
pgpool-II 3.7.5 Documentation

The Pgpool Global Development Group

Copyright © 2003-2016 The Pgpool Global Development Group

Legal Notice

Pgpool and Pgpool-II are Copyright © 2003-2016 by the Pgpool Global Development Group.

PostgreSQL are Copyright © 1996-2016 by the PostgreSQL Global Development Group.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above copyright notice and this
paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE
OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
SOFTWARE PROVIDED HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface

What is Pgpool-II?
A Brief History of Pgpool-II
Conventions
Further Information
Restrictions
Bug Reporting Guidelines

I. Tutorial

1. Getting Started
2. Watchdog

II. Server Administration

3. Installation of Pgpool-II
4. Server Setup and Operation
5. Server Configuration
6. Client Authentication

III. Examples

7. Configuration Examples

IV. Reference

I. Server commands
II. PCP commands
III. Other commands
IV. SQL type commands
V. pgpool_adm extension

V. Appendixes

A. Release Notes

Index

Preface
This book is the official documentation of Pgpool-II. It has been written by the Pgpool-II developers and other
volunteers in parallel to the development of the Pgpool-II software. It describes all the functionality that the
current version of Pgpool-II officially supports.

To make the large amount of information about Pgpool-II manageable, this book has been organized in
several parts. Each part is targeted at a different class of users, or at users in different stages of their Pgpool-
II experience:

Part I is an informal introduction for new users.

Part II describes the installation and administration of the server. Everyone who runs a Pgpool-II server,
be it for private use or for others, should read this part.

Part III explains several configuration examples so that users can choose the starting point of their
actual systems.

Part IV contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

Part V is an appendix information such as release notes.

What is Pgpool-II?

Pgpool-II is a proxy software that sits between PostgreSQL servers and a PostgreSQL database client. It
provides the following features:

Connection Pooling

Pgpool-II maintains established connections to the PostgreSQL servers, and reuses them whenever a
new connection with the same properties (i.e. user name, database, protocol version) comes in. It
reduces the connection overhead, and improves system's overall throughput.

Load Balancing

If a database is replicated (because running in either replication mode or master/slave mode),
performing a SELECT query on any server will return the same result. Pgpool-II takes advantage of the
replication feature in order to reduce the load on each PostgreSQL server. It does that by distributing
SELECT queries among available servers, improving the system's overall throughput. In an ideal
scenario, read performance could improve proportionally to the number of PostgreSQL servers. Load
balancing works best in a scenario where there are a lot of users executing many read-only queries at
the same time.

Automated fail over

If one of database servers goes down or becomes unrechable, Pgpool-II will detaches it and continues
operations using rest of database servers. There are some sophiscated features which help the
automated fail over including timeout and retries.

Replication

Pgpool-II can manage multiple PostgreSQL servers. Activating the replication feature makes it possible
to create a real time backup on 2 or more PostgreSQL clusters, so that the service can continue without
interruption if one of those clusters fails. Pgpool-II has built-in replication (native replication). However
user can use external replication features including streaming replication of PostgreSQL.

Limiting Exceeding Connections

There is a limit on the maximum number of concurrent connections with PostgreSQL, and new

There is a limit on the maximum number of concurrent connections with PostgreSQL, and new
connections are rejected when this number is reached. Raising this maximum number of connections,
however, increases resource consumption and has a negative impact on overall system performance.
Pgpool-II also has a limit on the maximum number of connections, but extra connections will be queued
instead of returning an error immediately.

Pgpool-II speaks PostgreSQL's backend and frontend protocol, and relays messages between a backend and
a frontend. Therefore, a database application (frontend) thinks that Pgpool-II is the actual PostgreSQL server,
and the server (backend) sees Pgpool-II as one of its clients. Because Pgpool-II is transparent to both the
server and the client, an existing database application can be used with Pgpool-II almost without a change to
its source code.

Pgpool-II works on Linux, Solaris, FreeBSD, and most of the UNIX-like architectures. Windows is not
supported. Supported PostgreSQL server's versions are 6.4 and higher. If you are using PostgreSQL 7.3 or
older, some features of Pgpool-II won't be available. But you shouldn't use such an old release anyway. You
must also make sure that all of your PostgreSQL servers are using the same major version. In addition to this,
we do not recommend mixing different PostgreSQL installation with different build options: including
supporting SSL or not, to use --disable-integer-datetimes or not, different block size. These might affect part
of functionality of Pgpool-II. The difference of PostgreSQL minor versions is not usually a problem. However
we do not test every occurrence of minor versions and we recommend to use exact same minor version of
PostgreSQL.

There are some restrictions to using SQL via Pgpool-II. See Restrictions for more details.

A Brief History of Pgpool-II

Pgpool-II started its life as a personal project by Tatsuo Ishii. In the project it was just a simple connection
pooling software. So the name Pgpool came from the fact. The first version was in public in 2003.

In 2004, Pgpool 1.0 was released with the native replication feature (SQL statement based replication). In the
same year 2.0 was released with load balancing, and support for version 3 frontend/backend protocol. In
2005, automated fail over and master slave mode support were added.

In 2006, Pgpool became Pgpool-II. The first release 1.0 eliminated many of restrictions in Pgpool, for example
the number of PostgreSQL servers was up to 2 in Pgpool. Also many new features such as parallel query
mode and PCP commands (PCP stands for "Pgpool Control Protocol") were added. Probably the most
important change made between Pgpool and Pgpool-II was that the project was changed from a personal
project to a group project owned by the Pgpool Developement Group.

Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional parts.
(In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces ({ and })
and vertical lines (|) indicate that you must choose one alternative. Dots (...) mean that the preceding
element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the Pgpool-II system. These terms should not be
interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

Further Information

Besides the documentation, that is, this book, there are other resources about Pgpool-II:

Web Site

The Pgpool-II web site is a central place providing official information regarding Pgpool-II: downloads,
documentation, FAQ, mailing list archives and more.

http://pgpool.net

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the Pgpool-II web site for details.

Yourself!

pgpool-II is an open-source project. As such, it depends on the user community for ongoing support. As
you begin to use Pgpool-II, you will rely on others for help, either through the documentation or through
the mailing lists. Consider contributing your knowledge back. Read the mailing lists and answer
questions. If you learn something which is not in the documentation, write it up and contribute it. If you
add features to the code, contribute them.

Restrictions

This section descibes current restrictions of Pgpool-II.

Functionality of PostgreSQL

If you use pg_terminate_backend() to stop a backend, this will trigger a failover. The reason why this
happens is that PostgreSQL sends exactly the same message for a terminated backend as for a full
postmaster shutdown. There is no workaround prior of version 3.6. From version 3.6, this limitation has
been mitigated. If the argument to the function (that is a process id) is a constant, you can safely use
the function. In extended protocol mode, you cannot use the function though.

Authentication/Access Controls

In the replication mode or master/slave mode, trust, clear text password, and pam methods are
supported. md5 in also supported since Pgpool-II 3.0. md5 is supported by using a authencitaion file
pool_passwd. pool_passwd is default name of the authentication file. Here are the steps to enable md5
authentication:

1. Login as the database's operating system user and type:

 pg_md5 --md5auth --username=your_username your_passwd

user name and md5 encrypted password are registered into pool_passwd. If pool_passwd does not
exist yet, pg_md5 command will automatically create it for you. The format of pool_passwd is
username:encrypted_passwd.

2. You also need to add an appropriate md5 entry to pool_hba.conf. See Section 6.1 for more details.

3. Please note that the user name and password must be identical to those registered in PostgreSQL.

4. After changing md5 password (in both pool_passwd and PostgreSQL of course), you need to
execute pgpool reload.

Large objects

In streaming replication mode, Pgpool-II supports large objects.

In native replication mode, Pgpool-II supports large objects if the backend is PostgreSQL 8.1 or later. For
this, you need to enable lobj_lock_table directive in pgpool.conf. Large object replication using backend
function lo_import is not supported, however.

In other mode, including Slony mode, large objects are not supported.

Temporary tables

Creating/inserting/updating/deleting temporary tables are always executed on the master (primary) in
master slave mode. SELECT on these tables is executed on master as well. However if the temporary
table name is used as a literal in SELECT, there's no way to detect it, and the SELECT will be load
balanced. That will trigger a "not found the table" error or will find another table having same name. To
avoid the problem, use /*NO LOAD BALANCE*/ SQL comment.

Note that such literal table names used in queries to access system catalogs do cause problems

described above. psql's \d command produces such that query:

SELECT 't1'::regclass::oid;

In such that case Pgpool-II always sends the query to master and will not cause the problem.

Tables created by CREATE TEMP TABLE will be deleted at the end of the session by specifying DISCARD ALL
in reset_query_list if you are using PostgreSQL 8.3 or later.

For 8.2.x or earlier, tables created by CREATE TEMP TABLE will not be deleted after exiting a session. It is
because of the connection pooling which, from PostgreSQL's backend point of view, keeps the session
alive. To avoid this, you must explicitly drop the temporary tables by issuing DROP TABLE, or use CREATE
TEMP TABLE ... ON COMMIT DROP inside the transaction block.

Functions, etc. In Native Replication mode

There is no guarantee that any data provided using a context-dependent mechanism (e.g. random
number, transaction ID, OID, SERIAL, sequence), will be replicated correctly on multiple backends. For
SERIAL, enabling insert_lock will help replicating data. insert_lock also helps SELECT setval() and SELECT
nextval().

INSERT/UPDATE using CURRENT_TIMESTAMP, CURRENT_DATE, now() will be replicated correctly.
INSERT/UPDATE for tables using CURRENT_TIMESTAMP, CURRENT_DATE, now() as their DEFAULT values will also
be replicated correctly. This is done by replacing those functions by constants fetched from master at
query execution time. There are a few limitations however:

In Pgpool-II 3.0 or before, the calculation of temporal data in table default value is not accurate in some
cases. For example, the following table definition:

CREATE TABLE rel1(
 d1 date DEFAULT CURRENT_DATE + 1
)

is treated the same as:

CREATE TABLE rel1(
 d1 date DEFAULT CURRENT_DATE
)

Pgpool-II 3.1 or later handles these cases correctly. Thus the column "d1" will have tomorrow as the
default value. However this enhancement does not apply if extended protocols (used in JDBC, PHP PDO
for example) or PREPARE are used.

Please note that if the column type is not a temporal one, rewriting is not performed. Such example:

foo bigint default (date_part('epoch'::text,('now'::text)::timestamp(3) with time zone) * (1000)::double precision)

Suppose we have the following table:

CREATE TABLE rel1(
 c1 int,
 c2 timestamp default now()
)

We can replicate

INSERT INTO rel1(c1) VALUES(1)

since this turn into

INSERT INTO rel1(c1, c2) VALUES(1, '2009-01-01 23:59:59.123456+09')

However,

INSERT INTO rel1(c1) SELECT 1

cannot to be transformed, thus cannot be properly replicated in the current implementation. Values will
still be inserted, with no transformation at all.

SQL type commands

SQL type commands cannot be used in extended query mode.

Bug Reporting Guidelines

When you find a bug in Pgpool-II, please register to our bug tracking system.

I. Tutorial
This chapter explains how to get start with Pgpool-II.

Table of Contents

1. Getting Started

1.1. Installation
1.2. Your First Replication
1.3. Testing Load Balance
1.4. Testing Replication
1.5. Testing Fail Over
1.6. Testing Online Recovery
1.7. Architectural Fundamentals

2. Watchdog

2.1. Introduction
2.2. Integrating external lifecheck with watchdog
2.3. Restrictions on watchdog
2.4. Architecure of the watchdog

Chapter 1. Getting Started

1.1. Installation

In this section we assume that you have already installed Pgpool-II following an instruction described in Part
II. Alternatively you can use pgpool_setup to create a temporary installation of Pgpool-II and PostgreSQL.

1.2. Your First Replication

In this section we are going to explain how to manage a PostgreSQL cluster with streaming replication using

http://pgpool.net/mediawiki/index.php/Bug_tracking_system

Pgpool-II, which is one of most common setup.

Before going further, you should properly set up pgpool.conf with streaming replication mode. For this at least
following two directives must be set:

master_slave_mode = on
master_slave_sub_mode = 'stream'

If you plan to use pgpool_setup, type:

pgpool_setup

This will create a Pgpool-II with streaming replication mode installation, primary PostgreSQL installation, and
a async standby PostgreSQL installation.

From now on, we assume that you use pgpool_setup to create the installation under current directory. Please
note that the current directory must be empty before executing pgpool_setup.

To start the whole system, type:

./startall

Once the system starts, you can check the cluster status by issuing a pseudo SQL command called "show
pool_node" to any of databases. pgpool_setup automatically creates "test" database. We use the database.
Note that the port number is 11000, which is the default port number assigned to Pgpool-II by pgpool_setup.

$ psql -p 11000 -c "show pool_nodes" test
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 0 | false | 0
 1 | /tmp | 11003 | up | 0.500000 | standby | 0 | true | 0
(2 rows)

The result shows that the "status" column is "up", which means the PostgreSQL is up and running, which is
good.

1.3. Testing Load Balance

Pgpool-II allows read query load balancing. It is enabled by default. To see the effect, let's use pgbench -S
command.

$ pgbench -p 11000 -c 10 -S -T 10 test
starting vacuum...end.
transaction type: <builtin: select only>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
duration: 10 s
number of transactions actually processed: 148044
latency average = 0.676 ms
tps = 14802.897506 (including connections establishing)
tps = 14810.213749 (excluding connections establishing)

$ psql -p 11000 -c "show pool_nodes" test
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 75152 | true | 0
 1 | /tmp | 11003 | up | 0.500000 | standby | 72893 | false | 0
(2 rows)

"select_cnt" column shows how many SELECT are dispatched to each node. Since with the default
configuration, Pgpool-II tries to dispatch equal number of SELECT, the column shows almost same numbers.

Pgpool-II offers more sophisticated strategy for load balancing. See Section 5.7 for more details.

1.4. Testing Replication

Let's test the replication functionality using a benchmark tool pgbench, which comes with the standard
PostgreSQL installation. Type following to create the benchmark tables.

$ pgbench -i -p 11000 test

To see if the replication works correctly, directly connect to the primary and the standby server to see if they
return identical results.

$ psql -p 11002 test
\dt
 List of relations
 Schema | Name | Type | Owner
--------+------------------+-------+---------
 public | pgbench_accounts | table | t-ishii
 public | pgbench_branches | table | t-ishii
 public | pgbench_history | table | t-ishii
 public | pgbench_tellers | table | t-ishii
(4 rows)
\q
$ psql -p 11003 test
\dt
 List of relations
 Schema | Name | Type | Owner
--------+------------------+-------+---------
 public | pgbench_accounts | table | t-ishii
 public | pgbench_branches | table | t-ishii
 public | pgbench_history | table | t-ishii
 public | pgbench_tellers | table | t-ishii
(4 rows)

The primary server (port 11002) and the standby server (port 11003) return identical results. Next, let's run
pgbench for a while and check to results.

$ pgbench -p 11000 -T 10 test
starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 1
number of threads: 1
duration: 10 s
number of transactions actually processed: 2171
latency average = 4.692 ms
tps = 213.147520 (including connections establishing)
tps = 213.258008 (excluding connections establishing)

$ psql -p 11002 -c "SELECT sum(abalance) FROM pgbench_accounts" test
 sum

 192112
(1 row)

$ psql -p 11003 -c "SELECT sum(abalance) FROM pgbench_accounts" test
 sum

 192112
(1 row)

Again, the results are identical.

1.5. Testing Fail Over

Pgpool-II allows an automatic fail over when PostgreSQL server goes down. In this case Pgpool-II sets the
status of the server to "down" and continue the database operation using remaining servers.

$ pg_ctl -D data1 stop
waiting for server to shut down.... done
server stopped
$ psql -p 11000 -c "show pool_nodes" test
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 2172 | true | 0
 1 | /tmp | 11003 | down | 0.500000 | standby | 0 | false | 0
(2 rows)

$ psql -p 11000 -c "SELECT sum(abalance) FROM pgbench_accounts" test
 sum

 192112
(1 row)

The standby node was shut down by pg_ctl command. Pgpool-II detects it and detaches the standby node.
"show pool_nodes" command shows that the standby node is in down status. You can continue to use the
cluster without the standby node:

$ psql -p 11000 -c "SELECT sum(abalance) FROM pgbench_accounts" test
 sum

 192112
(1 row)

What happens if the primary server goes down? In this case, one of remaining standby server is promoted to
new primary server. For this testing, we start from the state in which both nodes are up.

$ psql -p 11000 -c "show pool_nodes" test
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 2173 | true | 0
 1 | /tmp | 11003 | up | 0.500000 | standby | 0 | false | 0
(2 rows)

$ pg_ctl -D data0 stop
waiting for server to shut down.... done
server stopped
$ psql -p 11000 -c "show pool_nodes" test
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | down | 0.500000 | standby | 2173 | false | 0
 1 | /tmp | 11003 | up | 0.500000 | primary | 0 | true | 0
(2 rows)

Now the primary node is changed from 0 to 1. What happens inside? When the node 0 goes down, Pgpool-II
detects it and executes "fail_over_script" defined in pgpool.conf. Here is the content of the file.

#! /bin/sh
Execute command by failover.
special values: %d = node id
%h = host name
%p = port number
%D = database cluster path
%m = new master node id
%M = old master node id
%H = new master node host name
%P = old primary node id
%R = new master database cluster path
%r = new master port number
%% = '%' character
failed_node_id=$1
failed_host_name=$2
failed_port=$3
failed_db_cluster=$4
new_master_id=$5
old_master_id=$6
new_master_host_name=$7
old_primary_node_id=$8
new_master_port_number=$9
new_master_db_cluster=${10}
mydir=/home/t-ishii/tmp/Tutorial
log=$mydir/log/failover.log
pg_ctl=/usr/local/pgsql/bin/pg_ctl
cluster0=$mydir/data0
cluster1=$mydir/data1

date >> $log
echo "failed_node_id $failed_node_id failed_host_name $failed_host_name failed_port $failed_port failed_db_cluster $failed_db_cluster new_master_id $new_master_id old_master_id $old_master_id new_master_host_name $new_master_host_name old_primary_node_id $old_primary_node_id new_master_port_number $new_master_port_number new_master_db_cluster $new_master_db_cluster" >> $log

if [a"$failed_node_id" = a"$old_primary_node_id"];then # master failed
! new_primary_db_cluster=${mydir}/data"$new_master_id"
 echo $pg_ctl -D $new_primary_db_cluster promote >>$log # let standby take over
 $pg_ctl -D $new_primary_db_cluster promote >>$log # let standby take over
fi

The script receives necessary information as parameters from Pgpool-II. If the primary server goes down, it
executes "pg_ctl -D data1 promote", which should promote the standby server to a new primary server.

1.6. Testing Online Recovery

Pgpool-II allows to recover a downed node by technique called "Online Recovery". This copies data from the
primary node to a standby node so that it sync with the primary. This may take long time and database may
be updated during the process. That's no problem because in the streaming configuration, the standby will
receive WAL log and applies it to catch up the primary. To test online recovery, let's start with previous
cluster, where node 0 is in down state.

$ pcp_recovery_node -p 11001 0
Password:
pcp_recovery_node -- Command Successful

$ psql -p 11000 -c "show pool_nodes" test
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | standby | 2173 | true | 0
 1 | /tmp | 11003 | up | 0.500000 | primary | 0 | false | 0
(2 rows)

pcp_recovery_node is one of control commands coming with Pgpool-II installation. The argument -p is to
specify the port number assigned to the command, which is 11001 set by pgpool_setup. The second argument
is the target node id. After executing the command, node 0 returned to "up" status.

The script executed by pcp_recovery_node is specified as "recovery_1st_stage_command" in pgpool.conf. Here is
the file installed by pgpool_setup.

#! /bin/sh
psql=/usr/local/pgsql/bin/psql
DATADIR_BASE=/home/t-ishii/tmp/Tutorial
PGSUPERUSER=t-ishii

master_db_cluster=$1
recovery_node_host_name=$2
DEST_CLUSTER=$3
PORT=$4

log=$DATADIR_BASE/log/recovery.log

$psql -p $PORT -c "SELECT pg_start_backup('Streaming Replication', true)" postgres

echo "source: $master_db_cluster dest: $DEST_CLUSTER" > $log

rsync -C -a -c --delete --exclude postgresql.conf --exclude postmaster.pid \
--exclude postmaster.opts --exclude pg_log \
--exclude recovery.conf --exclude recovery.done \
--exclude pg_xlog \
$master_db_cluster/ $DEST_CLUSTER/

rm -fr $DEST_CLUSTER/pg_xlog
mkdir $DEST_CLUSTER/pg_xlog
chmod 700 $DEST_CLUSTER/pg_xlog
rm $DEST_CLUSTER/recovery.done
cat > $DEST_CLUSTER/recovery.conf $lt;$lt;REOF
standby_mode = 'on'
primary_conninfo = 'port=$PORT user=$PGSUPERUSER'
recovery_target_timeline='latest'
REOF

$psql -p $PORT -c "SELECT pg_stop_backup()" postgres

1.7. Architectural Fundamentals

Pgpool-II is a proxy server sitting between clients and PostgreSQL. Pgpool-II understands the wire level
protocol used by PostgreSQL called "frontend and backend protocol". For more details of the protocol, see
the PostgreSQL manual. No modified PostgreSQL is required to use Pgpool-II (more precisely, you will need a
few extensions to use full functions of Pgpool-II). So Pgpool-II can cope with variety of PostgreSQL versions. In
theory, even the earliest version of PostgreSQL can be used with Pgpool-II. Same thing can be said to client
side. As long as it follows the protocol, Pgpool-II happily accept connections from it, no matter what kind of
languages or drivers it uses.

Pgpool-II consists of multiple process. There is a main process, which is the parent process of all other
process. It is responsible for forking child process each of which accepts connections from clients. There are
some worker process those are forked from the main process as well, which is responsible for detecting
streaming replication delay. There is also a special process called "pcp process", which is solely used for
management of Pgpool-II itself. Pgpool-II has a built-in high availability function called "watchdog". Watchdog
consists of some process. For more details of watchdog, see Chapter 2.

Figure 1-1. Process architecure of Pgpool-II

Chapter 2. Watchdog

2.1. Introduction

Watchdog is a sub process of Pgpool-II to add high availability. Watchdog is used to resolve the single point
of failure by coordinating multiple pgpool-II nodes. The watchdog was first introduced in pgpool-II V3.2 and is
significantly enhanced in pgpool-II V3.5, to ensure the presence of a quorum at all time. This new addition to
watchdog makes it more fault tolerant and robust in handling and guarding against the split-brain syndrome
and network partitioning. However to ensure the quorum mechanism properly works, the number of pgpool-II
nodes must be odd in number and greater than or equal to 3.

2.1.1. Coordinating multiple Pgpool-II nodes

Watchdog coordinates multiple Pgpool-II nodes by exchanging information with each other.

At the startup, if the watchdog is enabled, Pgpool-II node sync the status of all configured backend nodes
from the master watchdog node. And if the node goes on to become a master node itself it initializes the
backend status locally. When a backend node status changes by failover etc.., watchdog notifies the
information to other Pgpool-II nodes and synchronizes them. When online recovery occurs, watchdog
restricts client connections to other Pgpool-II nodes for avoiding inconsistency between backends.

Watchdog also coordinates with all connected Pgpool-II nodes to ensure that failback, failover and
follow_master commands must be executed only on one pgpool-II node.

2.1.2. Life checking of other Pgpool-II nodes

Watchdog lifecheck is the sub-component of watchdog to monitor the health of Pgpool-II nodes participating
in the watchdog cluster to provide the high availability. Traditionally Pgpool-II watchdog provides two
methods of remote node health checking. "heartbeat" and "query" mode. The watchdog in Pgpool-II V3.5 adds a
new "external" to wd_lifecheck_method, which enables to hook an external third party health checking system
with Pgpool-II watchdog.

Apart from remote node health checking watchdog lifecheck can also check the health of node it is installed
on by monitoring the connection to upstream servers. If the monitoring fails, watchdog treats it as the local
Pgpool-II node failure.

In heartbeat mode, watchdog monitors other Pgpool-II processes by using heartbeat signal. Watchdog receives
heartbeat signals sent by other Pgpool-II periodically. If there is no signal for a certain period, watchdog
regards this as the failure of the Pgpool-II. For redundancy you can use multiple network connections for
heartbeat exchange between Pgpool-II nodes. This is the default and recommended mode to be used for
health checking.

In query mode, watchdog monitors Pgpool-II service rather than process. In this mode watchdog sends queries
to other Pgpool-II and checks the response.

Note: Note that this method requires connections from other Pgpool-II, so it would fail
monitoring if the num_init_children parameter isn't large enough. This mode is
deprecated and left for backward compatibility.

external mode is introduced by Pgpool-II V3.5. This mode basically disables the built in lifecheck of Pgpool-II
watchdog and expects that the external system will inform the watchdog about health of local and all remote
nodes participating in the watchdog cluster.

2.1.3. Consistency of configuration parameters on all Pgpool-II nodes

At startup watchdog verifies the Pgpool-II configuration of the local node for the consistency with the
configurations on the master watchdog node and warns the user of any differences. This eliminates the
likelihood of undesired behavior that can happen because of different configuration on different Pgpool-II
nodes.

2.1.4. Changing active/standby state when certain fault is detected

When a fault of Pgpool-II is detected, watchdog notifies the other watchdogs of it. If this is the active Pgpool-
II, watchdogs decide the new active Pgpool-II by voting and change active/standby state.

2.1.5. Automatic virtual IP switching

When a standby Pgpool-II server promotes to active, the new active server brings up virtual IP interface.
Meanwhile, the previous active server brings down the virtual IP interface. This enables the active Pgpool-II
to work using the same IP address even when servers are switched.

2.1.6. Automatic registration of a server as a standby in recovery

When the broken server recovers or new server is attached, the watchdog process notifies this to the other
watchdogs in the cluster along with the information of the new server, and the watchdog process receives
information on the active server and other servers. Then, the attached server is registered as a standby.

2.1.7. Starting/stopping watchdog

The watchdog process starts and stops automatically as sub-processes of the Pgpool-II, therefore there is no
dedicated command to start and stop watchdog.

Watchdog controls the virtual IP interface, the commands executed by the watchdog for bringing up and
bringing down the VIP require the root privileges. Pgpool-II requires the user running Pgpool-II to have root
privileges when the watchdog is enabled along with delegate IP. This is however not good security practice
to run the Pgpool-II as root user, the alternative and preferred way is to run the Pgpool-II as normal user and
use either the custom commands for if_up_cmd, if_down_cmd, and arping_cmd using sudo or use setuid ("set
user ID upon execution") on if_* commands

Lifecheck process is a sub-component of watchdog, its job is to monitor the health of Pgpool-II nodes
participating in the watchdog cluster. The Lifecheck process is started automatically when the watchdog is
configured to use the built-in life-checking, it starts after the watchdog main process initialization is
complete. However lifecheck process only kicks in when all configured watchdog nodes join the cluster and
becomes active. If some remote node fails before the Lifecheck become active that failure will not get caught
by the lifecheck.

2.2. Integrating external lifecheck with watchdog

Pgpool-II watchdog process uses the BSD sockets for communicating with all the Pgpool-II processes and the
same BSD socket can also be used by any third party system to provide the lifecheck function for local and
remote Pgpool-II watchdog nodes. The BSD socket file name for IPC is constructed by appending Pgpool-II
wd_port after "s.PGPOOLWD_CMD." string and the socket file is placed in the wd_ipc_socket_dir directory.

2.2.1. Watchdog IPC command packet format

The watchdog IPC command packet consists of three fields. Below table details the message fields and
description.

Table 2-1. Watchdog IPC command packet format

Field Type Description
TYPE BYTE1 Command Type
LENGTH INT32 in network byte order The length of data to follow
DATA DATA in JSON format Command data in JSON format

2.2.2. Watchdog IPC result packet format

The watchdog IPC command result packet consists of three fields. Below table details the message fields and
description.

Table 2-2. Watchdog IPC result packet format

Field Type Description

TYPE BYTE1 Command Type

LENGTH INT32 in network byte order The length of data to follow
DATA DATA in JSON format Command result data in JSON format

Field Type Description

2.2.3. Watchdog IPC command packet types

The first byte of the IPC command packet sent to watchdog process and the result returned by watchdog
process is identified as the command or command result type. The below table lists all valid types and their
meanings

Table 2-3. Watchdog IPC command packet types

Name Byte
Value Type Description

REGISTER FOR
NOTIFICATIONS '0' Command

packet
Command to register the current connection to receive watchdog
notifications

NODE STATUS
CHANGE '2' Command

packet
Command to inform watchdog about node status change of
watchddog node

GET NODES LIST '3' Command
packet Command to get the list of all configured watchdog nodes

NODES LIST
DATA '4' Result

packet
The JSON data in packet contains the list of all configured watchdog
nodes

CLUSTER IN
TRANSITION '7' Result

packet
Watchdog returns this packet type when it is not possible to
process the command because the cluster is transitioning.

RESULT BAD '8' Result
packet Watchdog returns this packet type when the IPC command fails

RESULT OK '9' Result
packet Watchdog returns this packet type when IPC command succeeds

2.2.4. External lifecheck IPC packets and data

"GET NODES LIST" ,"NODES LIST DATA" and "NODE STATUS CHANGE" IPC messages of watchdog can be
used to integration an external lifecheck systems. Note that the built-in lifecheck of pgpool also uses the
same channel and technique.

2.2.4.1. Getting list of configured watchdog nodes

Any third party lifecheck system can send the "GET NODES LIST" packet on watchdog IPC socket with a JSON
data containing the authorization key and value if wd_authkey is set or empty packet data when wd_authkey
is not configured to get the "NODES LIST DATA" result packet.

The result packet returnd by watchdog for the "GET NODES LIST" will contains the list of all configured
watchdog nodes to do health check on in the JSON format. The JSON of the watchdog nodes contains the
"WatchdogNodes" Array of all watchdog nodes. Each watchdog JSON node contains the "ID", "NodeName",
"HostName", "DelegateIP", "WdPort" and "PgpoolPort" for each node.

 -- The example JSON data contained in "NODES LIST DATA"

 {
 "NodeCount":3,
 "WatchdogNodes":
 [
 {
 "ID":0,
 "State":1,
 "NodeName":"Linux_ubuntu_9999",
 "HostName":"watchdog-host1",
 "DelegateIP":"172.16.5.133",
 "WdPort":9000,
 "PgpoolPort":9999
 },
 {
 "ID":1,
 "State":1,
 "NodeName":"Linux_ubuntu_9991",
 "HostName":"watchdog-host2",
 "DelegateIP":"172.16.5.133",
 "WdPort":9000,
 "PgpoolPort":9991
 },
 {
 "ID":2,
 "State":1,
 "NodeName":"Linux_ubuntu_9992",
 "HostName":"watchdog-host3",
 "DelegateIP":"172.16.5.133",
 "WdPort":9000,
 "PgpoolPort":9992
 }
]
 }

 -- Note that ID 0 is always reserved for local watchdog node

After getting the configured watchdog nodes information from the watchdog the external lifecheck system
can proceed with the health checking of watchdog nodes, and when it detects some status change of any
node it can inform that to watchdog using the "NODE STATUS CHANGE" IPC messages of watchdog. The data
in the message should contain the JSON with the node ID of the node whose status is changed (The node ID
must be same as returned by watchdog for that node in WatchdogNodes list) and the new status of node.

 -- The example JSON to inform pgpool-II watchdog about health check
 failed on node with ID 1 will look like

 {
 "NodeID":1,
 "NodeStatus":1,
 "Message":"optional message string to log by watchdog for this event"
 "IPCAuthKey":"wd_authkey configuration parameter value"
 }

 -- NodeStatus values meanings are as follows
 NODE STATUS DEAD = 1
 NODE STATUS ALIVE = 2

2.3. Restrictions on watchdog

2.3.1. Watchdog restriction with query mode lifecheck

In query mode, when all the DB nodes are detached from a Pgpool-II due to PostgreSQL server failure or

pcp_detach_node issued, watchdog regards that the Pgpool-II service is in the down status and brings the
virtual IP assigned to watchdog down. Thus clients of Pgpool-II cannot connect to Pgpool-II using the virtual IP
any more. This is neccessary to avoid split-brain, that is, situations where there are multiple active Pgpool-II.

2.3.2. Connecting to Pgpool-II whose watchdog status is down

Don't connect to Pgpool-II in down status using the real IP. Because a Pgpool-II in down status can't receive
information from other Pgpool-II watchdogs so it's backend status may be different from other the Pgpool-II.

2.3.3. Pgpool-II whose watchdog status is down requires restart

Pgpool-II in down status can't become active nor the standby Pgpool-II. Recovery from down status requires
the restart of Pgpool-II.

2.3.4. Watchdog promotion to active takes few seconds

After the active Pgpool-II stops, it will take a few seconds until the standby Pgpool-II promote to new active,
to make sure that the former virtual IP is brought down before a down notification packet is sent to other
Pgpool-II.

2.4. Architecure of the watchdog

Watchdog is a sub process of Pgpool-II, which adds the high availability and resolves the single point of
failure by coordinating multiple Pgpool-II. The watchdog process automatically starts (if enabled) when the
Pgpool-II starts up and consists of two main components, Watchdog core and the lifecheck system.

2.4.1. Watchdog Core

Watchdog core referred as a "watchdog" is a Pgpool-II child process that manages all the watchdog related
communications with the Pgpool-II nodes present in the cluster and also communicates with the Pgpool-II
parent and lifecheck processes.

The heart of a watchdog process is a state machine that starts from its initial state (WD_LOADING) and transit
towards either standby (WD_STANDBY) or master/coordinator (WD_COORDINATOR) state. Both standby and
master/coordinator states are stable states of the watchdog state machine and the node stays in standby or
master/coordinator state until some problem in local Pgpool-II node is detected or a remote Pgpool-II
disconnects from the cluster.

The watchdog process performs the following tasks:

Manages and coordinates the local node watchdog state.

Interacts with built-in or external lifecheck system for the of local and remote Pgpool-II node health
checking.

Interacts with Pgpool-II main process and provides the mechanism to Pgpool-II parent process for
executing the cluster commands over the watchdog channel.

Communicates with all the participating Pgpool-II nodes to coordinate the selection of
master/coordinator node and to ensure the quorum in the cluster.

Manages the Virtual-IP on the active/coordinator node and allow the users to provide custom scripts for
escalation and de-escalation.

Verifies the consistency of Pgpool-II configurations across the participating Pgpool-II nodes in the
watchdog cluster.

Synchronize the status of all PostgreSQL backends at startup.

Provides the distributed locking facility to Pgpool-II main process for synchronizing the different failover

commands.

2.4.1.1. Communication with other nodes in the Cluster

Watchdog uses TCP/IP sockets for all the communication with other nodes. Each watchdog node can have
two sockets opened with each node. One is the outgoing (client) socket which this node creates and initiate
the connection to the remote node and the second socket is the one which is listening socket for inbound
connection initiated by remote watchdog node. As soon as the socket connection to remote node succeeds
watchdog sends the ADD NODE (WD_ADD_NODE_MESSAGE) message on that socket. And upon receiving the ADD
NODE message the watchdog node verifies the node information encapsulated in the message with the
Pgpool-II configurations for that node, and if the node passes the verification test it is added to the cluster
otherwise the connection is dropped.

2.4.1.2. IPC and data format

Watchdog process exposes a UNIX domain socket for IPC communications, which accepts and provides the
data in JSON format. All the internal Pgpool-II processes, including Pgpool-II's built-in lifecheck and Pgpool-II
main process uses this IPC socket interface to interact with the watchdog. This IPC socket can also be used
by any external/3rd party system to interact with watchdog.

See Section 2.2 for details on how to use watchdog IPC interface for integrating external/3rd party systems.

2.4.2. Watchdog Lifecheck

Watchdog lifecheck is the sub-component of watchdog that monitors the health of Pgpool-II nodes
participating in the watchdog cluster. Pgpool-II watchdog provides two built-in methods of remote node
health checking, "heartbeat" and "query" mode.

In "heartbeat" mode, The lifecheck process sends and receives the data over UDP socket to check the
availability of remote nodes and for each node the parent lifecheck process spawns two child process one for
sending the heartbeat signal and another for receiving the heartbeat. While in "query" mode, The lifecheck
process uses the PostgreSQL libpq interface for querying the remote Pgpool-II. And in this mode the lifecheck
process creates a new thread for each health check query which gets destroyed as soon as the query
finishes.

Apart from remote node health checking watchdog lifecheck can also check the health of node it is installed
on by monitoring the connection to upstream servers. For monitoring the connectivity to the upstream server
Pgpool-II lifecheck uses execv() function to executes 'ping -q -c3 hostname' command. So a new child process gets
spawned for executing each ping command. This means for each health check cycle a child process gets
created and destroyed for each configured upstream server. For example, if two upstream servers are
configured in the lifecheck and it is asked to health check at ten second intervals, then after each ten second
lifecheck will spawn two child processes, one for each upstream server, and each process will live until the
ping command is finished.

II. Server Administration
This part covers topics that are of interest to Pgpool-II administrators.

Table of Contents

3. Installation of Pgpool-II

3.1. Installation of Pgpool-II
3.2. Requirements
3.3. Getting The Source
3.4. Installing Pgpool-II
3.5. Installing pgpool_recovery
3.6. Installing pgpool-regclass
3.7. Creating insert_lock table
3.8. Setting up pgpool.conf
3.9. Compiling and installing documents

3.10. Installation from RPM
3.11. Tips for Installation

4. Server Setup and Operation

4.1. The Pgpool-II User Account
4.2. Configuring pcp.conf
4.3. Configuring Pgpool-II
4.4. Configuring backend information

5. Server Configuration

5.1. Setting Parameters
5.2. Connections and Authentication
5.3. Running mode
5.4. Backend Settings
5.5. Connection Pooling
5.6. Error Reporting and Logging
5.7. Load Balancing
5.8. Health Check
5.9. Failover and Failback
5.10. Online Recovery
5.11. Streaming Replication Check
5.12. In Memory Query Cache
5.13. Secure Sockect Layer (SSL)
5.14. Watchdog
5.15. Misc Configuration Parameters

6. Client Authentication

6.1. The pool_hba.conf File
6.2. Authentication Methods

Chapter 3. Installation of Pgpool-II

3.1. Installation of Pgpool-II

This chapter describes the installation of Pgpool-II. First, installation from source code distribution is
explained. Then installation from RPM packages is explained.

3.2. Requirements

In general, a modern Unix-compatible platform should be able to run Pgpool-II. Windows is not supported.

The following software packages are required for building Pgpool-II:

GNU make version 3.80 or newer is required; other make programs or older GNU make versions will not
work. (GNU make is sometimes installed under the name gmake.) To test for GNU make enter:

make --version

You need an ISO/ANSI C compiler (at least C89-compliant). Recent versions of GCC are recommended,
but Pgpool-II is known to build using a wide variety of compilers from different vendors.

tar is required to unpack the source distribution, in addition to gzip.

If you are building from a Git tree instead of using a released source package, or if you want to do server
development, you also need the following packages:

Flex and Bison are needed to build from a Git checkout, or if you changed the actual scanner and parser
definition files. If you need them, be sure to get Flex 2.5.31 or later and Bison 1.875 or later. Other lex
and yacc programs cannot be used.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 40 MB for the source tree during
compilation and about 20 MB for the installation directory. If you are going to run the regression tests you will
temporarily need up to an extra 4 GB. Use the df command to check free disk space.

3.3. Getting The Source

The Pgpool-II 3.7.5 sources can be obtained from the download section of our website:
http://www.pgpool.net. You should get a file named pgpool-II-3.7.5.tar.gz. After you have obtained the file,
unpack it:

tar xf pgpool-II-3.7.5.tar.gz

This will create a directory pgpool-II-3.7.5 under the current directory with the Pgpool-II sources. Change into
that directory for the rest of the installation procedure.

3.4. Installing Pgpool-II

After extracting the source tarball, execute the configure script.

./configure

You can customize the build and installation process by supplying one or more of the following command line
options to configure:

--prefix=path

Specifies the top directory where Pgpool-II binaries and related files like docs will be installed in. Default
value is /usr/local.

--with-pgsql=path

Specifies the top directory where PostgreSQL's client libraries are installed. Default value is the path
provided by pg_config command.

--with-openssl

Pgpool-II binaries will be built with OpenSSL support. OpenSSL support is disabled by default.

--enable-sequence-lock

Use insert_lock compatible with Pgpool-II 3.0 series (until 3.0.4). Pgpool-II locks against a row in the
sequence table. PostgreSQL 8.2 or later which was released after June 2011 cannot use this lock
method.

--enable-table-lock

Use insert_lock compatible with Pgpool-II 2.2 and 2.3 series. Pgpool-II locks against the insert target
table. This lock method is deprecated because it causes a lock conflict with VACUUM.

--with-memcached=path

Pgpool-II binaries will use memcached for in memory query cache. You have to install libmemcached.

--with-pam

Pgpool-II binaries will be built with PAM authentication support. PAM authentication support is disabled
by dafault.

http://www.gnu.org/order/ftp.html
ftp://ftp.gnu.org/gnu/
http://www.pgpool.net
http://libmemcached.org/libMemcached.html

make
make install

This will install Pgpool-II. (If you use Solaris or FreeBSD, replace make with gmake)

3.5. Installing pgpool_recovery

This is required in all Pgpool-II installation.

$ cd pgpool-II-x.x.x/src/sql/pgpool-recovery
$ make
$ make install

After this:

$ psql template1
=# CREATE EXTENSION pgpool_recovery;

or

$ psql -f pgpool-recovery.sql template1

With Pgpool-II 3.3 or later, you need to tweak postgresql.conf. Suppose the path to pg_ctl is /usr/local/pgsql/bin/pg_ctl.
Then you add following to postgresql.conf.

pgpool.pg_ctl = '/usr/local/pgsql/bin/pg_ctl'

Probably you want to execute following after this:

$ pg_ctl reload -D /usr/local/pgsql/data

3.6. Installing pgpool-regclass

If you are using PostgreSQL 9.4 or later, you can skip this section.

If you are using PostgreSQL 8.0 to PostgreSQL 9.3, installing pgpool_regclass function on all PostgreSQL to be
accessed by Pgpool-II is strongly recommended, as it is used internally by Pgpool-II. Without this, handling of
duplicate table names in different schema might cause trouble (temporary tables aren't a problem). If you
are using PostgreSQL 9.4 or later, installing pgpool_regclass is not necessary since an equivalent (to_regclass) is
included in the PostgreSQL core.

$ cd pgpool-II-x.x.x/src/sql/pgpool-regclass
$ make
$ make install

After this:

$ psql template1
=# CREATE EXTENSION pgpool_regclass;

or

$ psql -f pgpool-regclass.sql template1

Executing CREATE EXTENSION or pgpool-regclass.sql should be performed on every databases accessed via Pgpool-
II. However, you do not need to do this for a database created after the execution of CREATE EXTENSION or psql -f
pgpool-regclass.sql template1, as this template database will be cloned to create new databases.

3.7. Creating insert_lock table

If you are not going to use the native replication mode, you can skip this section.

If you plan to use native replication mode and insert_lock, creating pgpool_catalog.insert_lock table for mutual
exclusion is strongly recommended. Without this, insert_lock works so far. However in that case Pgpool-II
locks against the insert target table. This behavior is same table lock conflicts with VACUUM, so INSERT
processing may be thereby kept waiting for a long time.

 $ cd pgpool-II-x.x.x/src/sql
 $ psql -f insert_lock.sql template1

Executing insert_lock.sql should be performed on every databases accessed via Pgpool-II. You do not need to
do this for a database created after the execution of psql -f insert_lock.sql template1, as this template database
will be cloned to create new databases.

3.8. Setting up pgpool.conf

For each Pgpool-II operation mode, there are sample configurations.

Table 3-1. pgpool.conf samples

Operation mode Configuration file name
Streaming replication mode pgpool.conf.sample-stream

Replication mode pgpool.conf.sample-replication

Master slave mode pgpool.conf.sample-master-slave

Raw mode pgpool.conf.sample

Logical replication mode pgpool.conf.sample-logical

These configuration files are located at /usr/local/etc with default installation from source code. You can copy
one of them as pgpool.conf. (probably you need root privilege for this)

cd /usr/local/etc
cp pgpool.conf.sample-stream pgpool.conf

3.9. Compiling and installing documents

3.9.1. Tool Sets

Pgpool-II documents are written in SGML (more precisely, DocBook, which is a language implemented using

SGML). To generate readable HTML documents, you need to compile them using docbook tools. To install
Docbook tools on RHEL or similar systems, use:

 yum install docbook-dtds docbook-style-dsssl docbook-style-xsl libxslt openjade

3.9.2. Compiling docs

Once the tool sets are installed on the system, you can compile the docs:

 $ cd doc
 $ make
 $ cd ..
 $ cd doc.ja
 $ make

You will see English HTML docs under doc/src/sgml/html, and online docs under sgml/man[1-8]. Japanese
docs can be found under doc.ja/src/sgml/html, and online docs under sgml/man[1-8].

3.10. Installation from RPM

This chapter describes the installation of Pgpool-II from PRM. If you are going to install from the source code,
please check Section 3.1.

3.10.1. Installing RPM

Pgpool-II official RPMs can be obtained from http://www.pgpool.net/yum.

For RHEL and its derivatives do following once:

yum install http://www.pgpool.net/yum/rpms/3.6/redhat/rhel-7-x86_64/pgpool-II-release-3.6-1.noarch.rpm

Then:

yum install pgpool-II-pg96

pg96 means PostgreSQL 9.5. Pgpool-II needs PostgreSQL's library and extensions directory. Since the directory
paths are different in the particular PostgreSQL versions, You must choose appropriate RPM for your
PostgreSQL rpm installation. We also assume you are using PostgreSQL community rpms. Optionally you can
install:

yum install pgpool-II-pg96-debuginfo

which makes it easier to retrieve debugging symbols from the core or the backtrace. We recommend to
install it. There is an optional package for developers.

yum install pgpool-II-pg96-devel

This installs header files which developers are interested in

On all the PostgreSQL servers you need to install:

http://www.pgpool.net/yum
https://www.postgresql.org/download/linux/redhat/

yum install pgpool-II-pg96-extensions

3.10.2. Configuration with RPM

All the Pgpool-II configuration files live in /etc/pgpool-II. Please refer to Section 3.8 to see how to set up
configuration files.

3.10.3. Starting/stopping Pgpool-II

On RHEL7/CentOS 7, do this once.

systemctl enable pgpool.service

After this, restart the whole system or:

systemctl start pgpool.service

Please note that PostgreSQL servers must have been started before this. To stop Pgpool-II:

systemctl stop pgpool.service

After this, you can stop PostgreSQL servers.

On RHEL6/CentOS 6, do this once.

chkconfig pgpool on

After this, restart the whole system or:

service start pgpool

Please note that PostgreSQL servers must have been started before this. To stop Pgpool-II:

service stop pgpool

After this, you can stop PostgreSQL servers.

3.11. Tips for Installation

This chapter gathers random tips for installing Pgpool-II.

3.11.1. Firewalls

When Pgpool-II connects to other Pgpool-II servers or PostgreSQL servers, the target port must be accessible
by enabling firewall management softwares.

Here is an example for CentOS/RHEL7 when access to PostgreSQL is required.

firewall-cmd --permanent --zone=public --add-service=postgresql
firewall-cmd --reload

"postgresql" is the service name assigned to PostgreSQL. The list of service names can be obtained by:

 firewall-cmd --get-services

Note that you can define your own service name in /usr/lib/firewalld/services/.

If PostgreSQL is listening on 11002 port, rather than the standard 5432 port, you can do:

 firewall-cmd --zone=public --remove-service=popstgresql --permanent
 firewall-cmd --zone=public --add-port=11002/tcp --permanent
 firewall-cmd --reload

Chapter 4. Server Setup and Operation
This chapter discusses how to set up and run the Pgpool-II server and its interactions with the operating
system.

4.1. The Pgpool-II User Account

As with any server daemon that is accessible to the outside world, it is advisable to run Pgpool-II under a
separate user account. This user account should only own the data that is managed by the server, and
should not be shared with other daemons. (For example, using the user nobody is a bad idea.) It is not
advisable to install executables owned by this user because compromised systems could then modify their
own binaries.

To add a Unix user account to your system, look for a command useradd or adduser. The user name pgpool is
often used, and is assumed throughout this book, but you can use another name if you like.

4.2. Configuring pcp.conf

Pgpool-II provides a interface for administrators to perform management operation, such as getting Pgpool-II
status or terminating Pgpool-II processes remotely. pcp.conf is the user/password file used for authentication
by this interface. All operation modes require the pcp.conf file to be set. A $prefix/etc/pcp.conf.sample file is
created during the installation of Pgpool-II. Copy the file as $prefix/etc/pcp.conf and add your user name and
password to it.

$ cp $prefix/etc/pcp.conf.sample $prefix/etc/pcp.conf

An empty line or a line starting with # is treated as a comment and will be ignored. A user name and its
associated password must be written as one line using the following format:

username:[md5 encrypted password]

[md5 encrypted password] can be produced with the $prefix/bin/pg_md5 command.

$ pg_md5 your_password
1060b7b46a3bd36b3a0d66e0127d0517

If you don't want pass the password as the argument, execute pg_md5 -p.

