
Contents

Table of Contents

pgRouting extends the PostGIS/PostgreSQL geospatial database to provide geospatial routing and other network analysis
functionality.

This is the manual for pgRouting v3.0.6.

The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel
free to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and

wherever possible, a link back to https://pgrouting.org. For other licenses used in pgRouting see the Licensing page.

General

Introduction

pgRouting is an extension of PostGIS and PostgreSQL geospatial database and adds routing and other network analysis
functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp, was later extended by
Orkney and renamed to pgRouting. The project is now supported and maintained by Georepublic, Paragon Corporation and
a broad user community.

pgRouting is part of OSGeo Community Projects from the OSGeo Foundation and included on OSGeoLive.

Licensing

The following licenses can be found in pgRouting:

License
GNU General Public License v2.0 or
later

Most features of pgRouting are available under GNU General Public License
v2.0 or later.

Boost Software License - Version 1.0 Some Boost extensions are available under Boost Software License - Version
1.0.

MIT-X License Some code contributed by iMaptools.com is available under MIT-X license.
Creative Commons Attribution-Share
Alike 3.0 License

The pgRouting Manual is licensed under a Creative Commons Attribution-
Share Alike 3.0 License.

In general license information should be included in the header of each source file.

Contributors

This Release Contributors

Individuals (in alphabetical order)

Aasheesh Tiwari, Aditya Pratap Singh, Adrien Berchet, Cayetano Benavent, Gudesa Venkata Sai Akhil, Hang Wu, Maoguang
Wang, Martha Vergara, Mohamed Bakli, Regina Obe, Rohith Reddy, Sourabh Garg, Virginia Vergara

And all the people that give us a little of their time making comments, finding issues, making pull requests etc. in any of our
products: osm2pgrouting, pgRouting, pgRoutingLayer.

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting
project:

Georepublic
Google Summer of Code
Leopark
Paragon Corporation

Contributors Past & Present:

Individuals (in alphabetical order)

pgRouting Manual (3.0)
PGROUTING MANUAL (3.0)

https://postgis.net
https://www.postgresql.org
https://creativecommons.org/licenses/by-sa/3.0/
https://pgrouting.org
https://postgis.net
https://www.postgresql.org
http://camptocamp.com
https://georepublic.info
https://www.paragoncorporation.com/
https://wiki.osgeo.org/wiki/OSGeo_Community_Projects
https://osgeo.org
http://live.osgeo.org/
https://spdx.org/licenses/GPL-2.0-or-later.html
https://www.boost.org/LICENSE_1_0.txt
https://creativecommons.org/licenses/by-sa/3.0/
https://georepublic.info/en/
https://summerofcode.withgoogle.com
https://www.leopark.mx/
https://www.paragoncorporation.com/
file:///opt/git/pgrouting/singlehtml/_images/before_node_net.png
file:///opt/git/pgrouting/singlehtml/_images/after_node_net.png

Aasheesh Tiwari, Aditya Pratap Singh, Adrien Berchet, Akio Takubo, Andrea Nardelli, Anthony Tasca, Anton Patrushev, Ashraf
Hossain, Cayetano Benavent, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis Rykov, Ema Miyawaki, Florian
Thurkow, Frederic Junod, Gerald Fenoy, Gudesa Venkata Sai Akhil, Hang Wu, Jay Mahadeokar, Jinfu Leng, Kai Behncke, Kishore
Kumar, Ko Nagase, Manikata Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Maoguang Wang, Mohamed Zia,
Mohamed Bakli, Mukul Priya, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal, Sourabh Garg, Stephen Woodbridge,
Sylvain Housseman, Sylvain Pasche, Vidhan Jain, Virginia Vergara

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting
project:

Camptocamp
CSIS (University of Tokyo)
Georepublic
Google Summer of Code
iMaptools
Leopark
Orkney
Paragon Corporation
Versaterm Inc.

More Information

The latest software, documentation and news items are available at the pgRouting web site https://pgrouting.org.
PostgreSQL database server at the PostgreSQL main site https://www.postgresql.org.
PostGIS extension at the PostGIS project web site https://postgis.net.
Boost C++ source libraries at https://www.boost.org.
The Migration guide can be found at https://github.com/pgRouting/pgrouting/wiki/Migration-Guide.

Installation

Table of Contents

Short Version
Get the sources
Enabling and upgrading in the database
Dependencies
Configuring
Building
Testing

Instructions for downloading and installing binaries for different Operative systems instructions and additional notes and
corrections not included in this documentation can be found in Installation wiki

To use pgRouting postGIS needs to be installed, please read the information about installation in this Install Guide

Short Version

Extracting the tar ball

tar xvfz pgrouting-3.0.6.tar.gz
cd pgrouting-3.0.6

To compile assuming you have all the dependencies in your search path:

mkdir build
cd build
cmake ..
make
sudo make install

Once pgRouting is installed, it needs to be enabled in each individual database you want to use it in.

createdb routing
psql routing -c 'CREATE EXTENSION PostGIS'
psql routing -c 'CREATE EXTENSION pgRouting'

Get the sources

https://pgrouting.org
https://www.postgresql.org
https://postgis.net
https://www.boost.org
https://github.com/pgRouting/pgrouting/wiki/Migration-Guide
https://github.com/pgRouting/pgrouting/wiki/Notes-on-Download%252C-Installation-and-building-pgRouting
https://www.postgis.us/presentations/postgis_install_guide_22.html

The pgRouting latest release can be found in https://github.com/pgRouting/pgrouting/releases/latest

wget

To download this release:

wget -O pgrouting-3.0.6.tar.gz https://github.com/pgRouting/pgrouting/archive/v3.0.6.tar.gz

Goto Short Version to the extract and compile instructions.

git

To download the repository

git clone git://github.com/pgRouting/pgrouting.git
cd pgrouting
git checkout v3.0.6

Goto Short Version to the compile instructions (there is no tar ball).

Enabling and upgrading in the database

Enabling the database

pgRouting is an extension and depends on postGIS. Enabling postGIS before enabling pgRouting in the database

CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;

Upgrading the database

To upgrade pgRouting in the database to version 3.0.6 use the following command:

ALTER EXTENSION pgrouting UPDATE TO "3.0.6";

More information can be found in https://www.postgresql.org/docs/current/sql-createextension.html

Dependencies

Compilation Dependencies

To be able to compile pgRouting, make sure that the following dependencies are met:

C and C++0x compilers * g++ version >= 4.8
Postgresql version >= 9.3
The Boost Graph Library (BGL). Version >= 1.53
CMake >= 3.2

optional dependencies

For user’s documentation

Sphinx >= 1.1
Latex

For developer’s documentation

Doxygen >= 1.7

For testing

pgtap
pg_prove

For using:

PostGIS version >= 2.2

Example: Installing dependencies on linux

https://github.com/pgRouting/pgrouting/releases/latest
https://www.postgresql.org/docs/current/sql-createextension.html

Installing the compilation dependencies

Database dependencies

sudo apt-get install
 postgresql-10 \
 postgresql-server-dev-10 \
 postgresql-10-postgis

Build dependencies

sudo apt-get install
 cmake \
 g++ \
 libboost-graph-dev

Optional dependencies

For documentation and testing

sudo apt-get install -y python-sphinx \
 texlive \
 doxygen \
 libtap-parser-sourcehandler-pgtap-perl \
 postgresql-10-pgtap

Configuring

pgRouting uses the cmake system to do the configuration.

The build directory is different from the source directory

Create the build directory

$ mkdir build

Configurable variables

To see the variables that can be configured

$ cd build
$ cmake -L ..

Configuring The Documentation

Most of the effort of the documentation has being on the HTML files. Some variables for the documentation:

Variable Default Comment
WITH_DOC BOOL=OFF Turn on/off building the documentation
BUILD_HTML BOOL=ON If ON, turn on/off building HTML for user’s documentation
BUILD_DOXY BOOL=ON If ON, turn on/off building HTML for developer’s documentation
BUILD_LATEX BOOL=OFF If ON, turn on/off building PDF
BUILD_MAN BOOL=OFF If ON, turn on/off building MAN pages
DOC_USE_BOOTSTRAP BOOL=OFF If ON, use sphinx-bootstrap for HTML pages of the users

documentation

Configuring with documentation

$ cmake -DWITH_DOC=ON ..

Note

Most of the effort of the documentation has being on the html files.

Building

Using make to build the code and the documentation

The following instructions start from path/to/pgrouting/build

$ make # build the code but not the documentation
$ make doc # build only the documentation
$ make all doc # build both the code and the documentation

We have tested on several platforms, For installing or reinstalling all the steps are needed.

Warning

The sql signatures are configured and build in the cmake command.

MinGW on Windows

$ mkdir build
$ cd build
$ cmake -G"MSYS Makefiles" ..
$ make
$ make install

Linux

The following instructions start from path/to/pgrouting

mkdir build
cd build
cmake ..
make
sudo make install

When the configuration changes:

rm -rf build

and start the build process as mentioned above.

Testing

Currently there is no make test and testing is done as follows

The following instructions start from path/to/pgrouting/

tools/testers/doc_queries_generator.pl
createdb -U <user> ___pgr___test___
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> ___pgr___test___

See Also

Indices and tables

Index
Search Page

Support

pgRouting community support is available through the pgRouting website, documentation, tutorials, mailing lists and
others. If you’re looking for commercial support, find below a list of companies providing pgRouting development and
consulting services.

Reporting Problems

Bugs are reported and managed in an issue tracker. Please follow these steps:

1. Search the tickets to see if your problem has already been reported. If so, add any extra context you might have found, or at
least indicate that you too are having the problem. This will help us prioritize common issues.

2. If your problem is unreported, create a new issue for it.
3. In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL necessary to

replicate a problem.
4. If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest version the problem

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://pgrouting.org/support.html
http://docs.pgrouting.org
https://github.com/pgrouting/pgrouting/issues
https://github.com/pgRouting/pgrouting/issues/new

appears.
5. For the versions where you can replicate the problem, note the operating system and version of pgRouting, PostGIS and

PostgreSQL.
6. It is recommended to use the following wrapper on the problem to pin point the step that is causing the problem.

SET client_min_messages TO debug;
 <your code>
SET client_min_messages TO notice;

Mailing List and GIS StackExchange

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

User mailing list: https://lists.osgeo.org/mailman/listinfo/pgrouting-users
Developer mailing list: https://lists.osgeo.org/mailman/listinfo/pgrouting-dev

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange and tag the question with pgrouting. Find all questions tagged with pgrouting under
https://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting questions feed.

Commercial Support

For users who require professional support, development and consulting services, consider contacting any of the following
organizations, which have significantly contributed to the development of pgRouting:

Company Offices in Website
Georepublic Germany, Japan https://georepublic.info
Paragon Corporation United States https://www.paragoncorporation.com
Camptocamp Switzerland, France https://www.camptocamp.com
Netlab Capranica, Italy https://www.osgeo.org/service-

providers/netlab/

Sample Data that is used in the examples of this manual.

Sample Data

The documentation provides very simple example queries based on a small sample network. To be able to execute the sample
queries, run the following SQL commands to create a table with a small network data set.

Create table

CREATE TABLE edge_table (
 id BIGSERIAL,
 dir character varying,
 source BIGINT,
 target BIGINT,
 cost FLOAT,
 reverse_cost FLOAT,
 capacity BIGINT,
 reverse_capacity BIGINT,
 category_id INTEGER,
 reverse_category_id INTEGER,
 x1 FLOAT,
 y1 FLOAT,
 x2 FLOAT,
 y2 FLOAT,
 the_geom geometry
);

Insert data

https://lists.osgeo.org/mailman/listinfo/pgrouting-users
https://lists.osgeo.org/mailman/listinfo/pgrouting-dev
https://gis.stackexchange.com/
https://gis.stackexchange.com/questions/tagged/pgrouting
https://gis.stackexchange.com/feeds/tag?tagnames=pgrouting&sort=newest
https://georepublic.info
https://www.paragoncorporation.com
https://www.camptocamp.com
https://www.osgeo.org/service-providers/netlab/

INSERT INTO edge_table (
 category_id, reverse_category_id,
 cost, reverse_cost,
 capacity, reverse_capacity,
 x1, y1,
 x2, y2) VALUES
(3, 1, 1, 1, 80, 130, 2, 0, 2, 1),
(3, 2, -1, 1, -1, 100, 2, 1, 3, 1),
(2, 1, -1, 1, -1, 130, 3, 1, 4, 1),
(2, 4, 1, 1, 100, 50, 2, 1, 2, 2),
(1, 4, 1, -1, 130, -1, 3, 1, 3, 2),
(4, 2, 1, 1, 50, 100, 0, 2, 1, 2),
(4, 1, 1, 1, 50, 130, 1, 2, 2, 2),
(2, 1, 1, 1, 100, 130, 2, 2, 3, 2),
(1, 3, 1, 1, 130, 80, 3, 2, 4, 2),
(1, 4, 1, 1, 130, 50, 2, 2, 2, 3),
(1, 2, 1, -1, 130, -1, 3, 2, 3, 3),
(2, 3, 1, -1, 100, -1, 2, 3, 3, 3),
(2, 4, 1, -1, 100, -1, 3, 3, 4, 3),
(3, 1, 1, 1, 80, 130, 2, 3, 2, 4),
(3, 4, 1, 1, 80, 50, 4, 2, 4, 3),
(3, 3, 1, 1, 80, 80, 4, 1, 4, 2),
(1, 2, 1, 1, 130, 100, 0.5, 3.5, 1.999999999999,3.5),
(4, 1, 1, 1, 50, 130, 3.5, 2.3, 3.5,4);

Updating geometry

UPDATE edge_table SET the_geom = st_makeline(st_point(x1,y1),st_point(x2,y2)),
dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' -- both ways
 WHEN (cost>0 AND reverse_cost<0) THEN 'FT' -- direction of the LINESSTRING
 WHEN (cost<0 AND reverse_cost>0) THEN 'TF' -- reverse direction of the LINESTRING
 ELSE '' END; -- unknown

Topology

Before you test a routing function use this query to create a topology (fills the source and target columns).

SELECT pgr_createTopology('edge_table',0.001);

Points of interest

When points outside of the graph.
Used with the withPoints - Family of functions functions.

CREATE TABLE pointsOfInterest(
 pid BIGSERIAL,
 x FLOAT,
 y FLOAT,
 edge_id BIGINT,
 side CHAR,
 fraction FLOAT,
 the_geom geometry,
 newPoint geometry
);

INSERT INTO pointsOfInterest (x, y, edge_id, side, fraction) VALUES
(1.8, 0.4, 1, 'l', 0.4),
(4.2, 2.4, 15, 'r', 0.4),
(2.6, 3.2, 12, 'l', 0.6),
(0.3, 1.8, 6, 'r', 0.3),
(2.9, 1.8, 5, 'l', 0.8),
(2.2, 1.7, 4, 'b', 0.7);
UPDATE pointsOfInterest SET the_geom = st_makePoint(x,y);

UPDATE pointsOfInterest
 SET newPoint = ST_LineInterpolatePoint(e.the_geom, fraction)
 FROM edge_table AS e WHERE edge_id = id;

Restrictions

Used with the pgr_trsp - Turn Restriction Shortest Path (TRSP) functions.

CREATE TABLE restrictions (
 rid BIGINT NOT NULL,
 to_cost FLOAT,
 target_id BIGINT,
 from_edge BIGINT,
 via_path TEXT
);

INSERT INTO restrictions (rid, to_cost, target_id, from_edge, via_path) VALUES
(1, 100, 7, 4, NULL),
(1, 100, 11, 8, NULL),
(1, 100, 10, 7, NULL),
(2, 4, 8, 3, 5),
(3, 100, 9, 16, NULL);

CREATE TABLE new_restrictions (
 id SERIAL PRIMARY KEY,
 path BIGINT[],
 cost float
);

INSERT INTO new_restrictions (path, cost) VALUES
(ARRAY[4, 7], 100),
(ARRAY[8, 11], 100),
(ARRAY[4, 8], 100),
(ARRAY[5, 9], 100),
(ARRAY[10, 12], 100),
(ARRAY[9, 15], 100),
(ARRAY[3, 5, 8], 100);

Images

Red arrows correspond when cost > 0 in the edge table.
Blue arrows correspond when reverse_cost > 0 in the edge table.
Points are outside the graph.
Click on the graph to enlarge.

Network for queries marked as directed and cost and reverse_cost columns are used

When working with city networks, this is recommended for point of view of vehicles.

Graph 1: Directed, with cost and reverse cost

Network for queries marked as undirected and cost and reverse_cost columns are used

When working with city networks, this is recommended for point of view of pedestrians.

Graph 2: Undirected, with cost and reverse cost

file:///opt/git/pgrouting/singlehtml/_images/Fig6-undirected.png

Network for queries marked as directed and only cost column is used

Graph 3: Directed, with cost

Network for queries marked as undirected and only cost column is used

Graph 4: Undirected, with cost

Pick & Deliver Data

DROP TABLE IF EXISTS customer CASCADE;
CREATE table customer (
 id BIGINT not null primary key,
 x DOUBLE PRECISION,
 y DOUBLE PRECISION,
 demand INTEGER,
 opentime INTEGER,
 closetime INTEGER,
 servicetime INTEGER,
 pindex BIGINT,
 dindex BIGINT
);

INSERT INTO customer(
 id, x, y, demand, opentime, closetime, servicetime, pindex, dindex) VALUES
(0, 40, 50, 0, 0, 1236, 0, 0, 0),
(1, 45, 68, -10, 912, 967, 90, 11, 0),
(2, 45, 70, -20, 825, 870, 90, 6, 0),
(3, 42, 66, 10, 65, 146, 90, 0, 75),
(4, 42, 68, -10, 727, 782, 90, 9, 0),
(5, 42, 65, 10, 15, 67, 90, 0, 7),
(6, 40, 69, 20, 621, 702, 90, 0, 2),
(7, 40, 66, -10, 170, 225, 90, 5, 0),
(8, 38, 68, 20, 255, 324, 90, 0, 10),
(9, 38, 70, 10, 534, 605, 90, 0, 4),
(10, 35, 66, -20, 357, 410, 90, 8, 0),
(11, 35, 69, 10, 448, 505, 90, 0, 1),
(12, 25, 85, -20, 652, 721, 90, 18, 0),
(13, 22, 75, 30, 30, 92, 90, 0, 17),
(14, 22, 85, -40, 567, 620, 90, 16, 0),
(15, 20, 80, -10, 384, 429, 90, 19, 0),
(16, 20, 85, 40, 475, 528, 90, 0, 14),
(17, 18, 75, -30, 99, 148, 90, 13, 0),
(18, 15, 75, 20, 179, 254, 90, 0, 12),
(19, 15, 80, 10, 278, 345, 90, 0, 15),
(20, 30, 50, 10, 10, 73, 90, 0, 24),
(21, 30, 52, -10, 914, 965, 90, 30, 0),
(22, 28, 52, -20, 812, 883, 90, 28, 0),
(23, 28, 55, 10, 732, 777, 0, 0, 103),
(24, 25, 50, -10, 65, 144, 90, 20, 0),
(25, 25, 52, 40, 169, 224, 90, 0, 27),
(26, 25, 55, -10, 622, 701, 90, 29, 0),
(27, 23, 52, -40, 261, 316, 90, 25, 0),
(28, 23, 55, 20, 546, 593, 90, 0, 22),
(29, 20, 50, 10, 358, 405, 90, 0, 26),
(30, 20, 55, 10, 449, 504, 90, 0, 21),
(31, 10, 35, -30, 200, 237, 90, 32, 0),
(32, 10, 40, 30, 31, 100, 90, 0, 31),
(33, 8, 40, 40, 87, 158, 90, 0, 37),
(34, 8, 45, -30, 751, 816, 90, 38, 0),
(35, 5, 35, 10, 283, 344, 90, 0, 39),
(36, 5, 45, 10, 665, 716, 0, 0, 105),
(37, 2, 40, -40, 383, 434, 90, 33, 0),
(38, 0, 40, 30, 479, 522, 90, 0, 34),
(39, 0, 45, -10, 567, 624, 90, 35, 0),
(40, 35, 30, -20, 264, 321, 90, 42, 0),

file:///opt/git/pgrouting/singlehtml/_images/Fig2-cost.png
file:///opt/git/pgrouting/singlehtml/_images/Fig4-costUndirected.png

(40, 35, 30, -20, 264, 321, 90, 42, 0),
(41, 35, 32, -10, 166, 235, 90, 43, 0),
(42, 33, 32, 20, 68, 149, 90, 0, 40),
(43, 33, 35, 10, 16, 80, 90, 0, 41),
(44, 32, 30, 10, 359, 412, 90, 0, 46),
(45, 30, 30, 10, 541, 600, 90, 0, 48),
(46, 30, 32, -10, 448, 509, 90, 44, 0),
(47, 30, 35, -10, 1054, 1127, 90, 49, 0),
(48, 28, 30, -10, 632, 693, 90, 45, 0),
(49, 28, 35, 10, 1001, 1066, 90, 0, 47),
(50, 26, 32, 10, 815, 880, 90, 0, 52),
(51, 25, 30, 10, 725, 786, 0, 0, 101),
(52, 25, 35, -10, 912, 969, 90, 50, 0),
(53, 44, 5, 20, 286, 347, 90, 0, 58),
(54, 42, 10, 40, 186, 257, 90, 0, 60),
(55, 42, 15, -40, 95, 158, 90, 57, 0),
(56, 40, 5, 30, 385, 436, 90, 0, 59),
(57, 40, 15, 40, 35, 87, 90, 0, 55),
(58, 38, 5, -20, 471, 534, 90, 53, 0),
(59, 38, 15, -30, 651, 740, 90, 56, 0),
(60, 35, 5, -40, 562, 629, 90, 54, 0),
(61, 50, 30, -10, 531, 610, 90, 67, 0),
(62, 50, 35, 20, 262, 317, 90, 0, 68),
(63, 50, 40, 50, 171, 218, 90, 0, 74),
(64, 48, 30, 10, 632, 693, 0, 0, 102),
(65, 48, 40, 10, 76, 129, 90, 0, 72),
(66, 47, 35, 10, 826, 875, 90, 0, 69),
(67, 47, 40, 10, 12, 77, 90, 0, 61),
(68, 45, 30, -20, 734, 777, 90, 62, 0),
(69, 45, 35, -10, 916, 969, 90, 66, 0),
(70, 95, 30, -30, 387, 456, 90, 81, 0),
(71, 95, 35, 20, 293, 360, 90, 0, 77),
(72, 53, 30, -10, 450, 505, 90, 65, 0),
(73, 92, 30, -10, 478, 551, 90, 76, 0),
(74, 53, 35, -50, 353, 412, 90, 63, 0),
(75, 45, 65, -10, 997, 1068, 90, 3, 0),
(76, 90, 35, 10, 203, 260, 90, 0, 73),
(77, 88, 30, -20, 574, 643, 90, 71, 0),
(78, 88, 35, 20, 109, 170, 0, 0, 104),
(79, 87, 30, 10, 668, 731, 90, 0, 80),
(80, 85, 25, -10, 769, 820, 90, 79, 0),
(81, 85, 35, 30, 47, 124, 90, 0, 70),
(82, 75, 55, 20, 369, 420, 90, 0, 85),
(83, 72, 55, -20, 265, 338, 90, 87, 0),
(84, 70, 58, 20, 458, 523, 90, 0, 89),
(85, 68, 60, -20, 555, 612, 90, 82, 0),
(86, 66, 55, 10, 173, 238, 90, 0, 91),
(87, 65, 55, 20, 85, 144, 90, 0, 83),
(88, 65, 60, -10, 645, 708, 90, 90, 0),
(89, 63, 58, -20, 737, 802, 90, 84, 0),
(90, 60, 55, 10, 20, 84, 90, 0, 88),
(91, 60, 60, -10, 836, 889, 90, 86, 0),
(92, 67, 85, 20, 368, 441, 90, 0, 93),
(93, 65, 85, -20, 475, 518, 90, 92, 0),
(94, 65, 82, -10, 285, 336, 90, 96, 0),
(95, 62, 80, -20, 196, 239, 90, 98, 0),
(96, 60, 80, 10, 95, 156, 90, 0, 94),
(97, 60, 85, 30, 561, 622, 0, 0, 106),
(98, 58, 75, 20, 30, 84, 90, 0, 95),
(99, 55, 80, -20, 743, 820, 90, 100, 0),
(100, 55, 85, 20, 647, 726, 90, 0, 99),
(101, 25, 30, -10, 725, 786, 90, 51, 0),
(102, 48, 30, -10, 632, 693, 90, 64, 0),
(103, 28, 55, -10, 732, 777, 90, 23, 0),
(104, 88, 35, -20, 109, 170, 90, 78, 0),
(105, 5, 45, -10, 665, 716, 90, 36, 0),
(106, 60, 85, -30, 561, 622, 90, 97, 0);

Pgrouting Concepts

pgRouting Concepts

Contents

pgRouting Concepts
Getting Started

Create a routing Database
Load Data
Build a Routing Topology
Check the Routing Topology
Compute a Path

Group of Functions
One to One
One to Many
Many to One

Many to Many
Inner Queries

Description of the edges_sql query for dijkstra like functions
Parameters

edges_sql query for aStar - Family of functions and aStar - Family of functions functions
Return columns & values

Return values for a path
Return values for multiple paths from the same source and destination
Description of the return values for a Cost Matrix - Category function
Description of the Return Values

Advanced Topics
Routing Topology
Graph Analytics
Analyze a Graph
Analyze One Way Streets

Example
Performance Tips

For the Routing functions
For the topology functions:

How to contribute

Getting Started

This is a simple guide to walk you through the steps of getting started with pgRouting. In this guide we will cover:

Create a routing Database
Load Data
Build a Routing Topology
Check the Routing Topology
Compute a Path

Create a routing Database

The first thing we need to do is create a database and load pgrouting in the database. Typically you will create a database for
each project. Once you have a database to work in, your can load your data and build your application in that database. This
makes it easy to move your project later if you want to to say a production server.

For Postgresql 9.2 and later versions

createdb mydatabase
psql mydatabase -c "create extension postgis"
psql mydatabase -c "create extension pgrouting"

Load Data

How you load your data will depend in what form it comes it. There are various OpenSource tools that can help you, like:

osm2pgrouting:
this is a tool for loading OSM data into postgresql with pgRouting requirements

shp2pgsql:
this is the postgresql shapefile loader

ogr2ogr:
this is a vector data conversion utility

osm2pgsql:
this is a tool for loading OSM data into postgresql

So these tools and probably others will allow you to read vector data so that you may then load that data into your database as
a table of some kind. At this point you need to know a little about your data structure and content. One easy way to browse
your new data table is with pgAdmin3 or phpPgAdmin.

Build a Routing Topology

Next we need to build a topology for our street data. What this means is that for any given edge in your street data the ends of
that edge will be connected to a unique node and to other edges that are also connected to that same unique node. Once all
the edges are connected to nodes we have a graph that can be used for routing with pgrouting. We provide a tool that will
help with this:

Note

this step is not needed if data is loaded with osm2pgrouting

select pgr_createTopology('myroads', 0.000001);

pgr_createTopology

Check the Routing Topology

There are lots of possible sources for errors in a graph. The data that you started with may not have been designed with
routing in mind. A graph has some very specific requirements. One is that it is NODED, this means that except for some very
specific use cases, each road segment starts and ends at a node and that in general is does not cross another road segment
that it should be connected to.

There can be other errors like the direction of a one-way street being entered in the wrong direction. We do not have tools to
search for all possible errors but we have some basic tools that might help.

select pgr_analyzegraph('myroads', 0.000001);
select pgr_analyzeoneway('myroads', s_in_rules, s_out_rules,
 t_in_rules, t_out_rules
 direction)
select pgr_nodeNetwork('myroads', 0.001);

pgr_analyzeGraph
pgr_analyzeOneWay
pgr_nodeNetwork

Compute a Path

Once you have all the preparation work done above, computing a route is fairly easy. We have a lot of different algorithms that
can work with your prepared road network. The general form of a route query is:

select pgr_dijkstra(`SELECT * FROM myroads', 1, 2)

As you can see this is fairly straight forward and you can look and the specific algorithms for the details of the signatures and
how to use them. These results have information like edge id and/or the node id along with the cost or geometry for the step in
the path from start to end. Using the ids you can join these result back to your edge table to get more information about each
step in the path.

pgr_dijkstra

Group of Functions

A function might have different overloads. Across this documentation, to indicate which overload we use the following terms:

One to One
One to Many
Many to One
Many to Many

Depending on the overload are the parameters used, keeping consistency across all functions.

One to One

When routing from:

From one starting vertex
to one ending vertex

One to Many

When routing from:

From one starting vertex
to many ending vertices

Many to One

When routing from:

From many starting vertices
to one ending vertex

Many to Many

When routing from:

From many starting vertices
to many ending vertices

Inner Queries

Description of the edges_sql query for dijkstra like functions

There are several kinds of valid inner queries and also the columns returned are depending of the function. Which kind of inner
query will depend on the function(s) requirements. To simplify variety of types, ANY-INTEGER and ANY-NUMERICAL is used.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query for dijkstra like functions

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the edges_sql query (id is not necessary)

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameters

Parameter Type Default Description
edges_sql TEXT SQL query as described above.

via_vertices ARRAY[ANY-INTEGER] Array of ordered vertices identifiers that are going to be visited.

directed BOOLEAN true When true Graph is considered Directed
When false the graph is considered as Undirected.

strict BOOLEAN false When false ignores missing paths returning all paths found
When true if a path is missing stops and returns EMPTY SET

U_turn_on_edge BOOLEAN true When true departing from a visited vertex will not try to avoid using the
edge used to reach it. In other words, U turn using the edge with same
id is allowed.
When false when a departing from a visited vertex tries to avoid using
the edge used to reach it. In other words, U turn using the edge with
same id is used when no other path is found.

Parameter Type Default Description

edges_sql query for aStar - Family of functions and aStar - Family of functions functions

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

For pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov :

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part
of the graph.

reverse_capacity ANY-INTEGER -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part
of the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

For pgr_maxFlowMinCost - Experimental and pgr_maxFlowMinCost_Cost - Experimental:

Edges SQL:

an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Capacity of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not
part of the graph.

reverse_capacity ANY-INTEGER -1 Capacity of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not
part of the graph.

cost ANY-NUMERICAL Weight of the edge (source, target) if it exists.
reverse_cost ANY-NUMERICAL 0 Weight of the edge (target, source) if it exists.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
smallint, int, bigint, real, float

Description of the Points SQL query

points_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER (optional) Identifier of the point.

If column present, it can not be NULL.
If column not present, a sequential identifier will be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the

edge.
side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

In the right, left of the edge or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Where:

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Return columns & values

Return values for a path
Return values for multiple paths from the same source and destination
Description of the return values for a Cost Matrix - Category function
Description of the Return Values

There are several kinds of columns returned are depending of the function.

Return values for a path

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.

start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Column Type Description

Return values for multiple paths from the same source and destination

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Description of the return values for a Cost Matrix - Category function

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Description of the Return Values

For pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov :

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
start_vid BIGINT Identifier of the first end point vertex of the edge.
end_vid BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (start_vid, end_vid).
residual_capacity BIGINT Residual capacity of the edge in the direction (start_vid,

end_vid).

For pgr_maxFlowMinCost - Experimental

Column Type Description

seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (source, target).
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).
cost FLOAT The cost of sending this flow through the edge in the direction (source,

target).
agg_cost FLOAT The aggregate cost.

Column Type Description

Advanced Topics

Routing Topology
Graph Analytics
Analyze a Graph
Analyze One Way Streets

Example

Routing Topology

Overview

Typically when GIS files are loaded into the data database for use with pgRouting they do not have topology information
associated with them. To create a useful topology the data needs to be “noded”. This means that where two or more roads
form an intersection there it needs to be a node at the intersection and all the road segments need to be broken at the
intersection, assuming that you can navigate from any of these segments to any other segment via that intersection.

You can use the graph analysis functions to help you see where you might have topology problems in your data. If you need
to node your data, we also have a function pgr_nodeNetwork() that might work for you. This function splits ALL crossing
segments and nodes them. There are some cases where this might NOT be the right thing to do.

For example, when you have an overpass and underpass intersection, you do not want these noded, but pgr_nodeNetwork
does not know that is the case and will node them which is not good because then the router will be able to turn off the
overpass onto the underpass like it was a flat 2D intersection. To deal with this problem some data sets use z-levels at these
types of intersections and other data might not node these intersection which would be ok.

For those cases where topology needs to be added the following functions may be useful. One way to prep the data for
pgRouting is to add the following columns to your table and then populate them as appropriate. This example makes a lot of
assumption like that you original data tables already has certain columns in it like one_way, fcc, and possibly others and that they
contain specific data values. This is only to give you an idea of what you can do with your data.

ALTER TABLE edge_table
 ADD COLUMN source integer,
 ADD COLUMN target integer,
 ADD COLUMN cost_len double precision,
 ADD COLUMN cost_time double precision,
 ADD COLUMN rcost_len double precision,
 ADD COLUMN rcost_time double precision,
 ADD COLUMN x1 double precision,
 ADD COLUMN y1 double precision,
 ADD COLUMN x2 double precision,
 ADD COLUMN y2 double precision,
 ADD COLUMN to_cost double precision,
 ADD COLUMN rule text,
 ADD COLUMN isolated integer;

SELECT pgr_createTopology('edge_table', 0.000001, 'the_geom', 'id');

The function pgr_createTopology will create the vertices_tmp table and populate the source and target columns. The following
example populated the remaining columns. In this example, the fcc column contains feature class code and the CASE

statements converts it to an average speed.

UPDATE edge_table SET x1 = st_x(st_startpoint(the_geom)),
 y1 = st_y(st_startpoint(the_geom)),
 x2 = st_x(st_endpoint(the_geom)),
 y2 = st_y(st_endpoint(the_geom)),
 cost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
 rcost_len = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]'),
 len_km = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')/1000.0,
 len_miles = st_length_spheroid(the_geom, 'SPHEROID["WGS84",6378137,298.25728]')
 / 1000.0 * 0.6213712,
 speed_mph = CASE WHEN fcc='A10' THEN 65
 WHEN fcc='A15' THEN 65
 WHEN fcc='A20' THEN 55
 WHEN fcc='A25' THEN 55
 WHEN fcc='A30' THEN 45
 WHEN fcc='A35' THEN 45
 WHEN fcc='A40' THEN 35
 WHEN fcc='A45' THEN 35
 WHEN fcc='A50' THEN 25
 WHEN fcc='A60' THEN 25
 WHEN fcc='A61' THEN 25
 WHEN fcc='A62' THEN 25
 WHEN fcc='A64' THEN 25
 WHEN fcc='A70' THEN 15
 WHEN fcc='A69' THEN 10
 ELSE null END,
 speed_kmh = CASE WHEN fcc='A10' THEN 104
 WHEN fcc='A15' THEN 104
 WHEN fcc='A20' THEN 88
 WHEN fcc='A25' THEN 88
 WHEN fcc='A30' THEN 72
 WHEN fcc='A35' THEN 72
 WHEN fcc='A40' THEN 56
 WHEN fcc='A45' THEN 56
 WHEN fcc='A50' THEN 40
 WHEN fcc='A60' THEN 50
 WHEN fcc='A61' THEN 40
 WHEN fcc='A62' THEN 40
 WHEN fcc='A64' THEN 40
 WHEN fcc='A70' THEN 25
 WHEN fcc='A69' THEN 15
 ELSE null END;

-- UPDATE the cost information based on oneway streets

UPDATE edge_table SET
 cost_time = CASE
 WHEN one_way='TF' THEN 10000.0
 ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
 END,
 rcost_time = CASE
 WHEN one_way='FT' THEN 10000.0
 ELSE cost_len/1000.0/speed_kmh::numeric*3600.0
 END;

-- clean up the database because we have updated a lot of records

VACUUM ANALYZE VERBOSE edge_table;

Now your database should be ready to use any (most?) of the pgRouting algorithms.

Graph Analytics

Overview

It is common to find problems with graphs that have not been constructed fully noded or in graphs with z-levels at intersection
that have been entered incorrectly. An other problem is one way streets that have been entered in the wrong direction. We can
not detect errors with respect to “ground” truth, but we can look for inconsistencies and some anomalies in a graph and report
them for additional inspections.

We do not current have any visualization tools for these problems, but I have used mapserver to render the graph and
highlight potential problem areas. Someone familiar with graphviz might contribute tools for generating images with that.

Analyze a Graph

With pgr_analyzeGraph the graph can be checked for errors. For example for table “mytab” that has “mytab_vertices_pgr”
as the vertices table:

SELECT pgr_analyzeGraph('mytab', 0.000002);
NOTICE: Performing checks, pelase wait...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 158
NOTICE: Dead ends: 20028
NOTICE: Potential gaps found near dead ends: 527
NOTICE: Intersections detected: 2560
NOTICE: Ring geometries: 0
pgr_analyzeGraph

 OK
(1 row)

In the vertices table “mytab_vertices_pgr”:

Deadends are identified by cnt=1

Potencial gap problems are identified with chk=1.

