
PgBouncer
Lightweight connection pooler for PostgreSQL.

Homepage: https://www.pgbouncer.org/

Sources, bug tracking: https://github.com/pgbouncer/pgbouncer

Building
PgBouncer depends on few things to get compiled:

GNU Make 3.81+
Libevent 2.0+
pkg-config
OpenSSL 1.0.1+ for TLS support
(optional) c-ares as alternative to Libevent's evdns
(optional) PAM libraries

When dependencies are installed just run:

$./configure --prefix=/usr/local
$ make
$ make install

If you are building from Git, or are building for Windows, please see separate build instructions below.

DNS lookup support
PgBouncer does host name lookups at connect time instead of just once at configuration load time. This
requires an asynchronous DNS implementation. The following table shows supported backends and their
probing order:

backend parallel EDNS0
(1) /etc/hosts SOA lookup

(2) note

c-ares yes yes yes yes IPv6+CNAME buggy in <=1.10
udns yes yes no yes IPv4 only
evdns, libevent 2.x yes no yes no does not check /etc/hosts updates
getaddrinfo_a, glibc
2.9+ yes yes (3) yes no N/A on non-glibc

getaddrinfo, libc no yes (3) yes no N/A on Windows, requires
pthreads

1. EDNS0 is required to have more than 8 addresses behind one host name.
2. SOA lookup is needed to re-check host names on zone serial change.
3. To enable EDNS0, add options edns0 to /etc/resolv.conf.

c-ares is the most fully-featured implementation and is recommended for most uses and binary packaging (if
a sufficiently new version is available). Libevent's built-in evdns is also suitable for many uses, with the listed
restrictions. The other backends are mostly legacy options at this point and don't receive much testing
anymore.

By default, c-ares is used if it can be found. Its use can be forced with configure --with-cares or disabled with --
without-cares. If c-ares is not used (not found or disabled), then specify --with-udns to pick udns, else Libevent is
used. Specify --disable-evdns to disable the use of Libevent's evdns and fall back to a libc-based
implementation.

PAM authentication
To enable PAM authentication, ./configure has a flag --with-pam (default value is no). When compiled with PAM
support, a new global authentication type pam is available to validate users through PAM.

Building from Git
Building PgBouncer from Git requires that you fetch the libusual submodule and generate the header and
configuration files before you can run configure:

https://www.pgbouncer.org/
https://github.com/pgbouncer/pgbouncer
https://www.gnu.org/software/make/
http://libevent.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.openssl.org/
http://c-ares.haxx.se/

$ git clone https://github.com/pgbouncer/pgbouncer.git
$ cd pgbouncer
$ git submodule init
$ git submodule update
$./autogen.sh
$./configure ...
$ make
$ make install

Additional packages required: autoconf, automake, libtool, pandoc

Building on Windows
The only supported build environment on Windows is MinGW. Cygwin and Visual $ANYTHING are not
supported.

To build on MinGW, do the usual:

$./configure ...
$ make

If cross-compiling from Unix:

$./configure --host=i586-mingw32msvc ...

Running on Windows
Running from the command line goes as usual, except that the -d (daemonize), -R (reboot), and -u (switch
user) switches will not work.

To run PgBouncer as a Windows service, you need to configure the service_name parameter to set name for
service. Then:

$ pgbouncer -regservice config.ini

To uninstall service:

$ pgbouncer -unregservice config.ini

To use the Windows event log, set syslog = 1 in the configuration file. But before that you need to register
pgbevent.dll:

$ regsvr32 pgbevent.dll

To unregister it, do:

$ regsvr32 /u pgbevent.dll

pgbouncer
Synopsis
pgbouncer [-d][-R][-v][-u user] <pgbouncer.ini>
pgbouncer -V|-h

On Windows, the options are:

pgbouncer.exe [-v][-u user] <pgbouncer.ini>
pgbouncer.exe -V|-h

Additional options for setting up a Windows service:

pgbouncer.exe --regservice <pgbouncer.ini>
pgbouncer.exe --unregservice <pgbouncer.ini>

Description
pgbouncer is a PostgreSQL connection pooler. Any target application can be connected to pgbouncer as if
it were a PostgreSQL server, and pgbouncer will create a connection to the actual server, or it will reuse one
of its existing connections.

The aim of pgbouncer is to lower the performance impact of opening new connections to PostgreSQL.

In order not to compromise transaction semantics for connection pooling, pgbouncer supports several types
of pooling when rotating connections:

Session pooling

Most polite method. When a client connects, a server connection will be assigned to it for the whole
duration the client stays connected. When the client disconnects, the server connection will be put back
into the pool. This is the default method.

Transaction pooling

A server connection is assigned to a client only during a transaction. When PgBouncer notices that
transaction is over, the server connection will be put back into the pool.

Statement pooling

Most aggressive method. The server connection will be put back into the pool immediately after a query
completes. Multi-statement transactions are disallowed in this mode as they would break.

The administration interface of pgbouncer consists of some new SHOW commands available when connected
to a special "virtual" database pgbouncer.

Quick-start
Basic setup and usage is as follows.

1. Create a pgbouncer.ini file. Details in pgbouncer(5). Simple example:

[databases]
template1 = host=127.0.0.1 port=5432 dbname=template1

[pgbouncer]
listen_port = 6432
listen_addr = 127.0.0.1
auth_type = md5
auth_file = userlist.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser

2. Create a userlist.txt file that contains the users allowed in:

"someuser" "same_password_as_in_server"

3. Launch pgbouncer:

$ pgbouncer -d pgbouncer.ini

4. Have your application (or the psql client) connect to pgbouncer instead of directly to the PostgreSQL
server:

$ psql -p 6432 -U someuser template1

5. Manage pgbouncer by connecting to the special administration database pgbouncer and issuing SHOW
HELP; to begin:

$ psql -p 6432 -U someuser pgbouncer
pgbouncer=# SHOW HELP;
NOTICE: Console usage
DETAIL:
 SHOW [HELP|CONFIG|DATABASES|FDS|POOLS|CLIENTS|SERVERS|SOCKETS|LISTS|VERSION|...]
 SET key = arg
 RELOAD
 PAUSE
 SUSPEND
 RESUME
 SHUTDOWN
 [...]

