--- title: "pgBouncer - A lightweight connection pooler for PostgreSQL" draft:
false ---

pgBouncer - A Lightweight Connection Pooler for
PostgreSQL

PgBouncer

Lightweight connection pooler for PostgreSQL.
Homepage: https://www.pgbouncer.org/
Sources, bug tracking: https://github.com/pgbouncer/pgbouncer

Building
PgBouncer depends on few things to get compiled:

o GNU Make 3.81+

o Libevent 2.0+

e pkg-config

e OpenSSL 1.0.14 for TLS support

o (optional) c-ares as alternative to Libevent’s evdns
o (optional) PAM libraries

When dependencies are installed just run:

$./configure --prefix=/usr/local
$ make
$ make install

If you are building from Git, or are building for Windows, please see separate
build instructions below.

DNS lookup support

PgBouncer does host name lookups at connect time instead of just once at
configuration load time. This requires an asynchronous DNS implementation.
The following table shows supported backends and their probing order:

backend parallel EDNSO (1) /etc/hosts SOA lookup (2) note

c-ares yes yes yes yes IPv6+CNAME buggy in
evdns, libevent 2.x yes no yes no does not check /etc/hosts
getaddrinfo_ a, glibc 2.94+ yes yes (3) yes no N/A on non-glibce
getaddrinfo, libc no yes (3) yes no requires pthreads

1. EDNSO is required to have more than 8 addresses behind one host name.

https://www.pgbouncer.org/
https://github.com/pgbouncer/pgbouncer
https://www.gnu.org/software/make/
http://libevent.org/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.openssl.org/
http://c-ares.haxx.se/

2. SOA lookup is needed to re-check host names on zone serial change.
3. To enable EDNSO, add options ednsO to /etc/resolv.conf.

c-ares is the most fully-featured implementation and is recommended for most
uses and binary packaging (if a sufficiently new version is available). Libevent’s
built-in evdns is also suitable for many uses, with the listed restrictions. The
other backends are mostly legacy options at this point and don’t receive much
testing anymore.

By default, c-ares is used if it can be found. Its use can be forced with configure
--with-cares or disabled with --without-cares. If c-ares is not used (not
found or disabled), then Libevent is used. Specify --disable-evdns to disable
the use of Libevent’s evdns and fall back to a libc-based implementation.

PAM authentication

To enable PAM authentication, ./configure has a flag --with-pam (default
value is no). When compiled with PAM support, a new global authentication
type pam is available to validate users through PAM.

systemd integration

To enable systemd integration, use the configure option —-with-systemd. This
allows using Type=notify (or Type=notify-reload if you are using systemd
253 or later) as well as socket activation. See etc/pgbouncer.service and
etc/pgbouncer.socket for examples.

Building from Git

Building PgBouncer from Git requires that you fetch the libusual and uthash
submodules and generate the header and configuration files before you can run
configure:

$ git clone https://github.com/pgbouncer/pgbouncer.git
$ cd pgbouncer

$ git submodule init

$ git submodule update

$./autogen.sh

$./configure

$ make

$ make install

All files will be installed under /usr/local by default. You can supply one
or more command-line options to configure. Run ./configure --help to
list the available options and the environment variables that customizes the
configuration.

Additional packages required: autoconf, automake, libtool, pandoc

Testing

See the README.md file in the test directory on how to run the tests.

Building on Windows

The only supported build environment on Windows is MinGW. Cygwin and
Visual SANYTHING are not supported.

To build on MinGW, do the usual:

$./configure
$ make

If cross-compiling from Unix:

$./configure --host=1i586-mingw32msvc

Running on Windows

Running from the command line goes as usual, except that the -d (daemonize),
-R (reboot), and -u (switch user) switches will not work.

To run PgBouncer as a Windows service, you need to configure the service_name
parameter to set a name for the service. Then:

$ pgbouncer -regservice config.ini
To uninstall the service:
$ pgbouncer -unregservice config.ini

To use the Windows event log, set syslog = 1 in the configuration file. But
before that, you need to register pgbevent.d11:

$ regsvr32 pgbevent.dll
To unregister it, do:

$ regsvr32 /u pgbevent.dll
-—- title: "Usage" draft: false ---

pgbouncer

Synopsis

pgbouncer [-d] [-R] [-v] [-u user] <pgbouncer.ini>
pgbouncer -V|-h

On Windows, the options are:

pgbouncer.exe [-v][-u user] <pgbouncer.ini>
pgbouncer.exe -V|-h

https://github.com/pgbouncer/pgbouncer/blob/master/test/README.md

Additional options for setting up a Windows service:

pgbouncer.exe —--regservice <pgbouncer.ini>
pgbouncer.exe --unregservice <pgbouncer.ini>

Description

pgbouncer is a PostgreSQL connection pooler. Any target application can be
connected to pgbouncer as if it were a PostgreSQL server, and pgbouncer
will create a connection to the actual server, or it will reuse one of its existing
connections.

The aim of pgbouncer is to lower the performance impact of opening new
connections to PostgreSQL.

In order not to compromise transaction semantics for connection pooling, pg-
bouncer supports several types of pooling when rotating connections:

Session pooling Most polite method. When a client connects, a server connec-
tion will be assigned to it for the whole duration the client stays connected.
When the client disconnects, the server connection will be put back into
the pool. This is the default method.

Transaction pooling A server connection is assigned to a client only during a
transaction. When PgBouncer notices that transaction is over, the server
connection will be put back into the pool.

Statement pooling Most aggressive method. The server connection will be put
back into the pool immediately after a query completes. Multi-statement
transactions are disallowed in this mode as they would break.

The administration interface of pgbouncer consists of some new SHOW commands
available when connected to a special “virtual” database pgbouncer.

Quick-start
Basic setup and usage is as follows.
1. Create a pgbouncer.ini file. Details in pgbouncer(5). Simple example:

[databases]
templatel = host=localhost port=5432 dbname=templatel

[pgbouncer]

listen_port = 6432
listen_addr = localhost
auth_type = mdb
auth_file = userlist.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid

admin_users = someuser

2. Create a userlist.txt file that contains the users allowed in:
"someuser" "same_password_as_in_server"

3. Launch pgbouncer:
$ pgbouncer -d pgbouncer.ini

4. Have your application (or the psql client) connect to pgbouncer instead
of directly to the PostgreSQL server:

$ psql -p 6432 -U someuser templatel

5. Manage pgbouncer by connecting to the special administration database
pgbouncer and issuing SHOW HELP; to begin:

$ psql -p 6432 -U someuser pgbouncer
pgbouncer=# SHOW HELP;
NOTICE: Console usage
DETAIL:
SHOW [HELP|CONFIG|DATABASES|FDS|POOLS|CLIENTS |SERVERS|SOCKETS|LISTS|VERSION] .. .]
SET key = arg
RELOAD
PAUSE
SUSPEND
RESUME
SHUTDOWN
[...]

6. If you made changes to the pgbouncer.ini file, you can reload it with:

pgbouncer=# RELOAD;

Command line switches

-d, -—daemon Run in the background. Without it, the process will run in the
foreground.

In daemon mode, setting pidfile as well as logfile or syslog is required.
No log messages will be written to stderr after going into the background.

Note: Does not work on Windows; pgbouncer need to run as service
there.

-R, --reboot DEPRECATED: Instead of this option use a rolling
restart with multiple pgbouncer processes listening on the same
port using so_ reuseport instead Do an online restart. That means
connecting to the running process, loading the open sockets from it, and
then using them. If there is no active process, boot normally. Note: Works
only if OS supports Unix sockets and the unix_socket_dir is not disabled

in configuration. Does not work on Windows. Does not work with TLS
connections, they are dropped.

-u USERNAME, -—user=USERNAME Switch to the given user on
startup.

-v, —-verbose Increase verbosity. Can be used multiple times.

-q, ——quiet Be quiet: do not log to stderr. This does not affect logging verbosity,
only that stderr is not to be used. For use in init.d scripts.

-V, —--version Show version.
-h, --help Show short help.

--regservice Win32: Register pgbouncer to run as Windows service. The
service__name configuration parameter value is used as the name to
register under.

--unregservice Win32: Unregister Windows service.

Admin console
The console is available by connecting as normal to the database pgbouncer:
$ psql -p 6432 pgbouncer

Only users listed in the configuration parameters admin_ users or stats__users
are allowed to log in to the console. (Except when auth_type=any, then any
user is allowed in as a stats_ user.)

Additionally, the user name pgbouncer is allowed to log in without password,
if the login comes via the Unix socket and the client has same Unix user UID as
the running process.

The admin console currently only supports the simple query protocol. Some
drivers use the extended query protocol for all commands; these drivers will not
work for this.

Show commands

The SHOW commands output information. Each command is described below.