SELECT count(*) as deadends FROM mytab_vertices_pgr WHERE cnt = 1;
deadends

 20028
 (1 row)

SELECT count(*) as gaps FROM mytab_vertices_pgr WHERE chk = 1;
 gaps

 527
 (1 row)

For isolated road segments, for example, a segment where both ends are deadends. you can find these with the following
query:

SELECT *
 FROM mytab a, mytab_vertices_pgr b, mytab_vertices_pgr c
 WHERE a.source=b.id AND b.cnt=1 AND a.target=c.id AND c.cnt=1;

If you want to visualize these on a graphic image, then you can use something like mapserver to render the edges and the
vertices and style based on cnt or if they are isolated, etc. You can also do this with a tool like graphviz, or geoserver or other
similar tools.

Analyze One Way Streets

pgr_analyzeOneWay analyzes one way streets in a graph and identifies any flipped segments. Basically if you count the
edges coming into a node and the edges exiting a node the number has to be greater than one.

This query will add two columns to the vertices_tmp table ein int and eout int and populate it with the appropriate counts. After
running this on a graph you can identify nodes with potential problems with the following query.

The rules are defined as an array of text strings that if match the col value would be counted as true for the source or target in
or out condition.

Example

Lets assume we have a table “st” of edges and a column “one_way” that might have values like:

‘FT’ - oneway from the source to the target node.
‘TF’ - oneway from the target to the source node.
‘B’ - two way street.
‘’ - empty field, assume twoway.
<NULL> - NULL field, use two_way_if_null flag.

Then we could form the following query to analyze the oneway streets for errors.

SELECT pgr_analyzeOneway('mytab',
 ARRAY['', 'B', 'TF'],
 ARRAY['', 'B', 'FT'],
 ARRAY['', 'B', 'FT'],
 ARRAY['', 'B', 'TF'],
);

-- now we can see the problem nodes
SELECT * FROM mytab_vertices_pgr WHERE ein=0 OR eout=0;

-- and the problem edges connected to those nodes
SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.source=b.id AND ein=0 OR eout=0
UNION
SELECT gid FROM mytab a, mytab_vertices_pgr b WHERE a.target=b.id AND ein=0 OR eout=0;

Typically these problems are generated by a break in the network, the one way direction set wrong, maybe an error related to
z-levels or a network that is not properly noded.

The above tools do not detect all network issues, but they will identify some common problems. There are other problems that
are hard to detect because they are more global in nature like multiple disconnected networks. Think of an island with a road
network that is not connected to the mainland network because the bridge or ferry routes are missing.

Performance Tips

For the Routing functions
For the topology functions:

For the Routing functions

To get faster results bound your queries to the area of interest of routing to have, for example, no more than one million rows.

Use an inner query SQL that does not include some edges in the routing function

SELECT id, source, target from edge_table WHERE
 id < 17 and
 the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id = 5)

Integrating the inner query to the pgRouting function:

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target from edge_table WHERE
 id < 17 and
 the_geom && (select st_buffer(the_geom,1) as myarea FROM edge_table where id = 5)',
 1, 2)

For the topology functions:

When “you know” that you are going to remove a set of edges from the edges table, and without those edges you are going to
use a routing function you can do the following:

Analize the new topology based on the actual topology:

pgr_analyzegraph('edge_table',rows_where:='id < 17');

Or create a new topology if the change is permanent:

pgr_createTopology('edge_table',rows_where:='id < 17');
pgr_analyzegraph('edge_table',rows_where:='id < 17');

How to contribute

Wiki

Edit an existing pgRouting Wiki page.
Or create a new Wiki page

Create a page on the pgRouting Wiki
Give the title an appropriate name

Example

Adding Functionaity to pgRouting

Consult the developer’s documentation

https://github.com/pgRouting/pgrouting/wiki
https://github.com/pgRouting/pgrouting/wiki
https://github.com/pgRouting/pgrouting/wiki/How-to:-Handle-parallel-edges-(KSP)
https://docs.pgrouting.org/doxy/2.4/index.html

Indices and tables

Index
Search Page

Reference

pgr_version - Get pgRouting’s version information.
pgr_full_version - Get pgRouting’s details of version.

pgr_version

pgr_version — Query for pgRouting version information.

Availability

Version 3.0.0
Breaking change on result columns
Support for old signature ends

Version 2.0.0
Official function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2 2.1 2.0

Description

Returns pgRouting version information.

Signature

TEXT pgr_version();

Example:
pgRouting Version for this documentatoin

SELECT pgr_version();
 pgr_version

 3.0.6
(1 row)

Result Columns

Type Description
TEXT pgRouting

version

See Also

pgr_full_version

Indices and tables

Index
Search Page

pgr_full_version

pgr_full_version — Get the details of pgRouting version information.

Availability

Version 3.0.0

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_version.html
https://docs.pgrouting.org/2.6/en/pgr_version.html
https://docs.pgrouting.org/2.5/en/pgr_version.html
https://docs.pgrouting.org/2.4/en/pgr_version.html
https://docs.pgrouting.org/2.3/en/src/common/doc/pgr_version.html
https://docs.pgrouting.org/2.2/en/src/common/doc/pgr_version.html
https://docs.pgrouting.org/2.1/en/src/common/doc/utilities/version.html
https://docs.pgrouting.org/2.0/en/src/common/doc/utilities/version.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

New official function

Support

Supported versions: current(3.0)

Description

Get the details of pgRouting version information

Signatures

 pgr_full_version()
RETURNS RECORD OF (version, build_type, compile_date, library, system, PostgreSQL, compiler, boost, hash)

Example:
Information when this documentation was build

SELECT * FROM pgr_full_version();
 version | build_type | compile_date | library | system | postgresql | compiler | boost | hash
---------+------------+--------------+-----------------+-------------------------+---+-----------+--------+------------
 3.0.6 | Release | 2021/10/22 | pgrouting-3.0.6 | Linux-5.11.0-38-generic | PostgreSQL 13.4 (Ubuntu 13.4-4.pgdg20.04+1) | GNU-9.3.0 | 1.71.0 | 8bf98ddcc3
(1 row)

Result Columns

Column Type Description
version TEXT pgRouting version
build_type TEXT The Build type
compile_date TEXT Compilation date
library TEXT Library name and version
system TEXT Operative system
postgreSQL TEXT pgsql used
compiler TEXT Compiler and version
boost TEXT Boost version
hash TEXT Git hash of pgRouting

build

See Also

pgr_version

Indices and tables

Index
Search Page

Function Families

Function Families

All Pairs - Family of Functions

pgr_floydWarshall - Floyd-Warshall’s algorithm.
pgr_johnson - Johnson’s algorithm

aStar - Family of functions

pgr_aStar - A* algorithm for the shortest path.
pgr_aStarCost - Get the aggregate cost of the shortest paths.
pgr_aStarCostMatrix - Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.
pgr_bdAstarCost - Bidirectional A* algorithm to calculate the cost of the paths.

https://docs.pgrouting.org/3.0/en/pgr_full_version.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_bdAstarCostMatrix - Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.
pgr_bdDijkstraCost - Bidirectional Dijkstra to calculate the cost of the shortest paths
pgr_bdDijkstraCostMatrix - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Components - Family of functions

pgr_connectedComponents - Connected components of an undirected graph.
pgr_strongComponents - Strongly connected components of a directed graph.
pgr_biconnectedComponents - Biconnected components of an undirected graph.
pgr_articulationPoints - Articulation points of an undirected graph.
pgr_bridges - Bridges of an undirected graph.

Contraction - Family of functions

pgr_contraction

Dijkstra - Family of functions

pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.
pgr_dijkstraCost - Get the aggregate cost of the shortest paths.
pgr_dijkstraCostMatrix - Use pgr_dijkstra to create a costs matrix.
pgr_drivingDistance - Use pgr_dijkstra to calculate catchament information.
pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Flow - Family of functions

pgr_maxFlow - Only the Max flow calculation using Push and Relabel algorithm.
pgr_boykovKolmogorov - Boykov and Kolmogorov with details of flow on edges.
pgr_edmondsKarp - Edmonds and Karp algorithm with details of flow on edges.
pgr_pushRelabel - Push and relabel algorithm with details of flow on edges.
Applications

pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.
pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Kruskal - Family of functions

pgr_kruskal
pgr_kruskalBFS
pgr_kruskalDD
pgr_kruskalDFS

Prim - Family of functions

pgr_prim
pgr_primBFS
pgr_primDD
pgr_primDFS

Topology - Family of Functions

pgr_createTopology - to create a topology based on the geometry.
pgr_createVerticesTable - to reconstruct the vertices table based on the source and target information.
pgr_analyzeGraph - to analyze the edges and vertices of the edge table.
pgr_analyzeOneWay - to analyze directionality of the edges.
pgr_nodeNetwork -to create nodes to a not noded edge table.

Traveling Sales Person - Family of functions

pgr_TSP - When input is given as matrix cell information.
pgr_TSPeuclidean - When input are coordinates.

pgr_trsp - Turn Restriction Shortest Path (TRSP) - Turn Restriction Shortest Path (TRSP)

Functions by categories

Cost - Category

pgr_aStarCost
pgr_dijkstraCost

Cost Matrix - Category

pgr_aStarCostMatrix
pgr_dijkstraCostMatrix

Driving Distance - Category

pgr_drivingDistance - Driving Distance based on Dijkstra’s algorithm
pgr_primDD - Driving Distance based on Prim’s algorithm
pgr_kruskalDD - Driving Distance based on Kruskal’s algorithm
Post pocessing

pgr_alphaShape - Alpha shape computation

K shortest paths - Category

pgr_KSP - Yen’s algorithm based on pgr_dijkstra

Spanning Tree - Category

Kruskal - Family of functions
Prim - Family of functions

All Pairs - Family of Functions

The following functions work on all vertices pair combinations

pgr_floydWarshall - Floyd-Warshall’s algorithm.
pgr_johnson - Johnson’s algorithm

pgr_floydWarshall

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall
algorithm.

Boost Graph Inside

Availability

Version 2.2.0
Signature change
Old signature no longer supported

Version 2.0.0
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The Floyd-Warshall algorithm, also known as Floyd’s algorithm, is a good choice to calculate the sum of the costs of the
shortest path for each pair of nodes in the graph, for dense graphs. We use Boost’s implementation which runs in \
(\Theta(V^3)\) time,

The main characteristics are:
It does not return a path.
Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
Process is done only on edges with positive costs.
Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which
there is no path.

We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
For the undirected graph, the results are symmetric.

The agg_cost of (u, v) is the same as for (v, u).

When start_vid = end_vid, the agg_cost = 0.
Recommended, use a bounding box of no more than 3500 edges.

Signatures

https://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
https://docs.pgrouting.org/3.0/en/pgr_floydWarshall.html
https://docs.pgrouting.org/2.6/en/pgr_floydWarshall.html
https://docs.pgrouting.org/2.5/en/pgr_floydWarshall.html
https://docs.pgrouting.org/2.4/en/pgr_floydWarshall.html
https://docs.pgrouting.org/2.3/en/src/allpairs/doc/pgr_floydWarshall.html
https://docs.pgrouting.org/2.2/en/src/allpairs/doc/pgr_floydWarshall.html
https://docs.pgrouting.org/2.1/en/src/apsp_warshall/doc/index.html
https://docs.pgrouting.org/2.0/en/src/apsp_warshall/doc/index.html

Summary

pgr floydWarshall(edges_sql [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Using defaults

pgr_floydWarshall(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example 1:
For vertices \(\{1, 2, 3, 4\}\) on a directed graph

SELECT * FROM pgr_floydWarshall(
 'SELECT id, source, target, cost FROM edge_table where id < 5'
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 5 | 2
 2 | 5 | 1
(3 rows)

Complete Signature

pgr_floydWarshall(edges_sql [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example 2:
For vertices \(\{1, 2, 3, 4\}\) on an undirected graph

SELECT * FROM pgr_floydWarshall(
 'SELECT id, source, target, cost FROM edge_table where id < 5',
 false
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 5 | 2
 2 | 1 | 1
 2 | 5 | 1
 5 | 1 | 2
 5 | 2 | 1
(6 rows)

Parameters

Parameter Type Description
edges_sql TEXT SQL query as described above.
directed BOOLEAN (optional) Default is true (is directed). When set to false the graph is considered as

Undirected

Inner query

Description of the edges_sql query (id is not necessary)

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Total cost from start_vid to end_vid.

See Also

pgr_johnson
Boost floyd-Warshall algorithm
Queries uses the Sample Data network.

Indices and tables

Index
Search Page

pgr_johnson

pgr_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall
algorithm.

Boost Graph Inside

Availability

Version 2.2.0
Signature change
Old signature no longer supported

Version 2.0.0
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the
graph, for sparse graphs. It usees the Boost’s implementation which runs in \(O(V E \log V)\) time,

The main characteristics are:
It does not return a path.
Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
Process is done only on edges with positive costs.
Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which
there is no path.

We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

https://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
https://docs.pgrouting.org/3.0/en/pgr_johnson.html
https://docs.pgrouting.org/2.6/en/pgr_johnson.html
https://docs.pgrouting.org/2.5/en/pgr_johnson.html
https://docs.pgrouting.org/2.4/en/pgr_johnson.html
https://docs.pgrouting.org/2.3/en/src/allpairs/doc/pgr_johnson.html
https://docs.pgrouting.org/2.2/en/src/allpairs/doc/pgr_johnson.html
https://docs.pgrouting.org/2.1/en/src/apsp_johnson/doc/index.html
https://docs.pgrouting.org/2.0/en/src/apsp_johnson/doc/index.html

Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
For the undirected graph, the results are symmetric.

The agg_cost of (u, v) is the same as for (v, u).

When start_vid = end_vid, the agg_cost = 0.

Signatures

Summary

pgr_johnson(edges_sql)
pgr johnson(edges_sql [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Using default

pgr_johnson(edges_sql)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example 1:
For vertices \(\{1, 2, 3, 4\}\) on a directed graph

SELECT * FROM pgr_johnson(
 'SELECT source, target, cost FROM edge_table WHERE id < 5
 ORDER BY id'
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 5 | 2
 2 | 5 | 1
(3 rows)

Complete Signature

pgr_johnson(edges_sql[, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example 2:
For vertices \(\{1, 2, 3, 4\}\) on an undirected graph

SELECT * FROM pgr_johnson(
 'SELECT source, target, cost FROM edge_table WHERE id < 5
 ORDER BY id',
 false
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 5 | 2
 2 | 1 | 1
 2 | 5 | 1
 5 | 1 | 2
 5 | 2 | 1
(6 rows)

Parameters

Parameter Type Description
edges_sql TEXT SQL query as described above.
directed BOOLEAN (optional) Default is true (is directed). When set to false the graph is considered as

Undirected

Inner query

Description of the edges_sql query (id is not necessary)

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description

source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
agg_cost FLOAT Total cost from start_vid to end_vid.

See Also

pgr_floydWarshall
Boost Johnson algorithm implementation.
Queries uses the Sample Data network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2

Performance

The following tests:
non server computer
with AMD 64 CPU
4G memory
trusty
posgreSQL version 9.3

Data

The following data was used

BBOX="-122.8,45.4,-122.5,45.6"
wget --progress=dot:mega -O "sampledata.osm" "https://www.overpass-api.de/api/xapi?*[bbox=][@meta]"

Data processing was done with osm2pgrouting-alpha

createdb portland
psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s 0

Results

https://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/allpairs-family.html
https://docs.pgrouting.org/2.6/en/allpairs-family.html
https://docs.pgrouting.org/2.5/en/allpairs-family.html
https://docs.pgrouting.org/2.4/en/allpairs-family.html
https://docs.pgrouting.org/2.3/en/src/allpairs/doc/allpairs.html
https://docs.pgrouting.org/2.2/en/src/allpairs/doc/allpairs.html

Test:
One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests were
executed to get the average The tested query is:

SELECT count(*) FROM pgr_floydWarshall(
 'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson(
 'SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

The results of this tests are presented as:

SIZE:
is the number of edges given as input.
EDGES:
is the total number of records in the query.
DENSITY:
is the density of the data \(\dfrac{E}{V \times (V-1)}\).
OUT ROWS:
is the number of records returned by the queries.
Floyd-Warshall:
is the average execution time in seconds of pgr_floydWarshall.
Johnson:
is the average execution time in seconds of pgr_johnson.

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson
500 500 0.18E-7 1346 0.14 0.13
1000 1000 0.36E-7 2655 0.23 0.18
1500 1500 0.55E-7 4110 0.37 0.34
2000 2000 0.73E-7 5676 0.56 0.37
2500 2500 0.89E-7 7177 0.84 0.51
3000 3000 1.07E-7 8778 1.28 0.68
3500 3500 1.24E-7 10526 2.08 0.95
4000 4000 1.41E-7 12484 3.16 1.24
4500 4500 1.58E-7 14354 4.49 1.47
5000 5000 1.76E-7 16503 6.05 1.78
5500 5500 1.93E-7 18623 7.53 2.03
6000 6000 2.11E-7 20710 8.47 2.37
6500 6500 2.28E-7 22752 9.99 2.68
7000 7000 2.46E-7 24687 11.82 3.12
7500 7500 2.64E-7 26861 13.94 3.60
8000 8000 2.83E-7 29050 15.61 4.09
8500 8500 3.01E-7 31693 17.43 4.63
9000 9000 3.17E-7 33879 19.19 5.34
9500 9500 3.35E-7 36287 20.77 6.24
10000 10000 3.52E-7 38491 23.26 6.51

Test:
Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE> 30 tests were
executed to get the average The tested edge query is:

WITH
 buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom FROM ways),
 bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box from buffer)
SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom && (SELECT box from bbox);

The tested queries

SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)

The results of this tests are presented as:

SIZE:
is the size of the bounding box.

EDGES:
is the total number of records in the query.
DENSITY:
is the density of the data \(\dfrac{E}{V \times (V-1)}\).
OUT ROWS:
is the number of records returned by the queries.
Floyd-Warshall:
is the average execution time in seconds of pgr_floydWarshall.
Johnson:
is the average execution time in seconds of pgr_johnson.

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson
0.001 44 0.0608 1197 0.10 0.10
0.002 99 0.0251 4330 0.10 0.10
0.003 223 0.0122 18849 0.12 0.12
0.004 358 0.0085 71834 0.16 0.16
0.005 470 0.0070 116290 0.22 0.19
0.006 639 0.0055 207030 0.37 0.27
0.007 843 0.0043 346930 0.64 0.38
0.008 996 0.0037 469936 0.90 0.49
0.009 1146 0.0032 613135 1.26 0.62
0.010 1360 0.0027 849304 1.87 0.82
0.011 1573 0.0024 1147101 2.65 1.04
0.012 1789 0.0021 1483629 3.72 1.35
0.013 1975 0.0019 1846897 4.86 1.68
0.014 2281 0.0017 2438298 7.08 2.28
0.015 2588 0.0015 3156007 10.28 2.80
0.016 2958 0.0013 4090618 14.67 3.76
0.017 3247 0.0012 4868919 18.12 4.48

See Also

pgr_johnson
pgr_floydWarshall
Boost floyd-Warshall algorithm

Indices and tables

Index
Search Page

aStar - Family of functions

The A* (pronounced “A Star”) algorithm is based on Dijkstra’s algorithm with a heuristic that allow it to solve most shortest
path problems by evaluation only a sub-set of the overall graph.

pgr_aStar - A* algorithm for the shortest path.
pgr_aStarCost - Get the aggregate cost of the shortest paths.
pgr_aStarCostMatrix - Get the cost matrix of the shortest paths.

pgr_aStar

pgr_aStar — Shortest path using A* algorithm.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.4.0
New Proposed functions:

https://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/astar_search.html

pgr_aStar(One to Many)
pgr_aStar(Many to One)
pgr_aStar(Many to Many)

Version 2.3.0
Signature change on pgr_astar(One to One)

Old signature no longer supported
Version 2.0.0

Official pgr_aStar(One to One)

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The main characteristics are:

Default kind of graph is directed when
directed flag is missing.
directed flag is set to true

Unless specified otherwise, ordering is:
first by start_vid (if exists)
then by end_vid

Values are returned when there is a path
Let \(v\) and \(u\) be nodes on the graph:

If there is no path from \(v\) to \(u\):
no corresponding row is returned
agg_cost from \(v\) to \(u\) is \(\infty\)

There is no path when \(v = u\) therefore
no corresponding row is returned
agg_cost from v to u is \(0\)

Edges with negative costs are not included in the graph.
When (x,y) coordinates for the same vertex identifier differ:

A random selection of the vertex’s (x,y) coordinates is used.
Running time: \(O((E + V) * \log V)\)

The results are equivalent to the union of the results of the pgr_aStar(One to One) on the:
pgr_aStar(One to Many)
pgr_aStar(Many to One)
pgr_aStar(Many to Many)

start_vid and end_vid in the result is used to distinguish to which path it belongs.

Signatures

Summary

pgr_aStar(edges_sql, from_vid, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_aStar(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
pgr_aStar(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_aStar(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Optional parameters are named parameters and have a default value.

Using defaults

pgr_aStar(edges_sql, from_vid, to_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(12\) on a directed graph

https://docs.pgrouting.org/3.0/en/pgr_aStar.html
https://docs.pgrouting.org/2.6/en/pgr_aStar.html
https://docs.pgrouting.org/2.5/en/pgr_aStar.html
https://docs.pgrouting.org/2.4/en/pgr_aStar.html
https://docs.pgrouting.org/2.3/en/src/astar/doc/pgr_astar.html
https://docs.pgrouting.org/2.2/en/src/astar/doc/pgr_astar.html
https://docs.pgrouting.org/2.1/en/src/astar/doc/index.html
https://docs.pgrouting.org/2.0/en/src/astar/doc/index.html

SELECT * FROM pgr_astar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 2, 12);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 11 | 1 | 2
 4 | 4 | 11 | 13 | 1 | 3
 5 | 5 | 12 | -1 | 0 | 4
(5 rows)

One to One

pgr_aStar(edges_sql, from_vid, to_vid [, directed] [, heuristic] [, factor] [, epsilon])

RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(12\) on an undirected graph using heuristic \(2\)

SELECT * FROM pgr_astar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 2, 12,
 directed := false, heuristic := 2);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | 3 | 1 | 1
 3 | 3 | 4 | 16 | 1 | 2
 4 | 4 | 9 | 15 | 1 | 3
 5 | 5 | 12 | -1 | 0 | 4
(5 rows)

One to many

pgr_aStar(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 12\}\) on a directed graph using heuristic \(2\)

SELECT * FROM pgr_astar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 2, ARRAY[3, 12], heuristic := 2);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 12 | 2 | 4 | 1 | 0
 8 | 2 | 12 | 5 | 10 | 1 | 1
 9 | 3 | 12 | 10 | 12 | 1 | 2
 10 | 4 | 12 | 11 | 13 | 1 | 3
 11 | 5 | 12 | 12 | -1 | 0 | 4
(11 rows)

Many to One

pgr_aStar(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 2\}\) to vertex \(12\) on a directed graph using heuristic \(0\)

SELECT * FROM pgr_astar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 ARRAY[7, 2], 12, heuristic := 0);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | 10 | 1 | 1
 3 | 3 | 2 | 10 | 12 | 1 | 2
 4 | 4 | 2 | 11 | 13 | 1 | 3
 5 | 5 | 2 | 12 | -1 | 0 | 4
 6 | 1 | 7 | 7 | 6 | 1 | 0
 7 | 2 | 7 | 8 | 7 | 1 | 1
 8 | 3 | 7 | 5 | 10 | 1 | 2
 9 | 4 | 7 | 10 | 12 | 1 | 3
 10 | 5 | 7 | 11 | 13 | 1 | 4
 11 | 6 | 7 | 12 | -1 | 0 | 5
(11 rows)

Many to Many

pgr_aStar(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 2\}\) to vertices \(\{3, 12\}\) on a directed graph using heuristic \(2\)

SELECT * FROM pgr_astar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 ARRAY[7, 2], ARRAY[3, 12], heuristic := 2);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 2 | 12 | 2 | 4 | 1 | 0
 8 | 2 | 2 | 12 | 5 | 10 | 1 | 1
 9 | 3 | 2 | 12 | 10 | 12 | 1 | 2
 10 | 4 | 2 | 12 | 11 | 13 | 1 | 3
 11 | 5 | 2 | 12 | 12 | -1 | 0 | 4
 12 | 1 | 7 | 3 | 7 | 6 | 1 | 0
 13 | 2 | 7 | 3 | 8 | 7 | 1 | 1
 14 | 3 | 7 | 3 | 5 | 8 | 1 | 2
 15 | 4 | 7 | 3 | 6 | 9 | 1 | 3
 16 | 5 | 7 | 3 | 9 | 16 | 1 | 4
 17 | 6 | 7 | 3 | 4 | 3 | 1 | 5
 18 | 7 | 7 | 3 | 3 | -1 | 0 | 6
 19 | 1 | 7 | 12 | 7 | 6 | 1 | 0
 20 | 2 | 7 | 12 | 8 | 7 | 1 | 1
 21 | 3 | 7 | 12 | 5 | 10 | 1 | 2
 22 | 4 | 7 | 12 | 10 | 12 | 1 | 3
 23 | 5 | 7 | 12 | 11 | 13 | 1 | 4
 24 | 6 | 7 | 12 | 12 | -1 | 0 | 5
(24 rows)

Parameters

Parameter Type Description
edges_sql TEXT edges_sql inner query.
from_vid ANY-INTEGER Starting vertex identifier. Parameter in:

One to One
One to Many

from_vids ARRAY[ANY-INTEGER] Array of starting vertices identifiers. Parameter
in:

Many to One
Many to Many

to_vid ANY-INTEGER Ending vertex identifier. Parameter in:

One to One
Many to One

to_vids ARRAY[ANY-INTEGER] Array of ending vertices identifiers. Parameter in:

One to Many
Many to Many

Optional Parameters

Parameter Type Default Description
directed BOOLEAN true When true the graph is considered as Directed.

When false the graph is considered as Undirected.
heuristic INTEGER 5 Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT 1 For units manipulation. \(factor > 0\). See Factor
epsilon FLOAT 1 For less restricted results. \(epsilon >= 1\).

Inner query

edges_sql

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.

agg_cost FLOAT Aggregate cost from start_v to node.
Column Type Description

See Also

aStar - Family of functions
Sample Data
https://www.boost.org/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

Index
Search Page

pgr_aStarCost

pgr_aStarCost — Returns the aggregate cost shortest path using pgr_aStar algorithm.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.4.0
New proposed function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

Description

The main characteristics are:

Default kind of graph is directed when
directed flag is missing.
directed flag is set to true

Unless specified otherwise, ordering is:
first by start_vid (if exists)
then by end_vid

Values are returned when there is a path
Let \(v\) and \(u\) be nodes on the graph:

If there is no path from \(v\) to \(u\):
no corresponding row is returned
agg_cost from \(v\) to \(u\) is \(\infty\)

There is no path when \(v = u\) therefore
no corresponding row is returned
agg_cost from v to u is \(0\)

Edges with negative costs are not included in the graph.
When (x,y) coordinates for the same vertex identifier differ:

A random selection of the vertex’s (x,y) coordinates is used.
Running time: \(O((E + V) * \log V)\)

The results are equivalent to the union of the results of the pgr_aStarCost(One to One) on the:
pgr_aStarCost(One to Many)
pgr_aStarCost(Many to One)
pgr_aStarCost(Many to Many)

Signatures

Summary

https://www.boost.org/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org//libs/graph/doc/astar_search.html
https://docs.pgrouting.org/3.0/en/pgr_aStarCost.html
https://docs.pgrouting.org/2.6/en/pgr_aStarCost.html
https://docs.pgrouting.org/2.5/en/pgr_aStarCost.html
https://docs.pgrouting.org/2.4/en/pgr_aStarCost.html

pgr_aStarCost(edges_sql, from_vid, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_aStarCost(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
pgr_aStarCost(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_aStarCost(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Optional parameters are named parameters and have a default value.

Using defaults

pgr_aStarCost(edges_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(12\) on a directed graph

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 2, 12);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 12 | 4
(1 row)

One to One

pgr_aStarCost(edges_sql, from_vid, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(12\) on an undirected graph using heuristic \(2\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 2, 12,
 directed := false, heuristic := 2);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 12 | 4
(1 row)

One to many

pgr_aStarCost(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 12\}\) on a directed graph using heuristic \(2\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 2, ARRAY[3, 12], heuristic := 2);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 12 | 4
(2 rows)

Many to One

pgr_aStarCost(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 2\}\) to vertex \(12\) on a directed graph using heuristic \(0\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 ARRAY[7, 2], 12, heuristic := 0);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 12 | 4
 7 | 12 | 5
(2 rows)

Many to Many

pgr_aStarCost(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 2\}\) to vertices \(\{3, 12\}\) on a directed graph using heuristic \(2\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 ARRAY[7, 2], ARRAY[3, 12], heuristic := 2);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 12 | 4
 7 | 3 | 6
 7 | 12 | 5
(4 rows)

Parameters

Parameter Type Description
edges_sql TEXT edges_sql inner query.
from_vid ANY-INTEGER Starting vertex identifier. Parameter in:

One to One
One to Many

from_vids ARRAY[ANY-INTEGER] Array of starting vertices identifiers. Parameter
in:

Many to One
Many to Many

to_vid ANY-INTEGER Ending vertex identifier. Parameter in:

One to One
Many to One

to_vids ARRAY[ANY-INTEGER] Array of ending vertices identifiers. Parameter in:

One to Many
Many to Many

Optional Parameters

Parameter Type Default Description
directed BOOLEAN true When true the graph is considered as Directed.

When false the graph is considered as Undirected.
heuristic INTEGER 5 Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT 1 For units manipulation. \(factor > 0\). See Factor
epsilon FLOAT 1 For less restricted results. \(epsilon >= 1\).

Inner query

edges_sql

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

See Also

aStar - Family of functions
Cost - Category
Cost Matrix - Category
Examples use Sample Data network.

Indices and tables

Index
Search Page

pgr_aStarCostMatrix

pgr_aStarCostMatrix - Calculates the a cost matrix using pgr_aStar.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.4.0
New proposed function

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org//libs/graph/doc/astar_search.html

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

Description

The main characteristics are:

Using internaly the pgr_aStar algorithm
Returns a cost matrix.
No ordering is performed
let v and u are nodes on the graph:

when there is no path from v to u:
no corresponding row is returned
cost from v to u is \(\inf\)

when \(v = u\) then
no corresponding row is returned
cost from v to u is \(0\)

When the graph is undirected the cost matrix is symmetric

Signatures

Summary

pgr_aStarCostMatrix(edges_sql, vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Using defaults

pgr_aStarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for vertices \(\{1, 2, 3, 4\}\) on a directed graph

SELECT * FROM pgr_aStarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 6
 1 | 4 | 5
 2 | 1 | 1
 2 | 3 | 5
 2 | 4 | 4
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 3
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Complete Signature

pgr_aStarCostMatrix(edges_sql, vids, [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Symmetric cost matrix for vertices \(\{1, 2, 3, 4\}\) on an undirected graph using heuristic \(2\)

https://docs.pgrouting.org/3.0/en/pgr_aStarCostMatrix.html
https://docs.pgrouting.org/2.6/en/pgr_aStarCostMatrix.html
https://docs.pgrouting.org/2.5/en/pgr_aStarCostMatrix.html
https://docs.pgrouting.org/2.4/en/pgr_aStarCostMatrix.html

SELECT * FROM pgr_aStarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 directed := false, heuristic := 2
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 2
 1 | 4 | 3
 2 | 1 | 1
 2 | 3 | 1
 2 | 4 | 2
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 1
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Parameters

Parameter Type Description
edges_sql TEXT edges_sql inner query.
vids ARRAY[ANY-INTEGER] Array of vertices

identifiers.

Optional Parameters

Parameter Type Default Description

directed BOOLEAN true When true the graph is considered as Directed.
When false the graph is considered as Undirected.

heuristic INTEGER 5 Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT 1 For units manipulation. \(factor > 0\). See Factor
epsilon FLOAT 1 For less restricted results. \(epsilon >= 1\).

Inner query

edges_sql

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example:
Use with pgr_TSP

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_aStarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 directed:= false, heuristic := 2
)
 $$,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 1 | 1 | 0
 2 | 2 | 1 | 1
 3 | 3 | 1 | 2
 4 | 4 | 3 | 3
 5 | 1 | 0 | 6
(5 rows)

See Also

aStar - Family of functions
Cost - Category
Cost Matrix - Category
Traveling Sales Person - Family of functions
The queries use the Sample Data network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

General Information

The main Characteristics are:

Default kind of graph is directed when
directed flag is missing.
directed flag is set to true

Unless specified otherwise, ordering is:
first by start_vid (if exists)
then by end_vid

Values are returned when there is a path
Let \(v\) and \(u\) be nodes on the graph:

If there is no path from \(v\) to \(u\):
no corresponding row is returned
agg_cost from \(v\) to \(u\) is \(\infty\)

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/aStar-family.html
https://docs.pgrouting.org/2.6/en/aStar-family.html
https://docs.pgrouting.org/2.5/en/aStar-family.html
https://docs.pgrouting.org/2.4/en/aStar-family.html

There is no path when \(v = u\) therefore
no corresponding row is returned
agg_cost from v to u is \(0\)

Edges with negative costs are not included in the graph.
When (x,y) coordinates for the same vertex identifier differ:

A random selection of the vertex’s (x,y) coordinates is used.
Running time: \(O((E + V) * \log V)\)

Advanced documentation

The A* (pronounced “A Star”) algorithm is based on Dijkstra’s algorithm with a heuristic, that is an estimation of the remaining
cost from the vertex to the goal, that allows to solve most shortest path problems by evaluation only a sub-set of the overall
graph. Running time: \(O((E + V) * \log V)\)

Heuristic

Currently the heuristic functions available are:

0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)
1: \(h(v) = abs(max(\Delta x, \Delta y))\)
2: \(h(v) = abs(min(\Delta x, \Delta y))\)
3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)
4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)
5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

where \(\Delta x = x_1 - x_0\) and \(\Delta y = y_1 - y_0\)

Factor

Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the points:

Latitude Conversion Factor
45 1 longitude degree is 78846.81 m 78846
0 1 longitude degree is 111319.46

m
111319

Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the points and on the
average speed say 25m/s is the speed.

Latitude Conversion Factor
45 1 longitude degree is (78846.81m)/(25m/s) 3153 s
0 1 longitude degree is (111319.46

m)/(25m/s)
4452 s

See Also

pgr_aStar
pgr_aStarCost
pgr_aStarCostMatrix
https://www.boost.org/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

Index
Search Page

Bidirectional A* - Family of functions

pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.
pgr_bdAstarCost - Bidirectional A* algorithm to calculate the cost of the paths.

https://www.boost.org/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_bdAstarCostMatrix - Bidirectional A* algorithm to calculate a cost matrix of paths.

pgr_bdAstar

pgr_bdAstar — Returns the shortest path using Bidirectional A* algorithm.

Boost Graph Inside

Availability:

Version 3.0.0
Official function

Version 2.5.0
Signature change on pgr_bdAstar(One to One)

Old signature no longer supported
New Proposed functions:

pgr_bdAstar(One to Many)
pgr_bdAstar(Many to One)
pgr_bdAstar(Many to Many)

Version 2.0.0
Official pgr_bdAstar(One to One)

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The main characteristics are:

Default kind of graph is directed when
directed flag is missing.
directed flag is set to true

Unless specified otherwise, ordering is:
first by start_vid (if exists)
then by end_vid

Values are returned when there is a path
Let \(v\) and \(u\) be nodes on the graph:

If there is no path from \(v\) to \(u\):
no corresponding row is returned
agg_cost from \(v\) to \(u\) is \(\infty\)

There is no path when \(v = u\) therefore
no corresponding row is returned
agg_cost from v to u is \(0\)

Edges with negative costs are not included in the graph.
When (x,y) coordinates for the same vertex identifier differ:

A random selection of the vertex’s (x,y) coordinates is used.
Running time: \(O((E + V) * \log V)\)

The results are equivalent to the union of the results of the pgr_bdAStar(One to One) on the:
pgr_bdAstar(One to Many)
pgr_bdAstar(Many to One)
pgr_bdAstar(Many to Many)

start_vid and end_vid in the result is used to distinguish to which path it belongs.

Signature

Summary

https://www.boost.org//libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_bdAstar.html
https://docs.pgrouting.org/2.6/en/pgr_bdAstar.html
https://docs.pgrouting.org/2.5/en/pgr_bdAstar.html
https://docs.pgrouting.org/2.4/en/pgr_bdAstar.html
https://docs.pgrouting.org/2.3/en/src/bd_astar/doc/pgr_bdAstar.html
https://docs.pgrouting.org/2.2/en/src/bd_astar/doc/pgr_bdAstar.html
https://docs.pgrouting.org/2.1/en/src/astar/doc/index.html
https://docs.pgrouting.org/2.0/en/src/astar/doc/index.html

pgr_bdAstar(edges_sql, from_vid, to_vid, [, directed] [, heuristic] [, factor] [, epsilon])
pgr_bdAstar(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
pgr_bdAstar(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_bdAstar(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Optional parameters are named parameters and have a default value.

