
Changelog

Contents
pgMonitor 2

pgMonitor is your all-in-one tool to easily create an environment to visualize the health and performance of your PostgreSQL
cluster. 2

Contents . 3
Purpose . 3
Supported Platforms . 3

Operating Systems . 3
PostgreSQL . 3
PgBouncer . 3

Installation . 3
1. exporter . 5
2. Prometheus . 5
3. Grafana . 5

Version History . 5
Sponsors . 5
Legal Notices . 5
Installation . 5

RPM installs . 5
Non-RPM installs . 5

Upgrading . 6
Setup . 6

Setup on RHEL or CentOS . 7
Monitoring multiple databases and/or running multiple postgres exporters (RHEL / CentOS) 10

Metrics Collected . 10
PostgreSQL . 10
System . 13

Installation . 13
RHEL / CentOS . 13
Upgrading . 15

Setup . 16
Setup on RHEL/CentOS . 16
Included Dashboards . 17

Installation . 18
Linux . 18

Upgrading . 19
Setup . 19

Setup on Linux . 19
Datasource & Dashboard Provisioning . 19

4.11.0 . 20
Release Summary . 20
Minor Changes . 20

4.10.0 . 20
Release Summary . 20
Minor Changes . 20

4.9.0 . 20
Release Summary . 20
Major Changes . 20
Minor Changes . 20
Bugfixes . 20

4.8.0 . 21
Release Summary . 21
Major Changes . 21

1

Minor Changes . 21
Bugfixes . 21

4.7 . 21
New Features . 21
Bug Fixes . 21

4.6 . 21
New Features . 21
Bug Fixes . 21

4.5 . 21
New Features . 21
Bug Fixes . 22
Manual Intervention Changes . 22

4.4-1 . 22
New Features . 22
Bug Fixes . 22
Non-backward Compatible Changes . 22
Manual Intervention Changes . 22

4.4 . 22
New Features . 22
Bug Fixes . 22
Non-backward Compatible Changes . 22
Manual Intervention Changes . 22

4.3 . 22
New Features . 22
Bug Fixes . 23
Non-backward Compatible Changes . 23
Manual Intervention Changes . 23

4.2 . 23
New Features . 23
Bug Fixes . 23
Non-backward Compatible Changes . 23
Manual Intervention Changes . 23

4.1 . 23
4.0 . 23

New Features . 23
Non-backward Compatible Changes . 24
Manual Intervention Changes . 24
Bug Fixes . 24

3.2 . 24
3.1 . 24
3.0 . 25
2.4 . 26
2.3 . 26
2.2 . 27
2.1 . 27
2.0 . 27
1.7 . 28
1.6 . 29
1.5 . 29
1.4 . 29
1.3 . 29
1.2 . 29
1.1 . 29
1.0 . 29

pgMonitor
{{< logo src=“/images/pgmonitor_logo.svg” text=“Crunchy Monitoring” >}}

pgMonitor is your all-in-one tool to easily create an environment to visualize the health and performance of your
PostgreSQL cluster.

pgMonitor combines a suite of tools to facilitate the collection and visualization of important metrics that you need be aware of in your
PostgreSQL database and your host environment, including:

2

https://github.com/CrunchyData/pgMonitor
http://www.postgresql.org/

• Connection counts: how busy is your system being accessed and if connections are hanging
• Database size: how much disk your cluster is using
• Replication lag: know if your replicas are falling behind in loading data from your primary
• Transaction wraparound: don’t let your PostgreSQL database stop working
• Bloat: how much extra space are your tables and indexes using
• System metrics: CPU, Memory, I/O, uptime

pgMonitor is also highly configurable, and advanced users can design their own metrics, visualizations, and add in other features such as
alerting.

Running pgMonitor will give you confidence in understanding how well your PostgreSQL cluster is performing, and will provide you the
information to make calculated adjustments to your environment.

Contents
• Purpose
• Supported Platforms

– Operating Systems
– PostgreSQL

• Installation
• Roadmap
• Version History
• Sponsors
• Legal Notices

Purpose
pgMonitor is an open-source monitoring solution for PostgreSQL and the systems that it runs on. pgMonitor came from the need to
provide a way to easily create a visual environment to monitor all the metrics a database administrator needs to proactively ensure the
health of the system.

pgMonitor combines multiple open-source software packages and necessary configuration to create a robust PostgreSQL monitoring envi-
ronment. These include:

• Prometheus - an open-source metrics collector that is highly customizable.
• Grafana - an open-source data visualizer that allows you to generate many different kinds of charts and graphs.
• PostgreSQL Exporter - an open-source data export to Prometheus that supports collecting metrics from any PostgreSQL server

version 9.1 and above.

Supported Platforms
Operating Systems

• RHEL 7/8 (Build/Run Testing, Setup Instructions)
• CentOS 7 (Build/Run Testing, Setup Instructions)
• Ubuntu 20 (Build/Run Testing)

PostgreSQL

• pgMonitor plans to support all PostgreSQL versions that are actively supported by the PostgreSQL community. Once a major
version of PostgreSQL reaches its end-of-life (EOL), pgMonitor will cease supporting that major version soon after. Please see the
official PostgreSQL website for community supported releases.

Known issues

• PostgreSQL 10+ SCRAM-SHA-256 encrypted passwords are supported on the Linux version of pgMonitor 4.0 or later only.

PgBouncer

• PgBouncer 1.17
• pgbouncer_fdw 1.0.0

Installation
Installation instructions for each package are provided in that packages subfolder. Each step in the installation process is listed here, with
a link to additional to further installation instructions for each package.

3

https://prometheus.io/
https://grafana.com/
https://github.com/wrouesnel/postgres_exporter
https://www.postgresql.org/support/versioning/

Figure 1: pgMonitor

4

1. exporter

2. Prometheus

3. Grafana

Version History
For the full history of pgMonitor, please see the CHANGELOG.

Sponsors
{{< logo src=“/images/crunchy_logo.png” text=“Crunchy Data” >}}

Crunchy Data is pleased to sponsor pgMonitor and many other open-source projects to help promote support the PostgreSQL community
and software ecosystem.

Legal Notices
Copyright © 2017-2024 Crunchy Data Solutions, Inc. All Rights Reserved.

CRUNCHY DATA SOLUTIONS, INC. PROVIDES THIS GUIDE “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON INFRINGEMENT, MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Crunchy, Crunchy Data Solutions, Inc. and the Crunchy Hippo Logo are trademarks of Crunchy Data Solutions, Inc. All Rights Reserved.

The Linux instructions below use RHEL, but any Linux-based system should work. Crunchy Data customers can obtain Linux packages
through the Crunchy Customer Portal.

• Installation
– RPM installs
– Non-RPMs installs

• Upgrading
• Setup

– RHEL or CentOS
• Metrics Collected

– PostgreSQL
– System

Installation
RPM installs

The following RPM packages are available to Crunchy Data customers through the Crunchy Customer Portal. After installing via these
packages, continue reading at the Setup section.

Available Packages

Package Name Description
blackbox_exporter Package for the blackbox_exporter
node_exporter Base package for node_exporter
pg_bloat_check Package for pg_bloat_check script
pgbouncer_fdw Package for the pgbouncer_fdw extension
pgmonitor-node_exporter-extras Crunchy-optimized configurations for node_exporter
pgmonitor-pg-common Package containing postgres_exporter items common for all versions of PostgreSQL
pgmonitor-pg##-extras Crunchy-optimized configurations for postgres_exporter. Note that each major version of

PostgreSQL has its own extras package (pgmonitor-pg13-extras, pgmonitor-pg14-extras, etc)
postgres_exporter Base package for postgres_exporter

Non-RPM installs

For non-package installations on Linux, applications can be downloaded from their respective repositories:

Application Source Repository
blackbox_exporter https://github.com/prometheus/blackbox_exporter
node_exporter https://github.com/prometheus/node_exporter
pg_bloat_check https://github.com/keithf4/pg_bloat_check

5

https://www.crunchydata.com/
https://www.crunchydata.com/
https://github.com/CrunchyData/
https://www.crunchydata.com
https://access.crunchydata.com/
https://www.crunchydata.com
https://access.crunchydata.com/

Application Source Repository
pgbouncer_fdw https://github.com/CrunchyData/pgbouncer_fdw
postgres_exporter https://github.com/prometheus-community/postgres_exporter

User and Configuration Directory Installation You will need to create a user named {{< shell >}}ccp_monitoring{{< /shell >}}
which you can do with the following command:

sudo useradd -m -d /var/lib/ccp_monitoring ccp_monitoring

Configuration File Installation All executables installed via the above releases are expected to be in the {{< shell >}}/usr/bin{{<
/shell >}} directory. A base node_exporter systemd file is expected to be in place already. An example one can be found here:

https://github.com/lest/prometheus-rpm/tree/master/node_exporter

A base blackbox_exporter systemd file is also expected to be in place. No examples are currently available.

The files contained in this repository are assumed to be installed in the following locations with the following names. In the instructions
below, you should replace a double-hash (##) with the two-digit major version of PostgreSQL you are running (ex: 12, 13, 14, etc.).

node_exporter The {{< shell >}}node_exporter{{< /shell >}} data directory should be {{< shell >}}/var/lib/ccp_monitoring/node_exporter{{<
/shell >}} and owned by the {{< shell >}}ccp_monitoring{{< /shell >}} user. You can set it up with:

sudo install -m 0700 -o ccp_monitoring -g ccp_monitoring -d /var/lib/ccp_monitoring/node_exporter

The following pgMonitor configuration files should be placed according to the following mapping:

pgmonitor Configuration File System Location
node_exporter/linux/crunchy-node-exporter-service-rhel.conf /etc/systemd/system/node_exporter.service.d/crunchy-

node-exporter-service-rhel.conf
node_exporter/linux/sysconfig.node_exporter /etc/sysconfig/node_exporter

postgres_exporter The following pgMonitor configuration files should be placed according to the following mapping:

pgMonitor Configuration File System Location
postgres_exporter/common/pg##/setup.sql /etc/postgres_exporter/##/setup.sql
postgres_exporter/common/pg##/queries*.yml /etc/postgres_exporter/##/queries*.yml
postgres_exporter/common/queries*.yml /etc/postgres_exporter/##/queries*.yml
postgres_exporter/linux/crontab.txt /etc/postgres_exporter/##/crontab.txt
postgres_exporter/linux/crunchy-postgres-exporter@.service /usr/lib/systemd/system/crunchy-postgres-

exporter@.service
postgres_exporter/linux/pg##/sysconfig.postgres_exporter_pg## /etc/sysconfig/postgres_exporter_pg##
postgres_exporter/linux/pg##/sysconfig.postgres_exporter_pg##_per_db /etc/sysconfig/postgres_exporter_pg##_per_db
postgres_exporter/linux/queries_*.yml /etc/postgres_exporter/##/queries_*.yml
postgres_exporter/linux/pgbackrest-info.sh /usr/bin/pgbackrest-info.sh
postgres_exporter/linux/pgmonitor.conf /etc/pgmonitor.conf

(multi-backrest-repository/container
environment only)

blackbox_exporter The following pgMonitor configuration files should be placed according to the following mapping:

pgMonitor Configuration File System Location
blackbox_exporter/common/blackbox_exporter.sysconfig /etc/sysconfig/blackbox_exporter
blackbox_exporter/common/crunchy-blackbox.yml /etc/blackbox_exporter/crunchy-blackbox.yml

Upgrading
• See the CHANGELOG for full details on both major & minor version upgrades.

