
pgBadger - A fast PostgreSQL Log Analyzer
NAME
pgBadger - a fast PostgreSQL log analysis report

SYNOPSIS
Usage: pgbadger [options] logfile [...]

 PostgreSQL log analyzer with fully detailed reports and graphs.

Arguments:

 logfile can be a single log file, a list of files, or a shell command
 returning a list of files. If you want to pass log content from stdin
 use - as filename. Note that input from stdin will not work with csvlog.

Options:

 -a | --average minutes : number of minutes to build the average graphs of
 queries and connections. Default 5 minutes.
 -A | --histo-average min: number of minutes to build the histogram graphs
 of queries. Default 60 minutes.
 -b | --begin datetime : start date/time for the data to be parsed in log.
 -c | --dbclient host : only report on entries for the given client host.
 -C | --nocomment : remove comments like /* ... */ from queries.
 -d | --dbname database : only report on entries for the given database.
 -D | --dns-resolv : client ip addresses are replaced by their DNS name.
 Be warned that this can really slow down pgBadger.
 -e | --end datetime : end date/time for the data to be parsed in log.
 -f | --format logtype : possible values: syslog, syslog2, stderr, jsonlog,
 cvs and pgbouncer. Use this option when pgBadger
 is not able to auto-detect the log format.
 -G | --nograph : disable graphs on HTML output. Enabled by default.
 -h | --help : show this message and exit.
 -i | --ident name : programname used as syslog ident. Default: postgres
 -I | --incremental : use incremental mode, reports will be generated by
 days in a separate directory, --outdir must be set.
 -j | --jobs number : number of jobs to run at same time. Default is 1,
 run as single process.
 -J | --Jobs number : number of log file to parse in parallel. Default
 is 1, run as single process.
 -l | --last-parsed file: allow incremental log parsing by registering the
 last datetime and line parsed. Useful if you want
 to watch errors since last run or if you want one
 report per day with a log rotated each week.
 -L | --logfile-list file:file containing a list of log file to parse.
 -m | --maxlength size : maximum length of a query, it will be restricted to
 the given size. Default: no truncate
 -M | --no-multiline : do not collect multiline statement to avoid garbage
 especially on errors that generate a huge report.
 -n | --nohighlight : disable SQL code highlighting.
 -N | --appname name : only report on entries for given application name
 -o | --outfile filename: define the filename for the output. Default depends
 on the output format: out.html, out.txt, out.bin,
 out.json or out.tsung.
 With module JSON::XS installed, you can output file
 in JSON format either.
 To dump output to stdout use - as filename.
 -O | --outdir path : directory where out file must be saved.
 -p | --prefix string : the value of your custom log_line_prefix as
 defined in your postgresql.conf. Only use it if you
 aren't using one of the standard prefixes specified
 in the pgBadger documentation, such as if your
 prefix includes additional variables like client ip
 or application name. See examples below.
 -P | --no-prettify : disable SQL queries prettify formatter.
 -q | --quiet : don't print anything to stdout, not even a progress
 bar.
 -r | --remote-host ip : set the host where to execute the cat command on
 remote logfile to parse locally the file.
 -R | --retention N : number of weeks to keep in incremental mode. Default