6. If you made changes to the pgbouncer.ini file, you can reload it with:

pgbouncer=# RELOAD;

Command line switches
-d

Run in the background. Without it, the process will run in the foreground. Note: Does not work on
Windows; pgbouncer need to run as service there.

-R

Do an online restart. That means connecting to the running process, loading the open sockets from it,
and then using them. If there is no active process, boot normally. Note: Works only if OS supports Unix
sockets and the unix_socket_dir is not disabled in configuration. Does not work on Windows. Does not work
with TLS connections, they are dropped.

-u user

Switch to the given user on startup.

-v

Increase verbosity. Can be used multiple times.

-q

Be quiet: do not log to stdout. This does not affect logging verbosity, only that stdout is not to be used.
For use in init.d scripts.

-V

Show version.

-h

Show short help.

--regservice

Win32: Register pgbouncer to run as Windows service. The service_name configuration parameter
value is used as the name to register under.

--unregservice

Win32: Unregister Windows service.

Admin console

The console is available by connecting as normal to the database pgbouncer:

$ psql -p 6432 pgbouncer

Only users listed in the configuration parameters admin_users or stats_users are allowed to log in to the
console. (Except when auth_type=any, then any user is allowed in as a stats_user.)

Additionally, the user name pgbouncer is allowed to log in without password, if the login comes via the Unix
socket and the client has same Unix user UID as the running process.

Show commands

The SHOW commands output information. Each command is described below.

SHOW STATS

Shows statistics. In this and related commands, the total figures are since process start, the averages are
updated every stats_period.

database

Statistics are presented per database.

total_xact_count

Total number of SQL transactions pooled by pgbouncer.

total_query_count

Total number of SQL queries pooled by pgbouncer.

total_received

Total volume in bytes of network traffic received by pgbouncer.

total_sent

Total volume in bytes of network traffic sent by pgbouncer.

total_xact_time

Total number of microseconds spent by pgbouncer when connected to PostgreSQL in a transaction,
either idle in transaction or executing queries.

total_query_time

Total number of microseconds spent by pgbouncer when actively connected to PostgreSQL, executing
queries.

total_wait_time

Time spent by clients waiting for a server, in microseconds.

avg_xact_count

Average transactions per second in last stat period.

avg_query_count

Average queries per second in last stat period.

avg_recv

Average received (from clients) bytes per second.

avg_sent

Average sent (to clients) bytes per second.

avg_xact_time

Average transaction duration, in microseconds.

avg_query_time

Average query duration, in microseconds.

avg_wait_time

Time spent by clients waiting for a server, in microseconds (average per second).

SHOW STATS_TOTALS

Subset of SHOW STATS showing the total values (total_).

SHOW STATS_AVERAGES

Subset of SHOW STATS showing the average values (avg_).

SHOW TOTALS

Like SHOW STATS but aggregated across all databases.

SHOW SERVERS

type

S, for server.

user

User name pgbouncer uses to connect to server.

database

Database name.

state

State of the pgbouncer server connection, one of active, used or idle.

addr

IP address of PostgreSQL server.

port

Port of PostgreSQL server.

local_addr

Connection start address on local machine.

local_port

Connection start port on local machine.

connect_time

When the connection was made.

request_time

When last request was issued.

wait

Current waiting time in seconds.

wait_us

Microsecond part of the current waiting time.

close_needed

1 if the connection will be closed as soon as possible, because a configuration file reload or DNS update

1 if the connection will be closed as soon as possible, because a configuration file reload or DNS update
changed the connection information or RECONNECT was issued.

ptr

Address of internal object for this connection. Used as unique ID.

link

Address of client connection the server is paired with.

remote_pid

PID of backend server process. In case connection is made over Unix socket and OS supports getting
process ID info, its OS PID. Otherwise it's extracted from cancel packet the server sent, which should be
the PID in case the server is PostgreSQL, but it's a random number in case the server it is another
PgBouncer.

tls

A string with TLS connection information, or empty if not using TLS.

SHOW CLIENTS

type

C, for client.

user

Client connected user.

database

Database name.

state

State of the client connection, one of active, used, waiting or idle.

addr

IP address of client.

port

Port client is connected to.

local_addr

Connection end address on local machine.

local_port

Connection end port on local machine.

connect_time

Timestamp of connect time.

request_time

Timestamp of latest client request.

wait

Current waiting time in seconds.

wait_us

Microsecond part of the current waiting time.

close_needed

not used for clients

not used for clients

ptr

Address of internal object for this connection. Used as unique ID.

link

Address of server connection the client is paired with.

remote_pid

Process ID, in case client connects over Unix socket and OS supports getting it.

tls

A string with TLS connection information, or empty if not using TLS.

SHOW POOLS

A new pool entry is made for each couple of (database, user).

database

Database name.

user

User name.

cl_active

Client connections that are linked to server connection and can process queries.

cl_waiting

Client connections that have sent queries but have not yet got a server connection.

sv_active

Server connections that are linked to a client.

sv_idle

Server connections that are unused and immediately usable for client queries.

sv_used

Server connections that have been idle for more than server_check_delay, so they need server_check_query to
run on them before they can be used again.

sv_tested

Server connections that are currently running either server_reset_query or server_check_query.

sv_login

Server connections currently in the process of logging in.

maxwait

How long the first (oldest) client in the queue has waited, in seconds. If this starts increasing, then the
current pool of servers does not handle requests quickly enough. The reason may be either an
overloaded server or just too small of a pool_size setting.

maxwait_us

Microsecond part of the maximum waiting time.

pool_mode

The pooling mode in use.

