stop the pgBackRest services again
sudo -u postgres pgbackrest stop

Output:

P00 WARN: stop file already exists for all stanzas

Start pgBackRest write commands again with the start command. Write commands that were in
progress before the stop will not automatically start again, but they are now allowed to start.

pg-primary — Start pgBackRest write commands
sudo -u postgres pgbackrest start

It is also possible to stop pgBackRest for a single stanza.

pg-primary — Stop pgBackRest write commands for the demo stanza
sudo -u postgres pgbackrest --stanza=demo stop

pgBackRest User Guide
Version 2.54.1 - 65 -

Crunchy Data Solutions, Inc.
December 16, 2024



21 STARTING AND STOPPING

New pgBackRest write commands for the specified stanza will no longer run.

repository — Attempt a backup
sudo -u pgbackrest pgbackrest --stanza=demo backup

Output:

P00 WARN: unable to check pg1: [StopError] raised from remote-0 ssh protocol on '
pg-primary': stop file exists for stanza demo

P00 ERROR: [056]: unable to find primary cluster - cannot proceed
HINT: are all available clusters in recovery?

The stanza must also be specified when starting pgBackRest write commands for a single stanza.

pg-primary — Start pgBackRest write commands for the demo stanza
sudo -u postgres pgbackrest --stanza=demo start

pgBackRest User Guide
Version 2.54.1 - 66 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION

22 Replication

Replication allows multiple copies of a PostgreSQL cluster (called standbys) to be created from a single
primary. The standbys are useful for balancing reads and to provide redundancy in case the primary
host fails.

22.1 Installation

A new host named pg-standby is created to run the standby.

Installing pgBackRest from a package is preferable to building from source. When installing from a
package the rest of the instructions in this section are generally not required, but it is possible that a
package will skip creating one of the directories or apply incorrect permissions. In that case it may be
necessary to manually create directories or update permissions.

Debian/Ubuntu packages for pgBackRest are available at APT.POSTGRESQL.ORG.

If packages are not provided for your distribution/version you can BUILD FROM SOURCE and then install
manually as shown here.

pg-standby — Install dependencies
sudo apt-get install postgresql-client libxml2 libssh2-1

pg-standby — Copy pgBackRest binary from build host
sudo scp build:/build/pgbackrest/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

pg-standby — Create pgBackRest configuration file and directories
sudo mkdir -p -m 770 /var/log/pgbackrest
sudo chown postgres:postgres /var/log/pgbackrest
sudo mkdir -p /etc/pgbackrest
sudo mkdir -p /etc/pgbackrest/conf.d
sudo touch /etc/pgbackrest/pgbackrest.conf
sudo chmod 640 /etc/pgbackrest/pgbackrest.conf
sudo chown postgres:postgres /etc/pgbackrest/pgbackrest.conf

22.2 Setup Passwordless SSH

pgBackRest can use passwordless SSH to enable communication between the hosts. It is also possible
to use TLS, see SETUP TLS.

pg-standby — Create pg-standby host key pair
sudo -u postgres mkdir -m 750 -p /var/lib/postgresql/.ssh
sudo -u postgres ssh-keygen -f /var/lib/postgresql/.ssh/id_rsa \

-t rsa -b 4096 -N ""

pgBackRest User Guide
Version 2.54.1 - 67 -

Crunchy Data Solutions, Inc.
December 16, 2024

https://www.postgresql.org/download/linux/ubuntu/
user-guide-rhel.html#repo-host/config


22 REPLICATION 22.3 Hot Standby

Exchange keys between repository and pg-standby.

repository — Copy pg-standby public key to repository
(echo -n 'no-agent-forwarding,no-X11-forwarding,no-port-forwarding,' && \

echo -n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@pg-standby cat /var/lib/postgresql/.ssh/id_rsa.pub) | \
sudo -u pgbackrest tee -a /home/pgbackrest/.ssh/authorized_keys

pg-standby — Copy repository public key to pg-standby
(echo -n 'no-agent-forwarding,no-X11-forwarding,no-port-forwarding,' && \

echo -n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@repository cat /home/pgbackrest/.ssh/id_rsa.pub) | \
sudo -u postgres tee -a /var/lib/postgresql/.ssh/authorized_keys

Test that connections can be made from repository to pg-standby and vice versa.

repository — Test connection from repository to pg-standby
sudo -u pgbackrest ssh postgres@pg-standby

pg-standby — Test connection from pg-standby to repository
sudo -u postgres ssh pgbackrest@repository

22.3 Hot Standby

A hot standby performs replication using the WAL archive and allows read-only queries.

pgBackRest configuration is very similar to pg-primary except that the standby recovery type will be
used to keep the cluster in recovery mode when the end of the WAL stream has been reached.

pg-standby:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest on the standby
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
log-level-file=detail
repo1-host=repository

The demo cluster must be created (even though it will be overwritten on restore) in order to create the
PostgreSQL configuration files.

pg-standby — Create demo cluster
sudo pg_createcluster 15 demo

Now the standby can be created with the restore command.

pgBackRest User Guide
Version 2.54.1 - 68 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION 22.3 Hot Standby

IMPORTANT: If the cluster is intended to be promoted without becoming the new primary (e.g. for re-
porting or testing), use --archive-mode=off or set archive mode=off in postgresql.conf
to disable archiving. If archiving is not disabled then the repository may be polluted with WAL that
can make restores more difficult.

pg-standby — Restore the demo standby cluster
sudo -u postgres pgbackrest --stanza=demo --delta --type=standby restore
sudo -u postgres cat /var/lib/postgresql/15/demo/postgresql.auto.conf

Output:

# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:09:32
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:10:03
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:10:26
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'
# Removed by pgBackRest restore on 2024-12-16 15:11:05 # recovery_target_time =

'2024-12-16 15:10:20.768816+00'
# Removed by pgBackRest restore on 2024-12-16 15:11:05 # recovery_target_action =

'promote'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:11:05
restore_command = 'pgbackrest --repo=3 --repo-target-time="2024-12-16 15:10:52+00"

--stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:11:29
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:12:04
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

The hot standby setting must be enabled before starting PostgreSQL to allow read-only connections
on pg-standby. Otherwise, connection attempts will be refused. The rest of the configuration is in case
the standby is promoted to a primary.

pg-standby:/etc/postgresql/15/demo/postgresql.conf — Configure PostgreSQL
archive_command = 'pgbackrest --stanza=demo archive-push %p'
archive_mode = on
hot_standby = on
max_wal_senders = 3
wal_level = replica

pgBackRest User Guide
Version 2.54.1 - 69 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION 22.3 Hot Standby

pg-standby — Start PostgreSQL
sudo pg_ctlcluster 15 demo start

The PostgreSQL log gives valuable information about the recovery. Note especially that the cluster has
entered standby mode and is ready to accept read-only connections.

pg-standby — Examine the PostgreSQL log output for log messages indicating success
sudo -u postgres cat /var/log/postgresql/postgresql-15-demo.log

Output:

[filtered 3 lines of output]
LOG: listening on Unix socket "/var/run/postgresql/.s.PGSQL.5432"
LOG: database system was interrupted; last known up at 2024-12-16 15:11:41 UTC
LOG: entering standby mode
LOG: starting backup recovery with redo LSN 0/25000028, checkpoint LSN 0/25000060,

on timeline ID 7
LOG: restored log file "00000007.history" from archive

[filtered 6 lines of output]

An easy way to test that replication is properly configured is to create a table on pg-primary.

pg-primary — Create a new table on the primary
sudo -u postgres psql -c " \

begin; \
create table replicated_table (message text); \
insert into replicated_table values ('Important Data'); \
commit; \
select * from replicated_table";

Output:

[filtered 4 lines of output]
message

----------------
Important Data
(1 row)

And then query the same table on pg-standby.

pg-standby — Query new table on the standby
sudo -u postgres psql -c "select * from replicated_table;"

Output:

ERROR: relation "replicated_table" does not exist
LINE 1: select * from replicated_table;

ˆ

pgBackRest User Guide
Version 2.54.1 - 70 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION 22.4 Streaming Replication

So, what went wrong? Since PostgreSQL is pulling WAL segments from the archive to perform repli-
cation, changes won’t be seen on the standby until the WAL segment that contains those changes is
pushed from pg-primary.

This can be done manually by calling pg switch wal() which pushes the current WAL segment to
the archive (a new WAL segment is created to contain further changes).

pg-primary — Call pg switch wal()

sudo -u postgres psql -c "select *, current_timestamp from pg_switch_wal()";

Output:

pg_switch_wal | current_timestamp
---------------+-------------------------------
0/27019A40 | 2024-12-16 15:12:11.380861+00
(1 row)

Now after a short delay the table will appear on pg-standby.

pg-standby — Now the new table exists on the standby (may require a few retries)
sudo -u postgres psql -c " \

select *, current_timestamp from replicated_table"

Output:

message | current_timestamp
----------------+-------------------------------
Important Data | 2024-12-16 15:12:17.659324+00
(1 row)

Check the standby configuration for access to the repository.

pg-standby — Check the configuration
sudo -u postgres pgbackrest --stanza=demo --log-level-console=info check

Output:

P00 INFO: check command begin 2.54.1: --exec-id=1261-2714b3d2 --log-level-console=
info --log-level-file=detail --no-log-timestamp --pg1-path=/var/lib/postgresql
/15/demo --repo1-host=repository --stanza=demo

P00 INFO: check repo1 (standby)
P00 INFO: switch wal not performed because this is a standby
P00 INFO: check command end: completed successfully

22.4 Streaming Replication

Instead of relying solely on the WAL archive, streaming replication makes a direct connection to the
primary and applies changes as soon as they are made on the primary. This results in much less lag

pgBackRest User Guide
Version 2.54.1 - 71 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION 22.4 Streaming Replication

between the primary and standby.

Streaming replication requires a user with the replication privilege.

pg-primary — Create replication user
sudo -u postgres psql -c " \

create user replicator password 'jw8s0F4' replication";

Output:

CREATE ROLE

The pg hba.conf file must be updated to allow the standby to connect as the replication user. Be
sure to replace the IP address below with the actual IP address of your pg-standby. A reload will be
required after modifying the pg hba.conf file.

pg-primary — Create pg hba.conf entry for replication user
sudo -u postgres sh -c 'echo \

"host replication replicator 172.17.0.8/32 md5" \
>> /etc/postgresql/15/demo/pg_hba.conf'

sudo pg_ctlcluster 15 demo reload

The standby needs to know how to contact the primary so the primary conninfo setting will be
configured in pgBackRest.

pg-standby:/etc/pgbackrest/pgbackrest.conf — Set primary conninfo

[demo]
pg1-path=/var/lib/postgresql/15/demo
recovery-option=primary_conninfo=host=172.17.0.6 port=5432 user=replicator

[global]
log-level-file=detail
repo1-host=repository

It is possible to configure a password in the primary conninfo setting but using a .pgpass file is
more flexible and secure.

pg-standby — Configure the replication password in the .pgpass file.
sudo -u postgres sh -c 'echo \