Setup

6

Setup on RHEL or CentOS

Service Configuration The following files contain defaults that should enable the exporters to run effectively on your system for the
purposes of using pgMonitor. Please take some time to review them.

If you need to modify them, see the notes in the files for more details and recommendations: - {{< shell >}}/etc/systemd/system/node_exporter.service.d/crunchy-
node-exporter-service-rhel{{< /shell >}} - {{< shell >}}/etc/sysconfig/node_exporter{{< /shell >}} - {{< shell >}}/etc/sysconfig/-
postgres_exporter_pg##{{< /shell >}} - {{< shell >}}/etc/sysconfig/postgres_exporter_pg##_per_db{{< /shell >}}

Note that {{< shell >}}/etc/sysconfig/postgres_exporter_pg##{{< /shell >}} & {{< shell >}}postgres_exporter_pg##_per_db{{<
/shell >}} are the default sysconfig files for monitoring the database running on the local socket at /var/run/postgresql and connect to
the “postgres” database. If you’ve installed the pgMonitor setup to a different database, modify these files accordingly or make new ones.
If you make new ones, ensure the service name you enable references this file (see the Enable Services section below).

Database Configuration

General Configuration First, make sure you have installed the PostgreSQL contrib modules. You can install them with the following
command:

sudo yum install postgresql##-contrib

Where ## corresponds to your current PostgreSQL version. For PostgreSQL 13 this would be:

sudo yum install postgresql13 -contrib

You will need to modify your {{< shell >}}postgresql.conf{{< /shell >}} configuration file to tell PostgreSQL to load shared libraries.
In the default setup, this file can be found at {{< shell >}}/var/lib/pgsql/##/data/postgresql.conf{{< /shell >}}.

shared_preload_libraries = 'pg_stat_statements ,auto_explain '

You will need to restart your PostgreSQL instance for the change to take effect. pgMonitor has optional metrics that can be collected
via pg_stat_statements. auto_explain does not do anything to your database without further configuration. But even if neither of these
extensions are initially used, they are very good to have enabled here by default for when they may be needed in the future.

The following statement only needs to be run on the “global” database, typically the “postgres” database. If you want the
pg_stat_statements view to be visible in other databases, this statement must be run there as well.

CREATE EXTENSION pg_stat_statements;

Monitoring Setup

Query File Description
setup.sql Creates ccp_monitoring role with all necessary grants. Creates all necessary database objects (functions,

tables, etc) required for monitoring.
setup_metric_views.sql Creates materialized views and maintenance objects for them. This feature is optional. See Materialized View

Metrics.
queries_bloat.yml postgres_exporter query file to allow bloat monitoring.
queries_global.yml postgres_exporter query file with minimal recommended queries that are common across all PG versions and

only need to be run once per database instance.
queries_global_dbsize.ymlpostgres_exporter query file that contains metrics for monitoring database size. This is a separate file to

allow the option to use a materialized view for very large databases
queries_global_matview.ymlpostgres_exporter query file that contains alternative metrics that use materialized views of common metrics

across all PG versions
queries_per_db.yml postgres_exporter query file with queries that gather per databse stats. WARNING: If your database has

many tables this can greatly increase the storage requirements for your prometheus database. If necessary,
edit the query to only gather tables you are interested in statistics for. The “PostgreSQL Details” and the
“CRUD Details” Dashboards use these statistics.

queries_per_db_matview.ymlpostgres_exporter query files that contains alternative metrics that use materialized views of per database
stats

queries_general.yml postgres_exporter query file for queries that are specific to the version of PostgreSQL that is being monitored.
queries_backrest.yml postgres_exporter query file for monitoring pgBackRest backup status. By default, new backrest data is only

collected every 10 minutes to avoid excessive load when there are large backup lists. See sysconfig file for
exporter service to adjust this throttling.

queries_pgbouncer.yml postgres_exporter query file for monitoring pgbouncer.
queries_pg_stat_statements.ymlpostgres_exporter query file for specific pg_stat_statements metrics that are most useful for monitoring and

trending.

7

By default, there are two postgres_exporter services expected to be running. One connects to the default {{< shell >}}postgres{{< /shell
>}} database that most PostgreSQL instances come with and is meant for collecting global metrics that are the same on all databases in
the instance (connection/replication statistics, etc). This service uses the sysconfig file {{< shell >}}postgres_exporter_pg##{{< /shell
>}}. Connect to this database and run the setup.sql script to install the required database objects for pgMonitor.

The second postgres_exporter service is used to collect per-database metrics and uses the sysconfig file {{< shell >}}post-
gres_exporter_pg##_per_db{{< /shell >}}. By default it is set to also connect to the {{< shell >}}postgres{{< /shell >}}
database, but you can add as many additional connection strings to this service for each individual database that you want metrics for.
Per-db metrics include things like table/index statistics and bloat. See the section below for monitorig multiple databases for how to do
this.

Note that your pg_hba.conf will have to be configured to allow the {{< shell >}}ccp_monitoring{{< /shell >}} system user to con-
nect as the {{< shell >}}ccp_monitoring{{< /shell >}} role to any database in the instance. As of version 4.0 of pg_monitor, the
postgres_exporter service is set by default to connect via local socket, so passwordless local peer authentication is the expected default.
If password-based authentication is required, we recommend using SCRAM authentication, which is supported as of version 0.7.x of
postgres_exporter. See our blog post for more information on SCRAM - https://info.crunchydata.com/blog/how-to-upgrade-postgresql-
passwords-to-scram

postgres_exporter only takes a single yaml file as an argument for custom queries, so this requires concatenating the relevant files together.
The sysconfig files for the service help with this concatenation task and define the variable {{< yaml >}}QUERY_FILE_LIST{{< /yaml
>}}. Set this variable to a space delimited list of the full path names to all files that contain queries you want to be in the single file that
postgres_exporter uses.

For example, to use just the common queries for PostgreSQL 12 modify the relevant sysconfig file as follows:

QUERY_FILE_LIST="/etc/postgres_exporter/12/queries_global.yml
/etc/postgres_exporter/12/queries_general.yml"

As an another example, to include queries for PostgreSQL 13 as well as pgBackRest, modify the relevant sysconfig file as follows:

QUERY_FILE_LIST="/etc/postgres_exporter/13/queries_global.yml
/etc/postgres_exporter/13/queries_general.yml /etc/postgres_exporter/13/queries_backrest.yml"

For replica servers, the setup is the same except that the setup.sql file does not need to be run since writes cannot be done there and it
was already run on the primary.

Access Control: GRANT statements The {{< shell >}}ccp_monitoring{{< /shell >}} database role (created by running the
“setup.sql” file above) must be allowed to connect to all databases in the cluster. Note that by default, all users are granted CONNECT on
all new databases, so this step can likely be skipped. Otherwise, run the following command to generate the necessary GRANT statements:

SELECT 'GRANT CONNECT ON DATABASE "' || datname || '" TO ccp_monitoring;'
FROM pg_database
WHERE datallowconn = true;

This should generate one or more statements similar to the following:

GRANT CONNECT ON DATABASE "postgres" TO ccp_monitoring;

Run these grant statements to then allow monitoring to connect.

Materialized View Metrics With large databases/tables and some other conditions, certain metrics can cause excessive load. For
those cases, materialized views and alternative metric queries have been made available. The materialized views are refreshed on their own
schedule independent of the Prometheus data scrape, so any load that may be associated with gathering the underlying data is mitigated.
A configuration table, seen below, contains options for how often these materialized views should be refreshed. And a single procedure
can be called to refresh all materialized views relevant to monitoring.

For every database that will be collecting materialized view metrics, you will have to run the {{< shell >}}setup_metric_views.sql{{<
/shell >}} file against that database. This will likely need to be run as a superuser and must be run after running the base setup file
mentioned above to create the necessary monitoring user first.

psql -U postgres -d alphadb -f setup_metric_views.sql
psql -U postgres -d betadb -f setup_metric_views.sql

The {{< shell >}}/etc/postgres_exporter/##/crontab.txt{{< /shell >}} file has an example entry for how to call the refresh procedure.
You should modify this to run as often as you need depending on how recent you need your metric data to be. This procedure is safe to
run on the primary or replicas and will safely exit if the database is in recovery mode.

Configuration table {{< shell >}}monitor.metric_views{{< /shell >}}:

8

Column Description
view_schema Schema containing the materialized view
view_name Name of the materialized view
concurrent_refresh Boolean that sets whether this materialized view can be refreshed concurrently (requires a unique

index)
run_interval How often this materialized view should have its data refreshed. Must be a value compatible with the

PG interval type
last_run Timestamp of the last time this view was refreshed
active Boolean that sets whether this view should be refreshed when the procedure is called
scope Whether the data contained in the view is per-database or instance-wide. Currently unused

You are also free to use this materialized view system for your own custom metrics as well. Simply make a materialized view, add its
name to the configuration table and ensure the user running the refresh has permissions to do so for your view(s).

Bloat setup Run the script on the specific database(s) you will be monitoring for bloat in the cluster. See the note below, or in
crontab.txt, concerning a superuser requirement for using this script.

psql -d postgres -c "CREATE EXTENSION pgstattuple;"
/usr/bin/pg_bloat_check.py -c "host=localhost dbname=postgres user=postgres" --create_stats_table
psql -d postgres -c "GRANT SELECT,INSERT,UPDATE,DELETE,TRUNCATE ON bloat_indexes , bloat_stats ,

bloat_tables TO ccp_monitoring;"

The {{< shell >}}/etc/postgres_exporter/##/crontab.txt{{< /shell >}} file has an example bloat check crontab entry. Modify this
example to schedule bloat checking weekly during your ‘off-peak’ hours; alternatively, scheduling it monthly is usually good enough for
most databases as long as the results are acted upon quickly.

{{< note >}}Bloat monitoring requires the user running the check to be able to read all possible tables that will ever exist. PostgreSQL
14 introduced the built-in role {{< shell >}}pg_read_all_data{{< /shell >}} that can be granted to any role to allow it to read all
possible data for the entire cluster. It is recommended to grant this role vs running the bloat check as a superuser. If you are running a
version of PostgreSQL less than 14, a superuser is required and you will have to adjust the crontab accordingly to run as that user.

GRANT pg_read_all_data TO ccp_monitoring;

{{< /note >}}

Blackbox Exporter The configuration file for the blackbox_exporter provided by pgMonitor ({{< shell >}}/etc/blackbox_exporter/crunchy-
blackbox.yml{{< /shell >}}) provides a probe for monitoring any IPv4 TCP port status. The actual target and port being monitored
are controlled via the Prometheus target configuration system. Please see the pgMonitor Prometheus documentation for further details.
If any additional Blackbox probes are desired, please see the upstream documentation.