SHOW STATS Shows statistics. In this and related commands, the total
figures are since process start, the averages are updated every stats_period.

database Statistics are presented per database.

total_xact__count Total number of SQL transactions pooled by pgbouncer.

total__query__count Total number of SQL commands pooled by pgbouncer.

total__server_ assignment__count Total times a server was assigned to a
client

total_received Total volume in bytes of network traffic received by pg-
bouncer.

total__sent Total volume in bytes of network traffic sent by pgbouncer.

total__xact_ time Total number of microseconds spent by pgbouncer when
connected to PostgreSQL in a transaction, either idle in transaction or
executing queries.

total__query_ time Total number of microseconds spent by pgbouncer when
actively connected to PostgreSQL, executing queries.

total__wait__time Time spent by clients waiting for a server, in microseconds.
Updated when a client connection is assigned a backend connection.

total_ client_ parse__count Total number of prepared statements created by
clients. Only applicable in named prepared statement tracking mode, see
max_prepared_statements.

total_server_ parse_ count Total number of prepared statements created by
pgbouncer on a server. Only applicable in named prepared statement
tracking mode, see max_prepared_statements.

total__bind_ count Total number of prepared statements readied for execution
by clients and forwarded to PostgreSQL by pgbouncer. Only applicable in
named prepared statement tracking mode, see max_prepared_statements.

avg_ xact__count Average transactions per second in last stat period.

avg_query__count Average queries per second in last stat period.

avg_ server__assignment_ count Average number of times a server as as-
signed to a client per second in the last stat period.

avg_recv Average received (from clients) bytes per second.

avg_sent Average sent (to clients) bytes per second.

avg_xact_ time Average transaction duration, in microseconds.

avg query_ time Average query duration, in microseconds.

avg_ wait_ time Time spent by clients waiting for a server, in microseconds
(average of the wait times for clients assigned a backend during the current
stats_period).

avg_ client__parse__count Average number of prepared statements created
by clients. Only applicable in named prepared statement tracking mode,
see max_prepared_statements.

avg_ server__parse__count Average number of prepared statements created
by pgbouncer on a server. Only applicable in named prepared statement
tracking mode, see max_prepared_statements.

avg_bind_ count Average number of prepared statements readied for
execution by clients and forwarded to PostgreSQL by pgbouncer.
Only applicable in named prepared statement tracking mode, see
max_prepared_statements.

SHOW STATS_ TOTALS Subset of SHOW STATS showing the total
values (total_).

SHOW STATS__AVERAGES Subset of SHOW STATS showing the
average values (avg_).

SHOW TOTALS Like SHOW STATS but aggregated across all databases.

SHOW SERVERS

type S, for server.

user User name pgbouncer uses to connect to server.

database Database name.

replication If server connection uses replication. Can be none, logical or
physical.

state State of the pgbouncer server connection, one of active, idle, used,
tested, new, active__cancel, being_ canceled.

addr IP address of PostgreSQL server.

port Port of PostgreSQL server.

local _addr Connection start address on local machine.

local__port Connection start port on local machine.

connect__time When the connection was made.

request__time When last request was issued.

wait Not used for server connections.

wait__us Not used for server connections.

close__needed 1 if the connection will be closed as soon as possible, because a
configuration file reload or DNS update changed the connection information
or RECONNECT was issued.

ptr Address of internal object for this connection.

link Address of client connection the server is paired with.

remote__pid PID of backend server process. In case connection is made over
Unix socket and OS supports getting process ID info, its OS PID. Otherwise
it’s extracted from cancel packet the server sent, which should be the PID
in case the server is PostgreSQL, but it’s a random number in case the
server it is another PgBouncer.

tls A string with TLS connection information, or empty if not using TLS.

application__name A string containing the application_name set on the
linked client connection, or empty if this is not set, or if there is no linked
connection.

prepared__statements The amount of prepared statements that are prepared
on the server. This number is limited by the max_prepared_statements
setting.

id Unique ID for server.

SHOW CLIENTS

type C, for client.
user Client connected user.
database Database name.

replication If client connection uses replication. Can be none, logical or
physical.

state State of the client connection, one of active, waiting, ac-
tive__cancel_ req, or waiting_ cancel__req.

addr IP address of client.

port Source port of client.

local _addr Connection end address on local machine.

local__port Connection end port on local machine.

connect__time Timestamp of connect time.

request__time Timestamp of latest client request.

wait Current waiting time in seconds.

wait__us Microsecond part of the current waiting time.

close__needed not used for clients

ptr Address of internal object for this connection.

link Address of server connection the client is paired with.

remote_ pid Process ID, in case client connects over Unix socket and OS
supports getting it.

tls A string with TLS connection information, or empty if not using TLS.

application__name A string containing the application_name set by the
client for this connection, or empty if this was not set.

prepared__statements The amount of prepared statements that the client has
prepared

id Unique ID for client.

SHOW POOLS A new pool entry is made for each couple of (database, user).

database Database name.

user User name.

cl__active Client connections that are either linked to server connections or are
idle with no queries waiting to be processed.

cl__waiting Client connections that have sent queries but have not yet got a
server connection.

cl__active_ cancel_req Client connections that have forwarded query cancel-
lations to the server and are waiting for the server response.

cl__waiting cancel_req Client connections that have not forwarded query
cancellations to the server yet.

sv__active Server connections that are linked to a client.

sv__active__cancel Server connections that are currently forwarding a cancel
request.

sv__being_ canceled Servers that normally could become idle but are waiting
to do so until all in-flight cancel requests have completed that were sent to
cancel a query on this server.

sv__idle Server connections that are unused and immediately usable for client
queries.

sv__used Server connections that have been idle for more than server_check_delay,
so they need server_check_query to run on them before they can be

used again.

sv__tested Server connections that are currently running either server_reset_query
or server_check_query.

sv__login Server connections currently in the process of logging in.

maxwait How long the first (oldest) client in the queue has waited, in seconds.
If this starts increasing, then the current pool of servers does not handle
requests quickly enough. The reason may be either an overloaded server
or just too small of a pool__size setting.

maxwait__us Microsecond part of the maximum waiting time.

pool__mode The pooling mode in use.

load__balance__hosts The load_balance_ hosts in use if the pool’s host con-
tains a comma-separated list.

SHOW PEER__ POOLS A new peer_ pool entry is made for each configured
peer.

database ID of the configured peer entry.

cl__active__cancel__req Client connections that have forwarded query cancel-
lations to the server and are waiting for the server response.

cl__waiting cancel_req Client connections that have not forwarded query
cancellations to the server yet.

sv__active__cancel Server connections that are currently forwarding a cancel
request.

sv__login Server connections currently in the process of logging in.

SHOW LISTS Show following internal information, in columns (not rows):

databases Count of databases.

users Count of users.

pools Count of pools.

free__clients Count of free clients. These are clients that are disconnected, but
PgBouncer keeps the memory around that was allocated for them so it
can be reused for a future clients to avoid allocations.

used__clients Count of used clients.

login_ clients Count of clients in login state.

free__servers Count of free servers. These are servers that are disconnected,
but PgBouncer keeps the memory around that was allocated for them so
it can be reused for a future servers to avoid allocations.

used__servers Count of used servers.

dns__names Count of DNS names in the cache.

dns_ zones Count of DNS zones in the cache.

dns__queries Count of in-flight DNS queries.

dns__pending not used

SHOW USERS

name The user name

10

pool__size The user’s override pool_size. or NULL if not set.

reserve__pool__size The user’s override reserve pool_size. or NULL if not
set.

pool__mode The user’s override pool mode, or NULL if not set.

max__user__connections The user’s max_user connections setting. If this
setting is not set for this specific user, then the default value will be
displayed.

current__connections Current number of server connections that this user
has open to all servers.

max__user__client_ connections The user’s max_user client connections
setting. If this setting is not set for this specific user, then the default
value will be displayed.

current__client__connections Current number of client connections that this
user has open to pgbouncer.

SHOW DATABASES

name Name of configured database entry.

host Host pgbouncer connects to.

port Port pgbouncer connects to.

database Actual database name pgbouncer connects to.

force__user When the user is part of the connection string, the connection
between pgbouncer and PostgreSQL is forced to the given user, whatever
the client user.

pool__size Maximum number of server connections.

min__pool__size Minimum number of server connections.

reserve_ pool__size Maximum number of additional connections for this
database.

server_ lifetime The maximum lifetime of a server connection for this database

pool__mode The database’s override pool mode, or NULL if the default will
be used instead.

load__balance_ hosts The database’s load_balance hosts if the host contains
a comma-separated list.

max__connections Maximum number of allowed server connections for this
database, as set by max_ db_ connections, either globally or per
database.

current__connections Current number of server connections for this database.

max__client_ _connections Maximum number of allowed client connections
for this pgbouncer instance, as set by max_db_ client_ connections per
database.

current__client__connections Current number of client connections for this
database.

paused 1 if this database is currently paused, else 0.

disabled 1 if this database is currently disabled, else 0.

SHOW PEERS

11

peer__id ID of the configured peer entry.

host Host pgbouncer connects to.

port Port pgbouncer connects to.

pool__size Maximum number of server connections that can be made to this
peer

SHOW FDS Internal command - shows list of file descriptors in use with
internal state attached to them.

When the connected user has the user name “pgbouncer”, connects through the
Unix socket and has same the UID as the running process, the actual FDs are
passed over the connection. This mechanism is used to do an online restart.
Note: This does not work on Windows.

This command also blocks the internal event loop, so it should not be used while
PgBouncer is in use.

fd File descriptor numeric value.

task One of pooler, client or server.

user User of the connection using the FD.

database Database of the connection using the FD.

addr IP address of the connection using the FD, unix if a Unix socket is used.
port Port used by the connection using the FD.

cancel Cancel key for this connection.

link fd for corresponding server/client. NULL if idle.

SHOW SOCKETS, SHOW ACTIVE_SOCKETS Shows low-level in-
formation about sockets or only active sockets. This includes the information
shown under SHOW CLIENTS and SHOW SERVERS as well as other

more low-level information.

SHOW CONFIG Show the current configuration settings, one per row, with
the following columns:

key Configuration variable name

value Configuration value

default Configuration default value

changeable Either yes or no, shows if the variable can be changed while
running. If no, the variable can be changed only at boot time. Use SET
to change a variable at run time.

SHOW MEM Shows low-level information about the current sizes of various
internal memory allocations. The information presented is subject to change.

SHOW DNS__HOSTS Show host names in DNS cache.

hostname Host name.

12

ttl How many seconds until next lookup.
addrs Comma separated list of addresses.

SHOW DNS_ZONES Show DNS zones in cache.

zonename Zone name.
serial Current serial.
count Host names belonging to this zone.