Using defaults

pgr_bdAstar(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

One to One

pgr_bdAstar(edges_sql, from_vid, to_vid, [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:
From vertex \(2\) to vertex \(3\) on a directed graph using heuristic \(2\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 2, 3,
 true, heuristic := 2
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

One to many

pgr_bdAstar(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 11\}\) on a directed graph using heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 2, ARRAY[3, 11],
 heuristic := 3, factor := 3.5
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 11 | 2 | 4 | 1 | 0
 8 | 2 | 11 | 5 | 8 | 1 | 1
 9 | 3 | 11 | 6 | 11 | 1 | 2
 10 | 4 | 11 | 11 | -1 | 0 | 3
(10 rows)

Many to One

pgr_bdAstar(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertex \(3\) on an undirected graph using heuristic \(4\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 ARRAY[2, 7], 3,
 false, heuristic := 4
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | -1 | 0 | 1
 3 | 1 | 7 | 7 | 6 | 1 | 0
 4 | 2 | 7 | 8 | 7 | 1 | 1
 5 | 3 | 7 | 5 | 8 | 1 | 2
 6 | 4 | 7 | 6 | 5 | 1 | 3
 7 | 5 | 7 | 3 | -1 | 0 | 4
(7 rows)

Many to Many

pgr_bdAstar(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertices \(\{3, 11\}\) on a directed graph using factor \(0.5\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 ARRAY[2, 7], ARRAY[3, 11],
 factor := 0.5
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 2 | 11 | 2 | 4 | 1 | 0
 8 | 2 | 2 | 11 | 5 | 8 | 1 | 1
 9 | 3 | 2 | 11 | 6 | 11 | 1 | 2
 10 | 4 | 2 | 11 | 11 | -1 | 0 | 3
 11 | 1 | 7 | 3 | 7 | 6 | 1 | 0
 12 | 2 | 7 | 3 | 8 | 7 | 1 | 1
 13 | 3 | 7 | 3 | 5 | 8 | 1 | 2
 14 | 4 | 7 | 3 | 6 | 9 | 1 | 3
 15 | 5 | 7 | 3 | 9 | 16 | 1 | 4
 16 | 6 | 7 | 3 | 4 | 3 | 1 | 5
 17 | 7 | 7 | 3 | 3 | -1 | 0 | 6
 18 | 1 | 7 | 11 | 7 | 6 | 1 | 0
 19 | 2 | 7 | 11 | 8 | 7 | 1 | 1
 20 | 3 | 7 | 11 | 5 | 8 | 1 | 2
 21 | 4 | 7 | 11 | 6 | 11 | 1 | 3
 22 | 5 | 7 | 11 | 11 | -1 | 0 | 4
(22 rows)

Parameters

Parameter Type Description
edges_sql TEXT edges_sql inner query.
from_vid ANY-INTEGER Starting vertex identifier. Parameter in:

One to One
One to Many

from_vids ARRAY[ANY-INTEGER] Array of starting vertices identifiers. Parameter
in:

Many to One
Many to Many

to_vid ANY-INTEGER Ending vertex identifier. Parameter in:

One to One
Many to One

to_vids ARRAY[ANY-INTEGER] Array of ending vertices identifiers. Parameter in:

One to Many
Many to Many

Optional Parameters

Parameter Type Default Description
directed BOOLEAN true When true the graph is considered as Directed.

When false the graph is considered as Undirected.
heuristic INTEGER 5 Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT 1 For units manipulation. \(factor > 0\). See Factor
epsilon FLOAT 1 For less restricted results. \(epsilon >= 1\).

Inner query

edges_sql

edges_sql:

an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

See Also

aStar - Family of functions
Bidirectional A* - Family of functions
Sample Data network.
https://www.boost.org/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

Index
Search Page

pgr_bdAstarCost

pgr_bdAstarCost — Returns the aggregate cost shortest path using pgr_aStar algorithm.

https://www.boost.org/libs/graph/doc/astar_search.html
https://en.wikipedia.org/wiki/A*_search_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.5.0
New Proposed function

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5

Description

Default kind of graph is directed when
directed flag is missing.
directed flag is set to true

Unless specified otherwise, ordering is:
first by start_vid (if exists)
then by end_vid

Values are returned when there is a path
Let \(v\) and \(u\) be nodes on the graph:

If there is no path from \(v\) to \(u\):
no corresponding row is returned
agg_cost from \(v\) to \(u\) is \(\infty\)

There is no path when \(v = u\) therefore
no corresponding row is returned
agg_cost from v to u is \(0\)

Edges with negative costs are not included in the graph.
When (x,y) coordinates for the same vertex identifier differ:

A random selection of the vertex’s (x,y) coordinates is used.
Running time: \(O((E + V) * \log V)\)

The results are equivalent to the union of the results of the pgr_bdAstarCost(One to One) on the:
pgr_bdAstarCost(One to Many)
pgr_bdAstarCost(Many to One)
pgr_bdAstarCost(Many to Many)

Signatures

Summary

pgr_bdAstarCost(edges_sql, from_vid, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_bdAstarCost(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
pgr_bdAstarCost(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
pgr_bdAstarCost(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Optional parameters are named parameters and have a default value.

Using defaults

pgr_bdAstarCost(edges_sql, from_vid, to_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

https://www.boost.org//libs/graph/doc/astar_search.html
https://docs.pgrouting.org/3.0/en/pgr_bdAstarCost.html
https://docs.pgrouting.org/2.6/en/pgr_bdAstar.html
https://docs.pgrouting.org/2.5/en/pgr_bdAstar.html

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 2, 3
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
(1 row)

One to One

pgr_bdAstarCost(edges_sql, from_vid, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an directed graph using heuristic \(2\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 2, 3,
 true, heuristic := 2
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
(1 row)

One to many

pgr_bdAstarCost(edges_sql, from_vid, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex 2 to vertices \(\{3, 11\}\) on a directed graph using heuristic 3 and factor \(3.5\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 2, ARRAY[3, 11],
 heuristic := 3, factor := 3.5
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 11 | 3
(2 rows)

Many to One

pgr_bdAstarCost(edges_sql, from_vids, to_vid [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 2\}\) to vertex \(3\) on a undirected graph using heuristic \(4\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 ARRAY[2, 7], 3,
 false, heuristic := 4
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 1
 7 | 3 | 4
(2 rows)

Many to Many

pgr_bdAstarCost(edges_sql, from_vids, to_vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 2\}\) to vertices \(\{3, 11\}\) on a directed using heuristic \(5\) and factor \(0.5\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1,y1,x2,y2
 FROM edge_table',
 ARRAY[2, 7], ARRAY[3, 11],
 factor := 0.5
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 11 | 3
 7 | 3 | 6
 7 | 11 | 4
(4 rows)

Parameters

Parameter Type Description
edges_sql TEXT edges_sql inner query.
from_vid ANY-INTEGER Starting vertex identifier. Parameter in:

One to One
One to Many

from_vids ARRAY[ANY-INTEGER] Array of starting vertices identifiers. Parameter
in:

Many to One
Many to Many

to_vid ANY-INTEGER Ending vertex identifier. Parameter in:

One to One
Many to One

to_vids ARRAY[ANY-INTEGER] Array of ending vertices identifiers. Parameter in:

One to Many
Many to Many

Optional Parameters

Parameter Type Default Description
directed BOOLEAN true When true the graph is considered as Directed.

When false the graph is considered as Undirected.
heuristic INTEGER 5 Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT 1 For units manipulation. \(factor > 0\). See Factor
epsilon FLOAT 1 For less restricted results. \(epsilon >= 1\).

Inner query

edges_sql

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.

target ANY-INTEGER Identifier of the second end point vertex of the edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

See Also

Bidirectional A* - Family of functions
Cost - Category
Cost Matrix - Category
Examples use Sample Data network.

Indices and tables

Index
Search Page

pgr_bdAstarCostMatrix

pgr_bdAstarCostMatrix - Calculates the a cost matrix using pgr_aStar.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.5.0
New Proposed function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5

Description

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_bdAstarCostMatrix.html
https://docs.pgrouting.org/2.6/en/pgr_bdAstarCostMatrix.html
https://docs.pgrouting.org/2.5/en/pgr_bdAstarCostMatrix.html

The main characteristics are:

Using internaly the pgr_bdAstar algorithm
Returns a cost matrix.
No ordering is performed
let v and u are nodes on the graph:

when there is no path from v to u:
no corresponding row is returned
cost from v to u is \(\inf\)

when \(v = u\) then
no corresponding row is returned
cost from v to u is \(0\)

When the graph is undirected the cost matrix is symmetric

Signatures

Summary

pgr_bdAstarCostMatrix(edges_sql, vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Using defaults

pgr_bdAstarCostMatrix(edges_sql, vids)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for vertices \(\{1, 2, 3, 4\}\) on a directed graph

SELECT * FROM pgr_bdAstarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 6
 1 | 4 | 5
 2 | 1 | 1
 2 | 3 | 5
 2 | 4 | 4
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 3
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Complete Signature

pgr_bdAstarCostMatrix(edges_sql, vids [, directed] [, heuristic] [, factor] [, epsilon])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Symmetric cost matrix for vertices \(\{1, 2, 3, 4\}\) on an undirected graph using heuristic \(2\)

SELECT * FROM pgr_bdAstarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 false
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 2
 1 | 4 | 3
 2 | 1 | 1
 2 | 3 | 1
 2 | 4 | 2
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 1
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Parameters

Parameter Type Description
edges_sql TEXT edges_sql inner query.
vids ARRAY[ANY-INTEGER] Array of vertices

identifiers.

Optional Parameters

Parameter Type Default Description
directed BOOLEAN true When true the graph is considered as Directed.

When false the graph is considered as Undirected.
heuristic INTEGER 5 Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT 1 For units manipulation. \(factor > 0\). See Factor
epsilon FLOAT 1 For less restricted results. \(epsilon >= 1\).

Inner query

edges_sql

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example:
Use with pgr_TSP

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_bdAstarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 false
)
 $$,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 1 | 1 | 0
 2 | 2 | 1 | 1
 3 | 3 | 1 | 2
 4 | 4 | 3 | 3
 5 | 1 | 0 | 6
(5 rows)

See Also

aStar - Family of functions
Bidirectional A* - Family of functions
Cost - Category
Cost Matrix - Category
Traveling Sales Person - Family of functions
The queries use the Sample Data network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5

Description

Based on A* algorithm, the bidirectional search finds a shortest path from a starting vertex (start_vid) to an ending vertex
(end_vid). It runs two simultaneous searches: one forward from the start_vid, and one backward from the end_vid, stopping when the
two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

Process is done only on edges with positive costs.
Values are returned when there is a path.
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost the non included values (v, v) is 0
When the starting vertex and ending vertex are the different and there is no path:

The agg_cost the non included values (u, v) is \(\infty\)
Running time (worse case scenario): \(O((E + V) * \log V)\)

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/bdAstar-family.html
https://docs.pgrouting.org/2.6/en/bdAstar-family.html
https://docs.pgrouting.org/2.5/en/bdAstar-family.html

For large graphs where there is a path bewtween the starting vertex and ending vertex:
It is expected to terminate faster than pgr_astar

Signatures

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

x1 ANY-NUMERICAL X coordinate of source vertex.
y1 ANY-NUMERICAL Y coordinate of source vertex.
x2 ANY-NUMERICAL X coordinate of target vertex.
y2 ANY-NUMERICAL Y coordinate of target vertex.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
start_vid ANY-INTEGER Starting vertex identifier.
start_vids ARRAY[ANY-INTEGER] Starting vertices identifierers.
end_vid ANY-INTEGER Ending vertex identifier.
end_vids ARRAY[ANY-INTEGER] Ending vertices identifiers.
directed BOOLEAN Optional.

When false the graph is considered as Undirected.
Default is true which considers the graph as Directed.

heuristic INTEGER (optional). Heuristic number. Current valid values 0~5. Default 5

0: h(v) = 0 (Use this value to compare with
pgr_dijkstra)
1: h(v) abs(max(dx, dy))
2: h(v) abs(min(dx, dy))
3: h(v) = dx * dx + dy * dy
4: h(v) = sqrt(dx * dx + dy * dy)
5: h(v) = abs(dx) + abs(dy)

factor FLOAT (optional). For units manipulation. \(factor > 0\). Default 1. see Factor
epsilon FLOAT (optional). For less restricted results. \(epsilon >= 1\). Default 1.

See Also

Indices and tables

Index
Search Page

Bidirectional Dijkstra - Family of functions

pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.
pgr_bdDijkstraCost - Bidirectional Dijkstra to calculate the cost of the shortest paths
pgr_bdDijkstraCostMatrix - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_bdDijkstra

pgr_bdDijkstra — Returns the shortest path(s) using Bidirectional Dijkstra algorithm.

Boost Graph Inside

Availability:

Version 3.0.0
Official function

Version 2.5.0
New Proposed functions:

pgr_bdDijkstra(One to Many)
pgr_bdDijkstra(Many to One)
pgr_bdDijkstra(Many to Many)

Version 2.4.0
Signature change on pgr_bdDijsktra(One to One)

Old signature no longer supported
Version 2.0.0

Official pgr_bdDijkstra(One to One)

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The main characteristics are:

Process is done only on edges with positive costs.
Values are returned when there is a path.
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost the non included values (v, v) is 0
When the starting vertex and ending vertex are the different and there is no path:

The agg_cost the non included values (u, v) is \(\infty\)
Running time (worse case scenario): \(O((V \log V + E))\)
For large graphs where there is a path bewtween the starting vertex and ending vertex:

It is expected to terminate faster than pgr_dijkstra

Signatures

Summary

pgr_bdDijkstra(edges_sql, start_vid, end_vid [, directed])
pgr_bdDijkstra(edges_sql, start_vid, end_vids [, directed])
pgr_bdDijkstra(edges_sql, start_vids, end_vid [, directed])
pgr_bdDijkstra(edges_sql, start_vids, end_vids [, directed])

RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Using defaults

pgr_bdDijkstra(edges_sql, start_vid, end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\)

https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.6/en/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.5/en/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.4/en/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.3/en/src/bd_dijkstra/doc/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.2/en/src/bd_dijkstra/doc/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.1/en/src/bd_dijkstra/doc/index.html
https://docs.pgrouting.org/2.0/en/src/bd_dijkstra/doc/index.html

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

One to One

pgr_bdDijkstra(edges_sql, start_vid, end_vid [, directed])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an undirected graph

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 false
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

One to many

pgr_bdDijkstra(edges_sql, start_vid, end_vids [, directed])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 11\}\) on a directed graph

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3, 11]);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 11 | 2 | 4 | 1 | 0
 8 | 2 | 11 | 5 | 8 | 1 | 1
 9 | 3 | 11 | 6 | 11 | 1 | 2
 10 | 4 | 11 | 11 | -1 | 0 | 3
(10 rows)

Many to One

pgr_bdDijkstra(edges_sql, start_vids, end_vid [, directed])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 7], 3);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | -1 | 0 | 5
 7 | 1 | 7 | 7 | 6 | 1 | 0
 8 | 2 | 7 | 8 | 7 | 1 | 1
 9 | 3 | 7 | 5 | 8 | 1 | 2
 10 | 4 | 7 | 6 | 9 | 1 | 3
 11 | 5 | 7 | 9 | 16 | 1 | 4
 12 | 6 | 7 | 4 | 3 | 1 | 5
 13 | 7 | 7 | 3 | -1 | 0 | 6
(13 rows)

Many to Many

pgr_bdDijkstra(edges_sql, start_vids, end_vids [, directed])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertices \(\{3, 11\}\) on a directed graph

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 7], ARRAY[3, 11]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 2 | 11 | 2 | 4 | 1 | 0
 8 | 2 | 2 | 11 | 5 | 8 | 1 | 1
 9 | 3 | 2 | 11 | 6 | 11 | 1 | 2
 10 | 4 | 2 | 11 | 11 | -1 | 0 | 3
 11 | 1 | 7 | 3 | 7 | 6 | 1 | 0
 12 | 2 | 7 | 3 | 8 | 7 | 1 | 1
 13 | 3 | 7 | 3 | 5 | 8 | 1 | 2
 14 | 4 | 7 | 3 | 6 | 9 | 1 | 3
 15 | 5 | 7 | 3 | 9 | 16 | 1 | 4
 16 | 6 | 7 | 3 | 4 | 3 | 1 | 5
 17 | 7 | 7 | 3 | 3 | -1 | 0 | 6
 18 | 1 | 7 | 11 | 7 | 6 | 1 | 0
 19 | 2 | 7 | 11 | 8 | 7 | 1 | 1
 20 | 3 | 7 | 11 | 5 | 10 | 1 | 2
 21 | 4 | 7 | 11 | 10 | 12 | 1 | 3
 22 | 5 | 7 | 11 | 11 | -1 | 0 | 4
(22 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

See Also

The queries use the Sample Data network.
Bidirectional Dijkstra - Family of functions
https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

Index
Search Page

pgr_bdDijkstraCost

pgr_bdDijkstraCost — Returns the shortest path(s)’s cost using Bidirectional Dijkstra algorithm.

Boost Graph Inside

Availability:

Version 3.0.0
Official function

Version 2.5.0
New proposed function

https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5

Description

The main characteristics are:

Process is done only on edges with positive costs.
Values are returned when there is a path.
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost the non included values (v, v) is 0
When the starting vertex and ending vertex are the different and there is no path:

The agg_cost the non included values (u, v) is \(\infty\)
Running time (worse case scenario): \(O((V \log V + E))\)
For large graphs where there is a path bewtween the starting vertex and ending vertex:

It is expected to terminate faster than pgr_dijkstra

Signatures

Summary

pgr_bdDijkstraCost(edges_sql, from_vid, to_vid [, directed])
pgr_bdDijkstraCost(edges_sql, from_vid, to_vids [, directed])
pgr_bdDijkstraCost(edges_sql, from_vids, to_vid [, directed])
pgr_bdDijkstraCost(edges_sql, from_vids, to_vids [, directed])

RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Using default

pgr_bdDijkstraCost(edges_sql, from_vid, to_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
(1 row)

One to One

pgr_bdDijkstraCost(edges_sql, from_vid, to_vid [, directed])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an undirected graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 false
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 1
(1 row)

One to Many

pgr_bdDijkstraCost(edges_sql, from_vid, to_vids [, directed])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

https://docs.pgrouting.org/3.0/en/pgr_bdDijkstraCost.html
https://docs.pgrouting.org/2.6/en/pgr_bdDijkstra.html
https://docs.pgrouting.org/2.5/en/pgr_bdDijkstra.html

Example:
From vertex \(2\) to vertices \(\{3, 11\}\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3, 11]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 11 | 3
(2 rows)

Many to One

pgr_bdDijkstraCost(edges_sql, from_vids, to_vids [, directed])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 7], 3);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 7 | 3 | 6
(2 rows)

Many to Many

pgr_bdDijkstraCost(edges_sql, start_vids, end_vids [, directed])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertices \(\{3, 11\}\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 7], ARRAY[3, 11]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 11 | 3
 7 | 3 | 6
 7 | 11 | 4
(4 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

See Also

The queries use the Sample Data network.
pgr_bdDijkstra
https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

Index
Search Page

pgr_bdDijkstraCostMatrix

pgr_bdDijkstraCostMatrix - Calculates the a cost matrix using pgr_bdDijkstra.

Boost Graph Inside

Availability:

Version 3.0.0
Official function

Version 2.5.0
New proposed function

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5

Description

The main characteristics are:

Process is done only on edges with positive costs.
Values are returned when there is a path.
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost the non included values (v, v) is 0
When the starting vertex and ending vertex are the different and there is no path:

The agg_cost the non included values (u, v) is \(\infty\)
Running time (worse case scenario): \(O((V \log V + E))\)

https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://en.wikipedia.org/wiki/Bidirectional_search
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_bdDijkstraCostMatrix.html
https://docs.pgrouting.org/2.6/en/pgr_bdDijkstraCostMatrix.html
https://docs.pgrouting.org/2.5/en/pgr_bdDijkstraCostMatrix.html

For large graphs where there is a path bewtween the starting vertex and ending vertex:
It is expected to terminate faster than pgr_dijkstra

Returns a cost matrix.

Signatures

Summary

pgr_bdDijkstraCostMatrix(edges_sql, start_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Using default

pgr_bdDijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for vertices \(\{1, 2, 3, 4\}\) on a directed graph

SELECT * FROM pgr_bdDijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 6
 1 | 4 | 5
 2 | 1 | 1
 2 | 3 | 5
 2 | 4 | 4
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 3
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Complete Signature

pgr_bdDijkstraCostMatrix(edges_sql, start_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Symmetric cost matrix for vertices \(\{1, 2, 3, 4\}\) on an undirected graph

SELECT * FROM pgr_bdDijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 false
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 2
 1 | 4 | 3
 2 | 1 | 1
 2 | 3 | 1
 2 | 4 | 2
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 1
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of the vertices.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers

the graph as Directed.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example:
Use with tsp

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_bdDijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 false
)
 $$,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 1 | 1 | 0
 2 | 2 | 1 | 1
 3 | 3 | 1 | 2
 4 | 4 | 3 | 3
 5 | 1 | 0 | 6
(5 rows)

See Also

pgr_bdDijkstra
Cost Matrix - Category
pgr_TSP
The queries use the Sample Data network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/bdDijkstra-family.html
https://docs.pgrouting.org/2.6/en/bdDijkstra-family.html
https://docs.pgrouting.org/2.5/en/bdDijkstra-family.html

Synopsis

Based on Dijkstra’s algorithm, the bidirectional search finds a shortest path a starting vertex (start_vid) to an ending vertex
(end_vid). It runs two simultaneous searches: one forward from the source, and one backward from the target, stopping when the
two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

Characteristics

The main Characteristics are:

Process is done only on edges with positive costs.
Values are returned when there is a path.
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost the non included values (v, v) is 0
When the starting vertex and ending vertex are the different and there is no path:

The agg_cost the non included values (u, v) is \(\infty\)
Running time (worse case scenario): \(O((V \log V + E))\)
For large graphs where there is a path bewtween the starting vertex and ending vertex:

It is expected to terminate faster than pgr_dijkstra

See Also

Indices and tables

Index
Search Page

Components - Family of functions

pgr_connectedComponents - Connected components of an undirected graph.
pgr_strongComponents - Strongly connected components of a directed graph.
pgr_biconnectedComponents - Biconnected components of an undirected graph.
pgr_articulationPoints - Articulation points of an undirected graph.
pgr_bridges - Bridges of an undirected graph.

pgr_connectedComponents

pgr_connectedComponents — Connected components of an undirected graph using a DFS-based approach.

Boost Graph Inside

Availability

Version 3.0.0
Return columns change:

n_seq is removed
seq changed type to BIGINT

Official function
Version 2.5.0

New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5

Description

A connected component of an undirected graph is a set of vertices that are all reachable from each other.

The main characteristics are:

The signature is for an undirected graph.
Components are described by vertices
The returned values are ordered:

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/connected_components.html
https://docs.pgrouting.org/3.0/en/pgr_connectedComponents.html
https://docs.pgrouting.org/2.6/en/pgr_connectedComponents.html
https://docs.pgrouting.org/2.5/en/pgr_connectedComponents.html

component ascending
node ascending

Running time: \(O(V + E)\)

Signatures

pgr_connectedComponents(edges_sql)

RETURNS SET OF (seq, component, node)
OR EMPTY SET

Example:
The connected components of the graph

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 2
 3 | 1 | 3
 4 | 1 | 4
 5 | 1 | 5
 6 | 1 | 6
 7 | 1 | 7
 8 | 1 | 8
 9 | 1 | 9
 10 | 1 | 10
 11 | 1 | 11
 12 | 1 | 12
 13 | 1 | 13
 14 | 14 | 14
 15 | 14 | 15
 16 | 16 | 16
 17 | 16 | 17
(17 rows)

Parameters

Parameter Type Default Description
Edges SQL TEXT Inner query as described

below.

Inner query

edges SQL:
an SQL query of an undirected graph, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, component, node)

Column Type Description
seq BIGINT Sequential value starting from 1.

component BIGINT Component identifier. It is equal to the minimum node identifier in the
component.

node BIGINT Identifier of the vertex that belongs to component.

Column Type Description

See Also

Components - Family of functions
The queries use the Sample Data network.
Boost: Connected components
wikipedia: Connected component

Indices and tables

Index
Search Page

pgr_strongComponents

pgr_strongComponents — Strongly connected components of a directed graph using Tarjan’s algorithm based on DFS.

Boost Graph Inside

Availability

Version 3.0.0
Return columns change:

n_seq is removed
seq changed type to BIGINT

Official function
Version 2.5.0

New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5

Description

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other.

The main characteristics are:

The signature is for a directed graph.
Components are described by vertices
The returned values are ordered:

component ascending
node ascending

Running time: \(O(V + E)\)

Signatures

pgr_strongComponents(Edges SQL)

RETURNS SET OF (seq, component, node)
OR EMPTY SET

Example:
The strong components of the graph

https://www.boost.org/libs/graph/doc/connected_components.html
https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/strong_components.html
https://docs.pgrouting.org/3.0/en/pgr_strongComponents.html
https://docs.pgrouting.org/2.6/en/pgr_strongComponents.html
https://docs.pgrouting.org/2.5/en/pgr_strongComponents.html

SELECT * FROM pgr_strongComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 2
 3 | 1 | 3
 4 | 1 | 4
 5 | 1 | 5
 6 | 1 | 6
 7 | 1 | 7
 8 | 1 | 8
 9 | 1 | 9
 10 | 1 | 10
 11 | 1 | 11
 12 | 1 | 12
 13 | 1 | 13
 14 | 14 | 14
 15 | 14 | 15
 16 | 16 | 16
 17 | 16 | 17
(17 rows)

Parameters

Parameter Type Default Description
Edges SQL TEXT Inner query as described

below.

Inner query

edges SQL:
an SQL query of a directed graph, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, component, node)

Column Type Description
seq BIGINT Sequential value starting from 1.
component BIGINT Component identifier. It is equal to the minimum node identifier in the

component.
node BIGINT Identifier of the vertex that belongs to component.

See Also

Components - Family of functions
The queries use the Sample Data network.
Boost: Strong components
wikipedia: Strongly connected component

Indices and tables

https://www.boost.org/libs/graph/doc/strong_components.html
https://en.wikipedia.org/wiki/Strongly_connected_component

Index
Search Page

pgr_biconnectedComponents

pgr_biconnectedComponents — Return the biconnected components of an undirected graph. In particular, the algorithm implemented
by Boost.Graph.

Boost Graph Inside

Availability

Version 3.0.0
Return columns change:

n_seq is removed
seq changed type to BIGINT

Official function
Version 2.5.0

New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5

Description

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex
from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple
biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained
in a single biconnected component.

The main characteristics are:

The signature is for an undirected graph.
Components are described by edges.
The returned values are ordered:

component ascending.
edge ascending.

Running time: \(O(V + E)\)

Signatures

pgr_biconnectedComponents(Edges SQL)

RETURNS SET OF (seq, component, edge)
OR EMPTY SET

Example:
The biconnected components of the graph

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/biconnected_components.html
https://docs.pgrouting.org/3.0/en/pgr_biconnectedComponents.html
https://docs.pgrouting.org/2.6/en/pgr_biconnectedComponents.html
https://docs.pgrouting.org/2.5/en/pgr_biconnectedComponents.html

SELECT * FROM pgr_biconnectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
 seq | component | edge
-----+-----------+------
 1 | 1 | 1
 2 | 2 | 2
 3 | 2 | 3
 4 | 2 | 4
 5 | 2 | 5
 6 | 2 | 8
 7 | 2 | 9
 8 | 2 | 10
 9 | 2 | 11
 10 | 2 | 12
 11 | 2 | 13
 12 | 2 | 15
 13 | 2 | 16
 14 | 6 | 6
 15 | 7 | 7
 16 | 14 | 14
 17 | 17 | 17
 18 | 18 | 18
(18 rows)

Parameters

Parameter Type Default Description
Edges SQL TEXT Inner query as described

below.

Inner query

edges SQL:
an SQL query of an undirected graph, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, component, edge)

Column Type Description
seq BIGINT Sequential value starting from 1.
component BIGINT Component identifier. It is equal to the minimum edge identifier in the

component.
edge BIGINT Identifier of the edge.

See Also

Components - Family of functions
The queries use the Sample Data network.
Boost: Biconnected components
wikipedia: Biconnected component

https://www.boost.org/libs/graph/doc/biconnected_components.html
https://en.wikipedia.org/wiki/Biconnected_component

Indices and tables

Index
Search Page

pgr_articulationPoints

pgr_articulationPoints - Return the articulation points of an undirected graph.

Boost Graph Inside

Availability

Version 3.0.0
Return columns change: seq is removed
Official function

Version 2.5.0
New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5

Description

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut
vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph.
This implementation can only be used with an undirected graph.

The main characteristics are:

The signature is for an undirected graph.
The returned values are ordered:

node ascending
Running time: \(O(V + E)\)

Signatures

pgr_articulationPoints(Edges SQL)

RETURNS SET OF (node)
OR EMPTY SET

Example:
The articulation points of the graph

SELECT * FROM pgr_articulationPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
 node

 2
 5
 8
 10
(4 rows)

Parameters

Parameter Type Default Description
Edges SQL TEXT Inner query as described

below.

Inner query

edges SQL:

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/biconnected_components.html
https://docs.pgrouting.org/3.0/en/pgr_articulationPoints.html
https://docs.pgrouting.org/2.6/en/pgr_articulationPoints.html
https://docs.pgrouting.org/2.5/en/pgr_articulationPoints.html

an SQL query of an undirected graph, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (node)

Column Type Description
node BIGINT Identifier of the

vertex.

See Also

Components - Family of functions
The queries use the Sample Data network.
Boost: Biconnected components & articulation points
wikipedia: Biconnected component

Indices and tables

Index
Search Page

pgr_bridges

pgr_bridges - Return the bridges of an undirected graph.

Boost Graph Inside

Availability

Version 3.0.0
Return columns change: seq is removed
Official function

Version 2.5.0
New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5

Description

A bridge is an edge of an undirected graph whose deletion increases its number of connected components. This
implementation can only be used with an undirected graph.

https://www.boost.org/libs/graph/doc/biconnected_components.html
https://en.wikipedia.org/wiki/Biconnected_component
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/connected_components.html
https://docs.pgrouting.org/3.0/en/pgr_bridges.html
https://docs.pgrouting.org/2.6/en/pgr_bridges.html
https://docs.pgrouting.org/2.5/en/pgr_bridges.html

The main characteristics are:

The signature is for an undirected graph.
The returned values are ordered:

edge ascending
Running time: \(O(E * (V + E))\)

Signatures

pgr_bridges(Edges SQL)

RETURNS SET OF (edge)
OR EMPTY SET

Example:
The bridges of the graph

SELECT * FROM pgr_bridges(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table'
);
 edge

 1
 6
 7
 14
 17
 18
(6 rows)

Parameters

Parameter Type Default Description
Edges SQL TEXT Inner query as described

below.

Inner query

edges SQL:
an SQL query of an undirected graph, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (edge)

Column Type Description
edge BIGINT Identifier of the edge that is a

bridge.

See Also

https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29

https://en.wikipedia.org/wiki/Bridge_%2528graph_theory%2529

The queries use the Sample Data network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5

Parameters

Parameter Type Default Description
Edges SQL TEXT Inner query as described

below.

Inner query

Edges SQL:
an SQL query which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

pgr_connectedComponents & pgr_strongComponents

Returns set of (seq, component, node)

Column Type Description
seq BIGINT Sequential value starting from 1.
component BIGINT Component identifier. It is equal to the minimum node identifier in the

component.
node BIGINT Identifier of the vertex that belongs to component.

pgr_biconnectedComponents

Returns set of (seq, component, edge)

Column Type Description
seq BIGINT Sequential value starting from 1.
component BIGINT Component identifier. It is equal to the minimum edge identifier in the

component.
edge BIGINT Identifier of the edge.

pgr_articulationPoints

Returns set of (node)

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/components-family.html
https://docs.pgrouting.org/2.6/en/components-family.html
https://docs.pgrouting.org/2.5/en/components-family.html

Column Type Description
node BIGINT Identifier of the

vertex.

pgr_bridges

Returns set of (edge)

Column Type Description
edge BIGINT Identifier of the edge that is a

bridge.

See Also

Indices and tables

Index
Search Page

Contraction - Family of functions

pgr_contraction

pgr_contraction

pgr_contraction — Performs graph contraction and returns the contracted vertices and edges.

Boost Graph Inside

Availability

Version 3.0.0
Return columns change: seq is removed
Name change from pgr_contractGraph

Bug fixes
Official function

Version 2.3.0
New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that
represent a sequence of original edges decreasing the total time and space used in graph algorithms.

The main Characteristics are:
Process is done only on edges with positive costs.
Does not return the full contracted graph

Only changes on the graph are returned

Currnetly there are two types of contraction methods
Dead End Contraction
Linear Contraction

The returned values include
the added edges by linear contraction.
the modified vertices by dead end contraction.

The returned values are ordered as follows:
column id ascending when type = v
column id descending when type = e

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_contraction.html
https://docs.pgrouting.org/2.6/en/pgr_contractGraph.html
https://docs.pgrouting.org/2.5/en/pgr_contractGraph.html
https://docs.pgrouting.org/2.4/en/pgr_contractGraph.html
https://docs.pgrouting.org/2.3/en/src/contraction/doc/pgr_contractGraph.html

Signatures

Summary

The pgr_contraction function has the following signature:

pgr_contraction(Edges SQL, Contraction order [, max_cycles] [, forbidden_vertices] [, directed])
RETURNS SETOF (type, id, contracted_vertices, source, target, cost)

Example:
Making a dead end contraction and a linear contraction with vertex 2 forbidden from being contracted

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1, 2], forbidden_vertices:=ARRAY[2]);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 v | 2 | {1} | -1 | -1 | -1
 v | 5 | {7,8} | -1 | -1 | -1
 v | 10 | {13} | -1 | -1 | -1
 v | 15 | {14} | -1 | -1 | -1
 v | 17 | {16} | -1 | -1 | -1
(5 rows)

Parameters

Column Type Description
Edges SQL TEXT SQL query as described in Inner

query
Ccontraction Order ARRAY[ANY-INTEGER] Ordered contraction operations.

1 = Dead end contraction
2 = Linear contraction

Optional Parameters

Column Type Default Description
forbidden_vertices ARRAY[ANY-INTEGER] Empty Identifiers of vertices forbidden from contraction.
max_cycles INTEGER \(1\) Number of times the contraction operations on contraction_order will be

performed.
directed BOOLEAN true When true the graph is considered as Directed.

When false the graph is considered as Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

RETURNS SETOF (type, id, contracted_vertices, source, target, cost)

The function returns a single row. The columns of the row are:

Column Type Description
type TEXT Type of the id.

‘v’ when the row is a vertex.
‘e’ when the row is an edge.

id BIGINT All numbers on this column are DISTINCT

When type = ‘v’.
Identifier of the modified vertex.

When type = ‘e’.
Decreasing sequence starting from -1.
Representing a pseudo id as is not incorporated in the set of original
edges.

contracted_vertices ARRAY[BIGINT] Array of contracted vertex identifiers.
source BIGINT When type = ‘v’: \(-1\)

When type = ‘e’: Identifier of the source vertex of the current edge (source, target).
target BIGINT When type = ‘v’: \(-1\)

When type = ‘e’: Identifier of the target vertex of the current edge (source, target).
cost FLOAT When type = ‘v’: \(-1\)

When type = ‘e’: Weight of the current edge (source, target).

Additional Examples

Example:
Only dead end contraction

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[1]);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 v | 2 | {1} | -1 | -1 | -1
 v | 5 | {7,8} | -1 | -1 | -1
 v | 10 | {13} | -1 | -1 | -1
 v | 15 | {14} | -1 | -1 | -1
 v | 17 | {16} | -1 | -1 | -1
(5 rows)

Example:
Only linear contraction

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
ARRAY[2]);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 e | -1 | {8} | 5 | 7 | 2
 e | -2 | {8} | 7 | 5 | 2
(2 rows)

See Also

Contraction - Family of functions

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2

Introduction

In large graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph algorithms.
Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that
represent a sequence of original edges decreasing the total time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it supports two
algorithms:

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/contraction-family.html
https://docs.pgrouting.org/2.6/en/contraction-family.html
https://docs.pgrouting.org/2.5/en/contraction-family.html
https://docs.pgrouting.org/2.4/en/contraction-family.html
https://docs.pgrouting.org/2.3/en/src/contraction/doc/contraction.html
https://docs.pgrouting.org/2.2/en/src/contraction/doc/contraction.html

1. Dead end contraction
2. Linear contraction

Allowing the user to:

Forbid contraction on a set of nodes.
Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Dead end contraction

In the algorithm, dead end contraction is represented by 1.