SHOW LISTS

Show following internal information, in columns (not rows):

databases

Count of databases.

users

Count of users.

pools

Count of pools.

free_clients

Count of free clients.

used_clients

Count of used clients.

login_clients

Count of clients in login state.

free_servers

Count of free servers.

used_servers

Count of used servers.

dns_names

Count of DNS names in the cache.

dns_zones

Count of DNS zones in the cache.

dns_queries

Count of in-flight DNS queries.

dns_pending

not used

SHOW USERS

name

The user name

pool_mode

The user's override pool_mode, or NULL if the default will be used instead.

SHOW DATABASES

name

Name of configured database entry.

host

Host pgbouncer connects to.

port

Port pgbouncer connects to.

database

Actual database name pgbouncer connects to.

force_user

When the user is part of the connection string, the connection between pgbouncer and PostgreSQL is
forced to the given user, whatever the client user.

pool_size

Maximum number of server connections.

reserve_pool

Maximum number of additional connections for this database.

pool_mode

The database's override pool_mode, or NULL if the default will be used instead.

max_connections

Maximum number of allowed connections for this database, as set by max_db_connections, either
globally or per database.

current_connections

Current number of connections for this database.

paused

1 if this database is currently paused, else 0.

disabled

1 if this database is currently disabled, else 0.

SHOW FDS

Internal command - shows list of file descriptors in use with internal state attached to them.

When the connected user has the user name "pgbouncer", connects through the Unix socket and has same
the UID as the running process, the actual FDs are passed over the connection. This mechanism is used to do
an online restart. Note: This does not work on Windows.

This command also blocks the internal event loop, so it should not be used while PgBouncer is in use.

fd

File descriptor numeric value.

task

One of pooler, client or server.

user

User of the connection using the FD.

database

Database of the connection using the FD.

addr

IP address of the connection using the FD, unix if a Unix socket is used.

port

Port used by the connection using the FD.

cancel

Cancel key for this connection.

link

fd for corresponding server/client. NULL if idle.

SHOW SOCKETS, SHOW ACTIVE_SOCKETS

Shows low-level information about sockets or only active sockets. This includes the information shown under
SHOW CLIENTS and SHOW SERVERS as well as other more low-level information.

SHOW CONFIG

Show the current configuration settings, one per row, with the following columns:

key

Configuration variable name

value

Configuration value

changeable

Either yes or no, shows if the variable can be changed while running. If no, the variable can be changed
only at boot time. Use SET to change a variable at run time.

SHOW MEM

Shows low-level information about the current sizes of various internal memory allocations. The information
presented is subject to change.

SHOW DNS_HOSTS

Show host names in DNS cache.

hostname

Host name.

ttl

How many seconds until next lookup.

addrs

Comma separated list of addresses.

SHOW DNS_ZONES

Show DNS zones in cache.

zonename

Zone name.

serial

Current serial.

count

Host names belonging to this zone.

SHOW VERSION

Show the PgBouncer version string.

Process controlling commands

PAUSE [db]

PgBouncer tries to disconnect from all servers, first waiting for all queries to complete. The command will not
return before all queries are finished. To be used at the time of database restart.

If database name is given, only that database will be paused.

New client connections to a paused database will wait until RESUME is called.

DISABLE db

Reject all new client connections on the given database.

ENABLE db

Allow new client connections after a previous DISABLE command.

RECONNECT [db]

Close each open server connection for the given database, or all databases, after it is released (according to
the pooling mode), even if its lifetime is not up yet. New server connections can be made immediately and
will connect as necessary according to the pool size settings.

This command is useful when the server connection setup has changed, for example to perform a gradual
switchover to a new server. It is not necessary to run this command when the connection string in
pgbouncer.ini has been changed and reloaded (see RELOAD) or when DNS resolution has changed, because
then the equivalent of this command will be run automatically. This command is only necessary if something
downstream of PgBouncer routes the connections.

After this command is run, there could be an extended period where some server connections go to an old
destination and some server connections go to a new destination. This is likely only sensible when switching
read-only traffic between read-only replicas, or when switching between nodes of a multimaster replication
setup. If all connections need to be switched at the same time, PAUSE is recommended instead. To close
server connections without waiting (for example, in emergency failover rather than gradual switchover
scenarios), also consider KILL.

KILL db

Immediately drop all client and server connections on given database.

New client connections to a killed database will wait until RESUME is called.

SUSPEND

All socket buffers are flushed and PgBouncer stops listening for data on them. The command will not return
before all buffers are empty. To be used at the time of PgBouncer online reboot.

New client connections to a suspended database will wait until RESUME is called.

RESUME [db]

Resume work from previous KILL, PAUSE, or SUSPEND command.

SHUTDOWN

The PgBouncer process will exit.

RELOAD

The PgBouncer process will reload its configuration file and update changeable settings.

PgBouncer notices when a configuration file reload changes the connection parameters of a database
definition. An existing server connection to the old destination will be closed when the server connection is
next released (according to the pooling mode), and new server connections will immediately use the
updated connection parameters.

WAIT_CLOSE [db]

Wait until all server connections, either of the specified database or of all databases, have cleared the
"close_needed" state (see SHOW SERVERS). This can be called after a RECONNECT or RELOAD to wait
until the respective configuration change has been fully activated, for example in switchover scripts.

Other commands

SET key = arg

Changes a configuration setting (see also SHOW CONFIG). For example:

SET log_connections = 1;
SET server_check_query = 'select 2';

(Note that this command is run on the PgBouncer admin console and sets PgBouncer settings. A SET
command run on another database will be passed to the PostgreSQL backend like any other SQL command.)

Signals

SIGHUP

Reload config. Same as issuing the command RELOAD on the console.

SIGINT

Safe shutdown. Same as issuing PAUSE and SHUTDOWN on the console.

SIGTERM

Immediate shutdown. Same as issuing SHUTDOWN on the console.

SIGUSR1

Same as issuing PAUSE on the console.

SIGUSR2

Same as issuing RESUME on the console.

Libevent settings

From the Libevent documentation:

It is possible to disable support for epoll, kqueue, devpoll, poll or select by setting the environment
variable EVENT_NOEPOLL, EVENT_NOKQUEUE, EVENT_NODEVPOLL, EVENT_NOPOLL or
EVENT_NOSELECT, respectively.