SHOW VERSION Show the PgBouncer version string.

SHOW STATE Show the PgBouncer state settings. Current states are active,
paused and suspended.

Process controlling commands

PAUSE [db] PgBouncer tries to disconnect from all servers. Disconnecting
each server connection waits for that server connection to be released according
to the server pool’s pooling mode (in transaction pooling mode, the transaction
must complete, in statement mode, the statement must complete, and in session
pooling mode the client must disconnect). The command will not return before
all server connections have been disconnected. To be used at the time of database
restart.

If database name is given, only that database will be paused.

New client connections to a paused database will wait until RESUME is called.
DISABLE db Reject all new client connections on the given database.

ENABLE db Allow new client connections after a previous DISABLE
command.

RECONNECT [db] Close each open server connection for the given database,
or all databases, after it is released (according to the pooling mode), even if its
lifetime is not up yet. New server connections can be made immediately and
will connect as necessary according to the pool size settings.

This command is useful when the server connection setup has changed, for
example to perform a gradual switchover to a new server. It is not necessary to
run this command when the connection string in pgbouncer.ini has been changed
and reloaded (see RELOAD) or when DNS resolution has changed, because
then the equivalent of this command will be run automatically. This command
is only necessary if something downstream of PgBouncer routes the connections.

After this command is run, there could be an extended period where some server
connections go to an old destination and some server connections go to a new

13

destination. This is likely only sensible when switching read-only traffic between
read-only replicas, or when switching between nodes of a multimaster replication
setup. If all connections need to be switched at the same time, PAUSE is
recommended instead. To close server connections without waiting (for example,
in emergency failover rather than gradual switchover scenarios), also consider
KILL.

KILL db Immediately drop all client and server connections on given database.

New client connections to a killed database will wait until RESUME is called.

KILL_ CLIENT id Immediately kill specificed client connection along with
any server connections for the given client. The client to kill, is identified by the
id value that can be found using the SHOW CLIENTS command.

An example command will look something like KILL_CLIENT 1234.

SUSPEND All socket buffers are flushed and PgBouncer stops listening for
data on them. The command will not return before all buffers are empty. To be
used at the time of PgBouncer online reboot.

New client connections to a suspended database will wait until RESUME is
called.

RESUME [db] Resume work from previous KILL, PAUSE, or SUSPEND

command.
SHUTDOWN The PgBouncer process will exit.

SHUTDOWN WAIT_FOR_SERVERS Stop accepting new connections
and shutdown after all servers are released. This is basically the same as
issuing PAUSE and SHUTDOWN, except that this also stops accepting new
connections while waiting for the PAUSE as well as eagerly disconnecting clients
that are waiting to receive a server connection.

SHUTDOWN WAIT_FOR__CLIENTS Stop accepting new connections
and shutdown the process once all existing clients have disconnected. This
command can be used to do zero-downtime rolling restart of two PgBouncer
processes using the following procedure:

1. Have two or more PgBouncer processes running on the same port using
so_reuseport (configuring peering is recommended, but not required).
To achieve zero downtime when restarting we’ll restart these processes
one-by-one, thus leaving the others running to accept connections while
one is being restarted.

2. Pick a process to restart first, let’s call it A.

14

/config.html#section-peers

3. Run SHUTDOWN WAIT_FOR_CLIENTS (or send SIGTERM) to process A.

4. Cause all clients to reconnect. Possibly by waiting some time until the
client side pooler causes reconnects due to its server_idle_timeout (or
similar config). Or if no client side pooler is used, possibly by restarting the
clients. Once all clients have reconnected. Process A will exit automatically,
because no clients are connected to it anymore.

5. Start process A again.

6. Repeat step 3, 4 and 5 for each of the remaining processes, one-by-one
until you restarted all processes.

RELOAD The PgBouncer process will reload its configuration files and update
changeable settings. This includes the main configuration file as well as the files
specified by the settings auth_file and auth_hba_file.

PgBouncer notices when a configuration file reload changes the connection
parameters of a database definition. An existing server connection to the old
destination will be closed when the server connection is next released (according
to the pooling mode), and new server connections will immediately use the
updated connection parameters.

WAIT__CLOSE [db] Wait until all server connections, either of the specified
database or of all databases, have cleared the “close_needed” state (see SHOW
SERVERS). This can be called after a RECONNECT or RELOAD to wait
until the respective configuration change has been fully activated, for example
in switchover scripts.

Other commands

SET key = arg Changes a configuration setting (see also SHOW CONFIG).
For example:

SET log_connections = 1;
SET server_check_query = ’select 2’;

(Note that this command is run on the PgBouncer admin console and sets
PgBouncer settings. A SET command run on another database will be passed
to the PostgreSQL backend like any other SQL command.)

Signals

SIGHUP Reload config. Same as issuing the command RELOAD on the
console.

SIGTERM Super safe shutdown. Wait for all existing clients to disconnect, but
don’t accept new connections. This is the same as issuing SHUTDOWN
WAIT_FOR_ CLIENTS on the console. If this signal is received while
there is already a shutdown in progress, then an “immediate shutdown” is
triggered instead of a “super safe shutdown”. In PgBouncer versions earlier
than 1.23.0, this signal would cause an “immediate shutdown”.

15

SIGINT Safe shutdown. Same as issuing SHUTDOWN WAIT_FOR_ SERVERS
on the console. If this signal is received while there is already a shutdown
in progress, then an “immediate shutdown” is triggered instead of a “safe
shutdown”.

SIGQUIT Immediate shutdown. Same as issuing SHUTDOWN on the
console.

SIGUSR1 Same as issuing PAUSE on the console.

SIGUSR2 Same as issuing RESUME on the console.

Libevent settings
From the Libevent documentation:

It is possible to disable support for epoll, kqueue, devpoll, poll or

select by setting the environment variable EVENT_NOEPOLL,

EVENT_ NOKQUEUE, EVENT_ NODEVPOLL, EVENT_ NOPOLL
or EVENT_NOSELECT, respectively.

By setting the environment variable EVENT_SHOW__ METHOD,
libevent displays the kernel notification method that it uses.

See also

pgbouncer(5) - man page of configuration settings descriptions
https://www.pgbouncer.org/

--- title: "Configuration" draft: false ---

pgbouncer.ini

Description

“ “ [77

The configuration file is in “ini” format. Section names are between and
”]”. Lines starting with “;” or “#” are taken as comments and ignored. The

138}

characters “;” and “#” are not recognized as special when they appear later in
the line.

Generic settings
logfile

Specifies the log file. For daemonization (-d), either this or syslog need to be
set.

The log file is kept open, so after rotation, ki1l -HUP or on console RELOAD;
should be done. On Windows, the service must be stopped and started.

16

https://www.pgbouncer.org/

Note that setting logfile does not by itself turn off logging to stderr. Use the
command-line option -q or -d for that.

Default: not set

pidfile
Specifies the PID file. Without pidfile set, daemonization (-d) is not allowed.
Default: not set

listen__addr

Specifies a list (comma-separated) of addresses where to listen for TCP connec-
tions. You may also use * meaning “listen on all addresses”. When not set, only
Unix socket connections are accepted.

Addresses can be specified numerically (IPv4/IPv6) or by name.
Default: not set

listen__port
Which port to listen on. Applies to both TCP and Unix sockets.
Default: 6432

unix__socket__ dir

Specifies the location for Unix sockets. Applies to both the listening socket and
to server connections. If set to an empty string, Unix sockets are disabled. A
value that starts with @ specifies that a Unix socket in the abstract namespace
should be created (currently supported on Linux and Windows).

For online reboot (-R) to work, a Unix socket needs to be configured, and it
needs to be in the file-system namespace.

Default: /tmp (empty on Windows)

unix_ socket__mode

File system mode for Unix socket. Ignored for sockets in the abstract namespace.
Not supported on Windows.

Default: 0777

unix__socket__group

Group name to use for Unix socket. Ignored for sockets in the abstract namespace.
Not supported on Windows.

Default: not set

17

user

If set, specifies the Unix user to change to after startup. Works only if PgBouncer
is started as root or if it’s already running as the given user. Not supported on
Windows.

Default: not set

pool__mode
Specifies when a server connection can be reused by other clients.

session Server is released back to pool after client disconnects. Default.

transaction Server is released back to pool after transaction finishes.

statement Server is released back to pool after query finishes. Transactions
spanning multiple statements are disallowed in this mode.

max__client__conn
Maximum number of client connections allowed.

When this setting is increased, then the file descriptor limits in the operating
system might also have to be increased. Note that the number of file descriptors
potentially used is more than max_client_conn. If each user connects under its
own user name to the server, the theoretical maximum used is:

max_client_conn + (max pool_size * total databases * total users)

If a database user is specified in the connection string (all users connect under
the same user name), the theoretical maximum is:

max_client_conn + (max pool_size * total databases)

The theoretical maximum should never be reached, unless somebody deliberately
crafts a special load for it. Still, it means you should set the number of file
descriptors to a safely high number.

Search for ulimit in your favorite shell man page. Note: ulimit does not apply
in a Windows environment.

Default: 100

default__pool_size

How many server connections to allow per user/database pair. Can be overridden
in the per-database configuration.

Default: 20

18

min__pool__size

Add more server connections to pool if below this number. Improves behavior
when the normal load suddenly comes back after a period of total inactivity.
The value is effectively capped at the pool size.

Only enforced for pools where at least one of the following is true:

e the entry in the [database] section for the pool has a value set for the
user key (aka forced user)
e there is at least one client connected to the pool

Default: 0 (disabled)

reserve__pool__size

How many additional connections to allow to a pool (see reserve_pool_timeout).
0 disables.

