
— title: “pgBouncer - A lightweight connection pooler for PostgreSQL” draft:
false —

pgBouncer - A Lightweight Connection Pooler for
PostgreSQL

PgBouncer

Lightweight connection pooler for PostgreSQL.

Homepage: https://www.pgbouncer.org/

Sources, bug tracking: https://github.com/pgbouncer/pgbouncer

Building

PgBouncer depends on few things to get compiled:

• GNU Make 3.81+
• Libevent 2.0+
• pkg-config
• OpenSSL 1.0.1+ for TLS support
• (optional) c-ares as alternative to Libevent’s evdns
• (optional) PAM libraries

When dependencies are installed just run:

$./configure --prefix=/usr/local
$ make
$ make install

If you are building from Git, or are building for Windows, please see separate
build instructions below.

DNS lookup support

PgBouncer does host name lookups at connect time instead of just once at
configuration load time. This requires an asynchronous DNS implementation.
The following table shows supported backends and their probing order:

1

https://www.pgbouncer.org/
https://github.com/pgbouncer/pgbouncer
https://www.gnu.org/software/make/
http://libevent.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.openssl.org/
http://c-ares.haxx.se/

backend parallel EDNS0 (1) /etc/hosts SOA lookup (2) note

c-ares yes yes yes yes IPv6+CNAME buggy in <=1.10
udns yes yes no yes IPv4 only
evdns, libevent 2.x yes no yes no does not check /etc/hosts updates
getaddrinfo_a, glibc 2.9+ yes yes (3) yes no N/A on non-glibc
getaddrinfo, libc no yes (3) yes no N/A on Windows, requires pthreads

1. EDNS0 is required to have more than 8 addresses behind one host name.
2. SOA lookup is needed to re-check host names on zone serial change.
3. To enable EDNS0, add options edns0 to /etc/resolv.conf.

c-ares is the most fully-featured implementation and is recommended for most
uses and binary packaging (if a sufficiently new version is available). Libevent’s
built-in evdns is also suitable for many uses, with the listed restrictions. The
other backends are mostly legacy options at this point and don’t receive much
testing anymore.

By default, c-ares is used if it can be found. Its use can be forced with configure
--with-cares or disabled with --without-cares. If c-ares is not used (not
found or disabled), then specify --with-udns to pick udns, else Libevent is used.
Specify --disable-evdns to disable the use of Libevent’s evdns and fall back
to a libc-based implementation.

PAM authentication

To enable PAM authentication, ./configure has a flag --with-pam (default
value is no). When compiled with PAM support, a new global authentication
type pam is available to validate users through PAM.

systemd integration

To enable systemd integration, use the configure option --with-systemd. This
allows using Type=notify service units. See etc/pgbouncer.service for an
example.

Building from Git

Building PgBouncer from Git requires that you fetch the libusual submodule
and generate the header and configuration files before you can run configure:

2

$ git clone https://github.com/pgbouncer/pgbouncer.git
$ cd pgbouncer
$ git submodule init
$ git submodule update
$./autogen.sh
$./configure ...
$ make
$ make install

Additional packages required: autoconf, automake, libtool, pandoc

Building on Windows

The only supported build environment on Windows is MinGW. Cygwin and
Visual $ANYTHING are not supported.

To build on MinGW, do the usual:

$./configure ...
$ make

If cross-compiling from Unix:

$./configure --host=i586-mingw32msvc ...

Running on Windows

Running from the command line goes as usual, except that the -d (daemonize),
-R (reboot), and -u (switch user) switches will not work.

To run PgBouncer as a Windows service, you need to configure the service_name
parameter to set name for service. Then:

$ pgbouncer -regservice config.ini

To uninstall service:

$ pgbouncer -unregservice config.ini

To use the Windows event log, set syslog = 1 in the configuration file. But
before that you need to register pgbevent.dll:

$ regsvr32 pgbevent.dll

3

To unregister it, do:

$ regsvr32 /u pgbevent.dll

— title: “Usage” draft: false —

pgbouncer

Synopsis

pgbouncer [-d][-R][-v][-u user] <pgbouncer.ini>
pgbouncer -V|-h

On Windows, the options are:

pgbouncer.exe [-v][-u user] <pgbouncer.ini>
pgbouncer.exe -V|-h

Additional options for setting up a Windows service:

pgbouncer.exe --regservice <pgbouncer.ini>
pgbouncer.exe --unregservice <pgbouncer.ini>

Description

pgbouncer is a PostgreSQL connection pooler. Any target application can be
connected to pgbouncer as if it were a PostgreSQL server, and pgbouncer
will create a connection to the actual server, or it will reuse one of its existing
connections.

The aim of pgbouncer is to lower the performance impact of opening new
connections to PostgreSQL.

In order not to compromise transaction semantics for connection pooling, pg-
bouncer supports several types of pooling when rotating connections:

Session pooling Most polite method. When a client connects, a server connec-
tion will be assigned to it for the whole duration the client stays connected.
When the client disconnects, the server connection will be put back into
the pool. This is the default method.

Transaction pooling A server connection is assigned to a client only during a
transaction. When PgBouncer notices that transaction is over, the server
connection will be put back into the pool.

4

Statement pooling Most aggressive method. The server connection will be put
back into the pool immediately after a query completes. Multi-statement
transactions are disallowed in this mode as they would break.

The administration interface of pgbouncer consists of some new SHOW commands
available when connected to a special “virtual” database pgbouncer.

Quick-start

Basic setup and usage is as follows.

1. Create a pgbouncer.ini file. Details in pgbouncer(5). Simple example:

[databases]
template1 = host=127.0.0.1 port=5432 dbname=template1

[pgbouncer]
listen_port = 6432
listen_addr = 127.0.0.1
auth_type = md5
auth_file = userlist.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser

2. Create a userlist.txt file that contains the users allowed in:

"someuser" "same_password_as_in_server"

3. Launch pgbouncer:

$ pgbouncer -d pgbouncer.ini

4. Have your application (or the psql client) connect to pgbouncer instead
of directly to the PostgreSQL server:

$ psql -p 6432 -U someuser template1

5. Manage pgbouncer by connecting to the special administration database
pgbouncer and issuing SHOW HELP; to begin:

5

$ psql -p 6432 -U someuser pgbouncer
pgbouncer=# SHOW HELP;
NOTICE: Console usage
DETAIL:

SHOW [HELP|CONFIG|DATABASES|FDS|POOLS|CLIENTS|SERVERS|SOCKETS|LISTS|VERSION|...]
SET key = arg
RELOAD
PAUSE
SUSPEND
RESUME
SHUTDOWN
[...]

