pgRouting Manual (2.6)

Contents

pgRouting Manual (2.6)
pgRouting Manual (2.6)

Table of Contentsq|
General
Introductionq
Installationq
Supportq
Sample Data® o
Pgrouting Concepts Lo
pgRouting Conceptsq
pgr version
Data Typesq
pgRouting Data Typesq
Topology FunctionsY
Topology - Family of FunctionsY
Routing functionsYo
Routing Functionsq L.
Available Functions but not official pgRouting functionsq
Stable Proposed Functionsq
Experimental Functionsq
Change Log¥
Release Notes

pgRouting Manual (2.6)

pgRouting Manual (2.6)

Contents

Table of Contentsq|

pgRouting extends the PostGIS/PostgreSQL geospatial database to provide
geospatial routing and other network analysis functionality.

This is the manual for pgRouting v2.6.2.

©00]

The pgRouting Manual is licensed under a Creative Commons Attribution-Share
Alike 3.0 License. Feel free to use this material any way you like, but we ask
that you attribute credit to the pgRouting Project and wherever possible, a
link back to http://pgrouting.org. For other licenses used in pgRouting see the
Licensing page.

Generalq
Introduction€q

pgRouting is an extension of PostGIS and PostgreSQL geospatial database and
adds routing and other network analysis functionality. A predecessor of pgRout-
ing — pgDijkstra, written by Sylvain Pasche from Camptocamp, was later ex-
tended by Orkney and renamed to pgRouting. The project is now supported
and maintained by Georepublic, iMaptools and a broad user community.

index.html#document-index
index.html#document-index
http://postgis.net
http://postgresql.org
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://pgrouting.org
index.html#license
http://postgis.net
http://postgresql.org
http://camptocamp.com
http://www.orkney.co.jp
http://georepublic.info
http://imaptools.com/

pgRouting is part of OSGeo Community Projects from the OSGeo Foundation
and included on OSGeo Live.

Licensingq The following licenses can be found in pgRouting:

License
GNU General Public Most features of pgRouting are available under
License, version 2 GNU General Public License, version 2.

Boost Software License - Some Boost extensions are available under Boost

Version 1.0 Software License - Version 1.0.

MIT-X License Some code contributed by iMaptools.com is
available under MIT-X license.

Creative Commons The pgRouting Manual is licensed under a

Attribution-Share Alike Creative Commons Attribution-Share Alike 3.0
3.0 License License.

In general license information should be included in the header of each source
file.

Contributorsq

This Release Contributorsq Individuals (in alphabetical order)q
Anthony Tasca, Virginia Vergara

And all the people that give us a little of their time making comments, finding
issues, making pull requests etc.

Corporate Sponsors (in alphabetical order)q

These are corporate entities that have contributed developer time, hosting, or
direct monetary funding to the pgRouting project:

¢ Georepublic

¢ Google Summer of Code
o iMaptools

e Leopark

e Paragon Corporation

e Versaterm Inc.

Contributors Past & Present:q Individuals (in alphabetical order)q

http://wiki.osgeo.org/wiki/OSGeo_Community_Projects
http://osgeo.org
http://live.osgeo.org/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://georepublic.info/en/
https://developers.google.com/open-source/gsoc/
http://imaptools.com
https://www.leopark.mx/
http://www.paragoncorporation.com/
http://www.versaterm.com/

Akio Takubo, Andrea Nardelli, Anthony Tasca, Anton Patrushev, Ashraf
Hossain, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis
Rykov, Ema Miyawaki, Florian Thurkow, Frederic Junod, Gerald Fenoy, Jay
Mahadeokar, Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Manikata
Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Maoguang Wang,
Mohamed Zia, Mukul Priya, Razequl Islam, Regina Obe, Rohith Reddy,
Sarthak Agarwal, Stephen Woodbridge, Sylvain Housseman, Sylvain Pasche,
Vidhan Jain, Virginia Vergara

Corporate Sponsors (in alphabetical order)q

These are corporate entities that have contributed developer time, hosting, or
direct monetary funding to the pgRouting project:

¢ Camptocamp

o CSIS (University of Tokyo)
¢ Georepublic

¢ Google Summer of Code

o iMaptools

e Orkney

o Paragon Corporation

e Versaterm Inc.

More Information9q

e The latest software, documentation and news items are available at the
pgRouting web site http://pgrouting.org.

o PostgreSQL database server at the PostgreSQL main site http://www.postgresql.org.

o PostGIS extension at the PostGIS project web site http://postgis.net.

o Boost C++ source libraries at http://www.boost.org.

o Computational Geometry Algorithms Library (CGAL) at http://www.cgal.org.

o The Migration guide can be found at https://github.com/pgRouting/pgrouting/wiki/Migration-
Guide.

Installationq

Table of Contents

o Short Version

o Get the sources

o Enabling and upgrading in the database
e Dependencies

o Configuring

http://pgrouting.org
http://www.postgresql.org
http://postgis.net
http://www.boost.org
http://www.cgal.org
https://github.com/pgRouting/pgrouting/wiki/Migration-Guide
https://github.com/pgRouting/pgrouting/wiki/Migration-Guide
index.html#install-short
index.html#install-get-sources
index.html#install-enable-db
index.html#install-dependencies
index.html#install-configuring

e Building
o Testing

Instructions for downloading and installing binaries for different Operative sys-
tems instructions and additional notes and corrections not included in this doc-
umentation can be found in Installation wiki

To use pgRouting postGIS needs to be installed, please read the information
about installation in this Install Guide

Short Versionq Extracting the tar ball

tar xvfz pgrouting-2.6.2.tar.gz
cd pgrouting-2.6.2

To compile assuming you have all the dependencies in your search path:

mkdir build

cd build

cmake

make

sudo make install

Once pgRouting is installed, it needs to be enabled in each individual database
you want to use it in.

createdb routing
psql routing -c 'CREATE EXTENSION postGIS'
psql routing -c 'CREATE EXTENSION pgRouting'

Get the sourcesY The pgRouting latest release can be found in
https://github.com/pgRouting/pgrouting/releases/latest

wget

To download this release:

wget -0 pgrouting-2.6.2.tar.gz https://github.com/pgRouting/pgrouting/archive/v2.6.2.tar.

Goto Short Version to the extract and compile instructions.
git

To download the repository

index.html#install-build
index.html#install-testing
https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download%2C-Installation-and-building-pgRouting
http://www.postgis.us/presentations/postgis_install_guide_22.html
https://github.com/pgRouting/pgrouting/releases/latest
index.html#install-short

git clone git://github.com/pgRouting/pgrouting.git
cd pgrouting
git checkout v2.6.2

Goto Short Version to the compile instructions (there is no tar ball).

Enabling and upgrading in the databaseq Enabling the database

pgRouting is an extension and depends on postGIS. Enabling postGIS before
enabling pgRouting in the database

CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;

Upgrading the database

To upgrade pgRouting in the database to version 2.6.2 use the following com-
mand:

ALTER EXTENSION pgrouting UPDATE TO "2.6.2";

More information can be found in https://www.postgresqgl.org/docs/current /static/sql-
createextension.html

DependenciesY] Compilation Dependencies

To be able to compile pgRouting, make sure that the following dependencies are
met:

e C and C++0x compilers * g++ version >= 4.8

o Postgresql version >= 9.3

e PostGIS version >= 2.2

o The Boost Graph Library (BGL). Version >= 1.53
e CMake >= 3.2

e CGAL >=14.2

optional dependencies

For user’s documentation

e Sphinx >= 1.1
o Latex

For developer’s documentation

index.html#install-short
https://www.postgresql.org/docs/current/static/sql-createextension.html
https://www.postgresql.org/docs/current/static/sql-createextension.html

e Doxygen >= 1.7

For testing

e pgtap
* D gipI‘OVG

Example: Installing dependencies on linux
Installing the compilation dependencies

Database dependencies

sudo apt-get install
postgresql-10 \
postgresql-server-dev-10 \
postgresql-10-postgis

Build dependencies

sudo apt-get install
cmake \
g+t \
libboost-graph-dev \
libcgal-dev

Optional dependencies

For documentation and testing

sudo apt-get install -y python-sphinx \
texlive \
doxygen \
libtap-parser-sourcehandler-pgtap-perl \
postgresql-10-pgtap

Configuringq pgRouting uses the cmake system to do the configuration.
The build directory is different from the source directory

Create the build directory

$ mkdir build

Configurable variablesY To see the variables that can be configured

$ cd build
$ cmake -L ..

Configuring The Documentation

Most of the effort of the documentation has being on the HTML files. Some
variables for the documentation:

Variable Default

Comment

WITH DOC BOOL=OFF
BUILD_HTMLBOOL=ON

BUILD_DOXYBOOL=ON

BUILD LATEXBOOL=OFF
BUILD_MAN BOOL=OFF
DOC_USE_BOBOSBLRAPF

Turn on/off building t
If ON, turn on/off bui

documentation
If ON, turn on/off bui
documentation
If ON, turn on/off bui

If ON, turn on/off bui

If ON, use sphinx-boo
users documentation

Configuring with documentation
$ cmake -DWITH_DOC=0ON ..

Note
Most of the effort of the documentation has being on the html files.

Buildingq Using make to build the code and the documentation
The following instructions start from path/to/pgrouting/build
$ make # build the code but not the documentation

$ make doc # build only the documentation
$ make all doc # build both the code and the documentation

We have tested on several platforms, For installing or reinstalling all the steps
are needed.

Warning

The sql signatures are configured and build in the cmake command.

MinGW on Windows

mkdir build

cd build
cmake -G"MSYS Makefiles"
make

#H BH H P BH

make install

Linux

The following instructions start from path/to/pgrouting

mkdir build

cd build

cmake

make

sudo make install

When the configuration changes:
rm -rf build

and start the build process as mentioned above.

Testingq Currently there is no make test and testing is done as follows

The following instructions start from path/to/pgrouting/

tools/testers/algorithm-tester.pl

createdb -U <user> ___pgr___test___

sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> __ _pgr___test___

See Alsoq Indices and tables

o Index
e Search Page

Supportq

pgRouting community support is available through the pgRouting website, doc-
umentation, tutorials, mailing lists and others. If you’re looking for commercial
support, find below a list of companies providing pgRouting development and
consulting services.

genindex.html
search.html
http://pgrouting.org/support.html
http://docs.pgrouting.org
http://docs.pgrouting.org
index.html#support-commercial
index.html#support-commercial

Reporting Problemsq Bugs are reported and managed in an issue tracker.
Please follow these steps:

1. Search the tickets to see if your problem has already been reported. If so,
add any extra context you might have found, or at least indicate that you
too are having the problem. This will help us prioritize common issues.

2. If your problem is unreported, create a new issue for it.

3. In your report include explicit instructions to replicate your issue. The
best tickets include the exact SQL necessary to replicate a problem.

4. If you can test older versions of PostGIS for your problem, please do. On
your ticket, note the earliest version the problem appears.

5. For the versions where you can replicate the problem, note the operating
system and version of pgRouting, PostGIS and PostgreSQL.

6. It is recommended to use the following wrapper on the problem to pin
point the step that is causing the problem.

SET client_min_messages TO debug;
<your code>
SET client_min_messages TO notice;

Mailing List and GIS StackExchangeq There are two mailing lists for
pgRouting hosted on OSGeo mailing list server:

o User mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-users
o Developer mailing list: http://lists.osgeo.org/mailman/listinfo/pgrouting-
dev

For general questions and topics about how to use pgRouting, please write to
the user mailing list.

You can also ask at GIS StackExchange and tag the question with pgrouting.
Find all questions tagged with pgrouting under http://gis.stackexchange.com/questions/tagged /pgrouting
or subscribe to the pgRouting questions feed.

Commercial Supportq For users who require professional support, develop-
ment and consulting services, consider contacting any of the following organiza-
tions, which have significantly contributed to the development of pgRouting:

Company Offices in Website
Georepublic Germany, Japan https://georepublic.info
iMaptools United States http://imaptools.com

10

https://github.com/pgrouting/pgrouting/issues
https://github.com/pgRouting/pgrouting/issues/new
http://lists.osgeo.org/mailman/listinfo/pgrouting-users
http://lists.osgeo.org/mailman/listinfo/pgrouting-dev
http://lists.osgeo.org/mailman/listinfo/pgrouting-dev
http://gis.stackexchange.com/
http://gis.stackexchange.com/questions/tagged/pgrouting
http://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest
https://georepublic.info
http://imaptools.com

Paragon United States http://www.paragoncorporation.com
Corporation

Camptocamp Switzerland, France http://www.camptocamp.com

e Sample Data that is used in the examples of this manual.

Sample Data¥q

The documentation provides very simple example queries based on a small sam-
ple network. To be able to execute the sample queries, run the following SQL
commands to create a table with a small network data set.

Create table

CREATE TABLE edge_table (
id BIGSERIAL,
dir character varying,
source BIGINT,
target BIGINT,
cost FLOAT,
reverse_cost FLOAT,
capacity BIGINT,
reverse_capacity BIGINT,
category_id INTEGER,
reverse_category_id INTEGER,
x1 FLOAT,
y1 FLOAT,
x2 FLOAT,
y2 FLOAT,
the_geom geometry

)
Insert data

INSERT INTO edge_table (
category_id, reverse_category_id,
cost, reverse_cost,
capacity, reverse_capacity,

x1l, yi,

x2, y2) VALUES
a3, 1, 1, 1, 80, 130, 2, 0, 2, 1),
a3, 2, -1, 1, -1, 100, 2, 1, 3, 1),
2, 1, -1, 1, -1, 130, 3, 1, 4, 1),
2, 4, 1, 1, 100, 650, 2, 1, 2, 2),

11

http://www.paragoncorporation.com
http://www.camptocamp.com
index.html#document-sampledata

a1, 4, 1, -1, 130, -1, 3, 1, 3, 2),
4, 2, 1, 1, 50, 100, 0, 2, 1, 2),
4, 1, 1, 1, 50, 130, 1, 2, 2, 2),
2, 1, 1, 1, 100, 130, 2, 2, 3, 2),
a, 3, 1, 1, 130, 80, 3, 2, 4, 2),
a1, 4, 1, 1, 130, 50, 2, 2, 2, 3),
1, 2, 1, -1, 130, -1, 3, 2, 3, 3),
(2, 3, 1, -1, 100, -1, 2, 3, 3, 3),
(2, 4, 1, -1, 100, -1, 3, 3, 4, 3),
3, 1, 1, 1, 80, 130, 2, 3, 2, 4),
(3, 4, 1, 1, 80, 50, 4, 2, 4, 3),
(3, 3, 1, 1, 80, 80, 4, 1, 4, 2),
1, 2, 1, 1, 130, 100, 0.5, 3.5, 1.999999999999,3.5),
4, 1, 1, 1, 50, 130, 3.5, 2.3, 3.5,4);

UPDATE edge_table SET the_geom = st_makeline(st_point(x1l,yl),st_point(x2,y2)),

dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' -- both ways
WHEN (cost>0 AND reverse_cost<0) THEN 'FT' -- direction of the LINESSTRING
WHEN (cost<0 AND reverse_cost>0) THEN 'TF' -- reverse direction of the LINESTRING
ELSE '' END; —- unknown
Topology

« Before you test a routing function use this query to create a topology (fills
the source and target columns).

SELECT pgr_createTopology('edge_table',0.001);
Points of interest

e When points outside of the graph.
o Used with the withPoints - Family of functions functions.

CREATE TABLE pointsOfInterest(
pid BIGSERIAL,
x FLOAT,
y FLOAT,
edge_id BIGINT,
side CHAR,
fraction FLOAT,
the_geom geometry,
newPoint geometry

12

index.html#withpoints

INSERT INTO pointsOfInterest (x, y, edge_id, side, fraction) VALUES

(1.8, 0.4, 1, '1', 0.4),
(4.2, 2.4, 15, 'r', 0.4),
(2.6, 3.2, 12, '1', 0.6),
(0.3, 1.8, 6, 'r', 0.3),
(2.9, 1.8, 5, '1', 0.8),
(2.2, 1.7, 4, 'p', 0.7);

UPDATE pointsOfInterest SET the_geom = st_makePoint(x,y);

UPDATE pointsOfInterest
SET newPoint = ST_LinelInterpolatePoint(e.the_geom, fraction)
FROM edge_table AS e WHERE edge_id = id;

Restrictions

e Used with the pgr_trsp - Turn Restriction Shortest Path (TRSP) func-
tions.

CREATE TABLE restrictions (
rid BIGINT NOT NULL,
to_cost FLOAT,
target_id BIGINT,
from_edge BIGINT,
via_path TEXT

);

INSERT INTO restrictions (rid, to_cost, target_id, from_edge, via_path) VALUES
(1, 100, 7, 4, NULL),

(1, 100, 11, 8, NULL),

(1, 100, 10, 7, NULL),

2, 4, 8, 3, 5),

(3, 100, 9, 16, NULL);

Categories

e Used with the Flow - Family of functions functions.

/%

CREATE TABLE categories (
category_id INTEGER,
category text,
capacity BIGINT

)

13

index.html#trsp
index.html#maxflow

INSERT INTO categories VALUES
(1, 'Category 1', 130),

(2, 'Category 2', 100),

(3, 'Category 3', 80),

(4, 'Category 4', 50);

*/

Vertex table
e Used in some deprecated signatures or deprecated functions.

-— TODO check if this table is still used
CREATE TABLE vertex_table (
id SERIAL,
x FLOAT,
y FLOAT
);
INSERT INTO vertex_table VALUES
(1,2,0), (2,2,1), (3,3,1), (4,4,1), (5,0,2), (6,1,2), (7,2,2),
(8,3,2), (9,4,2), (10,2,3), (11,3,3), (12,4,3), (13,2,4);

Imagesq

o Red arrows correspond when cost > 0 in the edge table.

o Blue arrows correspond when reverse_cost > 0 in the edge table.
o Points are outside the graph.

e Click on the graph to enlarge.

Network for queries marked as directed and cost and reverse_cost
columns are usedq When working with city networks, this is recommended
for point of view of vehicles.

14

14 - = e e e e e e

17(14,15)

12(10,11)

6(7.8) 7(8,5)

o o
&

= o I
o = = = o= = | =

Graph 1: Directed, with cost and reverse cost

Network for queries marked as undirected and cost and reverse_cost
columns are usedy When working with city networks, this is recommended
for point of view of pedestrians.

15

Graph 2: Undirected, with cost and reverse cost

Network for queries marked as directed and only cost column is usedq

16

_images/Fig6-undirected.png

Graph 3: Directed, with cost

Network for queries marked as undirected and only cost column is

17

_images/Fig2-cost.png

1) () (32

usedq
Graph 4: Undirected, with cost

Pick & Deliver Dataq

DROP TABLE IF EXISTS customer CASCADE;
CREATE table customer (

id BIGINT not null primary key,

x DOUBLE PRECISION,

y DOUBLE PRECISION,

demand INTEGER,

opentime INTEGER,

closetime INTEGER,

servicetime INTEGER,

pindex BIGINT,

dindex BIGINT

18

_images/Fig4-costUndirected.png

INSERT INTO customer(

id, X, y, demand, opentime, closetime, servicetime, pindex, dindex) VALUES
o, 40, 50, 0, 0, 1236, 0, 0, 0),
1, 45, 68, -10, 912, 967, 90, 11, 0),
2, 45, 70, -20, 825, 870, 90, 6, 0),
3, 42, 66, 10, 65, 146, 90, 0, 75),
4, 42, 68, -10, 727, 782, 90, 9, 0),
5, 42, 65, 10, 15, 67, 90, 0, 7,
6, 40, 69, 20, 621, 702, 90, 0, 2),
7, 40, 66, -10, 170, 225, 90, 5, 0),
8, 38, 68, 20, 255, 324, 90, 0, 10),
9, 38, 70, 10, 534, 605, 90, 0, 4),

10, 35, 66, -20, 357, 410, 90, 8, 0),

11, 35, 69, 10, 448, 505, 90, 0, 1),

12, 25, 85, -20, 652, 721, 90, 18, 0),

13, 22, 75, 30, 30, 92, 90, 0, 17),

14, 22, 85, -40, 567, 620, 90, 16, 0),

15, 20, 80, -10, 384, 429, 90, 19, 0),

16, 20, 85, 40, 475, 528, 90, 0, 14),

17, 18, 75, -30, 99, 148, 90, 13, 0),

18, 15, 75, 20, 179, 254, 90, 0, 12),

19, 15, 80, 10, 278, 345, 90, 0, 15),

20, 30, 50, 10, 10, 73, 90, 0, 24),

30, 52, -10, 914, 965, 90, 30, 0),

22, 28, 52, -20, 812, 883, 90, 28, 0),
23, 28, 55, 10, 732, 77T, 0, 0, 103),
24, 25, 50, -10, 65, 144, 90, 20, 0),
25, 25, 52, 40, 169, 224, 90, 0, 27),
26, 25, 55, -10, 622, 701, 90, 29, 0),
27, 23, 52, -40, 261, 316, 90, 25, 0),
28, 23, 55, 20, 546, 593, 90, 0, 22),
29, 20, 50, 10, 358, 405, 90, 0, 26),
30, 20, 55, 10, 449, 504, 90, 0, 21),
31, 10, 35, -30, 200, 237, 90, 32, 0,
32, 10, 40, 30, 31, 100, 90, 0, 31),
33, 8, 40, 40, 87, 158, 90, 0, 37,
34, 8, 45, -30, 751, 816, 90, 38, 0),
35, 5, 35, 10, 283, 344, 90, 0, 39),
36, 5, 45, 10, 665, 716, 0, 0, 105),
37, 2, 40, -40, 383, 434, 90, 33, 0),
38, 0, 40, 30, 479, 522, 90, 0, 34),
39, 0, 45, -10, 567, 624, 90, 35, 0),

S
o
w
()]

30, -20, 264, 321, 90, 42, 0),
32, -10, 166, 235, 90, 43, 0),
33, 32, 20, 68, 149, 90, 0, 40),

AN N NN NNAN NN NN NN NN NN ANANANANAN NN NN NN NN NN AN
S N
[N [
M -
w
o
.

W
N

19

A A AN AAAAAAA

43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
T,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,

33,
32,
30,
30,
30,
28,
28,
26,
25,
25,
44,
42,
42,
40,
40,
38,
38,
35,
50,
50,
50,
48,
48,
47,
47,
45,
45,
95,
95,
53,
92,
53,
45,
90,
88,
88,
87,
85,
85,
75,
72,
70,
68,
66,
65,
65,

10,
10,
10,
-10,
-10,
-10,
10,
10,
10,
-10,
20,
40,
-40,
30,
40,
-20,
-30,
-40,
-10,
20,
50,
10,
10,
10,
10,
-20,
-10,
-30,
20,
-10,
-10,
-50,
-10,
10,
-20,
20,
10,
-10,
30,
20,
-20,
20,
-20,
10,
20,
-10,

16,
359,
541,
448,

1054,
632,
1001,
815,
725,
912,
286,
186,

95,
385,

35,
471,
651,
562,
531,
262,
171,
632,

76,
826,

12,
734,
916,
387,
293,
450,
478,
353,
997,
203,
574,
109,
668,
769,

47,
369,
265,
458,
555,
173,

85,
645,

20

80,
412,
600,
509,

1127,
693,
1066,
880,
786,
969,
347,
257,
158,
436,

87,
534,
740,
629,
610,
317,
218,
693,
129,
875,

77,
777,
969,
456,
360,
505,
551,
412,

1068,
260,
643,
170,
731,
820,
124,
420,
338,
523,
612,
238,
144,
708,

90,
90,
90,
90,
90,
90,
90,
90,

90,
90,
90,
90,
90,
90,
90,
90,
90,
90,
90,
90,

0,
90,
90,
90,
90,
90,
90,
90,
90,
90,
90,
90,
90,
90,

90,
90,
90,
90,
90,
90,
90,
90,
90,
90,

41),
46),
48),
0,
0,
0,
47),
52),
101),
0,
58),
60),
0,
59),
55),
0,
0,
0,
0,
68),
74),
102),
72),
69),
61),
0,
0,
0,
77,
0,
0,
0,
0,
73),
0,
104) ,
80),
0,
70),
85),
0,
89),
0,
91),
83),
0,

89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,

A AN AN A A A A A AAA A A A A A A

63,
60,
60,
67,
65,
65,
62,
60,
60,
58,
55,
55,
25,
48,
28,
88,

5,
60,

58,
55,
60,
85,
85,
82,
80,
80,
85,
75,
80,
85,
30,
30,
55,
35,
45,
85,

-20,
10,
-10,
20,
-20,
-10,
-20,
10,
30,
20,
-20,
20,
-10,
-10,
-10,
-20,
-10,
-30,

Pgrouting Conceptsq|

pgRouting Conceptsq

Contents

¢ pgRouting Concepts

— Getting Started

ES

ES
ES
ES
ES

— Inner Queries

*

S G R

737,

20,
836,
368,
475,
285,
196,

95,
561,

30,
743,
647,
725,
632,
732,
109,
665,
561,

802,

84,
889,
441,
518,
336,
239,
156,
622,

84,
820,
726,
786,
693,
77T,
170,
716,
622,

Create a routing Database
Load Data
Build a Routing Topology

Check the Routing Topology

Compute a Path

90,
90,
90,
90,
90,
90,
90,
90,

90,
90,
90,
90,
90,
90,
90,
90,
90,

0),
88),
0),
93),
0),
0),
0),
94),
106),
95),
0),
99),
0),
0),
0),
0),
0),
0);

Description of the edges_sql query for dijkstra like functions
Description of the edges_sql query (id is not necessary)

Description of the parameters of the signatures

Description of the edges_sql query for astar like functions
Description of the edges sql query for Max-flow like functions
Description of the Points SQL query

— Return columns & values

* Description of the return values for a path
* Description of the return values for a Cost function

21

* Description of the Return Values
— Advanced Topics

* Routing Topology

* Graph Analytics

* Analyze a Graph

* Analyze One Way Streets

Example

— Performance Tips

* For the Routing functions

* For the topology functions:

— How to contribute

Getting Startedq This is a simple guide to walk you through the steps of
getting started with pgRouting. In this guide we will cover:

¢ Create a routing Database

e Load Data

¢ Build a Routing Topology

e Check the Routing Topology
e Compute a Path

Create a routing Databaseq The first thing we need to do is create a
database and load pgrouting in the database. Typically you will create a
database for each project. Omnce you have a database to work in, your can
load your data and build your application in that database. This makes it easy
to move your project later if you want to to say a production server.

For Postgresql 9.2 and later versions

createdb mydatabase
psql mydatabase -c "create extension postgis"
psql mydatabase -c '"create extension pgrouting"

Load Data¥ How you load your data will depend in what form it comes it.
There are various OpenSource tools that can help you, like:

osm2pgrouting:

¢ this is a tool for loading OSM data into postgresql with pgRouting require-
ments

shp2pgsql:

22

o this is the postgresql shapefile loader
ogr2ogr:
o this is a vector data conversion utility
osm2pgsql:
« this is a tool for loading OSM data into postgresql

So these tools and probably others will allow you to read vector data so that
you may then load that data into your database as a table of some kind. At
this point you need to know a little about your data structure and content. One
easy way to browse your new data table is with pgAdmin3 or phpPgAdmin.

Build a Routing Topology¥ Next we need to build a topology for our street
data. What this means is that for any given edge in your street data the ends
of that edge will be connected to a unique node and to other edges that are also
connected to that same unique node. Once all the edges are connected to nodes
we have a graph that can be used for routing with pgrouting. We provide a tool
that will help with this:

Note

this step is not needed if data is loaded with osm2pgrouting
select pgr_createTopology('myroads', 0.000001);

e pgr_create Topology

Check the Routing Topology¥ There are lots of possible sources for errors
in a graph. The data that you started with may not have been designed with
routing in mind. A graph has some very specific requirements. One is that it
is NODED, this means that except for some very specific use cases, each road
segment starts and ends at a node and that in general is does not cross another
road segment that it should be connected to.

There can be other errors like the direction of a one-way street being entered in
the wrong direction. We do not have tools to search for all possible errors but
we have some basic tools that might help.

select pgr_analyzegraph('myroads', 0.000001);

select pgr_analyzeoneway('myroads', s_in_rules, s_out_rules,
t_in_rules, t_out_rules
direction)

select pgr_nodeNetwork('myroads', 0.001);

23

index.html#pgr-create-topology

o pgr_analyzeGraph
e pgr_analyzeOneway
e pgr_nodeNetwork

Compute a Pathq Once you have all the preparation work done above, com-
puting a route is fairly easy. We have a lot of different algorithms that can work
with your prepared road network. The general form of a route query is:

select pgr_dijkstra(SELECT * FROM myroads', 1, 2)

As you can see this is fairly straight forward and you can look and the specific
algorithms for the details of the signatures and how to use them. These results
have information like edge id and/or the node id along with the cost or geometry
for the step in the path from start to end. Using the ids you can join these result
back to your edge table to get more information about each step in the path.

o pgr_dijkstra

Inner Queriesq

e Description of the edges_ sql query for dijkstra like functions
o Description of the edges sql query (id is not necessary)

e Description of the parameters of the signatures

e Description of the edges_sql query for astar like functions

e Description of the edges sql query for Max-flow like functions
¢ Description of the Points SQL query

There are several kinds of valid inner queries and also the columns returned
are depending of the function. Which kind of inner query will depend on
the function(s) requirements. To simplify variety of types, ANY-INTEGER and
ANY-NUMERICAL is used.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query for dijkstra like functions€q

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

24

index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
index.html#pgr-node-network
index.html#pgr-dijkstra

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_ sql query (id is not necessary)q edges_sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

25

Column Type Default Description

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Parameter Type
edges_ sql TEXT
via__ vertices ARRAY [ANY-INTEGER]
directed BOOLEAN
strict BOOLEAN
U_ turn_ on__edge BOOLEAN

Description of the parameters of the signaturesq

Description of the edges_sql query for astar like functions
edges_ sql:

26

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

reverse__ cAONY-NUMERICAL

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_ sql query for Max-flow like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point verte:

edge.

Column Type Default Description

target ANY-INTEGER

capacity ANY-INTEGER

reverse__cajMVeit¥TEGER]

Identifier of the second end point ver
edge.

Weight of the edge (source, target)

o When negative: edge (source, t
does not exist, therefore it’s no
the graph.

Weight of the edge (target, source),
o When negative: edge (target, s

does not exist, therefore it’s no
the graph.

Where:
ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Description of the Points SQL queryY points_sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

edge__id ANY-INTEGERIdentifier of the “closest” edge to the point.

fraction ANY-NUMERICWhlue in <0,1> that indicates the relative postition
from the first end point of the edge.

side CHAR (optional) Value in [‘b, ‘r’, 1, NULL] indicating if the
point is:

e In the right, left of the edge or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Where:

28

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:

smallint, int, bigint, real, float
Return columns & valuesY
e Description of the return values for a path
e Description of the return values for a Cost function

e Description of the Return Values

There are several kinds of columns returned are depending of the function.

Description of the return values for a path¥ Returns set of (seq,
path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type
seq INT
path__id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg_cost FLOAT

Description of the return values for a Cost functionq Returns set of
(start_vid, end_vid, agg_cost)

29

Column Type

Description

start_ vid BIGINT

end_ vid BIGINT

agg_ cost FLOAT

Identifier of the starting ve
starting vetrices are in the

Identifier of the ending ver:
ending vertices are in the g

Aggregate cost from start

Column Type Description

seq INT Sequential value starting from 1.

edge_ id BIGINT Identifier of the edge in the original
query(edges_ sql).

source BIGINT Identifier of the first end point vertex of the
edge.

target BIGINT Identifier of the second end point vertex of
the edge.

flow BIGINT Flow through the edge in the direction

residual__capadfgINT

(source, target).

Residual capacity of the edge in the
direction (source, target).

Description of the Return Valuesq

Advanced Topicsq

¢ Routing Topology

¢ Graph Analytics

e Analyze a Graph

¢ Analyze One Way Streets

— Example

Routing Topologyq Overview

Typically when GIS files are loaded into the data database for use with pgRout-
ing they do not have topology information associated with them. To create a
useful topology the data needs to be “noded”. This means that where two or
more roads form an intersection there it needs to be a node at the intersection
and all the road segments need to be broken at the intersection, assuming that

30

you can navigate from any of these segments to any other segment via that
intersection.

You can use the graph analysis functions to help you see where you might have
topology problems in your data. If you need to node your data, we also have a
function pgr_nodeNetwork() that might work for you. This function splits ALL
crossing segments and nodes them. There are some cases where this might NOT
be the right thing to do.

For example, when you have an overpass and underpass intersection, you do not
want these noded, but pgr_nodeNetwork does not know that is the case and
will node them which is not good because then the router will be able to turn
off the overpass onto the underpass like it was a flat 2D intersection. To deal
with this problem some data sets use z-levels at these types of intersections and
other data might not node these intersection which would be ok.

For those cases where topology needs to be added the following functions may be
useful. One way to prep the data for pgRouting is to add the following columns
to your table and then populate them as appropriate. This example makes a
lot of assumption like that you original data tables already has certain columns
in it like one_way, fcc, and possibly others and that they contain specific data
values. This is only to give you an idea of what you can do with your data.

ALTER TABLE edge_table
ADD COLUMN source integer,
ADD COLUMN target integer,
ADD COLUMN cost_len double precision,
ADD COLUMN cost_time double precision,
ADD COLUMN rcost_len double precision,
ADD COLUMN rcost_time double precision,
ADD COLUMN x1 double precision,
ADD COLUMN y1 double precision,
ADD COLUMN x2 double precision,
ADD COLUMN y2 double precision,
ADD COLUMN to_cost double precision,
ADD COLUMN rule text,
ADD COLUMN isolated integer;

SELECT pgr_createTopology('edge_table', 0.000001, 'the_geom', 'id');

The function pgr_createTopology() will create the vertices_tmp table and pop-
ulate the source and target columns. The following example populated the
remaining columns. In this example, the fcc column contains feature class code
and the CASE statements converts it to an average speed.

UPDATE edge_table SET x1
yi

st_x(st_startpoint(the_geom)),
st_y(st_startpoint (the_geom)),

31

index.html#analytics
index.html#pgr-node-network
index.html#pgr-create-topology

x2 st_x(st_endpoint (the_geom)),
y2 st_y(st_endpoint (the_geom)),
cost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]"'),
rcost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]"'),
len_km = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')/1000.0,
len_miles = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]")
/ 1000.0 * 0.6213712,

speed_mph = CASE WHEN fcc='A10' THEN 65

WHEN fcc='A15' THEN 65

WHEN fcc='A20' THEN 55

WHEN fcc='A25' THEN 55

WHEN fcc='A30' THEN 45

WHEN fcc='A35' THEN 45

WHEN fcc='A40' THEN 35

WHEN fcc='A45' THEN 35

WHEN fcc='A50' THEN 25

WHEN fcc='A60' THEN 25

WHEN fcc='A61' THEN 25

WHEN fcc='A62' THEN 25

WHEN fcc='A64' THEN 25

WHEN fcc='A70' THEN 15

WHEN fcc='A69' THEN 10

ELSE null END,
speed_kmh = CASE WHEN fcc='A10' THEN 104

WHEN fcc='A15' THEN 104

WHEN fcc='A20' THEN 88

WHEN fcc='A25' THEN 88

WHEN fcc='A30' THEN 72

WHEN fcc='A35' THEN 72

WHEN fcc='A40' THEN 56

WHEN fcc='A45' THEN 56

WHEN fcc='A50' THEN 40

WHEN fcc='A60' THEN 50

WHEN fcc='A61' THEN 40

WHEN fcc='A62' THEN 40

WHEN fcc='A64' THEN 40

WHEN fcc='A70' THEN 25

WHEN fcc='A69' THEN 15

ELSE null END;

—-— UPDATE the cost information based on oneway streets

UPDATE edge_table SET
cost_time = CASE
WHEN one_way='TF' THEN 10000.0
ELSE cost_len/1000.0/speed_kmh: :numeric*3600.0

32

END,
rcost_time = CASE
WHEN one_way='FT' THEN 10000.0
ELSE cost_len/1000.0/speed_kmh: :numeric*3600.0
END;

-- clean up the database because we have updated a lot of records

VACUUM ANALYZE VERBOSE edge_table;

Now your database should be ready to use any (most?) of the pgRouting algo-
rithms.

Graph Analyticsq Overview

It is common to find problems with graphs that have not been constructed
fully noded or in graphs with z-levels at intersection that have been entered
incorrectly. An other problem is one way streets that have been entered in the
wrong direction. We can not detect errors with respect to “ground” truth, but
we can look for inconsistencies and some anomalies in a graph and report them
for additional inspections.

We do not current have any visualization tools for these problems, but I have
used mapserver to render the graph and highlight potential problem areas.
Someone familiar with graphviz might contribute tools for generating images
with that.

Analyze a Graphq With pgr_analyzeGraph the graph can be checked for
errors. For example for table “mytab” that has “mytab_ vertices_pgr” as the
vertices table:

SELECT pgr_analyzeGraph('mytab', 0.000002);

NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 158

NOTICE: Dead ends: 20028
NOTICE: Potential gaps found near dead ends: 527

NOTICE: Intersections detected: 2560
NOTICE: Ring geometries: 0

pgr_analyzeGraph

33

index.html#pgr-analyze-graph

In the vertices table “mytab_ vertices_ pgr”:

e Deadends are identified by cnt=1
o Potencial gap problems are identified with chk=1.

SELECT count (*) as deadends FROM mytab_vertices_pgr WHERE cnt = 1;
deadends

SELECT count(*) as gaps FROM mytab_vertices_pgr WHERE chk = 1;
gaps

For isolated road segments, for example, a segment where both ends are dead-
ends. you can find these with the following query:

SELECT *
FROM mytab a, mytab_vertices_pgr b, mytab_vertices_pgr c
WHERE a.source=b.id AND b.cnt=1 AND a.target=c.id AND c.cnt=1;

If you want to visualize these on a graphic image, then you can use something
like mapserver to render the edges and the vertices and style based on cnt or if
they are isolated, etc. You can also do this with a tool like graphviz, or geoserver
or other similar tools.

Analyze One Way StreetsY pgr analyzeOneway analyzes one way streets
in a graph and identifies any flipped segments. Basically if you count the edges
coming into a node and the edges exiting a node the number has to be greater
than one.

This query will add two columns to the vertices tmp table ein int and eout
int and populate it with the appropriate counts. After running this on a graph
you can identify nodes with potential problems with the following query.

The rules are defined as an array of text strings that if match the col value
would be counted as true for the source or target in or out condition.

34

index.html#pgr-analyze-oneway

Exampleq

Lets assume we have a table “st” of edges and a column “one_ way” that might
have values like:

e ‘FT’ - oneway from the source to the target node.
e ‘TF’ - oneway from the target to the source node.
e ‘B’ - two way street.

e - empty field, assume twoway.

e <NULL> - NULL field, use two_ way__if null flag.

Then we could form the following query to analyze the oneway streets for errors.

SELECT pgr_analyzeOneway('mytab',

ARRAY['', 'B', 'TF'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'TF'],
);

-- now we can see the problem nodes
SELECT * FROM mytab_vertices_pgr WHERE ein=0 OR eout=0;

-- and the problem edges connected to those nodes

SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.source=b.id AND ein=0 OR eout=0
UNION

SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.target=b.id AND ein=0 OR eout=0;

Typically these problems are generated by a break in the network, the one way
direction set wrong, maybe an error related to z-levels or a network that is not
properly noded.

The above tools do not detect all network issues, but they will identify some
common problems. There are other problems that are hard to detect because
they are more global in nature like multiple disconnected networks. Think of
an island with a road network that is not connected to the mainland network
because the bridge or ferry routes are missing.

Performance Tipsq

o For the Routing functions
e For the topology functions:

35

For the Routing functionsq To get faster results bound your queries to the
area of interest of routing to have, for example, no more than one million rows.

Use an inner query SQL that does not include some edges in the routing function

SELECT id, source, target from edge_table WHERE
id < 17 and
the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id = 5)

Integrating the inner query to the pgRouting function:

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target from edge_table WHERE
id < 17 and
the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id =5) "',
1, 2)

4

For the topology functions:q When “you know” that you are going to
remove a set of edges from the edges table, and without those edges you are
going to use a routing function you can do the following:

Analize the new topology based on the actual topology:
pgr_analyzegraph('edge_table',rows_where:='id < 17');
Or create a new topology if the change is permanent:

pgr_createTopology('edge_table',rows_where:='id < 17');
pgr_analyzegraph('edge_table',rows_where:='id < 17');

How to contributeq Wiki

o Edit an existing pgRouting Wiki page.
¢ Or create a new Wiki page

— Create a page on the pgRouting Wiki
— Give the title an appropriate name

o Example

Adding Functionaity to pgRouting
Consult the developer’s documentation

Indices and tables

36

https://github.com/pgRouting/pgrouting/wiki
https://github.com/pgRouting/pgrouting/wiki
https://github.com/pgRouting/pgrouting/wiki/How-to:-Handle-parallel-edges-(KSP)
http://docs.pgrouting.org/doxy/2.4/index.html

o Index
e Search Page

Reference

pgr_version - to get pgRouting’s version information.

pgr__version9

Name9 pgr_version — Query for pgRouting version information.

Synopsisq Returns a table with pgRouting version information.

table() pgr_version();

Descriptionq] Returns a table with:

Column Type Description

version varchar pgRouting version

tag varchar Git tag of pgRouting build
hash varchar Git hash of pgRouting build
branch varchar Git branch of pgRouting build
boost varchar Boost version

History

e New in version 2.0.0

Examplesq

e Query for the version string

SELECT version FROM pgr_version();
version

37

genindex.html
search.html
index.html#pgr-version

See Alsoq Indices and tables

o Index
e Search Page

Data Typesq

o pgr_costResult[] - A set of records to describe a path result with cost

attribute.

o pgr_costResult3[] - A set of records to describe a path result with cost
attribute.

e pgr_geomResult - A set of records to describe a path result with geometry
attribute.

pgRouting Data Typesq

The following are commonly used data types for some of the pgRouting func-
tions.

o pgr_costResult[] - A set of records to describe a path result
with cost attribute.

o pgr_costResult3[] - A set of records to describe a path result
with cost attribute.

e pgr_geomResult - A set of records to describe a path result with
geometry attribute.

pgr__costResult[]q

Name9q pgr_costResult[] — A set of records to describe a path result with
cost attribute.

Description9q

CREATE TYPE pgr_costResult AS

(
seq integer,
idl integer,
id2 integer,
cost float8
);

38

genindex.html
search.html
index.html#data-types
index.html#type-cost-result
index.html#type-cost-result3
index.html#type-geom-result
index.html#type-cost-result
index.html#type-cost-result3
index.html#type-geom-result

seq:
sequential ID indicating the path order

id1:

generic name, to be specified by the function, typically the node id
id2:

generic name, to be specified by the function, typically the edge id
cost:

cost attribute

pgr__costResult3[] - Multiple Path Results with Costq

Name9q pgr_costResult3[] — A set of records to describe a path result with
cost attribute.

Descriptionq

CREATE TYPE pgr_costResult3 AS

(
seq integer,
idl integer,
id2 integer,
id3 integer,
cost float8

);

seq:

sequential ID indicating the path order

id1:

generic name, to be specified by the function, typically the path id
id2:

generic name, to be specified by the function, typically the node id
id3:

generic name, to be specified by the function, typically the edge id
cost:

cost attribute

History

39

o New in version 2.0.0
o Replaces path_result

See Alsoq
o Introduction

Indices and tables

e Index
e Search Page

pgr__geomResult[]q

Name9q pgr_geomResult[] — A set of records to describe a path result with
geometry attribute.

Descriptionq

CREATE TYPE pgr_geomResult AS

(
seq integer,
idl integer,
id2 integer,
geom geometry

)3

seq:

sequential ID indicating the path order

id1:

generic name, to be specified by the function
id2:

generic name, to be specified by the function
geom:

geometry attribute

History

e New in version 2.0.0
o Replaces geoms

40

index.html#introduction
genindex.html
search.html

See Alsoq
o Introduction

Indices and tables

o Index
e Search Page

See Alsoq Indices and tables

e Index
e Search Page

Topology Functionsy

o pgr_createTopology - to create a topology based on the geometry.

o pgr_createVerticesTable - to reconstruct the vertices table based on the
source and target information.

e pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

e pgr_analyzeOneway - to analyze directionality of the edges.

e pgr_nodeNetwork -to create nodes to a not noded edge table.

Topology - Family of Functionsq

The pgRouting’s topology of a network, represented with an edge table with
source and target attributes and a vertices table associated with it. Depending
on the algorithm, you can create a topology or just reconstruct the vertices table,
You can analyze the topology, We also provide a function to node an unoded
network.

e pgr_createTopology - to create a topology based on the geometry.

o pgr_createVerticesTable - to reconstruct the vertices table based on the
source and target information.

e pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

e pgr_analyzeOneway - to analyze directionality of the edges.

e pgr_nodeNetwork -to create nodes to a not noded edge table.

pgr__createTopologyq

Nameq pgr_createTopology — Builds a network topology based on the
geometry information.

41

index.html#introduction
genindex.html
search.html
genindex.html
search.html
index.html#topology-functions
index.html#pgr-create-topology
index.html#pgr-create-vert-table
index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
index.html#pgr-node-network
index.html#pgr-create-topology
index.html#pgr-create-vert-table
index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
index.html#pgr-node-network

Synopsisq The function returns:

o OK after the network topology has been built and the vertices table created.
e FAIL when the network topology was not built due to an error.

varchar pgr_createTopology(text edge_table, double precision tolerance,
text the_geom:='the_geom', text id:='id',
text source:='source',text target:='target',
text rows_where:='true', boolean clean:=false)

Descriptiony] Parameters

The topology creation function accepts the following parameters:
edge_table:

text Network table name. (may contain the schema name AS well)
tolerance:

float8 Snapping tolerance of disconnected edges. (in projection unit)
the geom:

text Geometry column name of the network table. Default value is the_geom.
id:

text Primary key column name of the network table. Default value is id.
source:

text Source column name of the network table. Default value is source.
target:

text Target column name of the network table. Default value is target.
rows_where:

text Condition to SELECT a subset or rows. Default value is true to indicate
all rows that where source or target have a null value, otherwise the condition
is used.

clean:

boolean Clean any previous topology. Default value is false.
Warning

The edge_table will be affected

e The source column values will change.
o The target column values will change.

42

— An index will be created, if it doesn’t exists, to speed up the process
to the following columns:

id

the_geom

source

* ¥ X ¥

target
The function returns:

e OK after the network topology has been built.

— Creates a vertices table: <edge table>_vertices pgr.

— Fills id and the_geom columns of the vertices table.

— Fills the source and target columns of the edge table referencing the
id of the vertices table.

e FAIL when the network topology was not built due to an error:

— A required column of the Network table is not found or is not of the
appropriate type.

— The condition is not well formed.

— The names of source , target or id are the same.

— The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr analyzeGraph and the
pgr_analyzeOneway functions.

The structure of the vertices table is:
id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge table that reference this vertex. See
pgr_analyze Graph.

chk:
integer Indicator that the vertex might have a problem. See pgr__analyzeGraph.
ein:

integer Number of vertices in the edge_ table that reference this vertex AS
incoming. See pgr_analyzeOneway.

eout:

43

index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
index.html#pgr-analyze-graph
index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway

integer Number of vertices in the edge_table that reference this vertex AS
outgoing. See pgr__analyzeOneway.

the_ geom:
geometry Point geometry of the vertex.

History

¢« Renamed in version 2.0.0

Usage when the edge table’s columns MATCH the default values:q
The simplest way to use pgr_ createTopology is:

SELECT pgr_createTopology('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows
NOTICE: Performing checks, please wait

NOTICE: Creating Topology, Please wait...

NOTICE: ----—-—-————- > TOPOLOGY CREATED FOR 18 edges

NOTICE: Rows with NULL geometry or NULL id: O

NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: ————————— -

pgr_createtopology

When the arguments are given in the order described in the parameters:

We get the same result AS the simplest way to use the function.

SELECT pgr_createTopology('edge_table', 0.001,
'the_geom', 'id', 'source', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -—--————————- > TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: O
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: ———————————— oo
pgr_createtopology

44

index.html#pgr-analyze-oneway

Warning

An error would occur when the arguments are not given in the appropriate
order:

In this example, the column id of the table ege_table is passed to the function
as the geometry column,

and the geometry column the_geomn is passed to the function as the id column.

SELECT pgr_createTopology('edge_table', 0.001,
'id', 'the_geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'id', 'the_geom', 'source', 'target', rows
NOTICE: Performing checks, please wait
NOTICE: ---->PGR ERROR in pgr_createTopology: Wrong type of Column id:the_geom
NOTICE: Unexpected error raise_exception
pgr_createtopology

FAIL
(1 row)

When using the named notation

Parameters defined with a default value can be omitted, as long as the value
matches the default And The order of the parameters would not matter.

SELECT pgr_createTopology('edge_table', 0.001,
the_geom:='the_geom', id:='id', source:='source', target:='target');
pgr_createtopology

SELECT pgr_createTopology('edge_table', 0.001,
source:='source', id:='id', target:='target', the_geom:='the_geom');
pgr_createtopology

SELECT pgr_createTopology('edge_table', 0.001, source:='source');
pgr_createtopology

45

Selecting rows using rows_ where parameter

Selecting rows based on the id.

SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 10');
pgr_createtopology

Selecting the rows where the geometry is near the geometry of row with id =
5

SELECT pgr_createTopology('edge_table', 0.001,
rows_where:="'the_geom && (SELECT st_buffer(the_geom, 0.05) FROM edge_table WHERE id=5) ')
pgr_createtopology

Selecting the rows where the geometry is near the geometry of the row with gid
=100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom) ;
SELECT 1
SELECT pgr_createTopology('edge_table', 0.001,
rows_where:="'the_geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)
pgr_createtopology

Usage when the edge table’s columns DO NOT MATCH the default
values:q For the following table

CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src , target AS tgt I
SELECT 18

Using positional notation:
The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

46

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := TRUE);
pgr_createtopology

0K

(1 row)

Warning

An error would occur when the arguments are not given in the appropiriate
order:

In this example, the column gid of the table mytable is passed to the function
AS the geometry column,

and the geometry column mygeom is passed to the function AS the id column.

SELECT pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt');

NOTICE: PROCESSING:

NOTICE: pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt', rows_where :=
NOTICE: Performing checks, please wait

NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:mygeom

NOTICE: Unexpected error raise_exception

pgr_createtopology

FAIL
(1 row)

When using the named notation

In this scenario omitting a parameter would create an error because the default
values for the column names do not match the column names of the table. The
order of the parameters do not matter:

SELECT pgr_createTopology('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src',
pgr_createtopology

0K
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_g
pgr_createtopology

0K
(1 row)

Selecting rows using rows_ where parameter

Based on id:

47

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='gi
pgr_createtopology

0K

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_g
pgr_createtopology

0K

(1 row)

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
rows_where:='mygeom && (SELECT st_buffer (mygeom, 1) FROM mytable WHERE gid=5)');

pgr_createtopology

[0)9

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_g
rows_where:='mygeom && (SELECT st_buffer (mygeom, 1) FROM mytable WHERE gid=5)"');

pgr_createtopology

0K

(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid
=100 of the table othertable.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
rows_where:='mygeom && (SELECT st_buffer (other_geom, 1) FROM otherTable WHERE gid=100) ')

pgr_createtopology

0K

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_g
rows_where:='mygeom && (SELECT st_buffer (other_geom, 1) FROM otherTable WHERE gid=100) ')
pgr_createtopology

Examples with full output9 This example start a clean topology, with 5
edges, and then its incremented to the rest of the edges.

48

SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 6', clean := true);
NOTICE: PROCESSING:

NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows
NOTICE: Performing checks, please wait

NOTICE: Creating Topology, Please wait...

NOTICE: -————===----- > TOPOLOGY CREATED FOR 5 edges

NOTICE: Rows with NULL geometry or NULL id: O

NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: ——

pgr_createtopology

0K
(1 row)

SELECT pgr_createTopology('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows
NOTICE: Performing checks, please wait

NOTICE: Creating Topology, Please wait...

NOTICE: --—————————-——- > TOPOLOGY CREATED FOR 13 edges

NOTICE: Rows with NULL geometry or NULL id: O

NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: ————————————————— -

pgr_createtopology

The example uses the Sample Data network.

See Alsoq
e Routing Topology for an overview of a topology for routing algorithms.
o pgr_createVerticesTable to reconstruct the vertices table based on the
source and target information.

e pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

o Index
e Search Page

pgr__createVerticesTableq

49

index.html#document-sampledata
index.html#topology
index.html#pgr-create-vert-table
index.html#pgr-analyze-graph
genindex.html
search.html

Name9q pgr_createVerticesTable — Reconstructs the vertices table based
on the source and target information.

Synopsisq The function returns:

e OK after the vertices table has been reconstructed.
e FAIL when the vertices table was not reconstructed due to an error.

pgr_createVerticesTable(edge_table, the_geom, source, target, rows_where)
RETURNS VARCHAR

Descriptiony] Parameters

The reconstruction of the vertices table function accepts the following parame-
ters:

edge table:

text Network table name. (may contain the schema name as well)

the_ geom:

text Geometry column name of the network table. Default value is the_geom.
source:

text Source column name of the network table. Default value is source.
target:

text Target column name of the network table. Default value is target.
rows_ where:

text Condition to SELECT a subset or rows. Default value is true to indicate
all rows.

Warning
The edge_table will be affected

e An index will be created, if it doesn’t exists, to speed up the process to
the following columns:

— the_geom
— source
— target

The function returns:

90

e OK after the vertices table has been reconstructed.

— Creates a vertices table: <edge_ table>_ vertices_pgr.
— Fills id and the_geom columns of the vertices table based on the
source and target columns of the edge table.

o FAIL when the vertices table was not reconstructed due to an error.

— A required column of the Network table is not found or is not of the
appropriate type.

— The condition is not well formed.

— The names of source, target are the same.

— The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requierment of the pgr analyzeGraph and the
pgr_analyzeOneway functions.

The structure of the vertices table is:
id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge_table that reference this vertex. See
pgr_analyze Graph.

chk:
integer Indicator that the vertex might have a problem. See pgr__analyzeGraph.
ein:

integer Number of vertices in the edge_table that reference this vertex as
incoming. See pgr_analyze Oneway.

eout:

integer Number of vertices in the edge_table that reference this vertex as
outgoing. See pgr__analyzeOneway.

the_ geom:
geometry Point geometry of the vertex.

History

¢« Renamed in version 2.0.0

ol

index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
index.html#pgr-analyze-graph
index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
index.html#pgr-analyze-oneway

Usage when the edge table’s columns MATCH the default values:q
The simplest way to use pgr_ createVerticesTable is:

SELECT pgr_createVerticesTable('edge_table');
When the arguments are given in the order described in the parameters:
SELECT pgr_createVerticesTable('edge_table','the_geom', 'source','target');

We get the same result as the simplest way to use the function.

Warning

An error would occur when the arguments are not given in the appropriate
order: In this example, the column source column source of the table mytable

is passed to the function as the geometry column, and the geometry column
the_geom is passed to the function as the source column.

SELECT pgr_createVerticesTable('edge_table','source', 'the_geom', 'target');

NOTICE: pgr_createVerticesTable('edge_table', 'source','the_geom', 'target', 'true')
NOTICE: Performing checks, please wait

NOTICE: ---->PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: the_geom
HINT: ----> Expected type of the_geom is integer,smallint or bigint but USER-DEFINED was f
NOTICE: Unexpected error raise_exception

pgr_createverticestable

FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:
SELECT pgr_createVerticesTable('edge_table',the_geom:='the_geom',source:='source',target
SELECT pgr_createVerticesTable('edge_table',source:='source',target:='target',the_geom:=

Parameters defined with a default value can be omitted, as long as the value
matches the default:

SELECT pgr_createVerticesTable('edge_table',source:='source');

Selecting rows using rows_ where parameter

Selecting rows based on the id.

92

SELECT pgr_createVerticesTable('edge_table',rows_where:='id < 10');

Selecting the rows where the geometry is near the geometry of row with id =5

SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer(th

Selecting the rows where the geometry is near the geometry of the row with gid
=100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_createVerticesTable('edge_table',rows_where:='the_geom && (select st_buffer (ot

Usage when the edge table’s columns DO NOT MATCH the default
values:q For the following table

DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom,source AS src ,target AS tgt FR(

Using positional notation:

The arguments need to be given in the order described in the parameters:
SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src','tgt');

Warning

An error would occur when the arguments are not given in the appropriate
order: In this example, the column src of the table mytable is passed to the
function as the geometry column, and the geometry column mygeom is passed
to the function as the source column.

SELECT pgr_createVerticesTable('mytable', 'src', 'mygeom', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','src', 'mygeom', ' 'tgt', 'true')
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createVerticesTable: Table mytable not found
HINT: —----> Check your table name
NOTICE: Unexpected error raise_exception
pgr_createverticestable
FAIL
(1 row)

93

When using the named notation

The order of the parameters do not matter:
SELECT pgr_createVerticesTable('mytable',the_geom:='mygeom',source:='src',target:="'tgt')
SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom')

In this scenario omitting a parameter would create an error because the default
values for the column names do not match the column names of the table.

Selecting rows using rows_ where parameter

Selecting rows based on the gid.
SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src','tgt',rows_where:='gid < 10');
SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom',

Selecting the rows where the geometry is near the geometry of row with gid =5

SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt',
rows_where:="'the_geom && (SELECT st_buffer (mygeom,0.5) FROM mytable WHER

SELECT pgr_createVerticesTable('mytable',source:='src',target:="'tgt',the_geom:='mygeom',
rows_where:='mygeom && (SELECT st_buffer (mygeom,0.5) FROM mytable WHERE i

Selecting the rows where the geometry is near the geometry of the row with gid
=100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt',
rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTab:

SELECT pgr_createVerticesTable('mytable',source:='src',target:='tgt',the_geom:='mygeom',
rows_where:='the_geom && (SELECT st_buffer (othergeom,0.5) FROM otherTab:

o4

Examplesq

SELECT pgr_createVerticesTable('edge_table');

NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...

NOTICE: ----- > VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: O

NOTICE: Edges processed: 18

NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: ——————————— oo

pgr_createVerticesTable

0K
(1 row)

The example uses the Sample Data network.

See Alsoq

e Routing Topology for an overview of a topology for routing algorithms.
e pgr_createTopology to create a topology based on the geometry.

e pgr_analyzeGraph to analyze the edges and vertices of the edge table.
e pgr_analyzeOneway to analyze directionality of the edges.

Indices and tables

o Index

e Search Page
pgr__analyzeGraph¢q]

Nameq pgr_analyzeGraph — Analyzes the network topology.

Synopsisq The function returns:

e 0K after the analysis has finished.
e FAIL when the analysis was not completed due to an error.

varchar pgr_analyzeGraph(text edge_table, double precision tolerance,

text the_geom:='the_geom', text id:='id',
text source:='source',text target:='target',text rows_where:='true')

%)

index.html#document-sampledata
index.html#topology
index.html#pgr-create-topology
index.html#pgr-analyze-graph
index.html#pgr-analyze-oneway
genindex.html
search.html

Descriptionq Prerequisites

The edge table to be analyzed must contain a source column and a target column
filled with id’s of the vertices of the segments and the corresponding vertices
table <edge table>_ vertices_ pgr that stores the vertices information.

o Use pgr_createVerticesTable to create the vertices table.
o Use pgr_createTopology to create the topology and the vertices table.

Parameters

The analyze graph function accepts the following parameters:

edge_table:

text Network table name. (may contain the schema name as well)
tolerance:

float8 Snapping tolerance of disconnected edges. (in projection unit)
the_geom:

text Geometry column name of the network table. Default value is the_geom.
id:

text Primary key column name of the network table. Default value is id.
source:

text Source column name of the network table. Default value is source.
target:

text Target column name of the network table. Default value is target.
rows_where:

text Condition to select a subset or rows. Default value is true to indicate all
TOWS.

The function returns:

e 0K after the analysis has finished.

— Uses the vertices table: <edge table>_ vertices_ pgr.

— Fills completely the cnt and chk columns of the vertices table.

— Returns the analysis of the section of the network defined by
rows_where

e FAIL when the analysis was not completed due to an error.

— The vertices table is not found.

96

index.html#pgr-create-vert-table
index.html#pgr-create-topology

— A required column of the Network table is not found or is not of the
appropriate type.

The condition is not well formed.

The names of source , target or id are the same.

The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr__create Topology
The structure of the vertices table is:

id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge_table that reference this vertex.

chk:

integer Indicator that the vertex might have a problem.

ein:

integer Number of vertices in the edge_table that reference this vertex as
incoming. See pgr_analyzeOneway.

eout:

integer Number of vertices in the edge_table that reference this vertex as
outgoing. See pgr_analyze Oneway.

the geom:
geometry Point geometry of the vertex.

History

¢ New in version 2.0.0

Usage when the edge table’s columns MATCH the default values:q
The simplest way to use pgr_analyzeGraph is:

SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table',0.001);

When the arguments are given in the order described in the parameters:
SELECT pgr_analyzeGraph('edge_table',0.001, 'the_geom','id','source', 'target');

o7

index.html#pgr-create-vert-table
index.html#pgr-create-topology
index.html#pgr-analyze-oneway
index.html#pgr-analyze-oneway

We get the same result as the simplest way to use the function.
Warning

An error would occur when the arguments are not given in the appropriate order:
In this example, the column id of the table mytable is passed to the function
as the geometry column, and the geometry column the_geom is passed to the
function as the id column.

SELECT pgr_analyzeGraph('edge_table',0.001,'id', 'the_geom','source', 'target');

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table',0.001,'id', 'the_geom', 'source', 'target', 'true')
NOTICE: Performing checks, please wait ...

NOTICE: Got function st_srid(bigint) does not exist

NOTICE: ERROR: something went wrong when checking for SRID of id in table public.edge_table
pgr_analyzegraph

FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:
SELECT pgr_analyzeGraph('edge_table',0.001,the_geom:='the_geom',id:='id', source:='source
SELECT pgr_analyzeGraph('edge_table',0.001,source:='source',id:='id',target:="'target’',th

Parameters defined with a default value can be omitted, as long as the value
matches the default:

SELECT pgr_analyzeGraph('edge_table',0.001,source:='source');

Selecting rows using rows_ where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');

Selecting the rows where the geometry is near the geometry of row with id =5

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(the

Selecting the rows where the geometry is near the geometry of the row with gid
=100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(oth

98

Usage when the edge table’s columns DO NOT MATCH the default
values:q[For the following table

DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , the_geom AS mygeon F!
SELECT pgr_createTopology('mytable',0.001, 'mygeon', 'gid', 'src', " 'tgt');

Using positional notation:

The arguments need to be given in the order described in the parameters:
SELECT pgr_analyzeGraph('mytable',0.001, 'mygeom', 'gid', 'src', 'tgt');

Warning

An error would occur when the arguments are not given in the appropriate
order: In this example, the column gid of the table mytable is passed to the
function as the geometry column, and the geometry column mygeom is passed
to the function as the id column.

SELECT pgr_analyzeGraph('mytable',0.001,'gid', 'mygeom', 'src', 'tgt');

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('mytable',0.001,'gid', 'mygeom', ' 'src', 'tgt', 'true')

NOTICE: Performing checks, please wait ...

NOTICE: Got function st_srid(bigint) does not exist

NOTICE: ERROR: something went wrong when checking for SRID of gid in table public.mytable
pgr_analyzegraph

FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:
SELECT pgr_analyzeGraph('mytable',0.001,the_geom:='mygeom',id:='gid',source:='src',targe
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:="'gid',target:="'tgt',the_geom:=

In this scenario omitting a parameter would create an error because the default
values for the column names do not match the column names of the table.

Selecting rows using rows_ where parameter

Selecting rows based on the id.

99

SELECT pgr_analyzeGraph('mytable',0.001, 'mygeom', 'gid', 'src', 'tgt',rows_where:='gid < 10'
SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:="'gid',target:="'tgt',the_geom:=

Selecting the rows WHERE the geometry is near the geometry of row with id
=5 .

SELECT pgr_analyzeGraph('mytable',0.001, 'mygeom', 'gid', 'src', 'tgt’',
rows_where:='mygeom && (SELECT st_buffer (mygeom,1) FROM mytable WHERE gic

SELECT pgr_analyzeGraph('mytable',0.001,source:="'src',id:="'gid',target:='tgt',the_geom:=
rows_where:='mygeom && (SELECT st_buffer (mygeom,1) FROM mytable WHERE gic

Selecting the rows WHERE the geometry is near the place="myhouse’ of the
table othertable. (note the use of quote literal)

DROP TABLE IF EXISTS otherTable;
CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS other_geo
SELECT pgr_analyzeGraph('mytable',0.001, 'mygeom', 'gid', 'src', 'tgt’,

rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place="|

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:="'gid',target:="'tgt',the_geom:=
rows_where:='mygeom && (SELECT st_buffer (other_geom,1) FROM otherTable WHERE place="|

Examplesq

SELECT pgr_createTopology('edge_table',0.001);
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0

60

pgr_analyzeGraph
0K
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target','id < 10
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: O
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: O
NOTICE: Intersections detected: 0O
NOTICE: Ring geometries: 0

pgr_analyzeGraph
0K
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id >= 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target','id >=1
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 8
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: O

pgr_analyzeGraph

61

-- Simulate removal of edges
SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');
SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source', 'target', 'true')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: O
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: O
NOTICE: Intersections detected: 0O
NOTICE: Ring geometries: 0O

pgr_analyzeGraph
0K
(1 row)
SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table',0.001, 'the_geom','id', 'source', 'target','id <17’
NOTICE: Performing checks, pelase wait
NOTICE: Creating Topology, Please wait...
NOTICE: --—————-————-- > TOPOLOGY CREATED FOR 16 edges
NOTICE: Rows with NULL geometry or NULL id: O
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --—-—————————————————— - ———

pgr_analyzeGraph
0K
(1 row)

SELECT pgr_analyzeGraph('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...

NOTICE: Analyzing for ring geometries. Please wait...

62

NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: O
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: O
NOTICE: Intersections detected: 0O
NOTICE: Ring geometries: 0O

pgr_analyzeGraph

0K
(1 row)

The examples use the Sample Data network.

See Alsoq

e Routing Topology for an overview of a topology for routing algorithms.

o pgr_analyzeOneway to analyze directionality of the edges.

o pgr_createVerticesTable to reconstruct the vertices table based on the
source and target information.

e pgr_nodeNetwork to create nodes to a not noded edge table.

Indices and tables

o Index
e Search Page

pgr__analyzeOneway

Nameq pgr_analyzeOneway — Analyzes oneway Sstreets and identifies
flipped segments.

Synopsisq This function analyzes oneway streets in a graph and identifies
any flipped segments.

text pgr_analyzeOneway(geom_table text,
text[] s_in_rules, text[] s_out_rules,
text[] t_in_rules, text[] t_out_rules,
text oneway='oneway', text source='source', text target='target',
boolean two_way_if_null=true);

63

index.html#document-sampledata
index.html#topology
index.html#pgr-analyze-oneway
index.html#pgr-create-vert-table
index.html#pgr-node-network
genindex.html
search.html

Descriptiony] The analyses of one way segments is pretty simple but can be
a powerful tools to identifying some the potential problems created by setting
the direction of a segment the wrong way. A node is a source if it has edges the
exit from that node and no edges enter that node. Conversely, a node is a sink
if all edges enter the node but none exit that node. For a source type node it is
logically impossible to exist because no vehicle can exit the node if no vehicle
and enter the node. Likewise, if you had a sink node you would have an infinite
number of vehicle piling up on this node because you can enter it but not leave
it.

So why do we care if the are not feasible? Well if the direction of an edge was
reversed by mistake we could generate exactly these conditions. Think about a
divided highway and on the north bound lane one segment got entered wrong
or maybe a sequence of multiple segments got entered wrong or maybe this
happened on a round-about. The result would be potentially a source and/or a
sink node.

So by counting the number of edges entering and exiting each node we can
identify both source and sink nodes so that you can look at those areas of your
network to make repairs and/or report the problem back to your data vendor.

Prerequisites

The edge table to be analyzed must contain a source column and a target column
filled with id’s of the vertices of the segments and the corresponding vertices
table <edge_table>_ vertices_ pgr that stores the vertices information.

o Use pgr_createVerticesTable to create the vertices table.
o Use pgr_createTopology to create the topology and the vertices table.

Parameters

edge table:

text Network table name. (may contain the schema name as well)
s_in_rules:

text [] source node in rules

s _out_rules:

text [] source node out rules
t_in_ rules:

text [] target node in rules
t_out_rules:

text[] target node out rules

oneway:

64

index.html#pgr-create-vert-table
index.html#pgr-create-topology

text oneway column name name of the network table. Default value is oneway.
source:

text Source column name of the network table. Default value is source.
target:

text Target column name of the network table. Default value is target.

two__way_if null:

boolean flag to treat oneway NULL values as bi-directional. Default value is
true.

Note

It is strongly recommended to use the named notation. See pgr_createVertices Table
or pgr_createTopology for examples.

The function returns:

e OK after the analysis has finished.

— Uses the vertices table: <edge table>_ vertices_pgr.
— Fills completely the ein and eout columns of the vertices table.

e FAIL when the analysis was not completed due to an error.

— The vertices table is not found.

— A required column of the Network table is not found or is not of the
appropriate type.

— The names of source , target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value
would be counted as true for the source or target in or out condition.

The Vertices Table

The vertices table can be created with pgr _createVerticesTable or pgr__create Topology
The structure of the vertices table is:

id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge_table that reference this vertex. See
pgr_analyze Ggraph.

chk:

65

index.html#pgr-create-vert-table
index.html#pgr-create-topology
index.html#pgr-create-vert-table
index.html#pgr-create-topology
index.html#pgr-analyze-graph

integer Indicator that the vertex might have a problem. See pgr__analyzeGraph.
ein:

integer Number of vertices in the edge_table that reference this vertex as
incoming.

eout:

integer Number of vertices in the edge_table that reference this vertex as
outgoing.

the_ geom:
geometry Point geometry of the vertex.

History

e New in version 2.0.0

Examplesq

SELECT pgr_analyzeOneway ('edge_table',

ARRAY['', 'B', 'TF'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'FT'],
ARRAY['', 'B', 'TF'],

oneway:='dir');

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table','{"",B,TF}','{"",B,FT}','{"",B,FT}','{"",B,TF}',"'d
NOTICE: Analyzing graph for one way street errors.

NOTICE: Analysis 25% complete ...

NOTICE: Analysis 50% complete ...

NOTICE: Analysis 75}, complete ...

NOTICE: Analysis 100% complete ...

NOTICE: Found O potential problems in directionality

pgr_analyzeoneway

0K
(1 row)

The queries use the Sample Data network.

See Alsoq

e Routing Topology for an overview of a topology for routing algorithms.

66

index.html#pgr-analyze-graph
index.html#document-sampledata
index.html#topology

e Graph Analytics for an overview of the analysis of a graph.

e pgr_analyzeGraph to analyze the edges and vertices of the edge table.

o pgr_createVerticesTable to reconstruct the vertices table based on the
source and target information.

Indices and tables

o Index
e Search Page

pgr__nodeNetwork

Name9q pgr_nodeNetwork - Nodes an network edge table.
Author:

Nicolas Ribot

Copyright:

Nicolas Ribot, The source code is released under the MIT-X license.

Synopsisq The function reads edges from a not “noded” network table and
writes the “noded” edges into a new table.

pgr_nodenetwork(edge_table, tolerance, id, text the_geom, table_ending, rows_where, outall)
RETURNS TEXT

Descriptiony A common problem associated with bringing GIS data into
pgRouting is the fact that the data is often not “noded” correctly. This will
create invalid topologies, which will result in routes that are incorrect.

What we mean by “noded” is that at every intersection in the road network
all the edges will be broken into separate road segments. There are cases like
an over-pass and under-pass intersection where you can not traverse from the
over-pass to the under-pass, but this function does not have the ability to detect
and accommodate those situations.

This function reads the edge_table table, that has a primary key column id and
geometry column named the_geom and intersect all the segments in it against
all the other segments and then creates a table edge_table_noded. It uses the
tolerance for deciding that multiple nodes within the tolerance are considered
the same node.

Parameters

67

index.html#analytics
index.html#pgr-analyze-graph
index.html#pgr-create-vert-table
genindex.html
search.html

edge_table:

text Network table name. (may contain the schema name as well)
tolerance:

float8 tolerance for coincident points (in projection unit)dd

id:

text Primary key column name of the network table. Default value is id.
the geom:

text Geometry column name of the network table. Default value is the_geom.
table_ending:

text Suffix for the new table’s. Default value is noded.

The output table will have for edge_table_noded

id:

bigint Unique identifier for the table

old_id:

bigint Identifier of the edge in original table

sub_id:

integer Segment number of the original edge

source:

integer Empty source column to be used with pgr_ create Topology function
target:

integer Empty target column to be used with pgr createTopology function
the geom:

geometry Geometry column of the noded network

History

e New in version 2.0.0

Exampleq Let’s create the topology for the data in Sample Data

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:

NOTICE: pgr_createTopology('edge_table',0.001,'the_geom','id', 'source', 'target’

NOTICE: Performing checks, pelase wait

68

, 'true')

index.html#pgr-create-topology
index.html#pgr-create-topology
index.html#document-sampledata

NOTICE: Creating Topology, Please wait...
NOTICE: ------————--- > TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: O
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: -——--———————— oo
pgr_createtopology
OK
(1 row)

Now we can analyze the network.

SELECT pgr_analyzegraph('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target', 'true')
NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...

NOTICE: Analyzing for ring geometries. Please wait...

NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0O

pgr_analyzegraph
0K
(1 row)

The analysis tell us that the network has a gap and an intersection. We try to
fix the problem using:

SELECT pgr_nodeNetwork('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_nodeNetwork('edge_table',0.001,'the_geom','id', 'noded')
NOTICE: Performing checks, pelase wait

NOTICE: Processing, pelase wait

NOTICE: Split Edges: 3
NOTICE: Untouched Edges: 15
NOTICE: Total original Edges: 18

NOTICE: Edges generated: 6
NOTICE: Untouched Edges: 15

69

NOTICE: Total New segments: 21
NOTICE: New Table: public.edge_table_noded
NOTICE: —-—————————————————————————————————
pgr_nodenetwork

0K
(1 row)

Inspecting the generated table, we can see that edges 13,14 and 18 has been
segmented

SELECT old_id,sub_id FROM edge_table_noded ORDER BY old_id,sub_id;
old_id | sub_id
________ +________

© 00 NO O WN -

=
= O

e e e
O N O O P WwwN

N, P RPRRPRPRNNRNRPRPRPRPREPERRPRRPR R R

18
(21 rows)

We can create the topology of the new network

SELECT pgr_createTopology('edge_table_noded', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_createTopology('edge_table_noded',0.001,'the_geom','id', 'source', 'target','t
NOTICE: Performing checks, pelase wait

NOTICE: Creating Topology, Please wait...

NOTICE: ----——-————-- > TOPOLOGY CREATED FOR 21 edges

70

NOTICE: Rows with NULL geometry or NULL id: O

NOTICE: Vertices table for table public.edge_table_noded is: public.edge_table_noded_verti
NOTICE: -—-—-——————————— == ——

pgr_createtopology

Now let’s analyze the new topology

SELECT pgr_analyzegraph('edge_table_noded', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table_noded',0.001,'the_geom','id', 'source','target','tru
NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...

NOTICE: Analyzing for ring geometries. Please wait...

NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: O
NOTICE: Intersections detected: O
NOTICE: Ring geometries: 0

pgr_createtopology

Before Image After Image

71

_images/before_node_net.png
_images/after_node_net.png

Imagesq

Comparing the results] Comparing with the Analysis in the original
edge_table, we see that.

Before After
Table edge_table edge table noded
name
Fields All original fields Has only basic fields to do a
topology analysis
Dead ends o Edges with 1 dead Edges with 1 dead end: 1-1 ,6-1,14-2,
end: 1,6,24 18-1 17-1 18-2
o Edges with 2 dead
ends 17,18
Edge 17’s right node is
a dead end because
there is no other edge
sharing that same node.
(cnt=1)
Isolated two isolated segments: No Isolated segments e« Edge
segments 17 and 18 both they 17 now shares a node with
have 2 dead ends edges 14-1 and 14-2
o Edges 18-1 and 18-2 share
a node with edges 13-1
and 13-2
Gaps There is a gap between Edge 14 was segmented Now edges:
edge 17 and 14 because 14-1 14-2 17 share the same node
edge 14 is near to the The tolerance value was taken in
right node of edge 17 account
Intersections Edges 13 and 18 were Edges were segmented, So, now in

intersecting

the interection’s point there is a
node and the following edges share
it: 13-1 13-2 18-1 18-2

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2 ,18-1 and 18-
2 into our edge-table, copying the data for dir,cost,and reverse cost with tho
following steps:

e Add a column old_id into edge_table, this column is going to keep track
the id of the original edge
« Insert only the segmented edges, that is, the ones whose max(sub_id) >1

alter table edge_table drop column if exists old_id;
alter table edge_table add column old_id integer;
insert into edge_table (old_id,dir,cost,reverse_cost,the_geom)
(with
segmented as (select old_id,count(*) as i from edge_table_noded group by old_id)
select segments.old_id,dir,cost,reverse_cost,segments.the_geom
from edge_table as edges join edge_table_noded as segments on (edges.id = segment
where edges.id in (select old_id from segmented where i>1));

We recreate the topology:

SELECT pgr_createTopology('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_createTopology('edge_table',0.001,'the_geom','id', 'source', 'target','true')
NOTICE: Performing checks, pelase wait

NOTICE: Creating Topology, Please wait...

NOTICE: ----————————- > TOPOLOGY CREATED FOR 24 edges

NOTICE: Rows with NULL geometry or NULL id: O

NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: ----—————————————————— - ———

pgr_createtopology

0K

(1 row)

To get the same analysis results as the topology of edge_table noded, we do
the following query:

SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='id not in (select old_id from edge

NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target',
'id not in (select old_id from edge_table where old_id is not null)')
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: O
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: O
NOTICE: Intersections detected: 0O

73

NOTICE: Ring geometries: 0O
pgr_createtopology

0K

(1 row)

To get the same analysis results as the original edge_table, we do the following
query:

SELECT pgr_analyzegraph('edge_table', 0.001,rows_where:='old_id is null')

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target','old_id is
NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...

NOTICE: Analyzing for ring geometries. Please wait...

NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0

pgr_createtopology
0K
(1 row)

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14
is an under pass and there is also a street level juction, and the same happens
with edges 17 and 13.

SELECT pgr_analyzegraph('edge_table', 0.001);

NOTICE: PROCESSING:

NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id', 'source', 'target', ' 'true')
NOTICE: Performing checks, pelase wait...

NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait...

NOTICE: Analyzing for ring geometries. Please wait...

NOTICE: Analyzing for intersections. Please wait...

NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:

74

NOTICE: Isolated segments: O
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: O
NOTICE: Intersections detected: 5

0

NOTICE: Ring geometries:
pgr_createtopology

0K
(1 row)

See AlsoY Routing Topology for an overview of a topology for rout-
ing algorithms. pgr_analyzeOneway to analyze directionality of the
edges. pgr_createTopology to create a topology based on the geometry.
pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

o Index
e Search Page

See Alsoq Indices and tables

o Index
e Search Page

Routing functionsq
Routing Functionsq]

All Pairs - Family of Functions

e pgr_floydWarshall - Floyd-Warshall’s Algorithm
e pgr_johnson- Johnson’s Algorithm

pgr_aStar - Shortest Path A*
pgr_bdAstar - Bi-directional A* Shortest Path
pgr__bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

o pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.
o pgr_dijkstraCost - Get the aggregate cost of the shortest paths.

(6]

index.html#topology
index.html#pgr-analyze-oneway
index.html#pgr-create-topology
index.html#pgr-analyze-graph
genindex.html
search.html
genindex.html
search.html
index.html#routing-functions
index.html#all-pairs
index.html#pgr-floydwarshall
index.html#pgr-johnson
index.html#pgr-astar
index.html#pgr-bdastar
index.html#pgr-bddijkstra
index.html#dijkstra
index.html#pgr-dijkstra
index.html#pgr-dijkstracost

o pgr_dijkstraCostMatriz - proposed - Use pgr_dijkstra to create a costs
matrix.

o pgr_drivingDistance - Use pgr_ dijkstra to calculate catchament informa-
tion.

e pgr_KSP - Use Yen algorithm with pgr dijkstra to get the K shortest
paths.

e pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

pgr__ KSP - K-Shortest Path
pgr_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

e pgr_ TSP - When input is given as matrix cell information.
e pgr_eucledianTSP - When input are coordinates.

Driving Distance - Category

e pgr_drivingDistance - Driving Distance based on pgr_ dijkstra
o pgr_withPointsDD - Proposed - Driving Distance based on pgr_ withPoints
e Post pocessing

— pgr_alphaShape - Alpha shape computation
— pgr_pointsAsPolygon - Polygon around a set of points

All Pairs - Family of FunctionsY The following functions work on all
vertices pair combinations

pgr__floydWarshallq Synopsisq

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each
pair of nodes in the graph using Floyd-Warshall algorithm.

Boost Graph Inside
Availability: 2.0.0

e Renamed on 2.2.0, previous name pgr_apspWarshall

76

index.html#pgr-dijkstracostmatrix
index.html#pgr-drivingdistance
index.html#pgr-ksp
index.html#pgr-dijkstravia
index.html#pgr-ksp
index.html#trsp
index.html#tsp
index.html#pgr-tsp
index.html#pgr-euclediantsp
index.html#drivingdistance
index.html#pgr-drivingdistance
index.html#pgr-withpointsdd
index.html#pgr-alphashape
index.html#pgr-points-as-polygon
http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html

The Floyd-Warshall algorithm, also known as Floyd’s algorithm, is a good choice
to calculate the sum of the costs of the shortest path for each pair of nodes in
the graph, for demse graphs. We use Boost’s implementation which runs in
\(\Theta(V"3)\) time,

Characteristicsq

The main Characteristics are: o It does not return a path.

Signature

Returns the sum of the costs of the shortest path for each pair of

nodes in the graph.

Process is done only on edges with positive costs.

Boost returns a \(V \times V\) matrix, where the infinity values.

Represent the distance between vertices for which there is no path.
— We return only the non infinity values in form of a set of

(start_vid, end_ vid, agg_ cost).

Let be the case the values returned are stored in a table, so the unique

index would be the pair: (start_vid, end_ vid).

For the undirected graph, the results are symmetric.

— The agg_cost of (u, v) is the same as for (v, u).

When start_ vid = end_ vid, the agg cost = 0.
Recommended, use a bounding box of no more than 3500
edges.

Summary9q

pgr_floydWarshall (edges_sql)
pgr floydWarshall(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Signaturesq

Minimal Signatureq

pgr_floydWarshall (edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 1:

On a directed graph.

SELECT =*

FROM pgr_floydWarshall(

'SELECT id, source, target, cost FROM edge_table where id < 5'

)

start_vid | end_vid | agg_cost

(s

(3 rows)
Complete Signatureq

pgr_floydWarshall (edges_sql, directed)

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 2:
On an undirected graph.

SELECT * FROM pgr_floydWarshall(

'SELECT id, source, target, cost FROM edge_table where id < 5',

false
);
start_vid | end_vid | agg_cost
___________ e
11 2 | 1
1| 5 | 2
2 | 1] 1
2 | 5 | 1
5 | 1] 2
5 | 2 | 1
(6 rows)

Description of the Signaturesq
Description of the edges sql query (id is not necessary)q

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

78

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Column Type Default Description

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq

Receives (edges_sql, directed)

Parameter Type Description

edges_ sqTEXT SQL query as described above.

directed BOOLEAN (optional) Default is true (is directed). When set to false
the graph is considered as Undirected

Description of the return valuesq

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start__ vid BIGINT Identifier of the starting vertex.

end_ vid BIGINT Identifier of the ending vertex.

agg cost FLOAT Total cost from start_vid to end_vid.
History

¢ Re-design of pgr_apspWarshall in Version 2.2.0

See Alsoq

79

e pgr_johnson
¢ Boost floyd-Warshall algorithm
e Queries uses the Sample Data network.

Indices and tables

o Index
e Search Page

pgr__johnsonq Synopsisq

pgr_johnson - Returns the sum of the costs of the shortest path for each pair
of nodes in the graph using Floyd-Warshall algorithm.

Boost Graph Inside
Availability: 2.0.0

e Renamed on 2.2.0, previous name pgr_apspJohnson

The Johnson algorithm, is a good choice to calculate the sum of the costs of the
shortest path for each pair of nodes in the graph, for sparse graphs. It usees the
Boost’s implementation which runs in \(O(V E \log V)\) time,

Characteristicsq

The main Characteristics are: e It does not return a path.

e Returns the sum of the costs of the shortest path for each pair of
nodes in the graph.

e Process is done only on edges with positive costs.

o Boost returns a \(V \times V\) matrix, where the infinity values.
Represent the distance between vertices for which there is no path.

— We return only the non infinity values in form of a set of
(start_vid, end_ vid, agg cost).

o Let be the case the values returned are stored in a table, so the unique
index would be the pair: (start_vid, end_ vid).

e For the undirected graph, the results are symmetric.

— The agg_ cost of (u, v) is the same as for (v, u).

e When start_ vid = end_ vid, the agg cost = 0.

80

index.html#pgr-johnson
http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
index.html#document-sampledata
genindex.html
search.html
http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html

Signature Summary¥

pgr_johnson(edges_sql)
pgr johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Signaturesq

Minimal Signatureq

pgr_johnson(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 1:
On a directed graph.

SELECT * FROM pgr_johnson(
'SELECT source, target, cost FROM edge_table WHERE id < 5

ORDER BY id'

);

start_vid | end_vid | agg_cost

___________ o
1| 2 | 1
1| 5 | 2
2 | 5 | 1

(3 rows)

Complete Signatureq

pgr_johnson(edges_sql, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example 2:
On an undirected graph.

SELECT * FROM pgr_johnson(
'SELECT source, target, cost FROM edge_table WHERE id < 5

ORDER BY id',
false
);
start_vid | end_vid | agg_cost
___________ e e
11 2 | 1

81

a0 NN -
N = Ol = O
= NP 2N

(6 rows)

Description of the Signaturesq
Description of the edges_sql query (id is not necessary)q
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__cANY-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq

Receives (edges_sql, directed)

Parameter T'ype Description

edges_ sqTEXT SQL query as described above.

82

Parameter Type Description

directed BOOLEAN (optional) Default is true (is directed). When set to false
the graph is considered as Undirected

Description of the return valuesq

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting vertex.

end_ vid BIGINT Identifier of the ending vertex.

agg_ cost FLOAT Total cost from start_vid to end_vid.
History

e Re-design of pgr_apspJohnson in Version 2.2.0
See Alsoq

o pgr_floydWarshall
e Boost Johnson algorithm implementation.
e Queries uses the Sample Data network.

Indices and tables

o Index
e Search Page

Performanceq

The following tests: o non server computer
o with AMD 64 CPU
e 4G memory
e trusty
e posgreSQL version 9.3

Dataq

The following data was used

83

index.html#pgr-floydwarshall
http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
index.html#document-sampledata
genindex.html
search.html

BBOX="-122.8,45.4,-122.5,45.6"
wget —-progress=dot:mega -0 "sampledata.osm" "http://www.overpass-api.de/api/xapi?* [bbox=]

Data processing was done with osm2pgrouting-alpha

createdb portland

psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s O

Resultsq
Test:
One

This test is not with a bounding box The density of the passed graph is extremely
low. For each <SIZE> 30 tests were executed to get the average The tested
query is:

SELECT count(*) FROM pgr_floydWarshall(
'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson(
'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

The results of this tests are presented as:

SIZE:

is the number of edges given as input.

EDGES:

is the total number of records in the query.

DENSITY:

is the density of the data \(\dfrac{E}{V \times (V-1)}\).
OUT ROWS:

is the number of records returned by the queries.
Floyd-Warshall:

is the average execution time in seconds of pgr_ floydWarshall.
Johnson:

is the average execution time in seconds of pgr_ johnson.

84

ouT
SIZE EDGES DENSITY ROWS Floyd-Warshall ~ Johnson

500 500 0.18E-7 1346 0.14 0.13
1000 1000 0.36E-7 2655 0.23 0.18
1500 1500 0.55E-7 4110 0.37 0.34
2000 2000 0.73E-7 5676 0.56 0.37
2500 2500 0.89E-7 7177 0.84 0.51
3000 3000 1.07TE-7 8778 1.28 0.68
3500 3500 1.24E-7 10526 2.08 0.95
4000 4000 1.41E-7 12484 3.16 1.24
4500 4500 1.58E-7 14354 4.49 1.47
5000 5000 1.76E-7 16503 6.05 1.78
5500 5500 1.93E-7 18623 7.53 2.03
6000 6000 2.11E-7 20710 8.47 2.37
6500 6500 2.28E-7 22752 9.99 2.68
7000 7000 2.46E-7 24687 11.82 3.12
7500 7500 2.64E-7 26861 13.94 3.60
8000 8000 2.83E-7 29050 15.61 4.09
8500 8500 3.01E-7 31693 17.43 4.63
9000 9000 3.A7E-T 33879 19.19 5.34
9500 9500 3.35E-7 36287 20.77 6.24
10000 10000 3.52E-7 38491 23.26 6.51
Test:

Two

This test is with a bounding box The density of the passed graph higher than
of the Test One. For each <SIZE> 30 tests were executed to get the average
The tested edge query is:

WITH
buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom FROM ways),
bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box from buffer)

SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom && (SELECT box

The tested queries

85

SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)

The results of this tests are presented as:

SIZE:

is the size of the bounding box.

EDGES:

is the total number of records in the query.

DENSITY:

is the density of the data \(\dfrac{E}{V \times (V-1)}\).
OUT ROWS:

is the number of records returned by the queries.

Floyd-Warshall:

is the average execution time in seconds of pgr_ floyd Warshall.

Johnson:

is the average execution time in seconds of pgr_ johnson.

SIZE EDGES DENSITY gg\TN’S Floyd-Wa
0.001 44 0.0608 1197 0.10
0.002 99 0.0251 4330 0.10
0.003 223 0.0122 18849 0.12
0.004 358 0.0085 71834 0.16
0.005 470 0.0070 116290 0.22
0.006 639 0.0055 207030 0.37
0.007 843 0.0043 346930 0.64
0.008 996 0.0037 469936 0.90
0.009 1146 0.0032 613135 1.26
0.010 1360 0.0027 849304 1.87
0.011 1573 0.0024 1147101 2.65
0.012 1789 0.0021 1483629 3.72
0.013 1975 0.0019 1846897 4.86
0.014 2281 0.0017 2438298 7.08

86

ouT

SIZE EDGES DENSITY ROWS Floyd-Wa
0.015 2588 0.0015 3156007 10.28
0.016 2958 0.0013 4090618 14.67
0.017 3247 0.0012 4868919 18.12

See Alsoq

e pgr_johnson
o pgr_floydWarshall
o Boost floyd-Warshall algorithm

Indices and tables

o Index
e Search Page

pgr__bdAstar9q

Name¥q pgr_bdAstar — Returns the shortest path using A* algorithm.

Boost Graph Inside

Availability:

e pgr_bdAstar(one to one) 2.0.0, Signature change on 2.5.0
e pgr_bdAstar(other signatures) 2.5.0

Signature Summary9

pgr_bdAstar (edges_sql, start_vid, end_vid)

pgr_bdAstar (edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])

RETURNS SET OF (seq, path_seq , node, edge, cost, agg_cost)
OR EMPTY SET

87

index.html#pgr-johnson
index.html#pgr-floydwarshall
http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
genindex.html
search.html
http://www.boost.org//libs/graph

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

Name might change.

Signature might change.

Functionality might change.

pgTap tests might be missing.

Might need ¢/c++ coding.

May lack documentation.

Documentation if any might need to be rewritten.

Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.

Might depend on a proposed function of pgRouting

Might depend on a deprecated function of pgRouting

pgr_bdAstar (edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

OR EMPTY

SET

Using these signatures, will load once the graph and perform several one to one
pegr__bdAstar

e The result is the union of the results of the one to one pgr_ bdAStar.
e The extra start_vid and/or end_vid in the result is used to distinguish
to which path it belongs.

Avaliability

e pgr__
e pgr__

bdAstar(one to one) 2.0, signature change on 2.5
bdAstar(other signatures) 2.5

Signaturesq Minimal Signatureq

pgr_bdAstar (edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

88

This usage finds the shortest path from the start_vid to the end_vid e
on a directed graph
o with heuristic‘s value 5
o with factor‘s value 1
o with epsilon‘s value 1

Example:

Using the defaults

SELECT * FROM pgr_bdAstar(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',

2, 3

)3

seq | path_seq | node | edge | cost | agg_cost

————— e et
1] 1 2 | 4 | 1| 0
2 | 2 | 5 | 8 | 1| 3
3 | 3 | 6 | 9 | 1 5
4 | 4 | 9 | 16 | 1 8
5 | 5 | 4 | 3| 1 9
6 | 6 | 31 -1 0 | 10

(6 rows)

pgr__bdAstar One to Oneq

pgr_bdAstar (edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

This usage finds the shortest path from the start_vid to the end_vid allowing the user to ch
heuristic,
» and/or factor
o and/or epsilon.

Note

In the One to One signature, because of the deprecated signature existence, it
is compulsory to indicate if the graph is directed or undirected.

Example:

Directed using Heuristic 2

SELECT * FROM pgr_bdAstar(

89

'"SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',

2, 3,
true, heuristic := 2
);
seq | path_seq | node | edge | cost | agg_cost
————— s e e e
1 1 2 | 4 | 1 0
2 | 2 | 5 | 8 | 1| 2
3| 3 | 6 | 9 | 1| 3
4 | 4 | 9 | 16 | 1 4
5 | 5 | 4 | 3| 1 5
6 | 6 | 31 -1 0| 6
(6 rows)

pgr__bdAstar One to many9

pgr_bdAstar (edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing t
if the graph is directed or undirected
« and/or heuristic,
» and/or factor
o and/or epsilon.

Example:

Directed using Heuristic 3 and a factor of 3.5

SELECT * FROM pgr_bdAstar(
'"SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
2, ARRAY[3, 11],

heuristic := 3, factor := 3.5
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— e At Tt e
1] 1| 3| 2 | 4 | 1| 0
2 | 2 | 3 | 5 | 8 | 1] 25.5
3| 3 | 3 | 6 | 9 | 1] 38.75
4 | 4 | 3 | 9 | 16 | 1] 64.25
5 | 5 | 3 | 4 | 3 | 1] 65.25
6 | 6 | 3 | 31 -1 0 | 66.25
7| 1 11 | 2 | 4 | 1| 0

8 | 2 | 11 | 5 | 8 | 1] 1

9 | 3 | 11 | 6 | 11 | 1| 2

10 | 4 | 11 | 11 | -1 | 0 | 3
(10 rows)

pgr_ bdAstar Many to One€

pgr_bdAstar (edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This usage finds the shortest path from each start_vid in start_vids to the end_vid allowing
if the graph is directed or undirected
« and/or heuristic,
o and/or factor
o and/or epsilon.

Example:

Undirected graph with Heuristic 4

SELECT * FROM pgr_bdAstar(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
ARRAY[2, 7], 3,

false, heuristic := 4

);

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— T e S S
11 1 2 | 2 | 2 | 1| 0
2 | 2 | 2 | 31 -1 0 | 1
3 | 1 7 | 7 | 6 | 1| 0
4 | 2 | 71 8 | 71 1 | 3.23606797749979
5 | 3 | 7 | 5 | 8 | 1 | 5.65028153987288
6 | 4 | 7 | 6 | 5 | 1 | 6.65028153987288
7 | 5 | 7| 3 | -1 | 0 | 7.65028153987288

(7 rows)

pegr__bdAstar Many to Many9q

pgr_bdAstar (edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_
if the graph is directed or undirected

91

o and/or heuristic,
o and/or factor
« and/or epsilon.

Example:

Directed graph with a factor of 0.5

SELECT * FROM pgr_bdAstar(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
ARRAY[2, 7], ARRAY[3, 11],
factor := 0.5

);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— e B e S B T e
1| 1] 2 | 3 | 2 | 4 | 1| 0
2 | 2 | 2 | 3| 5 | 8 | 1 2
3| 3| 2 | 3| 6 | 9 | 1] 3.5
4 | 4 | 2 | 3 | 9 | 16 | 1| 4.5
5 | 5 | 2 | 3 | 4 | 3| 1] 5.5
6 | 6 | 2 | 3| 31 -1 0 | 6.5
7 | 1] 2 | 11 | 2 | 4 | 1] 0
8 | 2 | 2 | 11 | 5 | 8 | 1| 1
9 | 31 2| 11 | 6 1 11 | 1 2
10 | 4 | 2 | 11 | 11| -1 | 0 | 3
11 | 1] 7 | 3 | 7 | 6 | 1| 0
12 | 2 | 7 | 3 | 8 | 7 1 1] 2.5
13 | 3| 7 | 3| 5 | 8 | 1] 4.5
14 | 4 | 7 | 3| 6 | 9 | 1] 6
15 | 5 | 7| 3| 9 | 16 | 1] 7
16 | 6 | 7 | 3 | 4 | 3 | 1| 8
17 | 7 | 7 1 3| 31 -1 0 | 9
18 | 1] 71 11 | 71 6 | 1] 0
19 | 2 | 71 11 | 8 | 7 | 1] 1
20 | 3 7 11 | 5 | 8 | 1] 2
21 | 4 | 7 | 11 | 6 | 11 | 1] 3
22 | 5 | 7 | 11 | 11 | -1 0 | 4

(22 rows)

Description of the Signaturesq Description of the edges sql query for
astar like functions9q

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

92

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type Description

edges__sqlTEXT Edges SQL query as described above.
start_ vid ANY-INTEGER Starting vertex identifier.

start_ vid9ARRAY [ANY-INTEGHRIng vertices identifierers.
end__vid ANY-INTEGER Ending vertex identifier.

end_ vids ARRAY [ANY-INTEGERig vertices identifiers.

93

Parameter Type

Description

directed BOOLEAN

heuristic INTEGER

factor FLOAT

epsilon FLOAT

e Optional.

— When false the graph is considered as
Undirected.
— Default is true which considers the
graph as Directed.
(optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_dijkstra)
: h(v) abs(max(dx, dy))
h(v) abs(min(dx, dy))
h(v) =dx *dx + dy * dy
: h(v) = sqrt(dx * dx + dy * dy)
h(v) = abs(dx) + abs(dy)
(optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

\
\4

L]
AR v

(optional). For less restricted results. \(epsilon >=
1\). Default 1.

Description of the return values for a pathq

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,

cost, agg_cost)

Column Type
seq INT
path__id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT

94

index.html#astar-factor

Column Type

edge BIGINT
cost FLOAT
agg_cost FLOAT
See Alsoq

Bidirectional A* - Family of functions

e Sample Data network.
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A* search algorithm

Indices and tables

o Index
e Search Page

pgr__bdDijkstraq pgr_bdDijkstra — Returns the shortest path(s) using
Bidirectional Dijkstra algorithm.