Default: 0 (disabled)

reserve__pool_timeout

If a client has not been serviced in this time, use additional connections from
the reserve pool. 0 disables. [seconds]

Default: 5.0

max__db__connections

Do not allow more than this many server connections per database (regardless
of user). This considers the PgBouncer database that the client has connected
to, not the PostgreSQL database of the outgoing connection.

This can also be set per database in the [databases] section.

Note that when you hit the limit, closing a client connection to one pool will
not immediately allow a server connection to be established for another pool,
because the server connection for the first pool is still open. Once the server
connection closes (due to idle timeout), a new server connection will immediately
be opened for the waiting pool.

Default: 0 (unlimited)

max__db_ client_connections

Do not allow more than this many client connections to PgBouncer per database
(regardless of user). This considers the PgBouncer database that the client has
connected to, not the PostgreSQL database of the outgoing connection.

19

This should be set at a number greater than or equal to max_db_ connections.
The difference between the two numbers can be thought of as how many connec-
tions to a given database can be in the queue while waiting for active connections
to finish.

This can also be set per database in the [databases] section.

Default: 0 (unlimited)

max__user__connections

Do not allow more than this many server connections per user (regardless of
database). This considers the PgBouncer user that is associated with a pool,
which is either the user specified for the server connection or in absence of that
the user the client has connected as.

This can also be set per user in the [users] section.

Note that when you hit the limit, closing a client connection to one pool will
not immediately allow a server connection to be established for another pool,
because the server connection for the first pool is still open. Once the server
connection closes (due to idle timeout), a new server connection will immediately
be opened for the waiting pool.

Default: 0 (unlimited)

max__user__client_ _connections

Do not allow more than this many client connections per user (regard-
less of database). This value should be set to a number higher than
max_ user connections. This difference between max_ user connections and
max__user_ client_ connections can be conceptualized as the number the max
size of the queue for the user.

This can also be set per user in the [users] section.

Default: 0 (unlimited)

server__round_ robin

By default, PgBouncer reuses server connections in LIFO (last-in, first-out)
manner, so that few connections get the most load. This gives best performance
if you have a single server serving a database. But if there is a round-robin
system behind a database address (TCP, DNS, or host list), then it is better if
PgBouncer also uses connections in that manner, thus achieving uniform load.

Default: 0

20

track__extra_ parameters

By default, PgBouncer tracks client_encoding, datestyle, timezone,
standard_conforming_strings and application_name parameters per client.
To allow other parameters to be tracked, they can be specified here, so that
PgBouncer knows that they should be maintained in the client variable cache
and restored in the server whenever the client becomes active.

If you need to specify multiple values, use a comma-separated list (e.g.
default_transaction_read_only, IntervalStyle)

Note: Most parameters cannot be tracked this way. The only parameters that
can be tracked are ones that Postgres reports to the client. Postgres has an
official list of parameters that it reports to the client. Postgres extensions can
change this list though, they can add parameters themselves that they also report,
and they can start reporting already existing parameters that Postgres does not
report. Notably Citus 12.0+ causes Postgres to also report search_path.

The Postgres protocol allows specifying parameters settings, both directly
as a parameter in the startup packet, or inside the options startup
packet. Parameters specified using both of these methods are supported by
track_extra_parameters. However, it’s not possible to include options itself
in track_extra_parameters, only the parameters contained in options.

Default: IntervalStyle

ignore_ startup__parameters

By default, PgBouncer allows only parameters it can keep track of in startup pack-
ets: client_encoding, datestyle, timezone and standard_conforming_strings.
All others parameters will raise an error. To allow others parameters, they can

be specified here, so that PgBouncer knows that they are handled by the admin
and it can ignore them.

If you need to specify multiple values, use a comma-separated list (e.g.
options,extra_float_digits)

The Postgres protocol allows specifying parameters settings, both directly
as a parameter in the startup packet, or inside the options startup
packet. Parameters specified using both of these methods are supported by
ignore_startup_parameters. It’s even possible to include options itself in
track_extra_parameters, which results in any unknown parameters contained
inside options to be ignored.

Default: empty

peer__id

The peer id used to identify this PgBouncer process in a group of PgBouncer
processes that are peered together. The peer_id value should be unique within

21

https://www.postgresql.org/docs/15/protocol-flow.html#PROTOCOL-ASYNC
https://www.postgresql.org/docs/15/protocol-flow.html#PROTOCOL-ASYNC
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-OPTIONS
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-OPTIONS
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-OPTIONS
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-OPTIONS

a group of peered PgBouncer processes. When set to 0 pgbouncer peering
is disabled. See the docs for the [peers] section for more information. The
maximum value that can be used for the peer_id is 16383.

Default: 0

disable__pgexec

Disable the Simple Query protocol (PQexec). Unlike the Extended Query
protocol, Simple Query allows multiple queries in one packet, which allows some
classes of SQL-injection attacks. Disabling it can improve security. Obviously,
this means only clients that exclusively use the Extended Query protocol will
stay working.

Default: 0

application__name__add__host

Add the client host address and port to the application name setting set on
connection start. This helps in identifying the source of bad queries etc. This
logic applies only at the start of a connection. If application_name is later
changed with SET, PgBouncer does not change it again.

Default: 0

conffile

Show location of current config file. Changing it will make PgBouncer use
another config file for next RELOAD / SIGHUP.

Default: file from command line

service__name
Used on win32 service registration.

Default: pgbouncer

job__name

Alias for service_name.

stats__period

Sets how often the averages shown in various SHOW commands are updated
and how often aggregated statistics are written to the log (but see log_stats).
[seconds]

Default: 60

22

max__prepared__statements

When this is set to a non-zero value PgBouncer tracks protocol-level named
prepared statements related commands sent by the client in transaction and
statement pooling mode. PgBouncer makes sure that any statement prepared by
a client is available on the backing server connection. Even when the statement
was originally prepared on another server connection.

PgBouncer internally examines all the queries that are sent by clients as a
prepared statement, and gives each unique query string an internal name with the
format PGBOUNCER_{unique_id}. If the same query string is prepared multiple
times (possibly by different clients), then these queries share the same internal
name. PgBouncer only prepares the statement on the actual PostgreSQL server
using the internal name (so not the name provided by the client). PgBouncer
keeps track of the name that the client gave to each prepared statement. It then
rewrites each command that uses a prepared statement to by replacing the client
side name with the the internal name (e.g. replacing my_prepared_statement
with PGBOUNCER_123) before forwarding that command to the server. More
importantly, if the prepared statement that the client wants to execute is not yet
prepared on the server (e.g. because a different server is now assigned to the client
than when the client prepared the statement), then PgBouncer transparently
prepares the statement before executing it.

Note: This tracking and rewriting of prepared statement commands does not
work for SQL-level prepared statement commands, so PREPARE, EXECUTE and
DEALLOCATE are forwarded straight to Postgres. The exception to this rule are
the DEALLOCATE ALL and DISCARD ALL commands, these do work as expected
and will clear the prepared statements that PgBouncer tracked for the client
that sends this command.

The actual value of this setting controls the number of prepared statements
kept active in an LRU cache on a single server connection. When the setting
is set to 0 prepared statement support for transaction and statement pooling
is disabled. To get the best performance you should try to make sure that
this setting is larger than the amount of commonly used prepared statements
in your application. Keep in mind that the higher this value, the larger the
memory footprint of each PgBouncer connection will be on your PostgreSQL
server, because it will keep more queries prepared on those connections. It also
increases the memory footprint of PgBouncer itself, because it now needs to
keep track of query strings.

The impact on PgBouncer memory usage is not that big though: - Each unique
query is stored once in a global query cache. - Each client connection keeps a
buffer that it uses to rewrite packets. This is, at most, 4 times the size of pkt_buf.
This limit is often not reached though, it only happens when the queries in your
prepared statements are between 2 and 4 times the size of pkt_buf.

So if you consider the following as an example scenario: - There are 1000 active

23

clients - The clients prepare 200 unique queries - The average size of a query is
5kB - pkt_buf parameter is set to the default of 4096 (4kB)

Then, PgBouncer needs at most the following amount of memory to handle these
prepared statements:

200 x 5kB + 1000 x 4 x 4kB = ~17MB of memory.

Tracking prepared statements does not only come with a memory cost, but also
with increased CPU usage, because PgBouncer needs to inspect and rewrite
the queries. Multiple PgBouncer instances can listen on the same port to use
more than one core for processing, see the documentation for the so_reuseport
option for details.

But of course there are also performance benefits to prepared statements. Just as
when connecting to PostgreSQL directly, by preparing a query that is executed
many times, it reduces the total amount of parsing and planning that needs to be
done. The way that PgBouncer tracks prepared statements is especially beneficial
to performance when multiple clients prepare the same queries. Because client
connections automatically reuse a prepared statement on a server connection,
even if it was prepared by another client. As an example, if you have a pool_size
of 20 and you have 100 clients that all prepare the exact same query, then the
query is prepared (and thus parsed) only 20 times on the PostgreSQL server.

The reuse of prepared statements has one downside. If the return or argument
types of a prepared statement changes across executions then PostgreSQL
currently throws an error such as:

ERROR: cached plan must not change result type

You can avoid such errors by not having multiple clients that use the exact same
query string in a prepared statement, but expecting different argument or result
types. One of the most common ways of running into this issue is during a DDL
migration where you add a new column or change a column type on an existing
table. In those cases you can run RECONNECT on the PgBouncer admin console
after doing the migration to force a re-prepare of the query and make the error
go away.

Default: 200

Authentication settings

PgBouncer handles its own client authentication and has its own database of
users. These settings control this.

auth_ type

How to authenticate users.

cert Client must connect over TLS connection with a valid client certificate. The
user name is then taken from the CommonName field from the certificate.