"172.17.0.6:*:replication:replicator:jw8s0F4" \
>> /var/lib/postgresql/.pgpass'

sudo -u postgres chmod 600 /var/lib/postgresql/.pgpass

Now the standby can be created with the restore command.

pg-standby — Stop PostgreSQL and restore the demo standby cluster
sudo pg_ctlcluster 15 demo stop
sudo -u postgres pgbackrest --stanza=demo --delta --type=standby restore

pgBackRest User Guide
Version 2.54.1 - 72 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION 22.4 Streaming Replication

sudo -u postgres cat /var/lib/postgresql/15/demo/postgresql.auto.conf

Output:

# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:09:32
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:10:03
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:10:26
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'
# Removed by pgBackRest restore on 2024-12-16 15:11:05 # recovery_target_time =

'2024-12-16 15:10:20.768816+00'
# Removed by pgBackRest restore on 2024-12-16 15:11:05 # recovery_target_action =

'promote'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:11:05
restore_command = 'pgbackrest --repo=3 --repo-target-time="2024-12-16 15:10:52+00"

--stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:11:29
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

# Recovery settings generated by pgBackRest restore on 2024-12-16 15:12:20
primary_conninfo = 'host=172.17.0.6 port=5432 user=replicator'
restore_command = 'pgbackrest --stanza=demo archive-get %f "%p"'

NOTE: The primary conninfo setting has been written into the postgresql.auto.conf file be-
cause it was configured as a recovery-option in pgbackrest.conf. The --type=preserve
option can be used with the restore to leave the existing postgresql.auto.conf file in place if
that behavior is preferred.

pg-standby — Start PostgreSQL
sudo pg_ctlcluster 15 demo start

The PostgreSQL log will confirm that streaming replication has started.

pg-standby — Examine the PostgreSQL log output for log messages indicating success
sudo -u postgres cat /var/log/postgresql/postgresql-15-demo.log

Output:

[filtered 13 lines of output]

pgBackRest User Guide
Version 2.54.1 - 73 -

Crunchy Data Solutions, Inc.
December 16, 2024



22 REPLICATION 22.4 Streaming Replication

LOG: consistent recovery state reached at 0/26000088
LOG: database system is ready to accept read-only connections
LOG: started streaming WAL from primary at 0/28000000 on timeline 7

Now when a table is created on pg-primary it will appear on pg-standby quickly and without the need
to call pg switch wal().

pg-primary — Create a new table on the primary
sudo -u postgres psql -c " \

begin; \
create table stream_table (message text); \
insert into stream_table values ('Important Data'); \
commit; \
select *, current_timestamp from stream_table";

Output:

[filtered 4 lines of output]
message | current_timestamp

----------------+-------------------------------
Important Data | 2024-12-16 15:12:27.258093+00
(1 row)

pg-standby — Query table on the standby
sudo -u postgres psql -c " \

select *, current_timestamp from stream_table"

Output:

message | current_timestamp
----------------+-------------------------------
Important Data | 2024-12-16 15:12:27.644922+00
(1 row)

pgBackRest User Guide
Version 2.54.1 - 74 -

Crunchy Data Solutions, Inc.
December 16, 2024



23 MULTIPLE STANZAS

23 Multiple Stanzas

pgBackRest supports multiple stanzas. The most common usage is sharing a repository host among
multiple stanzas.

23.1 Installation

A new host named pg-alt is created to run the new primary.

Installing pgBackRest from a package is preferable to building from source. When installing from a
package the rest of the instructions in this section are generally not required, but it is possible that a
package will skip creating one of the directories or apply incorrect permissions. In that case it may be
necessary to manually create directories or update permissions.

Debian/Ubuntu packages for pgBackRest are available at APT.POSTGRESQL.ORG.

If packages are not provided for your distribution/version you can BUILD FROM SOURCE and then install
manually as shown here.

pg-alt — Install dependencies
sudo apt-get install postgresql-client libxml2 libssh2-1

pg-alt — Copy pgBackRest binary from build host
sudo scp build:/build/pgbackrest/src/pgbackrest /usr/bin
sudo chmod 755 /usr/bin/pgbackrest

pgBackRest requires log and configuration directories and a configuration file.

pg-alt — Create pgBackRest configuration file and directories
sudo mkdir -p -m 770 /var/log/pgbackrest
sudo chown postgres:postgres /var/log/pgbackrest
sudo mkdir -p /etc/pgbackrest
sudo mkdir -p /etc/pgbackrest/conf.d
sudo touch /etc/pgbackrest/pgbackrest.conf
sudo chmod 640 /etc/pgbackrest/pgbackrest.conf
sudo chown postgres:postgres /etc/pgbackrest/pgbackrest.conf

23.2 Setup Passwordless SSH

pgBackRest can use passwordless SSH to enable communication between the hosts. It is also possible
to use TLS, see SETUP TLS.

pg-alt — Create pg-alt host key pair
sudo -u postgres mkdir -m 750 -p /var/lib/postgresql/.ssh
sudo -u postgres ssh-keygen -f /var/lib/postgresql/.ssh/id_rsa \

-t rsa -b 4096 -N ""

pgBackRest User Guide
Version 2.54.1 - 75 -

Crunchy Data Solutions, Inc.
December 16, 2024

https://www.postgresql.org/download/linux/ubuntu/
user-guide-rhel.html#repo-host/config


23 MULTIPLE STANZAS 23.3 Configuration

Exchange keys between repository and pg-alt.