Boost Graph Inside
Availability:

o pgr_bdDijkstra(one to one) 2.0.0, Signature changed 2.4.0
o pgr_bdDijkstra(other signatures) 2.5.0

Signature Summary9q

pgr_bdDijkstra(edges_sql, start_vid, end_vid)
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

95

index.html#bdastar
index.html#document-sampledata
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm
genindex.html
search.html
http://www.boost.org/libs/graph/doc

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Signaturesq Minimal signatureq

pgr_bdDijkstra(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

The minimal signature is for a directed graph from one start_vid to one
end_vid:

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3
);
seq | path_seq | node | edge | cost | agg_cost
————— B e T

96

1] 1] 2 | 4 | 1] 0

2 | 2 | 5 | 8 | 1 1

31 3 | 6 | 9 | 1] 2

4 | 4 | 9 | 16 | 1] 3

5 | 5 | 4 | 3 | 1] 4

6 | 6 | 3 | -1 0 | 5
(6 rows)

pgr_bdDijkstra One to Oneq

pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to one end_vid:

e on a directed graph when directed flag is missing or is set to true.
o on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3,
false
)3
seq | path_seq | node | edge | cost | agg_cost
————— At
1 11 2 | 2| 1 0
2 | 2 | 31 -1 0 | 1
(2 rows)

pgr__bdDijkstra One to many9

pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to each end_vid in
end_vids:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

97

Using this signature, will load once the graph and perform a one to one
pgr_dijkstra where the starting vertex is fixed, and stop when all end_vids
are reached.

e The result is equivalent to the union of the results of the one to one
pgr__dijkstra.

e The extra end_vid in the result is used to distinguish to which path it
belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3, 111);

seq | path_seq | end_vid | node | edge | cost | agg_cost

————— T e s et T

1] 1] 3 | 2 | 4 | 1] 0

2 | 2 | 3| 5 | 8 | 1] 1

3 | 3 | 3| 6 | 9 | 1] 2

4 | 4 | 3 | 9 | 16 | 1] 3

5 | 5 | 3 | 4 | 3 | 1] 4

6 | 6 | 3 | 3 | -1 | 0 | 5

7 | 1] 11 | 2 | 4 | 1] 0

8 | 2 | 11 | 5 | 8 | 1] 1

9 | 3 | 11 | 6 | 11 | 1| 2

10 | 4 | 11 | 11 | -1 | 0 | 3
(10 rows)

pgr_bdDijkstra Many to One€

pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to
one end_vid:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one
pgr_ dijkstra where the ending vertex is fixed.

e The result is the union of the results of the one to one pgr_ dijkstra.

98

e The extra start_vid in the result is used to distinguish to which path it
belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 7], 3);

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— T e T
1| 1] 2 | 2 | 4 | 1] 0
2 | 2 | 2 | 5 | 8 | 1] 1
3 | 3 | 2 | 6 | 9 | 1] 2
4 | 4 | 2 | 9 | 16 | 1] 3
5 | 5 | 2 | 4 | 3 | 1| 4
6 | 6 | 2 | 3 | -1 | 0 | 5
7 | 1] 7 | 7 | 6 | 1] 0
8 | 2 | 7 | 8 | 7 | 1] 1
9 | 3 | 7 1 5 | 8 | 1] 2
10 | 4 | 7 1 6 | 9 | 1| 3
11 | 5 | 7 | 9 | 16 | 1] 4
12 | 6 | 7 | 4 | 3 | 1] 5
13 | 7 | 7 | 3 | -1 | 0 | 6

(13 rows)

pgr_ bdDijkstra Many to Many¥

pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to
each end_vid in end_vids:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many
pgr_ dijkstra for all start_vids.

e The result is the union of the results of the one to one pgr_ dijkstra.
e The extra start_vid in the result is used to distinguish to which path it
belongs.

99

The extra start_vid and end_vid in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 7], ARRAY[3, 11]);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— S
1| 1| 2 | 3 | 2 | 4 | 1] 0
2 | 2 | 2 | 3 | 5 | 8 | 1| 1
3 | 3 | 2 | 3 | 6 | 9 | 1| 2
4 | 4 | 2 | 3 | 91 16 | 1| 3
5 | 5 | 2 | 3| 4 | 3 | 1] 4
6 | 6 | 2 | 3| 3| -1 | 0 | 5
7| 1| 2 | 11 | 2 | 4 | 1] 0
8 | 2 | 2 | 11 | 5 | 8 | 1| 1
9 | 3| 2 | 11 | 6 | 11 | 1] 2
10 | 4 | 2 | 11 | 11 | -1 | 0 | 3
11 | 1] 7 | 3| 7 | 6 | 1] 0
12 | 2 | 7 1 3 | 8 | 7 1 1| 1
13 | 3 | 7| 3 | 5 | 8 | 1| 2
14 | 4 | 7 | 3 | 6 | 9 | 1] 3
15 | 5 | 7 | 3 | 9 | 16 | 1| 4
16 | 6 | 7 | 3| 4 | 3 | 1| 5
17 | 7 | 7 | 3| 3| -1 | 0 | 6
18 | 1| 7 | 11 | 71 6 | 1| 0
19 | 2 | 7 | 11 | 8 | 7 | 1| 1
20 | 3 | 7 | 11 | 5 | 10 | 1| 2
21 | 4 | 71 111 101 12| 1] 3
22 | 5 | 7 | 111 111 -1 | 0 | 4

(22 rows)

Description of the Signaturesq Description of the edges_sql query for
dijkstra like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

100

Column Type Default Description

target ANY-INTEGER Identifier of the second end point vert
edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__ cANY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Column Type Default Description
sql TEXT SQL query as desc
start__ vid BIGINT Identifier of the ste
path.
start_ vidsARRAY [BIGINT] Array of identifiers
end_ vid BIGINT Identifier of the en
path.
end_ vids ARRAY[BIGINT] Array of identifiers
directed BOOLEAN true e When true (
Directed

e When false
considered as

Description of the return values for a path€

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,

101

cost, agg_cost)

Column Type
seq INT
path_ id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg_ cost FLOAT
See Alsoq

e The queries use the Sample Data network.

e Bidirectional Dijkstra - Family of functions

o http://www.cs.princeton.edu/courses/archive /spr06/cos423 /Handouts/ EPP%20shortest %20path %2
o https://en.wikipedia.org/wiki/Bidirectional _search

Indices and tables

o Index
e Search Page

Dijkstra - Family of functionsq]

o pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.

o pgr_dijkstraCost - Get the aggregate cost of the shortest paths.

o pgr_dijkstraCostMatriz - proposed - Use pgr_dijkstra to create a costs
matrix.

102

index.html#document-sampledata
index.html#bddijkstra
http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search
genindex.html
search.html
index.html#pgr-dijkstra
index.html#pgr-dijkstracost
index.html#pgr-dijkstracostmatrix

e pgr_drivingDistance - Use pgr_ dijkstra to calculate catchament informa-
tion.

e pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest
paths.

o pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

pgr_ dijkstra¥ pgr_dijkstra — Returns the shortest path(s) using Dijkstra
algorithm. In particular, the Dijkstra algorithm implemented by Boost.Graph.

Boost Graph Inside

Availability

o pgr_dijkstra(one to one) 2.0.0, signature change 2.1.0
o pgr_dijkstra(other signatures) 2.1.0

Synopsisq

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in
1956. It is a graph search algorithm that solves the shortest path problem for a
graph with non-negative edge path costs, producing a shortest path from a start-
ing vertex (start_vid) to an ending vertex (end_vid). This implementation
can be used with a directed graph and an undirected graph.

Characteristicsq

The main Characteristics are: ¢ Process is done only on edges with pos-
itive costs.

e Values are returned when there is a path.

— When the starting vertex and ending vertex are the same, there
is no path.

* The agg cost the non included values (v, v) is 0

— When the starting vertex and ending vertex are the different and
there is no path:

* The agg_cost the non included values (u, v) is \(\infty\)

o For optimization purposes, any duplicated value in the start_ vids or
end_ vids are ignored.
e The returned values are ordered:

— start_ vid ascending

103

index.html#pgr-drivingdistance
index.html#pgr-ksp
index.html#pgr-dijkstravia
http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

— end_ vid ascending
o Running time: \(O(] start_vids | * (V \log V + E))\)

Signature Summary¥

pgr_dijkstra(edges_sql, start_vid, end_vid)

pgr_dijkstra(edges_sql, start_vid, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vid, end_vids, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vid, directed:=true)
pgr_dijkstra(edges_sql, start_vids, end_vids, directed:=true)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

Signaturesq

Minimal signatureq

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

The minimal signature is for a directed graph from one start_vid to one
end_vid.

Example:

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3
)

seq | path_seq | node | edge | cost | agg_cost
————— Rt
1 1| 2 | 4 | 1 0
2 | 2 | 5 | 8 | 1| 1
3| 3 | 6 | 9 | 11 2
4 | 4 | 91 16 | 1| 3
5 | 5 | 4 | 3 | 1 4
6 | 6 | 31 -1 0 | 5

(6 rows)

pgr_ dijkstra One to Oneq

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

104

This signature finds the shortest path from one start_vid to one end_vid: e
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3,
FALSE
)3
seq | path_seq | node | edge | cost | agg_cost
————— e e e
1] 1 2 | 2 | 1 0
2 | 2 | 31 -1 0 | 1
(2 rows)

pgr_ dijkstra One to many¥

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to each end_vid in end_vids:

on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one
pgr_dijkstra where the starting vertex is fixed, and stop when all end_vids
are reached.

e The result is equivalent to the union of the results of the one
to one pgr_ dijkstra.

e The extra end_vid in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, ARRAY[3,5],

105

FALSE

)

seq | path_seq | end_vid | node | edge | cost | agg_cost

————— R St Rttt LSS e
1 1| 3 | 2 | 4 | 1 0
2 | 2 | 3 | 5 | 8 | 1 1
31 3 | 3 | 6 | 5 | 1| 2
4 | 4 | 3| 31 -1 0 | 3
5 | 1| 5 | 2 | 4 | 1 0
6 | 2 | 5 | 51 -1 0 | 1

(6 rows)

pgr_dijkstra Many to Oneq

pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to one end_vid:
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one
pgr_dijkstra where the ending vertex is fixed.

e The result is the union of the results of the one to one
pgr_ dijkstra.

e The extra start_vid in the result is used to distinguish to
which path it belongs.

Example:

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], 5

)3
seq | path_seq | start_vid | node | edge | cost | agg_cost
————— T e T it St
1| 1 2 | 2 | 4 | 1] 0
2 | 2 | 2 | 51 -1 0 | 1
31 1| 11] 111 13 | 1] 0
4 | 2 | 11 | 12 | 15 | 1| 1
5 | 3 | 11 | 9 | 9 | 1] 2

6 | 4 | 11 | 6 | 8 | 1] 3
7 | 5 | 11 | 5 | -1 | 0 | 4
(7 rows)

pgr_dijkstra Many to Many¥

pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to each end_vid in
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many
pgr_ dijkstra for all start_vids.

e The result is the union of the results of the one to one
pgr_ dijkstra.

e The extra start_vid in the result is used to distinguish to
which path it belongs.

The extra start_vid and end_vid in the result is used to distinguish to which
path it belongs.

Example:
SELECT * FROM pgr_dijkstra(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], ARRAY([3,5],

FALSE

)3

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— e s At B
1| 1| 2 | 3| 2 | 2 | 1] 0
2 | 2 | 2 | 3 | 31 -1 0 | 1
3 1| 2 | 5 | 2 | 4 | 1] 0
4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
5 | 1] 11 | 3| 11 | 11 | 1| 0
6 | 2 | 11 | 3| 6 | 5 | 1] 1
7| 3| 11 | 3 | 31 -1 0 | 2
8 | 1| 11 | 51 11] 11 | 1| 0
9 | 2 | 11 | 5 | 6 | 8 | 1] 1
10 | 3 | 11 | 5 | 5 | -1 | 0 | 2

(10 rows)

107

Description of the Signatures€
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Column Type Default Description

sql TEXT SQL query as desc

start_ vid BIGINT Identifier of the stz
path.

start_ vidsARRAY [BIGINT] Array of identifiers

end_ vid BIGINT Identifier of the en
path.

end__vids ARRAY[BIGINT] Array of identifiers

108

Column Type Default Description

directed BOOLEAN true e When true (
Directed

e When false
considered as

Description of the return values for a path€

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,
cost, agg_cost)

Column Type
seq INT
path_ id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg cost FLOAT

Additional Examplesq
The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending ver-
tices 3 and 5 in a directed and undirected graph with and with out reverse_ cost.

Examples for queries marked as directed with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
directed and cost and reverse__cost columns are used

109

index.html#document-sampledata
index.html#fig1
index.html#fig1

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3
)3
seq | path_seq | node | edge | cost | agg_cost
————— e St
11 11 2 | 4 | 11 0
2 | 2 | 5 | 8 | 1 1
31 3 | 6 | 9 | 1| 2
4 | 4 | 9 | 16 | 1| 3
5 | 5 | 4 | 3| 1 4
6 | 6 | 31 -1 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 5
)
seq | path_seq | node | edge | cost | agg_cost
————— e e
1 1| 2 | 4 | 1 0
2 | 2 | 51 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3,5]

);
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— e et B ettt
1| 1 3 | 2 | 4 | 1| 0
2 | 2 | 3 | 5 | 8 | 1| 1
31 3 | 3 | 6 | 9 | 1| 2
4 | 4 | 3 | 9 | 16 | 1| 3
5 | 5 | 3 | 4 | 3 | 1| 4
6 | 6 | 3 | 31 -1 0 | 5
71 1 5 | 2 | 4 | 1| 0
8 | 2 | 5 | 51 -1 0 | 1
(8 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
11, 3
);
seq | path_seq | node | edge | cost | agg_cost
————— B e e ettt L e e

1] 1] 11 | 13 | 1] 0

2 | 2 | 12 | 15 | 1] 1

31 3 | 9 | 16 | 1] 2

4 | 4 | 4 | 3 | 1] 3

5 | 5 | 3 | -1 | 0 | 4
(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

11, 5
)3
seq | path_seq | node | edge | cost | agg_cost
————— et et S
1] 1 11 | 13 | 1| 0
2 | 2 | 12 | 15 | 1| 1
3 | 3 | 9 | 9 | 1 2
4 | 4 | 6 | 8 | 1 3
5 | 5 | 51 -1 0| 4
(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], 5

)
seq | path_seq | start_vid | node | edge | cost | agg_cost
————— T e S s St
1 1| 2 | 2 | 4 | 1] 0
2 | 2 | 2 | 51 -1 0 | 1
3| 1| 11 | 11 | 13 | 1| 0
4 | 2 | 111 12| 15 | 1] 1
5 | 3 | 11 | 9 | 9 | 1] 2
6 | 4 | 11 | 6 | 8 | 1] 3
71 5 | 11 | 51 -1 0 | 4
(7 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5]

)3
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— e e e T
1] 1| 2 | 31 2 | 4 | 1| 0
2 | 2 | 2 | 31 5 | 8 | 1| 1
3| 3| 2 | 3| 6 | 9 | 1| 2
4 | 4 | 2 | 3| 9 | 16 | 1] 3
5 | 5 | 2 | 31 4 | 3 | 1| 4

111

6 | 6 | 2 | 3 | 31 -1 0 | 5
7| 1| 2 | 5 | 2 | 4 | 1] 0
8 | 2 | 2 | 5 | 5 | -1 | 0 | 1
9 | 1| 11 | 3 | 11 | 13 | 1| 0
10 | 2 | 11 | 3 | 12 | 15 | 1| 1
11 | 3 | 11 | 3 | 9 | 16 | 1| 2
12 | 4 | 11 | 3 | 4 | 3 | 1] 3
13 | 5 | 11 | 3| [-1 0 | 4
14 | 1| 11 | 5 | 11 | 13 | 1| 0
15 | 2 | 11 | 5 | 12 | 15 | 1| 1
16 | 3| 11 | 5 | 9 | 9 | 1] 2
17 | 4 | 11 | 5 | 6 | 8 | 1] 3
18 | 5 | 11 | 5 | 51 -1 0 | 4
(18 rows)

Examples for queries marked as undirected with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
undirected and cost and reverse__cost columns are used

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3,
FALSE
)3
seq | path_seq | node | edge | cost | agg_cost
————— e St
1 11 2 | 2| 1 0
2 | 2 | 31 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 5,
FALSE
)3
seq | path_seq | node | edge | cost | agg_cost
————— e s St
1 11 2 | 4 | 1 0
2 | 2 | 51 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
11, 3,

112

index.html#fig2
index.html#fig2

FALSE

)
seq | path_seq | node | edge | cost | agg_cost
————— e
1] 1| 11 | 11 | 1|
2 | 2 | 6 | 5 | 1 1
31 3| 31 -1 0 |
(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

11, 5,
FALSE
)3
seq | path_seq | node | edge | cost | agg_cost
----- T it R
1] 1 11 | 11 | 1 0
2| 2 | 6 | 8 | 1 1
3 | 3 | 51 -1 0 |
(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2,11], 5,

FALSE

);

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— e e s Tt S
1 11 2 | 2 | 4 | 1 0
2 | 2 | 2 | 5 | -1 | 0 | 1
3| 1| 11 | 11 | 12 | 1] 0
4 | 2 | 11 | 10 | 10 | 1] 1
5 | 3 | 11 | 51 -1 0 | 2

(5 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3,5],

FALSE
)
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— e e A S
1 1| 3 | 2 | 2 | 1 0
2 | 2 | 3 | 31 -1 0 | 1
3| 1 5 | 2 | 4 | 1| 0
4 | 2 | 5 | 51 -1 0| 1

(4 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5],

FALSE

);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— e s et s Tt B
1| 1| 2 | 31 2 | 2 | 1] 0
2 | 2 | 2 | 31 31 -1 0 | 1
3| 1| 2 | 5 | 2 | 4 | 1] 0
4 | 2 | 2 | 5 | 51 -1 0 | 1
5 | 1] 11 | 3 | 11 | 11 | 1] 0
6 | 2 | 11 | 3| 6 | 5 | 1] 1
7 | 31 11 | 3| 31 -1 0 | 2
8 | 1| 11 | 5 11| 11 | 1| 0
9 | 2 | 11 | 5 | 6 | 8 | 1] 1
10 | 3| 11 | 5 | 51 -1 0| 2

(10 rows)

Examples for queries marked as directed with cost columnq|

The examples in this section use the following Network for queries marked as
directed and only cost column is used

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, 3
)3
seq | path_seq | node | edge | cost | agg_cost
----- T i e e
(0 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',

2, 5
)3
seq | path_seq | node | edge | cost | agg_cost
————— e e
1] 1 2 | 4 | 1 0
2 | 2 | 51 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',

114

index.html#fig3
index.html#fig3

11, 3
)
seq | path_seq | node | edge | cost | agg_cost
————— e
(0 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
11, 5
);
seq | path_seq | node | edge | cost | agg_cost
————— B e s ST
(0 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2,11], 5

)
seq | path_seq | start_vid | node | edge | cost | agg_cost
————— i s St
1| 1 2 | 2 | 4 | 1]
2 | 2 | 2 | 51 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, ARRAY[3,5]

)3
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— e et B ettt
1| 1| 5 | 2 | 4 | 1|
2 | 2 | 5 | 51 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5]

)3
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— e s St B et e
1| 1| 2 | 5 | 2 | 4 | 1] 0
2| 2 | 2 | 5 | 51 -1 0 | 1
(2 rows)

Examples for queries marked as undirected with cost column€

115

The examples in this section use the following Network for queries marked as
undirected and only cost column is used

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',

2, 3,
FALSE

)

seq | path_seq | node | edge | cost | agg_cost

————— T R e S
1 1| 2 | 4 | 1 0
2 | 2 | 5 | 8 | 1 1
31 3 | 6 | 5 | 1| 2
4 | 4 | 31 -1 0 | 3

(4 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',

2, 5,
FALSE
)3
seq | path_seq | node | edge | cost | agg_cost
————— e s St
1 11 2 | 4 | 1] 0
2 | 2 | 51 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',

11, 3,
FALSE

)3

seq | path_seq | node | edge | cost | agg_cost

————— e s St
1| 1] 11 | 11 | 1| 0
2 | 2 | 6 | 5 | 1| 1
3 | 3 | 31 -1 0|

(3 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
11, 5,
FALSE
);
seq | path_seq | node | edge | cost | agg_cost
————— e et

index.html#fig4
index.html#fig4

1] 1| 11 | 11 | 1]

2 | 2 | 6 | 8 | 1]

31 3 | 5 | -1 | 0 |
(3 rows)

SELECT * FROM pgr_dijkstra(

'"SELECT id, source, target, cost FROM edge_table',

ARRAY[2,11], 5,
FALSE
)

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— e e s ettt S
1 11 2 | 2 | 4 | 1 0
2 | 2 | 2 | 51 -1 0 | 1
3| 1| 111 11 12 | 1] 0
4 | 2 | 111 10 | 10 | 1] 1
5 | 3 | 11 | 51 -1 0 | 2
(5 rows)
SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
2, ARRAY[3,5],
FALSE
)
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— T R B s S e
1] 1 3 | 2 | 4 | 1] 0
2 | 2 | 3 | 5 | 8 | 1] 1
3| 3 | 3 | 6 | 5 | 1| 2
4 | 4 | 3 | 31 -1 0 | 3
5 | 1| 5 | 2 | 4 | 1] 0
6 | 2 | 5 | 51 -1 0 | 1
(6 rows)
SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost FROM edge_table',
ARRAY[2, 11], ARRAY[3,5],
FALSE
)3
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— e s A B fattatt L
1| 1| 2 | 3 | 2 | 4 | 1] 0
2 | 2 | 2 | 3| 5 | 8 | 1| 1
3| 3 | 2 | 3 | 6 | 5 | 1] 2
4 | 4 | 2 | 3| 31 -1 0| 3
5 | 1 21 5 | 2 | 4 | 1] 0

6 | 2 | 2 | 5 | 51 -1 0 | 1
7 | 1| 11 | 3| 11 | 11 | 1| 0
8 | 2 | 11 | 3| 6 | 5 | 1| 1
9 | 3 | 11 | 3 | 31 -1 0 | 2
10 | 1| 11 | 5 | 11 | 11 | 1| 0
11 | 2 | 11 | 5 | 6 | 8 | 1| 1
12 | 3| 11 | 5 | 51 -1 0 | 2
(12 rows)

Equvalences between signaturesq
Examples:
For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following:

e Network for queries marked as directed and cost and reverse__cost columns
are used

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3,
TRUE
)
seq | path_seq | node | edge | cost | agg_cost
————— T et e
1 1| 2 | 4 | 1 0
2 | 2 | 5 | 8 | 1 1
3| 3 | 6 | 9 | 11 2
4 | 4 | 91 16 | 1| 3
5 | 5 | 4 | 3 | 1 4
6 | 6 | 31 -1 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2,3

)3

seq | path_seq | node | edge | cost | agg_cost

————— e et
1] 1 2 | 4 | 1 0
2 | 2 | 5 | 8 | 1| 1
3 | 3 | 6 | 9 | 1 2
4 | 4 | 9 | 16 | 1 3
5 | 5 | 4 | 3| 1| 4
6 | 6 | 31 -1 0 | 5

118

index.html#fig1
index.html#fig1

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, ARRAY[3],
TRUE

);

seq | path_seq | end_vid | node | edge | cost | agg_cost

————— T Tt St B
1] 1] 3 | 2 | 4 | 1| 0
2 | 2 | 3 | 5 | 8 | 1| 1
3| 3| 31 6 | 9 | 1| 2
4 | 4 | 3 | 9 | 16 | 1] 3
5 | 5 | 3 | 4 | 3 | 1] 4
6 | 6 | 3 | 31 -1 | 0 | 5

(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, ARRAY[3]
);
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— Tt B Statt e
1 11 3 | 2 | 4 | 1 0
2 | 2 | 3 | 5 | 8 | 1] 1
3| 3 | 3 | 6 | 9 | 1] 2
4 | 4 | 3 | 9 | 16 | 1] 3
5 | 5 | 3 | 4 | 3 | 1] 4
6 | 6 | 3 | 31 -1 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], ARRAY[3],

TRUE
)3
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— T s T B e et St L
11 1 2 | 3 | 2 | 4 | 1] 0
2 | 2 | 2 | 3 5 | 8 | 1| 1
3 | 3| 2 | 3 6 | 9 | 1] 2
4 | 4 | 2 | 3 | 91 16 | 1] 3
5 | 5 | 2 | 3| 4 | 3| 1| 4
6 | 6 | 2 | 3 | 31 -1 0 | 5
(6 rows)

119

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], ARRAY[3]

)3

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— T e S At
11 1 2 | 3 | 2 | 4 | 1] 0
21 2| 2 | 31 5 | 8 | 1| 1
3 | 3| 2 | 3 6 | 9 | 1] 2
4 | 4 | 2 | 3 | 91 16 | 1] 3
5 | 5 | 2 | 3| 4 | 3| 1| 4
6 | 6 | 2 | 3 | 31 -1 0 | 5

(6 rows)

Examples:

For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following:

e Network for queries marked as undirected and cost and reverse_ cost
columns are used

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3,
FALSE
)3
seq | path_seq | node | edge | cost | agg_cost
————— e et
1| 1 2 | 2 | 1| 0
2 | 2 | 31 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, ARRAY[3],
FALSE
)3
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— e At B
1| 1 3 | 2 | 2 | 1| 0
2 | 2 | 3 | 31 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(

120

index.html#fig2
index.html#fig2

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

ARRAY[2], 3,
FALSE
)3
seq | path_seq | start_vid | node | edge | cost | agg_cost
————— T s St T
11 11 2 | 2 2 | 1 0
2 | 2 | 2 | 31 -1 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2], ARRAY[3],

FALSE
)3
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— T e S e Sl St
11 1 2 | 3| 2 | 2 | 1] 0
2 | 2 | 2 | 3| 31 -1 0| 1
(2 rows)
See Alsoq

¢ http://en.wikipedia.org/wiki/Dijkstra%27s_ algorithm
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

pgr_ dijkstraCostq Synopsisq
pgr_dijkstraCost

Using Dijkstra algorithm implemented by Boost.Graph, and extract only the
aggregate cost of the shortest path(s) found, for the combination of vertices
given.

Boost Graph Inside
Availability

121

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
index.html#document-sampledata
genindex.html
search.html
http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

o pgr_dijkstraCost(all signatures) 2.2.0

The pgr_dijkstraCost algorithm, is a good choice to calculate the sum of the
costs of the shortest path for a subset of pairs of nodes of the graph. We make
use of the Boost’s implementation of dijkstra which runs in \(O(V \log V +

E)\) time.

Characteristicsq

The main Characteristics are: e It does not return a path.

Signature

Returns the sum of the costs of the shortest path for pair combination
of nodes in the graph.
Process is done only on edges with positive costs.
Values are returned when there is a path.
— The returned values are in the form of a set of (start_vid,
end_vid, agg cost).
— When the starting vertex and ending vertex are the same, there
is no path.
* The agg cost int the non included values (v, v) is 0

— When the starting vertex and ending vertex are the different and
there is no path.

* The agg_cost in the non included values (u, v) is \(\infty\)

Let be the case the values returned are stored in a table, so the unique
index would be the pair: (start_vid, end_ vid).
For undirected graphs, the results are symmetric.

— The agg_cost of (u, v) is the same as for (v, u).

Any duplicated value in the start_ vids or end_ vids is ignored.
The returned values are ordered:

— start_ vid ascending

— end_ vid ascending
Running time: \(O(| start_vids | * (V \log V + E))\)

Summary9

pgr_dijkstraCost(edges_sql, start_vid, end_vid);
pgr_dijkstraCost(edges_sql, start_vid, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vid, directed);
pgr_dijkstraCost(edges_sql, start_vid, end_vids, directed);
pgr_dijkstraCost(edges_sql, start_vids, end_vids, directed);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

122

Signaturesq
Minimal signatureq
The minimal signature is for a directed graph from one start_vid to one

end_vid:

pgr_dijkstraCost (TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',

2, 3);
start_vid | end_vid | agg_cost
___________ o e
2 | 3 | 5
(1 row)

pgr_ dijkstraCost One to Oneq

This signature performs a Dijkstra from one start_vid to one end_vid: e
on a directed graph when directed flag is missing or is set to
true.

o on an undirected graph when directed flag is set to false.
pgr_dijkstraCost (TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);

RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

Example

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',

2, 3, false);
start_vid | end_vid | agg_cost
___________ e
2 | 3 | 1
(1 row)

pgr_ dijkstraCost One to Many9q
pgr_dijkstraCost (TEXT edges_sql, BIGINT start_vid, array[ANY_INTEGER] end_vids,

BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

123

This signature performs a Dijkstra from one start_vid to each end_vid in end_vids: e
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
2, ARRAY[3, 111);

start_vid | end_vid | agg_cost

(2 rows)
pegr_ dijkstraCost Many to Oneq

pgr_dijkstraCost (TEXT edges_sql, array[ANY_INTEGER] start_vids, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

This signature performs a Dijkstra from each start_vid in start_vids to one end_vid: e
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
ARRAY[2, 7], 3);

start_vid | end_vid | agg_cost

(2 rows)
pgr_ dijkstraCost Many to Many¥

pgr_dijkstraCost (TEXT edges_sql, array[ANY_INTEGER] start_vids, array[ANY_INTEGER] end_vid
BOOLEAN directed:=true);
RETURNS SET OF (start_vid, end_vid, agg_cost) or EMPTY SET

124

This signature performs a Dijkstra from each start_vid in start_vids to each end_vid in end
on a directed graph when directed flag is missing or is set to

true.

e on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_dijkstraCost(
'select id, source, target, cost, reverse_cost from edge_table',
ARRAY[2, 71, ARRAY[3, 111);

start_vid | end_vid | agg_cost

(4 rows)

Description of the Signaturesq

Description of the edges_ sql query for dijkstra like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cANY-NUMERICAL

Identifier of the edge.
Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

125

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Column Type Default

Description

sql TEXT
start__vid BIGINT

start_ vidsARRAY[BIGINT]
end__vid BIGINT

end_ vids ARRAY[BIGINT]
directed BOOLEAN true

SQL query as desc

Identifier of the st:

path.

Array of identifiers

Identifier of the en

path.

Array of identifiers
e When true (

Directed

e When false
considered as

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column Type

Description

start_ vid BIGINT

end_ vid BIGINT

agg cost FLOAT

Identifier of the starting ve
starting vetrices are in the

Identifier of the ending ver:
ending vertices are in the ¢

Aggregate cost from start

Additional Examplesq
Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dijkstraCost(

126

'select id, source, target, cost, reverse_cost from edge_table',

ARRAY[5, 3, 4, 3, 3, 4], ARRAY[3, 5, 3, 41);
start_vid | end_vid | agg_cost

(6 rows)

Example 2:

Making start_ vids the same as end_ vids

SELECT * FROM pgr_dijkstraCost(

'select id, source, target, cost, reverse_cost from edge_table',

ARRAY[5, 3, 4], ARRAY[5, 3, 4]);
start_vid | end_vid | agg_cost

(6 rows)

See Alsoq

o http://en.wikipedia.org/wiki/Dijkstra%27s_ algorithm
e Sample Data network.

Indices and tables

o Index
e Search Page

pgr__dijkstraCostMatrix - proposedq Nameq
pgr_dijkstraCostMatrix - Calculates the a cost matrix using pgr_ dijktras.
Warning

Proposed functions for next mayor release.

127

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
index.html#document-sampledata
genindex.html
search.html

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)

Functionality might not change. (But still can)

pgTap tests have being done. But might need more.

Documentation might need refinement.

Boost Graph Inside
Availability: 2.3.0

Synopsisq
Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary¥

pgr_dijkstraCostMatrix(edges_sql, start_vids)
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signaturesq

Minimal Signatureq
The minimal signature: e« Is for a directed graph.

pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
)3

start_vid | end_vid | agg_cost

128

http://www.boost.org/libs/graph

1 | 2 | 1
1| 3 | 6
1| 4 | 5
2 | 1] 1
2 | 3 | 5
2 | 4 | 4
3| 1] 2
3 | 2 | 1
3 | 4 | 3
4 | 1] 3
4 | 2 | 2
4 | 3 | 1
(12 rows)

Complete Signatureq

pgr_dijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
);

start_vid | end_vid | agg_cost
___________ e
1| 2 | 1
1] 3 | 2
1| 4 | 3
2 | 1| 1
2 | 3 | 1
2 | 4 | 2
3 | 1| 2
3 | 2 | 1
3 | 4 | 1
4 | 1| 3
4 | 2 | 2
4 | 3 | 1

(12 rows)

129

Description of the Signatures€
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parametefl'ype Description

edges_ sqEXT Edges SQL query as described above.
start_ vidRRAY [ANY-INTEGER] identifiers of the vertices.

directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.

130

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column Type

Description

start_ vid BIGINT

end_ vid BIGINT

agg cost FLOAT

Identifier of the starting ve
starting vetrices are in the

Identifier of the ending ver:
ending vertices are in the ¢

Aggregate cost from start

Examplesq
Example:

Use with tsp

SELECT * FROM pgr_TSP(

$$
SELECT * FROM pgr_dijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
)
$3,
randomize := false
);
seq | node | cost | agg_cost
————— s S S
1| 1] 1| 0
2 | 2 | 1| 1
3| 3 | 1| 2
4 | 4 | 3| 3
5 | 1] 0 | 6
(5 rows)
See Alsoq

Dijkstra - Family of functions

o Cost Matriz - Category

e Traveling Sales Person - Family of functions
¢ The queries use the Sample Data network.

Indices and tables

131

index.html#dijkstra
index.html#costmatrix
index.html#tsp
index.html#document-sampledata

o Index
e Search Page

pgr_ drivingDistanceq Name9

pgr_drivingDistance - Returns the driving distance from a start node.

& boost

LI N AR IR

Boost Graph Inside
Availability

o pgr_drivingDistance(single vertex) 2.0.0, signature change 2.1.0
o pgr_drivingDistance(multiple vertices) 2.1.0
Synopsisq

Using the Dijkstra algorithm, extracts all the nodes that have costs less than
or equal to the value distance. The edges extracted will conform to the corre-
sponding spanning tree.

Signature Summary9

pgr_drivingDistance(edges_sql, start_vid, distance)
pgr_drivingDistance(edges_sql, start_vid, distance, directed)
pgr_drivingDistance (edges_sql, start_vids, distance, directed, equicost)

RETURNS SET OF (seq, [start_vid,] node, edge, cost, agg_cost)

Signaturesq
Minimal Use9

pgr_drivingDistance(edges_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Driving Distance From A Single Starting Vertex9

pgr_drivingDistance(edges_sql, start_vid, distance, directed)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Driving Distance From Multiple Starting Verticesq

132

genindex.html
search.html
http://www.boost.org/libs/graph

pgr_drivingDistance(edges_sql, start_vids, distance, directed, equicost)
RETURNS SET OF (seq, start_vid, node, edge, cost, agg_cost)

Description of the Signaturesq
Description of the edges sql query for dijkstra like functionsq
edges_sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Column Type

edges_ sql TEXT

start_ vid BIGINT

start__vids ARRAY [ANY-INTEGER]

133

Column Type

distance FLOAT
directed BOOLEAN
equicost BOOLEAN

Description of the return valuesq

Returns set of (seq [, start_v], node, edge, cost, agg_cost)

Column Type

Description

seq INTEGER
start_ vid INTEGER

node BIGINT
edge BIGINT
cost FLOAT

agg_cost FLOAT

Sequential value starting fr
Identifier of the starting ve

Identifier of the node in th
start_vid.

Identifier of the edge used 1
node is the start_vid.

Cost to traverse edge.

Aggregate cost from start

Additional Examplesq

Examples for queries marked as directed with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as

directed and cost and reverse__cost columns are used

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table'

2, 3
)3
seq | node | edge | cost | agg_cost
————— T T S
1] 21 -1 0 | 0
2 | 1] 1| 1] 1

134

B

index.html#fig1
index.html#fig1

array[2,13], 3

13, 3

’

seq | node | edge | cost | agg_cost

).
)3
seq | from_v | node | edge | cost | agg_cost

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

(10 rows)

(8 rows)
v

et R s Satatet I
1
14
10
12
4
8
7
13

SELECT * FROM pgr_drivingDistance(
SELECT * FROM pgr_drivingDistance(

135

15 | 13 | 2 | 4 | 1] 3

16 | 13 | 6 | 8 | 1] 3

17 | 13 | 8 | 7 | 1| 3

18 | 13 | 12 | 13 | 1] 3
(18 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[2,13], 3, equicost:=true

);
seq | from_v | node | edge | cost | agg_cost
————— T s Rt B
1] 2 | 21 -1 0 | 0
2 | 2 | 11 1 1] 1
3| 2 | 5 | 4 | 1] 1
4 | 2 | 6 | 8 | 11 2
5 | 2 | 8 | 7 | 11 2
6 | 2 | 7 | 6 | 1 3
71 2 | 9 | 9 | 1] 3
8 | 13 | 131 -1 0 | 0
9 | 13 | 10 | 14 | 1| 1
10 | 13 | 11 | 12 | 1| 2
11 | 13 | 12 | 13 | 1| 3
(11 rows)

Examples for queries marked as undirected with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
undirected and cost and reverse__cost columns are used

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3, false
);

seq | node | edge | cost | agg_cost
————— T Eatat et B
11 21 -1 0 | 0

2 | 1 1 11 1
3| 31 2 | 1] 1
4 | 5 | 4 | 1| 1

5 | 4 | 3 | 1| 2

6 | 6 | 8 | 1| 2
7| 8 | 7 | 1| 2
81 10| 10| 1 2

9 | 7 6 | 1] 3

136

index.html#fig2
index.html#fig2

16
12
14

9
11
13

10
11
12
(12 rows)

SELECT * FROM pgr_drivingDistance(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

13, 3, false

B

seq | node | edge | cost | agg_cost

) .

(8 rows)

SELECT * FROM pgr_drivingDistance(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

array[2,13], 3, false

B

seq | from_v | node | edge | cost | agg_cost

) .

137

20 | 13 | 12 | 13 | 1| 3
(20 rows)

SELECT * FROM pgr_drivingDistance (
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[2,13], 3, false, equicost:=true

)5
seq | from_v | node | edge | cost | agg_cost
————— i e S
1| 2 | 21 -1 01 0
2 | 2 | 1 1 1 1
31 2 | 3 | 2 | 1 1
4 | 2 | 5 | 4 | 1] 1
5 | 2 | 4 | 3| 1] 2
6 | 2 | 6 | 8 | 1 2
71 2 | 8 | 7 | 1 2
8 | 2 | 7 | 6 | 1 3
9 | 2 | 91 16 | 11 3
10 | 131 13| -1 01 0
11 | 131 10| 14 | 1] 1
12 | 13 | 11 | 12 | 1] 2
13 | 131 12| 13 | 11 3
(13 rows)

Examples for queries marked as directed with cost columnq

The examples in this section use the following Network for queries marked as
directed and only cost column is used

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',

2, 3

)5
seq | node | edge | cost | agg_cost
————— s ettt et LR
1] 21 -1 0 | 0
2| 5 | 4 | 1 1
3| 6 | 8 | 1 2
4 | 10 | 10 | 1| 2
5 | 9 | 9 | 1| 3
6 | 11 | 11 | 1 3
71 13 | 14 | 1] 3

(7 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',

138

index.html#fig3
index.html#fig3

)
seq | node | edge | cost | agg_cost
————— R S
11 131 -1 0 | 0
(1 row)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3

);
seq | from_v | node | edge | cost | agg_cost
————— T et
11 2 | 21 -1 0 | 0
2 | 2 | 5 | 4 | 1] 1
3| 2 | 6 | 8 | 11 2
4 | 2 | 10 | 10 | 1] 2
5 | 2 | 9 | 9 | 1 3
6 | 2 | 11 | 11 | 1] 3
7 | 2 | 13 | 14 | 1] 3
8 | 13 | 131 -1 0 | 0
(8 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3, equicost:=true

);
seq | from_v | node | edge | cost | agg_cost
————— et Tt s S
11 2 | 21 -1 0 | 0
2 | 2 | 5 | 4 | 1] 1
3| 2 | 6 | 8 | 11 2
4 | 2 | 10 | 10 | 1] 2
5 | 2 | 9 | 9 | 1| 3
6 | 2 | 11 | 11 | 1] 3
7 | 13 | 131 -1 0 | 0

(7 rows)

Examples for queries marked as undirected with cost column€

The examples in this section use the following Network for queries marked as
undirected and only cost column is used

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
2, 3, false

139

index.html#fig4
index.html#fig4

)

seq | node | edge | cost | agg_cost

————— B T
1] 2 | -1 | 0 | 0
2 | 1| 1] 1| 1
3| 5 | 4 | 1] 1
4 | 6 | 8 | 1| 2
5 | 8 | 7 | 1| 2
6 | 10 | 10 | 1] 2
7 | 3 | 5 | 1] 3
8 | 7 | 6 | 1] 3
9 | 9 | 9 | 1] 3
10 | 11 | 12 | 1] 3
11 | 13 | 14 | 1] 3

(11 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
13, 3, false
) .

seq | node | edge | cost | agg_cost

————— e T
1] 13 | -1 0 | 0
2 | 10 | 14 | 1| 1
31 5 | 10 | 1] 2
4 | 11 | 12 | 1] 2
5 | 2 | 4 | 1] 3
6 | 6 | 8 | 1] 3
7 | 8 | 7| 1| 3
8 | 12 | 13 | 1| 3

(8 rows)

SELECT * FROM pgr_drivingDistance(
'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3, false

);

seq | from_v | node | edge | cost | agg_cost
————— T s Dt
11 2 | 21 -1 0 | 0

2 | 2 | 11 1 1] 1
31 2 | 5 | 4 | 1] 1

4 | 2 | 6 | 8 | 1 2

5 | 2| 8 | 7 | 1] 2

6 | 21 10 | 10 | 1] 2
71 2 | 3 | 5 | 1] 3

8 | 2 | 7| 6 | 11 3

140

9 | 2 | 9 | 9 | 1] 3
10 | 2 | 11 | 12 | 1| 3
11 | 2 | 13 | 14 | 1] 3
12 | 13 | 13 | -1 | 0 | 0
13 | 13 | 10 | 14 | 1] 1
14 | 13 | 5 | 10 | 1] 2
15 | 13 | 11 | 12 | 1| 2
16 | 13 | 2 | 4 | 1| 3
17 | 13 | 6 | 8 | 1] 3
18 | 13 | 8 | 7 | 1] 3
19 | 13 | 12 | 13 | 1] 3
(19 rows)

SELECT * FROM pgr_drivingDistance(

'SELECT id, source, target, cost FROM edge_table',
array[2,13], 3, false, equicost:=true

);

seq | from_v | node | edge | cost | agg_cost

————— T s e
1| 2 | 2 | -1 | 0 | 0
2 | 2 | 1| 1] 1| 1
3 | 2 | 5 | 4 | 1| 1
4 | 2 | 6 | 8 | 1 2
5 | 2 | 8 | 7| 1] 2
6 | 2 | 3 | 5 | 1| 3
7 | 2 | 7 | 6 | 1| 3
8 | 2 | 9 | 9 | 1| 3
9 | 13 | 131 -1 0 | 0
10 | 13 | 10 | 14 | 1| 1
11 | 13 | 11 | 12 | 1] 2
12 | 13 | 12 | 13 | 1| 3

(12 rows)

See Alsoq

e pgr_alphaShape - Alpha shape computation
o pgr_pointsAsPolygon - Polygon around set of points
e Sample Data network.

Indices and tables

o Index
e Search Page

141

index.html#pgr-alphashape
index.html#pgr-points-as-polygon
index.html#document-sampledata
genindex.html
search.html

pegr_KSPY Nameq
pgr_KSP — Returns the “K” shortest paths.

Boost Graph Inside
Availability: 2.0.0

e Signature change 2.1.0

Synopsisq

The K shortest path routing algorithm based on Yen’s algorithm. “K” is the
number of shortest paths desired.

Signature Summary¥
pgr_KSP(edges_sql, start_vid, end_vid, K);

pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Signaturesq

Minimal Signatureq

pgr_ksp(edges_sql, start_vid, end_vid, K);
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Complete Signatureq

pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Description of the Signaturesq
Description of the edges sql query for dijkstra like functionsq
edges_sql:

an SQL query, which should return a set of rows with the following columns:

142

http://www.boost.org/libs/graph

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Column Type
edges__sql TEXT
start_ vid BIGINT
end_ vid BIGINT
k INTEGER
directed BOOLEAN
heap_ paths BOOLEAN

Roughly, if the shortest path has N edges, the heap will contain about than N *

143

k paths for small value of k and k > 1.
Description of the return valuesq

Returns set of (seq, path_seq, path_id, node, edge, cost, agg_cost)

Column Type
seq INTEGER
path__seq INTEGER
path__id BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg_ cost FLOAT
Warning

During the transition to 3.0, because pgr_ksp version 2.0 doesn’t have defined
a directed flag nor a heap_path flag, when pgr_ksp is used with only one flag
version 2.0 signature will be used.

Additional Examplesq
Examples to handle the one flag to choose signaturesq

The examples in this section use the following Network for queries marked as
directed and cost and reverse__cost columns are used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 12, 2,
directed:=true
)3
seq | path_id | path_seq | node | edge | cost | agg_cost
————— e S Tt e
1 1 1 2 | 4 | 1 0
2 | 1] 2 | 5 | 8 | 1 1
3| 1] 3 | 6 | 9 | 1] 2
4 | 1] 4 | 9 | 15 | 1] 3
5 | 1] 5 | 121 -1 0 | 4

index.html#fig1
index.html#fig1

6 | 2 | 1] 2 | 4 | 1] 0

7 | 2 | 2 | 5 | 8 | 1| 1

8 | 2 | 3| 6 | 11 | 1| 2

9 | 2 | 4 | 11 | 13 | 1] 3

10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2
);
seq | path_id | path_seq | node | edge | cost | agg_cost

————— T B et T

1| 1] 1| 2 | 4 | 1] 0

2 | 1] 2 | 5 | 8 | 1] 1

3 | 1] 3 | 6 | 9 | 1] 2

4 | 1] 4 | 9 | 15 | 1] 3

5 | 1] 5 | 12 | -1 | 0 | 4

6 | 2 | 1] 2 | 4 | 1] 0

7| 2 | 2 | 5 | 8 | 1] 1

8 | 2 | 3 | 6 | 11 | 1] 2

9 | 2 | 4 | 11 | 13 | 1] 3

10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

Examples for queries marked as directed with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
directed and cost and reverse__cost columns are used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 12, 2

)
seq | path_id | path_seq | node | edge | cost | agg_cost
————— T B T B e
1] 1] 1 2 | 4 | 1] 0
2 | 11 2 | 5 | 8 | 1| 1
31 1] 3 | 6 | 9 | 1| 2
4 | 1] 4 | 9 | 15 | 1 3
5 | 1] 5 | 12 | -1 | 0 | 4
6 | 2| 1 2 | 4 | 1] 0
71 2| 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 1 11 | 11 2
9 | 2 | 4 | 11 | 13 | 1| 3

index.html#fig1
index.html#fig1

10
(10 rows)

SELECT * FROM pgr_KSP(

ge_table',

reverse_cost FROM ed

'SELECT id, source, target, cost,

2, 12, 2, heap_paths:=true

)

seq | path_id | path_seq | node | edge | cost | agg_cost

(15 rows)

SELECT * FROM pgr_KSP(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

12, 2, true, true

2,

)

seq | path_id | path_seq | node | edge | cost | agg_cost

e St et e

15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

Examples for queries marked as undirected with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
undirected and cost and reverse__cost columns are used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2, directed:=false

)5

seq | path_id | path_seq | node | edge | cost | agg_cost

————— e B St T ettt
1] 1] 1 2 | 2 | 1| 0
2 | 1] 2 | 3 | 3 | 1] 1
3 | 11 3| 41 16 | 1 2
4 | 1 4 | 9 | 15 | 1 3
5 | 1] 5 | 12 | -1 | 0 | 4
6 | 2| 1 2 | 4 | 1] 0
71 2| 2 | 5 | 8 | 1] 1
8 | 2| 31 6 | 11| 1 2
9 | 2 | 4 | 11 | 13 | 1| 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2, false, true
);
seq | path_id | path_seq | node | edge | cost | agg_cost

————— e s Tt At
1 1 11 2 | 2 | 1] 0
2 | 11 2 | 3| 3 | 1] 1
3| 1| 3 | 4 | 16 | 1| 2
4 | 1| 4 | 9 | 15 | 1| 3
5 | 1| 5 | 12 | -1 | 0 | 4
6 | 2 | 1| 2 | 4 | 1| 0
7 | 2 | 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 | 11 | 1] 2
9 | 2 | 4 | 11 | 13 | 1| 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 31 1] 2 | 4 | 1| 0
12 | 3 | 2 | 5 | 10 | 1] 1
13 | 3| 3 | 10 | 12 | 1] 2

index.html#fig2
index.html#fig2

14 | 3 | 4 | 11 | 13 | 1] 3
15 | 3 | 5 | 12 | -1 | 0 | 4
16 | 4 | 1| 2 | 4 | 1] 0
17 | 4 | 2 | 5 | 10 | 1] 1
18 | 4 | 3 | 10 | 12 | 1] 2
19 | 4 | 4 | 11 | 11 | 1] 3
20 | 4 | 5 | 6 | 9 | 1] 4
21 | 4 | 6 | 9 | 15 | 1] 5
22 | 4 | 7 | 12 | -1 | 0 | 6
(22 rows)

Examples for queries marked as directed with cost columnq

The examples in this section use the following Network for queries marked as
directed and only cost column is used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 3, 2
);
seq | path_id | path_seq | node | edge | cost | agg_cost
————— B s T S
(0 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2
);
seq | path_id | path_seq | node | edge | cost | agg_cost

————— e g Y S S ——

1| 1| 1| 2 | 4 | 1] 0

2 | 1| 2 | 5 | 8 | 1] 1

3| 1] 3 | 6 | 9 | 1] 2

4 | 1] 4 | 9 | 15 | 1] 3

5 | 1] 5 | 12 | -1 | 0 | 4

6 | 2 | 1| 2 | 4 | 1] 0

7 | 2 | 2 | 5 | 8 | 1] 1

8 | 2 | 3 | 6 | 11 | 1] 2

9 | 2 | 4 | 11 | 13 | 1] 3

10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, heap_paths:=true
);

148

index.html#fig3
index.html#fig3

seq | path_id | path_seq | node | edge | cost | agg_cost
i e s Eamtat e B

(15 rows)

* FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',

2,

SELECT

2, true, true

12,

)

seq | path_id | path_seq | node | edge | cost | agg_cost

(15 rows)

Examples for queries marked as undirected with cost column€

The examples in this section use the following Network for queries marked as

undirected and only cost column is used

149

index.html#fig4
index.html#fig4

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, directed:=false
);
seq | path_id | path_seq | node | edge | cost | agg_cost

————— T e L
1] 1] 1 2 | 4 | 1| 0
2 | 1] 2 | 5 | 8 | 1] 1
3| 1] 3 | 6 | 9 | 1] 2
4 | 1] 4 | 9 | 15 | 1] 3
5 | 1] 5 | 12 | -1 | 0 | 4
6 | 2 | 1] 2 | 4 | 1] 0
7| 2 | 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 | 11 | 1] 2
9 | 2 | 4 | 11 | 13 | 1] 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, directed:=false, heap_paths:=true
);
seq | path_id | path_seq | node | edge | cost | agg_cost

————— e T e T
1| 1| 1| 2 | 4 | 1| 0
2 | 1| 2 | 5 | 8 | 1| 1
3 | 1| 3 | 6 | 9 | 1| 2
4 | 1| 4 | 9 | 15 | 1| 3
5 | 1] 5 | 12 | -1 | 0| 4
6 | 2 | 1| 2 | 4 | 1] 0
7 | 2 | 2 | 5 | 8 | 1| 1
8 | 2 | 3 | 6 | 11 | 1| 2
9 | 2 | 4 | 11 | 13 | 1| 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1| 2 | 4 | 1| 0
12 | 3 | 2 | 5 | 10 | 1| 1
13 | 3 | 3 | 10 | 12 | 1| 2
14 | 3| 4 | 11 | 13 | 1| 3
15 | 3 | 5 | 12 | -1 0 | 4

(15 rows)

See Alsoq

o http://en.wikipedia.org/wiki/K shortest_path_routing
e Sample Data network.