24

/config.html#so_reuseport
/config.html#so_reuseport

md5 Use MD5-based password check. This is the default authentication method.
auth_file may contain both MD5-encrypted and plain-text passwords. If
md5 is configured and a user has a SCRAM secret, then SCRAM authenti-
cation is used automatically instead.

scram-sha-256 Use password check with SCRAM-SHA-256. auth_file has
to contain SCRAM secrets or plain-text passwords.

plain The clear-text password is sent over the wire. Deprecated.

trust No authentication is done. The user name must still exist in auth_file.

any Like the trust method, but the user name given is ignored. Requires that
all databases are configured to log in as a specific user. Additionally, the
console database allows any user to log in as admin.

hba The actual authentication type is loaded from auth_hba_file. This allows
different authentication methods for different access paths, for example:
connections over Unix socket use the peer auth method, connections over
TCP must use TLS.

pam PAM is used to authenticate users, auth_file is ignored. This method is
not compatible with databases using the auth_user option. The service
name reported to PAM is “pgbouncer”.

auth_hba_file

HBA configuration file to use when auth_type is hba. See section HBA file
format below about details.

Default: not set

auth__ident_ file

Identity map file to use when auth_type is hba and a user map will be defined.
See section Ident map file format below about details.

Default: not set

auth_ file

The name of the file to load user names and passwords from. See section
Authentication file format below about details.

Most authentication types (see above) require that either auth_file or
auth_user be set; otherwise there would be no users defined.

Default: not set

auth_ user

If auth_user is set, then any user not specified in auth_file will be queried
through the auth_query query from pg shadow in the database, using
auth_user. The password of auth_user will be taken from auth_file. (If the

25

auth_user does not require a password then it does not need to be defined in
auth_file.)

Direct access to pg shadow requires admin rights. It’s preferable to use a
non-superuser that calls a SECURITY DEFINER function instead.

Default: not set

auth_ query
Query to load user’s password from database.

Direct access to pg shadow requires admin rights. It’s preferable to use a
non-superuser that calls a SECURITY DEFINER function instead.

Note that the query is run inside the target database. So if a function is used, it
needs to be installed into each database.

Default: SELECT usename, passwd FROM pg_shadow WHERE usename=$1

auth__dbname

Database name in the [database] section to be used for authentication purposes.
This option can be either global or overridden in the connection string if this
parameter is specified.

Log settings

syslog

Toggles syslog on/off. On Windows, the event log is used instead.
Default: 0

syslog__ident
Under what name to send logs to syslog.

Default: pgbouncer (program name)

syslog_ facility

Under what facility to send logs to syslog. Possibilities: auth, authpriv, daemon,
user, localO-7.

Default: daemon

log__connections
Log successful logins.

Default: 1

26

log_ disconnections

Log disconnections with reasons.

Default: 1

log_ pooler__errors

Log error messages the pooler sends to clients.

Default: 1

log_ stats

Write aggregated statistics into the log, every stats_period. This can be
disabled if external monitoring tools are used to grab the same data from SHOW
commands.

Default: 1

verbose

Increase verbosity. Mirrors the “-v” switch on the command line. For example,
using “-v -v” on the command line is the same as verbose=2. 3 is the highest
currently-supported verbosity.

Default: 0

Console access control
admin__ users

Comma-separated list of database users that are allowed to connect and run all
commands on the console. Ignored when auth_type is any, in which case any
user name is allowed in as admin.

Default: empty

stats__users

Comma-separated list of database users that are allowed to connect and run
read-only queries on the console. That means all SHOW commands except SHOW
FDS.

Default: empty

Connection sanity checks, timeouts

27

server__reset__query

Query sent to server on connection release, before making it available to other
clients. At that moment no transaction is in progress, so the value should not
include ABORT or ROLLBACK.

The query is supposed to clean any changes made to the database session so that
the next client gets the connection in a well-defined state. The default is DISCARD
ALL, which cleans everything, but that leaves the next client no pre-cached state.
It can be made lighter, e.g. DEALLOCATE ALL to just drop prepared statements,
if the application does not break when some state is kept around.

When transaction pooling is used, the server_reset_query is not used, be-
cause in that mode, clients must not use any session-based features, since each
transaction ends up in a different connection and thus gets a different session
state.

Default: DISCARD ALL

server__reset__query__always

Whether server_reset_query should be run in all pooling modes. When this
setting is off (default), the server_reset_query will be run only in pools that
are in sessions-pooling mode. Connections in transaction-pooling mode should
not have any need for a reset query.

This setting is for working around broken setups that run applications that
use session features over a transaction-pooled PgBouncer. It changes non-
deterministic breakage to deterministic breakage: Clients always lose their state
after each transaction.

Default: 0

server__check__delay

How long to keep released connections available for immediate re-use, without
running server_check_query on it. If O then the check is always run.

Default: 30.0

server__check__query
Simple do-nothing query to check if the server connection is alive.
If an empty string, then sanity checking is disabled.

Default: select 1

28

server__fast_ close

Disconnect a server in session pooling mode immediately or after the end of the
current transaction if it is in “close_ needed” mode (set by RECONNECT, RELOAD
that changes connection settings, or DNS change), rather than waiting for the
session end. In statement or transaction pooling mode, this has no effect since
that is the default behavior there.

If because of this setting a server connection is closed before the end of the client
session, the client connection is also closed. This ensures that the client notices
that the session has been interrupted.

This setting makes connection configuration changes take effect sooner if session
pooling and long-running sessions are used. The downside is that client sessions
are liable to be interrupted by a configuration change, so client applications
will need logic to reconnect and reestablish session state. But note that no
transactions will be lost, because running transactions are not interrupted, only
idle sessions.

Default: 0

server__lifetime

The pooler will close an unused (not currently linked to any client connection)
server connection that has been connected longer than this. Setting it to 0 means
the connection is to be used only once, then closed. [seconds]

This can also be set per database in the [databases] section.

Default: 3600.0

server__idle_timeout

If a server connection has been idle more than this many seconds it will be closed.
If 0 then this timeout is disabled. [seconds]

Default: 600.0

server__connect__timeout

If connection and login don’t finish in this amount of time, the connection will
be closed. [seconds]

Default: 15.0

server__login_ retry

If login to the server failed, because of failure to connect or from authentication,
the pooler waits this much before retrying to connect. During the waiting
interval, new clients trying to connect to the failing server will get an error
immediately without another connection attempt. [seconds]

29

The purpose of this behavior is that clients don’t unnecessarily queue up waiting
for a server connection to become available if the server is not working. However,
it also means that if a server is momentarily failing, for example during a restart
or if the configuration was erroneous, then it will take at least this long until
the pooler will consider connecting to it again. Planned events such as restarts
should normally be managed using the PAUSE command to avoid this.

Default: 15.0

client__login_ timeout

If a client connects but does not manage to log in in this amount of time, it will
be disconnected. Mainly needed to avoid dead connections stalling SUSPEND and
thus online restart. [seconds]

Default: 60.0

autodb__idle_ timeout

If the automatically created (via “*“) database pools have been unused this
many seconds, they are freed. The negative aspect of that is that their statistics
are also forgotten. [seconds]

Default: 3600.0

dns max_ ttl
How long DNS lookups can be cached. The actual DNS TTL is ignored. [seconds]
Default: 15.0

dns nxdomain__ ttl
How long DNS errors and NXDOMAIN DNS lookups can be cached. [seconds]
Default: 15.0

dns_ zone_ _check_ period
Period to check if a zone serial has changed.

PgBouncer can collect DNS zones from host names (everything after first dot)
and then periodically check if the zone serial changes. If it notices changes, all
host names under that zone are looked up again. If any host IP changes, its
connections are invalidated.

Works only with c-ares backend (configure option --with-cares).

Default: 0.0 (disabled)

30

resolv__conf

The location of a custom resolv.conf file. This is to allow specifying custom
DNS servers and perhaps other name resolution options, independent of the
global operating system configuration.

Requires evdns (>= 2.0.3) or c-ares (>= 1.15.0) backend.

The parsing of the file is done by the DNS backend library, not PgBouncer, so
see the library’s documentation for details on allowed syntax and directives.

Default: empty (use operating system defaults)

TLS settings

If the contents of any of the cert or key files are changed without changing the
actual setting filename in the config, the new file contents will be used for new
connections after a RELOAD. Existing connections won’t be closed though. If
it’s necessary for security reasons that all connections start using the new files
ASAP, it’s advised to run RECONNECT after the RELOAD.

Changing any TLS settings will trigger a RECONNECT automatically for
security reasons.

client_tls sslmode

TLS mode to use for connections from clients. TLS connections are disabled
by default. When enabled, client_tls_key_file and client_tls_cert_file
must be also configured to set up the key and certificate PgBouncer uses to
accept client connections. The most common certificate file format usable by
PgBouncer is pem.

disable Plain TCP. If client requests TLS, it’s ignored. Default.

allow If client requests TLS, it is used. If not, plain TCP is used. If the client
presents a client certificate, it is not validated.

prefer Same as allow.

require Client must use TLS. If not, the client connection is rejected. If the
client presents a client certificate, it is not validated.

verify-ca Client must use TLS with valid client certificate.

verify-full Same as verify-ca.

client__tls_ key_ file
Private key for PgBouncer to accept client connections.

Default: not set

client_tls cert_ file

Certificate for private key. Clients can validate it.

31

Default: not set

client_ tls_ ca_ file
Root certificate file to validate client certificates.

Default: not set

client__tls_ protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsvl.1,
tlsvl.2, tlsv1.3. Shortcuts: all (tlsv1.0,tlsvl.1,tlsv1.2,tlsv1.3), secure
(tlsv1.2,tlsv1.3).