Dead end

In case of an undirected graph, a node is considered a dead end node when

The number of adjacent vertices is 1.

In case of a directed graph, a node is considered a dead end node when

The number of adjacent vertices is 1.
There are no outgoing edges and has at least one incoming edge.
There are no incoming edges and has at least one outgoing edge.

When the conditions are true then the Operation: Dead End Contraction can be done.

The number of adjacent vertices is 1.

The green nodes are dead end nodes
The blue nodes have an unlimited number of incoming and outgoing edges.

Directed graph

Undirected graph

There are no outgoing edges and has at least one incoming edge.

The green nodes are dead end nodes
The blue nodes have an unlimited number of incoming and outgoing edges.

Directed graph

There are no incoming edges and has at least one outgoing edge.

The green nodes are dead end nodes
The blue nodes have an unlimited number of incoming and outgoing edges.
Considering that the nodes are dead starts nodes

Directed graph

Operation: Dead End Contraction

The dead end contraction will stop until there are no more dead end nodes. For example from the following graph where w is
the dead end node:

After contracting w, node v is now a dead end node and is contracted:

After contracting v, stop. Node u has the information of nodes that were contrcted.

Node u has the information of nodes that were contracted.

Linear contraction

In the algorithm, linear contraction is represented by 2.

Linear

In case of an undirected graph, a node is considered a linear node when

The number of adjacent vertices is 2.

In case of a directed graph, a node is considered a linear node when

The number of adjacent vertices is 2.
Linearity is symmetrical

The number of adjacent vertices is 2.

The green nodes are linear nodes
The blue nodes have an unlimited number of incoming and outgoing edges.

Directed

Undirected

Linearity is symmetrical

Using a contra example, vertex v is not linear because it’s not possible to go from w to u via v.

Operation: Linear Contraction

The linear contraction will stop until there are no more linear nodes. For example from the following graph where v and w are
linear nodes:

After contracting w,

The vertex w is removed from the graph
The edges \(v \rightarrow w\) and \(w \rightarrow z\) are removed from the graph.

A new edge \(v \rightarrow z\) is inserted represented with red color.

Contracting v:

The vertex v is removed from the graph
The edges \(u \rightarrow v\) and \(v \rightarrow z\) are removed from the graph.

A new edge \(u \rightarrow z\) is inserted represented with red color.

Edge \(u \rightarrow z\) has the information of nodes that were contracted.

The cycle

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting contracted
graph, after applying one operation, the set of vertices that can be contracted by another operation changes.

This implementation, cycles max_cycles times through operations_order .

<input>
do max_cycles times {
 for (operation in operations_order)
 { do operation }
}
<output>

Contracting Sample Data

In this section, building and using a contracted graph will be shown by example.

The Sample Data for an undirected graph is used
a dead end operation first followed by a linear operation.

Construction of the graph in the database

Original Data

The following query shows the original data involved in the contraction operation.

SELECT id, source, target, cost, reverse_cost FROM edge_table;
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 1 | 1 | 2 | 1 | 1
 2 | 2 | 3 | -1 | 1
 3 | 3 | 4 | -1 | 1
 4 | 2 | 5 | 1 | 1
 5 | 3 | 6 | 1 | -1
 6 | 7 | 8 | 1 | 1
 7 | 8 | 5 | 1 | 1
 8 | 5 | 6 | 1 | 1
 9 | 6 | 9 | 1 | 1
 10 | 5 | 10 | 1 | 1
 11 | 6 | 11 | 1 | -1
 12 | 10 | 11 | 1 | -1
 13 | 11 | 12 | 1 | -1
 14 | 10 | 13 | 1 | 1
 15 | 9 | 12 | 1 | 1
 16 | 4 | 9 | 1 | 1
 17 | 14 | 15 | 1 | 1
 18 | 16 | 17 | 1 | 1
(18 rows)

The original graph:

Contraction Results

The results do not represent the contracted graph. They represent the changes done to the graph after applying the
contraction algorithm.

Observe that vertices, for example, \(6\) do not appear in the results because it was not affected by the contraction algorithm.

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 array[1,2], directed:=false);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 v | 5 | {7,8} | -1 | -1 | -1
 v | 15 | {14} | -1 | -1 | -1
 v | 17 | {16} | -1 | -1 | -1
 e | -1 | {1,2} | 3 | 5 | 2
 e | -2 | {4} | 3 | 9 | 2
 e | -3 | {10,13} | 5 | 11 | 2
 e | -4 | {12} | 9 | 11 | 2
(7 rows)

After doing the dead end contraction operation:

After doing the linear contraction operation to the graph above:

file:///opt/git/pgrouting/singlehtml/_images/undirected_sampledata_a.png
file:///opt/git/pgrouting/singlehtml/_images/undirected_sampledata_b.png

The process to create the contraction graph on the database:

Add additional columns
Store contraction information
Update the vertices and edge tables

Add additional columns

Adding extra columns to the edge_table and edge_table_vertices_pgr tables, where:

Column Description
contracted_vertices The vertices set belonging to the vertex/edge
is_contracted On the vertex table

when true the vertex is contracted, its not part of the contracted graph.
when false the vertex is not contracted, its part of the contracted graph.

is_new On the edge table:

when true the edge was generated by the contraction algorithm. its part of the contracted
graph.
when false the edge is an original edge, might be or not part of the contracted graph.

ALTER TABLE edge_table_vertices_pgr ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE edge_table_vertices_pgr ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edge_table ADD is_new BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE edge_table ADD contracted_vertices BIGINT[];
ALTER TABLE

Store contraction information

Store the contraction results in a table

SELECT * INTO contraction_results
FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 array[1,2], directed:=false);
SELECT 7

Update the vertices and edge tables

Update the vertex table using the contraction information

Use edge_table_vertices_pgr.is_contracted to indicate the vertices that are contracted.

UPDATE edge_table_vertices_pgr
SET is_contracted = true
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10

Add to edge_table_vertices_pgr.contracted_vertices the contracted vertices belonging to the vertices.

UPDATE edge_table_vertices_pgr
SET contracted_vertices = contraction_results.contracted_vertices
FROM contraction_results
WHERE type = 'v' AND edge_table_vertices_pgr.id = contraction_results.id;
UPDATE 3

The modified edge_table_vertices_pgr.

file:///opt/git/pgrouting/singlehtml/_images/undirected_sampledata_c.png

SELECT id, contracted_vertices, is_contracted
FROM edge_table_vertices_pgr
ORDER BY id;
 id | contracted_vertices | is_contracted
----+---------------------+---------------
 1 | | t
 2 | | t
 3 | | f
 4 | | t
 5 | {7,8} | f
 6 | | f
 7 | | t
 8 | | t
 9 | | f
 10 | | t
 11 | | f
 12 | | t
 13 | | t
 14 | | t
 15 | {14} | f
 16 | | t
 17 | {16} | f
(17 rows)

Update the edge table using the contraction information

Insert the new edges generated by pgr_contraction.

INSERT INTO edge_table(source, target, cost, reverse_cost, contracted_vertices, is_new)
SELECT source, target, cost, -1, contracted_vertices, true
FROM contraction_results
WHERE type = 'e';
INSERT 0 4

The modified edge_table.

SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_new
FROM edge_table
ORDER BY id;
 id | source | target | cost | reverse_cost | contracted_vertices | is_new
----+--------+--------+------+--------------+---------------------+--------
 1 | 1 | 2 | 1 | 1 | | f
 2 | 2 | 3 | -1 | 1 | | f
 3 | 3 | 4 | -1 | 1 | | f
 4 | 2 | 5 | 1 | 1 | | f
 5 | 3 | 6 | 1 | -1 | | f
 6 | 7 | 8 | 1 | 1 | | f
 7 | 8 | 5 | 1 | 1 | | f
 8 | 5 | 6 | 1 | 1 | | f
 9 | 6 | 9 | 1 | 1 | | f
 10 | 5 | 10 | 1 | 1 | | f
 11 | 6 | 11 | 1 | -1 | | f
 12 | 10 | 11 | 1 | -1 | | f
 13 | 11 | 12 | 1 | -1 | | f
 14 | 10 | 13 | 1 | 1 | | f
 15 | 9 | 12 | 1 | 1 | | f
 16 | 4 | 9 | 1 | 1 | | f
 17 | 14 | 15 | 1 | 1 | | f
 18 | 16 | 17 | 1 | 1 | | f
 19 | 3 | 5 | 2 | -1 | {1,2} | t
 20 | 3 | 9 | 2 | -1 | {4} | t
 21 | 5 | 11 | 2 | -1 | {10,13} | t
 22 | 9 | 11 | 2 | -1 | {12} | t
(22 rows)

The contracted graph

Vertices that belong to the contracted graph.

SELECT id
FROM edge_table_vertices_pgr
WHERE is_contracted = false
ORDER BY id;
 id

 3
 5
 6
 9
 11
 15
 17
(7 rows)

Edges that belong to the contracted graph.

WITH
vertices_in_graph AS (
 SELECT id
 FROM edge_table_vertices_pgr
 WHERE is_contracted = false
)
SELECT id, source, target, cost, reverse_cost, contracted_vertices
FROM edge_table
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
ORDER BY id;
 id | source | target | cost | reverse_cost | contracted_vertices
----+--------+--------+------+--------------+---------------------
 5 | 3 | 6 | 1 | -1 |
 8 | 5 | 6 | 1 | 1 |
 9 | 6 | 9 | 1 | 1 |
 11 | 6 | 11 | 1 | -1 |
 19 | 3 | 5 | 2 | -1 | {1,2}
 20 | 3 | 9 | 2 | -1 | {4}
 21 | 5 | 11 | 2 | -1 | {10,13}
 22 | 9 | 11 | 2 | -1 | {12}
(8 rows)

Using the contracted graph

Using the contracted graph with pgr_dijkstra

There are three cases when calculating the shortest path between a given source and target in a contracted graph:

Case 1: Both source and target belong to the contracted graph.
Case 2: Source and/or target belong to an edge subgraph.
Case 3: Source and/or target belong to a vertex.

Case 1: Both source and target belong to the contracted graph.

Using the Edges that belong to the contracted graph. on lines 10 to 19.

 1 CREATE OR REPLACE FUNCTION my_dijkstra(
 2 departure BIGINT, destination BIGINT,
 3 OUT seq INTEGER, OUT path_seq INTEGER,
 4 OUT node BIGINT, OUT edge BIGINT,
 5 OUT cost FLOAT, OUT agg_cost FLOAT)
 6 RETURNS SETOF RECORD AS
 7 $BODY$
 8 SELECT * FROM pgr_dijkstra(
 9 $$
10 WITH
11 vertices_in_graph AS (
12 SELECT id
13 FROM edge_table_vertices_pgr
14 WHERE is_contracted = false
15)
16 SELECT id, source, target, cost, reverse_cost
17 FROM edge_table
18 WHERE source IN (SELECT * FROM vertices_in_graph)
19 AND target IN (SELECT * FROM vertices_in_graph)
20 $$,
21 departure, destination, false);
22 $BODY$
23 LANGUAGE SQL VOLATILE;
24 CREATE FUNCTION

Case 1

When both source and target belong to the contracted graph, a path is found.

file:///opt/git/pgrouting/singlehtml/_images/undirected_sampledata_c.png

SELECT * FROM my_dijkstra(3, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 3 | 5 | 1 | 0
 2 | 2 | 6 | 11 | 1 | 1
 3 | 3 | 11 | -1 | 0 | 2
(3 rows)

Case 2

When source and/or target belong to an edge subgraph then a path is not found.

In this case, the contracted graph do not have an edge connecting with node \(4\).

SELECT * FROM my_dijkstra(4, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

Case 3

When source and/or target belong to a vertex then a path is not found.

In this case, the contracted graph do not have an edge connecting with node \(7\) and of node \(4\) of the second case.

SELECT * FROM my_dijkstra(4, 7);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

Case 2: Source and/or target belong to an edge subgraph.

Refining the above function to include nodes that belong to an edge.

The vertices that need to be expanded are calculated on lines 10 to 16.
Adding to the contracted graph that additional section on lines 25 to 27.

 1 CREATE OR REPLACE FUNCTION my_dijkstra(
 2 departure BIGINT, destination BIGINT,
 3 OUT seq INTEGER, OUT path_seq INTEGER,
 4 OUT node BIGINT, OUT edge BIGINT,
 5 OUT cost FLOAT, OUT agg_cost FLOAT)
 6 RETURNS SETOF RECORD AS
 7 $BODY$
 8 SELECT * FROM pgr_dijkstra(
 9 $$
10 WITH
11 edges_to_expand AS (
12 SELECT id
13 FROM edge_table
14 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices
15 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices
16),
17
18 vertices_in_graph AS (
19 SELECT id
20 FROM edge_table_vertices_pgr
21 WHERE is_contracted = false
22
23 UNION
24
25 SELECT unnest(contracted_vertices)
26 FROM edge_table
27 WHERE id IN (SELECT id FROM edges_to_expand)
28)
29
30 SELECT id, source, target, cost, reverse_cost
31 FROM edge_table
32 WHERE source IN (SELECT * FROM vertices_in_graph)
33 AND target IN (SELECT * FROM vertices_in_graph)
34 $$,
35 departure, destination, false);
36 $BODY$
37 LANGUAGE SQL VOLATILE;
38 CREATE FUNCTION

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(3, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 3 | 5 | 1 | 0
 2 | 2 | 6 | 11 | 1 | 1
 3 | 3 | 11 | -1 | 0 | 2
(3 rows)

Case 2

When source and/or target belong to an edge subgraph, now, a path is found.

The routing graph now has an edge connecting with node \(4\).

SELECT * FROM my_dijkstra(4, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 4 | 16 | 1 | 0
 2 | 2 | 9 | 22 | 2 | 1
 3 | 3 | 11 | -1 | 0 | 3
(3 rows)

Case 3

When source and/or target belong to a vertex then a path is not found.

In this case, the contracted graph do not have an edge connecting with node \(7\).

SELECT * FROM my_dijkstra(4, 7);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

Case 3: Source and/or target belong to a vertex.

Refining the above function to include nodes that belong to an edge.

The vertices that need to be expanded are calculated on lines 18 to 23.
Adding to the contracted graph that additional section on lines 38 to 40.

 1 CREATE OR REPLACE FUNCTION my_dijkstra(
 2 departure BIGINT, destination BIGINT,
 3 OUT seq INTEGER, OUT path_seq INTEGER,
 4 OUT node BIGINT, OUT edge BIGINT,
 5 OUT cost FLOAT, OUT agg_cost FLOAT)
 6 RETURNS SETOF RECORD AS
 7 $BODY$
 8 SELECT * FROM pgr_dijkstra(
 9 $$
10 WITH
11 edges_to_expand AS (
12 SELECT id
13 FROM edge_table
14 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices
15 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices
16),
17
18 vertices_to_expand AS (
19 SELECT id
20 FROM edge_table_vertices_pgr
21 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices
22 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices
23),
24
25 vertices_in_graph AS (
26 SELECT id
27 FROM edge_table_vertices_pgr
28 WHERE is_contracted = false
29
30 UNION
31
32 SELECT unnest(contracted_vertices)
33 FROM edge_table
34 WHERE id IN (SELECT id FROM edges_to_expand)
35
36 UNION
37
38 SELECT unnest(contracted_vertices)
39 FROM edge_table_vertices_pgr
40 WHERE id IN (SELECT id FROM vertices_to_expand)
41)
42
43 SELECT id, source, target, cost, reverse_cost
44 FROM edge_table
45 WHERE source IN (SELECT * FROM vertices_in_graph)
46 AND target IN (SELECT * FROM vertices_in_graph)
47 $$,
48 departure, destination, false);
49 $BODY$
50 LANGUAGE SQL VOLATILE;
51 CREATE FUNCTION

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(3, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 3 | 5 | 1 | 0
 2 | 2 | 6 | 11 | 1 | 1
 3 | 3 | 11 | -1 | 0 | 2
(3 rows)

Case 2

The code change do not affect this case so when source and/or target belong to an edge subgraph, a path is still found.

SELECT * FROM my_dijkstra(4, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 4 | 16 | 1 | 0
 2 | 2 | 9 | 22 | 2 | 1
 3 | 3 | 11 | -1 | 0 | 3
(3 rows)

Case 3

When source and/or target belong to a vertex, now, a path is found.

Now, the routing graph has an edge connecting with node \(7\).

SELECT * FROM my_dijkstra(4, 7);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 4 | 3 | 1 | 0
 2 | 2 | 3 | 19 | 2 | 1
 3 | 3 | 5 | 7 | 1 | 3
 4 | 4 | 8 | 6 | 1 | 4
 5 | 5 | 7 | -1 | 0 | 5
(5 rows)

See Also

https://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
https://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf
The queries use pgr_contraction function and the Sample Data network.

Indices and tables

Index
Search Page

Dijkstra - Family of functions

pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.
pgr_dijkstraCost - Get the aggregate cost of the shortest paths.
pgr_dijkstraCostMatrix - Use pgr_dijkstra to create a costs matrix.
pgr_drivingDistance - Use pgr_dijkstra to calculate catchament information.
pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

proposed

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

pgr_dijkstra

pgr_dijkstra — Returns the shortest path(s) using Dijkstra algorithm. In particular, the Dijkstra algorithm implemented by
Boost.Graph.

Boost Graph Inside

Availability

Version 3.0.0

Official functions

Version 2.2.0

New proposed functions:

pgr_dijkstra(One to Many)
pgr_dijkstra(Many to One)
pgr_dijkstra(Many to Many)

https://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
https://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html

Version 2.1.0

Signature change on pgr_dijkstra(One to One)

Version 2.0.0

Official pgr_dijkstra(One to One)

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves
the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex
(start_vid) to an ending vertex (end_vid). This implementation can be used with a directed graph and an undirected graph.

The main characteristics are:
Process is done only on edges with positive costs.
Values are returned when there is a path.

When the starting vertex and ending vertex are the same, there is no path.
The agg_cost the non included values (v, v) is 0

When the starting vertex and ending vertex are the different and there is no path:
The agg_cost the non included values (u, v) is \(\infty\)

For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: \(O(| start_vids | * (V \log V + E))\)

Signatures

Summary

pgr_dijkstra(edges_sql, start_vid, end_vid [, directed])
pgr_dijkstra(edges_sql, start_vid, end_vids [, directed])
pgr_dijkstra(edges_sql, start_vids, end_vid [, directed])
pgr_dijkstra(edges_sql, start_vids, end_vids [, directed])
RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

Using defaults

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

One to One

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

https://docs.pgrouting.org/3.0/en/pgr_dijkstra.html
https://docs.pgrouting.org/2.6/en/pgr_dijkstra.html
https://docs.pgrouting.org/2.5/en/pgr_dijkstra.html
https://docs.pgrouting.org/2.4/en/pgr_dijkstra.html
https://docs.pgrouting.org/2.3/en/src/dijkstra/doc/pgr_dijkstra.html
https://docs.pgrouting.org/2.2/en/src/dijkstra/doc/pgr_dijkstra.html
https://docs.pgrouting.org/2.1/en/src/dijkstra/doc/index.html
https://docs.pgrouting.org/2.0/en/src/dijkstra/doc/index.html

Example:
From vertex \(2\) to vertex \(3\) on an undirected graph

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

One to many

pgr_dijkstra(TEXT edges_sql, BIGINT start_vid, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 5\}\) on an undirected graph

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 3 | 3 | -1 | 0 | 3
 5 | 1 | 5 | 2 | 4 | 1 | 0
 6 | 2 | 5 | 5 | -1 | 0 | 1
(6 rows)

Many to One

pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, BIGINT end_vid,
 BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertex \(5\) on a directed graph

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 13 | 1 | 0
 4 | 2 | 11 | 12 | 15 | 1 | 1
 5 | 3 | 11 | 9 | 9 | 1 | 2
 6 | 4 | 11 | 6 | 8 | 1 | 3
 7 | 5 | 11 | 5 | -1 | 0 | 4
(7 rows)

Many to Many

pgr_dijkstra(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,
 BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertices \(\{3, 5\}\) on an undirected graph

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 5 | 1 | 11 | 3 | 11 | 11 | 1 | 0
 6 | 2 | 11 | 3 | 6 | 5 | 1 | 1
 7 | 3 | 11 | 3 | 3 | -1 | 0 | 2
 8 | 1 | 11 | 5 | 11 | 11 | 1 | 0
 9 | 2 | 11 | 5 | 6 | 8 | 1 | 1
 10 | 3 | 11 | 5 | 5 | -1 | 0 | 2
(10 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.

start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.

edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of
the path.

cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Column Type Description

Additional Examples

The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending vertices 3 and 5 in a directed and undirected
graph with and with out reverse_cost.

Examples:
For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost
columns are used

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3,5]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 5 | 2 | 4 | 1 | 0
 8 | 2 | 5 | 5 | -1 | 0 | 1
(8 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 13 | 1 | 0
 2 | 2 | 12 | 15 | 1 | 1
 3 | 3 | 9 | 16 | 1 | 2
 4 | 4 | 4 | 3 | 1 | 3
 5 | 5 | 3 | -1 | 0 | 4
(5 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 13 | 1 | 0
 2 | 2 | 12 | 15 | 1 | 1
 3 | 3 | 9 | 9 | 1 | 2
 4 | 4 | 6 | 8 | 1 | 3
 5 | 5 | 5 | -1 | 0 | 4
(5 rows)

SELECT * FROM pgr_dijkstra(

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 13 | 1 | 0
 4 | 2 | 11 | 12 | 15 | 1 | 1
 5 | 3 | 11 | 9 | 9 | 1 | 2
 6 | 4 | 11 | 6 | 8 | 1 | 3
 7 | 5 | 11 | 5 | -1 | 0 | 4
(7 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 8 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 9 | 1 | 11 | 3 | 11 | 13 | 1 | 0
 10 | 2 | 11 | 3 | 12 | 15 | 1 | 1
 11 | 3 | 11 | 3 | 9 | 16 | 1 | 2
 12 | 4 | 11 | 3 | 4 | 3 | 1 | 3
 13 | 5 | 11 | 3 | 3 | -1 | 0 | 4
 14 | 1 | 11 | 5 | 11 | 13 | 1 | 0
 15 | 2 | 11 | 5 | 12 | 15 | 1 | 1
 16 | 3 | 11 | 5 | 9 | 9 | 1 | 2
 17 | 4 | 11 | 5 | 6 | 8 | 1 | 3
 18 | 5 | 11 | 5 | 5 | -1 | 0 | 4
(18 rows)

Examples:
For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost
columns are used

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 5 | 1 | 1
 3 | 3 | 3 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 8 | 1 | 1
 3 | 3 | 5 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5,
 FALSE
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 12 | 1 | 0
 4 | 2 | 11 | 10 | 10 | 1 | 1
 5 | 3 | 11 | 5 | -1 | 0 | 2
(5 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 5 | 5 | -1 | 0 | 1
(4 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 5 | 1 | 11 | 3 | 11 | 11 | 1 | 0
 6 | 2 | 11 | 3 | 6 | 5 | 1 | 1
 7 | 3 | 11 | 3 | 3 | -1 | 0 | 2
 8 | 1 | 11 | 5 | 11 | 11 | 1 | 0
 9 | 2 | 11 | 5 | 6 | 8 | 1 | 1
 10 | 3 | 11 | 5 | 5 | -1 | 0 | 2
(10 rows)

Examples:
For queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 11, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 11, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, ARRAY[3,5]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 5 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | 5 | -1 | 0 | 1
(2 rows)

Examples:
For queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 3 | -1 | 0 | 3
(4 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, 5,

 2, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 11, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 5 | 1 | 1
 3 | 3 | 3 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 11, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 8 | 1 | 1
 3 | 3 | 5 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2,11], 5,
 FALSE
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 12 | 1 | 0
 4 | 2 | 11 | 10 | 10 | 1 | 1
 5 | 3 | 11 | 5 | -1 | 0 | 2
(5 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 3 | 3 | -1 | 0 | 3
 5 | 1 | 5 | 2 | 4 | 1 | 0
 6 | 2 | 5 | 5 | -1 | 0 | 1
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 2 | 3 | 3 | -1 | 0 | 3
 5 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 6 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 7 | 1 | 11 | 3 | 11 | 11 | 1 | 0
 8 | 2 | 11 | 3 | 6 | 5 | 1 | 1
 9 | 3 | 11 | 3 | 3 | -1 | 0 | 2
 10 | 1 | 11 | 5 | 11 | 11 | 1 | 0
 11 | 2 | 11 | 5 | 6 | 8 | 1 | 1
 12 | 3 | 11 | 5 | 5 | -1 | 0 | 2
(12 rows)

Equvalences between signatures

Examples:
For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following:

Network for queries marked as directed and cost and reverse_cost columns are used

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 TRUE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2,3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3],
 TRUE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2], ARRAY[3],
 TRUE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2], ARRAY[3]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
(6 rows)

Examples:
For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following:

Network for queries marked as undirected and cost and reverse_cost columns are used

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 3 | 3 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2], 3,
 FALSE
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2], ARRAY[3],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
(2 rows)

See Also

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_dijkstraCost

pgr_dijkstraCost

Using Dijkstra algorithm implemented by Boost.Graph, and extract only the aggregate cost of the shortest path(s) found, for
the combination of vertices given.

Boost Graph Inside

Availability

Version 2.2.0
New Official function

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.3

Description

The pgr_dijkstraCost algorithm, is a good choice to calculate the sum of the costs of the shortest path for a subset of pairs of nodes

https://en.wikipedia.org/wiki/Dijkstra%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
https://docs.pgrouting.org/3.0/en/pgr_dijkstraCost.html
https://docs.pgrouting.org/2.6/en/pgr_dijkstraCost.html
https://docs.pgrouting.org/2.5/en/pgr_dijkstraCost.html
https://docs.pgrouting.org/2.4/en/pgr_dijkstraCost.html
https://docs.pgrouting.org/2.3/en/src/dijkstra/doc/pgr_dijkstraCost.html#pgr-dijkstracost
https://docs.pgrouting.org/2.2/en/src/dijkstra/doc/pgr_dijkstraCost.html#pgr-dijkstracost

of the graph. We make use of the Boost’s implementation of dijkstra which runs in \(O(V \log V + E)\) time.

The main characteristics are:
It does not return a path.
Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
Process is done only on edges with positive costs.
Values are returned when there is a path.

The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost int the non included values (v, v) is 0

When the starting vertex and ending vertex are the different and there is no path.
The agg_cost in the non included values (u, v) is \(\infty\)

Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
For undirected graphs, the results are symmetric.

The agg_cost of (u, v) is the same as for (v, u).

Any duplicated value in the start_vids or end_vids is ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: \(O(| start_vids | * (V \log V + E))\)

Signatures

Summary

pgr_dijkstraCost(edges_sql, from_vid, to_vid [, directed])
pgr_dijkstraCost(edges_sql, from_vid, to_vids [, directed])
pgr_dijkstraCost(edges_sql, from_vids, to_vid [, directed])
pgr_dijkstraCost(edges_sql, from_vids, to_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Using defaults

pgr_dijkstraCost(edges_sql, from_vid, to_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 2, 3);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
(1 row)

One to One

pgr_dijkstraCost(edges_sql, from_vid, to_vid [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an undirected graph

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 2, 3, false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 1
(1 row)

One to Many

pgr_dijkstraCost(edges_sql, from_vid, to_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 11\}\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 2, ARRAY[3, 11]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 11 | 3
(2 rows)

Many to One

 pgr_dijkstraCost(edges_sql, from_vids, to_vid [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 ARRAY[2, 7], 3);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 7 | 3 | 6
(2 rows)

Many to Many

pgr_dijkstraCost(edges_sql, from_vids, to_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 7\}\) to vertices \(\{3, 11\}\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 ARRAY[2, 7], ARRAY[3, 11]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 2 | 3 | 5
 2 | 11 | 3
 7 | 3 | 6
 7 | 11 | 4
(4 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.

target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example 1:
Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 ARRAY[5, 3, 4, 3, 3, 4], ARRAY[3, 5, 3, 4]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 3 | 4 | 3
 3 | 5 | 2
 4 | 3 | 1
 4 | 5 | 3
 5 | 3 | 4
 5 | 4 | 3
(6 rows)

Example 2:
Making start_vids the same as end_vids

SELECT * FROM pgr_dijkstraCost(
 'select id, source, target, cost, reverse_cost from edge_table',
 ARRAY[5, 3, 4], ARRAY[5, 3, 4]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 3 | 4 | 3
 3 | 5 | 2
 4 | 3 | 1
 4 | 5 | 3
 5 | 3 | 4
 5 | 4 | 3
(6 rows)

See Also

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
Sample Data network.

Indices and tables

Index
Search Page

pgr_dijkstraCostMatrix

https://en.wikipedia.org/wiki/Dijkstra%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_dijkstraCostMatrix - Calculates the a cost matrix using pgr_dijktras.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.3.0
New proposed function

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

Using Dijkstra algorithm, calculate and return a cost matrix.

Signatures

Summary

pgr_dijkstraCostMatrix(edges_sql, start_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Using defaults

pgr_dijkstraCostMatrix(edges_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for vertices \(\{1, 2, 3, 4\}\) on a directed graph

SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5)
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 6
 1 | 4 | 5
 2 | 1 | 1
 2 | 3 | 5
 2 | 4 | 4
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 3
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Complete Signature

pgr_dijkstraCostMatrix(edges_sql, start_vids [, directed])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Symmetric cost matrix for vertices \(\{1, 2, 3, 4\}\) on an undirected graph

https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_dijkstraCostMatrix.html
https://docs.pgrouting.org/2.6/en/pgr_dijkstraCostMatrix.html
https://docs.pgrouting.org/2.5/en/pgr_dijkstraCostMatrix.html
https://docs.pgrouting.org/2.4/en/pgr_dijkstraCostMatrix.html
https://docs.pgrouting.org/2.3/en/src/costMatrix/doc/pgr_dijkstraCostMatrix.html

SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 false
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 2 | 1
 1 | 3 | 2
 1 | 4 | 3
 2 | 1 | 1
 2 | 3 | 1
 2 | 4 | 2
 3 | 1 | 2
 3 | 2 | 1
 3 | 4 | 1
 4 | 1 | 3
 4 | 2 | 2
 4 | 3 | 1
(12 rows)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of the vertices.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers

the graph as Directed.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example:
Use with tsp

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 5),
 false
)
 $$,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 1 | 1 | 0
 2 | 2 | 1 | 1
 3 | 3 | 1 | 2
 4 | 4 | 3 | 3
 5 | 1 | 0 | 6
(5 rows)

See Also

Dijkstra - Family of functions
Cost Matrix - Category
Traveling Sales Person - Family of functions
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_drivingDistance

pgr_drivingDistance - Returns the driving distance from a start node.

Boost Graph Inside

Availability

Version 2.1.0:
Signature change pgr_drivingDistance(single vertex)
New Official pgr_drivingDistance(multiple vertices)

Version 2.0.0:
Official pgr_drivingDistance(single vertex)

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

Using the Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value distance. The edges extracted
will conform to the corresponding spanning tree.

Signatures

Summary

pgr_drivingDistance(edges_sql, start_vid, distance [, directed])
pgr_drivingDistance(edges_sql, start_vids, distance [, directed] [, equicost])
RETURNS SET OF (seq, [start_vid,] node, edge, cost, agg_cost)

Using defaults

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_drivingDistance.html
https://docs.pgrouting.org/2.6/en/pgr_drivingDistance.html
https://docs.pgrouting.org/2.5/en/pgr_drivingDistance.html
https://docs.pgrouting.org/2.4/en/pgr_drivingDistance.html
https://docs.pgrouting.org/2.3/en/src/driving_distance/doc/pgr_drivingDistance.html
https://docs.pgrouting.org/2.2/en/src/driving_distance/doc/pgr_drivingDistance.html
https://docs.pgrouting.org/2.1/en/src/driving_distance/doc/dd_driving_distance_v3.html
https://docs.pgrouting.org/2.0/en/src/driving_distance/doc/dd_driving_distance.html

pgr_drivingDistance(edges_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:
TBD

Single Vertex

pgr_drivingDistance(edges_sql, start_vid, distance [, directed])
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:
TBD

Multiple Vertices

pgr_drivingDistance(edges_sql, start_vids, distance, [, directed] [, equicost])
RETURNS SET OF (seq, start_vid, node, edge, cost, agg_cost)

Example:
TBD

Parameters

Column Type Description
edges_sql TEXT SQL query as described above.
start_vid BIGINT Identifier of the starting vertex.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of the starting vertices.
distance FLOAT Upper limit for the inclusion of the node in the result.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers

the graph as Directed.
equicost BOOLEAN (optional). When true the node will only appear in the closest start_vid list. Default is false which

resembles several calls using the single starting point signatures. Tie brakes are arbitrary.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq [, start_v], node, edge, cost, agg_cost)

Column Type Description
seq INTEGER Sequential value starting from 1.
start_vid INTEGER Identifier of the starting vertex.
node BIGINT Identifier of the node in the path within the limits from start_vid.
edge BIGINT Identifier of the edge used to arrive to node. 0 when the node is the

start_vid.
cost FLOAT Cost to traverse edge.

agg_cost FLOAT Aggregate cost from start_vid to node.
Column Type Description

Additional Examples

Example:
For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost
columns are used

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 2 | -1 | 0 | 0
 2 | 1 | 1 | 1 | 1
 3 | 5 | 4 | 1 | 1
 4 | 6 | 8 | 1 | 2
 5 | 8 | 7 | 1 | 2
 6 | 10 | 10 | 1 | 2
 7 | 7 | 6 | 1 | 3
 8 | 9 | 9 | 1 | 3
 9 | 11 | 12 | 1 | 3
 10 | 13 | 14 | 1 | 3
(10 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 13, 3
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 13 | -1 | 0 | 0
 2 | 10 | 14 | 1 | 1
 3 | 5 | 10 | 1 | 2
 4 | 11 | 12 | 1 | 2
 5 | 2 | 4 | 1 | 3
 6 | 6 | 8 | 1 | 3
 7 | 8 | 7 | 1 | 3
 8 | 12 | 13 | 1 | 3
(8 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 array[2,13], 3
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 1 | 1 | 1 | 1
 3 | 2 | 5 | 4 | 1 | 1
 4 | 2 | 6 | 8 | 1 | 2
 5 | 2 | 8 | 7 | 1 | 2
 6 | 2 | 10 | 10 | 1 | 2
 7 | 2 | 7 | 6 | 1 | 3
 8 | 2 | 9 | 9 | 1 | 3
 9 | 2 | 11 | 12 | 1 | 3
 10 | 2 | 13 | 14 | 1 | 3
 11 | 13 | 13 | -1 | 0 | 0
 12 | 13 | 10 | 14 | 1 | 1
 13 | 13 | 5 | 10 | 1 | 2
 14 | 13 | 11 | 12 | 1 | 2
 15 | 13 | 2 | 4 | 1 | 3
 16 | 13 | 6 | 8 | 1 | 3
 17 | 13 | 8 | 7 | 1 | 3
 18 | 13 | 12 | 13 | 1 | 3
(18 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 array[2,13], 3, equicost:=true
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 1 | 1 | 1 | 1
 3 | 2 | 5 | 4 | 1 | 1
 4 | 2 | 6 | 8 | 1 | 2
 5 | 2 | 8 | 7 | 1 | 2
 6 | 2 | 7 | 6 | 1 | 3
 7 | 2 | 9 | 9 | 1 | 3
 8 | 13 | 13 | -1 | 0 | 0
 9 | 13 | 10 | 14 | 1 | 1
 10 | 13 | 11 | 12 | 1 | 2
 11 | 13 | 12 | 13 | 1 | 3
(11 rows)

Example:
For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost
columns are used