$ pg_md5 -p
password: your_password

The pcp.conf file must be readable by the user who executes Pgpool-II.

4.3. Configuring Pgpool-II

4.3.1. Configuring pgpool.conf

pgpool.conf is the main configuration file of Pgpool-II. You need to specify the path to the file when starting
Pgpool-II using -f option. pgpool.conf is located at $prefix/etc/pgpool.conf by default.

4.3.2. Running mode of Pgpool-II

There are four different running modes in Pgpool-II: streaming replication mode, logical replication mode,
master slave mode (slony mode), native replication mode and raw mode. In any mode, Pgpool-II provides
connection pooling, automatic fail over and online recovery. The sample configuration files for each mode
are provied. They are located under $prefix/etc. You can copy one of them to $prefix/etc/pgpool.conf.

Those modes are exclusive each other and cannot be changed after starting the server. You should make a
decision which to use in the early stage of designing the system. If you are not sure, it is recommended to
use the streaming replication mode.

The streaming replication mode can be used with PostgreSQL servers operating streaming replication. In
this mode, PostgreSQL is responsible for synchronizing databases. This mode is widely used and most
recommended way to use Pgpool-II. Load balancing is possible in the mode. The sample configuration file is
$prefix/etc/pgpool.conf.sample-stream.

The logical replication mode can be used with PostgreSQL servers operating logical replication. In this
mode, PostgreSQL is responsible for synchronizing tables. Load balancing is possible in the mode. Since
logical replication does not replicate all tables, it's user's responsibility to replicate the table which could be
load balanced. Pgpool-II load balaces all tables. This means that if a table is not replicated, Pgpool-II may
lookup outdated tables in the subscriber side. The sample configuration file is $prefix/etc/pgpool.conf.sample-
logical.

The master slave mode mode (slony mode) can be used with PostgreSQL servers operating Slony. In this
mode, Slony/PostgreSQL is responsible for synchronizing databases. Since Slony-I is being obsoleted by
streaming replication, we do not recommend to use this mode unless you have specific reason to use Slony.
Load balancing is possible in the mode. The sample configuration file is $prefix/etc/pgpool.conf.sample-master-slave.

In the native replication mode, Pgpool-II is responsible for synchronizing databases. The advantage for
the mode is the synchronization is done in synchronous way: writing to the database does not return until all
of PostgreSQL servers finish the write operation. However, you could get a similar effect using PostgreSQL
9.6 or later with synchronous_commit = remote_apply being set in streaming replication. If you could use the
setting, we strongly recommend to use it instead of native replication mode because you can avoid some
restrictions in the native replication mode. Since PostgreSQL does not provide cross node snapshot control, it
is possible that session X can see data on node A committed by session Y before session Y commits data on
node B. If session X tries to update data on node B based on the data seen on node A, then data consistency
between node A and B might be lost. To avoid the problem, user need to issue an explict lock on the data.
This is another reason why we recommend to use streaming replication mode with synchronous_commit =
remote_apply.

Load balancing is possible in the mode. The sample configuration file $prefix/etc/pgpool.conf.sample-replication.

In the raw mode, Pgpool-II does not care about the database synchronization. It's user's responsibility to
make the whole system does a meaningfull thing. Load balancing is not possible in the mode. The sample
configuration file $prefix/etc/pgpool.conf.sample.

4.4. Configuring backend information

For Pgpool-II to recognize PostgreSQL backend servers, you need to configure backend* in pgpool.conf. For
starters, at least backend_hostname and backend_port paramters are required to be set up to start Pgpool-II
server.

4.4.1. Backend Settings

Backend PostgreSQL used by Pgpool-II must be specified in pgpool.conf. See Section 5.4

Chapter 5. Server Configuration
There are many configuration parameters that affect the behavior of Pgpool-II. In the first section of this
chapter we describe how to interact with configuration parameters. The subsequent sections discuss each
parameter in detail.

5.1. Setting Parameters

5.1.1. Parameter Names and Values

All parameter names are case-insensitive. Every parameter takes a value of one of five types: boolean,
string, integer, floating point, or enumerated (enum). The type determines the syntax for setting the
parameter:

Boolean: Values can be written as on, off, true, false, yes, no, 1, 0 (all case-insensitive) or any unambiguous
prefix of one of these.

String: In general, enclose the value in single quotes, doubling any single quotes within the value.
Quotes can usually be omitted if the value is a simple number or identifier, however.

Numeric (integer and floating point): A decimal point is permitted only for floating-point
parameters. Do not use thousands separators. Quotes are not required.

Enumerated: Enumerated-type parameters are written in the same way as string parameters, but are
restricted to have one of a limited set of values. Enum parameter values are case-insensitive.

5.1.2. Parameter Interaction via the Configuration File

The most fundamental way to set these parameters is to edit the file pgpool.conf, which is located in
$prefix/etc/pgpool.conf. An example of what this file might look like is:

 # This is a comment
 listen_addresses = 'localhost'
 port = 9999
 serialize_accept = off
 reset_query_list = 'ABORT; DISCARD ALL'

One parameter is specified per line. The equal sign between name and value is optional. Whitespace is
insignificant (except within a quoted parameter value) and blank lines are ignored. Hash marks (#) designate
the remainder of the line as a comment. Parameter values that are not simple identifiers or numbers must be
single-quoted. To embed a single quote in a parameter value, write either two quotes (preferred) or
backslash-quote.

Parameters set in this way provide default values for the cluster. The settings seen by active sessions will be
these values unless they are overridden. The following sections describe ways in which the administrator or
user can override these defaults.

The configuration file is reread whenever the main server process receives a SIGHUP signal; this signal is
most easily sent by running pgpool reload from the command line. The main pgpool process also propagates
this signal to all its child processes, so that existing sessions also adopt the new values. Some parameters

can only be set at server start; any changes to their entries in the configuration file will be ignored until the
server is restarted. Invalid parameter settings in the configuration file are likewise ignored (but logged)
during SIGHUP processing.

5.1.3. Parameter Interaction via SQL Clients

Pgpool-II also provides two SQL style commands to interact with session-local configuration settings.

The PGPOOL SHOW command allows inspection of the current value of all parameters.

The PGPOOL SET command allows modification of the current value of those parameters that can be set
locally to a session; it has no effect on other sessions.

5.2. Connections and Authentication

5.2.1. Connection Settings

listen_addresses (string)

Specifies the hostname or IP address, on which Pgpool-II will accept TCP/IP connections. '*' accepts all
incoming connections. '' disables TCP/IP connections. Default is 'localhost'. Connections via UNIX domain
socket are always accepted.

This parameter can only be set at server start.

port (integer)

The port number used by Pgpool-II to listen for connections. Default is 9999.

This parameter can only be set at server start.

socket_dir (string)

The directory where the UNIX domain socket accepting connections for Pgpool-II will be created. Default
is /tmp. Be aware that this socket might be deleted by a cron job. We recommend to set this value to
/var/run or such directory.

This parameter can only be set at server start.

pcp_listen_addresses (string)

Specifies the hostname or IP address, on which pcp process will accept TCP/IP connections. * accepts all
incoming connections. "" disables TCP/IP connections. Default is *. Connections via UNIX domain socket
are always accepted.

This parameter can only be set at server start.

pcp_port (integer)

The port number used by PCP process to listen for connections. Default is 9898.

This parameter can only be set at server start.

pcp_socket_dir (string)

The directory where the UNIX domain socket accepting connections for PCP process will be created.
Default is /tmp. Be aware that this socket might be deleted by a cron job. We recommend to set this
value to /var/run or such directory.

This parameter can only be set at server start.

num_init_children (integer)

The number of preforked Pgpool-II server processes. Default is 32. num_init_children is also the
concurrent connections limit to Pgpool-II from clients. If more than num_init_children clients try to
connect to Pgpool-II, they are blocked (not rejected with an error, like PostgreSQL) until a

connection to any Pgpool-II process is closed. Up to listen_backlog_multiplier* num_init_children
can be queued.

The queue is inside the kernel called "listen queue". The length of the listen queue is called "backlog".
There is an upper limit of the backlog in some systems, and if
num_init_children*listen_backlog_multiplier exceeds the number, you need to set the backlog higher.
Otherwise, following problems may occur in heavy loaded systems: 1) connecting to Pgpool-II fails 2)
connecting to Pgpool-II is getting slow because of retries in the kernel. You can check if the listen queue
is actually overflowed by using "netstat -s" command. If you find something like:

 535 times the listen queue of a socket overflowed

then the listen queue is definitely overflowed. You should increase the backlog in this case (you will be
required a super user privilege).

 # sysctl net.core.somaxconn
 net.core.somaxconn = 128
 # sysctl -w net.core.somaxconn = 256

You could add following to /etc/sysctl.conf instead.

 net.core.somaxconn = 256

Number of connections to each PostgreSQL is roughly max_pool*num_init_children.

However, canceling a query creates another connection to the backend; thus, a query cannot be
canceled if all the connections are in use. If you want to ensure that queries can be canceled, set this
value to twice the expected connections.

In addition, PostgreSQL allows concurrent connections for non superusers up to max_connections -
superuser_reserved_connections.

In summary, max_pool, num_init_children, max_connections, superuser_reserved_connections must
satisfy the following formula:

 max_pool*num_init_children <= (max_connections - superuser_reserved_connections) (no query canceling needed)
 max_pool*num_init_children*2 <= (max_connections - superuser_reserved_connections) (query canceling needed)

This parameter can only be set at server start.

5.2.2. Authentication Settings

enable_pool_hba (boolean)

If true, Pgpool-II will use the pool_hba.conf for the client authentication. See Section 6.1 for details on how
to configure pool_hba.conf for client authentication. Default is false

This parameter can be changed by reloading the Pgpool-II configurations.

pool_passwd (string)

Specify the password file name for md5 authentication. Default value is "pool_passwd". Specifying ''
(empty) disables the use of password file. See Section 6.2.2 for more details.

This parameter can only be set at server start.

authentication_timeout (integer)

Specify the timeout in seconds for Pgpool-II authentication. Specifying 0 disables the time out. Default

value is 60

This parameter can be changed by reloading the Pgpool-II configurations.

5.3. Running mode

5.3.1. Master slave mode

This mode is used to couple Pgpool-II with another master/slave replication software (like Slony-I and
Streaming replication), that is responsible for doing the actual data replication.

Note: The number of slave nodes are not limited to 1 and Pgpool-II can have up to 127
slave nodes. master/slave mode can also work just master node without any slave nodes.

Load balancing (see Section 5.7) can also be used with master/slave mode to distribute the read load on the
standby backend nodes.

Following options are required to be specified for master/slave mode.

master_slave_mode (boolean)

Setting to on enables the master/slave mode. Default is off.

Note: master_slave_mode and replication_mode are mutually exclusive and only one
can be enabled at a time.

This parameter can only be set at server start.

master_slave_sub_mode (enum)

Specifies the external replication system used for data replication between PostgreSQL nodes. Below
table contains the list of valid values for the parameter.

Table 5-1. master slave sub mode options

Value Description
'slony' Suitable for Slony-I

'stream' Suitable for PostgreSQL's built-in replication system (Streaming
Replication)

'logical' Suitable for PostgreSQL's built-in replication system (Logical Replication)

Default is 'slony'.

This parameter can only be set at server start.

5.3.2. Replication mode

This mode makes the Pgpool-II to replicate data between PostgreSQL backends.

Load balancing (see Section 5.7) can also be used with replication mode to distribute the load to the
attached backend nodes.

Following options affect the behavior of Pgpool-II in the replication mode.

replication_mode (boolean)

Setting to on enables the replication mode. Default is off.

Note: replication_mode and master_slave_mode are mutually exclusive and only one
can be enabled at a time.

This parameter can only be set at server start.

replication_stop_on_mismatch (boolean)

When set to on, and all nodes do not reply with the same packet kind to the query that was sent to all
PostgreSQL backend nodes, then the backend node whose reply differs from the majority is
degenerated by the Pgpool-II. If replication_stop_on_mismatch is set to off and a similar situation happens
then the Pgpool-II only terminates the current user session but does not degenerate a backend node.

Note: Pgpool-II does not examine the data returned by the backends and takes the
decision only by comparing the result packet types.

A typical use case of enabling the replication_stop_on_mismatch is to guard against the data inconsistency
among the backend nodes. For example, you may want to degenerate a backend node if an UPDATE
statement fails on one backend node while passes on others.

Default is off.

This parameter can be changed by reloading the Pgpool-II configurations.

failover_if_affected_tuples_mismatch (boolean)

When set to on, and all nodes do not reply with the same number of affected tuples to the
INSERT/UPDATE/DELETE query, then the backend node whose reply differs from the majority is
degenerated by the Pgpool-II. If failover_if_affected_tuples_mismatch is set to off and a similar situation
happens then the Pgpool-II only terminates the current user session but does not degenerate a backend
node.

Note: In case of a tie, when two or more groups have the same number of nodes, then
the group containing the master node (backend node having the youngest node id) gets
the precedence.

Default is off.

This parameter can be changed by reloading the Pgpool-II configurations.

replicate_select (boolean)

When set to on, Pgpool-II enables the SELECT query replication mode. i.e. The SELECT queries are sent
to all backend nodes.

Table 5-2. replicate_select with load_balance_mode affects on SELECT routing

replicate_select is true Y N
load_balance_mode is true ANY Y N

SELECT is inside a transaction block ANY Y N ANY
Transaction isolation level is SERIALIZABLE and the transaction has issued a
write query ANY Y N ANY ANY

results(R:replication, M: send only to master, L: load balance) R M L L M

Default is off.

This parameter can be changed by reloading the Pgpool-II configurations.

insert_lock (boolean)

When set to on, Pgpool-II will automatically lock the table on PostgreSQL before an INSERT statement is
issued for that.

When replicating a table with SERIAL data type, the SERIAL column value may get different values on
the different backends. The workaround to this problem is to explicitly lock the table before issuing the
INSERT.

So for automatically locking the table Pgpool-II do the following transformation:

 INSERT INTO ...

to

 BEGIN;
 LOCK TABLE ...
 INSERT INTO ...
 COMMIT;

Caution

This approach severely degrades the transactions' parallelism

Pgpool-II V2.2 or later, automatically detects whether the table has a SERIAL columns or not, so it never
locks the table if it desn't have the SERIAL columns.

Pgpool-II V3.0 until Pgpool-II V3.0.4 uses a row lock against the sequence relation, rather than table
lock. This is intended to minimize lock conflict with VACUUM (including autovacuum). However this can
lead to another problem. After transaction wraparound happens, row locking against the sequence
relation causes PostgreSQL internal error (more precisely, access error on pg_clog, which keeps
transaction status). To prevent this, PostgreSQL core developers decided to disallow row locking against
sequences and this broke the Pgpool-II, of course (the "fixed" version of PostgreSQL was released as
9.0.5, 8.4.9, 8.3.16 and 8.2.22).

Pgpool-II V3.0.5 or later uses a row lock against pgpool_catalog.insert_lock table because new PostgreSQL
disallows a row lock against the sequence relation. So creating insert_lock table in all databases which
are accessed via Pgpool-II beforehand is required. See Section 3.7 for more details. If does not exist
insert_lock table, Pgpool-II locks the insert target table. This behavior is same as Pgpool-II V2.2 and
V2.3 series.

If you want to use insert_lock which is compatible with older releases, you can specify lock method by
configure script. See Section 3.4 for more details.

For fine (per statement) control:

set insert_lock to true, and add /*NO INSERT LOCK*/ at the beginning of an INSERT statement for
which you do not want to acquire the table lock.

set insert_lock to false, and add /*INSERT LOCK*/ at the beginning of an INSERT statement for
which you want to acquire the table lock.

Note: If insert_lock is enabled, the regression tests for PostgreSQL 8.0 gets fail in
transactions, privileges, rules, and alter_table.

The reason for this is that Pgpool-II tries to LOCK the VIEW for the rule test, and it
produces the below error message:

 ! ERROR: current transaction is aborted, commands ignored until
 end of transaction block

For example, the transactions test tries an INSERT into a table which does not exist, and
Pgpool-II causes PostgreSQL to acquire the lock for the table. Of cause this results in an
error. The transaction will be aborted, and the following INSERT statement produces the
above error message.

Default is off.

This parameter can be changed by reloading the Pgpool-II configurations.

lobj_lock_table (string)

Specifies a table name used for large object replication control. If it is specified, Pgpool-II will lock the
table specified by lobj_lock_table and generate a large object id by looking into pg_largeobject system
catalog and then call lo_create to create the large object. This procedure guarantees that Pgpool-II will
get the same large object id in all DB nodes in replication mode.

Note: PostgreSQL 8.0 and older does not have lo_create, so this feature does not work
with PostgreSQL 8.0 and older versions.

A call to the libpq function lo_creat() triggers this feature. Also large object creation through Java API (JDBC
driver), PHP API (pg_lo_create, or similar API in PHP library such as PDO), and this same API in various
programming languages are known to use a similar protocol, and thus should work.

This feature does not works with following operations on large objects.

All APIs using lo_create, lo_import_with_oid.

lo_import function in backend called in SELECT.

lo_create function in backend called in SELECT.

Note: All PostgreSQL users must have a write access on lobj_lock_table and it can be
created in any schema.

Example to create a large object lock table:

 CREATE TABLE public.my_lock_table ();
 GRANT ALL ON public.my_lock_table TO PUBLIC;

Default is ''(empty), which disables the feature.

5.4. Backend Settings

5.4.1. Backend Connection Settings

backend_hostname (string)

backend_hostname specifies the PostgreSQL backend to be connected to. It is used by Pgpool-II to
communicate with the server.

For TCP/IP communication, this parameter can take a hostname or an IP address. If this begins with a
slash(/), it specifies Unix-domain communication rather than TCP/IP; the value is the name of the
directory in which the socket file is stored. The default behavior when backend_hostname is empty ('') is
to connect to a Unix-domain socket in /tmp.

Multiple backends can be specified by adding a number at the end of the parameter name
(e.g.backend_hostname0). This number is referred to as "DB node ID", and it starts from 0. The backend
which was given the DB node ID of 0 will be called "master node". When multiple backends are defined,
the service can be continued even if the master node is down (not true in some modes). In this case,
the youngest DB node ID alive will be the new master node.

Please note that the DB node which has id 0 has no special meaning if operated in streaming replication
mode. Rather, you should care about if the DB node is the "primary node" or not. See Section 5.7,
Section 5.9, Section 5.11 for more details.

If you plan to use only one PostgreSQL server, specify it by backend_hostname0.

New nodes can be added by adding parameter rows and reloading a configuration file. However, the
existing values cannot be updated, so you must restart Pgpool-II in that case.

backend_port (integer)

backend_port specifies the port number of the backends. Multiple backends can be specified by adding a
number at the end of the parameter name (e.g. backend_port0). If you plan to use only one PostgreSQL
server, specify it by backend_port0.

New backend ports can be added by adding parameter rows and reloading a configuration file.
However, the existing values cannot be updated, so you must restart Pgpool-II in that case.

backend_weight (floating point)

backend_weight specifies the load balance ratio of the backends. It may be set to any interger or floating
point value greater than or equeal zero. Multiple backends can be specified by adding a number at the
end of the parameter name (e.g. backend_weight0). If you plan to use only one PostgreSQL server,
specify it by backend_weight0.

New backend_weight can be added in this parameter by reloading a configuration file. However, this will
take effect only for new established client sessions. Pgpool-II V2.2.6, V2.3 or later allows alllow
updating the values by reloading a configuration file. This is useful if you want to prevent any query
sent to slaves to perform some administrative work in master/slave mode.

5.4.2. Backend Data Settings

backend_data_directory (string)

backend_data_directory specifies the database cluster directory of the backend. Multiple backends can be
specified by adding a number at the end of the parameter name (e.g. backend_data_directory0). If you
plan to use only one PostgreSQL server, specify it by backend_data_directory0.

New backend data_directory can be added by adding parameter rows and reloading a configuration file.
However, the existing values cannot be updated, so you must restart Pgpool-II in that case.

backend_flag (string)

backend_flag controls various backend behavior. Multiple backends can be specified by adding a number
at the end of the parameter name (e.g. backend_flag0). If you plan to use only one PostgreSQL server,
specify it by backend_flag0.

New backend flags can be added by adding parameter rows and reloading a configuration file. Currently
followings are allowed. Multiple flags can be specified by using "|".

Table 5-3. Backend flags

Flag Description

ALLOW_TO_FAILOVER Allow to failover or detaching backend. This is the default. You cannot specify
with DISALLOW_TO_FAILOVER at a same time.

DISALLOW_TO_FAILOVER
Disllow to failover or detaching backend This is useful when you protect
backend by using HA (High Availability) softwares such as Heartbeat or
Pacemaker. You cannot specify with ALLOW_TO_FAILOVER at a same time.

ALWAYS_MASTER

This is only useful in streaming replication mode. See Section 4.3.2 about
streaming replication mode. If this flag is set to one of backends, Pgpool-II will
not find the primary node by inspecting backend. Instead, always regard the
node which the flag is set as the primary node. This is useful for systems
including Amazon Aurora for PostgreSQL Compatibility which has fixed master
server name. See Section 7.5 for an example settings.

This parameter can be changed by reloading the Pgpool-II configurations.

5.5. Connection Pooling

Pgpool-II maintains established connections to the PostgreSQL servers, and reuses them whenever a new
connection with the same properties (i.e. user name, database, protocol version) comes in. It reduces the
connection overhead, and improves system's overall throughput.

5.5.1. Connection Pooling Settings

connection_cache (boolean)

Caches connections to backends when set to on. Default is on. However, connections to template0,
template1, postgres and regression databases are not cached even if connection_cache is on.

You need to restart Pgpool-II if you change this value.

max_pool (integer)

The maximum number of cached connections in each Pgpool-II child process. Pgpool-II reuses the
cached connection if an incoming connection is connecting to the same database with the same user
name. If not, Pgpool-II creates a new connection to the backend. If the number of cached connections
exceeds max_pool, the oldest connection will be discarded, and uses that slot for the new connection.

Default value is 4. Please be aware that the number of connections from Pgpool-II processes to the
backends may reach num_init_children * max_pool in total.

This parameter can only be set at server start.

listen_backlog_multiplier (integer)

Specifies the length of connection queue from frontend to Pgpool-II. The queue length (actually "backlog"
parameter of listen() system call) is defined as listen_backlog_multiplier * num_init_children.

Note: Some systems have the upper limit of the backlog parameter of listen() system call.
See num_init_children for more details.

Default is 2.

This parameter can only be set at server start.

serialize_accept (boolean)

When set to on, Pgpool-II enables the serialization on incoming client connections. Without serialization
the OS kernel wakes up all of the Pgpool-II children processes to execute accept() and one of them
actually gets the incoming connection. The problem here is, because so my child process wake up at a
same time, heavy context switching occurs and the performance is affected.

This phenomena is a well known classic problem called "the thundering herd problem". This can be
solved by the serialization of the accept() calls, so that only one Pgpool-II process gets woken up for
incoming connection to execute the accept() .

But serialization has its own overheads, and it is recomended to be used only with the larger values of
num_init_children. For the small number of num_init_children, the serialize accept can degrade the
performance because of serializing overhead.

Note: It is recomended to do a benchmark before deciding wether to use serialize_accept
or not, because the corelation of num_init_children and serialize_accept can be different on
different environments.

Example 5-1. Using pgbench to decide if serialize_accept should be used

To run the pgbench use the following command.

pgbench -n -S -p 9999 -c 32 -C -S -T 300 test

Here, -C tells pgbench to connect to database each time a transaction gets executed. -c 32 specifies the
number of the concurrent sessions to Pgpool-II. You should change this according to your system's
requirement. After pgbench finishes, check the number from "including connections establishing".

Note: When child_life_time is enabled, serialize_accept has no effect. Make sure that you
set child_life_time to 0 if you intend to turn on the serialize_accept. And if you are worried
about Pgpool-II process memory leaks or whatever potential issue, you could use
child_max_connections instead. This is purely an implementation limitation and may be
removed in the future.

Default is off.

This parameter can only be set at server start.

child_life_time (integer)

Specifies the time in seconds to terminate a Pgpool-II child process if it remains idle. The new child
process is immediately spawned by Pgpool-II when it is terminated because of child_life_time. child_life_time
is a measure to prevent the memory leaks and other unexpected errors in Pgpool-II children.

Note: child_life_time does not apply to processes that have not accepted any connection
yet.

Note: serialize_accept becomes ineffective when child_life_time is enabled.

Default is 300 (5 minutes) and setting it to 0 disables the feature.

This parameter can only be set at server start.

client_idle_limit (integer)

Specifies the time in seconds to disconnect a client if it remains idle since the last query. This is useful
for preventing the Pgpool-II children from being occupied by a lazy clients or broken TCP/IP connection
between client and Pgpool-II.

Note: client_idle_limit is ignored in the second stage of online recovery.

The default is 0, which turns off the feature.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

child_max_connections (integer)

Specifies the lifetime of a Pgpool-II child process in terms of the number of client connections it can
receive. Pgpool-II will terminate the child process after it has served child_max_connections client
connections and will immediately spawn a new child process to take its place.

child_max_connections is useful on a very busy server, where child_life_time and connection_life_time never
gets triggered. It is also useful to prevent the PostgreSQL servers from getting too big.

The default is 0, which turns off the feature.

This parameter can only be set at server start.

connection_life_time (integer)

Specifies the time in seconds to terminate the cached connections to the PostgreSQL backend. This
serves as the cached connection expiration time.

The default is 0, which means the cached connections will not be disconnected.

This parameter can only be set at server start.

reset_query_list (string)

Specifies the SQL commands to be sent to reset the backend connection when exiting the user session.
Multiple commands can be specified by delimiting each by ";".

The available commands differ among PostgreSQL versions. Below are some recommended settings for
reset_query_list on different PostgreSQL versions. Note, however, that ABORT command should be always
included.

Table 5-4. Recommended setting for reset_query_list on different PostgreSQL versions

PostgreSQL version reset_query_list
7.1 or earlier 'ABORT'

7.2 to 8.2 'ABORT; RESET ALL; SET SESSION AUTHORIZATION
DEFAULT'

8.3 or later 'ABORT; DISCARD ALL'

Note: "ABORT" is not issued when not in a transaction block for 7.4 or later PostgreSQL

versions.

Default is 'ABORT; DISCARD ALL'.

This parameter can be changed by reloading the Pgpool-II configurations.

5.6. Error Reporting and Logging

5.6.1. Where To Log

log_destination (string)

Pgpool-II supports two destinations for logging the Pgpool-II messages. The supported log destinations
are stderr and syslog. You can also set this parameter to a list of desired log destinations separated by
commas if you want the log messages on the multiple destinations.

#for example to log on both syslog and stderr
log_destination = 'syslog,stderr'

The default is to log to stderr only.

Note: On some systems you will need to alter the configuration of your system's syslog
daemon in order to make use of the syslog option for log_destination. Pgpool-II can log to
syslog facilities LOCAL0 through LOCAL7 (see syslog_facility), but the default syslog
configuration on most platforms will discard all such messages. You will need to add
something like:

local0.* /var/log/pgpool.log

to the syslog daemon's configuration file to make it work.

This parameter can be changed by reloading the Pgpool-II configurations.

syslog_facility (enum)

See also the documentation of your system's syslog daemon. When logging to syslog is enabled, this
parameter determines the syslog "facility" to be used. You can choose from LOCAL0, LOCAL1, LOCAL2, LOCAL3,
LOCAL4, LOCAL5, LOCAL6, LOCAL7; the default is LOCAL0. See also the documentation of your system's syslog
daemon.

This parameter can be changed by reloading the Pgpool-II configurations.

syslog_ident (string)

When logging to syslog is enabled, this parameter determines the program name used to identify
Pgpool-II messages in syslog logs. The default is pgpool.

This parameter can be changed by reloading the Pgpool-II configurations.

5.6.2. When To Log

client_min_messages (enum)

Controls which minimum message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3,

Controls which minimum message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, LOG, NOTICE, WARNING and ERROR. Each level includes all the levels that follow it. The
default is NOTICE.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

log_min_messages (enum)

The default is WARNING. Controls which minimum message levels are emitted to log. Valid values are
DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. Each level
includes all the levels that follow it. The default is WARNING.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

5.6.3. What To Log

log_statement (boolean)

Setting to on, prints all SQL statements to the log.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

log_per_node_statement (boolean)

Similar to log_statement, except that it print the logs for each DB node separately. It can be useful to
make sure that replication or load-balancing is working.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

log_hostname (boolean)

Setting to on, prints the hostname instead of IP address in the ps command result, and connection logs
(when log_connections is on).

This parameter can be changed by reloading the Pgpool-II configurations.

log_connections (boolean)

Setting to on, prints all client connections from to the log.

This parameter can be changed by reloading the Pgpool-II configurations.

log_error_verbosity (enum)

Controls the amount of detail emitted for each message that is logged. Valid values are TERSE, DEFAULT,
and VERBOSE, each adding more fields to displayed messages. TERSE excludes the logging of DETAIL, HINT,
and CONTEXT error information.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

log_line_prefix (string)

This is a printf-style string that is output at the beginning of each log line. % characters begin "escape
sequences" that are replaced with information outlined below. All unrecognized escapes are ignored.
Other characters are copied straight to the log line. Default is '%t: pid %p: ', which prints timestamp and
process id, which keeps backward compatibily with prePgpool-II V3.4.

Table 5-5. log_line_prefix escape options

Escape Effect
%a Client application name
%p Process ID (PID)

%P Process name
%t Time stamp
%d Database name
%u User name

%l Log line number for each
process

%% '%' character

Escape Effect

This parameter can be changed by reloading the Pgpool-II configurations.

5.7. Load Balancing

Pgpool-II load balancing of SELECT queries works with Master Slave mode (Section 5.3.1) and Replication
mode (Section 5.3.2). When enabled Pgpool-II sends the writing queries to the primay node in Master Slave
mode, all of the backend nodes in Replication mode, and other queries get load balanced among all backend
nodes. To which node the load balancing mechanism sends read queries is decided at the session start time
and will not be changed until the session ends. The only exception is by writing special SQL comments. See
below for more details.

Note: Queries which are sent to primary node or replicated because they cannot be
balanced are also accounted for in the load balancing algorithm.

Note: If you don't want a query that qualifies for the load balancing to be load balanced
by Pgpool-II, you can put /*NO LOAD BALANCE*/ comment before the SELECT
statement. This will disable the load balance of the particular query and Pgpool-II will
send it to the master node (the primary node in Master Slave mode).

Note: You can check which DB node is assigned as the load balancing node by using
SHOW POOL NODES.

5.7.1. Condition for Load Balancing

For a query to be load balanced, all the following requirements must be met:

PostgreSQL version 7.4 or later

either in replication mode or master slave mode

the query must not be in an explicitly declared transaction (i.e. not in a BEGIN ~ END block)

However, if following conditions are met, load balance is possible even if in an explicit transaction

transaction isolation level is not SERIALIZABLE

transaction has not issued a write query yet (until a write query is issued, load balance is
possible. Here "write query" means non SELECT DML or DDL. SELECTs having write functions
as specified in black or white function list is not regarded as a write query. This may be

changed in the future.)

If black and white function list is empty, SELECTs having functions is regarded as a read only
query.

it's not SELECT INTO

it's not SELECT FOR UPDATE nor FOR SHARE

it starts with "SELECT" or one of COPY TO STDOUT, EXPLAIN, EXPLAIN ANALYZE SELECT...
ignore_leading_white_space = true will ignore leading white space. (Except for SELECTs using writing
functions specified in black_function_list or white_function_list)

in master slave mode, in addition to above, following conditions must be met:

does not use temporary tables

does not use unlogged tables

does not use system catalogs

Note: You could suppress load balancing by inserting arbitrary comments just in front of
the SELECT query:

/*REPLICATION*/ SELECT ...

If you want to use comments without supressing load balancing, you can set
allow_sql_comments to on. Please refer to replicate_select as well.

Note: The JDBC driver has an autocommit option. If the autocommit is false, the JDBC
driver sends "BEGIN" and "COMMIT" by itself. In this case the same restriction above
regarding load balancing will be applied.

5.7.2. Load Balancing in Streaming Replication

While using Streaming replication and Hot Standby, it is important to determine which query can be sent to
the primary or the standby, and which one should not be sent to the standby. Pgpool-II's Streaming
Replication mode carefully takes care of this.

We distinguish which query should be sent to which node by looking at the query itself.

These queries should be sent to the primary node only

INSERT, UPDATE, DELETE, COPY FROM, TRUNCATE, CREATE, DROP, ALTER, COMMENT

SELECT ... FOR SHARE | UPDATE

SELECT in transaction isolation level SERIALIZABLE

LOCK command more strict than ROW EXCLUSIVE MODE

DECLARE, FETCH, CLOSE

SHOW

Some transactional commands:

BEGIN READ WRITE, START TRANSACTION READ WRITE

SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION READ
WRITE

SET transaction_read_only = off

Two phase commit commands: PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED

LISTEN, UNLISTEN, NOTIFY

VACUUM

Some sequence functions (nextval and setval)

Large objects creation commands

These queries can be sent to both the primary node and the standby node. If load balancing is enabled,
these types of queries can be sent to the standby node. However, if delay_threshold is set and the
replication delay is higher than delay_threshold, queries are sent to the primary node.

SELECT not listed above

COPY TO

These queries are sent to both the primary node and the standby node

SET

DISCARD

DEALLOCATE ALL

In an explicit transaction:

Transaction starting commands such as BEGIN are sent to both the primary node and the standby node.

Following SELECT and some other queries that can be sent to both primary or standby are executed in
the transaction or on the standby node.

Commands which cannot be executed on the standby such as INSERT are sent to the primary. After one
of these commands, even SELECTs are sent to the primary node, This is because these SELECTs might
want to see the result of an INSERT immediately. This behavior continues until the transaction closes or
aborts.

In the extended protocol, it is possible to determine if the query can be sent to standby or not in load
balance mode while parsing the query. The rules are the same as for the non extended protocol. For
example, INSERTs are sent to the primary node. Following bind, describe and execute will be sent to the
primary node as well.

Note: If the parse of a SELECT statement is sent to the standby node due to load
balancing, and then a DML statement, such as an INSERT, is sent to Pgpool-II, then the
parsed SELECT will have to be executed on the primary node. Therefore, we re-parse the
SELECT on the primary node.

Lastly, queries that Pgpool-II's parser thinks to be an error are sent to the primary node.

5.7.3. Load Balancing Settings

load_balance_mode (boolean)

When set to on, Pgpool-II enables the load balancing on incoming SELECT queries. i.e. SELECT queries
from the clients gets distributed to the configured PostgreSQL backends. Default is off.

This parameter can only be set at server start.

ignore_leading_white_space (boolean)

When set to on, Pgpool-II ignores the white spaces at the beginning of SQL queries in load balancing. It
is useful if used with APIs like DBI/DBD:Pg which adds white spaces against the user's intention.

This parameter can be changed by reloading the Pgpool-II configurations.

white_function_list (string)

Specifies a comma separated list of function names that DO NOT update the database. SELECTs
including functions not specified in this list are not load balanced. These are replicated among all the
DB nodes in Replication mode, sent to the primary node only in Maste Slave mode.

You can use regular expression to match function names, to which ^ and $ are automatically added.

Example 5-2. Using regular expression

If you have prefixed all your read only function with 'get_' or 'select_', You can set the
white_function_list like below:

white_function_list = 'get_.*,select_.*'

This parameter can be changed by reloading the Pgpool-II configurations.

black_function_list (string)

Specifies a comma separated list of function names that DO update the database. SELECTs including
functions specified in this list are not load balanced. These are replicated among all the DB nodes in
Replication mode, sent to the primary node only in Maste Slave mode.

You can use regular expression to match function names, to which ^ and $ are automatically added.

Example 5-3. Using regular expression

If you have prefixed all your updating functions with 'set_', 'update_', 'delete_' or 'insert_', You can
set the black_function_list like below:

black_function_list = 'nextval,setval,set_.*,update_.*,delete_.*,insert_.*'

Note: black_function_list and white_function_list are mutually exclusive and only one of
the two lists can be set in the configuration.

Example 5-4. Configuring using nextval() and setval() to land on proper backend

Prior to Pgpool-IIV3.0, nextval() and setval() were known as functions writing to the database. You can
configure this by setting black_function_list and white_function_list as follows

white_function_list = ''
black_function_list = 'nextval,setval,lastval,currval'

Note: PostgreSQL also contains lastval() and currval() in addition to nextval() and setval().
Though lastval() and currval() are not writing function type, but it is advised to treat lastval()
and currval() as writing functions to avoid errors which occur when these functions are

accidentally load balanced.

This parameter can be changed by reloading the Pgpool-II configurations.

database_redirect_preference_list (string)

Specifies the list of "database-name:node id" pairs to send SELECT queries to a particular backend node
for a particular database connection. For example, by specifying "test:1", Pgpool-II will redirect all
SELECT queries to the backend node of ID 1 for the connection to "test" database. You can specify
multiple "database name:node id" pair by separating them using comma (,).

Regular expressions are also accepted for database name. You can use special keywords as node id. If
"primary" is specified, queries are sent to the primary node, and if "standby" is specified, one of the
standby nodes are selected randomly based on weights.

Example 5-5. Using database_redirect_preference_list

If you want to configure the following SELECT query routing rules:

Route all SELECT queries on postgres database to the primary backend node.

Route all SELECT queries on mydb0 or on mydb1 databases to backend node of ID 1.

Route all SELECT queries on mydb2 database to standby backend nodes.

then the database_redirect_preference_list will be configured as follows:

database_redirect_preference_list = 'postgres:primary,mydb[01]:1,mydb2:standby'

This parameter can be changed by reloading the Pgpool-II configurations.

app_name_redirect_preference_list (string)

Specifies the list of "application-name:node id" pairs to send SELECT queries to a particular backend node
for a particular client application connection.

Note: In PostgreSQL V9.0 or later the "Application name" is a name specified by a client
when it connects to database.

For example, application name of psql command is "psql"

Note: Pgpool-II recognizes the application name only specified in the start-up packet.
Although a client can provide the application name later in the session, but that does not
get considered by the Pgpool-II for query routing.

The notion of app_name_redirect_preference_list is same as the database_redirect_preference_list thus
you can also use the regular expressions for application names. Similarly special keyword "primary"
indicates the primary node and "standby" indicates one of standby nodes.

Example 5-6. Using app-name_redirect_preference_list

If you want to configure the following SELECT query routing rules:

Route all SELECT from psql client to the primary backend node.

Route all SELECT queries from myapp1 client to backend node of ID 1.

Route all SELECT queries from myapp2 client to standby backend nodes.

then the app_name_redirect_preference_list will be configured as follows:

app_name_redirect_preference_list = 'psql:primary,myapp1:1,myapp2:standby'

Note: app_name_redirect_preference_list takes precedence over the
database_redirect_preference_list.

Caution

JDBC driver postgreSQL-9.3 and earlier versions does not send the application name
in the startup packet even if the application name is specified using the JDBC driver
option "ApplicationName" and "assumeMinServerVersion=9.0". So if you want to use the
app_name_redirect_preference_list feature through JDBC, Use postgreSQL-9.4 or
later version of the driver.

This parameter can be changed by reloading the Pgpool-II configurations.

allow_sql_comments (boolean)

When set to on, Pgpool-II ignore the SQL comments when identifying if the load balance or query cache
is possible on the query. When this parameter is set to off, the SQL comments on the query could
effectively prevent the query from being load balanced or cached (pre Pgpool-II V3.4 behavior).

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

5.8. Health Check

Pgpool-II periodically connects to the configured PostgreSQL backends to detect any error on the servers or
networks. This error check procedure is called "health check". If an error is detected, Pgpool-II performs
failover or degeneration depending on the configurations.

Caution

Health check requires one extra connection to each backend node, so max_connections
in the postgresql.conf needs to be adjusted accordingly.

Following parameter names can also have numeric suffix at the end of each name. The suffix corresponds to
backend id, which is defined in backend information, such as backend_hostname. example,
health_check_timeout0 is applied to backend 0's health_check_timeout value.

If there's no parameter with suffix, the value for the backend is taken from the parameter name which does
not have a suffix. In this sense, parameter names without suffix work like "global variables".

health_check_timeout (integer)

Specifies the timeout in seconds to give up connecting to the backend PostgreSQL if the TCP connect
does not succeed within this time.

This parameter serves to prevent the health check from waiting for a long time when the network cable
is unplugged. Default value is 20. Setting it to 0, disables the timeout (waits until TCP/IP timeout).

This parameter can be changed by reloading the Pgpool-II configurations.

health_check_period (integer)

Specifies the interval between the health checks in seconds. Default is 0, which means health check is
disabled.

This parameter can be changed by reloading the Pgpool-II configurations.

health_check_user (string)

Specifies the PostgreSQL user name to perform health check. The same user must exist in all the
PostgreSQL backends. Otherwise, health check causes an error.

This parameter can be changed by reloading the Pgpool-II configurations.

health_check_password (string)

Specifies the password for the PostgreSQL user name configured in health_check_user to perform health
check. The user and password must be same in all the PostgreSQL backends. Otherwise, health check
results in an error.

This parameter can be changed by reloading the Pgpool-II configurations.

health_check_database (string)

Specifies the PostgreSQL database name to perform health check. The default is ''(empty), which tries
"postgres" database first, then "template1" database until it succeeds

health_check_database was introduced in Pgpool-II V3.5.

This parameter can be changed by reloading the Pgpool-II configurations.

health_check_max_retries (integer)

Specifies the maximum number of retries to do before giving up and initiating failover when health
check fails.

Tip: This setting can be useful in spotty networks, when it is expected that health checks
will fail occasionally even when the master node is fine.

Tip: It is advised that fail_over_on_backend_error must be disabled, if you want to enable
health_check_max_retries.

Default is 0, which means do not retry.

This parameter can be changed by reloading the Pgpool-II configurations.

health_check_retry_delay (integer)

Specifies the amount of time in seconds to sleep between failed health check retries (not used unless
health_check_max_retries is > 0). If 0, then retries are immediate without delay.

This parameter can be changed by reloading the Pgpool-II configurations.

connect_timeout (integer)

Specifies the amount of time in milliseconds before giving up connecting to backend using connect()
system call. Default is 10000 ms (10 second). The flaky network user may want to increase the value. 0
means no timeout.

Note: connect_timeout value is not only used for a health check, but also for creating
ordinary connection pools.

This parameter can be changed by reloading the Pgpool-II configurations.

5.9. Failover and Failback

5.9.1. Failover and Failback Settings

failover_command (string)

Specifies a user command to run when a PostgreSQL backend node gets detached. Pgpool-II replaces
the following special characters with the backend specific information.

Table 5-6. failover command options

Special character Description
%d DB node ID of the detached node
%h Hostname of the detached node
%p Port number of the detached node
%D Database cluster directory of the detached node
%M Old master node ID
%m New master node ID
%H Hostname of the new master node
%P Old primary node ID
%r Port number of the new master node
%R Database cluster directory of the new master node
%% '%' character

Note: The "master node" referes to a node which has the "youngest (or the smallest)
node id" among live the database nodes. In streaming replication mode, this may be
different from primary node. In Table 5-6, %m is the new master node chosen by Pgpool-
II. It is the node being assigned the youngest (smallest) node id which is alive. For
example if you have 3 nodes, namely node 0, 1, 2. Suppose node 1 the primary and all of
them are healthy (no down node). If node 1 fails, failover_command is called with %m =
0.

Note: When a failover is performed, basically Pgpool-II kills all its child processes, which
will in turn terminate all the active sessions to Pgpool-II. After that Pgpool-II invokes the
failover_command and after the command completion Pgpool-II starts new child processes
which makes it ready again to accept client connections.

However from Pgpool-II 3.6, In the steaming replication mode, client sessions will not be
disconnected when a fail-over occurs any more if the session does not use the failed
standby server. If the primary server goes down, still all sessions will be disconnected.
Health check timeout case will also cause the full session disconnection. Other health
check error, including retry over case does not trigger full session disconnection.

This parameter can be changed by reloading the Pgpool-II configurations.

failback_command (string)

Specifies a user command to run when a PostgreSQL backend node gets attached to Pgpool-II. Pgpool-II
replaces the following special characters with the backend specific information. before excuting the
command.

Table 5-7. failback command options

Special character Description
%d DB node ID of the attached node
%h Hostname of the attached node
%p Port number of the attached node
%D Database cluster directory of the attached node
%M Old master node ID
%m New master node ID
%H Hostname of the new master node
%P Old primary node ID
%r Port number of the new master node
%R Database cluster directory of the new master node
%% '%' character

This parameter can be changed by reloading the Pgpool-II configurations.

follow_master_command (string)

Specifies a user command to run after failover on the primary node failover. This works only in Master
Replication mode with streaming replication. Pgpool-II replaces the following special characters with the
backend specific information before excuting the command.

Table 5-8. follow master command options

Special character Description
%d DB node ID of the detached node
%h Hostname of the detached node
%p Port number of the detached node
%D Database cluster directory of the detached node
%M Old master node ID
%m New master node ID
%H Hostname of the new master node
%P Old primary node ID

%r Port number of the new master node
%R Database cluster directory of the new master node
%% '%' character

Note: If follow_master_command> is not empty, then after failover on the primary node gets
completed in Master Slave mode with streaming replication, Pgpool-II degenerates all
nodes excepted the new primary and starts new child processes to be ready again to
accept connections from the clients. After this, Pgpool-II executes the command
configured in the follow_master_command for each degenerated backend nodes.

Typically follow_master_command command is used to recover the slave from the new primary by calling
the pcp_recovery_node command.

This parameter can be changed by reloading the Pgpool-II configurations.

fail_over_on_backend_error (boolean)

When set to on, Pgpool-II considers the reading/writing errors on the PostgreSQL backend connection as
the backend node failure and trigger the failover on that node after disconnecting the current session.
When this is set to off, Pgpool-II only report an error and disconnect the session in case of such errors.

Note: It is recommended to turn on the backend health checking (see Section 5.8) when
fail_over_on_backend_error is set to off. Note, however, that Pgpool-II still triggers the failover
when it detects the administrative shutdown of PostgreSQL backend server. If you want
to avoid a fail over even in this case, you need to specify DISALLOW_TO_FAILOVER on
backend_flag.

This parameter can be changed by reloading the Pgpool-II configurations.

search_primary_node_timeout (integer)

Specifies the maximum amount of time in seconds to search for the primary node when a failover
scenario occurs. Pgpool-II will give up looking for the primary node if it is not found with-in this
configured time. Default is 300 and Setting this parameter to 0 means keep trying forever.

This parameter is only applicable in the streaming replication mode.

This parameter can be changed by reloading the Pgpool-II configurations.

5.9.2. Failover in the raw Mode

Failover can be performed in raw mode if multiple backend servers are defined. Pgpool-II usually accesses
the backend specified by backend_hostname0 during normal operation. If the backend_hostname0 fails for some
reason, Pgpool-II tries to access the backend specified by backend_hostname1. If that fails, Pgpool-II tries the
backend_hostname2, 3 and so on.

5.10. Online Recovery

Pgpool-II can synchronize database nodes and attach a node without stopping the service. This feature is
called "online recovery". Online recovery can be executed by using pcp_recovery_node command.

For online recovery, the recovery target node must be in detached state. This means the node must be
either manually detached by pcp_detach_node or automatically detached by Pgpool-II as a consequnece of
failover.

If you wish to add a PostgreSQL server node dynamically, reload the pgpool.conf after adding the
backend_hostname and its associated parameters. This will register the new server to Pgpool-II as a
detached backend node.

Note: The recovery target PostgreSQL server must not be running for performing the
online recovery. If the target PostgreSQL server has already started, you must shut it
down before starting the online recovery.

Online recovery is performed in two phases. The first phase is called "first stage" and the second phase is
called "second stage". You need to provide scripts for each stage. Only replication_mode requires the second

stage. For other modes including streaming replication mode the second stage is not performed and you
don't need to provide a script for the stage in recovery_2nd_stage_command. i.e. you can safely leave it as
an empty string.

Connections from cliens are not allowd only in the second stage while the data can be updated or retrieved
during the first statge.

Pgpool-II performs the follows steps in online recovery:

CHECKPOINT.

Execute first stage of online recovery.

Wait until all client connections have disconnected (only in replication_mode).

CHECKPOINT (only in replication_mode). specified).

Execute second stage of online recovery (only in replication_mode).

Start up postmaster (perform pgpool_remote_start)

Node attach

Note: There is a restriction in the online recovery in replication_mode. If Pgpool-II itself is
installed on multiple hosts, online recovery does not work correctly, because Pgpool-II
has to stop all the clients during the 2nd stage of online recovery. If there are several
Pgpool-II hosts, only one of them will have received the online recovery command and
will block the connections from clients.

recovery_user (string)

Specifies the PostgreSQL user name to perform online recovery.

This parameter can be changed by reloading the Pgpool-II configurations.

recovery_password (string)

Specifies the password for the PostgreSQL user name configured in recovery_user to perform online
recovery.

This parameter can be changed by reloading the Pgpool-II configurations.

recovery_1st_stage_command (string)

Specifies a command to be run by master (primary) node at the first stage of online recovery. The
command file must be placed in the database cluster directory for security reasons. For example, if
recovery_1st_stage_command = 'sync-command', then Pgpool-II will look for the command scrit in $PGDATA
directory and will try to execute $PGDATA/sync-command.

recovery_1st_stage_command receives following 4 parameters:

Path to the database cluster of the master (primary) node.