Default: secure

client__tls_ ciphers
Allowed TLS ciphers, in OpenSSL syntax. Shortcuts:

o default/secure/fast/normal (these all use system wide OpenSSL de-
faults)
o all (enables all ciphers, not recommended)

Only connections using TLS version 1.2 and lower are affected. There is currently
no setting that controls the cipher choices used by TLS version 1.3 connections.

Default: default

client_tls ecdhcurve
Elliptic Curve name to use for ECDH key exchanges.
Allowed values: none (DH is disabled), auto (256-bit ECDH), curve name

Default: auto

client_ tls_ dheparams
DHE key exchange type.

Allowed values: none (DH is disabled), auto (2048-bit DH), legacy (1024-bit
DH)

Default: auto

server__tls__sslmode

TLS mode to use for connections to PostgreSQL servers. The default mode is
prefer.

disable Plain TCP. TLS is not even requested from the server.

32

allow FIXME: if server rejects plain, try TLS?

prefer TLS connection is always requested first from PostgreSQL. If refused,
the connection will be established over plain TCP. Server certificate is not
validated. Default

require Connection must go over TLS. If server rejects it, plain TCP is not
attempted. Server certificate is not validated.

verify-ca Connection must go over TLS and server certificate must be valid
according to server_tls_ca_file. Server host name is not checked against
certificate.

verify-full Connection must go over TLS and server certificate must be valid ac-
cording to server_tls_ca_file. Server host name must match certificate
information.

server__tls ca_ file

Root certificate file to validate PostgreSQL server certificates.

Default: not set

server__tls_ key_ file
Private key for PgBouncer to authenticate against PostgreSQL server.

Default: not set

server__tls_ cert_ file
Certificate for private key. PostgreSQL server can validate it.

Default: not set

server__tls_ protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsvi.1,
tlsvl.2, tlsv1l.3. Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure
(tlsv1.2,tlsv1.3), legacy (all).

Default: secure

server__tls_ ciphers
Allowed TLS ciphers, in OpenSSL syntax. Shortcuts:

o default/secure/fast/normal (these all use system wide OpenSSL de-
faults)
e all (enables all ciphers, not recommended)

Only connections using TLS version 1.2 and lower are affected. There is currently
no setting that controls the cipher choices used by TLS version 1.3 connections.

Default: default

33

Dangerous timeouts

Setting the following timeouts can cause unexpected errors.

query__timeout

Queries running longer than that are canceled. This should be used only with
a slightly smaller server-side statement_timeout, to apply only for network
problems. [seconds]

Default: 0.0 (disabled)

query__wait__timeout

Maximum time queries are allowed to spend waiting for execution. If the query
is not assigned to a server during that time, the client is disconnected. 0 disables.
If this is disabled, clients will be queued indefinitely. [seconds]

This setting is used to prevent unresponsive servers from grabbing up connections.
It also helps when the server is down or rejects connections for any reason.

Default: 120.0

cancel__wait__timeout

Maximum time cancellation requests are allowed to spend waiting for execution.
If the cancel request is not assigned to a server during that time, the client
is disconnected. 0 disables. If this is disabled, cancel requests will be queued
indefinitely. [seconds]

This setting is used to prevent a client locking up when a cancel cannot be
forwarded due to the server being down.

Default: 10.0

client__idle_ timeout

Client connections idling longer than this many seconds are closed. This should
be larger than the client-side connection lifetime settings, and only used for
network problems. [seconds]

Default: 0.0 (disabled)

idle__transaction__timeout

If a client has been in “idle in transaction” state longer, it will be disconnected.
[seconds]

Default: 0.0 (disabled)

34

suspend__timeout

How long to wait for buffer flush during SUSPEND or reboot (-R). A connection
is dropped if the flush does not succeed. [seconds]

Default: 10

Low-level network settings
pkt__buf

Internal buffer size for packets. Affects size of TCP packets sent and general
memory usage. Actual libpq packets can be larger than this, so no need to set it
large.

Default: 4096

max_ packet__size

Maximum size for PostgreSQL packets that PgBouncer allows through. One
packet is either one query or one result set row. The full result set can be larger.

Default: 2147483647

listen__backlog

Backlog argument for listen(2). Determines how many new unanswered con-
nection attempts are kept in the queue. When the queue is full, further new
connections are dropped.

Default: 128

sbuf__loopcnt

How many times to process data on one connection, before proceeding. Without
this limit, one connection with a big result set can stall PgBouncer for a long
time. One loop processes one pkt_buf amount of data. 0 means no limit.

Default: 5

so__reuseport

Specifies whether to set the socket option SO_REUSEPORT on TCP listening
sockets. On some operating systems, this allows running multiple PgBouncer
instances on the same host listening on the same port and having the kernel
distribute the connections automatically. This option is a way to get PgBouncer
to use more CPU cores. (PgBouncer is single-threaded and uses one CPU core
per instance.)

The behavior in detail depends on the operating system kernel. As of this
writing, this setting has the desired effect on (sufficiently recent versions of)

35

Linux, DragonFlyBSD, and FreeBSD. (On FreeBSD, it applies the socket option
SO_REUSEPORT_LB instead.) Some other operating systems support the socket
option but it won’t have the desired effect: It will allow multiple processes to
bind to the same port but only one of them will get the connections. See your
operating system’s setsockopt() documentation for details.

On systems that don’t support the socket option at all, turning this setting on
will result in an error.

Each PgBouncer instance on the same host needs different settings for at least
unix_socket_dir and pidfile, as well as logfile if that is used. Also note
that if you make use of this option, you can no longer connect to a specific
PgBouncer instance via TCP/IP, which might have implications for monitoring
and metrics collection.

To make sure query cancellations keep working, you should set up PgBouncer
peering between the different PgBouncer processes. For details look at docs for
the peer_id configuration option and the peers configuration section. There’s
also an example that uses peering and so_reuseport in the example section of
these docs.

Default: 0

tcp__defer__accept

Sets the TCP_DEFER_ACCEPT socket option; see man 7 tcp for details. (This is a
Boolean option: 1 means enabled. The actual value set if enabled is currently
hardcoded to 45 seconds.)

This is currently only supported on Linux.

Default: 1 on Linux, otherwise 0

tcp__socket_ buffer

Default: not set

tcp__keepalive
Turns on basic keepalive with OS defaults.

On Linux, the system defaults are tcp_keepidle=7200, tcp_ keepintvl=75,
tcp__keepcnt=9. They are probably similar on other operating systems.

Default: 1

tcp_ keepcnt
Default: not set

36

tcp__keepidle
Default: not set

tcp__keepintvl
Default: not set

tcp__user__timeout

Sets the TCP_USER_TIMEOUT socket option. This specifies the maximum amount
of time in milliseconds that transmitted data may remain unacknowledged before
the TCP connection is forcibly closed. If set to 0, then operating system’s default
is used.

This is currently only supported on Linux.

Default: 0

Section [databases]

The section [databases] defines the names of the databases that clients of
PgBouncer can connect to and specifies where those connections will be routed.
The section contains key=value lines like

dbname = connection string

where the key will be taken as a database name and the value as a connection
string, consisting of key=value pairs of connection parameters, described below
(similar to libpq, but the actual libpq is not used and the set of available features
is different). Example:

foodb = host=hostl.example.com port=5432
bardb = host=localhost dbname=bazdb

The database name can contain characters _0-9A-Za-z without quoting. Names
that contain other characters need to be quoted with standard SQL identifier
quoting: double quotes, with “” for a single instance of a double quote.

The database name “pgbouncer” is reserved for the admin console and cannot
be used as a key here.

“*7 acts as a fallback database: If the exact name does not exist, its value is
taken as connection string for the requested database. For example, if there is

an entry (and no other overriding entries)
* = host=foo

then a connection to PgBouncer specifying a database “bar” will effectively
behave as if an entry

bar = host=foo dbname=bar

37

exists (taking advantage of the default for dbname being the client-side database
name; see below).

Such automatically created database entries are cleaned up if they stay idle
longer than the time specified by the autodb_idle_timeout parameter.

dbname
Destination database name.

Default: same as client-side database name

host

Host name or IP address to connect to. Host names are resolved at connection
time, the result is cached per dns_max_ttl parameter. When a host name’s
resolution changes, existing server connections are automatically closed when
they are released (according to the pooling mode), and new server connections
immediately use the new resolution. If DNS returns several results, they are
used in a round-robin manner.

If the value begins with /, then a Unix socket in the file-system namespace is
used. If the value begins with @, then a Unix socket in the abstract namespace
is used.

A comma-separated list of host names or addresses can be specified. In that
case, connections are made in a round-robin manner. (If a host list contains
host names that in turn resolve via DNS to multiple addresses, the round-robin
systems operate independently. This is an implementation dependency that
is subject to change.) Note that in a list, all hosts must be available at all
times: There are no mechanisms to skip unreachable hosts or to select only
available hosts from a list or similar. (This is different from what a host list
in libpg means.) Also note that this only affects how the destinations of new
connections are chosen. See also the setting server_round_robin for how clients
are assigned to already established server connections.

Examples:

host=localhost

host=127.0.0.1
host=2001:0db8:85a3:0000:0000:8a2e:0370:7334
host=/var/run/postgresql
host=192.168.0.1,192.168.0.2,192.168.0.3

Default: not set, meaning to use a Unix socket

port
Default: 5432

38

user

If user= is set, all connections to the destination database will be done with the
specified user, meaning that there will be only one pool for this database.

Otherwise, PgBouncer logs into the destination database with the client user
name, meaning that there will be one pool per user.
password

If no password is specified here, the password from the auth_file will be used
for the user specified above. Dynamic forms of password discovery such as
auth_query are not currently supported.

auth__user

Override of the global auth_user setting, if specified.

auth__query

Override of the global auth_query setting, if specified. The entire SQL statement
needs to be enclosed in single quotes.

auth__dbname

Override of the global auth_dbname setting, if specified.

pool__size

Set the maximum size of pools for this database. If not set, the
default_pool_size is used.

min__pool__size

Set the minimum pool size for this database. If not set, the global min_pool_size
is used.