PGBouncer In order to monitor pgbouncer with pgMonitor, the pgbouncer_fdw maintained by CrunchyData is required. Please see
its repository for full installation instructions. A package for this is available for Crunchy customers.

https://github.com/CrunchyData/pgbouncer_fdw

Once that is working, you should be able to add the {{< shell >}}queries_pgbouncer.yml{{< /shell >}} file to the {{< yaml
>}}QUERY_FILE_LIST{{< /shell >}} for the exporter that is monitoring the database where the FDW was installed.

sudo systemctl enable node_exporter
sudo systemctl start node_exporter
sudo systemctl status node_exporter

If you’ve installed the blackbox exporter:

sudo systemctl enable blackbox_exporter
sudo systemctl start blackbox_exporter
sudo systemctl status blackbox_exporter

To most easily allow the use of multiple postgres exporters, running multiple major versions of PostgreSQL, and to avoid maintaining many
similar service files, a systemd template service file is used. The name of the sysconfig EnvironmentFile to be used by the service is passed as
the value after the “@” and before “.service” in the service name. The default exporter’s sysconfig file is named “postgres_exporter_pg##”
and tied to the major version of postgres that it was installed for. A similar EnvironmentFile exists for the per-db service. Be sure to
replace the ## in the below commands first!

9

sudo systemctl enable crunchy-postgres -exporter@postgres_exporter_pg##
sudo systemctl start crunchy-postgres-exporter@postgres_exporter_pg##
sudo systemctl status crunchy-postgres-exporter@postgres_exporter_pg##

sudo systemctl enable crunchy-postgres -exporter@postgres_exporter_pg##_per_db
sudo systemctl start crunchy-postgres-exporter@postgres_exporter_pg##_per_db
sudo systemctl status crunchy-postgres-exporter@postgres_exporter_pg##_per_db

Monitoring multiple databases and/or running multiple postgres exporters (RHEL / CentOS)

Certain metrics are not cluster-wide, so multiple exporters must be run to avoid duplication when monitoring multiple databases in a
single PostgreSQL instance. To collect these per-database metrics, an additional exporter service is required and pgMonitor provides this
using the following query file: ({{< shell >}}queries_per_db.yml{{< /shell >}}). In Prometheus, you can then define the global and
per-db exporter targets for a single job. This will place all the metrics that are collected for a single database instance together.

{{< note >}}The “setup.sql” file does not need to be run on these additional databases if using the queries that pgMonitor comes with.{{<
/note >}}

pgMonitor provides and recommends an example sysconfig file for this per-db exporter: {{< shell >}}sysconfig.postgres_exporter_pg##_per_db{{<
/shell >}}. If you’d like to create additional exporter services for different query files, just copy the existing ones and modify the relevant
lines, mainly the port, database name, and query file. The below example shows connecting to 3 databases in the same instance to collect
their per-db metrics: postgres, mydb1, and mydb2.

OPT="--web.listen-address=0.0.0.0:9188
--extend.query-path=/etc/postgres_exporter/14/queries_per_db.yml"

DATA_SOURCE_NAME="postgresql:///postgres?host=/var/run/postgresql/&user=ccp_monitoring&sslmode=disable,postgresql:///mydb1?host=/var/run/postgresql/&user=ccp_monitoring&sslmode=disable,postgresql:///mydb2?host=/var/run/postgresql/&user=ccp_monitoring&sslmode=disable"

As was done with the exporter service that is collecting the global metrics, also modify the {{< yaml >}}QUERY_LIST_FILE{{< /yaml
>}} in the new sysconfig file to only collect per-db metrics

QUERY_FILE_LIST="/etc/postgres_exporter/14/queries_per_db.yml"

Since a systemd template is used for the postgres_exporter services, all you need to do is pass the sysconfig file name as part of the new
service name.

sudo systemctl enable crunchy-postgres-exporter@postgres_exporter_pg14_per_db
sudo systemctl start cruncy-postgres-exporter@postgres_exporter_pg14_per_db
sudo systemctl status crunchy-postgres-exporter@postgres_exporter_pg14_per_db

Lastly, update the Prometheus auto.d target file to include the new exporter in the same job you already had running for this system

Metrics Collected
The metrics collected by our exporters are outlined below.

PostgreSQL

PostgreSQL metrics are collected by the postgres_exporter. pgMonitor uses custom queries for its PG metrics. The default metrics that
postgres_exporter comes with are all disabled except for the pg_up metric.

General Metrics pg_up - Database is up and connectable by metric collector. This is the only metrics that comes with post-
gres_exporter that is currently used

Common Metrics Metrics contained in the queries_global.yml file. These metrics are common to all versions of PostgreSQL and
are recommended as a minimum default for the global exporter.

• ccp_archive_command_status_seconds_since_last_fail - Seconds since the last archive_command run failed. If zero, the
archive_command is succeeding without error.

• ccp_database_size_bytes - Total size of each database in PostgreSQL instance

• ccp_is_in_recovery_status - Current value of the pg_is_in_recovery() function expressed as 1 for true (instance is a replica) and
2 for false (instance is a primary)

10

https://github.com/wrouesnel/postgres_exporter

• ccp_connection_stats_active - Count of active connections

• ccp_connection_stats_idle - Count of idle connections

• ccp_connection_stats_idle_in_txn - Count of idle in transaction connections

• ccp_connection_stats_max_blocked_query_time - Runtime of longest running query that has been blocked by a heavyweight lock

• ccp_connection_stats_max_connections - Current value of max_connections for reference

• ccp_connection_stats_max_idle_in_txn_time - Runtime of longest idle in transaction (IIT) session.

• ccp_connection_stats_max_query_time - Runtime of longest general query (inclusive of IIT).

• ccp_connection_stats_max_blocked_query_time - Runtime of the longest running query that has been blocked by a heavyweight
lock

• ccp_locks_count - Count of active lock types per database

• ccp_pg_hba_checksum_status - Value of checksum monitioring status for pg_catalog.pg_hba_file_rules (pg_hba.conf). 0 = valid
config. 1 = settings changed. Settings history is available for review in the table monitor.pg_hba_checksum. To reset current config
to valid after alert, run monitor.pg_hba_checksum_set_valid(). Note this will clear the history table.

• ccp_pg_settings_checksum_status - Value of checksum monitioring status for pg_catalog.pg_settings (postgresql.conf). 0 = valid
config. 1 = settings changed. Settings history is available for review in the table monitor.pg_settings_checksum. To reset current
config to valid after alert, run monitor.pg_settings_checksum_set_valid(). Note this will clear the history table.

• ccp_postmaster_uptime_seconds - Time interval in seconds since PostgreSQL database was last restarted

• ccp_postgresql_version_current - Version of PostgreSQL that this exporter is monitoring. Value is the 6 digit integer returned by
the server_version_num PostgreSQL configuration variable to allow easy monitoring for version changes.

• ccp_replication_lag_replay_time - Time since a replica received and replayed a WAL file; only shown on replica instances. Note
that this is not the main way to determine if a replica is behind its primary. This metric only monitors the time since the replica
replayed the WAL vs when it was received. It also does not monitor when a WAL replay replica completely stops receiving WAL
(see received_time metric). It is a secondary metric for monitoring WAL replay on the replica itself. This metric always returns
zero on a primary.

• ccp_replication_lag_received_time - Similar to ccp_replication_lag_replay_time, however this value always increases between replay
of WAL files. Effective for monitoring that a WAL replay replica has actually received WAL files. Note this will cause false positives
when used as an alert for replica lag if the primary receives little to no writes (which means there is no WAL to send). This metric
always returns zero on a primary.

• ccp_replication_lag_size_bytes - Only provides values on instances that have attached replicas (primary, cascading replica). Tracks
byte lag of every streaming replica connected to this database instance. This is the main way that replication lag is monitored. Note
that if you have WAL replay only replicas, this will not be reflected here.

• ccp_replication_slots_active - Active state of given replication slot. 1 = true. 0 = false.

• ccp_replication_slots_retained_bytes - The amount of WAL (in bytes) being retained for given slot.

• ccp_sequence_exhaustion_count - Checks for any sequences that may be close to exhaustion (by default greater than 75% us-
age). Note this checks the sequences themselves, not the values contained in the columns that use said sequences. Function
monitor.sequence_status() can provide more details if run directly on database instance.

• ccp_settings_pending_restart_count - Number of settings from pg_settings catalog in a pending_restart state. This value is from
the similarly named column found in pg_catalog.pg_settings.

• ccp_wal_activity_total_size_bytes - Current size in bytes of the WAL directory

• ccp_wal_activity_last_5_min_size_bytes - Current size in bytes of the last 5 minutes of WAL generation. Includes recycled WALs.

The meaning of the following ccp_transaction_wraparound metrics, and how to manage when they are triggered, is covered more
extensively in this blog post: https://info.crunchydata.com/blog/managing-transaction-id-wraparound-in-postgresql

• ccp_transaction_wraparound_percent_towards_emergency_autovac - Recommended thresholds set to 75%/95% when first evaluat-
ing vacuum settings on new systems. Once those have been reviewed and at least one instance-wide vacuum has been run, recommend
thresholds of 110%/125%. Reaching 100% is not a cause for immediate concern, but alerting above 100% for extended periods of
time means that autovacuum is not able to keep up with current transaction rate and needs further tuning.

• ccp_transaction_wraparound_percent_towards_wraparound - Recommend thresholds set to 50%/75%. If any of these thresholds is
tripped, current vacuum settings must be evaluated and tuned ASAP. If critical threshold is reached, it is vitally important that
vacuum be run on tables with old transaction IDs to avoid the cluster being forced to shut down for extended offline maintenance.

The following ccp_stat_bgwriter metrics are statistics collected from the pg_stat_bgwriter view for monitoring performance. These
metrics cover important performance information about flushing data out to disk. Please see the documentation for further details on
these metrics.

11

https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-BGWRITER-VIEW

• ccp_stat_bgwriter_buffers_alloc

• ccp_stat_bgwriter_buffers_backend

• ccp_stat_bgwriter_buffers_backend_fsync

• ccp_stat_bgwriter_buffers_checkpoint

• ccp_stat_bgwriter_buffers_clean

The following ccp_stat_database_* metrics are statistics collected from the pg_stat_database view.

• ccp_stat_database_blks_hit

• ccp_stat_database_blks_read

• ccp_stat_database_conflicts

• ccp_stat_database_deadlocks

• ccp_stat_database_tup_deleted

• ccp_stat_database_tup_fetched

• ccp_stat_database_tup_inserted

• ccp_stat_database_tup_returned

• ccp_stat_database_tup_updated

• ccp_stat_database_xact_commit

• ccp_stat_database_xact_rollback

PostgreSQL Version Specific Metrics The following metrics either require special considerations when monitoring specific versions
of PostgreSQL, or are only available for specific versions. These metrics are found in the queries_pg##.yml files, where ## is the major
version of PG. Unless otherwise noted, the below metrics are available for all versions of PG. These metrics are recommend as a minimum
default for the global exporter.

• ccp_data_checksum_failure_count - PostgreSQL 12 and later only. Total number of checksum failures on this database.

• ccp_data_checksum_failure_time_since_last_failure_seconds - PostgreSQL 12 and later only. Time interval in seconds since the
last checksum failure was encountered.

Backup Metrics Backup monitoring only covers pgBackRest at this time. These metrics are found in the queries_backrest.yml file.
These metrics only need to be collected once per database instance so should be collected by the global postgres_exporter.

• ccp_backrest_last_full_backup_time_since_completion_seconds - Time since completion of last pgBackRest FULL backup

• ccp_backrest_last_diff_backup_time_since_completion_seconds - Time since completion of last pgBackRest DIFFERENTIAL
backup. Note that FULL backup counts as a successful DIFFERENTIAL for the given stanza.