150

http://en.wikipedia.org/wiki/K_shortest_path_routing
index.html#document-sampledata

Indices and tables

o Index
e Search Page

pgr__dijkstraVia - Proposedq Nameq

pgr_dijkstraVia — Using dijkstra algorithm, it finds the route that goes
through a list of vertices.

Boost Graph Inside
Availability: 2.2.0
Synopsisq

Given a list of vertices and a graph, this function is equivalent to finding
the shortest path between \(vertex_i\) and \(vertex_{i+1}\) for all \(i <
size\ of(vertex_via)\).

The paths represents the sections of the route.
Note

This is a proposed function

Signatrue Summary¥

pgr_dijkstraVia(edges_sql, via_vertices)
pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)

RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET

Signatures9q

Minimal Signatureq

pgr_dijkstraVia(edges_sql, via_vertices)

RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET

Example:

Find the route that visits the vertices 1 3 9 in that order

151

genindex.html
search.html
http://www.boost.org/libs/graph

SELECT * FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 3, 9]

)3
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cos
————— e e S et s Tt S
11 1 1] 11 31 11 11 1] ol 0
2 | 1] 2 | 11 31 21 4l 1] 1l 1
31 1 3| 1| 31 51 81 1] 2| 2
4| 1 4| 1| 31 61 91 1] 31 3
5 | 1 5 | 1| 31 91l 161 1] 4 | 4
6 | 1 6 | 1| 31 41 31 1] 5 | 5
7| 1 7| 11 31 31 -1] ol 6 | 6
8 | 2 | 1] 3| 91 31 51 1] 0| 6
9 | 2 | 2| 31 91 61 91 1| 1| 7
10 | 2| 3 3 91 91 -21 o0 2 | 8
(10 rows)

Complete Signatureq

pgr_dijkstraVia(edges_sql, via_vertices, directed, strict, U_turn_on_edge)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
node, edge, cost, agg_cost, route_agg_cost) or EMPTY SET

Example:

Find the route that visits the vertices 1 3 9 in that order on an undirected graph,
avoiding U-turns when possible

SELECT * FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 3, 9], false, strict:=true, U_turn_on_edge:=false

);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cos
————— e i T e e Tt B s Tt
1] 1] 11 1| 31 11 11 1] 01 0
2 | 1] 2 | 11 31 21 21 1] 11 1
3 11 3| 1 31 31 -11 ol 2 | 2
4| 2 | 1| 31 91 31 51 1] 01 2
5 | 2 | 2| 31 91 61 91 1| 1| 3
6 | 2 | 3 31 91 91 -21 ol 2| 4
(6 rows)

Description of the Signatureq
Description of the edges_ sql query for dijkstra like functionsq

152

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__calt¥-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Parameter Type
edges_ sql TEXT
via__vertices ARRAY [ANY-INTEGER]
directed BOOLEAN
strict BOOLEAN

153

Parameter Type

U_ turn_ on__edge BOOLEAN

Description of the parameters of the signaturesq

Parameter Type Description

edges_ sql TEXT SQL query as described abon
via__vertices ARRAY [ANYTINTE@ERdrtices identifiers
directed BOOLEAN (optional) Default is true (is

the graph is considered as U

strict BOOLEAN (optional) ignores if a subsec
and returns everything it fo
directed). When set to false
Undirected

U__turn_on__edge BOOLEAN (optional) Default is true (is
the graph is considered as U

Description of the return valuesq

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

seq BIGINT Sequential value starting from 1.

path_ pi®@IGINT Identifier of the path.

path__se®@IGINT Sequential value starting from 1 for the pa

start_ vi@IGINT Identifier of the starting vertex of the path

end_ vidBIGINT Identifier of the ending vertex of the path.

node BIGINT Identifier of the node in the path from star
end_ vid.

154

Column Type Description

edge BIGINT Identifier of the edge used to go from node

in the path sequence. -1 for the last node ¢

the last node of the route.

cost FLOAT Cost to traverse from node using edge to t

the route sequence.
agg costFLOAT Total cost from start_vid to end_vid of t

route__agg0ibDst Total cost from start_vid of path_pid =
the current path_pid .

Examplesq
Example 1:

Find the route that visits the vertices 1 5 3 9 4 in that order

SELECT * FROM pgr_dijkstraVia(

'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]
);

seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cos

————— e B T e T S
1] 1] 1] 1] 51 1 1| 1] 0| 0
2 | 1] 2| 1] 51 2| 4| 1] 1] 1
3| 1] 3| 1] 5|1 5| -1 0] 2| 2
4 | 2 | 1| 5 | 31 51 81 1] 0| 2
5 | 2 | 2 | 5 | 31 61 91 1] 1] 3
6 | 2 | 3| 5| 31 91 16| 1] 2 | 4
7| 2 | 4 | 5| 31 41 3| 1] 3| 5
8 | 2 | 5| 5| 31 31 -1 o0 4 | 6
9 | 3 | 1] 3| 91 3| 5[1] 0| 6
10 | 3| 2 | 3| 91 61 91 1] 1] 7
11 | 31 3| 3 | 91 9| -1 o0l 2 | 8
12 | 4 | 1] 9 | 41 9 161 1] 0| 8
13 | 4 | 2 | 9 | 4|1 41 -21 ol 1] 9
(13 rows)

Example 2:

What’s the aggregate cost of the third path?

SELECT agg_cost FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',

155

ARRAY[1, 5, 3, 9, 4]
)
WHERE path_id = 3 AND edge <O0;
agg_cost

Example 3:
What’s the route’s aggregate cost of the route at the end of the third path?

SELECT route_agg_cost FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)

WHERE path_id = 3 AND edge < 0;

route_agg_cost

Example 4:

How are the nodes visited in the route?

SELECT row_number() over () as node_seq, node

FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)

WHERE edge <> -1 ORDER BY seq;

node_seq | node

O O 00 NO OLd WN =
DO O W O oo

[

(10 rows)

156

Example 5:

What are the aggregate costs of the route when the visited vertices are reached?

SELECT path_id, route_agg_cost FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
ARRAY[1, 5, 3, 9, 4]

)

WHERE edge < 0;

path_id | route_agg cost

MW N

(4 rows

Example 6:

b2

show the route’s seq and aggregate cost and a status of “passes in front” or
“visits” node 9

SELECT seq, route_agg cost, node, agg cost ,

CASE WHEN edge = -1 THEN 'visits'

ELSE 'passes in front'

END as status

FROM pgr_dijkstraVia(
'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',

ARRAY[1, 5, 3, 9, 4])
WHERE node = 9 and (agg_cost <> 0 or seq = 1);
seq | route_agg cost | node | agg_cost | status

————— e e S s e e e e e
6 | 4 | 2 | passes in front
11 | 8 | 2 | visits

(2 rows)

ROLLBACK;
ROLLBACK

See Alsoq

o http://en.wikipedia.org/wiki/Dijkstra%27s_ algorithm
e Sample Data network.

Indices and tables

o Index
e Search Page

157

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
index.html#document-sampledata
genindex.html
search.html

The problem definition (Advanced documentation)q Given the follow-
ing query:

pgr_ dijkstra(\(sql, start_{vid}, end_ {vid}, directed)))

where \(sql = \{(id_1i, source_i, target_1i, cost_i, reverse\ _cost_i)\}\)

and

o \(source = \bigcup source_i\),
o \(target = \bigcup target_i\),

The graphs are defined as follows:
Directed graph
The weighted directed graph, \(G_d(V,E)\), is definied by:

o the set of vertices \(V\)
— \(V = source \cup target \cup {start_{vid}} \cup {end_ {vid}}\)
o the set of edges \(E\)

— \(E = \begin{cases} \text{ } \{(source_i, target_i, cost_1i) \text{
when } cost >=0 \} & \quad \text{if } reverse\ cost = \varnothing
\\ \text{ } \text{ } & \quad \text{ } \\ \text{ } \{(source_i,
target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ }
\\ \cup \{(target i, source i, reverse\ cost i) \text{ when }
reverse\ cost_i>=0 \} & \quad \text{if } reverse\ cost \neq
\varnothing \\ \end{cases}\)

Undirected graph
The weighted undirected graph, \(G_u(V,E)\), is definied by:

o the set of vertices \(V\)
— \(V = source \cup target \cup {start_v{vid}} \cup {end_{vid}}\)
o the set of edges \(E\)

— \(E = \begin{cases} \text{ } \{(source_i, target_i, cost_1i) \text{
when } cost >=0 \} & \quad \text{ } \\ \cup \{(target i,
source_i, cost_i) \text{ when } cost >=0 \} & \quad \text{
if } reverse_cost = \varnothing \\ \text{ } \text{ } & \text{
AN \text{ } \{(source_i, target_i, cost_i) \text{ when } cost
>=0 \} & \text{ } \\ \cup \{(target_i, source i, cost_1i) \text{
when } cost >=0 \} & \text{ } \\ \cup \{(target_ i, source i,
reverse\ cost_i) \text{ when } reverse\ cost i >=0)\} & \text{
A\ \cup \{(source_i, target_i, reverse_ cost_i) \text{ when }
reverse\ cost_i >=0)\} & \quad \text{ if } reverse\ cost \neq
\varnothing \\ \end{cases}\)

158

The problem

Given:

o \(start_{vid} \in V\) a starting vertex

o \(end_{vid} \in V\) an ending vertex

e \(G(V,E) = \begin{cases} G_d(V,E) & \quad \text{ if6 } directed =
true \\ G_u(V,E) & \quad \text{ if5 } directed = false \\ \end{cases}\)

Then:

o \(\boldsymbol{\pi} = \{(path_seq i, node_ i, edge i, cost_i,
agg_cost_i)\}\)

where: ¢ \(path\ seq i=1\)
\(path\ _seq_{[\pi [} = [\pi[\)
\(node_i \in V\)
o \(node_1 = start_ {vid}\)
\(
\(

node_{| \pi |} = end_ {vid}\)

\forall i \neq | \pi |, \quad (node_i, node_{i+1}, cost_i) \in E\)
\(edge_i = \begin{cases} id_{(node_i, mnode_{i+1},cost_i)}
&\quad \text{when } i \neq | \pi | \\ -1 &\quad \text{when } i =
\pi | \\ \end{cases}\)

o \(cost_i = cost_{(node_i, node_ {i+1})}\)

o \(agg\ cost_i = \begin{cases} 0 &\quad \text{when } i = 1
\\ \displaystyle\sum_{k=1}"{i} cost_{(node_{k-1}, node k)}
&\quad \text{when } i \neq 1 \\ \end{cases}\)

In other words: The algorithm returns a the shortest path between \(start_ {vid}\) and \ (e
\(path_seq\) indicates the relative position in the path of the

\(node\) or \(edge\).
o \(cost\) is the cost of the edge to be used to go to the next node.
\(agg__cost\) is the cost from the \(start_{vid}\) up to the node.

If there is no path, the resulting set is empty.

See Alsoq Indices and tables

o Index
e Search Page

pgr_KSPYq

159

genindex.html
search.html

Name9q pgr_KSP — Returns the “K” shortest paths.

Boost Graph Inside
Availability: 2.0.0

e Signature change 2.1.0

Synopsisq The K shortest path routing algorithm based on Yen’s algorithm.
“K” is the number of shortest paths desired.

Signature Summary9

pgr_KSP(edges_sql, start_vid, end_vid, K);
pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Signaturesq Minimal Signatureq

pgr_ksp(edges_sql, start_vid, end_vid, K);
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Complete Signatureq

pgr_KSP(edges_sql, start_vid, end_vid, k, directed, heap_paths)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Description of the Signaturesq Description of the edges sql query for
dijkstra like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

160

http://www.boost.org/libs/graph

Column Type Default Description

target ANY-INTEGER Identifier of the second end point vert
edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__ cANY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Column Type
edges_ sql TEXT
start_ vid BIGINT
end_ vid BIGINT
k INTEGER
directed BOOLEAN
heap__ paths BOOLEAN

Roughly, if the shortest path has N edges, the heap will contain about than N *
k paths for small value of k and k > 1.

Description of the return values9

Returns set of (seq, path_seq, path_id, node, edge, cost, agg_cost)

161

Column Type

seq INTEGER
path__seq INTEGER
path_id BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg _cost FLOAT
Warning

During the transition to 3.0, because pgr_ksp version 2.0 doesn’t have defined
a directed flag nor a heap_path flag, when pgr ksp is used with only one flag
version 2.0 signature will be used.

Additional ExamplesY Examples to handle the one flag to choose signa-
turesq

The examples in this section use the following Network for queries marked as
directed and cost and reverse__cost columns are used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 12, 2,
directed:=true

)3

seq | path_id | path_seq | node | edge | cost | agg_cost

————— e s St
1] 1] 1 2 | 4 | 1] 0
2 | 1] 2 | 5 | 8 | 1] 1
3| 1] 3 | 6 | 9 | 1| 2
4 | 1 4 | o1 15| 11 3
5 | 1] 5 | 121 -1 0 | 4
6 | 2| 1 2 | 4 | 1] 0
71 2| 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 | 11 | 1] 2
9 | 2 | 4 | 11 | 13 | 1| 3
10 | 2 | 5 | 12 | -1 | 0 | 4

index.html#fig1
index.html#fig1

(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 12, 2

)3

seq | path_id | path_seq | node | edge | cost | agg_cost

————— e Attt B
1] 1] 1 2 | 4 | 1 0
2 | 1] 2 | 5 | 8 | 1] 1
3 | 1] 3 | 6 | 9 | 1] 2
4 | 1] 4 | 9 | 15 | 1] 3
5 | 1 5 | 12 | -1 0| 4
6 | 2 | 1| 2 | 4 | 1| 0
71 2| 2 | 5 | 8 | 1| 1
8 | 2 | 3 | 6 | 11 | 1| 2
9 | 2 | 4 | 11 | 13 | 1] 3
10 | 2 | 5 | 21 -1 0 | 4

(10 rows)

Examples for queries marked as directed with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
directed and cost and reverse__cost columns are used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 12, 2

)3

seq | path_id | path_seq | node | edge | cost | agg_cost

----- T B e T
1] 1] 1 2 | 4 | 1] 0
2 | 11 2 | 5 | 8 | 1] 1
31 1] 3 | 6 | 9 | 1| 2
4 | 1] 4 | 9 | 15 | 1] 3
5 | 1] 5 | 12 |1 -1 0 | 4
6 | 2| 1 2 | 4 | 1] 0
71 2| 2 | 5 | 8 | 1| 1
8 | 2 | 3 | 6 1 11 | 1 2
9 | 2 | 4 | 11 | 13 | 1 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

163

index.html#fig1
index.html#fig1

2, 12, 2, heap_paths:=true

)

seq | path_id | path_seq | node | edge | cost | agg_cost

e et e et

(15 rows)

SELECT * FROM pgr_KSP(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

12, 2, true, true

2,

)

seq | path_id | path_seq | node | edge | cost | agg_cost

A A A O A A O A A A O
0O OO A FO AN AFOANMH
— | — | — o~

AN OOTANNL O NANWO AN
— — — -

A NN FOOA NN O ANOMT W0
oA A A A AN AN NN ANOOOOOMOM
A NN FHFWO ONMNMN0OOO”O A ANMIE 0
— o =

(15 rows)

Examples for queries marked as undirected with cost and reverse_cost

columns9

164

The examples in this section use the following Network for queries marked as

undirected and cost and reverse cost columns are used

SELECT * FROM pgr_KSP(

ge_table',

reverse_cost FROM ed

'SELECT id, source, target, cost,

false

2, directed:

12,

2,

)

seq | path_id | path_seq | node | edge | cost | agg_cost

(10 rows)

SELECT * FROM pgr_KSP(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

12, 2, false, true

2,

)

seq | path_id | path_seq | node | edge | cost | agg_cost

index.html#fig2
index.html#fig2

20 | 4 | 5 | 6 | 9 | 1] 4

21 | 4 | 6 | 9 | 15 | 1| 5

22 | 4 | 7 | 12 | -1 | 0 | 6
(22 rows)

Examples for queries marked as directed with cost columnq|

The examples in this section use the following Network for queries marked as
directed and only cost column is used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 3, 2
)3
seq | path_id | path_seq | node | edge | cost | agg_cost
----- T B it T
(0 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',

2, 12, 2

)3

seq | path_id | path_seq | node | edge | cost | agg_cost

————— e Attt B
1] 1] 1 2 | 4 | 1 0
2 | 1] 2 | 5 | 8 | 1] 1
3 | 1] 3 | 6 | 9 | 1] 2
4 | 1] 4 | 9 | 15 | 1] 3
5 | 1 5 | 12 | -1 0| 4
6 | 2 | 1| 2 | 4 | 1| 0
71 2| 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 | 11 | 1| 2
9 | 2 | 4 | 11 | 13 | 1] 3
10 | 2 | 5 | 12 | -1 | 0 | 4

(10 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, heap_paths:=true

)
seq | path_id | path_seq | node | edge | cost | agg_cost
————— e B St e S
1] 1] 1 2 | 4 | 1] 0
2 | 1] 2 | 5 | 8 | 1] 1
3| 1] 3 | 6 | 9 | 1| 2
4 | 1 4 | 9 | 15 | 1 3

index.html#fig3
index.html#fig3

5 | 1] 5 | 12 | -1 | 0 | 4
6 | 2 | 1] 2 | 4 | 1] 0
7 | 2 | 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 | 11 | 1] 2
9 | 2 | 4 | 11 | 13 | 1] 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1| 2 | 4 | 1] 0
12 | 3 | 2 | 5 | 10 | 1| 1
13 | 3| 3 | 10 | 12 | 1] 2
14 | 3 | 4 | 11 | 13 | 1] 3
15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, true, true
);
seq | path_id | path_seq | node | edge | cost | agg_cost

————— R
1| 1| 1| 2 | 4 | 1] 0
2 | 1| 2 | 5 | 8 | 1] 1
3| 1] 3 | 6 | 9 | 1] 2
4 | 1] 4 | 9 | 15 | 1| 3
5 | 1| 5 | 12 | -1 | 0 | 4
6 | 2 | 1] 2 | 4 | 1] 0
7 | 2 | 2 | 5 | 8 | 1] 1
8 | 2 | 3 | 6 | 11 | 1] 2
9 | 2 | 4 | 11 | 13 | 1] 3
10 | 2 | 5 | 12 | -1 | 0 | 4
11 | 3 | 1] 2 | 4 | 1] 0
12 | 3 | 2 | 5 | 10 | 1] 1
13 | 3 | 3 | 10 | 12 | 1] 2
14 | 3 | 4 | 11 | 13 | 1] 3
15 | 3 | 5 | 12 | -1 | 0 | 4

(15 rows)

Examples for queries marked as undirected with cost column€

The examples in this section use the following Network for queries marked as
undirected and only cost column is used

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',
2, 12, 2, directed:=false
);
seq | path_id | path_seq | node | edge | cost | agg_cost

167

index.html#fig4
index.html#fig4

e B e s Hatate

(10 rows)

* FROM pgr_KSP(
'SELECT id, source, target, cost FROM edge_table',

2:

SELECT

false, heap_paths:=true

2, directed:

12,

)

seq | path_id | path_seq | node | edge | cost | agg_cost

(15 rows)

See Alsoq

o http://en.wikipedia.org/wiki/K_ shortest_path_ routing

e Sample Data network.

Indices and tables

Index
e Search Page

168

http://en.wikipedia.org/wiki/K_shortest_path_routing
index.html#document-sampledata
genindex.html
search.html

pgr__trsp - Turn Restriction Shortest Path (TRSP)q

Name9q pgr_trsp — Returns the shortest path with support for turn restric-
tions.

Synopsisq The turn restricted shorthest path (TRSP) is a shortest path al-
gorithm that can optionally take into account complicated turn restrictions like
those found in real world navigable road networks. Performamnce wise it is
nearly as fast as the A* search but has many additional features like it works
with edges rather than the nodes of the network. Returns a set of pgr_costResult
(seq, id1, id2, cost) rows, that make up a path.

pgr_costResult[] pgr_trsp(sql text, source integer, target integer,
directed boolean, has_rcost boolean [,restrict_sql text]);

pgr_costResult[] pgr_trsp(sql text, source_edge integer, source_pos float8,
target_edge integer, target_pos float$8,
directed boolean, has_rcost boolean [,restrict_sql text]);

pgr_costResult3[] pgr_trspViaVertices(sql text, vids integer[],
directed boolean, has_rcost boolean
[, turn_restrict_sql text]);

pgr_costResult3[] pgr_trspViaEdges(sql text, eids integer[], pcts float8[],
directed boolean, has_rcost boolean
[, turn_restrict_sql text]);

Descriptionq The Turn Restricted Shortest Path algorithm (TRSP) is simi-
lar to the shooting star in that you can specify turn restrictions.

The TRSP setup is mostly the same as Dijkstra shortest path with the addition
of an optional turn restriction table. This provides an easy way of adding turn
restrictions to a road network by placing them in a separate table.

sql:

a SQL query, which should return a set of rows with the following columns:
SELECT id, source, target, cost, [,reverse_cost] FROM edge_table

id:
int4 identifier of the edge

source:

169

index.html#type-cost-result
index.html#pgr-dijkstra

int4 identifier of the source vertex
target:

int4 identifier of the target vertex
cost:

float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse cost:

(optional) the cost for the reverse traversal of the edge. This is only used when
the directed and has_rcost parameters are true (see the above remark about
negative costs).

source:
int4 NODE id of the start point
target:

int4 NODE id of the end point
directed:

true if the graph is directed

has rcost:

if true, the reverse_cost column of the SQL generated set of rows will be
used for the cost of the traversal of the edge in the opposite direction.

restrict_ sql:

(optional) a SQL query, which should return a set of rows with the following
columns:

SELECT to_cost, target_id, via_path FROM restrictions

to cost:

float8 turn restriction cost

target_ id:

int4 target id

via_ path:

text comma separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify EDGE id of source and target
together with a fraction to interpolate the position:

source__edge:

170

int4 EDGE id of the start edge

source__pos:

float8 fraction of 1 defines the position on the start edge
target_ edge:

int4 EDGE id of the end edge

target_ pos:

float8 fraction of 1 defines the position on the end edge
Returns set of pgr_costResult/]:

seq:

row sequence

id1:

node ID

id2:

edge ID (-1 for the last row)

cost:

cost to traverse from id1 using id2

History

e New in version 2.0.0

Support for Viasq Warning

The Support for Vias functions are prototypes. Not all corner cases are being
considered.

We also have support for vias where you can say generate a from A to B to C,
etc. We support both methods above only you pass an array of vertices or and
array of edges and percentage position along the edge in two arrays.

sql:

a SQL query, which should return a set of rows with the following columns:
SELECT id, source, target, cost, [,reverse_cost] FROM edge_table
id:

int4 identifier of the edge

171

index.html#type-cost-result

source:
int4 identifier of the source vertex
target:

int4 identifier of the target vertex
cost:

float8 value, of the edge traversal cost. A negative cost will prevent the edge
from being inserted in the graph.

reverse cost:

(optional) the cost for the reverse traversal of the edge. This is only used when
the directed and has_rcost parameters are true (see the above remark about
negative costs).

vids:

int4[] An ordered array of NODE id the path will go through from start to
end.

directed:
true if the graph is directed
has_rcost:

if true, the reverse_cost column of the SQL generated set of rows will be
used for the cost of the traversal of the edge in the opposite direction.

restrict_ sql:

(optional) a SQL query, which should return a set of rows with the following
columns:

SELECT to_cost, target_id, via_path FROM restrictions

to cost:

float8 turn restriction cost

target_ id:

int4 target id

via_ path:

text commar separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify EDGE id together with a fraction
to interpolate the position:

eids:

172

int4 An ordered array of EDGE id that the path has to traverse
pcts:

float8 An array of fractional positions along the respective edges in eids, where
0.0 is the start of the edge and 1.0 is the end of the eadge.

Returns set of pgr_costResult/]:
seq:

row sequence

id1:

route ID

id2:

node ID

id3:

edge ID (-1 for the last row)
cost:

cost to traverse from id2 using id3

History

e Via Support prototypes new in version 2.1.0

Examplesq Without turn restrictions

SELECT * FROM pgr_trsp(
'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
7, 12, false, false

);

seq | idl | id2 | cost
————— it SEE R
ol 71 6| 1
11 81 71 1
21 51 8| 1
31 61 91 1
4 | 9| 15 | 1
51 12| -1 | 0

(6 rows)

With turn restrictions

Then a query with turn restrictions is created as:

173

index.html#type-cost-result

SELECT * FROM pgr_trsp(
'"SELECT id: :INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
2, 7, false, false,
'SELECT to_cost, target_id::int4,
from_edge || coalesce('','' || via_path, '''') AS via_path
FROM restrictions'

);

seq | idl | id2 | cost
————— s e SR
0 | 21 4| 1
1| 5| 10 | 1
21 101 12] 1
31 11] 11 | 1
4 | 6 | 8 | 1
5 | 5 | 7 | 1
61 8 6 | 1
7171 -1 0

(8 rows)

SELECT * FROM pgr_trsp(
'"SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
7, 11, false, false,
'SELECT to_cost, target_id::int4,
from_edge || coalesce('','' || via_path, '''') AS via_path
FROM restrictions'

)3

seq | idl | id2 | cost
————— e S
ol 71 61 1
11 81 71 1
21 51 8| 1
31 61 9| 1
41 91 15 | 1
51 12| 13 | 1
6 | 11| -1 0

(7 rows)

An example query using vertex ids and via points:

SELECT * FROM pgr_trspViaVertices(
'"SELECT id: :INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
ARRAY[2,7,11]: :INTEGERI[],
false, false,
'SELECT to_cost, target_id::int4, from_edge ||
coalesce('',''||via_path,'''') AS via_path FROM restrictions');

174

seq | idl | id2 | id3 | cost

————— s ST
1] 1| 2 | 4 | 1
2 | 1] 51 10 | 1
3 | 11 10| 12| 1
4 | 1] 11| 11 | 1
5 | 1 | 6 | 8 | 1
6 | 1| 5 | 71 1
7 | 1] 8 | 6 | 1
sl 21 71 6| 1
9l 21 81 7| 1
10 | 2 | 5 | 8 | 1
11 | 2 | 6 | 9 | 1
12 | 2 | 9| 15 | 1
13 | 2|1 12| 13| 1
14 | 21 11| -1 0

(14 rows)

An example query using edge ids and vias:

SELECT * FROM pgr_trspViaEdges(

'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost,
reverse_cost FROM edge_table',

ARRAY[2,7,11] : : INTEGER[],

ARRAY[0.5, 0.5, 0.5]::FLOAT[],

true,
true,
'SELECT to_cost, target_id::int4, FROM_edge ||
coalesce('',''||via_path,'''') AS via_path FROM restrictions');

seq | idl | id2 | id3 | cost
————— B e B
1| 11 -1 2| 0.5
2 | 11 21 41 1
3 | 11 51 81 1
4 | 1] 6 | 9 | 1
5 | 1| 9| 16 | 1
6 | 11 41 3] 1
7 | 11 31 51 1
8 | 11 61 81 1
9 | 1| 5 | 7 | 1
101 21 51 8] 1
11 | 2 | 6 | 9 | 1
12 | 2 | 9| 16 | 1
13 | 2 | 4 | 3 | 1
14 | 2 | 3 | 5 | 1

175

15 | 2 | 6 | 11| 0.5
(15 rows)

The queries use the Sample Data network.

See Alsoq
o pgr_costResult|]

Indices and tables

o Index
e Search Page

Traveling Sales Person - Family of functionsq]

e pgr_ TSP - When input is given as matrix cell information.
o pgr_eucledianTSP - When input are coordinates.

pgr__ TSP Nameq
o pgr_TSP - Returns a route that visits all the nodes exactly once.
Availability: 2.0.0
¢ Signature changed 2.3.0
Synopsisq
The travelling salesman problem (TSP) or travelling salesperson problem asks

the following question:

e Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solu-
tion when the input is given in the form of matrix cell contents. The matrix
information must be symmetrical.

Signature Summaryq

176

index.html#document-sampledata
index.html#type-cost-result
genindex.html
search.html
index.html#pgr-tsp
index.html#pgr-euclediantsp

pgr_TSP(matrix_cell_sql)
pgr_TSP(matrix_cell_sql,
start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_ factor,
randomize,
RETURNS SETOF (seq, node, cost, agg_cost)

Signaturesq
Basic Useq

pgr_TSP(matrix_cell_sql)
RETURNS SETOF (seq, node, cost, agg_cost)

Example

Because the documentation examples are auto generated and tested for non
changing results, and the default is to have random execution, the example is
wrapping the actual call.

WITH
query AS (
SELECT * FROM pgr_TSP(
$8
SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),
directed := false
)
$$
)
)
SELECT agg_cost < 20 AS under_20 FROM query WHERE seq = 14;
under_20
t
(1 row)

Complete Signatureq

pgr_TSP(matrix_cell_sql,
start_id, end_id,
max_processing_time,

177

tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,
RETURNS SETOF (seq, node, cost, agg_cost)

Example:

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),

directed := false
)
$3,
start_id := 7,
randomize := false
);
seq | node | cost | agg_cost
————— B e
1] 7 | 1| 0
2 | 8 | 1] 1
3 | 5 | 1] 2
4 | 2 | 1] 3
5 | 1| 2 | 4
6 | 3 | 1] 6
7 | 4 | 1] 7
8 | 9 | 1] 8
9 | 12 | 1] 9
10 | 11 | 1| 10
111 10 | 1] 11
12 | 13 | 3 | 12
13 | 6 | 3 | 15
14 | 7 | 0 | 18
(14 rows)

Description of the Signaturesq
Description of the Matrix Cell SQL query9

Column Type Description

start_ vid BIGINT Identifier of the starting vertex.

end_ vid BIGINT Identifier of the ending vertex.

agg cost FLOAT Cost for going from start_ vid to end_ vid

178

Can be Used with:

pgr_dijkstraCostMatriz - proposed

e pgr_withPointsCostMatriz - proposed
e pgr_floydWarshall

e pgr_johnson

To generate a symmetric matrix
o directed := false.

If using directed := true, the resulting non symmetric matrix must be converted
to symmetric by fixing the non symmetric values according to your application
needs.

Description 0Of the Control parameters

The control parameters are optional, and have a default value.

Parameter Type Default Description

xstart_vidx TTBIGINT™™ °0° The greedy part of the implementation will
**xend_vidk* TTBIGINT™® "0~ Last visiting vertex before returning to st
¥max_processing_timexx TTFLOAT™* “+infinity~ Stop the annealing processing when tl
x*tries_per_temperature*x “TINTEGER™ ™ °500° Maximum number of times a neighbor(s)
**max_changes_per_temperaturex* ~“INTEGER™~ °60° Maximum number of times the solutio:
max_consecutive_non_changes ~“INTEGER™~ 100" Maximum number of consecutive times
**initial_temperaturexx* TTFLOAT™ " “100° Starting temperature.
xfinal_temperaturex TTFLOAT™ " t0.1° Ending temperature.

**cooling_factork* TTFLOAT™ " "0.9° Value between between 0 and 1 (not includ
randomize ""BOOLEAN"" “true’ Choose the random seed

- true: Use current time as seed
- false: Use 1" as seed. Using this value will get 1

Description of the return columns

Returns set of ~~(seq, node, cost, agg_cost) "

179

index.html#pgr-dijkstracostmatrix
index.html#pgr-withpointscostmatrix
index.html#pgr-floydwarshall
index.html#pgr-johnson

Column Type Description

*kseqik “TINTEGER™ " Row sequence.
*x*nodex* “"BIGINT "~ Identifier of the node/coordinate/point.
*kCcost*x* ""FLOAT " Cost to traverse from the current ~"node”™ " ito the next ~"node™ " in tl}

- 770" for the last row in the path sequence.

**agg costx*x ~"FLOAT " Aggregate cost from the “~"node”™" at ““seq = 1" to the current node.
- 770" " for the first row in the path sequence.

Examplesq
Example:
Using with points of interest.

To generate a symmetric matrix:

o the side information of pointsOflnterset is ignored by not including it in
the query
e and directed := false

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 5, 6, -6], directed := false);

$3,
start_id := 5,
randomize := false
)3
seq | node | cost | agg_cost
————— s S S
1 5 | 1| 0
2 | 6 | 1| 1
3 31 1.6 | 2
4 | -1] 1.3] 3.6
5 | -6 | .3 4.9
6 | 5 | 0 | 5.2
(6 rows)

180

The queries use the Sample Data network.

See Alsoq

o Traveling Sales Person - Family of functions
o http://en.wikipedia.org/wiki/Traveling_ salesman_ problem
o http://en.wikipedia.org/wiki/Simulated__annealing

Indices and tables

o Index
e Search Page

pgr__eucledianTSPY Name9

pgr_eucledianTSP - Returns a route that visits all the coordinates pairs exactly
once.

Availability: 2.3.0
Synopsisq

The travelling salesman problem (TSP) or travelling salesperson problem asks
the following question:

o Given a list of cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

This implementation uses simulated annealing to return the approximate solu-
tion when the input is given in the form of coordinates.

Signature Summary¥

pgr_eucledianTSP(coordinates_sql)
pgr_eucledianTSP(coordinates_sql,
start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,
RETURNS SETOF (seq, node, cost, agg_cost)

Signaturesq

Minimal Signatureq

181

index.html#document-sampledata
index.html#tsp
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing
genindex.html
search.html

pgr_eucledianTSP(coordinates_sql)
RETURNS SETOF (seq, node, cost, agg_cost)

Example:

Because the documentation examples are auto generated and tested for non
changing results, and the default is to have random execution, the example is
wrapping the actual call.

WITH
query AS (
SELECT * FROM pgr_eucledianTSP(
$$
SELECT id, st_X(the_geom) AS x, st_Y(the_geom)AS y FROM edge_table_vertices_pgr
$$
)
)
SELECT agg_cost < 20 AS under_20 FROM query WHERE seq = 18;
under_20
t
(1 row)

Complete Signatureq

pgr_eucledianTSP(coordinates_sql,
start_id, end_id,
max_processing_time,
tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes,
initial_temperature, final_temperature, cooling_factor,
randomize,
RETURNS SETOF (seq, node, cost, agg_cost)

Example:

SELECT* from pgr_eucledianTSP(

3
SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr

$$,
tries_per_temperature := 3,
cooling_factor := 0.5,
randomize := false

);

seq | node | cost | agg_cost
————— e R

1| 1| 1.4142135623731 | 0
2 | 3 | 1 | 1.4142135623731
3 | 4 | 1 | 2.41421356237309
4 | 9 | 0.58309518948453 | 3.41421356237309
5 | 16 | 0.58309518948453 | 3.99730875185762
6 | 6 | 1 | 4.58040394134215
7 1 5 | 1 | 5.58040394134215
8 | 8 | 1 | 6.58040394134215
9 | 7 | 1.58113883008419 | 7.58040394134215
10 | 14 | 1.499999999999 | 9.16154277142634
11 | 15 | 0.5 | 10.6615427714253
12 | 13 | 1.5 | 11.1615427714253
13 | 17 | 1.11803398874989 | 12.6615427714253
14 | 12 | 1 | 13.7795767601752
15 | 11 | 1 | 14.7795767601752
16 | 10 | 2 | 15.7795767601752
17 | 2 | 1 | 17.7795767601752
18 | 1] 0 | 18.7795767601752

(18 rows)

Description of the Signatures€q

Description of the coordinates SQL query¥

Column Type Description

id BIGINT Identifier of the coordinate. (optional)

X FLOAT X value of the coordinate.

y FLOAT Y value of the coordinate.

When the value of id is not given then the coordinates will receive an id starting
from 1, in the order given.

Description 0f the Control parameters

The control parameters are optional, and have a default value.

Parameter Type Default Description

*kstart_vid** T"BIGINT " "0° The greedy part of the implementation will
kend_vidx TBIGINT T0° Last visiting vertex before returning to st
**max_processing_timexx* TFLOAT™® “+infinity" Stop the annealing processing when tl

183

**tries_per_temperaturex* "TINTEGER™ ™ °500° Maximum number of times a neighbor(s)

**max_changes_per_temperaturex* ~~INTEGER "~ °60° Maximum number of times the solutio:
max_consecutive_non_changes ~“INTEGER™~ 7100° Maximum number of consecutive times
**initial_temperaturexx* TTFLOAT™* “100° Starting temperature.
**final_temperaturexx* TTFLOAT™ " t0.1° Ending temperature.

cooling_factor TTFLOAT™ ™ "0.9° Value between between 0 and 1 (not includ
randomize ""BOOLEAN"" “true” Choose the random seed

- true: Use current time as seed
- false: Use "1° as seed. Using this value will get 1

Description of the return columns

Returns set of ~~(seq, node, cost, agg_cost) "

Column Type Description

*kseqikk “TINTEGER™ "~ Row sequence.

*x*nodex* “"BIGINT ~ Identifier of the node/coordinate/point.

**costr* ""FLOAT"" Cost to traverse from the current ~"node” " ito the next "~"node” " in tl

- 707" for the last row in the path sequence.

*xagg cost** ~"FLOAT ™~ Aggregate cost from the “~"node” ™ at ““seq = 17" to the current node.
- 770" for the first row in the path sequence.

Examplesq
Example:

Skipping the Simulated Annealing & showing some process information

SET client_min_messages TO DEBUGI1;
SET
SELECT* from pgr_eucledianTSP(
3
SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
$3,
tries_per_temperature := 0,
randomize := false

184

)3
DEBUG: pgr_eucledianTSP Processing Information
Initializing tsp class ———> tsp.greedylInitial ---> tsp.annealing ---> 0K

Cycle(100) total changes =0 0 were because delta energy < O
Total swaps: 3

Total slides: O

Total reverses: 0

Times best tour changed: 4

Best cost reached = 18.7796

seq | node | cost | agg_cost
————— T et e L
1] 1| 1.4142135623731 | 0
2 | 3| 1| 1.4142135623731
31 4 | 1 | 2.41421356237309
4 | 9 | 0.58309518948453 | 3.41421356237309
5 | 16 | 0.58309518948453 | 3.99730875185762
6 | 6 | 1 | 4.58040394134215
71 5 | 1 | 5.58040394134215
8 | 8 | 1 | 6.58040394134215
9 | 7 | 1.58113883008419 | 7.58040394134215
10 | 14 | 1.499999999999 | 9.16154277142634
11 | 15 | 0.5 | 10.6615427714253
12 | 13 | 1.5 | 11.1615427714253
13 | 17 | 1.11803398874989 | 12.6615427714253
14 | 12 | 1 | 13.7795767601752
15 | 11 | 1 | 14.7795767601752
16 | 10 | 2 | 15.7795767601752
17 | 2 | 1 | 17.7795767601752
18 | 1| 0 | 18.7795767601752
(18 rows)

The queries use the Sample Data network.
History
e New in version 2.3.0
See Alsoq
o Traveling Sales Person - Family of functions
e http://en.wikipedia.org/wiki/Traveling salesman_ problem

e http://en.wikipedia.org/wiki/Simulated annealing

Indices and tables

185

index.html#document-sampledata
index.html#tsp
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing

o Index
e Search Page

General Informationq Originq

The traveling sales person problem was studied in the 18th century by mathematicians
Sir William Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book
Graph Theory (Biggs et al. 1976).

o ISBN-13: 978-0198539162
o ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr
Menger in Vienna and Harvard. The problem was later promoted by Hassler,
Whitney & Merrill at Princeton. A detailed description about the connection
between Menger & Whitney, and the development of the TSP can be found in
On the history of combinatorial optimization (till 1960)

Problem Definitionq

Given a collection of cities and travel cost between each pair, find the cheapest
way for visiting all of the cities and returning to the starting point.

Characteristicsq

e The travel costs are symmetric:

— traveling costs from city A to city B are just as much as traveling
from B to A.

e This problem is an NP-hard optimization problem.
o To calculate the number of different tours through \(n\) cities:

— Given a starting city,

There are \(n-1\) choices for the second city,
And \(n-2\) choices for the third city, etc.
Multiplying these together we get \((n-1)! = (n-1) (n-2) . . 1\).
— Now since our travel costs do not depend on the direction we take
around the tour:
* this number by 2

A\ ((-1)1/2Y).

186

genindex.html
search.html
http://www.cwi.nl/~lex/files/histco.ps

TSP & Simulated Annealingq

The simulated annealing algorithm was originally inspired from the process of
annealing in metal work.

Annealing involves heating and cooling a material to alter its physical properties
due to the changes in its internal structure. As the metal cools its new structure
becomes fixed, consequently causing the metal to retain its newly obtained
properties. [C001]

Pseudocode

Given an initial solution, the simulated annealing process, will start with a high
temperature and gradually cool down until the desired temperature is reached.

For each temperature, a neighbouring new solution snew is calculated. The
higher the temperature the higher the probability of accepting the new solution
as a possible bester solution.

Once the desired temperature is reached, the best solution found is returned

Solution = initial_solution;

temperature = initial_temperature;
while (temperature > final_ temperature) {

do tries_per_temperature times {
snew = neighbour(solution);
If P(E(solution), E(snew), T) >= random(0, 1)
solution = snew;

temperature = temperature * cooling factor;

Output: the best solution

pgRouting Implementationq

pgRouting’s implementation adds some extra parameters to allow some exit
controls within the simulated annealing process.

To cool down faster to the next temperature:

e max_ changes per_ temperature: limits the number of changes in the so-
lution per temperature

e max_ consecutive_non_ changes: limits the number of consecutive non
changes per temperature

187

index.html#c001

This is done by doing some book keeping on the times solution = snews; is
executed.

e« max_changes_per temperature: Increases by one when solution
changes

e max_ consecutive_non_ changes: Reset to 0 when solution changes, and
increased each try

Additionally to stop the algorithm at a higher temperature than the desired
one:

e max_ processing_time: limits the time the simulated annealing is per-
formed.

e book keeping is done to see if there was a change in solution on the last
temperature

Note that, if no change was found in the first max_ consecutive__non__changes
tries, then the simulated annealing will stop.

Solution = initial_solution;

temperature = initial_temperature;
while (temperature > final_temperature) {

do tries_per_temperature times {
snew = neighbour(solution);
If P(E(solution), E(snew), T) >= random(0, 1)
solution = snew;

when max_changes_per_temperature is reached
or max_consecutive_non_changes is reached
BREAK;

temperature = temperature * cooling factor;

when no changes were done in the current temperature
or max_processing_time has being reached
BREAK;

Output: the best solution

Choosing parametersq

There is no exact rule on how the parameters have to be chose, it will depend
on the special characteristics of the problem.

188

Your computational time is crucial, then put your time limit to
max__processing_ time.

Make the tries_ per_ temperture depending on the number of cities,
for example:

— Useful to estimate the time it takes to do one cycle: use 1
* this will help to set a reasonable max__processing_ time

=\ * (n-1)\)
— \(500 * n\)

For a faster decreasing the temperature set cooling_ factor to a smaller
number, and set to a higher number for a slower decrease.
When for the same given data the same results are needed, set randomize

to false.

— When estimating how long it takes to do one cycle: use false

A recommendation is to play with the values and see what fits to the particular

data.

Description Of the Control parametersq

The control parameters are optional, and have a default value.

Parameter Type Default
start_ vid BIGINT 0

end_ vid BIGINT 0
max__processiAg0Aflime +infinity
tries_ per_ tempEr@ERre 500
max__changes I#GERemperature 60
max__consecutiNEEGABn_ _changes 100
initial_tempeFifidiie 100
final_temperafia&T 0.1
cooling_ factoiFLOAT 0.9

189

Parameter Type Default

randomize BOOLEAN true

Description of the return columns9

Returns set of (seq, node, cost, agg_cost)

Column Type Description

seq INTEGER Row sequence.
node BIGINT Identifier of the node/coordinate/point.
cost FLOAT Cost to traverse from the current node ito the next node in the path sequ

0 for the last row in the path sequence.

agg_cost FLOAT Aggregate cost from the node at seq = 1 to the current node.
0 for the first row in the path sequence.

See Alsoq

References

[C001] Simulated annaeling algorithm for beginners

o http://en.wikipedia.org/wiki/Traveling_salesman_ problem
o http://en.wikipedia.org/wiki/Simulated__annealing

Indices and tables

o Index
e Search Page

Driving Distance - Category¥

e pgr_drivingDistance - Driving Distance based on pgr_ dijkstra
o pgr_withPointsDD - Proposed - Driving Distance based on pgr_ withPoints

190

http://www.theprojectspot.com/tutorial-post/simulated-annealing-algorithm-for-beginners/6
http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Simulated_annealing
genindex.html
search.html
index.html#pgr-drivingdistance
index.html#pgr-withpointsdd

e Post pocessing

— pgr_alphaShape - Alpha shape computation
— pgr_pointsAsPolygon - Polygon around a set of points

pgr__alphaShapeq Nameq
pgr_alphaShape — Core function for alpha shape computation.
Synopsisq

Returns a table with (x, y) rows that describe the vertices of an alpha shape.
table() pgr_alphaShape(text sql [, float8 alphal);

Description
sql:

text a SQL query, which should return a set of rows with the following columns:
SELECT id, x, y FROM vertex_table

id:

int4 identifier of the vertex
X:

float8 x-coordinate

y:

float8 y-coordinate

alpha:

(optional) float8 alpha value. If specified alpha value equals 0 (default), then
optimal alpha value is used. For more information, see CGAL - 2D Alpha
Shapes.

Returns a vertex record for each row:
X:

x-coordinate

y:

y-coordinate

If a result includes multiple outer/inner rings, return those with separator row
(x=NULL and y=NULL).

History

191

index.html#pgr-alphashape
index.html#pgr-points-as-polygon
http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html
http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html

o Renamed in version 2.0.0
o Added alpha argument with default 0 (use optimal value) in version 2.1.0

o Supported to return multiple outer/inner ring coordinates with separator
row (x=NULL and y=NULL) in version 2.1.0

Examplesq

PgRouting’s alpha shape implementation has no way to control the order of the
output points, so the actual output might different for the same input data. The
first query, has the output ordered, he second query shows an example usage:

Example: the (ordered) results

SELECT * FROM pgr_alphaShape(
'SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y
FROM edge_table_vertices_pgr') ORDER BY x, y;

x |y
_____ e
0 | 2
0.5 | 3.5
2 | 0
2 | 4
3.5 | 4
4 | 1
4 | 2
4 | 3
(8 rows)

Example: calculating the area

Steps:

e Calculates the alpha shape — the ORDER BY clause is not used.
e constructs a polygon

e and computes the area

SELECT round (ST_Area(ST_MakePolygon(ST_AddPoint(foo.openline, ST_StartPoint(foo.openline)
FROM (
SELECT ST_MakeLine(points ORDER BY id) AS openline
FROM (
SELECT ST_MakePoint(x, y) AS points, row_number() over() AS id
FROM pgr_alphaShape(
'"SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y(the_geom)::float AS y
FROM edge_table_vertices_pgr')

192

) AS a
) AS foo;
st_area

The queries use the Sample Data network.