Only enforced if at least one of the following is true:

o this entry in the [database] section has a value set for the user key (aka
forced user)
o there is at least one client connected to the pool

reserve__pool__size

Set additional connections for this database. If not set, the global
reserve_pool_size is used. For backwards compatibilty reasons reserve_pool
is an alias for this option.

39

connect__query

Query to be executed after a connection is established, but before allowing the
connection to be used by any clients. If the query raises errors, they are logged
but ignored otherwise.

pool__mode

Set the pool mode specific to this database. If not set, the default pool_mode is
used.

load__balance_ hosts

When a comma-separated list is specified in host, load_balance_hosts controls
which entry is chosen for a new connection.

Note: This setting currently only controls the load balancing behaviour when
providing multiple hosts in the connection string, but not when a single host
its DNS record references multiple IP addresses. This is a missing feature, so
in a future release this setting might start to to control both methods of load
balancing.

round-robin A new connection attempt chooses the next host entry in the list.
disable A new connection continues using the same host entry until a connection
fails, after which the next host entry is chosen.

It is recommended to set server_login_retry lower than the default to ensure
fast retries when multiple hosts are available.

Default: round-robin

max_ db__connections

Configure a database-wide maximum of server connections (i.e. all pools within
the database will not have more than this many server connections).
max__db_ client_ connections

Configure a database-wide client connection maximum. Should be used in
conjunction with max_client_ conn to limit the number of connections that
PgBouncer is allowed to accept.

server__lifetime

Configure the server_ lifetime per database. If not set the database will fall back
to the instance wide configured value for server_lifetime

client__encoding

Ask specific client_encoding from server.

40

datestyle

Ask specific datestyle from server.

timezone

Ask specific timezone from server.

Section [users]
This section contains key=value lines like
userl = settings

where the key will be taken as a user name and the value as a list of key=value
pairs of configuration settings specific for this user. Example:

userl = pool_mode=session

Only a few settings are available here.

Note that when auth_file is configured, if a user is defined in this section but
not listed in auth_file, pgBouncer will attempt to use auth_query to find a
password for that user if auth_user is set. If auth_user is not set, pgBouncer
will pretend the user exists and fail to return “no such user” messages to the
client, but neither will it accept any provided password.

pool__size

Set the maximum size of pools for all connections from this user. If not set, the
database or default_pool_size is used.

reserve__pool__size

Set the number of additional connections to allow to a pool for this user. If not
set, the database configuration or the global reserve_pool_size is used.
pool__mode

Set the pool mode to be used for all connections from this user. If not set, the
database or default pool_mode is used.

max__user__connections

Configure a maximum for the user of server connections (i.e. all pools with the
user will not have more than this many server connections).

query__timeout

Set the maximum number of seconds that a user query can run for. If set this
timeout overrides the server level query_ timeout described above.

41

idle_transaction__timeout

Set the maximum number of seconds that a user can have an idle transaction
open. If set this timeout overides the server level idle transaction_timeout
described above.

client_idle_timeout

Set the maximum amount of time in seconds that a client is allowed to idly
connect to the pgbouncer instance. If set this timeout overrides the server level
client idle timeout described above.

Please note that this is a potentially dangeous timeout.

max__user__client_ _connections

Configure a maximum for the user of client connections. This is the user
equivalent ofthe max_ client_ conn setting.

Section [peers]

The section [peers] defines the peers that PgBouncer can forward cancellation
requests to and where those cancellation requests will be routed.

PgBouncer processes can be peered together in a group by defining a peer_id
value and a [peers] section in the configs of all the PgBouncer processes. These
PgBouncer processes can then forward cancellations requests to the process that
it originated from. This is needed to make cancellations work when multiple
PgBouncer processes (possibly on different servers) are behind the same TCP
load balancer. Cancellation requests are sent over different TCP connections
than the query they are cancelling, so a TCP load balancer might send the
cancellation request connection to a different process than the one that it was
meant for. By peering them these cancellation requests eventually end up at the
right process. A more in-depth explanation is provided in this recording of a
conference talk.

The section contains key=value lines like
peer_id = connection string

Where the key will be taken as a peer_id and the value as a connection string,
consisting of key=value pairs of connection parameters, described below (similar
to libpq, but the actual libpq is not used and the set of available features is
different). Example:

1
2

host=hostl.example.com
host=/tmp/pgbouncer-2 port=5555

Note 1: For peering to work, the peer_id of each PgBouncer process in the
group must be unique within the peered group. And the [peers] section should

42

https://www.youtube.com/watch?v=M585FfbboNA
https://www.youtube.com/watch?v=M585FfbboNA

contain entries for each of those peer ids. An example can be found in the
examples section of these docs. It is allowed, but not necessary, for the [peers]
section to contain the peer_id of the PgBouncer that the config is for. Such an
entry will be ignored, but it is allowed to config management easy. Because it
allows using the exact same [peers] section for multiple configs.

Note 2: Cross-version peering is supported as long as all peers are on the same
side of the v1.21.0 version boundary. In v1.21.0 some breaking changes were
made in how we encode the cancellation tokens that made them incompatible
with the ones created by earlier versions.

host

Host name or IP address to connect to. Host names are resolved at connection
time, the result is cached per dns_max_ttl parameter. If DNS returns several
results, they are used in a round-robin manner. But in general it’s not recom-
mended to use a hostname that resolves to multiple IPs, because then the cancel
request might still be forwarded to the wrong node and it would need to be
forwarded again (which is only allowed up to three times).

If the value begins with /, then a Unix socket in the file-system namespace is
used. If the value begins with @, then a Unix socket in the abstract namespace
is used.

Examples:

host=localhost

host=127.0.0.1
host=2001:0db8:85a3:0000:0000:8a2¢e:0370:7334
host=/var/run/pgbouncer-1

port
Default: 6432

pool__size

Set the maximum number of cancel requests that can be in flight to the peer
at the same time. It’s quite normal for cancel requests to arrive in bursts, e.g.
when the backing Postgres server slow or down. So it’s important for pool_size
to not be so low that it cannot handle these bursts.

If not set, the default_pool_size is used.

Include directive

The PgBouncer configuration file can contain include directives, which specify
another configuration file to read and process. This allows splitting the con-

43

figuration file into physically separate parts. The include directives look like
this:

%include filename

If the file name is not an absolute path, it is taken as relative to the current
working directory.

Authentication file format

This section describes the format of the file specified by the auth_file setting.
It is a text file in the following format:

"usernamel" "password"
"username2" "mdbabcdef(012342345"
"username2" "SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>"

There should be at least 2 fields, surrounded by double quotes. The first field is
the user name and the second is either a plain-text, a MD5-hashed password, or
a SCRAM secret. PgBouncer ignores the rest of the line. Double quotes in a
field value can be escaped by writing two double quotes.

PostgreSQL MDb5-hashed password format:
"md5" + md5(password + username)

So wuser admin with password 1234 will have MD5-hashed password
md545£2603610af569b6155c45067268c6b.

PostgreSQL SCRAM secret format:
SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>
See the PostgreSQL documentation and RFC 5803 for details on this.

The passwords or secrets stored in the authentication file serve two purposes.
First, they are used to verify the passwords of incoming client connections, if a
password-based authentication method is configured. Second, they are used as
the passwords for outgoing connections to the backend server, if the backend
server requires password-based authentication (unless the password is specified
directly in the database’s connection string).

Limitations

If the password is stored in plain text, it can be used for any password-based
authentication used in the backend server; plain text, MD5 or SCRAM (see
https://www.postgresql.org/docs/current /auth-password.html for details).

MD5-hashed passwords can be used if backend server uses MD5 authentication
(or specific users have MD5-hashed passwords).

SCRAM secrets can only be used for logging into a server if the client authentica-
tion also uses SCRAM, the PgBouncer database definition does not specify a user

44

https://www.postgresql.org/docs/current/auth-password.html

name, and the SCRAM secrets are identical in PgBouncer and the PostgreSQL
server (same salt and iterations, not merely the same password). This is due to
an inherent security property of SCRAM: The stored SCRAM secret cannot by
itself be used for deriving login credentials.

The authentication file can be written by hand, but it’s also useful to generate
it from some other list of users and passwords. See ./etc/mkauth.py for a
sample script to generate the authentication file from the pg_shadow system
table. Alternatively, use auth_query instead of auth_file to avoid having to
maintain a separate authentication file.

Note on managed servers

If the backend server is configured to use SCRAM password authentication
PgBouncer cannot successfully authenticate if it does not know either a) user
password in plain text or b) corresponding SCRAM secret.

Some cloud providers (i.e. AWS RDS) prohibit access to PostgreSQL sensi-
tive system tables for fetching passwords. Even for the most privileged user
(i.e. member of rds_superuser) the select * from pg_authid; returns the
ERROR: permission denied for table pg_authid. That is a known be-
haviour (blog).

Therefore, fetching an existing SCRAM secret once it has been stored in a
managed server is impossible which makes it hard to configure PgBouncer to use
the same SCRAM secret. Nevertheless, SCRAM secret can still be configured
and used on both sides using the following trick:

Generate SCRAM secret for arbitrary password with a tool that is capable of
printing out the secret. For example psql --echo-hidden and the command
\password prints out the SCRAM secret to the console before sending it over
to the server.

