
Crunchy PostgreSQL Operator Open Service
Broker (pgo-osb)

Latest Release: v4.6.3, 2021-05-28

General

The pgo-osb project is an implementation of the Open Service Broker API. This
implementation uses the Crunchy PostgreSQL Operator as a means to provision
services, in this case the service is a PostgreSQL database cluster.

pgo-osb allows users to also bind to a service instance which when invoked
will return PostgreSQL credentials to a user they can use to connect to the
PostgreSQL database instance.

Also, users can deprovision a PostgreSQL database cluster using the OSB API.

The pgo-osb broker was developed using the OSB Starter Pack and associated
libraries.

See the following:

• Open Service Broker API
• osb-broker-lib.
• go-open-service-broker-client
• service-catalog

Compatibility

Starting with pgo-osb version 4.0.0, the release schedule and version number
for pgo-osb will be aligned with the release schedule and version number for the
the Crunchy PostgreSQL Operator. Therefore, to ensure compatibility between
pgo-osb and the PostgreSQL Operator, please ensure the version number for
pgo-osb matches the version number of the PostgreSQL Operator deployed in
your environment. For instance, if you are using pgo-osb v4.6.3, please ensure
the Crunchy PostgreSQL Operator v4.6.3 is also deployed in your environment.

Prerequisites

golang 1.9 or above is required to build this project.

Running the pgo-osb service broker assumes you have successfully deployed
the PostgreSQL Operator. See the PostgreSQL Operator documentation for
documentation on deploying the PostgreSQL Operator:

https://access.crunchydata.com/documentation/postgres-operator/

1

https://github.com/openservicebrokerapi/servicebroker
https://github.com/pmorie/osb-broker-lib
https://github.com/pmorie/go-open-service-broker-client
https://github.com/kubernetes-incubator/service-catalog
https://access.crunchydata.com/documentation/postgres-operator/
https://access.crunchydata.com/documentation/postgres-operator/
https://access.crunchydata.com/documentation/postgres-operator/

Please note that if pgo-osb is deployed to a different namespace than the
PostgreSQL Operator, DNS must be utilized when specifying the URL for the
PostgreSQL Operator API server. This is done using environment variable
PGO_APISERVER_URL in the pgo-osb deployment.yaml file (located in directory
$OSB_ROOT/deploy). For instance, if the PostgreSQL Operator is deployed to
namespace pgo, the PGO_APISERVER_URL environment variable would be set in
this file as follows:

- --PGO_APISERVER_URL
- "https://postgres-operator.pgo.svc.cluster.local:8443"

However, if pgo-osb is deployed to the same namespace as the PostgreSQL
Operator, then the PostgreSQL Operator service name can simply be utilized:

- --PGO_APISERVER_URL
- "https://postgres-operator:8443"

Additionally, pgo-osb must also be configured with the certificates needed
to properly authenticate into and trust the PostgreSQL Operator API server.
When installing the PostgreSQL Operator API server these certificates are
automatically generated, and must be copied into directory $OSB_ROOT/deploy
prior to deploying pgo-osb. This allows the certificates to be stored in a secret
that can be utilized by pgo-osb when accessing the PostgreSQL Operator API
server. For instance, if the PostgreSQL Operator was installed using the bash
installation method, the certificates can be copied as follows:

cp $PGOROOT/conf/postgres-operator/server.crt $PGOROOT/conf/postgres-operator/server.key $OSB_ROOT/deploy

Or if the PostgreSQL Operator was installed using Ansible, then the certificates
can be copied from your home directory as follows:

cp "${HOME}"/.pgo/"${PGO_OPERATOR_NAMESPACE}"/output/server.crt $OSB_ROOT/deploy
cp "${HOME}"/.pgo/"${PGO_OPERATOR_NAMESPACE}"/output/server.pem $OSB_ROOT/deploy/server.key

This example also assumes you have created a Kube namespace called demo.
Adjust OSB_NAMESPACE to suit your specific namespace value. And lastly,
the example assumes you are using the PostgreSQL Operator default RBAC
account called username with a password of password. If this is not the case then
you will need to adjust the example service instance service-instance.yaml.