6. If you made changes to the pgbouncer.ini file, you can reload it with:

pgbouncer=# RELOAD;

Command line switches

-d, --daemon Run in the background. Without it, the process will run in the
foreground. Note: Does not work on Windows; pgbouncer need to run
as service there.

-R, --reboot Do an online restart. That means connecting to the running
process, loading the open sockets from it, and then using them. If there is
no active process, boot normally. Note: Works only if OS supports Unix
sockets and the unix_socket_dir is not disabled in configuration. Does
not work on Windows. Does not work with TLS connections, they are
dropped.

-u USERNAME, --user=USERNAME Switch to the given user on
startup.

-v, --verbose Increase verbosity. Can be used multiple times.

-q, --quiet Be quiet: do not log to stdout. This does not affect logging
verbosity, only that stdout is not to be used. For use in init.d scripts.

-V, --version Show version.

-h, --help Show short help.

--regservice Win32: Register pgbouncer to run as Windows service. The
service_name configuration parameter value is used as the name to
register under.

--unregservice Win32: Unregister Windows service.

6

Admin console

The console is available by connecting as normal to the database pgbouncer:

$ psql -p 6432 pgbouncer

Only users listed in the configuration parameters admin_users or stats_users
are allowed to log in to the console. (Except when auth_type=any, then any
user is allowed in as a stats_user.)

Additionally, the user name pgbouncer is allowed to log in without password,
if the login comes via the Unix socket and the client has same Unix user UID as
the running process.

Show commands

The SHOW commands output information. Each command is described below.

SHOW STATS Shows statistics. In this and related commands, the total
figures are since process start, the averages are updated every stats_period.

database Statistics are presented per database.

total_xact_count Total number of SQL transactions pooled by pgbouncer.

total_query_count Total number of SQL queries pooled by pgbouncer.

total_received Total volume in bytes of network traffic received by
pgbouncer.

total_sent Total volume in bytes of network traffic sent by pgbouncer.

total_xact_time Total number of microseconds spent by pgbouncer when
connected to PostgreSQL in a transaction, either idle in transaction or
executing queries.

total_query_time Total number of microseconds spent by pgbouncer when
actively connected to PostgreSQL, executing queries.

total_wait_time Time spent by clients waiting for a server, in microseconds.

avg_xact_count Average transactions per second in last stat period.

avg_query_count Average queries per second in last stat period.

avg_recv Average received (from clients) bytes per second.

avg_sent Average sent (to clients) bytes per second.

7

avg_xact_time Average transaction duration, in microseconds.

avg_query_time Average query duration, in microseconds.

avg_wait_time Time spent by clients waiting for a server, in microseconds
(average per second).

SHOW STATS_TOTALS Subset of SHOW STATS showing the total
values (total_).

SHOW STATS_AVERAGES Subset of SHOW STATS showing the av-
erage values (avg_).

SHOW TOTALS Like SHOW STATS but aggregated across all databases.

SHOW SERVERS

type S, for server.

user User name pgbouncer uses to connect to server.

database Database name.

state State of the pgbouncer server connection, one of active, idle, used,
tested, new.

addr IP address of PostgreSQL server.

port Port of PostgreSQL server.

local_addr Connection start address on local machine.

local_port Connection start port on local machine.

connect_time When the connection was made.

request_time When last request was issued.

wait Current waiting time in seconds.

wait_us Microsecond part of the current waiting time.

close_needed 1 if the connection will be closed as soon as possible, because a
configuration file reload or DNS update changed the connection information
or RECONNECT was issued.

ptr Address of internal object for this connection. Used as unique ID.

link Address of client connection the server is paired with.

8

remote_pid PID of backend server process. In case connection is made over
Unix socket and OS supports getting process ID info, its OS PID. Otherwise
it’s extracted from cancel packet the server sent, which should be the PID
in case the server is PostgreSQL, but it’s a random number in case the
server it is another PgBouncer.

tls A string with TLS connection information, or empty if not using TLS.

SHOW CLIENTS

type C, for client.

user Client connected user.

database Database name.

state State of the client connection, one of active or waiting.

addr IP address of client.

port Port client is connected to.

local_addr Connection end address on local machine.

local_port Connection end port on local machine.

connect_time Timestamp of connect time.

request_time Timestamp of latest client request.

wait Current waiting time in seconds.

wait_us Microsecond part of the current waiting time.

close_needed not used for clients

ptr Address of internal object for this connection. Used as unique ID.

link Address of server connection the client is paired with.

remote_pid Process ID, in case client connects over Unix socket and OS
supports getting it.

tls A string with TLS connection information, or empty if not using TLS.

9

SHOW POOLS A new pool entry is made for each couple of (database, user).

database Database name.

user User name.

cl_active Client connections that are linked to server connection and can
process queries.

cl_waiting Client connections that have sent queries but have not yet got a
server connection.

sv_active Server connections that are linked to a client.

sv_idle Server connections that are unused and immediately usable for client
queries.

sv_used Server connections that have been idle for more than server_check_delay,
so they need server_check_query to run on them before they can be
used again.

sv_tested Server connections that are currently running either server_reset_query
or server_check_query.

sv_login Server connections currently in the process of logging in.

maxwait How long the first (oldest) client in the queue has waited, in seconds.
If this starts increasing, then the current pool of servers does not handle
requests quickly enough. The reason may be either an overloaded server
or just too small of a pool_size setting.

maxwait_us Microsecond part of the maximum waiting time.

pool_mode The pooling mode in use.

SHOW LISTS Show following internal information, in columns (not rows):

databases Count of databases.

users Count of users.

pools Count of pools.

free_clients Count of free clients.

used_clients Count of used clients.

login_clients Count of clients in login state.

free_servers Count of free servers.