repository — Copy pg-alt public key to repository
(echo -n 'no-agent-forwarding,no-X11-forwarding,no-port-forwarding,' && \

echo -n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@pg-alt cat /var/lib/postgresql/.ssh/id_rsa.pub) | \
sudo -u pgbackrest tee -a /home/pgbackrest/.ssh/authorized_keys

pg-alt — Copy repository public key to pg-alt
(echo -n 'no-agent-forwarding,no-X11-forwarding,no-port-forwarding,' && \

echo -n 'command="/usr/bin/pgbackrest ${SSH_ORIGINAL_COMMAND#* }" ' && \
sudo ssh root@repository cat /home/pgbackrest/.ssh/id_rsa.pub) | \
sudo -u postgres tee -a /var/lib/postgresql/.ssh/authorized_keys

Test that connections can be made from repository to pg-alt and vice versa.

repository — Test connection from repository to pg-alt
sudo -u pgbackrest ssh postgres@pg-alt

pg-alt — Test connection from pg-alt to repository
sudo -u postgres ssh pgbackrest@repository

23.3 Configuration

pgBackRest configuration is nearly identical to pg-primary except that the demo-alt stanza will be
used so backups and archive will be stored in a separate location.

pg-alt:/etc/pgbackrest/pgbackrest.conf — Configure pgBackRest on the new primary
[demo-alt]
pg1-path=/var/lib/postgresql/15/demo

[global]
log-level-file=detail
repo1-host=repository

repository:/etc/pgbackrest/pgbackrest.conf — Configure pg1-host/pg1-host-user and
pg1-path

[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/15/demo

[demo-alt]
pg1-host=pg-alt
pg1-path=/var/lib/postgresql/15/demo

pgBackRest User Guide
Version 2.54.1 - 76 -

Crunchy Data Solutions, Inc.
December 16, 2024



23 MULTIPLE STANZAS 23.4 Setup Demo Cluster

[global]
process-max=3
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

23.4 Setup Demo Cluster

pg-alt — Create the demo cluster
sudo -u postgres /usr/lib/postgresql/15/bin/initdb \

-D /var/lib/postgresql/15/demo -k -A peer
sudo pg_createcluster 15 demo

Output:

Configuring already existing cluster (configuration: /etc/postgresql/15/demo, data
: /var/lib/postgresql/15/demo, owner: 102:103)

Ver Cluster Port Status Owner Data directory Log file
15 demo 5432 down postgres /var/lib/postgresql/15/demo /var/log/postgresql/

postgresql-15-demo.log

pg-alt:/etc/postgresql/15/demo/postgresql.conf — Configure PostgreSQL settings
archive_command = 'pgbackrest --stanza=demo-alt archive-push %p'
archive_mode = on
max_wal_senders = 3
wal_level = replica

pg-alt — Start the demo cluster
sudo pg_ctlcluster 15 demo restart

23.5 Create the Stanza and Check Configuration

The stanza-create command must be run to initialize the stanza. It is recommended that the check
command be run after stanza-create to ensure archiving and backups are properly configured.

pg-alt — Create the stanza and check the configuration
sudo -u postgres pgbackrest --stanza=demo-alt --log-level-console=info stanza-

create

Output:

P00 INFO: stanza-create command begin 2.54.1: --exec-id=1016-dea26b11 --log-level-
console=info --log-level-file=detail --no-log-timestamp --pg1-path=/var/lib/
postgresql/15/demo --repo1-host=repository --stanza=demo-alt

pgBackRest User Guide
Version 2.54.1 - 77 -

Crunchy Data Solutions, Inc.
December 16, 2024



23 MULTIPLE STANZAS 23.5 Create the Stanza and Check Configuration

P00 INFO: stanza-create for stanza 'demo-alt' on repo1
P00 INFO: stanza-create command end: completed successfully
sudo -u postgres pgbackrest --log-level-console=info check

Output:

P00 INFO: check command begin 2.54.1: --exec-id=1025-803d5232 --log-level-console=
info --log-level-file=detail --no-log-timestamp --repo1-host=repository

P00 INFO: check stanza 'demo-alt'
P00 INFO: check repo1 configuration (primary)
P00 INFO: check repo1 archive for WAL (primary)
P00 INFO: WAL segment 000000010000000000000001 successfully archived to '/var/lib/

pgbackrest/archive/demo-alt/15-1/0000000100000000/000000010000000000000001-
fc59c77815e94111b2b89a533a0c5fc0ac18465a.gz' on repo1

P00 INFO: check command end: completed successfully

If the check command is run from the repository host then all stanzas will be checked.

repository — Check the configuration for all stanzas
sudo -u pgbackrest pgbackrest --log-level-console=info check

Output:

P00 INFO: check command begin 2.54.1: --exec-id=1897-8499179b --log-level-console=
info --no-log-timestamp --repo1-path=/var/lib/pgbackrest

P00 INFO: check stanza 'demo'
P00 INFO: check repo1 configuration (primary)
P00 INFO: check repo1 archive for WAL (primary)
P00 INFO: WAL segment 000000070000000000000028 successfully archived to '/var/lib/

pgbackrest/archive/demo/15-1/0000000700000000/000000070000000000000028-
c44b2b9149c47766f9bddd65ce69082e49b2bc9c.gz' on repo1

P00 INFO: check stanza 'demo-alt'
P00 INFO: check repo1 configuration (primary)
P00 INFO: check repo1 archive for WAL (primary)
P00 INFO: WAL segment 000000010000000000000002 successfully archived to '/var/lib/

pgbackrest/archive/demo-alt/15-1/0000000100000000/000000010000000000000002-
a569d5d8792e4a2b91bde1c8aecabb2ff35140e0.gz' on repo1

P00 INFO: check command end: completed successfully

pgBackRest User Guide
Version 2.54.1 - 78 -

Crunchy Data Solutions, Inc.
December 16, 2024



24 ASYNCHRONOUS ARCHIVING

24 Asynchronous Archiving

Asynchronous archiving is enabled with the archive-async option. This option enables asyn-
chronous operation for both the archive-push and archive-get commands.