See Alsoq

e pgr_drivingDistance - Driving Distance
e pgr_pointsAsPolygon - Polygon around set of points

Indices and tables

o Index
e Search Page

pgr__pointsAsPolygonq Name€q

pgr_pointsAsPolygon — Draws an alpha shape around given set of points.
Synopsisq

Returns the alpha shape as (multi)polygon geometry.

geometry pgr_pointsAsPolygon(text sql [, float8 alphal);

Description

sql:

text a SQL query, which should return a set of rows with the following columns:
SELECT id, x, y FROM vertex_result;

id:

int4 identifier of the vertex
X:

float8 x-coordinate

y:

float8 y-coordinate

193

index.html#document-sampledata
index.html#pgr-drivingdistance
index.html#pgr-points-as-polygon
genindex.html
search.html

alpha:

(optional) float8 alpha value. If specified alpha value equals 0 (default), then
optimal alpha value is used. For more information, see CGAL - 2D Alpha
Shapes.

Returns a (multi)polygon geometry (with holes).
History

o Renamed in version 2.0.0
o Added alpha argument with default 0 (use optimal value) in version 2.1.0

o Supported to return a (multi)polygon geometry (with holes) in version
2.1.0

Examplesq

In the following query there is no way to control which point in the polygon is
the first in the list, so you may get similar but different results than the following
which are also correct.

SELECT ST_AsText (pgr_pointsAsPolygon('SELECT id::integer, ST_X(the_geom)::float AS x, ST_Y
FROM edge_table_vertices_pgr'));
st_astext

POLYGON((2 4,3.5 4,4 3,4 2,4 1,2 0,0 2,0.5 3.5,2 4))
(1 row)

The query use the Sample Data network.
See Alsoq

o pgr_drivingDistance - Driving Distance
e pgr_alphaShape - Alpha shape computation

Indices and tables

o Index
e Search Page

See Alsoq Indices and tables

o Index
e Search Page

194

http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html
http://doc.cgal.org/latest/Alpha_shapes_2/group__PkgAlphaShape2.html
index.html#document-sampledata
index.html#pgr-drivingdistance
index.html#pgr-alphashape
genindex.html
search.html
genindex.html
search.html

See Alsoq Indices and tables

o Index
e Search Page

All Pairs - Family of Functions

o pgr_floydWarshall - Floyd-Warshall’'s Algorithm
e pgr_johnson- Johnson’s Algorithm

pgr_aStar - Shortest Path A*
pgr_bdAstar - Bi-directional A* Shortest Path
pgr_bdDijkstra - Bi-directional Dijkstra Shortest Path

Dijkstra - Family of functions

e pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.
o pgr_dijkstraCost - Get the aggregate cost of the shortest paths.
o pgr_dijkstraCostMatriz - proposed - Use pgr_ dijkstra to create a costs

matrix.

o pgr_drivingDistance - Use pgr_ dijkstra to calculate catchament informa-
tion.

e pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest
paths.

o pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

pgr_ KSP - K-Shortest Path
pgr_trsp - Turn Restriction Shortest Path (TRSP)

Traveling Sales Person - Family of functions

e pgr_ TSP - When input is given as matrix cell information.
o pgr_eucledianTSP - When input are coordinates.

Driving Distance - Category

e pgr_drivingDistance - Driving Distance based on pgr_ dijkstra
o pgr_withPointsDD - Proposed - Driving Distance based on pgr_ withPoints
e Post pocessing

— pgr_alphaShape - Alpha shape computation
— pgr_pointsAsPolygon - Polygon around a set of points

195

genindex.html
search.html
index.html#all-pairs
index.html#pgr-floydwarshall
index.html#pgr-johnson
index.html#pgr-astar
index.html#pgr-bdastar
index.html#pgr-bddijkstra
index.html#dijkstra
index.html#pgr-dijkstra
index.html#pgr-dijkstracost
index.html#pgr-dijkstracostmatrix
index.html#pgr-drivingdistance
index.html#pgr-ksp
index.html#pgr-dijkstravia
index.html#pgr-ksp
index.html#trsp
index.html#tsp
index.html#pgr-tsp
index.html#pgr-euclediantsp
index.html#drivingdistance
index.html#pgr-drivingdistance
index.html#pgr-withpointsdd
index.html#pgr-alphashape
index.html#pgr-points-as-polygon

Available Functions but not official pgRouting functionsq|

e Stable Proposed Functions
o FExperimental Functions

Stable Proposed Functionsq

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)

Functionality might not change. (But still can)

— pgTap tests have being done. But might need more.

— Documentation might need refinement.

As part of the Dijkstra - Family of functions

o pgr_dijkstraCostMatriz - proposed Use pgr_ dijkstra to calculate a cost
matrix.

o pgr_dijkstraVia - Proposed - Use pgr__dijkstra to make a route via vertices.

Families

aStar - Family of functions

e pgr_aStar - A* algorithm for the shortest path.

o pgr_aStarCost — proposed - Get the aggregate cost of the shortest paths.

o pgr_aStarCostMatriz - proposed - Get the cost matrix of the shortest
paths.

Bidirectional A* - Family of functions

e pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.
o pgr_bdAstarCost - Proposed - Bidirectional A* algorithm to calculate the
cost of the paths.

o pgr_bdAstarCostMatriz - proposed - Bidirectional A* algorithm to calcu-
late a cost matrix of paths.

196

index.html#stable
index.html#proposed
index.html#dijkstra
index.html#pgr-dijkstracostmatrix
index.html#pgr-dijkstravia
index.html#astar
index.html#pgr-astar
index.html#pgr-astarcost
index.html#pgr-astarcostmatrix
index.html#bdastar
index.html#pgr-bdastar
index.html#pgr-bdastarcost
index.html#pgr-bdastarcostmatrix

Bidirectional Dijkstra - Family of functions

Flow

pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.
pgr_bdDijkstraCost - Proposed - Bidirectional Dijkstra to calculate the
cost of the shortest paths

pgr__bdDijkstraCostMatriz - proposed - Bidirectional Dijkstra algorithm to
create a matrix of costs of the shortest paths.

- Family of functions

pgr_mazFlow - Proposed - Only the Max flow calculation using Push and
Relabel algorithm.

pgr_boykovKolmogorov - Proposed - Boykov and Kolmogorov with details
of flow on edges.

pgr_edmondsKarp - Proposed - Edmonds and Karp algorithm with details
of flow on edges.

pgr_pushRelabel - Proposed - Push and relabel algorithm with details of
flow on edges.

Applications

— pgr_edgeDisjointPaths - Proposed - Calculates edge disjoint paths
between two groups of vertices.

— pgr_mazxCardinalityMatch - Proposed - Calculates a maximum cardi-
nality matching in a graph.

withPoints - Family of functions

pgr_withPoints - Proposed - Route from/to points anywhere on the graph.
pgr_withPointsCost - Proposed - Costs of the shortest paths.
pgr_withPointsCostMatriz - proposed - Costs of the shortest paths.
pgr_withPointsKSP - Proposed - K shortest paths.

pgr_withPointsDD - Proposed - Driving distance.

categories

Cost - Category

pgr_aStarCost — proposed
pgr_bdAstarCost - Proposed
pgr__bdDijkstraCost - Proposed
pgr_dijkstraCost
pgr_withPointsCost - Proposed

Cost Matrix - Category

197

index.html#bddijkstra
index.html#pgr-bddijkstra
index.html#pgr-bddijkstracost
index.html#pgr-bddijkstracostmatrix
index.html#maxflow
index.html#pgr-maxflow
index.html#pgr-boykovkolmogorov
index.html#pgr-edmondskarp
index.html#pgr-pushrelabel
index.html#pgr-edgedisjointpaths
index.html#pgr-maxcardinalitymatch
index.html#withpoints
index.html#pgr-withpoints
index.html#pgr-withpointscost
index.html#pgr-withpointscostmatrix
index.html#pgr-withpointsksp
index.html#pgr-withpointsdd
index.html#cost
index.html#pgr-astarcost
index.html#pgr-bdastarcost
index.html#pgr-bddijkstracost
index.html#pgr-dijkstracost
index.html#pgr-withpointscost
index.html#costmatrix

e pgr_aStarCostMatriz - proposed

o pgr_bdAstarCostMatriz - proposed

o pgr_bdDijkstraCostMatrix - proposed
o pgr_dijkstraCostMatriz - proposed

o pgr_withPointsCostMatriz - proposed

KSP Category

e pgr_KSP - Driving Distance based on pgr dijkstra
e pgr_withPointsKSP - Proposed - Driving Distance based on pgr_ dijkstra

aStar - Family of functionsq The A* (pronounced “A Star”) algorithm
is based on Dijkstra’s algorithm with a heuristic that allow it to solve most
shortest path problems by evaluation only a sub-set of the overall graph.

e pgr_aStar - A* algorithm for the shortest path.

o pgr_aStarCost — proposed - Get the aggregate cost of the shortest paths.

o pgr_aStarCostMatriz - proposed - Get the cost matrix of the shortest
paths.

pgr__aStarq Name€q

pgr_aStar — Returns the shortest path using A* algorithm.

& boost

LI N AR IR

Boost Graph Inside
Availability:

o pgr_astar(one to one) 2.0.0, Signature changed 2.3.0
o pgr_astar(other signatures) 2.4.0

Characteristicsq

The main Characteristics are:

e Process is done only on edges with positive costs.
e Vertices of the graph are:

— positive when it belongs to the edges_ sql

198

index.html#pgr-astarcostmatrix
index.html#pgr-bdastarcostmatrix
index.html#pgr-bddijkstracostmatrix
index.html#pgr-dijkstracostmatrix
index.html#pgr-withpointscostmatrix
index.html#ksp
index.html#pgr-ksp
index.html#pgr-withpointsksp
index.html#pgr-astar
index.html#pgr-astarcost
index.html#pgr-astarcostmatrix
http://www.boost.org//libs/graph/doc/astar_search.html

e Values are returned when there is a path.
— When the starting vertex and ending vertex are the same, there is
no path.
* The agg_cost the non included values (v, v) is 0

— When the starting vertex and ending vertex are the different and
there is no path:

* The agg_cost the non included values (u, v) is oo
o When (x,y) coordinates for the same vertex identifier differ:

— A random selection of the vertex’s (x,y) coordinates is used.

e Running time: \(O((E + V) * \log V)\)
Signature Summary¥

pgr_aStar(edges_sql, start_vid, end_vid)
pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
e They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)

Functionality might not change. (But still can)

pgTap tests have being done. But might need more.
Documentation might need refinement.

pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- proposed
pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- proposed
pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- propose
RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

Signaturesq

Minimal Signatureq

pgr_aStar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

199

Example:

Using the defaults

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',

2, 12);

seq | path_seq | node | edge | cost | agg_cost

————— et et L L S
1| 1 2 | 4 | 1| 0
2 | 2 | 51 10 | 1 1
31 31 101 12| 1 2
4 | 41 11| 131 1| 3
5 | 51 12 -1 0| 4

(5 rows)

One to Oneq

pgr_aStar(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:

Undirected using Heuristic 2

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',

2, 12,
directed := false, heuristic := 2);

seq | path_seq | node | edge | cost | agg_cost

————— B e e e atttat S e e
1] 1] 2 | 4 | 1] 0
2 | 2 | 5 | 8 | 1] 1
3| 3 | 6 | 11 | 1] 2
4 | 4 | 11 | 13 | 1| 3
5 | 5 | 12 1 -1 | 0 | 4

(5 rows)

One to many¥

pgr_aStar(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) —-- Proposed

RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to each end_vid in end_vids: D
on a directed graph when directed flag is missing or is set to
true.

200

e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one
pgr_astar where the starting vertex is fixed, and stop when all end_vids are
reached.

e The result is equivalent to the union of the results of the one to one
pgr_astar.

e The extra end_vid in the result is used to distinguish to which path it
belongs.

Example:

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
2, ARRAY[3, 12], heuristic := 2);

seq | path_seq | end_vid | node | edge | cost | agg_cost

————— Bt et e e
1] 1 3 | 2 | 4 | 1] 0
2 | 2 | 3 | 5 | 8 | 1] 1
3 | 3 | 3 | 6 | 9 | 1| 2
4 | 4 | 3 | 9| 16 | 1| 3
5 | 5 | 3 | 4 | 3 | 1] 4
6 | 6 | 3 | 31 -1 0 | 5
7 | 1] 12 | 2 | 4 | 1] 0
8 | 2 | 12 | 5 | 8 | 1| 1
9 | 3 | 12 | 6 | 11 | 1] 2
10 | 4 | 12 | 11 | 13 | 1] 3
11 | 5 | 12 | 12 | -1 | 0 | 4
(11 rows)
Many to Oneq
pgr_aStar(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Proposed

RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to one end_vid: .
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one
pgr_aStar where the ending vertex is fixed.

201

e The result is the union of the results of the one to one pgr_aStar.
e The extra start_vid in the result is used to distinguish to which path it
belongs.

Example:

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
ARRAY([7, 2], 12, heuristic := 0);

seq | path_seq | start_vid | node | edge | cost | agg_cost

----- B T e s St T
1] 1] 2 | 2 | 4 | 1| 0
2 | 2 | 2 | 5 | 10 | 1| 1
3 | 3| 2 | 10 | 12 | 1] 2
4 | 4 | 2 | 11 | 13 | 1| 3
5 | 5 | 2 | 12 | -1 0 | 4
6 | 1] 7 1 7 | 6 | 1| 0
7 | 2 | 71 8 | 71 1| 1
8 | 3 | 7 1 5 | 10 | 1] 2
9 | 4 | 7 | 10 | 12 | 1] 3
10 | 5 | 7 1 11 | 13 | 1| 4
11 | 6 | 7 | 12 | -1 | 0 | 5
(11 rows)
Many to Manyq
pgr_aStar(edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Propose

RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to each end_vid in
on a directed graph when directed flag is missing or is set to
true.

e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many
pgr__dijkstra for all start_vids.

e The result is the union of the results of the one to one pgr_ dijkstra.
e The extra start_vid in the result is used to distinguish to which path it
belongs.

The extra start_vid and end_vid in the result is used to distinguish to which
path it belongs.

Example:

202

SELECT * FROM pgr_astar(
'SELECT id, source, target, cost, reverse_cost, x1, yi,

x2, y2 FROM edge_table',

ARRAY[7, 2], ARRAY[3, 12], heuristic := 2);
seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— e e e e e

1| 1] 2 | 3| 2 | 4 | 1| 0

2 | 2 | 2 | 3| 5 | 8 | 1] 1
3| 3| 2 | 3| 6 | 9 | 1] 2

4 | 4 | 2 | 3| 9 | 16 | 1| 3

5 | 5 | 2 | 3 | 4 | 3| 1| 4

6 | 6 | 2 | 3 | 31 -1 0 | 5

7 | 1] 7| 31 7 1 6 | 1| 0

8 | 2 | 71 3| 8 | 7| 1| 1

9 | 3| 7| 3| 5 | 8 | 1| 2
10 | 4 | 7 | 3 | 6 | 9 | 1| 3
11 | 5 | 7 | 3 | 9 | 16 | 1] 4
12 | 6 | 7 | 3| 4 | 3| 1] 5
13 | 7 1 71 3| 31 -1 0 | 6
14 | 1| 2 | 12 | 2 | 4 | 1| 0
15 | 2 | 2 | 12 | 5 | 10 | 1| 1
16 | 3| 2 | 12 | 10 | 12 | 1| 2
17 | 4 | 2 | 12 | 11 | 13 | 1] 3
18 | 5 | 2 | 12 | 12 | -1 0 | 4
19 | 1] 7 1 12 | 71 6 | 1] 0
20 | 2 | 7 | 12 | 8 | 7 | 1| 1
21 | 3| 7 | 12 | 5 | 10 | 1] 2
22 | 4 | 71 12 | 10 | 12 | 1] 3
23 | 5 | 7 | 12 | 11 | 13 | 1] 4
24 | 6 | 7 | 12 | 12 | -1 | 0 | 5

(24 rows)

Description of the Signaturesq

Description of the edges_sql query for astar like functionsq

edges sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert

203

edge.

Column Type Default Description

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__ cANY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type Description

edges_ sqlTEXT Edges SQL query as described above.
start_ vid ANY-INTEGER Starting vertex identifier.

end__vid ANY-INTEGER Ending vertex identifier.

directed BOOLEAN e Optional.

— When false the graph is considered as
Undirected.

— Default is true which considers the
graph as Directed.

204

Parameter Type Description

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
h(v) abs(max(dx, dy))
) abs(min(dx, dy))
) =dx *dx + dy * dy
v) = sqrt(dx * dx + dy * dy)
v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

.
[t

A
A

: h(
: h(
s h(
: h(

.
T W N

Description of the return values for a pathq

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,
cost, agg_cost)

Column Type
seq INT
path__id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg_cost FLOAT

205

index.html#astar-factor

See Alsoq

e aStar - Family of functions

o Sample Data

e http://www.boost.org/libs/graph/doc/astar_search.html
o http://en.wikipedia.org/wiki/A* search_ algorithm

Indices and tables

o Index
e Search Page

pgr__aStarCost — proposedq Name€

pgr_aStarCost — Returns the aggregate cost shortest path using aStar - Family
of functions algorithm.

Boost Graph Inside
Availability: 2.4.0
Signature Summary¥
Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

pgr_aStarCost (edges_sql, start_vid, end_vid) -- Proposed

pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon) -- Propo
pgr_aStarCost(edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Prop
pgr_aStarCost(edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Prop
pgr_aStarCost (edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Pro

RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET

206

index.html#astar
index.html#document-sampledata
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm
genindex.html
search.html
index.html#astar
index.html#astar
http://www.boost.org//libs/graph/doc/astar_search.html

Signaturesq

Minimal Signatureq

pgr_aStarCost (edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Using the defaults

SELECT * FROM pgr_aStarCost(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',

2, 12);
start_vid | end_vid | agg_cost
___________ e
2 | 12 | 4
(1 row)
One to Oneq

pgr_aStarCost(edges_sql, start_vid, end_vid, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Setting a Heuristic

SELECT * FROM pgr_aStarCost(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',

2, 12,
directed := false, heuristic := 2);
start_vid | end_vid | agg_cost
___________ e
2 | 12 | 4
(1 row)

One to many¥

pgr_aStarCost (edges_sql, start_vid, end_vids, directed, heuristic, factor, epsilon) -- Prop
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET

This signature finds a path from one start_vid to each end_vid in end_vids: .
on a directed graph when directed flag is missing or is set to
true.

207

e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one
pgr_astar where the starting vertex is fixed, and stop when all end_vids are
reached.

e The result is equivalent to the union of the results of the one to one
pgr_astar.

e The extra end_vid column in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_aStarCost(

'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',

2, ARRAY[3, 12], heuristic := 2);
start_vid | end_vid | agg_cost

Many to Oneq

pgr_aStarCost (edges_sql, starts_vid, end_vid, directed, heuristic, factor, epsilon) -- Prop

RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to one end_vid:

on a directed graph when directed flag is missing or is set to
true.

e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one
pgr_aStar where the ending vertex is fixed.

e The result is the union of the results of the one to one pgr_aStar.
e The extra start_vid column in the result is used to distinguish to which
path it belongs.

Example:

208

SELECT * FROM pgr_aStarCost(
'SELECT id, source, target, cost, reverse_cost, x1, yl, x2, y2 FROM edge_table',
ARRAY([7, 2], 12, heuristic := 0);

start_vid | end_vid | agg_cost

(2 rows)
Many to Many¥q

pgr_aStarCost (edges_sql, starts_vid, end_vids, directed, heuristic, factor, epsilon) -- Pro
RETURNS SET OF (start_vid, end_vid, agg_cost) OR EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to each end_vid in
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many
pgr_ dijkstra for all start_vids.

e The result is the union of the results of the one to one pgr_ dijkstra.
e The extra start_vid in the result is used to distinguish to which path it
belongs.

The extra start_vid and end_vid in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_aStarCost(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
ARRAY[7, 2], ARRAY[3, 12], heuristic := 2);

start_vid | end_vid | agg_cost

(4 rows)

Description of the Signaturesq

Description of the edges_sql query for astar like functionsq

209

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

210

Column Type Default Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type

Description

edges_ sqlTEXT
start__vid ANY-INTEGER
end__vid ANY-INTEGER
directed BOOLEAN

Edges SQL query as described above.
Starting vertex identifier.
Ending vertex identifier.

e Optional.

— When false the graph is considered as
Undirected.

— Default is true which considers the
graph as Directed.

211

Parameter Type Description

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
: h(v) abs(max(dx, dy))
) abs(min(dx, dy))
) =dx *dx + dy * dy
v) = sqrt(dx * dx + dy * dy)
v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. See Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

L[]
—_

A
A

: h(
: h(
s h(
: h(

.
T W N

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the g

agg cost FLOAT Aggregate cost from start

See Alsoq

e aStar - Family of functions.

e Sample Data network.

o http://www.boost.org/libs/graph/doc/astar_search.html
o http://en.wikipedia.org/wiki/A* search_algorithm

Indices and tables

o Index
e Search Page

212

index.html#astar-factor
index.html#astar
index.html#document-sampledata
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm
genindex.html
search.html

pgr__aStarCostMatrix - proposedq Name9
pgr_aStarCostMatrix - Calculates the a cost matrix using pgr aStar.
Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside
Availability: 2.4.0

Synopsisq
Using aStar algorithm, calculate and return a cost matrix.

Signature Summary¥

pgr_aStarCostMatrix(edges_sql, vids)
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signaturesq

Minimal Signatureq
The minimal signature: « Is for a directed graph.

pgr_aStarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for vertices 1, 2, 3, and 4.

213

index.html#pgr-astar
http://www.boost.org/libs/graph

SELECT * FROM pgr_aStarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

);
start_vid | end_vid | agg_cost
___________ e
2 | 1] 1
3| 1] 2
4 | 1| 3
1| 2 | 1
3 | 2 | 1
4 | 2 | 2
1| 3 | 6
2 | 3 | 5
4 | 3 | 1
1| 4 | 5
2 | 4 | 4
3 | 4 | 3
(12 rows)

Complete Signatureq

pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example
Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_aStarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

directed := false, heuristic := 2
);
start_vid | end_vid | agg_cost
___________ U
2 | 1] 1
3 | 1 2
4 | 1] 3
1] 2 | 1
3 | 2 | 1
4 | 2 | 2
1] 3 | 2
2 | 3 | 1

214

(12 rows)

W N =D
N NN V)

Description of the Signaturesq

Description of the edges sql query for astar like functionsq

edges_ sql:

N W e

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

reverse__ cAONY-NUMERICAL

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type

Description

edges_ sql TEXT

Edges SQL query as described above.

vids ARRAY [ANY-INTESERY of vertices_ identifiers.

directed BOOLEAN

heuristic INTEGER

factor FLOAT

epsilon FLOAT

e Optional.

— When false the graph is considered
as Undirected.

— Default is true which considers the
graph as Directed.

(optional). Heuristic number. Current valid
values 0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_dijkstra)
e 1: h(v) abs(max(dx, dy))
h(v) abs(min(dx, dy))
e 3:h(v) =dx*dx + dy *dy
s h(v) = sqrt(dx * dx + dy *
dy)
e 5: h(v) = abs(dx) + abs(dy)
(optional). For units manipulation. \(factor >
0\). Default 1.

(optional). For less restricted results. \(epsilon
>=1\). Default 1.

Description of the return values for a Cost functionq

Returns set of (start_vid,

end_vid, agg_cost)

Column Type

Description

start_ vid BIGINT

end_ vid BIGINT

agg_ cost FLOAT

Identifier of the starting ve
starting vetrices are in the

Identifier of the ending ver:
ending vertices are in the g

Aggregate cost from start

Examplesq

216

Example:

Use with tsp

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_aStarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

directed:= false, heuristic := 2

)
$3,
randomize := false

);

seq | node | cost | agg_cost

————— B ST SRS
1| 11 1| 0
2 | 2 | 1] 1
3| 3 | 1] 2
4 | 4 | 3 | 3
5 | 1| 0 | 6

(5 rows)

See Alsoq

e aStar - Family of functions

e Cost Matriz - Category

e Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

The problem definition (Advanced documentation)q The A* (pro-
nounced “A Star”) algorithm is based on Dijkstra’s algorithm with a heuristic,
that is an estimation of the remaining cost from the vertex to the goal, that
allows to solve most shortest path problems by evaluation only a sub-set of the

overall graph. Running time: \(O((E + V) * \log V)\)
Heuristicq

Currently the heuristic functions available are:

217

index.html#astar
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html

e 0: \(h(v) =0\) (Use this value to compare with pgr_ dijkstra)
o 1: \(h(v) = abs(max(\Delta x, \Delta y))\)

o 2: \(h(v) = abs(min(\Delta x, \Delta y))\)

e 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

o 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)
o 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

where \(\Delta x =x_1-x 0\) and \(\Deltay =y _1-y 0\)

Factorq Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor =
1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor =
would depend on the location of the points:

latitude conversion Factor
45 1 longitude degree is 78846.81 m 78846

0 1 longitude degree is 111319.46 m 111319
Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor:
would depend on the location of the points and on the average speed say 25m/s
is the speed.

latitude conversion Factor
45 1 longitude degree is (78846.81m)/(25m/s) 3153 s
0 1 longitude degree is (111319.46 m)/(25m/s) 4452 s
See Alsoq

e pgr_aStar

o pgr_aStarCost — proposed

o pgr_aStarCostMatriz - proposed

e http://www.boost.org/libs/graph/doc/astar_search.html
e http://en.wikipedia.org/wiki/A* search_algorithm

218

index.html#pgr-astar
index.html#pgr-astarcost
index.html#pgr-astarcostmatrix
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

o Index
e Search Page

Bidirectional A* - Family of functions€q

e pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.

e pgr_bdAstarCost - Proposed - Bidirectional A* algorithm to calculate the
cost of the paths.

o pgr_bdAstarCostMatriz - proposed - Bidirectional A* algorithm to calcu-
late a cost matrix of paths.

pgr__bdAstarq Nameq

per_bdAstar — Returns the shortest path using A* algorithm.

& boost

LI N AR IR

Boost Graph Inside
Availability:

o pgr_bdAstar(one to one) 2.0.0, Signature change on 2.5.0
o pgr_bdAstar(other signatures) 2.5.0

Signature Summary¥

pgr_bdAstar (edges_sql, start_vid, end_vid)
pgr_bdAstar (edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq , node, edge, cost, agg_cost)

OR EMPTY SET

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

219

genindex.html
search.html
index.html#pgr-bdastar
index.html#pgr-bdastarcost
index.html#pgr-bdastarcostmatrix
http://www.boost.org//libs/graph

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.
— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting
— Might depend on a deprecated function of pgRouting

pgr_bdAstar (edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstar (edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Using these signatures, will load once the graph and perform several one to one
pegr__bdAstar

e The result is the union of the results of the one to one pgr_bdAStar.
e The extra start_vid and/or end_vid in the result is used to distinguish
to which path it belongs.

Avaliability

e pgr_bdAstar(one to one) 2.0, signature change on 2.5
e pgr_bdAstar(other signatures) 2.5

Signaturesq

Minimal Signatureq

pgr_bdAstar (edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

This usage finds the shortest path from the start_vid to the end_vid
on a directed graph
e with heuristic‘s value 5
e with factor‘s value 1
e with epsilon‘s value 1

220

Example:

Using the defaults

SELECT * FROM pgr_bdAstar(
'"SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',

2, 3
)

seq | path_seq | node | edge | cost | agg_cost
————— e T T
1 1| 2 | 4 | 1| 0
2 | 2 | 5 | 8 | 1| 3
31 3 | 6 | 9 | 1 5
4 | 4 | 91 16 | 1| 8
5 | 5 | 4 | 3 | 1| 9
6 | 6 | 31 -1 0 | 10

(6 rows)

pgr_bdAstar One to Oneq

pgr_bdAstar (edges_sql, start_vid, end_vid, directed [, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

This usage finds the shortest path from the start_vid to the end_vid allowing the user to ch
heuristic,

« and/or factor
« and/or epsilon.

Note

In the One to One signature, because of the deprecated signature existence, it
is compulsory to indicate if the graph is directed or undirected.

Example:

Directed using Heuristic 2

SELECT * FROM pgr_bdAstar(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',

2, 3,
true, heuristic := 2
);
seq | path_seq | node | edge | cost | agg_cost
————— e et

1] 1] 2 | 4 | 1] 0

2 | 2 | 5 | 8 | 1 2

31 3 | 6 | 9 | 1] 3

4 | 4 | 9 | 16 | 1] 4

5 | 5 | 4 | 3 | 1] 5

6 | 6 | 3 | -1 0 | 6
(6 rows)

pgr_bdAstar One to many9

pgr_bdAstar (edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing t
if the graph is directed or undirected
o and/or heuristic,
o and/or factor
o and/or epsilon.

Example:

Directed using Heuristic 3 and a factor of 3.5

SELECT * FROM pgr_bdAstar(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
2, ARRAY[3, 11],

heuristic := 3, factor := 3.5
)3
seq | path_seq | end_vid | node | edge | cost | agg_cost
————— e s St ettt
1] 1| 3 | 2 | 4 | 1] 0
2 | 2 | 3 | 5 | 8 | 1| 25.5
3| 3 | 3 | 6 | 9 | 1| 38.75
4 | 4 | 3 | 9 | 16 | 1] 64.25
5 | 5 | 3 | 4 | 3 | 1] 65.25
6 | 6 | 3 | 31 -1 0 | 66.25
7| 11 11 | 2 | 4 | 1| 0
8 | 2 | 11 | 5 | 8 | 1] 1
9 | 3 | 11 | 6 | 11 | 1] 2
10 | 4 | 11 | 1l -1 0 | 3
(10 rows)

pgr_ bdAstar Many to One€

222

pgr_bdAstar (edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This usage finds the shortest path from each start_vid in start_vids to the end_vid allowing
if the graph is directed or undirected
« and/or heuristic,
» and/or factor
o and/or epsilon.

Example:

Undirected graph with Heuristic 4

SELECT * FROM pgr_bdAstar(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
ARRAY[2, 7], 3,

false, heuristic := 4

);

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— e R e e
1 1] 2 | 2 | 2 | 1] 0
2 | 2 | 2 | 31 -1 0 | 1
3 | 1] 7 | 7 | 6 | 1 0
4 | 2 | 7| 8 | 7| 1 | 3.23606797749979
5 | 3 7| 5 | 8 | 1 | 5.65028153987288
6 | 4 | 7| 6 | 5 | 1 | 6.65028153987288
7 | 5 | 7 31 -1 | 0 | 7.65028153987288

(7 rows)

pgr_bdAstar Many to Many¥

pgr_bdAstar(edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_
if the graph is directed or undirected
« and/or heuristic,
« and/or factor
o and/or epsilon.

Example:

Directed graph with a factor of 0.5

223

SELECT * FROM pgr_bdAstar(

'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2

FROM edge_table',
ARRAY[2, 71, ARRAY[3, 11],
factor := 0.5

)3

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— e s At B
1| 1| 2 | 3 2 | 4 | 1] 0
2| 2 | 2 | 3 | 5 | 8 | 1] 2
3| 3| 2 | 3 | 6 | 9 | 1| 3.5
4 | 4 | 2 | 3| 91 16 | 1| 4.5
5 | 5 | 2 | 3| 4 | 3 | 1| 5.5
6 | 6 | 2 | 31 31 -1 0 | 6.5
7| 1| 2 | 11 | 2 | 4 | 1] 0
8 | 2 | 2 | 11 | 5 | 8 | 1] 1
9 | 3| 2 | 11 | 6 | 11 | 1| 2
10 | 4 | 2 | 1] 111 -1 0 | 3
11 | 1| 7| 31 7| 6 | 1| 0
12 | 2 | 7 | 3| 8 | 7 | 1| 2.5
13 | 3 | 7 | 3 | 5 | 8 | 1| 4.5
14 | 4 | 7 | 3 6 | 9 | 1| 6
15 | 5 | 7 | 3 | 91 16 | 1| 7
16 | 6 | 7| 31 4 | 3| 1| 8
17 | 71 71 31 31 -1 0 | 9
18 | 1| 71 11 | 7 | 6 | 1| 0
19 | 2 | 71 11 | 8 | 7 | 1| 1
20 | 3 | 71 11 | 5 | 8 | 1| 2
21 | 4 | 7| 11 | 6 | 11 | 1| 3
22 | 5 | 71 111 111 -1 | 0 | 4
(22 rows)

Description of the Signaturesq
Description of the edges_sql query for astar like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

224

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Column

Type Default

Description

cost

ANY-NUMERICAL

reverse__ cANY-NUMERICAL

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type

Description

edges_ sqlTEXT
start_ vid ANY-INTEGER Starting vertex identifier.
start_ vid\RRAY [ANY-INTEGHRIng vertices identifierers.
end_ vid ANY-INTEGER Ending vertex identifier.
end_ vids ARRAY [ANY-INTEGERig vertices identifiers.
directed BOOLEAN

Edges SQL query as described above.

e Optional.

— When false the graph is considered as

Undirected.

— Default is true which considers the

graph as Directed.

225

Parameter Type Description

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
h(v) abs(max(dx, dy))
) abs(min(dx, dy))
) =dx *dx + dy * dy
v) = sqrt(dx * dx + dy * dy)
v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

.
[t

A
A

: h(
: h(
s h(
: h(

.
T W N

Description of the return values for a pathq

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,
cost, agg_cost)

Column Type
seq INT
path__id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg_cost FLOAT

226

index.html#astar-factor

See Alsoq

Bidirectional A* - Family of functions

e Sample Data network.
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_ algorithm

Indices and tables

o Index
e Search Page

pgr__bdAstarCost - Proposedq Nameq
pgr_bdAstarCost — Returns the shortest path using A* algorithm.

Boost Graph Inside
Availability: 2.5.0

Warning

Experimental functions

o They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

227

index.html#bdastar
index.html#document-sampledata
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm
genindex.html
search.html
http://www.boost.org//libs/graph

Signature Summary¥

pgr_bdAstarCost (edges_sql, start_vid, end_vid)

pgr_bdAstarCost (edges_sql, start_vid, end_vid [, directed , heuristic, factor, epsilon])
pgr_bdAstarCost (edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
pgr_bdAstarCost (edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
pgr_bdAstarCost (edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Using these signatures, will load once the graph and perform several one to one
pegr_bdAstarCost

e The result is the union of the results of the one to one pgr_bdAstarCost.
e The extra start_vid and/or end_vid in the result is used to distinguish
to which path it belongs.

Signaturesq

Minimal Signatureq

pgr_bdAstarCost (edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

This usage finds the shortest path from the start_vid to the end_vid
on a directed graph
o with heuristic’s value 5
o with factor‘s value 1
o with epsilon‘s value 1

Example:

Using the defaults

SELECT * FROM pgr_bdAstarCost(
'"SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',

2, 3
);
start_vid | end_vid | agg_cost
___________ U
2 | 3 | 10
(1 row)

228

pgr_bdAstarCost One to Oneq

pgr_bdAstarCost (edges_sql, start_vid, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing t
if the graph is directed or undirected
¢ heuristic,
o and/or factor
o and/or epsilon.

Note

In the One to One signature, because of the deprecated signature existence, it
is compulsory to indicate if the graph is directed or undirected.

Example:

Directed using Heuristic 2

SELECT * FROM pgr_bdAstarCost(
'"SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',

2, 3,
true, heuristic := 2
);
start_vid | end_vid | agg_cost
___________ e
2 | 3 | 6
(1 row)

pegr_bdAstarCost One to many¥q

pgr_bdAstarCost (edges_sql, start_vid, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

This usage finds the shortest path from the start_vid to each end_vid in end_vids allowing t
if the graph is directed or undirected
« and/or heuristic,
 and/or factor
» and/or epsilon.

Example:

Directed using Heuristic 3 and a factor of 3.5

229

SELECT * FROM pgr_bdAstarCost(
'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
2, ARRAY[3, 11],

heuristic := 3, factor := 3.5
);
start_vid | end_vid | agg_cost
___________ e
2 | 3 | 66.25
2 | 11 | 27.5
(2 rows)

pegr_ bdAstarCost Many to Oneq

pgr_bdAstarCost (edges_sql, start_vids, end_vid [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

This usage finds the shortest path from each start_vid in start_vids to the end_vid allowing
if the graph is directed or undirected
« and/or heuristic,
« and/or factor
« and/or epsilon.

Example

Undirected graph with Heuristic 4

SELECT * FROM pgr_bdAstarCost(
'"SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2
FROM edge_table',
ARRAY[2, 7], 3,

false, heuristic := 4
);
start_vid | end_vid | agg_cost
___________ I
2 | 3 | 1
7 | 3 | 7.65028153987288
(2 rows)

pgr_bdAstarCost Many to Many9

pgr_bdAstarCost (edges_sql, start_vids, end_vids [, directed, heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

230

This usage finds the shortest path from each start_vid in start_vids to each end_vid in end_

if the graph is directed or undirected
+ and/or heuristic,
» and/or factor
o and/or epsilon.

Example:

Directed graph with a factor of 0.5

SELECT * FROM pgr_bdAstarCost(

'SELECT id, source, target, cost, reverse_cost, x1,yl,x2,y2

FROM edge_table',
ARRAY[2, 71, ARRAY[3, 11],
factor := 0.5

);
start_vid | end_vid | agg_cost
___________ o
2 | 3 | 7.5
2 | 11 | 4
7 | 3 | 11.5
7 | 11 | 6.5
(4 rows)

Description of the Signatures€
Description of the edges_sql query for astar like functionsq

edges sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

231

Identifier of the edge.
Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)
o When negative: edge (source, te

not exist, therefore it’s not part
graph.

Column

Type Default

Description

reverse__ cONY-NUMERICAL

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type

Description

edges_ sqlTEXT
start_ vid ANY-INTEGER Starting vertex identifier.
start_ vidAARRAY [ANY-INTEGHRIng vertices identifierers.
end_ vid ANY-INTEGER Ending vertex identifier.
end__vids ARRAY [ANY-INTEGERg vertices identifiers.
directed BOOLEAN

Edges SQL query as described above.

e Optional.

— When false the graph is considered as

Undirected.

— Default is true which considers the

graph as Directed.

232

Parameter Type Description

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
: h(v) abs(max(dx, dy))
) abs(min(dx, dy))
) =dx *dx + dy * dy
v) = sqrt(dx * dx + dy * dy)
v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

L[]
—_

A
A

: h(
: h(
s h(
: h(

.
T W N

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the ¢

agg cost FLOAT Aggregate cost from start

See Alsoq

e Bidirectional A* - Family of functions

o Sample Data network.

e Migration Guide

o http://www.boost.org/libs/graph/doc/astar_search.html
o http://en.wikipedia.org/wiki/A* search_ algorithm

Indices and tables

o Index
e Search Page

233

index.html#astar-factor
index.html#bdastar
index.html#document-sampledata
https://github.com/cvvergara/pgrouting/wiki/Migration-Guide#pgr_bdastar
http://www.boost.org/libs/graph/doc/astar_search.html
http://en.wikipedia.org/wiki/A*_search_algorithm
genindex.html
search.html

pgr__bdAstarCostMatrix - proposed¥ Name€

pgr_bdAstarCostMatrix - Calculates the a cost matrix using pgr bdAstar.

Boost Graph Inside
Availability: 2.5.0

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq
Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary9

pgr_bdAstarCostMatrix(edges_sql, start_vids)

pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

OR EMPTY SET

Signaturesq

Minimal Signatureq

234

index.html#pgr-bdastar
http://www.boost.org/libs/graph

pgr_bdAstarCostMatrix(edges_sql, start_vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

This usage calculates the cost from the each start_vid in start_vids to each start_vid in st
on a directed graph
e with heuristic‘s value 5
e with factor‘s value 1
e with epsilon‘s value 1

Example:

Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_bdAstarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

);
start_vid | end_vid | agg_cost
___________ U
11 2 | 1
1] 3 | 12
1] 4 | 12
2 | 1] 1
2 | 3 | 10
2| 4 | 9
3 | 1] 2
3 | 2 | 1
3 | 4 | 5
4 | 1] 5
4 | 2 | 2
4 | 3 | 1
(12 rows)

Complete Signatureq

pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

This usage calculates the cost from the each start_vid in start_vids to each start_vid in st
if the graph is directed or undirected
e heuristic,
o and/or factor

235

o and/or epsilon.

Example:
Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_bdAstarCostMatrix(

'SELECT id, source, target, cost, reverse_cost, x1, yl, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
);

start_vid | end_vid | agg_cost
___________ e
11 2 | 1
1| 3 | 2
1| 4 | 5
2 | 1] 1
2 | 3 | 1
2 | 4 | 2
3 | 1] 2
3 | 2 | 1
3 | 4 | 1
4 | 1| 5
4 | 2 | 2
4 | 3 | 1

(12 rows)

Description of the Signaturesq
Description of the edges sql query for astar like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

236

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)
o When negative: edge (source, te

not exist, therefore it’s not part
graph.

Column

Type Default

Description

reverse__ cONY-NUMERICAL

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type

Description

edges_ sqlTEXT
start_ vid ANY-INTEGER Starting vertex identifier.
start_ vidAARRAY [ANY-INTEGHRIng vertices identifierers.
end_ vid ANY-INTEGER Ending vertex identifier.
end__vids ARRAY [ANY-INTEGERg vertices identifiers.
directed BOOLEAN

Edges SQL query as described above.

e Optional.

— When false the graph is considered as

Undirected.

— Default is true which considers the

graph as Directed.

237

Parameter Type Description

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
: h(v) abs(max(dx, dy))
) abs(min(dx, dy))
) =dx *dx + dy * dy
v) = sqrt(dx * dx + dy * dy)
v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

A
A

L[]
TUk @y

h(
: h(
h(
h(

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the ¢

agg cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_bdAstarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
false
)
$$,

238

index.html#astar-factor

randomize := false

)

seq | node | cost | agg_cost

————— e
1 1 2 | 0
2 | 3 | 1 2
31 4 | 2 | 3
4 | 2 | 1 5
5 | 11 0| 6

(5 rows)

See Alsoq

Bidirectional A* - Family of functions

o Cost Matrix - Category

o Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

e Index
e Search Page

Synopsisq Based on A* algorithm, the bidirectional search finds a shortest
path from a starting vertex (start_vid) to an ending vertex (end_vid). It
runs two simultaneous searches: one forward from the start_vid, and one
backward from the end_vid, stopping when the two meet in the middle. This
implementation can be used with a directed graph and an undirected graph.

Characteristicsq The main Characteristics are:

e Process is done only on edges with positive costs.
e Values are returned when there is a path.
e When the starting vertex and ending vertex are the same, there is no path.

— The agg_ cost the non included values (v, v) is 0

e When the starting vertex and ending vertex are the different and there is
no path:

— The agg_ cost the non included values (u, v) is \ (\infty\)

o Running time (worse case scenario): \(O((E + V) * \log V)\)
o For large graphs where there is a path bewtween the starting vertex and
ending vertex:

— It is expected to terminate faster than pgr_astar

239

index.html#bdastar
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html

Description of the Signaturesq Description of the edges sql query for

astar like functions€

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

reverse__cANY-NUMERICAL

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:
ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type Description

edges_ sqlTEXT
start_ vid ANY-INTEGER Starting vertex identifier.

240

Edges SQL query as described above.

Parameter Type Description

start__vidARRAY [ANY-INTEGHRIng vertices identifierers.
end_ vid ANY-INTEGER Ending vertex identifier.
end_ vids ARRAY [ANY-INTEGERig vertices identifiers.
directed BOOLEAN ¢ Optional.

— When false the graph is considered as
Undirected.

— Default is true which considers the
graph as Directed.

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
e 1: h(v) abs(max(dx, dy))
(v) abs(min(dx, dy))
(v) =dx *dx + dy * dy
e 4: h(v) = sqrt(dx * dx + dy * dy)
(v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

See Alsoq Indices and tables

o Index
e Search Page

Bidirectional Dijkstra - Family of functions9

e pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.

e pgr_bdDijkstraCost - Proposed - Bidirectional Dijkstra to calculate the
cost of the shortest paths

e pgr_bdDijkstraCostMatrix - proposed - Bidirectional Dijkstra algorithm to
create a matrix of costs of the shortest paths.

pgr__bdDijkstraq pgr_bdDijkstra — Returns the shortest path(s) using
Bidirectional Dijkstra algorithm.

241

index.html#astar-factor
genindex.html
search.html
index.html#pgr-bddijkstra
index.html#pgr-bddijkstracost
index.html#pgr-bddijkstracostmatrix

Boost Graph Inside

Availability:

e pgr_bdDijkstra(one to one) 2.0.0, Signature changed 2.4.0
e pgr_bdDijkstra(other signatures) 2.5.0

Signature Summary¥

pgr_bdDijkstra(edges_sql, start_vid, end_vid)
pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

242

http://www.boost.org/libs/graph/doc

Signaturesq

Minimal signatureq

pgr_bdDijkstra(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

The minimal signature is for a directed graph from one start_vid to one
end_vid:

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3
)

seq | path_seq | node | edge | cost | agg_cost
————— Rt
1 1| 2 | 4 | 1 0
2 | 2 | 5 | 8 | 1| 1
3| 3 | 6 | 9 | 11 2
4 | 4 | 91 16 | 1| 3
5 | 5 | 4 | 3 | 1 4
6 | 6 | 31 -1 0 | 5

(6 rows)

pgr__bdDijkstra One to Oneq

pgr_bdDijkstra(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to one end_vid:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, 3,
false
);
seq | path_seq | node | edge | cost | agg_cost

243

1| 1| 2 | 2 | 1| 0
2 | 2 | 3 | -1 | 0 | 1
(2 rows)

pgr_ bdDijkstra One to many9

pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to each end_vid in
end_vids:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one
pgr_dijkstra where the starting vertex is fixed, and stop when all end_vids
are reached.

e The result is equivalent to the union of the results of the one to one
pgr_ dijkstra.

e The extra end_vid in the result is used to distinguish to which path it
belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3, 11]);

seq | path_seq | end_vid | node | edge | cost | agg_cost

————— R T e s s T
1] 1] 3 | 2 | 4 | 1] 0
2 | 2 | 3 | 5 | 8 | 1] 1
3 | 3 | 3| 6 | 9 | 1] 2
4 | 4 | 3 | 9 | 16 | 1] 3
5 | 5 | 3 | 4 | 3 | 1] 4
6 | 6 | 3 | 3 | -1 | 0 | 5
7 | 1] 11 | 2 | 4 | 1] 0
8 | 2 | 11 | 5 | 8 | 1] 1
9 | 3| 11 | 6 | 11 | 1| 2
10 | 4 | 11 | 11 | -1 | 0 | 3

(10 rows)

244

pgr_ bdDijkstra Many to Oneq

pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to
one end_vid:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one
pgr__dijkstra where the ending vertex is fixed.

e The result is the union of the results of the one to one pgr_ dijkstra.
e The extra start_vid in the result is used to distinguish to which path it
belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 71, 3);

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— e B T B S
1] 1| 2 | 2 | 4 | 1] 0
2 | 2 | 2 | 5 | 8 | 1] 1
3 | 3 | 2 | 6 | 9 | 1] 2
4 | 4 | 2 | 9 | 16 | 1] 3
5 | 5 | 2 | 4 | 3 | 1| 4
6 | 6 | 2 | 3 | -1 | 0 | 5
71 1] 7| 7 | 6 | 1] 0
8 | 2 | 7 | 8 | 7 | 1] 1
9 | 3 | 7 | 5 | 8 | 1] 2
10 | 4 | 7 | 6 | 9 | 1] 3
11 | 5 | 7 1 9 | 16 | 1] 4
12 | 6 | 7 | 4 | 3 | 1] 5
13 | 7 | 7 | 3 | -1 | 0 | 6

(13 rows)

pgr_bdDijkstra Many to Many¥

pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

245

This signature finds the shortest path from each start_vid in start_vids to
each end_vid in end_vids:

e on a directed graph when directed flag is missing or is set to true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many
pgr_ dijkstra for all start_vids.

e The result is the union of the results of the one to one pgr_ dijkstra.
e The extra start_vid in the result is used to distinguish to which path it
belongs.

The extra start_vid and end_vid in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 7], ARRAY[3, 11]);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— B T e ST
1| 1| 2 | 3| 2 | 4 | 1| 0
2 | 2 | 2 | 3| 5 | 8 | 1| 1
3| 3 | 2 | 3 | 6 | 9 | 1| 2
4 | 4 | 2 | 3 | 9 | 16 | 1] 3
5 | 5 | 2 | 3 | 4 | 3 | 1| 4
6 | 6 | 2 | 3| 31 -1 0 | 5
7| 1| 2 | 11 | 2 | 4 | 1| 0
8 | 2 | 2 | 11 | 5 | 8 | 1| 1
9 | 3 | 2 | 11 | 6 | 11 | 1| 2
10 | 4 | 2 | 11 | 111 -1 0 | 3
11 | 1| 7 | 3 | 7 | 6 | 1| 0
12 | 2 | 7 | 3| 8 | 7 1 1| 1
13 | 3| 7 | 3 | 5 | 8 | 1] 2
14 | 4 | 7 | 3 | 6 | 9 | 1] 3
15 | 5 | 7 | 3 | 9 | 16 | 1| 4
16 | 6 | 7 | 3 | 4 | 3 | 1| 5
17 | 71 7 1 3| 31 -1 0 | 6
18 | 1] 7 1 11 | 71 6 | 1] 0
19 | 2 | 7 | 11 | 8 | 7 | 1| 1
20 | 3 | 7 | 11 | 5 | 10 | 1| 2
21 | 4 | 7 | 11 | 10 | 12 | 1| 3
22 | 5 | 7 | 11 | 11 | -1 | 0 | 4
(22 rows)

246

Description of the Signatures€
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Column Type Default Description

sql TEXT SQL query as desc

start_ vid BIGINT Identifier of the stz
path.

start_ vidsARRAY [BIGINT] Array of identifiers

end_ vid BIGINT Identifier of the en
path.

end__vids ARRAY[BIGINT] Array of identifiers

247

Column Type Default Description

directed BOOLEAN true ¢ When true (
Directed

e When false

considered as

Description of the return values for a path€

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,
cost, agg_cost)

Column Type
seq INT
path_ id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT
edge BIGINT
cost FLOAT
agg cost FLOAT
See Alsoq

e The queries use the Sample Data network.