 to 0, disabled. Used to set the number of weeks to
 keep in output directory. Older weeks and days
 directory are automatically removed.
 -s | --sample number : number of query samples to store. Default: 3.
 -S | --select-only : only report SELECT queries.
 -t | --top number : number of queries to store/display. Default: 20.
 -T | --title string : change title of the HTML page report.
 -u | --dbuser username : only report on entries for the given user.
 -U | --exclude-user username : exclude entries for the specified user from
 report.
 -v | --verbose : enable verbose or debug mode. Disabled by default.
 -V | --version : show pgBadger version and exit.
 -w | --watch-mode : only report errors just like logwatch could do.
 -x | --extension : output format. Values: text, html, bin, json or
 tsung. Default: html
 -X | --extra-files : in incremental mode allow pgBadger to write CSS and
 JS files in the output directory as separate files.
 -z | --zcat exec_path : set the full path to the zcat program. Use it if
 zcat or bzcat or unzip is not in your path.
 -Z | --timezone +/-XX : Set the number of hours from GMT of the timezone.
 Use this to adjust date/time in JavaScript graphs.
 --pie-limit num : pie data lower than num% will show a sum instead.
 --exclude-query regex : any query matching the given regex will be excluded
 from the report. For example: "^(VACUUM|COMMIT)"
 You can use this option multiple times.
 --exclude-file filename: path of the file which contains all the regex to
 use to exclude queries from the report. One regex
 per line.
 --include-query regex : any query that does not match the given regex will
 be excluded from the report. You can use this
 option multiple times. For example: "(tbl1|tbl2)".
 --include-file filename: path of the file which contains all the regex of
 the queries to include from the report. One regex
 per line.
 --disable-error : do not generate error report.
 --disable-hourly : do not generate hourly report.
 --disable-type : do not generate report of queries by type, database
 or user.
 --disable-query : do not generate query reports (slowest, most
 frequent, queries by users, by database, ...).
 --disable-session : do not generate session report.
 --disable-connection : do not generate connection report.
 --disable-lock : do not generate lock report.
 --disable-temporary : do not generate temporary report.
 --disable-checkpoint : do not generate checkpoint/restartpoint report.
 --disable-autovacuum : do not generate autovacuum report.
 --charset : used to set the HTML charset to be used.
 Default: utf-8.
 --csv-separator : used to set the CSV field separator, default: ,
 --exclude-time regex : any timestamp matching the given regex will be
 excluded from the report. Example: "2013-04-12 .*"
 You can use this option multiple times.
 --include-time regex : only timestamps matching the given regex will be
 included in the report. Example: "2013-04-12 .*"
 You can use this option multiple times.
 --exclude-appname name : exclude entries for the specified application name
 from report. Example: "pg_dump".
 --exclude-line regex : pgBadger will start to exclude any log entry that
 will match the given regex. Can be used multiple
 time.
 --anonymize : obscure all literals in queries, useful to hide
 confidential data.
 --noreport : prevent pgBadger to create reports in incremental
 mode.
 --log-duration : force pgBadger to associate log entries generated
 by both log_duration = on and log_statement = 'all'
 --enable-checksum : used to add a md5 sum under each query report.
 --journalctl command : command to use to replace PostgreSQL logfile by
 a call to journalctl. Basically it might be:
 journalctl -u postgresql-9.5
 --pid-dir path : set the path where the pid file must be stored.
 Default /tmp
 --pid-file file : set the name of the pid file to manage concurrent
 execution of pgBadger. Default: pgbadger.pid
 --rebuild : used to rebuild all html reports in incremental
 output directories where there is binary data files.

 --pgbouncer-only : only show PgBouncer related menu in the header.
 --start-monday : in incremental mode, calendar's weeks start on
 sunday. Use this option to start on monday.
 --normalized-only : only dump all normalized query to out.txt
 --log-timezone +/-XX : Set the number of hours from GMT of the timezone
 that must be used to adjust date/time read from
 log file before beeing parsed. Using this option
 make more difficult log search with a date/time.
 --prettify-json : use it if you want json output to be prettified.

pgBadger is able to parse a remote log file using a passwordless ssh connection. Use the -r or --remote-host
to set the host ip address or hostname. There's also some additional options to fully control the ssh
connection.

 --ssh-program ssh path to the ssh program to use. Default: ssh.
 --ssh-user username connection login name. Default to running user.
 --ssh-identity file path to the identity file to use.
 --ssh-timeout second timeout to ssh connection failure. Default 10 secs.
 --ssh-option options list of -o options to use for the ssh connection.
 Options always used:
 -o ConnectTimeout=$ssh_timeout
 -o PreferredAuthentications=hostbased,publickey