A spool path is required. The commands will store transient data here but each command works quite
a bit differently so spool path usage is described in detail in each section.

pg-primary — Create the spool directory
sudo mkdir -p -m 750 /var/spool/pgbackrest
sudo chown postgres:postgres /var/spool/pgbackrest

pg-standby — Create the spool directory
sudo mkdir -p -m 750 /var/spool/pgbackrest
sudo chown postgres:postgres /var/spool/pgbackrest

The spool path must be configured and asynchronous archiving enabled. Asynchronous archiving
automatically confers some benefit by reducing the number of connections made to remote storage,
but setting process-max can drastically improve performance by parallelizing operations. Be sure not
to set process-max so high that it affects normal database operations.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Configure the spool path and asynchronous archiving
[demo]
pg1-path=/var/lib/postgresql/15/demo

[global]
archive-async=y
log-level-file=detail
repo1-host=repository
spool-path=/var/spool/pgbackrest

[global:archive-get]
process-max=2

[global:archive-push]
process-max=2

pg-standby:/etc/pgbackrest/pgbackrest.conf — Configure the spool path and asynchronous archiving
[demo]
pg1-path=/var/lib/postgresql/15/demo
recovery-option=primary_conninfo=host=172.17.0.6 port=5432 user=replicator

[global]
archive-async=y
log-level-file=detail
repo1-host=repository
spool-path=/var/spool/pgbackrest

pgBackRest User Guide
Version 2.54.1 - 79 -

Crunchy Data Solutions, Inc.
December 16, 2024



24 ASYNCHRONOUS ARCHIVING 24.1 Archive Push

[global:archive-get]
process-max=2

[global:archive-push]
process-max=2

NOTE: process-max is configured using command sections so that the option is not used by backup
and restore. This also allows different values for archive-push and archive-get.

For demonstration purposes streaming replication will be broken to force PostgreSQL to get WAL using
the restore command.

pg-primary — Break streaming replication by changing the replication password
sudo -u postgres psql -c "alter user replicator password 'bogus'"

Output:

ALTER ROLE

pg-standby — Restart standby to break connection
sudo pg_ctlcluster 15 demo restart

24.1 Archive Push

The asynchronous archive-push command offloads WAL archiving to a separate process (or pro-
cesses) to improve throughput. It works by “looking ahead” to see which WAL segments are ready to
be archived beyond the request that PostgreSQL is currently making via the archive command. WAL
segments are transferred to the archive directly from the pg xlog/pg wal directory and success is only
returned by the archive command when the WAL segment has been safely stored in the archive.

The spool path holds the current status of WAL archiving. Status files written into the spool directory
are typically zero length and should consume a minimal amount of space (a few MB at most) and very
little IO. All the information in this directory can be recreated so it is not necessary to preserve the spool
directory if the cluster is moved to new hardware.

IMPORTANT: In the original implementation of asynchronous archiving, WAL segments were copied
to the spool directory before compression and transfer. The new implementation copies WAL directly
from the pg xlog directory. If asynchronous archiving was utilized in v1.12 or prior, read the v1.13
release notes carefully before upgrading.

The [stanza]-archive-push-async.log file can be used to monitor the activity of the asyn-
chronous process. A good way to test this is to quickly push a number of WAL segments.

pg-primary — Test parallel asynchronous archiving
sudo -u postgres psql -c " \

pgBackRest User Guide
Version 2.54.1 - 80 -

Crunchy Data Solutions, Inc.
December 16, 2024



24 ASYNCHRONOUS ARCHIVING 24.1 Archive Push

select pg_create_restore_point('test async push'); select pg_switch_wal(); \
select pg_create_restore_point('test async push'); select pg_switch_wal(); \
select pg_create_restore_point('test async push'); select pg_switch_wal(); \
select pg_create_restore_point('test async push'); select pg_switch_wal(); \
select pg_create_restore_point('test async push'); select pg_switch_wal();"

sudo -u postgres pgbackrest --stanza=demo --log-level-console=info check

Output:

P00 INFO: check command begin 2.54.1: --exec-id=3009-75e7f1f2 --log-level-console=
info --log-level-file=detail --no-log-timestamp --pg1-path=/var/lib/postgresql
/15/demo --repo1-host=repository --stanza=demo

P00 INFO: check repo1 configuration (primary)
P00 INFO: check repo1 archive for WAL (primary)
P00 INFO: WAL segment 00000007000000000000002E successfully archived to '/var/lib/

pgbackrest/archive/demo/15-1/0000000700000000/00000007000000000000002E-341
b22dd1c9d2b31fc31b58bee49b1f931ca17ee.gz' on repo1

P00 INFO: check command end: completed successfully

Now the log file will contain parallel, asynchronous activity.

pg-primary — Check results in the log
sudo -u postgres cat /var/log/pgbackrest/demo-archive-push-async.log

Output:

-------------------PROCESS START-------------------
P00 INFO: archive-push:async command begin 2.54.1: [/var/lib/postgresql/15/demo/

pg_wal] --archive-async --exec-id=2996-e31ad64e --log-level-console=off --log-
level-file=detail --log-level-stderr=off --no-log-timestamp --pg1-path=/var/lib
/postgresql/15/demo --process-max=2 --repo1-host=repository --spool-path=/var/
spool/pgbackrest --stanza=demo

P00 INFO: push 1 WAL file(s) to archive: 000000070000000000000029
P01 DETAIL: pushed WAL file '000000070000000000000029' to the archive
P00 INFO: archive-push:async command end: completed successfully