Bidirectional Dijkstra - Family of functions
http://www.cs.princeton.edu/courses/archive/spr06/cos423 /Handouts/EPP %20shortest %20path %2
https://en.wikipedia.org/wiki/Bidirectional _search

Indices and tables

248

index.html#document-sampledata
index.html#bddijkstra
http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search

o Index
e Search Page

pgr__bdDijkstraCost - Proposedq pgr_bdDijkstraCost — Returns the
shortest path(s)’s cost using Bidirectional Dijkstra algorithm.

Boost Graph Inside
Availability: 2.5.0

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Signature Summary9

pgr_dijkstraCost(edges_sql, start_vid, end_vid)
pgr_bdDijkstraCost (edges_sql, start_vid, end_vid, directed)
pgr_bdDijkstraCost (edges_sql, start_vid, end_vids, directed)
pgr_bdDijkstraCost (edges_sql, start_vids, end_vid, directed)
pgr_bdDijkstraCost (edges_sql, start_vids, end_vids, directed)

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

249

genindex.html
search.html
http://www.boost.org/libs/graph/doc

Signaturesq

Minimal signatureq

pgr_bdDijkstraCost (edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

The minimal signature is for a directed graph from one start_vid to one
end_vid:

Example:

SELECT * FROM pgr_bdDijkstraCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3
);
start_vid | end_vid | agg_cost
___________ o
2 | 3 | 5
(1 row)

pgr_bdDijkstraCost One to Oneq

pgr_bdDijkstraCost (edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to one end_vid:
on a directed graph when directed flag is missing or is set to
true.

e on an undirected graph when directed flag is set to false.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

2, 3,
false
);
seq | path_seq | node | edge | cost | agg_cost
————— e it
1] 1 2 | 2 | 1| 0
2 | 2 | 31 -1 0 | 1
(2 rows)

pgr__bdDijkstraCost One to many¥

250

pgr_bdDijkstra(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from one start_vid to each end_vid in end_vids:
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform a one to one
pgr_dijkstra where the starting vertex is fixed, and stop when all end_vids
are reached.

e The result is equivalent to the union of the results of the one
to one pgr_ dijkstra.

e The extra end_vid in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_bdDijkstraCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
2, ARRAY[3, 111);

start_vid | end_vid | agg_cost

(2 rows)
pegr_ bdDijkstraCost Many to Oneq

pgr_bdDijkstra(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to one end_vid:
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to one
pgr_ dijkstra where the ending vertex is fixed.

e The result is the union of the results of the one to one
pgr__dijkstra.

251

e The extra start_vid in the result is used to distinguish to
which path it belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 7], 3);

seq | path_seq | start_vid | node | edge | cost | agg_cost

————— T e T
1| 1] 2 | 2 | 4 | 1] 0
2 | 2 | 2 | 5 | 8 | 1] 1
3 | 3 | 2 | 6 | 9 | 1] 2
4 | 4 | 2 | 9 | 16 | 1] 3
5 | 5 | 2 | 4 | 3 | 1| 4
6 | 6 | 2 | 3 | -1 | 0 | 5
7 | 1] 7 | 7 | 6 | 1] 0
8 | 2 | 7 | 8 | 7 | 1] 1
9 | 3 | 7 1 5 | 8 | 1] 2
10 | 4 | 7 1 6 | 9 | 1| 3
11 | 5 | 7 | 9 | 16 | 1] 4
12 | 6 | 7 | 4 | 3 | 1] 5
13 | 7 | 7 | 3 | -1 | 0 | 6

(13 rows)

pgr_ bdDijkstraCost Many to Many¥

pgr_bdDijkstra(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) or EMPTY SET

This signature finds the shortest path from each start_vid in start_vids to each end_vid in
on a directed graph when directed flag is missing or is set to
true.
e on an undirected graph when directed flag is set to false.

Using this signature, will load once the graph and perform several one to Many
pgr_ dijkstra for all start_vids.

e The result is the union of the results of the one to one
pgr_ dijkstra.

e The extra start_vid in the result is used to distinguish to
which path it belongs.

252

The extra start_vid and end_vid in the result is used to distinguish to which
path it belongs.

Example:

SELECT * FROM pgr_bdDijkstra(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2, 7], ARRAY[3, 11]);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

————— S
1| 1| 2 | 3 | 2 | 4 | 1] 0
2 | 2 | 2 | 3 | 5 | 8 | 1| 1
3 | 3 | 2 | 3 | 6 | 9 | 1| 2
4 | 4 | 2 | 3 | 91 16 | 1| 3
5 | 5 | 2 | 3| 4 | 3 | 1] 4
6 | 6 | 2 | 3| 3| -1 | 0 | 5
7| 1| 2 | 11 | 2 | 4 | 1] 0
8 | 2 | 2 | 11 | 5 | 8 | 1| 1
9 | 3| 2 | 11 | 6 | 11 | 1] 2
10 | 4 | 2 | 11 | 11 | -1 | 0 | 3
11 | 1] 7 | 3| 7 | 6 | 1] 0
12 | 2 | 7 1 3 | 8 | 7 1 1| 1
13 | 3 | 7| 3 | 5 | 8 | 1| 2
14 | 4 | 7 | 3 | 6 | 9 | 1] 3
15 | 5 | 7 | 3 | 9 | 16 | 1| 4
16 | 6 | 7 | 3| 4 | 3 | 1| 5
17 | 7 | 7 | 3| 3| -1 | 0 | 6
18 | 1| 7 | 11 | 71 6 | 1| 0
19 | 2 | 7 | 11 | 8 | 7 | 1| 1
20 | 3 | 7 | 11 | 5 | 10 | 1| 2
21 | 4 | 71 111 101 12| 1] 3
22 | 5 | 7 | 111 111 -1 | 0 | 4

(22 rows)

Description of the Signaturesq
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

253

Column Type Default

Description

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cANY-NUMERICAL

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Column Type Default

Description

sql TEXT
start__ vid BIGINT

start_ vidsARRAY[BIGINT]
end_ vid BIGINT

end_ vids ARRAY[BIGINT]
directed BOOLEAN true

SQL query as desc
Identifier of the stz
path.

Array of identifiers
Identifier of the en
path.

Array of identifiers

e When true (
Directed

e When false
considered as

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

254

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the
end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the g
agg_cost FLOAT Aggregate cost from start
See Alsoq

e The queries use the Sample Data network.

e pgr_bdDijkstra

o http://www.cs.princeton.edu/courses/archive /spr06/cos423 /Handouts/ EPP%20shortest %20path %2
« https://en.wikipedia.org/wiki/Bidirectional _search

Indices and tables

o Index
e Search Page

pgr_ bdDijkstraCostMatrix - proposed¥ Name€q

pgr_bdDijkstraCostMatrix - Calculates the a cost matrix using pgr bdDijkstra.

Boost Graph Inside
Availability: 2.5.0

Warning

Experimental functions

e They are not officially of the current release.
o They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.
— Signature might change.

255

index.html#document-sampledata
index.html#pgr-bddijkstra
http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search
genindex.html
search.html
index.html#pgr-bddijkstra
http://www.boost.org/libs/graph

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.
— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq
Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary¥

pgr_bdDijkstraCostMatrix(edges_sql, start_vids)
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signaturesq

Minimal Signatureq
The minimal signature: e« Is for a directed graph.

pgr_bdDijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_bdDijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);

start_vid | end_vid | agg_cost

256

SO W W W
WN DN -
N W Wwe~N

(12 rows)
Complete Signatureq

pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.
This example returns a symmetric cost matrix.

SELECT * FROM pgr_bdDijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
);

start_vid | end_vid | agg_cost
___________ e
1| 2 | 1
1] 3 | 2
1| 4 | 3
2 | 1| 1
2 | 3 | 1
2 | 4 | 2
3| 1| 2
3| 2 | 1
3 | 4 | 1
4 | 1| 3
4 | 2 | 2
4 | 3 | 1

(12 rows)

Description of the Signatures€
Description of the edges sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

257

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:
ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parametefl'ype Description

edges_ sdEXT Edges SQL query as described above.
start_ vidRRAY [ANY-INTEGER] identifiers of the vertices.

directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

258

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the g

agg_ cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_bdDijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
)
$3,
randomize := false
);
seq | node | cost | agg_cost
————— B e e B
1] 1 1] 0
2 | 2 | 1 1
31 3 | 1] 2
4 | 4 | 3 | 3
5 | 1| 0 | 6
(5 rows)
See Alsoq

Bidirectional Dijkstra - Family of functions
o Cost Matrix - Category

o Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

259

index.html#bddijkstra
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html

Synopsisq Based on Dijkstra’s algorithm, the bidirectional search finds a
shortest path a starting vertex (start_vid) to an ending vertex (end_vid). It
runs two simultaneous searches: one forward from the source, and one backward
from the target, stopping when the two meet in the middle. This implementation
can be used with a directed graph and an undirected graph.

Characteristicsq The main Characteristics are:

e Process is done only on edges with positive costs.
e Values are returned when there is a path.
¢ When the starting vertex and ending vertex are the same, there is no path.

— The agg_ cost the non included values (v, v) is 0

e When the starting vertex and ending vertex are the different and there is
no path:

— The agg_ cost the non included values (u, v) is \ (\infty\)

¢ Running time (worse case scenario): \(O((V \log V + E))\)
o For large graphs where there is a path bewtween the starting vertex and
ending vertex:

— It is expected to terminate faster than pgr dijkstra

See Alsoq Indices and tables

o Index
e Search Page

withPoints - Family of functionsq When points are also given as input:

o pgr_withPoints - Proposed - Route from/to points anywhere on the graph.
o pgr_withPointsCost - Proposed - Costs of the shortest paths.

o pgr_withPointsCostMatriz - proposed - Costs of the shortest paths.

o pgr_withPointsKSP - Proposed - K shortest paths.

o pgr_withPointsDD - Proposed - Driving distance.

pgr__withPoints - Proposedq Name€

pgr_withPoints - Returns the shortest path in a graph with additional tempo-
rary vertices.

Warning

Proposed functions for next mayor release.

260

genindex.html
search.html
index.html#pgr-withpoints
index.html#pgr-withpointscost
index.html#pgr-withpointscostmatrix
index.html#pgr-withpointsksp
index.html#pgr-withpointsdd

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL
— Name might not change. (But still can)

— Signature might not change. (But still can)

— Functionality might not change. (But still can)

— pgTap tests have being done. But might need more.

— Documentation might need refinement.

Boost Graph Inside
Availability: 2.2.0

Synopsisq

Modify the graph to include points defined by points_ sql. Using Dijkstra algo-
rithm, find the shortest path(s)

Characteristics:

The main Characteristics are:

e Process is done only on edges with positive costs.
e Vertices of the graph are:

— positive when it belongs to the edges_ sql
— negative when it belongs to the points_ sql

o Values are returned when there is a path.

— When the starting vertex and ending vertex are the same, there is
no path. - The agg cost the non included values (v, v) is 0

— When the starting vertex and ending vertex are the different and
there is no path: - The agg_ cost the non included values (u, v) is co

e For optimization purposes, any duplicated value in the start_vids or
end_ vids are ignored.

e The returned values are ordered: - start_ vid ascending - end_ vid ascend-
ing

e Running time: \(O(|start_vids|\times(V \log V + E))\)

Signature Summary9

261

http://www.boost.org/libs/graph

pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)

pgr_withPoints(edges_sql, points_sql, start_vid, end_vid, directed, driving_side, details)
pgr_withPoints(edges_sql, points_sql, start_vid, end_vids, directed, driving_side, details
pgr_withPoints(edges_sql, points_sql, start_vids, end_vid, directed, driving_side, details
pgr_withPoints(edges_sql, points_sql, start_vids, end_vids, directed, driving_side, detail
RETURNS SET OF (seq, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)

Signaturesq
Minimal Use9

The minimal signature: o Is for a directed graph.
o The driving side is set as b both. So arriving/departing to/from the
point(s) can be in any direction.
e No details are given about distance of other points of points sql
query.

pgr_withPoints(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:
From point 1 to point 3
SELECT * FROM pgr_withPoints(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, -3);
seq | path_seq | node | edge | cost | agg_cost
————— e e
1] 1 -1 | 11 0.6 | 0
2 | 2 | 2 | 4 | 1 0.6
3 | 3 | 5 | 10 | 1 1.6
4 | 4 | 10 | 12 | 0.6 | 2.6
5 | 51 -3 -1 0 | 3.2
(5 rows)
One to Oneq

pgr_withPoints(edges_sql, points_sql, start_vid, end_vid,
directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:

From point 1 to vertex 3

262

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, 3,
details := true);
seq | path_seq | node | edge | cost | agg_cost
————— e s St
1| 11 -1 11 0.6 | 0
2 | 2 | 2 | 41 0.7 | 0.6
3| 31 -6 | 41 0.3 | 1.3
4 | 4 | 5 | 8 | 1 1.6
5 | 5 | 6 | 9 | 1 2.6
6 | 6 | 9 | 16 | 1| 3.6
71 7 | 4 | 3 | 1| 4.6
8 | 8 | 31 -1 0 | 5.6
(8 rows)

One to Many9q

pgr_withPoints(edges_sql, points_sql, start_vid, end_vids,
directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)

Example:

From point 1 to point 3 and vertex 5

SELECT * FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, ARRAY[-3,5]);
seq | path_seq | end_pid | node | edge | cost | agg_cost

————— e Rttt e e
1| 1| =31 -1 11 0.6 | 0
2 | 2 | -3 | 2 | 4 | 1 0.6
3| 3 | -3 | 51 10 | 1 1.6
4 | 4 | -3 | 10 | 12 | 0.6 | 2.6
5 | 5 | -3 -3 -1 0 | 3.2
6 | 1| 51 -1 11 0.6 | 0
71 2 | 5 | 2 | 4 | 1 0.6
8 | 3 | 5 | 5 -1 0 | 1.6

(8 rows)

Many to Oneq

263

pgr_withPoints(edges_sql, points_sql, start_vids, end_vid,
directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)

Example:

From point 1 and vertex 2 to point 3

SELECT * FROM pgr_withPoints(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], -3);

seq | path_seq | start_pid | node | edge | cost | agg_cost

————— e s e B ST
11 1] -1 -1 1| 0.6 | 0
2 | 2 | -1 | 2 | 4 | 1] 0.6
3 | 3 | -1 | 5 | 10 | 1] 1.6
4 | 4 | -1 | 10 | 12 | 0.6 | 2.6
5 | 5 | -1 | -3 | -1 | 0 | 3.2
6 | 1 2 | 2 | 4 | 1| 0
71 2 | 2 | 5 | 10 | 1] 1
8 | 3 | 2 | 10 | 12 | 0.6 | 2
9 | 4 | 2 | -3 | -1 | 0 | 2.6

(9 rows)

Many to Many¥

pgr_withPoints(edges_sql, points_sql, start_vids, end_vids,
directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Example:

From point 1 and vertex 2 to point 3 and vertex 7

SELECT * FROM pgr_withPoints(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'"SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7]);

seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost

————— e e Sttt b
1| 1| -1 -3 | -1 | 11 0.6 | 0
2 | 2 | -1 -3 | 2 | 4 | 1| 0.6
3| 3| -1 | -3 | 5 10 | 1] 1.6
4 | 4 | -1 -3 | 10 | 12| 0.6 | 2.6

5 | 5 | -1 -3] -3 -1 0 | 3.2
6 | 1| -1 | 71 -1 1| 0.6 | 0
71 2 | -1 | 7 | 2 | 4 | 1| 0.6
8 | 3| -1 7| 5 | 71 1| 1.6
9 | 4 | -1 71 8 | 6 | 1| 2.6
10 | 5 | -1 71 71 -1 0 | 3.6
11 | 1| 2 | -3 | 2 | 4 | 1| 0
12 | 2 | 2 | -3 | 51 10| 1| 1
13 | 3| 2 | -3 101 12| 0.6 | 2
14 | 4 | 2 | -3] =31 -1 0 | 2.6
15 | 1| 2 | 7| 2 | 4 | 1| 0
16 | 2 | 2 | 7 | 5 | 71 1| 1
17 | 3| 2 | 7 | 8 | 6 | 1| 2
18 | 4 | 2 | 71 71 -1 0 | 3
(18 rows)

Description of the Signaturesq
Description of the edges_ sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__calt¥-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:
ANY-INTEGER:

265

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the Points SQL queryq

points__sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

edge__id ANY-INTEGERIdentifier of the “closest” edge to the point.
fraction ANY-NUMERIC¥hlue in <0,1> that indicates the relative postition
from the first end point of the edge.

side CHAR (optional) Value in [‘'b’, ‘r’, ‘I, NULL] indicating if the
point is:

e In the right, left of the edge or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Where:

ANY-INTEGER:

smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Description of the parameters of the signaturesq

Parametefl'ype Description

edges_ sqEXT Edges SQL query as described above.

points_ sEHXT Points SQL query as described above.

start_ vidNY-INTEGERStarting vertex identifier. When negative: is a point’s
pid.

266

Parametefl'ype Description

end__vidANY-INTEGEREnding vertex identifier. When negative: is a point’s
pid.
start_ vidRRAY [ANY-INTEGERT identifiers of starting vertices. When negative:
is a point’s pid.
end__vid4RRAY [ANY-INTEGERT identifiers of ending vertices. When negative:
is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.
driving_ GEda (optional) Value in [‘b’, ‘r’, ‘I’, NULL] indicating if the driving side is:
In the right or left or
e If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.
details BOOLEAN (optional). When true the results will include the
points in points_sql that are in the path. Default is
false which ignores other points of the points_ sql.

Description of the return valuesq

Returns set of (seq, [path_seq,] [start_vid,] [end_vid,] node, edge,
cost, agg_cost)

Column Type Description

seq INTEGER Row sequence.

path__seq INTEGER Path sequence that indicates the relative position on the
path.

start_ vid BIGINT Identifier of the starting vertex. When negative: is a
point’s pid.

end_ vid BIGINT Identifier of the ending vertex. When negative: is a
point’s pid.

node BIGINT Identifier of the node: « A positive value

indicates the node is a vertex of edges_ sql.
e A negative value indicates the node is a point
of points_ sql.
edge BIGINT Identifier of the edge used to go from node to the next node in the path s
-1 for the last row in the path sequence.

cost FLOAT Cost to traverse from node using edge to the next node in the path sequer
0 for the last row in the path sequence.

267

Column Type Description

agg_cost FLOAT Aggregate cost from start_pid to node. e« O for
the first row in the path sequence.

Examplesq
Example

Which path (if any) passes in front of point 6 or vertex 6 with right side driving
topology.

SELECT (' (' || start_pid || ' =>"' || end_pid ||') at ' || path_seq || 'th step:')::TEXT AS pat
CASE WHEN edge = -1 THEN ' visits'
ELSE ' passes in front of'
END as status,
CASE WHEN node < 0 THEN 'Point'
ELSE 'Vertex'
END as is_a,
abs(node) as id
FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],

driving_side := 'r',
details := true)
WHERE node IN (-6,6);
path_at | status | is_a | id
et i o o=
(-1 => -6) at 4th step: | visits | Point | 6
(-1 => -3) at 4th step: | passes in front of | Point | 6
(-1 => -2) at 4th step: | passes in front of | Point | 6
(-1 => -2) at 6th step: | passes in front of | Vertex | 6
(-1 => 3) at 4th step | passes in front of | Point | 6
(-1 => 3) at 6th step | passes in front of | Vertex | 6
(-1 => 6) at 4th step | passes in front of | Point | 6
(-1 => 6) at 6th step | visits | Vertex | 6
(1 => -6) at 3th step: | visits | Point | 6
(1 => -3) at 3th step | passes in front of | Point | 6
(1 => -2) at 3th step | passes in front of | Point | 6
(1 => -2) at 5th step: | passes in front of | Vertex | 6
(1 => 3) at 3th step: | passes in front of | Point | 6
(1 => 3) at 5th step: | passes in front of | Vertex | 6
(1 => 6) at 3th step: | passes in front of | Point | 6
(1 => 6) at 5th step: | visits | Vertex | 6

268

(16 rows)

Example:

Which path (if any) passes in front of point 6 or vertex 6 with left side driving
topology.

SELECT (' (' || start_pid || ' =>"' || end_pid ||') at ' || path_seq || 'th step:')::TEXT AS pat
CASE WHEN edge = -1 THEN ' visits'
ELSE ' passes in front of'
END as status,
CASE WHEN node < O THEN 'Point'
ELSE 'Vertex'
END as is_a,
abs(node) as id
FROM pgr_withPoints(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'"SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],

driving_side := 'l"',
details := true)
WHERE node IN (-6,6);
path_at | status | is_a | id
e R e At fo—m +———=
(-1 => -6) at 3th step: | visits | Point | 6
(-1 => -3) at 3th step: | passes in front of | Point | 6
(-1 => -2) at 3th step: | passes in front of | Point | 6
(-1 => -2) at 5th step: | passes in front of | Vertex | 6
(-1 => 3) at 3th step | passes in front of | Point | 6
(-1 => 3) at 5th step | passes in front of | Vertex | 6
(-1 => 6) at 3th step | passes in front of | Point | 6
(-1 => 6) at bth step: | visits | Vertex | 6
(1 => -6) at 4th step | visits | Point | 6
(1 => -3) at 4th step | passes in front of | Point | 6
(1 => -2) at 4th step | passes in front of | Point | 6
(1 => -2) at 6th step: | passes in front of | Vertex | 6
(1 => 3) at 4th step | passes in front of | Point | 6
(1 => 3) at 6th step | passes in front of | Vertex | 6
(1 => 6) at 4th step | passes in front of | Point | 6
(1 => 6) at 6th step | visits | Vertex | 6
(16 rows)
Example:

Many to many example with a twist: on undirected graph and showing details.

269

SELECT * FROM pgr_withPoints(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',

'SELECT pid, edge_id, fraction, side from pointsOfInterest',

ARRAY[-1,2], ARRAY[-3,7],

directed :
details :

false,

true) ;
seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost

T et e e S

O OM W OVOANO OVOMWOWWMWONMN-TNOOM—TANNOM
O —H =N M O —+H+ H NMM o N (@] N

O~ HOOONMNMDAEN~NMNMONMNMMTOWONMM—NMO

S o o o S o o [e @) (el e] o o o o o

1
2
6
5
10
3
1
2
6
5
8
4
7
2
6
5
10
3
2
6
5
8 |
-4
7

3
3
3
3
3
3
7
7
7
7
7
7
7
3
3
3
-3
-3
7
7
7
7
7
7

(24 rows)

The queries use the Sample Data network.

History

e Proposed in version 2.2

See Alsoq

o withPoints - Family of functions

Indices and tables

270

index.html#document-sampledata
index.html#withpoints

o Index
e Search Page

pgr_ withPointsCost - Proposedq Name9

pgr_withPointsCost - Calculates the shortest path and returns only the aggre-
gate cost of the shortest path(s) found, for the combination of points given.

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL
— Name might not change. (But still can)

— Signature might not change. (But still can)

Functionality might not change. (But still can)

pgTap tests have being done. But might need more.

— Documentation might need refinement.

Boost Graph Inside
Availability: 2.2.0

Synopsisq
Modify the graph to include points defined by points_ sql. Using Dijkstra algo-
rithm, return only the aggregate cost of the shortest path(s) found.

Characteristics:q

The main Characteristics are: o It does not return a path.
e Returns the sum of the costs of the shortest path for pair combination
of vertices in the modified graph.
e Vertices of the graph are:

— positive when it belongs to the edges_ sql
— negative when it belongs to the points_ sql

e Process is done only on edges with positive costs.
o Values are returned when there is a path.

271

genindex.html
search.html
http://www.boost.org/libs/graph

— The returned values are in the form of a set of (start_vid,
end_vid, agg_ cost).
— When the starting vertex and ending vertex are the same, there
is no path.
* The agg cost in the non included values (v, v) is 0

— When the starting vertex and ending vertex are the different and
there is no path.

* The agg cost in the non included values (u, v) is \(\infty\)

o If the values returned are stored in a table, the unique index would
be the pair: (start_vid, end_ vid).
e For undirected graphs, the results are symmetric.
— The agg_cost of (u, v) is the same as for (v, u).

o For optimization purposes, any duplicated value in the start_ vids or
end_ vids is ignored.
e The returned values are ordered:

— start_ vid ascending
— end_ vid ascending

o Running time: \(O(] start_vids | * (V \log V + E))\)
Signature Summary¥

pgr_withPointsCost (edges_sql, points_sql, start_vid, end_vid, directed, driving_side)
pgr_withPointsCost (edges_sql, points_sql, start_vid, end_vids, directed, driving_side)
pgr_withPointsCost (edges_sql, points_sql, start_vids, end_vid, directed, driving_side)
pgr_withPointsCost(edges_sql, points_sql, start_vids, end_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note

There is no details flag, unlike the other members of the withPoints family of
functions.

Signaturesq
Minimal Use9

The minimal signature: e« Is for a directed graph.
o The driving side is set as b both. So arriving/departing to/from the
point(s) can be in any direction.

pgr_withPointsCost (edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

272

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, -3);
start_pid | end_pid | agg_cost
___________ +_________+__________
-1 | -3 | 3.2
(1 row)
One to Oneq

pgr_withPointsCost (edges_sql, points_sql, start_vid, end_vid,
directed:=true, driving_side:='b')
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3,
directed := false);
start_pid | end_pid | agg_cost

One to Many¥

pgr_withPointsCost (edges_sql, points_sql, start_vid, end_vids,
directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, ARRAY[-3,5]);
start_pid | end_pid | agg_cost

(2 rows)

273

Many to Oneq

pgr_withPointsCost (edges_sql, points_sql, start_vids, end_vid,
directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

SELECT * FROM pgr_withPointsCost(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], -3);

start_pid | end_pid | agg_cost

(2 rows)
Many to Many¥

pgr_withPointsCost (edges_sql, points_sql, start_vids, end_vids,
directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

SELECT * FROM pgr_withPointsCost(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,71);

start_pid | end_pid | agg_cost

___________ o
-1 | -3 | 3.2
-1 | 7| 3.6
2 | -3 | 2.6
2| 7| 3

(4 rows)

Description of the Signaturesq
Description of the edges sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

274

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:
ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the Points SQL queryq

points_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

edge__id ANY-INTEGERIdentifier of the “closest” edge to the point.

fraction ANY-NUMERICWhlue in <0,1> that indicates the relative postition
from the first end point of the edge.

275

Column Type Description

side CHAR (optional) Value in [‘b’, ‘r’, ‘I, NULL] indicating if the
point is:

e In the right, left of the edge or
e If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Where:

ANY-INTEGER:

smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Description of the parameters of the signaturesq

Parametefl'ype Description

edges_ sqEXT Edges SQL query as described above.

points__ sTHXT Points SQL query as described above.

start__vidNY-INTEGERStarting vertex identifier. When negative: is a point’s
pid.

end_ vidANY-INTEGEREnding vertex identifier. When negative: is a point’s
pid.
start__vidBRAY [ANY-INTEGERT identifiers of starting vertices. When negative:
is a point’s pid.
end_ vid4RRAY [ANY-INTEGER] identifiers of ending vertices. When negative:
is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.
driving_GHda (optional) Value in [‘b’, ‘r’, ‘I’, NULL] indicating if the driving side is:
In the right or left or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Description of the return valuesq

Returns set of (start_vid, end_vid, agg_cost)

276

Column Type Description

start_ vid BIGINT Identifier of the starting vertex. When negative: is a
point’s pid.

end_ vid BIGINT Identifier of the ending point. When negative: is a
point’s pid.

agg cost FLOAT Aggregate cost from start_vid to end_vid.

Examplesq
Example:

With right side driving topology.

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7],

driving_side := '1');

start_pid | end_pid | agg_cost

___________ o
-1 | -3 | 3.2
-1 | 7 | 3.6
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

Example:

With left side driving topology.

SELECT * FROM pgr_withPointsCost(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,71,

driving_side := 'r');

start_pid | end_pid | agg_cost
___________ o
-1 -3 | 4
-1 | 7 | 4.4
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

277

Example:

Does not matter driving side.

SELECT * FROM pgr_withPointsCost(

'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',

'SELECT pid, edge_id, fraction, side from pointsOfInterest',
ARRAY[-1,2], ARRAY[-3,7],

driving_side := 'b');

start_pid | end_pid | agg_cost
___________ o
-1 | -3 | 3.2
-1 | 7 | 3.6
2 | -3 | 2.6
2 | 7 | 3

(4 rows)

The queries use the Sample Data network.

History

e Proposed in version 2.2
See Alsoq

o withPoints - Family of functions
Indices and tables

o Index
e Search Page

pgr_ withPointsCostMatrix - proposedq Name€

pgr_withPointsCostMatrix - Calculates the shortest path and returns only
the aggregate cost of the shortest path(s) found, for the combination of points
given.

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL

278

index.html#document-sampledata
index.html#withpoints
genindex.html
search.html

— Name might not change. (But still can)

— Signature might not change. (But still can)

— Functionality might not change. (But still can)

— pgTap tests have being done. But might need more.
— Documentation might need refinement.

Boost Graph Inside
Availability: 2.2.0

Signature Summary¥

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids)
pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note

There is no details flag, unlike the other members of the withPoints family of
functions.

Signaturesq

Minimal Signatureq

The minimal signature: e« Is for a directed graph.
o The driving side is set as b both. So arriving/departing to/from the
point(s) can be in any direction.

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -61);
start_vid | end_vid | agg_cost

279

http://www.boost.org/libs/graph

-6 | 3 | 4.3
-6 | 6 | 1.3
-1 | -6 | 1.3
-1 | 3 | 5.6
-1 | 6 | 2.6
3 | -6 | 1.7
3 | -1 | 1.6
3 | 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3 | 3
(12 rows)

Complete Signatureq

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids,
directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

returning a symmetrical cost matrix

e Using the default side value on the points__sql query
e Using an undirected graph
o Using the default driving_ side value

SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6], directed := false);
start_vid | end_vid | agg_cost

___________ N
-6 | -1 | 1.3
-6 | 3| 1.7
-6 | 6 | 1.3
-1 | -6 | 1.3
-1 | 3 | 1.6
-1 | 6 | 2.6
3| -6 | 1.7
3 | -1 | 1.6
3 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3| 1

(12 rows)

280

Description of the Signatures€
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the Points SQL queryq

points_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

281

Column Type Description

edge__ id ANY-INTEGERIdentifier of the “closest” edge to the point.
fraction ANY-NUMERIC¥hlue in <0,1> that indicates the relative postition
from the first end point of the edge.

side CHAR (optional) Value in [‘'b’, ‘r’, ‘I, NULL] indicating if the
point is:

o In the right, left of the edge or
o If it doesn’t matter with ‘b’ or NULL.
o If column not present ‘b’ is considered.

Where:

ANY-INTEGER:

smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Description of the parameters of the signaturesq

Parametefl'ype Description
edges_ sqEXT Edges SQL query as described above.
points_ sEHXT Points SQL query as described above.

start_ vidRRAY [ANY-INTEGERT identifiers of starting vertices. When negative:
is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.
driving_GEda (optional) Value in [‘b’, ‘r’, ‘I’, NULL] indicating if the driving side is:
In the right or left or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

282

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the g

agg_ cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6], directed := false);

$$,
randomize := false

);

seq | node | cost | agg_cost

————— T
1] -6 | 1.3 | 0
2 | -1] 1.6 | 1.3
3| 3 | 1| 2.9
4 | 61 1.3] 3.9
5 | -6 | (O 5.2

(5 rows)

See Alsoq

o withPoints - Family of functions

e (Cost Matrixz - Category

e Traveling Sales Person - Family of functions
o sampledata network.

Indices and tables

o Index
e Search Page

283

index.html#withpoints
index.html#costmatrix
index.html#tsp
genindex.html
search.html

pgr__withPointsKSP - Proposedq] Name€q
pgr_withPointsKSP - Find the K shortest paths using Yen’s algorithm.
Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
e They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL
— Name might not change. (But still can)

— Signature might not change. (But still can)

Functionality might not change. (But still can)

pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside
Availability: 2.2.0

Synopsisq

Modifies the graph to include the points defined in the points_sql and using
Yen algorithm, finds the K shortest paths.

Signature Summary¥

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K, directed, heap_paths, drivi
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Signaturesq
Minimal Usage9q

The minimal usage: e« Is for a directed graph.
o The driving side is set as b both. So arriving/departing to/from the
point(s) can be in any direction.
e No details are given about distance of other points of the query.
e No heap paths are returned.

284

http://www.boost.org/libs/graph

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Example:

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'"SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, -2, 2);

seq | path_id | path_seq | node | edge | cost | agg_cost
————— e B Sttt S
1] 1] 11 -1 11 0.6 | 0
2 | 1] 2 | 2 | 4 | 1] 0.6
31 1] 3 | 5 | 8 | 1| 1.6
4 | 1] 4 | 6 | 9 | 1| 2.6
5 | 1] 5 | 9 | 151 0.4 | 3.6
6 | 1] 61 -2 -1 0 | 4
7 | 2 | 11 -1 11 0.6 | 0
8 | 2 | 2 | 2 | 4 | 1] 0.6
9 | 2 | 3 | 5 | 8 | 1| 1.6
10 | 2 | 4 | 6 | 11 | 1] 2.6
11 | 2 | 5 | 11 | 13 | 1] 3.6
12 | 2 | 6 | 12 | 151 0.6 | 4.6
13 | 2 | 71 -2 -1 0| 5.2

(13 rows)

Complete Signatureq
Finds the K shortest paths depending on the optional parameters setup.

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K,
directed:=true, heap_paths:=false, driving_side:='b', details:=false)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Example:

With details.

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 6, 2, details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost

© 00 ~NO O WN

e e el
g W= O

16

(16 rows)

© 00 NO O WNEF- O WN

NN NNDNDNDNDNDNDNDMNDNDNDE P2
=
o

[
[y

Description of the Signaturesq

Description of the edges sql query for dijkstra like functionsq
edges_ sql:

2 | 4
-6 | 4
5 | 8
6 | -1
-1 | 1
2 | 4
-6 | 4
5 | 10
10 | 12
-3 | 12
11 | 13
12 | 15
-2 | 15
9 | 9
6 | -1

(@]
ORLr PdPORLPORL WNOOO KL W

N~ B+~ O

ADON DN WOH”O OO WwOo

O OO WWN RO

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

reverse__ cANY-NUMERICAL

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

286

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the Points SQL queryq

points__sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

edge__id ANY-INTEGERIdentifier of the “closest” edge to the point.
fraction ANY-NUMERIC¥hlue in <0,1> that indicates the relative postition
from the first end point of the edge.

side CHAR (optional) Value in [‘'b’, ‘r’, ‘I, NULL] indicating if the
point is:

e In the right, left of the edge or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Where:

ANY-INTEGER:

smallint, int, bigint
ANY-NUMERICAL:

smallint, int, bigint, real, float

Description of the parameters of the signaturesq

Parameter Type
edges_ sql TEXT
points__sql TEXT
start_ pid ANY-INTEGER
end_ pid ANY-INTEGER

287

Parameter Type

K INTEGER
directed BOOLEAN
heap_ paths BOOLEAN
driving_ side CHAR

details BOOLEAN

Description of the return valuesq

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

Column Type
seq INTEGER
path__seq INTEGER
path_ id INTEGER
node BIGINT
edge BIGINT
cost FLOAT
agg cost FLOAT
Examplesq

Example:

Left side driving topology with details.

288

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, -2, 2,
driving_side := 'l', details := true);

seq | path_id | path_seq | node | edge | cost | agg_cost

————— e a Sttt S
1| 1| 1| -1 11 0.6 | 0
2 | 1] 2 | 2 | 41 0.7 | 0.6
3| 1] 31 -6 | 41 0.3 | 1.3
4 | 1] 4 | 5 | 8 | 1] 1.6
5 | 1] 5 | 6 | 9 | 1] 2.6
6 | 1] 6 | 9 | 15 | 1| 3.6
7 | 1] 7| 12 | 15 | 0.6 | 4.6
8 | 1] 81 21 -1 0 | 5.2
9 | 2 | 11 -1 11 0.6 | 0
10 | 2 | 2 | 2 | 41 0.7 | 0.6
11 | 2 | 31 -6 41 0.3 | 1.3
12 | 2 | 4 | 5 | 8 | 1| 1.6
13 | 2 | 5 | 6 | 11 | 1] 2.6
14 | 2 | 6 | 11 | 13 | 1] 3.6
15 | 2 | 7| 12 | 151 0.6 | 4.6
16 | 2 | 81 -2 -1 0| 5.2

(16 rows)

Example:

Right side driving topology with heap paths and details.

SELECT * FROM pgr_withPointsKSP(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, -2, 2,
heap_paths := true, driving_side := 'r', details := true);
seq | path_id | path_seq | node | edge | cost | agg_cost
————— e et e st e
1] 1] 1 -1 | 11 0.4 | 0
2| 1 2 | 1| 1 1| 0.4
3 1 3| 2 | 41 0.7 | 1.4
4| 1 41 -6 | 41 0.3 | 2.1
5 | 1| 5 | 5 | 8 | 1| 2.4
6 | 1| 6 | 6 | 9 | 1| 3.4
7 | 1] 7 | 9 | 151 0.4 | 4.4
8 | 1 81 21 -1 0| 4.8
9 | 2 | 11 -1 11 0.4 0
10 | 2 | 2 | 1| 1| 1| 0.4

A0 A O
—A N AN W O o O - AN AN m <+ W0 © ©
MO A A A A O I ADNMNMNA O A A O
o o o o o O o O o

(29 rows)

The queries use the Sample Data network.

History

¢ Proposed in version 2.2

See Alsoq

o withPoints - Family of functions

Indices and tables

Index
e Search Page

pgr__withPointsDD - Proposedq Name9

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.

290

index.html#document-sampledata
index.html#withpoints
genindex.html
search.html

o They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL
— Name might not change. (But still can)

— Signature might not change. (But still can)

— Functionality might not change. (But still can)

— pgTap tests have being done. But might need more.

— Documentation might need refinement.

Boost Graph Inside
Availability: 2.2.0

Synopsisq

Modify the graph to include points and using Dijkstra algorithm, extracts all
the nodes and points that have costs less than or equal to the value distance
from the starting point. The edges extracted will conform the corresponding
spanning tree.

Signature Summary¥

pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)

pgr_withPointsDD(edges_sql, points_sql, start_vid, distance, directed, driving_side, detai
pgr_withPointsDD(edges_sql, points_sql, start_vids, distance, directed, driving_side, deta
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Signaturesq
Minimal Use€

The minimal signature: e« Is for a directed graph.
o The driving side is set as b both. So arriving/departing to/from the
point(s) can be in any direction.
e No details are given about distance of other points of the query.

pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:

291

http://www.boost.org/libs/graph

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, 3.8);

seq | node | edge | cost | agg_cost

————— e e St
1] =11 -1 0 | 0
2 | 1 1] 0.4 | 0.4
3| 2 | 11 0.6 | 0.6
4 | 5 | 4 | 1 1.6
5 | 6 | 8 | 1 2.6
6 | 8 | 7 | 1 2.6
7 | 10 | 10 | 1| 2.6
8 | 7| 6 | 1| 3.6
9 | 9 | 9 | 1 3.6
10 | 11 | 11 | 1] 3.6
11 | 13 | 14 | 1] 3.6

(11 rows)

Driving distance from a single point9

Finds the driving distance depending on the optional parameters setup.

pgr_withPointsDD(edges_sql, points_sql, start_vids, distance,
directed:=true, driving_side:='b', details:=false)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:

Right side driving topology

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id'
'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3.8,
driving_side := 'r',
details := true);
seq | node | edge | cost | agg_cost

-

0 o »
B¢ I O O
WWNN - O

292

8 | 10 | 10 | 1] 3.4
(8 rows)

Driving distance from many starting points€

Finds the driving distance depending on the optional parameters setup.

pgr_withPointsDD(edges_sql, points_sql, start_vids, distance,
directed:=true, driving_side:='b', details:=false, equicost:=false)

RETURNS SET OF (seq, node, edge, cost, agg_cost)

Description of the Signaturesq
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cAONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

293

Description of the Points SQL query9
points_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

edge_ id ANY-INTEGERIdentifier of the “closest” edge to the point.

fraction ANY-NUMERICWhlue in <0,1> that indicates the relative postition
from the first end point of the edge.

side CHAR (optional) Value in [‘'b’, ‘r’, ‘I, NULL] indicating if the
point is:

e In the right, left of the edge or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Where:

ANY-INTEGER:

smallint, int, bigint
ANY-NUMERICAL:

smallint, int, bigint, real, float

Description of the parameters of the signaturesq

Parameter Type

edges_ sql TEXT
points__sql TEXT

start_ vid ANY-INTEGER
distance ANY-NUMERICAL
directed BOOLEAN

294

Parameter Type

driving__ side CHAR
details BOOLEAN
equicost BOOLEAN

Description of the return valuesq

Returns set of (seq, node, edge, cost, agg_cost)

Column Type
seq INT
node BIGINT
edge BIGINT
cost FLOAT
agg_cost FLOAT

Examples for queries marked as directed with cost and reverse_cost
columns9

The examples in this section use the following Network for queries marked as
directed and cost and reverse__cost columns are used

Example:

Left side driving topology

SELECT * FROM pgr_withPointsDD(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id'
'"SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, 3.8,

295

-

index.html#fig1
index.html#fig1

lll,

true) ;
seq | node | edge | cost | agg_cost

driving_side :
details

e st ettt e

3.2
3.3
3.6
3.6
3.6
3.6

(14 rows)

Example:

Does not matter driving side.

SELECT * FROM pgr_withPointsDD(

ge_table ORDER BY id',

reverse_cost FROM ed

'SELECT id, source, target, cost,

'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1, 3.8,

lbl’

true);
seq | node | edge | cost | agg_cost

driving_side :
details :

e R s Sttt S

O F ©OM W W W WOWANMWOW W O O
OO A1 AN ANANMMMOMOMM

Ot OMM—H A " ONMNM—HA —
O O O O o O O

296

(14 rows)

The queries use the Sample Data network.

History
e Proposed in version 2.2
See Alsoq

o pgr_drivingDistance - Driving distance using dijkstra.
e pgr_alphaShape - Alpha shape computation.
e pgr_pointsAsPolygon - Polygon around set of points.

Indices and tables

o Index
e Search Page

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
e They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)

Functionality might not change. (But still can)

pgTap tests have being done. But might need more.
Documentation might need refinement.

Imagesq The squared vertices are the temporary vertices, The temporary ver-
tices are added according to the driving side, The following images visually show
the differences on how depending on the driving side the data is interpreted.

Right driving side

297

index.html#document-sampledata
index.html#pgr-drivingdistance
index.html#pgr-alphashape
index.html#pgr-points-as-polygon
genindex.html
search.html

13)

B = e e g

14(10;

17(14,15)

Left driving side

298

_images/rightDrivingSide.png

14(10,13)

(I‘H-»-o-r-»-o-o-»-o-u-o-(
17(14,15}

12(10,11)

doesn’t matter the driving side

299

_images/leftDrivingSide.png

@

-

[= 1
wn

14(10713)

17(14.15)

12(10,11)

11(6,11)

) e—

=
-]
&
=
Y
o
-
e
-
©

5(3,6)
16(4,9)

718.5) B815.6) 9(6,9)
%] ;
) j
17T i
o 1
= 1
1

Ee
—n

Introductiony] This family of functions was thought for routing vehicles, but
might as well work for some other application that we can not think of.

The with points family of function give you the ability to route between arbitrary
points located outside the original graph.

When given a point identified with a pid that its being mapped to and edge
with an identifier edge_id, with a fraction along that edge (from the source to
the target of the edge) and some additional information about which side of the
edge the point is on, then routing from arbitrary points more accurately reflect
routing vehicles in road networks,

I talk about a family of functions because it includes different functionalities.
pgr_ withPoints is pgr_ dijkstra based
e pgr_withPointsCost is pgr_dijkstraCost based
e pgr_withPointsKSP is pgr_ksp based
e pgr_withPointsDD is pgr_ drivingDistance based

300

_images/noMatterDrivingSide.png

In all this functions we have to take care of as many aspects as possible:

e Must work for routing:

— Cars (directed graph)
— Pedestrians (undirected graph)

e Arriving at the point:

— In either side of the street.

— Compulsory arrival on the side of the street where the point is lo-
cated.

e Countries with:
— Right side driving
— Left side driving
e Some points are:

— Permanent, for example the set of points of clients stored in a table
in the data base

— Temporal, for example points given through a web application
e The numbering of the points are handled with negative sign.

— Original point identifiers are to be positive.
— Transformation to negative is done internally.
— For results for involving vertices identifiers

* positive sign is a vertex of the original graph
* negative sign is a point of the temporary points

The reason for doing this is to avoid confusion when there is a vertex with the
same number as identifier as the points identifier.

Graph & edges9Y

o Let \(G_d(V,E)\) where \(V\) is the set of vertices and \(E\) is the set
of edges be the original directed graph.

— An edge of the original edges_sql is \((id, source, target, cost, re-
verse_cost)\) will generate internally

* \((id, source, target, cost)\)
* \((id, target, source, reverse_cost)\)

301

Point Definitionq

e A point is defined by the quadruplet: \((pid, eid, fraction, side)\)

pid is the point identifier

eid is an edge id of the edges sql

fraction represents where the edge eid will be cut.

side Indicates the side of the edge where the point is located.

Creating Temporary Vertices in the Graphq For edge (15, 9,12 10, 20),
& lets insert point (2, 12, 0.3, 1)

On a right hand side driving network

From first image above:

e We can arrive to the point only via vertex 9.

o It only affects the edge (15, 9,12, 10) so that edge is removed.
o Edge (15, 12,9, 20) is kept.

¢ Create new edges:

— (15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
— (15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

On a left hand side driving network

From second image above:

¢ We can arrive to the point only via vertex 12.

o Tt only affects the edge (15, 12,9 20) so that edge is removed.
« Edge (15, 9,12, 10) is kept.

o Create new edges:

— (15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
— (15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

Remember:

that fraction is from vertex 9 to vertex 12

When driving side does not matter

From third image above:
e We can arrive to the point either via vertex 12 or via vertex 9
o Edge (15, 12,9 20) is removed.
o Edge (15, 9,12, 10) is removed.

302

o Create new edges:

(15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
(15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

(15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3

(15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

See Alsoq Indices and tables

o Index

e Search Page

Cost - Categoryq

* pgr_
* pgr_
* pgr_
* pgr_
* pgr_

Warning

aStarCost — proposed
bdAstarCost - Proposed
bdDijkstraCost - Proposed
dijkstraCost

withPointsCost - Proposed

Proposed functions for next mayor release.

e They are not officially in the current release.
e They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)

Functionality might not change. (But still can)

pgTap tests have being done. But might need more.
Documentation might need refinement.

General Informationq Characteristicsq

The main Characteristics are:

e Each function works as part of the family it belongs to.

e It does not return a path.

o Returns the sum of the costs of the resulting path(s) for pair combination
of nodes in the graph.

e Process is done only on edges with positive costs.

303

genindex.html
search.html
index.html#pgr-astarcost
index.html#pgr-bdastarcost
index.html#pgr-bddijkstracost
index.html#pgr-dijkstracost
index.html#pgr-withpointscost

e Values are returned when there is a path.
— The returned values are in the form of a set of (start_vid, end_ vid,
agg_ cost).

— When the starting vertex and ending vertex are the same, there is
no path.

* The agg cost int the non included values (v, v) is 0.

— When the starting vertex and ending vertex are the different and
there is no path.

* The agg cost in the non included values (u, v) is \ (\infty)\).

e Let be the case the values returned are stored in a table, so the unique
index would be the pair: (start_ vid, end_ vid).

¢ Depending on the function and its parameters, the results can be symmet-
ric.

— The agg_ cost of (u, v) is the same as for (v, u).

e Any duplicated value in the start_ vids or in end_ vids are ignored.
e The returned values are ordered:

— start_ vid ascending
— end_ vid ascending

See Alsoq

Indices and tables

o Index
e Search Page

Cost Matrix - Categoryq

e pgr_aStarCostMatriz - proposed

e pgr_bdAstarCostMatriz - proposed

e pgr_bdDijkstraCostMatrixz - proposed
o pgr_dijkstraCostMatriz - proposed

o pgr_withPointsCostMatriz - proposed

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
e They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL

304

genindex.html
search.html
index.html#pgr-astarcostmatrix
index.html#pgr-bdastarcostmatrix
index.html#pgr-bddijkstracostmatrix
index.html#pgr-dijkstracostmatrix
index.html#pgr-withpointscostmatrix

— Name might not change. (But still can)

— Signature might not change. (But still can)

— Functionality might not change. (But still can)

— pgTap tests have being done. But might need more.
— Documentation might need refinement.

pgr__aStarCostMatrix - proposedq Name9
pgr_aStarCostMatrix - Calculates the a cost matrix using pgr_aStar.
Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL
— Name might not change. (But still can)

— Signature might not change. (But still can)

— Functionality might not change. (But still can)

pgTap tests have being done. But might need more.