By setting the environment variable EVENT_SHOW_METHOD, libevent displays the kernel
notification method that it uses.

See also
pgbouncer(5) - man page of configuration settings descriptions

https://www.pgbouncer.org/

https://www.pgbouncer.org/

pgbouncer.ini
Description
The configuration file is in "ini" format. Section names are between "[" and "]". Lines starting with ";" or "#"
are taken as comments and ignored. The characters ";" and "#" are not recognized as special when they
appear later in the line.

Generic settings
logfile

Specifies the log file. The log file is kept open, so after rotation kill -HUP or on console RELOAD; should be done.
On Windows, the service must be stopped and started.

Default: not set

pidfile

Specifies the PID file. Without pidfile set, daemonization is not allowed.

Default: not set

listen_addr

Specifies a list of addresses where to listen for TCP connections. You may also use * meaning "listen on all
addresses". When not set, only Unix socket connections are accepted.

Addresses can be specified numerically (IPv4/IPv6) or by name.

Default: not set

listen_port

Which port to listen on. Applies to both TCP and Unix sockets.

Default: 6432

unix_socket_dir

Specifies location for Unix sockets. Applies to both listening socket and server connections. If set to an empty
string, Unix sockets are disabled. Required for online reboot (-R) to work. Not supported on Windows.

Default: /tmp

unix_socket_mode

File system mode for Unix socket.

Default: 0777

unix_socket_group

Group name to use for Unix socket.

Default: not set

user

If set, specifies the Unix user to change to after startup. Works only if PgBouncer is started as root or if it's
already running as given user. Not supported on Windows.

Default: not set

auth_file

The name of the file to load user names and passwords from. See section Authentication file format below

about details.

Default: not set

auth_hba_file

HBA configuration file to use when auth_type is hba.

Default: not set

auth_type

How to authenticate users.

pam

PAM is used to authenticate users, auth_file is ignored. This method is not compatible with databases
using the auth_user option. The service name reported to PAM is "pgbouncer". pam is not supported in the
HBA configuration file.

hba

The actual authentication type is loaded from auth_hba_file. This allows different authentication methods
for different access paths, for example: connections over Unix socket use the peer auth method,
connections over TCP must use TLS.

cert

Client must connect over TLS connection with a valid client certificate. The user name is then taken
from the CommonName field from the certificate.

md5

Use MD5-based password check. This is the default authentication method. auth_file may contain both
MD5-encrypted and plain-text passwords. If md5 is configured and a user has a SCRAM secret, then
SCRAM authentication is used automatically instead.

scram-sha-256

Use password check with SCRAM-SHA-256. auth_file has to contain SCRAM secrets or plain-text
passwords. Note that SCRAM secrets can only be used for verifying the password of a client but not for
logging into a server. To be able to use SCRAM on server connections, use plain-text passwords.

plain

The clear-text password is sent over the wire. Deprecated.

trust

No authentication is done. The user name must still exist in auth_file.

any

Like the trust method, but the user name given is ignored. Requires that all databases are configured to
log in as a specific user. Additionally, the console database allows any user to log in as admin.

auth_query

Query to load user's password from database.

Direct access to pg_shadow requires admin rights. It's preferable to use a non-superuser that calls a
SECURITY DEFINER function instead.

Note that the query is run inside the target database. So if a function is used, it needs to be installed into
each database.

Default: SELECT usename, passwd FROM pg_shadow WHERE usename=$1

auth_user

If auth_user is set, then any user not specified in auth_file will be queried through the auth_query query from

pg_shadow in the database, using auth_user. The password of auth_user will be taken from auth_file.

Direct access to pg_shadow requires admin rights. It's preferable to use a non-superuser that calls a
SECURITY DEFINER function instead.

Default: not set

pool_mode

Specifies when a server connection can be reused by other clients.

session

Server is released back to pool after client disconnects. Default.

transaction

Server is released back to pool after transaction finishes.

statement

Server is released back to pool after query finishes. Transactions spanning multiple statements are
disallowed in this mode.

max_client_conn

Maximum number of client connections allowed. When increased then the file descriptor limits should also be
increased. Note that the actual number of file descriptors used is more than max_client_conn. The theoretical
maximum used is:

max_client_conn + (max pool_size * total databases * total users)

if each user connects under its own user name to the server. If a database user is specified in the connection
string (all users connect under the same user name), the theoretical maximum is:

max_client_conn + (max pool_size * total databases)

The theoretical maximum should be never reached, unless somebody deliberately crafts a special load for it.
Still, it means you should set the number of file descriptors to a safely high number.

Search for ulimit in your favorite shell man page. Note: ulimit does not apply in a Windows environment.

Default: 100

default_pool_size

How many server connections to allow per user/database pair. Can be overridden in the per-database
configuration.

Default: 20

min_pool_size

Add more server connections to pool if below this number. Improves behavior when usual load comes
suddenly back after period of total inactivity. The value is effectively capped at the pool size.

Default: 0 (disabled)

reserve_pool_size

How many additional connections to allow to a pool (see reserve_pool_timeout). 0 disables.

Default: 0 (disabled)

reserve_pool_timeout

If a client has not been serviced in this many seconds, use additional connections from the reserve pool. 0
disables.

Default: 5.0

max_db_connections

Do not allow more than this many connections per database (regardless of pool, i.e. user). It should be noted
that when you hit the limit, closing a client connection to one pool will not immediately allow a server
connection to be established for another pool, because the server connection for the first pool is still open.
Once the server connection closes (due to idle timeout), a new server connection will immediately be opened
for the waiting pool.

Default: unlimited

max_user_connections

Do not allow more than this many connections per-user (regardless of pool, i.e. user). It should be noted that
when you hit the limit, closing a client connection to one pool will not immediately allow a server connection
to be established for another pool, because the server connection for the first pool is still open. Once the
server connection closes (due to idle timeout), a new server connection will immediately be opened for the
waiting pool.

server_round_robin

By default, PgBouncer reuses server connections in LIFO (last-in, first-out) manner, so that few connections
get the most load. This gives best performance if you have a single server serving a database. But if there is
TCP round-robin behind a database IP address, then it is better if PgBouncer also uses connections in that
manner, thus achieving uniform load.