-------------------PROCESS START-------------------
P00 INFO: archive-push:async command begin 2.54.1: [/var/lib/postgresql/15/demo/

pg_wal] --archive-async --exec-id=3013-e55da8fe --log-level-console=off --log-
level-file=detail --log-level-stderr=off --no-log-timestamp --pg1-path=/var/lib
/postgresql/15/demo --process-max=2 --repo1-host=repository --spool-path=/var/
spool/pgbackrest --stanza=demo

P00 INFO: push 5 WAL file(s) to archive: 00000007000000000000002A
...00000007000000000000002E

P02 DETAIL: pushed WAL file '00000007000000000000002B' to the archive
P01 DETAIL: pushed WAL file '00000007000000000000002A' to the archive
P02 DETAIL: pushed WAL file '00000007000000000000002C' to the archive
P01 DETAIL: pushed WAL file '00000007000000000000002D' to the archive

pgBackRest User Guide
Version 2.54.1 - 81 -

Crunchy Data Solutions, Inc.
December 16, 2024



24 ASYNCHRONOUS ARCHIVING 24.2 Archive Get

P02 DETAIL: pushed WAL file '00000007000000000000002E' to the archive
P00 INFO: archive-push:async command end: completed successfully

24.2 Archive Get

The asynchronous archive-get command maintains a local queue of WAL to improve throughput. If a
WAL segment is not found in the queue it is fetched from the repository along with enough consecutive
WAL to fill the queue. The maximum size of the queue is defined by archive-get-queue-max.
Whenever the queue is less than half full more WAL will be fetched to fill it.

Asynchronous operation is most useful in environments that generate a lot of WAL or have a high
latency connection to the repository storage (i.e., S3 or other object stores). In the case of a high
latency connection it may be a good idea to increase process-max.

The [stanza]-archive-get-async.log file can be used to monitor the activity of the asyn-
chronous process.

pg-standby — Check results in the log
sudo -u postgres cat /var/log/pgbackrest/demo-archive-get-async.log

Output:

-------------------PROCESS START-------------------
P00 INFO: archive-get:async command begin 2.54.1: [000000070000000000000025,

000000070000000000000026, 000000070000000000000027, 000000070000000000000028,
000000070000000000000029, 00000007000000000000002A, 00000007000000000000002B,
00000007000000000000002C] --archive-async --exec-id=1460-b685b536 --log-level-
console=off --log-level-file=detail --log-level-stderr=off --no-log-timestamp
--pg1-path=/var/lib/postgresql/15/demo --process-max=2 --repo1-host=repository
--spool-path=/var/spool/pgbackrest --stanza=demo

P00 INFO: get 8 WAL file(s) from archive:
000000070000000000000025...00000007000000000000002C

P02 DETAIL: found 000000070000000000000026 in the repo1: 15-1 archive
P01 DETAIL: found 000000070000000000000025 in the repo1: 15-1 archive
P02 DETAIL: found 000000070000000000000027 in the repo1: 15-1 archive
P01 DETAIL: found 000000070000000000000028 in the repo1: 15-1 archive
P00 DETAIL: unable to find 000000070000000000000029 in the archive
P00 INFO: archive-get:async command end: completed successfully

[filtered 14 lines of output]
P00 INFO: archive-get:async command begin 2.54.1: [000000070000000000000029,

00000007000000000000002A, 00000007000000000000002B, 00000007000000000000002C,
00000007000000000000002D, 00000007000000000000002E, 00000007000000000000002F,
000000070000000000000030] --archive-async --exec-id=1503-8aaf04f6 --log-level-
console=off --log-level-file=detail --log-level-stderr=off --no-log-timestamp
--pg1-path=/var/lib/postgresql/15/demo --process-max=2 --repo1-host=repository
--spool-path=/var/spool/pgbackrest --stanza=demo

P00 INFO: get 8 WAL file(s) from archive:
000000070000000000000029...000000070000000000000030

pgBackRest User Guide
Version 2.54.1 - 82 -

Crunchy Data Solutions, Inc.
December 16, 2024



24 ASYNCHRONOUS ARCHIVING 24.2 Archive Get

P02 DETAIL: found 00000007000000000000002A in the repo1: 15-1 archive
P01 DETAIL: found 000000070000000000000029 in the repo1: 15-1 archive
P02 DETAIL: found 00000007000000000000002B in the repo1: 15-1 archive
P01 DETAIL: found 00000007000000000000002C in the repo1: 15-1 archive
P02 DETAIL: found 00000007000000000000002D in the repo1: 15-1 archive
P01 DETAIL: found 00000007000000000000002E in the repo1: 15-1 archive
P00 DETAIL: unable to find 00000007000000000000002F in the archive
P00 INFO: archive-get:async command end: completed successfully

[filtered 17 lines of output]

pg-primary — Fix streaming replication by changing the replication password
sudo -u postgres psql -c "alter user replicator password 'jw8s0F4'"

Output:

ALTER ROLE

pgBackRest User Guide
Version 2.54.1 - 83 -

Crunchy Data Solutions, Inc.
December 16, 2024



25 BACKUP FROM A STANDBY

25 Backup from a Standby

pgBackRest can perform backups on a standby instead of the primary. Standby backups require the
pg-standby host to be configured and the backup-standby option enabled. If more than one standby
is configured then the first running standby found will be used for the backup.

repository:/etc/pgbackrest/pgbackrest.conf — Configure pg2-host/pg2-host-user and
pg2-path

[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/15/demo
pg2-host=pg-standby
pg2-path=/var/lib/postgresql/15/demo