10

used_servers Count of used servers.

dns_names Count of DNS names in the cache.

dns_zones Count of DNS zones in the cache.

dns_queries Count of in-flight DNS queries.

dns_pending not used

SHOW USERS

name The user name

pool_mode The user’s override pool_mode, or NULL if the default will be
used instead.

SHOW DATABASES

name Name of configured database entry.

host Host pgbouncer connects to.

port Port pgbouncer connects to.

database Actual database name pgbouncer connects to.

force_user When the user is part of the connection string, the connection
between pgbouncer and PostgreSQL is forced to the given user, whatever
the client user.

pool_size Maximum number of server connections.

reserve_pool Maximum number of additional connections for this database.

pool_mode The database’s override pool_mode, or NULL if the default will
be used instead.

max_connections Maximum number of allowed connections for this database,
as set by max_db_connections, either globally or per database.

current_connections Current number of connections for this database.

paused 1 if this database is currently paused, else 0.

disabled 1 if this database is currently disabled, else 0.

11

SHOW FDS Internal command - shows list of file descriptors in use with
internal state attached to them.

When the connected user has the user name “pgbouncer”, connects through the
Unix socket and has same the UID as the running process, the actual FDs are
passed over the connection. This mechanism is used to do an online restart.
Note: This does not work on Windows.

This command also blocks the internal event loop, so it should not be used while
PgBouncer is in use.

fd File descriptor numeric value.

task One of pooler, client or server.

user User of the connection using the FD.

database Database of the connection using the FD.

addr IP address of the connection using the FD, unix if a Unix socket is used.

port Port used by the connection using the FD.

cancel Cancel key for this connection.

link fd for corresponding server/client. NULL if idle.

SHOW SOCKETS, SHOW ACTIVE_SOCKETS Shows low-level in-
formation about sockets or only active sockets. This includes the information
shown under SHOW CLIENTS and SHOW SERVERS as well as other
more low-level information.

SHOW CONFIG Show the current configuration settings, one per row, with
the following columns:

key Configuration variable name

value Configuration value

changeable Either yes or no, shows if the variable can be changed while
running. If no, the variable can be changed only at boot time. Use SET
to change a variable at run time.

SHOW MEM Shows low-level information about the current sizes of various
internal memory allocations. The information presented is subject to change.

12

SHOW DNS_HOSTS Show host names in DNS cache.

hostname Host name.

ttl How many seconds until next lookup.

addrs Comma separated list of addresses.

SHOW DNS_ZONES Show DNS zones in cache.

zonename Zone name.

serial Current serial.

count Host names belonging to this zone.

SHOW VERSION Show the PgBouncer version string.

Process controlling commands

PAUSE [db] PgBouncer tries to disconnect from all servers, first waiting for
all queries to complete. The command will not return before all queries are
finished. To be used at the time of database restart.

If database name is given, only that database will be paused.

New client connections to a paused database will wait until RESUME is called.

DISABLE db Reject all new client connections on the given database.

ENABLE db Allow new client connections after a previous DISABLE com-
mand.

RECONNECT [db] Close each open server connection for the given database,
or all databases, after it is released (according to the pooling mode), even if its
lifetime is not up yet. New server connections can be made immediately and
will connect as necessary according to the pool size settings.

This command is useful when the server connection setup has changed, for
example to perform a gradual switchover to a new server. It is not necessary to
run this command when the connection string in pgbouncer.ini has been changed
and reloaded (see RELOAD) or when DNS resolution has changed, because
then the equivalent of this command will be run automatically. This command
is only necessary if something downstream of PgBouncer routes the connections.

13

After this command is run, there could be an extended period where some server
connections go to an old destination and some server connections go to a new
destination. This is likely only sensible when switching read-only traffic between
read-only replicas, or when switching between nodes of a multimaster replication
setup. If all connections need to be switched at the same time, PAUSE is
recommended instead. To close server connections without waiting (for example,
in emergency failover rather than gradual switchover scenarios), also consider
KILL.

KILL db Immediately drop all client and server connections on given database.

New client connections to a killed database will wait until RESUME is called.

SUSPEND All socket buffers are flushed and PgBouncer stops listening for
data on them. The command will not return before all buffers are empty. To be
used at the time of PgBouncer online reboot.

New client connections to a suspended database will wait until RESUME is
called.

RESUME [db] Resume work from previous KILL, PAUSE, or SUSPEND
command.

SHUTDOWN The PgBouncer process will exit.

RELOAD The PgBouncer process will reload its configuration file and update
changeable settings.

PgBouncer notices when a configuration file reload changes the connection
parameters of a database definition. An existing server connection to the old
destination will be closed when the server connection is next released (according
to the pooling mode), and new server connections will immediately use the
updated connection parameters.

WAIT_CLOSE [db] Wait until all server connections, either of the specified
database or of all databases, have cleared the “close_needed” state (see SHOW
SERVERS). This can be called after a RECONNECT or RELOAD to wait
until the respective configuration change has been fully activated, for example
in switchover scripts.

14

Other commands

SET key = arg Changes a configuration setting (see also SHOW CONFIG).
For example:

SET log_connections = 1;
SET server_check_query = ’select 2’;

(Note that this command is run on the PgBouncer admin console and sets
PgBouncer settings. A SET command run on another database will be passed
to the PostgreSQL backend like any other SQL command.)

Signals

SIGHUP Reload config. Same as issuing the command RELOAD on the
console.

SIGINT Safe shutdown. Same as issuing PAUSE and SHUTDOWN on the
console.

SIGTERM Immediate shutdown. Same as issuing SHUTDOWN on the
console.

SIGUSR1 Same as issuing PAUSE on the console.

SIGUSR2 Same as issuing RESUME on the console.

Libevent settings

From the Libevent documentation:

It is possible to disable support for epoll, kqueue, devpoll, poll or
select by setting the environment variable EVENT_NOEPOLL,
EVENT_NOKQUEUE, EVENT_NODEVPOLL, EVENT_NOPOLL
or EVENT_NOSELECT, respectively.
By setting the environment variable EVENT_SHOW_METHOD,
libevent displays the kernel notification method that it uses.