Default: 0

ignore_startup_parameters

By default, PgBouncer allows only parameters it can keep track of in startup packets: client_encoding, datestyle,
timezone and standard_conforming_strings. All others parameters will raise an error. To allow others parameters,
they can be specified here, so that PgBouncer knows that they are handled by the admin and it can ignore
them.

Default: empty

disable_pqexec

Disable Simple Query protocol (PQexec). Unlike Extended Query protocol, Simple Query allows multiple
queries in one packet, which allows some classes of SQL-injection attacks. Disabling it can improve security.
Obviously this means only clients that exclusively use the Extended Query protocol will stay working.

Default: 0

application_name_add_host

Add the client host address and port to the application name setting set on connection start. This helps in
identifying the source of bad queries etc. This logic applies only on start of connection. If application_name is
later changed with SET, PgBouncer does not change it again.

Default: 0

conffile

Show location of current config file. Changing it will make PgBouncer use another config file for next RELOAD /
SIGHUP.

Default: file from command line

service_name

Used on win32 service registration.

Default: pgbouncer

job_name

Alias for service_name.

stats_period

Sets how often the averages shown in various SHOW commands are updated and how often aggregated
statistics are written to the log (but see log_stats). [seconds]

Default: 60

Log settings
syslog

Toggles syslog on/off. On Windows, the event log is used instead.

Default: 0

syslog_ident

Under what name to send logs to syslog.

Default: pgbouncer (program name)

syslog_facility

Under what facility to send logs to syslog. Possibilities: auth, authpriv, daemon, user, local0-7.

Default: daemon

log_connections

Log successful logins.

Default: 1

log_disconnections

Log disconnections with reasons.

Default: 1

log_pooler_errors

Log error messages the pooler sends to clients.

Default: 1

log_stats

Write aggregated statistics into the log, every stats_period. This can be disabled if external monitoring tools
are used to grab the same data from SHOW commands.

Default: 1

verbose

Increase verbosity. Mirrors the "-v" switch on the command line. Using "-v -v" on the command line is the
same as verbose=2.

Default: 0

Console access control
admin_users

Comma-separated list of database users that are allowed to connect and run all commands on the console.
Ignored when auth_type is any, in which case any user name is allowed in as admin.

Default: empty

stats_users

Comma-separated list of database users that are allowed to connect and run read-only queries on the
console. That means all SHOW commands except SHOW FDS.

Default: empty

Connection sanity checks, timeouts
server_reset_query

Query sent to server on connection release, before making it available to other clients. At that moment no
transaction is in progress so it should not include ABORT or ROLLBACK.

The query is supposed to clean any changes made to the database session so that the next client gets the
connection in a well-defined state. The default is DISCARD ALL which cleans everything, but that leaves the
next client no pre-cached state. It can be made lighter, e.g. DEALLOCATE ALL to just drop prepared statements,
if the application does not break when some state is kept around.

When transaction pooling is used, the server_reset_query is not used, as clients must not use any session-based
features as each transaction ends up in a different connection and thus gets a different session state.

Default: DISCARD ALL

server_reset_query_always

Whether server_reset_query should be run in all pooling modes. When this setting is off (default), the
server_reset_query will be run only in pools that are in sessions-pooling mode. Connections in transaction-
pooling mode should not have any need for a reset query.

This setting is for working around broken setups that run applications that use session features over a
transaction-pooled PgBouncer. It changes non-deterministic breakage to deterministic breakage: Clients
always lose their state after each transaction.

Default: 0

server_check_delay

How long to keep released connections available for immediate re-use, without running sanity-check queries
on it. If 0 then the query is ran always.

Default: 30.0

server_check_query

Simple do-nothing query to check if the server connection is alive.

If an empty string, then sanity checking is disabled.

Default: SELECT 1;

server_fast_close

Disconnect a server in session pooling mode immediately or after the end of the current transaction if it is in
"close_needed" mode (set by RECONNECT, RELOAD that changes connection settings, or DNS change), rather
than waiting for the session end. In statement or transaction pooling mode, this has no effect since that is
the default behavior there.

If because of this setting a server connection is closed before the end of the client session, the client
connection is also closed. This ensures that the client notices that the session has been interrupted.

This setting makes connection configuration changes take effect sooner if session pooling and long-running
sessions are used. The downside is that client sessions are liable to be interrupted by a configuration
change, so client applications will need logic to reconnect and reestablish session state. But note that no
transactions will be lost, because running transactions are not interrupted, only idle sessions.

Default: 0

server_lifetime

The pooler will close an unused server connection that has been connected longer than this. Setting it to 0
means the connection is to be used only once, then closed. [seconds]

Default: 3600.0

server_idle_timeout

If a server connection has been idle more than this many seconds it will be dropped. If 0 then timeout is
disabled. [seconds]

Default: 600.0

server_connect_timeout

If connection and login won't finish in this amount of time, the connection will be closed. [seconds]

Default: 15.0

server_login_retry

If login failed, because of failure from connect() or authentication that pooler waits this much before retrying
to connect. [seconds]

Default: 15.0

client_login_timeout

If a client connects but does not manage to log in in this amount of time, it will be disconnected. Mainly
needed to avoid dead connections stalling SUSPEND and thus online restart. [seconds]

Default: 60.0

autodb_idle_timeout

If the automatically created (via "*") database pools have been unused this many seconds, they are freed.
The negative aspect of that is that their statistics are also forgotten. [seconds]

Default: 3600.0

dns_max_ttl

How long the DNS lookups can be cached. If a DNS lookup returns several answers, PgBouncer will robin-
between them in the meantime. The actual DNS TTL is ignored. [seconds]

Default: 15.0

dns_nxdomain_ttl

How long error and NXDOMAIN DNS lookups can be cached. [seconds]

Default: 15.0

dns_zone_check_period

Period to check if a zone serial has changed.