Documentation might need refinement.

Boost Graph Inside
Availability: 2.4.0

Synopsisq
Using aStar algorithm, calculate and return a cost matrix.

Signature Summary¥

pgr_aStarCostMatrix(edges_sql, vids)
pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signaturesq

Minimal Signatureq

The minimal signature: « Is for a directed graph.

305

index.html#pgr-astar
http://www.boost.org/libs/graph

pgr_aStarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_aStarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

);
start_vid | end_vid | agg_cost
___________ e
2 | 1] 1
3 | 1] 2
4 | 1] 3
1| 2 | 1
3| 2 | 1
4 | 2 | 2
1| 3 | 6
2 | 3 | 5
4 | 3| 1
1 4 | 5
2 | 4 | 4
3 | 4 | 3
(12 rows)

Complete Signatureq

pgr_aStarCostMatrix(edges_sql, vids, directed, heuristic, factor, epsilon)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_aStarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

directed := false, heuristic := 2
);
start_vid | end_vid | agg_cost
___________ o
2 | 1] 1

306

(12 rows)

WNEFE PR DWW
DD DWW WNNNERE -

Description of the Signaturesq

Description of the edges sql query for astar like functionsq

edges_ sql:

EFNWFRLFEFNDNNDNE PR WN

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

reverse__ cANY-NUMERICAL

x1

yl
x2

y2

ANY-NUMERICAL
ANY-NUMERICAL
ANY-NUMERICAL
ANY-NUMERICAL

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part
graph.

X coordinate of source vertex.
Y coordinate of source vertex.
X coordinate of target vertex.

Y coordinate of target vertex.

307

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type Description

edges_ sql TEXT Edges SQL query as described above.
vids ARRAY [ANY-INTEGERY of vertices_ identifiers.
directed BOOLEAN e Optional.

— When false the graph is considered
as Undirected.

— Default is true which considers the
graph as Directed.

heuristic INTEGER (optional). Heuristic number. Current valid
values 0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
e 1: h(v) abs(max(dx, dy))
h(v) abs(min(dx, dy))
e 3 h(v)=dx*dx + dy * dy
(v) =

e 4: h(v) = sqrt(dx * dx + dy *
dy)
e 5: h(v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor >
0\). Default 1.
epsilon FLOAT (optional). For less restricted results. \(epsilon

>=1\). Default 1.

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

308

Column Type

Description

end_ vid BIGINT

agg_cost FLOAT

Identifier of the ending ver:
ending vertices are in the ¢

Aggregate cost from start

Examplesq
Example:

Use with tsp

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_aStarCostMatrix(

'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

directed:= false, heuristic := 2
)
$3,
randomize := false
);
seq | node | cost | agg_cost
————— B S B
1| 1| 1| 0
2 | 2 | 1] 1
3 | 3 | 1] 2
4 | 4 | 3 | 3
5 | 1| 0 | 6
(5 rows)
See Alsoq

e aStar - Family of functions

o Cost Matrixz - Category

o Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

309

index.html#astar
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html

pgr__bdAstarCostMatrix - proposed¥ Name€

pgr_bdAstarCostMatrix - Calculates the a cost matrix using pgr bdAstar.

Boost Graph Inside
Availability: 2.5.0

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq
Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary9

pgr_bdAstarCostMatrix(edges_sql, start_vids)

pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

OR EMPTY SET

Signaturesq

Minimal Signatureq

310

index.html#pgr-bdastar
http://www.boost.org/libs/graph

pgr_bdAstarCostMatrix(edges_sql, start_vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

This usage calculates the cost from the each start_vid in start_vids to each start_vid in st
on a directed graph
e with heuristic‘s value 5
e with factor‘s value 1
e with epsilon‘s value 1

Example:

Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_bdAstarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

);
start_vid | end_vid | agg_cost
___________ U
11 2 | 1
1] 3 | 12
1] 4 | 12
2 | 1] 1
2 | 3 | 10
2| 4 | 9
3 | 1] 2
3 | 2 | 1
3 | 4 | 5
4 | 1] 5
4 | 2 | 2
4 | 3 | 1
(12 rows)

Complete Signatureq

pgr_bdAstarCostMatrix(edges_sql, start_vids, [, directed , heuristic, factor, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

This usage calculates the cost from the each start_vid in start_vids to each start_vid in st
if the graph is directed or undirected
e heuristic,
o and/or factor

311

o and/or epsilon.

Example:
Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_bdAstarCostMatrix(

'SELECT id, source, target, cost, reverse_cost, x1, yl, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
);

start_vid | end_vid | agg_cost
___________ e
11 2 | 1
1| 3 | 2
1| 4 | 5
2 | 1] 1
2 | 3 | 1
2 | 4 | 2
3 | 1] 2
3 | 2 | 1
3 | 4 | 1
4 | 1| 5
4 | 2 | 2
4 | 3 | 1

(12 rows)

Description of the Signaturesq
Description of the edges sql query for astar like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

312

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)
o When negative: edge (source, te

not exist, therefore it’s not part
graph.

Column

Type Default

Description

reverse__ cONY-NUMERICAL

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
x1 ANY-NUMERICAL X coordinate of source vertex.
yl ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.
Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type

Description

edges_ sqlTEXT
start_ vid ANY-INTEGER Starting vertex identifier.
start_ vidAARRAY [ANY-INTEGHRIng vertices identifierers.
end_ vid ANY-INTEGER Ending vertex identifier.
end__vids ARRAY [ANY-INTEGERg vertices identifiers.
directed BOOLEAN

Edges SQL query as described above.

e Optional.

— When false the graph is considered as

Undirected.

— Default is true which considers the

graph as Directed.

313

Parameter Type Description

heuristic INTEGER (optional). Heuristic number. Current valid values
0~5. Default 5

e 0: h(v) = 0 (Use this value to
compare with pgr_ dijkstra)
: h(v) abs(max(dx, dy))
) abs(min(dx, dy))
) =dx *dx + dy * dy
v) = sqrt(dx * dx + dy * dy)
v) = abs(dx) + abs(dy)
factor FLOAT (optional). For units manipulation. \(factor > 0\).
Default 1. see Factor

epsilon FLOAT (optional). For less restricted results. \(epsilon >=
1\). Default 1.

A
A

L[]
TUk @y

h(
: h(
h(
h(

Description of the return values for a Cost function

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the ¢

agg cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_bdAstarCostMatrix(
'SELECT id, source, target, cost, reverse_cost, x1, yl1, x2, y2 FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
false
)
$$,

314

index.html#astar-factor

randomize := false

)3

seq | node | cost | agg_cost

————— T
1] 1 2 | 0
2| 3 | 1| 2
3 | 4 | 2 | 3
4 | 2 | 1] 5
5 | 1] 0 | 6

(5 rows)

See Alsoq

o Bidirectional A* - Family of functions

o Cost Matrix - Category

o Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

pgr__bdDijkstraCostMatrix - proposed¥ Name€
pgr_bdDijkstraCostMatrix - Calculates the a cost matrix using pgr bdDijkstra.

Boost Graph Inside
Availability: 2.5.0

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL
— Name might change.

315

index.html#bdastar
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html
index.html#pgr-bddijkstra
http://www.boost.org/libs/graph

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.
— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq
Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary¥

pgr_bdDijkstraCostMatrix(edges_sql, start_vids)
pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signaturesq

Minimal Signature
The minimal signature: « Is for a directed graph.

pgr_bdDijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for vertices 1, 2, 3, and 4.

SELECT * FROM pgr_bdDijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

)3
start_vid | end_vid | agg_cost
___________ o
1] 2 | 1
1] 3 6
1] 4 | 5
2| 11 1
2 | 3 | 5

316

DD W W w N
WN = BN =D
H N W W~ N

(12 rows)
Complete Signatureq

pgr_bdDijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_bdDijkstraCostMatrix(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
);

start_vid | end_vid | agg_cost
___________ S
11 2 | 1
1 3 | 2
1| 4 | 3
2 | 1| 1
2 | 3 | 1
2 | 4 | 2
3 | 1| 2
3| 2 | 1
3 | 4 | 1
4 | 1| 3
4 | 2 | 2
4 | 3 | 1

(12 rows)

Description of the Signatures€
Description of the edges_sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

317

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:
ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parametefl'ype Description

edges_ sdEXT Edges SQL query as described above.
start_ vidRRAY [ANY-INTEGER] identifiers of the vertices.

directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

318

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the g

agg_ cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_bdDijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
)
$3,
randomize := false
);
seq | node | cost | agg_cost
————— B e e B
1] 1 1] 0
2 | 2 | 1 1
31 3 | 1] 2
4 | 4 | 3 | 3
5 | 1| 0 | 6
(5 rows)
See Alsoq

Bidirectional Dijkstra - Family of functions
o Cost Matrix - Category

o Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

319

index.html#bddijkstra
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html

pgr__dijkstraCostMatrix - proposedq Nameq
pgr_dijkstraCostMatrix - Calculates the a cost matrix using pgr_dijktras.
Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside
Availability: 2.3.0

Synopsisq
Using Dijkstra algorithm, calculate and return a cost matrix.

Signature Summary¥

pgr_dijkstraCostMatrix(edges_sql, start_vids)
pgr_dijkstraCostMatrix(edges_sql, start_vids, directed)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Signaturesq

Minimal Signatureq
The minimal signature: « Is for a directed graph.

pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

Cost matrix for vertices 1, 2, 3, and 4.

320

http://www.boost.org/libs/graph

SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)

);
start_vid | end_vid | agg_cost
___________ e
11 2 | 1
1] 3 | 6
1| 4 | 5
2 | 1| 1
2 | 3 | 5
2 | 4 | 4
3 | 1| 2
3 | 2 | 1
3 | 4 | 3
4 | 1| 3
4 | 2 | 2
4 | 3 | 1
(12 rows)

Complete Signatureq

pgr_dijkstraCostMatrix(edges_sql, start_vids, directed:=true)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example
Cost matrix for an undirected graph for vertices 1, 2, 3, and 4.

This example returns a symmetric cost matrix.

SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false

);
start_vid | end_vid | agg_cost
___________ S
11 2 | 1
1| 3 | 2
1| 4 | 3
2 | 1| 1
2 | 3 | 1
2 | 4 | 2
3 | 1| 2
3| 2 | 1

321

N NN V)
w N - D
=N W=

(12 rows)

Description of the Signaturesq
Description of the edges sql query for dijkstra like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__ cANY-NUMERICAL Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parametefl'ype Description

edges_ sqEXT Edges SQL query as described above.

322

Parametefl'ype Description

start_ vidRRAY [ANY-INTEGERT identifiers of the vertices.

directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the g

agg cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
$$
SELECT * FROM pgr_dijkstraCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
(SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),

false
)
$3,
randomize := false
);
seq | node | cost | agg_cost
————— B T S
1] 1| 1] 0
2 | 2 | 1 1
31 3| 1] 2
4 | 4 | 3 | 3
5 | 1| 0 | 6
(5 rows)

323

See Alsoq

e Dijkstra - Family of functions

o (Cost Matrixz - Category

o Traveling Sales Person - Family of functions
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

pgr_ withPointsCostMatrix - proposedq Name€q

pgr_withPointsCostMatrix - Calculates the shortest path and returns only
the aggregate cost of the shortest path(s) found, for the combination of points
given.

Warning

Proposed functions for next mayor release.

e They are not officially in the current release.
o They will likely officially be part of the next mayor release:

— The functions make use of ANY-INTEGER and ANY-NUMERICAL
— Name might not change. (But still can)

— Signature might not change. (But still can)

— Functionality might not change. (But still can)

pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside
Availability: 2.2.0

Signature Summary¥

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids)
pgr_withPointsCostMatrix (edges_sql, points_sql, start_vids, directed, driving_side)
RETURNS SET OF (start_vid, end_vid, agg_cost)

324

index.html#dijkstra
index.html#costmatrix
index.html#tsp
index.html#document-sampledata
genindex.html
search.html
http://www.boost.org/libs/graph

Note

There is no details flag, unlike the other members of the withPoints family of
functions.

Signaturesq

Minimal Signatureq

The minimal signature: e« Is for a directed graph.
o The driving side is set as b both. So arriving/departing to/from the
point(s) can be in any direction.

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id'
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -61);
start_vid | end_vid | agg_cost

___________ U
-6 | -1 1.3
-6 | 3| 4.3
-6 | 6 | 1.3
-1 | -6 | 1.3
-1 | 3 | 5.6
-1 | 6 | 2.6
3| -6 | 1.7
3 | -1 | 1.6
3 6 | 1
6 | -6 | 1.3
6 | -1 | 2.6
6 | 3| 3

(12 rows)

Complete Signatureq

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids,
directed:=true, driving_side:='b')

RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:

returning a symmetrical cost matrix

325

-

o Using the default side value on the points__sql query

e Using an undirected graph
o Using the default driving__side value

SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6], directed
start_vid | end_vid | agg_cost

___________ e
| -1 | 1.3

| 3 1.7

| 6 | 1.3

| -6 | 1.3

| 3 1.6
1] 6 | 2.6
3 -6 | 1.7
3 -1 1.6
3 6 | 1
6 | -6 | 1.3
6 | -1 2.6
6 | 3 | 1

(12 rows)

Description of the Signatures€

Description of the edges_sql query for dijkstra like functionsq

edges_sql:

:= false);

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

326

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Column Type Default Description

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the Points SQL queryq

points__sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

pid ANY-INTEGER(optional) Identifier of the point.

e If column present, it can not be NULL.
e If column not present, a sequential identifier will
be given automatically.

edge__ id ANY-INTEGERIdentifier of the “closest” edge to the point.

fraction ANY-NUMERIC¥hlue in <0,1> that indicates the relative postition
from the first end point of the edge.

side CHAR (optional) Value in [‘'b’, ‘r’, ‘I, NULL] indicating if the
point is:

e In the right, left of the edge or
o If it doesn’t matter with ‘b’ or NULL.
o If column not present ‘b’ is considered.

Where:
ANY-INTEGER:
smallint, int, bigint

ANY-NUMERICAL:

327

smallint, int, bigint, real, float

Description of the parameters of the signaturesq

Parametefl'ype Description
edges_ sqEXT Edges SQL query as described above.
points__ sTRXT Points SQL query as described above.

start__vidBRRAY [ANY-INTEGERT identifiers of starting vertices. When negative:
is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as
Undirected. Default is true which considers the graph
as Directed.
driving_ Ghda (optional) Value in [‘b’, ‘r’, ‘I’, NULL] indicating if the driving side is:
In the right or left or
o If it doesn’t matter with ‘b’ or NULL.
e If column not present ‘b’ is considered.

Description of the return values for a Cost functionq

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description

start_ vid BIGINT Identifier of the starting ve
starting vetrices are in the

end_ vid BIGINT Identifier of the ending ver:
ending vertices are in the ¢

agg cost FLOAT Aggregate cost from start

Examplesq

Example:

Use with tsp

SELECT * FROM pgr_TSP(
3
SELECT * FROM pgr_withPointsCostMatrix(
'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
'SELECT pid, edge_id, fraction from pointsOfInterest',
array[-1, 3, 6, -6], directed := false);
$3,

328

randomize := false

)

seq | node | cost | agg_cost

————— e
1] -6 | 1.3 | 0
2 | -1 1 1.6 | 1.3
3 | 3 | 1] 2.9
4 | 6 | 1.3 | 3.9
5 | -6 | 0 | 5.2

(5 rows)

See Alsoq

o withPoints - Family of functions

o Cost Matrix - Category

o Traveling Sales Person - Family of functions
o sampledata network.

Indices and tables

o Index
e Search Page

General Information Synopsisq

Traveling Sales Person - Family of functions needs as input a symmetric cost
matrix and no edge (u, v) must value \(\infty\).

This collection of functions will return a cost matrix in form of a table.
Characteristicsq

The main Characteristics are:

e Can be used as input to pgr_TSP.

— directly:
when the resulting matrix is symmetric and there is no \(\infty\)
value.
— It will be the users responsibility to make the matrix symmetric.
* By using geometric or harmonic average of the non symmetric
values.
* By using max or min the non symmetric values.
* By setting the upper triangle to be the mirror image of the lower
triangle.

329

index.html#withpoints
index.html#costmatrix
index.html#tsp
genindex.html
search.html
index.html#tsp
index.html#pgr-tsp

* By setting the lower triangle to be the mirror image of the upper
triangle.

— It is also the users responsibility to fix an \(\infty\) value.

Each function works as part of the family it belongs to.

It does not return a path.

Returns the sum of the costs of the shortest path for pair combination of
nodes in the graph.

Process is done only on edges with positive costs.

Values are returned when there is a path.

— The returned values are in the form of a set of (start_vid, end_ vid,
agg cost).

— When the starting vertex and ending vertex are the same, there is
no path.

* The agg cost int the non included values (v, v) is 0.

— When the starting vertex and ending vertex are the different and
there is no path.

* The agg cost in the non included values (u, v) is \ (\infty)\).

Let be the case the values returned are stored in a table, so the unique
index would be the pair: (start_vid, end_ vid).

Depending on the function and its parameters, the results can be symmet-
ric.

— The agg_cost of (u, v) is the same as for (v, u).

Any duplicated value in the start_vids are ignored.
The returned values are ordered:

— start_ vid ascending
— end__vid ascending

Running time: approximately \(O(| start_vids | * (V \log V + E))\)

See Alsoq

pgr__ TSP

Indices and tables

Index
Search Page

330

index.html#pgr-tsp
genindex.html
search.html

KSP Categoryq

e pgr_KSP - Driving Distance based on pgr_dijkstra
o pgr_withPointsKSP - Proposed - Driving Distance based on pgr_ dijkstra

Indices and tables

o Index

e Search Page

Experimental Functionsq

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

Name might change.

Signature might change.

Functionality might change.

pgTap tests might be missing.

Might need c¢/c++ coding.

May lack documentation.

Documentation if any might need to be rewritten.

Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.

Might depend on a proposed function of pgRouting

Might depend on a deprecated function of pgRouting

Contraction - Family of functions - Reduce network size using contraction tech-

niques

o pgr_contractGraph - Experimental - Reduce network size using contraction
techniques

Graph Analysis

o pgr_labelGraph - Ezxperimental - Analyze / label subgraphs within a net-

work

331

index.html#pgr-ksp
index.html#pgr-withpointsksp
genindex.html
search.html
index.html#contraction
index.html#pgr-contractgraph
index.html#pgr-labelgraph

Components - Family of functions - Analyze components within a graph

e pgr_connectedComponents - Experimental - Return the connected compo-
nents of an undirected graph

e pgr_strongComponents - Experimental - Return the strongly connected
components of a directed graph

o pgr_biconnectedComponents - Experimental - Return the biconnected com-
ponents of an undirected graph

o pgr_articulationPoints - Experimental - Return the articulation points of
an undirected graph
e pgr_bridges - Experimental - Return the bridges of an undirected graph

VRP

e pgr_gsoc_vrppdtw - FExperimental
o pgr_vrpOneDepot - Experimental

Contraction - Family of functionsY Warning

Experimental functions

o They are not officially of the current release.
o They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

Name might change.

Signature might change.

Functionality might change.

pgTap tests might be missing.

Might need ¢/c++ coding.

May lack documentation.

Documentation if any might need to be rewritten.

Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.

Might depend on a proposed function of pgRouting

Might depend on a deprecated function of pgRouting

pgr__contractGraph - Experimental

332

index.html#components
index.html#pgr-connectedcomponents
index.html#pgr-strongcomponents
index.html#pgr-biconnectedcomponents
index.html#pgr-articulationpoints
index.html#pgr-bridges
index.html#pgr-gsocvrppdtw
index.html#pgr-vrp-basic
index.html#pgr-contractgraph

pgr__contractGraph - Experimentalq pgr_contractGraph — Performs
graph contraction and returns the contracted vertices and edges.

Boost Graph Inside
Availability: 2.3.0

Warning

Experimental functions

o They are not officially of the current release.
o They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.
— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq

Contraction reduces the size of the graph by removing some of the vertices and
edges and, for example, might add edges that represent a sequence of original
edges decreasing the total time and space used in graph algorithms.

Characteristicsq

The main Characteristics are: ¢ Process is done only on edges with pos-
itive costs.
e There are two types of contraction methods used namely,

— Dead End Contraction
— Linear Contraction

e The values returned include the added edges and contracted vertices.

333

http://www.boost.org/libs/graph

e The returned values are ordered as follows:

— column id ascending when type = v
— column id descending when type = e

Signature Summary:q

The pgr_ contractGraph function has the following signatures:

pgr_contractGraph(edges_sql, contraction_order)
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)

RETURNS SETOF (seq, type, id, contracted_vertices, source, target, cost)

Signaturesq

Minimal signatureq
pgr_contractGraph(edges_sql, contraction_order)

Example:

Making a dead end contraction and a linear contraction.

SELECT * FROM pgr_contractGraph(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1, 21);

seq | type | id | contracted_vertices | source | target | cost

————— e
1| v | 5 | {7,8} | -1 -1 | -1
2 | v | 15 | {14} | -1 | -1 | -1
3| v | 17 | {16} | -1 | -1 | -1
4 | e [-1 | {1,2} | 3 | 5 | 2
51| e | -2 | {4} | 9 | 3 | 2
6 | e | -3 | {10,13} | 5 | 11 | 2
71 e | -4 | {12} | 11 | 9 | 2

(7 rows)

Complete signatureq
pgr_contractGraph(edges_sql, contraction_order, max_cycles, forbidden_vertices, directed)

Example:

Making a dead end contraction and a linear contraction and vertex 2 is forbidden
from contraction

334

SELECT * FROM pgr_contractGraph(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',

ARRAY[1, 2], forbidden_vertices:=ARRAY[2]);

seq | type | id | contracted_vertices | source | target | cost

————— o e
1| v [2| {1} | -1 -1 | -1
2 | v | 5 | {7,8} | -1 | -1 | -1
3| v | 15 | {14} | -1 | -1 | -1
4 | v | 17 | {16} | -1 -1 | -1
51| e | -1 | {4} | 9 | 3 | 2
6 | e | -2 | {10,13} | 5 | 11 | 2
71 e | -3 | {12} | 11 | 9 | 2

(7 rows)

Description of the edges_sql query for dijkstra like functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

reverse__ cANY-NUMERICAL

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

335

Description of the parameters of the signaturesq

Column Type Description

edges_ sql TEXT SQL query as described above.

contraction ABRAELANY-TIOiEEHRId contraction operations. o 1 =
Dead end contraction

e 2 = Linear contraction
forbidden_ veARA¥EANY-I0PEGHRAL). Identifiers of vertices forbidden from
contraction. Default is an empty array.
max__cycles INTEGER (optional). Number of times the contraction
operations on contraction_order will be performed.
Default is 1.
directed BOOLEAN e When true the graph is considered as
Directed.
o When false the graph is considered as
Undirected.

Description of the return valuesq
RETURNS SETOF (seq, type, id, contracted_ vertices, source, target, cost)

The function returns a single row. The columns of the row are:

Column Type Description
seq INTEGER Sequential value starting from 1.
type TEXT Type of the id. ¢ ‘v’ when id is an

identifier of a vertex.
e ‘e’ when id is an identifier of an
edge.
id BIGINT Identifier of: ¢ the vertex when type = ‘v’
— The vertex belongs to the
edge_table passed as a
parameter.
e the edge when type = ‘e’.
— The id is a decreasing sequence
starting from -1.
— Representing a pseudo id as is
not incorporated into the
edge_table.

contracted__verARR#Y [BIGIMETay of contracted vertex identifiers.

336

Column Type Description

source BIGINT Identifier of the source vertex of the current
edge id. Valid values when type = ‘e’

target BIGINT Identifier of the target vertex of the current
edge id. Valid values when type = ‘e

cost FLOAT Weight of the edge (source, target). Valid

values when type = ‘e’.

ExamplesY Example:

Only dead end contraction

SELECT * FROM pgr_contractGraph(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1]);
seq | type | id | contracted_vertices | source | target | cost

————— s St e
11 v 21 {13} | -1 -1 | -1
2 | v | 51 {7,8%} | -1 | -1 | -1
3| v | 10 | {13} | -1 | -1 | -1
4 | v | 15 | {14} | -1] -1 -1
5| v | 17 | {167 | -1 -1 | -1

(5 rows)

Example

Only linear contraction

SELECT * FROM pgr_contractGraph(

'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2]);
seq | type | id | contracted_vertices | source | target | cost

————— s T e S
1] e | -1 | {4} | 9 | 3 | 2
2 | e | -2 | {8} | 5 | 7 | 2
31 e | -3 | {8} | 7 | 5 | 2
4| e | -4 | {12} | 11 | 9 | 2
(4 rows)

Indices and tables

o Index
e Search Page

337

genindex.html
search.html

Introductionq In big graphs, like the road graphs, or electric networks, graph
contraction can be used to speed up some graph algorithms. Contraction reduces
the size of the graph by removing some of the vertices and edges and, for example,
might add edges that represent a sequence of original edges decreasing the total
time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algo-
rithms in the future, currently, it supports two algorithms:

1. Dead end contraction
2. Linear contraction

Allowing the user to:

e Forbid contraction on a set of nodes.
e Decide the order of the contraction algorithms and set the max-
imum number of times they are to be executed.

Note
UNDER DISCUSSION: Forbid contraction on a set of edges

Dead end contractionq In the algorithm, dead end contraction is repre-
sented by 1.

Dead end nodesq

The definition of a dead end node is different for a directed and an undirected
graph.
In case of a undirected graph, a node is considered a dead end node if

e The number of adjacent vertices is 1.

In case of an directed graph, a node is considered a dead end node if

e There are no outgoing edges and has at least one incoming edge.
e There is one incoming and one outgoing edge with the same
identifier.

Examples

e The green node B represents a dead end node
e The node A is the only node connecting to B.

338

e Node A is part of the rest of the graph and has an unlimited number of
incoming and outgoing edges.
e Directed graph

Operation: Dead End Contraction

The dead end contraction will stop until there are no more dead end nodes. For
example from the following graph:

e Node A is connected to the rest of the graph by an unlimited number of
edges.

e Node B is connected to the rest of the graph with one incoming edge.

e Node B is the only node connecting to C.

o The green node C represents a Dead End node

After contracting C, node B is now a Dead End node and is contracted:
Node B gets contracted

Nodes B and C belong to node A.

Not Dead End nodesq

In this graph B is not a dead end node.

Linear contractionq In the algorithm, linear contraction is represented by
2.

Linear nodesq

A node is considered a linear node if satisfies the following:

e The number of adjacent vertices are 2.
¢ Should have at least one incoming edge and one outgoing edge.

Examples

e The green node B represents a linear node

e The nodes A and C are the only nodes connecting to B.

e Node A is part of the rest of the graph and has an unlimited number of
incoming and outgoing edges.

e Node C is part of the rest of the graph and has an unlimited number of
incoming and outgoing edges.

o Directed graph

339

Operation: Linear Contractiony

The linear contraction will stop until there are no more linear nodes. For exam-
ple from the following graph:

e Node A is connected to the rest of the graph by an unlimited number of
edges.

e Node B is connected to the rest of the graph with one incoming edge and
one outgoing edge.

e Node C is connected to the rest of the graph with one incoming edge and
one outgoing edge.

e Node D is connected to the rest of the graph by an unlimited number of
edges.

e The green nodes B and C represents Linear nodes.

After contracting B, a new edge gets inserted between A and C which is repre-
sented by red color.

Node C is linear node and gets contracted.

Nodes B and C belong to edge connecting A and D which is represented by red
color.

Not Linear nodesq|

In this graph B is not a linear node.

The cycleY Contracting a graph, can be done with more than one operation.
The order of the operations affect the resulting contracted graph, after applying
one operation, the set of vertices that can be contracted by another operation
changes.

This implementation, cycles max_cycles times through operations_order .

<input>
do max_cycles times {
for (operation in operations_order)
{ do operation }
}
<output>

Contracting Sample Data¥ In this section, building and using a contracted
graph will be shown by example.

e The Sample Data for an undirected graph is used
e a dead end operation first followed by a linear operation.

340

index.html#document-sampledata

The original graph:

ontraction operation:

After doing a dead end ¢

341

{14} @
1'1){13} @
" O—O

{1}

Doing a linear contraction operation to the graph above

342

14y {16}

-3 {10,13}

{8,7}

There are five cases, in this documentation, which arise when calculating
the shortest path between a given source and target. In this examples,
pgr_dijkstra is used.

e Case 1: Both source and target belong to the contracted graph.

e Case 2: Source belongs to a contracted graph, while target belongs to a
edge subgraph.

e Case 3: Source belongs to a vertex subgraph, while target belongs to an
edge subgraph.

e Case 4: Source belongs to a contracted graph, while target belongs to an
vertex subgraph.

e Case 5: The path contains a new edge added by the contraction algo-
rithm.

Construction of the graph in the databaseq
Original Data

343

The following query shows the original data involved in the contraction opera-
tion.

Contraction Results

SELECT * FROM pgr_contractGraph/(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[1,2], directed:=true);

seq | type | id | contracted_vertices | source | target | cost

————— s T e S
1| v | 51| {7,8%} | -1 | -1 | -1
2 | v | 15 | {14} | -1 | -1 | -1
31w | 17 | {16} | -1 | -1 | -1
4| e [-1 | {1,2} | 3 | 5 | 2
51| e | -2 | {4} | 9 | 3 | 2
6 | e | -3 | {10,13} | 5 | 11 | 2
71 e | -4 | {12} | 11 | 9 | 2

(7 rows)

The above results do not represent the contracted graph. They represent the
changes done to the graph after applying the contraction algorithm. We can
see that vertices like 6 and 11 do not appear in the contraction results because
they were not affected by the contraction algorithm.

step 1

Adding extra columns to the edge_table and edge_table_vertices_pgr ta-
bles:

Column Description

contracted__véFhicesrtices set belonging to the vertex/edge

is_ contracted On a vertex table: when true the vertex is contracted, so is
not part of the contracted graph.

is_ contracted On an edge table: when true the edge was generated by the
contraction algorithm.

Using the following queries:
ALTER TABLE edge_table ADD contracted_vertices BIGINT[];

ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD contracted_vertices BIGINT[];

344

ALTER TABLE

ALTER TABLE edge_table ADD is_contracted BOOLEAN DEFAULT false;

ALTER TABLE

ALTER TABLE edge_table_vertices_pgr ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE

SET client_min_messages TO NOTICE;

SET

step 2

For simplicity, in this documentation, store the results of the call to
pgr__contractGraph in a temporary table

SELECT * INTO contraction_results

FROM pgr_contractGraph/(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
array[1,2], directed:=true);

SELECT 7

step 3

Update the vertex and edge tables using the results of the call to
pgr_ contraction

e In edge table_vertices pgr.is_ contracted indicate the vertices that are
contracted.

UPDATE edge_table_vertices_pgr

SET is_contracted = true

WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10

e Add to edge_table_vertices_pgr.contracted_ vertices the contracted ver-
tices belonging to the vertices.

UPDATE edge_table_vertices_pgr

SET contracted_vertices = contraction_results.contracted_vertices

FROM contraction_results

WHERE type = 'v' AND edge_table_vertices_pgr.id = contraction_results.id;
UPDATE 3

o Insert the new edges generated by pgr_contractGraph.

345

INSERT INTO edge_table(source, target, cost, reverse_cost, contracted_vertices, is_contract
SELECT source, target, cost, -1, contracted_vertices, true

FROM contraction_results

WHERE type = 'e';

INSERT 0 4

step 3.1
Verify visually the updates.

e On the edge_table_ vertices pgr

SELECT id, contracted_vertices, is_contracted
FROM edge_table_vertices_pgr

ORDER BY id;
id | contracted_vertices | is_contracted
e e
1| | t
2 | | t
3 1 | £
4 | | t
5 | {7,8} | £
6 | | f
71 | t
8 | | t
9 | | £
10 | | t
11 | | f
12 | It
13 | | t
14 | | t
15 | {14} | £
16 | | t
17 | {16} | £
(17 rows)

e On the edge_table

SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_contracted
FROM edge_table

ORDER BY id;
id | source | target | cost | reverse_cost | contracted_vertices | is_contracted
———— e e e e e e
1| 1| 2 | 1| 1] | £
2 | 2 | 31 -1 11 | £

346

3 3| 41 -1 1| | £
4 | 2 | 5 | 1] 1| | £
5 | 3 | 6 | 1] -1 | | £
6 | 71 8 | 1| 1| | f
71 8 | 5 | 1| 1| | £
8 | 5 | 6 | 1| 1| | £
9 | 6 | 9 | 1] 1| | £
10 | 5 | 10 | 1] 1] | £
11 | 6 | 11 | 1| -1 | | f
12 | 10 | 11 | 1| -1 | £
13 | 11 | 12 | 1| -1 | £
14 | 10 | 13 | 1| 1| | £
15 | 9 | 12 | 1] 1] | £
16 | 4 | 9 | 1| 1] | £
17 | 14 | 15 | 1| 1| | £
18 | 16 | 17 | 1| 1| | £
19 | 3| 5 | 2 | -1 1 {1,2} | t
20 | 9 | 3 2 | -1 | {43} | t
21 | 5 | 11 | 2 | -1 | {10,13} | t
22 | 11 | 9 | 2 | -1 | {12} | t
(22 rows)

» vertices that belong to the contracted graph are the non contracted vertices

SELECT id FROM edge_table_vertices_pgr
WHERE is_contracted = false

ORDER BY id;

id

15
17
(7 rows)

case 1: Both source and target belong to the contracted graph.

Inspecting the contracted graph above, vertex 3 and vertex 11 are part of the
contracted graph. In the following query:

o vertices_in_graph hold the vertices that belong to the con-
tracted graph.

347

e when selecting the edges, only edges that have the source and
the target in that set are the edges belonging to the contracted
graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 11: 3 -> 6 -> 11, and
in the contracted graph, it is also 3 -> 6 -> 11. The results, on the contracted
graph match the results as if it was done on the original graph.

SELECT * FROM pgr_dijkstra(
3
WITH
vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false)
SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$3,

3, 11, false);
seq | path_seq | node | edge | cost | agg_cost

————— B e ST
1| 1] 3| 5 | 1] 0
2 | 2 | 6 | 11 | 1] 1
3 | 3 | 11 | -1 0 | 2
(3 rows)

case 2: Source belongs to the contracted graph, while target belongs to a edge
subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph and vertex

expandl holds the contracted vertices of the edge where vertex 1
belongs. (belongs to edge 19).

e vertices_in_graph hold the vertices that belong to the contracted
graph and also the contracted vertices of edge 19.

e when selecting the edges, only edges that have the source and the
target in that set are the edges belonging to the contracted graph,
that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 1: 3 -> 2 -> 1, and
in the contracted graph, it is also 3 -> 2 -> 1. The results, on the contracted
graph match the results as if it was done on the original graph.

SELECT * FROM pgr_dijkstra(
$$

348

WITH
expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),

expandl AS (SELECT contracted_vertices FROM edge_table
WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 1)),

vertices_in_graph AS (

SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false

UNION
SELECT unnest(contracted_vertices) FROM expandl)

SELECT id, source, target, cost, reverse_cost

FROM edge_table

WHERE source IN (SELECT * FROM vertices_in_graph)

AND target IN (SELECT * FROM vertices_in_graph)

$$,
3, 1, false);
seq | path_seq | node | edge | cost | agg_cost
----- T it R
1] 1 3| 2 | 1 0
2| 2 | 2 | 11 11 1
31 3 | 11 -1 0 |
(3 rows)

case 3: Source belongs to a vertex subgraph, while target belongs to an edge
subgraph.

Inspecting the contracted graph above, vertex 7 belongs to the contracted sub-
graph of vertex 5 and vertex 13 belongs to the contracted subgraph of edge 21.
In the following query:

« expand7 holds the contracted vertices of vertex where vertex 7
belongs. (belongs to vertex 5)

e expandl13 holds the contracted vertices of edge where vertex 13
belongs. (belongs to edge 21)

o vertices_in_graph hold the vertices that belong to the con-
tracted graph, contracted vertices of vertex 5 and contracted
vertices of edge 21.

e when selecting the edges, only edges that have the source and
the target in that set are the edges belonging to the contracted
graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 7 to 13: 7-> 8 -> 5-> 10 ->
13, and in the contracted graph, it is also 7 -> 8 -> 5 -> 10 -> 13. The results,
on the contracted graph match the results as if it was done on the original graph.

SELECT * FROM pgr_dijkstra(
$$

349

WITH

expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_ver
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),

expand_edges AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table),
expand13 AS (SELECT contracted_vertices FROM edge_table
WHERE id IN (SELECT id FROM expand_edges WHERE vertex = 13)),

vertices_in_graph AS (
SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expandl3
UNION
SELECT unnest(contracted_vertices) FROM expand7)

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$3,
7, 13, false);

seq | path_seq | node | edge | cost | agg_cost

————— B e, ST
1] 1] 7 | 6 | 1] 0
2 | 2 | 8 | 7 | 1] 1
3 | 3 | 5 | 10 | 1] 2
4 | 4 | 10 | 14 | 1| 3
5 | 5 | 13 | -1 | 0 | 4
(5 rows)

case 4: Source belongs to the contracted graph, while target belongs to an vertex
subgraph.

Inspecting the contracted graph above, vertex 3 is part of the contracted graph
and vertex 7 belongs to the contracted subgraph of vertex 5. In the following

query:

e expand7 holds the contracted vertices of vertex where vertex 7
belongs. (belongs to vertex 5)

e vertices in_graph hold the vertices that belong to the con-
tracted graph and the contracted vertices of vertex 5.

e when selecting the edges, only edges that have the source and
the target in that set are the edges belonging to the contracted
graph, that is done in the WHERE clause.

350

Visually, looking at the original graph, going from3to 7: 3->2->5->8-> 7,
but in the contracted graph, it is 3-> 5 -> 8 -> 7. The results, on the contracted
graph do not match the results as if it was done on the original graph. This is
because the path contains edge 19 which is added by the contraction algorithm.

SELECT * FROM pgr_dijkstra(
3
WITH
expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_ver
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
vertices_in_graph AS (
SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand7)
SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)

$3,
3, 7, false);

seq | path_seq | node | edge | cost | agg_cost
————— Tt s et ST
1] 1 3 | 19 | 2 | 0
2 | 2 | 5 | 71 1| 2
3 | 3 | 8 | 6 | 1 3
4 | 4 | 71 -1 0| 4

(4 rows)

case 5: The path contains an edge added by the contraction algorithm.

In the previous example we can see that the path from vertex 3 to vertex 7
contains an edge which is added by the contraction algorithm.

WITH
first_dijkstra AS (
SELECT * FROM pgr_dijkstra(
$$
WITH
expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_table_x
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
vertices_in_graph AS (
SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false
UNION
SELECT unnest(contracted_vertices) FROM expand7)

351

SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
$3,
3, 7, false))
SELECT edge, contracted_vertices
FROM first_dijkstra JOIN edge_table
ON (edge = id)
WHERE is_contracted = true;
edge | contracted_vertices
______ o
19 | {1,2}
(1 row)

Inspecting the contracted graph above, edge 19 should be expanded. In the
following query:

o first_dijkstra holds the results of the dijkstra query.

e edges to_expand holds the edges added by the contraction
algorithm and included in the path.

e vertices in_graph hold the vertices that belong to the con-
tracted graph, vertices of the contracted solution and the con-
tracted vertices of the edges added by the contraction algorithm
and included in the contracted solution.

o when selecting the edges, only edges that have the source and
the target in that set are the edges belonging to the contracted
graph, that is done in the WHERE clause.

Visually, looking at the original graph, going from 3 to 7: 3->2->5-> 8 ->
7, and in the contracted graph, it is also 3 -> 2 -> 5 -> 8 -> 7. The results, on
the contracted graph match the results as if it was done on the original graph.

SELECT * FROM pgr_dijkstra($$
WITH
-- This returns the results from case 2
first_dijkstra AS (
SELECT * FROM pgr_dijkstra(
'
WITH
expand_vertices AS (SELECT id, unnest(contracted_vertices) AS vertex FROM edge_tabl
expand7 AS (SELECT contracted_vertices FROM edge_table_vertices_pgr
WHERE id IN (SELECT id FROM expand_vertices WHERE vertex = 7)),
vertices_in_graph AS (
SELECT id FROM edge_table_vertices_pgr WHERE is_contracted = false

352

UNION

SELECT unnest(contracted_vertices) FROM expand7)
SELECT id, source, target, cost, reverse_cost
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)

3, 7, false)),

-- edges that need expansion and the vertices to be expanded.
edges_to_expand AS (

SELECT edge, contracted_vertices

FROM first_dijkstra JOIN edge_table

ON (edge = id)

WHERE is_contracted = true),

vertices_in_graph AS (
-— the nodes of the contracted solution
SELECT node FROM first_dijkstra
UNION
-- the nodes of the expanding sections
SELECT unnest(contracted_vertices) FROM edges_to_expand)

SELECT id, source, target, cost, reverse_cost
FROM edge_table

WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
-- not including the expanded edges

AND id NOT IN (SELECT edge FROM edges_to_expand)

$$,
3, 7, false);
seq | path_seq | node | edge | cost | agg_cost

————— e St
1| 1| 31 2 | 1] 0
2 | 2 | 2 | 4 | 1] 1
3| 3 | 5 | 71 1| 2
4 | 4 | 8 | 6 | 1| 3
5 | 5 | 71 -1 0 | 4

(5 rows)

See Alsoq

o http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12 /www /lectures/lecturel6.pdf
o http://algo2.iti.kit.edu/documents/routeplanning /geisberger dipl.pdf

353

http://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
http://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf

e The queries use pgr_contractGraph - Experimental function and the Sam-
ple Data network.

Indices and tables

o Index
e Search Page

Flow - Family of functionsq

e pgr_maxFlow - Proposed - Only the Max flow calculation using Push and
Relabel algorithm.

e pgr_boykovKolmogorov - Proposed - Boykov and Kolmogorov with details
of flow on edges.

o pgr_edmondsKarp - Proposed - Edmonds and Karp algorithm with details
of flow on edges.

e pgr_pushRelabel - Proposed - Push and relabel algorithm with details of
flow on edges.

e Applications

— pgr_edgeDisjointPaths - Proposed - Calculates edge disjoint paths
between two groups of vertices.

— pgr_mazCardinalityMatch - Proposed - Calculates a maximum cardi-
nality matching in a graph.

Warning

Experimental functions

e They are not officially of the current release.
o They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

354

index.html#pgr-contractgraph
index.html#document-sampledata
index.html#document-sampledata
genindex.html
search.html
index.html#pgr-maxflow
index.html#pgr-boykovkolmogorov
index.html#pgr-edmondskarp
index.html#pgr-pushrelabel
index.html#pgr-edgedisjointpaths
index.html#pgr-maxcardinalitymatch

pgr__maxFlow - Proposedq Synopsisq

pgr_maxFlow — Calculates the maximum flow in a directed graph from the
source(s) to the targets(s) using the Push Relabel algorithm.

Boost Graph Inside
Availability: 2.4.0

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Characteristics

e The graph is directed.
¢ When the maximum flow is 0 then there is no flow and 0 is returned.

— There is no flow when a source is the same as a target.

o Any duplicated value in the source(s) or target(s) are ignored.
o Uses the pgr_pushRelabel algorithm.

Running time: \(O(V " 3)\)

Signature Summary¥

355

http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
index.html#pgr-pushrelabel

pgr_maxFlow(edges_sql, source, target)
pgr_maxFlow(edges_sql, sources, target)
pgr_maxFlow(edges_sql, source, targets)
pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT

One to Oneq

Calculates the maximum flow from the source to the target.

pgr_maxFlow(edges_sql, source, target)
RETURNS BIGINT

Example

SELECT * FROM pgr_maxFlow(
'"SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, 6, 11
);
pgr_maxflow

(1 row)

One to Many9

Calculates the maximum flow from the source to all of the targets.

pgr_maxFlow(edges_sql, source, targets)
RETURNS BIGINT

Example

SELECT * FROM pgr_maxFlow(
'"SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'

356

, 6, ARRAY[11, 1, 13]
)
pgr_maxflow

(1 row)

Many to Oneq

Calculates the maximum flow from all the sources to the target.

pgr_maxFlow(edges_sql, sources, target)
RETURNS BIGINT

Example

SELECT * FROM pgr_maxFlow(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, ARRAY[6, 8, 12], 11
)3
pgr_maxflow

(1 row)

Many to Many¥

Calculates the maximum flow from all of the sources to all of the targets.

pgr_maxFlow(edges_sql, sources, targets)
RETURNS BIGINT

Example:

SELECT * FROM pgr_maxFlow(
'SELECT id,
source,
target,
capacity,
reverse_capacity

357

FROM edge_table'

, ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
pgr_maxflow

Description of the Signaturesq
Description of the edges sql query for Max-flow like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertes
edge.

target ANY-INTEGER Identifier of the second end point ver
edge.

capacity ANY-INTEGER Weight of the edge (source, target)

o When negative: edge (source, t
does not exist, therefore it’s no
the graph.

reverse__cafdcit¥TEGER] Weight of the edge (target, source),

¢ When negative: edge (target, s
does not exist, therefore it’s no

the graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
Description of the Parameters of the Flow Signaturesq
Column Type Default Description
edges_ sql TEXT The edges SQL que
above.

358

Column Type Default Description

source BIGINT Identifier of the sta
flow.

sources ARRAY[BIGINT] Array of identifiers
vertices of the flow.

target BIGINT Identifier of the end
flow.

targets ARRAY [BIGINT] Array of identifiers
of the flow.

Description of the return valueq

Type Description

BIGINT Maximum flow possible from the source(s) to the
target(s)

See Alsoq

e Flow - Family of functions
o http://www.boost.org/libs/graph/doc/push_ relabel _max_ flow.html
o https://en.wikipedia.org/wiki/Push%E2%80%93relabel maximum_flow algorithm

Indices and tables

o Index
o Search Page

pgr__pushRelabel - Proposedq Synopsisq

pgr_pushRelabel — Calculates the flow on the graph edges that maximizes the
flow from the sources to the targets using Push Relabel Algorithm.

Boost Graph Inside

Availability:

359

index.html#maxflow
http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm
genindex.html
search.html
http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

¢ Renamed 2.5.0, Previous name pgr_maxFlowPushRelabel
e New in 2.3.0

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Characteristics

e The graph is directed.

e Process is done only on edges with positive capacities.

e When the maximum flow is 0 then there is no flow and EMPTY SET is
returned.

— There is no flow when a source is the same as a target.

o Any duplicated value in the source(s) or target(s) are ignored.
o Calculates the flow/residual capacity for each edge. In the output

— Edges with zero flow are omitted.

o Creates a super source and edges to all the source(s), and a super
target and the edges from all the targets(s).

e The maximum flow through the graph is guaranteed to be the value re-
turned by pgr_maxzFlow when executed with the same parameters and
can be calculated:

— By aggregation of the outgoing flow from the sources
— By aggregation of the incoming flow to the targets

360

index.html#pgr-maxflow

o Running time: \(O(V ~ 3)\)
Signature Summary¥

pgr_pushRelabel (edges_sql, source, target) - Proposed
pgr_pushRelabel (edges_sql, sources, target) - Proposed
pgr_pushRelabel (edges_sql, source, targets) - Proposed
pgr_pushRelabel (edges_sql, sources, targets) - Proposed

RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

One to Oneq

Calculates the flow on the graph edges that maximizes the flow from the source
to the target.

pgr_pushRelabel(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_pushRelabel(
'"SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'

, 6, 11
)5
seq | edge | start_vid | end_vid | flow | residual_capacity
————— e s Rttt
1] 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)

One to Many9

Calculates the flow on the graph edges that maximizes the flow from the source
to all of the targets.

361

pgr_pushRelabel (edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example

SELECT * FROM pgr_pushRelabel(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, 6, ARRAY[11, 1, 13]
)3

seq | edge | start_vid | end_vid | flow | residual_capacity

————— .

1] 1] 2 | 1] 130 | 0

2 | 2 | 3 | 2 | 80 | 20

31 3| 4 | 3 | 80 | 50

4 | 4 | 5 | 2 | 50 | 0

5 | 7 | 5 | 8 | 50 | 80

6 | 10 | 5 | 10 | 80 | 50

7| 8 | 6 | 5 | 130 | 0

8 | 9 | 6 | 9 | 80 | 50

9 | 11 | 6 | 11 | 130 | 0

10 | 6 | 7 | 8 | 50 | 0

11 | 6 | 8 | 71 50 | 50

12 | 7 | 8 | 5 | 50 | 0

13 | 16 | 9 | 4 | 80 | 0

14 | 12 | 10 | 11 | 80 | 20
(14 rows)

Many to Oneq

Calculates the flow on the graph edges that maximizes the flow from all of the
sources to the target.

pgr_pushRelabel (edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example

SELECT * FROM pgr_pushRelabel(

362

'"SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, ARRAY[6, 8, 12], 11

);
seq | edge | start_vid | end_vid | flow | residual_capacity
————— e S T e R
1] 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
3| 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)

Many to Many

Calculates the flow on the graph edges that maximizes the flow from all of the
sources to all of the targets.

pgr_pushRelabel (edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_pushRelabel(

'"SELECT id,
source,
target,
capacity,
reverse_capacity

FROM edge_table'

, ARRAY[6, 8, 12], ARRAY[1, 3, 11]

)3
seq | edge | start_vid | end_vid | flow | residual_capacity
————— T e L e St
1| 1 2 | 11 50| 80
2 | 3 | 4 | 31 80| 50
31 4 | 5 | 2] 50| 0
4 | 10 | 5 | 10 | 100 | 30
5 | 8 | 6 | 5 | 130 | 0
6 | 9 | 6 | 9 | 30 | 100
7 | 11 | 6 | 11 | 130 | 0

363

8 | 7 | 8 | 5 | 20 | 30

9 | 16 | 9 | 4 | 80 | 0

10 | 12 | 10 | 11 | 100 | 0

11 | 15 | 12 | 9 | 50 | 0
(11 rows)

Description of the Signaturesq
Description of the edges sql query for Max-flow like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point verte:
edge.

target ANY-INTEGER Identifier of the second end point ver
edge.

capacity ANY-INTEGER Weight of the edge (source, target)

o When negative: edge (source, t
does not exist, therefore it’s no
the graph.

reverse__calpeiI¥TEGER] Weight of the edge (target, source),

o When negative: edge (target, s
does not exist, therefore it’s no

the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signaturesq

Column Type Default Description

edges_ sql TEXT The edges SQL que
above.

source BIGINT Identifier of the sta
flow.