See also

pgbouncer(5) - man page of configuration settings descriptions

https://www.pgbouncer.org/

— title: “Configuration” draft: false —

15

https://www.pgbouncer.org/

pgbouncer.ini

Description

The configuration file is in “ini” format. Section names are between “[” and
“]”. Lines starting with “;” or “#” are taken as comments and ignored. The
characters “;” and “#” are not recognized as special when they appear later in
the line.

Generic settings

logfile

Specifies the log file. The log file is kept open, so after rotation kill -HUP or
on console RELOAD; should be done. On Windows, the service must be stopped
and started.

Default: not set

pidfile

Specifies the PID file. Without pidfile set, daemonization is not allowed.

Default: not set

listen_addr

Specifies a list of addresses where to listen for TCP connections. You may
also use * meaning “listen on all addresses”. When not set, only Unix socket
connections are accepted.

Addresses can be specified numerically (IPv4/IPv6) or by name.

Default: not set

listen_port

Which port to listen on. Applies to both TCP and Unix sockets.

Default: 6432

16

unix_socket_dir

Specifies location for Unix sockets. Applies to both listening socket and server
connections. If set to an empty string, Unix sockets are disabled. Required for
online reboot (-R) to work. Not supported on Windows.

Default: /tmp

unix_socket_mode

File system mode for Unix socket.

Default: 0777

unix_socket_group

Group name to use for Unix socket.

Default: not set

user

If set, specifies the Unix user to change to after startup. Works only if PgBouncer
is started as root or if it’s already running as given user. Not supported on
Windows.

Default: not set

auth_file

The name of the file to load user names and passwords from. See section
Authentication file format below about details.

Default: not set

auth_hba_file

HBA configuration file to use when auth_type is hba.

Default: not set

17

auth_type

How to authenticate users.

pam PAM is used to authenticate users, auth_file is ignored. This method is
not compatible with databases using the auth_user option. The service
name reported to PAM is “pgbouncer”. pam is not supported in the HBA
configuration file.

hba The actual authentication type is loaded from auth_hba_file. This allows
different authentication methods for different access paths, for example:
connections over Unix socket use the peer auth method, connections over
TCP must use TLS.

cert Client must connect over TLS connection with a valid client certificate. The
user name is then taken from the CommonName field from the certificate.

md5 Use MD5-based password check. This is the default authentication method.
auth_file may contain both MD5-encrypted and plain-text passwords. If
md5 is configured and a user has a SCRAM secret, then SCRAM authenti-
cation is used automatically instead.

scram-sha-256 Use password check with SCRAM-SHA-256. auth_file has
to contain SCRAM secrets or plain-text passwords. Note that SCRAM
secrets can only be used for verifying the password of a client but not for
logging into a server. To be able to use SCRAM on server connections, use
plain-text passwords.

plain The clear-text password is sent over the wire. Deprecated.

trust No authentication is done. The user name must still exist in auth_file.

any Like the trust method, but the user name given is ignored. Requires that
all databases are configured to log in as a specific user. Additionally, the
console database allows any user to log in as admin.

auth_query

Query to load user’s password from database.

Direct access to pg_shadow requires admin rights. It’s preferable to use a
non-superuser that calls a SECURITY DEFINER function instead.

Note that the query is run inside the target database. So if a function is used, it
needs to be installed into each database.

Default: SELECT usename, passwd FROM pg_shadow WHERE usename=$1

18

auth_user

If auth_user is set, then any user not specified in auth_file will be queried
through the auth_query query from pg_shadow in the database, using
auth_user. The password of auth_user will be taken from auth_file.

Direct access to pg_shadow requires admin rights. It’s preferable to use a
non-superuser that calls a SECURITY DEFINER function instead.

Default: not set

pool_mode

Specifies when a server connection can be reused by other clients.

session Server is released back to pool after client disconnects. Default.

transaction Server is released back to pool after transaction finishes.

statement Server is released back to pool after query finishes. Transactions
spanning multiple statements are disallowed in this mode.

max_client_conn

Maximum number of client connections allowed. When increased then the file
descriptor limits should also be increased. Note that the actual number of file
descriptors used is more than max_client_conn. The theoretical maximum used
is:

max_client_conn + (max pool_size * total databases * total users)

if each user connects under its own user name to the server. If a database user is
specified in the connection string (all users connect under the same user name),
the theoretical maximum is:

max_client_conn + (max pool_size * total databases)

The theoretical maximum should be never reached, unless somebody deliberately
crafts a special load for it. Still, it means you should set the number of file
descriptors to a safely high number.

Search for ulimit in your favorite shell man page. Note: ulimit does not apply
in a Windows environment.

Default: 100

19

default_pool_size

How many server connections to allow per user/database pair. Can be overridden
in the per-database configuration.

Default: 20

min_pool_size

Add more server connections to pool if below this number. Improves behavior
when usual load comes suddenly back after period of total inactivity. The value
is effectively capped at the pool size.

Default: 0 (disabled)

reserve_pool_size

Howmany additional connections to allow to a pool (see reserve_pool_timeout).
0 disables.

Default: 0 (disabled)

reserve_pool_timeout

If a client has not been serviced in this many seconds, use additional connections
from the reserve pool. 0 disables.

Default: 5.0

max_db_connections

Do not allow more than this many server connections per database (regardless
of user). This considers the PgBouncer database that the client has connected
to, not the PostgreSQL database of the outgoing connection.

This can also be set per database in the [databases] section.

Note that when you hit the limit, closing a client connection to one pool will
not immediately allow a server connection to be established for another pool,
because the server connection for the first pool is still open. Once the server
connection closes (due to idle timeout), a new server connection will immediately
be opened for the waiting pool.

Default: 0 (unlimited)

20

max_user_connections

Do not allow more than this many server connections per user (regardless of
database). This considers the PgBouncer user that is associated with a pool,
which is either the user specified for the server connection or in absence of that
the user the client has connected as.

This can also be set per user in the [users] section.

Note that when you hit the limit, closing a client connection to one pool will
not immediately allow a server connection to be established for another pool,
because the server connection for the first pool is still open. Once the server
connection closes (due to idle timeout), a new server connection will immediately
be opened for the waiting pool.