$ psql --echo-hidden <connection_string>

postgres=# \password <role_name>

Enter new password for user "<role_name>":

Enter it again:

sokkokkkkkk QUERY skokkokkokkkkxk

ALTER USER <role_name> PASSWORD ’SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>’
steokokok ok ok sk sk sk sk sk sk sk sk ok ok sk ok ke kokokok ok ok ok

Note down the SCRAM secret from the QUERY and set it in PgBouncer’s
userlist.txt.

If you used a tool other than psql --echo-hidden then you need to set
the SCRAM secret also in the server (you can use alter role <role_name>
password '<scram_secret>' for that).

45

https://aws.amazon.com/blogs/database/best-practices-for-migrating-postgresql-databases-to-amazon-rds-and-amazon-aurora/

HBA file format

The location of the HBA file is specified by the setting auth_hba_file. It is
only used if auth_type is set to hba.

The file follows the format of the PostgreSQL pg_hba.conf file (see https:
//www.postgresql.org/docs/current /auth-pg-hba-conf.html).

Supported record types: local, host, hostssl, hostnossl.

Database field: Supports all, replication, sameuser, @file, multiple
names. Not supported: samerole, samegroup.

User name field: Supports all, @file, multiple names. Not supported:
+groupname.

Address field: Supports all, IPv4, IPv6. Not supported: samehost,
samenet, DNS names, domain prefixes.

Auth-method field: Only methods supported by PgBouncer’s auth_type
are supported, plus peer and reject, but except any, which only works
globally.

User name map (map=) parameter is supported when auth_type is cert
or peer.

Ident map file format

The location of the ident map file is specified by the setting auth_ident_file.
It is only loaded if auth_type is set to hba.

The file format is a simplified variation of the PostgreSQL ident map file (see
https://www.postgresql.org/docs/current/auth-username-maps.html).

Supported lines are only of the form map-name system-username
database-username.

There is no support for including file/directory.

System-username field: Not supported: regular expressions.
Database-username field: Supports all or a single postgres user name.
Not supported: +groupname, regular expressions.

Examples

Small example configuration:

[databases]
templatel = host=localhost dbname=templatel auth_user=someuser

[pgbouncer]

pool_mode = session
listen_port = 6432
listen_addr = localhost
auth_type = mdb
auth_file = users.txt

46

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/auth-username-maps.html

logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser
stats_users = stat_collector

Database examples:

[databases]

; foodb over Unix socket
foodb =

; redirect bardb to bazdb on localhost
bardb = host=localhost dbname=bazdb

; access to destination database will go with single user
forcedb = host=localhost port=300 user=baz password=foo client_encoding=UNICODE datestyle=Ii

Example of a secure function for auth_query:

CREATE OR REPLACE FUNCTION pgbouncer.user_lookup(in i_username text, out uname text, out ph:
RETURNS record AS $$
BEGIN
SELECT usename, passwd FROM pg_catalog.pg_shadow
WHERE usename = i_username INTO uname, phash;
RETURN;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
REVOKE ALL ON FUNCTION pgbouncer.user_lookup(text) FROM public, pgbouncer;
GRANT EXECUTE ON FUNCTION pgbouncer.user_lookup(text) TO pgbouncer;

Example configs for 2 peered PgBouncer processes to create a multi-core Pg-
Bouncer setup using so_reuseport. The config for the first process:

[databases]
postgres = host=localhost dbname=postgres

[peers]
1 = host=/tmp/pgbouncerl
2 = host=/tmp/pgbouncer?2

[pgbouncer]
listen_addr=127.0.0.1
auth_file=auth_file.conf
so_reuseport=1
unix_socket_dir=/tmp/pgbouncerl
peer_id=1

The config for the second process:

47

[databases]
postgres = host=localhost dbname=postgres

[peers]
1 = host=/tmp/pgbouncerl
2 = host=/tmp/pgbouncer?2

[pgbouncer]

listen_addr=127.0.0.1

auth_file=auth_file.conf

so_reuseport=1

; only unix_socket_dir and peer_id are different
unix_socket_dir=/tmp/pgbouncer?2

peer_id=2

See also

pgbouncer(1) - man page for general usage, console commands
https://www.pgbouncer.org/

--- title: PgBouncer TODO list draft: false ---

PgBouncer TODO list

Highly visible missing features
Significant amount of users feel the need for those.
e Protocol-level plan cache.
o LISTEN/NOTIFY. Requires strict SQL format.

Waiting for contributors. . .

Problems / cleanups
¢ Bad naming in data structures:
— PgSocket->db [vs. PgPool->db)]
e other per-user settings

o Maintenance order vs. lifetime_kill gap: http://lists.pgfoundry.org/
pipermail /pgbouncer-general /2011-February,/000679.html

e per_loop_maint/per_loop_ activate take too much time in case of moder-
ate load and lots of pools. Perhaps active_pool list would help, which
contains only pools touched in current loop.

48

https://www.pgbouncer.org/
http://lists.pgfoundry.org/pipermail/pgbouncer-general/2011-February/000679.html
http://lists.pgfoundry.org/pipermail/pgbouncer-general/2011-February/000679.html

e new states for clients: idle and in-query. That allows to apply
client_idle_timeout and query_ timeout without walking all clients on
maintenance time.

o check if SQL error codes are correct

e removing user should work - kill connections

o keep stats about error counts

e cleanup of logging levels, to make log more useful
e to test:

— signal flood
— no mem / no fds handling

o fix high-freq maintenance timer - it’s only needed when PAUSE/RESUME /shutdown
is issued.

o Get rid of SBUF_SMALL_PKT logic - it makes processing code complex.
Needs a new sbuf_prepare_ *() to notify sbuf about short data. [Plain
‘false’ from handler postpones processing to next event loop.]

e units for config parameters.

Dubious/complicated features

o Failover. Already solved via DNS. Adding failover decision-making is not
a good idea. ..

o User-based route. Simplest would be to move db info to pool and fill
username into dns.

e some preliminary notification that fd limit is full
o Move all “look-at-full-packet” situations to SBUF_EV_PKT CALLBACK

e pool_mode = plproxy - use postgres in full-duplex mode for autocommit
queries, multiplexing several queries into one connection. Should result in
more efficient CPU usage of server.

e SMP: spread sockets over per-cpu threads. Needs confirmation that single-
threadedness can be problem. It can also be that only accept() + login
handling of short connection is problem that could be solved by just having
threads for login handling, which would be lot simpler or just deciding
that it is not worth fixing.

49

	pgBouncer - A Lightweight Connection Pooler for PostgreSQL
	PgBouncer
	Building
	DNS lookup support
	PAM authentication
	systemd integration
	Building from Git
	Testing
	Building on Windows
	Running on Windows

	pgbouncer
	Synopsis
	Description
	Quick-start
	Command line switches
	Admin console
	Show commands
	Process controlling commands
	Other commands
	Signals
	Libevent settings

	See also

	pgbouncer.ini
	Description
	Generic settings
	logfile
	pidfile
	listen_addr
	listen_port
	unix_socket_dir
	unix_socket_mode
	unix_socket_group
	user
	pool_mode
	max_client_conn
	default_pool_size
	min_pool_size
	reserve_pool_size
	reserve_pool_timeout
	max_db_connections
	max_db_client_connections
	max_user_connections
	max_user_client_connections
	server_round_robin
	track_extra_parameters
	ignore_startup_parameters
	peer_id
	disable_pqexec
	application_name_add_host
	conffile
	service_name
	job_name
	stats_period
	max_prepared_statements

	Authentication settings
	auth_type
	auth_hba_file
	auth_ident_file
	auth_file
	auth_user
	auth_query
	auth_dbname

	Log settings
	syslog
	syslog_ident
	syslog_facility
	log_connections
	log_disconnections
	log_pooler_errors
	log_stats
	verbose

	Console access control
	admin_users
	stats_users

	Connection sanity checks, timeouts
	server_reset_query
	server_reset_query_always
	server_check_delay
	server_check_query
	server_fast_close
	server_lifetime
	server_idle_timeout
	server_connect_timeout
	server_login_retry
	client_login_timeout
	autodb_idle_timeout
	dns_max_ttl
	dns_nxdomain_ttl
	dns_zone_check_period
	resolv_conf

	TLS settings
	client_tls_sslmode
	client_tls_key_file
	client_tls_cert_file
	client_tls_ca_file
	client_tls_protocols
	client_tls_ciphers
	client_tls_ecdhcurve
	client_tls_dheparams
	server_tls_sslmode
	server_tls_ca_file
	server_tls_key_file
	server_tls_cert_file
	server_tls_protocols
	server_tls_ciphers

	Dangerous timeouts
	query_timeout
	query_wait_timeout
	cancel_wait_timeout
	client_idle_timeout
	idle_transaction_timeout
	suspend_timeout

	Low-level network settings
	pkt_buf
	max_packet_size
	listen_backlog
	sbuf_loopcnt
	so_reuseport
	tcp_defer_accept
	tcp_socket_buffer
	tcp_keepalive
	tcp_keepcnt
	tcp_keepidle
	tcp_keepintvl
	tcp_user_timeout

	Section [databases]
	dbname
	host
	port
	user
	password
	auth_user
	auth_query
	auth_dbname
	pool_size
	min_pool_size
	reserve_pool_size
	connect_query
	pool_mode
	load_balance_hosts
	max_db_connections
	max_db_client_connections
	server_lifetime
	client_encoding
	datestyle
	timezone

	Section [users]
	pool_size
	reserve_pool_size
	pool_mode
	max_user_connections
	query_timeout
	idle_transaction_timeout
	client_idle_timeout
	max_user_client_connections

	Section [peers]
	host
	port
	pool_size

	Include directive
	Authentication file format
	Limitations
	Note on managed servers

	HBA file format
	Ident map file format
	Examples
	See also

	PgBouncer TODO list
	Highly visible missing features
	Problems / cleanups
	Dubious/complicated features