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3, false
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 2 | -1 | 0 | 0
 2 | 1 | 1 | 1 | 1
 3 | 3 | 2 | 1 | 1
 4 | 5 | 4 | 1 | 1
 5 | 4 | 3 | 1 | 2
 6 | 6 | 8 | 1 | 2
 7 | 8 | 7 | 1 | 2
 8 | 10 | 10 | 1 | 2
 9 | 7 | 6 | 1 | 3
 10 | 9 | 16 | 1 | 3
 11 | 11 | 12 | 1 | 3
 12 | 13 | 14 | 1 | 3
(12 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 13, 3, false
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 13 | -1 | 0 | 0
 2 | 10 | 14 | 1 | 1
 3 | 5 | 10 | 1 | 2
 4 | 11 | 12 | 1 | 2
 5 | 2 | 4 | 1 | 3
 6 | 6 | 8 | 1 | 3
 7 | 8 | 7 | 1 | 3
 8 | 12 | 13 | 1 | 3
(8 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 array[2,13], 3, false
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 1 | 1 | 1 | 1
 3 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 5 | 4 | 1 | 1
 5 | 2 | 4 | 3 | 1 | 2
 6 | 2 | 6 | 8 | 1 | 2
 7 | 2 | 8 | 7 | 1 | 2
 8 | 2 | 10 | 10 | 1 | 2
 9 | 2 | 7 | 6 | 1 | 3
 10 | 2 | 9 | 16 | 1 | 3
 11 | 2 | 11 | 12 | 1 | 3
 12 | 2 | 13 | 14 | 1 | 3
 13 | 13 | 13 | -1 | 0 | 0
 14 | 13 | 10 | 14 | 1 | 1
 15 | 13 | 5 | 10 | 1 | 2
 16 | 13 | 11 | 12 | 1 | 2
 17 | 13 | 2 | 4 | 1 | 3
 18 | 13 | 6 | 8 | 1 | 3
 19 | 13 | 8 | 7 | 1 | 3
 20 | 13 | 12 | 13 | 1 | 3
(20 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 array[2,13], 3, false, equicost:=true
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 1 | 1 | 1 | 1
 3 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 5 | 4 | 1 | 1
 5 | 2 | 4 | 3 | 1 | 2
 6 | 2 | 6 | 8 | 1 | 2
 7 | 2 | 8 | 7 | 1 | 2
 8 | 2 | 7 | 6 | 1 | 3
 9 | 2 | 9 | 16 | 1 | 3
 10 | 13 | 13 | -1 | 0 | 0
 11 | 13 | 10 | 14 | 1 | 1
 12 | 13 | 11 | 12 | 1 | 2
 13 | 13 | 12 | 13 | 1 | 3
(13 rows)

Example:
For queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 2 | -1 | 0 | 0
 2 | 5 | 4 | 1 | 1
 3 | 6 | 8 | 1 | 2
 4 | 10 | 10 | 1 | 2
 5 | 9 | 9 | 1 | 3
 6 | 11 | 11 | 1 | 3
 7 | 13 | 14 | 1 | 3
(7 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 13, 3
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 13 | -1 | 0 | 0
(1 row)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 array[2,13], 3
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 5 | 4 | 1 | 1
 3 | 2 | 6 | 8 | 1 | 2
 4 | 2 | 10 | 10 | 1 | 2
 5 | 2 | 9 | 9 | 1 | 3
 6 | 2 | 11 | 11 | 1 | 3
 7 | 2 | 13 | 14 | 1 | 3
 8 | 13 | 13 | -1 | 0 | 0
(8 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 array[2,13], 3, equicost:=true
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 5 | 4 | 1 | 1
 3 | 2 | 6 | 8 | 1 | 2
 4 | 2 | 10 | 10 | 1 | 2
 5 | 2 | 9 | 9 | 1 | 3
 6 | 2 | 11 | 11 | 1 | 3
 7 | 13 | 13 | -1 | 0 | 0
(7 rows)

Example:
For queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3, false
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 2 | -1 | 0 | 0
 2 | 1 | 1 | 1 | 1
 3 | 5 | 4 | 1 | 1
 4 | 6 | 8 | 1 | 2
 5 | 8 | 7 | 1 | 2
 6 | 10 | 10 | 1 | 2
 7 | 3 | 5 | 1 | 3
 8 | 7 | 6 | 1 | 3
 9 | 9 | 9 | 1 | 3
 10 | 11 | 12 | 1 | 3
 11 | 13 | 14 | 1 | 3
(11 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 13, 3, false
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 13 | -1 | 0 | 0
 2 | 10 | 14 | 1 | 1
 3 | 5 | 10 | 1 | 2
 4 | 11 | 12 | 1 | 2
 5 | 2 | 4 | 1 | 3
 6 | 6 | 8 | 1 | 3
 7 | 8 | 7 | 1 | 3
 8 | 12 | 13 | 1 | 3
(8 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 array[2,13], 3, false
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 1 | 1 | 1 | 1
 3 | 2 | 5 | 4 | 1 | 1
 4 | 2 | 6 | 8 | 1 | 2
 5 | 2 | 8 | 7 | 1 | 2
 6 | 2 | 10 | 10 | 1 | 2
 7 | 2 | 3 | 5 | 1 | 3
 8 | 2 | 7 | 6 | 1 | 3
 9 | 2 | 9 | 9 | 1 | 3
 10 | 2 | 11 | 12 | 1 | 3
 11 | 2 | 13 | 14 | 1 | 3
 12 | 13 | 13 | -1 | 0 | 0
 13 | 13 | 10 | 14 | 1 | 1
 14 | 13 | 5 | 10 | 1 | 2
 15 | 13 | 11 | 12 | 1 | 2
 16 | 13 | 2 | 4 | 1 | 3
 17 | 13 | 6 | 8 | 1 | 3
 18 | 13 | 8 | 7 | 1 | 3
 19 | 13 | 12 | 13 | 1 | 3
(19 rows)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost FROM edge_table',
 array[2,13], 3, false, equicost:=true
);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 2 | 2 | -1 | 0 | 0
 2 | 2 | 1 | 1 | 1 | 1
 3 | 2 | 5 | 4 | 1 | 1
 4 | 2 | 6 | 8 | 1 | 2
 5 | 2 | 8 | 7 | 1 | 2
 6 | 2 | 3 | 5 | 1 | 3
 7 | 2 | 7 | 6 | 1 | 3
 8 | 2 | 9 | 9 | 1 | 3
 9 | 13 | 13 | -1 | 0 | 0
 10 | 13 | 10 | 14 | 1 | 1
 11 | 13 | 11 | 12 | 1 | 2
 12 | 13 | 12 | 13 | 1 | 3
(12 rows)

See Also

pgr_alphaShape - Alpha shape computation
Sample Data network.

Indices and tables

Index
Search Page

pgr_KSP

pgr_KSP — Returns the “K” shortest paths.

Boost Graph Inside

Availability

Version 2.1.0
Signature change

Old signature no longer supported
Version 2.0.0

Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The K shortest path routing algorithm based on Yen’s algorithm. “K” is the number of shortest paths desired.

Signatures

Summary

pgr_KSP(edges_sql, start_vid, end_vid, K [, directed] [, heap_paths])
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Using defaults

pgr_ksp(edges_sql, start_vid, end_vid, K);
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Example:
TBD

Complete Signature

pgr_KSP(edges_sql, start_vid, end_vid, K [, directed] [, heap_paths])
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Example:
TBD

Parameters

Column Type Description
edges_sql TEXT SQL query as described above.
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.
k INTEGER The desiered number of paths.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers the graph

as Directed.
heap_paths BOOLEAN (optional). When true returns all the paths stored in the process heap. Default is false which only

returns k paths.

Roughly, if the shortest path has N edges, the heap will contain about than N * k paths for small value of k and k > 1.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_KSP.html
https://docs.pgrouting.org/2.6/en/pgr_KSP.html
https://docs.pgrouting.org/2.5/en/pgr_KSP.html
https://docs.pgrouting.org/2.4/en/pgr_KSP.html
https://docs.pgrouting.org/2.3/en/src/ksp/doc/pgr_ksp.html
https://docs.pgrouting.org/2.2/en/src/ksp/doc/pgr_ksp.html
https://docs.pgrouting.org/2.1/en/src/ksp/doc/index.html
https://docs.pgrouting.org/2.0/en/src/ksp/doc/index.html

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, path_seq, path_id, node, edge, cost, agg_cost)

Column Type Description
seq INTEGER Sequential value starting from 1.
path_seq INTEGER Relative position in the path of node and edge. Has value 1 for the beginning of a path.
path_id BIGINT Path identifier. The ordering of the paths For two paths i, j if i < j then agg_cost(i) <= agg_cost(j).
node BIGINT Identifier of the node in the path.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the route.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_vid to node.

Additional Examples

Example:
To handle the one flag to choose signatures

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost
columns are used

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2,
 directed:=true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

Example:
For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost
columns are used

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2, heap_paths:=true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
 11 | 3 | 1 | 2 | 4 | 1 | 0
 12 | 3 | 2 | 5 | 10 | 1 | 1
 13 | 3 | 3 | 10 | 12 | 1 | 2
 14 | 3 | 4 | 11 | 13 | 1 | 3
 15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2, true, true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
 11 | 3 | 1 | 2 | 4 | 1 | 0
 12 | 3 | 2 | 5 | 10 | 1 | 1
 13 | 3 | 3 | 10 | 12 | 1 | 2
 14 | 3 | 4 | 11 | 13 | 1 | 3
 15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

Examples:
For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost
columns are used

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2, directed:=false
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 2 | 1 | 0
 2 | 1 | 2 | 3 | 3 | 1 | 1
 3 | 1 | 3 | 4 | 16 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 10 | 1 | 1
 8 | 2 | 3 | 10 | 12 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 12, 2, false, true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 2 | 1 | 0
 2 | 1 | 2 | 3 | 3 | 1 | 1
 3 | 1 | 3 | 4 | 16 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
 11 | 3 | 1 | 2 | 4 | 1 | 0
 12 | 3 | 2 | 5 | 10 | 1 | 1
 13 | 3 | 3 | 10 | 12 | 1 | 2
 14 | 3 | 4 | 11 | 13 | 1 | 3
 15 | 3 | 5 | 12 | -1 | 0 | 4
 16 | 4 | 1 | 2 | 4 | 1 | 0
 17 | 4 | 2 | 5 | 10 | 1 | 1
 18 | 4 | 3 | 10 | 12 | 1 | 2
 19 | 4 | 4 | 11 | 11 | 1 | 3
 20 | 4 | 5 | 6 | 9 | 1 | 4
 21 | 4 | 6 | 9 | 15 | 1 | 5
 22 | 4 | 7 | 12 | -1 | 0 | 6
(22 rows)

Example:
For queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3, 2
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost FROM edge_table',
 2, 12, 2
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost FROM edge_table',
 2, 12, 2, heap_paths:=true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
 11 | 3 | 1 | 2 | 4 | 1 | 0
 12 | 3 | 2 | 5 | 10 | 1 | 1
 13 | 3 | 3 | 10 | 12 | 1 | 2
 14 | 3 | 4 | 11 | 13 | 1 | 3
 15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost FROM edge_table',
 2, 12, 2, true, true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
 11 | 3 | 1 | 2 | 4 | 1 | 0
 12 | 3 | 2 | 5 | 10 | 1 | 1
 13 | 3 | 3 | 10 | 12 | 1 | 2
 14 | 3 | 4 | 11 | 13 | 1 | 3
 15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

Example:
For queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost FROM edge_table',
 2, 12, 2, directed:=false
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
(10 rows)

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost FROM edge_table',
 2, 12, 2, directed:=false, heap_paths:=true
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 2 | 4 | 1 | 0
 2 | 1 | 2 | 5 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 9 | 1 | 2
 4 | 1 | 4 | 9 | 15 | 1 | 3
 5 | 1 | 5 | 12 | -1 | 0 | 4
 6 | 2 | 1 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 11 | 1 | 2
 9 | 2 | 4 | 11 | 13 | 1 | 3
 10 | 2 | 5 | 12 | -1 | 0 | 4
 11 | 3 | 1 | 2 | 4 | 1 | 0
 12 | 3 | 2 | 5 | 10 | 1 | 1
 13 | 3 | 3 | 10 | 12 | 1 | 2
 14 | 3 | 4 | 11 | 13 | 1 | 3
 15 | 3 | 5 | 12 | -1 | 0 | 4
(15 rows)

See Also

https://en.wikipedia.org/wiki/K_shortest_path_routing
Sample Data network.

Indices and tables

Index
Search Page

pgr_dijkstraVia - Proposed

pgr_dijkstraVia — Using dijkstra algorithm, it finds the route that goes through a list of vertices.

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0

https://en.wikipedia.org/wiki/K_shortest_path_routing
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html

New proposed function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2

Description

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between \(vertex_i\) and \
(vertex_{i+1}\) for all \(i < size_of(vertex_via)\).

The paths represents the sections of the route.

Signatures

Summary

pgr_dijkstraVia(edges_sql, via_vertices [, directed] [, strict] [, U_turn_on_edge])
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
 node, edge, cost, agg_cost, route_agg_cost)
OR EMPTY SET

Using default

pgr_dijkstraVia(edges_sql, via_vertices)
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
 node, edge, cost, agg_cost, route_agg_cost)
OR EMPTY SET

Example:
Find the route that visits the vertices \(\{ 1, 3, 9\}\) in that order

SELECT * FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 3, 9]
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 1 | 3 | 2 | 4 | 1 | 1 | 1
 3 | 1 | 3 | 1 | 3 | 5 | 8 | 1 | 2 | 2
 4 | 1 | 4 | 1 | 3 | 6 | 9 | 1 | 3 | 3
 5 | 1 | 5 | 1 | 3 | 9 | 16 | 1 | 4 | 4
 6 | 1 | 6 | 1 | 3 | 4 | 3 | 1 | 5 | 5
 7 | 1 | 7 | 1 | 3 | 3 | -1 | 0 | 6 | 6
 8 | 2 | 1 | 3 | 9 | 3 | 5 | 1 | 0 | 6
 9 | 2 | 2 | 3 | 9 | 6 | 9 | 1 | 1 | 7
 10 | 2 | 3 | 3 | 9 | 9 | -2 | 0 | 2 | 8
(10 rows)

Complete Signature

pgr_dijkstraVia(edges_sql, via_vertices [, directed] [, strict] [, U_turn_on_edge])
RETURNS SET OF (seq, path_pid, path_seq, start_vid, end_vid,
 node, edge, cost, agg_cost, route_agg_cost)
OR EMPTY SET

Example:
Find the route that visits the vertices \(\{ 1, 3, 9\}\) in that order on an undirected graph, avoiding U-turns when possible

SELECT * FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 3, 9], false, strict:=true, U_turn_on_edge:=false
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 1
 3 | 1 | 3 | 1 | 3 | 3 | -1 | 0 | 2 | 2
 4 | 2 | 1 | 3 | 9 | 3 | 3 | 1 | 0 | 2
 5 | 2 | 2 | 3 | 9 | 4 | 16 | 1 | 1 | 3
 6 | 2 | 3 | 3 | 9 | 9 | -2 | 0 | 2 | 4
(6 rows)

Parameters

https://docs.pgrouting.org/3.0/en/pgr_dijkstraVia.html
https://docs.pgrouting.org/2.6/en/pgr_dijkstraVia.html
https://docs.pgrouting.org/2.5/en/pgr_dijkstraVia.html
https://docs.pgrouting.org/2.4/en/pgr_dijkstraVia.html
https://docs.pgrouting.org/2.3/en/src/dijkstra/doc/pgr_dijkstraVia.html
https://docs.pgrouting.org/2.2/en/src/dijkstra/doc/pgr_dijkstraVia.html

Parameter Type Default Description
edges_sql TEXT SQL query as described above.
via_vertices ARRAY[ANY-INTEGER] Array of ordered vertices identifiers that are going to be visited.
directed BOOLEAN true When true Graph is considered Directed

When false the graph is considered as Undirected.
strict BOOLEAN false When false ignores missing paths returning all paths found

When true if a path is missing stops and returns EMPTY SET

U_turn_on_edge BOOLEAN true When true departing from a visited vertex will not try to avoid using the
edge used to reach it. In other words, U turn using the edge with same
id is allowed.
When false when a departing from a visited vertex tries to avoid using
the edge used to reach it. In other words, U turn using the edge with
same id is used when no other path is found.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns set of (start_vid, end_vid, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from 1.
path_pid BIGINT Identifier of the path.
path_seq BIGINT Sequential value starting from 1 for the path.
start_vid BIGINT Identifier of the starting vertex of the path.
end_vid BIGINT Identifier of the ending vertex of the path.
node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last

node of the path. -2 for the last node of the route.
cost FLOAT Cost to traverse from node using edge to the next node in the route sequence.
agg_cost FLOAT Total cost from start_vid to end_vid of the path.
route_agg_cost FLOAT Total cost from start_vid of path_pid = 1 to end_vid of the current path_pid .

Additional Examples

Example 1:
Find the route that visits the vertices \(\{1, 5, 3, 9, 4\}\) in that order

SELECT * FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 5, 3, 9, 4]
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 1 | 5 | 2 | 4 | 1 | 1 | 1
 3 | 1 | 3 | 1 | 5 | 5 | -1 | 0 | 2 | 2
 4 | 2 | 1 | 5 | 3 | 5 | 8 | 1 | 0 | 2
 5 | 2 | 2 | 5 | 3 | 6 | 9 | 1 | 1 | 3
 6 | 2 | 3 | 5 | 3 | 9 | 16 | 1 | 2 | 4
 7 | 2 | 4 | 5 | 3 | 4 | 3 | 1 | 3 | 5
 8 | 2 | 5 | 5 | 3 | 3 | -1 | 0 | 4 | 6
 9 | 3 | 1 | 3 | 9 | 3 | 5 | 1 | 0 | 6
 10 | 3 | 2 | 3 | 9 | 6 | 9 | 1 | 1 | 7
 11 | 3 | 3 | 3 | 9 | 9 | -1 | 0 | 2 | 8
 12 | 4 | 1 | 9 | 4 | 9 | 16 | 1 | 0 | 8
 13 | 4 | 2 | 9 | 4 | 4 | -2 | 0 | 1 | 9
(13 rows)

Example 2:
What’s the aggregate cost of the third path?

SELECT agg_cost FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 5, 3, 9, 4]
)
WHERE path_id = 3 AND edge <0;
 agg_cost

 2
(1 row)

Example 3:
What’s the route’s aggregate cost of the route at the end of the third path?

SELECT route_agg_cost FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 5, 3, 9, 4]
)
WHERE path_id = 3 AND edge < 0;
 route_agg_cost

 8
(1 row)

Example 4:
How are the nodes visited in the route?

SELECT row_number() over () as node_seq, node
FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 5, 3, 9, 4]
)
WHERE edge <> -1 ORDER BY seq;
 node_seq | node
----------+------
 1 | 1
 2 | 2
 3 | 5
 4 | 6
 5 | 9
 6 | 4
 7 | 3
 8 | 6
 9 | 9
 10 | 4
(10 rows)

Example 5:
What are the aggregate costs of the route when the visited vertices are reached?

SELECT path_id, route_agg_cost FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 5, 3, 9, 4]
)
WHERE edge < 0;
 path_id | route_agg_cost
---------+----------------
 1 | 2
 2 | 6
 3 | 8
 4 | 9
(4 rows)

Example 6:
Show the route’s seq and aggregate cost and a status of “passes in front” or “visits” node \(9\)

SELECT seq, route_agg_cost, node, agg_cost ,
CASE WHEN edge = -1 THEN 'visits'
ELSE 'passes in front'
END as status
FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table order by id',
 ARRAY[1, 5, 3, 9, 4])
WHERE node = 9 and (agg_cost <> 0 or seq = 1);
 seq | route_agg_cost | node | agg_cost | status
-----+----------------+------+----------+-----------------
 6 | 4 | 9 | 2 | passes in front
 11 | 8 | 9 | 2 | visits
(2 rows)

ROLLBACK;
ROLLBACK

See Also

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
Sample Data network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2

The problem definition (Advanced documentation)

Given the following query:

pgr_dijkstra(\(sql, start_{vid}, end_{vid}, directed\))

where \(sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}\)

and

\(source = \bigcup source_i\),
\(target = \bigcup target_i\),

The graphs are defined as follows:

Directed graph

The weighted directed graph, \(G_d(V,E)\), is definied by:

the set of vertices \(V\)
\(V = source \cup target \cup {start_{vid}} \cup {end_{vid}}\)

the set of edges \(E\)
\(E = \begin{cases} \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{if } reverse_cost =
\varnothing \\ \text{ } \text{ } & \quad \text{ } \\ \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} &
\quad \text{ } \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i>=0 \} & \quad \text{if }
reverse_cost \neq \varnothing \\ \end{cases}\)

Undirected graph

https://en.wikipedia.org/wiki/Dijkstra%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/dijkstra-family.html
https://docs.pgrouting.org/2.6/en/dijkstra-family.html
https://docs.pgrouting.org/2.5/en/dijkstra-family.html
https://docs.pgrouting.org/2.4/en/dijkstra-family.html
https://docs.pgrouting.org/2.3/en/src/dijkstra/doc/dijkstra.html
https://docs.pgrouting.org/2.2/en/src/dijkstra/doc/dijkstra.html

The weighted undirected graph, \(G_u(V,E)\), is definied by:

the set of vertices \(V\)
\(V = source \cup target \cup {start_v{vid}} \cup {end_{vid}}\)

the set of edges \(E\)
\(E = \begin{cases} \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ } \\ \cup \{(target_i,
source_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ if } reverse_cost = \varnothing \\ \text{ } \text{ } & \text{ }
\\ \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \text{ } \\ \cup \{(target_i, source_i, cost_i) \text{
when } cost >=0 \} & \text{ } \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >=0)\} &
\text{ } \\ \cup \{(source_i, target_i, reverse_cost_i) \text{ when } reverse_cost_i >=0)\} & \quad \text{ if }
reverse_cost \neq \varnothing \\ \end{cases}\)

The problem

Given:

\(start_{vid} \in V\) a starting vertex
\(end_{vid} \in V\) an ending vertex
\(G(V,E) = \begin{cases} G_d(V,E) & \quad \text{ if6 } directed = true \\ G_u(V,E) & \quad \text{ if5 } directed = false \\
\end{cases}\)

Then:

\(\boldsymbol{\pi} = \{(path_seq_i, node_i, edge_i, cost_i, agg_cost_i)\}\)

where:
\(path_seq_i = i\)
\(path_seq_{| \pi |} = | \pi |\)
\(node_i \in V\)
\(node_1 = start_{vid}\)
\(node_{| \pi |} = end_{vid}\)
\(\forall i \neq | \pi |, \quad (node_i, node_{i+1}, cost_i) \in E\)
\(edge_i = \begin{cases} id_{(node_i, node_{i+1},cost_i)} &\quad \text{when } i \neq | \pi | \\ -1 &\quad \text{when } i
= | \pi | \\ \end{cases}\)
\(cost_i = cost_{(node_i, node_{i+1})}\)
\(agg_cost_i = \begin{cases} 0 &\quad \text{when } i = 1 \\ \displaystyle\sum_{k=1}^{i} cost_{(node_{k-1},
node_k)} &\quad \text{when } i \neq 1 \\ \end{cases}\)

In other words: The algorithm returns a the shortest path between \(start_{vid}\) and \(end_{vid}\) , if it exists, in terms of a
sequence of nodes and of edges,

\(path_seq\) indicates the relative position in the path of the \(node\) or \(edge\).
\(cost\) is the cost of the edge to be used to go to the next node.
\(agg_cost\) is the cost from the \(start_{vid}\) up to the node.

If there is no path, the resulting set is empty.

See Also

Indices and tables

Index
Search Page

Flow - Family of functions

pgr_maxFlow - Only the Max flow calculation using Push and Relabel algorithm.
pgr_boykovKolmogorov - Boykov and Kolmogorov with details of flow on edges.
pgr_edmondsKarp - Edmonds and Karp algorithm with details of flow on edges.
pgr_pushRelabel - Push and relabel algorithm with details of flow on edges.
Applications

pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.
pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Experimental

Warning

Possible server crash

These functions might create a server crash

Warning

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

pgr_maxFlowMinCost - Experimental - Details of flow and cost on edges.
pgr_maxFlowMinCost_Cost - Experimental - Only the Min Cost calculation.

pgr_maxFlow

pgr_maxFlow — Calculates the maximum flow in a directed graph from the source(s) to the targets(s) using the Push Relabel
algorithm.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.4.0
New Proposed function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4

Description

The main characteristics are:

The graph is directed.
Calculates the maximum flow from the source(s) to the target(s).

When the maximum flow is 0 then there is no flow and 0 is returned.
There is no flow when a source is the same as a target.

Any duplicated value in the source(s) or target(s) are ignored.
Uses the pgr_pushRelabel algorithm.

Running time: \(O(V ^ 3)\)

Signatures

Summary

pgr_maxFlow(Edges SQL, source, target)
pgr_maxFlow(Edges SQL, sources, target)
pgr_maxFlow(Edges SQL, source, targets)
pgr_maxFlow(Edges SQL, sources, targets)
RETURNS BIGINT

One to One

https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://docs.pgrouting.org/3.0/en/pgr_maxFlow.html
https://docs.pgrouting.org/2.6/en/pgr_maxFlow.html
https://docs.pgrouting.org/2.5/en/pgr_maxFlow.html
https://docs.pgrouting.org/2.4/en/pgr_maxFlow.html

pgr_maxFlow(Edges SQL, source, target)
RETURNS BIGINT

Example:
From vertex \(6\) to vertex \(11\)

SELECT * FROM pgr_maxFlow(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, 11
);
 pgr_maxflow

 230
(1 row)

One to Many

pgr_maxFlow(Edges SQL, source, targets)
RETURNS BIGINT

Example:
From vertex \(6\) to vertices \(\{11, 1, 13\}\)

SELECT * FROM pgr_maxFlow(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, ARRAY[11, 1, 13]
);
 pgr_maxflow

 340
(1 row)

Many to One

pgr_maxFlow(Edges SQL, sources, target)
RETURNS BIGINT

Example:
From vertices \(\{6, 8, 12\}\) to vertex \(11\)

SELECT * FROM pgr_maxFlow(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], 11
);
 pgr_maxflow

 230
(1 row)

Many to Many

pgr_maxFlow(Edges SQL, sources, targets)
RETURNS BIGINT

Example:
From vertices \(\{6, 8, 12\}\) to vertices \(\{1, 3, 11\}\)

SELECT * FROM pgr_maxFlow(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
 pgr_maxflow

 360
(1 row)

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

Inner query

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part
of the graph.

reverse_capacity ANY-INTEGER -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part
of the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

Return Columns

Type Description
BIGINT Maximum flow possible from the source(s) to the

target(s)

See Also

Flow - Family of functions
https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

Index
Search Page

pgr_boykovKolmogorov

pgr_boykovKolmogorov — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using
Boykov Kolmogorov algorithm.

https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%25E2%2580%2593relabel_maximum_flow_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Boost Graph Inside

Availability:

Version 3.0.0
Official function

Version 2.5.0
Renamed from pgr_maxFlowBoykovKolmogorov

Proposed function
Version 2.3.0

New Experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

The main characteristics are:

The graph is directed.
Process is done only on edges with positive capacities.
When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

There is no flow when a source is the same as a target.
Any duplicated value in the source(s) or target(s) are ignored.
Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.
Creates a super source and edges to all the source(s), and a super target and the edges from all the targets(s).
The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the
same parameters and can be calculated:

By aggregation of the outgoing flow from the sources
By aggregation of the incoming flow to the targets

Running time: Polynomial

Signatures

Summary

pgr_boykovKolmogorov(Edges SQL, source, target)
pgr_boykovKolmogorov(Edges SQL, sources, target)
pgr_boykovKolmogorov(Edges SQL, source, targets)
pgr_boykovKolmogorov(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

One to One

pgr_boykovKolmogorov(Edges SQL, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertex \(6\) to vertex \(11\)

https://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html
https://docs.pgrouting.org/3.0/en/pgr_boykovKolmogorov.html
https://docs.pgrouting.org/2.6/en/pgr_boykovKolmogorov.html
https://docs.pgrouting.org/2.5/en/pgr_boykovKolmogorov.html
https://docs.pgrouting.org/2.4/en/pgr_maxFlowBoykovKolmogorov.html
https://docs.pgrouting.org/2.3/en/src/max_flow/doc/pgr_maxFlowBoykovKolmogorov.html

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, 11
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 5 | 10 | 100 | 30
 2 | 8 | 6 | 5 | 100 | 30
 3 | 11 | 6 | 11 | 130 | 0
 4 | 12 | 10 | 11 | 100 | 0
(4 rows)

One to Many

pgr_boykovKolmogorov(Edges SQL, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertex \(6\) to vertices \(\{1, 3, 11\}\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, ARRAY[1, 3, 11]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 2 | 1 | 50 | 80
 2 | 3 | 4 | 3 | 80 | 50
 3 | 4 | 5 | 2 | 50 | 0
 4 | 10 | 5 | 10 | 80 | 50
 5 | 8 | 6 | 5 | 130 | 0
 6 | 9 | 6 | 9 | 80 | 50
 7 | 11 | 6 | 11 | 130 | 0
 8 | 16 | 9 | 4 | 80 | 0
 9 | 12 | 10 | 11 | 80 | 20
(9 rows)

Many to One

pgr_boykovKolmogorov(Edges SQL, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertices \(\{6, 8, 12\}\) to vertex \(11\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], 11
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 5 | 10 | 100 | 30
 2 | 8 | 6 | 5 | 100 | 30
 3 | 11 | 6 | 11 | 130 | 0
 4 | 12 | 10 | 11 | 100 | 0
(4 rows)

Many to Many

pgr_boykovKolmogorov(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertices \(\{6, 8, 12\}\) to vertices \(\{1, 3, 11\}\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 2 | 1 | 50 | 80
 2 | 3 | 4 | 3 | 80 | 50
 3 | 4 | 5 | 2 | 50 | 0
 4 | 10 | 5 | 10 | 100 | 30
 5 | 8 | 6 | 5 | 130 | 0
 6 | 9 | 6 | 9 | 80 | 50
 7 | 11 | 6 | 11 | 130 | 0
 8 | 7 | 8 | 5 | 20 | 30
 9 | 16 | 9 | 4 | 80 | 0
 10 | 12 | 10 | 11 | 100 | 0
(10 rows)

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

Inner query

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part
of the graph.

reverse_capacity ANY-INTEGER -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part
of the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

Result Columns

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
start_vid BIGINT Identifier of the first end point vertex of the edge.
end_vid BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (start_vid, end_vid).
residual_capacity BIGINT Residual capacity of the edge in the direction (start_vid,

end_vid).

See Also

Flow - Family of functions, pgr_pushRelabel, pgr_edmondsKarp
https://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

Indices and tables

Index
Search Page

pgr_edmondsKarp

pgr_edmondsKarp — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push
Relabel Algorithm.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.5.0
Renamed from pgr_maxFlowEdmondsKarp

Proposed function
Version 2.3.0

New Experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

The main characteristics are:

The graph is directed.
Process is done only on edges with positive capacities.
When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

There is no flow when a source is the same as a target.
Any duplicated value in the source(s) or target(s) are ignored.
Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.
Creates a super source and edges to all the source(s), and a super target and the edges from all the targets(s).
The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the
same parameters and can be calculated:

By aggregation of the outgoing flow from the sources
By aggregation of the incoming flow to the targets

Running time: \(O(V * E ^ 2)\)

Signatures

Summary

pgr_edmondsKarp(Edges SQL, source, target)
pgr_edmondsKarp(Edges SQL, sources, target)
pgr_edmondsKarp(Edges SQL, source, targets)
pgr_edmondsKarp(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

One to One

pgr_edmondsKarp(Edges SQL, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

https://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://docs.pgrouting.org/3.0/en/pgr_edmondsKarp.html
https://docs.pgrouting.org/2.6/en/pgr_edmondsKarp.html
https://docs.pgrouting.org/2.5/en/pgr_edmondsKarp.html
https://docs.pgrouting.org/2.4/en/pgr_maxFlowEdmondsKarp.html
https://docs.pgrouting.org/2.3/en/src/max_flow/doc/pgr_maxFlowEdmondsKarp.html

Example:
From vertex \(6\) to vertex \(11\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, 11
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 5 | 10 | 100 | 30
 2 | 8 | 6 | 5 | 100 | 30
 3 | 11 | 6 | 11 | 130 | 0
 4 | 12 | 10 | 11 | 100 | 0
(4 rows)

One to Many

pgr_edmondsKarp(Edges SQL, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertex \(6\) to vertices \(\{1, 3, 11\}\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, ARRAY[1, 3, 11]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 2 | 1 | 50 | 80
 2 | 3 | 4 | 3 | 80 | 50
 3 | 4 | 5 | 2 | 50 | 0
 4 | 10 | 5 | 10 | 80 | 50
 5 | 8 | 6 | 5 | 130 | 0
 6 | 9 | 6 | 9 | 80 | 50
 7 | 11 | 6 | 11 | 130 | 0
 8 | 16 | 9 | 4 | 80 | 0
 9 | 12 | 10 | 11 | 80 | 20
(9 rows)

Many to One

pgr_edmondsKarp(Edges SQL, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertices \(\{6, 8, 12\}\) to vertex \(11\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], 11
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 5 | 10 | 100 | 30
 2 | 8 | 6 | 5 | 100 | 30
 3 | 11 | 6 | 11 | 130 | 0
 4 | 12 | 10 | 11 | 100 | 0
(4 rows)

Many to Many

pgr_edmondsKarp(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertices \(\{6, 8, 12\}\) to vertices \(\{1, 3, 11\}\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 2 | 1 | 50 | 80
 2 | 3 | 4 | 3 | 80 | 50
 3 | 4 | 5 | 2 | 50 | 0
 4 | 10 | 5 | 10 | 100 | 30
 5 | 8 | 6 | 5 | 130 | 0
 6 | 9 | 6 | 9 | 80 | 50
 7 | 11 | 6 | 11 | 130 | 0
 8 | 7 | 8 | 5 | 20 | 30
 9 | 16 | 9 | 4 | 80 | 0
 10 | 12 | 10 | 11 | 100 | 0
(10 rows)

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

Inner query

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part
of the graph.

reverse_capacity ANY-INTEGER -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part
of the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

Result Columns

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
start_vid BIGINT Identifier of the first end point vertex of the edge.
end_vid BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (start_vid, end_vid).

residual_capacity BIGINT Residual capacity of the edge in the direction (start_vid,
end_vid).

Column Type Description

See Also

Flow - Family of functions, pgr_boykovKolmogorov, pgr_pushRelabel
https://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html
https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

Indices and tables

Index
Search Page

pgr_pushRelabel

pgr_pushRelabel — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push
Relabel Algorithm.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.5.0
Renamed from pgr_maxFlowPushRelabel

Proposed function
Version 2.3.0

New Experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

The main characteristics are:

The graph is directed.
Process is done only on edges with positive capacities.
When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

There is no flow when a source is the same as a target.
Any duplicated value in the source(s) or target(s) are ignored.
Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.
Creates a super source and edges to all the source(s), and a super target and the edges from all the targets(s).
The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the
same parameters and can be calculated:

By aggregation of the outgoing flow from the sources
By aggregation of the incoming flow to the targets

Running time: \(O(V ^ 3)\)

Signatures

Summary

https://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html
https://en.wikipedia.org/wiki/Edmonds%25E2%2580%2593Karp_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://docs.pgrouting.org/3.0/en/pgr_pushRelabel.html
https://docs.pgrouting.org/2.6/en/pgr_pushRelabel.html
https://docs.pgrouting.org/2.5/en/pgr_pushRelabel.html
https://docs.pgrouting.org/2.4/en/pgr_maxFlowPushRelabel.html
https://docs.pgrouting.org/2.3/en/src/max_flow/doc/pgr_maxFlowPushRelabel.html

pgr_pushRelabel(Edges SQL, source, target)
pgr_pushRelabel(Edges SQL, sources, target)
pgr_pushRelabel(Edges SQL, source, targets)
pgr_pushRelabel(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

One to One

pgr_pushRelabel(Edges SQL, source, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertex \(6\) to vertex \(11\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, 11
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 5 | 10 | 100 | 30
 2 | 8 | 6 | 5 | 100 | 30
 3 | 11 | 6 | 11 | 130 | 0
 4 | 12 | 10 | 11 | 100 | 0
(4 rows)

One to Many

Calculates the flow on the graph edges that maximizes the flow from the source to all of the targets.

pgr_pushRelabel(Edges SQL, source, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertex \(6\) to vertices \(\{11, 1, 13\}\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , 6, ARRAY[11, 1, 13]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 2 | 1 | 130 | 0
 2 | 2 | 3 | 2 | 80 | 20
 3 | 3 | 4 | 3 | 80 | 50
 4 | 4 | 5 | 2 | 50 | 0
 5 | 7 | 5 | 8 | 50 | 80
 6 | 10 | 5 | 10 | 80 | 50
 7 | 8 | 6 | 5 | 130 | 0
 8 | 9 | 6 | 9 | 80 | 50
 9 | 11 | 6 | 11 | 130 | 0
 10 | 6 | 7 | 8 | 50 | 0
 11 | 6 | 8 | 7 | 50 | 50
 12 | 7 | 8 | 5 | 50 | 0
 13 | 16 | 9 | 4 | 80 | 0
 14 | 12 | 10 | 11 | 80 | 20
(14 rows)

Many to One

pgr_pushRelabel(Edges SQL, sources, target)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertices \(\{6, 8, 12\}\) to vertex \(11\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], 11
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 5 | 10 | 100 | 30
 2 | 8 | 6 | 5 | 100 | 30
 3 | 11 | 6 | 11 | 130 | 0
 4 | 12 | 10 | 11 | 100 | 0
(4 rows)

Many to Many

pgr_pushRelabel(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, start_vid, end_vid, flow, residual_capacity)
OR EMPTY SET

Example:
From vertices \(\{6, 8, 12\}\) to vertices \(\{1, 3, 11\}\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id,
 source,
 target,
 capacity,
 reverse_capacity
 FROM edge_table'
 , ARRAY[6, 8, 12], ARRAY[1, 3, 11]
);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 2 | 1 | 50 | 80
 2 | 3 | 4 | 3 | 80 | 50
 3 | 4 | 5 | 2 | 50 | 0
 4 | 10 | 5 | 10 | 100 | 30
 5 | 8 | 6 | 5 | 130 | 0
 6 | 9 | 6 | 9 | 30 | 100
 7 | 11 | 6 | 11 | 130 | 0
 8 | 7 | 8 | 5 | 20 | 30
 9 | 16 | 9 | 4 | 80 | 0
 10 | 12 | 10 | 11 | 100 | 0
 11 | 15 | 12 | 9 | 50 | 0
(11 rows)

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

Inner query

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part
of the graph.

reverse_capacity ANY-INTEGER -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part
of the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

Result Columns

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
start_vid BIGINT Identifier of the first end point vertex of the edge.
end_vid BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (start_vid, end_vid).
residual_capacity BIGINT Residual capacity of the edge in the direction (start_vid,

end_vid).