Default: 0 (unlimited)

server_round_robin

By default, PgBouncer reuses server connections in LIFO (last-in, first-out)
manner, so that few connections get the most load. This gives best performance
if you have a single server serving a database. But if there is TCP round-robin
behind a database IP address, then it is better if PgBouncer also uses connections
in that manner, thus achieving uniform load.

Default: 0

ignore_startup_parameters

By default, PgBouncer allows only parameters it can keep track of in startup pack-
ets: client_encoding, datestyle, timezone and standard_conforming_strings.
All others parameters will raise an error. To allow others parameters, they can
be specified here, so that PgBouncer knows that they are handled by the admin
and it can ignore them.

Default: empty

disable_pqexec

Disable Simple Query protocol (PQexec). Unlike Extended Query protocol,
Simple Query allows multiple queries in one packet, which allows some classes of
SQL-injection attacks. Disabling it can improve security. Obviously this means
only clients that exclusively use the Extended Query protocol will stay working.

Default: 0

21

application_name_add_host

Add the client host address and port to the application name setting set on
connection start. This helps in identifying the source of bad queries etc. This
logic applies only on start of connection. If application_name is later changed
with SET, PgBouncer does not change it again.

Default: 0

conffile

Show location of current config file. Changing it will make PgBouncer use
another config file for next RELOAD / SIGHUP.

Default: file from command line

service_name

Used on win32 service registration.

Default: pgbouncer

job_name

Alias for service_name.

stats_period

Sets how often the averages shown in various SHOW commands are updated
and how often aggregated statistics are written to the log (but see log_stats).
[seconds]

Default: 60

Log settings

syslog

Toggles syslog on/off. On Windows, the event log is used instead.

Default: 0

22

syslog_ident

Under what name to send logs to syslog.

Default: pgbouncer (program name)

syslog_facility

Under what facility to send logs to syslog. Possibilities: auth, authpriv, daemon,
user, local0-7.

Default: daemon

log_connections

Log successful logins.

Default: 1

log_disconnections

Log disconnections with reasons.

Default: 1

log_pooler_errors

Log error messages the pooler sends to clients.

Default: 1

log_stats

Write aggregated statistics into the log, every stats_period. This can be
disabled if external monitoring tools are used to grab the same data from SHOW
commands.

Default: 1

verbose

Increase verbosity. Mirrors the “-v” switch on the command line. Using “-v -v”
on the command line is the same as verbose=2.

Default: 0

23

Console access control

admin_users

Comma-separated list of database users that are allowed to connect and run all
commands on the console. Ignored when auth_type is any, in which case any
user name is allowed in as admin.

Default: empty

stats_users

Comma-separated list of database users that are allowed to connect and run
read-only queries on the console. That means all SHOW commands except
SHOW FDS.

Default: empty

Connection sanity checks, timeouts

server_reset_query

Query sent to server on connection release, before making it available to other
clients. At that moment no transaction is in progress so it should not include
ABORT or ROLLBACK.

The query is supposed to clean any changes made to the database session so that
the next client gets the connection in a well-defined state. The default is DISCARD
ALL which cleans everything, but that leaves the next client no pre-cached state.
It can be made lighter, e.g. DEALLOCATE ALL to just drop prepared statements,
if the application does not break when some state is kept around.

When transaction pooling is used, the server_reset_query is not used, as
clients must not use any session-based features as each transaction ends up in a
different connection and thus gets a different session state.

Default: DISCARD ALL

server_reset_query_always

Whether server_reset_query should be run in all pooling modes. When this
setting is off (default), the server_reset_query will be run only in pools that
are in sessions-pooling mode. Connections in transaction-pooling mode should
not have any need for a reset query.

24

This setting is for working around broken setups that run applications that
use session features over a transaction-pooled PgBouncer. It changes non-
deterministic breakage to deterministic breakage: Clients always lose their state
after each transaction.
Default: 0

server_check_delay

How long to keep released connections available for immediate re-use, without
running sanity-check queries on it. If 0 then the query is ran always.
Default: 30.0

server_check_query

Simple do-nothing query to check if the server connection is alive.
If an empty string, then sanity checking is disabled.
Default: SELECT 1;

server_fast_close

Disconnect a server in session pooling mode immediately or after the end of the
current transaction if it is in “close_needed” mode (set by RECONNECT, RELOAD
that changes connection settings, or DNS change), rather than waiting for the
session end. In statement or transaction pooling mode, this has no effect since
that is the default behavior there.
If because of this setting a server connection is closed before the end of the client
session, the client connection is also closed. This ensures that the client notices
that the session has been interrupted.
This setting makes connection configuration changes take effect sooner if session
pooling and long-running sessions are used. The downside is that client sessions
are liable to be interrupted by a configuration change, so client applications
will need logic to reconnect and reestablish session state. But note that no
transactions will be lost, because running transactions are not interrupted, only
idle sessions.
Default: 0

server_lifetime

The pooler will close an unused server connection that has been connected longer
than this. Setting it to 0 means the connection is to be used only once, then
closed. [seconds]

25

Default: 3600.0

server_idle_timeout

If a server connection has been idle more than this many seconds it will be
dropped. If 0 then timeout is disabled. [seconds]

Default: 600.0

server_connect_timeout

If connection and login won’t finish in this amount of time, the connection will
be closed. [seconds]

Default: 15.0

server_login_retry

If login failed, because of failure from connect() or authentication that pooler
waits this much before retrying to connect. [seconds]

Default: 15.0

client_login_timeout

If a client connects but does not manage to log in in this amount of time, it will
be disconnected. Mainly needed to avoid dead connections stalling SUSPEND
and thus online restart. [seconds]

Default: 60.0

autodb_idle_timeout

If the automatically created (via “*”) database pools have been unused this
many seconds, they are freed. The negative aspect of that is that their statistics
are also forgotten. [seconds]

Default: 3600.0

dns_max_ttl

How long the DNS lookups can be cached. If a DNS lookup returns several
answers, PgBouncer will robin-between them in the meantime. The actual DNS
TTL is ignored. [seconds]

Default: 15.0

26

dns_nxdomain_ttl

How long error and NXDOMAIN DNS lookups can be cached. [seconds]

Default: 15.0

dns_zone_check_period

Period to check if a zone serial has changed.