Hostname of the backend node to be recovered.

Path to the database cluster of the node to be recovered.

Port number of the master (primary) node.

Note: Pgpool-II accept connections and queries while recovery_1st_stage command is
executed, so you can retrieve and update data.

Caution

recovery_1st_stage command runs as a SQL command from PostgreSQL's point of view.
So recovery_1st_stage command can get prematuraly killed by PostgreSQL if the
PostgreSQL's statement_time_out is configured with the value that is smaller than the
time recovery_1st_stage_command takes for completion.

Typical error in such case is

rsync used in the command is killed by signal 2 for example.

This parameter can be changed by reloading the Pgpool-II configurations.

recovery_2nd_stage_command (string)

Specifies a command to be run by master node at the second stage of online recovery. This parameter
only neccessary for replication_mode. The command file must be placed in the database cluster
directory for security reasons. For example, if recovery_2nd_stage_command = 'sync-command', then Pgpool-II
will look for the command scrit in $PGDATA directory and will try to execute $PGDATA/sync-command.

recovery_2nd_stage_command receives following 4 parameters:

Path to the database cluster of the master(primary) node.

Hostname of the backend node to be recovered.

Path to the database cluster of the node to be recovered.

Port number of database to be recovered.

Note: Pgpool-II does not accept client connections and queries during the execution of
recovery_2nd_stage_command command, and waits for the existing clients to close their
connections before executing the command. Therefore, the recovery_2nd_stage_command
may not execute if the client stays connected for a long time.

Caution

recovery_2nd_stage command runs as a SQL command from PostgreSQL's point of view.
Therefore, recovery_2nd_stage command can get prematuraly killed by PostgreSQL if the
PostgreSQL's statement_time_out is configured with the value that is smaller than the
time recovery_2nd_stage_command takes for completion.

This parameter can be changed by reloading the Pgpool-II configurations.

recovery_timeout (integer)

Specifies the timeout in seconds to cancel the online recovery if it does not completes within this time.
Since Pgpool-II does not accepts the connections during the second stage of online recovery, this
parameter can be used to cancel the online recovery to manage the service down time during the online
recovery.

This parameter can be changed by reloading the Pgpool-II configurations.

client_idle_limit_in_recovery (integer)

Specifies the time in seconds to disconnect a client if it remains idle since the last query during the
online recovery. client_idle_limit_in_recovery is similar to the client_idle_limit but only takes effect during the
second stage of online recovery.

This is useful for preventing the Pgpool-II recovery from being disturbed by the lazy clients or if the
TCP/IP connection between the client and Pgpool-II is accidentally down (a cut cable for instance).

If set to -1, all clients get immediately disconnected when the second stage of online recovery starts.
The default is 0, which turns off the feature.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

5.11. Streaming Replication Check

Pgpool-II can work with PostgreSQL native Streaming Replication, that is available since PostgreSQL 9.0. To
configure Pgpool-II with streaming replication, enable master_slave_mode and set master_slave_sub_mode
to 'stream'.

Pgpool-II assumes that Streaming Replication is configured with Hot Standby on PostgreSQL, which means
that the standby database can handle read-only queries.

sr_check_period (integer)

Specifies the time interval in seconds to check the streaming replication delay. Default is 0, which
means the check is disabled.

This parameter can be changed by reloading the Pgpool-II configurations.

sr_check_user (string)

Specifies the PostgreSQL user name to perform streaming replication check. The user must exist on all
the PostgreSQL backends.

Note: sr_check_user> and sr_check_password are used even when sr_check_period is set
to 0 (disabled) for the identification of the primary server.

This parameter can be changed by reloading the Pgpool-II configurations.

sr_check_password (string)

Specifies the password of the sr_check_user PostgreSQL user to perform the streaming replication
checks. Use '' (empty string) if the user does not requires a password.

This parameter can be changed by reloading the Pgpool-II configurations.

sr_check_database (string)

Specifies the database to perform streaming replication delay checks. The default is "postgres".

This parameter can be changed by reloading the Pgpool-II configurations.

delay_threshold (integer)

Specifies the maximum tolerance level of replication delay in WAL bytes on the standby server against
the primary server. If the delay exceeds this configured level, Pgpool-II stops sending the SELECT
queries to the standby server and starts routing everything to the primary server even if
load_balance_mode is enabled, until the standby catches-up with the primary. Setting this parameter to
0 disables the delay checking. This delay threshold check is performed every sr_check_period. Default is
0.

This parameter can be changed by reloading the Pgpool-II configurations.

log_standby_delay (string)

Specifies when to log the replication delay. Below table contains the list of all valid values for the
parameter.

Table 5-9. Log standby delay options

Value Description
'none' Never log the standby delay
'always' Log the standby delay, every time the replication delay is checked
'if_over_threshold' Only log the standby delay, when it exceeds delay_threshold value

This parameter can be changed by reloading the Pgpool-II configurations.

5.12. In Memory Query Cache

In memory query cache can be used with all modes of Pgpool-II. Pgpool-II does not need a restart when the
cache gets outdated because of the underlying table updates.

In memory cache saves the pair of SELECT statement and its result (along with the Bind parameters, if the
SELECT is an extended query). If the same SELECTs comes in, Pgpool-II returns the value from cache. Since
no SQL parsing nor access to PostgreSQL are involved, the serving of results from the in memory cache is
extremely fast.

Note: Basically following SELECTs will not be cached:

 SELECTs including non immutable functions
 SELECTs including temp tables, unlogged tables
 SELECT result is too large (memqcache_maxcache)
 SELECT FOR SHARE/UPDATE
 SELECT starting with "/*NO QUERY CACHE*/" comment
 SELECT including system catalogs
 SELECT uses TABLESAMPLE

However, VIEWs and SELECTs accessing unlogged tables can be cached by specifying in
the white_memqcache_table_list.

On the other hand, it might be slower than the normal path in some cases, because it adds some overhead
to store cache. Moreover when a table is updated, Pgpool-II automatically deletes all the caches related to
the table. Therefore, the performance will be degraded by a system with a lot of updates. If the query cache
hit ratio (it can be checked by using SHOW POOL_CACHE) is lower than 70%, you might want to disable in
memory cache.

5.12.1. Enabling in memory query cache

memory_cache_enabled (boolean)

Setting to on enables the memory cache. Default is off.

This parameter can be changed by reloading the Pgpool-II configurations.

5.12.2. Choosing cache storage

memqcache_method (string)

Specifies the storage type to be used for the cache. Below table contains the list of all valid values for
the parameter.

Table 5-10. Memcache method options

Value Description

'shmem' Use shared memory
'memcached' Use memcached

Default is 'shmem'.

This parameter can only be set at server start.

5.12.3. Common configurations

These below parameter are valid for both shmem and memcached type query cache.

memqcache_expire (integer)

Specifies the life time of query cache in seconds. Default is 0. which means no cache expiration and
cache remains valid until the table is updated.

This parameter can be changed by reloading the Pgpool-II configurations.

Note: memqcache_expire and memqcache_auto_cache_invalidation are orthogonal to each
other.

memqcache_auto_cache_invalidation (boolean)

Setting to on, automatically deletes the cache related to the updated tables. When off, cache is not
deleted.

Default is on.

Note: This parameters memqcache_auto_cache_invalidation and memqcache_expire are
orthogonal to each other.

This parameter can be changed by reloading the Pgpool-II configurations.

memqcache_maxcache (integer)

Specifies the maximum size in bytes of the SELECT query result to be cached. The result with data size
larger than this value will not be cached by Pgpool-II. When the caching of data is rejected because of
the size constraint the following message is shown.

 LOG: pid 13756: pool_add_temp_query_cache: data size exceeds memqcache_maxcache. current:4095 requested:111 memq_maxcache:4096

Note: For the shared memory query('shmem') cache the memqcache_maxcache must be set
lower than memqcache_cache_block_size and for 'memcached' it must be lower than the
size of slab (default is 1 MB).

This parameter can be changed by reloading the Pgpool-II configurations.

http://memcached.org/

white_memqcache_table_list (string)

Specifies a comma separated list of table names whose SELECT results should be cached by Pgpool-II.
This parameter only applies to VIEWs and SELECTs accessing unlogged tables. Regular tables can be
cached unless specified by black_memqcache_table_list.

You can use regular expression into the list to match table name (to which ^ and $ are automatically
added).

Note: If the queries can refer the table with and without the schema qualification then
you must add both entries(with and without schema name) in the list.

 #For example:
 #If the queries sometime use "table1" and other times "public.table1"
 #to refer the table1 then the white_memqcache_table_list
 #would be configured as follows.

 white_memqcache_table_list = "table1,public.table1"

This parameter can be changed by reloading the Pgpool-II configurations.

black_memqcache_table_list (string)

Specifies a comma separated list of table names whose SELECT results should NOT be cached by the
Pgpool-II.

You can use regular expression into the list to match table name (to which ^ and $ are automatically
added),

Note: If the queries can refer the table with and without the schema qualification then
you must add both entries(with and without schema name) in the list.

 #For example:
 #If the queries sometime use "table1" and other times "public.table1"
 #to refer the table1 then the black_memqcache_table_list
 #would be configured as follows.

 black_function_list = "table1,public.table1"

This parameter can be changed by reloading the Pgpool-II configurations.

Note: black_memqcache_table_list precedence over white_memqcache_table_list

memqcache_oiddir (string)

Specifies the full path to the directory for storing the oids of tables used by SELECT queries.

memqcache_oiddir directory contains the sub directories for the databases. The directory name is the OID
of the database. In addition, each database directory contains the files for each table used by SELECT
statement. Again the name of the file is the OID of the table. These files contains the pointers to query
cache which are used as key for deleting the caches.

Note: Normal restart of Pgpool-II does not clear the contents of memqcache_oiddir.

This parameter can be changed by reloading the Pgpool-II configurations.

5.12.4. Configurations to use shared memory

These are the parameters used with shared memory as the cache storage.

memqcache_total_size (integer)

Specifies the shared memory cache size in bytes.

This parameter can only be set at server start.

memqcache_max_num_cache (integer)

Specifies the number of cache entries. This is used to define the size of cache management space.

Note: The management space size can be calculated by: memqcache_max_num_cache * 48
bytes. Too small number will cause an error while registering cache. On the other hand
too large number will just waste space.

This parameter can only be set at server start.

memqcache_cache_block_size (integer)

Specifies the cache block size. Pgpool-II uses the cache memory arranged in memqcache_cache_block_size
blocks. SELECT result is packed into the block and must fit in a single block. And the results larger than
memqcache_cache_block_size are not cached.

memqcache_cache_block_size must be set to atleast 512.

This parameter can only be set at server start.

5.12.5. Configurations to use memcached

These are the parameters used with memcached as the cache storage.

memqcache_memcached_host (string)

Specifies the host name or the IP address on which memcached works. You can use 'localhost' if memcached
and Pgpool-II resides on same server.

This parameter can only be set at server start.

memqcache_memcached_port (integer)

Specifies the port number of memcached. Default is 11211.

This parameter can only be set at server start.

5.13. Secure Sockect Layer (SSL)

5.13.1. SSL Settings

ssl (boolean)

When set to on, Pgpool-II enables the SSL for both the frontend and backend communications. Default is
off.

Note: ssl_key and ssl_cert must also be configured in order for SSL to work with frontend
connections.

Note: For SSL to work Pgpool-II must be build with OpenSSL support. See Section 3.4 for
details on building the Pgpool-II.

This parameter can only be set at server start.

ssl_key (string)

Specifies the path to the private key file to be used for incoming frontend connections. There is no
default value for this option, and if left unset SSL will be disabled for incoming frontend connections.

This parameter can only be set at server start.

ssl_cert (string)

Specifies the path to the public x509 certificate file to be used for the incoming frontend connections.
There is no default value for this option, and if left unset SSL will be disabled for incoming frontend
connections.

This parameter can only be set at server start.

ssl_ca_cert (string)

Specifies the path to a PEM format CA certificate files, which can be used to verify the backend server
certificates. This is analogous to the -CApath option of the OpenSSL verify(1) command.

This parameter can only be set at server start.

ssl_ca_cert_dir (string)

Specifies the path to a directory containing PEM format CA certificate files, which can be used to verify
the backend server certificates. This is analogous to the -CApath option of the OpenSSL verify(1) command.

The default value for this option is unset, which means no verification takes place. Verification will still
happen if this option is not set but a value is provided for ssl_ca_cert.

This parameter can only be set at server start.

5.13.2. Generating SSL certificates

Certificate handling is outside the scope of this document. The Secure TCP/IP Connections with SSL page at
postgresql.org has pointers with sample commands for how to generate self-signed certificates.

5.14. Watchdog

http://developer.postgresql.org/pgdocs/postgres/ssl-tcp.html

Watchdog configuration parameters are described in pgpool.conf. There is sample configuration in the
WATCHDOG section of pgpool.conf.sample file. All following options are required to be specified in watchdog
process.

5.14.1. Enable watchdog

use_watchdog (boolean)

If on, activates the watchdog. Default is off

This parameter can only be set at server start.

5.14.2. Watchdog communication

wd_hostname (string)

Specifies the hostname or IP address of Pgpool-II server. This is used for sending/receiving queries and
packets, and also as an identifier of the watchdog node.

This parameter can only be set at server start.

wd_port (integer)

Specifies the port number to be used by watchdog process to listen for connections. Default is 9000.

This parameter can only be set at server start.

wd_authkey (string)

Specifies the authentication key used for all watchdog communications. All Pgpool-II must have the
same key. Packets from watchdog having different key will get rejected. This authentication is also
applied to the heatrbeat singals when the heartbeat mode is used as a lifecheck method.

Since in Pgpool-IIV3.5 or beyond wd_authkey is also used to authenticate the watchdog IPC clients, all
clients communicating with Pgpool-II watchdog process needs to provide this wd_authkey value for
"IPCAuthKey" key in the JSON data of the command.

Default is '' (empty) which means disables the watchdog authentication.

This parameter can only be set at server start.

5.14.3. Upstream server connection

trusted_servers (string)

Specifies the list of trusted servers to check the up stream connections. Each server in the list is
required to respond to ping. Specify a comma separated list of servers such as "hostA,hostB,hostC". If none
of the server are reachable, watchdog will regard it as failure of the Pgpool-II. Therefore, it is
recommended to specify multiple servers.

This parameter can only be set at server start.

ping_path (string)

Specifies the path of a ping command for monitoring connection to the upper servers. Set the only path
of the directory containing the ping utility, such as "/bin" or such directory.

This parameter can only be set at server start.

5.14.4. Virtual IP control

delegate_IP (string)

Specifies the virtual IP address (VIP) of pgpool-II that is connected from client servers (application

servers etc.). When a Pgpool-II is switched from standby to active, the Pgpool-II takes over this VIP.
Default is ''(empty): which means virtual IP will never be brought up.

This parameter can only be set at server start.

if_cmd_path (string)

Specifies the path to the command that Pgpool-II will use to switch the virtual IP on the system. Set only
the path of the directory containing the binary, such as "/sbin" or such directory.

This parameter can only be set at server start.

if_up_cmd (string)

Specifies the command to bring up the virtual IP. Set the command and parameters such as "ip addr add
$_IP_$/24 dev eth0 label eth0:0" $_IP_$ will get replaced by the IP address specified in the delegate_IP.

This parameter can only be set at server start.

if_down_cmd (string)

Specifies the command to bring down the virtual IP. Set the command and parameters such as "ip addr
del $_IP_$/24 dev eth0".

This parameter can only be set at server start.

arping_path (string)

Specifies the path to the command that Pgpool-II will use to send the ARP requests after the virtual IP
switch. Set only the path of the directory containing the binary, such as "/usr/sbin" or such directory.

This parameter can only be set at server start.

arping_cmd (string)

Specifies the command to use for sending the ARP requests after the virtual IP switch. Set the command
and parameters such as "arping -U $_IP_$ -w 1". $_IP_$ will get replaced by the IP address specified in the
delegate_IP.

This parameter can only be set at server start.

5.14.5. Behaivor on escalation and de-escalation

Configuration about behavior when Pgpool-II escalates to active (virtual IP holder)

clear_memqcache_on_escalation (boolean)

When set to on, watchdog clears all the query cache in the shared memory when pgpool-II escaltes to
active. This prevents the new active Pgpool-II from using old query caches inconsistence to the old
active.

Default is on.

This works only if memqcache_method is 'shmem'.

This parameter can only be set at server start.

wd_escalation_command (string)

Watchdog executes this command on the node that is escalated to the master watchdog.

This command is executed just before bringing up the virtual IP if that is configured on the node.

This parameter can only be set at server start.

wd_de_escalation_command (string)

Watchdog executes this command on the master Pgpool-II watchdog node when that node resigns from
the master node responsibilities. A master watchdog node can resign from being a master node, when

the master node Pgpool-II shuts down, detects a network blackout or detects the lost of quorum.

This command is executed before bringing down the virtual/floating IP address if it is configured on the
watchdog node.

wd_de_escalation_command is not available prior to Pgpool-II V3.5.

This parameter can only be set at server start.

5.14.6. Controlling the Failover behavior

These settings are used to control the behavior of backend node failover when the watchdog is enabled. The
effect of these configurations is limited to the failover/degenerate requests initiated by Pgpool-II internally,
while the user initiated detach backend requests (using PCP command) by-pass these configuration settings.

failover_when_quorum_exists (boolean)

When enabled, Pgpool-II will perform the degenerate/failover on backend node if the quorum exists. In
the absence of the quorum, Pgpool-II node that detects the backend failure will quarantine the failed
backend node until the quorum exists again.

The quarantine nodes behaves similar to the detached backend nodes but unlike failed/degenerated
backends the quarantine status is not propagated to the other Pgpool-II nodes in the watchdog cluster,
So even if the backend node is in the quarantine state on one Pgpool-II node, other Pgpool-II nodes may
still continue to use that backend.

Although there are many similarities in quarantine and failover operations, but they both differ in a very
fundamental way. The quarantine operations does not executes the failover_command and silently
detaches the problematic node, So in the case when the master backend node is quarantined, the
Pgpool-II will not promote the standby to take over the master responsibilities and until the master node
is quarantined the Pgpool-II will not have any useable master backend node.

Default is on.

failover_when_quorum_exists is not available prior to Pgpool-II V3.7.

This parameter can only be set at server start.

failover_require_consensus (boolean)

When enabled, Pgpool-II will perform the degenerate/failover on a backend node if the watchdog
quorum exists and at-least minimum number of nodes necessary for the quorum vote for the failover.

For example, in a three node watchdog cluster, the failover will only be performed until at least two
nodes ask for performing the failover on the particular backend node.

Default is on.

Caution

When failover_require_consensus is enabled, Pgpool-II does not execute the failover until
it get enough votes from other Pgpool-II nodes. So it is strongly recommended to
enable the backend health check on all Pgpool-II nodes to ensure proper detection of
backend node failures. For more details of health check, see Section 5.8.

failover_require_consensus is not available prior to Pgpool-II V3.7. and it is only effective when
failover_when_quorum_exists is enabled

This parameter can only be set at server start.

allow_multiple_failover_requests_from_node (boolean)

This parameter works in connection with the failover_require_consensus. When enabled, a single
Pgpool-II node can cast multiple votes for the failover.

For example, in a three node watchdog cluster, if one Pgpool-II node sends two failover requests for a
particular backend node failover, Both requests will be counted as a separate vote in the favor of the
failover and Pgpool-II will execute the failover, even if it does not get the vote from any other Pgpool-II
node.

Default is off.

allow_multiple_failover_requests_from_node is not available prior to Pgpool-II V3.7. and it is only effective when
both failover_when_quorum_exists and failover_require_consensus are enabled

This parameter can only be set at server start.

5.14.7. Life checking Pgpool-II

Watchdog checks pgpool-II status periodically. This is called "life check".

wd_lifecheck_method (string)

Specifies the method of life check. This can be either of 'heartbeat' (default), 'query' or 'external'.

heartbeat: In this mode, watchdog sends the heartbeat singals (UDP packets) periodically to other Pgpool-
II. Similarly watchdog also receives the signals from other Pgpool-II . If there are no signal for a certain
period, watchdog regards is as failure of the Pgpool-II .

query: In this mode, watchdog sends the monitoring queries to other Pgpool-II and checks the response

Caution

In query mode, you need to set num_init_children large enough if you plan to use
watchdog. This is because the watchdog process connects to Pgpool-II as a client.

external: This mode disables the built in lifecheck of Pgpool-II watchdog and relies on external system to
provide node health checking of local and remote watchdog nodes.

external mode is not available in versions prior to Pgpool-II V3.5.

This parameter can only be set at server start.

wd_monitoring_interfaces_list (string)

Specify a comma separated list of network device names, to be monitored by the watchdog process for
the network link state. If all network interfaces in the list becomes inactive (disabled or cable
unplugged), the watchdog will consider it as a complete network failure and the Pgpool-II node will
commit the suicide. Specifying an ''(empty) list disables the network interface monitoring. Setting it to
'any' enables the monitoring on all available network interfaces except the loopback. Default is '' empty
list (monitoring disabled).

wd_monitoring_interfaces_list is not available in versions prior to Pgpool-II V3.5.

This parameter can only be set at server start.

wd_interval (integer)

Specifies the interval between life checks of Pgpool-II in seconds. (A number greater than or equal to 1)
Default is 10.

This parameter can only be set at server start.

wd_priority (integer)

This parameter can be used to elevate the local watchdog node priority in the elections to select master
watchdog node. The node with the higher wd_priority value will get selected as master watchdog node
when cluster will be electing its new master node at the time of cluster startup or in the event of old
master watchdog node failure

wd_priority is not available in versions prior to Pgpool-II V3.5.

This parameter can only be set at server start.

wd_ipc_socket_dir (string)

The directory where the UNIX domain socket accepting Pgpool-II watchdog IPC connections will be
created. Default is '/tmp'. Be aware that this socket might be deleted by a cron job. We recommend to
set this value to '/var/run' or such directory.

wd_ipc_socket_dir is not available in versions prior to Pgpool-II V3.5.

This parameter can only be set at server start.

5.14.8. Lifecheck Heartbeat mode configuration

wd_heartbeat_port (integer)

Specifies the UDP port number to receive heartbeat signals. Default is 9694. wd_heartbeat_port is only
applicable if the wd_lifecheck_method is set to 'heartbeat'

This parameter can only be set at server start.

wd_heartbeat_keepalive (integer)

Specifies the interval time in seconds between sending the heartbeat signals. Default is 2.
wd_heartbeat_keepalive is only applicable if the wd_lifecheck_method is set to 'heartbeat'

This parameter can only be set at server start.

wd_heartbeat_deadtime (integer)

Specifies the time in seconds before marking the remote watchdog node as failed/dead node, if no
heartbeat signal is received within that time. Default is 30 wd_heartbeat_deadtime is only applicable if the
wd_lifecheck_method is set to 'heartbeat'

This parameter can only be set at server start.

heartbeat_destination0 (string)

Specifies the IP address or hostname of destination the remote Pgpool-II for sending the heartbeat
signals. Multiple destinations can be configured for the heartbeat singnals, the number at the end of the
parameter name is referred as the "destination number", that starts from 0.

heartbeat_destination is only applicable if the wd_lifecheck_method is set to 'heartbeat'

This parameter can only be set at server start.

heartbeat_destination_port0 (integer)

Specifies the destination port number of the remote Pgpool-II for sending the heartbeat signals. Multiple
destinations can be configured for the heartbeat singnals, the number at the end of the parameter
name is referred as the "destination number", that starts from 0.

heartbeat_destination_port is only applicable if the wd_lifecheck_method is set to 'heartbeat'

This parameter can only be set at server start.

heartbeat_device0 (string)

Specifies the network device name for sending the heartbeat signals to the destination specified by
heartbeat_destinationX:heartbeat_destination_portX Different heartbeat devices can be configured for
each heartbeat destination by changing the value of X(destination number). at the end of parameter
name. The destination index number starts from 0.

heartbeat_device is only applicable if the wd_lifecheck_method is set to 'heartbeat'

This parameter can only be set at server start.

5.14.9. Lifecheck Query mode configuration

wd_life_point (integer)

Specifies the number of times to retry a failed life check of pgpool-II. Valid value could be a number
greater than or equal to 1. Default is 3.

wd_life_point is only applicable if the wd_lifecheck_method is set to 'query'

This parameter can only be set at server start.

wd_lifecheck_query (string)

Specifies the query to use for the life check of remote Pgpool-II. Default is "SELECT 1".

wd_lifecheck_query is only applicable if the wd_lifecheck_method is set to 'query'

This parameter can only be set at server start.

wd_lifecheck_dbname (string)

Specifies the database name for the connection used for the life check of remote Pgpool-II. Default is
"template1".

wd_lifecheck_dbname is only applicable if the wd_lifecheck_method is set to 'query'

This parameter can only be set at server start.

wd_lifecheck_user (string)

Specifies the user name for the connection used for the life check of remote Pgpool-II. Default is "nobody".

wd_lifecheck_user is only applicable if the wd_lifecheck_method is set to 'query'

This parameter can only be set at server start.

wd_lifecheck_password (string)

Specifies the password for the user used for the life check of remote Pgpool-II. Default is ''(empty).

wd_lifecheck_password is only applicable if the wd_lifecheck_method is set to 'query'

This parameter can only be set at server start.

5.14.10. Watchdog servers configurations

other_pgpool_hostname0 (string)

Specifies the hostname of remote Pgpool-II server for watchdog node. The number at the end of the
parameter name is referred as "server id", and it starts from 0.

This parameter can only be set at server start.

other_pgpool_port0 (integer)

Specifies the port number of the remote Pgpool-II server for watchdog node. The number at the end of
the parameter name is referred as "server id", and it starts from 0.

This parameter can only be set at server start.

other_wd_port0 (integer)

Specifies the watchdog port number of the remote Pgpool-II server for watchdog node. The number at
the end of the parameter name is referred as "server id", and it starts from 0.

This parameter can only be set at server start.

5.15. Misc Configuration Parameters

relcache_expire (integer)

Specifies the relation cache expiration time in seconds. The relation cache is used for caching the query
result of PostgreSQL system catalogs that is used by Pgpool-II to get various informations including the
table structures and to check table types(e.g. To check if the referred table is a temporary table or not).
The cache is maintained in the local memory space of Pgpool-II child process and its lifetime is same as
of the child process. So If the table is modified using ALTER TABLE or some other means, the relcache
becomes inconsistent. For this purpose, relcache_expire controls the life time of the cache. Default is 0,
which means the cache never expires.

This parameter can only be set at server start.

relcache_size (integer)

Specifies the number of relcache entries. Default is 256.

Note: If the below message frequently appears in the Pgpool-II log, you may need to
increase the relcache_size for better performance.

"pool_search_relcache: cache replacement happened"

This parameter can only be set at server start.

check_temp_table (boolean)

Setting to on, enables the temporary table check in the SELECT statements. To check the temporary
table Pgpool-II queries the system catalog of primary/master PostgreSQL backend, which increases the
load on the primary/master server. If you are absolutely sure that your system never uses temporary
tables, then you can safely turn off the check_temp_table. Default is on.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

check_unlogged_table (boolean)

Setting to on, enables the unlogged table check in the SELECT statements. To check the unlogged table
Pgpool-II queries the system catalog of primary/master PostgreSQL backend which increases the load on
the primary/master server. If you are absolutely sure that your system never uses the unlogged tables
(for example, you are using 9.0 or earlier version of PostgreSQL) then you can safely turn off the
check_unlogged_table. Default is on.

This parameter can be changed by reloading the Pgpool-II configurations. You can also use PGPOOL SET
command to alter the value of this parameter for a current session.

pid_file_name (string)

Specifies the full path to a file to store the Pgpool-II process id. The pid_file_name path can be specified
as relative to the location of pgpool.conf file or as an absolute path Default is "/var/run/pgpool/pgpool.pid".

This parameter can only be set at server start.

logdir (string)

Specifies the full path to a directory to store the pool_status. Default is "/tmp".

This parameter can only be set at server start.

Chapter 6. Client Authentication
Since Pgpool-II is a middleware that works between PostgreSQL servers and a PostgreSQL database client, so
when a client application connects to the Pgpool-II, Pgpool-II inturn connects to the PostgreSQL servers using

the same credentials to serve the incomming client connection. Thus, all the access privileges and
restrictions defined for the user in PostgreSQL gets automatically applied to all Pgpool-II clients, with an
exceptions of the authentications on PostgreSQL side that depends on the client's IP addresses or host
names. Reason being the connections to the PostgreSQL server are made by Pgpool-II on behalf of the
connecting clients and PostgreSQL server can only see the IP address of the Pgpool-II server and not that of
the actual client. Therefore, for the client host based authentications Pgpool-II has the pool_hba mechanism
similar to the pg_hba mechanism for authenticating the incomming client connections.

6.1. The pool_hba.conf File

Just like the pg_hba.conf file for PostgreSQL, Pgpool-II supports a similar client authentication function using a
configuration file called pool_hba.conf. Pgpool-II installation also includes the sample pool_hba.conf.sample file in
the default configuration directory ("/usr/local/etc"). By default, pool_hba authentication is disabled, and setting
enable_pool_hba to on enables it. see the enable_pool_hba configuration parameter.

The format of the pool_hba.conf file follows very closely PostgreSQL's pg_hba.conf format.

The general format of the pool_hba.conf file is a set of records, one per line. Blank lines are ignored, as is any
text after the # comment character. Records cannot be continued across lines. A record is made up of a
number of fields which are separated by spaces and/or tabs. Fields can contain white space if the field value
is double-quoted. Quoting one of the keywords in a database, user, or address field (e.g., all or replication)
makes the word lose its special meaning, and just match a database, user, or host with that name.

Each record specifies a connection type, a client IP address range (if relevant for the connection type), a
database name, a user name, and the authentication method to be used for connections matching these
parameters. The first record with a matching connection type, client address, requested database, and user
name is used to perform authentication. There is no "fall-through" or "backup": if one record is chosen and
the authentication fails, subsequent records are not considered. If no record matches, access is denied.

A record can have one of the following formats

 local database user auth-method [auth-options]

 host database user IP-address IP-mask auth-method [auth-options]
 hostssl database user IP-address IP-mask auth-method [auth-options]
 hostnossl database user IP-address IP-mask auth-method [auth-options]

 host database user address auth-method [auth-options]
 hostssl database user address auth-method [auth-options]
 hostnossl database user address auth-method [auth-options]

The meaning of the fields is as follows:

local

This record matches connection attempts using Unix-domain sockets. Without a record of this type,
Unix-domain socket connections are disallowed.

host

This record matches connection attempts made using TCP/IP. host records match either SSL or non-SSL
connection attempts.

Note: Remote TCP/IP connections will not be possible unless the server is started with an
appropriate value for the listen_addresses configuration parameter, since the default
behavior is to listen for TCP/IP connections only on the local loopback address localhost.

hostssl

This record matches connection attempts made using TCP/IP, but only when the connection is made

with SSL encryption.

To make use of this option the Pgpool-II must be built with SSL support. Furthermore, SSL must be
enabled by setting the ssl configuration parameter. Otherwise, the hostssl record is ignored.

hostnossl

This record type has the opposite behavior of hostssl; it only matches connection attempts made over
TCP/IP that do not use SSL.

database

Specifies which database name(s) this record matches. The value all specifies that it matches all
databases.

Note: "samegroup" for database field is not supported:

Since Pgpool-II does not know anything about users in the PostgreSQL backend server,
the database name is simply compared against the entries in the database field of
pool_hba.conf.

user

Specifies which database user name(s) this record matches. The value all specifies that it matches all
users. Otherwise, this is the name of a specific database user

Note: group names following "+" for user field is not supported:

This is for the same reason as for the "samegroup" of database field. A user name is simply
checked against the entries in the user field of pool_hba.conf.

address

Specifies the client machine address(es) that this record matches. This field can contain either a host
name, an IP address range, or one of the special key words mentioned below.

An IP address range is specified using standard numeric notation for the range's starting address, then a
slash (/) and a CIDR mask length. The mask length indicates the number of high-order bits of the client
IP address that must match. Bits to the right of this should be zero in the given IP address. There must
not be any white space between the IP address, the /, and the CIDR mask length.

Typical examples of an IPv4 address range specified this way are 172.20.143.89/32 for a single host, or
172.20.143.0/24 for a small network, or 10.6.0.0/16 for a larger one. An IPv6 address range might look like
::1/128 for a single host (in this case the IPv6 loopback address) or fe80::7a31:c1ff:0000:0000/96 for a small
network. 0.0.0.0/0 represents all IPv4 addresses, and ::0/0 represents all IPv6 addresses. To specify a
single host, use a mask length of 32 for IPv4 or 128 for IPv6. In a network address, do not omit trailing
zeroes.

An entry given in IPv4 format will match only IPv4 connections, and an entry given in IPv6 format will
match only IPv6 connections, even if the represented address is in the IPv4-in-IPv6 range. Note that
entries in IPv6 format will be rejected if the system's C library does not have support for IPv6 addresses.

You can also write all to match any IP address, samehost to match any of the server's own IP addresses, or
samenet to match any address in any subnet that the server is directly connected to.

If a host name is specified (anything that is not an IP address range or a special key word is treated as a
host name), that name is compared with the result of a reverse name resolution of the client's IP
address (e.g., reverse DNS lookup, if DNS is used). Host name comparisons are case insensitive. If there
is a match, then a forward name resolution (e.g., forward DNS lookup) is performed on the host name to

check whether any of the addresses it resolves to are equal to the client's IP address. If both directions
match, then the entry is considered to match. (The host name that is used in pool_hba.conf should be the
one that address-to-name resolution of the client's IP address returns, otherwise the line won't be
matched. Some host name databases allow associating an IP address with multiple host names, but the
operating system will only return one host name when asked to resolve an IP address.)

A host name specification that starts with a dot (.) matches a suffix of the actual host name. So
.example.com would match foo.example.com (but not just example.com).

When host names are specified in pool_hba.conf, you should make sure that name resolution is reasonably
fast. It can be of advantage to set up a local name resolution cache such as nscd.

This field only applies to host, hostssl, and hostnossl records.

Specifying the host name in address field is not supported prior to Pgpool-II V3.7.

IP-address
IP-mask

These two fields can be used as an alternative to the IP-address/ mask-length notation. Instead of
specifying the mask length, the actual mask is specified in a separate column. For example, 255.0.0.0
represents an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a CIDR mask length of 32.

This field only applies to host, hostssl, and hostnossl records.

auth-method

Specifies the authentication method to use when a connection matches this record. The possible
choices are summarized here; details are in Section 6.2.

trust

Allow the connection unconditionally. This method allows anyone that can connect to the Pgpool-II.

reject

Reject the connection unconditionally. This is useful for "filtering out" certain hosts, for example a
reject line could block a specific host from connecting.

md5

Require the client to supply a double-MD5-hashed password for authentication.

Note: To use md5 authentication, you need to register the user name and password in
"pool_passwd". See Section 6.2.2 for more details.

pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the operating
system. See Section 6.2.3 for details.

PAM authentication is supported using user information on the host where Pgpool-II is running. To
enable PAM support the Pgpool-II must be configured with "--with-pam"

To enable PAM authentication, you must create a service-configuration file for Pgpool-II in the
system's PAM configuration directory (that is usually located at "/etc/pam.d"). A sample service-
configuration file is also installed as "share/pgpool.pam" under the install directory.

auth-options

After the auth-method field, there can be field(s) of the form name= value that specify options for the
authentication method.

Since the pool_hba.conf records are examined sequentially for each connection attempt, the order of the
records is significant. Typically, earlier records will have tight connection match parameters and weaker
authentication methods, while later records will have looser match parameters and stronger authentication

methods. For example, one might wish to use trust authentication for local TCP/IP connections but require a
password for remote TCP/IP connections. In this case a record specifying trust authentication for connections
from 127.0.0.1 would appear before a record specifying password authentication for a wider range of allowed
client IP addresses.

Tip: All pool_hba authentication options described in this section are about the
authentication taking place between a client and the Pgpool-II. A client still has to go
through the PostgreSQL's authentication process and must have the CONNECT privilege for
the database on the backend PostgreSQL server.

As far as pool_hba is concerned, it does not matter if a user name and/or database name
given by a client (i.e. psql -U testuser testdb) really exists in the backend. pool_hba only
cares if a match in the pool_hba.conf can be found or not.

Some examples of pool_hba.conf entries. See the next section for details on the different authentication
methods.

Example 6-1. Example pool_hba.conf Entries

 # Allow any user on the local system to connect to any database with
 # any database user name using Unix-domain sockets (the default for local
 # connections).
 #
 # TYPE DATABASE USER ADDRESS METHOD
 local all all trust

 # The same using local loopback TCP/IP connections.
 #
 # TYPE DATABASE USER ADDRESS METHOD
 host all all 127.0.0.1/32 trust

 # Allow any user from host 192.168.12.10 to connect to database
 # "postgres" if the user's password is correctly supplied.
 #
 # TYPE DATABASE USER ADDRESS METHOD
 host postgres all 192.168.12.10/32 md5

6.2. Authentication Methods

The following subsections describe the authentication methods in more detail.

6.2.1. Trust Authentication

When trust authentication is specified, Pgpool-II assumes that anyone who can connect to the server is
authorized to access connect with whatever database user name they specify.

6.2.2. MD5 Password Authentication

This authentication method is the password-based authentication methods in which MD-5-hashed password
is sent by client. Since Pgpool-II does not has the visibility of PostgreSQL's database user password and client
application only sends the MD5-hash of the password, so md5 authentication in Pgpool-II is supported using
the pool_passwd authentication file.

Note: If Pgpool-II is operated in raw mode or there's only 1 backend configured, you
don't need to setup pool_passwd.

6.2.2.1. Authentication file format

This pool_passwd file should contain lines in the following format:

 "username:encrypted_passwd"

6.2.2.2. Setting md5 Authentication

here are the steps to enable md5 authentication:

1- Login as the database's operating system user and type "pg_md5 --md5auth --username=username password" user
name and md5 encrypted password are registered into pool_passwd. If pool_passwd does not exist yet,
pg_md5 command will automatically create it for you.

Note: user name and password must be identical to those registered in PostgreSQL
server.

2- Add an appropriate md5 entry to pool_hba.conf. See Section 6.1 for more details.

3- After changing md5 password (in both pool_passwd and PostgreSQL of course), reload the pgpool
configurations.

6.2.3. PAM Authentication

This authentication method uses PAM (Pluggable Authentication Modules) as the authentication mechanism.
The default PAM service name is pgpool. PAM authentication is supported using user information on the host
where Pgpool-II is executed. For more information about PAM, please read the Linux-PAM Page.

To enable PAM authentication, you need to create a service-configuration file for Pgpool-II in the system's
PAM configuration directory (which is usually at "/etc/pam.d"). A sample service-configuration file is installed as
"share/pgpool-II/pgpool.pam" under the install directory.

Note: To enable PAM support the Pgpool-II must be configured with "--with-pam"

III. Examples
Various examples

Table of Contents

7. Configuration Examples

7.1. Basic Configuration Example
7.2. Watchdog Configuration Example
7.3. Pgpoo-II + Watchdog Setup Example
7.4. AWS Configuration Example

http://www.kernel.org/pub/linux/libs/pam/

7.5. Aurora Configuration Example

Chapter 7. Configuration Examples

7.1. Basic Configuration Example

7.1.1. Let's Begin!

First, we must learn how to install and configure Pgpool-II and database nodes before using replication.

7.1.1.1. Installing Pgpool-II

Installing Pgpool-II is very easy. In the directory which you have extracted the source tar ball, execute the
following commands.

$./configure
$ make
$ make install

configure script collects your system information and use it for the compilation procedure. You can pass
command line arguments to configure script to change the default behavior, such as the installation directory.
Pgpool-II will be installed to /usr/local directory by default.

make command compiles the source code, and make install will install the executables. You must have write
permission on the installation directory. In this tutorial, we will install Pgpool-II in the default /usr/local
directory.

Note: Pgpool-II requires libpq library in PostgreSQL 7.4 or later (version 3 protocol).

If the configure script displays the following error message, the libpq library may not be installed, or it is not of
version 3

configure: error: libpq is not installed or libpq is old

If the library is version 3, but the above message is still displayed, your libpq library is probably not
recognized by the configure script. The configure script searches for libpq library under /usr/local/pgsql. If you have
installed the PostgreSQL in a directory other than /usr/local/pgsql, use --with-pgsql, or --with-pgsql-includedir and --with-
pgsql-libdir command line options when you execute configure.

7.1.1.2. Configuration Files

Pgpool-II configuration parameters are saved in the pgpool.conf file. The file is in "parameter = value" per line
format. When you install Pgpool-II, pgpool.conf.sample is automatically created. We recommend copying and
renaming it to pgpool.conf, and edit it as you like.

$ cp /usr/local/etc/pgpool.conf.sample /usr/local/etc/pgpool.conf

Pgpool-II only accepts connections from the localhost using port 9999. If you wish to receive conenctions
from other hosts, set listen_addresses to '*'.

listen_addresses = 'localhost'
port = 9999

We will use the default parameters in thie tutorial.

7.1.1.3. Configuring PCP Commands

Pgpool-II has an interface for administrative purpose to retrieve information on database nodes, shutdown
Pgpool-II, etc. via network. To use PCP commands, user authentication is required. This authentication is
different from PostgreSQL's user authentication. A user name and password need to be defined in the pcp.conf
file. In the file, a user name and password are listed as a pair on each line, and they are separated by a colon
(:). Passwords are encrypted in md5 hash format.

postgres:e8a48653851e28c69d0506508fb27fc5

When you install Pgpool-II, pcp.conf.sample is automatically created. We recommend copying and renaming it to
pcp.conf, and edit it.

$ cp /usr/local/etc/pcp.conf.sample /usr/local/etc/pcp.conf

To encrypt your password into md5 hash format, use the pg_md5 command, which is installed as one of
Pgpool-II's executables. pg_md5 takes text as a command line argument, and displays its md5-hashed text.
For example, give "postgres" as the command line argument, and pg_md5 displays md5-hashed text on its
standard output.

$ /usr/bin/pg_md5 postgres
e8a48653851e28c69d0506508fb27fc5

PCP commands are executed via network, so the port number must be configured with pcp_port parameter
in pgpool.conf file. We will use the default 9898 for pcp_port in this tutorial.

pcp_port = 9898

7.1.1.4. Preparing Database Nodes

Now, we need to set up backend PostgreSQL servers for Pgpool-II . These servers can be placed within the
same host as Pgpool-II, or on separate machines. If you decide to place the servers on the same host,
different port numbers must be assigned for each server. If the servers are placed on separate machines,
they must be configured properly so that they can accept network connections from Pgpool-II.

backend_hostname0 = 'localhost'
backend_port0 = 5432
backend_weight0 = 1
backend_hostname1 = 'localhost'
backend_port1 = 5433
backend_weight1 = 1
backend_hostname2 = 'localhost'
backend_port2 = 5434
backend_weight2 = 1

For backend_hostname, backend_port, backend_weight, set the node's hostname, port number, and ratio for
load balancing. At the end of each parameter string, node ID must be specified by adding positive integers
starting with 0 (i.e. 0, 1, 2..).

Note: backend_weight parameters for all nodes are set to 1, meaning that SELECT
queries are equally distributed among three servers.

7.1.1.5. Starting/Stopping Pgpool-II

To fire up Pgpool-II, execute the following command on a terminal.

$ pgpool

The above command, however, prints no log messages because Pgpool-II detaches the terminal. If you want
to show Pgpool-II log messages, you pass -n option to pgpool command so Pgpool-II is executed as non-
daemon process, and the terminal will not be detached.

$ pgpool -n &

The log messages are printed on the terminal, so it is recommended to use the following options.

$ pgpool -n -d > /tmp/pgpool.log 2>&1 &

The -d option enables debug messages to be generated. The above command keeps appending log
messages to /tmp/pgpool.log . If you need to rotate log files, pass the logs to a external command which has log
rotation function. For example, you can use rotatelogs from Apache2:

$ pgpool -n 2>&1 | /usr/local/apache2/bin/rotatelogs \
-l -f /var/log/pgpool/pgpool.log.%A 86400 &

This will generate a log file named "pgpool.log.Thursday" then rotate it 00:00 at midnight. Rotatelogs adds logs
to a file if it already exists. To delete old log files before rotation, you could use cron:

55 23 * * * /usr/bin/find /var/log/pgpool -type f -mtime +5 -exec /bin/rm -f '{}' \;

Please note that rotatelogs may exist as /usr/sbin/rotatelogs2 in some distributions. -f option generates a log file
as soon as rotatelogs starts and is available in apache2 2.2.9 or greater. Also cronolog can be used.

$ pgpool -n 2>&1 | /usr/sbin/cronolog \
--hardlink=/var/log/pgsql/pgpool.log \
'/var/log/pgsql/%Y-%m-%d-pgpool.log' &

To stop Pgpool-II execute the following command.

$ pgpool stop

If any client is still connected, Pgpool-II waits for it to disconnect, and then terminates itself. Run the
following command instead if you want to shutdown Pgpool-II forcibly.

$ pgpool -m fast stop

https://httpd.apache.org/docs/2.4/programs/rotatelogs.html
http://www.cronolog.org/

7.1.2. Your First Replication

Replication (see Section 5.3.2) enables the same data to be copied to multiple database nodes. In this
section, we'll use three database nodes, which we have already set up in Section 7.1.1, and takes you step
by step to create a database replication system. Sample data to be replicated will be generated by the
pgbench benchmark program.

7.1.2.1. Configuring Replication

To enable the database replication function, set replication_mode to on in pgpool.conf file.

replication_mode = true

When replication_mode is on, Pgpool-II will send a copy of a received query to all the database nodes. In
addition, when load_balance_mode is set to true, Pgpool-II will distribute SELECT queries among the database
nodes.

load_balance_mode = true

In this section, we will enable both replication_mode and load_balance_mode.

7.1.2.2. Checking Replication

To reflect the changes in pgpool.conf, Pgpool-II must be restarted. Please refer to "Starting/Stopping Pgpool-II"
Section 7.1.1.5. After configuring pgpool.conf and restarting the Pgpool-II, let's try the actual replication and
see if everything is working. First, we need to create a database to be replicated. We will name it
"bench_replication". This database needs to be created on all the nodes. Use the createdb commands through
Pgpool-II, and the database will be created on all the nodes.

$ createdb -p 9999 bench_replication

Then, we'll execute pgbench with -i option. -i option initializes the database with pre-defined tables and data.

$ pgbench -i -p 9999 bench_replication

The following table is the summary of tables and data, which will be created by pgbench -i. If, on all the nodes,
the listed tables and data are created, replication is working correctly.

Table 7-1. data summary

Table Name Number of Rows
pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0

Let's use a simple shell script to check the above on all the nodes. The following script will display the
number of rows in pgbench_branches, pgbench_tellers, pgbench_accounts, and pgbench_history tables on all
the nodes (5432, 5433, 5434).

https://www.postgresql.org/docs/current/static/pgbench.html
https://www.postgresql.org/docs/current/static/app-createdb.html
https://www.postgresql.org/docs/current/static/pgbench.html
https://www.postgresql.org/docs/current/static/pgbench.html

$ for port in 5432 5433 5434; do
> echo $port
> for table_name in pgbench_branches pgbench_tellers pgbench_accounts pgbench_history; do
> echo $table_name
> psql -c "SELECT count(*) FROM $table_name" -p $port bench_replication
> done
> done

7.2. Watchdog Configuration Example

This tutrial explains the simple way to try "Watchdog". What you need is 2 Linux boxes on which Pgpool-II is
installed and a PostgreSQL on the same machine or in the other one. It is enough that 1 node for backend
exists. You can use watchdog with Pgpool-II in any mode: replication mode, master/slave mode and raw
mode.

This example uses use "osspc16" as an Active node and "osspc20" as a Standby node. "Someserver" means
one of them.

7.2.1. Common configurations

Set the following parameters in both of active and standby nodes.

7.2.1.1. Enabling watchdog

First of all, set use_watchdog to on.

use_watchdog = on
Activates watchdog

7.2.1.2. Configure Up stream servers

Specify the up stream servers (e.g. application servers). Leaving it blank is also fine.

trusted_servers = ''
 # trusted server list which are used
 # to confirm network connection
 # (hostA,hostB,hostC,...)

7.2.1.3. Watchdog Communication

Specify the TCP port number for watchdog communication.

wd_port = 9000
 # port number for watchdog service

7.2.1.4. Virtual IP

Specify the IP address to be used as a virtual IP address in the delegate_IP.

delegate_IP = '133.137.177.143'
delegate IP address

Note: Make sure the IP address configured as a Virtual IP should be free and is not used
by any other machine.

7.2.2. Individual Server Configurations

Next, set the following parameters for each Pgpool-II. Specify other_pgpool_hostname, other_pgpool_port
and other_wd_port with the values of other Pgpool-II server values.