• ccp_backrest_last_incr_backup_time_since_completion_seconds - Time since completion of last pgBackRest INCREMENTAL
backup. Note that both FULL and DIFFERENTIAL backups count as a successful INCREMENTAL for the given stanza.

• ccp_backrest_last_info_runtime_backup_runtime_seconds - Last successful runtime of each backup type (full/diff/incr).

• ccp_backrest_last_info_repo_backup_size_bytes - Actual size of only this individual backup in the pgbackrest repository

• ccp_backrest_last_info_repo_total_size_bytes - Total size of this backup in the pgbackrest repository, including all required previous
backups and WAL

• ccp_backrest_last_info_backup_error - Count of errors tracked for this backup. Note this does not track incomplete backups, only
errors encountered during the backup (checksum errors, file truncation, invalid headers, etc)

Per-Database Metrics These are metrics that are only available on a per-database level. These metrics are found in the
queries_per_db.yml file. These metrics are optional and recommended for the non-global, per-db postgres_exporter. They can be
included in the global exporter as well if the global database needs per-database metrics monitored. Please note that depending on the
number of objects in your database, collecting these metrics can greatly increase the storage requirements for Prometheus since all of
these metrics are being collected for each individual object.

• ccp_table_size_size_bytes - Table size inclusive of all indexes in that table

The following ccp_stat_user_tables_* metrics are statistics collected from the pg_stat_user_tables. Please see the PG documentation
for descriptions of these metrics.

• ccp_stat_user_tables_analyze_count

• ccp_stat_user_tables_autoanalyze_count

12

https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-DATABASE-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-ALL-TABLES-VIEW

• ccp_stat_user_tables_autovacuum_count

• ccp_stat_user_tables_n_tup_del

• ccp_stat_user_tables_n_tup_ins

• ccp_stat_user_tables_n_tup_upd

• ccp_stat_user_tables_vacuum_count

Bloat Metrics Bloat metrics are only available if the pg_bloat_check script has been setup to run. See instructions above. These
metrics are found in the queries_bloat.yml file. These metrics are per-database so, should be used by the per-db postgres_exporter.

• ccp_bloat_check_size_bytes - Size of object in bytes

• ccp_bloat_check_total_wasted_space_bytes - Total wasted space in bytes of given object

pgBouncer Metrics The following metric prefixes correspond to the SHOW command views found in the pgBouncer documentation.
Each column found in the SHOW view is a separate metric under the respective prefix. Ex: ccp_pgbouncer_pools_client_active
corresponds to the SHOW POOLS view’s client_active column. These metrics are found in the queries_bouncer.yml file. These metrics
only need to be collected once per database instance so should be collected by the global postgres_exporter.

• ccp_pgbouncer_pools - SHOW POOLS

• ccp_pgbouncer_databases - SHOW DATABASES

• ccp_pgbouncer_clients - SHOW CLIENTS

• ccp_pgbouncer_servers - SHOW SERVERS

• ccp_pgbouncer_lists - SHOW LISTS

pg_stat_statements Metrics Collecting all per-query metrics into Prometheus could greatly increase storage requirements and
heavily impact performance without sufficient resources. Therefore the metrics below give simplified numeric metrics on overall statistics
and Top N queries. N can be set with the PG_STAT_STATEMENTS_LIMIT variable in the exporter sysconfig file (defaults to 20).
Note that the statistics for individual queries can only be reset on PG12+. Prior to that, pg_stat_statements must have all statistics
reset to redo the top N queries.

• ccp_pg_stat_statements_top_max_time_ms - Maximum time spent in the statement in milliseconds per database/user/query for
the top N queries

• ccp_pg_stat_statements_top_mean_time_ms - Average query runtime in milliseconds per database/user/query for the top N queries

• ccp_pg_stat_statements_top_total_time_ms - Total time spent in the statement in milliseconds per database/user/query for the
top N queries

• ccp_pg_stat_statements_total_calls_count - Total number of queries run per user/database

• ccp_pg_stat_statements_total_mean_time_ms - Mean runtime of all queries per user/database

• ccp_pg_stat_statements_total_row_count - Total rows returned from all queries per user/database

• ccp_pg_stat_statements_total_time_ms - Total runtime of all queries per user/database

System

*NIX Operating System metrics (Linux, BSD, etc) are collected using the node_exporter provided by the Prometheus team. pgMonitor
only collects the default metrics provided by node_exporter, but many additional metrics are available if needed.

Prometheus can be set up on any Linux-based system, but pgMonitor currently only supports running it on RHEL/CentOS 7 or later.

• Installation
– RHEL / CentOS

• Upgrading
• Setup

– RHEL / CentOS

Installation
RHEL / CentOS

With RPM Packages There are RPM packages available to Crunchy Data customers through the Crunchy Customer Portal.

After installing via these RPMs, you can continue reading at the Setup section.

13

https://www.pgbouncer.org/usage.html
https://github.com/prometheus/node_exporter
https://www.crunchydata.com
https://access.crunchydata.com/

Available Packages

14

Package Name Description
alertmanager Base package for the Alertmanager
prometheus2 Base package for Prometheus 2.x
pgmonitor-alertmanager-extras Custom Crunchy configurations for Alertmanager
pgmonitor-prometheus-extras Custom Crunchy configurations for Prometheus

Without Crunchy Data Packages For installations without using packages provided by Crunchy Data, we recommend using the
repository maintained at https://github.com/lest/prometheus-rpm. Instructions for setup and installation are contained there. Note this
only sets up the base service. The additional files and steps for pgMonitor still need to be set up as instructed below.

Or you can also download Prometheus and Alertmanager from the original site at https://prometheus.io/download. Note that no base
service setup is provided here, just the binaries.

Minimum Versions pgMonitor assumes to be using at least Prometheus 2.9.x. We recommend to always use the latest minor version
of Prometheus.

User and Configuration Directory Installation You will need to create a system user named {{< shell >}}ccp_monitoring{{<
/shell >}} which you can do with the following command:

sudo useradd -m -d /var/lib/ccp_monitoring ccp_monitoring

Configuration File Installation The files contained in this repository are assumed to be installed in the following locations with the
following names:

Prometheus

The Prometheus data directory should be {{< shell >}}/var/lib/ccp_monitoring/prometheus{{< /shell >}} and owned by the {{< shell
>}}ccp_monitoring{{< /shell >}} user. You can set it up with:

sudo install -d -m 0700 -u ccp_monitoring -g ccp_monitoring /var/lib/ccp_monitoring/prometheus

The following pgmonitor configuration files should be placed according to the following mapping:

pgMonitor Configuration File System Location
prometheus/linux/crunchy-prometheus-service-rhel.conf /etc/systemd/system/prometheus.service.d/crunchy-

prometheus-service-rhel.conf
prometheus/linux/sysconfig.prometheus /etc/sysconfig/prometheus
prometheus/linux/crunchy-prometheus.yml /etc/prometheus/crunchy-prometheus.yml
prometheus/linux/auto.d/*.yml.example /etc/prometheus/auto.d/*.yml.example
prometheus/linux/alert-rules.d/crunchy-alert-rules*.yml.example /etc/prometheus/alert-rules.d/crunchy-alert-

rules-*.yml.example
prometheus/common/auto.d/*.yml.example /etc/prometheus/auto.d/*.yml.example
prometheus/common/alert-rules.d/crunchy-alert-rules*.yml.example /etc/prometheus/alert-rules.d/crunchy-alert-

rules-*.yml.example

Alertmanager

The Alertmanager data directory should be /var/lib/ccp_monitoring/alertmanager and owned by the ccp_monitoring user. You can
set it up with:

sudo install -d -m 0700 -o ccp_monitoring -g ccp_monitoring /var/lib/ccp_monitoring/alertmanager

The following pgMonitor configuration files should be placed according to the following mapping:

pgMonitor Configuration File System Location
alertmanager/linux/crunchy-alertmanager-service-rhel.conf /etc/systemd/system/alertmanager.service.d/crunchy-

alertmanager-service-rhel.conf
alertmanager/linux/sysconfig.alertmanager /etc/sysconfig/alertmanager
alertmanager/common/crunchy-alertmanager.yml /etc/prometheus/crunchy-alertmanager.yml

Upgrading

Please review the ChangeLog for any changes that may be relevant to your environment.

15

https://prometheus.io/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/download

Of note, items like the alert rules and configuration files often require user edits. The packages will install newer versions of these files, but
if the user has changed their contents but kept the same file name, the package will not overwrite them. Instead it will make a file with an
{{< shell >}}*.rpmnew{{< /shell >}} extension that contains the newer version of the file. These new files can be reviewed/compared to
he user’s file to incorporate any desired changes.

Setup
Setup on RHEL/CentOS

Service Configuration The following files contain defaults that should enable Prometheus and Alertmanager to run effectively on your
system for the purposes of using pgmonitor. You should take some time to review them.

If you need to modify them, see the notes in the files for more details and recommendations:

• {{< shell >}}/etc/systemd/system/prometheus.service.d/crunchy-prometheus-service-rhel.conf{{< /shell >}}
• {{< shell >}}/etc/systemd/system/alertmanager.service.d/crunchy-alertmanager-service-rhel.conf{{< /shell >}}

The below files contain startup properties for Prometheues and Alertmanager. Please review and modify these files as you see fit:

• {{< shell >}}/etc/sysconfig/prometheus{{< /shell >}}
• {{< shell >}}/etc/sysconfig/alertmanager{{< /shell >}}

The below files dictate how Prometheus and Alertmanager will behave at runtime for the purposes of using pgMonitor. Please review each
file below and follow the instructions in order to set things up:

File Instructions
/etc/prometheus/crunchy-prometheus.yml Modify to set scrape interval if

different from the default of 30s.
Activate alert rules and
Alertmanager by uncommenting
lines when set as needed.
Activate blackbox_exporter
monitoring if desired. Service file
provided by pgMonitor expects
config file to be named
“crunchy-prometheus.yml”

/etc/prometheus/crunchy-alertmanager.yml Setup alert target (e.g., SMTP,
SMS, etc.), receiver and route
information. Service file provided
by pgMonitor expects config file
to be named
“crunchy-alertmanager.yml”

/etc/prometheus/alert-ruled.d/crunchy-alert-rules-*.yml.example Update rules as needed and
remove “.example” suffix.
Prometheus config provided by
pgmonitor expects “.yml” files to
be located in
“/etc/prometheus/alert-rules.d/”

16

File Instructions
/etc/prometheus/auto.d/*.yml You will need at least one file

with a final “.yml” extension.
Copy the example files to create
as many additional targets as
needed. Ensure the configuration
files you want to use do not end
in “.yml.example” but only with
“.yml”. Note that in order to use
the provided Grafana dashboards,
the extra “exp_type” label must
be applied to all targets and be
set appropriately (pg or node).
Also, PostgreSQL targets make
use of the “cluster_name”
variable and should be given a
relevant value so all systems
(primary & replicas) can be
related to each other when
needed (Grafana dashboards,
etc). See the example target files
provided for how to set the labels
for postgres or node exporter
targets.

Blackbox Exporter By default, the Blackbox exporter probes are commented out in the {{< shell >}}crunchy-prometheus.yml{{<
/shell >}} file; please see the notes in that commented out section. For the default IPv4 TCP port targets that pgMonitor configures the
blackbox_exporter with, the desired monitoring targets can be configured under the {{< yaml >}}static_configs: targets{{< /yaml >}}
section of the {{< yaml >}}blackbox_tcp_services{{< /yaml >}} job; some examples for Grafana & Patroni are given there. It is also
possible to create another auto-scrape target directory similar to {{< shell >}}auto.d{{< /shell >}} and manage your blackbox targets
more dynamically.