PgBouncer can collect DNS zones from host names (everything after first dot)
and then periodically check if the zone serial changes. If it notices changes, all
host names under that zone are looked up again. If any host IP changes, its
connections are invalidated.

Works only with UDNS and c-ares backends (--with-udns or --with-cares to
configure).

Default: 0.0 (disabled)

resolv_conf

The location of a custom resolv.conf file. This is to allow specifying custom
DNS servers and perhaps other name resolution options, independent of the
global operating system configuration.

Requires evdns (>= 2.0.3) or c-ares (>= 1.15.0) backend.

The parsing of the file is done by the DNS backend library, not PgBouncer, so
see the library’s documentation for details on allowed syntax and directives.

Default: empty (use operating system defaults)

TLS settings

client_tls_sslmode

TLS mode to use for connections from clients. TLS connections are disabled
by default. When enabled, client_tls_key_file and client_tls_cert_file
must be also configured to set up the key and certificate PgBouncer uses to
accept client connections.

disable Plain TCP. If client requests TLS, it’s ignored. Default.

allow If client requests TLS, it is used. If not, plain TCP is used. If the client
presents a client certificate, it is not validated.

prefer Same as allow.

27

require Client must use TLS. If not, the client connection is rejected. If the
client presents a client certificate, it is not validated.

verify-ca Client must use TLS with valid client certificate.

verify-full Same as verify-ca.

client_tls_key_file

Private key for PgBouncer to accept client connections.

Default: not set

client_tls_cert_file

Certificate for private key. Clients can validate it.

Default: not set

client_tls_ca_file

Root certificate file to validate client certificates.

Default: not set

client_tls_protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsv1.1,
tlsv1.2, tlsv1.3. Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure
(tlsv1.2,tlsv1.3), legacy (all).

Default: secure

client_tls_ciphers

Default: fast

client_tls_ecdhcurve

Elliptic Curve name to use for ECDH key exchanges.

Allowed values: none (DH is disabled), auto (256-bit ECDH), curve name.

Default: auto

28

client_tls_dheparams

DHE key exchange type.

Allowed values: none (DH is disabled), auto (2048-bit DH), legacy (1024-bit
DH).

Default: auto

server_tls_sslmode

TLS mode to use for connections to PostgreSQL servers. TLS connections are
disabled by default.

disable Plain TCP. TCP is not even requested from the server. Default.

allow FIXME: if server rejects plain, try TLS?

prefer TLS connection is always requested first from PostgreSQL, when refused
connection will be established over plain TCP. Server certificate is not
validated.

require Connection must go over TLS. If server rejects it, plain TCP is not
attempted. Server certificate is not validated.

verify-ca Connection must go over TLS and server certificate must be valid
according to server_tls_ca_file. Server host name is not checked against
certificate.

verify-full Connection must go over TLS and server certificate must be valid ac-
cording to server_tls_ca_file. Server host name must match certificate
information.

server_tls_ca_file

Root certificate file to validate PostgreSQL server certificates.

Default: not set

server_tls_key_file

Private key for PgBouncer to authenticate against PostgreSQL server.

Default: not set

29

server_tls_cert_file

Certificate for private key. PostgreSQL server can validate it.

Default: not set

server_tls_protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsv1.1,
tlsv1.2, tlsv1.3. Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure
(tlsv1.2,tlsv1.3), legacy (all).

Default: secure

server_tls_ciphers

Default: fast

Dangerous timeouts

Setting the following timeouts can cause unexpected errors.

query_timeout

Queries running longer than that are canceled. This should be used only
with slightly smaller server-side statement_timeout, to apply only for network
problems. [seconds]

Default: 0.0 (disabled)

query_wait_timeout

Maximum time queries are allowed to spend waiting for execution. If the query
is not assigned to a server during that time, the client is disconnected. This is
used to prevent unresponsive servers from grabbing up connections. [seconds]

It also helps when the server is down or database rejects connections for any
reason. If this is disabled, clients will be queued indefinitely.

Default: 120

30

client_idle_timeout

Client connections idling longer than this many seconds are closed. This should
be larger than the client-side connection lifetime settings, and only used for
network problems. [seconds]

Default: 0.0 (disabled)

idle_transaction_timeout

If a client has been in “idle in transaction” state longer, it will be disconnected.
[seconds]

Default: 0.0 (disabled)

suspend_timeout

How many seconds to wait for buffer flush during SUSPEND or reboot (-R). A
connection is dropped if the flush does not succeed.

Default: 10

Low-level network settings

pkt_buf

Internal buffer size for packets. Affects size of TCP packets sent and general
memory usage. Actual libpq packets can be larger than this, so no need to set it
large.

Default: 4096

max_packet_size

Maximum size for PostgreSQL packets that PgBouncer allows through. One
packet is either one query or one result set row. Full result set can be larger.

Default: 2147483647

listen_backlog

Backlog argument for listen(2). Determines how many new unanswered connec-
tion attempts are kept in queue. When the queue is full, further new connections
are dropped.

Default: 128

31

sbuf_loopcnt

How many times to process data on one connection, before proceeding. Without
this limit, one connection with a big result set can stall PgBouncer for a long
time. One loop processes one pkt_buf amount of data. 0 means no limit.

Default: 5

so_reuseport

Specifies whether to set the socket option SO_REUSEPORT on TCP listening
sockets. On some operating systems, this allows running multiple PgBouncer
instances on the same host listening on the same port and having the kernel
distribute the connections automatically. This option is a way to get PgBouncer
to use more CPU cores. (PgBouncer is single-threaded and uses one CPU core
per instance.)

The behavior in detail depends on the operating system kernel. As of this
writing, this setting has the desired effect on (sufficiently recent versions of)
Linux, DragonFlyBSD, and FreeBSD. (On FreeBSD, it applies the socket option
SO_REUSEPORT_LB instead.) Some other operating systems support the socket
option but it won’t have the desired effect: It will allow multiple processes to
bind to the same port but only one of them will get the connections. See your
operating system’s setsockopt() documentation for details.

On systems that don’t support the socket option at all, turning this setting on
will result in an error.