Operator Configuration

The standalone and ha service plans require custom storage and container
resource configurations in the PostgreSQL Operator’s pgo.yaml definition. Refer
to the Operator documentation:

https://access.crunchydata.com/documentation/postgres-operator/latest/
configuration/pgo-yaml-configuration/

2

https://access.crunchydata.com/documentation/postgres-operator/latest/configuration/pgo-yaml-configuration/
https://access.crunchydata.com/documentation/postgres-operator/latest/configuration/pgo-yaml-configuration/

The Open Service Broker will request custom storage and container resources
corresponding to the size of plan, using the names osbsmall, osbmedium,
osblarge. For example, the standalone_md plan will use disk sizes defined
by the osbmedium custom storage definition and the memory and CPU limits
defined by the osbmedium container resource definition.

Example configuration descriptions:

Storage:
osbsmall:

AccessMode: <based on environment>
Size: 300M
StorageType: <based on environment>
StorageClass: <based on environment>
Fsgroup: 26

osbmedium:
AccessMode: <based on environment>
Size: 600M
StorageType: <based on environment>
StorageClass: <based on environment>
Fsgroup: 26

osblarge:
AccessMode: <based on environment>
Size: 2G
StorageType: <based on environment>
StorageClass: <based on environment>
Fsgroup: 26

ContainerResources:
osbsmall:

RequestsMemory: 512Mi
RequestsCPU: 0.1
LimitsMemory: 512Mi
LimitsCPU: 1.0

osbmedium:
RequestsMemory: 1Gi
RequestsCPU: 0.5
LimitsMemory: 1Gi
LimitsCPU: 2.0

osblarge:
RequestsMemory: 2Gi
RequestsCPU: 1.0
LimitsMemory: 2Gi
LimitsCPU: 4.0

3

Build

To build the pgo-osb broker, place these additional environment variables into
your .bashrc as they are used in the various scripts and deployment templates:

export GOPATH=$HOME/odev
export GOBIN=$GOPATH/bin
export PATH=$GOBIN:$PATH
export OSB_NAMESPACE=demo
export OSB_CMD=kubectl
export OSB_ROOT=$GOPATH/src/github.com/crunchydata/pgo-osb
export OSB_BASEOS=centos7
export OSB_VERSION=4.6.3
export OSB_IMAGE_TAG=$OSB_BASEOS-$OSB_VERSION
export OSB_IMAGE_PREFIX=crunchydata

Install the dep dependency tool:

mkdir $GOPATH/bin $GOPATH/src/github.com/crunchydata $GOPATH/pkg -p
curl https://raw.githubusercontent.com/golang/dep/master/install.sh | sh

Get the code:

cd $GOPATH/src/github.com/crunchydata
git clone https://github.com/crunchydata/pgo-osb.git
cd pgo-osb

Deploy Service Catalog

Install the service catalog into your Kubernetes cluster by following this link:

https://svc-cat.io/docs/install/

Instructions on that link are provided to also install the very useful svcat utility
for inspecting and working with the service catalog.

Deploy

Deploy the pgo-osb broker:

make setup
make image
make deploy

Verify your deployment has been successful with:

kubectl get pod --selector=app=pgo-osb

which has output similar to:

4

https://svc-cat.io/docs/install/

NAME READY STATUS RESTARTS AGE
pgo-osb-69c76578b9-v7s9k 1/1 Running 0 16m

Working with the pgo-osb

To use the pgo-osb broker, please follow the following instructions.

Note that if you want to specify a specific namespace for where your PostgreSQL
cluster is deployed to, you can use the PGO_CLUSTER_NAMESPACE environmental
variable. Otherwise, pgo-osb will search across all namespaces to look up where
the cluster exists.

Show Available Plans

svcat marketplace

which has output similar to:

CLASS PLANS DESCRIPTION
+-----------------+---------------+--------------+

pgo-osb-service standalone_lg The pgo osb!
ha_lg
default
ha_sm
standalone_sm
ha_md
standalone_md

Note: Additional services installed in your environment may be listed as well.