7.2.2.1. Active (osspc16) Server configurations

other_pgpool_hostname0 = 'osspc20'
 # Host name or IP address to connect to for other pgpool 0
other_pgpool_port0 = 9999
 # Port number for other pgpool 0
other_wd_port0 = 9000
 # Port number for other watchdog 0

7.2.2.2. Standby (osspc20) Server configurations

other_pgpool_hostname0 = 'osspc16'
 # Host name or IP address to connect to for other pgpool 0
other_pgpool_port0 = 9999
 # Port number for other pgpool 0
other_wd_port0 = 9000
 # Port number for other watchdog 0

7.2.3. Starting Pgpool-II

Start Pgpool-II on each servers from root user with "-n" switch and redirect log messages into pgpool.log file.

7.2.3.1. Starting pgpool in Active server (osspc16)

First start the Pgpool-II on Active server.

[user@osspc16]$ su -
[root@osspc16]# {installed_dir}/bin/pgpool -n -f {installed_dir}/etc/pgpool.conf > pgpool.log 2>&1

Log messages will show that Pgpool-II has the virtual IP address and starts watchdog process.

LOG: I am announcing my self as master/coordinator watchdog node
LOG: I am the cluster leader node
DETAIL: our declare coordinator message is accepted by all nodes
LOG: I am the cluster leader node. Starting escalation process
LOG: escalation process started with PID:59449
LOG: watchdog process is initialized
LOG: watchdog: escalation started
LOG: I am the master watchdog node
 DETAIL: using the local backend node status

7.2.3.2. Starting pgpool in Standby server (osspc20)

Now start the Pgpool-II on Standby server.

[user@osspc20]$ su -
[root@osspc20]# {installed_dir}/bin/pgpool -n -f {installed_dir}/etc/pgpool.conf > pgpool.log 2>&1

Log messages will show that Pgpool-II has joind the watchdog cluster as standby watchdog.

LOG: watchdog cluster configured with 1 remote nodes
LOG: watchdog remote node:0 on Linux_osspc16_9000:9000
LOG: interface monitoring is disabled in watchdog
LOG: IPC socket path: "/tmp/.s.PGPOOLWD_CMD.9000"
LOG: watchdog node state changed from [DEAD] to [LOADING]
LOG: new outbound connection to Linux_osspc16_9000:9000
LOG: watchdog node state changed from [LOADING] to [INITIALIZING]
LOG: watchdog node state changed from [INITIALIZING] to [STANDBY]
LOG: successfully joined the watchdog cluster as standby node
DETAIL: our join coordinator request is accepted by cluster leader node "Linux_osspc16_9000"
LOG: watchdog process is initialized

7.2.4. Try it out

Confirm to ping to the virtual IP address.

[user@someserver]$ ping 133.137.177.142
PING 133.137.177.143 (133.137.177.143) 56(84) bytes of data.
64 bytes from 133.137.177.143: icmp_seq=1 ttl=64 time=0.328 ms
64 bytes from 133.137.177.143: icmp_seq=2 ttl=64 time=0.264 ms
64 bytes from 133.137.177.143: icmp_seq=3 ttl=64 time=0.412 ms

Confirm if the Active server which started at first has the virtual IP address.

[root@osspc16]# ifconfig
eth0 ...

eth0:0 inet addr:133.137.177.143 ...

lo ...

Confirm if the Standby server which started not at first doesn't have the virtual IP address.

[root@osspc20]# ifconfig
eth0 ...

lo ...

Try to connect PostgreSQL by "psql -h delegate_IP -p port".

[user@someserver]$ psql -h 133.137.177.142 -p 9999 -l

7.2.5. Switching virtual IP

Confirm how the Standby server works when the Active server can't provide its service. Stop Pgpool-II on the
Active server.

[root@osspc16]# {installed_dir}/bin/pgpool stop

Then, the Standby server starts to use the virtual IP address. Log shows:

LOG: remote node "Linux_osspc16_9000" is shutting down
LOG: watchdog cluster has lost the coordinator node
LOG: watchdog node state changed from [STANDBY] to [JOINING]
LOG: watchdog node state changed from [JOINING] to [INITIALIZING]
LOG: I am the only alive node in the watchdog cluster
HINT: skipping stand for coordinator state
LOG: watchdog node state changed from [INITIALIZING] to [MASTER]
LOG: I am announcing my self as master/coordinator watchdog node
LOG: I am the cluster leader node
DETAIL: our declare coordinator message is accepted by all nodes
LOG: I am the cluster leader node. Starting escalation process
LOG: watchdog: escalation started
LOG: watchdog escalation process with pid: 59551 exit with SUCCESS.

Confirm to ping to the virtual IP address.

[user@someserver]$ ping 133.137.177.142
PING 133.137.177.143 (133.137.177.143) 56(84) bytes of data.
64 bytes from 133.137.177.143: icmp_seq=1 ttl=64 time=0.328 ms
64 bytes from 133.137.177.143: icmp_seq=2 ttl=64 time=0.264 ms
64 bytes from 133.137.177.143: icmp_seq=3 ttl=64 time=0.412 ms

Confirm that the Active server doesn't use the virtual IP address any more.

[root@osspc16]# ifconfig
eth0 ...

lo ...

Confirm that the Standby server uses the virtual IP address.

[root@osspc20]# ifconfig
eth0 ...

eth0:0 inet addr:133.137.177.143 ...

lo ...

Try to connect PostgreSQL by "psql -h delegate_IP -p port".

[user@someserver]$ psql -h 133.137.177.142 -p 9999 -l

7.2.6. More

7.2.6.1. Lifecheck

There are the parameters about watchdog's monitoring. Specify the interval to check wd_interval, the count
to retry wd_life_point, the qyery to check wd_lifecheck_query and finaly the type of lifecheck
wd_lifecheck_method.

wd_lifecheck_method = 'query'
 # Method of watchdog lifecheck ('heartbeat' or 'query' or 'external')
 # (change requires restart)
wd_interval = 10
 # lifecheck interval (sec) > 0
wd_life_point = 3
 # lifecheck retry times
wd_lifecheck_query = 'SELECT 1'
 # lifecheck query to pgpool from watchdog

7.2.6.2. Switching virtual IP address

There are the parameters for switching the virtual IP address. Specify switching commands if_up_cmd,
if_down_cmd, the path to them if_cmd_path, the command executed after switching to send ARP request
arping_cmd and the path to it arping_path.

ifconfig_path = '/sbin'
ifconfig command path
if_up_cmd = 'ifconfig eth0:0 inet $_IP_$ netmask 255.255.255.0'
startup delegate IP command
if_down_cmd = 'ifconfig eth0:0 down'
shutdown delegate IP command

arping_path = '/usr/sbin' # arping command path

arping_cmd = 'arping -U $_IP_$ -w 1'

You can also use the custom scripts to bring up and bring down the virtual IP using wd_escalation_command
and wd_de_escalation_command configurations.

7.3. Pgpoo-II + Watchdog Setup Example

This section shows an example of streaming replication configuration using Pgpool-II. In this example, we use
3 Pgpool-II servers to manage PostgreSQL servers to create a robust cluster system and avoid the single
point of failure or split brain.

7.3.1. Requirements

We assume that all the Pgpool-II servers and the PostgreSQL servers are in the same subnet.

7.3.2. Cluster System Configuration

We use 2 PostgreSQL servers and 3 Pgpool-II servers with CentOS7. Let these servers be osspc16, osspc17,
osspc18, osspc19 and osspc20.

Figure 7-1. Cluster System Configuration

Note: The roles of Active, Standy, Primary, Standby are not fixed and may be changed by
further operations.

7.3.3. Installation

In this example, we install Pgpool-II and PostgreSQL by using RPM packages.

Table 7-2. Pgpool-II, PostgreSQL version informations and Configuration

Server Version Host Name Port $PGDATA Directory
PostgreSQL server (primary) PostgreSQL 9.6.1 osspc19 5432 /var/lib/pgsql/9.6/data
PostgreSQL server (standby) PostgreSQL 9.6.1 osspc20 5432 /var/lib/pgsql/9.6/data
Pgpool-II server Pgpool-II 3.6.1 osspc16 9999 -
Pgpool-II server Pgpool-II 3.6.1 osspc17 9999 -
Pgpool-II server Pgpool-II 3.6.1 osspc18 9999 -

Install Pgpool-II by using Pgpool-II YUM repository.

yum install http://www.pgpool.net/yum/rpms/3.6/redhat/rhel-7-x86_64/pgpool-II-release-3.6-1.noarch.rpm
yum install pgpool-II-pg96
yum install pgpool-II-pg96-debuginfo
yum install pgpool-II-pg96-devel
yum install pgpool-II-pg96-extensions

Install PostgreSQL by using PostgreSQL YUM repository.

yum install https://yum.postgresql.org/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
yum install postgresql96 postgresql96-devel postgresql96-server

7.3.4. Before Starting

Before you start the configuration process, please check the following prerequisites.

Set up PostgreSQL streaming replication on the primary server. In this example, we use WAL archiving.

First, we create the directory /var/lib/pgsql/archivedir to store WAL segments on both PostgreSQL servers
(osspc19 and osspc20).

[PostgreSQL server]$ mkdir /var/lib/pgsql/archivedir

Then we edit the configuration file $PGDATA/postgresql.conf on osspc19 (primary) as follows.

listen_addresses = '*'
wal_level = hot_standby
max_wal_senders = 2

archive_mode = on
archive_command = 'cp "%p" "/var/lib/pgsql/archivedir/%f"'

We use the online recovery functionality of Pgpool-II to setup standby server after the primary server is
started.

Because of the security reasons, we create a user repl solely used for replication purpose, and a user
pgpool for streaming replication delay check and health check of Pgpool-II. Assuming that all the Pgpool-II
servers and the PostgreSQL servers are in the network of 133.137.174.0/24, and edit pg_hba.conf to enable
md5 authentication method.

host all pgpool 133.137.174.0/24 md5
host all all 0.0.0.0/0 md5

host replication repl 133.137.174.0/24 md5

To use the failover and online recovery of Pgpool-II, the settings that allow SSH without passowrd to
other servers (osspc16 - osspc20) are necessary.

To allow repl user without specifying password for streaming replication and online recovery, we create
the .pgpass file in postgres user's home directory and change the permisson to 600 on both postgreSQL
servers osspc19 and osspc20.

[osspc19]$ cat /var/lib/pgsql/.pgpass
osspc20:5432:replication:repl:<password of repl user>

[osspc20]$ cat /var/lib/pgsql/.pgpass
osspc19:5432:replication:repl:<passowrd of repl user>

$ chmod 600 /var/lib/pgsql/.pgpass

When Pgpool-II connects to other Pgpool-II servers or PostgreSQL servers, the target port must be
accessible by enabling firewall management softwares. Following is an example for CentOS/RHEL7.

[PostgreSQL server]# firewall-cmd --permanent --zone=public --add-service=postgresql
[PostgreSQL server]# firewall-cmd --reload

The following commands are to enable Pgpool-II and PostgreSQL start on system boot.

[Pgpool-II server]# systemctl enable pgpool.service

[PostgreSQL server]# systemctl enable postgresql.service

7.3.5. Pgpool-II Configuration

7.3.5.1. Common Settings

Here are the common settings on osspc16, osspc17 and osspc18.

When installing Pgpool-II from RPM, all the Pgpool-II configuration files are in /etc/pgpool-II. In this example, we
copy the sample configuration file for streaming replicaton mode.

cp /etc/pgpool-II/pgpool.conf.sample-stream /etc/pgpool-II/pgpool.conf

To allow Pgpool-II to accept all incoming connections, we set listen_addresses = '*'.

listen_addresses = '*'

Specifiy replication delay check user and password.

sr_check_user = 'pgpool'
sr_check_password = 'pgpool'

Enable health check so that pgpool-II performs failover. Also, if the network is unstable, the health check fails
even though the backend is running properly, failover or degenerate operation may occur. In order to
prevent such incorrect detection of health check, we set health_check_max_retries = 10.

health_check_period = 5
 # Health check period
 # Disabled (0) by default
health_check_timeout = 20
 # Health check timeout
 # 0 means no timeout
health_check_user = 'pgpool'
health_check_password = 'pgpool'

health_check_max_retries = 10

Specify the backend informations with osspc19 and osspc20.

- Backend Connection Settings -

backend_hostname0 = 'osspc19'
 # Host name or IP address to connect to for backend 0
backend_port0 = 5432
 # Port number for backend 0
backend_weight0 = 1
 # Weight for backend 0 (only in load balancing mode)
backend_data_directory0 = '/var/lib/pgsql/9.6/data'
 # Data directory for backend 0
backend_flag0 = 'ALLOW_TO_FAILOVER'
 # Controls various backend behavior
 # ALLOW_TO_FAILOVER or DISALLOW_TO_FAILOVER
backend_hostname1 = 'osspc20'
backend_port1 = 5432
backend_weight1 = 1
backend_data_directory1 = '/var/lib/pgsql/9.6/data'
backend_flag1 = 'ALLOW_TO_FAILOVER'

7.3.5.2. Failover configuration

Specify failover_command to execute failover.sh script. The special characters %d %P %H %R in failover_command
are replcaed with DB node ID of the detached node, Old primary node ID, Hostname of the new master node, Database cluster
directory of the new master node.

failover_command = '/etc/pgpool-II/failover.sh %d %P %H %R'

Create /etc/pgpool-II/failover.sh, and set the file permisson to 755.

vi /etc/pgpool-II/failover.sh
chmod 755 /etc/pgpool-II/failover.sh

/etc/pgpool-II/failover.sh

#! /bin/sh -x
Execute command by failover.
special values: %d = node id
%h = host name
%p = port number
%D = database cluster path
%m = new master node id
%M = old master node id
%H = new master node host name
%P = old primary node id
%R = new master database cluster path
%r = new master port number
%% = '%' character

falling_node=$1 # %d
old_primary=$2 # %P
new_primary=$3 # %H
pgdata=$4 # %R

pghome=/usr/pgsql-9.6
log=/var/log/pgpool/failover.log

date >> $log
echo "failed_node_id=$falling_node new_primary=$new_primary" >> $log

if [$falling_node = $old_primary]; then
 if [$UID -eq 0]
 then
 su postgres -c "ssh -T postgres@$new_primary $pghome/bin/pg_ctl promote -D $pgdata"
 else
 ssh -T postgres@$new_primary $pghome/bin/pg_ctl promote -D $pgdata
 fi
 exit 0;
fi;
exit 0;

7.3.5.3. Pgpool-II Online Recovery Configurations

Next, in order to perform online recovery with Pgpool-II we specify the PostgreSQL user name and online
recovery command recovery_1st_stage. Then, we create recovery_1st_stage and pgpool_remote_start in database
cluster directory of PostgreSQL primary server, and set the file permissions to 755.

recovery_user = 'postgres'
 # Online recovery user
recovery_password = 'postgres'
 # Online recovery password

recovery_1st_stage_command = 'recovery_1st_stage'

$ vi /var/lib/pgsql/9.6/data/recovery_1st_stage
$ vi /var/lib/pgsql/9.6/data/pgpool_remote_start
$ chmod 755 /var/lib/pgsql/9.6/data/recovery_1st_stage
$ chmod 755 /var/lib/pgsql/9.6/data/pgpool_remote_start

/var/lib/pgsql/9.6/data/recovery_1st_stage

#!/bin/bash -x
Recovery script for streaming replication.

pgdata=$1
remote_host=$2
remote_pgdata=$3
port=$4

pghome=/usr/pgsql-9.6
archivedir=/var/lib/pgsql/archivedir
hostname=$(hostname)

ssh -T postgres@$remote_host "
rm -rf $remote_pgdata
$pghome/bin/pg_basebackup -h $hostname -U repl -D $remote_pgdata -x -c fast
rm -rf $archivedir/*

cd $remote_pgdata
cp postgresql.conf postgresql.conf.bak
sed -e 's/#*hot_standby = off/hot_standby = on/' postgresql.conf.bak > postgresql.conf
rm -f postgresql.conf.bak
cat > recovery.conf << EOT
standby_mode = 'on'
primary_conninfo = 'host="$hostname" port=$port user=repl'
restore_command = 'scp $hostname:$archivedir/%f %p'
EOT
"

/var/lib/pgsql/9.6/data/pgpool_remote_start

#! /bin/sh -x

pghome=/usr/pgsql-9.6
remote_host=$1
remote_pgdata=$2

Start recovery target PostgreSQL server
ssh -T $remote_host $pghome/bin/pg_ctl -w -D $remote_pgdata start > /dev/null 2>&1 < /dev/null &

In order to use the online recovery functionality, the functions of pgpool_recovery, pgpool_remote_start,
pgpool_switch_xlog are required, so we need install pgpool_recovery on template1 of PostgreSQL server osspc19.

su - postgres
$ psql template1
=# CREATE EXTENSION pgpool_recovery;

7.3.5.4. Client Authentication Configuration

Because in the section Before Starting, we already set PostgreSQL authentication method to md5, it is
necessary to set a client authentication by Pgpool-II to connect to backend nodes. When installing from RPM,
the Pgpool-II configuration file pool_hba.conf is in /etc/pgpool-II. By default, pool_hba authentication is disabled,
and set enable_pool_hba = on to enable it.

enable_pool_hba = on

The format of pool_hba.conf file follows very closely PostgreSQL's pg_hba.conf format. Set pgpool and postgres
user's authentication method to md5.

host all pgpool 0.0.0.0/0 md5
host all postgres 0.0.0.0/0 md5

To use md5 authentication, we need to register the user name and password in file pool_passwd. Execute
command pg_md5 --md5auth --username=<user name> <password> to regist user name and MD5-hashed password
in file pool_passwd. If pool_passwd doesn't exist yet, it will be created in the same directory as pgpool.conf.

pg_md5 --md5auth --username=pgpool <password of pgpool user>
pg_md5 --md5auth --username=postgres <password of postgres user>

7.3.5.5. Watchdog Configuration

Enable watchdog functionality on osspc16, osspc17, osspc18.

use_watchdog = on

Specify virtual IP address that accepts connections from clients on osspc16, osspc17, osspc18. Ensure that the IP
address set to virtual IP isn't used yet.

delegate_IP = '133.137.174.153'

Specify the hostname and port number of each Pgpool-II server.

osspc16

wd_hostname = 'osspc16'
wd_port = 9000

osspc17

wd_hostname = 'osspc17'
wd_port = 9000

osspc18

wd_hostname = 'osspc18'
wd_port = 9000

Specify the hostname, Pgpool-II port number, and watchdog port number of monitored Pgpool-II servers on
each Pgpool-II server.

osspc16

- Other pgpool Connection Settings -

other_pgpool_hostname0 = 'osspc17'
 # Host name or IP address to connect to for other pgpool 0
 # (change requires restart)
other_pgpool_port0 = 9999
 # Port number for other pgpool 0
 # (change requires restart)
other_wd_port0 = 9000
 # Port number for other watchdog 0
 # (change requires restart)
other_pgpool_hostname1 = 'osspc18'
other_pgpool_port1 = 9999
other_wd_port1 = 9000

osspc17

- Other pgpool Connection Settings -

other_pgpool_hostname0 = 'osspc16'
 # Host name or IP address to connect to for other pgpool 0
 # (change requires restart)
other_pgpool_port0 = 9999
 # Port number for other pgpool 0
 # (change requires restart)
other_wd_port0 = 9000
 # Port number for other watchdog 0
 # (change requires restart)
other_pgpool_hostname1 = 'osspc18'
other_pgpool_port1 = 9999
other_wd_port1 = 9000

osspc18

- Other pgpool Connection Settings -

other_pgpool_hostname0 = 'osspc16'
 # Host name or IP address to connect to for other pgpool 0
 # (change requires restart)
other_pgpool_port0 = 9999
 # Port number for other pgpool 0
 # (change requires restart)
other_wd_port0 = 9000
 # Port number for other watchdog 0
 # (change requires restart)
other_pgpool_hostname1 = 'osspc17'
other_pgpool_port1 = 9999
other_wd_port1 = 9000

Specify the hostname and port number of destination for sending heartbeat signal on osspc16, osspc17, osspc18.

osspc16

heartbeat_destination0 = 'osspc17'
 # Host name or IP address of destination 0
 # for sending heartbeat signal.
 # (change requires restart)
heartbeat_destination_port0 = 9694
 # Port number of destination 0 for sending
 # heartbeat signal. Usually this is the
 # same as wd_heartbeat_port.
 # (change requires restart)
heartbeat_device0 = ''
 # Name of NIC device (such like 'eth0')
 # used for sending/receiving heartbeat
 # signal to/from destination 0.
 # This works only when this is not empty
 # and pgpool has root privilege.
 # (change requires restart)

heartbeat_destination1 = 'osspc18'
heartbeat_destination_port1 = 9694
heartbeat_device1 = ''

osspc17

heartbeat_destination0 = 'osspc16'
 # Host name or IP address of destination 0
 # for sending heartbeat signal.
 # (change requires restart)
heartbeat_destination_port0 = 9694
 # Port number of destination 0 for sending
 # heartbeat signal. Usually this is the
 # same as wd_heartbeat_port.
 # (change requires restart)
heartbeat_device0 = ''
 # Name of NIC device (such like 'eth0')
 # used for sending/receiving heartbeat
 # signal to/from destination 0.
 # This works only when this is not empty
 # and pgpool has root privilege.
 # (change requires restart)

heartbeat_destination1 = 'osspc18'
heartbeat_destination_port1 = 9694
heartbeat_device1 = ''

osspc18

heartbeat_destination0 = 'osspc16'
 # Host name or IP address of destination 0
 # for sending heartbeat signal.
 # (change requires restart)
heartbeat_destination_port0 = 9694
 # Port number of destination 0 for sending
 # heartbeat signal. Usually this is the
 # same as wd_heartbeat_port.
 # (change requires restart)
heartbeat_device0 = ''
 # Name of NIC device (such like 'eth0')
 # used for sending/receiving heartbeat
 # signal to/from destination 0.
 # This works only when this is not empty
 # and pgpool has root privilege.
 # (change requires restart)

heartbeat_destination1 = 'osspc17'
heartbeat_destination_port1 = 9694
heartbeat_device1 = ''

7.3.5.6. PCP Command Configuration

Because user authentication is required to use the PCP command, we specify user name and md5 encrypted
password in pcp.conf. Here we create the encrypted password for user postgres, and add <username: encrypted
password≷ in /etc/pgpool-II/pcp.conf.

pg_md5 -p
Password: (input password)
(paste the md5 encrypted password to pcp.conf)

vi /etc/pgpool-II/pcp.conf
(add password entry)
user name:md5 encrypted password

The settings of Pgpool-II is completed.

7.3.6. Starting/Stopping Pgpool-II

Next we start Pgpool-II. Before starting Pgpool-II, please start PostgreSQL servers first. Also, when stopping
PostgreSQL, it is necessary to stop Pgpool-II first.

Starting Pgpool-II

In section Before Starting, we already set the auto-start of Pgpool-II. To start Pgpool-II, restart the whole
system or execute the following command.

systemctl start pgpool.service

Stopping Pgpool-II

systemctl stop pgpool.service

7.3.7. Log

Use journalctl command to see Pgpool-II logs.

journalctl -a | grep pgpool

7.3.8. How to use

Let's start to use Pgpool-II. First, let's start Pgpool-II on osspc16, osspc17, osspc18 by using the following
command.

systemctl start pgpool.service

7.3.8.1. Set up PostgreSQL standby server

First, we should set up PostgreSQL standby server by using Pgpool-II online recovery functionality. Ensure
that recovery_1st_stage and pgpool_remote_start scripts used by pcp_recovery_node command are in database cluster
directory of PostgreSQL primary server (osspc19).

pcp_recovery_node -h 133.137.174.153 -p 9898 -U postgres -n 1

After executing pcp_recovery_node command, vertify that osspc20 is started as a PostgreSQL standby server.

psql -h 133.137.174.153 -p 9999 -U pgpool postgres

postgres=> show pool_nodes;
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+------+--------+-----------+---------+------------+-------------------+-------------------
 0 | osspc19 | 5432 | up | 0.500000 | primary | 0 | true | 0
 1 | osspc20 | 5432 | up | 0.500000 | standby | 0 | false | 0

7.3.8.2. Switching active/standby watchdog

Confirm the watchdog status by using pcp_watchdog_info. The Pgpool-II server which is started first run as MASTER.

pcp_watchdog_info -h 133.137.174.153 -p 9898 -U postgres
Password:
3 YES osspc16:9999 Linux osspc16 osspc16

osspc16:9999 Linux osspc16 osspc16 9999 9000 4 MASTER #The Pgpool-II server started first becames "MASTER".
osspc17:9999 Linux osspc17 osspc17 9999 9000 7 STANDBY #run as standby
osspc18:9999 Linux osspc18 osspc18 9999 9000 7 STANDBY #run as standby

Stop active server osspc16, then osspc17 or osspc18 will be promoted to active server. To stop osspc16, we can
stop Pgpool-II service or shutdown the whole system. Here, we stop Pgpool-II service.

[root@osspc16 ~]# systemctl stop pgpool.service
[root@osspc16 ~]# pcp_watchdog_info -h 133.137.174.153 -p 9898 -U postgres
Password:
3 YES osspc17:9999 Linux osspc17 osspc17

osspc17:9999 Linux osspc17 osspc17 9999 9000 4 MASTER #osspc17 is promoted to MASTER
osspc16:9999 Linux osspc16 osspc16 9999 9000 10 SHUTDOWN #osspc16 is stopped
osspc18:9999 Linux osspc18 osspc18 9999 9000 7 STANDBY #osspc18 runs as STANDBY

Start Pgpool-II (osspc16) which we have stopped again, and vertify that osspc16 runs as a standby.

[root@osspc16 ~]# systemctl start pgpool.service
[root@osspc16 ~]# pcp_watchdog_info -h 133.137.174.153 -p 9898 -U postgres
Password:
3 YES osspc17:9999 Linux osspc17 osspc17

osspc17:9999 Linux osspc17 osspc17 9999 9000 4 MASTER
osspc16:9999 Linux osspc16 osspc16 9999 9000 7 STANDBY
osspc18:9999 Linux osspc18 osspc18 9999 9000 7 STANDBY

7.3.8.3. Failover

First, use psql to connect to PostgreSQL via virtual IP, and verify the backend informations.

psql -h 133.137.174.153 -p 9999 -U pgpool postgres

postgres=> show pool_nodes;
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+------+--------+-----------+---------+------------+-------------------+-------------------
 0 | osspc19 | 5432 | up | 0.500000 | primary | 0 | true | 0
 1 | osspc20 | 5432 | up | 0.500000 | standby | 0 | false | 0

Next, stop primary PostgreSQL server osspc19, and verify automatic failover.

$ pg_ctl -D /var/lib/pgsql/9.6/data -m immediate stop

After stopping PostgreSQL on osspc19, failover occurs and PostgreSQL on osspc20 becomes new primary DB.

psql -h 133.137.174.153 -p 9999 -U pgpool postgres

postgres=> show pool_nodes;
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+------+--------+-----------+---------+------------+-------------------+-------------------
 0 | osspc19 | 5432 | down | 0.500000 | standby | 0 | false | 0
 1 | osspc20 | 5432 | up | 0.500000 | primary | 0 | true | 0

7.3.8.4. Online Recovery

Here, we use Pgpool-II online recovery functionality to restore osspc19 (old primary server) as a standby.
Before restoring the old primary server, please ensure that recovery_1st_stage and pgpool_remote_start scripts
exist in database cluster directory of current primary server osspc20.

pcp_recovery_node -h 133.137.174.153 -p 9898 -U postgres -n 0

Then verify that osspc19 is started as a standby.

psql -h 133.137.174.153 -p 9999 -U pgpool postgres

postgres=> show pool_nodes;
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+------+--------+-----------+---------+------------+-------------------+-------------------
 0 | osspc19 | 5432 | up | 0.500000 | standby | 0 | false | 0
 1 | osspc20 | 5432 | up | 0.500000 | primary | 0 | true | 0

7.4. AWS Configuration Example

This tutrial explains the simple way to try "Watchdog" on AWS and using the Elastic IP Address as the Virtual
IP for the high availability solution.

Note: You can use watchdog with Pgpool-II in any mode: replication mode, master/slave
mode and raw mode.

7.4.1. AWS Setup

For this example, we will use two node Pgpool-II watchdog cluster. So we will set up two Linux Amazon EC2
instances and one Elastic IP address. So for this example, do the following steps:

Launch two Linux Amazon EC2 instances. For this example, we name these instances as "instance-1"
and "instance-2"

Configure the security group for the instances and allow inbound traffic on ports used by pgpool-II and
watchdog.

Install the Pgpool-II on both instances.

Allocate an Elastic IP address. For this example, we will use "35.163.178.3" as an Elastic IP address"

7.4.2. Pgpool-II configurations

Mostly the Pgpool-II configurations for this example will be same as in the Section 7.2, except the delegate_IP
which we will not set in this example instead we will use wd_escalation_command and
wd_de_escalation_command to switch the Elastic IP address to the maste/Active Pgpool-II node.

7.4.2.1. Pgpool-II configurations on Instance-1

https://aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

use_watchdog = on
delegate_IP = ''
wd_hostname = 'instance-1-private-ip'
other_pgpool_hostname0 = 'instance-2-private-ip'
other_pgpool_port0 = 9999
other_wd_port0 = 9000
wd_escalation_command = '$path_to_script/aws-escalation.sh'
wd_de_escalation_command = '$path_to_script/aws-de-escalation.sh'

7.4.2.2. Pgpool-II configurations on Instance-2

use_watchdog = on
delegate_IP = ''
wd_hostname = 'instance-2-private-ip'
other_pgpool_hostname0 = 'instance-1-private-ip'
other_pgpool_port0 = 9999
other_wd_port0 = 9000
wd_escalation_command = '$path_to_script/aws-escalation.sh'
wd_de_escalation_command = '$path_to_script/aws-de-escalation.sh'

7.4.3. escalation and de-escalation Scripts

Create the aws-escalation.sh and aws-de-escalation.sh scripts on both instances and point the
wd_escalation_command and wd_de_escalation_command to the respective scripts.

Note: You may need to configure the AWS CLI first on all AWS instances to enable the
execution of commands used by wd-escalation.sh and wd-de-escalation.sh. See
configure AWS CLI

7.4.3.1. escalation script

This script will be executed by the watchdog to assign the Elastic IP on the instance when the watchdog
becomes the active/master node. Change the INSTANCE_ID and ELASTIC_IP values as per your AWS setup
values.

aws-escalation.sh:

#! /bin/sh

ELASTIC_IP=35.163.178.3
 # replace it with the Elastic IP address you
 # allocated from the aws console
INSTANCE_ID=i-0a9b64e449b17ed4b
 # replace it with the instance id of the Instance
 # this script is installed on

echo "Assigning Elastic IP $ELASTIC_IP to the instance $INSTANCE_ID"
bring up the Elastic IP
aws ec2 associate-address --instance-id $INSTANCE_ID --public-ip $ELASTIC_IP

exit 0

7.4.3.2. de-escalation script

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

This script will be executed by watchdog to remove the Elastic IP from the instance when the watchdog
resign from the active/master node.

aws-de-escalation.sh:

#! /bin/sh

ELASTIC_IP=35.163.178.3
 # replace it with the Elastic IP address you
 # allocated from the aws console

echo "disassociating the Elastic IP $ELASTIC_IP from the instance"
bring down the Elastic IP
aws ec2 disassociate-address --public-ip $ELASTIC_IP
exit 0

AWS Command References

"Configure AWS CLI", AWS Documentation: Configuring the AWS Command Line Interface .

"associate-address", AWS Documentation: associate-address reference.

"disassociate-address", AWS Documentation: disassociate-address reference.

7.4.4. Try it out

Start Pgpool-II on each server with "-n" switch and redirect log messages to the pgpool.log file. The log
message of master/active Pgpool-II node will show the message of Elastic IP assignment.

LOG: I am the cluster leader node. Starting escalation process
LOG: escalation process started with PID:23543
LOG: watchdog: escalation started
 Assigning Elastic IP 35.163.178.3 to the instance i-0a9b64e449b17ed4b
 {
 "AssociationId": "eipassoc-39853c42"
 }
LOG: watchdog escalation successful
LOG: watchdog escalation process with pid: 23543 exit with SUCCESS.

Confirm to ping to the Elastic IP address.

[user@someserver]$ ping 35.163.178.3
PING 35.163.178.3 (35.163.178.3) 56(84) bytes of data.
64 bytes from 35.163.178.3: icmp_seq=1 ttl=64 time=0.328 ms
64 bytes from 35.163.178.3: icmp_seq=2 ttl=64 time=0.264 ms
64 bytes from 35.163.178.3: icmp_seq=3 ttl=64 time=0.412 ms

Try to connect PostgreSQL by "psql -h ELASTIC_IP -p port".

[user@someserver]$ psql -h 35.163.178.3 -p 9999 -l

7.4.5. Switching Elastic IP

To confirm if the Standby server acquires the Elastic IP when the Active server becomes unavailable, Stop
the Pgpool-II on the Active server. Then, the Standby server should start using the Elastic IP address, And the
Pgpool-II log will show the below messages.

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/associate-address.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/disassociate-address.html

LOG: remote node "172.31.2.94:9999 [Linux ip-172-31-2-94]" is shutting down
LOG: watchdog cluster has lost the coordinator node
LOG: watchdog node state changed from [STANDBY] to [JOINING]
LOG: watchdog node state changed from [JOINING] to [INITIALIZING]
LOG: I am the only alive node in the watchdog cluster
HINT: skipping stand for coordinator state
LOG: watchdog node state changed from [INITIALIZING] to [MASTER]
LOG: I am announcing my self as master/coordinator watchdog node
LOG: I am the cluster leader node
DETAIL: our declare coordinator message is accepted by all nodes
LOG: I am the cluster leader node. Starting escalation process
LOG: escalation process started with PID:23543
LOG: watchdog: escalation started
 Assigning Elastic IP 35.163.178.3 to the instance i-0dd3e60734a6ebe14
 {
 "AssociationId": "eipassoc-39853c42"
 }
LOG: watchdog escalation successful
LOG: watchdog escalation process with pid: 61581 exit with SUCCESS.

Confirm to ping to the Elastic IP address again.

[user@someserver]$ ping 35.163.178.3
PING 35.163.178.3 (35.163.178.3) 56(84) bytes of data.
64 bytes from 35.163.178.3: icmp_seq=1 ttl=64 time=0.328 ms
64 bytes from 35.163.178.3: icmp_seq=2 ttl=64 time=0.264 ms
64 bytes from 35.163.178.3: icmp_seq=3 ttl=64 time=0.412 ms

Try to connect PostgreSQL by "psql -h ELASTIC_IP -p port".

[user@someserver]$ psql -h 35.163.178.3 -p 9999 -l

7.5. Aurora Configuration Example

Amazon Aurora for PostgreSQL Compatibility (Aurora) is a managed service for PostgreSQL. From user's point
of view, Aurora can be regarded as a streaming replication cluster with some exceptions. First, fail over and
online recovery are managed by Aurora. So you don't need to set failover_command,
follow_master_command, and recovery related parameters. In this section we explain how to set up Pgpool-II
for Aurora.

7.5.1. Setting pgpool.conf for Aurora

Create pgpool.conf from pgpool.conf.sample-stream.

Set sr_check_period to 0 to disable streaming replication delay checking. This is because Aurora does
not provide neccessary functions to check the replication delay.

Enable enable_pool_hba to on so that md5 authentication is enabled (Aurora always use md5
authentication).

Create pool_password. See Section 6.2.2 for more details.

Set backend_hostname0 for the Aurora writer node. Set other backend_hostname for the Aurora reader
node. Set appropreate backend_weight as usual. You don't need to set backend_data_directory

Set ALWAYS_MASTER flag to the backend_flag for backend_hostname0.

Enable health checking. Set health_check_period to 5. Set health_check_user, health_check_password,
health_check_user and health_check_database to appropriate values. Enable health check retry. Aurora
shutdowns all DB nodes while switching over or failover. If the retry is not performed, Pgpool-II thinks
that all DB nodes are in down status so that it is required to restart Pgpool-II. Set

health_check_max_retries to 20. Set health_check_retry_delay to 1 to avoid the problem.

Disable fail_over_on_backend_error to avoid failover when connecting to the backend or detecting errors
on backend side while executing queries for the same reasons above.

IV. Reference
This part contains reference information for the Pgool-II.

The reference entries are also available as traditional "man" pages.

Table of Contents

I. Server commands

pgpool -- Pgpool-II main server

II. PCP commands

pcp_common_options -- common options used in PCP commands
pcp_node_count -- displays the total number of database nodes
pcp_node_info -- displays the information on the given node ID
pcp_watchdog_info -- displays the watchdog status of the Pgpool-II
pcp_proc_count -- displays the list of Pgpool-II children process IDs
pcp_proc_info -- displays the information on the given Pgpool-II child process ID
pcp_pool_status -- displays the parameter values as defined in pgpool.conf
pcp_detach_node -- detaches the given node from Pgpool-II. Exisiting connections to Pgpool-II are
forced to be disconnected.
pcp_attach_node -- attaches the given node to Pgpool-II.
pcp_promote_node -- promotes the given node as new master to Pgpool-II
pcp_stop_pgpool -- terminates the Pgpool-II process
pcp_recovery_node -- attaches the given backend node with recovery

III. Other commands

pg_md5 -- produces encrypted password in md5
pgpool_setup -- Create a temporary installation of Pgpool-II cluster
watchdog_setup -- Create a temporary installation of Pgpool-II clusters with watchdog

IV. SQL type commands

PGPOOL SHOW -- show the value of a configuration parameter
PGPOOL SET -- change a configuration parameter
PGPOOL RESET -- restore the value of a configuration parameter to the default value
SHOW POOL STATUS -- sends back the list of configuration parameters with their name, value, and
description
SHOW POOL NODES -- sends back a list of all configured nodes
SHOW POOL_PROCESSES -- sends back a list of all Pgpool-II processes waiting for connections and
dealing with a connection
SHOW POOL_POOLS -- sends back a list of pools handled by Pgpool-II.
SHOW POOL_VERSION -- displays a string containing the Pgpool-II release number.
SHOW POOL_CACHE -- displays cache storage statistics

V. pgpool_adm extension

pgpool_adm_pcp_node_info -- a function to display the information on the given node ID
pgpool_adm_pcp_pool_status -- a function to retrieves parameters in pgpool.conf.
pgpool_adm_pcp_node_count -- a function to retrieves number of backend nodes.
pgpool_adm_pcp_attach_node -- a function to attach given node ID
pgpool_adm_pcp_detach_node -- a function to detach given node ID

I. Server commands

This part contains reference information for server commands. Currently only pgpool falls into this category.

Table of Contents

pgpool -- Pgpool-II main server

pgpool

Name

pgpool -- Pgpool-II main server

Synopsis

pgpool [option...]

pgpool [option...] stop

pgpool [option...] reload

Description

the Pgpool-II main server

Usages

pgpool runs in 3 modes: start, stop and reload. If none of stop or reload is given, it is assumed that "start" is
specified.

Common options

These are common options for 3 modes.

-a hba_config_file
--hba-file=hba_config_file

Set the path to the pool_hba.conf configuration file. Mandatory if the file is placed other than the standard
location.

-f config_file
--config-file=config_file

Set the path to the pgpool.conf configuration file. Mandatory if the file is placed other than the standard
location.

-F pc_config_file
--pcp-file=pcp_config_file

Set the path to the pcp.conf configuration file. Mandatory if the file is placed other than the standard
location.

-h
--help

Print help.

Starting Pgpool-II main server

Here are options for the start mode.

-d
--debug

Run Pgpool-II in debug mode. Lots of debug messages are produced.

-n
--dont-detach

Don't run in daemon mode, does not detach control ttys.

-x
--debug-assertions

Turns on various assertion checks, This is a debugging aid.

-C
--clear-oidmaps

Clear query cache oidmaps when memqcache_method is memcached.

If memqcache_method is shmem, Pgpool-II always discards oidmaps at the start-up time. So this option is
not necessary.

-D
--discard-status

Discard pgpool_status file and do not restore previous status.

Stopping Pgpool-II main server

Here are options for the stop mode.

-m shutdown_mode
--mode=shutdown_mode

Stop Pgpool-II. shutdown_mode is either smart, fast or immediate. If smart is specified, Pgpool-II will wait for all
clients are disconnected. If fast or immediate are specified, Pgpool-II immediately stops itself without
waiting for all clients are disconnected. There's no difference between fast and immediate in the current
implementation.

Reloading Pgpool-II configuration files

Reload configuration file of Pgpool-II. No specific options exist for realod mode. Common options are
applicable.

II. PCP commands
This part contains reference information for PCP commands. PCP commands are UNIX commands which
manipulate pgpool-II via the network. Please note that the parameter format for all PCP commands has been
changed since pgpool-II 3.5.

1. PCP connection authentication

PCP user names and passwords must be declared in pcp.conf in $prefix/etc directory. -F option can be used
when starting pgpool-II if pcp.conf is placed somewhere else.

2. PCP password file

The file .pcppass in a user's home directory or the file referenced by environment variable PCPPASSFILE can
contain passwords to be used if no password has been specified for the pcp connection.

This file should contain lines of the following format:

 hostname:port:username:password

(You can add a reminder comment to the file by copying the line above and preceding it with #.) Each of the
first three fields can be a literal value, or *, which matches anything. The password field from the first line
that matches the current connection parameters will be used. (Therefore, put more-specific entries first when

you are using wildcards.) If an entry needs to contain : or \, escape this character with \. A host name of
localhost matches both TCP (host name localhost) and Unix domain socket connections coming from the
local machine.

The permissions on .pcppass must disallow any access to world or group; achieve this by the command
chmod 0600 ~/.pcppass. If the permissions are less strict than this, the file will be ignored.

Table of Contents

pcp_common_options -- common options used in PCP commands

pcp_node_count -- displays the total number of database nodes

pcp_node_info -- displays the information on the given node ID

pcp_watchdog_info -- displays the watchdog status of the Pgpool-II

pcp_proc_count -- displays the list of Pgpool-II children process IDs

pcp_proc_info -- displays the information on the given Pgpool-II child process ID

pcp_pool_status -- displays the parameter values as defined in pgpool.conf

pcp_detach_node -- detaches the given node from Pgpool-II. Exisiting connections to Pgpool-II are forced to
be disconnected.

pcp_attach_node -- attaches the given node to Pgpool-II.

pcp_promote_node -- promotes the given node as new master to Pgpool-II

pcp_stop_pgpool -- terminates the Pgpool-II process

pcp_recovery_node -- attaches the given backend node with recovery

pcp_common_options

Name

pcp_common_options -- common options used in PCP commands

Synopsis

pcp_command [option...]

Description

There are some arguments common to all PCP commands. Most of these are for authentication and the rest
are about verbose mode, debug message, and so on.

Options

-h hostname
--host=hostname

The host name of the machine on which the server is running. If the value begins with a slash, it is used
as the directory for the Unix-domain socket.

-p port
--port=port

The PCP port number (default:"9898").

-U username
--username=username

The user name for PCP authentication (default: OS user name).

-w
--no-password

Never prompt for password. And if a password is not available by a .pcppass file, the connection attempt
will fail. This option can be useful in batch jobs and scripts where no user is present to enter a
password.

-W
--password

Force password prompt (should happen automatically).

-d
--debug

Enable debug message.

-v
--verbose

Enable verbose output.

-V
--version

Print the command version, then exit.

-?
--help

Shows help for the command line arguments, then exit.

Environment

PCPPASSFILE

Specifies the path to pcp password file.

pcp_node_count

Name

pcp_node_count -- displays the total number of database nodes

Synopsis

pcp_node_count [option...]

Description

pcp_node_count displays the total number of database nodes defined in pgpool.conf. It does not distinguish
between nodes status, ie attached/detached. ALL nodes are counted.

Options

See pcp_common_options.

Example

Here is an example output:

$ pcp_node_count -p 11001
Password:
2

pcp_node_info

Name

pcp_node_info -- displays the information on the given node ID

Synopsis

pcp_node_info [option...] [node_id]

Description

pcp_node_info displays the information on the given node ID.

Options

-n node_id
--node-id=node_id

The index of backend node to get information of.

Other options

See pcp_common_options.

Example

Here is an example output:

$ pcp_node_info -h localhost -U postgres 0
host1 5432 1 0.500000 waiting primary

The result is in the following order:

1. hostname
2. port number
3. status
4. load balance weight
5. status name
6. backend role

Status is represented by a digit from [0 to 3].

0 - This state is only used during the initialization. PCP will never display it.

1 - Node is up. No connections yet.

2 - Node is up. Connections are pooled.

3 - Node is down.

The load balance weight is displayed in normalized format.

The --verbose option can help understand the output. For example:

$ pcp_node_info --verbose -h localhost -U postgres 0
Hostname : host1
Port : 5432
Status : 1
Weight : 0.500000
Status Name: waiting
Role : primary

pcp_watchdog_info

Name

pcp_watchdog_info -- displays the watchdog status of the Pgpool-II

Synopsis

pcp_watchdog_info [options...] [watchdog_id]

Description

pcp_node_info displays the information on the given node ID.

Options

-n watcgdog_id
--node-id=watcgdog_id

The index of other Pgpool-II to get information for.

Index 0 gets one's self watchdog information.

If ommitted then gets information of all watchdog nodes.

Other options

See pcp_common_options.

Example

Here is an example output:

$ pcp_watchdog_info -h localhost -U postgres

3 NO Linux_host1.localdomain_9991 host1

Linux_host1.localdomain_9991 host1 9991 9001 7 STANDBY
Linux_host2.localdomain_9992 host2 9992 9002 4 MASTER
Linux_host3.localdomain_9993 host3 9993 9003 7 STANDBY

The result is in the following order:

The first output line describes the watchdog cluster information:

1. Total watchdog nodes in the cluster
2. Is VIP is up on current node?
3. Master node name
4. Master node host

Next is the list of watchdog nodes:

1. node name
2. hostname
3. pgpool port
4. watchdog port
5. current node state
6. current node state name

The --verbose option can help understand the output. For example:

$ pcp_watchdog_info -h localhost -v -U postgres

Watchdog Cluster Information
Total Nodes : 3
Remote Nodes : 2
Quorum state : QUORUM EXIST
Alive Remote Nodes : 2
VIP up on local node : NO
Master Node Name : Linux_host2.localdomain_9992
Master Host Name : localhost

Watchdog Node Information
Node Name : Linux_host1.localdomain_9991
Host Name : host1
Delegate IP : 192.168.1.10
Pgpool port : 9991
Watchdog port : 9001
Node priority : 1
Status : 7
Status Name : STANDBY

Node Name : Linux_host2.localdomain_9992
Host Name : host2
Delegate IP : 192.168.1.10
Pgpool port : 9992
Watchdog port : 9002
Node priority : 1
Status : 4
Status Name : MASTER

Node Name : Linux_host3.localdomain_9993
Host Name : host3
Delegate IP : 192.168.1.10
Pgpool port : 9993
Watchdog port : 9003
Node priority : 1
Status : 7
Status Name : STANDBY

pcp_proc_count

Name

pcp_proc_count -- displays the list of Pgpool-II children process IDs

Synopsis

pcp_proc_count [options...]

Description

pcp_proc_count displays the list of Pgpool-II children process IDs. If there is more than one process, IDs will be
delimited by a white space.

Options

See pcp_common_options.

pcp_proc_info

Name

pcp_proc_info -- displays the information on the given Pgpool-II child process ID

Synopsis

pcp_proc_info [options...] [processid]

Description

pcp_proc_info displays the information on the given Pgpool-II child process ID.

Options

-P PID
--process-id=PID

PID of Pgpool-II child process.

Other options

See pcp_common_options.

Example

Here is an example output:

$ pcp_proc_info -p 11001
test t-ishii 2018-05-09 11:10:16 2018-05-09 11:10:40 3 0 1 4157 1
test t-ishii 2018-05-09 11:10:16 2018-05-09 11:10:40 3 0 1 4158 1

The result is in the following order:

1. connected database name
2. connected user name
3. process start-up timestamp
4. connection created timestamp
5. protocol major version
6. protocol minor version
7. connection-reuse counter
8. PostgreSQL backend process id
9. 1 if frontend conncted 0 if not

If there is no connection to the backends, nothing will be displayed. If there are multiple connections, one
connection's information will be displayed on each line multiple times.

The --verbose option can help understand the output. For example:

$ pcp_proc_info -p 11001 --verbose
Database : test
Username : t-ishii
Start time : 2018-05-09 11:10:16
Creation time: 2018-05-09 11:10:40
Major : 3
Minor : 0
Counter : 1
Backend PID : 4157
Connected : 1
Database : test
Username : t-ishii
Start time : 2018-05-09 11:10:16
Creation time: 2018-05-09 11:10:40
Major : 3
Minor : 0
Counter : 1
Backend PID : 4158
Connected : 1

pcp_pool_status

Name

pcp_pool_status -- displays the parameter values as defined in pgpool.conf

Synopsis

pcp_pool_status [options...]

Description

pcp_pool_status displays the parameter values as defined in pgpool.conf.

Options

See pcp_common_options.

Example

Here is an example output:

$ pcp_pool_status -h localhost -U postgres
name : listen_addresses
value: localhost
desc : host name(s) or IP address(es) to listen to

name : port
value: 9999
desc : pgpool accepting port number

name : socket_dir
value: /tmp
desc : pgpool socket directory

name : pcp_port
value: 9898
desc : PCP port # to bind

pcp_detach_node

Name

pcp_detach_node -- detaches the given node from Pgpool-II. Exisiting connections to Pgpool-II are forced to
be disconnected.