Each PgBouncer instance on the same host needs different settings for at least
unix_socket_dir and pidfile, as well as logfile if that is used. Also note
that if you make use of this option, you can no longer connect to a specific
PgBouncer instance via TCP/IP, which might have implications for monitoring
and metrics collection.

Default: 0

tcp_defer_accept

For details on this and other TCP options, please see man 7 tcp.

Default: 45 on Linux, otherwise 0

tcp_socket_buffer

Default: not set

32

tcp_keepalive

Turns on basic keepalive with OS defaults.
On Linux, the system defaults are tcp_keepidle=7200, tcp_keepintvl=75,
tcp_keepcnt=9. They are probably similar on other operating systems.
Default: 1

tcp_keepcnt

Default: not set

tcp_keepidle

Default: not set

tcp_keepintvl

Default: not set

tcp_user_timeout

Sets the TCP_USER_TIMEOUT socket option. This specifies the maximum amount
of time in milliseconds that transmitted data may remain unacknowledged before
the TCP connection is forcibly closed. If set to 0, then operating system’s default
is used.
This is currently only supported on Linux.
Default: 0

Section [databases]

This contains key=value pairs where the key will be taken as a database name
and the value as a libpq connection string style list of key=value pairs. Not
all features known from libpq can be used (service=, .pgpass), since the actual
libpq is not used.
The database name can contain characters _0-9A-Za-z without quoting. Names
that contain other characters need to be quoted with standard SQL identifier
quoting: double quotes, with “” for a single instance of a double quote.
“*” acts as a fallback database: if the exact name does not exist, its value is
taken as connection string for requested database. Such automatically created
database entries are cleaned up if they stay idle longer than the time specified
by the autodb_idle_timeout parameter.

33

dbname

Destination database name.

Default: same as client-side database name

host

Host name or IP address to connect to. Host names are resolved at connection
time, the result is cached per dns_max_ttl parameter. When a host name’s
resolution changes, existing server connections are automatically closed when
they are released (according to the pooling mode), and new server connections
immediately use the new resolution. If DNS returns several results, they are
used in round-robin manner.

Default: not set, meaning to use a Unix socket

port

Default: 5432

user

If user= is set, all connections to the destination database will be done with the
specified user, meaning that there will be only one pool for this database.

Otherwise, PgBouncer logs into the destination database with the client user
name, meaning that there will be one pool per user.

password

The length for password is limited to 160 characters maximum.

If no password is specified here, the password from the auth_file or auth_query
will be used.

auth_user

Override of the global auth_user setting, if specified.

pool_size

Set the maximum size of pools for this database. If not set, the
default_pool_size is used.

34

reserve_pool

Set additional connections for this database. If not set, reserve_pool_size is
used.

connect_query

Query to be executed after a connection is established, but before allowing the
connection to be used by any clients. If the query raises errors, they are logged
but ignored otherwise.

pool_mode

Set the pool mode specific to this database. If not set, the default pool_mode is
used.

max_db_connections

Configure a database-wide maximum (i.e. all pools within the database will not
have more than this many server connections).

client_encoding

Ask specific client_encoding from server.

datestyle

Ask specific datestyle from server.

timezone

Ask specific timezone from server.

Section [users]

This contains key=value pairs where the key will be taken as a user name and the
value as a libpq connection string style list of key=value pairs of configuration
settings specific for this user. Only a few settings are available here.

35

pool_mode

Set the pool mode to be used for all connections from this user. If not set, the
database or default pool_mode is used.

max_user_connections

Configure a maximum for the user (i.e. all pools with the user will not have
more than this many server connections).

Include directive

The PgBouncer configuration file can contain include directives, which specify
another configuration file to read and process. This allows splitting the con-
figuration file into physically separate parts. The include directives look like
this:

%include filename

If the file name is not absolute path it is taken as relative to current working
directory.

Authentication file format

PgBouncer needs its own user database. The users are loaded from a text file in
the following format:

"username1" "password" ...
"username2" "md5abcdef012342345" ...
"username2" "SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>"

There should be at least 2 fields, surrounded by double quotes. The first field is
the user name and the second is either a plain-text, a MD5-hashed password, or
a SCRAM secret. PgBouncer ignores the rest of the line.

PostgreSQL MD5-hashed password format:

"md5" + md5(password + username)

So user admin with password 1234 will have MD5-hashed password
md545f2603610af569b6155c45067268c6b.

PostgreSQL SCRAM secret format:

36

SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>

See the PostgreSQL documentation and RFC 5803 for details on this.

The passwords or secrets stored in the authentication file serve two purposes.
First, they are used to verify the passwords of incoming client connections, if a
password-based authentication method is configured. Second, they are used as
the passwords for outgoing connections to the backend server, if the backend
server requires password-based authentication (unless the password is specified
directly in the database’s connection string). The latter works if the password is
stored in plain text or MD5-hashed. SCRAM secrets cannot be used for logging
into a server.

The authentication file can be written by hand, but it’s also useful to generate
it from some other list of users and passwords. See ./etc/mkauth.py for a
sample script to generate the authentication file from the pg_shadow system
table. Alternatively, use auth_query instead of auth_file to avoid having to
maintain a separate authentication file.

HBA file format

It follows the format of the PostgreSQL pg_hba.conf file (see https://www.postgresql.org/docs/current/auth-
pg-hba-conf.html).

• Supported record types: local, host, hostssl, hostnossl.
• Database field: Supports all, sameuser, @file, multiple names. Not
supported: replication, samerole, samegroup.

• User name field: Supports all, @file, multiple names. Not supported:
+groupname.

• Address field: Supports IPv4, IPv6. Not supported: DNS names, domain
prefixes.

• Auth-method field: Only methods supported by PgBouncer’s auth_type
are supported, except any and pam, which only work globally. User name
map (map=) parameter is not supported.