[demo-alt]
pg1-host=pg-alt
pg1-path=/var/lib/postgresql/15/demo

[global]
backup-standby=y
process-max=3
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

Both the primary and standby databases are required to perform the backup, though the vast majority
of the files will be copied from the standby to reduce load on the primary. The database hosts can be
configured in any order. pgBackRest will automatically determine which is the primary and which is the
standby.

repository — Backup the demo cluster from pg2
sudo -u pgbackrest pgbackrest --stanza=demo --log-level-console=detail backup

Output:

[filtered 2 lines of output]
P00 INFO: execute non-exclusive backup start: backup begins after the requested

immediate checkpoint completes
P00 INFO: backup start archive = 000000070000000000000030, lsn = 0/30000028
P00 INFO: wait for replay on the standby to reach 0/30000028
P00 INFO: replay on the standby reached 0/30000028
P00 INFO: check archive for prior segment 00000007000000000000002F
P01 DETAIL: backup file pg-primary:/var/lib/postgresql/15/demo/global/pg_control

(8KB, 0.53%) checksum f940bd16ea582ba22c38252194de39189f797c4c
P01 DETAIL: match file from prior backup pg-primary:/var/lib/postgresql/15/demo/

pg_logical/replorigin_checkpoint (8B, 0.53%) checksum 347
fc8f2df71bd4436e38bd1516ccd7ea0d46532

pgBackRest User Guide
Version 2.54.1 - 84 -

Crunchy Data Solutions, Inc.
December 16, 2024



25 BACKUP FROM A STANDBY

P02 DETAIL: backup file pg-standby:/var/lib/postgresql/15/demo/base/5/1249 (456KB,
31.18%) checksum 7c8b9cfb1eece7a2397806d3174c468afd13a646
[filtered 1276 lines of output]

This incremental backup shows that most of the files are copied from the pg-standby host and only a
few are copied from the pg-primary host.

pgBackRest creates a standby backup that is identical to a backup performed on the primary. It does
this by starting/stopping the backup on the pg-primary host, copying only files that are replicated from
the pg-standby host, then copying the remaining few files from the pg-primary host. This means that
logs and statistics from the primary database will be included in the backup.

pgBackRest User Guide
Version 2.54.1 - 85 -

Crunchy Data Solutions, Inc.
December 16, 2024



26 UPGRADING POSTGRESQL

26 Upgrading PostgreSQL

Immediately after upgrading PostgreSQL to a newer major version, the pg-path for all pgBackRest
configurations must be set to the new database location and the stanza-upgrade command run. If
there is more than one repository configured on the host, the stanza will be upgraded on each. If the
database is offline use the --no-online option.

The following instructions are not meant to be a comprehensive guide for upgrading PostgreSQL, rather
they outline the general process for upgrading a primary and standby with the intent of demonstrating
the steps required to reconfigure pgBackRest. It is recommended that a backup be taken prior to
upgrading.

pg-primary — Stop old cluster
sudo pg_ctlcluster 15 demo stop

Stop the old cluster on the standby since it will be restored from the newly upgraded cluster.

pg-standby — Stop old cluster
sudo pg_ctlcluster 15 demo stop

Create the new cluster and perform upgrade.

pg-primary — Create new cluster and perform the upgrade
sudo -u postgres /usr/lib/postgresql/16/bin/initdb \

-D /var/lib/postgresql/16/demo -k -A peer
sudo pg_createcluster 16 demo
sudo -u postgres sh -c 'cd /var/lib/postgresql && \

/usr/lib/postgresql/16/bin/pg_upgrade \
--old-bindir=/usr/lib/postgresql/15/bin \
--new-bindir=/usr/lib/postgresql/16/bin \
--old-datadir=/var/lib/postgresql/15/demo \
--new-datadir=/var/lib/postgresql/16/demo \
--old-options=" -c config_file=/etc/postgresql/15/demo/postgresql.conf" \
--new-options=" -c config_file=/etc/postgresql/16/demo/postgresql.conf"'

Output:

[filtered 42 lines of output]
Checking for extension updates ok

Upgrade Complete
----------------
Optimizer statistics are not transferred by pg_upgrade.

[filtered 3 lines of output]

Configure the new cluster settings and port.

pgBackRest User Guide
Version 2.54.1 - 86 -

Crunchy Data Solutions, Inc.
December 16, 2024



26 UPGRADING POSTGRESQL

pg-primary:/etc/postgresql/16/demo/postgresql.conf — Configure PostgreSQL
archive_command = 'pgbackrest --stanza=demo archive-push %p'
archive_mode = on
max_wal_senders = 3
wal_level = replica

Update the pgBackRest configuration on all systems to point to the new cluster.

pg-primary:/etc/pgbackrest/pgbackrest.conf — Upgrade the pg1-path

[demo]
pg1-path=/var/lib/postgresql/16/demo

[global]
archive-async=y
log-level-file=detail
repo1-host=repository
spool-path=/var/spool/pgbackrest

[global:archive-get]
process-max=2

[global:archive-push]
process-max=2

pg-standby:/etc/pgbackrest/pgbackrest.conf — Upgrade the pg-path

[demo]
pg1-path=/var/lib/postgresql/16/demo
recovery-option=primary_conninfo=host=172.17.0.6 port=5432 user=replicator

[global]
archive-async=y
log-level-file=detail
repo1-host=repository
spool-path=/var/spool/pgbackrest