Examples:

 pgbadger /var/log/postgresql.log
 pgbadger /var/log/postgres.log.2.gz /var/log/postgres.log.1.gz
 /var/log/postgres.log
 pgbadger /var/log/postgresql/postgresql-2012-05-*
 pgbadger --exclude-query="^(COPY|COMMIT)" /var/log/postgresql.log
 pgbadger -b "2012-06-25 10:56:11" -e "2012-06-25 10:59:11"
 /var/log/postgresql.log
 cat /var/log/postgres.log | pgbadger -
 # Log prefix with stderr log output
 perl pgbadger --prefix '%t [%p]: user=%u,database=%d,client=%h'
 /pglog/postgresql-2012-08-21*
 perl pgbadger --prefix '%m %u@%d %p %r %a : ' /pglog/postgresql.log
 # Log line prefix with syslog log output
 perl pgbadger --prefix 'user=%u,db=%d,client=%h,appname=%a'
 /pglog/postgresql-2012-08-21*
 # Use my 8 CPUs to parse my 10GB file faster, much faster
 perl pgbadger -j 8 /pglog/postgresql-9.1-main.log

Generate Tsung sessions XML file with select queries only:

 perl pgbadger -S -o sessions.tsung --prefix '%t [%p]: user=%u,db=%d ' /pglog/postgresql-9.1.log

Reporting errors every week by cron job:

 30 23 * * 1 /usr/bin/pgbadger -q -w /var/log/postgresql.log -o /var/reports/pg_errors.html

Generate report every week using incremental behavior:

 0 4 * * 1 /usr/bin/pgbadger -q `find /var/log/ -mtime -7 -name "postgresql.log*"`
 -o /var/reports/pg_errors-`date +%F`.html -l /var/reports/pgbadger_incremental_file.dat

This supposes that your log file and HTML report are also rotated every week.

Or better, use the auto-generated incremental reports:

 0 4 * * * /usr/bin/pgbadger -I -q /var/log/postgresql/postgresql.log.1
 -O /var/www/pg_reports/

will generate a report per day and per week.

In incremental mode, you can also specify the number of week to keep in the reports:

 /usr/bin/pgbadger --retention 2 -I -q /var/log/postgresql/postgresql.log.1
 -O /var/www/pg_reports/

If you have a pg_dump at 23:00 and 13:00 each day during half an hour, you can use pgBadger as follow to
exclude these period from the report:

 pgbadger --exclude-time "2013-09-.* (23|13):.*" postgresql.log

This will help avoid having COPY statements, as generated by pg_dump, on top of the list of slowest queries.

You can also use --exclude-appname "pg_dump" to solve this problem in a simpler way.

You can also parse journalctl output just as if it was a log file:

 pgbadger --journalctl 'journalctl -u postgresql-9.5'

or worst, call it from a remote host:

 pgbadger -r 192.168.1.159 --journalctl 'journalctl -u postgresql-9.5'

you don't need to specify any log file at command line, but if you have other PostgreSQL log file to parse, you
can add them as usual.

To rebuild all incremental html reports after, proceed as follow:

 rm /path/to/reports/*.js
 rm /path/to/reports/*.css
 pgbadger -X -I -O /path/to/reports/ --rebuild

it will also update all resource files (JS and CSS).

DESCRIPTION
pgBadger is a PostgreSQL log analyzer built for speed with fully reports from your PostgreSQL log file. It's a
single and small Perl script that outperforms any other PostgreSQL log analyzer.

It is written in pure Perl and uses a JavaScript library (flotr2) to draw graphs so that you don't need to install
any additional Perl modules or other packages. Furthermore, this library gives us more features such as
zooming. pgBadger also uses the Bootstrap JavaScript library and the FontAwesome webfont for better
design. Everything is embedded.

pgBadger is able to autodetect your log file format (syslog, stderr, csvlog or jsonlog) if the file is long enough.
It is designed to parse huge log files as well as compressed files. Supported compressed format are gzip,
bzip2 and xz. For the xz format you must have an xz version upper than 5.05 that supports the --robot
option. For the complete list of features see below.

All charts are zoomable and can be saved as PNG images.

You can also limit pgBadger to only report errors or remove any part of the report using command line
options.

pgBadger supports any custom format set into the log_line_prefix directive of your postgresql.conf file as
long as it at least specify the %t and %p patterns.

pgBadger allows parallel processing of a single log file or multiple files through the use of the -j option
specifying the number of CPUs.

If you want to save system performance you can also use log_duration instead of
log_min_duration_statement to have reports on duration and number of queries only.