See Also

Flow - Family of functions, pgr_boykovKolmogorov, pgr_edmondsKarp
https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

Index
Search Page

pgr_edgeDisjointPaths

pgr_edgeDisjointPaths — Calculates edge disjoint paths between two groups of vertices.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.5.0
Proposed function

Version 2.3.0
New Experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow algorithms to calculate
the paths.

The main characterics are:
Calculates the edge disjoint paths between any two groups of vertices.
Returns EMPTY SET when source and destination are the same, or cannot be reached.
The graph can be directed or undirected.
One to many, many to one, many to many versions are also supported.

https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://en.wikipedia.org/wiki/Push%25E2%2580%2593relabel_maximum_flow_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html
https://docs.pgrouting.org/3.0/en/pgr_edgeDisjointPaths.html
https://docs.pgrouting.org/2.6/en/pgr_edgeDisjointPaths.html
https://docs.pgrouting.org/2.5/en/pgr_edgeDisjointPaths.html
https://docs.pgrouting.org/2.4/en/pgr_edgeDisjointPaths.html
https://docs.pgrouting.org/2.3/en/src/max_flow/doc/pgr_edgeDisjointPaths.html

Uses pgr_boykovKolmogorov to calculate the paths.

Signatures

Summary

pgr_edgeDisjointPaths(Edges SQL, start_vid, end_vid)
pgr_edgeDisjointPaths(Edges SQL, start_vid, end_vid [, directed])
pgr_edgeDisjointPaths(Edges SQL, start_vid, end_vids [, directed])
pgr_edgeDisjointPaths(Edges SQL, start_vids, end_vid [, directed])
pgr_edgeDisjointPaths(Edges SQL, start_vids, end_vids [, directed])

RETURNS SET OF (seq, path_id, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)
OR EMPTY SET

Using defaults

pgr_edgeDisjointPaths(Edges SQL, start_vid, end_vid)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(3\) to vertex \(5\) on a directed graph

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 3, 5
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 3 | 2 | 1 | 0
 2 | 1 | 2 | 2 | 4 | 1 | 1
 3 | 1 | 3 | 5 | -1 | 0 | 2
 4 | 2 | 1 | 3 | 5 | 1 | 0
 5 | 2 | 2 | 6 | 8 | 1 | 1
 6 | 2 | 3 | 5 | -1 | 0 | 2
(6 rows)

One to One

pgr_edgeDisjointPaths(Edges SQL, start_vid, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(3\) to vertex \(5\) on an undirected graph

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 3, 5,
 directed := false
);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 3 | 2 | 1 | 0
 2 | 1 | 2 | 2 | 4 | 1 | 1
 3 | 1 | 3 | 5 | -1 | 0 | 2
 4 | 2 | 1 | 3 | 3 | -1 | 0
 5 | 2 | 2 | 4 | 16 | 1 | -1
 6 | 2 | 3 | 9 | 9 | 1 | 0
 7 | 2 | 4 | 6 | 8 | 1 | 1
 8 | 2 | 5 | 5 | -1 | 0 | 2
 9 | 3 | 1 | 3 | 5 | 1 | 0
 10 | 3 | 2 | 6 | 11 | 1 | 1
 11 | 3 | 3 | 11 | 12 | -1 | 2
 12 | 3 | 4 | 10 | 10 | 1 | 1
 13 | 3 | 5 | 5 | -1 | 0 | 2
(13 rows)

One to Many

pgr_edgeDisjointPaths(Edges SQL, start_vid, end_vids, directed)
RETURNS SET OF (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(3\) to vertices \(\{4, 5, 10\}\) on a directed graph

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 3, ARRAY[4, 5, 10]
);
 seq | path_id | path_seq | end_vid | node | edge | cost | agg_cost
-----+---------+----------+---------+------+------+------+----------
 1 | 1 | 1 | 4 | 3 | 5 | 1 | 0
 2 | 1 | 2 | 4 | 6 | 9 | 1 | 1
 3 | 1 | 3 | 4 | 9 | 16 | 1 | 2
 4 | 1 | 4 | 4 | 4 | -1 | 0 | 3
 5 | 2 | 1 | 5 | 3 | 2 | 1 | 0
 6 | 2 | 2 | 5 | 2 | 4 | 1 | 1
 7 | 2 | 3 | 5 | 5 | -1 | 0 | 2
 8 | 3 | 1 | 5 | 3 | 5 | 1 | 0
 9 | 3 | 2 | 5 | 6 | 8 | 1 | 1
 10 | 3 | 3 | 5 | 5 | -1 | 0 | 2
 11 | 4 | 1 | 10 | 3 | 2 | 1 | 0
 12 | 4 | 2 | 10 | 2 | 4 | 1 | 1
 13 | 4 | 3 | 10 | 5 | 10 | 1 | 2
 14 | 4 | 4 | 10 | 10 | -1 | 0 | 3
(14 rows)

Many to One

pgr_edgeDisjointPaths(Edges SQL, start_vids, end_vid, directed)
RETURNS SET OF (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{3, 6\}\) to vertex \(5\) on a directed graph

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[3, 6], 5
);
 seq | path_id | path_seq | start_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+------+------+------+----------
 1 | 1 | 1 | 0 | 3 | 2 | 1 | 0
 2 | 1 | 2 | 0 | 2 | 4 | 1 | 1
 3 | 1 | 3 | 0 | 5 | -1 | 0 | 2
 4 | 2 | 1 | 1 | 3 | 5 | 1 | 0
 5 | 2 | 2 | 1 | 6 | 8 | 1 | 1
 6 | 2 | 3 | 1 | 5 | -1 | 0 | 2
 7 | 3 | 1 | 2 | 6 | 8 | 1 | 0
 8 | 3 | 2 | 2 | 5 | -1 | 0 | 1
 9 | 4 | 1 | 3 | 6 | 9 | 1 | 0
 10 | 4 | 2 | 3 | 9 | 16 | 1 | 1
 11 | 4 | 3 | 3 | 4 | 3 | 1 | 2
 12 | 4 | 4 | 3 | 3 | 2 | 1 | 3
 13 | 4 | 5 | 3 | 2 | 4 | 1 | 4
 14 | 4 | 6 | 3 | 5 | -1 | 0 | 5
(14 rows)

Many to Many

pgr_edgeDisjointPaths(Edges SQL, start_vids, end_vids, directed)
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{3, 6\}\) to vertices \(\{4, 5, 10\}\) on a directed graph

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[3, 6], ARRAY[4, 5, 10]
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 0 | 4 | 3 | 5 | 1 | 0
 2 | 1 | 2 | 0 | 4 | 6 | 9 | 1 | 1
 3 | 1 | 3 | 0 | 4 | 9 | 16 | 1 | 2
 4 | 1 | 4 | 0 | 4 | 4 | -1 | 0 | 3
 5 | 2 | 1 | 1 | 5 | 3 | 2 | 1 | 0
 6 | 2 | 2 | 1 | 5 | 2 | 4 | 1 | 1
 7 | 2 | 3 | 1 | 5 | 5 | -1 | 0 | 2
 8 | 3 | 1 | 2 | 5 | 3 | 5 | 1 | 0
 9 | 3 | 2 | 2 | 5 | 6 | 8 | 1 | 1
 10 | 3 | 3 | 2 | 5 | 5 | -1 | 0 | 2
 11 | 4 | 1 | 3 | 10 | 3 | 2 | 1 | 0
 12 | 4 | 2 | 3 | 10 | 2 | 4 | 1 | 1
 13 | 4 | 3 | 3 | 10 | 5 | 10 | 1 | 2
 14 | 4 | 4 | 3 | 10 | 10 | -1 | 0 | 3
 15 | 5 | 1 | 4 | 4 | 6 | 9 | 1 | 0
 16 | 5 | 2 | 4 | 4 | 9 | 16 | 1 | 1
 17 | 5 | 3 | 4 | 4 | 4 | -1 | 0 | 2
 18 | 6 | 1 | 5 | 5 | 6 | 8 | 1 | 0
 19 | 6 | 2 | 5 | 5 | 5 | -1 | 0 | 1
 20 | 7 | 1 | 6 | 5 | 6 | 9 | 1 | 0
 21 | 7 | 2 | 6 | 5 | 9 | 16 | 1 | 1
 22 | 7 | 3 | 6 | 5 | 4 | 3 | 1 | 2
 23 | 7 | 4 | 6 | 5 | 3 | 2 | 1 | 3
 24 | 7 | 5 | 6 | 5 | 2 | 4 | 1 | 4
 25 | 7 | 6 | 6 | 5 | 5 | -1 | 0 | 5
 26 | 8 | 1 | 7 | 10 | 6 | 8 | 1 | 0
 27 | 8 | 2 | 7 | 10 | 5 | 10 | 1 | 1
 28 | 8 | 3 | 7 | 10 | 10 | -1 | 0 | 2
(28 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.

path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Column Type Description

See Also

Flow - Family of functions

Indices and tables

Index
Search Page

pgr_maxCardinalityMatch

pgr_maxCardinalityMatch — Calculates a maximum cardinality matching in a graph.

Boost Graph Inside

Availability

Version 3.0.0
Official function

Version 2.5.0
Renamed from pgr_maximumCardinalityMatching

Proposed function
Version 2.3.0

New Experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

The main characteristics are:

A matching or independent edge set in a graph is a set of edges without common vertices.
A maximum matching is a matching that contains the largest possible number of edges.

There may be many maximum matchings.
Calculates one possible maximum cardinality matching in a graph.

The graph can be directed or undirected.
Running time: \(O(E*V * \alpha(E,V))\)

\(\alpha(E,V)\) is the inverse of the Ackermann function.

Signatures

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/maximum_matching.html
https://docs.pgrouting.org/3.0/en/pgr_maxCardinalityMatch.html
https://docs.pgrouting.org/2.6/en/pgr_maxCardinalityMatch.html
https://docs.pgrouting.org/2.5/en/pgr_maxCardinalityMatch.html
https://docs.pgrouting.org/2.4/en/pgr_maximumCardinalityMatching.html
https://docs.pgrouting.org/2.3/en/src/max_flow/doc/pgr_maximumCardinalityMatching.html#pgr-maximumcardinalitymatching
https://en.wikipedia.org/wiki/Ackermann_function

pgr_maxCardinalityMatch(Edges SQL [, directed])

RETURNS SET OF (seq, edge_id, source, target)
OR EMPTY SET

Example:
For an undirected graph

SELECT * FROM pgr_maxCardinalityMatch(
 'SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edge_table',
 directed := false
);
 seq | edge | source | target
-----+------+--------+--------
 1 | 1 | 1 | 2
 2 | 3 | 3 | 4
 3 | 9 | 6 | 9
 4 | 6 | 7 | 8
 5 | 14 | 10 | 13
 6 | 13 | 11 | 12
 7 | 17 | 14 | 15
 8 | 18 | 16 | 17
(8 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT SQL query as described above.
directed BOOLEAN true Determines the type of the graph. - When true Graph is considered Directed - When false the

graph is considered as Undirected.

Inner query

Edges SQL:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
going ANY-NUMERIC A positive value represents the existence of the edge (source,

target).
coming ANY-NUMERIC A positive value represents the existence of the edge (target,

source).

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERIC:
SMALLINT, INTEGER, BIGINT, REAL FLOAT

Result Columns

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query.
source BIGINT Identifier of the first end point of the edge.

target BIGINT Identifier of the second end point of the
edge.

See Also

Flow - Family of functions
https://www.boost.org/libs/graph/doc/maximum_matching.html
https://en.wikipedia.org/wiki/Matching_%28graph_theory%29
https://en.wikipedia.org/wiki/Ackermann_function

Indices and tables

https://www.boost.org/libs/graph/doc/maximum_matching.html
https://en.wikipedia.org/wiki/Matching_%2528graph_theory%2529
https://en.wikipedia.org/wiki/Ackermann_function

Index
Search Page

pgr_maxFlowMinCost - Experimental

pgr_maxFlowMinCost — Calculates the flow on the graph edges that maximizes the flow and minimizes the cost from the sources to
the targets.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)

Description

The main characteristics are:

The graph is directed.
Process is done only on edges with positive capacities.
When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

There is no flow when a source is the same as a target.
Any duplicated value in the source(s) or target(s) are ignored.
Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.
Creates a super source and edges to all the source(s), and a super target and the edges from all the targets(s).
The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the
same parameters and can be calculated:

By aggregation of the outgoing flow from the sources
By aggregation of the incoming flow to the targets

TODO check which statement is true:
The cost value of all input edges must be nonnegative.
Process is done when the cost value of all input edges is nonnegative.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
https://docs.pgrouting.org/3.0/en/pgr_maxFlowMinCost.html

Process is done on edges with nonnegative cost.
Running time: \(O(U * (E + V * logV))\)

where \(U\) is the value of the max flow.
\(U\) is upper bound on number of iterations. In many real world cases number of iterations is much smaller than \(U\).

Signatures

Summary

pgr_maxFlowMinCost(Edges SQL, source, target)
pgr_maxFlowMinCost(Edges SQL, sources, target)
pgr_maxFlowMinCost(Edges SQL, source, targets)
pgr_maxFlowMinCost(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)
OR EMPTY SET

One to One

pgr_maxFlowMinCost(Edges SQL, source, target)
RETURNS SET OF (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\)

SELECT * FROM pgr_MaxFlowMinCost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 4 | 2 | 5 | 80 | 20 | 80 | 80
 2 | 3 | 4 | 3 | 80 | 50 | 80 | 160
 3 | 8 | 5 | 6 | 80 | 20 | 80 | 240
 4 | 9 | 6 | 9 | 80 | 50 | 80 | 320
 5 | 16 | 9 | 4 | 80 | 0 | 80 | 400
(5 rows)

One to Many

pgr_maxFlowMinCost(Edges SQL, source, targets)
RETURNS SET OF (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(13\) to vertices \(\{7, 1, 4\}\)

SELECT * FROM pgr_MaxFlowMinCost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 13, ARRAY[7, 1, 4]
);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 1 | 2 | 1 | 50 | 80 | 50 | 50
 2 | 4 | 5 | 2 | 50 | 0 | 50 | 100
 3 | 16 | 9 | 4 | 50 | 30 | 50 | 150
 4 | 10 | 10 | 5 | 50 | 0 | 50 | 200
 5 | 12 | 10 | 11 | 50 | 50 | 50 | 250
 6 | 13 | 11 | 12 | 50 | 50 | 50 | 300
 7 | 15 | 12 | 9 | 50 | 0 | 50 | 350
 8 | 14 | 13 | 10 | 100 | 30 | 100 | 450
(8 rows)

Many to One

pgr_maxFlowMinCost(Edges SQL, sources, target)
RETURNS SET OF (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{1, 7, 14\}\) to vertex \(12\)

SELECT * FROM pgr_MaxFlowMinCost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 ARRAY[1, 7, 14], 12
);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 1 | 1 | 2 | 80 | 0 | 80 | 80
 2 | 4 | 2 | 5 | 80 | 20 | 80 | 160
 3 | 8 | 5 | 6 | 100 | 0 | 100 | 260
 4 | 10 | 5 | 10 | 30 | 100 | 30 | 290
 5 | 9 | 6 | 9 | 50 | 80 | 50 | 340
 6 | 11 | 6 | 11 | 50 | 80 | 50 | 390
 7 | 6 | 7 | 8 | 50 | 0 | 50 | 440
 8 | 7 | 8 | 5 | 50 | 0 | 50 | 490
 9 | 15 | 9 | 12 | 50 | 30 | 50 | 540
 10 | 12 | 10 | 11 | 30 | 70 | 30 | 570
 11 | 13 | 11 | 12 | 80 | 20 | 80 | 650
(11 rows)

Many to Many

pgr_maxFlowMinCost(Edges SQL, sources, targets)
RETURNS SET OF (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{7, 13\}\) to vertices \(\{3, 9\}\)

SELECT * FROM pgr_MaxFlowMinCost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 ARRAY[7, 13], ARRAY[3, 9]
);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 8 | 5 | 6 | 100 | 0 | 100 | 100
 2 | 9 | 6 | 9 | 100 | 30 | 100 | 200
 3 | 6 | 7 | 8 | 50 | 0 | 50 | 250
 4 | 7 | 8 | 5 | 50 | 0 | 50 | 300
 5 | 10 | 10 | 5 | 50 | 0 | 50 | 350
 6 | 12 | 10 | 11 | 50 | 50 | 50 | 400
 7 | 13 | 11 | 12 | 50 | 50 | 50 | 450
 8 | 15 | 12 | 9 | 50 | 0 | 50 | 500
 9 | 14 | 13 | 10 | 100 | 30 | 100 | 600
(9 rows)

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

Inner query

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Capacity of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not
part of the graph.

reverse_capacity ANY-INTEGER -1 Capacity of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not
part of the graph.

cost ANY-NUMERICAL Weight of the edge (source, target) if it exists.
reverse_cost ANY-NUMERICAL 0 Weight of the edge (target, source) if it exists.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (source, target).
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).

cost FLOAT The cost of sending this flow through the edge in the direction (source,
target).

agg_cost FLOAT The aggregate cost.

See Also

Flow - Family of functions
https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html

Indices and tables

Index
Search Page

pgr_maxFlowMinCost_Cost - Experimental

pgr_maxFlowMinCost_Cost — Calculates the minmum cost maximum flow in a directed graph from the source(s) to the targets(s).

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.

https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)

Description

The main characteristics are:

The graph is directed.
The cost value of all input edges must be nonnegative.
When the maximum flow is 0 then there is no flow and 0 is returned.

There is no flow when a source is the same as a target.
Any duplicated value in the source(s) or target(s) are ignored.
Uses the pgr_maxFlowMinCost algorithm.

Running time: \(O(U * (E + V * logV))\), where \(U\) is the value of the max flow. \(U\) is upper bound on number of
iteration. In many real world cases number of iterations is much smaller than \(U\).

Signatures

Summary

pgr_maxFlowMinCost_Cost(Edges SQL, source, target)
pgr_maxFlowMinCost_Cost(Edges SQL, sources, target)
pgr_maxFlowMinCost_Cost(Edges SQL, source, targets)
pgr_maxFlowMinCost_Cost(Edges SQL, sources, targets)
RETURNS FLOAT

One to One

pgr_maxFlowMinCost_Cost(Edges SQL, source, target)
RETURNS FLOAT

Example:
From vertex \(2\) to vertex \(3\)

SELECT * FROM pgr_MaxFlowMinCost_Cost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 2, 3
);
 pgr_maxflowmincost_cost

 400
(1 row)

One to Many

pgr_maxFlowMinCost_Cost(Edges SQL, source, targets)
RETURNS FLOAT

Example:
From vertex \(13\) to vertices \(\{7, 1, 4\}\)

https://docs.pgrouting.org/3.0/en/pgr_maxFlowMinCost_Cost.html

SELECT * FROM pgr_MaxFlowMinCost_Cost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 13, ARRAY[7, 1, 4]
);
 pgr_maxflowmincost_cost

 450
(1 row)

Many to One

pgr_maxFlowMinCost_Cost(Edges SQL, sources, target)
RETURNS FLOAT

Example:
From vertices \(\{1, 7, 14\}\) to vertex \(12\)

SELECT * FROM pgr_MaxFlowMinCost_Cost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 ARRAY[1, 7, 14], 12
);
 pgr_maxflowmincost_cost

 650
(1 row)

Many to Many

pgr_maxFlowMinCost_Cost(Edges SQL, sources, targets)
RETURNS FLOAT

Example:
From vertices \(\{7, 13\}\) to vertices \(\{3, 9\}\)

SELECT * FROM pgr_MaxFlowMinCost_Cost(
 'SELECT id,
 source, target,
 capacity, reverse_capacity,
 cost, reverse_cost FROM edge_table',
 ARRAY[7, 13], ARRAY[3, 9]
);
 pgr_maxflowmincost_cost

 600
(1 row)

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

Inner query

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.

capacity ANY-INTEGER Capacity of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not
part of the graph.

reverse_capacity ANY-INTEGER -1 Capacity of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not
part of the graph.

cost ANY-NUMERICAL Weight of the edge (source, target) if it exists.
reverse_cost ANY-NUMERICAL 0 Weight of the edge (target, source) if it exists.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

Type Description
FLOAT Minimum Cost Maximum Flow possible from the source(s) to the

target(s)

See Also

Flow - Family of functions
https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3

Flow Functions General Information

The main characteristics are:

The graph is directed.
Process is done only on edges with positive capacities.
When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

There is no flow when a source is the same as a target.
Any duplicated value in the source(s) or target(s) are ignored.
Calculates the flow/residual capacity for each edge. In the output

Edges with zero flow are omitted.
Creates a super source and edges to all the source(s), and a super target and the edges from all the targets(s).
The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the
same parameters and can be calculated:

By aggregation of the outgoing flow from the sources
By aggregation of the incoming flow to the targets

pgr_maxFlow is the maximum Flow and that maximum is guaranteed to be the same on the functions pgr_pushRelabel,
pgr_edmondsKarp, pgr_boykovKolmogorov, but the actual flow through each edge may vary.

Parameters

Column Type Default Description
Edges SQL TEXT The edges SQL query as described in Inner Query.
source BIGINT Identifier of the starting vertex of the flow.
sources ARRAY[BIGINT] Array of identifiers of the starting vertices of the

flow.
target BIGINT Identifier of the ending vertex of the flow.
targets ARRAY[BIGINT] Array of identifiers of the ending vertices of the flow.

https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/flow-family.html
https://docs.pgrouting.org/2.6/en/flow-family.html
https://docs.pgrouting.org/2.5/en/flow-family.html
https://docs.pgrouting.org/2.4/en/flow-family.html
https://docs.pgrouting.org/2.3/en/src/max_flow/doc/maxFlow.html

Inner query

For pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov :

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part
of the graph.

reverse_capacity ANY-INTEGER -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part
of the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT

For pgr_maxFlowMinCost - Experimental and pgr_maxFlowMinCost_Cost - Experimental:

Edges SQL:
an SQL query of a directed graph of capacities, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
capacity ANY-INTEGER Capacity of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not
part of the graph.

reverse_capacity ANY-INTEGER -1 Capacity of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not
part of the graph.

cost ANY-NUMERICAL Weight of the edge (source, target) if it exists.
reverse_cost ANY-NUMERICAL 0 Weight of the edge (target, source) if it exists.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

For pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov :

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
start_vid BIGINT Identifier of the first end point vertex of the edge.
end_vid BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (start_vid, end_vid).
residual_capacity BIGINT Residual capacity of the edge in the direction (start_vid,

end_vid).

For pgr_maxFlowMinCost - Experimental

Column Type Description

seq INT Sequential value starting from 1.
edge BIGINT Identifier of the edge in the original query(edges_sql).
source BIGINT Identifier of the first end point vertex of the edge.
target BIGINT Identifier of the second end point vertex of the edge.
flow BIGINT Flow through the edge in the direction (source, target).
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).
cost FLOAT The cost of sending this flow through the edge in the direction (source,

target).
agg_cost FLOAT The aggregate cost.

Column Type Description

Adcanced Documentation

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not exceed the
capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except for source which only has
outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow through each
edge may vary. Given the following query:

pgr_maxFlow \((edges_sql, source_vertex, sink_vertex)\)

where \(edges_sql = \{(id_i, source_i, target_i, capacity_i, reverse_capacity_i)\}\)

Graph definition

The weighted directed graph, \(G(V,E)\), is defined as:

the set of vertices \(V\)
\(source_vertex \cup sink_vertex \bigcup source_i \bigcup target_i\)

the set of edges \(E\)
\(E = \begin{cases} \text{ } \{(source_i, target_i, capacity_i) \text{ when } capacity > 0 \} & \quad \text{ if }
reverse_capacity = \varnothing \\ \text{ } & \quad \text{ } \\ \{(source_i, target_i, capacity_i) \text{ when } capacity >
0 \} & \text{ } \\ \cup \{(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0)\} & \quad \text{
if } reverse_capacity \neq \varnothing \\ \end{cases}\)

Maximum flow problem

Given:

\(G(V,E)\)
\(source_vertex \in V\) the source vertex
\(sink_vertex \in V\) the sink vertex

Then:

\(pgr_maxFlow(edges_sql, source, sink) = \boldsymbol{\Phi}\)
\(\boldsymbol{\Phi} = {(id_i, edge_id_i, source_i, target_i, flow_i, residual_capacity_i)}\)

Where:

\(\boldsymbol{\Phi}\) is a subset of the original edges with their residual capacity and flow. The maximum flow through the
graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In particular:

\(id_i = i\)
\(edge_id = id_i\) in edges_sql
\(residual_capacity_i = capacity_i - flow_i\)

See Also

https://en.wikipedia.org/wiki/Maximum_flow_problem

Indices and tables

Index
Search Page

Kruskal - Family of functions

https://en.wikipedia.org/wiki/Maximum_flow_problem
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_kruskal
pgr_kruskalBFS
pgr_kruskalDD
pgr_kruskalDFS

Boost Graph Inside

pgr_kruskal

pgr_kruskal — Returns the minimum spanning tree of graph using Kruskal algorithm.

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

This algorithm finds the minimum spanning forest in a possibly disconnected graph using Kruskal’s algorithm.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
The total weight of all the edges in the tree or forest is minimized.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Kruskal’s running time: \(O(E * log E)\)

EMPTY SET is returned when there are no edges in the graph.

Signatures

Summary

pgr_kruskal(edges_sql)

RETURNS SET OF (seq, edge, cost)
OR EMPTY SET

Example:
Minimum Spanning Forest

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_kruskal.html

SELECT * FROM pgr_kruskal(
 'SELECT id, source, target, cost, reverse_cost
 FROM edge_table ORDER BY id'
) ORDER BY edge;
 edge | cost
------+------
 1 | 1
 2 | 1
 3 | 1
 6 | 1
 7 | 1
 10 | 1
 11 | 1
 12 | 1
 13 | 1
 14 | 1
 15 | 1
 16 | 1
 17 | 1
 18 | 1
(14 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner

query.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (edge, cost)

Column Type Description
edge BIGINT Identifier of the edge.
cost FLOAT Cost to traverse the

edge.

See Also

Spanning Tree - Category
Kruskal - Family of functions
The queries use the Sample Data network.
Boost: Kruskal’s algorithm documentation
Wikipedia: Kruskal’s algorithm

Indices and tables

Index
Search Page

pgr_kruskalBFS

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://en.wikipedia.org/wiki/Kruskal's_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_kruskalBFS — Prim algorithm for Minimum Spanning Tree with Depth First Search ordering.

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

Visits and extracts the nodes information in Breath First Search ordering of the Minimum Spanning Tree created using Prims’s
algorithm.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
The total weight of all the edges in the tree or forest is minimized.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Kruskal’s running time: \(O(E * log E)\)

Returned tree nodes from a root vertex are on Breath First Search order
Breath First Search Running time: \(O(E + V)\)

Signatures

pgr_kruskalBFS(Edges SQL, Root vid [, max_depth])
pgr_kruskalBFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalBFS(Edges SQL, Root vid [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree having as root vertex \(2\)

SELECT * FROM pgr_kruskalBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 3 | 2 | 9 | 16 | 1 | 3
 6 | 4 | 2 | 12 | 15 | 1 | 4
 7 | 5 | 2 | 11 | 13 | 1 | 5
 8 | 6 | 2 | 6 | 11 | 1 | 6
 9 | 6 | 2 | 10 | 12 | 1 | 6
 10 | 7 | 2 | 5 | 10 | 1 | 7
 11 | 7 | 2 | 13 | 14 | 1 | 7
 12 | 8 | 2 | 8 | 7 | 1 | 8
 13 | 9 | 2 | 7 | 6 | 1 | 9
(13 rows)

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_kruskalBFS.html

Multiple vertices

pgr_kruskalBFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertices \(\{13, 2\}\) with \(depth <= 3\)

SELECT * FROM pgr_kruskalBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[13,2], max_depth := 3
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 3 | 2 | 9 | 16 | 1 | 3
 6 | 0 | 13 | 13 | -1 | 0 | 0
 7 | 1 | 13 | 10 | 14 | 1 | 1
 8 | 2 | 13 | 5 | 10 | 1 | 2
 9 | 2 | 13 | 11 | 12 | 1 | 2
 10 | 3 | 13 | 8 | 7 | 1 | 3
 11 | 3 | 13 | 6 | 11 | 1 | 3
 12 | 3 | 13 | 12 | 13 | 1 | 3
(12 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single vertex
When value is \(0\) then gets the spanning forest starting in aleatory nodes for each
tree in the forest.

Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple vertices
\(0\) values are ignored
For optimization purposes, any duplicated value is ignored.

Optional Parameters

Parameter Type Default Description
max_depth BIGINT \(9223372036854775807\) Upper limit for depth of node in the tree

When value is Negative then throws
error

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.
start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category
Kruskal - Family of functions
The queries use the Sample Data network.
Boost: Kruskal’s algorithm documentation
Wikipedia: Kruskal’s algorithm

Indices and tables

Index
Search Page

pgr_kruskalDD

pgr_kruskalDD — Catchament nodes using Kruskal’s algorithm.

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

Using Kruskal’s algorithm, extracts the nodes that have aggregate costs less than or equal to the value Distance from a root
vertex (or vertices) within the calculated minimum spanning tree.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
The total weight of all the edges in the tree or forest is minimized.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Kruskal’s running time: \(O(E * log E)\)

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://en.wikipedia.org/wiki/Kruskal's_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_kruskalDD.html

Returned tree nodes from a root vertex are on Depth First Search order.
Depth First Search running time: \(O(E + V)\)

Signatures

pgr_kruskalDD(edges_sql, root_vid, distance)
pgr_kruskalDD(edges_sql, root_vids, distance)

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalDD(edges_sql, root_vid, distance)

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertex \(2\) with \(agg_cost <= 3.5\)

SELECT * FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2, 3.5
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 3 | 2 | 9 | 16 | 1 | 3
(5 rows)

Multiple vertices

pgr_kruskalDD(edges_sql, root_vids, distance)

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertices \(\{13, 2\}\) with \(agg_cost <= 3.5\);

SELECT * FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[13,2],
 3.5
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 3 | 2 | 9 | 16 | 1 | 3
 6 | 0 | 13 | 13 | -1 | 0 | 0
 7 | 1 | 13 | 10 | 14 | 1 | 1
 8 | 2 | 13 | 5 | 10 | 1 | 2
 9 | 3 | 13 | 8 | 7 | 1 | 3
 10 | 2 | 13 | 11 | 12 | 1 | 2
 11 | 3 | 13 | 6 | 11 | 1 | 3
 12 | 3 | 13 | 12 | 13 | 1 | 3
(12 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single vertex
When \(0\) gets the spanning forest starting in aleatory nodes for each
tree.

Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple vertices
\(0\) values are ignored
For optimization purposes, any duplicated value is ignored.

Distance ANY-NUMERIC Upper limit for the inclusion of the node in the result.

When the value is Negative throws error

Parameter Type Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERIC:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.
start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category
Kruskal - Family of functions
The queries use the Sample Data network.
Boost: Kruskal’s algorithm documentation
Wikipedia: Kruskal’s algorithm

Indices and tables

Index
Search Page

pgr_kruskalDFS

pgr_kruskalDFS — Kruskal algorithm for Minimum Spanning Tree with Depth First Search ordering.

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://en.wikipedia.org/wiki/Kruskal's_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

Visits and extracts the nodes information in Depth First Search ordering of the Minimum Spanning Tree created using Kruskal’s
algorithm.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
The total weight of all the edges in the tree or forest is minimized.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Kruskal’s running time: \(O(E * log E)\)

Returned tree nodes from a root vertex are on Depth First Search order
Depth First Search Running time: \(O(E + V)\)

Signatures

pgr_kruskalDFS(Edges SQL, Root vid [, max_depth])
pgr_kruskalDFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalDFS(Edges SQL, Root vid [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertex \(2\)

SELECT * FROM pgr_kruskalDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 3 | 2 | 9 | 16 | 1 | 3
 6 | 4 | 2 | 12 | 15 | 1 | 4
 7 | 5 | 2 | 11 | 13 | 1 | 5
 8 | 6 | 2 | 6 | 11 | 1 | 6
 9 | 6 | 2 | 10 | 12 | 1 | 6
 10 | 7 | 2 | 5 | 10 | 1 | 7
 11 | 8 | 2 | 8 | 7 | 1 | 8
 12 | 9 | 2 | 7 | 6 | 1 | 9
 13 | 7 | 2 | 13 | 14 | 1 | 7
(13 rows)

Multiple vertices

https://www.boost.org/doc/libs/1_64_0/libs/graph/doc/kruskal_min_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_kruskalDFS.html

pgr_kruskalDFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertices \(\{13, 2\}\) with \(depth <= 3\)

SELECT * FROM pgr_kruskalDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[13,2], max_depth := 3
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 3 | 2 | 9 | 16 | 1 | 3
 6 | 0 | 13 | 13 | -1 | 0 | 0
 7 | 1 | 13 | 10 | 14 | 1 | 1
 8 | 2 | 13 | 5 | 10 | 1 | 2
 9 | 3 | 13 | 8 | 7 | 1 | 3
 10 | 2 | 13 | 11 | 12 | 1 | 2
 11 | 3 | 13 | 6 | 11 | 1 | 3
 12 | 3 | 13 | 12 | 13 | 1 | 3
(12 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single vertex
When value is \(0\) then gets the spanning forest starting in aleatory nodes for each
tree in the forest.

Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple vertices
\(0\) values are ignored
For optimization purposes, any duplicated value is ignored.

Optional Parameters

Parameter Type Default Description
max_depth BIGINT \(9223372036854775807\) Upper limit for depth of node in the tree

When value is Negative then throws
error

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.
start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category
Kruskal - Family of functions
The queries use the Sample Data network.
Boost: Kruskal’s algorithm documentation
Wikipedia: Kruskal’s algorithm

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0)

Description

Kruskal’s algorithm is a greedy minimum spanning tree algorithm that in each cycle finds and adds the edge of the least
possible weight that connects any two trees in the forest.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
The total weight of all the edges in the tree or forest is minimized.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Kruskal’s running time: \(O(E * log E)\)

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://en.wikipedia.org/wiki/Kruskal's_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/kruskal-family.html

SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also

Spanning Tree - Category
Boost: Kruskal’s algorithm documentation
Wikipedia: Kruskal’s algorithm

Indices and tables

Index
Search Page

Prim - Family of functions

pgr_prim
pgr_primBFS
pgr_primDD
pgr_primDFS

Boost Graph Inside

pgr_prim

pgr_prim — Minimum spanning forest of graph using Prim algorithm.

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

This algorithm finds the minimum spanning forest in a possibly disconnected graph using Prim’s algorithm.

The main characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Prim’s running time: \(O(E*log V)\)

EMPTY SET is returned when there are no edges in the graph.

Signatures

Summary

https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html
https://en.wikipedia.org/wiki/Kruskal's_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_prim.html

pgr_prim(edges_sql)

RETURNS SET OF (edge, cost)
OR EMPTY SET

Example:
Minimum Spanning Forest of a subgraph

SELECT edge, cost FROM pgr_prim(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table WHERE id < 14'
) ORDER BY edge;
 edge | cost
------+------
 1 | 1
 2 | 1
 3 | 1
 4 | 1
 5 | 1
 6 | 1
 7 | 1
 9 | 1
 10 | 1
 11 | 1
 13 | 1
(11 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner

query.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (edge, cost)

Column Type Description
edge BIGINT Identifier of the edge.
cost FLOAT Cost to traverse the

edge.

See Also

Spanning Tree - Category
Prim - Family of functions
The queries use the Sample Data network.
Boost: Prim’s algorithm documentation
Wikipedia: Prim’s algorithm

Indices and tables

https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://en.wikipedia.org/wiki/Prim%2527s_algorithm

Index
Search Page

pgr_primBFS

pgr_primBFS — Prim’s algorithm for Minimum Spanning Tree with Depth First Search ordering.