If you configure additional probes beyond the one that pgMonitor comes with, you will need to create a different Prometheus {{< yaml
>}}job_name{{< /yaml >}} for them for the given {{< yaml >}}params: module{{< /yaml >}} name.

An example rules file for monitoring Blackbox probes, {{< shell >}}crunchy-alert-rules-blackbox.yml.example{{< /shell >}}, is available
in the {{< shell >}}alert-rules.d{{< /shell >}} folder.

Enable Services To enable and start Prometheus as a service, execute the following commands:
sudo systemctl enable prometheus
sudo systemctl start prometheus
sudo systemctl status prometheus

To enable and start Alertmanager as a service, execute the following commands:
sudo systemctl enable alertmanager
sudo systemctl start alertmanager
sudo systemctl status alertmanager

There are RPM packages available to Crunchy Data customers through the Crunchy Customer Portal. Otherwise the Grafana RPM
Package can be downloaded and installed from https://grafana.com/grafana/download. There is no difference between the Crunchy
provided package and the one directly from Grafana.

• Included Dashboards
• Installation

– Linux
• Upgrading
• Setup

– Linux

Included Dashboards

pgMonitor comes with several dashboards ready to be used with automatic provisioning. They provide examples of using the metrics from
the postgres_exporter and node_exporter. Since provisioned dashboards cannot be edited directly in the web interface, if any custom
changes are desired, it is recommmended to make a copy of them and make your changes there.

17

https://www.crunchydata.com
https://access.crunchydata.com/

Dashboard Name Filename Description
Bloat Details Bloat_Details.json Provides details on database bloat (wasted space). Provides overview

and top-n statistics.
CRUD Details CRUD_Details.json Provides details on Create, Read, Update, Delete (CRUD) statistics

on a per-table basis.
pgBackRest PGBackrest.json Provides details on backups performed with pgBackRest. Also

provides recovery window to show timeframe available for PITR.
PGBouncer PGBouncer.json Provides details from the PgBouncer statistics views.
PostgreSQL Details PG_Details.json Provides detailed information for each PostgreSQL instance

(connections, replication, wraparound, etc).
PostgreSQL Overview PG_Overview.json Provides an overview of all PostgreSQL systems being monitored.

Indicates whether a system is a Primary or Replica. Can click on
each panel to open up the PostgreSQL Details for that system.

Query Statistics QueryStatistics.json Provides an overview of statistics collected by the
pg_stat_statements extension.

TableSize Details TableSize_Details.json Provides size details on a per-table basis for the given database.

Filesystem Details Filesystem_Details.json Provides details on the filesystem metrics (disk usage, IO, etc).
Network Details Network_Details.json Provides details on network usage (utilization, traffic in/out, netstat,

etc).
Overview Overview.json The top level overview dashboard that provides links to the OS

Overview, PostgreSQL Overview, ETCD, and Prometheus Alerts
dashboards.

OS Details OS_Details.json Provides details on operating system metrics (cpu, memory, swap,
disk usage). Links to Filesystem Details dashboard.

OS Overview Overview.json Provides an overview that shows the up status of each system
monitored by pgMonitor.

ETCD Details ETCD_Details.json Provides details on the status of the ETCD cluster monitored by
pgMonitor.

Prometheus Alerts Prometheus_Alerts.json Provides a summary list of current and recent alerts that have fired
in Prometheus.

Installation
Linux

With RPM Packages There are RPM packages available to Crunchy Data customers through the Crunchy Customer Portal.

If you install the below available packages with RPM, you can continue reading at the Setup section.

Available Packages

Package Name Description
grafana Base package for grafana
pgmonitor-grafana-extras Crunchy configurations for datasource & dashboard provisioning

Without Packages Create the following directories on your grafana server if they don’t exist:

mkdir -p /etc/grafana/provisioning/{datasources ,dashboards}
mkdir -p /etc/grafana/crunchy_dashboards

pgmonitor Configuration File System Location
grafana/crunchy_grafana_datasource.yml /etc/grafana/provisioning/datasources/datasource.yml
grafana/crunchy_grafana_dashboards.yml /etc/grafana/provisioning/dashboards/dashboards.yml

Review the {{< shell >}}crunchy_grafana_datasource.yml{{< /shell >}}} file to ensure it is looking at your Prometheus database.
The included file assumes Grafana, Prometheus, and Alertmanager are running on the same system. DO NOT CHANGE the data-
source {{< yaml >}}uid{{< /yaml >}} or {{< yaml >}}name{{< /yaml >}} fields if you will be using the dashboards provided in
this repo. They assume those values and will not work otherwise. Any other options can be changed as needed. Save the {{< shell
>}}crunchy_grafana_datasource.yml{{< /shell >}} file and rename it to {{< shell >}}/etc/grafana/provisioning/datasources/data-

18

https://www.crunchydata.com
https://access.crunchydata.com/

sources.yml{{< /shell >}}. Restart grafana and confirm through the web interface that the datasource was provisioned and working.

Review the {{< shell >}}crunchy_grafana_dashboards.yml{{< /shell >}} file to ensure it’s looking at where you stored the provided
dashboards. By default it is looking in {{< shell >}}/etc/grafana/crunchy_dashboards{{< /shell >}}. Save this file and rename it to
{{< shell >}}/etc/grafana/provisioning/dashboards/dashboards.yml{{< /shell >}}. Restart grafana so it picks up the new config.

Save all of the desired .json dashboard files to the {{< shell >}}/etc/grafana/crunchy_dashboards{{< /shell >}} folder. All of them are
not required, so if there is a dashboard you do not need, it can be left out.

Upgrading
Please review the ChangeLog for pgMonitor and take note of any changes to metric names and/or dashboards. Note that if you are using
the included dashboards that are managed via the provisioning system, they will automatically be updated. If you’ve made any changes
to configuration files and kept their default names, the package will not overwrite them and will instead make a new file with an {{< shell
>}}*.rpmnew{{< /shell >}} extension. You can compare your file and the new one and incorporate any changes as needed or desired.

Setup
Setup on Linux

Configuration Database By default Grafana uses an SQLite database to store configuration and dashboard information. We recom-
mend using a PostgreSQL database for better long term scalability. Before doing any further configuration, including changing the default
admin password, set the grafana.ini to point to a postgresql instance that has a database created for it.

In psql run the following:

CREATE ROLE grafana WITH LOGIN;
CREATE DATABASE grafana;
ALTER DATABASE grafana OWNER TO grafana;
\password grafana

You may also need to adjust your pg_hba.conf to allow grafana to connect to your database.

In your grafana.ini, set the following options at a minimum with relevant values:

[database]

type = postgres
host = 127.0.0.1:5432
name = grafana
user = grafana
password = """mypassword"""

Now enable and start the grafana service

sudo systemctl enable grafana-server
sudo systemctl start grafana-server
sudo systemctl status grafana-server

Navigate to the web interface: https://<ip-address>:3000. Log in with admin/admin (be sure to change the admin password) and check
settings to ensure the postgres options have been set and are working.

Datasource & Dashboard Provisioning

Grafana provides the ability to automatically provision datasources and dashboards via configuration files instead of having to
manually import them either through the web interface or the API. Note that provisioned dashboards can no longer be di-
rectly edited and saved via the web interface. See the Grafana documentation for how to edit/save provisioned dashboards:
http://docs.grafana.org/administration/provisioning/#making-changes-to-a-provisioned-dashboard. If you’d like to customize these
dashboards, we recommend first adding them via provisioning then saving them with a new name. You can then either manage them via
the web interface or add them to the provisioning system.

The extras package takes care of putting all these files in place. If you did not use the Crunchy package to install Grafana, see the
additional instructions above. Once that is done, the only additional setup that needs to be done is to set the “provisioning” option in
the grafana.ini to point to the top level directory if it hasn’t been done already.

[paths]
provisioning = /etc/grafana/provisioning

19

4.11.0
Release Summary

Crunchy Data is pleased to announce the availability of pgMonitor 4.11.0. This release primarily updates support for the underlying
applications to more recent versions. This changelog contains all changes that have been added since the 4.10.0 release.

Minor Changes

• alertmanager - minimum version 0.23, maximum 0.26.x
• blackbox_exporter - minimum version 0.22.x, maximum 0.24.x
• grafana - minimum version 9.2.19, maximum 9.9.x
• node_exporter - minimum version 1.5.0, maximum 1.7.x
• postgres_exporter - minimum version 0.10.1, maximum 0.15.x
• prometheus - minimum version 2.38, maximum 2.49.x

4.10.0
Release Summary

Crunchy Data is pleased to announce the availability of pgMonitor 4.10.0. This release primarily adds support for PostgreSQL 16. This
changelog contains all changes that have been added since the 4.9.0 release.

Minor Changes

• postgres_exporter - Add support for PostgreSQL 16

• containers - The datasource for containers is named PROMETHEUS. Update dashboards to use the hardcoded name.

• grafana - Adjust the cache hit graph to do a 1m rate vs lifetime ratio

• grafana - Relabel the cache hit ratio dial properly mark it as the lifetime cache hit replication

•

4.9.0
Release Summary

Version 4.9.0 of pgMonitor includes updates to add additional metrics and now better supports monitoring multiple PgBouncer hosts.
Please see the full CHANGELOG for additional information about this release.

Major Changes

• postgres_exporter - Added options for using materialized views to collect metrics that may cause longer query runtimes (object
sizing, statistics, etc)

• postgres_exporter - Moved the database size metric out of the ‘queries_global.yml’ file and into the ‘queries_global_dbsize.yml’ file
to allow an optional materialized view metric. Ensure query file configuration list is updated to account for this change

Minor Changes

• blackbox_exporter - added additional probe for TCP with TLS enabled
• grafana - Add panel to Query Statistics dashboard for top WAL stats by bytes
• grafana - Minimum version of Grafana is now 9.2.19
• grafana - Update dashboard to support multiple PgBouncer targets exported by new pgbouncer_fdw
• postgres_exporter - Add WAL statistics for pg_stat_statements
• postgres_exporter - Filter out idle-in-transaction sessions from general max query runtime metrics.
• postgres_exporter - Update query file to support PgBouncer_fdw 1.0.0+
• prometheus - Add alert for cases where a PostgreSQL cluster does not have an instance that is the leader/primary
• prometheus - Allow node_exporter’s load alert to be based on the CPU count. Allows lowering of default thresholds and more

accurate alerting
• prometheus - Enable the PGDataChecksum alert by default for PG12+
• prometheus - Update the example files to provide better guidance on proper configuration
• prometheus - added additional job example to scan TCP probes with TLS

Bugfixes

• grafana - fixed dashboard links that broke when Grafana removed support for the /dashboard/db/:slug endpoint in v8

20

4.8.0
Release Summary

Version 4.8.0 of pgMonitor includes support for PostgreSQL 15. Please see the CHANGELOG for additional information about this
release.