Synopsis

pcp_detach_node [options...] [node_id] [gracefully]

Description

pcp_detach_node detaches the given node from Pgpool-II. Exisiting connections to Pgpool-II are forced to be
disconnected.

Options

-n node_id
--node_id=node_id

The index of backend node to detach.

-g
--gracefully

wait until all clients are disconnected (unless client_idle_limit_in_recovery is -1 or recovery_timeout is
expired).

Other options

See pcp_common_options.

pcp_attach_node

Name

pcp_attach_node -- attaches the given node to Pgpool-II.

Synopsis

pcp_attach_node [options...] [node_id]

Description

pcp_attach_node attaches the given node to Pgpool-II.

Options

-n node_id
--node_id=node_id

The index of backend node to attach.

Other options

See pcp_common_options.

pcp_promote_node

Name

pcp_promote_node -- promotes the given node as new master to Pgpool-II

Synopsis

pcp_promote_node [options...] [node_id] [gracefully]

Description

pcp_promote_node promotes the given node as new master to Pgpool-II. In master/slave streaming replication
only. Please note that this command does not actually promote standby PostgreSQL backend: it just changes
the internal status of Pgpool-II and trigger failover and users have to promote standby PostgreSQL outside
Pgpool-II.

Options

-n node_id
--node-id=node_id

The index of backend node to promote as new master.

-g
--gracefully

Wait until all clients are disconnected (unless client_idle_limit_in_recovery is -1 or recovery_timeout is
expired).

Other options

See pcp_common_options.

pcp_stop_pgpool

Name

pcp_stop_pgpool -- terminates the Pgpool-II process

Synopsis

pcp_stop_pgpool [options...] [mode]

Description

pcp_stop_pgpool terminates the Pgpool-II process.

Options

-m mode
--mode=mode

Shutdown mode for terminating the Pgpool-II process.

The available modes are as follows:

s, smart : smart mode

f, fast : fast mode

i, immediate : immediate mode

Other options

See pcp_common_options.

pcp_recovery_node

Name

pcp_recovery_node -- attaches the given backend node with recovery

Synopsis

pcp_recovery_node [options...] [node_id]

Description

pcp_recovery_node attaches the given backend node with recovery. See Section 5.10 to set up necessary
parameters of pgpool.conf.

Options

-n node_id
--node-id=node_id

The index of backend node.

Other options

See pcp_common_options.

III. Other commands
This part contains reference information for various Pgpool-II commands.

Table of Contents

pg_md5 -- produces encrypted password in md5

pgpool_setup -- Create a temporary installation of Pgpool-II cluster

watchdog_setup -- Create a temporary installation of Pgpool-II clusters with watchdog

pg_md5

Name

pg_md5 -- produces encrypted password in md5

Synopsis

pg_md5 [option...] -p

pg_md5 [option...] password

Description

pg_md5 produces encrypted password in md5.

Options

-p
--prompt

Prompt password using standard input.

-m
--md5auth

Produce md5 authentication password.

-u your_username
--username=your_username

When producing a md5 authentication password, create the pool_passwd entry for your_username.

Example

Here is an example output:

pg_md5 -p
password: [your password]

or

./pg_md5 foo
acbd18db4cc2f85cedef654fccc4a4d8

pgpool_setup

Name

pgpool_setup -- Create a temporary installation of Pgpool-II cluster

Synopsis

pgpool_setup [option...]

Description

pgpool_setup creates a temporary installation of Pgpool-II cluster, which includes a Pgpool-II installation and
specified number of PostgreSQL installations under current directory. Current directory must be empty
before running pgpool_setup.

pgpool_setup is for testing purpose only and should not be used to create production installations.

Currently pgpool_setup supports streaming replication mode, native replication mode, raw mode and logical
replication mode. To support watchdog, see watchdog_setup for details.

Options

pgpool_setup accepts the following command-line arguments:

-m mode

Specifies the running mode. mode can be r (native replication mode), s (streaming replication mode), n
(raw mode), l (logical replication mode) or y (slony mode). If this is omitted, s is assumed.

-n num_clusters

Specifies the number of PostgreSQL installations. If this is omitted, 2 is used.

-p base_port

Specify the base port number used by Pgpool-II and PostgreSQL. Pgpool-II port is base_port. pcp port is
base_port + 1. The first PostgreSQL node's port is base_port + 2, second PostgreSQL node's port is
base_port + 3 and so on.

If -pg option is specified, the first PostgreSQL node's port is assigned to pg_base_port, the second
PostgreSQL node's port is pg_base_port + 1 and so on.

If this is omitted, 11000 is used.

-pg pg_base_port

Specify the base port number used by PostgreSQL. The first PostgreSQL node's port is base_port + 2,
second PostgreSQL node's port is base_port + 3 and so on.

If this is omitted, base_port+2 is used.

--no-stop

Do not stop pgpool and PostgreSQL after the work.

-d

Start pgpool with debug mode.

Environment variables

pgpool_setup recognizes following environment variables:

PGPOOL_INSTALL_DIR

Specifies the Pgpool-II installation directory. Pgpool-II binaries is expected to be placed under
PGPOOL_INSTALL_DIR/bin and pgpool.conf and pool_hba.conf etc. are expected to be placed under
PGPOOL_INSTALL_DIR/etc. The default is /usr/local.

PGPOOLDIR

Specifies the path to Pgpool-II configuration files. The default is PGPOOL_INSTALL_DIR/etc.

PGBIN

Specifies the path to PostgreSQL commands such as initdb, pg_ctl and psql. The default is
/usr/local/pgsql/bin.

PGLIB

Specifies the path to PostgreSQL shared libraries. The default is /usr/local/pgsql/lib.

PGSOCKET_DIR

Specifies the path to Unix socket directory. The default is /tmp.

INITDBARG

Specifies the arguments for initdb command. The default is "--no-locale -E UTF_8".

Example

$ pgpool_setup
Satrting set up in streaming replication mode
creating startall and shutdownall
creating failover script
creating database cluster /home/t-ishii/tmp/test/data0...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
creating database cluster /home/t-ishii/tmp/test/data1...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
temporarily start data0 cluster to create extensions
temporarily start pgpool-II to create standby nodes
INFO: unrecognized configuration parameter "debug_level"
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 0 | true | 0
 1 | /tmp | 11003 | down | 0.500000 | standby | 0 | false | 0
(2 rows)

recovery node 1...pcp_recovery_node -- Command Successful
done.
creating follow master script
Pager usage is off.
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 0 | false | 0
 1 | /tmp | 11003 | up | 0.500000 | standby | 0 | true | 0
(2 rows)

shutdown all

pgpool-II setting for streaming replication mode is done.
To start the whole system, use /home/t-ishii/tmp/test/startall.
To shutdown the whole system, use /home/t-ishii/tmp/test/shutdownall.
pcp command user name is "t-ishii", password is "t-ishii".
Each PostgreSQL, pgpool-II and pcp port is as follows:
#1 port is 11002
#2 port is 11003
pgpool port is 11000
pcp port is 11001
The info above is in README.port.

$ ls
README.port bashrc.ports data1 log pgpool_reload run startall
archivedir data0 etc pcppass pgpool_setup.log shutdownall

$./startall
waiting for server to start....11840 2016-08-18 13:08:51 JST LOG: redirecting log output to logging collector process
11840 2016-08-18 13:08:51 JST HINT: Future log output will appear in directory "pg_log".
 done
server started
waiting for server to start....11853 2016-08-18 13:08:52 JST LOG: redirecting log output to logging collector process
11853 2016-08-18 13:08:52 JST HINT: Future log output will appear in directory "pg_log".
 done
server started
$ psql -p 11000 test
Pager usage is off.
psql (9.5.4)
Type "help" for help.

test=# show pool_nodes;
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 0 | false | 0
 1 | /tmp | 11003 | up | 0.500000 | standby | 0 | true | 0
(2 rows)​

watchdog_setup

Name

Name

watchdog_setup -- Create a temporary installation of Pgpool-II clusters with watchdog

Synopsis

watchdog_setup [option...]

Description

watchdog_setup creates a temporary installation of Pgpool-II clusters with watchdog enabled, which includes
a Pgpool-II installation and specified number of PostgreSQL installations under current directory. Current
directory must be empty before running watchdog_setup.

watchdog_setup is for testing purpose only and should not be used to create production installations. Also
please note that heartbeat is not used.

watchdog_setup uses pgpool_setup as a workhorse.

Currently watchdog_setup supports streaming replication mode, native replication mode, logical replication
mode and raw mode.

Options

watchdog_setup accepts the following command-line arguments:

-wn num_pgpool

Specifies the number of Pgpool-II installations. If this is omitted, 3 is used.

-wp watchdog_base_port

Specify the starting base port number used by Pgpool-II and PostgreSQL. For the first Pgpool-II, Pgpool-II
port is watchdog_base_port. pcp port is watchdog_base_port + 1, watchdog port is watchdog_base_port
+ 2. wd_heartbeat_port is watchdog_base_port + 3 (though heartbeat is not used). The first PostgreSQL
node's port is watchdog_base_port + 4, second PostgreSQL node's port is watchdog_base_port + 5 and
so on.

If this is omitted, 50000 is used.

-m mode

Specifies the running mode. mode can be r (native replication mode), s (streaming replication mode), or
n (raw mode). If this is omitted, s is used.

-n num_clusters

Specifies the number of PostgreSQL installations. If this is omitted, 2 is used.

--no-stop

Do not stop pgpool and PostgreSQL after the work.

-d

Start pgpool with debug mode.

Environment variables

watchdog_setup recognizes following environment variables:

PGPOOL_SETUP

Specifies the path to pgpool_setup command. The default is "pgpool_setup", thus it is assumed that
pgpool_setup is in the command search path.

PGPOOL_INSTALL_DIR

Specifies the Pgpool-II installation directory. Pgpool-II binaries is expected to be placed under
PGPOOL_INSTALL_DIR/bin and pgpool.conf and pool_hba.conf etc. are expected to be placed under
PGPOOL_INSTALL_DIR/etc. The default is /usr/local.

PGPOOLDIR

Specifies the path to Pgpool-II configuration files. The default is PGPOOL_INSTALL_DIR/etc.

PGBIN

Specifies the path to PostgreSQL commands such as initdb, pg_ctl and psql. The default is
/usr/local/pgsql/bin.

PGLIB

Specifies the path to PostgreSQL shared libraries. The default is /usr/local/pgsql/lib.

PGSOCKET_DIR

Specifies the path to Unix socket directory. The default is /tmp.

INITDBARG

Specifies the arguments for initdb command. The default is "--no-locale -E UTF_8".

Example

$ watchdog_setup
Satrting set up
============= setting up pgpool 0 =============
Satrting set up in streaming replication mode
creating startall and shutdownall
creating failover script
creating database cluster /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool0/data0...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
creating database cluster /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool0/data1...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
temporarily start data0 cluster to create extensions
temporarily start pgpool-II to create standby nodes
INFO: unrecognized configuration parameter "debug_level"
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 51000 | up | 0.500000 | primary | 0 | true | 0
 1 | /tmp | 51001 | down | 0.500000 | standby | 0 | false | 0
(2 rows)

recovery node 1...pcp_recovery_node -- Command Successful
done.
creating follow master script
Pager usage is off.
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 51000 | up | 0.500000 | primary | 0 | false | 0
 1 | /tmp | 51001 | up | 0.500000 | standby | 0 | true | 0
(2 rows)

shutdown all

pgpool-II setting for streaming replication mode is done.
To start the whole system, use /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool0/startall.
To shutdown the whole system, use /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool0/shutdownall.
pcp command user name is "t-ishii", password is "t-ishii".
Each PostgreSQL, pgpool-II and pcp port is as follows:
#1 port is 51000
#2 port is 51001
pgpool port is 50000
pcp port is 50001
The info above is in README.port.

The info above is in README.port.
============= setting up pgpool 1 =============
Satrting set up in streaming replication mode
creating startall and shutdownall
creating failover script
creating database cluster /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool1/data0...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
creating database cluster /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool1/data1...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
temporarily start data0 cluster to create extensions
temporarily start pgpool-II to create standby nodes
INFO: unrecognized configuration parameter "debug_level"
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 51000 | up | 0.500000 | primary | 0 | true | 0
 1 | /tmp | 51001 | down | 0.500000 | standby | 0 | false | 0
(2 rows)

recovery node 1...pcp_recovery_node -- Command Successful
done.
creating follow master script
Pager usage is off.
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 51000 | up | 0.500000 | primary | 0 | true | 0
 1 | /tmp | 51001 | up | 0.500000 | standby | 0 | false | 0
(2 rows)

shutdown all

pgpool-II setting for streaming replication mode is done.
To start the whole system, use /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool1/startall.
To shutdown the whole system, use /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool1/shutdownall.
pcp command user name is "t-ishii", password is "t-ishii".
Each PostgreSQL, pgpool-II and pcp port is as follows:
#1 port is 51000
#2 port is 51001
pgpool port is 50004
pcp port is 50005
The info above is in README.port.
============= setting up pgpool 2 =============
Satrting set up in streaming replication mode
creating startall and shutdownall
creating failover script
creating database cluster /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool2/data0...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
creating database cluster /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool2/data1...done.
update postgresql.conf
creating pgpool_remote_start
creating basebackup.sh
creating recovery.conf
temporarily start data0 cluster to create extensions
temporarily start pgpool-II to create standby nodes
INFO: unrecognized configuration parameter "debug_level"
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 51000 | up | 0.500000 | primary | 0 | true | 0
 1 | /tmp | 51001 | down | 0.500000 | standby | 0 | false | 0
(2 rows)

recovery node 1...pcp_recovery_node -- Command Successful
done.
creating follow master script
Pager usage is off.
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 51000 | up | 0.500000 | primary | 0 | true | 0
 1 | /tmp | 51001 | up | 0.500000 | standby | 0 | false | 0
(2 rows)

(2 rows)

shutdown all

pgpool-II setting for streaming replication mode is done.
To start the whole system, use /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool2/startall.
To shutdown the whole system, use /home/t-ishii/work/pgpool-II/current/pgpool2/src/test/a/pgpool2/shutdownall.
pcp command user name is "t-ishii", password is "t-ishii".
Each PostgreSQL, pgpool-II and pcp port is as follows:
#1 port is 51000
#2 port is 51001
pgpool port is 50008
pcp port is 50009
The info above is in README.port.

$ ls
pgpool0 pgpool1 pgpool2 shutdownall startall

$ sh startall
waiting for server to start....16123 2016-08-18 16:26:53 JST LOG: redirecting log output to logging collector process
16123 2016-08-18 16:26:53 JST HINT: Future log output will appear in directory "pg_log".
 done
server started
waiting for server to start....16136 2016-08-18 16:26:54 JST LOG: redirecting log output to logging collector process
16136 2016-08-18 16:26:54 JST HINT: Future log output will appear in directory "pg_log".
 done
server started

t-ishii@localhost: psql -p 50000 test

Pager usage is off.
psql (9.5.4)
Type "help" for help.

test=# \q

$ pcp_watchdog_info -p 50001 -v
Password:
Watchdog Cluster Information
Total Nodes : 3
Remote Nodes : 2
Quorum state : QUORUM EXIST
Alive Remote Nodes : 2
VIP up on local node : NO
Master Node Name : Linux_tishii-CF-SX3HE4BP_50004
Master Host Name : localhost

Watchdog Node Information
Node Name : Linux_tishii-CF-SX3HE4BP_50000
Host Name : localhost
Delegate IP : Not_Set
Pgpool port : 50000
Watchdog port : 50002
Node priority : 1
Status : 7
Status Name : STANDBY

Node Name : Linux_tishii-CF-SX3HE4BP_50004
Host Name : localhost
Delegate IP : Not_Set
Pgpool port : 50004
Watchdog port : 50006
Node priority : 1
Status : 4
Status Name : MASTER

Node Name : Linux_tishii-CF-SX3HE4BP_50008
Host Name : localhost
Delegate IP : Not_Set
Pgpool port : 50008
Watchdog port : 50010
Node priority : 1
Status : 7
Status Name : STANDBY​

IV. SQL type commands

This part contains reference information for various SQL type Pgpool-II commands. These commands can be
issued inside the SQL session using the standard PostgreSQL client like psql. They are not forwarded to the
backend DB: instead they are processed by Pgpool-II server. Please note that SQL type commands cannot be
used in extended query mode. You will get parse errors from PostgreSQL.

Table of Contents

PGPOOL SHOW -- show the value of a configuration parameter

PGPOOL SET -- change a configuration parameter

PGPOOL RESET -- restore the value of a configuration parameter to the default value

SHOW POOL STATUS -- sends back the list of configuration parameters with their name, value, and
description

SHOW POOL NODES -- sends back a list of all configured nodes

SHOW POOL_PROCESSES -- sends back a list of all Pgpool-II processes waiting for connections and dealing
with a connection

SHOW POOL_POOLS -- sends back a list of pools handled by Pgpool-II.

SHOW POOL_VERSION -- displays a string containing the Pgpool-II release number.

SHOW POOL_CACHE -- displays cache storage statistics

PGPOOL SHOW

Name

PGPOOL SHOW -- show the value of a configuration parameter

Synopsis

PGPOOL SHOW configuration_parameter
PGPOOL SHOW configuration_parameter_group
PGPOOL SHOW ALL

Description

PGPOOL SHOW will display the current value of Pgpool-II configuration parameters. This command is similar to
the SHOW command in PostgreSQL with an addition of PGPOOL keyword to distinguish it from the PostgreSQL
SHOW command.

Parameters

configuration_parameter

The name of a Pgpool-II configuration parameter. Available parameters are documented in Chapter 5

configuration_parameter_group

The name of the Pgpool-II configuration parameter group. Currently there are three parameter groups.

backend

Configuration group of all backend config parameters.

other_pgpool

Configuration group of all watchdog node config parameters.

heartbeat

https://www.postgresql.org/docs/current/static/sql-show.html

configuration group of all watchdog heartbeat node config parameters.

health_check

configuration group of all health check parameters.

ALL

Show the values of all configuration parameters, with descriptions.

Examples

Show the current setting of the parameter port:

PGPOOL SHOW port;
port

9999
(1 row)

Show the current setting of the parameter black_function_list:

PGPOOL SHOW black_function_list;
 black_function_list

 nextval,setval
 (1 row)

Show the current settings of all the configuration parameters belonging to backend group:

 PGPOOL SHOW backend;
 item | value | description
 -------------------------+-------------------------+---
 backend_hostname0 | 127.0.0.1 | hostname or IP address of PostgreSQL backend.
 backend_port0 | 5434 | port number of PostgreSQL backend.
 backend_weight0 | 0 | load balance weight of backend.
 backend_data_directory0 | /var/lib/pgsql/data | data directory of the backend.
 backend_flag0 | ALLOW_TO_FAILOVER | Controls various backend behavior.
 backend_hostname1 | 127.0.0.1 | hostname or IP address of PostgreSQL backend.
 backend_port1 | 5432 | port number of PostgreSQL backend.
 backend_weight1 | 1 | load balance weight of backend.
 backend_data_directory1 | /home/work/installed/pg | data directory of the backend.
 backend_flag1 | ALLOW_TO_FAILOVER | Controls various backend behavior.
 (10 rows)

Show all settings:

 PGPOOL SHOW ALL;
 item | value | description
 -------------------------+-------------------------+---
 backend_hostname0 | 127.0.0.1 | hostname or IP address of PostgreSQL backend.
 backend_port0 | 5434 | port number of PostgreSQL backend.
 backend_weight0 | 0 | load balance weight of backend.
 backend_data_directory0 | /var/lib/pgsql/data | data directory of the backend.
 backend_flag0 | ALLOW_TO_FAILOVER | Controls various backend behavior.
 backend_hostname1 | 127.0.0.1 | hostname or IP address of PostgreSQL backend.
 backend_port1 | 5432 | port number of PostgreSQL backend.
 backend_weight1 | 1 | load balance weight of backend.
 backend_data_directory1 | /home/work/installed/pg | data directory of the backend.
 backend_flag1 | ALLOW_TO_FAILOVER | Controls various backend behavior.
 other_pgpool_hostname0 | localhost | Hostname of other pgpool node for watchdog connection.
 .
 .
 .
 ssl | off | Enables SSL support for frontend and backend connections
 (138 rows)​

See Also

PGPOOL SET
PGPOOL SET

Name

PGPOOL SET -- change a configuration parameter

Synopsis

PGPOOL SET configuration_parameter { TO | = } { value | 'value' | DEFAULT }

Description

​ The PGPOOL SET command changes the value of Pgpool-II configuration parameters for the current session.
This command is similar to the SET command in PostgreSQL with an addition of PGPOOL keyword to
distinguish it from the PostgreSQL SET command. Many of the configuration parameters listed in Chapter 5
can be changed on-the-fly with PGPOOL SET and it only affects the value used by the current session.

Examples

Change the value of client_idle_limit parameter:

PGPOOL SET client_idle_limit = 350;

Reset the value of client_idle_limit parameter to default:

PGPOOL SET client_idle_limit TO DEFAULT;

Change the value of log_min_messages parameter:

PGPOOL SET log_min_messages TO INFO;

See Also

PGPOOL RESET, PGPOOL SHOW
PGPOOL RESET

Name

PGPOOL RESET -- restore the value of a configuration parameter to the default value

Synopsis

PGPOOL RESET configuration_parameter
PGPOOL RESET ALL

Description

https://www.postgresql.org/docs/current/static/sql-set.html

PGPOOL RESET command restores the value of Pgpool-II configuration parameters to the default value. The
default value is defined as the value that the parameter would have had, if no PGPOOL SET had ever been
issued for it in the current session. This command is similar to the RESET command in PostgreSQL with an
addition of PGPOOL keyword to distinguish it from the PostgreSQL RESET command.

Parameters

configuration_parameter

Name of a settable Pgpool-II configuration parameter. Available parameters are documented in Chapter
5.

ALL

Resets all settable Pgpool-II configuration parameters to default values.

Examples

Reset the value of client_idle_limit parameter:

PGPOOL RESET client_idle_limit;

Reset the value of all parameter to default:

PGPOOL RESET ALL;

See Also

PGPOOL SET, PGPOOL SHOW
SHOW POOL STATUS

Name

SHOW POOL STATUS -- sends back the list of configuration parameters with their name, value, and
description

Synopsis

SHOW POOL_STATUS

Description

SHOW POOL_STATUS displays the current value of Pgpool-II configuration parameters.

This command is similar to the PGPOOL SHOW command, but this is the older version of it. It is
recommended to use PGPOOL SHOW instead.

See Also

PGPOOL SHOW
SHOW POOL NODES

Name

SHOW POOL_NODES -- sends back a list of all configured nodes

Synopsis

https://www.postgresql.org/docs/current/static/sql-reset.html

Synopsis

SHOW POOL_NODES

Description

SHOW POOL_NODES displays the node id, the hostname, the port, the status, the weight (only meaningful if you
use the load balancing mode), the role, the SELECT query counts issued to each backend, whether each node
is the load bakance node or not, and the replication delay (only if in streaming replication mode). The
possible values in the status column are explained in the pcp_node_info reference. If the hostname is
something like "/tmp", that means Pgpool-II is connecting to backend by using UNIX domain sockets. The
SELECT count does not include internal queries used by Pgoool-II. Also the counters are reset to zero upon
starting up of Pgpool-II.

Here is an example session:

test=# show pool_nodes;
 node_id | hostname | port | status | lb_weight | role | select_cnt | load_balance_node | replication_delay
---------+----------+-------+--------+-----------+---------+------------+-------------------+-------------------
 0 | /tmp | 11002 | up | 0.500000 | primary | 0 | false | 0
 1 | /tmp | 11003 | up | 0.500000 | standby | 0 | true | 0
(2 rows)

SHOW POOL_PROCESSES

Name

SHOW POOL_PROCESSES -- sends back a list of all Pgpool-II processes waiting for connections and dealing
with a connection

Synopsis

SHOW POOL_PROCESSES

Description

SHOW POOL_PROCESSES sends back a list of all Pgpool-II processes waiting for connections and dealing with a
connection.

It has 6 columns:

pool_pid is the PID of the displayed Pgpool-II process.

start_time is the timestamp of when this process was launched.

database is the database name of the currently active backend for this process.

username is the user name used in the connection of the currently active backend for this process.

create_time is the creation time and date of the connection.

pool_counter counts the number of times this pool of connections (process) has been used by clients.

Here is an example session:

test=# show pool_processes;
 pool_pid | start_time | database | username | create_time | pool_counter
----------+---------------------+----------+----------+---------------------+--------------
 19696 | 2016-10-17 13:24:17 | postgres | t-ishii | 2016-10-17 13:35:12 | 1
 19697 | 2016-10-17 13:24:17 | | | |
 19698 | 2016-10-17 13:24:17 | | | |
 19699 | 2016-10-17 13:24:17 | | | |
 19700 | 2016-10-17 13:24:17 | | | |
 19701 | 2016-10-17 13:24:17 | | | |
 19702 | 2016-10-17 13:24:17 | | | |
 19703 | 2016-10-17 13:24:17 | | | |
 19704 | 2016-10-17 13:24:17 | | | |
 19705 | 2016-10-17 13:24:17 | | | |
 19706 | 2016-10-17 13:24:17 | | | |
 19707 | 2016-10-17 13:24:17 | | | |
 19708 | 2016-10-17 13:24:17 | | | |
 19709 | 2016-10-17 13:24:17 | | | |
 19710 | 2016-10-17 13:24:17 | | | |
 19711 | 2016-10-17 13:24:17 | | | |
 19712 | 2016-10-17 13:24:17 | | | |
 19713 | 2016-10-17 13:24:17 | | | |
 19714 | 2016-10-17 13:24:17 | | | |
 19715 | 2016-10-17 13:24:17 | | | |
 19716 | 2016-10-17 13:24:17 | | | |
 19717 | 2016-10-17 13:24:17 | | | |
 19718 | 2016-10-17 13:24:17 | | | |
 19719 | 2016-10-17 13:24:17 | | | |
 19720 | 2016-10-17 13:24:17 | | | |
 20024 | 2016-10-17 13:33:46 | | | |
 19722 | 2016-10-17 13:24:17 | test | t-ishii | 2016-10-17 13:34:42 | 1
 19723 | 2016-10-17 13:24:17 | | | |
 19724 | 2016-10-17 13:24:17 | | | |
 19725 | 2016-10-17 13:24:17 | | | |
 19726 | 2016-10-17 13:24:17 | | | |
 19727 | 2016-10-17 13:24:17 | | | |
(32 rows)

SHOW POOL_POOLS

Name

SHOW POOL_POOLS -- sends back a list of pools handled by Pgpool-II.

Synopsis

SHOW POOL_POOLS

Description

SHOW POOL_POOLS sends back a list of pools handled by Pgpool-II

It has 11 columns:

pool_pid is the PID of the displayed Pgpool-II process.

start_time is the timestamp of when this process was launched.

pool_id is the pool identifier (should be between 0 and max_pool - 1)

backend_id is the backend identifier (should be between 0 and the number of configured backends minus
one)

database is the database name for this process's pool id connection.

username is the user name for this process's pool id connection.

create_time is the creation time and date of the connection.

majorversion and minorversion are the protocol version numbers used in this connection.

pool_counter counts the number of times this pool of connections (process) has been used by clients.

pool_backendpid is the PID of the PostgreSQL process.

pool_connected is true (1) if a frontend is currently using this backend.

It'll always return num_init_children * max_pool * number_of_backends lines. Here is an example session:

test=# show pool_pools;
 pool_pid | start_time | pool_id | backend_id | database | username | create_time | majorversion | minorversion | pool_counter | pool_backendpid | pool_connected
----------+---------------------+---------+------------+----------+----------+---------------------+--------------+--------------+--------------+-----------------+----------------
 19696 | 2016-10-17 13:24:17 | 0 | 0 | postgres | t-ishii | 2016-10-17 13:35:12 | 3 | 0 | 1 | 20079 | 1
 19696 | 2016-10-17 13:24:17 | 0 | 1 | postgres | t-ishii | 2016-10-17 13:35:12 | 3 | 0 | 1 | 20080 | 1
 19696 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19696 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19696 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19696 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19696 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19696 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19697 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19698 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19699 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19700 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19701 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19702 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0

 19703 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19703 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19704 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19705 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19706 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19707 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19708 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19709 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19710 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19711 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19712 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0

 19713 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19713 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19714 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19715 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19716 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19717 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19718 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19719 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19720 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20024 | 2016-10-17 13:33:46 | 0 | 0 | test | t-ishii | 2016-10-17 14:30:53 | 3 | 0 | 1 | 22055 | 1
 20024 | 2016-10-17 13:33:46 | 0 | 1 | test | t-ishii | 2016-10-17 14:30:53 | 3 | 0 | 1 | 22056 | 1
 20024 | 2016-10-17 13:33:46 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20024 | 2016-10-17 13:33:46 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20024 | 2016-10-17 13:33:46 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20024 | 2016-10-17 13:33:46 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20024 | 2016-10-17 13:33:46 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20024 | 2016-10-17 13:33:46 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0

 20600 | 2016-10-17 13:46:58 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 20600 | 2016-10-17 13:46:58 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19723 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19724 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19725 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19726 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 1 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 2 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 2 | 1 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 3 | 0 | | | | 0 | 0 | 0 | 0 | 0
 19727 | 2016-10-17 13:24:17 | 3 | 1 | | | | 0 | 0 | 0 | 0 | 0
(256 rows)

SHOW POOL_VERSION

Name

SHOW POOL_VERSION -- displays a string containing the Pgpool-II release number.

Synopsis

SHOW POOL_VERSION

Description

SHOW POOL_VERSION displays a string containing the Pgpool-II release number. Here is an example session:

test=# show pool_version;
 pool_version

 3.6.0 (subaruboshi)
(1 row)

SHOW POOL_CACHE

Name

SHOW POOL_CACHE -- displays cache storage statistics

Synopsis

SHOW POOL_CACHE

Description

SHOW POOL_CACHE displays in memory query cache statistics if in memory query cache is enabled. Here is an
example session:

test=# \x
\x
Expanded display is on.
test=# show pool_cache;
show pool_cache;
-[RECORD 1]---------------+---------
num_cache_hits | 891703
num_selects | 99995
cache_hit_ratio | 0.90
num_hash_entries | 131072
used_hash_entries | 99992
num_cache_entries | 99992
used_cache_enrties_size | 12482600
free_cache_entries_size | 54626264
fragment_cache_entries_size | 0

V. pgpool_adm extension
pgpool_adm is a set of extensions to allow SQL access to Reference II, PCP commands (actually, pcp
libraries). It uses foreign data wrapper as shown in the diagram below.

Figure 1. How pgpool_adm works

It is possible to call the functions from either via pgpool-II (1) or via PostgreSQL (2). In case (1), Pgpool-II
accepts query from user (1), then forward to PostgreSQL (3). PostgreSQL connects to Pgpool-II (5) and
Pgpool-II reply back to PostgreSQL with the result (3). PostgreSQL returns the result to Pgpool-II (5) and
Pgpool-II fowards the data to the user (6).

In case (2), PostgreSQL accepts query from user (2). PostgreSQL connects to Pgpool-II (5) and Pgpool-II reply
back to PostgreSQL with the result (3). PostgreSQL replies back the data to the user (6).

There are two forms to call pgpool_adm functions: first form accepts Pgpool-II host name (or IP address), pcp
port number, pcp user name, its password and another parameters.

In the second form, Pgpool-II server name is required. The server name must be already defined using
"CREATE FOREIGN SERVER" command of PostgreSQL. The pcp port number is hard coded as 9898, the pcp
user name is assumes to be same as caller's PostgreSQL user name. password is extraced from
$HOME/.pcppass.

1. Installing pgpool_adm

pgpool_adm is an extension and should be installed on all PostgreSQL servers.

$ cd src/sql/pgpool_adm
$ make
$ make install

Then issue following SQL command for every database you want to access.

$ psql ...
$ CREATE EXTENSION pgpool_adm

Table of Contents

pgpool_adm_pcp_node_info -- a function to display the information on the given node ID

pgpool_adm_pcp_pool_status -- a function to retrieves parameters in pgpool.conf.

pgpool_adm_pcp_node_count -- a function to retrieves number of backend nodes.

pgpool_adm_pcp_attach_node -- a function to attach given node ID

pgpool_adm_pcp_detach_node -- a function to detach given node ID

pgpool_adm_pcp_node_info

Name

pgpool_adm_pcp_node_info -- a function to display the information on the given node ID

Synopsis

pcp_node_info returns record(integer node_id, text host, integer port, text username, text password, out status text, out weight
float4);

pcp_node_info returns record(integer node_id, text pcp_server, out status text, out weight float4);

Description

pcp_node_info displays the information on the given node ID.

Arguments

node_id

The index of backend node to get information of.

pcp_server

The foreign server name for pcp server.

Other arguments

See pcp_common_options.

Example

Here is an example output:

test=# SELECT * FROM pcp_node_info(0,'',11001,'t-ishii','t-ishii');
 host | port | status | weight
------+-------+-------------------+--------
 /tmp | 11002 | Connection in use | 0
(1 row)

pgpool_adm_pcp_pool_status

Name

pgpool_adm_pcp_pool_status -- a function to retrieves parameters in pgpool.conf.

Synopsis

pcp_pool_status returns record(text host, integer port, text username, text password, out item text, out value text, out description
text);

pcp_pool_status returns record(text pcp_server, out item text, out value text, out description text);

Description

pcp_pool_status retrieves parameters in pgpool.conf.

Arguments

pcp_server

The foreign server name for pcp server.

Other arguments

See pcp_common_options.

Example

Here is an example output:

 test=# SELECT * FROM pcp_pool_status('localhost',11001,'t-ishii','t-ishii') WHERE item ~ 'backend.*0';
 item | value | description
-------------------------+--+-------------------------------
 backend_hostname0 | /tmp | backend #0 hostname
 backend_port0 | 11002 | backend #0 port number
 backend_weight0 | 0.500000 | weight of backend #0
 backend_data_directory0 | /home/t-ishii/work/pgpool-II/current/aaa/data0 | data directory for backend #0
 backend_status0 | 2 | status of backend #0
 backend_flag0 | ALLOW_TO_FAILOVER | backend #0 flag
(6 rows)

pgpool_adm_pcp_node_count

Name

pgpool_adm_pcp_node_count -- a function to retrieves number of backend nodes.

Synopsis

pcp_node_count returns integer(text host, integer port, text username, text password);

pcp_node_count returns integer(text pcp_server);

Description

pcp_node_count retrieves number of DB nodes.

Arguments

pcp_server

The foreign server name for pcp server.

Other arguments

See pcp_common_options.

Example

Here is an example output:

test=# SELECT * FROM pcp_node_count('localhost',11001,'t-ishii','t-ishii');
 node_count

 2
(1 row)

pgpool_adm_pcp_attach_node

Name

pgpool_adm_pcp_attach_node -- a function to attach given node ID

Synopsis

pcp_attach_node returns record(integer node_id, text host, integer port, text username, text password, out node_attached boolean);

pcp_attach_node returns record(integer node_id, text pcp_server, out node_attached boolean);

Description

pcp_attach_node attaches a node to Pgpool-II.

Arguments

node_id

The index of backend node to attach.

pcp_server

The foreign server name for pcp server.

Other arguments

See pcp_common_options.

Example

Here is an example output:

test=# SELECT * FROM pcp_attach_node(1,'localhost',11001,'t-ishii','t-ishii');
 node_attached

 t
(1 row)

pgpool_adm_pcp_detach_node

Name

pgpool_adm_pcp_detach_node -- a function to detach given node ID

Synopsis

pcp_detach_node returns record(integer node_id, boolean gracefully, text host, integer port, text username, text password, out
node_detached boolean);

pcp_detach_node returns record(integer node_id, boolean gracefully, text pcp_server, out node_detached boolean);

Description

pcp_detach_node detaches a node from Pgpool-II.

Arguments

node_id

The index of backend node to detach.

gracefully

If true, wait for all session of pgpool-II terminates.

pcp_server

The foreign server name for pcp server.

Other arguments

See pcp_common_options.

Example

Here is an example output:

test=# SELECT * FROM pcp_detach_node(1, 'false', 'localhost',11001,'t-ishii','t-ishii');
 node_detached

 t
(1 row)

V. Appendixes
something...

Table of Contents

A. Release Notes

A.1. Release 3.7.5
A.2. Release 3.7.4

A.3. Release 3.7.3
A.4. Release 3.7.2
A.5. Release 3.7.1
A.6. Release 3.7
A.7. Release 3.6.12
A.8. Release 3.6.11
A.9. Release 3.6.10
A.10. Release 3.6.9
A.11. Release 3.6.8
A.12. Release 3.6.7
A.13. Release 3.6.6
A.14. Release 3.6.5
A.15. Release 3.6.4
A.16. Release 3.6.3
A.17. Release 3.6.2
A.18. Release 3.6.1
A.19. Release 3.6
A.20. Release 3.5.16
A.21. Release 3.5.15
A.22. Release 3.5.14
A.23. Release 3.5.13
A.24. Release 3.5.12
A.25. Release 3.5.11
A.26. Release 3.5.10
A.27. Release 3.5.9
A.28. Release 3.5.8
A.29. Release 3.5.7
A.30. Release 3.5.6
A.31. Release 3.5.5
A.32. Release 3.4.19
A.33. Release 3.4.18
A.34. Release 3.4.17
A.35. Release 3.4.16
A.36. Release 3.4.15
A.37. Release 3.4.14
A.38. Release 3.4.13
A.39. Release 3.4.12
A.40. Release 3.4.11
A.41. Release 3.4.10
A.42. Release 3.4.9
A.43. Release 3.3.22
A.44. Release 3.3.21
A.45. Release 3.3.20
A.46. Release 3.3.19
A.47. Release 3.3.18
A.48. Release 3.3.17
A.49. Release 3.3.16
A.50. Release 3.3.15
A.51. Release 3.3.14
A.52. Release 3.3.13
A.53. Release 3.2.22
A.54. Release 3.2.21
A.55. Release 3.2.20
A.56. Release 3.2.19
A.57. Release 3.2.18
A.58. Release 3.1.21

Appendix A. Release Notes
The release notes contain the significant changes in each Pgpool-II release, with major features and
migration issues listed at the top. The release notes do not contain changes that affect only a few users or
changes that are internal and therefore not user-visible.

A complete list of changes for each release can be obtained by viewing the Git logs for each release. The
pgpool-committers email list records all source code changes as well. There is also a web interface that shows
changes to specific files.

The name appearing next to each item represents the major developer for that item. Of course all changes
involve community discussion and patch review, so each item is truly a community effort.

A.1. Release 3.7.5

Release Date: 2018-07-31

A.1.1. Bug fixes

Allow not to use pool_passwd in raw mode. (bug 411) (Tatsuo Ishii)

Since in raw there's only 1 backend is actually involved, there's no need to use pool_passwd with md5
authentication.

Fix "write on backend 0 failed with error :"Success"" error. (bug 403) (Tatsuo Ishii)

Don't treated it as an error if write() returns 0.

Fix for 0000409: worker process is not restarted after failover on standby Pgpool-II. (bug 409)
(Muhammad Usama)

Patch contributed by Yugo Nagata.

Fix for 0000406: failover called with wrong old-primary. (bug 406) (Muhammad Usama)

Fixed that the health check process was not started after failed back. (bug 407) (Tatsuo Ishii)

Fix memory leaks related to pool_extract_error_message(). (Tatsuo Ishii)

Fix an incorrect declare as bool, rather than int in pool_extract_error_message(). (Tatsuo Ishii)

This led to a segfault issue mentioned on certain platform.

Fix segfault in per_node_error_log() on armhf architecture. (Tatsuo Ishii)

Patch provided by Christian Ehrhardt.

Fix for wrong backend roles on standby after the failover. (Muhammad Usama)

Doc: Improve documents of "MD5 Password Authentication", "Installing Pgpool-II" and "pg_md5".(Bo
Peng)

Patch provided by Takuma Hoshiai.

Test: Fix 006.memqcache test failure. (Tatsuo Ishii)

A.2. Release 3.7.4

Release Date: 2018-06-12

http://www.pgpool.net/pipermail/pgpool-committers/
http://git.postgresql.org/gitweb?p=pgpool2.git;a=summary
http://www.pgpool.net/mantisbt/view.php?id=411
http://www.pgpool.net/mantisbt/view.php?id=403
http://www.pgpool.net/mantisbt/view.php?id=409
http://www.pgpool.net/mantisbt/view.php?id=406
http://www.pgpool.net/mantisbt/view.php?id=407

A.2.1. Bug fixes

Fix Pgpool-II hung if replication delay is too much, when query cache enabled in extended query mode.
(Tatsuo Ishii)

See [pgpool-general-jp: 1534] for more details.

Doc: Fix document typo of PCP commands option "-U". (Bo Peng)

Delete some debug code. (Bo Peng)

In extended query mode, do not set writing tx flag with SET TRANSACTION READ ONLY. (Tatsuo Ishii)

Fix wrong parameter %P (old primary node id) passed to failover script in 3.7.3 and 3.7.2. (Tatsuo Ishii)

Doc: Clarify that failover_require_consensus requires that health check is enabled. (Tatsuo Ishii)

Doc: Update outdated pcp_proc_info manual. (Tatsuo Ishii)

Test: Fix test.sh in extended_query_test. (Tatsuo Ishii)

Add missing health_check_timeout in pgpool_setup. (Tatsuo Ishii)

Doc: Enhance online recovery document to Clarify that recovery_2nd_stage_command is only required
in native replication mode. (Tatsuo Ishii)

Prevent pcp_recovery_node from recovering "unused" status node. (Tatsuo Ishii)

This allowed to try to recovery a node without configuration data, which leads to variety of problems.

See [pgpool-general: 5963] for more details.

Also I fixed pgpool_recovery function so that it quotes an empty string argument with double quotes.

A.3. Release 3.7.3

Release Date: 2018-04-17

A.3.1. Bug fixes

Disable health check per node parameters by default. (Bo Peng)

Fix pcp_detach_node hung when -g option is specified. (bug 391) (Tatsuo Ishii)

Test: Add new regression test for node 0 is down. (Tatsuo Ishii)

Make calls to to_regclass fully schema qualified. (Tatsuo Ishii)

Fix pgpool child process segfault when ALWAYS_MASTER is on. (Tatsuo Ishii)

If following conditions are all met pgpool child segfaults:

1. Streaming replication mode.

2. fail_over_on_backend_error is off.

3. ALWAYS_MASTER flag is set to the master (writer) node.

4. pgpool_status file indicates that the node mentioned in #3 is in down status.

Doc: Improve watchdog documents. (Tatsuo Ishii)

https://www.pgpool.net/pipermail/pgpool-general-jp/2018-May/001533.html
https://www.pgpool.net/pipermail/pgpool-general/2018-March/006021.html
http://www.pgpool.net/mantisbt/view.php?id=391

Doc: Add a document for adding new config parameter. (Tatsuo Ishii)

Test: Improve test script 003.failover. (Bo Peng)

Deal with "unable to bind D cannot get parse message "S1" error. (Tatsuo Ishii)

Doc: Mention that users can avoid failover using backend_flag even PostgreSQL admin shutdown.
(Tatsuo Ishii)

Doc: Fix document typos. (Bo Peng)

Test: Add new regression test for node 0 not being primary. (Tatsuo Ishii)

Fix pgpool_setup failure in replication mode. (Tatsuo Ishii)

Allow to support pgpool_switch_xlog PostgreSQL 10. (Tatsuo Ishii)

Revert "Fix pgpool child process segfault when ALWAYS_MASTER is on." (Tatsuo Ishii)

With the commit, write queries are always sent to node 0 even if the primary node is not 0 because
PRIMARY_NODE_ID macro returns REAL_MASTER_NODE_ID, which is usually 0. Thus write queries are
failed with: ERROR: cannot execute INSERT in a read-only transaction

Test: Enhance extended query test. (Tatsuo Ishii)

Doc: Fix pgpool_adm family functions examples. (Tatsuo Ishii)

A.4. Release 3.7.2

Release Date: 2018-02-13

Note: This release fixed the bug with socket writing added in Pgpool-II 3.7.0, 3.6.6 and
3.5.10. Due to this bug, when the network load is high, an illegal message may be sent
to the frontend or backend. All users using 3.7.x, 3.6.6 or later, 3.5.10 or later versions of
Pgpool-II should update as soon as possible.

A.4.1. Changes

Allow to build with libressl. (Tatsuo Ishii)

See [pgpool-hackers: 2714] for more details. Patch by Sandino Araico Sanchez.

Set TCP_NODELAY and non blocking to frontend socket. (Tatsuo Ishii)

TCP_NODELAY is employed by PostgreSQL, so do we it.

Change systemd service file to use STOP_OPTS=" -m fast". (Bo Peng)

Change pgpool_setup to add restore_command in recovery.conf. (Bo Peng)

A.4.2. Bug fixes

Fix writing transaction flag is accidentally set at commit or rollback. (Tatsuo Ishii)

Throw a warning message when failover consensus settings on watchdog nodes differs. (Muhammad
Usama)

https://git.postgresql.org/gitweb/?p=pgpool2.git;a=commit;h=9022ff842fb5dbbe06e2f2f4cf38fadf47b592da
https://www.pgpool.net/pipermail/pgpool-hackers/2018-February/002714.html

Doc: Fix document typo. (Bo Peng)

Fix bug with socket writing. (Tatsuo Ishii)

pool_write_flush() is responsible for writing to sockets when pgpool's write buffer is full (this function was
introduced in 3.6.6 etc). When network write buffer in kernel is full, it does retrying but it forgot to
update the internal buffer pointer. As a result, broken data is written to the socket. This results in
variety of problems including too large message length.

Fix pgpool child process segfault when ALWAYS_MASTER is on. (Tatsuo Ishii)

If following conditions are all met pgpool child segfaults:

1. Streaming replication mode.

2. fail_over_on_backend_error is off.

3. ALWAYS_MASTER flags is set to the master (writer) node.

4. pgpool_status file indicates that the node mentioned in #3 is in down status.

See [pgpool-hackers: 2687] and [pgpool-general: 5881] for more details.

Fix segfault when %a is in log_line_prefix and debug message is on. (bug 376) (Tatsuo Ishii)

Fix per node health check parameters types. (Tatsuo Ishii)

Fix queries hanging in parse_before_bind with extended protocol and replication + load-balancing. (bug
377) (Tatsuo Ishii)

A.5. Release 3.7.1

Release Date: 2018-01-09

A.5.1. Bug fixes

Improve Makefiles. (Bo Peng)

Patch provided by Tomoaki Sato.

Doc: Fix document typo and mistakes. (Bo Peng)

Replace /bin/ed with /bin/sed in pgpool_setup, because /bin/sed is included in most distribution's base
packages. (Tatsuo Ishii)

Change the pgpool.service and sysconfig files to output Pgpool-II log. (Bo Peng)

Removeing "Type=forking" and add OPTS=" -n" to run Pgpool-II with non-daemon mode, because we
need to redirect logs. Using "journalctl" command to see Pgpool-II systemd log.

Add documentation "Compiling and installing documents" for SGML document build. (Tatsuo Ishii)

Fix per node health check parameters ignored. (bug 371) (Tatsuo Ishii)

Also pgpool_setup is modified to add appropriate per node health check parameters to pgpool.conf.

Fix health checking process death and forking forever. (Tatsuo Ishii)

When failed to read from backend socket (this could happen when wrong health_check_user is
specified), the health check process raises a FATAL error in pool_read(), which causes death of health
check process. And Pgpool-II main forks off a new health check process. This repeats forever.

https://www.pgpool.net/pipermail/pgpool-hackers/2018-January/002687.html
https://www.pgpool.net/pipermail/pgpool-general/2018-January/005939.html
http://www.pgpool.net/mantisbt/view.php?id=376
http://www.pgpool.net/mantisbt/view.php?id=377
http://www.pgpool.net/mantisbt/view.php?id=371

Fix timestamp data inconsistency by replication mode. (Bo Peng)

From PostgreSQL10 the column default value such as 'CURRENT_DATE' changes, Pgpool-II didn't rewrite
timestamp by the added default values. This caused data inconsistency.

Doc: Fix watchdog_setup doc. (Tatsuo Ishii)

It lacked to mention that it supports logical replication mode.

Downgrade a log message to debug message. (Tatsuo Ishii)

That was mistaken left while last development cycle.

Test: Add test data for bug 370. (Tatsuo Ishii)

Fix for re-sync logic in reading packet from backend. (Tatsuo Ishii)

read_kind_from_backend(), which reads message kind from backend, re-syncs backend nodes when a ready
for query message is received. Unfortunately it forgot to call pool_pending_message_pull_out() to delete sync
pending message. This leads to random stuck while reading packets from backend. Fix this to call
pool_pending_message_pull_out().

Fix Pgpool-II hangs. (bug 370) (Tatsuo Ishii)

If an erroneous query is sent to primary and without a sync message the next query that requires a
catalog cache look up is send, Pgpool-II hangs in do_query().

Fix returning transaction state when "ready for query" message received. (Tatsuo Ishii)

We return primary or master node state of ready for query message to frontend. In most cases this is
good. However if other than primary node or master node returns an error state (this could happen if
load balance node is other than primary or master node and the query is an errornous SELECT), this
should be returned to frontend, because the frontend already received an error.