364

Column Type

Default Description

sources ARRAY [BIGINT]

target BIGINT

targets ARRAY [BIGINT]

Array of identifiers
vertices of the flow.
Identifier of the enc
flow.

Array of identifiers
of the flow.

Description of the Return Valuesq

Column Type Description

seq INT Sequential value starting from 1.

edge_ id BIGINT Identifier of the edge in the original
query(edges_ sql).

source BIGINT Identifier of the first end point vertex of the
edge.

target BIGINT Identifier of the second end point vertex of
the edge.

flow BIGINT Flow through the edge in the direction

residual__capad®f@gINT

(source, target).

Residual capacity of the edge in the
direction (source, target).

See Alsoq

o Flow - Family of functions, pgr_boykovKolmogorov, pgr _edmondsKarp
e http://www.boost.org/libs/graph/doc/push_relabel max flow.html
o https://en.wikipedia.org/wiki/Push%E2%80%93relabel maximum flow algorithm

Indices and tables

o Index
e Search Page

pgr__edmondsKarp - Proposed¥ Synopsisq

pgr_edmondsKarp — Calculates the flow on the graph edges that maximizes the
flow from the sources to the targets using Push Relabel Algorithm.

365

index.html#maxflow
index.html#pgr-boykovkolmogorov
index.html#pgr-edmondskarp
http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm
genindex.html
search.html

Boost Graph Inside

Availability:

e Renamed 2.5.0, Previous name pgr_ maxFlowEdmondsKarp
e New in 2.3.0

Warning

Experimental functions

o They are not officially of the current release.
o They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

Name might change.

Signature might change.

Functionality might change.

pgTap tests might be missing.

Might need ¢/c++ coding.

May lack documentation.

Documentation if any might need to be rewritten.

Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.

Might depend on a proposed function of pgRouting

Might depend on a deprecated function of pgRouting

Characteristics

o The graph is directed.

e Process is done only on edges with positive capacities.
e When the maximum flow is 0 then there is no flow and EMPTY SET is
returned.

There is no flow when a source is the same as a target.

o Any duplicated value in the source(s) or target(s) are ignored.

o Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.

366

http://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

o Creates a super source and edges to all the source(s), and a super
target and the edges from all the targets(s).

e The maximum flow through the graph is guaranteed to be the value re-
turned by pgr_maxFlow when executed with the same parameters and
can be calculated:

— By aggregation of the outgoing flow from the sources
— By aggregation of the incoming flow to the targets

o Running time: \(O(V * E " 2)\)
Signature Summary¥

pgr_edmondsKarp(edges_sql, source, target) - Proposed
pgr_edmondsKarp(edges_sql, sources, target) - Proposed
pgr_edmondsKarp(edges_sql, source, targets) - Proposed
pgr_edmondsKarp(edges_sql, sources, targets) - Proposed

RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

One to Oneq

Calculates the flow on the graph edges that maximizes the flow from the source
to the target.

pgr_edmondsKarp(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_edmondsKarp (
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'

, 6, 11
)3
seq | edge | start_vid | end_vid | flow | residual_capacity
————— et Bttt
1| 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5| 100 | 30
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)

367

index.html#pgr-maxflow

One to Many9

Calculates the flow on the graph edges that maximizes the flow from the source
to all of the targets.

pgr_edmondsKarp(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_edmondsKarp(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, 6, ARRAY[1, 3, 11]

)3

seq | edge | start_vid | end_vid | flow | residual_capacity

————— e s T et
1] 1 2 | 11 50| 80
2 | 3 | 4 | 31 80| 50
3| 4 | 5 | 2] 50| 0
4 | 10 | 5 | 10 | 80 | 50
5 | 8 | 6 | 5| 130 | 0
6 | 9 | 6 | 91 80| 50
71 11 | 6 | 11 | 130 | 0
8 | 16 | 9 | 41 80 | 0
9 | 12 | 10 | 11 | 80 | 20

(9 rows)

Many to Oneq

Calculates the flow on the graph edges that maximizes the flow from all of the
sources to the target.

pgr_edmondsKarp(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

368

SELECT * FROM pgr_edmondsKarp(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, ARRAY[6, 8, 12], 11

)3
seq | edge | start_vid | end_vid | flow | residual_capacity
————— e s Tt et S
1] 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
31 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)

Many to Many¥

Calculates the flow on the graph edges that maximizes the flow from all of the
sources to all of the targets.

pgr_edmondsKarp(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_edmondsKarp (

'"SELECT id,
source,
target,
capacity,
reverse_capacity

FROM edge_table'

, ARRAY[6, 8, 12], ARRAY[1, 3, 11]

);

seq | edge | start_vid | end_vid | flow | residual_capacity
————— s e e T
1| 1| 2 | 1] 50 | 80

2 | 3 | 4 | 3 | 80 | 50

3 | 4 | 5 | 2 | 50 | 0

4 | 10 | 5 | 10 | 100 | 30

5 | 8 | 6 | 5 | 130 | 0

6 | 9 | 6 | 9 | 80 | 50

369

7| 11 | 6 | 11 | 130 | 0
8 | 71 8 | 51 20| 30
9 | 16 | 9 | 4 | 80 | 0
10 | 12 | 10 | 11 | 100 | 0

(10 rows)

Description of the Signaturesq
Description of the edges sql query for Max-flow like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point verte:
edge.

target ANY-INTEGER Identifier of the second end point ver
edge.

capacity ANY-INTEGER Weight of the edge (source, target)

o When negative: edge (source, t
does not exist, therefore it’s no
the graph.

reverse__calpeiI¥TEGER] Weight of the edge (target, source),

o When negative: edge (target, s
does not exist, therefore it’s no

the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signaturesq

Column Type Default Description

edges_ sql TEXT The edges SQL que
above.

source BIGINT Identifier of the sta
flow.

370

Column Type

Default Description

sources ARRAY [BIGINT]

target BIGINT

targets ARRAY [BIGINT]

Array of identifiers
vertices of the flow.
Identifier of the enc
flow.

Array of identifiers
of the flow.

Description of the Return Valuesq

Column Type Description

seq INT Sequential value starting from 1.

edge_ id BIGINT Identifier of the edge in the original
query(edges_ sql).

source BIGINT Identifier of the first end point vertex of the
edge.

target BIGINT Identifier of the second end point vertex of
the edge.

flow BIGINT Flow through the edge in the direction

residual__capad®f@gINT

(source, target).

Residual capacity of the edge in the
direction (source, target).

See Alsoq

o Flow - Family of functions, pgr__boykovKolmogorov, pgr_PushRelabel
e http://www.boost.org/libs/graph/doc/edmonds_karp max_flow.html
 https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

Indices and tables

o Index
e Search Page

pgr__boykovKolmogorov - Proposedq Synopsisq

pgr_boykovKolmogorov — Calculates the flow on the graph edges that maxi-
mizes the flow from the sources to the targets using Boykov Kolmogorov algo-

rithm.

371

index.html#maxflow
index.html#pgr-boykovkolmogorov
index.html#pgr-pushrelabel
http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html
https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm
genindex.html
search.html

Boost Graph Inside

Availability:

e Renamed 2.5.0, Previous name pgr_ maxFlowBoykovKolmogorov
e New in 2.3.0

Warning

Experimental functions

o They are not officially of the current release.
o They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

Name might change.

Signature might change.

Functionality might change.

pgTap tests might be missing.

Might need ¢/c++ coding.

May lack documentation.

Documentation if any might need to be rewritten.

Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.

Might depend on a proposed function of pgRouting

Might depend on a deprecated function of pgRouting

Characteristics

o The graph is directed.

e Process is done only on edges with positive capacities.
e When the maximum flow is 0 then there is no flow and EMPTY SET is
returned.

There is no flow when a source is the same as a target.

o Any duplicated value in the source(s) or target(s) are ignored.

o Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.

372

http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

o Creates a super source and edges to all the source(s), and a super
target and the edges from all the targets(s).

e The maximum flow through the graph is guaranteed to be the value re-
turned by pgr_maxFlow when executed with the same parameters and
can be calculated:

— By aggregation of the outgoing flow from the sources
— By aggregation of the incoming flow to the targets

¢ Running time: Polynomial
Signature Summary¥

pgr_boykovKolmogorov(edges_sql, source, target) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, target) - Proposed
pgr_boykovKolmogorov(edges_sql, source, targets) - Proposed
pgr_boykovKolmogorov(edges_sql, sources, targets) - Proposed
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

One to Oneq

Calculates the flow on the graph edges that maximizes the flow from the source
to the target.

pgr_boykovKolmogorov(edges_sql, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_boykovKolmogorov(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'

, 6, 11
)3
seq | edge | start_vid | end_vid | flow | residual_capacity
————— et Bttt
1| 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5| 100 | 30
3 | 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)

373

index.html#pgr-maxflow

One to Many9

Calculates the flow on the graph edges that maximizes the flow from the source
to all of the targets.

pgr_boykovKolmogorov(edges_sql, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example

SELECT * FROM pgr_boykovKolmogorov(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, 6, ARRAY[1, 3, 11]

)3

seq | edge | start_vid | end_vid | flow | residual_capacity

————— e s Tt e e
1] 1 2 | 11 50| 80
2 | 3 | 4 | 31 80| 50
3| 4 | 5 | 2] 50| 0
4 | 10 | 5 | 10 | 80 | 50
5 | 8 | 6 | 5| 130 | 0
6 | 9 | 6 | 91 80| 50
71 11 | 6 | 11 | 130 | 0
8 | 16 | 9 | 41 80 | 0
9 | 12 | 10 | 11 | 80 | 20

(9 rows)

Many to Oneq

Calculates the flow on the graph edges that maximizes the flow from all of the
sources to the target.

pgr_boykovKolmogorov(edges_sql, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

374

SELECT * FROM pgr_boykovKolmogorov(
'SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, ARRAY[6, 8, 12], 11

)3
seq | edge | start_vid | end_vid | flow | residual_capacity
————— e s Tt it e
1] 10 | 5 | 10 | 100 | 30
2 | 8 | 6 | 5 | 100 | 30
31 11 | 6 | 11 | 130 | 0
4 | 12 | 10 | 11 | 100 | 0
(4 rows)

Many to Many¥

Calculates the flow on the graph edges that maximizes the flow from all of the
sources to all of the targets.

pgr_boykovKolmogorov(edges_sql, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:

SELECT * FROM pgr_boykovKolmogorov(
'"SELECT id,
source,
target,
capacity,
reverse_capacity
FROM edge_table'
, ARRAY[6, 8, 12], ARRAY[1, 3, 11]

);

seq | edge | start_vid | end_vid | flow | residual_capacity
————— s e e T
1| 1| 2 | 1] 50 | 80

2 | 3 | 4 | 3 | 80 | 50

3 | 4 | 5 | 2 | 50 | 0

4 | 10 | 5 | 10 | 100 | 30

5 | 8 | 6 | 5 | 130 | 0

6 | 9 | 6 | 9 | 80 | 50

375

7| 11 | 6 | 11 | 130 | 0
8 | 71 8 | 51 20| 30
9 | 16 | 9 | 4 | 80 | 0
10 | 12 | 10 | 11 | 100 | 0

(10 rows)

Description of the Signaturesq
Description of the edges sql query for Max-flow like functionsq
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point verte:
edge.

target ANY-INTEGER Identifier of the second end point ver
edge.

capacity ANY-INTEGER Weight of the edge (source, target)

o When negative: edge (source, t
does not exist, therefore it’s no
the graph.

reverse__calpeiI¥TEGER] Weight of the edge (target, source),

o When negative: edge (target, s
does not exist, therefore it’s no

the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Description of the Parameters of the Flow Signaturesq

Column Type Default Description

edges_ sql TEXT The edges SQL que
above.

source BIGINT Identifier of the sta
flow.

376

Column Type

Default Description

sources ARRAY [BIGINT]

target BIGINT

targets ARRAY [BIGINT]

Array of identifiers
vertices of the flow.
Identifier of the enc
flow.

Array of identifiers
of the flow.

Description of the Return Valuesq

Column Type Description

seq INT Sequential value starting from 1.

edge_ id BIGINT Identifier of the edge in the original
query(edges_ sql).

source BIGINT Identifier of the first end point vertex of the
edge.

target BIGINT Identifier of the second end point vertex of
the edge.

flow BIGINT Flow through the edge in the direction

residual__capad®f@gINT

(source, target).

Residual capacity of the edge in the
direction (source, target).

See Alsoq

e Flow - Family of functions, pgr_pushRelabel, pgr _EdmondsKarp
o http://www.boost.org/libs/graph/doc/boykov_ kolmogorov_ max_ flow.html

Indices and tables

e Index
e Search Page

pgr__maxCardinalityMatch - Proposedq Synopsisq

pgr_maxCardinalityMatch — Calculates a maximum cardinality matching in

a graph.
Warning

377

index.html#maxflow
index.html#pgr-pushrelabel
index.html#pgr-edmondskarp
http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html
genindex.html
search.html

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Boost Graph Inside

Availability:

e Renamed 2.5.0, Previous name pgr_ maximumCardinalityMatching
e New in 2.3.0

Characteristics

e A matching or independent edge set in a graph is a set of edges without
common vertices.

e A maximum matching is a matching that contains the largest possible
number of edges.

— There may be many maximum matchings.
— Calculates one possible maximum cardinality matching in a graph.

o The graph can be directed or undirected.

e Running time: \(O(E*V * \alpha(E,V))\)

378

http://www.boost.org/libs/graph/doc/maximum_matching.html

— \(\alpha(E,V)\) is the inverse of the Ackermann function.
Signature Summary¥

pgr_MaximumCardinalityMatching(edges_sql) - Proposed
pgr_MaximumCardinalityMatching(edges_sql, directed) - Proposed

RETURNS SET OF (seq, edge_id, source, target)
OR EMPTY SET

Minimal Use€

pgr_MaximumCardinalityMatching(edges_sql)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET

The minimal use calculates one possible maximum cardinality matching on a
directed graph.

Example:

SELECT * FROM pgr_maxCardinalityMatch(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table'

)
seq | edge | source | target
————— s St
1 11 1 2
2 | 3 | 4 | 3
31 9 | 6 | 9
4 | 6 | 7| 8
5 | 14 | 10 | 13
6 | 13 | 11 | 12
7| 17 | 14 | 15
8 | 18 | 16 | 17
(8 rows)

Complete signatureq|

pgr_MaximumCardinalityMatching(edges_sql, directed)
RETURNS SET OF (seq, edge_id, source, target) OR EMPTY SET

The complete signature calculates one possible maximum cardinality matching.

Example:

379

https://en.wikipedia.org/wiki/Ackermann_function

SELECT * FROM pgr_maxCardinalityMatch(
'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',

directed := false

);

seq | edge | source | target

————— B e
1] 1 1 2
2 | 3 | 3 | 4
31 9 | 6 | 9
4 | 6 | 7 | 8
5 | 14 | 10 | 13
6 | 13 | 11 | 12
71 17 | 14 | 15
8 | 18 | 16 | 17

(8 rows)

Description of the Signaturesq
Description of the SQL query¥
edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex of the
edge.

target ANY-INTEGER Identifier of the second end point vertex of the
edge.

going ANY-NUMERIC A positive value represents the existence of

the edge (source, target).

coming ANY-NUMERIC A positive value represents the existence of
the edge (target, source).

Where:

o ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

« ANY-NUMERIC:
SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECI-
SION

Description of the parameters of the signaturesq

380

Column Type Description

edges_sql TEXT SQL query as described above.

directed BOOLEAN (optional) Determines the type of the
graph. Default TRUE.

Description of the Resultq

Column Type Description

seq INT Sequential value starting from 1.

edge BIGINT Identifier of the edge in the original
query(edges_sql).

source BIGINT Identifier of the first end point of the
edge.

target BIGINT Identifier of the second end point of the
edge.

See Alsoq

e Flow - Family of functions

o http://www.boost.org/libs/graph/doc/maximum_ matching.html
o https://en.wikipedia.org/wiki/Matching_ %28graph_ theory%29

o https://en.wikipedia.org/wiki/Ackermann_ function

Indices and tables

o Index
e Search Page

pgr__edgeDisjointPaths - Proposedq] Name€

pgr_edgeDisjointPaths — Calculates edge disjoint paths between two groups
of vertices.

Boost Graph Inside

381

index.html#maxflow
http://www.boost.org/libs/graph/doc/maximum_matching.html
https://en.wikipedia.org/wiki/Matching_%28graph_theory%29
https://en.wikipedia.org/wiki/Ackermann_function
genindex.html
search.html
http://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

Availability: 2.3.0
Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq

Calculates the edge disjoint paths between two groups of vertices. Utilizes
underlying maximum flow algorithms to calculate the paths.

Characteristics:q

The main characterics are: « Calculates the edge disjoint paths between
any two groups of vertices.
e Returns EMPTY SET when source and destination are the same, or
cannot be reached.
e The graph can be directed or undirected.
e One to many, many to one, many to many versions are also supported.
o Uses pgr__boykovKolmogorov - Proposed to calculate the paths.

Signature Summary¥

pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)
pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)

382

index.html#pgr-boykovkolmogorov

RETURNS SET OF (seq, path_id, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)
OR EMPTY SET

Signaturesq

Minimal useq

pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

The minimal use is for a directed graph from one start_vid to one end_vid.

Example:

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

3, 5
);
seq | path_id | path_seq | node | edge | cost | agg_cost
————— e s i
11 1 11 3| 2 | 1| 0
2 | 1] 2 | 2 | 4 | 1] 1
3| 1] 3 | 5 -1 0 | 2
4 | 2 | 1 3 | 5 | 1| 0
5 | 2 | 2 | 6 | 8 | 1] 1
6 | 2 | 3 | 51 -1 0 | 2
(6 rows)
One to Oneq
This signature finds the set of dijoint paths from one start_vid to one end_vid: e
on a directed graph when directed flag is missing or is set to
true.

o on an undirected graph when directed flag is set to false.

pgr_edgeDisjointPaths(edges_sql, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',

383

3, 5,

directed := false

)3

seq | path_id | path_seq | node | edge | cost | agg_cost

————— T B T B et
1] 1] 1 3 | 2 | 1] 0
2| 1] 2 | 2 | 4 | 1| 1
3 | 1 3| 51 -1 0| 2
4 | 2 | 1 3 | 31 -1 0
5 | 2 | 2 | 4 | 16 | 1] -1
6 | 2| 3 | 9 | 9 | 1] 0
71 2 | 4 | 6 | 8 | 1] 1
8 | 2 | 5 | 5 | -1 | 0 | 2
9 | 3| 1 3| 5 | 1] 0
10 | 3| 2 | 6 | 11 | 1| 1
11 | 3| 3 | 11 | 12] -1 2
12 | 3 | 4 | 10 | 10 | 1] 1
13 | 3 | 5 | 51 -1 0| 2

(13 rows)

One to Many¥

This signature finds the sset of disjoint paths from the start_vid to each one of the end_vid

on a directed graph when directed flag is missing or is set to
true.

« on an undirected graph when directed flag is set to false.

e The result is equivalent to the union of the results of the one to one
pgr__edgeDisjointPaths.

e The extra end_vid in the result is used to distinguish to which path
it belongs.

pgr_edgeDisjointPaths(edges_sql, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
3, ARRAY[4, 5, 10]

)3

seq | path_id | path_seq | end_vid | node | edge | cost | agg_cost

2 | 1| 2 | 4 | 6 | 9 | 1] 1
3 | 1| 3| 4 | 9 | 16 | 1| 2
4 | 1| 4 | 4 | 4 | -1 | 0 | 3
5 | 2 | 1] 5 | 3 | 2 | 1] 0
6 | 2 | 2 | 5 | 2 | 4 | 1] 1
7 | 2 | 3| 5 | 5 | -1 | 0 | 2
8 | 3 | 1] 5 | 3| 5 | 1| 0
9 | 3 | 2 | 5 | 6 | 8 | 1| 1
10 | 3| 3| 5 | 5 | -1 | 0 | 2
11 | 4 | 1] 10 | 3 | 2 | 1] 0
12 | 4 | 2 | 10 | 2 | 4 | 1] 1
13 | 4 | 3| 10 | 5 | 10 | 1| 2
14 | 4 | 4 | 10 | 10 | -1 0 | 3
(14 rows)

Many to Oneq

This signature finds the set of disjoint paths from each one of the start_vid in start_vids tc

on a directed graph when directed flag is missing or is set to
true.

e on an undirected graph when directed flag is set to false.

e The result is equivalent to the union of the results of the one to one
pgr_edgeDisjointPaths.

e The extra start_vid in the result is used to distinguish to which
path it belongs.

pgr_edgeDisjointPaths(edges_sql, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[3, 6], 5

)3
seq | path_id | path_seq | start_vid | node | edge | cost | agg_cost
————— e S I E s N S
1] 1| 1| 0 | 3| 2 | 1| 0
2 | 1| 2 | 0 | 2 | 4 | 1| 1
3| 1| 3| 0 | 51 -1 0| 2
4 | 2 | 11 11 3 5 | 1| 0
5 | 2 | 2 | 1 6 | 8 | 1| 1
6 | 2 | 3| 1| 51 -1 0| 2

7| 3 | 1| 2 | 6 | 8 | 1| 0
8 | 3 | 2 | 2 | 51 -1 0 | 1
9 | 4 | 1] 3 | 6 | 9 | 1| 0
10 | 4 | 2 | 3 | 9 | 16 | 1| 1
11 | 4 | 3 | 3 | 4 | 3 | 1] 2
12 | 4 | 4 | 3 | 3 | 2 | 1| 3
13 | 4 | 5 | 3 | 2 | 4 | 1| 4
14 | 4 | 6 | 3| 51 -1 0 | 5
(14 rows)

Many to Many

This signature finds the set of disjoint paths from each one of the start_vid in start_vids tc

on a directed graph when directed flag is missing or is set to
true.

e on an undirected graph when directed flag is set to false.

e The result is equivalent to the union of the results of the one to one
pgr__edgeDisjointPaths.

e The extra start_vid and end_vid in the result is used to distinguish
to which path it belongs.

pgr_edgeDisjointPaths(edges_sql, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:

SELECT * FROM pgr_edgeDisjointPaths(
'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[3, 6], ARRAY[4, 5, 10]

);
seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
————— e e T s e
1] 1] 1] 0 | 4 | 3| 5 | 1| 0
2 | 1] 2 | 0| 4 | 6 | 9 | 1| 1
31 1| 3| 0| 4 | 9| 16 | 1| 2
4 | 11 4 | 0| 4 | 41 -1 0 | 3
5 | 2 | 1] 1] 5 | 3| 2 | 1] 0
6 | 2 | 2 | 1] 5 | 2 | 4 | 1| 1
71 2| 31 1| 5 | 51 -1 0| 2
8 | 31 1] 2 | 5 | 3 5 | 1| 0
9 | 31 2 | 2 | 5 | 6 | 8 | 1| 1
10 | 31 31 2 | 5 | 51 -1 (O 2
11 | 4 | 1| 3| 10 | 3| 2 | 1| 0

386

12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |

(28 rows)

Description of the Signaturesq
Description of the edges sql query for dijkstra like functionsq
edges_sql:

0 0000 NNNNNNOOOooS DD
WNEFP OO WNEFRL,NEL, WNER P WD

NNV U o N WWww

Ll S
O O o
-

o O N

[S200¢ TS G) B A G s @2 e 2 I T SN

-
o

oo TN wd O o OO

OrFPORrRrFPFFPRPLPFPLPOFPLORPFEORLBRE

-
o

N, OO P WNRERPLPORFRLRONE O WNLR

an SQL query, which should return a set of rows with the following columns:

Column

Description

id

source

target

cost

reverse__ cONY-NUMERICAL

ANY-INTEGER
ANY-INTEGER

ANY-INTEGER

ANY-NUMERICAL

Identifier of the edge.
Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

387

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Column Type Default

Description

sql TEXT
start__vid BIGINT

start_ vidsARRAY[BIGINT]
end__vid BIGINT

end_ vids ARRAY[BIGINT]
directed BOOLEAN true

SQL query as desc

Identifier of the st:

path.

Array of identifiers

Identifier of the en

path.

Array of identifiers
e When true (

Directed

e When false
considered as

Description of the return values for a pathq

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge,

cost, agg_cost)

Column Type
seq INT
path__id INT
path__seq INT
start_ vid BIGINT
end_ vid BIGINT
node BIGINT

388

Column Type

edge BIGINT
cost FLOAT
agg_cost FLOAT
See Alsoq

Flow - Family of functions

Indices and tables

Index
Search Page

Flow Functions General Informationq Characteristics

The graph is directed.

Process is done only on edges with positive capacities.

When the maximum flow is 0 then there is no flow and EMPTY SET is
returned.

— There is no flow when a source is the same as a target.

Any duplicated value in the source(s) or target(s) are ignored.
Calculates the flow/residual capacity for each edge. In the output

— Edges with zero flow are omitted.

Creates a super source and edges to all the source(s), and a super
target and the edges from all the targets(s).

The maximum flow through the graph is guaranteed to be the value re-
turned by pgr_maxFlow when executed with the same parameters and
can be calculated:

— By aggregation of the outgoing flow from the sources
— By aggregation of the incoming flow to the targets

pgr_mazFlow is the maximum Flow and that maximum is guaranteed
to be the same on the functions pgr pushRelabel, pgr edmondsKarp,
pgr_boykovKolmogorov, but the actual flow through each edge may vary.

389

index.html#maxflow
genindex.html
search.html
index.html#pgr-maxflow
index.html#pgr-maxflow
index.html#pgr-pushrelabel
index.html#pgr-edmondskarp
index.html#pgr-boykovkolmogorov

Problem definitionY A flow network is a directed graph where each edge has
a capacity and a flow. The flow through an edge must not exceed the capacity of
the edge. Additionally, the incoming and outgoing flow of a node must be equal
except the for source which only has outgoing flow, and the destination(sink)
which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and
the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all
implementations, but the actual flow through each edge may vary. Given the
following query:

pgr_maxFlow \((edges_sql, source\ vertex, sink\ vertex)\)

where \ (edges__sql = \{(id_i, source_i, target__i, capacity_i, reverse_capacity_i)\}\)
Graph definition

The weighted directed graph, \(G(V,E)\), is defined as:

o the set of vertices \(V\)
— \(source_vertex \cup sink\ vertex \bigcup source i \bigcup tar-
get_i\)
o the set of edges \(E\)
— \(E = \begin{cases} \text{ } \{(source_i, target_i, capacity_1i)
\text{ when } capacity > 0 \} & \quad \text{ if } reverse__capacity
= \varnothing \\ \text{ } & \quad \text{ } \\ \{(source i,
target_i, capacity i) \text{ when } capacity > 0 \} & \text{ }
\\ \cup \{(target_1i, source_i, reverse\ capacity_ i) \text{ when }

reverse\ capacity i > 0)\} & \quad \text{ if } reverse\ capacity
\neq \varnothing \\ \end{cases}\)

Maximum flow problem

Given:

« \(G(V.E))
o \(source_vertex \in V\) the source vertex
o \(sink\ vertex \in V\) the sink vertex

Then:
\(pgr_maxFlow(edges_sql, source, sink) = \boldsymbol{\Phi}\)
\(\boldsymbol{\Phi} = {(id_i, edge\ id_i, source_i, target_i,

flow__i, residual__capacity_i)}\)

390

Where:

\(\boldsymbol{\Phi}\) is a subset of the original edges with their residual ca-
pacity and flow. The maximum flow through the graph can be obtained by
aggregating on the source or sink and summing the flow from/to it. In particu-
lar:

o \(id_i=1\)
e \(edge\ id =1id_i\) in edges sql
o \(residual_capacity_i = capacity_i- flow_i\)

See Also¥
e https://en.wikipedia.org/wiki/Maximum_ flow problem
Indices and tables

o Index
e Search Page

pgr__labelGraph - Experimentalq

Name9q pgr_labelGraph — Locates and labels sub-networks within a net-
work which are not topologically connected.

Warning

Experimental functions

o They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding,.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

391

https://en.wikipedia.org/wiki/Maximum_flow_problem
genindex.html
search.html

Synopsisq Must be run after pgr_createTopology (). No use of geometry
column. Only id, source and target columns are required.

The function returns:

e OK when a column with provided name has been generated and populated

successfully. All connected edges will have unique similar integer values. In
case of rows_where condition, non participating rows will have -1 integer
values.

FAIL when the processing cannot be finished due to some error. Notice
will be thrown accordingly.

rows_where condition generated O rows when passed SQL condition
has not been fulfilled by any row.

varchar pgr_labelGraph(text, text, text, text, text, text)

DescriptionY] A network behind any routing query may consist of sub-
networks completely isolated from each other. Possible reasons could be:

An island with no bridge connecting to the mainland.

An edge or mesh of edges failed to connect to other networks because of
human negligence during data generation.

The data is not properly noded.

Topology creation failed to succeed.

pgr_labelGraph() will create an integer column (with the name provided by the
user) and will assign same integer values to all those edges in the network which
are connected topologically. Thus better analysis regarding network structure
is possible. In case of rows_where condition, non participating rows will have
-1 integer values.

Prerequisites: Must run pgr_createTopology() in order to generate source
and target columns. Primary key column id should also be there in the network

table.

Function accepts the following parameters:

edge_ table:

text Network table name, with optional schema name.

id:

text Primary key column name of the network table. Default is id.

source:

text Source column name generated after pgr_createTopology (). Default is
source.

392

target:

text Target column name generated after pgr_createTopology (). Default is
target.

subgraph:

text Column name which will hold the integer labels for each sub-graph. Default
is subgraph.

rows_ where:

text The SQL where condition. Default is true, means the processing will be
done on the whole table.

Example Usageq The sample data, has 3 subgraphs.

SET client_min_messages TO WARNING;

SET

SELECT pgr_labelGraph('edge_table', 'id', 'source', 'target', 'subgraph');
pgr_labelgraph

0K
(1 row)

SELECT DISTINCT subgraph FROM edge_table ORDER BY subgraph;
subgraph

(3 rows)

See Alsoq

e pgr_createTopology to create the topology of a table based on its geometry
and tolerance value.

Indices and tables

o Index
e Search Page

393

https://github.com/Zia-/pgrouting/blob/develop/src/common/sql/pgrouting_topology.sql
genindex.html
search.html

Components - Family of functionsY Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

e pgr_connectedComponents - Experimental - Return the connected compo-
nents of an undirected graph.

e pgr_strongComponents - Experimental - Return the strongly connected
components of a directed graph.

o pgr_biconnectedComponents - Experimental - Return the biconnected com-
ponents of an undirected graph.

o pgr_articulationPoints - Experimental - Return the articulation points of
an undirected graph.

e pgr_bridges - Experimental - Return the bridges of an undirected graph.

pgr__connectedComponents - Experimentalq pgr_connectedComponents
— Return the connected components of an undirected graph using a DFS-based
approach. In particular, the algorithm implemented by Boost.Graph.

Boost Graph Inside

Warning

Experimental functions

394

index.html#pgr-connectedcomponents
index.html#pgr-strongcomponents
index.html#pgr-biconnectedcomponents
index.html#pgr-articulationpoints
index.html#pgr-bridges
http://www.boost.org/libs/graph/doc/connected_components.html

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq

A connected component of an undirected graph is a set of vertices that are
all reachable from each other. This implementation can only be used with an
undirected graph.

Characteristicsq

The main Characteristics are:

o Components are described by vertices
e The returned values are ordered:

— component ascending
— node ascending

« Running time: \(O(V + E)\)

Signaturesq

pgr_connectedComponents (edges_sql)

RETURNS SET OF (seq, component, n_seq, node)
OR EMPTY SET

The signature is for a undirected graph.

Example:

395

SELECT * FROM pgr_connectedComponents (
'SELECT id, source, target, cost, reverse_cost FROM edge_table'

)3

seq | component | n_seq | node
1] 1 1] 1
2 | 1] 2 | 2
3| 1] 3| 3
4 | 1 4 | 4
5 | 1| 5 | 5
6 | 1 6 | 6
7 | 1 7 7
8 | 1 8 | 8
9 | 1| 9 | 9
10 | 1| 10 | 10
11 | 1] 11 | 11
12 | 1] 12 | 12
13 | 1 13 | 13
14 | 14 | 1] 14
15 | 14 | 2 | 15
16 | 16 | 1| 16
17 | 16 | 2 | 17

(17 rows)

.connected component 1
. connected component 14

. connected component 16

e_

0—0 0

®
@ o © o
o

Description of the Signaturesq
Description of the edges sql query for components functionsq

edges_ sql:

396

an SQL query, which should return a set of rows with the following columns:

397

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Parameter Type Default Description
edges_ sql TEXT SQL query as described above.

Description of the return values for connected components and strongly con-
nected componentsq

Returns set of (seq, component, n_seq, node)

Column Type Description
seq INT Sequential value starting f
componentBIGINT Component identifier. It i

identifier in the componen

n__seq INT It is a sequential value sta

398

Column Type Description

node BIGINT Identifier of the vertex.

See Alsoq

o http://en.wikipedia.org/wiki/Connected _component_%28graph_ theory %29
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

pgr__strongComponents - Experimentalq pgr_strongComponents —
Return the strongly connected components of a directed graph using Tar-
jan’s algorithm based on DFS. In particular, the algorithm implemented by
Boost.Graph.

Boost Graph Inside
Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

399

http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29
index.html#document-sampledata
genindex.html
search.html
http://www.boost.org/libs/graph/doc/strong_components.html

— Might need a lot of feedback from the comunity.
— Might depend on a proposed function of pgRouting
— Might depend on a deprecated function of pgRouting

Synopsisq

A strongly connected component of a directed graph is a set of vertices that are
all reachable from each other. This implementation can only be used with a
directed graph.

Characteristicsq

The main Characteristics are:

o Components are described by vertices
e The returned values are ordered:

— component ascending
— node ascending

o Running time: \(O(V + E)\)
Signaturesq

pgr_strongComponents (edges_sql)

RETURNS SET OF (seq, component, n_seq, node)
OR EMPTY SET

The signature is for a directed graph.

Example:

SELECT * FROM pgr_strongComponents (
'SELECT id, source, target, cost, reverse_cost FROM edge_table'

)3
seq | component | n_seq | node
————— e T
1 1 1 1
2 | 1] 2 | 2
3| 1 3| 3
4 | 1 4 | 4
5 | 1 5 | 5
6 | 1] 6 | 6
71 1| 7| 7
8 | 1 8 | 8
9 | 1 9 | 9

400

10
11
12
13
14
15
16
17

(17 rows)

1 10 | 10
1 11 | 11
1| 12 | 12
1 13 | 13
14 | 1] 14
14 | 2 | 15
16 | 11 16
16 | 2 | 17

7]

e

Description of the Signaturesq

’strongly connected component 1
. strongly connected component 14

. strongly connected component 16

Description of the edges sql query for components functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of the first end point vertex
edge.

target ANY-INTEGER Identifier of the second end point vert
edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

401

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Column Type Default Description

reverse__caNY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Parameter Type Default Description
edges_ sql TEXT SQL query as described above.

Description of the return values for connected components and strongly con-
nected componentsq

Returns set of (seq, component, n_seq, node)

Column Type Description

seq INT Sequential value starting f

componentBIGINT Component identifier. It i
identifier in the componen

n__seq INT It is a sequential value sta

node BIGINT Identifier of the vertex.

See Alsoq

o http://en.wikipedia.org/wiki/Strongly _connected_ component
e The queries use the Sample Data network.

Indices and tables

402

http://en.wikipedia.org/wiki/Strongly_connected_component
index.html#document-sampledata

o Index
e Search Page

pgr_ biconnectedComponents - Experimentalq pgr_biconnectedComponents
— Return the biconnected components of an undirected graph. In particular,
the algorithm implemented by Boost.Graph.

Boost Graph Inside

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq

The biconnected components of an undirected graph are the maximal subsets
of vertices such that the removal of a vertex from particular component will not
disconnect the component. Unlike connected components, vertices may belong
to multiple biconnected components. Vertices can be present in multiple bicon-
nected components, but each edge can only be contained in a single biconnected
component. So, the output only has edge version.

This implementation can only be used with an undirected graph.
Characteristicsq

The main Characteristics are:

403

genindex.html
search.html
http://www.boost.org/libs/graph/doc/biconnected_components.html

o Components are described by edges
e The returned values are ordered:

— component ascending
— edge ascending

e Running time: \(O(V + E)\)
Signaturesq

pgr_biconnectedComponents (edges_sql)

RETURNS SET OF (seq, component, n_seq, edge)
OR EMPTY SET

The signature is for a undirected graph.

Example:

SELECT * FROM pgr_biconnectedComponents (
'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);

seq | component | n_seq | edge

————— e e
1] 1| 1] 1
2 | 2 | 1] 2
3 | 2 | 2 | 3
4 | 2 | 3 | 4
5 | 2 | 4 | 5
6 | 2 | 5 | 8
7 | 2 | 6 | 9
8 | 2 | 7 | 10
9 | 2 | 8 | 11
10 | 2 | 9 | 12
11 | 2 | 10 | 13
12 | 2 | 11 | 15
13 | 2 | 12 | 16
14 | 6 | 1] 6
15 | 7 | 1] 7
16 | 14 | 1| 14
17 | 17 | 1| 17
18 | 18 | 1] 18
(18 rows)

404

Description of the Signaturesq

biconnected
biconnected
biconnected
biconnected
biconnected
biconnected
biconnected

Description of the edges_ sql query for components functionsq

edges_ sql:

component
component

DN =

component
component 7

component 14
component 17
component 18

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cAONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),
o When negative: edge (target, so

not exist, therefore it’s not part
graph.

Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

405

ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the parameters of the signaturesq

Parameter Type Default Description

edges_ sql TEXT SQL query as described above.

Description of the return values for biconnected components, connected compo-
nents (edge version) and strongly connected componentsq

Returns set of (seq, component, n_seq, edge)

Column Type

Description

seq INT

componentBIGINT

n__seq INT
edge BIGINT

Sequential value starting f

Component identifier. It i
identifier in the componen

It is a sequential value sta

Identifier of the edge.

See Alsoq

o http://en.wikipedia.org/wiki/Biconnected component
e The queries use the Sample Data network.

Indices and tables

o Index
e Search Page

pgr__articulationPoints - ExperimentalY pgr_articulationPoints
- Return the articulation points of an undirected graph. In particular, the
algorithm implemented by Boost.Graph.

Boost Graph Inside

406

http://en.wikipedia.org/wiki/Biconnected_component
index.html#document-sampledata
genindex.html
search.html
http://www.boost.org/libs/graph/doc/connected_components.html

Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need ¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq

Those vertices that belong to more than one biconnected component are called
articulation points or, equivalently, cut vertices. Articulation points are vertices
whose removal would increase the number of connected components in the graph.
This implementation can only be used with an undirected graph.

Characteristicsq

The main Characteristics are:

e The returned values are ordered:
— node ascending
o Running time: \(O(V + E)\)

Signaturesq

pgr_articulationPoints(edges_sql)

RETURNS SET OF (seq, node)
OR EMPTY SET

The signature is for a undirected graph.

Example:

407

SELECT * FROM pgr_articulationPoints(

'SELECT id, source, target, cost, reverse_cost FROM edge_table'

)

seq | node

(4 rows)

. articulation point

Description of the Signaturesq

Description of the edges sql query for components functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

408

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Column Type Default Description

cost ANY-NUMERICAL Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

reverse__ cANY-NUMERICAL Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Parameter Type Default Description
edges_ sql TEXT SQL query as described above.

Description of the return values for articulation pointsq

Returns set of (seq, node)

Column Type Description

seq INT Sequential value starting from 1.
node BIGINT Identifier of the vertex.

See Alsoq

o http://en.wikipedia.org/wiki/Biconnected__component
e The queries use the Sample Data network.

Indices and tables

409

http://en.wikipedia.org/wiki/Biconnected_component
index.html#document-sampledata

o Index
e Search Page

pgr__bridges - Experimentalq pgr_bridges - Return the bridges of an
undirected graph.

Boost Graph Inside
Warning

Experimental functions

e They are not officially of the current release.
e They likely will not be officially be part of the next release:

— The functions might not make use of ANY-INTEGER and ANY-
NUMERICAL

— Name might change.

— Signature might change.

— Functionality might change.

— pgTap tests might be missing.

— Might need c¢/c++ coding.

— May lack documentation.

— Documentation if any might need to be rewritten.

— Documentation examples might need to be automatically generated.

— Might need a lot of feedback from the comunity.

— Might depend on a proposed function of pgRouting

— Might depend on a deprecated function of pgRouting

Synopsisq

A bridge is an edge of an undirected graph whose deletion increases its num-
ber of connected components. This implementation can only be used with an
undirected graph.

Characteristicsq

The main Characteristics are:

e The returned values are ordered:

— edge ascending

410

genindex.html
search.html
http://www.boost.org/libs/graph/doc/connected_components.html

o Running time: \(O(E * (V + E))\)
Signaturesq
pgr_bridges(edges_sql)

RETURNS SET OF (seq, node)
OR EMPTY SET

The signature is for a undirected graph.
Example:
SELECT * FROM pgr_bridges(

'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);

seq | edge
_____ P,
1] 1
2 | 6
3| 7
4 | 14
5 | 17
6 | 18

(6 rows)

bridge

-~

©
000 60606

@

®

411

Description of the Signatures€
Description of the edges_sql query for components functionsq

edges_ sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default

Description

id ANY-INTEGER
source ANY-INTEGER

target ANY-INTEGER

cost ANY-NUMERICAL

reverse__ cONY-NUMERICAL

Identifier of the edge.

Identifier of the first end point vertex
edge.

Identifier of the second end point vert
edge.

Weight of the edge (source, target)

o When negative: edge (source, te
not exist, therefore it’s not part
graph.

Weight of the edge (target, source),

o When negative: edge (target, so
not exist, therefore it’s not part

graph.
Where:
ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT
Description of the parameters of the signaturesq
Parameter Type Default Description
edges_ sql TEXT SQL query as described above.

Description of the return values for bridgesq

Returns set of (seq, node)

412

Column Type Description

seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge.
See Alsoq

o http://en.wikipedia.org/wiki/Bridge_ %28graph_ theory%29
e The queries use the Sample Data network.

Indices and tables

o Index
o Search Page

The problem definitionq] Connected components

A connected component of an undirected graph is a set of vertices that are all
reachable from each other.

Notice: This problem defines on an undirected graph.

Given the following query:

pgr__connectedComponentsV (\ (sql\))

where \(sql = \{(id_i, source_i, target_1i, cost_i, reverse__cost_i)\}\)

and

o \(source = \bigcup source i),
o \(target = \bigcup target_1i\),

The graphs are defined as follows:
The weighted undirected graph, \(G(V,E)\), is definied by:

o the set of vertices \(V\)
— \(V = source \cup target\)
o the set of edges \(E\)

413

http://en.wikipedia.org/wiki/Bridge_%28graph_theory%29
index.html#document-sampledata
genindex.html
search.html

— \(E = \begin{cases} \text{ } \{(source_i, target_i, cost_1i) \text{
when } cost >=0 \} & \quad \text{ } \\ \cup \{(target i,
source_i, cost_i) \text{ when } cost >=0 \} & \quad \text{
if } reverse_cost = \varnothing \\ \text{ } \text{ } & \text{
F A\ \text{ } \{(source i, target_ i, cost i) \text{ when } cost
>=0 \} & \text{ } \\ \cup \{(target i, source i, cost i) \text{
when } cost >=0 \} & \text{ } \\ \cup \{(target i, source i,
reverse__cost_i) \text{ when } reverse\ cost_i >=0)\} & \text{
} A\ \cup \{(source i, target i, reverse\ cost i) \text{ when }
reverse\ cost_i >=0)\} & \quad \text{ if } reverse\ cost \neq
\varnothing \\ \end{cases}\)

Given:

« \(G(V.E)\)

Then:
\(\boldsymbol{\pi} = \{(component_i, n_seq i, node_i)\}\)

where: ¢ \(component i = \min \{node j | node j \in component i\}\)
o \(n_seq_1i\) is a sequential value starting from 1 in a component.
o \(node_i \in component_i\)
o The returned values are ordered:
— component ascending
— node ascending

Example: ¢ The first component is composed of nodes 0, 1 and 4.
e The second component is composed of node 3.
e The third component is composed of nodes 2 and 5.

414

Strongly connected components

A strongly connected component of a directed graph is a set of vertices that are
all reachable from each other.

Notice: This problem defines on a directed graph.

Given the following query:

pgr_strongComponentsV (\(sql\))

where \(sql = \{(id_i, source_ i, target_1i, cost_i, reverse\ _cost_i)\}\)

and

415

o \(source = \bigcup source_i\),
o \(target = \bigcup target_i\),

The graphs are defined as follows:
The weighted directed graph, \(G_d(V,E)\), is definied by:

o the set of vertices \(V\)
— \(V = source \cup target \cup {start_{vid}} \cup {end_{vid}}\)
« the set of edges \(E\)

— \(E = \begin{cases} \text{ } \{(source_i, target i, cost_1i) \text{
when } cost >=0\} & \quad \text{ if } reverse\ cost = \varnothing

\\ \text{ } \text{ } & \text{ } \\ \text{ } \{(source_i, target_i,
cost_1) \text{ when } cost >=0 \} & \text{ } \\ \cup \{(target_i,
source_i, reverse__cost_i) \text{ when } reverse\ _cost_i>=0)\} &
\quad \text{ if } reverse\ cost \neq \varnothing \\ \end{cases}\)

Given:

+ \(G(V.E)\)

Then:
\(\boldsymbol{\pi} = \{(component_i, n_seq i, node_i)\}\)

where: ¢ \(component_i = \min {node_j | node_j \in component_i}\)
o \(n_seq i\) is a sequential value starting from 1 in a component.
o \(node_i \in component_i\)
o The returned values are ordered:
— component ascending
— node ascending

Example: ¢ The first component is composed of nodes 1, 2 and 4.
e The second component is composed of node 0.
e The third component is composed of node 3.
¢ The fourth component is composed of node 5.
e The fifth component is composed of node 6.

416

Biconnected components

The biconnected components of an undirected graph are the maximal subsets
of vertices such that the removal of a vertex from particular component will not
disconnect the component. Unlike connected components, vertices may belong
to multiple biconnected components. Vertices can be present in multiple bicon-
nected components, but each edge can only be contained in a single biconnected
component. So, the output only has edge version.

Notice: This problem defines on an undirected graph.

Given the following query:

417

pgr_ biconnectedComponents(\ (sql\))
where \(sql = \{(id_1i, source_ i, target_1i, cost_i, reverse\ _cost_i)\}\)

and

e \(source = \bigcup source_i\),
o \(target = \bigcup target_i\),

The graphs are defined as follows:
The weighted undirected graph, \(G(V,E)\), is definied by:

o the set of vertices \(V\)
— \(V = source \cup target))
o the set of edges \(E\)

— \(E = \begin{cases} \text{ } \{(source_ i, target i, cost_1i) \text{
when } cost >=0 \} & \quad \text{ } \\ \cup \{(target i,
source i, cost i) \text{ when } cost >=0 \} & \quad \text{
if } reverse_cost = \varnothing \\ \text{ } \text{ } & \text{
AN \text{ } \{(source_i, target_i, cost_i) \text{ when } cost
>=0 \} & \text{ } \\ \cup \{(target_i, source i, cost_1i) \text{
when } cost >=0 \} & \text{ } \\ \cup \{(target i, source i,
reverse\ cost_i) \text{ when } reverse\ cost i >=0)\} & \text{
A\ \cup \{(source_i, target_i, reverse_ cost_i) \text{ when }
reverse\ cost_i >=0)\} & \quad \text{ if } reverse\ cost \neq
\varnothing \\ \end{cases}\)

Given:

« \(G(V.E)\)

Then:
\(\boldsymbol{\pi} = \{(component_i, n_seq i, node_i)\}\)

where: ¢ \(component i = \min {node j | node j \in component i}\)
o \(n_seq 1i\) is a sequential value starting from 1 in a component.
o \(edge_i \in component_i\)
o The returned values are ordered:
— component ascending
— edge ascending

Example: ¢ The first component is composed of edges 1 - 2,0 - 1 and 0
- 2.

418

The second component is composed of edges 2 - 4,2 - 3 and 3 -
4

The third component is composed of edge 5 - 6.
The fourth component is composed of edge 6 - 7.

The fifth component is composed of edges 8 - 9,9 - 10 and 8 -
10.

419

420

Articulation Points

Those vertices that belong to more than one biconnected component are called
articulation points or, equivalently, cut vertices. Articulation points are vertices
whose removal would increase the number of connected components in the graph.

Notice: This problem defines on an undirected graph.

Given the following query:

pgr_ articulationPoints(\(sql\))

where \(sql = \{(id_i, source_ i