FEATURE
pgBadger reports everything about your SQL queries:

 Overall statistics.
 The most frequent waiting queries.
 Queries that waited the most.
 Queries generating the most temporary files.
 Queries generating the largest temporary files.
 The slowest queries.
 Queries that took up the most time.
 The most frequent queries.
 The most frequent errors.
 Histogram of query times.
 Histogram of sessions times.
 Users involved in top queries.
 Applications involved in top queries.
 Queries generating the most cancellation.
 Queries most cancelled.

The following reports are also available with hourly charts divided into periods of five minutes:

 SQL queries statistics.
 Temporary file statistics.
 Checkpoints statistics.
 Autovacuum and autoanalyze statistics.
 Cancelled queries.
 Error events (panic, fatal, error and warning).
 Error class distribution.

There are also some pie charts about distribution of:

 Locks statistics.
 Queries by type (select/insert/update/delete).
 Distribution of queries type per database/application
 Sessions per database/user/client/application.
 Connections per database/user/client/application.
 Autovacuum and autoanalyze per table.
 Queries per user and total duration per user.

All charts are zoomable and can be saved as PNG images. SQL queries reported are highlighted and
beautified automatically.

pgBadger is also able to parse PgBouncer log files and to create the following reports:

 Request Throughput
 Bytes I/O Throughput
 Queries Average duration
 Simultaneous sessions
 Histogram of sessions times
 Sessions per database
 Sessions per user
 Sessions per host
 Established connections
 Connections per database
 Connections per user
 Connections per host
 Most used reserved pools
 Most Frequent Errors/Events

You can also have incremental reports with one report per day and a cumulative report per week. Two
multiprocess modes are available to speed up log parsing, one using one core per log file, and the second
using multiple cores to parse a single file. These modes can be combined.

Histogram granularity can be adjusted using the -A command line option. By default they will report the
mean of each top queries/errors occurring per hour, but you can specify the granularity down to the minute.

pgBadger can also be used in a central place to parse remote log files using a passwordless SSH connection.
This mode can be used with compressed files and in the multiprocess per file mode (-J) but can not be used
with the CSV log format.

REQUIREMENT
pgBadger comes as a single Perl script - you do not need anything other than a modern Perl distribution.
Charts are rendered using a JavaScript library so you don't need anything other than a web browser. Your
browser will do all the work.

If you planned to parse PostgreSQL CSV log files you might need some Perl Modules:

 Text::CSV_XS - to parse PostgreSQL CSV log files.

This module is optional, if you don't have PostgreSQL log in the CSV format you don't need to install it.

If you want to export statistics as JSON file you need an additional Perl module:

 JSON::XS - JSON serialising/deserialising, done correctly and fast

This module is optional, if you don't select the json output format you don't need to install it.

Compressed log file format is autodetected from the file extension. If pgBadger find a gz extension it will use
the zcat utility, with a bz2 extension it will use bzcat and if the file extension is zip or xz then the unzip or xz
utilities will be used.

If those utilities are not found in the PATH environment variable then use the --zcat command line option to
change this path. For example:

 --zcat="/usr/local/bin/gunzip -c" or --zcat="/usr/local/bin/bzip2 -dc"
 --zcat="C:\tools\unzip -p"

By default pgBadger will use the zcat, bzcat and unzip utilities following the file extension. If you use the
default autodetection compress format you can mixed gz, bz2, xz or zip files. Specifying a custom value to --
zcat option will remove this feature of mixed compressed format.

Note that multiprocessing can not be used with compressed files or CSV files as well as under Windows
platform.

INSTALLATION
Download the tarball from GitHub and unpack the archive as follow:

 tar xzf pgbadger-7.x.tar.gz
 cd pgbadger-7.x/
 perl Makefile.PL
 make && sudo make install

This will copy the Perl script pgbadger to /usr/local/bin/pgbadger by default and the man page into
/usr/local/share/man/man1/pgbadger.1. Those are the default installation directories for 'site' install.

If you want to install all under /usr/ location, use INSTALLDIRS='perl' as an argument of Makefile.PL. The
script will be installed into /usr/bin/pgbadger and the manpage into /usr/share/man/man1/pgbadger.1.