Test: Fix bug with extended-query-test test driver. (Tatsuo Ishii)

Doc: Enhance document "Running mode of Pgpool-II". (Tatsuo Ishii)

A.6. Release 3.7

Release Date: 2017-11-22

A.6.1. Overview

This version improves reliability of failover by using new watchdog feature and per node health check. Also
this version adapts to changes in PostgreSQL 10: new SQL parser, logical replication and some admin
functions name changes.

Major enhancements in Pgpool-II 3.7 include:

Quorum aware failover feature.

Allow specifying the hostnames in pool_hba.

Allow to specify per node health check parameters.

Support AWS Aurora.

Import PostgreSQL 10 SQL parser

Support logical replication.

http://www.pgpool.net/mantisbt/view.php?id=370
http://www.pgpool.net/mantisbt/view.php?id=370

A.6.2. Major Enhancements

Quorum and Consensus for backend failover. (Muhammad Usama)

Add ability in the Pgpool-II to considers the existence of quorum and seek the majority node (Pgpool-II
nodes part of the watchdog cluster) consensus to validate the backend node failover request. This
feature helps make failover decision better and prevent split brain scenarios.

The addition of this feature also made some modification in the execution behavior of the failover
(failover, failback, promote-node) command.

Now only the Master node performs the failover, and the failover locks are removed.

Three new configuration parameters to configure the failover behavior from user side:
failover_when_quorum_exists, failover_require_consensus,
enable_multiple_failover_requests_from_node.

Allow specifying the hostnames in pool_hba. (Muhammad Usama)

The commit adds the support of hostnames to be used in the address field of pool_hba records,
previously only CIDR address was supported.

Along with allowing the hostnames in address field of the HBA record the commit also made the
following enhancements in the area.

(1) pool_hba records are now completely parsed at the loading time and we now keep the structured
data of records instead of raw record lines, This saves the parsing at every new connection time and
however little it may be but its a performance enhancement.

(2) Enhanced parsing now gives the better descriptive error/log messages.

(3) Better handling of auth-options field.

Supporting per node health check parameters. (Tatsuo Ishii, Muhammad Usama)

Previous implementation of health check is a single serial processing for all of database nodes.

Now pgpool main process forks health check process for each DB node. This commit enables all health-
check related parameter to be configured for each individual backend nodes.

For example if we have 3 backend nodes and do following configurations.

health_check_period = 10
health_check_period0 = 5

Then will set the health_check_period for node 0 to 5 while node-id 1 and 2 will get the value 10

Import PostgreSQL 10 SQL parser. (Bo Peng)

Support AWS Aurora. (Tatsuo Ishii)

Add new backend flag "ALWAYS_MASTER" to control the primary node detecting logic. Since we cannot
use pg_is_in_recovery() in Aurora, we assign the new flag to a backend which is specified as "writer" in
Aurora. Since Aurora always use the same hostname for the master (it's called "writer"),
find_primary_node() just returns the node id which has ALWAYS_MASTER flag on.

See more details about ALWAYS_MASTER flag Table 5-3.

Other than that, user can use the streaming replication mode with Aurora. Notice that replication delay
cannot be performed in Aurora, sr_check_period should be always 0.

Also add English/Japanese Aurora setting example.

Support logical replication. (Tatsuo Ishii)

The logical replication mode can be used with PostgreSQL servers operating logical replication. In this
mode, PostgreSQL is responsible for synchronizing tables.

Load balancing is possible in the mode. Since logical replication does not replicate all tables, it's user's
responsibility to replicate the table which could be load balanced.

The sample configuration file is $prefix/etc/pgpool.conf.sample-logical.

And add support for logical replication mode to pgpool_setup.

A.6.3. Other Enhancements

Test: Add some watchdog test cases. (Muhammad Usama)

Test: Add new test case "node_js.data" to extended-query-test. (Tatsuo Ishii)

Doc: Documentation updates for pool_hba enhancements. (Muhammad Usama)

Add "slony mode" to pgpool_setup. (Tatsuo Ishii)

Deal with OpenSSL 1.1. (Tatsuo Ishii, Muhammad Usama)

Test: Add new regression test "069.memory_leak_extended". (Tatsuo Ishii)

Doc: Enhance query cache documents. (Tatsuo Ishii)

Doc: Add "Tips for Installation" section. (Tatsuo Ishii)

Test: Add new test 011.watchdoc_quorum_failover. (Tatsuo Ishii)

Test: Add new test suits. (Tatsuo Ishii)

The new test suit "extended-query-test" is intended to test extended queries using pgproto command.

Add debugging aid to check pending message and backend response. (Tatsuo Ishii)

New function pool_check_pending_message_and_reply() added. If pending message kind and backend
reply message kind is not inconsistent, it prints a debug message. Currently the only client of the
function is read_kind_from_backend().

Add debugging/testing aid for health check. (Tatsuo Ishii)

A.6.4. Changes

Add "role" field to pcp_node_info command. (Tatsuo Ishii)

Role is the server role: one of "primary", "standby", "master" or "slave".

Change master_slave_sub_mode default to 'stream'. (Tatsuo Ishii)

This is necessary since the default value for the pool_config_variable.c is STREAM_MODE.

Allow to fork new health check process when it exits. (Tatsuo Ishii)

Add new group "health_check" to PGPOOL SHOW command doc. (Tatsuo Ishii)

Remove old html docs and related files. (Tatsuo Ishii)

A.6.5. Bug fix

Fix Pgpool-II hanging after receiving 'H' (flush) message in streaming replication mode. (bug 345)
(Tatsuo Ishii)

Fix exit signal handlers to not call ereport. (Tatsuo Ishii)

There could be a race condition in the exit signal handlers.

See [pgpool-hackers:2545] for more details.

http://www.pgpool.net/mantisbt/view.php?id=345
https://www.pgpool.net/pipermail/pgpool-hackers/2017-September/002545.html

Doc: Fix table about replicate_select behavior. (Yugo Nagata)

Test: Fix bug with memory leak tests and add new memory leak test. (Tatsuo Ishii)

Add log after health check retrying succeeds. (Tatsuo Ishii)

Previously only health check retry logs were produced. So it was not clear if the retry succeeded or not
in the end.

Add necessary setting for health check retry in the Aurora example. (Tatsuo Ishii)

A.7. Release 3.6.12

Release Date: 2018-07-31

A.7.1. Bug fixes

Fix "write on backend 0 failed with error :"Success"" error. (bug 403) (Tatsuo Ishii)

Don't treated it as an error if write() returns 0.

Fix for 0000409: worker process is not restarted after failover on standby. (bug 409) (Muhammad
Usama)

Patch contributed by Yugo Nagata.

Fix memory leaks related to pool_extract_error_message(). (Tatsuo Ishii)

Fix an incorrect declare as bool, rather than int in pool_extract_error_message(). (Tatsuo Ishii)

This led to a segfault issue mentioned on certain platform.

Fix segfault in per_node_error_log() on armhf architecture. (Tatsuo Ishii)

Patch provided by Christian Ehrhardt.

Doc: Improve documents of "MD5 Password Authentication", "Installing Pgpool-II" and "pg_md5".(Bo
Peng)

Patch provided by Takuma Hoshiai.

Test: Fix 006.memqcache test failure. (Tatsuo Ishii)

A.8. Release 3.6.11

Release Date: 2018-06-12

A.8.1. Bug fixes

Fix Pgpool-II hung if replication delay is too much, when query cache enabled in extended query mode.
(Tatsuo Ishii)

See [pgpool-general-jp: 1534] for more details.

http://www.pgpool.net/mantisbt/view.php?id=403
http://www.pgpool.net/mantisbt/view.php?id=409
https://www.pgpool.net/pipermail/pgpool-general-jp/2018-May/001533.html

Doc: Fix document typo of PCP commands option "-U". (Bo Peng)

Delete some debug code. (Bo Peng)

In extended query mode, do not set writing tx flag with SET TRANSACTION READ ONLY. (Tatsuo Ishii)

Doc: Update outdated pcp_proc_info manual. (Tatsuo Ishii)

Doc: Enhance online recovery document to Clarify that recovery_2nd_stage_command is only required
in native replication mode. (Tatsuo Ishii)

Prevent pcp_recovery_node from recovering "unused" status node. (Tatsuo Ishii)

This allowed to try to recovery a node without configuration data, which leads to variety of problems.

See [pgpool-general: 5963] for more details.

Also I fixed pgpool_recovery function so that it quotes an empty string argument with double quotes.

A.9. Release 3.6.10

Release Date: 2018-04-17

A.9.1. Bug fixes

Test: Add new regression test for node 0 is down. (Tatsuo Ishii)

Make calls to to_regclass fully schema qualified. (Tatsuo Ishii)

Doc: Improve watchdog documents. (Tatsuo Ishii)

Test: Improve test script 003.failover. (Bo Peng)

Deal with "unable to bind D cannot get parse message "S1" error. (Tatsuo Ishii)

Doc: Mention that users can avoid failover using backend_flag even PostgreSQL admin shutdown.
(Tatsuo Ishii)

Doc: Fix document typos. (Bo Peng)

Fix pgpool_setup failure in replication mode. (Tatsuo Ishii)

Allow to support pgpool_switch_xlog PostgreSQL 10. (Tatsuo Ishii)

Doc: Fix pgpool_adm family functions examples. (Tatsuo Ishii)

A.10. Release 3.6.9

Release Date: 2018-02-13

Note: This release fixed the bug with socket writing added in Pgpool-II 3.7.0, 3.6.6 and
3.5.10. Due to this bug, when the network load is high, an illegal message may be sent
to the frontend or backend. All users using 3.7.x, 3.6.6 or later, 3.5.10 or later versions of

https://www.pgpool.net/pipermail/pgpool-general/2018-March/006021.html

Pgpool-II should update as soon as possible.

A.10.1. Changes

Allow to build with libressl. (Tatsuo Ishii)

See [pgpool-hackers: 2714] for more details. Patch by Sandino Araico Sanchez.

Set TCP_NODELAY and non blocking to frontend socket. (Tatsuo Ishii)

TCP_NODELAY is employed by PostgreSQL, so do we it.

Change systemd service file to use STOP_OPTS=" -m fast". (Bo Peng)

Change pgpool_setup to add restore_command in recovery.conf. (Bo Peng)

A.10.2. Bug fixes

Fix writing transaction flag is accidentally set at commit or rollback. (Tatsuo Ishii)

Doc: Fix document typos. (Bo Peng)

Fix bug with socket writing. (Tatsuo Ishii)

pool_write_flush() is responsible for writing to sockets when pgpool's write buffer is full (this function was
introduced in 3.6.6 etc). When network write buffer in kernel is full, it does retrying but it forgot to
update the internal buffer pointer. As a result, broken data is written to the socket. This results in
variety of problems including too large message length.

Fix segfault when %a is in log_line_prefix and debug message is on. (bug 376) (Tatsuo Ishii)

Fix queries hanging in parse_before_bind with extended protocol and replication + load-balancing. (bug
377) (Tatsuo Ishii)

A.11. Release 3.6.8

Release Date: 2018-01-09

A.11.1. Bug fixes

Doc: Fix document typo and mistakes. (Bo Peng)

Replace /bin/ed with /bin/sed in pgpool_setup, because /bin/sed is included in most distribution's base
packages. (Tatsuo Ishii)

Change the pgpool.service and sysconfig files to output Pgpool-II log. (Bo Peng)

Removeing "Type=forking" and add OPTS=" -n" to run Pgpool-II with non-daemon mode, because we
need to redirect logs. Using "journalctl" command to see Pgpool-II systemd log.

Add documentation "Compiling and installing documents" for SGML document build. (Tatsuo Ishii)

Fix timestamp data inconsistency by replication mode. (Bo Peng)

From PostgreSQL10 the column default value such as 'CURRENT_DATE' changes, Pgpool-II didn't rewrite

https://www.pgpool.net/pipermail/pgpool-hackers/2018-February/002714.html
http://www.pgpool.net/mantisbt/view.php?id=376
http://www.pgpool.net/mantisbt/view.php?id=377

timestamp by the added default values. This caused data inconsistency.

Doc: Fix watchdog_setup doc. (Tatsuo Ishii)

It lacked to mention that it supports logical replication mode.

Downgrade a log message to debug message. (Tatsuo Ishii)

That was mistaken left while last development cycle.

Fix for re-sync logic in reading packet from backend. (Tatsuo Ishii)

read_kind_from_backend(), which reads message kind from backend, re-syncs backend nodes when a ready
for query message is received. Unfortunately it forgot to call pool_pending_message_pull_out() to delete sync
pending message. This leads to random stuck while reading packets from backend. Fix this to call
pool_pending_message_pull_out().

Fix Pgpool-II hangs. (bug 370) (Tatsuo Ishii)

If an erroneous query is sent to primary and without a sync message the next query that requires a
catalog cache look up is send, Pgpool-II hangs in do_query().

Add SL_MODE macro for upper compatibility with Pgpool-II 3.7 or later. (Tatsuo Ishii)

Fix returning transaction state when "ready for query" message received. (Tatsuo Ishii)

We return primary or master node state of ready for query message to frontend. In most cases this is
good. However if other than primary node or master node returns an error state (this could happen if
load balance node is other than primary or master node and the query is an errornous SELECT), this
should be returned to frontend, because the frontend already received an error.

Fix pgpool start message printed multiple times. (Tatsuo Ishii)

Add an execute permission bit to the start/stop script in watchdog_setup. (Tatsuo Ishii)

A.12. Release 3.6.7

Release Date: 2017-11-01

A.12.1. Bug fixes

Add different pgpool.sysconfig file for RHEL6 and RHEL7. (bug 343) (Bo Peng)

In RHEL6, the "-n" option is needed to redirect log.

Fixing an issue in the handling of pg_terminate_backend(). (Muhammad Usama)

In some cases pg_terminate_backend() can cause failover even when the call is properly issued through
Pgpool-II.

Fix for bug in watchdog where sometime failover is not reliably performed. (Muhammad Usama)

Currently watchdog process only considers the node's watchdog state before deciding if it can handle
the failover and failover-locking requests.

But the problem with this technique is that, for the instance when the node has announced itself as a
master/coordinator of the cluster and is waiting for the standby nodes to recognise it as a Master node.
For that period of time the watchdog state of the node is Master/coordinator, but it is yet not fully
capable of handling the failover and failover-locking requests.

So sometimes this leads to a situation where a failover is not reliably performed in case when the

http://www.pgpool.net/mantisbt/view.php?id=370
http://www.pgpool.net/mantisbt/view.php?id=343

failover request arrives while watchdog cluster is in the process of electing a leader.

The fix for the above situation is to make sure that the node has fully acquired the Master status before
accepting the failover and failover-locking requests.

Fix bug with handling of 'H' (flush) message in streaming replication mode. (bug 345) (Tatsuo Ishii)

If user expects to read response right after 'H', Pgpool-II hangs. The cause was, when 'H' received,
extended query mode was reset and pending message was not used.

Doc: Fix pcp_node_info documents. (Tatsuo Ishii)

Fix bug mistakenly overriding global backend status right after failover. (Tatsuo Ishii)

See [pgpool-general: 5728] for mor details.

Fix exit signal handlers to not call ereport. (Tatsuo Ishii)

See [pgpool-hackers: 2545] for more details.

Deal with OpenSSL 1.1. (Tatsuo Ishii, Muhammad Usama)

Doc: Fix table about replicate_select behavior (Yugo Nagata)

A.13. Release 3.6.6

Release Date: 2017-09-05

A.13.1. Bug fixes

Fix Pgpool-II hanging when error occurs in streaming replication mode and extended query. (Tatsuo
Ishii)

If backend returns ERROR, Pgpool-II reads message from frontend until a sync message is sent. Previous
code assumed next message is sync. However it is possible that more message coming before the sync
message, it's a low probability though. Fix it to continue reading messages until the sync message is
read.

Fix wd_authkey bug in that a request to add new node to the clusetr is rejected by master. (Yugo Nagata)

This is a bug due to the implementation of 3.5.6 and 3.6.3.

This changed the definition of tv_sec that is used to check wd_authkey so that this was affected by the
clock of OS. So, if there is a lag between two nodes' clocks, the wd_authkey check fails.

Test: Fix load balance test driver. (Tatsuo Ishii)

Some tests only for native replication mode was executed in streaming replication mode as well.

Fix not working slony mode in extended query. (Tatsuo Ishii)

When response returned from backend, in progress flag was not reset in slony mode, which cause
waiting for next message from backend in vain.

Fix ancient bug of stream write modules. (Tatsuo Ishii)

Fix bug with pool_write_noerror() when requested length exceeds remaining write buffer size. This could
lead to a buffer overrun problem.

When write buffer is full, pool_flush_it() is called, which could write data to socket in the middle of
message. To fix the problem directly write requested data if the write buffer is going to be full.

http://www.pgpool.net/mantisbt/view.php?id=345
http://www.sraoss.jp/pipermail/pgpool-general/2017-September/005786.html
https://www.pgpool.net/pipermail/pgpool-hackers/2017-September/002545.html

Enhance performance of pool_unread().

Test: Some miscellanies small fixes in regression test scripts. (Muhammad Usama)

Doc: Fix documentation about load-balancing. (Yugo Nagata)

Fix core dump and mishandling of temp tables. (Tatsuo Ishii)

Fix ancient bug of pool_unread(). (Tatsuo Ishii)

When realloc() is called in pool_unread(), it did not update the buffer size. This could cause variety of
memory corruption and unexpected data reading from backend. The reason why we did not found that
is, probably recently Pgpool-II starts extensively to use pool_unread().

Fix handling of empty queries. (bug 328) (Tatsuo Ishii)

When empty query (empty string or all comment query) is sent, command complete message was
returned to frontend. This is not correct. An empty query response should be returned to frontend.

Fix query cache bug with streaming replication mode and extended query case. (Tatsuo Ishii)

Fix memory leak with streaming replication mode/extended query case. (bug 324) (Tatsuo Ishii)

Test: Fix Java program in 005.regression test. (Tatsuo Ishii)

Fix for when failover is triggered by worker process, it is possible that wrong DB node could failover.
(bug 303) (Tatsuo Ishii)

This is due to the db_node_id member in the POLL_CONNECTION structure is not initialized in the process
(in child process the member is properly initialized). To solve the problem, add new function
pool_set_db_node_id() to set the structure member variable and call it inside make_persistent_db_connection().

Fix starting unnecessary transaction when SET command is issued. (Tatsuo Ishii)

Fix for [pgpool-general: 5621] Failover() function should be executed with health check alarm disabled.
(Muhammad Usama)

Fix Pgpool-II hung up bug or other errors in error case in extended query in replication mode. (Tatsuo
Ishii)

And other fixes in this commit.

1) Do not send intended error query to backend in streaming replication mode in ErrorResponse3().

2) Fix pool_virtual_master_db_node_id() to return the virtual_master_node_id only when query is in progress
and query context exists.

Doc: Fix Pgpool-II document typo. (Bo Peng)

Allow make dist to include pgpool.service. (Yugo Nagata)

A.13.2. Enhancements

Doc: Add new English and Japanese documents of Pgpoo-II + Watchdog Setup Example. (Bo Peng)

Test: Add more memory leak regression tests. (Tatsuo Ishii)

A.14. Release 3.6.5

Release Date: 2017-07-11

http://www.pgpool.net/mantisbt/view.php?id=328
http://www.pgpool.net/mantisbt/view.php?id=324
http://www.pgpool.net/mantisbt/view.php?id=303
http://www.pgpool.net/pipermail/pgpool-general/2017-July/005679.html

A.14.1. Bug fixes

Fix for [pgpool-hackers: 2400] Garbage output (Muhammad Usama)

Mostly the log messages fixes and few code cleanups.

Importing the latest changes in the MemoryManager API from PostgreSQL code. (Muhammad Usama)

Fixing 0000306: Pgpool steals back MASTER status. (bug 306) (Muhammad Usama)

Fixing [pgpool-hackers: 2390]Problems with the relative paths in daemon mode (Muhammad Usama)

Adjust function name change in PostgreSQL 10 dev head. (Tatsuo Ishii)

 pg_current_wal_location -> pg_current_wal_lsn
 pg_last_wal_replay_location -> pg_last_wal_replay_lsn

Fix a posible hang with streaming replication and extended protocol. (Yugo Nagata)

This hang occured under a certain condition. The following is an example.

 - pgpool.conf is configured so that all read queries are sent to the standby.
 - First, issue a writing query in a transaction block
 - After commiting the transaction, issue a select query.
 - When processing the query, send Describe (statement) message just after Parse.

Without using JDBC, we can reproduce the problem by pgproto with the followeing messages.

 'Q' "DROP TABLE IF EXISTS test_tbl"
 'Y'
 'Q' "CREATE TABLE test_tbl(i int)"
 'Y'
 'Q' "INSERT INTO test_tbl VALUES(1)"
 'Y'

 'P' "" "BEGIN" 0
 'B' "" "" 0 0 0
 'E' "" 0
 'S'
 'Y'

 'P' "" "INSERT INTO test_tbl VALUES(1)" 0
 'B' "" "" 0 0 0
 'E' "" 0
 'S'
 'Y'

 'P' "" "COMMIT" 0
 'B' "" "" 0 0 0
 'E' "" 0
 'S'
 'Y'

 'P' "S_1" "SELECT * FROM test_tbl" 0
 'D' 'S' "S_1"
 'B' "C_1" "S_1" 0 0 0
 'E' "C_1" 0
 'S'
 'Y'

 'X'

To fix it, parse_before_bind() should be called only if we are in a transaction block so that we can send Bind
and Execute to the right backend.

Fix Pgpool-II hang when used by erlang applications. (Tatsuo Ishii)

http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002400.html
http://www.pgpool.net/mantisbt/view.php?id=306
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002390.html

Erlang client sends "Describe" message followed by "Flush". So the backend returns "Row description."
However Pgpool-II forgets to reset the query in progress flag upon receiving "Row description" message,
then Pgpool-II keeps on waiting for response from backend. This is the cause of erlang client hanging.

Fix is, just reset the query in progress flag upon receiving "Row description" message. Same thing can
be said to "no data" message.

See [pgpool-general: 5555] for more details.

Fix bug with sending bind message to wrong target node. (bug 314) (Tatsuo Ishii)

Fix query cache hang when used by node.js. (Tatsuo Ishii)

See [pgpool-general: 5511] for more details.

Deal with PostgreSQL 10 in streaming replication delay checking. (Tatsuo Ishii)

Fix query cache memory leak. (Tatsuo Ishii)

Clearing cache buffers in case of no oid queries (like BEGIN, CHECKPOINT, VACUUM, etc) should have been
done, but it did not.

Fix extended query hang in certain case. (Tatsuo Ishii)

errlang PostgreSQL API produces Parse ('P'), Describe ('D'), Flush ('H'), Bind ('B'), and Execute ('E'). Notice the 'H'
message (this does not happen in JDBC. I suspect that's the reason why this problem is not popular
before). After that, Pgpool-II dropped the extended query mode, it failed to find which backend to read
data. Thus Pgpool-II simply tries to read all of backend which causes hang because it may have not send
a message to some of backends.

Solution is, after receiving the flush message set doing extended query flag.

Fix for [pgpool-hackers: 2354] segfault with pg_md5. (Muhammad Usama)

Fix descriptions of white/black_memcache_table_list. (Tatsuo Ishii)

They are far from actual implementations.

See [pgpool-general: 5479] for more details.

Fix corner case bug in Pgpool-II starting up. (Tatsuo Ishii)

It is possible that a failover request is accepted before primary node is searched. This leads Pgpool-II to
a strange state: there's no primary node if the failed node was a primary node (even if new primary
node exists as a result of promotion of existing standby).

See [pgpool-hackers: 2321] for more details.

A.15. Release 3.6.4

Release Date: 2017-05-11

A.15.1. Bug fixes

Fixing a few corner cases in the failover request handling of the watchdog. (Muhammad Usama)

Tightening up the watchdog cluster membership criteria. (Muhammad Usama)

Enhance document for load balancing. (Tatsuo Ishii)

Add node 0 failover test. (Tatsuo Ishii)

http://www.pgpool.net/pipermail/pgpool-general/2017-June/005613.html
https://www.pgpool.net/mantisbt/view.php?id=314
http://www.pgpool.net/pipermail/pgpool-general/2017-May/005569.html
http://www.pgpool.net/pipermail/pgpool-hackers/2017-May/002354.html
http://www.sraoss.jp/pipermail/pgpool-general/2017-May/005537.html
http://www.pgpool.net/pipermail/pgpool-hackers/2017-May/002321.html

Fix Pgpool-II child process segfault reported in [pgpool-hackers: 2312]. (Tatsuo Ishii)

A.16. Release 3.6.3

Release Date: 2017-04-28

A.16.1. Bug fixes

Fix "show pool_cache" segfault when memcached is used. (Bug 301) (Tatsuo Ishii)

Fix for some more code warnings. (Muhammad Usama)

Fixing some annoying compiler warnings. (Muhammad Usama)

Removing the function defined but not used warnings from pool_config_vatiable.c (Muhammad Usama)

Removing the references of obsolete debug_level configuration parameter. (Muhammad Usama)

Fixing a mistake in the watchdog code. (Muhammad Usama)

commit also adds some debug messages in the watchdog code.

​ Fix for 0000299: Errors on the reloading of configuration. (Bug 299) (Muhammad Usama)

Add pgpool_adm English and Japanese docs. (Tatsuo Ishii)

Fix document indentation. (Tatsuo Ishii)

Fix for 0000289: Inconsistent backend state. (Bug 289) (Muhammad Usama)

Enhancing the handling of split-brain scenario by the watchdog. (Muhammad Usama)

Previously, the watchdog cluster was used to call for re-election of the master/coordinator node
whenever the split-brain situation was detected. And consequently every node was required to rejoin
the watchdog network, Which was essentially similar to the re-booting of the whole watchdog cluster.

The candidate for the master/coordinator node is selected on the following criteria.

1-- When two watchdog nodes are claiming to be the cluster master, the master node that has
performed the escalation keeps the master status and the other node is asked to step down.

​ 2-- If the conflict could not be resolved by the escalation status of the nodes, The node which holds the
quorum remains the master/coordinator.

​ 3-- If the quorum status of both contenders is also same. The node with higher number of connected
alive nodes get the preference.

​ 4-- Finally, if all above three yields no winner, the older master (The node that has the coordinator
status for longer duration) remains the master.

Enhancing the watchdog internal command mechanism to handle multiple concurrent commands.
(Muhammad Usama)

Fix compiler warnings. (Tatsuo Ishii)

Comment out unsupported Java method in new JDBC drivers to prevent regression failure. (Tatsuo Ishii)

Downgrade parse before bind log message to debug1. (Tatsuo Ishii)

Fix coverity warnings. (Tatsuo Ishii, Muhammad Usama)

Fix for [pgpool-general: 5396] pam ldap failure. (Muhammad Usama)

http://www.sraoss.jp/pipermail/pgpool-hackers/2017-May/002312.html
http://www.pgpool.net/mantisbt/view.php?id=301
http://www.pgpool.net/mantisbt/view.php?id=299
http://www.pgpool.net/mantisbt/view.php?id=289
http://www.sraoss.jp/pipermail/pgpool-general/2017-March/005454.html

Mention that SQL type commands cannot be used in extended query mode. (Tatsuo Ishii)

Consider SHOW command as kind of a read query. (Tatsuo Ishii)

In streaming replication mode, if SHOW is issued then subsequent SELECTs are sent to the primary
node in an explicit transaction. This is not a reasonable and unnecessary limitation. Also fix hang when
parse command returns error.

Fix memory leak problem caused by commit adcb636. (Tatsuo Ishii)

Commit adcb636 introduces "pending message queue". When a message arrives, the info is added to
the queue and a copy of object is created at the same time, but forgot to free the object. Fix is, creating
a new function pool_pending_message_free_pending_message() and call it after
pool_pending_message_add(), pool_pending_message_get() and pool_pending_message_pull_out().
Problem reported by Sergey Kim.

Mega patch to fix "kind mismatch" (or derived) errors in streaming replication mode. (Bug 271) (Tatsuo
Ishii)

The errors are caused by wrong prediction in which (or both) database node will send response to
Pgpool-II. Previous implementation using "sync map" are weak and sometimes fail in the prediction.

This patch introduces new implementation using "pending message queue", which records all sent
message to backends. The element of the queue stores info regarding messages types
(parse/bind/execute/describe/close/sync), to which database node the message was sent and so on. It's
a simple FIFO queue. When a message arrives from backend, by looking at the head of the "pending
message queue", it is possible to reliably predict what kind of message and from which database node
it will arrive. After receiving the message, the element is removed from the queue.

​ I would like to thank to Sergey Kim, who has been helping me in testing series of patches.

See Bug 271 and discussion in pgpool-hackers mailing list [pgpool-hackers: 2043] and [pgpool-hackers:
2140] for more details.

Fix for 0000296: PGPool v3.6.2 terminated by systemd because the service Type has been set to
'forking'. (Bug 296) (Muhammad Usama)

A.17. Release 3.6.2

Release Date: 2017-03-17

A.17.1. Bug fixes

Add "Wants=network.target" to pgpool.service file. (bug 294) (Bo Peng)

Fix pcp_promote_node bug that fails promoting node 0. (Yugo Nagata)

The master node could not be promoted by pcp_promote_node with the following error;

 FATAL: invalid pgpool mode for process recovery request
 DETAIL: specified node is already primary node, can't promote node id 0

In streaming replication mode, there is a case that Pgpool-II regards the status of primary node as
"standby" for some reasons, for example, when pg_ctl promote is executed manually during Pgpool-II is
running, in which case, it seems to Pgpool-II that the primary node doesn't exist.

This status mismatch should be fixe by pcp_promote_node, but when the node is the master node (the
first alive node), it fails as mentioned above.

http://www.pgpool.net/mantisbt/view.php?id=271
http://www.pgpool.net/mantisbt/view.php?id=271
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-February/002043.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-March/002140.html
http://www.pgpool.net/mantisbt/view.php?id=296
http://www.pgpool.net/mantisbt/view.php?id=294

The reason is as following. before changing the status, pcp_promote_node checks if the specified node
is already primary or not by comparing the node id with PRIMARY_NODE_ID. However, if the primary
doesn't exist from Pgpool-II's view, PRIMARY_NODE_ID is set to 0, which is same as MASTER_NODE_ID.
Hence, when the master node is specified to be promoted, pcp_promote_node is confused that this
node is already primary and doesn't have to be promoted, and it exits with the error.

To fix this, pcp_promote_node should check the node id by using REAL_PRIMARY_NODE_ID, which is set
-1 when the primary doesn't exist, rather than PRIMARY_NODE_ID.

Fix document error. (Tatsuo Ishii, Bo Peng)

Pgpool-IIshould not perform ping test after bringing down the VIP. (Muhammad Usama)

This issue was reported by the reporter of bug:[pgpool-II 0000249]: watchdog sometimes fails de-
escalation

Fix to release shared memory segments when Pgpool-IIexits. (bug 272) (Tatsuo Ishii)

Fix for [pgpool-general: 5315] pg_terminate_backend (Muhammad Usama)

Adding the missing ExecStop and ExecReload commands to the systemd service configuration file.
(Muhammad Usama)

Fix for 281: "segmentation fault" when execute pcp_attach_node. (bug 281) (Muhammad Usama)

Fix load balancing bug in streaming replication mode. (Tatsuo Ishii)

In an explicit transaction, any SELECT will be load balanced until write query is sent. After writing query
is sent, any SELECT should be sent to the primary node. However if a SELECT is sent before a sync
message is sent, this does not work since the treatment of writing query is done after ready for query
message arrives.

Solution is, the treatment for writing query is done in executing the writing query as well.

The bug has been there since V3.5.

Fix yet another kind mismatch error in streaming replication mode. (Tatsuo Ishii)

Fix do_query()hangs after close message. (Tatsuo Ishii)

Fixing stack smashing detected. (bug 280) (Muhammad Usama)

It was a buffer overflow in wd_get_cmd function

Fixing the issue with the watchdog process restart. (Muhammad Usama)

When the watchdog process gets abnormally terminated because of some problem (e.g. Segmentation
fault) the new spawned watchdog process fails to start and produces an error "bind on ... failed with
reason: Address already in use".

Reason is the abnormally terminating watchdog process never gets the time to clean-up the socket it
uses for IPC and the new process gets an error because the socket address is already occupied.

Fix is, the Pgpool main process sets the flag in shared memory to mark the watchdog process was
abnormally terminated and at startup when the watchdog process see that the flag is set, it performs
the clean up of the socket file and also performs the de-escalation (If the watchdog process was crashed
when it was master/coordinator node) if required before initializing itself.

Fix query cache bug reported in pgpool-general-jp:1441. (Tatsuo Ishii)

In streaming replication mode with query cache enabled, SELECT hangs in the following scenario:

 1) a SELECT hits query cache and returns rows from the query cache.
 2) following SELECT needs to search meta data and it hangs.

In #1, while returning the cached result, it misses to call pool_unset_pending_response(), which leave
the pending_response flag be set. In #2, do_query() checks the flag and tries to read pending response
from backend. Since there's no pending data in backend, it hangs in reading data from backend.

http://www.pgpool.net/mantisbt/view.php?id=272
http://www.pgpool.net/pipermail/pgpool-general/2017-February/005373.html
http://www.pgpool.net/mantisbt/view.php?id=281
http://www.pgpool.net/mantisbt/view.php?id=280
http://www.pgpool.net/pipermail/pgpool-general-jp/2017-January/001440.html

Fix is, just call pool_unset_pending_response() in #1 to reset the flag.

Bug report and fix provided by Nobuyuki Nagai. New regression test item (068) added by me.

Remove elog/ereport calls from signal handlers. (Tatsuo Ishii)

See [pgpool-hackers: 1950] for details.

Fix bug failed to create INET domain socket in FreeBSD if listen_addresses = '*'. (bug 202) (Bo Peng)

Fix for 0000249: watchdog sometimes fails de-escalation. (bug 249) (Muhammad Usama)

The solution is to use the waitpid() system call without WNOHANG option.

Fix connection_life_time broken by authentication_timeout. (Yugo Nagata)

Fix authentication timeout that can occur right after client connecttions. (Yugo Nagata)

A.18. Release 3.6.1

Release Date: 2016-12-26

A.18.1. Bug fixes

Tightening up the watchdog security. (Muhammad Usama)

Now wd_authkey uses the HMAC SHA-256 hashing.

Add pgpool_adm extension in Pgpool-II RPM. (Bo Peng)

Fix occasional segfault when query cache is enabled. (bug 263) (Tatsuo Ishii)

Fix packet kind does not match error in extended protocol. (bug 231) (Tatsuo Ishii)

According to the bug231, the bug seem to bite you if all of following conditions are met:

Streaming replication mode

Load balance node is not node 0

Extended protocol is used

SELECT is executed, the statement is closed, then a transaction command is executed

The sequence of how the problem bites is:

1. SELECT executes on statement S1 on the load balance node 1

2. Frontend send Close statement

3. Pgool-II forward it to backend 1

4. Frontend sends Parse, Bind, Execute of COMMIT

5. Pgool-II forward it to backend 0 & 1

6. Frontend sends sync message

7. Pgool-II forward it to backend 0 & 1

8. Backend 0 replies back Parse complete ("1"), while backend 1 replies back close complete ("3")
because of #3.

http://www.pgpool.net/pipermail/pgpool-hackers/2016-December/001950.html
http://www.pgpool.net/mantisbt/view.php?id=202
http://www.pgpool.net/mantisbt/view.php?id=249

9. Kind mismatch occurs

The solution is, in #3, let Pgpool-II wait for response from backend 1, but do not read the response
message. Later on Pgpool-II's state machine will read the response from it before the sync message is
sent in #6. With this, backend 1 will reply back "1" in #8, and the kind mismatch error does not occur.

Also, fix not calling pool_set_doing_extended_query_message() when receives Close message. (I don't
know why it was missed).

New regression test "067.bug231" was added.

Fix a race condition in a signal handler. (bug 265) (Tatsuo Ishii)

In child.c there's signal handler which calls elog. Since the signal handler is not blocked against other
signals while processing, deadlock could occur in the system calls in the pgpool shutdown sequence. To
fix the problem, now the signal handler is blocked by using POOL_SETMASK.

Ideally we should avoid calling elog in signal handlers though.

Fix wrong minimum configuration value for client_idle_limit_in_recovery. (bug 264) (Tatsuo Ishii)

Allow to execute "make xslthtml" under doc.ja. (Tatsuo Ishii)

A.19. Release 3.6

Release Date: 2016-11-21

A.19.1. Overview

Major enhancements in Pgpool-II 3.6 include:

Improve the behavior of fail-over. In the steaming replication mode, client sessions will not be
disconnected when a fail-over occurs any more if the session does not use the failed standby server. If
the primary server goes down, still all sessions will be disconnected. Also it is possible to connect to
Pgpool-II even if it is doing health checking retries. Before all attempt of connecting to Pgpool-II failed
while doing health checking retries.

New PGPOOL SET command has been introduced. Certain configuration parameters now can be
changed on the fly in a session.

Watchdog is significantly enhanced. It becomes more reliable than previous releases.

Handling of extended query protocol (e.g. used by Java applications) in streaming replication mode
speeds up if many rows are returned in a result set.

Import parser of PostgreSQL 9.6.

In some cases pg_terminate_backend() now does not trigger a fail-over.

Change documentation format from raw HTML to SGML.

The above items are explained in more detail in the sections below.

A.19.2. Major Enhancements

Improve the behavior of fail-over. (Tatsuo Ishii)

In the steaming replication mode, client sessions will not be disconnected when a fail-over occurs any
more if the session does not use the failed standby server. If the primary server goes down, still all

sessions will be disconnected. Health check timeout case will also cause the full session disconnection.
Other health check error, including retry over case does not trigger full session disconnection.

For user's convenience, "show pool_nodes" command shows the session local load balance node info
since this is important for users in case of fail-over. If the load balance node is not the failed node, the
session will not be affected by fail-over.

Also now it is possible to connect to Pgpool-II even if it is doing health checking retries. Before all
attempt of connecting to Pgpool-II failed while doing health checking retries. Before any attempt to
connect to Pgpool-II fails if it is doing a health check against failed node even if
fail_over_on_backend_error is off because Pgpool-II child first tries to connect to all backend including
the failed one and exits if it fails to connect to a backend (of course it fails). This is a temporary
situation and will be resolved once pgpool executes fail-over. However if the health check is retrying,
the temporary situation keeps longer depending on the setting of health_check_max_retries and
health_check_retry_delay. This is not good. Attached patch tries to mitigate the problem:

When an attempt to connect to backend fails, give up connecting to the failed node and skip to other
node, rather than exiting the process if operating in streaming replication mode and the node is not
primary node.

Mark the local status of the failed node to "down". This will let the primary node be selected as a load
balance node and every queries will be sent to the primary node. If there's other healthy standby nodes,
one of them will be chosen as the load balance node.

After the session is over, the child process will suicide to not retain the local status.

Add PGPOOL SHOW, PGPOOL SET and PGPOOL RESET commands. (Muhammad Usama)

These are similar to the PostgreSQL's SET and SHOW commands for GUC variables, adding the
functionality in Pgpool-II to set and reset the value of config parameters for the current session, and for
that it adds a new syntax in Pgpool-II which is similar to PostgreSQL's SET and RESET variable syntax
with an addition of PGPOOL keyword at the start.

Currently supported configuration parameters by PGPOOL SHOW/SET/RESET are: log_statement,
log_per_node_statement, check_temp_table, check_unlogged_table, allow_sql_comments,
client_idle_limit, log_error_verbosity, client_min_messages, log_min_messages,
client_idle_limit_in_recovery.

Sync inconsitent status of PostgreSQL nodes in Pgpool-II instances after restart. (bug 218) (Muhammad
Usama)

Watchdog does not synchronize status.

Enhance performance of SELECT when lots of rows involved. (Tatsuo Ishii)

Pgpool-II flushes data to network (calling write(2)) every time it sends a row data ("Data Row" message)
to frontend. For example, if 10,000 rows needed to be transfer, 10,000 times write()s are issued. This is
pretty expensive. Since after repeating to send row data, "Command Complete" message is sent, it's
enough to issue a write() with the command complete message. Also there are unnecessary flushing are
in handling the command complete message.

Quick testing showed that from 47% to 62% performance enhancements were achieved in some cases.

Unfortunately, performance in workloads where transferring few rows, will not be enhanced since such
rows are needed to flush to network anyway.

Import PostgreSQL 9.6's SQL parser. (Bo Peng)

This allows Pgpool-II to fully understand the newly added SQL syntax such as COPY INSERT RETURNING.

In some cases pg_terminate_backend() now does not trigger a fail-over. (Muhammad Usama)

Because PostgreSQL returns exactly the same error code as postmaster down case and
pg_terminate_backend() case, using pg_terminate_backend() raises a failover which user might not want. To fix
this, now Pgpool-II finds a pid of backend which is the target of pg_terminate_backend() and does not trigger
failover if so.

This functions is limited to the case of simple protocol and the pid is given to pg_terminate_backend() as a
constant. So if you call pg_terminate_backend() via extended protocol (e.g. Java) still pg_terminate_backend()

http://www.pgpool.net/pipermail/pgpool-hackers/2016-September/001784.html

triggers a failover.

HTML documents are now generated from SGML documents. (Muhammad Usama, Tatsuo Ishii, Bo Peng)

It is intended to have better construction, contents and maintainability. Also man pages are now
generated from SGML. However, still there's tremendous room to enhance the SGML documents. Please
help us!

A.19.3. Other Enhancements

Make authentication error message more user friendly. (Tatsuo Ishii)

When attempt to connect to backend (including health checking), emit error messages from backend
something like "sorry, too many clients already" instead of "invalid authentication message response
type, Expecting 'R' and received '%c'"

Tighten up health check timer expired condition in pool_check_fd(). (Muhammad Usama)

Add new script called "watchdog_setup". (Tatstuo Ishii)

watchdog_setup is a command to create a temporary installation of Pgpool-II clusters with watchdog for
mainly testings.

Add "-pg" option to pgpool_setup. (Tatsuo Ishii)

This is useful when you want to assign specific port numbers to PostgreSQL while using pgpool_setup.
Also now pgpool_setup is installed in the standard bin directory which is same as pgpool.

Add "replication delay" column to "show pool_nodes". (Tatsuo Ishii)

This column shows the replication delay value in bytes if operated in streaming replication mode.

Do not update status file if all backend nodes are in down status. (Chris Pacejo, Tatsuo Ishii)

This commit tries to remove the data inconsitency in replication mode found in [pgpool-general: 3918]
by not recording the status file when all backend nodes are in down status. This surprisingly simple but
smart solution was provided by Chris Pacejo.

Allow to use multiple SSL cipher protocols. (Muhammad Usama)

By replacing TLSv1_method() with SSLv23_method() while initializing the SSL session, we can use more
protocols than TLSv1 protocol.

Allow to use arbitrary number of items in the black_function_list/white_function_list. (Muhammad
Usama)

Previously there were fixed limits for those.

Properly process empty queries (all comments). (Tatsuo Ishii)

Pgpool-II now recognizes an empty query consisted of all comments (for example "/* DBD::Pg ping test
v3.5.3 */") (note that no ';') as an empty query.

Before such that query was recognized an error.

Add some warning messages for wd_authkey hash calculation failure. (Yugo Nagata)

Sometimes wd_authkey calculation fails for some reason other than authkey mismatch. The additional
messages make these distinguishable for each other.

A.19.4. Changes

Fix the broken log_destination = syslog functionality. (Muhammad Usama)

Fixing the logging to the syslog destination, which got broken by the PGPOOL SET/SHOW command
commit, and also enhancing the log_destination configuration parameter to be assigned with the
comma separated list of multiple destinations for the Pgpool-II log. Now, after this commit

http://www.pgpool.net/pipermail/pgpool-general/2015-August/003974.html

log_destination can be set to any combination of 'syslog' and 'stderr' log destinations.

Change the default value of search_primary_node_timeout from 10 to 300. (Tatstuo Ishii)

Prior default value 10 seconds is sometimes too short for a standby to be promoted.

Change the Makefile under directory src/sql/, that is proposed by [pgpool-hackers: 1611]. (Bo Peng)

Change the PID length of pcp_proc_count command output to 6 characters long. (Bo Peng)

If the Pgpool-II process ID are over 5 characters, the 6th character of each process ID will be removed.
This commit changes the process ID length of pcp_proc_count command output to 6 characters long.

Redirect all user queries to primary server. (Tatsuo Ishii)

Up to now some user queries are sent to other than the primary server even if load_balance_mode =
off. This commit changes the behavior: if load_balance_mode = off in streaming replication mode, now
all the user queries are sent to the primary server only.

A.19.5. Bug fixes

Fixing a potential crash in pool_stream functions. (Muhammad Usama)

POOL_CONNECTION->con_info should be checked for null value before de-referencing when read or
write fails on backend socket.

Fixing the design of failover command propagation on watchdog cluster. (Muhammad Usama)

Overhauling the design of how failover, failback and promote node commands are propagated to the
watchdog nodes. Previously the watchdog on pgpool-II node that needs to perform the node command
(failover, failback or promote node) used to broadcast the failover command to all attached pgpool-II
nodes. And this sometimes makes the synchronization issues, especially when the watchdog cluster
contains a large number of nodes and consequently the failover command sometimes gets executed by
more than one Pgpool-II.

Now with this commit all the node commands are forwarded to the master/coordinator watchdog, which
in turn propagates to all standby nodes. Apart from above the commit also changes the failover
command interlocking mechanism and now only the master/coordinator node can become the lock
holder so the failover commands will only get executed on the master/coordinator node.

Fix the case when all backends are down then 1 node attached. (Tatsuo Ishii)

When all backends are down, no connection is accepted. Then 1 PostgreSQL becomes up, and attach
the node using pcp_attach_node. It successfully finishes. However, when a new connection arrives, still
the connection is refused becausePgpool-II child process looks into the cached status, in which the
recovered node is still in down status if mode is streaming replication mode (native replication and
other modes are fine). Solution is, if all nodes are down, force to restart all pgpool child.

Fix for avoiding downtime when Pgpool-II changes require a restart. (Muhammad Usama)

To fix this, the verification mechanism of configuration parameter values is reversed, previously the
standby nodes used to verify their parameter values against the respective values on the master
Pgpool-II node and when the inconsistency was found the FATAL error was thrown, now with this commit
the verification responsibility is delegated to the master Pgpool-II node. Now the master node will verify
the configuration parameter values of each joining standby node against its local values and will
produce a WARNING message instead of an error in case of a difference. This way the nodes having the
different configurations will also be allowed to join the watchdog cluster and the user has to manually
look out for the configuration inconsistency warnings in the master Pgpool-II log to avoid the surprises at
the time of Pgpool-II master switch over.

Fix a problem with the watchdog failover_command locking mechanism. (Muhammad Usama)

Add compiler flag "-fno-strict-aliasing" in configure.ac to fix compiler error. (Tatsuo Ishii)

Do not use random() while generating MD5 salt. (Tatsuo Ishii)

random() should not be used in security related applications. To replace random(), import PostmasterRandom()

http://www.pgpool.net/pipermail/pgpool-hackers/2016-June/001611.html

from PostgreSQL. Also store current time at the start up of Pgpool-II main process for later use.

Don't ignore sync message from frontend when query cache is enabled. (Tatsuo Ishii)

Fix bug that Pgpool-II fails to start if listen_addresses is empty string. (bug 237) (Muhammad Usama)

The socket descriptor array (fds[]) was not getting the array end marker when TCP listen addresses are
not used.

Create regression log directory if it does not exist yet. (Tatsuo Ishii)

Fixing the error messages when the socket operation fails. (Muhammad Usama)

Update regression test 003.failover to reflect the changes made to show pool_nodes. (Tatsuo Ishii)

Fix hang when portal suspend received. (bug 230) (Tatsuo Ishii)

Fix pgpool doesn't de-escalate IP in case network restored. (bug 228) (Muhammad Usama)

set_state function is made to de-escalate, when it is changing the local node's state from the
coordinator state to some other state.

SIGUSR1 signal handler should be installed before watchdog initialization. (Muhammad Usama)

Since there can be a case where a failover request from other watchdog nodes arrive at the same time
when the watchdog has just been initialized, and if we wait any longer to install a SIGUSR1 signal
handler, it can result in a potential crash

Fix Pgpool-II doesn't escalate ip in case of another node inavailability. (bug 215) (Muhammad Usama)

The heartbeat receiver fails to identify the heartbeat sender watchdog node when the heartbeat
destination is specified in terms of an IP address while wd_hostname is configured as a hostname string
or vice versa.

Fixing a coding mistake in watchdog code. (Muhammad Usama)

wd_issue_failover_lock_command() function is supposed to forward command type passed in as an argument
to the wd_send_failover_sync_command() function instead it was passing the NODE_FAILBACK_CMD command
type.

The commit also contains some log message enhancements.

Display human readable output for backend node status. (Muhammad Usama)

Changed the output of pcp_node_info utility and show commands display human readable backend
status string instead of internal status code.

Replace "MAJOR" macro to prevent occasional failure. (Tatsuo Ishii)

The macro calls pool_virtual_master_db_node_id() and then access backend->slots[id]->con using the node id
returned. In rare cases, it could point to 0 (in case when the DB node is not connected), which gives
access to con->major, then it causes a segfault.