[global:archive-get]
process-max=2

[global:archive-push]
process-max=2

repository:/etc/pgbackrest/pgbackrest.conf — Upgrade pg1-path and pg2-path, disable backup
from standby
[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/16/demo
pg2-host=pg-standby

pgBackRest User Guide
Version 2.54.1 - 87 -

Crunchy Data Solutions, Inc.
December 16, 2024



26 UPGRADING POSTGRESQL

pg2-path=/var/lib/postgresql/16/demo

[demo-alt]
pg1-host=pg-alt
pg1-path=/var/lib/postgresql/15/demo

[global]
backup-standby=n
process-max=3
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

pg-primary — Copy hba configuration
sudo cp /etc/postgresql/15/demo/pg_hba.conf \

/etc/postgresql/16/demo/pg_hba.conf

Before starting the new cluster, the stanza-upgrade command must be run.

pg-primary — Upgrade the stanza
sudo -u postgres pgbackrest --stanza=demo --no-online \

--log-level-console=info stanza-upgrade

Output:

P00 INFO: stanza-upgrade command begin 2.54.1: --exec-id=3419-e7b4f6e6 --log-level
-console=info --log-level-file=detail --no-log-timestamp --no-online --pg1-path
=/var/lib/postgresql/16/demo --repo1-host=repository --stanza=demo

P00 INFO: stanza-upgrade for stanza 'demo' on repo1
P00 INFO: stanza-upgrade command end: completed successfully

Start the new cluster and confirm it is successfully installed.

pg-primary — Start new cluster
sudo pg_ctlcluster 16 demo start

Test configuration using the check command.

pg-primary — Check configuration
sudo pg_lsclusters
sudo -u postgres pgbackrest --stanza=demo check

Remove the old cluster.

pg-primary — Remove old cluster
sudo pg_dropcluster 15 demo

pgBackRest User Guide
Version 2.54.1 - 88 -

Crunchy Data Solutions, Inc.
December 16, 2024



26 UPGRADING POSTGRESQL

Install the new PostgreSQL binaries on the standby and create the cluster.

pg-standby — Remove old cluster and create the new cluster
sudo pg_dropcluster 15 demo
sudo pg_createcluster 16 demo

Run the check on the repository host. The warning regarding the standby being down is expected
since the standby cluster is down. Running this command demonstrates that the repository server is
aware of the standby and is configured properly for the primary server.

repository — Check configuration
sudo -u pgbackrest pgbackrest --stanza=demo check

Output:

P00 WARN: unable to check pg2: [DbConnectError] raised from remote-0 ssh protocol
on 'pg-standby': unable to connect to 'dbname='postgres' port=5432': connection
to server on socket "/var/run/postgresql/.s.PGSQL.5432" failed: No such file

or directory
Is the server running locally and accepting connections on that socket

?

Run a full backup on the new cluster and then restore the standby from the backup. The backup type
will automatically be changed to full if incr or diff is requested.

repository — Run a full backup
sudo -u pgbackrest pgbackrest --stanza=demo --type=full backup

pg-standby — Restore the demo standby cluster
sudo -u postgres pgbackrest --stanza=demo --delta --type=standby restore

pg-standby:/etc/postgresql/16/demo/postgresql.conf — Configure PostgreSQL
hot_standby = on

pg-standby — Start PostgreSQL and check the pgBackRest configuration
sudo pg_ctlcluster 16 demo start
sudo -u postgres pgbackrest --stanza=demo check

Backup from standby can be enabled now that the standby is restored.

repository:/etc/pgbackrest/pgbackrest.conf — Reenable backup from standby
[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/16/demo
pg2-host=pg-standby

pgBackRest User Guide
Version 2.54.1 - 89 -

Crunchy Data Solutions, Inc.
December 16, 2024



26 UPGRADING POSTGRESQL

pg2-path=/var/lib/postgresql/16/demo

[demo-alt]
pg1-host=pg-alt
pg1-path=/var/lib/postgresql/15/demo

[global]
backup-standby=y
process-max=3
repo1-path=/var/lib/pgbackrest
repo1-retention-full=2
start-fast=y

pgBackRest User Guide
Version 2.54.1 - 90 -

Crunchy Data Solutions, Inc.
December 16, 2024


	Introduction
	Concepts
	Backup
	Restore
	Write Ahead Log (WAL)
	Encryption

	Upgrading pgBackRest
	Upgrading pgBackRest from v1 to v2
	Upgrading pgBackRest from v2.x to v2.y

	Build
	Installation
	Quick Start
	Setup Demo Cluster
	Configure Cluster Stanza
	Create the Repository
	Configure Archiving
	Configure Retention
	Configure Repository Encryption
	Create the Stanza
	Check the Configuration
	Performance Tuning
	Perform a Backup
	Schedule a Backup
	Backup Information
	Restore a Backup

	Monitoring
	In PostgreSQL
	Using jq

	Backup
	File Bundling
	Block Incremental
	Backup Annotations

	Retention
	Full Backup Retention
	Differential Backup Retention
	Archive Retention

	Restore
	File Ownership
	Delta Option
	Restore Selected Databases

	Point-in-Time Recovery
	Delete a Stanza
	Multiple Repositories
	Azure-Compatible Object Store Support
	S3-Compatible Object Store Support
	SFTP Support
	GCS-Compatible Object Store Support
	Target Time for Repository
	Dedicated Repository Host
	Installation
	Setup Passwordless SSH
	Configuration
	Create and Check Stanza
	Perform a Backup
	Restore a Backup

	Parallel Backup / Restore
	Starting and Stopping
	Replication
	Installation
	Setup Passwordless SSH
	Hot Standby
	Streaming Replication

	Multiple Stanzas
	Installation
	Setup Passwordless SSH
	Configuration
	Setup Demo Cluster
	Create the Stanza and Check Configuration

	Asynchronous Archiving
	Archive Push
	Archive Get

	Backup from a Standby
	Upgrading PostgreSQL