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

Visits and extracts the nodes information in Breath First Search ordering of the Minimum Spanning Tree created with Prims’s
algorithm.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Prim’s running time: \(O(E*log V)\)

Returned tree nodes from a root vertex are on Breath First Search order
Breath First Search Running time: \(O(E + V)\)

Signatures

pgr_primBFS(Edges SQL, Root vid [, max_depth])
pgr_primBFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_primBFS(Edges SQL, Root vid [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree having as root vertex \(2\)

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_primBFS.html

SELECT * FROM pgr_primBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 1 | 2 | 5 | 4 | 1 | 1
 5 | 2 | 2 | 4 | 3 | 1 | 2
 6 | 2 | 2 | 6 | 5 | 1 | 2
 7 | 2 | 2 | 8 | 7 | 1 | 2
 8 | 2 | 2 | 10 | 10 | 1 | 2
 9 | 3 | 2 | 9 | 9 | 1 | 3
 10 | 3 | 2 | 11 | 11 | 1 | 3
 11 | 3 | 2 | 7 | 6 | 1 | 3
 12 | 3 | 2 | 13 | 14 | 1 | 3
 13 | 4 | 2 | 12 | 13 | 1 | 4
(13 rows)

Multiple vertices

pgr_primBFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertices \(\{13, 2\}\) with \(depth <= 3\)

SELECT * FROM pgr_primBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[13,2], max_depth := 3
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 1 | 2 | 5 | 4 | 1 | 1
 5 | 2 | 2 | 4 | 3 | 1 | 2
 6 | 2 | 2 | 6 | 5 | 1 | 2
 7 | 2 | 2 | 8 | 7 | 1 | 2
 8 | 2 | 2 | 10 | 10 | 1 | 2
 9 | 3 | 2 | 9 | 9 | 1 | 3
 10 | 3 | 2 | 11 | 11 | 1 | 3
 11 | 3 | 2 | 7 | 6 | 1 | 3
 12 | 3 | 2 | 13 | 14 | 1 | 3
 13 | 0 | 13 | 13 | -1 | 0 | 0
 14 | 1 | 13 | 10 | 14 | 1 | 1
 15 | 2 | 13 | 5 | 10 | 1 | 2
 16 | 3 | 13 | 2 | 4 | 1 | 3
 17 | 3 | 13 | 8 | 7 | 1 | 3
(17 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single vertex
When value is \(0\) then gets the spanning forest starting in aleatory nodes for each
tree in the forest.

Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple vertices
\(0\) values are ignored
For optimization purposes, any duplicated value is ignored.

Optional Parameters

Parameter Type Default Description
max_depth BIGINT \(9223372036854775807\) Upper limit for depth of node in the tree

When value is Negative then throws
error

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.
start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category
Prim - Family of functions
The queries use the Sample Data network.
Boost: Prim’s algorithm documentation
Wikipedia: Prim’s algorithm

Indices and tables

Index
Search Page

pgr_primDD

pgr_primDD — Catchament nodes using Prim’s algorithm.

Boost Graph Inside

Availability

Version 3.0.0

https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://en.wikipedia.org/wiki/Prim%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html

New Official function

Support

Supported versions: current(3.0)

Description

Using Prim algorithm, extracts the nodes that have aggregate costs less than or equal to the value Distance within the calculated
minimum spanning tree.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Prim’s running time: \(O(E*log V)\)

Returned tree nodes from a root vertex are on Depth First Search order.
Depth First Search running time: \(O(E + V)\)

Signatures

Summary

pgr_prim(Edges SQL, root vid, distance)
pgr_prim(Edges SQL, root vids, distance)

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_primDD(Edges SQL, root vid, distance)

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertex \(2\) with \(agg_cost <= 3.5\)

SELECT * FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2, 3.5
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 2 | 2 | 6 | 5 | 1 | 2
 6 | 3 | 2 | 9 | 9 | 1 | 3
 7 | 3 | 2 | 11 | 11 | 1 | 3
 8 | 1 | 2 | 5 | 4 | 1 | 1
 9 | 2 | 2 | 8 | 7 | 1 | 2
 10 | 3 | 2 | 7 | 6 | 1 | 3
 11 | 2 | 2 | 10 | 10 | 1 | 2
 12 | 3 | 2 | 13 | 14 | 1 | 3
(12 rows)

Multiple vertices

pgr_primDD(Edges SQL, root vids, distance)

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertices \(\{13, 2\}\) with \(agg_cost <= 3.5\);

https://docs.pgrouting.org/3.0/en/pgr_primDD.html

SELECT * FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[13,2], 3.5
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 2 | 2 | 6 | 5 | 1 | 2
 6 | 3 | 2 | 9 | 9 | 1 | 3
 7 | 3 | 2 | 11 | 11 | 1 | 3
 8 | 1 | 2 | 5 | 4 | 1 | 1
 9 | 2 | 2 | 8 | 7 | 1 | 2
 10 | 3 | 2 | 7 | 6 | 1 | 3
 11 | 2 | 2 | 10 | 10 | 1 | 2
 12 | 3 | 2 | 13 | 14 | 1 | 3
 13 | 0 | 13 | 13 | -1 | 0 | 0
 14 | 1 | 13 | 10 | 14 | 1 | 1
 15 | 2 | 13 | 5 | 10 | 1 | 2
 16 | 3 | 13 | 2 | 4 | 1 | 3
 17 | 3 | 13 | 8 | 7 | 1 | 3
(17 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single vertex
When \(0\) gets the spanning forest starting in aleatory nodes for each
tree.

Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple vertices
\(0\) values are ignored
For optimization purposes, any duplicated value is ignored.

Distance ANY-NUMERIC Upper limit for the inclusion of the node in the result.

When the value is Negative throws error

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERIC:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.
start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category
Prim - Family of functions
The queries use the Sample Data network.
Boost: Prim’s algorithm documentation
Wikipedia: Prim’s algorithm

Indices and tables

Index
Search Page

pgr_primDFS

pgr_primDFS — Prim algorithm for Minimum Spanning Tree with Depth First Search ordering.

Boost Graph Inside

Availability

Version 3.0.0
New Official function

Support

Supported versions: current(3.0)

Description

Visits and extracts the nodes information in Depth First Search ordering of the Minimum Spanning Tree created using Prims’s
algorithm.

The main Characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Prim’s running time: \(O(E*log V)\)

Returned tree nodes from a root vertex are on Depth First Search order
Depth First Search Running time: \(O(E + V)\)

Signatures

https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://en.wikipedia.org/wiki/Prim%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://docs.pgrouting.org/3.0/en/pgr_primDFS.html

pgr_primDFS(Edges SQL, Root vid [, max_depth])
pgr_primDFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_primDFS(Edges SQL, Root vid [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree having as root vertex \(2\)

SELECT * FROM pgr_primDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 2 | 2 | 6 | 5 | 1 | 2
 6 | 3 | 2 | 9 | 9 | 1 | 3
 7 | 3 | 2 | 11 | 11 | 1 | 3
 8 | 4 | 2 | 12 | 13 | 1 | 4
 9 | 1 | 2 | 5 | 4 | 1 | 1
 10 | 2 | 2 | 8 | 7 | 1 | 2
 11 | 3 | 2 | 7 | 6 | 1 | 3
 12 | 2 | 2 | 10 | 10 | 1 | 2
 13 | 3 | 2 | 13 | 14 | 1 | 3
(13 rows)

Multiple vertices

pgr_primDFS(Edges SQL, Root vids [, max_depth])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Minimum Spanning Tree starting on vertices \(\{13, 2\}\) with \(depth <= 3\)

SELECT * FROM pgr_primDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[13,2], max_depth := 3
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 3 | 2 | 1 | 1
 4 | 2 | 2 | 4 | 3 | 1 | 2
 5 | 2 | 2 | 6 | 5 | 1 | 2
 6 | 3 | 2 | 9 | 9 | 1 | 3
 7 | 3 | 2 | 11 | 11 | 1 | 3
 8 | 1 | 2 | 5 | 4 | 1 | 1
 9 | 2 | 2 | 8 | 7 | 1 | 2
 10 | 3 | 2 | 7 | 6 | 1 | 3
 11 | 2 | 2 | 10 | 10 | 1 | 2
 12 | 3 | 2 | 13 | 14 | 1 | 3
 13 | 0 | 13 | 13 | -1 | 0 | 0
 14 | 1 | 13 | 10 | 14 | 1 | 1
 15 | 2 | 13 | 5 | 10 | 1 | 2
 16 | 3 | 13 | 2 | 4 | 1 | 3
 17 | 3 | 13 | 8 | 7 | 1 | 3
(17 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single vertex
When value is \(0\) then gets the spanning forest starting in aleatory nodes for each
tree in the forest.

Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple vertices
\(0\) values are ignored
For optimization purposes, any duplicated value is ignored.

Parameter Type Description

Optional Parameters

Parameter Type Default Description
max_depth BIGINT \(9223372036854775807\) Upper limit for depth of node in the tree

When value is Negative then throws
error

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.
start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category
Prim - Family of functions
The queries use the Sample Data network.
Boost: Prim’s algorithm documentation
Wikipedia: Prim’s algorithm

Indices and tables

Index
Search Page

https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://en.wikipedia.org/wiki/Prim%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Supported versions: current(3.0)

Description

The prim algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník. It is a greedy algorithm that finds a
minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that
includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this
tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree
to another vertex.

This algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim’s
algorithm only finds minimum spanning trees in connected graphs. However, running Prim’s algorithm separately for each
connected component of the graph, then it is called minimum spanning forest.

The main characteristics are:

It’s implementation is only on undirected graph.
Process is done only on edges with positive costs.
When the graph is connected

The resulting edges make up a tree
When the graph is not connected,

Finds a minimum spanning tree for each connected component.
The resulting edges make up a forest.

Prim’s running time: \(O(E*log V)\)

Note

From boost Graph: “The algorithm as implemented in Boost.Graph does not produce correct results on graphs
with parallel edges.”

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also

Spanning Tree - Category
Boost: Prim’s algorithm documentation
Wikipedia: Prim’s algorithm

Indices and tables

Index
Search Page

Topology - Family of Functions

The pgRouting’s topology of a network, represented with an edge table with source and target attributes and a vertices table
associated with it. Depending on the algorithm, you can create a topology or just reconstruct the vertices table, You can
analyze the topology, We also provide a function to node an unoded network.

pgr_createTopology - to create a topology based on the geometry.
pgr_createVerticesTable - to reconstruct the vertices table based on the source and target information.

https://docs.pgrouting.org/3.0/en/prim-family.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://en.wikipedia.org/wiki/Prim%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_analyzeGraph - to analyze the edges and vertices of the edge table.
pgr_analyzeOneWay - to analyze directionality of the edges.
pgr_nodeNetwork -to create nodes to a not noded edge table.

Experimental

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

pgr_extractVertices – Experimental - Extracts vertices information based on the source and target.

pgr_createTopology

pgr_createTopology — Builds a network topology based on the geometry information.

Availability

Version 2.0.0
Renamed from version 1.x
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The function returns:

OK after the network topology has been built and the vertices table created.
FAIL when the network topology was not built due to an error.

Signatures

varchar pgr_createTopology(text edge_table, double precision tolerance,
 text the_geom:='the_geom', text id:='id',
 text source:='source',text target:='target',
 text rows_where:='true', boolean clean:=false)

Parameters

The topology creation function accepts the following parameters:

edge_table:
text Network table name. (may contain the schema name AS well)
tolerance:

https://docs.pgrouting.org/3.0/en/pgr_createTopology.html
https://docs.pgrouting.org/2.6/en/pgr_createTopology.html
https://docs.pgrouting.org/2.5/en/pgr_createTopology.html
https://docs.pgrouting.org/2.4/en/pgr_createTopology.html
https://docs.pgrouting.org/2.3/en/src/topology/doc/pgr_createTopology.html
https://docs.pgrouting.org/2.2/en/src/topology/doc/pgr_createTopology.html
https://docs.pgrouting.org/2.1/en/src/common/doc/functions/create_topology.html
https://docs.pgrouting.org/2.0/en/src/common/doc/functions/create_topology.html

float8 Snapping tolerance of disconnected edges. (in projection unit)
the_geom:
text Geometry column name of the network table. Default value is the_geom.
id:
text Primary key column name of the network table. Default value is id.
source:
text Source column name of the network table. Default value is source.
target:
text Target column name of the network table. Default value is target.
rows_where:
text Condition to SELECT a subset or rows. Default value is true to indicate all rows that where source or target have a null value,
otherwise the condition is used.
clean:
boolean Clean any previous topology. Default value is false.

Warning

The edge_table will be affected

The source column values will change.
The target column values will change.

An index will be created, if it doesn’t exists, to speed up the process to the following columns:
id

the_geom

source

target

The function returns:

OK after the network topology has been built.
Creates a vertices table: <edge_table>_vertices_pgr.
Fills id and the_geom columns of the vertices table.
Fills the source and target columns of the edge table referencing the id of the vertices table.

FAIL when the network topology was not built due to an error:
A required column of the Network table is not found or is not of the appropriate type.
The condition is not well formed.
The names of source , target or id are the same.
The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneWay functions.

The structure of the vertices table is:

id:
bigint Identifier of the vertex.
cnt:
integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGraph.
chk:
integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.
ein:
integer Number of vertices in the edge_table that reference this vertex AS incoming. See pgr_analyzeOneWay.
eout:
integer Number of vertices in the edge_table that reference this vertex AS outgoing. See pgr_analyzeOneWay.
the_geom:
geometry Point geometry of the vertex.

Usage when the edge table’s columns MATCH the default values:

The simplest way to use pgr_createTopology is:

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

When the arguments are given in the order described in the parameters:

We get the same result AS the simplest way to use the function.

SELECT pgr_createTopology('edge_table', 0.001,
 'the_geom', 'id', 'source', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropriate order:
In this example, the column id of the table ege_table is passed to the function as the geometry column,
and the geometry column the_geom is passed to the function as the id column.

SELECT pgr_createTopology('edge_table', 0.001,
 'id', 'the_geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'id', 'the_geom', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:the_geom
NOTICE: Unexpected error raise_exception
 pgr_createtopology

 FAIL
(1 row)

When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of the
parameters would not matter.

SELECT pgr_createTopology('edge_table', 0.001,
 the_geom:='the_geom', id:='id', source:='source', target:='target');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('edge_table', 0.001,
 source:='source', id:='id', target:='target', the_geom:='the_geom');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('edge_table', 0.001, source:='source');
 pgr_createtopology

 OK
(1 row)

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 10');
 pgr_createtopology

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of row with id = 5.

SELECT pgr_createTopology('edge_table', 0.001,
 rows_where:='the_geom && (SELECT st_buffer(the_geom, 0.05) FROM edge_table WHERE id=5)');
 pgr_createtopology

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom);
SELECT 1
SELECT pgr_createTopology('edge_table', 0.001,
 rows_where:='the_geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
 pgr_createtopology

 OK
(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src , target AS tgt FROM edge_table) ;
SELECT 18

Using positional notation:

The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := TRUE);
 pgr_createtopology

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropiriate order:
In this example, the column gid of the table mytable is passed to the function AS the geometry column,
and the geometry column mygeom is passed to the function AS the id column.

SELECT pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:mygeom
NOTICE: Unexpected error raise_exception
 pgr_createtopology

 FAIL
(1 row)

When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do not match the
column names of the table. The order of the parameters do not matter:

SELECT pgr_createTopology('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src', target:='tgt');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom');
 pgr_createtopology

 OK
(1 row)

Selecting rows using rows_where parameter

Based on id:

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='gid < 10');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom', rows_where:='gid < 10');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
 rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
 pgr_createtopology

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
 rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
 pgr_createtopology

 OK
(1 row)

Additional Examples

Example:
With full output

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

SELECT pgr_createTopology('edge_table', 0.001, rows_where:='id < 6', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'id < 6', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 5 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 13 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

The example uses the Sample Data network.

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms.
pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

Index
Search Page

pgr_extractVertices – Experimental

pgr_extractVertices — Extracts the vertices information based on the source and target.

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Support

Supported versions: current(3.0)

Description

This is an auxiliary function for extracting the vertex information of the set of edges of a graph.

When the edge identifier is given, then it will also calculate the in and out edges

Signatures

pgr_extractVertices(Edges SQL [, dryrun])
RETURNS SETOF (id, in_edges, out_edges, x, y, geom)

Example:
Extracting the vertex information

SELECT * FROM pgr_extractVertices(
 'SELECT id, the_geom AS geom
 FROM edge_table');
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+----------------+-----+--
 1 | | {6} | 0 | 2 | 010100000000000000000000000000000000000040
 2 | | {17} | 0.5 | 3.5 | 0101000000000000000000E03F0000000000000C40
 3 | {6} | {7} | 1 | 2 | 0101000000000000000000F03F0000000000000040
 4 | {17} | | 1.999999999999 | 3.5 | 010100000068EEFFFFFFFFFF3F0000000000000C40
 5 | | {1} | 2 | 0 | 010100000000000000000000400000000000000000
 6 | {1} | {2,4} | 2 | 1 | 01010000000000000000000040000000000000F03F
 7 | {4,7} | {8,10} | 2 | 2 | 010100000000000000000000400000000000000040
 8 | {10} | {12,14} | 2 | 3 | 010100000000000000000000400000000000000840
 9 | {14} | | 2 | 4 | 010100000000000000000000400000000000001040
 10 | {2} | {3,5} | 3 | 1 | 01010000000000000000000840000000000000F03F
 11 | {5,8} | {9,11} | 3 | 2 | 010100000000000000000008400000000000000040
 12 | {11,12} | {13} | 3 | 3 | 010100000000000000000008400000000000000840
 13 | | {18} | 3.5 | 2.3 | 01010000000000000000000C406666666666660240
 14 | {18} | | 3.5 | 4 | 01010000000000000000000C400000000000001040
 15 | {3} | {16} | 4 | 1 | 01010000000000000000001040000000000000F03F
 16 | {9,16} | {15} | 4 | 2 | 010100000000000000000010400000000000000040
 17 | {13,15} | | 4 | 3 | 010100000000000000000010400000000000000840
(17 rows)

Parameters

Parameter Type Description
Edges SQL TEXT The set of edges of the graph. It is an Inner Query as described

below.
dryrun TEXT Don’t process and get in a NOTICE the resulting query.

Inner Query

When line geometry is known

Column Type Description
id BIGINT (Optional) identifier of the edge.
geom LINESTRING LINESTRING geometry of the

edge.

This inner query takes precedence over the next two inner query, therefore other columns are ignored when geom column
appears.

Ignored columns:
startpoint

endpoint

source

target

When vertex geometry is known

To use this inner query the column geom should not be part of the set of columns.

Column Type Description
id BIGINT (Optional) identifier of the edge.

https://docs.pgrouting.org/3.0/en/pgr_extractVertices.html

startpoint POINT POINT geometry of the starting
vertex.

endpoint POINT POINT geometry of the ending vertex.

Column Type Description

This inner query takes precedence over the next inner query, therefore other columns are ignored when startpoint and endpoint

columns appears.

Ignored columns:
source

target

When identifiers of vertices are known

To use this inner query the columns geom, startpoint and endpoint should not be part of the set of columns.

Column Type Description
id BIGINT (Optional) identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the

edge.

Result Columns

Rreturns set of (id, in_edges, out_edges, x, y, geom)

Column Type Description
id BIGINT Identifier of the first end point vertex of the edge.
in_edges BIGINT[] Array of identifiers of the edges that have the vertex id as first end point.

NULL When the id is not part of the inner query
out_edges BIGINT[] Array of identifiers of the edges that have the vertex id as second end

point.
NULL When the id is not part of the inner query

x FLOAT X value of the POINT geometry
NULL When no geometry is provided

y FLOAT Y value of the POINT geometry
NULL When no geometry is provided

geom POINT Geometry of the POINT
NULL When no geometry is provided

Additional Examples

Example 1:
Dryrun execution

To get the query generated used to get the vertex information, use dryrun := true.

The results can be used as base code to make a refinement based on the backend development needs.

SELECT * FROM pgr_extractVertices(
 'SELECT id, the_geom AS geom FROM edge_table',
 dryrun := true);
NOTICE:
 WITH

 main_sql AS (
 SELECT id, the_geom AS geom FROM edge_table
),

 the_out AS (
 SELECT id::BIGINT AS out_edge, ST_StartPoint(geom) AS geom
 FROM main_sql
),

 agg_out AS (
 SELECT array_agg(out_edge ORDER BY out_edge) AS out_edges, ST_x(geom) AS x, ST_Y(geom) AS y, geom
 FROM the_out
 GROUP BY geom
),

 the_in AS (
 SELECT id::BIGINT AS in_edge, ST_EndPoint(geom) AS geom
 FROM main_sql
),

 agg_in AS (
 SELECT array_agg(in_edge ORDER BY in_edge) AS in_edges, ST_x(geom) AS x, ST_Y(geom) AS y, geom
 FROM the_in
 GROUP BY geom
),

 the_points AS (
 SELECT in_edges, out_edges, coalesce(agg_out.geom, agg_in.geom) AS geom
 FROM agg_out
 FULL OUTER JOIN agg_in USING (x, y)
)

 SELECT row_number() over(ORDER BY ST_X(geom), ST_Y(geom)) AS id, in_edges, out_edges, ST_X(geom), ST_Y(geom), geom
 FROM the_points;
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+---+---+------
(0 rows)

Example 2:
Creating a routing topology

1. Making sure the database does not have the vertices_table

DROP TABLE IF EXISTS vertices_table;
NOTICE: table "vertices_table" does not exist, skipping
DROP TABLE

2. Cleaning up the columns of the rotuing topology to be created

UPDATE edge_table
SET source = NULL, target = NULL,
 x1 = NULL, y1 = NULL,
 x2 = NULL, y2 = NULL;
UPDATE 18

3. Creating the vertices table

SELECT * INTO vertices_table
FROM pgr_extractVertices('SELECT id, the_geom AS geom FROM edge_table');
SELECT 17

4. Inspection of the vertices table

SELECT *
FROM vertices_table;
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+----------------+-----+--
 1 | | {6} | 0 | 2 | 010100000000000000000000000000000000000040
 2 | | {17} | 0.5 | 3.5 | 0101000000000000000000E03F0000000000000C40
 3 | {6} | {7} | 1 | 2 | 0101000000000000000000F03F0000000000000040
 4 | {17} | | 1.999999999999 | 3.5 | 010100000068EEFFFFFFFFFF3F0000000000000C40
 5 | | {1} | 2 | 0 | 010100000000000000000000400000000000000000
 6 | {1} | {2,4} | 2 | 1 | 01010000000000000000000040000000000000F03F
 7 | {4,7} | {8,10} | 2 | 2 | 010100000000000000000000400000000000000040
 8 | {10} | {12,14} | 2 | 3 | 010100000000000000000000400000000000000840
 9 | {14} | | 2 | 4 | 010100000000000000000000400000000000001040
 10 | {2} | {3,5} | 3 | 1 | 01010000000000000000000840000000000000F03F
 11 | {5,8} | {9,11} | 3 | 2 | 010100000000000000000008400000000000000040
 12 | {11,12} | {13} | 3 | 3 | 010100000000000000000008400000000000000840
 13 | | {18} | 3.5 | 2.3 | 01010000000000000000000C406666666666660240
 14 | {18} | | 3.5 | 4 | 01010000000000000000000C400000000000001040
 15 | {3} | {16} | 4 | 1 | 01010000000000000000001040000000000000F03F
 16 | {9,16} | {15} | 4 | 2 | 010100000000000000000010400000000000000040
 17 | {13,15} | | 4 | 3 | 010100000000000000000010400000000000000840
(17 rows)

5. Creating the routing topology on the edge table

Updating the source information

WITH
 out_going AS (
 SELECT id AS vid, unnest(out_edges) AS eid, x, y
 FROM vertices_table
)
UPDATE edge_table
SET source = vid, x1 = x, y1 = y
FROM out_going WHERE id = eid;
UPDATE 18

Updating the target information

WITH
 in_coming AS (
 SELECT id AS vid, unnest(in_edges) AS eid, x, y
 FROM vertices_table
)
UPDATE edge_table
SET target = vid, x2 = x, y2 = y
FROM in_coming WHERE id = eid;
UPDATE 18

6. Inspection of the routing topology

SELECT id, source, target, x1, y1, x2, y2
FROM edge_table;
 id | source | target | x1 | y1 | x2 | y2
----+--------+--------+-----+-----+----------------+-----
 6 | 1 | 3 | 0 | 2 | 1 | 2
 17 | 2 | 4 | 0.5 | 3.5 | 1.999999999999 | 3.5
 1 | 5 | 6 | 2 | 0 | 2 | 1
 4 | 6 | 7 | 2 | 1 | 2 | 2
 7 | 3 | 7 | 1 | 2 | 2 | 2
 10 | 7 | 8 | 2 | 2 | 2 | 3
 14 | 8 | 9 | 2 | 3 | 2 | 4
 2 | 6 | 10 | 2 | 1 | 3 | 1
 5 | 10 | 11 | 3 | 1 | 3 | 2
 8 | 7 | 11 | 2 | 2 | 3 | 2
 11 | 11 | 12 | 3 | 2 | 3 | 3
 12 | 8 | 12 | 2 | 3 | 3 | 3
 18 | 13 | 14 | 3.5 | 2.3 | 3.5 | 4
 3 | 10 | 15 | 3 | 1 | 4 | 1
 9 | 11 | 16 | 3 | 2 | 4 | 2
 16 | 15 | 16 | 4 | 1 | 4 | 2
 13 | 12 | 17 | 3 | 3 | 4 | 3
 15 | 16 | 17 | 4 | 2 | 4 | 3
(18 rows)

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms.
pgr_createVerticesTable to create a topology based on the geometry.

Indices and tables

Index
Search Page

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_createVerticesTable

pgr_createVerticesTable — Reconstructs the vertices table based on the source and target information.

Availability

Version 2.0.0
Renamed from version 1.x
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The function returns:

OK after the vertices table has been reconstructed.
FAIL when the vertices table was not reconstructed due to an error.

Signatures

 pgr_createVerticesTable(edge_table, the_geom, source, target, rows_where)
RETURNS VARCHAR

Parameters

The reconstruction of the vertices table function accepts the following parameters:

edge_table:
text Network table name. (may contain the schema name as well)
the_geom:
text Geometry column name of the network table. Default value is the_geom.
source:
text Source column name of the network table. Default value is source.
target:
text Target column name of the network table. Default value is target.
rows_where:
text Condition to SELECT a subset or rows. Default value is true to indicate all rows.

Warning

The edge_table will be affected

An index will be created, if it doesn’t exists, to speed up the process to the following columns:
the_geom

source

target

The function returns:

OK after the vertices table has been reconstructed.
Creates a vertices table: <edge_table>_vertices_pgr.
Fills id and the_geom columns of the vertices table based on the source and target columns of the edge table.

FAIL when the vertices table was not reconstructed due to an error.
A required column of the Network table is not found or is not of the appropriate type.
The condition is not well formed.
The names of source, target are the same.
The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requierment of the pgr_analyzeGraph and the pgr_analyzeOneWay functions.

The structure of the vertices table is:

id:

https://docs.pgrouting.org/3.0/en/pgr_createVerticesTable.html
https://docs.pgrouting.org/2.6/en/pgr_createVerticesTable.html
https://docs.pgrouting.org/2.5/en/pgr_createVerticesTable.html
https://docs.pgrouting.org/2.4/en/pgr_createVerticesTable.html
https://docs.pgrouting.org/2.3/en/src/topology/doc/pgr_createVerticesTable.html
https://docs.pgrouting.org/2.2/en/src/topology/doc/pgr_createVerticesTable.html
https://docs.pgrouting.org/2.1/en/src/common/doc/functions/create_vert_table.html
https://docs.pgrouting.org/2.0/en/src/common/doc/functions/create_vert_table.html

bigint Identifier of the vertex.
cnt:
integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGraph.
chk:
integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.
ein:
integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneWay.
eout:
integer Number of vertices in the edge_table that reference this vertex as outgoing. See pgr_analyzeOneWay.
the_geom:
geometry Point geometry of the vertex.
Example 1:
The simplest way to use pgr_createVerticesTable

SELECT pgr_createVerticesTable('edge_table');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Additional Examples

Example 2:
When the arguments are given in the order described in the parameters:

SELECT pgr_createVerticesTable('edge_table', 'the_geom', 'source', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

We get the same result as the simplest way to use the function.

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column
source column source of the table mytable is passed to the function as the geometry column, and the geometry
column the_geom is passed to the function as the source column.

SELECT pgr_createVerticesTable('edge_table', 'source', 'the_geom', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','source','the_geom','target','true')
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: the_geom
HINT: ----> Expected type of the_geom is integer, smallint or bigint but USER-DEFINED was found
NOTICE: Unexpected error raise_exception
 pgr_createverticestable

 FAIL
(1 row)

When using the named notation

Example 3:
The order of the parameters do not matter:

SELECT pgr_createVerticesTable('edge_table', the_geom:='the_geom', source:='source', target:='target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 4:
Using a different ordering

SELECT pgr_createVerticesTable('edge_table', source:='source', target:='target', the_geom:='the_geom');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 5:
Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_createVerticesTable('edge_table',source:='source');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Selecting rows using rows_where parameter

Example 6:
Selecting rows based on the id.

SELECT pgr_createVerticesTable('edge_table',rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','id < 10')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 10 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 10
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 7:
Selecting the rows where the geometry is near the geometry of row with id =5 .

SELECT pgr_createVerticesTable('edge_table',
 rows_where:='the_geom && (select st_buffer(the_geom,0.5) FROM edge_table WHERE id=5)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','the_geom && (select st_buffer(the_geom,0.5) FROM edge_table WHERE id=5)')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 9 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 9
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 8:
Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
NOTICE: table "othertable" does not exist, skipping
DROP TABLE
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT 1
SELECT pgr_createVerticesTable('edge_table',
 rows_where:='the_geom && (select st_buffer(other_geom,0.5) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edge_table','the_geom','source','target','the_geom && (select st_buffer(other_geom,0.5) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edge_table_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 10 VERTICES
NOTICE: FOR 12 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 12
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:

Using the following table

DROP TABLE IF EXISTS mytable;
NOTICE: table "mytable" does not exist, skipping
DROP TABLE
CREATE TABLE mytable AS (SELECT id AS gid, the_geom AS mygeom, source AS src ,target AS tgt FROM edge_table) ;
SELECT 18

Using positional notation:

Example 9:
The arguments need to be given in the order described in the parameters:

SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column src

of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed
to the function as the source column.

SELECT pgr_createVerticesTable('mytable', 'src', 'mygeom', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','src','mygeom','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: mygeom
HINT: ----> Expected type of mygeom is integer, smallint or bigint but USER-DEFINED was found
NOTICE: Unexpected error raise_exception
 pgr_createverticestable

 FAIL
(1 row)

When using the named notation

Example 10:
The order of the parameters do not matter:

SELECT pgr_createVerticesTable('mytable',the_geom:='mygeom',source:='src',target:='tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 11:
Using a different ordering

In this scenario omitting a parameter would create an error because the default values for the column names do not match the
column names of the table.

SELECT pgr_createVerticesTable(
 'mytable', source:='src', target:='tgt',
 the_geom:='mygeom');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Selecting rows using rows_where parameter

Example 12:
Selecting rows based on the gid. (positional notation)

SELECT pgr_createVerticesTable(
 'mytable', 'mygeom', 'src', 'tgt',
 rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','gid < 10')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 10 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 10
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 13:
Selecting rows based on the gid. (named notation)

SELECT pgr_createVerticesTable(
 'mytable', source:='src', target:='tgt', the_geom:='mygeom',
 rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','gid < 10')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 10 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 10
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Example 14:
Selecting the rows where the geometry is near the geometry of row with gid = 5.

SELECT pgr_createVerticesTable(
 'mytable', 'mygeom', 'src', 'tgt',
 rows_where := 'the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)')
NOTICE: Performing checks, please wait
NOTICE: Got column "the_geom" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

Example 15:
TBD

SELECT pgr_createVerticesTable(
 'mytable', source:='src', target:='tgt', the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)')
NOTICE: Performing checks, please wait
NOTICE: Got column "id" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

Example 16:
Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
DROP TABLE
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT 1

SELECT pgr_createVerticesTable(
 'mytable', 'mygeom', 'src', 'tgt',
 rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait
NOTICE: Got column "the_geom" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

Example 17:
TBD

SELECT pgr_createVerticesTable(
 'mytable',source:='src',target:='tgt',the_geom:='mygeom',
 rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait
NOTICE: Got column "the_geom" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

The example uses the Sample Data network.

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms.
pgr_createTopology <pgr_create_topology>` to create a topology based on the geometry.
pgr_analyzeGraph to analyze the edges and vertices of the edge table.
pgr_analyzeOneWay to analyze directionality of the edges.

Indices and tables

Index
Search Page

pgr_analyzeGraph

pgr_analyzeGraph — Analyzes the network topology.

Availability

Version 2.0.0
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The function returns:

OK after the analysis has finished.
FAIL when the analysis was not completed due to an error.

varchar pgr_analyzeGraph(text edge_table, double precision tolerance,
 text the_geom:='the_geom', text id:='id',
 text source:='source',text target:='target',text rows_where:='true')

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id’s of the vertices of the
segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

Use pgr_createVerticesTable to create the vertices table.
Use pgr_createTopology to create the topology and the vertices table.

Parameters

The analyze graph function accepts the following parameters:

edge_table:
text Network table name. (may contain the schema name as well)
tolerance:
float8 Snapping tolerance of disconnected edges. (in projection unit)
the_geom:
text Geometry column name of the network table. Default value is the_geom.
id:

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_analyzeGraph.html
https://docs.pgrouting.org/2.6/en/pgr_analyzeGraph.html
https://docs.pgrouting.org/2.5/en/pgr_analyzeGraph.html
https://docs.pgrouting.org/2.4/en/pgr_analyzeGraph.html
https://docs.pgrouting.org/2.3/en/src/topology/doc/pgr_analyzeGraph.html
https://docs.pgrouting.org/2.2/en/src/topology/doc/pgr_analyzeGraph.html
https://docs.pgrouting.org/2.1/en/src/common/doc/functions/analyze_graph.html
https://docs.pgrouting.org/2.0/en/src/common/doc/functions/analyze_graph.html

text Primary key column name of the network table. Default value is id.
source:
text Source column name of the network table. Default value is source.
target:
text Target column name of the network table. Default value is target.
rows_where:
text Condition to select a subset or rows. Default value is true to indicate all rows.

The function returns:

OK after the analysis has finished.
Uses the vertices table: <edge_table>_vertices_pgr.
Fills completely the cnt and chk columns of the vertices table.
Returns the analysis of the section of the network defined by rows_where

FAIL when the analysis was not completed due to an error.
The vertices table is not found.
A required column of the Network table is not found or is not of the appropriate type.
The condition is not well formed.
The names of source , target or id are the same.
The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id:
bigint Identifier of the vertex.
cnt:
integer Number of vertices in the edge_table that reference this vertex.
chk:
integer Indicator that the vertex might have a problem.
ein:
integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneWay.
eout:
integer Number of vertices in the edge_table that reference this vertex as outgoing. See pgr_analyzeOneWay.
the_geom:
geometry Point geometry of the vertex.

Usage when the edge table’s columns MATCH the default values:

The simplest way to use pgr_analyzeGraph is:

SELECT pgr_createTopology('edge_table',0.001, clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

When the arguments are given in the order described in the parameters:

SELECT pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

We get the same result as the simplest way to use the function.

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column id of
the table mytable is passed to the function as the geometry column, and the geometry column the_geom is passed to
the function as the id column.

SELECT pgr_analyzeGraph('edge_table',0.001,'id','the_geom','source','target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'id','the_geom','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Got function st_srid(bigint) does not exist
NOTICE: ERROR: something went wrong when checking for SRID of id in table public.edge_table
 pgr_analyzegraph

 FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('edge_table',0.001,the_geom:='the_geom',id:='id',source:='source',target:='target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,source:='source',id:='id',target:='target',the_geom:='the_geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_analyzeGraph('edge_table',0.001,source:='source');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting rows using rows_where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of row with id =5 .

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(the_geom,0.05) FROM edge_table WHERE id=5)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','the_geom && (SELECT st_buffer(the_geom,0.05) FROM edge_table WHERE id=5)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 5
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT 1
SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='the_geom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','the_geom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 10
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , the_geom AS mygeom FROM edge_table);
SELECT 18
SELECT pgr_createTopology('mytable',0.001,'mygeom','gid','src','tgt', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Using positional notation:

The arguments need to be given in the order described in the parameters:

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column gid

of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed
to the function as the id column.