NOTE: PostgreSQL 9.6 and 10 official support has been dropped as of this version

Major Changes

• Update to support PostgreSQL 15 (https://github.com/CrunchyData/pgmonitor/issues/296)

Minor Changes

• Disable JIT for the ccp_monitoring user to avoid memory leak issues (https://github.com/CrunchyData/pgmonitor/issues/295)
• Update prometheus sysconfig file to use up to date startup values (https://github.com/CrunchyData/pgmonitor/issues/293)

Bugfixes

• Fixed pgbackrest-info.sh script to account for old default pgBackRest config file not existing
• Remove unnecessary $-escaping in the service file (https://github.com/CrunchyData/pgmonitor/issues/301)
• Update global sysconfig file to have proper general queries file (https://github.com/CrunchyData/pgmonitor/issues/297)

4.7
NOTE: This is the last version of pgMonitor that will contain support for PostgreSQL 9.6.

New Features

• Added metric to monitor for errors encountered in pgBackRest (ccp_backrest_last_info_backup_error). Also added example
Prometheus alert.

• New, more detailed etcd dashboard for Grafana
• Added Prometheus alerts for monitoring Patroni and etcd

Bug Fixes

• Fixed inconsistency in the OS Details Grafana dashboard between the small left panel for the filesystem and the other filesystem
panels.

• Fixed postgres_exporter queries for PgBouncer to select the proper “user” column.

4.6
New Features

• Support for pgBackRest multiple repositories in metrics and Grafana dashboards. Minimum requirement of pgBackRest is now 2.33.

Bug Fixes

• Allow PostgreSQL Overview Grafana dashboard to work with Grafana 8.x
• Fix queries to use clock_timestamp() vs now() to avoid negative values in some query results
• Fix postgres_exporter sysconfig to properly support multiple options that have .yml files as values (allows tls support).

4.5
New Features

• Add preliminary support for PostgreSQL 14
• Minimum required version of Grafana has been updated to 7.5.x
• Updated Grafana Overview dashboards to support new Stat panel
• Updated PostgreSQL Details Grafana dashboard with more information and to be able to present data grouped by clusters. The

pgBackRest panel was removed from this dashboard.
• The pgBackRest Grafana dashboard now presents data on a per-stanza basis
• Removed deprecated node_exporter metrics from Grafana OS Details dashboard. Reorganized panels.
• Added a basic Network Activity dashboard to Grafana using default metrics that come with node_exporter.
• The pgMonitor repository has been reorganized around which platforms files apply to. Some files have also been renamed as part of

this reorganization.
• Extended the default alert threshold for pgBackRest backups to give a buffer time and avoid false positives when backup runtimes

vary.

21

• Added a default alert for PostgreSQL failover that should work in any scenario to produce an alert when the recovery status of a
PostgreSQL database changes (replica -> primary or primary -> replica). Note that this alert will auto-resolve after 5 minutes (by
default) since it is just looking for recent state changes. The alert is meant to be acted upon immediately to see what may have
occurred on the systems involved.

• Added metric to monitor and alert on blocked queries

Bug Fixes

• Fixed several incorrect metric names in alert expressions for the example alert files. Please review all alerts to ensure your expressions
are checking the correct metrics, making special note of the following:

– PGSettingsChecksum
– PGDBSize
– PGReplicationByteLag
– MemoryAvailable
– SwapUsage
– All pgBackRest alerts

• Fixed pgBackRest metrics not reporting all backups in all stanzas for a given repository in some configuration setups. Each database
will now only report back monitoring for the stanzas that are part of its own instance. Previously all database instances reported
back all stanzas in the target repository.

• Fixed incorrect title of panel on Grafana PostgreSQL Details dashboard from “Transactions Per Minute” to “Transactions Per
Second”.

Manual Intervention Changes

• pgBackRest monitoring has been expanded to better support more configuration layouts to address the above bug fix. The pgbackrest-
info.sh script has been updated as part of this and this also requires re-running the setup SQL script to update the monitoring function
within the database. Note again that the setup script name has changed from “setup_pg11.sql” to “setup.sql”, so be sure you are
running the setup script from the properly versioned folder.

• For the PostgreSQL Grafana dashboards to be able to choose data to present on a per-cluster basis, a new custom label
(cluster_name) must be added to all PostgreSQL targets in Prometheus. Note that this change will cause all PostgreSQL metrics
to change colors from the point of the change forward. Also when displaying a time period before and after this change, duplicated
Legend items may appear.

4.4-1
New Features

Bug Fixes

• Limit SQL function’s search_path to predefined list of schemas

Non-backward Compatible Changes

Manual Intervention Changes

4.4
New Features

• Added support for PostgreSQL 13
• Added queries and dashboards for pgnodemx/container support
• Added metrics and Grafana dashboard for pg_stat_statements
• Added metrics for monitoring longest blocked query time

Bug Fixes

Non-backward Compatible Changes

Manual Intervention Changes

• To add pg_stat_statements metrics to an existing installation you will need to do the following:
– Add the relevant queries_pg_stat_statements_pg##.yml file to the QUERY_FILE_LIST in the exporter sysconfig file
– Add a PG_STAT_STATEMENTS_LIMIT line to the exporter sysconfig file with a desired limit for the top N queries. Default

for a new install is 20.

4.3
New Features

22

Bug Fixes

• Fixed syntax error in example prometheus alert rules file for postgresql for the pending restart rule.

Non-backward Compatible Changes

Manual Intervention Changes

• Renamed metric ccp_postmaster_runtime_start_time_seconds to ccp_postmaster_uptime_seconds. Both metrics report the
same value, so they are currently duplicates. Note the old metric name has not yet been dropped and will still work, but it will be
dropped in an upcoming version of pgMonitor.

• For PostgreSQL 9.5 & 9.6, renamed metric ccp_wal_activity_count to ccp_wal_activity_total_size_bytes. The actual value
being returned has always been the total size in bytes, so the previous name was misleading. PostgreSQL 10+ already had the metric
with the proper bytes size name. Note the old metric name has not yet been dropped and will still work, but it will be dropped in
an upcoming version of pgMonitor.

4.2
New Features

• Add support for PostgreSQL 12
• Added new metrics (all PG versions):

– ccp_postmaster_uptime - time in seconds since last restart of PG instance. Useful for monitoring for unexpected restarts.
– ccp_pg_settings_checksum - monitors for changes in pg_settings

• Added new metrics (PG 9.5+ only)
– ccp_settings_pending_restart - monitors for any settings in pg_settings in a pending_restart state

• Added new metrics (PG 10+ only)
– ccp_pg_hba_checksum - monitors for changes in pg_hba.conf

• Added new metrics (PG 12+ only)
– ccp_data_checksum_failure - monitors for any errors encountered for databases that have data file checksums enabled

Bug Fixes

• Use proper comparison operators in all Grafana dashboards that are using Multi-value variables.
• Change to using label_values() function on Grafana dashboard template variables. Ensures proper values in all dropdown menus

are shown
• Remove changing background color of the pgBackRest panel in the PG_Details Grafana dashboard

Non-backward Compatible Changes

• New minimum required version of Grafana is now 6.5. All Grafana dashboards have been re-exported to ensure their settings are
consistent and compatible with that version.

Manual Intervention Changes

• In order to use the new metrics that are available, the setup_##.sql script must be run again for your relevant version of PostgreSQL.
Then all postgres_exporters services must be restarted.

• The only new rule that has been enabled by default in the Crunchy provided Prometheus rules file is ccp_settings_pending_restart.
All other new metrics have example rules in the same file but they are commented out. Please adjust them as needed before
uncommenting and using them.

4.1
• Fixed bug in PGBouncer Grafana dashboard for the Server Connection Counts Per Pool showing zero data
• Fixed Windows prometheus config file to use proper wildcard to pick up .yml files.
• Renamed Prometheus target example file to include yml extension to better ensure it is not missed. ReplicaOS.example to Repli-

caOS.yml.example
• Fixed documentation to display pictures properly.

4.0
New Features

• Add pgbouncer monitoring support
– Requires new pgbouncer_fdw extension provided by Crunchy Data: https://github.com/CrunchyData/pgbouncer_fdw
– New query file can be included in QUERY_FILE_LIST: queries_pgbouncer.yml
– New Grafana dashboard: PGBouncer.json

• Minimum version of postgres_exporter required is now 0.5.1

23

– Allows connecting to multiple databases from a single exporter, however only one query file can be set per exporter service
– If statistics are needed for per-database metrics on more than one database, recommend running a second exporter (example

included as sysconfig.postgres_exporter_pg##_per_db) that connects to all dbs where such stats are required using separate
custom query file. Leave the main exporter service to only collect global metrics from one database (preferably postgres).

– DO NOT yet recommend using new --auto-database-discovery feature. Currently tries to connect to template databases
which is never recommended.

• Added backup sizes to pgBackRest metrics that are collected by default
– Updated pgBackRest grafana dashboard to include size graphs. Also added per-stanza dropdown filter to the top of dashboard

for better readability when there are many backups.
• Added new metric to check what version of PostgreSQL the exporter is currently running on (ccp_postgresql_version_current).

Non-backward Compatible Changes

• Version 0.5x of postgres_exporter adds a new “server” label to all custom query output metrics. This breaks several single panel
graphs that pgmonitor uses in Grafana (PG Overview, PGBackrest).

– If upgrading, the update for the prometheus extras package must be done before upgrading to the new version of post-
gres_exporter. Otherwise the “server” label can cause duplication of some metrics.

– Added a metric_relabel_configs line to the crunchy-prometheus.yml file to filter out this new label. If you are upgrading, you
may have to manually add this to your own prometheus config. The package update will only automatically add this if you
haven’t changed the default file. Otherwise the new settings will be contained in a crunchy-prometheus.yml.rpmnew file in the
package install location.

Manual Intervention Changes

• See Non-backward Compatible Changes section for update that may need to be done to prometheus config.

• Changed default DATA_SOURCE_NAME value for postgres_exporter to use the local socket for the ccp_monitoring role. This
should allow the exporter to work using peer authentication, which is the default authentication method allowed by most rpm/deb
provided postgres packages. This should not change any existing installations, but may affect new deployments due to new default
behavior.

• Split Prometheus crunchy-alert-rules.yml file into separate node & postgres alert files to allow for more flexible rule management.

– By default alert rules files are now looked for in /etc/prometheus/alert-rules.d/. Any alert files located in this folder upon
restart/reload will then be picked up automatically.

– Renamed alert files in repository to have additional .example file extension.

– IMPORTANT UPGRADE NOTE: If upgrading with packages, prometheus may change and point to the new rules location
causing your active alerts to change. Your custom alert rules have not been lost, just ensure your desired rules file(s) are moved
to the new location for future compatibility.

– Changed metric name ccp_backrest_last_runtime to ccp_backrest_last_info to reflect that it is no longer only collecting
runtime stats. Note that due to metric name change, you will appear to have lost runtime history in the new grafana dashboard.
The data is still there under the old metric name and can be added back as an additional data point if needed.

– Fixed prometheus disk sizing rules to properly include ext filesystems (ext[234]). The correct syntax for the sizing-based rules is
contained in the example rule files that the package provides. You will need to copy them to your current rule files if applicable.

Bug Fixes

• Disable pg_settings values that are exported by default with postgres_exporter. Fixes issue with multi-dsn support in 0.5.1 of
postgres_exporter. If settings are desired as output from exporter, it is recommended to add a custom query.