For example, to install everything just like Debian does, proceed as follows:

 perl Makefile.PL INSTALLDIRS=vendor

By default INSTALLDIRS is set to site.

POSTGRESQL CONFIGURATION
You must enable and set some configuration directives in your postgresql.conf before starting.

You must first enable SQL query logging to have something to parse:

 log_min_duration_statement = 0

Here every statement will be logged, on a busy server you may want to increase this value to only log
queries with a longer duration. Note that if you have log_statement set to 'all' nothing will be logged through
the log_min_duration_statement directive. See the next chapter for more information.

pgBadger supports any custom format set into the log_line_prefix directive of your postgresql.conf file as
long as it at least specify a time escape sequence (%t, %m or %n) and the process related escape sequence
(%p or %c).

For example, with 'stderr' log format, log_line_prefix must be at least:

 log_line_prefix = '%t [%p]: '

Log line prefix could add user, database name, application name and client ip address as follows:

 log_line_prefix = '%t [%p]: user=%u,db=%d,app=%a,client=%h '

or for syslog log file format:

 log_line_prefix = 'user=%u,db=%d,app=%a,client=%h '

Log line prefix for stderr output could also be:

 log_line_prefix = '%t [%p]: db=%d,user=%u,app=%a,client=%h '

or for syslog output:

 log_line_prefix = 'db=%d,user=%u,app=%a,client=%h '

You need to enable other parameters in postgresql.conf to get more information from your log files:

 log_checkpoints = on
 log_connections = on
 log_disconnections = on
 log_lock_waits = on

 log_temp_files = 0
 log_autovacuum_min_duration = 0
 log_error_verbosity = default

Do not enable log_statement as its log format will not be parsed by pgBadger.

Of course your log messages should be in English without locale support:

 lc_messages='C'

but this is not only recommended by pgBadger.

log_min_duration_statement, log_duration and log_statement
If you want the query statistics to include the actual query strings, you must set log_min_duration_statement
to 0 or more milliseconds.

If you just want to report duration and number of queries and don't want all details about queries, set
log_min_duration_statement to -1 to disable it and enable log_duration in your postgresql.conf file. If you
want to add the most common request report you can either choose to set log_min_duration_statement to a
higher value or choose to enable log_statement.

Enabling log_min_duration_statement will add reports about slowest queries and queries that took up the
most time. Take care that if you have log_statement set to 'all' nothing will be logged with log_line_prefix.

Warning: Do not enable both log_min_duration_statement, log_duration and log_statement, this will result in
wrong counter values. Note that this will also increase drastically the size of your log.
log_min_duration_statement should always be preferred.

PARALLEL PROCESSING
To enable parallel processing you just have to use the -j N option where N is the number of cores you want to
use.

pgBadger will then proceed as follow:

 for each log file
 chunk size = int(file size / N)
 look at start/end offsets of these chunks
 fork N processes and seek to the start offset of each chunk
 each process will terminate when the parser reach the end offset
 of its chunk
 each process write stats into a binary temporary file
 wait for all children has terminated
 All binary temporary files generated will then be read and loaded into
 memory to build the html output.

With that method, at start/end of chunks pgBadger may truncate or omit a maximum of N queries per log file
which is an insignificant gap if you have millions of queries in your log file. The chance that the query that
you were looking for is lost is near 0, this is why I think this gap is livable. Most of the time the query is
counted twice but truncated.

When you have many small log files and many CPUs it is speedier to dedicate one core to one log file at a
time. To enable this behavior you have to use option -J N instead. With 200 log files of 10MB each the use of
the -J option starts being really interesting with 8 Cores. Using this method you will be sure not to lose any
queries in the reports.

He are a benchmark done on a server with 8 CPUs and a single file of 9.5GB.