Create a Service Instance

cd $OSB_ROOT
make provision
kubectl get serviceinstance
make provision2
kubectl get serviceinstance

Please note the ServiceInstance objects created when running the make
provision and make provision2 commands above will create PostgreSQL
cluster’s in the default namespace set for the PostgreSQL Operator
according to the PGO_NAMESPACE environment variable set in your envi-
ronment. If you would like the clusters to be provisioned in another
namespace, please set the proper namespace using the PGO_NAMESPACE
parameter in files $OSB_ROOT/manifests/service-instance.yaml and
$OSB_ROOT/manifests/service-instance2.yaml.

5

You should see a pod with that service instance name:

kubectl get pod --selector=name=testinstance
kubectl get pod --selector=name=testinstance2

Create a Binding

make bind
kubectl get servicebinding
make bind2
kubectl get servicebinding

Display the Binding with Secrets

You can view the binding and the generated Postgres credentials using this
command:

svcat describe binding testinstance-binding -n $OSB_NAMESPACE

which has output similar to:

Name: testinstance-binding
Namespace: demo
Status: Ready - Injected bind result @ <timestamp>
Secret: testinstance-binding
Instance: testinstance

Parameters:
No parameters defined

Secret Data:
db_host 12 bytes
db_name 6 bytes
db_port 4 bytes
internal_host 12 bytes
password 16 bytes
uri 85 bytes
username 30 bytes

Display the Binding with Secrets

svcat describe binding testinstance-binding --show-secrets -n $OSB_NAMESPACE

which has output simialr to:

6

Name: testinstance-binding
Namespace: demo
Status: Ready - Injected bind result @ <timestamp>
Secret: testinstance-binding
Instance: testinstance

Parameters:
No parameters defined

Secret Data:
db_host 10.96.22.114
db_name userdb
db_port 5432
internal_host 10.96.22.114
password LEYtDzLOEMZTqiRH
uri postgresql://userd4a4kthjhyi6to6vvz5vdh4die:LEYtDzLOEMZTqiRH@10.96.22.114:5432/userdb
username userd4a4kthjhyi6to6vvz5vdh4die

You can also use the svcat Service Catalog CLI to inspect the service catalog.

View the Service Brokers

svcat get brokers

which will have output simialr to:

NAME URL STATUS
+---------+---+--------+

pgo-osb http://pgo-osb.demo.svc.cluster.local:443 Ready

Get the Service Class

svcat get classes

which will have output similar to:

NAME DESCRIPTION
+-----------------+--------------+

pgo-osb-service The pgo osb!

Note: Additional service classes installed in your environment may be listed as
well.

View the Service Class

svcat describe class pgo-osb-service

7

which will have output similar to:

Name: pgo-osb-service
Description: The pgo osb!
UUID: 4be12541-2945-4101-8a33-79ac0ad58750
Status: Active
Tags:
Broker: pgo-osb
Plans:

NAME DESCRIPTION
+---------+--------------------------------+

default The default plan for the pgo osb service

View Instances in a Namespace

svcat get instances -n $OSB_NAMESPACE

which will have output similar to:

NAME NAMESPACE CLASS PLAN STATUS
+------------+-----------+-----------------+---------+--------+

testinstance demo pgo-osb-service default Ready
testinstance2 demo pgo-osb-service default Ready

Cleanup Examples

You can remove the bindings and instances using these commands:

svcat unbind testinstance -n $OSB_NAMESPACE
svcat unbind testinstance2 -n $OSB_NAMESPACE
svcat deprovision testinstance -n $OSB_NAMESPACE
svcat deprovision testinstance2 -n $OSB_NAMESPACE

Contributing to the Project

Want to contribute to the pgo-osb project? Great! We’ve put together as set
of contributing guidelines that you can review here:

• Contributing Guidelines

8

./CONTRIBUTING.md

	Crunchy PostgreSQL Operator Open Service Broker (pgo-osb)
	General
	Compatibility
	Prerequisites
	Operator Configuration
	Build
	Deploy Service Catalog
	Deploy
	Working with the pgo-osb
	Show Available Plans
	Create a Service Instance
	Create a Binding
	Display the Binding with Secrets
	Display the Binding with Secrets
	View the Service Brokers
	Get the Service Class
	View the Service Class
	View Instances in a Namespace
	Cleanup Examples

	Contributing to the Project