• Fixed postgres_exporter service file to better parse out the destination query file name (exporter/postgres/crunchy-postgres-
exporter@.service or exporter/postgres/crunchy-postgres-exporter-pg##-el6.service). Previously if any additional options were
added to the OPT variable in the sysconfig, the service could throw errors on start. If you’ve customized your service file, please
make note of changes for future compatibility.

• Update Grafana Overview dashboard to be compatible with Grafana 6.4+

3.2
• Fixed postgres_exporter service in EL6 (Redhat/CentOS) to properly use the backrest throttle environment variable in sysconfig

(Github Issue #107).

3.1
• Fix broken links in Grafana OS & PG Overview Dashboards
• Updated UPGRADE steps in 3.0 release notes for new exporter service name setup. Need to re-enable service with new name and

manually remove old symlink files.

24

• Update documentation for exporter setup to use new service names

3.0
• New minimum version requirements for software that is part of pgmonitor are as follows, including links to release notes:

– Prometheus: 2.9.2 - https://github.com/prometheus/prometheus/releases
– Alertmanager: 0.17.0 - https://github.com/prometheus/alertmanager/releases
– Grafana: 6.1.6 (major version change from 5.x) - https://community.grafana.com/t/release-notes-v6-1-x/15772
– node_exporter: 0.18.0 - https://github.com/prometheus/node_exporter (Note breaking changes for some metrics. None of

those broken are used by default in pgmonitor).
• The service file for postgres_exporter provided by pgmonitor has been renamed to make it more consistent with typical systemd

service names.
– IMPORTANT: See upgrade notes below about changes to sysconfig file before restarting service!
– Only applies to systemd file for RHEL/CentOS 7
– Changed crunchy_postgres_exporter@.service to crunchy-postgres-exporter@.service (underscores to dashes).
– Note that you will need to use the new service name to interact with it from now on. This requires enabling the new service

name and restarting it:
∗ systemctl enable crunchy-postgres-exporter@postgres_exporter_pg11
∗ systemctl restart crunchy-postgres-exporter@postgres_exporter_pg11

– Due to the removal of the old service file, you cannot use systemctl to disable the old service. Instead just remove the symlinks
manually:
∗ ‘rm /etc/systemd/system/multi-user.target.wants/crunchy_postgres_exporter@*

• The single query.yml file used by postgres_exporter to use Crunchy’s custom queries is now dynamically generated automatically
upon service start/restart.

– A new variable, QUERY_FILE_LIST, is now set in the sysconfig file for the service. It is a space delimited list of the full
paths to all query files that will be concatenated together. See sysconfig file for several examples and a recommended default
to set.

– This now ensures that any updates to desired query files will be automatically applied when the package is updated and the
service is restarted without having to manually rebuild the query.yml file.

– This new variable is not required and you can continue to manually manage your queries.yml file. Ensure that the
QUERY_FILE_LIST variable is not set if this is desired.

– UPGRADE NOTES:
∗ Backup your current queries.yml file.
∗ If you have not modified the default sysconfig file for your postgres_exporter service (/etc/sysconfig/postgres_exporter_pg##),
updating to 3.0 will overwrite your current sysconfig file and put the default QUERY_FILE_LIST value in place, possibly
overwriting your current queries.yml file. Again, please ensure you backup your current queries.yml file and then set the
QUERY_FILE_LIST variable appropriately to dynamically generate your queries file for you in the future. Or unset the
variable and continue managing it manually.

∗ If you have modified your sysconfig file from what the package provides, it will not be overwritten and a new sysconfig file
with an .rpmnew extension will be created. You can reference this .rpmnew file for how to update your sysconfig file to
take advantage of the new QUERY_FILE_LIST option.

∗ Ensure all postgres_exporters you have running set the QUERY_FILE_LIST properly if using it. Especially if multiple
exporters are using the same query file.

• Prometheus targets for pgmonitor provided exporters (postgres_exporter & node_exporter) have had labels added to them for use
in pgmonitor provided Grafana Dashboards.

– Added new label exp_type (export type) in prometheus targets to better distinguish OS and Postgres metrics in Prometheus.
Possible current values are pg or node.

– UPGRADE NOTES: This new label must be applied to your Prometheus target files if you are using the Grafana dashboards
provided by pgmonitor. Note that if you previously defined node and postgres_exporter targets under a single target, you will
now need to separate them, keeping the same job name for both. See example target files provided in package/repo for how to
apply new label (Ex. ProductionDB.yml.example & ProductionOS.yml.example).

– If you are not using the pgmonitor provided Grafana dashboards, these new labels are optional.
• Grafana Dashboards Updates

– New dashboards require at least Grafana 6.x.
– UPGRADE NOTES: Once new Prometheus label (mentioned above) is applied, dashboard provisioning should take care of

updating all dashboards once the new ones are in place. Note that all dashboards provided by pgmonitor 3.0+ now assume this
new label and will not work until the Prometheus exp_type label is added.

– Renamed dashboard files for better naming consistency. Dashboard titles also updated accordingly.
∗ UPGRADE NOTES: If installing from package, it will take care of care of renaming dashboard files. Otherwise, dash-
boards have been renamed as follows below. Ensure old files are renamed/removed to avoid duplicating/breaking current
dashboards. Easiest manual update method is to remove all dashboards provided by pgmonitor and copy all new ones back.
Provisioning will then take care of updating things for you.

∗ renamed: BloatDetails.json -> Bloat_Details.json
∗ renamed: FilesystemDetails.json -> Filesystem_Details.json
∗ renamed: PostgreSQLDetails.json -> PG_Details.json

25

∗ renamed: PostgreSQL.json -> PG_Overview.json
∗ renamed: TableSize_Detail.json -> TableSize_Details.json

– Dashboard names have been updated to match with new naming consistency. If you had direct links to dashboards, these may
need to be updated.

– Split OS Metrics into their own dashboard separate from PG Metrics.
– Added link to PGbackrest dashboard to top of Postgres Details Dashboard. Link shows time since last successful backup (any

type) for that target system.
– Added new OS Details dashboard
– Added new etcd dashboard
– Add new Top Level Overview dashboard that links to all other Overview dashboards
– Set default refresh rate for most dashboards to 15 minutes.
– Obsolete “jobname” grafana variable in all dashboards. Add new grafana variables pgnodes, osnodes that use the new labels

added in prometheus targets notded above.
• New configuration option for postgres_exporter sysconfig file to control PGBackrest refresh rate

– PGBACKREST_INFO_THROTTLE_MINUTES
– This is the value, in minutes, passed along to the monitor.pgbackrest_info() function in all backrest checks
– Default is 10 minutes

2.4
• UPGRADE NOTE: All exporter issues below can be fixed by re-running the setup_pg##.sql file for your major version of postgres.

For the pgbackrest fix, you will also need to update the queries.yml file for the exporter to include the new queries found in the
queries_backrest.yml file.

• Fixed several issues with pgbackrest monitor in postgres_exporter that was included in pgmonitor v2.3
– Fixed incorrect data being returned by monitor query on PostgreSQL 9.6 and earlier. The same, latest backup time was being

returned for all stanzas instead of returning the time per stanza.
– Fixed backrest query causing the postgres_exporter to hang and cause all metric output to stop.
– Fixed backrest monitor to work with larger amount of data being returned by the “pgbackrest info” command. Previously, once

returned data size reached a certain point, would cause a “missing chunk” error.
– Added a parameter to the function that is called to control how often the underlying info command is actually run. On systems

with high backup counts, info can be a slightly more expensive call. This helps to control that, no matter what the scrape
interval of prometheus is set to. Default is to get new data every 10 minutes, otherwise just queries from an internal table that
stores the last info run.

– Backrest monitoring can now be run on replicas as well, but cannot update the current backup status since that requires writing
to the database. This is mostly to enable monitoring setups to be consistent between primary/replica in case of failover.

• Fixed issue with ccp_sequence_exhaustion metric that would cause postgres_exporter output to hang if any table that contained
a sequence was dropped during a long running transaction.

• Added new metric (ccp_replication_slots) and alert (PGReplicationSlotsInactive) for monitoring replication slot status. New metric
and alert can be found in queries_pg##.yml and crunchy-alert-rules.yml respectively.

• Added lock_timeout of 2 minutes to the ccp_monitoring role. Avoids monitoring causing any extensive lock interference with normal
database operations.

• Added Grafana Dashboard for PGBackrest status information.
• Fixed lines being hidden in the “Total Bloat %” graph in BloatDetails Grafana dashboard.
• Removed unnecessary drilldown link in Total Bloat % graph in BloatDetails Grafana dashboard.

2.3
• Fixed bug in Prometheus alerts that was causing some of them to be stuck in PENDING mode indefinitely and never firing. This

unfortunately removes the current alert value from the Grafana Prometheus Alerts dashboard.
– If you can’t simply overwrite your current alerts configuration file with the one provided, remove the following option from

every alert: alert_value: '{{ $value }}'
• Added feature to monitor pgbackrest backups (https://pgbackrest.org)

– Separate metrics exist to monitor for the latest full, incremental and/or differential backups. Note that a full will always count
as both an incremnetal and diff and a diff will always count as an incremental.

– Another metric can monitor the runtime of the latest backup of each type per stanza.
– Run the setup_pg##.sql file again in the database that your exporter(s) connect to to install the new, required function:
“monitor.pgbackrest_info()”. It has security definer so execution privileges can be granted as needed, but it must be owned by
a superuser.

– New metrics are located in the exporter/postgres/queries_backrest.yml file. Add the one(s) you want to the main queries file
being used by your currently running exporter(s) and restart.

– Example alert rules for different backup scenarios have been added to the prometheus/crunchy-alert-rules.yml file. They are
commented out to avoid false alarms until valid backup settings for your environment are in place.

• Added new feature to monitor for failing archive_command calls.
– New metric “ccp_archive_command_status” is located in exporter/postgres/queries_common.yml. Add this to the main

queries file being used by your currently running exporter(s) and restart.

26

– A new alert rule “PGArchiveCommandStatus” has been added to the prometheus/crunchy-alert-rules.yml file.
• Added new feature to monitor for sequence exhaustion

– Requires installation of a new function located in the setup_pg##.yml file for your relevant major version of PostgreSQL. Must
be installed by a superuser.

– New metric “ccp_sequence_exhaustion” located in exporter/postgres/queries_common.yml. Add this to the main queries file
being used by your currently running exporter(s) and restart. A new alert rule “PGSequenceExhaustion” has been added to
the prometheus/crunchy-alert-rules.yml file.

• The setup_pg##.sql file now has logic to avoid throwing errors when the ccp_monitoring role already exists. Also always attempts
to drop the functions it manages first to account for when the function signature changes in ways that OR REPLACE doesn’t
handle. All this allows easier re-running of the script when new features are added or used in automation systems. Thanks to Jason
O’Donnell for role logic.

2.2
• Fixed broken ccp_wal_activity check for PostgreSQL 9.4 & 9.5. Updated check is located in the relevant exporter/postgres/-

queries_pg##.yml file
• Fixed broken service files for postgres_exporter on RHEL6 systems.
• Removed explicit “public” schema in ccp_bloat_check query so that it will properly use the search_path in case bloat tables were

installed in another schema
• Removed query files for PostgreSQL versions no longer supported by pgmonitor (9.2 & 9.3)

2.1
• IMPORTANT UPGRADE NOTE FOR CRUNCHY PACKAGE USERS: In version 2.0, the Crunchy provided extras

for node_exporter were split out from the pgmonitor-pg##-extras package. A dependency was kept between these packages to
make upgrading easier. For 2.1, the dependency between these packages has been removed. When upgrading from 1.7 or earlier,
if you have node_exporter and postgres_exporter running on the same systems, ensure that you install the separate pgmonitor-
node_exporters_extras package after the update. See the README for the full package name(s).