PgBouncer can collect DNS zones from host names (everything after first dot) and then periodically check if
the zone serial changes. If it notices changes, all host names under that zone are looked up again. If any host
IP changes, its connections are invalidated.

Works only with UDNS and c-ares backends (--with-udns or --with-cares to configure).

Default: 0.0 (disabled)

resolv_conf

The location of a custom resolv.conf file. This is to allow specifying custom DNS servers and perhaps other
name resolution options, independent of the global operating system configuration.

Requires evdns (>= 2.0.3) or c-ares (>= 1.15.0) backend.

The parsing of the file is done by the DNS backend library, not PgBouncer, so see the library's documentation
for details on allowed syntax and directives.

Default: empty (use operating system defaults)

TLS settings
client_tls_sslmode

TLS mode to use for connections from clients. TLS connections are disabled by default. When enabled,
client_tls_key_file and client_tls_cert_file must be also configured to set up the key and certificate PgBouncer uses
to accept client connections.

disable

Plain TCP. If client requests TLS, it's ignored. Default.

allow

If client requests TLS, it is used. If not, plain TCP is used. If the client presents a client certificate, it is
not validated.

prefer

Same as allow.

require

Client must use TLS. If not, the client connection is rejected. If the client presents a client certificate, it is
not validated.

verify-ca

Client must use TLS with valid client certificate.

verify-full

Same as verify-ca.

client_tls_key_file

Private key for PgBouncer to accept client connections.

Default: not set

client_tls_cert_file

Certificate for private key. Clients can validate it.

Default: not set

client_tls_ca_file

Root certificate file to validate client certificates.

Default: not set

client_tls_protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsv1.1, tlsv1.2, tlsv1.3. Shortcuts: all
(tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure (tlsv1.2,tlsv1.3), legacy (all).

Default: all

client_tls_ciphers

Default: fast

client_tls_ecdhcurve

Elliptic Curve name to use for ECDH key exchanges.

Allowed values: none (DH is disabled), auto (256-bit ECDH), curve name.

Default: auto

client_tls_dheparams

DHE key exchange type.

Allowed values: none (DH is disabled), auto (2048-bit DH), legacy (1024-bit DH).

Default: auto

server_tls_sslmode

TLS mode to use for connections to PostgreSQL servers. TLS connections are disabled by default.

disable

Plain TCP. TCP is not even requested from the server. Default.

allow

FIXME: if server rejects plain, try TLS?

prefer

TLS connection is always requested first from PostgreSQL, when refused connection will be established
over plain TCP. Server certificate is not validated.

require

Connection must go over TLS. If server rejects it, plain TCP is not attempted. Server certificate is not
validated.

verify-ca

Connection must go over TLS and server certificate must be valid according to server_tls_ca_file. Server
host name is not checked against certificate.

verify-full

Connection must go over TLS and server certificate must be valid according to server_tls_ca_file. Server
host name must match certificate information.

server_tls_ca_file

Root certificate file to validate PostgreSQL server certificates.

Default: not set

server_tls_key_file

Private key for PgBouncer to authenticate against PostgreSQL server.

Default: not set

server_tls_cert_file

Certificate for private key. PostgreSQL server can validate it.

Default: not set

server_tls_protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsv1.1, tlsv1.2, tlsv1.3. Shortcuts: all
(tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure (tlsv1.2,tlsv1.3), legacy (all).

Default: all

server_tls_ciphers

Default: fast

Dangerous timeouts
Setting the following timeouts can cause unexpected errors.

query_timeout

Queries running longer than that are canceled. This should be used only with slightly smaller server-side
statement_timeout, to apply only for network problems. [seconds]

Default: 0.0 (disabled)

query_wait_timeout

Maximum time queries are allowed to spend waiting for execution. If the query is not assigned to a server
during that time, the client is disconnected. This is used to prevent unresponsive servers from grabbing up
connections. [seconds]

It also helps when the server is down or database rejects connections for any reason. If this is disabled,
clients will be queued indefinitely.

Default: 120

client_idle_timeout

Client connections idling longer than this many seconds are closed. This should be larger than the client-side
connection lifetime settings, and only used for network problems. [seconds]

Default: 0.0 (disabled)

idle_transaction_timeout

If a client has been in "idle in transaction" state longer, it will be disconnected. [seconds]

Default: 0.0 (disabled)

suspend_timeout

How many seconds to wait for buffer flush during SUSPEND or reboot (-R). A connection is dropped if the
flush does not succeed.

Default: 10

Low-level network settings
pkt_buf

Internal buffer size for packets. Affects size of TCP packets sent and general memory usage. Actual libpq
packets can be larger than this, so no need to set it large.

Default: 4096

max_packet_size

Maximum size for PostgreSQL packets that PgBouncer allows through. One packet is either one query or one
result set row. Full result set can be larger.

Default: 2147483647

listen_backlog

Backlog argument for listen(2). Determines how many new unanswered connection attempts are kept in
queue. When the queue is full, further new connections are dropped.

Default: 128

sbuf_loopcnt

How many times to process data on one connection, before proceeding. Without this limit, one connection
with a big result set can stall PgBouncer for a long time. One loop processes one pkt_buf amount of data. 0
means no limit.

Default: 5

so_reuseport

Specifies whether to set the socket option SO_REUSEPORT on TCP listening sockets. On some operating
systems, this allows running multiple PgBouncer instances on the same host listening on the same port and
having the kernel distribute the connections automatically. This option is a way to get PgBouncer to use
more CPU cores. (PgBouncer is single-threaded and uses one CPU core per instance.)

The behavior in detail depends on the operating system kernel. As of this writing, this setting has the desired
effect on (sufficiently recent versions of) Linux, DragonFlyBSD, and FreeBSD. (On FreeBSD, it applies the
socket option SO_REUSEPORT_LB instead.) Some other operating systems support the socket option but it won't
have the desired effect: It will allow multiple processes to bind to the same port but only one of them will get
the connections. See your operating system's setsockopt() documentation for details.