Fix "kind mismatch" error message in Pgpool-II. (Muhammad Usama)

Many of "kind mismatch..." errors are caused by notice/warning messages produced by one or more of
the DB nodes. In this case now Pgpool-II forwards the messages to frontend, rather than throwing the
"kind mismatch..." error. This would reduce the chance of "kind mismatch..." errors.

Fix handling of pcp_listen_addresses config parameter. (Muhammad Usama)

Save and restore errno in each signal handler. (Tatsuo Ishii)

Fix usage of wait(2) in pgpool main process. (Tatsuo Ishii)

The usage of wait(2) in Pgpool-II main could cause infinite wait in the system call. Solution is, to use
waitpid(2) instead of wait(2).

Fix that pool_read() does not emit error messages when read(2) returns -1 if fail_over_on_backend_error is
off. (Tatsuo Ishii)

Fix buffer over run problem in "show pool_nodes". (Tatsuo Ishii)

While processing "show pool_nodes", the buffer for hostname was too short. It should be same size as
the buffer used for pgpool.conf. Problem reported by a twitter user who is using pgpool on AWS (which
could have very long hostname).

Fix [pgpool-hackers: 1638] pgpool-II does not use default configuration. (Muhammad Usama)

Configuration file not found should just throw a WARNING message instead of ERROR or FATAL.

Fix bug with load balance node id info on shmem. (Tatsuo Ishii)

There are few places where the load balance node was mistakenly put on wrong place. It should be
placed on:

ConnectionInfo *con_info[child id, connection pool_id, backend id].load_balancing_node].

In fact it was placed on:

*con_info[child id, connection pool_id, 0].load_balancing_node].

As long as the backend id in question is 0, it is ok. However while testing Pgpool-II 3.6's enhancement
regarding failover, if primary node is 1 (which is the load balance node) and standby is 0, a client
connecting to node 1 is disconnected when failover happens on node 0. This is unexpected and the bug
was revealed.

It seems the bug was there since long time ago but it had not found until today by the reason above.

Fix for bug that pgpool hangs connections to database. (bug 197) (Muhammad Usama)

The client connection was getting stuck when backend node and remote Pgpool-II node becomes
unavailable at the same time. The reason was a missing command timeout handling in the function that
sends the IPC commands to watchdog.

Fix a posible hang during health checking. (bug 204) (Yugo Nagata)

Helath checking was hang when any data wasn't sent from backend after connect(2) succeeded. To fix
this, pool_check_fd() returns 1 when select(2) exits with EINTR due to SIGALRM while health checkking is
performed.

Deal with the case when the primary is not node 0 in streaming replication mode. (Tatsuo Ishii)

http://www.pgpool.net/mantisbt/view.php?id=194#c837 reported that if primary is not node 0, then
statement timeout could occur even after bug194-3.3.diff was applied. After some investigation, it
appeared that MASTER macro could return other than primary or load balance node, which was not
supposed to happen, thus do_query() sends queries to wrong node (this is not clear from the report but I
confirmed it in my investigation).

pool_virtual_master_db_node_id(), which is called in MASTER macro returns query_context-
>virtual_master_node_id if query context exists. This could return wrong node if the variable has not
been set yet. To fix this, the function is modified: if the variable is not either load balance node or
primary node, the primary node id is returned.

If statement timeout is enabled on backend and do_query() sends a query to primary node, and all of
following user queries are sent to standby, it is possible that the next command, for example END,
could cause a statement timeout error on the primary, and a kind mismatch error on pgpool-II is raised.
(bug 194) (Tatsuo Ishii)

This fix tries to mitigate the problem by sending sync message instead of flush message in do_query(),
expecting that the sync message reset the statement timeout timer if we are in an explicit transaction.
We cannot use this technique for implicit transaction case, because the sync message removes the
unnamed portal if there's any.

Plus, pg_stat_statement will no longer show the query issued by do_query() as "running".

http://www.pgpool.net/pipermail/pgpool-hackers/2016-June/001638.html
http://www.pgpool.net/mantisbt/view.php?id=194#c837

Plus, pg_stat_statement will no longer show the query issued by do_query() as "running".

Fix extended protocol handling in raw mode. (Tatsuo Ishii)

Bug152 reveals that extended protocol handling in raw mode (actually other than in stream mode) was
wrong in Describe() and Close(). Unlike stream mode, they should wait for backend response.

Fix confusing comments in pgpool.conf. (Tatsuo Ishii)

Fix Japanese and Chinese documetation bug about raw mode. (Yugo Nagata, Bo Peng)

Connection pool is avalilable in raw mode.

Fix is_set_transaction_serializable() when SET default_transaction_isolation TO 'serializable'. (bug 191) (Bo
Peng)

SET default_transaction_isolation TO 'serializable' is sent to not only primary but also to standby server
in streaming replication mode, and this causes an error. Fix is, in streaming replication mode, SET
default_transaction_isolation TO 'serializable' is sent only to the primary server.

Fix extended protocol hang with empty query. (bug 190) (Tatsuo Ishii)

The fixes related to extended protocol cases in 3.5.1 broke the case of empty query. In this case
backend replies with "empty query response" which is same meaning as a command complete
message. Problem is, when empty query response is received, pgpool does not reset the query in
progress flag thus keeps on waiting for backend. However, backend will not send the ready for query
message until it receives a sync message. Fix is, resetting the in progress flag after receiving the empty
query response and reads from frontend expecting it sends a sync message.

Fix for [pgpool-general: 4569] segfault during trusted_servers check. (Muhammad Usama)

PostgreSQL's memory and exception manager APIs adopted by the Pgpool-II 3.4 are not thread safe and
are causing the segmentation fault in the watchdog lifecheck process, as it uses the threads to ping
configured trusted hosts for checking the upstream connections. Fix is to remove threads and use the
child process approach instead.

Validating the PCP packet length. (Muhammad Usama)

Without the validation check, a malformed PCP packet can crash the PCP child and/or can run the server
out of memory by sending the packet with a very large data size.

Fix pgpool_setup to not confuse log output. (Tatsuo Ishii)

Before it simply redirects the stdout and stderr of pgpool process to a log file. This could cause log
contents being garbled or even missed because of race condition caused by multiple process being
writing concurrently. I and Usama found this while investigating the regression failure of 004.watchdog.
To fix this, pgpool_setup now generates startall script so that pgpool now sends stdout/stderr to cat
command and cat writes to the log file (It seems the race condition does not occur when writing to a
pipe).

Fix for [pgpool-general: 4519] Worker Processes Exit and Are Not Re-spawned. (Muhammad Usama)

The problem was due to a logical mistake in the code for checking the exiting child process type when
the watchdog is enabled. I have also changed the severity of the message from FATAL to LOG, emitted
for child exits due to max connection reached.

Fix pgpool hung after receiving error state from backend. (bug #169) (Tatsuo Ishii)

This could happend if we execute an extended protocol query and it fails.

Fix query stack problems in extended protocol case. (bug 167, 168) (Tatstuo Ishii)

Fix [pgpool-hackers: 1440] yet another reset query stuck problem. (Tatsuo Ishii)

After receiving X message from frontend, if Pgpool-II detects EOF on the connection before sending
reset query, Pgpool-II could wait for backend which had not received the reset query. To fix this, if EOF
received, treat this as FRONTEND_ERROR, rather than ERROR.

Fix for [pgpool-general: 4265] another reset query stuck problem. (Muhammad Usama)

http://www.pgpool.net/pipermail/pgpool-general/2016-March/004627.html
http://www.pgpool.net/pipermail/pgpool-general/2016-March/004577.html
http://www.pgpool.net/pipermail/pgpool-hackers/2016-March/001440.html
http://www.pgpool.net/pipermail/pgpool-general/2015-December/004323.html

The solution is to report FRONTEND_ERROR instead of simple ERROR when pool_flush on front-end
socket fails.

Fixing pgpool-recovery module compilation issue with PostgreSQL 9.6. (Muhammad Usama)

Incorporating the change of function signature for GetConfigOption() functions in PostgreSQL 9.6

Fix compile issue on freebsd. (Muhammad Usama)

Add missing include files. The patch is contributed by the bug reporter and enhanced a little by me.

Fix regression test to check timeout of each test. (Yugo Nagata)

Add some warning messages for wd_authkey hash calculation failure. (Yugo Nagata)

Sometimes wd_authkey calculation fails for some reason other than authkey mismatch. The additional
messages make these distingushable for each other.

A.20. Release 3.5.16

Release Date: 2018-07-31

A.20.1. Bug fixes

Fix "write on backend 0 failed with error :"Success"" error. (bug 403) (Tatsuo Ishii)

Don't treated it as an error if write() returns 0.

Fix memory leaks related to pool_extract_error_message(). (Tatsuo Ishii)

Fix an incorrect declare as bool, rather than int in pool_extract_error_message(). (Tatsuo Ishii)

This led to a segfault issue mentioned on certain platform.

Fix segfault in per_node_error_log() on armhf architecture. (Tatsuo Ishii)

Patch provided by Christian Ehrhardt.

Test: Fix 006.memqcache test failure. (Tatsuo Ishii)

A.21. Release 3.5.15

Release Date: 2018-06-12

A.21.1. Bug fixes

Fix Pgpool-II hung if replication delay is too much, when query cache enabled in extended query mode.
(Tatsuo Ishii)

See [pgpool-general-jp: 1534] for more details.

In extended query mode, do not set writing tx flag with SET TRANSACTION READ ONLY. (Tatsuo Ishii)

http://www.pgpool.net/mantisbt/view.php?id=403
https://www.pgpool.net/pipermail/pgpool-general-jp/2018-May/001533.html

Prevent pcp_recovery_node from recovering "unused" status node. (Tatsuo Ishii)

This allowed to try to recovery a node without configuration data, which leads to variety of problems.

See [pgpool-general: 5963] for more details.

Also I fixed pgpool_recovery function so that it quotes an empty string argument with double quotes.

A.22. Release 3.5.14

Release Date: 2018-04-17

A.22.1. Bug fixes

Test: Add new regression test for node 0 is down. (Tatsuo Ishii)

Make calls to to_regclass fully schema qualified. (Tatsuo Ishii)

Test: Improve test script 003.failover. (Bo Peng)

Deal with "unable to bind D cannot get parse message "S1" error. (Tatsuo Ishii)

Fix pgpool_setup failure in replication mode. (Tatsuo Ishii)

Allow to support pgpool_switch_xlog PostgreSQL 10. (Tatsuo Ishii)

A.23. Release 3.5.13

Release Date: 2018-02-13

Note: This release fixed the bug with socket writing added in Pgpool-II 3.7.0, 3.6.6 and
3.5.10. Due to this bug, when the network load is high, an illegal message may be sent
to the frontend or backend. All users using 3.7.x, 3.6.6 or later, 3.5.10 or later versions of
Pgpool-II should update as soon as possible.

A.23.1. Changes

Allow to build with libressl. (Tatsuo Ishii)

See [pgpool-hackers: 2714] for more details. Patch by Sandino Araico Sanchez.

Set TCP_NODELAY and non blocking to frontend socket. (Tatsuo Ishii)

TCP_NODELAY is employed by PostgreSQL, so do we it.

Change systemd service file to use STOP_OPTS=" -m fast". (Bo Peng)

Change pgpool_setup to add restore_command in recovery.conf. (Bo Peng)

https://www.pgpool.net/pipermail/pgpool-general/2018-March/006021.html
https://www.pgpool.net/pipermail/pgpool-hackers/2018-February/002714.html

A.23.2. Bug fixes

Fix writing transaction flag is accidentally set at commit or rollback. (Tatsuo Ishii)

Fix bug with socket writing. (Tatsuo Ishii)

pool_write_flush() is responsible for writing to sockets when pgpool's write buffer is full (this function was
introduced in 3.6.6 etc). When network write buffer in kernel is full, it does retrying but it forgot to
update the internal buffer pointer. As a result, broken data is written to the socket. This results in
variety of problems including too large message length.

Fix segfault when %a is in log_line_prefix and debug message is on. (bug 376) (Tatsuo Ishii)

Fix queries hanging in parse_before_bind with extended protocol and replication + load-balancing. (bug
377) (Tatsuo Ishii)

A.24. Release 3.5.12

Release Date: 2018-01-09

A.24.1. Bug fixes

Replace /bin/ed with /bin/sed in pgpool_setup, because /bin/sed is included in most distribution's base
packages. (Tatsuo Ishii)

Change the pgpool.service and sysconfig files to output Pgpool-II log. (Bo Peng)

Removeing "Type=forking" and add OPTS=" -n" to run Pgpool-II with non-daemon mode, because we
need to redirect logs. Using "journalctl" command to see Pgpool-II systemd log.

Fix timestamp data inconsistency by replication mode. (Bo Peng)

From PostgreSQL10 the column default value such as 'CURRENT_DATE' changes, Pgpool-II didn't rewrite
timestamp by the added default values. This caused data inconsistency.

Downgrade a log message to debug message. (Tatsuo Ishii)

That was mistaken left while last development cycle.

Fix for re-sync logic in reading packet from backend. (Tatsuo Ishii)

read_kind_from_backend(), which reads message kind from backend, re-syncs backend nodes when a ready
for query message is received. Unfortunately it forgot to call pool_pending_message_pull_out() to delete sync
pending message. This leads to random stuck while reading packets from backend. Fix this to call
pool_pending_message_pull_out().

Fix Pgpool-II hangs. (bug 370) (Tatsuo Ishii)

If an erroneous query is sent to primary and without a sync message the next query that requires a
catalog cache look up is send, Pgpool-II hangs in do_query().

Add SL_MODE macro for upper compatibility with Pgpool-II 3.7 or later. (Tatsuo Ishii)

Fix returning transaction state when "ready for query" message received. (Tatsuo Ishii)

We return primary or master node state of ready for query message to frontend. In most cases this is
good. However if other than primary node or master node returns an error state (this could happen if
load balance node is other than primary or master node and the query is an errornous SELECT), this
should be returned to frontend, because the frontend already received an error.

Fix pgpool start message printed multiple times. (Tatsuo Ishii)

http://www.pgpool.net/mantisbt/view.php?id=376
http://www.pgpool.net/mantisbt/view.php?id=377
http://www.pgpool.net/mantisbt/view.php?id=370

Add an execute permission bit to the start/stop script in watchdog_setup. (Tatsuo Ishii)

A.25. Release 3.5.11

Release Date: 2017-11-01

A.25.1. Bug fixes

Add different pgpool.sysconfig file for RHEL6 and RHEL7. (bug 343) (Bo Peng)

In RHEL6, the "-n" option is needed to redirect log.

Fix for bug in watchdog where sometime failover is not reliably performed. (Muhammad Usama)

Currently watchdog process only considers the node's watchdog state before deciding if it can handle
the failover and failover-locking requests.

But the problem with this technique is that, for the instance when the node has announced itself as a
master/coordinator of the cluster and is waiting for the standby nodes to recognise it as a Master node.
For that period of time the watchdog state of the node is Master/coordinator, but it is yet not fully
capable of handling the failover and failover-locking requests.

So sometimes this leads to a situation where a failover is not reliably performed in case when the
failover request arrives while watchdog cluster is in the process of electing a leader.

The fix for the above situation is to make sure that the node has fully acquired the Master status before
accepting the failover and failover-locking requests.

Fix bug with handling of 'H' (flush) message in streaming replication mode. (bug 345) (Tatsuo Ishii)

If user expects to read response right after 'H', Pgpool-II hangs. The cause was, when 'H' received,
extended query mode was reset and pending message was not used.

Doc: Fix pcp_node_info documents. (Tatsuo Ishii)

Fix bug mistakenly overriding global backend status right after failover. (Tatsuo Ishii)

See [pgpool-general: 5728] for mor details.

Fix exit signal handlers to not call ereport. (Tatsuo Ishii)

See [pgpool-hackers: 2545] for more details.

Deal with OpenSSL 1.1. (Tatsuo Ishii, Muhammad Usama)

A.26. Release 3.5.10

Release Date: 2017-09-05

A.26.1. Bug fixes

Fix Pgpool-II hanging when error occurs in streaming replication mode and extended query. (Tatsuo
Ishii)

http://www.pgpool.net/mantisbt/view.php?id=343
http://www.pgpool.net/mantisbt/view.php?id=345
http://www.sraoss.jp/pipermail/pgpool-general/2017-September/005786.html
https://www.pgpool.net/pipermail/pgpool-hackers/2017-September/002545.html

If backend returns ERROR, Pgpool-II reads message from frontend until a sync message is sent. Previous
code assumed next message is sync. However it is possible that more message coming before the sync
message, it's a low probability though. Fix it to continue reading messages until the sync message is
read.

Fix wd_authkey bug in that a request to add new node to the clusetr is rejected by master. (Yugo Nagata)

This is a bug due to the implementation of 3.5.6 and 3.6.3.

This changed the definition of tv_sec that is used to check wd_authkey so that this was affected by the
clock of OS. So, if there is a lag between two nodes' clocks, the wd_authkey check fails.

Test: Fix load balance test driver. (Tatsuo Ishii)

Some tests only for native replication mode was executed in streaming replication mode as well.

Fix not working slony mode in extended query. (Tatsuo Ishii)

When response returned from backend, in progress flag was not reset in slony mode, which cause
waiting for next message from backend in vain.

Fix ancient bug of stream write modules. (Tatsuo Ishii)

Fix bug with pool_write_noerror() when requested length exceeds remaining write buffer size. This could
lead to a buffer overrun problem.

When write buffer is full, pool_flush_it() is called, which could write data to socket in the middle of
message. To fix the problem directly write requested data if the write buffer is going to be full.

Enhance performance of pool_unread().

Test: Some miscellanies small fixes in regression test scripts. (Muhammad Usama)

Doc: Fix documentation about load-balancing. (Yugo Nagata)

Fix core dump and mishandling of temp tables. (Tatsuo Ishii)

Fix ancient bug of pool_unread(). (Tatsuo Ishii)

When realloc() is called in pool_unread(), it did not update the buffer size. This could cause variety of
memory corruption and unexpected data reading from backend. The reason why we did not found that
is, probably recently Pgpool-II starts extensively to use pool_unread().

Fix handling of empty queries. (bug 328) (Tatsuo Ishii)

When empty query (empty string or all comment query) is sent, command complete message was
returned to frontend. This is not correct. An empty query response should be returned to frontend.

Fix query cache bug with streaming replication mode and extended query case. (Tatsuo Ishii)

Fix memory leak with streaming replication mode/extended query case. (bug 324) (Tatsuo Ishii)

Test: Fix Java program in 005.regression test. (Tatsuo Ishii)

Fix for when failover is triggered by worker process, it is possible that wrong DB node could failover.
(bug 303) (Tatsuo Ishii)

This is due to the db_node_id member in the POLL_CONNECTION structure is not initialized in the process
(in child process the member is properly initialized). To solve the problem, add new function
pool_set_db_node_id() to set the structure member variable and call it inside make_persistent_db_connection().

Fix starting unnecessary transaction when SET command is issued. (Tatsuo Ishii)

Fix for [pgpool-general: 5621] Failover() function should be executed with health check alarm disabled.
(Muhammad Usama)

Fix Pgpool-II hung up bug or other errors in error case in extended query in replication mode. (Tatsuo
Ishii)

And other fixes in this commit.

http://www.pgpool.net/mantisbt/view.php?id=328
http://www.pgpool.net/mantisbt/view.php?id=324
http://www.pgpool.net/mantisbt/view.php?id=303
http://www.pgpool.net/pipermail/pgpool-general/2017-July/005679.html

1) Do not send intended error query to backend in streaming replication mode in ErrorResponse3().

2) Fix pool_virtual_master_db_node_id() to return the virtual_master_node_id only when query is in progress
and query context exists.

Allow make dist to include pgpool.service. (Yugo Nagata)

A.26.2. Enhancements

Test: Redirect build log to a log file. (Tatsuo Ishii)

Test: Add more memory leak regression tests. (Tatsuo Ishii)

A.27. Release 3.5.9

Release Date: 2017-07-11

A.27.1. Bug fixes

Fix for [pgpool-hackers: 2400] Garbage output (Muhammad Usama)

Mostly the log messages fixes and few code cleanups.

Importing the latest changes in the MemoryManager API from PostgreSQL code. (Muhammad Usama)

Fixing [pgpool-hackers: 2390]Problems with the relative paths in daemon mode (Muhammad Usama)

Adjust function name change in PostgreSQL 10 dev head. (Tatsuo Ishii)

 pg_current_wal_location -> pg_current_wal_lsn
 pg_last_wal_replay_location -> pg_last_wal_replay_lsn

Fix a posible hang with streaming replication and extended protocol (Yugo Nagata)

This hang occured under a certain condition. The following is an example.

 - pgpool.conf is configured so that all read queries are sent to the standby.
 - First, issue a writing query in a transaction block
 - After commiting the transaction, issue a select query.
 - When processing the query, send Describe (statement) message just after Parse.

Without using JDBC, we can reproduce the problem by pgproto with the followeing messages.

http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002400.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002390.html

 'Q' "DROP TABLE IF EXISTS test_tbl"
 'Y'
 'Q' "CREATE TABLE test_tbl(i int)"
 'Y'
 'Q' "INSERT INTO test_tbl VALUES(1)"
 'Y'

 'P' "" "BEGIN" 0
 'B' "" "" 0 0 0
 'E' "" 0
 'S'
 'Y'

 'P' "" "INSERT INTO test_tbl VALUES(1)" 0
 'B' "" "" 0 0 0
 'E' "" 0
 'S'
 'Y'

 'P' "" "COMMIT" 0
 'B' "" "" 0 0 0
 'E' "" 0
 'S'
 'Y'

 'P' "S_1" "SELECT * FROM test_tbl" 0
 'D' 'S' "S_1"
 'B' "C_1" "S_1" 0 0 0
 'E' "C_1" 0
 'S'
 'Y'

 'X'

To fix it, parse_before_bind() should be called only if we are in a transaction block so that we can send Bind
and Execute to the right backend.

Fix Pgpool-II hang when used by erlang applications. (Tatsuo Ishii)

Erlang client sends "Describe" message followed by "Flush". So the backend returns "Row description."
However Pgpool-II forgets to reset the query in progress flag upon receiving "Row description" message,
then Pgpool-II keeps on waiting for response from backend. This is the cause of erlang client hanging.

Fix is, just reset the query in progress flag upon receiving "Row description" message. Same thing can
be said to "no data" message.

See [pgpool-general: 5555] for more details.

Fix bug with sending bind message to wrong target node. (bug 314) (Tatsuo Ishii)

Fix query cache hang when used by node.js. (Tatsuo Ishii)

See [pgpool-general: 5511] for more details.

Deal with PostgreSQL 10 in streaming replication delay checking. (Tatsuo Ishii)

Fix query cache memory leak. (Tatsuo Ishii)

Clearing cache buffers in case of no oid queries (like BEGIN, CHECKPOINT, VACUUM, etc) should have been
done, but it did not.

Fix extended query hang in certain case. (Tatsuo Ishii)

errlang PostgreSQL API produces Parse ('P'), Describe ('D'), Flush ('H'), Bind ('B'), and Execute ('E'). Notice the 'H'
message (this does not happen in JDBC. I suspect that's the reason why this problem is not popular
before). After that, Pgpool-II dropped the extended query mode, it failed to find which backend to read
data. Thus Pgpool-II simply tries to read all of backend which causes hang because it may have not send
a message to some of backends.

Solution is, after receiving the flush message set doing extended query flag.

http://www.pgpool.net/pipermail/pgpool-general/2017-June/005613.html
https://www.pgpool.net/mantisbt/view.php?id=314
http://www.pgpool.net/pipermail/pgpool-general/2017-May/005569.html

Fix corner case bug in Pgpool-II starting up. (Tatsuo Ishii)

It is possible that a failover request is accepted before primary node is searched. This leads Pgpool-II to
a strange state: there's no primary node if the failed node was a primary node (even if new primary
node exists as a result of promotion of existing standby).

See [pgpool-hackers: 2321] for more details.

A.28. Release 3.5.8

Release Date: 2017-05-11

A.28.1. Bug fixes

Add node 0 failover test. (Tatsuo Ishii)

Fix Pgpool-II child process segfault reported in [pgpool-hackers: 2312]. (Tatsuo Ishii)

A.29. Release 3.5.7

Release Date: 2017-04-28

A.29.1. Bug fixes

Fixing a mistake in the watchdog code. (Muhammad Usama)

commit also adds some debug messages in the watchdog code.

Fix for 0000299: Errors on the reloading of configuration. (Bug 299) (Muhammad Usama)

Fix for 0000289: Inconsistent backend state. (Bug 289) (Muhammad Usama)

Enhancing the handling of split-brain scenario by the watchdog. (Muhammad Usama)

Previously, the watchdog cluster was used to call for re-election of the master/coordinator node
whenever the split-brain situation was detected. And consequently every node was required to rejoin
the watchdog network, Which was essentially similar to the re-booting of the whole watchdog cluster.

The candidate for the master/coordinator node is selected on the following criteria.

1-- When two watchdog nodes are claiming to be the cluster master, the master node that has
performed the escalation keeps the master status and the other node is asked to step down.

​ 2-- If the conflict could not be resolved by the escalation status of the nodes, The node which holds the
quorum remains the master/coordinator.

​ 3-- If the quorum status of both contenders is also same. The node with higher number of connected
alive nodes get the preference.

​ 4-- Finally, if all above three yields no winner, the older master (The node that has the coordinator
status for longer duration) remains the master.

Enhancing the watchdog internal command mechanism to handle multiple concurrent commands.

http://www.pgpool.net/pipermail/pgpool-hackers/2017-May/002321.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-May/002312.html
http://www.pgpool.net/mantisbt/view.php?id=299
http://www.pgpool.net/mantisbt/view.php?id=289

(Muhammad Usama)

Add bool encode and decode functions to JSON framework for code compatibility.(Muhammad Usama)

Comment out unsupported Java method in new JDBC drivers to prevent regression failure. (Tatsuo Ishii)

Downgrade parse before bind log message to debug1. (Tatsuo Ishii)

Fix coverity warnings. (Tatsuo Ishii, Muhammad Usama)

Fix for [pgpool-general: 5396] pam ldap failure. (Muhammad Usama)

Consider SHOW command as kind of a read query. (Tatsuo Ishii)

In streaming replication mode, if SHOW is issued then subsequent SELECTs are sent to the primary
node in an explicit transaction. This is not a reasonable and unnecessary limitation. Also fix hang when
parse command returns error.

Fix memory leak problem caused by commit adcb636. (Tatsuo Ishii)

Commit adcb636 introduces "pending message queue". When a message arrives, the info is added to
the queue and a copy of object is created at the same time, but forgot to free the object. Fix is, creating
a new function pool_pending_message_free_pending_message() and call it after
pool_pending_message_add(), pool_pending_message_get() and pool_pending_message_pull_out().
Problem reported by Sergey Kim.

Mega patch to fix "kind mismatch" (or derived) errors in streaming replication mode. (Bug 271) (Tatsuo
Ishii)

The errors are caused by wrong prediction in which (or both) database node will send response to
Pgpool-II. Previous implementation using "sync map" are weak and sometimes fail in the prediction.

This patch introduces new implementation using "pending message queue", which records all sent
message to backends. The element of the queue stores info regarding messages types
(parse/bind/execute/describe/close/sync), to which database node the message was sent and so on. It's
a simple FIFO queue. When a message arrives from backend, by looking at the head of the "pending
message queue", it is possible to reliably predict what kind of message and from which database node
it will arrive. After receiving the message, the element is removed from the queue.

​ I would like to thank to Sergey Kim, who has been helping me in testing series of patches.

See Bug 271 and discussion in pgpool-hackers mailing list [pgpool-hackers: 2043] and [pgpool-hackers:
2140] for more details.

Fix for 0000296: PGPool v3.6.2 terminated by systemd because the service Type has been set to
'forking'. (Bug 296) (Muhammad Usama)

A.30. Release 3.5.6

Release Date: 2017-03-17

A.30.1. Bug fixes

Add "Wants=network.target" to pgpool.service file. (bug 294) (Bo Peng)

Fix pcp_promote_node bug that fails promoting node 0. (Yugo Nagata)

The master node could not be promoted by pcp_promote_node with the following error;

http://www.sraoss.jp/pipermail/pgpool-general/2017-March/005454.html
http://www.pgpool.net/mantisbt/view.php?id=271
http://www.pgpool.net/mantisbt/view.php?id=271
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-February/002043.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-March/002140.html
http://www.pgpool.net/mantisbt/view.php?id=296
http://www.pgpool.net/mantisbt/view.php?id=294

 FATAL: invalid pgpool mode for process recovery request
 DETAIL: specified node is already primary node, can't promote node id 0

In streaming replication mode, there is a case that Pgpool-II regards the status of primary node as
"standby" for some reasons, for example, when pg_ctl promote is executed manually during Pgpool-II is
running, in which case, it seems to Pgpool-II that the primary node doesn't exist.

This status mismatch should be fixe by pcp_promote_node, but when the node is the master node (the
first alive node), it fails as mentioned above.

The reason is as following. before changing the status, pcp_promote_node checks if the specified node
is already primary or not by comparing the node id with PRIMARY_NODE_ID. However, if the primary
doesn't exist from Pgpool-II's view, PRIMARY_NODE_ID is set to 0, which is same as MASTER_NODE_ID.
Hence, when the master node is specified to be promoted, pcp_promote_node is confused that this
node is already primary and doesn't have to be promoted, and it exits with the error.

To fix this, pcp_promote_node should check the node id by using REAL_PRIMARY_NODE_ID, which is set
-1 when the primary doesn't exist, rather than PRIMARY_NODE_ID.

Add the latest release note link to README file.(Bo Peng)

Pgpool-IIshould not perform ping test after bringing down the VIP. (Muhammad Usama)

This issue was reported by the reporter of bug:[pgpool-II 0000249]: watchdog sometimes fails de-
escalation

Fix to release shared memory segments when Pgpool-IIexits. (bug 272) (Tatsuo Ishii)

Fix for [pgpool-general: 5315] pg_terminate_backend (Muhammad Usama)

Adding the missing ExecStop and ExecReload commands to the systemd service configuration file.
(Muhammad Usama)

Fix for 281: "segmentation fault" when execute pcp_attach_node. (bug 281) (Muhammad Usama)

Fix load balancing bug in streaming replication mode. (Tatsuo Ishii)

In an explicit transaction, any SELECT will be load balanced until write query is sent. After writing query
is sent, any SELECT should be sent to the primary node. However if a SELECT is sent before a sync
message is sent, this does not work since the treatment of writing query is done after ready for query
message arrives.

Solution is, the treatment for writing query is done in executing the writing query as well.

The bug has been there since V3.5.

Fix yet another kind mismatch error in streaming replication mode. (Tatsuo Ishii)

Fix do_query()hangs after close message. (Tatsuo Ishii)

Fixing stack smashing detected. (bug 280) (Muhammad Usama)

It was a buffer overflow in wd_get_cmd function

Fixing the issue with the watchdog process restart. (Muhammad Usama)

When the watchdog process gets abnormally terminated because of some problem (e.g. Segmentation
fault) the new spawned watchdog process fails to start and produces an error "bind on ... failed with
reason: Address already in use".

Reason is the abnormally terminating watchdog process never gets the time to clean-up the socket it
uses for IPC and the new process gets an error because the socket address is already occupied.

Fix is, the Pgpool main process sets the flag in shared memory to mark the watchdog process was
abnormally terminated and at startup when the watchdog process see that the flag is set, it performs
the clean up of the socket file and also performs the de-escalation (If the watchdog process was crashed
when it was master/coordinator node) if required before initializing itself.

http://www.pgpool.net/mantisbt/view.php?id=272
http://www.pgpool.net/pipermail/pgpool-general/2017-February/005373.html
http://www.pgpool.net/mantisbt/view.php?id=281
http://www.pgpool.net/mantisbt/view.php?id=280

Fix query cache bug reported in pgpool-general-jp:1441. (Tatsuo Ishii)

In streaming replication mode with query cache enabled, SELECT hangs in the following scenario:

 1) a SELECT hits query cache and returns rows from the query cache.
 2) following SELECT needs to search meta data and it hangs.

In #1, while returning the cached result, it misses to call pool_unset_pending_response(), which leave
the pending_response flag be set. In #2, do_query() checks the flag and tries to read pending response
from backend. Since there's no pending data in backend, it hangs in reading data from backend.

Fix is, just call pool_unset_pending_response() in #1 to reset the flag.

Bug report and fix provided by Nobuyuki Nagai. New regression test item (068) added by me.

Remove elog/ereport calls from signal handlers. (Tatsuo Ishii)

See [pgpool-hackers: 1950] for details.

Fix bug failed to create INET domain socket in FreeBSD if listen_addresses = '*'. (bug 202) (Bo Peng)

Fix for 0000249: watchdog sometimes fails de-escalation. (bug 249) (Muhammad Usama)

The solution is to use the waitpid() system call without WNOHANG option.

Fix connection_life_time broken by authentication_timeout. (Yugo Nagata)

Fix authentication timeout that can occur right after client connecttions. (Yugo Nagata)

A.31. Release 3.5.5

Release Date: 2016-12-26

A.31.1. Bug fixes

Tightening up the watchdog security. (Muhammad Usama)

Now wd_authkey uses the HMAC SHA-256 hashing.

Add pgpool_adm extension in Pgpool-II RPM. (Bo Peng)

Fix occasional segfault when query cache is enabled. (bug 263) (Tatsuo Ishii)

Fix packet kind does not match error in extended protocol. (bug 231) (Tatsuo Ishii)

According to the bug231, the bug seem to bite you if all of following conditions are met:

Streaming replication mode

Load balance node is not node 0

Extended protocol is used

SELECT is executed, the statement is closed, then a transaction command is executed

The sequence of how the problem bites is:

1. SELECT executes on statement S1 on the load balance node 1

2. Frontend send Close statement

http://www.pgpool.net/pipermail/pgpool-general-jp/2017-January/001440.html
http://www.pgpool.net/pipermail/pgpool-hackers/2016-December/001950.html
http://www.pgpool.net/mantisbt/view.php?id=202
http://www.pgpool.net/mantisbt/view.php?id=249

3. Pgool-II forward it to backend 1

4. Frontend sends Parse, Bind, Execute of COMMIT

5. Pgool-II forward it to backend 0 & 1

6. Frontend sends sync message

7. Pgool-II forward it to backend 0 & 1

8. Backend 0 replies back Parse complete ("1"), while backend 1 replies back close complete ("3")
because of #3.

9. Kind mismatch occurs

The solution is, in #3, let Pgpool-II wait for response from backend 1, but do not read the response
message. Later on Pgpool-II's state machine will read the response from it before the sync message is
sent in #6. With this, backend 1 will reply back "1" in #8, and the kind mismatch error does not occur.

Also, fix not calling pool_set_doing_extended_query_message() when receives Close message. (I don't
know why it was missed).

New regression test "067.bug231" was added.

Fix a race condition in a signal handler per bug 265. (Tatsuo Ishii)

In child.c there's signal handler which calls elog. Since the signal handler is not blocked against other
signals while processing, deadlock could occur in the system calls in the pgpool shutdown sequence. To
fix the problem, now the signal handler is blocked by using POOL_SETMASK.

Ideally we should avoid calling elog in signal handlers though.

Back porting the improved failover command propagation mechanism from Pgpool-II 3.6 (Muhammad
Usama)

Overhauling the design of how failover, failback and promote node commands are propagated to the
watchdog nodes. Previously the watchdog on pgpool-II node that needs to perform the node command
(failover, failback or promote node) used to broadcast the failover command to all attached pgpool-II
nodes. And this sometimes makes the synchronization issues, especially when the watchdog cluster
contains a large number of nodes and consequently the failover command sometimes gets executed by
more than one pgpool-II.

Now with this commit all the node commands are forwarded to the master/coordinator watchdog, which
in turn propagates to all standby nodes. Apart from above the commit also changes the failover
command interlocking mechanism and now only the master/coordinator node can become the lock
holder so the failover commands will only get executed on the master/coordinator node.

Do not cancel a query when the query resulted in an error other than in native replication mode.
(Tatsuo Ishii)

It was intended to keep the consistency, but there's no point in other than native replication mode.

Remove obsoleted option "-c" in pgpool command. (Tatsuo Ishii)

Also fix typo in the help message.

Fix authentication failed error when PCP command is cancelled. (bug 252) (Muhammad Usama)

Change the default value of search_primary_node_timeout from 10 to 300. (Tatsuo Ishii)

Prior default value 10 seconds is sometimes too short for a standby to be promoted.

Fix the case when all backends are down then 1 node attached. (bug 248) (Tatsuo Ishii)

When all backends are down, no connection is accepted. Then 1 PostgreSQL becomes up, and attach
the node using pcp_attach_node. It successfully finishes. However, when a new connection arrives, still
the connection is refused because pgpool child process looks into the cached status, in which the
recovered node is still in down status if mode is streaming replication mode (native replication and
other modes are fine). Solution is, if all nodes are down, force to restart all pgpool child.

Fix for: [pgpool-general: 4997] Avoiding downtime when pgpool changes require a restart (Muhammad
Usama)

To fix this, The verification mechanism of configuration parameter values is reversed, previously the
standby nodes used to verify their parameter values against the respective values on the master
pgpool-II node and when the inconsistency was found the FATAL error was thrown, now with this commit
the verification responsibility is delegated to the master pgpool-II node. Now the master node will verify
the configuration parameter values of each joining standby node against its local values and will
produce a WARNING message instead of an error in case of a difference. This way the nodes having the
different configurations will also be allowed to join the watchdog cluster and the user has to manually
look out for the configuration inconsistency warnings in the master pgpool-II log to avoid the surprises at
the time of pgpool-II master switch over.

Add compiler flag "-fno-strict-aliasing" in configure.ac to fix compiler error. (Tatsuo Ishii)

Do not use random() while generating MD5 salt. (Tatsuo Ishii)

random() should not be used in security related applications. To replace random(), import PostmasterRandom()
from PostgreSQL. Also store current time at the start up of Pgpool-II main process for later use.

Don't ignore sync message from frontend when query cache is enabled. (Tatsuo Ishii)

A.32. Release 3.4.19

Release Date: 2018-07-31

A.32.1. Bug fixes

Fix "write on backend 0 failed with error :"Success"" error. (bug 403) (Tatsuo Ishii)

Don't treated it as an error if write() returns 0.

Fix memory leaks related to pool_extract_error_message(). (Tatsuo Ishii)

Fix an incorrect declare as bool, rather than int in pool_extract_error_message(). (Tatsuo Ishii)

This led to a segfault issue mentioned on certain platform.

Fix segfault in per_node_error_log() on armhf architecture. (Tatsuo Ishii)

Patch provided by Christian Ehrhardt.

Test: Fix 006.memqcache test failure. (Tatsuo Ishii)

A.33. Release 3.4.18

Release Date: 2018-06-12

A.33.1. Bug fixes

Prevent pcp_recovery_node from recovering "unused" status node. (Tatsuo Ishii)

http://www.pgpool.net/mantisbt/view.php?id=403

This allowed to try to recovery a node without configuration data, which leads to variety of problems.

See [pgpool-general: 5963] for more details.

Also I fixed pgpool_recovery function so that it quotes an empty string argument with double quotes.

A.34. Release 3.4.17

Release Date: 2018-04-17

A.34.1. Bug fixes

Test: Add new regression test for node 0 is down. (Tatsuo Ishii)

Make calls to to_regclass fully schema qualified. (Tatsuo Ishii)

Test: Improve the test script 003.failover. (Bo Peng)

Allow to support pgpool_switch_xlog PostgreSQL 10. (Tatsuo Ishii)

Fix pgpool_setup failure in replication mode. (Tatsuo Ishii)

A.35. Release 3.4.16

Release Date: 2018-02-13

A.35.1. Changes

Set TCP_NODELAY and non blocking to frontend socket. (Tatsuo Ishii)

TCP_NODELAY is employed by PostgreSQL, so do we it.

Change systemd service file to use STOP_OPTS=" -m fast". (Bo Peng)

Change pgpool_setup to add restore_command in recovery.conf. (Bo Peng)

A.35.2. Bug fixes

Fix segfault when %a is in log_line_prefix and debug message is on. (bug 376) (Tatsuo Ishii)

Fix queries hanging in parse_before_bind with extended protocol and replication + load-balancing. (bug
377) (Tatsuo Ishii)

A.36. Release 3.4.15

Release Date: 2018-01-09

https://www.pgpool.net/pipermail/pgpool-general/2018-March/006021.html
http://www.pgpool.net/mantisbt/view.php?id=376
http://www.pgpool.net/mantisbt/view.php?id=377

A.36.1. Bug fixes

Replace /bin/ed with /bin/sed in pgpool_setup, because /bin/sed is included in most distribution's base
packages. (Tatsuo Ishii)

Change the pgpool.service and sysconfig files to output Pgpool-II log. (Bo Peng)

Removeing "Type=forking" and add OPTS=" -n" to run Pgpool-II with non-daemon mode, because we
need to redirect logs. Using "journalctl" command to see Pgpool-II systemd log.

Fix timestamp data inconsistency by replication mode. (Bo Peng)

From PostgreSQL10 the column default value such as 'CURRENT_DATE' changes, Pgpool-II didn't rewrite
timestamp by the added default values. This caused data inconsistency.

Fix returning transaction state when "ready for query" message received. (Tatsuo Ishii)

We return primary or master node state of ready for query message to frontend. In most cases this is
good. However if other than primary node or master node returns an error state (this could happen if
load balance node is other than primary or master node and the query is an errornous SELECT), this
should be returned to frontend, because the frontend already received an error.

Fix pgpool start message printed multiple times. (Tatsuo Ishii)

A.37. Release 3.4.14

Release Date: 2017-11-01

A.37.1. Bug fixes

Add different pgpool.sysconfig file for RHEL6 and RHEL7. (bug 343) (Bo Peng)

In RHEL6, the "-n" option is needed to redirect log.

Fix finding primary node is not working in 3.4.12, 3.4.13. (Tatsuo Ishii)

Fix bug mistakenly overriding global backend status right after failover. (Tatsuo Ishii)

See [pgpool-general: 5728] for mor details.

Deal with OpenSSL 1.1. (Tatsuo Ishii, Muhammad Usama)

A.38. Release 3.4.13

Release Date: 2017-09-05

A.38.1. Bug fixes

http://www.pgpool.net/mantisbt/view.php?id=343
http://www.sraoss.jp/pipermail/pgpool-general/2017-September/005786.html

Doc: Fix documentation about load-balancing. (Yugo Nagata)

Fix ancient bug of pool_unread(). (Tatsuo Ishii)

When realloc() is called in pool_unread(), it did not update the buffer size. This could cause variety of
memory corruption and unexpected data reading from backend. The reason why we did not found that
is, probably recently Pgpool-II starts extensively to use pool_unread().

Test: Fix Java program in 005.regression test. (Tatsuo Ishii)

Fix for when failover is triggered by worker process, it is possible that wrong DB node could failover.
(bug 303) (Tatsuo Ishii)

This is due to the db_node_id member in the POLL_CONNECTION structure is not initialized in the process
(in child process the member is properly initialized). To solve the problem, add new function
pool_set_db_node_id() to set the structure member variable and call it inside make_persistent_db_connection().

Fix starting unnecessary transaction when SET command is issued. (Tatsuo Ishii)

Fix for [pgpool-general: 5621] Failover() function should be executed with health check alarm disabled.
(Muhammad Usama)

Allow make dist to include pgpool.service. (Yugo Nagata)

A.39. Release 3.4.12

Release Date: 2017-07-11

A.39.1. Bug fixes

Importing the latest changes in the MemoryManager API from PostgreSQL code. (Muhammad Usama)

Fixing [pgpool-hackers: 2390]Problems with the relative paths in daemon mode (Muhammad Usama)

Adjust function name change in PostgreSQL 10 dev head. (Tatsuo Ishii)

 pg_current_wal_location -> pg_current_wal_lsn
 pg_last_wal_replay_location -> pg_last_wal_replay_lsn

Fix query cache hang when used by node.js. (Tatsuo Ishii)

See [pgpool-general: 5511] for more details.

Deal with PostgreSQL 10 in streaming replication delay checking. (Tatsuo Ishii)

Fix query cache memory leak. (Tatsuo Ishii)

Clearing cache buffers in case of no oid queries (like BEGIN, CHECKPOINT, VACUUM, etc) should have been
done, but it did not.

Fix corner case bug in Pgpool-II starting up. (Tatsuo Ishii)

It is possible that a failover request is accepted before primary node is searched. This leads Pgpool-II to
a strange state: there's no primary node if the failed node was a primary node (even if new primary
node exists as a result of promotion of existing standby).

See [pgpool-hackers: 2321] for more details.

http://www.pgpool.net/mantisbt/view.php?id=303
http://www.pgpool.net/pipermail/pgpool-general/2017-July/005679.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002390.html
http://www.pgpool.net/pipermail/pgpool-general/2017-May/005569.html
http://www.pgpool.net/pipermail/pgpool-hackers/2017-May/002321.html

A.40. Release 3.4.11

Release Date: 2017-04-28

A.40.1. Bug fixes

​ Fix for 0000299: Errors on the reloading of configuration. (Bug 299) (Muhammad Usama)

Fix coverity warnings. (Muhammad Usama)

Fix for [pgpool-general: 5396] pam ldap failure. (Muhammad Usama)

Fix for 0000296: PGPool v3.6.2 terminated by systemd because the service Type has been set to
'forking'. (Bug 296) (Muhammad Usama)

A.41. Release 3.4.10

Release Date: 2017-03-17

A.41.1. Bug fixes

Add "Wants=network.target" to pgpool.service file. (bug 294) (Bo Peng)

Fix pcp_promote_node bug that fails promoting node 0. (Yugo Nagata)

The master node could not be promoted by pcp_promote_node with the following error;

 FATAL: invalid pgpool mode for process recovery request
 DETAIL: specified node is already primary node, can't promote node id 0

In streaming replication mode, there is a case that Pgpool-II regards the status of primary node as
"standby" for some reasons, for example, when pg_ctl promote is executed manually during Pgpool-II is
running, in which case, it seems to Pgpool-II that the primary node doesn't exist.

This status mismatch should be fixe by pcp_promote_node, but when the node is the master node (the
first alive node), it fails as mentioned above.

The reason is as following. before changing the status, pcp_promote_node checks if the specified node
is already primary or not by comparing the node id with PRIMARY_NODE_ID. However, if the primary
doesn't exist from Pgpool-II's view, PRIMARY_NODE_ID is set to 0, which is same as MASTER_NODE_ID.
Hence, when the master node is specified to be promoted, pcp_promote_node is confused that this
node is already primary and doesn't have to be promoted, and it exits with the error.

To fix this, pcp_promote_node should check the node id by using REAL_PRIMARY_NODE_ID, which is set
-1 when the primary doesn't exist, rather than PRIMARY_NODE_ID.

Add the latest release note link to README file.(Bo Peng)

Pgpool-IIshould not perform ping test after bringing down the VIP. (Muhammad Usama)

This issue was reported by the reporter of bug:[pgpool-II 0000249]: watchdog sometimes fails de-

http://www.pgpool.net/mantisbt/view.php?id=299
http://www.sraoss.jp/pipermail/pgpool-general/2017-March/005454.html
http://www.pgpool.net/mantisbt/view.php?id=296
http://www.pgpool.net/mantisbt/view.php?id=294

escalation

Fix to release shared memory segments when Pgpool-IIexits. (bug 272) (Tatsuo Ishii)

Fix for [pgpool-general: 5315] pg_terminate_backend (Muhammad Usama)

Adding the missing ExecStop and ExecReload commands to the systemd service configuration file.
(Muhammad Usama)

Fix for 281: "segmentation fault" when execute pcp_attach_node. (bug 281) (Muhammad Usama)

Fix load balancing bug in streaming replication mode. (Tatsuo Ishii)

In an explicit transaction, any SELECT will be load balanced until write query is sent. After writing query
is sent, any SELECT should be sent to the primary node. However if a SELECT is sent before a sync
message is sent, this does not work since the treatment of writing query is done after ready for query
message arrives.

Solution is, the treatment for writing query is done in executing the writing query as well.

The bug has been there since V3.5.

Fix yet another kind mismatch error in streaming replication mode. (Tatsuo Ishii)

Fix do_query()hangs after close message. (Tatsuo Ishii)

Fixing stack smashing detected. (bug 280) (Muhammad Usama)

It was a buffer overflow in wd_get_cmd function

Remove elog/ereport calls from signal handlers. (Tatsuo Ishii)

See [pgpool-hackers: 1950] for details.

Fix bug failed to create INET domain socket in FreeBSD if listen_addresses = '*'. (bug 202) (Bo Peng)

Fix for 0000249: watchdog sometimes fails de-escalation. (bug 249) (Muhammad Usama)

The solution is to use the waitpid() system call without WNOHANG option.

Fix connection_life_time broken by authentication_timeout. (Yugo Nagata)

Fix authentication timeout that can occur right after client connecttions. (Yugo Nagata)

A.42. Release 3.4.9

Release Date: 2016-12-26

A.42.1. Bug fixes

Tightening up the watchdog security. (Muhammad Usama)

Now wd_authkey uses the HMAC SHA-256 hashing.