• Minimum required versions of software used in pgmonitor have been updated to:

– Prometheus 2.5.0
– Prometheus Alertmanager 0.15.3
– postgres_exporter 0.4.7 (enables full PG11 support)
– Grafana 5.3.4.

• Fixed Grafana data source to use the “proxy” mode instead of “direct” with default install. Should fix connection issues encountered
during default setup between Grafana & Prometheus.

• Renamed functions_pg##.sql file to setup_pg##.sql to better clarify what it’s for (and because it’s not just functions).

• Added ccp_wal_activity metric to help monitor WAL generation rate.

– For all PG versions, provides total current size of WAL directory. For PG10+, it also provides the size of WAL generated in
the last 5 minutes

– Note that for PG96 and lower, a new security definer function must be added (can just run setup_pg##.sql again).
– New metric definition is located in the queries_pg##.yml file.
– No default rules have been added since this is very use-case dependent.

• Improved accuracy of “Idle In Transaction” monitoring times in PostgreSQL. Base the time measured on the state change of the
session vs the total transaction runtime.

• Split setup_pg92-96.sql and queries_pg92-96.sql into individual files per major version.

• Added commented out example prometheus alert rule for checking if a postgres database has changed from replica to primary or
vice versa. Must be set on a per system basis since you have to tell it if a system is supposed to be a primary or replica.

• Removed pg_stat_statements prometheus metric and security definer function from setup script. We highly recommend having
pg_stat_statements installed on a database, and we still include its installation in the documentation, but we currently don’t have
any useful metric recommendations from it to collect in prometheus.

• Added some default filters for the bloat check cronjob to avoid unnecessary waste in the prometheus storage of bloat metrics.

• Update documentation.

2.0
• Recommended version of Prometheus is now 2.3.2. Recommended version of Alertmanager is 0.15.1. Recommended version of

postgres_exporter is 0.4.6.
• Upgrade required version of node_exporter to minimum of 0.16.0. Note that many of the metrics that are used in Grafana and

Prometheus alerting have had their names changed.

27

– This version adds these new metrics into Grafana graphs without removing the old metric names on most, but not all, graphs.
This allows trending history to be kept. Note that line colors will change in graphs and legend names will be duplicated until
the old metric data is expired out.

– Prometheus alerts have been set to use the new metric names since the alerts are based only on recent values.
– IMPORTANT: A future pgmonitor update will remove these old metric names from Grafana graphs, so please ensure these

changes are accounted for in your architecture.
– See full release notes for 0.16.0 - https://github.com/prometheus/node_exporter/releases/tag/v0.16.0

• The postgres_exporter service no longer uses a symlink in /etc/sysconfig to point to a default “postgres_exporter” file. This was
causing issues with several upgrade scenarios. New installation instructions now have the service pointing directly to the relevant
sysconfig file for the major PostgreSQL version.

– IMPORTANT: If you are using the default postgres_exporter service, you will need to update your service name so it uses
the proper sysconfig file. See the README file for the new default service name in the “Enable Services” section and run
the “enable” command found there. You should then also disable/remove the old service so it doesn’t try to start again in the
future.

• The additional Crunchy provided configurations for node_exporter have been split out from the pgmonitor-pg##-extras package to
the pgmonitor-node_exporter-extras package. This was done to allow multiple versions of the pg##-extras package to be installed
with different major versions of Postgres. There is still currently a dependency that the node extras packages must be installed with
the pg##-extras so that upgrading doesn’t break existing systems. This dependency will be revisited in the future.

• Removed the requirement for a shell script to monitor if the database is up and its status as either a primary or replica. Up status is
now using the native “pg_up” metric from postgres_exporter and a new metric query was written for checking the recovery status
of a system (ccp_is_in_recovery).

– The PostgreSQL.json overview dashboard that used this metric has been redesigned. Unfortunately it can no longer be colored
RED for down systems, only go colorless and say “DOWN”. This is a known limitation of handling null metric values in Grafana
and part of a larger fix coming in future versions - https://github.com/grafana/grafana/issues/11418

• Upgrade required version of Grafana to minimum of 5.2.1.
– All provided dashboards require this minimum version to work.
– If you notice that links between the dashboards are broken after the upgrade, clear your browser’s cache. The 301 redirects

used between dashboards can get cached and they have changed in the new major version.
– See extensive release notes for major version changes in Grafana - https://community.grafana.com/t/release-notes-v-5-1-x

• Change Grafana datasource and dashboard installation to use provisioning vs manual setup via the web interface. Note this means
that future updates to the provided datasources and dashboards must be done through config files as well. Or they can be saved as
a new dashboard for more extensive customization.

• Change recommended configuration for Grafana to use PostgreSQL as database backend. Updated installation documentation.
• Added Prometheus Alerts Dashboard. Shows both active alerts and 1 week history in table format.
• Removed Gauges from PostgreSQLDetails Dashboard. “Current” value was not being shown properly and gauges were misleading

in their values depending on the time range chosen. For a quick glance to see if there are any problems, be sure to set your alert
thresholds properly and use the new Prometheus Alerts Dashboard.

• Added max_query_time metric to track long running queries in general. Also added an alert for that metric to crunchy prometheus
alerts.

• Added “IO Time Per Device in Seconds” graph to Filesystems dashboard.
• Fixed Memory and Swap Graphs on PostgreSQLDetails dashboard to more accurately show used resources. History for these graphs

before this upgrade is not being shown since it is no longer graphing the same data.
• Crontabs are no longer PostgreSQL major version dependent at this time. Consolidated down to a single crontab file for all versions.
• Removed unnecessary functions from functions_pg10.sql. All queries in queries_pg10.yml currently only require the pg_monitor

system role to be granted and have been updated with this assumption.
• Changed default cron runtime of pg_bloat_check to once a week on early morning weekend.
• Change PostgreSQL overview dashboard to use background colors instead of gauges for better visibility.
• Fixed permission issues with /etc/postgres_exporter folder to allow ccp_monitoring system user better control.

1.7
• Fixed duplicate and incorrect replication byte lag queries. The one contained in queries_common.yml should not have been there.

It should be in queries_pg92-96.yml, but there was also one already there. However, the one already in pg92-96 was incorrect since
prior to PG10, it requires superuser/security definer to fully access replication statistics. Corrected the version specific file to have
the correct query. Made the query in the pg10 file consistent. Ensure you update your generated queries.yml file with he new queries.

• Fixed the PostgreSQLDetails.json dashboard to use the correct replication byte lag metric (referencing above fix). The easiest way
to fix this is to delete this dashboard and re-import it. Otherwise, if you’ve made customizations you don’t want to lose, you can
grab the correct metric query from the updated dashboard gauge and edit your existing dashboard to use it.

• The combination of the above two fixes corrects the pgmonitor setup being able to properly handle there being multiple replicas
from a single primary. Previously this would cause postgres_exporter to throw duplicate metric errors.

• Fixed the query in queries_bloat.yml to be able to properly handle if there was a bloat amount larger than max int4 bytes. Ensure
you update your generated queries.yml file with the new query.

28

1.6
• Fixed formatting bug in crunchy-prometheus.yml. Thanks to Doug Hunley for reporting the issue.

1.5
• Add support for disabling built in queries in postgres_exporter 0.4.5. Also explicitly ignore these metrics via a prometheus filter so

they’re not ingested even if new option isn’t used. This means that v1.5 of pgmonitor now requires 0.4.5 of postgres_exporter by
default.

• Improved exporter down alert to avoid unnecessary alerts for brief outages that resolve themselves quickly.
• Added new FilesystemDetails dashboard for grafana that is linked to from the Filesystem graph on PostgreSQLDetails.
• Top level PostgreSQL grafana dashboard now identifies whether a system is read/write or readonly to better distinguish prima-

ry/replica systems.
• Added instructions for non-packaged installation using pgmonitor configuration files.
• Revised and better formatted README documentation

1.4
• Fixed filesystem graphs in PostgreSQLDetails dashboard
• Cosmetic changes to PostgreSQLDetails dashboard
• Added instructions for importing dashboards via Grafana API

1.3
• Fixed error in PG10 queries file.
• Fixed disk usage alert for prometheus to work better when there are many jobs with similar mountpoints. Also fixed syntax error

in warning alert.
• Moved connection stats query from common to version specific queries due to PG10 differences. Clarified naming of files for which

versions they work for.
• Added dropdown for the Job to the lower level drill down dashboards in Grafana. Allows selecting of a specific system from the

dashboard itself without having to click through on a higher level.
• Removed pg_stat_statements graph from PostgreSQLDetails dashboard. Needs refinement to make it more useful.

1.2
• Change service and sysconfig files to use single OPT environment variable instead of one variable per cmd option
• Fix error in PG10 monitoring functions file
• Initial version of Prometheus 2.0 job deletion script. Requires API call not available yet in 2.0.0 for full functionality

1.1
• Implement rpmnew/rpmsave feature instead of using .example files to prevent package overwriting user changes to configs

1.0
• Initial stable release

29

	pgMonitor
	pgMonitor is your all-in-one tool to easily create an environment to visualize the health and performance of your PostgreSQL cluster.
	Contents
	Purpose
	Supported Platforms
	Operating Systems
	PostgreSQL
	PgBouncer

	Installation
	1. exporter
	2. Prometheus
	3. Grafana

	Version History
	Sponsors
	Legal Notices
	Installation
	RPM installs
	Non-RPM installs

	Upgrading
	Setup
	Setup on RHEL or CentOS
	Monitoring multiple databases and/or running multiple postgres exporters (RHEL / CentOS)

	Metrics Collected
	PostgreSQL
	System

	Installation
	RHEL / CentOS
	Upgrading

	Setup
	Setup on RHEL/CentOS
	Included Dashboards

	Installation
	Linux

	Upgrading
	Setup
	Setup on Linux
	Datasource & Dashboard Provisioning

	4.11.0
	Release Summary
	Minor Changes

	4.10.0
	Release Summary
	Minor Changes

	4.9.0
	Release Summary
	Major Changes
	Minor Changes
	Bugfixes

	4.8.0
	Release Summary
	Major Changes
	Minor Changes
	Bugfixes

	4.7
	New Features
	Bug Fixes

	4.6
	New Features
	Bug Fixes

	4.5
	New Features
	Bug Fixes
	Manual Intervention Changes

	4.4-1
	New Features
	Bug Fixes
	Non-backward Compatible Changes
	Manual Intervention Changes

	4.4
	New Features
	Bug Fixes
	Non-backward Compatible Changes
	Manual Intervention Changes

	4.3
	New Features
	Bug Fixes
	Non-backward Compatible Changes
	Manual Intervention Changes

	4.2
	New Features
	Bug Fixes
	Non-backward Compatible Changes
	Manual Intervention Changes

	4.1
	4.0
	New Features
	Non-backward Compatible Changes
	Manual Intervention Changes
	Bug Fixes

	3.2
	3.1
	3.0
	2.4
	2.3
	2.2
	2.1
	2.0
	1.7
	1.6
	1.5
	1.4
	1.3
	1.2
	1.1
	1.0