On systems that don't support the socket option at all, turning this setting on will result in an error.

Each PgBouncer instance on the same host needs different settings for at least unix_socket_dir and pidfile, as
well as logfile if that is used. Also note that if you make use of this option, you can no longer connect to a
specific PgBouncer instance via TCP/IP, which might have implications for monitoring and metrics collection.

Default: 0

tcp_defer_accept

For details on this and other TCP options, please see man 7 tcp.

Default: 45 on Linux, otherwise 0

tcp_socket_buffer

Default: not set

tcp_keepalive

Turns on basic keepalive with OS defaults.

On Linux, the system defaults are tcp_keepidle=7200, tcp_keepintvl=75, tcp_keepcnt=9. They are probably
similar on other operating systems.

Default: 1

tcp_keepcnt

Default: not set

tcp_keepidle

Default: not set

tcp_keepintvl

Default: not set

Section [databases]
This contains key=value pairs where the key will be taken as a database name and the value as a libpq
connection string style list of key=value pairs. Not all features known from libpq can be used (service=,
.pgpass), since the actual libpq is not used.

The database name can contain characters _0-9A-Za-z without quoting. Names that contain other characters
need to be quoted with standard SQL identifier quoting: double quotes, with "" for a single instance of a
double quote.

"*" acts as a fallback database: if the exact name does not exist, its value is taken as connection string for
requested database. Such automatically created database entries are cleaned up if they stay idle longer than
the time specified by the autodb_idle_timeout parameter.

dbname

Destination database name.

Default: same as client-side database name

host

Host name or IP address to connect to. Host names are resolved at connection time, the result is cached per
dns_max_ttl parameter. When a host name's resolution changes, existing server connections are automatically
closed when they are released (according to the pooling mode), and new server connections immediately
use the new resolution. If DNS returns several results, they are used in round-robin manner.

Default: not set, meaning to use a Unix socket

port

Default: 5432

user

If user= is set, all connections to the destination database will be done with the specified user, meaning that
there will be only one pool for this database.

Otherwise, PgBouncer logs into the destination database with the client user name, meaning that there will
be one pool per user.

password

The length for password is limited to 160 characters maximum.

If no password is specified here, the password from the auth_file or auth_query will be used.

auth_user

Override of the global auth_user setting, if specified.

pool_size

Set the maximum size of pools for this database. If not set, the default_pool_size is used.

reserve_pool

Set additional connections for this database. If not set, reserve_pool_size is used.

connect_query

Query to be executed after a connection is established, but before allowing the connection to be used by any
clients. If the query raises errors, they are logged but ignored otherwise.

pool_mode

Set the pool mode specific to this database. If not set, the default pool_mode is used.

max_db_connections

Configure a database-wide maximum (i.e. all pools within the database will not have more than this many
server connections).

client_encoding

Ask specific client_encoding from server.

datestyle

Ask specific datestyle from server.

timezone

Ask specific timezone from server.

Section [users]
This contains key=value pairs where the key will be taken as a user name and the value as a libpq
connection string style list of key=value pairs of configuration settings specific for this user. Only a few
settings are available here.

pool_mode

Set the pool mode to be used for all connections from this user. If not set, the database or default pool_mode is
used.

max_user_connections

Configure a maximum for the user (i.e. all pools with the user will not have more than this many server
connections).

Include directive
The PgBouncer configuration file can contain include directives, which specify another configuration file to
read and process. This allows splitting the configuration file into physically separate parts. The include
directives look like this:

%include filename

If the file name is not absolute path it is taken as relative to current working directory.

Authentication file format
PgBouncer needs its own user database. The users are loaded from a text file in the following format:

"username1" "password" ...
"username2" "md5abcdef012342345" ...
"username2" "SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>"

There should be at least 2 fields, surrounded by double quotes. The first field is the user name and the
second is either a plain-text, a MD5-hashed password, or a SCRAM secret. PgBouncer ignores the rest of the
line.

PostgreSQL MD5-hashed password format:

"md5" + md5(password + username)

So user admin with password 1234 will have MD5-hashed password md545f2603610af569b6155c45067268c6b.

PostgreSQL SCRAM secret format:

SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>

See the PostgreSQL documentation and RFC 5803 for details on this.

The authentication file can be written by hand, but it's also useful to generate it from some other list of users
and passwords. See ./etc/mkauth.py for a sample script to generate the authentication file from the pg_shadow
system table.

HBA file format
It follows the format of the PostgreSQL pg_hba.conf file (see https://www.postgresql.org/docs/current/auth-pg-
hba-conf.html).

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

Supported record types: local, host, hostssl, hostnossl.
Database field: Supports all, sameuser, @file, multiple names. Not supported: replication, samerole, samegroup.
User name field: Supports all, @file, multiple names. Not supported: +groupname.
Address field: Supported IPv4, IPv6. Not supported: DNS names, domain prefixes.
Auth-method field: Only methods supported by PgBouncer's auth_type are supported, except any and pam,
which only work globally. User name map (map=) parameter is not supported.

Example
Minimal config:

[databases]
template1 = host=127.0.0.1 dbname=template1 auth_user=someuser

[pgbouncer]
pool_mode = session
listen_port = 6432
listen_addr = 127.0.0.1
auth_type = md5
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser
stats_users = stat_collector

Database defaults:

[databases]

; foodb over Unix socket
foodb =

; redirect bardb to bazdb on localhost
bardb = host=127.0.0.1 dbname=bazdb

; access to destination database will go with single user
forcedb = host=127.0.0.1 port=300 user=baz password=foo client_encoding=UNICODE datestyle=ISO

Example of a secure function for auth_query:

CREATE OR REPLACE FUNCTION pgbouncer.user_lookup(in i_username text, out uname text, out phash text)
RETURNS record AS $$
BEGIN
 SELECT usename, passwd FROM pg_catalog.pg_shadow
 WHERE usename = i_username INTO uname, phash;
 RETURN;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
REVOKE ALL ON FUNCTION pgbouncer.user_lookup(text) FROM public, pgbouncer;
GRANT EXECUTE ON FUNCTION pgbouncer.user_lookup(text) TO pgbouncer;

See also
pgbouncer(1) - man page for general usage, console commands

https://www.pgbouncer.org/

https://www.pgbouncer.org/

PgBouncer TODO list
Highly visible missing features
Significant amount of users feel the need for those.