Example

Minimal config:

[databases]
template1 = host=127.0.0.1 dbname=template1 auth_user=someuser

[pgbouncer]
pool_mode = session

37

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

listen_port = 6432
listen_addr = 127.0.0.1
auth_type = md5
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser
stats_users = stat_collector

Database defaults:

[databases]

; foodb over Unix socket
foodb =

; redirect bardb to bazdb on localhost
bardb = host=127.0.0.1 dbname=bazdb

; access to destination database will go with single user
forcedb = host=127.0.0.1 port=300 user=baz password=foo client_encoding=UNICODE datestyle=ISO

Example of a secure function for auth_query:

CREATE OR REPLACE FUNCTION pgbouncer.user_lookup(in i_username text, out uname text, out phash text)
RETURNS record AS $$
BEGIN

SELECT usename, passwd FROM pg_catalog.pg_shadow
WHERE usename = i_username INTO uname, phash;
RETURN;

END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
REVOKE ALL ON FUNCTION pgbouncer.user_lookup(text) FROM public, pgbouncer;
GRANT EXECUTE ON FUNCTION pgbouncer.user_lookup(text) TO pgbouncer;

See also

pgbouncer(1) - man page for general usage, console commands

https://www.pgbouncer.org/

— title: PgBouncer TODO list draft: false —

38

https://www.pgbouncer.org/

PgBouncer TODO list

Highly visible missing features

Significant amount of users feel the need for those.

• Protocol-level plan cache.

• LISTEN/NOTIFY. Requires strict SQL format.

Waiting for contributors. . .

Problems / cleanups

• Bad naming in data strctures:

• PgSocket->auth_user [vs. PgDatabase->auth_user]

• PgSocket->db [vs. PgPool->db]

• other per-user settings

• Maintenance order vs. lifetime_kill_gap: http://lists.pgfoundry.org/pipermail/pgbouncer-
general/2011-February/000679.html

• per_loop_maint/per_loop_activate take too much time in case of moder-
ate load and lots of pools. Perhaps active_pool_list would help, which
contains only pools touched in current loop.

• new states for clients: idle and in-query. That allows to apply
client_idle_timeout and query_timeout without walking all clients on
maintenance time.

• check if SQL error codes are correct

• removing user should work - kill connections

• keep stats about error counts

• cleanup of logging levels, to make log more useful

• to test:

• signal flood

• no mem / no fds handling

• fix high-freq maintenance timer - it’s only needed when PAUSE/RESUME/shutdown
is issued.

39

http://lists.pgfoundry.org/pipermail/pgbouncer-general/2011-February/000679.html
http://lists.pgfoundry.org/pipermail/pgbouncer-general/2011-February/000679.html

• Get rid of SBUF_SMALL_PKT logic - it makes processing code complex.
Needs a new sbuf_prepare_*() to notify sbuf about short data. [Plain
‘false’ from handler postpones processing to next event loop.]

• units for config parameters.

Dubious/complicated features

• Load-balancing / failover. Both are already solved via DNS. Adding
load-balancing config in pgbouncer might be good idea. Adding failover
decision-making is not. . .

• User-based route. Simplest would be to move db info to pool and fill
username into dns.

• some preliminary notification that fd limit is full

• Move all “look-at-full-packet” situations to SBUF_EV_PKT_CALLBACK

• pool_mode = plproxy - use postgres in full-duplex mode for autocommit
queries, multiplexing several queries into one connection. Should result in
more efficient CPU usage of server.

• SMP: spread sockets over per-cpu threads. Needs confirmation that single-
threadedness can be problem. It can also be that only accept() + login
handling of short connection is problem that could be solved by just having
threads for login handling, which would be lot simpler or just deciding
that it is not worth fixing.

40

	pgBouncer - A Lightweight Connection Pooler for PostgreSQL
	PgBouncer
	Building
	DNS lookup support
	PAM authentication
	systemd integration
	Building from Git
	Building on Windows
	Running on Windows

	pgbouncer
	Synopsis
	Description
	Quick-start
	Command line switches
	Admin console
	Show commands
	Process controlling commands
	Other commands
	Signals
	Libevent settings

	See also

	pgbouncer.ini
	Description
	Generic settings
	logfile
	pidfile
	listen_addr
	listen_port
	unix_socket_dir
	unix_socket_mode
	unix_socket_group
	user
	auth_file
	auth_hba_file
	auth_type
	auth_query
	auth_user
	pool_mode
	max_client_conn
	default_pool_size
	min_pool_size
	reserve_pool_size
	reserve_pool_timeout
	max_db_connections
	max_user_connections
	server_round_robin
	ignore_startup_parameters
	disable_pqexec
	application_name_add_host
	conffile
	service_name
	job_name
	stats_period

	Log settings
	syslog
	syslog_ident
	syslog_facility
	log_connections
	log_disconnections
	log_pooler_errors
	log_stats
	verbose

	Console access control
	admin_users
	stats_users

	Connection sanity checks, timeouts
	server_reset_query
	server_reset_query_always
	server_check_delay
	server_check_query
	server_fast_close
	server_lifetime
	server_idle_timeout
	server_connect_timeout
	server_login_retry
	client_login_timeout
	autodb_idle_timeout
	dns_max_ttl
	dns_nxdomain_ttl
	dns_zone_check_period
	resolv_conf

	TLS settings
	client_tls_sslmode
	client_tls_key_file
	client_tls_cert_file
	client_tls_ca_file
	client_tls_protocols
	client_tls_ciphers
	client_tls_ecdhcurve
	client_tls_dheparams
	server_tls_sslmode
	server_tls_ca_file
	server_tls_key_file
	server_tls_cert_file
	server_tls_protocols
	server_tls_ciphers

	Dangerous timeouts
	query_timeout
	query_wait_timeout
	client_idle_timeout
	idle_transaction_timeout
	suspend_timeout

	Low-level network settings
	pkt_buf
	max_packet_size
	listen_backlog
	sbuf_loopcnt
	so_reuseport
	tcp_defer_accept
	tcp_socket_buffer
	tcp_keepalive
	tcp_keepcnt
	tcp_keepidle
	tcp_keepintvl
	tcp_user_timeout

	Section [databases]
	dbname
	host
	port
	user
	password
	auth_user
	pool_size
	reserve_pool
	connect_query
	pool_mode
	max_db_connections
	client_encoding
	datestyle
	timezone

	Section [users]
	pool_mode
	max_user_connections

	Include directive
	Authentication file format
	HBA file format
	Example
	See also

	PgBouncer TODO list
	Highly visible missing features
	Problems / cleanups
	Dubious/complicated features