 Option | 1 CPU | 2 CPU | 4 CPU | 8 CPU
 --------+---------+-------+-------+------
 -j | 1h41m18 | 50m25 | 25m39 | 15m58
 -J | 1h41m18 | 54m28 | 41m16 | 34m45

With 200 log files of 10MB each and a total of 2GB the results are slightly different:

 Option | 1 CPU | 2 CPU | 4 CPU | 8 CPU
 --------+-------+-------+-------+------
 -j | 20m15 | 9m56 | 5m20 | 4m20
 -J | 20m15 | 9m49 | 5m00 | 2m40

So it is recommended to use -j unless you have hundreds of small log files and can use at least 8 CPUs.

IMPORTANT: when you are using parallel parsing pgBadger will generate a lot of temporary files in the /tmp
directory and will remove them at the end, so do not remove those files unless pgBadger is not running. They
are all named with the following template tmp_pgbadgerXXXX.bin so they can be easily identified.

INCREMENTAL REPORTS
pgBadger includes an automatic incremental report mode using option -I or --incremental. When running in
this mode, pgBadger will generate one report per day and a cumulative report per week. Output is first done
in binary format into the mandatory output directory (see option -O or --outdir), then in HTML format for
daily and weekly reports with a main index file.

The main index file will show a dropdown menu per week with a link to each week report and links to daily
reports of each week.

For example, if you run pgBadger as follows based on a daily rotated file:

 0 4 * * * /usr/bin/pgbadger -I -q /var/log/postgresql/postgresql.log.1 \
 -O /var/www/pg_reports/

you will have all daily and weekly reports for the full running period.

In this mode pgBadger will create an automatic incremental file in the output directory, so you don't have to
use the -l option unless you want to change the path of that file. This means that you can run pgBadger in
this mode each day on a log file rotated each week, and it will not count the log entries twice.

To save disk space you may want to use the -X or --extra-files command line option to force pgBadger to
write JavaScript and CSS to separate files in the output directory. The resources will then be loaded using
script and link tags.

BINARY FORMAT
Using the binary format it is possible to create custom incremental and cumulative reports. For example, if
you want to refresh a pgBadger report each hour from a daily PostgreSQL log file, you can proceed by
running each hour the following commands:

 pgbadger --last-parsed .pgbadger_last_state_file -o sunday/hourX.bin /var/log/pgsql/postgresql-Sun.log

to generate the incremental data files in binary format. And to generate the fresh HTML report from that
binary file:

 pgbadger sunday/*.bin

Or as another example, if you generate one log file per hour and you want reports to be rebuilt each time the
log file is rotated, proceed as follows:

 pgbadger -o day1/hour01.bin /var/log/pgsql/pglog/postgresql-2012-03-23_10.log
 pgbadger -o day1/hour02.bin /var/log/pgsql/pglog/postgresql-2012-03-23_11.log
 pgbadger -o day1/hour03.bin /var/log/pgsql/pglog/postgresql-2012-03-23_12.log
 ...

When you want to refresh the HTML report, for example each time after a new binary file is generated, just
do the following:

 pgbadger -o day1_report.html day1/*.bin

Adjust the commands to suit your particular needs.

JSON FORMAT
JSON format is good for sharing data with other languages, which makes it easy to integrate pgBadger result
into other monitoring tools like Cacti or Graphite.

AUTHORS
pgBadger is an original work from Gilles Darold.

The pgBadger logo is an original creation of Damien Cazeils.

The pgBadger v4.x design comes from the "Art is code" company.

This web site is a work of Gilles Darold.

pgBadger is maintained by Gilles Darold and every one who wants to contribute.

Many people have contributed to pgBadger, they are all quoted in the Changelog file.

LICENSE
pgBadger is free software distributed under the PostgreSQL Licence.

Copyright (c) 2012-2018, Gilles Darold

A modified version of the SQL::Beautify Perl Module is embedded in pgBadger with copyright (C) 2009 by
Jonas Kramer and is published under the terms of the Artistic License 2.0.

	Table of Contents
	pgBadger - A fast PostgreSQL Log Analyzer
	NAME
	SYNOPSIS
	DESCRIPTION
	FEATURE
	REQUIREMENT
	INSTALLATION
	POSTGRESQL CONFIGURATION
	log_min_duration_statement, log_duration and log_statement
	PARALLEL PROCESSING
	INCREMENTAL REPORTS
	BINARY FORMAT
	JSON FORMAT
	AUTHORS
	LICENSE