Add pgpool_adm extension in Pgpool-IIRPM. (Bo Peng)

Fix occasional segfault when query cache is enabled. (bug 263) (Tatsuo Ishii)

Do not cancel a query when the query resulted in an error other than in native replication mode.
(Tatsuo Ishii)

It was intended to keep the consistency, but there's no point in other than native replication mode.

http://www.pgpool.net/mantisbt/view.php?id=272
http://www.pgpool.net/pipermail/pgpool-general/2017-February/005373.html
http://www.pgpool.net/mantisbt/view.php?id=281
http://www.pgpool.net/mantisbt/view.php?id=280
http://www.pgpool.net/pipermail/pgpool-hackers/2016-December/001950.html
http://www.pgpool.net/mantisbt/view.php?id=202
http://www.pgpool.net/mantisbt/view.php?id=249

Remove obsoleted option "-c" in pgpool command. (Tatsuo Ishii)

Also fix typo in the help message.

Change the default value of search_primary_node_timeout from 10 to 300. (Tatsuo Ishii)

Prior default value 10 seconds is sometimes too short for a standby to be promoted.

Per [pgpool-general: 5026].

Fix the case when all backends are down then 1 node attached. (bug 248) (Tatsuo Ishii)

When all backends are down, no connection is accepted. Then 1 PostgreSQL becomes up, and attach
the node using pcp_attach_node. It successfully finishes. However, when a new connection arrives, still
the connection is refused because pgpool child process looks into the cached status, in which the
recovered node is still in down status if mode is streaming replication mode (native replication and
other modes are fine). Solution is, if all nodes are down, force to restart all pgpool child.

Do not use random() while generating MD5 salt. (Tatsuo Ishii)

random() should not be used in security related applications. To replace random(), import
PostmasterRandom() from PostgreSQL. Also store current time at the start up of Pgpool-II main process
for later use.

Don't ignore sync message from frontend when query cache is enabled. (Tatsuo Ishii)

A.43. Release 3.3.22

Release Date: 2018-07-31

A.43.1. Bug fixes

Fix "write on backend 0 failed with error :"Success"" error. (bug 403) (Tatsuo Ishii)

Don't treated it as an error if write() returns 0.

Fix segfault in per_node_error_log() on armhf architecture. (Tatsuo Ishii)

Patch provided by Christian Ehrhardt.

A.44. Release 3.3.21

Release Date: 2018-04-17

A.44.1. Bug fixes

Make calls to to_regclass fully schema qualified. (Tatsuo Ishii)

A.45. Release 3.3.20

http://www.pgpool.net/mantisbt/view.php?id=403

Release Date: 2018-02-13

A.45.1. Changes

Change systemd service file to use STOP_OPTS=" -m fast". (Bo Peng)

Change pgpool_setup to add restore_command in recovery.conf. (Bo Peng)

A.45.2. Bug fixes

Fix queries hanging in parse_before_bind with extended protocol and replication + load-balancing. (bug
377) (Tatsuo Ishii)

A.46. Release 3.3.19

Release Date: 2018-01-09

A.46.1. Bug fixes

Change the pgpool.service and sysconfig files to output Pgpool-II log. (Bo Peng)

Removeing "Type=forking" and add OPTS=" -n" to run Pgpool-II with non-daemon mode, because we
need to redirect logs. Using "journalctl" command to see Pgpool-II systemd log.

Fix timestamp data inconsistency by replication mode. (Bo Peng)

From PostgreSQL10 the column default value such as 'CURRENT_DATE' changes, Pgpool-II didn't rewrite
timestamp by the added default values. This caused data inconsistency.

Fix returning transaction state when "ready for query" message received. (Tatsuo Ishii)

We return primary or master node state of ready for query message to frontend. In most cases this is
good. However if other than primary node or master node returns an error state (this could happen if
load balance node is other than primary or master node and the query is an errornous SELECT), this
should be returned to frontend, because the frontend already received an error.

A.47. Release 3.3.18

Release Date: 2017-11-01

A.47.1. Bug fixes

Add different pgpool.sysconfig file for RHEL6 and RHEL7. (bug 343) (Bo Peng)

In RHEL6, the "-n" option is needed to redirect log.

http://www.pgpool.net/mantisbt/view.php?id=377
http://www.pgpool.net/mantisbt/view.php?id=343

Fix bug mistakenly overriding global backend status right after failover. (Tatsuo Ishii)

See [pgpool-general: 5728] for mor details.

Deal with OpenSSL 1.1. (Tatsuo Ishii, Muhammad Usama)

A.48. Release 3.3.17

Release Date: 2017-09-05

A.48.1. Bug fixes

Doc: Fix documentation about load-balancing. (Yugo Nagata)

Fix ancient bug of pool_unread(). (Tatsuo Ishii)

When realloc() is called in pool_unread(), it did not update the buffer size. This could cause variety of
memory corruption and unexpected data reading from backend. The reason why we did not found that
is, probably recently Pgpool-II starts extensively to use pool_unread().

Test: Fix Java program in 005.regression test. (Tatsuo Ishii)

Fix for when failover is triggered by worker process, it is possible that wrong DB node could failover.
(bug 303) (Tatsuo Ishii)

This is due to the db_node_id member in the POLL_CONNECTION structure is not initialized in the process
(in child process the member is properly initialized). To solve the problem, add new function
pool_set_db_node_id() to set the structure member variable and call it inside make_persistent_db_connection().

Fix starting unnecessary transaction when SET command is issued. (Tatsuo Ishii)

Fix for [pgpool-general: 5621] Failover() function should be executed with health check alarm disabled.
(Muhammad Usama)

A.49. Release 3.3.16

Release Date: 2017-07-11

A.49.1. Bug fixes

Fixing [pgpool-hackers: 2390]Problems with the relative paths in daemon mode (Muhammad Usama)

Adjust function name change in PostgreSQL 10 dev head. (Tatsuo Ishii)

 pg_current_wal_location -> pg_current_wal_lsn
 pg_last_wal_replay_location -> pg_last_wal_replay_lsn

Fix query cache hang when used by node.js. (Tatsuo Ishii)

See [pgpool-general: 5511] for more details.

http://www.sraoss.jp/pipermail/pgpool-general/2017-September/005786.html
http://www.pgpool.net/mantisbt/view.php?id=303
http://www.pgpool.net/pipermail/pgpool-general/2017-July/005679.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002390.html
http://www.pgpool.net/pipermail/pgpool-general/2017-May/005569.html

Deal with PostgreSQL 10 in streaming replication delay checking. (Tatsuo Ishii)

Fix query cache memory leak. (Tatsuo Ishii)

Clearing cache buffers in case of no oid queries (like BEGIN, CHECKPOINT, VACUUM, etc) should have been
done, but it did not.

A.50. Release 3.3.15

Release Date: 2017-04-28

A.50.1. Bug fixes

​ Fix for 0000299: Errors on the reloading of configuration. (Bug 299) (Muhammad Usama)

Fix coverity warnings. (Muhammad Usama)

Fix for 0000296: PGPool v3.6.2 terminated by systemd because the service Type has been set to
'forking'. (Bug 296) (Muhammad Usama)

A.51. Release 3.3.14

Release Date: 2017-03-17

A.51.1. Bug fixes

Add "Wants=network.target" to pgpool.service file. (bug 294) (Bo Peng)

Fix pcp_promote_node bug that fails promoting node 0. (Yugo Nagata)

The master node could not be promoted by pcp_promote_node with the following error;

 FATAL: invalid pgpool mode for process recovery request
 DETAIL: specified node is already primary node, can't promote node id 0

In streaming replication mode, there is a case that Pgpool-II regards the status of primary node as
"standby" for some reasons, for example, when pg_ctl promote is executed manually during Pgpool-II is
running, in which case, it seems to Pgpool-II that the primary node doesn't exist.

This status mismatch should be fixe by pcp_promote_node, but when the node is the master node (the
first alive node), it fails as mentioned above.

The reason is as following. before changing the status, pcp_promote_node checks if the specified node
is already primary or not by comparing the node id with PRIMARY_NODE_ID. However, if the primary
doesn't exist from Pgpool-II's view, PRIMARY_NODE_ID is set to 0, which is same as MASTER_NODE_ID.
Hence, when the master node is specified to be promoted, pcp_promote_node is confused that this
node is already primary and doesn't have to be promoted, and it exits with the error.

To fix this, pcp_promote_node should check the node id by using REAL_PRIMARY_NODE_ID, which is set
-1 when the primary doesn't exist, rather than PRIMARY_NODE_ID.

http://www.pgpool.net/mantisbt/view.php?id=299
http://www.pgpool.net/mantisbt/view.php?id=296
http://www.pgpool.net/mantisbt/view.php?id=294

Add the latest release note link to README file.(Bo Peng)

Fix to release shared memory segments when Pgpool-IIexits. (bug 272) (Tatsuo Ishii)

Fix for [pgpool-general: 5315] pg_terminate_backend (Muhammad Usama)

Adding the missing ExecStop and ExecReload commands to the systemd service configuration file.
(Muhammad Usama)

Fixing stack smashing detected. (bug 280) (Muhammad Usama)

It was a buffer overflow in wd_get_cmd function

Remove pool_log/pool_error calls from signal handlers. (Tatsuo Ishii)

See [pgpool-hackers: 1950] for details.

Fix for 0000249: watchdog sometimes fails de-escalation. (bug 249) (Muhammad Usama)

The solution is to use the waitpid() system call without WNOHANG option.

Fix connection_life_time broken by authentication_timeout. (Yugo Nagata)

Fix authentication timeout that can occur right after client connecttions. (Yugo Nagata)

A.52. Release 3.3.13

Release Date: 2016-12-26

A.52.1. Bug fixes

Tightening up the watchdog security. (Muhammad Usama)

Now wd_authkey uses the HMAC SHA-256 hashing.

Add pgpool_adm extension in Pgpool-II RPM. (Bo Peng)

Fix occasional segfault when query cache is enabled. (bug 263) (Tatsuo Ishii)

Do not cancel a query when the query resulted in an error other than in native replication mode.
(Tatsuo Ishii)

It was intended to keep the consistency, but there's no point in other than native replication mode.

Change the default value of search_primary_node_timeout from 10 to 300. (Tatsuo Ishii)

Prior default value 10 seconds is sometimes too short for a standby to be promoted.

Per [pgpool-general: 5026].

Fix the case when all backends are down then 1 node attached. (bug 248) (Tatsuo Ishii)

When all backends are down, no connection is accepted. Then 1 PostgreSQL becomes up, and attach
the node using pcp_attach_node. It successfully finishes. However, when a new connection arrives, still
the connection is refused because pgpool child process looks into the cached status, in which the
recovered node is still in down status if mode is streaming replication mode (native replication and
other modes are fine). Solution is, if all nodes are down, force to restart all pgpool child.

Do not use random() while generating MD5 salt. (Tatsuo Ishii)

random() should not be used in security related applications. To replace random(), import
PostmasterRandom() from PostgreSQL. Also store current time at the start up of Pgpool-II main process

http://www.pgpool.net/mantisbt/view.php?id=272
http://www.pgpool.net/pipermail/pgpool-general/2017-February/005373.html
http://www.pgpool.net/mantisbt/view.php?id=280
http://www.pgpool.net/pipermail/pgpool-hackers/2016-December/001950.html
http://www.pgpool.net/mantisbt/view.php?id=249

for later use.

Don't ignore sync message from frontend when query cache is enabled. (Tatsuo Ishii)

A.53. Release 3.2.22

Release Date: 2017-09-05

A.53.1. Bug fixes

Doc: Fix documentation about load-balancing. (Yugo Nagata)

Fix ancient bug of pool_unread(). (Tatsuo Ishii)

When realloc() is called in pool_unread(), it did not update the buffer size. This could cause variety of
memory corruption and unexpected data reading from backend. The reason why we did not found that
is, probably recently Pgpool-II starts extensively to use pool_unread().

Fix for when failover is triggered by worker process, it is possible that wrong DB node could failover.
(bug 303) (Tatsuo Ishii)

This is due to the db_node_id member in the POLL_CONNECTION structure is not initialized in the process
(in child process the member is properly initialized). To solve the problem, add new function
pool_set_db_node_id() to set the structure member variable and call it inside make_persistent_db_connection().

Fix starting unnecessary transaction when SET command is issued. (Tatsuo Ishii)

Fix for [pgpool-general: 5621] Failover() function should be executed with health check alarm disabled.
(Muhammad Usama)

A.54. Release 3.2.21

Release Date: 2017-07-11

A.54.1. Bug fixes

Fixing [pgpool-hackers: 2390]Problems with the relative paths in daemon mode (Muhammad Usama)

Adjust function name change in PostgreSQL 10 dev head. (Tatsuo Ishii)

 pg_current_wal_location -> pg_current_wal_lsn
 pg_last_wal_replay_location -> pg_last_wal_replay_lsn

Fix query cache hang when used by node.js. (Tatsuo Ishii)

See [pgpool-general: 5511] for more details.

Deal with PostgreSQL 10 in streaming replication delay checking. (Tatsuo Ishii)

Fix query cache memory leak. (Tatsuo Ishii)

http://www.pgpool.net/mantisbt/view.php?id=303
http://www.pgpool.net/pipermail/pgpool-general/2017-July/005679.html
http://www.sraoss.jp/pipermail/pgpool-hackers/2017-June/002390.html
http://www.pgpool.net/pipermail/pgpool-general/2017-May/005569.html

Clearing cache buffers in case of no oid queries (like BEGIN, CHECKPOINT, VACUUM, etc) should have been
done, but it did not. Fix query cache memory leak. (Tatsuo Ishii)

A.55. Release 3.2.20

Release Date: 2017-04-28

A.55.1. Bug fixes

​ Fix for 0000299: Errors on the reloading of configuration. (Bug 299) (Muhammad Usama)

A.56. Release 3.2.19

Release Date: 2017-03-17

A.56.1. Bug fixes

Fix pcp_promote_node bug that fails promoting node 0. (Yugo Nagata)

The master node could not be promoted by pcp_promote_node with the following error;

 FATAL: invalid pgpool mode for process recovery request
 DETAIL: specified node is already primary node, can't promote node id 0

In streaming replication mode, there is a case that Pgpool-II regards the status of primary node as
"standby" for some reasons, for example, when pg_ctl promote is executed manually during Pgpool-II is
running, in which case, it seems to Pgpool-II that the primary node doesn't exist.

This status mismatch should be fixe by pcp_promote_node, but when the node is the master node (the
first alive node), it fails as mentioned above.

The reason is as following. before changing the status, pcp_promote_node checks if the specified node
is already primary or not by comparing the node id with PRIMARY_NODE_ID. However, if the primary
doesn't exist from Pgpool-II's view, PRIMARY_NODE_ID is set to 0, which is same as MASTER_NODE_ID.
Hence, when the master node is specified to be promoted, pcp_promote_node is confused that this
node is already primary and doesn't have to be promoted, and it exits with the error.

To fix this, pcp_promote_node should check the node id by using REAL_PRIMARY_NODE_ID, which is set
-1 when the primary doesn't exist, rather than PRIMARY_NODE_ID.

Add the latest release note link to README file.(Bo Peng)

Fix to release shared memory segments when Pgpool-IIexits. (bug 272) (Tatsuo Ishii)

Remove pool_log/pool_error calls from signal handlers. (Tatsuo Ishii)

See [pgpool-hackers: 1950] for details.

Fix for 0000249: watchdog sometimes fails de-escalation. (bug 249) (Muhammad Usama)

http://www.pgpool.net/mantisbt/view.php?id=299
http://www.pgpool.net/mantisbt/view.php?id=272
http://www.pgpool.net/pipermail/pgpool-hackers/2016-December/001950.html
http://www.pgpool.net/mantisbt/view.php?id=249

The solution is to use the waitpid() system call without WNOHANG option.

Fix connection_life_time broken by authentication_timeout. (Yugo Nagata)

Fix authentication timeout that can occur right after client connecttions. (Yugo Nagata)

A.57. Release 3.2.18

Release Date: 2016-12-26

A.57.1. Bug fixes

Fix occasional segfault when query cache is enabled. (Tatsuo Ishii)

Per bug 263.

Do not cancel a query when the query resulted in an error other than in native replication mode.
(Tatsuo Ishii)

It was intended to keep the consistency, but there's no point in other than native replication mode.

Do not use random() while generating MD5 salt. (Tatsuo Ishii)

random() should not be used in security related applications. To replace random(), import PostmasterRandom()
from PostgreSQL. Also store current time at the start up of Pgpool-II main process for later use.

Don't ignore sync message from frontend when query cache is enabled. (Tatsuo Ishii)

A.58. Release 3.1.21

Release Date: 2016-12-26

A.58.1. Bug fixes

Do not cancel a query when the query resulted in an error other than in native replication mode.
(Tatsuo Ishii)

It was intended to keep the consistency, but there's no point in other than native replication mode.

Do not use random() while generating MD5 salt. (Tatsuo Ishii)

random() should not be used in security related applications. To replace random(), import
PostmasterRandom() from PostgreSQL. Also store current time at the start up of Pgpool-II main process
for later use.

Don't ignore sync message from frontend when query cache is enabled. (Tatsuo Ishii)

Index
A | B | C | D | E | F | H | I | L | M | N | O | P | R | S | T | U | W | Y

A

A

allow_multiple_failover_requests_from_node configuration parameter, Controlling the Failover behavior
allow_sql_comments configuration parameter, Load Balancing Settings
app_name_redirect_preference_list configuration parameter, Load Balancing Settings
arping_cmd configuration parameter, Virtual IP control
arping_path configuration parameter, Virtual IP control
authentication_timeout configuration parameter, Authentication Settings

B

backend_data_directory configuration parameter, Backend Data Settings
backend_flag configuration parameter, Backend Data Settings
backend_hostname configuration parameter, Backend Connection Settings
backend_port configuration parameter, Backend Connection Settings
backend_weight configuration parameter, Backend Connection Settings
bison, Requirements
black_function_list configuration parameter, Load Balancing Settings
black_memqcache_table_list configuration parameter, Common configurations

C

check_temp_table configuration parameter, Misc Configuration Parameters
check_unlogged_table configuration parameter, Misc Configuration Parameters
child_life_time configuration parameter, Connection Pooling Settings
child_max_connections configuration parameter, Connection Pooling Settings
clear_memqcache_on_escalation configuration parameter, Behaivor on escalation and de-escalation
client authentication, Client Authentication
client_idle_limit configuration parameter, Connection Pooling Settings
client_idle_limit_in_recovery configuration parameter, Online Recovery
client_min_messages configuration parameter, When To Log
configuration

of the server, Server Configuration

configuring watchdog, Watchdog
connection_cache configuration parameter, Connection Pooling Settings
connection_life_time configuration parameter, Connection Pooling Settings
connect_timeout configuration parameter, Health Check

D

database_redirect_preference_list configuration parameter, Load Balancing Settings
delay_threshold configuration parameter, Streaming Replication Check
delegate_IP configuration parameter, Virtual IP control

E

enable_pool_hba configuration parameter, Authentication Settings

F

failback_command configuration parameter, Failover and Failback Settings
failover_command configuration parameter, Failover and Failback Settings
failover_if_affected_tuples_mismatch configuration parameter, Replication mode
failover_require_consensus configuration parameter, Controlling the Failover behavior
failover_when_quorum_exists configuration parameter, Controlling the Failover behavior
fail_over_on_backend_error configuration parameter, Failover and Failback Settings
flex, Requirements
follow_master_command configuration parameter, Failover and Failback Settings

file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-FAILOVER-BEHAVIOR
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-VIP-CONTROL
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-VIP-CONTROL
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-AUTHENTICATION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-backend-settings.html#RUNTIME-CONFIG-BACKEND-DATA
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-backend-settings.html#RUNTIME-CONFIG-BACKEND-DATA
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-backend-settings.html#RUNTIME-CONFIG-BACKEND-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-backend-settings.html#RUNTIME-CONFIG-BACKEND-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-backend-settings.html#RUNTIME-CONFIG-BACKEND-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/install-requirements.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-misc.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-misc.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-ESCALATION-DE-ESCALATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/client-authentication.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-online-recovery.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHEN-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-streaming-replication-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-VIP-CONTROL
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-AUTHENTICATION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-failover.html#RUNTIME-CONFIG-FAILOVER-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-failover.html#RUNTIME-CONFIG-FAILOVER-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-REPLICATION-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-FAILOVER-BEHAVIOR
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-FAILOVER-BEHAVIOR
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-failover.html#RUNTIME-CONFIG-FAILOVER-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/install-requirements.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-failover.html#RUNTIME-CONFIG-FAILOVER-SETTINGS

H

health_check_database configuration parameter, Health Check
health_check_max_retries configuration parameter, Health Check
health_check_password configuration parameter, Health Check
health_check_period configuration parameter, Health Check
health_check_retry_delay configuration parameter, Health Check
health_check_timeout configuration parameter, Health Check
health_check_user configuration parameter, Health Check
heartbeat_destination configuration parameter, Lifecheck Heartbeat mode configuration
heartbeat_destination_port configuration parameter, Lifecheck Heartbeat mode configuration
heartbeat_device configuration parameter, Lifecheck Heartbeat mode configuration
history

of Pgpool-II, A Brief History of Pgpool-II

I

if_cmd_path configuration parameter, Virtual IP control
if_down_cmd configuration parameter, Virtual IP control
if_up_cmd configuration parameter, Virtual IP control
ignore_leading_white_space configuration parameter, Load Balancing Settings
insert_lock configuration parameter, Replication mode
installation, Installation of Pgpool-II

L

lex, Requirements
listen_addresses configuration parameter, Connection Settings
listen_backlog_multiplier configuration parameter, Connection Pooling Settings
load_balance_mode configuration parameter, Load Balancing Settings
lobj_lock_table configuration parameter, Replication mode
logdir configuration parameter, Misc Configuration Parameters
logical replication mode, Running mode of Pgpool-II
log_connections configuration parameter, What To Log
log_destination configuration parameter, Where To Log
log_error_verbosity configuration parameter, What To Log
log_hostname configuration parameter, What To Log
log_line_prefix configuration parameter, What To Log
log_min_messages configuration parameter, When To Log
log_per_node_statement configuration parameter, What To Log
log_standby_delay configuration parameter, Streaming Replication Check
log_statement configuration parameter, What To Log

M

make, Requirements
master slave mode, Running mode of Pgpool-II
master_slave_mode configuration parameter, Master slave mode
master_slave_sub_mode configuration parameter, Master slave mode
max_pool configuration parameter, Connection Pooling Settings
MD5, MD5 Password Authentication, Setting md5 Authentication
memory_cache_enabled configuration parameter, Enabling in memory query cache
memqcache_auto_cache_invalidation configuration parameter, Common configurations
memqcache_cache_block_size configuration parameter, Configurations to use shared memory
memqcache_expire configuration parameter, Common configurations
memqcache_maxcache configuration parameter, Common configurations
memqcache_max_num_cache configuration parameter, Configurations to use shared memory
memqcache_memcached_host configuration parameter, Configurations to use memcached
memqcache_memcached_port configuration parameter, Configurations to use memcached
memqcache_method configuration parameter, Choosing cache storage

file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-health-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-HEARTBEAT
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-HEARTBEAT
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-HEARTBEAT
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/history.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-VIP-CONTROL
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-VIP-CONTROL
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-VIP-CONTROL
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-REPLICATION-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/installation.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/install-requirements.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-REPLICATION-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-misc.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/configuring-pgpool.html#RUNNING-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHERE-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHEN-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-streaming-replication-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/install-requirements.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/configuring-pgpool.html#RUNNING-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-MASTER-SLAVE-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-MASTER-SLAVE-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/auth-methods.html#AUTH-MD5
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/auth-methods.html#SETTING-MD5-AUTHENTICATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-ENABLING
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-SHMEM-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-SHMEM-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-MEMCACHED-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-MEMCACHED-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CHOOSE-STORAGE

memqcache_oiddir configuration parameter, Common configurations
memqcache_total_size configuration parameter, Configurations to use shared memory

N

native replication mode, Running mode of Pgpool-II
num_init_children configuration parameter, Connection Settings

O

other_pgpool_hostname configuration parameter, Watchdog servers configurations
other_pgpool_port configuration parameter, Watchdog servers configurations
other_wd_port0 configuration parameter, Watchdog servers configurations

P

PAM, PAM Authentication
pcp configuration, Configuring pcp.conf
pcp_attach_node, pcp_attach_node
pcp_common_options, pcp_common_options
pcp_detach_node, pcp_detach_node
pcp_listen_addresses configuration parameter, Connection Settings
pcp_node_count, pcp_node_count
pcp_node_info, pcp_node_info
pcp_pool_status, pcp_pool_status
pcp_port configuration parameter, Connection Settings
pcp_proc_count, pcp_proc_count
pcp_proc_info, pcp_proc_info
pcp_promote_node, pcp_promote_node
pcp_recovery_node, pcp_recovery_node
pcp_socket_dir configuration parameter, Connection Settings
pcp_stop_pgpool, pcp_stop_pgpool
pcp_watchdog_info, pcp_watchdog_info
pgpool, pgpool
Pgpool-II configuration, Configuring Pgpool-II
Pgpool-II user, The Pgpool-II User Account
pgpool.conf, Parameter Interaction via the Configuration File
pgpool_adm_pcp_attach_node, pgpool_adm_pcp_attach_node
pgpool_adm_pcp_detach_node, pgpool_adm_pcp_detach_node
pgpool_adm_pcp_node_count, pgpool_adm_pcp_node_count
pgpool_adm_pcp_node_info, pgpool_adm_pcp_node_info
pgpool_adm_pcp_pool_status, pgpool_adm_pcp_pool_status
pgpool_setup, pgpool_setup
pg_md5, pg_md5
pid_file_name configuration parameter, Misc Configuration Parameters
ping_path configuration parameter, Upstream server connection
pool_hba.conf, The pool_hba.conf File
pool_passwd configuration parameter, Authentication Settings
port configuration parameter, Connection Settings

R

recovery_1st_stage_command configuration parameter, Online Recovery
recovery_2nd_stage_command configuration parameter, Online Recovery
recovery_password configuration parameter, Online Recovery
recovery_timeout configuration parameter, Online Recovery
recovery_user configuration parameter, Online Recovery
relcache_expire configuration parameter, Misc Configuration Parameters
relcache_size configuration parameter, Misc Configuration Parameters
replicate_select configuration parameter, Replication mode
replication_mode configuration parameter, Replication mode

file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-SHMEM-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/configuring-pgpool.html#RUNNING-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-SERVER-CONFIGURATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-SERVER-CONFIGURATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-SERVER-CONFIGURATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/auth-methods.html#AUTH-PAM
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/configuring-pcp-conf.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-attach-node.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-common-options.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-detach-node.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-node-count.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-node-info.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-pool-status.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-proc-count.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-proc-info.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-promote-node.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-recovery-node.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-stop-pgpool.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pcp-watchdog-info.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/configuring-pgpool.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-ii-user.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/config-setting.html#CONFIG-SETTING-CONFIGURATION-FILE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-adm-pcp-attach-node.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-adm-pcp-detach-node.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-adm-pcp-node-count.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-adm-pcp-node-info.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-adm-pcp-pool-status.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pgpool-setup.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/pg-md5.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-misc.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-UPSTREAM-CONNECTIONS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/auth-pool-hba-conf.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-AUTHENTICATION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-online-recovery.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-online-recovery.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-online-recovery.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-online-recovery.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-online-recovery.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-misc.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-misc.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-REPLICATION-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-REPLICATION-MODE

replication_stop_on_mismatch configuration parameter, Replication mode
RESET, PGPOOL RESET
reset_query_list configuration parameter, Connection Pooling Settings

S

search_primary_node_timeout configuration parameter, Failover and Failback Settings
serialize_accept configuration parameter, Connection Pooling Settings
SET, PGPOOL SET
SHOW, PGPOOL SHOW, SHOW POOL_CACHE
SHOW POOL_NODES, SHOW POOL NODES
SHOW POOL_POOLS, SHOW POOL_POOLS
SHOW POOL_PROCESSES, SHOW POOL_PROCESSES
SHOW POOL_STATUS, SHOW POOL STATUS
SHOW POOL_VERSION, SHOW POOL_VERSION
SIGHUP, Parameter Interaction via the Configuration File
socket_dir configuration parameter, Connection Settings
sr_check_database configuration parameter, Streaming Replication Check
sr_check_password configuration parameter, Streaming Replication Check
sr_check_period configuration parameter, Streaming Replication Check
sr_check_user configuration parameter, Streaming Replication Check
ssl configuration parameter, SSL Settings
ssl_ca_cert configuration parameter, SSL Settings
ssl_ca_cert_dir configuration parameter, SSL Settings
ssl_cert configuration parameter, SSL Settings
ssl_key configuration parameter, SSL Settings
streaming replication mode, Running mode of Pgpool-II
syslog_facility configuration parameter, Where To Log
syslog_ident configuration parameter, Where To Log

T

trusted_servers configuration parameter, Upstream server connection

U

use_watchdog configuration parameter, Enable watchdog

W

WATCHDOG, Coordinating multiple Pgpool-II nodes, Life checking of other Pgpool-II nodes, Consistency of
configuration parameters on all Pgpool-II nodes, Changing active/standby state when certain fault is
detected, Automatic virtual IP switching, Automatic registration of a server as a standby in recovery,
Starting/stopping watchdog, Watchdog IPC command packet format, Watchdog IPC result packet format,
Watchdog IPC command packet types, External lifecheck IPC packets and data, Getting list of configured
watchdog nodes, Restrictions on watchdog, Watchdog restriction with query mode lifecheck, Connecting to
Pgpool-II whose watchdog status is down, Pgpool-II whose watchdog status is down requires restart,
Watchdog promotion to active takes few seconds
watchdog_setup, watchdog_setup
wd_authkey configuration parameter, Watchdog communication
wd_de_escalation_command configuration parameter, Behaivor on escalation and de-escalation
wd_escalation_command configuration parameter, Behaivor on escalation and de-escalation
wd_heartbeat_deadtime configuration parameter, Lifecheck Heartbeat mode configuration
wd_heartbeat_keepalive configuration parameter, Lifecheck Heartbeat mode configuration
wd_heartbeat_port configuration parameter, Lifecheck Heartbeat mode configuration
wd_hostname configuration parameter, Watchdog communication
wd_interval configuration parameter, Life checking Pgpool-II
wd_ipc_socket_dir configuration parameter, Life checking Pgpool-II
wd_lifecheck_dbname configuration parameter, Lifecheck Query mode configuration
wd_lifecheck_method configuration parameter, Life checking Pgpool-II
wd_lifecheck_password configuration parameter, Lifecheck Query mode configuration

file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-running-mode.html#RUNTIME-CONFIG-REPLICATION-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-pgpool-reset.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-failover.html#RUNTIME-CONFIG-FAILOVER-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection-pooling.html#RUNTIME-CONFIG-CONNECTION-POOLING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-pgpool-set.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-pgpool-show.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-show-pool-cache.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-show-pool-nodes.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-show-pool-pools.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-show-pool-processes.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-show-pool-status.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/sql-show-pool-version.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/config-setting.html#CONFIG-SETTING-CONFIGURATION-FILE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-connection.html#RUNTIME-CONFIG-CONNECTION-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-streaming-replication-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-streaming-replication-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-streaming-replication-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-streaming-replication-check.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-ssl.html#RUNTIME-CONFIG-SSL-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-ssl.html#RUNTIME-CONFIG-SSL-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-ssl.html#RUNTIME-CONFIG-SSL-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-ssl.html#RUNTIME-CONFIG-SSL-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-ssl.html#RUNTIME-CONFIG-SSL-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/configuring-pgpool.html#RUNNING-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHERE-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHERE-TO-LOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-UPSTREAM-CONNECTIONS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-ENABLE-WATCHDOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-COORDINATING-NODES
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-LIFECHECKING
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-CONSISTENCY-OF-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-CHANGING-ACTIVE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-AUTOMATIC-VIP
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-CHANGING-AUTOMATIC-REGISTER-IN-RECOVERY
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-intro.html#TUTORIAL-WATCHDOG-START-STOP
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-integrating-external-lifecheck.html#TUTORIAL-WATCHDOG-IPC-COMMAND-PACKET
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-integrating-external-lifecheck.html#TUTORIAL-WATCHDOG-IPC-RESULT-PACKET
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-integrating-external-lifecheck.html#TUTORIAL-WATCHDOG-IPC-COMMAND-PACKET-TYPES
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-integrating-external-lifecheck.html#TUTORIAL-WATCHDOG-EXTERNAL-LIFECHECK-IPC
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-integrating-external-lifecheck.html#TUTORIAL-WATCHDOG-EXTERNAL-LIFECHECK-GET-NODES
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-restrictions.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-restrictions.html#TUTORIAL-WATCHDOG-RESTRICTIONS-QUERY-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-restrictions.html#TUTORIAL-WATCHDOG-RESTRICTIONS-DOWN-WATCHDOG-MODE
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-restrictions.html#TUTORIAL-WATCHDOG-RESTRICTIONS-DOWN-WATCHDOG-REQUIRE-RESTART
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/tutorial-watchdog-restrictions.html#TUTORIAL-WATCHDOG-RESTRICTIONS-ACTIVE-TAKE-TIME
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/watchdog-setup.html
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-COMMUNICATION-WATCHDOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-ESCALATION-DE-ESCALATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-ESCALATION-DE-ESCALATION
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-HEARTBEAT
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-HEARTBEAT
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-HEARTBEAT
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-COMMUNICATION-WATCHDOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-QUERY
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-QUERY

wd_lifecheck_query configuration parameter, Lifecheck Query mode configuration
wd_lifecheck_user configuration parameter, Lifecheck Query mode configuration
wd_life_point configuration parameter, Lifecheck Query mode configuration
wd_monitoring_interfaces_list configuration parameter, Life checking Pgpool-II
wd_port configuration parameter, Watchdog communication
wd_priority configuration parameter, Life checking Pgpool-II
white_function_list configuration parameter, Load Balancing Settings
white_memqcache_table_list configuration parameter, Common configurations

Y

yacc, Requirements

file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-QUERY
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-QUERY
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK-QUERY
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-COMMUNICATION-WATCHDOG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-watchdog-config.html#CONFIG-WATCHDOG-LIFECHECK
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-config-load-balancing.html#RUNTIME-CONFIG-LOAD-BALANCING-SETTINGS
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/runtime-in-memory-query-cache.html#RUNTIME-IN-MEMORY-QUERY-CACHE-CONFIG
file:///opt/git/priv-all-portal-docs/etl/pgpool/build/pgpool_II_3_7_5/doc/src/sgml/install-requirements.html

	Table of Contents
	pgpool-II 3.7.5 Documentation
	The Pgpool Global Development Group

	Preface
	What is Pgpool-II?
	A Brief History of Pgpool-II
	Conventions
	Further Information
	Restrictions
	Bug Reporting Guidelines

	I. Tutorial
	Chapter 1. Getting Started
	1.1. Installation
	1.2. Your First Replication
	1.3. Testing Load Balance
	1.4. Testing Replication
	1.5. Testing Fail Over
	1.6. Testing Online Recovery
	1.7. Architectural Fundamentals

	Chapter 2. Watchdog
	2.1. Introduction
	2.1.1. Coordinating multiple Pgpool-II nodes
	2.1.2. Life checking of other Pgpool-II nodes
	2.1.3. Consistency of configuration parameters on all Pgpool-II nodes
	2.1.4. Changing active/standby state when certain fault is detected
	2.1.5. Automatic virtual IP switching
	2.1.6. Automatic registration of a server as a standby in recovery
	2.1.7. Starting/stopping watchdog

	2.2. Integrating external lifecheck with watchdog
	2.2.1. Watchdog IPC command packet format
	2.2.2. Watchdog IPC result packet format
	2.2.3. Watchdog IPC command packet types
	2.2.4. External lifecheck IPC packets and data
	2.2.4.1. Getting list of configured watchdog nodes

	2.3. Restrictions on watchdog
	2.3.1. Watchdog restriction with query mode lifecheck
	2.3.2. Connecting to Pgpool-II whose watchdog status is down
	2.3.3. Pgpool-II whose watchdog status is down requires restart
	2.3.4. Watchdog promotion to active takes few seconds

	2.4. Architecure of the watchdog
	2.4.1. Watchdog Core
	2.4.1.1. Communication with other nodes in the Cluster
	2.4.1.2. IPC and data format

	2.4.2. Watchdog Lifecheck

	II. Server Administration
	Chapter 3. Installation of Pgpool-II
	3.1. Installation of Pgpool-II
	3.2. Requirements
	3.3. Getting The Source
	3.4. Installing Pgpool-II
	3.5. Installing pgpool_recovery
	3.6. Installing pgpool-regclass
	3.7. Creating insert_lock table
	3.8. Setting up pgpool.conf
	3.9. Compiling and installing documents
	3.9.1. Tool Sets
	3.9.2. Compiling docs

	3.10. Installation from RPM
	3.10.1. Installing RPM
	3.10.2. Configuration with RPM
	3.10.3. Starting/stopping Pgpool-II

	3.11. Tips for Installation
	3.11.1. Firewalls

	Chapter 4. Server Setup and Operation
	4.1. The Pgpool-II User Account
	4.2. Configuring pcp.conf
	4.3. Configuring Pgpool-II
	4.3.1. Configuring pgpool.conf
	4.3.2. Running mode of Pgpool-II

	4.4. Configuring backend information
	4.4.1. Backend Settings

	Chapter 5. Server Configuration
	5.1. Setting Parameters
	5.1.1. Parameter Names and Values
	5.1.2. Parameter Interaction via the Configuration File
	5.1.3. Parameter Interaction via SQL Clients

	5.2. Connections and Authentication
	5.2.1. Connection Settings
	5.2.2. Authentication Settings

	5.3. Running mode
	5.3.1. Master slave mode
	5.3.2. Replication mode

	5.4. Backend Settings
	5.4.1. Backend Connection Settings
	5.4.2. Backend Data Settings

	5.5. Connection Pooling
	5.5.1. Connection Pooling Settings

	5.6. Error Reporting and Logging
	5.6.1. Where To Log
	5.6.2. When To Log
	5.6.3. What To Log

	5.7. Load Balancing
	5.7.1. Condition for Load Balancing
	5.7.2. Load Balancing in Streaming Replication
	5.7.3. Load Balancing Settings

	5.8. Health Check
	5.9. Failover and Failback
	5.9.1. Failover and Failback Settings
	5.9.2. Failover in the raw Mode

	5.10. Online Recovery
	5.11. Streaming Replication Check
	5.12. In Memory Query Cache
	5.12.1. Enabling in memory query cache
	5.12.2. Choosing cache storage
	5.12.3. Common configurations
	5.12.4. Configurations to use shared memory
	5.12.5. Configurations to use memcached

	5.13. Secure Sockect Layer (SSL)
	5.13.1. SSL Settings
	5.13.2. Generating SSL certificates

	5.14. Watchdog
	5.14.1. Enable watchdog
	5.14.2. Watchdog communication
	5.14.3. Upstream server connection
	5.14.4. Virtual IP control
	5.14.5. Behaivor on escalation and de-escalation
	5.14.6. Controlling the Failover behavior
	5.14.7. Life checking Pgpool-II
	5.14.8. Lifecheck Heartbeat mode configuration
	5.14.9. Lifecheck Query mode configuration
	5.14.10. Watchdog servers configurations

	5.15. Misc Configuration Parameters

	Chapter 6. Client Authentication
	6.1. The pool_hba.conf File
	6.2. Authentication Methods
	6.2.1. Trust Authentication
	6.2.2. MD5 Password Authentication
	6.2.2.1. Authentication file format
	6.2.2.2. Setting md5 Authentication

	6.2.3. PAM Authentication

	III. Examples
	Chapter 7. Configuration Examples
	7.1. Basic Configuration Example
	7.1.1. Let's Begin!
	7.1.1.1. Installing Pgpool-II
	7.1.1.2. Configuration Files
	7.1.1.3. Configuring PCP Commands
	7.1.1.4. Preparing Database Nodes
	7.1.1.5. Starting/Stopping Pgpool-II

	7.1.2. Your First Replication
	7.1.2.1. Configuring Replication
	7.1.2.2. Checking Replication

	7.2. Watchdog Configuration Example
	7.2.1. Common configurations
	7.2.1.1. Enabling watchdog
	7.2.1.2. Configure Up stream servers
	7.2.1.3. Watchdog Communication
	7.2.1.4. Virtual IP

	7.2.2. Individual Server Configurations
	7.2.2.1. Active (osspc16) Server configurations
	7.2.2.2. Standby (osspc20) Server configurations

	7.2.3. Starting Pgpool-II
	7.2.3.1. Starting pgpool in Active server (osspc16)
	7.2.3.2. Starting pgpool in Standby server (osspc20)

	7.2.4. Try it out
	7.2.5. Switching virtual IP
	7.2.6. More
	7.2.6.1. Lifecheck
	7.2.6.2. Switching virtual IP address

	7.3. Pgpoo-II + Watchdog Setup Example
	7.3.1. Requirements
	7.3.2. Cluster System Configuration
	7.3.3. Installation
	7.3.4. Before Starting
	7.3.5. Pgpool-II Configuration
	7.3.5.1. Common Settings
	7.3.5.2. Failover configuration
	7.3.5.3. Pgpool-II Online Recovery Configurations
	7.3.5.4. Client Authentication Configuration
	7.3.5.5. Watchdog Configuration
	7.3.5.6. PCP Command Configuration

	7.3.6. Starting/Stopping Pgpool-II
	7.3.7. Log
	7.3.8. How to use
	7.3.8.1. Set up PostgreSQL standby server
	7.3.8.2. Switching active/standby watchdog
	7.3.8.3. Failover
	7.3.8.4. Online Recovery

	7.4. AWS Configuration Example
	7.4.1. AWS Setup
	7.4.2. Pgpool-II configurations
	7.4.2.1. Pgpool-II configurations on Instance-1
	7.4.2.2. Pgpool-II configurations on Instance-2

	7.4.3. escalation and de-escalation Scripts
	7.4.3.1. escalation script
	7.4.3.2. de-escalation script

	AWS Command References
	7.4.4. Try it out
	7.4.5. Switching Elastic IP

	7.5. Aurora Configuration Example
	7.5.1. Setting pgpool.conf for Aurora

	IV. Reference
	I. Server commands
	pgpool
	Name
	Synopsis
	Description
	Usages
	Common options
	Starting Pgpool-II main server
	Stopping Pgpool-II main server
	Reloading Pgpool-II configuration files

	II. PCP commands
	1. PCP connection authentication
	2. PCP password file

	pcp_common_options
	Name
	Synopsis
	Description
	Options
	Environment

	pcp_node_count
	Name
	Synopsis
	Description
	Options
	Example

	pcp_node_info
	Name
	Synopsis
	Description
	Options
	Example

	pcp_watchdog_info
	Name
	Synopsis
	Description
	Options
	Example

	pcp_proc_count
	Name
	Synopsis
	Description
	Options

	pcp_proc_info
	Name
	Synopsis
	Description
	Options
	Example

	pcp_pool_status
	Name
	Synopsis
	Description
	Options
	Example

	pcp_detach_node
	Name
	Synopsis
	Description
	Options

	pcp_attach_node
	Name
	Synopsis
	Description
	Options

	pcp_promote_node
	Name
	Synopsis
	Description
	Options

	pcp_stop_pgpool
	Name
	Synopsis
	Description
	Options

	pcp_recovery_node
	Name
	Synopsis
	Description
	Options

	III. Other commands
	pg_md5
	Name
	Synopsis
	Description
	Options
	Example

	pgpool_setup
	Name
	Synopsis
	Description
	Options
	Environment variables
	Example

	watchdog_setup
	Name
	Synopsis
	Description
	Options
	Environment variables
	Example

	IV. SQL type commands
	PGPOOL SHOW
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	PGPOOL SET
	Name
	Synopsis
	Description
	Examples
	See Also

	PGPOOL RESET
	Name
	Synopsis
	Description
	Parameters
	Examples
	See Also

	SHOW POOL STATUS
	Name
	Synopsis
	Description
	See Also

	SHOW POOL NODES
	Name
	Synopsis
	Description

	SHOW POOL_PROCESSES
	Name
	Synopsis
	Description

	SHOW POOL_POOLS
	Name
	Synopsis
	Description

	SHOW POOL_VERSION
	Name
	Synopsis
	Description

	SHOW POOL_CACHE
	Name
	Synopsis
	Description

	V. pgpool_adm extension
	1. Installing pgpool_adm

	pgpool_adm_pcp_node_info
	Name
	Synopsis
	Description
	Arguments
	Example

	pgpool_adm_pcp_pool_status
	Name
	Synopsis
	Description
	Arguments
	Example

	pgpool_adm_pcp_node_count
	Name
	Synopsis
	Description
	Arguments
	Example

	pgpool_adm_pcp_attach_node
	Name
	Synopsis
	Description
	Arguments
	Example

	pgpool_adm_pcp_detach_node
	Name
	Synopsis
	Description
	Arguments
	Example

	V. Appendixes
	Appendix A. Release Notes
	A.1. Release 3.7.5
	A.1.1. Bug fixes

	A.2. Release 3.7.4
	A.2.1. Bug fixes

	A.3. Release 3.7.3
	A.3.1. Bug fixes

	A.4. Release 3.7.2
	A.4.1. Changes
	A.4.2. Bug fixes

	A.5. Release 3.7.1
	A.5.1. Bug fixes

	A.6. Release 3.7
	A.6.1. Overview
	A.6.2. Major Enhancements
	A.6.3. Other Enhancements
	A.6.4. Changes
	A.6.5. Bug fix

	A.7. Release 3.6.12
	A.7.1. Bug fixes

	A.8. Release 3.6.11
	A.8.1. Bug fixes

	A.9. Release 3.6.10
	A.9.1. Bug fixes

	A.10. Release 3.6.9
	A.10.1. Changes
	A.10.2. Bug fixes

	A.11. Release 3.6.8
	A.11.1. Bug fixes

	A.12. Release 3.6.7
	A.12.1. Bug fixes

	A.13. Release 3.6.6
	A.13.1. Bug fixes
	A.13.2. Enhancements

	A.14. Release 3.6.5
	A.14.1. Bug fixes

	A.15. Release 3.6.4
	A.15.1. Bug fixes

	A.16. Release 3.6.3
	A.16.1. Bug fixes

	A.17. Release 3.6.2
	A.17.1. Bug fixes

	A.18. Release 3.6.1
	A.18.1. Bug fixes

	A.19. Release 3.6
	A.19.1. Overview
	A.19.2. Major Enhancements
	A.19.3. Other Enhancements
	A.19.4. Changes
	A.19.5. Bug fixes

	A.20. Release 3.5.16
	A.20.1. Bug fixes

	A.21. Release 3.5.15
	A.21.1. Bug fixes

	A.22. Release 3.5.14
	A.22.1. Bug fixes

	A.23. Release 3.5.13
	A.23.1. Changes
	A.23.2. Bug fixes

	A.24. Release 3.5.12
	A.24.1. Bug fixes

	A.25. Release 3.5.11
	A.25.1. Bug fixes

	A.26. Release 3.5.10
	A.26.1. Bug fixes
	A.26.2. Enhancements

	A.27. Release 3.5.9
	A.27.1. Bug fixes

	A.28. Release 3.5.8
	A.28.1. Bug fixes

	A.29. Release 3.5.7
	A.29.1. Bug fixes

	A.30. Release 3.5.6
	A.30.1. Bug fixes

	A.31. Release 3.5.5
	A.31.1. Bug fixes

	A.32. Release 3.4.19
	A.32.1. Bug fixes

	A.33. Release 3.4.18
	A.33.1. Bug fixes

	A.34. Release 3.4.17
	A.34.1. Bug fixes

	A.35. Release 3.4.16
	A.35.1. Changes
	A.35.2. Bug fixes

	A.36. Release 3.4.15
	A.36.1. Bug fixes

	A.37. Release 3.4.14
	A.37.1. Bug fixes

	A.38. Release 3.4.13
	A.38.1. Bug fixes

	A.39. Release 3.4.12
	A.39.1. Bug fixes

	A.40. Release 3.4.11
	A.40.1. Bug fixes

	A.41. Release 3.4.10
	A.41.1. Bug fixes

	A.42. Release 3.4.9
	A.42.1. Bug fixes

	A.43. Release 3.3.22
	A.43.1. Bug fixes

	A.44. Release 3.3.21
	A.44.1. Bug fixes

	A.45. Release 3.3.20
	A.45.1. Changes
	A.45.2. Bug fixes

	A.46. Release 3.3.19
	A.46.1. Bug fixes

	A.47. Release 3.3.18
	A.47.1. Bug fixes

	A.48. Release 3.3.17
	A.48.1. Bug fixes

	A.49. Release 3.3.16
	A.49.1. Bug fixes

	A.50. Release 3.3.15
	A.50.1. Bug fixes

	A.51. Release 3.3.14
	A.51.1. Bug fixes

	A.52. Release 3.3.13
	A.52.1. Bug fixes

	A.53. Release 3.2.22
	A.53.1. Bug fixes

	A.54. Release 3.2.21
	A.54.1. Bug fixes

	A.55. Release 3.2.20
	A.55.1. Bug fixes

	A.56. Release 3.2.19
	A.56.1. Bug fixes

	A.57. Release 3.2.18
	A.57.1. Bug fixes

	A.58. Release 3.1.21
	A.58.1. Bug fixes

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Y