Protocol-level plan cache.

LISTEN/NOTIFY. Requires strict SQL format.

Waiting for contributors...

Problems / cleanups
Bad naming in data strctures:

PgSocket->auth_user [vs. PgDatabase->auth_user]

PgSocket->db [vs. PgPool->db]

other per-user settings

Maintenance order vs. lifetime_kill_gap: http://lists.pgfoundry.org/pipermail/pgbouncer-general/2011-
February/000679.html

per_loop_maint/per_loop_activate take too much time in case of moderate load and lots of pools.
Perhaps active_pool_list would help, which contains only pools touched in current loop.

new states for clients: idle and in-query. That allows to apply client_idle_timeout and query_timeout
without walking all clients on maintenance time.

check if SQL error codes are correct

removing user should work - kill connections

keep stats about error counts

cleanup of logging levels, to make log more useful

to test:

signal flood

no mem / no fds handling

fix high-freq maintenance timer - it's only needed when PAUSE/RESUME/shutdown is issued.

Get rid of SBUF_SMALL_PKT logic - it makes processing code complex. Needs a new sbuf_prepare_*() to
notify sbuf about short data. [Plain 'false' from handler postpones processing to next event loop.]

units for config parameters.

Dubious/complicated features
Load-balancing / failover. Both are already solved via DNS. Adding load-balancing config in pgbouncer
might be good idea. Adding failover decision-making is not...

User-based route. Simplest would be to move db info to pool and fill username into dns.

some preliminary notification that fd limit is full

Move all "look-at-full-packet" situations to SBUF_EV_PKT_CALLBACK

pool_mode = plproxy - use postgres in full-duplex mode for autocommit queries, multiplexing several
queries into one connection. Should result in more efficient CPU usage of server.

SMP: spread sockets over per-cpu threads. Needs confirmation that single-threadedness can be
problem. It can also be that only accept() + login handling of short connection is problem that could be
solved by just having threads for login handling, which would be lot simpler or just deciding that it is not

http://lists.pgfoundry.org/pipermail/pgbouncer-general/2011-February/000679.html

worth fixing.

	Table of Contents
	PgBouncer
	Building
	DNS lookup support
	PAM authentication
	Building from Git
	Building on Windows
	Running on Windows

	pgbouncer
	Synopsis
	Description
	Quick-start
	Command line switches
	Admin console
	Show commands
	SHOW STATS
	SHOW STATS_TOTALS
	SHOW STATS_AVERAGES
	SHOW TOTALS
	SHOW SERVERS
	SHOW CLIENTS
	SHOW POOLS
	SHOW LISTS
	SHOW USERS
	SHOW DATABASES
	SHOW FDS
	SHOW SOCKETS, SHOW ACTIVE_SOCKETS
	SHOW CONFIG
	SHOW MEM
	SHOW DNS_HOSTS
	SHOW DNS_ZONES
	SHOW VERSION

	Process controlling commands
	PAUSE [db]
	DISABLE db
	ENABLE db
	RECONNECT [db]
	KILL db
	SUSPEND
	RESUME [db]
	SHUTDOWN
	RELOAD
	WAIT_CLOSE [db]

	Other commands
	SET key = arg

	Signals
	Libevent settings

	See also

	pgbouncer.ini
	Description
	Generic settings
	logfile
	pidfile
	listen_addr
	listen_port
	unix_socket_dir
	unix_socket_mode
	unix_socket_group
	user
	auth_file
	auth_hba_file
	auth_type
	auth_query
	auth_user
	pool_mode
	max_client_conn
	default_pool_size
	min_pool_size
	reserve_pool_size
	reserve_pool_timeout
	max_db_connections
	max_user_connections
	server_round_robin
	ignore_startup_parameters
	disable_pqexec
	application_name_add_host
	conffile
	service_name
	job_name
	stats_period

	Log settings
	syslog
	syslog_ident
	syslog_facility
	log_connections
	log_disconnections
	log_pooler_errors
	log_stats
	verbose

	Console access control
	admin_users
	stats_users

	Connection sanity checks, timeouts
	server_reset_query
	server_reset_query_always
	server_check_delay
	server_check_query
	server_fast_close
	server_lifetime
	server_idle_timeout
	server_connect_timeout
	server_login_retry
	client_login_timeout
	autodb_idle_timeout
	dns_max_ttl
	dns_nxdomain_ttl
	dns_zone_check_period
	resolv_conf

	TLS settings
	client_tls_sslmode
	client_tls_key_file
	client_tls_cert_file
	client_tls_ca_file
	client_tls_protocols
	client_tls_ciphers
	client_tls_ecdhcurve
	client_tls_dheparams
	server_tls_sslmode
	server_tls_ca_file
	server_tls_key_file
	server_tls_cert_file
	server_tls_protocols
	server_tls_ciphers

	Dangerous timeouts
	query_timeout
	query_wait_timeout
	client_idle_timeout
	idle_transaction_timeout
	suspend_timeout

	Low-level network settings
	pkt_buf
	max_packet_size
	listen_backlog
	sbuf_loopcnt
	so_reuseport
	tcp_defer_accept
	tcp_socket_buffer
	tcp_keepalive
	tcp_keepcnt
	tcp_keepidle
	tcp_keepintvl

	Section [databases]
	dbname
	host
	port
	user
	password
	auth_user
	pool_size
	reserve_pool
	connect_query
	pool_mode
	max_db_connections
	client_encoding
	datestyle
	timezone

	Section [users]
	pool_mode
	max_user_connections

	Include directive
	Authentication file format
	HBA file format
	Example
	See also

	PgBouncer TODO list
	Highly visible missing features
	Problems / cleanups
	Dubious/complicated features