SELECT pgr_analyzeGraph('mytable',0.0001,'gid','mygeom','src','tgt');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.0001,'gid','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Got function st_srid(bigint) does not exist
NOTICE: ERROR: something went wrong when checking for SRID of gid in table public.mytable
 pgr_analyzegraph

 FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('mytable',0.001,the_geom:='mygeom',id:='gid',source:='src',target:='tgt');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

In this scenario omitting a parameter would create an error because the default values for the column names do not match the
column names of the table.

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','gid < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','gid < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows WHERE the geometry is near the geometry of row with id =5 .

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',
 rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 1
NOTICE: Dead ends: 5
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 1
NOTICE: Dead ends: 5
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows WHERE the geometry is near the place=’myhouse’ of the table othertable. (note the use of quote_literal)

DROP TABLE IF EXISTS otherTable;
DROP TABLE
CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS other_geom) ;
SELECT 1
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',
 rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='myhouse')')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 10
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='myhouse')')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 10
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Additional Examples

SELECT pgr_createTopology('edge_table',0.001, clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id >= 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id >= 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 8
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table',0.001,rows_where:='id < 17');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id < 17')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_createTopology('edge_table', 0.001,rows_where:='id <17', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'id <17', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 16 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_analyzeGraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

The examples use the Sample Data network.

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms.
pgr_analyzeOneWay to analyze directionality of the edges.
pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.
pgr_nodeNetwork to create nodes to a not noded edge table.

Indices and tables

Index
Search Page

pgr_analyzeOneWay

pgr_analyzeOneWay — Analyzes oneway Sstreets and identifies flipped segments.

This function analyzes oneway streets in a graph and identifies any flipped segments.

Availability

Version 2.0.0
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential problems
created by setting the direction of a segment the wrong way. A node is a source if it has edges the exit from that node and no
edges enter that node. Conversely, a node is a sink if all edges enter the node but none exit that node. For a source type node
it is logically impossible to exist because no vehicle can exit the node if no vehicle and enter the node. Likewise, if you had a
sink node you would have an infinite number of vehicle piling up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could generate exactly
these conditions. Think about a divided highway and on the north bound lane one segment got entered wrong or maybe a
sequence of multiple segments got entered wrong or maybe this happened on a round-about. The result would be potentially a
source and/or a sink node.

So by counting the number of edges entering and exiting each node we can identify both source and sink nodes so that you
can look at those areas of your network to make repairs and/or report the problem back to your data vendor.

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id’s of the vertices of the
segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

Use pgr_createVerticesTable to create the vertices table.
Use pgr_createTopology to create the topology and the vertices table.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_analyzeOneWay.html
https://docs.pgrouting.org/2.6/en/pgr_analyzeOneWay.html
https://docs.pgrouting.org/2.5/en/pgr_analyzeOneWay.html
https://docs.pgrouting.org/2.4/en/pgr_analyzeOneWay.html
https://docs.pgrouting.org/2.3/en/src/topology/doc/pgr_analyzeOneWay.html
https://docs.pgrouting.org/2.2/en/src/topology/doc/pgr_analyzeOneWay.html
https://docs.pgrouting.org/2.1/en/src/common/doc/functions/analyze_oneway.html
https://docs.pgrouting.org/2.0/en/src/common/doc/functions/analyze_oneway.html

Signatures

text pgr_analyzeOneWay(geom_table text,
 text[] s_in_rules, text[] s_out_rules,
 text[] t_in_rules, text[] t_out_rules,
 text oneway='oneway', text source='source', text target='target',
 boolean two_way_if_null=true);

Parameters

edge_table:
text Network table name. (may contain the schema name as well)
s_in_rules:
text[] source node in rules
s_out_rules:
text[] source node out rules
t_in_rules:
text[] target node in rules
t_out_rules:
text[] target node out rules
oneway:
text oneway column name name of the network table. Default value is oneway.
source:
text Source column name of the network table. Default value is source.
target:
text Target column name of the network table. Default value is target.
two_way_if_null:
boolean flag to treat oneway NULL values as bi-directional. Default value is true.

Note

It is strongly recommended to use the named notation. See pgr_createVerticesTable or pgr_createTopology
for examples.

The function returns:

OK after the analysis has finished.
Uses the vertices table: <edge_table>_vertices_pgr.
Fills completely the ein and eout columns of the vertices table.

FAIL when the analysis was not completed due to an error.
The vertices table is not found.
A required column of the Network table is not found or is not of the appropriate type.
The names of source , target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value would be counted as true for the source or target
in or out condition.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id:
bigint Identifier of the vertex.
cnt:
integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGgraph.
chk:
integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.
ein:
integer Number of vertices in the edge_table that reference this vertex as incoming.
eout:
integer Number of vertices in the edge_table that reference this vertex as outgoing.
the_geom:
geometry Point geometry of the vertex.

Additional Examples

SELECT pgr_analyzeOneWay('edge_table',
 ARRAY['', 'B', 'TF'],
 ARRAY['', 'B', 'FT'],
 ARRAY['', 'B', 'FT'],
 ARRAY['', 'B', 'TF'],
 oneway:='dir');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeOneway('edge_table','{"",B,TF}','{"",B,FT}','{"",B,FT}','{"",B,TF}','dir','source','target',t)
NOTICE: Analyzing graph for one way street errors.
NOTICE: Analysis 25% complete ...
NOTICE: Analysis 50% complete ...
NOTICE: Analysis 75% complete ...
NOTICE: Analysis 100% complete ...
NOTICE: Found 0 potential problems in directionality
 pgr_analyzeoneway

 OK
(1 row)

The queries use the Sample Data network.

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms.
Graph Analytics for an overview of the analysis of a graph.
pgr_analyzeGraph to analyze the edges and vertices of the edge table.
pgr_createVerticesTable to reconstruct the vertices table based on the source and target information.

Indices and tables

Index
Search Page

pgr_nodeNetwork

pgr_nodeNetwork - Nodes an network edge table.

Author:
Nicolas Ribot
Copyright:
Nicolas Ribot, The source code is released under the MIT-X license.

The function reads edges from a not “noded” network table and writes the “noded” edges into a new table.

pgr_nodenetwork(edge_table, tolerance, id, text the_geom, table_ending, rows_where, outall)
RETURNS TEXT

Availability

Version 2.0.0
Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The main characteristics are:

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not “noded” correctly.
This will create invalid topologies, which will result in routes that are incorrect.

What we mean by “noded” is that at every intersection in the road network all the edges will be broken into separate road
segments. There are cases like an over-pass and under-pass intersection where you can not traverse from the over-pass to the
under-pass, but this function does not have the ability to detect and accommodate those situations.

This function reads the edge_table table, that has a primary key column id and geometry column named the_geom and intersect all
the segments in it against all the other segments and then creates a table edge_table_noded. It uses the tolerance for deciding that
multiple nodes within the tolerance are considered the same node.

Parameters

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_nodeNetwork.html
https://docs.pgrouting.org/2.6/en/pgr_nodeNetwork.html
https://docs.pgrouting.org/2.5/en/pgr_nodeNetwork.html
https://docs.pgrouting.org/2.4/en/pgr_nodeNetwork.html
https://docs.pgrouting.org/2.3/en/src/topology/doc/pgr_nodeNetwork.html
https://docs.pgrouting.org/2.2/en/src/topology/doc/pgr_nodeNetwork.html
https://docs.pgrouting.org/2.1/en/src/common/doc/functions/node_network.html
https://docs.pgrouting.org/2.0/en/src/common/doc/functions/node_network.html

edge_table:
text Network table name. (may contain the schema name as well)
tolerance:
float8 tolerance for coincident points (in projection unit)dd
id:
text Primary key column name of the network table. Default value is id.
the_geom:
text Geometry column name of the network table. Default value is the_geom.
table_ending:
text Suffix for the new table’s. Default value is noded.

The output table will have for edge_table_noded

id:
bigint Unique identifier for the table
old_id:
bigint Identifier of the edge in original table
sub_id:
integer Segment number of the original edge
source:
integer Empty source column to be used with pgr_createTopology function
target:
integer Empty target column to be used with pgr_createTopology function
the geom:
geometry Geometry column of the noded network

Examples

Let’s create the topology for the data in Sample Data

SELECT pgr_createTopology('edge_table', 0.001, clean := TRUE);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Now we can analyze the network.

SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

The analysis tell us that the network has a gap and an intersection. We try to fix the problem using:

SELECT pgr_nodeNetwork('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: id: id
NOTICE: the_geom: the_geom
NOTICE: table_ending: noded
NOTICE: rows_where:
NOTICE: outall: f
NOTICE: pgr_nodeNetwork('edge_table', 0.001, 'id', 'the_geom', 'noded', '', f)
NOTICE: Performing checks, please wait
NOTICE: Processing, please wait
NOTICE: Split Edges: 3
NOTICE: Untouched Edges: 15
NOTICE: Total original Edges: 18
NOTICE: Edges generated: 6
NOTICE: Untouched Edges: 15
NOTICE: Total New segments: 21
NOTICE: New Table: public.edge_table_noded
NOTICE: ----------------------------------
 pgr_nodenetwork

 OK
(1 row)

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

SELECT old_id, sub_id FROM edge_table_noded ORDER BY old_id, sub_id;
 old_id | sub_id
--------+--------
 1 | 1
 2 | 1
 3 | 1
 4 | 1
 5 | 1
 6 | 1
 7 | 1
 8 | 1
 9 | 1
 10 | 1
 11 | 1
 12 | 1
 13 | 1
 13 | 2
 14 | 1
 14 | 2
 15 | 1
 16 | 1
 17 | 1
 18 | 1
 18 | 2
(21 rows)

We can create the topology of the new network

SELECT pgr_createTopology('edge_table_noded', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table_noded', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 21 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table_noded is: public.edge_table_noded_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Now let’s analyze the new topology

SELECT pgr_analyzegraph('edge_table_noded', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table_noded',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Images

Before Image After Image

Comparing the results

Comparing with the Analysis in the original edge_table, we see that.

Before After
Table name edge_table edge_table_noded
Fields All original fields Has only basic fields to do a topology analysis
Dead ends Edges with 1 dead end: 1,6,24

Edges with 2 dead ends 17,18

Edge 17’s right node is a dead end because
there is no other edge sharing that same node.
(cnt=1)

Edges with 1 dead end: 1-1 ,6-1,14-2, 18-1 17-1 18-2

Isolated
segments

two isolated segments: 17 and 18 both they
have 2 dead ends

No Isolated segments
Edge 17 now shares a node with edges 14-1 and 14-
2
Edges 18-1 and 18-2 share a node with edges 13-1
and 13-2

Gaps There is a gap between edge 17 and 14
because edge 14 is near to the right node of
edge 17

Edge 14 was segmented Now edges: 14-1 14-2 17 share the
same node The tolerance value was taken in account

Intersections Edges 13 and 18 were intersecting Edges were segmented, So, now in the interection’s point
there is a node and the following edges share it: 13-1 13-2
18-1 18-2

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2 ,18-1 and 18-2 into our edge-table, copying the data for

dir,cost,and reverse cost with tho following steps:

Add a column old_id into edge_table, this column is going to keep track the id of the original edge
Insert only the segmented edges, that is, the ones whose max(sub_id) >1

alter table edge_table drop column if exists old_id;
NOTICE: column "old_id" of relation "edge_table" does not exist, skipping
ALTER TABLE
alter table edge_table add column old_id integer;
ALTER TABLE
insert into edge_table (old_id, dir, cost, reverse_cost, the_geom)
 (with
 segmented as (select old_id,count(*) as i from edge_table_noded group by old_id)
 select segments.old_id, dir, cost, reverse_cost, segments.the_geom
 from edge_table as edges join edge_table_noded as segments on (edges.id = segments.old_id)
 where edges.id in (select old_id from segmented where i>1));
INSERT 0 6

We recreate the topology:

SELECT pgr_createTopology('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edge_table', 0.001, 'the_geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 6 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edge_table is: public.edge_table_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

To get the same analysis results as the topology of edge_table_noded, we do the following query:

SELECT pgr_analyzegraph('edge_table', 0.001, rows_where:='id not in (select old_id from edge_table where old_id is not null)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','id not in (select old_id from edge_table where old_id is not null)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

To get the same analysis results as the original edge_table, we do the following query:

SELECT pgr_analyzegraph('edge_table', 0.001, rows_where:='old_id is null');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','old_id is null')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a street
level juction, and the same happens with edges 17 and 13.

SELECT pgr_analyzegraph('edge_table', 0.001);
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edge_table',0.001,'the_geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 5
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms. pgr_analyzeOneWay to analyze
directionality of the edges. pgr_createTopology to create a topology based on the geometry. pgr_analyzeGraph to analyze
the edges and vertices of the edge table.

Indices and tables

Index
Search Page

See Also

Indices and tables

Index
Search Page

Traveling Sales Person - Family of functions

pgr_TSP - When input is given as matrix cell information.
pgr_TSPeuclidean - When input are coordinates.

pgr_TSP

pgr_TSP - Using Simulated Annealing approximation algorithm

Availability: 2.0.0

Version 2.3.0
Signature change

Old signature no longer supported
Version 2.0.0

Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2 2.1 2.0

Description

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city
exactly once and returns to the origin city?

See Simulated Annealing Algorithm for a complete description of this implementation

Signatures

Summary

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_TSP.html
https://docs.pgrouting.org/2.6/en/pgr_TSP.html
https://docs.pgrouting.org/2.5/en/pgr_TSP.html
https://docs.pgrouting.org/2.4/en/pgr_TSP.html
https://docs.pgrouting.org/2.3/en/src/tsp/doc/pgr_tsp.html
https://docs.pgrouting.org/2.2/en/src/tsp/doc/pgr_tsp.html
https://docs.pgrouting.org/2.1/en/src/tsp/doc/index.html
https://docs.pgrouting.org/2.0/en/src/tsp/doc/index.html

pgr_TSP(Matrix SQL,
 [start_id], [end_id],
 [max_processing_time],
 [tries_per_temperature], [max_changes_per_temperature], [max_consecutive_non_changes],
 [initial_temperature], [final_temperature], [cooling_factor],
 [randomize])
RETURNS SETOF (seq, node, cost, agg_cost)

Example:
Not having a random execution

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),
 directed := false)
 $$,
 randomize := false);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 1 | 1 | 0
 2 | 2 | 1 | 1
 3 | 3 | 1 | 2
 4 | 4 | 1 | 3
 5 | 9 | 1 | 4
 6 | 6 | 1 | 5
 7 | 11 | 1 | 6
 8 | 12 | 2 | 7
 9 | 10 | 1 | 9
 10 | 13 | 4 | 10
 11 | 7 | 1 | 14
 12 | 8 | 1 | 15
 13 | 5 | 2 | 16
 14 | 1 | 0 | 18
(14 rows)

Parameters

Parameter Description
Matrix SQL an SQL query, described in the Inner

query

Optional Parameters

Parameter Type Default Description
start_vid BIGINT 0 The greedy part of the implementation will use this identifier.
end_vid BIGINT 0 Last visiting vertex before returning to start_vid.
max_processing_time FLOAT +infinity Stop the annealing processing when the value is reached.
tries_per_temperature INTEGER 500 Maximum number of times a neighbor(s) is searched in each

temperature.
max_changes_per_temperature INTEGER 60 Maximum number of times the solution is changed in each

temperature.
max_consecutive_non_changes INTEGER 100 Maximum number of consecutive times the solution is not changed

in each temperature.
initial_temperature FLOAT 100 Starting temperature.
final_temperature FLOAT 0.1 Ending temperature.
cooling_factor FLOAT 0.9 Value between between 0 and 1 (not including) used to calculate

the next temperature.
randomize BOOLEAN true Choose the random seed

true: Use current time as seed
false: Use 1 as seed. Using this value will get the same results
with the same data in each execution.

Inner query

Matrix SQL: an SQL query, which should return a set of rows with the following columns:

Column Type Description
start_vid BIGINT Identifier of the starting vertex.
end_vid BIGINT Identifier of the ending vertex.

agg_cost FLOAT Cost for going from start_vid to
end_vid

Column Type Description

Can be Used with Cost Matrix - Category functions with directed := false.

If using directed := true, the resulting non symmetric matrix must be converted to symmetric by fixing the non symmetric
values according to your application needs.

Result Columns

Returns SET OF (seq, node, cost, agg_cost)

Column Type Description
seq INTEGER Row sequence.
node BIGINT Identifier of the node/coordinate/point.
cost FLOAT Cost to traverse from the current node to the next node in the path

sequence.
0 for the last row in the path sequence.

agg_cost FLOAT Aggregate cost from the node at seq = 1 to the current node.
0 for the first row in the path sequence.

Additional Examples

Example:
Start from vertex \(7\)

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 (SELECT array_agg(id) FROM edge_table_vertices_pgr WHERE id < 14),
 directed := false
)
 $$,
 start_id := 7,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 7 | 1 | 0
 2 | 8 | 1 | 1
 3 | 5 | 1 | 2
 4 | 2 | 1 | 3
 5 | 1 | 2 | 4
 6 | 3 | 1 | 6
 7 | 4 | 1 | 7
 8 | 9 | 1 | 8
 9 | 12 | 1 | 9
 10 | 11 | 1 | 10
 11 | 10 | 1 | 11
 12 | 13 | 3 | 12
 13 | 6 | 3 | 15
 14 | 7 | 0 | 18
(14 rows)

Example:
Using with points of interest.

To generate a symmetric matrix:

the side information of pointsOfInterset is ignored by not including it in the query
and directed := false

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_withPointsCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction from pointsOfInterest',
 array[-1, 3, 5, 6, -6], directed := false)
 $$,
 start_id := 5,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 5 | 0.3 | 0
 2 | -6 | 1.3 | 0.3
 3 | -1 | 1.6 | 1.6
 4 | 3 | 1 | 3.2
 5 | 6 | 1 | 4.2
 6 | 5 | 0 | 5.2
(6 rows)

The queries use the Sample Data network.

See Also

Traveling Sales Person - Family of functions
Wikipedia: Traveling Salesman Problem
Wikipedia: Simulated annealing

Indices and tables

Index
Search Page

pgr_TSPeuclidean

pgr_TSPeuclidean - Using Simulated Annealing approximation algorithm

Availability

Version 3.0.0
Name change from pgr_eucledianTSP

Version 2.3.0
New Official function

Support

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3

Description

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city
exactly once and returns to the origin city?

See Simulated Annealing Algorithm for a complete description of this implementation

Signatures

Summary

pgr_TSPeuclidean(Coordinates SQL,
 [start_id], [end_id],
 [max_processing_time],
 [tries_per_temperature], [max_changes_per_temperature], [max_consecutive_non_changes],
 [initial_temperature], [final_temperature], [cooling_factor],
 [randomize])
RETURNS SETOF (seq, node, cost, agg_cost)

Example:
Not having a random execution

https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Simulated_annealing
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_TSPeuclidean.html
https://docs.pgrouting.org/2.6/en/pgr_eucledianTSP.html
https://docs.pgrouting.org/2.5/en/pgr_eucledianTSP.html
https://docs.pgrouting.org/2.4/en/pgr_eucledianTSP.html
https://docs.pgrouting.org/2.3/en/src/tsp/doc/pgr_eucledianTSP

SELECT * FROM pgr_TSPeuclidean(
 $$
 SELECT id, st_X(the_geom) AS x, st_Y(the_geom)AS y FROM edge_table_vertices_pgr
 $$,
 randomize := false);
 seq | node | cost | agg_cost
-----+------+----------------+---------------
 1 | 1 | 1.41421356237 | 0
 2 | 3 | 1 | 1.41421356237
 3 | 4 | 1 | 2.41421356237
 4 | 9 | 0.583095189485 | 3.41421356237
 5 | 16 | 0.583095189485 | 3.99730875186
 6 | 6 | 1 | 4.58040394134
 7 | 11 | 1 | 5.58040394134
 8 | 12 | 1.11803398875 | 6.58040394134
 9 | 17 | 1.5 | 7.69843793009
 10 | 13 | 0.5 | 9.19843793009
 11 | 15 | 0.5 | 9.69843793009
 12 | 10 | 1.58113883008 | 10.1984379301
 13 | 14 | 1.58113883008 | 11.7795767602
 14 | 7 | 1 | 13.3607155903
 15 | 8 | 1 | 14.3607155903
 16 | 5 | 1 | 15.3607155903
 17 | 2 | 1 | 16.3607155903
 18 | 1 | 0 | 17.3607155903
(18 rows)

Parameters

Parameter Description
Coordinates SQL an SQL query, described in the Inner

query

Optional Parameters

Parameter Type Default Description
start_vid BIGINT 0 The greedy part of the implementation will use this identifier.
end_vid BIGINT 0 Last visiting vertex before returning to start_vid.
max_processing_time FLOAT +infinity Stop the annealing processing when the value is reached.
tries_per_temperature INTEGER 500 Maximum number of times a neighbor(s) is searched in each

temperature.
max_changes_per_temperature INTEGER 60 Maximum number of times the solution is changed in each

temperature.
max_consecutive_non_changes INTEGER 100 Maximum number of consecutive times the solution is not changed

in each temperature.
initial_temperature FLOAT 100 Starting temperature.
final_temperature FLOAT 0.1 Ending temperature.
cooling_factor FLOAT 0.9 Value between between 0 and 1 (not including) used to calculate

the next temperature.
randomize BOOLEAN true Choose the random seed

true: Use current time as seed
false: Use 1 as seed. Using this value will get the same results
with the same data in each execution.

Inner query

Coordinates SQL: an SQL query, which should return a set of rows with the following columns:

Column Type Description
id BIGINT (optional) Identifier of the coordinate.

When missing the coordinates will receive an id starting from 1, in the order
given.

x FLOAT X value of the coordinate.
y FLOAT Y value of the coordinate.

Result Columns

Returns SET OF (seq, node, cost, agg_cost)

Column Type Description

seq INTEGER Row sequence.
node BIGINT Identifier of the node/coordinate/point.
cost FLOAT Cost to traverse from the current node to the next node in the path

sequence.
0 for the last row in the path sequence.

agg_cost FLOAT Aggregate cost from the node at seq = 1 to the current node.
0 for the first row in the path sequence.

Column Type Description

Additional Examples

Example:
Try \(3\) times per temperature with cooling factor of \(0.5\), not having a random execution

SELECT* from pgr_TSPeuclidean(
 $$
 SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
 $$,
 tries_per_temperature := 3,
 cooling_factor := 0.5,
 randomize := false);
 seq | node | cost | agg_cost
-----+------+----------------+---------------
 1 | 1 | 1.41421356237 | 0
 2 | 3 | 1 | 1.41421356237
 3 | 4 | 1 | 2.41421356237
 4 | 9 | 0.583095189485 | 3.41421356237
 5 | 16 | 0.583095189485 | 3.99730875186
 6 | 6 | 1 | 4.58040394134
 7 | 5 | 1 | 5.58040394134
 8 | 8 | 1 | 6.58040394134
 9 | 7 | 1.58113883008 | 7.58040394134
 10 | 14 | 1.5 | 9.16154277143
 11 | 15 | 0.5 | 10.6615427714
 12 | 13 | 1.5 | 11.1615427714
 13 | 17 | 1.11803398875 | 12.6615427714
 14 | 12 | 1 | 13.7795767602
 15 | 11 | 1 | 14.7795767602
 16 | 10 | 2 | 15.7795767602
 17 | 2 | 1 | 17.7795767602
 18 | 1 | 0 | 18.7795767602
(18 rows)

Example:
Skipping the Simulated Annealing & showing some process information

SET client_min_messages TO DEBUG1;
SET
SELECT* from pgr_TSPeuclidean(
 $$
 SELECT id, st_X(the_geom) AS x, st_Y(the_geom) AS y FROM edge_table_vertices_pgr
 $$,
 tries_per_temperature := 0,
 randomize := false);
DEBUG: Processing Information
Initializing tsp class ---> tsp.greedyInitial ---> tsp.annealing ---> OK

Cycle(100) total changes =0 0 were because delta energy < 0
Total swaps: 3
Total slides: 0
Total reverses: 0
Times best tour changed: 4
Best cost reached = 18.7796
 seq | node | cost | agg_cost
-----+------+----------------+---------------
 1 | 1 | 1.41421356237 | 0
 2 | 3 | 1 | 1.41421356237
 3 | 4 | 1 | 2.41421356237
 4 | 9 | 0.583095189485 | 3.41421356237
 5 | 16 | 0.583095189485 | 3.99730875186
 6 | 6 | 1 | 4.58040394134
 7 | 5 | 1 | 5.58040394134
 8 | 8 | 1 | 6.58040394134
 9 | 7 | 1.58113883008 | 7.58040394134
 10 | 14 | 1.5 | 9.16154277143
 11 | 15 | 0.5 | 10.6615427714
 12 | 13 | 1.5 | 11.1615427714
 13 | 17 | 1.11803398875 | 12.6615427714
 14 | 12 | 1 | 13.7795767602
 15 | 11 | 1 | 14.7795767602
 16 | 10 | 2 | 15.7795767602
 17 | 2 | 1 | 17.7795767602
 18 | 1 | 0 | 18.7795767602
(18 rows)

The queries use the Sample Data network.

See Also

Traveling Sales Person - Family of functions
Wikipedia: Traveling Salesman Problem
Wikipedia: Simulated annealing

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3

Table of Contents

General Information
Problem Definition
Origin
Characteristics

Simulated Annealing Algorithm
pgRouting Implementation
Choosing parameters
Description of the Control Parameters

Description of the return columns
See Also

General Information

Problem Definition

The travelling salesman problem (TSP) or travelling salesperson problem asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city

https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Simulated_annealing
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/TSP-family.html
https://docs.pgrouting.org/2.6/en/TSP-family.html
https://docs.pgrouting.org/2.5/en/TSP-family.html
https://docs.pgrouting.org/2.4/en/TSP-family.html
https://docs.pgrouting.org/2.3/en/src/tsp/doc/tsp.html

exactly once and returns to the origin city?

Origin

The traveling sales person problem was studied in the 18th century by mathematicians
Sir William Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book Graph Theory (Biggs et al. 1976).

ISBN-13: 978-0198539162
ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The problem was
later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the connection between Menger &
Whitney, and the development of the TSP can be found in On the history of combinatorial optimization (till 1960)

Characteristics

The travel costs are symmetric:
traveling costs from city A to city B are just as much as traveling from B to A.

This problem is an NP-hard optimization problem.
To calculate the number of different tours through \(n\) cities:

Given a starting city,
There are \(n-1\) choices for the second city,
And \(n-2\) choices for the third city, etc.
Multiplying these together we get \((n-1)! = (n-1) (n-2) . . 1\).
Now since our travel costs do not depend on the direction we take around the tour:

this number by 2
\((n-1)!/2\).

Simulated Annealing Algorithm

The simulated annealing algorithm was originally inspired from the process of annealing in metal work.

Annealing involves heating and cooling a material to alter its physical properties due to the changes in its internal structure. As
the metal cools its new structure becomes fixed, consequently causing the metal to retain its newly obtained properties.

Pseudocode

Given an initial solution, the simulated annealing process, will start with a high temperature and gradually cool down until the
desired temperature is reached.

For each temperature, a neighbouring new solution newSolution is calculated. The higher the temperature the higher the
probability of accepting the new solution as a possible bester solution.

Once the desired temperature is reached, the best solution found is returned

Solution = initial_solution;

temperature = initial_temperature;
while (temperature > final_temperature) {

 do tries_per_temperature times {
 newSolution = neighbour(solution);
 If P(E(solution), E(newSolution), T) >= random(0, 1)
 solution = newSolution;
 }

 temperature = temperature * cooling factor;
}

Output: the best solution

pgRouting Implementation

pgRouting’s implementation adds some extra parameters to allow some exit controls within the simulated annealing process.

max_changes_per_temperature:
Limits the number of changes in the solution per temperature
Count is reset to \(0\) when temperature changes
Count is increased by :math: 1 when solution changes

max_consecutive_non_changes:
Limits the number of consecutive non changes per temperature
Count is reset to \(0\) when solution changes

https://homepages.cwi.nl/~lex/files/histco.ps

Count is increased by :math: 1 when solution changes
max_processing_time:

Limits the time the simulated annealing is performed.

Solution = initial_solution;

temperature = initial_temperature;
WHILE (temperature > final_temperature) {

 DO tries_per_temperature times {
 newSolution = neighbour(solution);
 If Probability(E(solution), E(newSolution), T) >= random(0, 1)
 solution = newSolution;

 BREAK DO WHEN:
 max_changes_per_temperature is reached
 OR max_consecutive_non_changes is reached
 }

 temperature = temperature * cooling factor;
 BREAK WHILE WHEN:
 no changes were done in the current temperature
 OR max_processing_time has being reached
}

Output: the best solution found

Choosing parameters

There is no exact rule on how the parameters have to be chose, it will depend on the special characteristics of the problem.

If the computational time is crucial, then limit execution time with max_processing_time.
Make the tries_per_temperture depending on the number of cities (\(n\)), for example:

Useful to estimate the time it takes to do one cycle: use 1
this will help to set a reasonable max_processing_time

\(n * (n-1)\)
\(500 * n\)

For a faster decreasing the temperature set cooling_factor to a smaller number, and set to a higher number for a slower
decrease.
When for the same given data the same results are needed, set randomize to false.

When estimating how long it takes to do one cycle: use false

A recommendation is to play with the values and see what fits to the particular data.

Description of the Control Parameters

The control parameters are optional, and have a default value.

Parameter Type Default Description
start_vid BIGINT 0 The greedy part of the implementation will use this identifier.
end_vid BIGINT 0 Last visiting vertex before returning to start_vid.
max_processing_time FLOAT +infinity Stop the annealing processing when the value is reached.
tries_per_temperature INTEGER 500 Maximum number of times a neighbor(s) is searched in each

temperature.
max_changes_per_temperature INTEGER 60 Maximum number of times the solution is changed in each

temperature.
max_consecutive_non_changes INTEGER 100 Maximum number of consecutive times the solution is not changed

in each temperature.
initial_temperature FLOAT 100 Starting temperature.
final_temperature FLOAT 0.1 Ending temperature.
cooling_factor FLOAT 0.9 Value between between 0 and 1 (not including) used to calculate

the next temperature.
randomize BOOLEAN true Choose the random seed

true: Use current time as seed
false: Use 1 as seed. Using this value will get the same results
with the same data in each execution.

Description of the return columns

Returns SET OF (seq, node, cost, agg_cost)

Column Type Description
seq INTEGER Row sequence.

node BIGINT Identifier of the node/coordinate/point.
cost FLOAT Cost to traverse from the current node to the next node in the path

sequence.
0 for the last row in the path sequence.

agg_cost FLOAT Aggregate cost from the node at seq = 1 to the current node.
0 for the first row in the path sequence.

Column Type Description

See Also

References

Wikipedia: Traveling Salesman Problem
Wikipedia: Simulated annealing

Indices and tables

Index
Search Page

Spanning Tree - Category

Kruskal - Family of functions
Prim - Family of functions

A spanning tree of an undirected graph is a tree that includes all the vertices of G with the minimum possible number of edges.

For a disconnected graph, there there is no single tree, but a spanning forest, consisting of a spanning tree of each connected
component.

Supported versions: current(3.0)

See Also

Boost: Prim’s algorithm documentation
Wikipedia: Prim’s algorithm

Indices and tables

Index
Search Page

K shortest paths - Category

pgr_KSP - Yen’s algorithm based on pgr_dijkstra

Proposed

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

pgr_withPointsKSP - Proposed - Yen’s algorithm based on pgr_withPoints

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

Indices and tables

https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Simulated_annealing
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/spanningTree-family.html
https://www.boost.org/libs/graph/doc/prim_minimum_spanning_tree.html
https://en.wikipedia.org/wiki/Prim%2527s_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/KSP-category.html
https://docs.pgrouting.org/2.6/en/KSP-category.html
https://docs.pgrouting.org/2.5/en/KSP-category.html
https://docs.pgrouting.org/2.4/en/KSP-category.html

Index
Search Page

pgr_trsp - Turn Restriction Shortest Path (TRSP)

pgr_trsp — Returns the shortest path with support for turn restrictions.

Availability

Version 2.1.0
New Via prototypes

pgr_trspViaVertices
pgr_trspViaEdges

Version 2.0.0
Official function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2 2.1 2.0

Description

The turn restricted shorthest path (TRSP) is a shortest path algorithm that can optionally take into account complicated turn
restrictions like those found in real world navigable road networks. Performamnce wise it is nearly as fast as the A* search but
has many additional features like it works with edges rather than the nodes of the network. Returns a set of (seq, id1, id2,
cost) or (seq, id1, id2, id3, cost) rows, that make up a path.

pgr_trsp(sql text, source integer, target integer,
 directed boolean, has_rcost boolean [,restrict_sql text]);
RETURNS SETOF (seq, id1, id2, cost)

pgr_trsp(sql text, source_edge integer, source_pos float8,
 target_edge integer, target_pos float8,
 directed boolean, has_rcost boolean [,restrict_sql text]);
RETURNS SETOF (seq, id1, id2, cost)

pgr_trspViaVertices(sql text, vids integer[],
 directed boolean, has_rcost boolean
 [, turn_restrict_sql text]);
RETURNS SETOF (seq, id1, id2, id3, cost)

pgr_trspViaEdges(sql text, eids integer[], pcts float8[],
 directed boolean, has_rcost boolean
 [, turn_restrict_sql text]);
RETURNS SETOF (seq, id1, id2, id3, cost)

The main characteristics are:

The Turn Restricted Shortest Path algorithm (TRSP) is similar to the shooting star in that you can specify turn restrictions.

The TRSP setup is mostly the same as Dijkstra shortest path with the addition of an optional turn restriction table. This
provides an easy way of adding turn restrictions to a road network by placing them in a separate table.

sql:
a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, [,reverse_cost] FROM edge_table

id:
int4 identifier of the edge
source:
int4 identifier of the source vertex
target:
int4 identifier of the target vertex
cost:
float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.
reverse_cost:
(optional) the cost for the reverse traversal of the edge. This is only used when the directed and has_rcost parameters are true

(see the above remark about negative costs).

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_trsp.html
https://docs.pgrouting.org/2.6/en/pgr_trsp.html
https://docs.pgrouting.org/2.5/en/pgr_trsp.html
https://docs.pgrouting.org/2.4/en/pgr_trsp.html
https://docs.pgrouting.org/2.3/en/src/trsp/doc/pgr_trsp.html
https://docs.pgrouting.org/2.2/en/src/trsp/doc/pgr_trsp.html
https://docs.pgrouting.org/2.1/en/src/trsp/doc/index.html
https://docs.pgrouting.org/2.0/en/src/trsp/doc/index.html

source:
int4 NODE id of the start point
target:
int4 NODE id of the end point
directed:
true if the graph is directed
has_rcost:
if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the
opposite direction.
restrict_sql:
(optional) a SQL query, which should return a set of rows with the following columns:

SELECT to_cost, target_id, via_path FROM restrictions

to_cost:
float8 turn restriction cost
target_id:
int4 target id
via_path:
text comma separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify EDGE id of source and target together with a fraction to interpolate the position:

source_edge:
int4 EDGE id of the start edge
source_pos:
float8 fraction of 1 defines the position on the start edge
target_edge:
int4 EDGE id of the end edge
target_pos:
float8 fraction of 1 defines the position on the end edge

Returns set of:

seq:
row sequence
id1:
node ID
id2:
edge ID (-1 for the last row)
cost:
cost to traverse from id1 using id2

Support for Vias

Warning

The Support for Vias functions are prototypes. Not all corner cases are being considered.

We also have support for vias where you can say generate a from A to B to C, etc. We support both methods above only you
pass an array of vertices or and array of edges and percentage position along the edge in two arrays.

sql:
a SQL query, which should return a set of rows with the following columns:

SELECT id, source, target, cost, [,reverse_cost] FROM edge_table

id:
int4 identifier of the edge
source:
int4 identifier of the source vertex
target:
int4 identifier of the target vertex
cost:
float8 value, of the edge traversal cost. A negative cost will prevent the edge from being inserted in the graph.
reverse_cost:
(optional) the cost for the reverse traversal of the edge. This is only used when the directed and has_rcost parameters are true

(see the above remark about negative costs).

vids:
int4[] An ordered array of NODE id the path will go through from start to end.
directed:
true if the graph is directed
has_rcost:
if true, the reverse_cost column of the SQL generated set of rows will be used for the cost of the traversal of the edge in the
opposite direction.
restrict_sql:
(optional) a SQL query, which should return a set of rows with the following columns:

SELECT to_cost, target_id, via_path FROM restrictions

to_cost:
float8 turn restriction cost
target_id:
int4 target id
via_path:
text commar separated list of edges in the reverse order of rule

Another variant of TRSP allows to specify EDGE id together with a fraction to interpolate the position:

eids:
int4 An ordered array of EDGE id that the path has to traverse
pcts:
float8 An array of fractional positions along the respective edges in eids, where 0.0 is the start of the edge and 1.0 is the end of
the eadge.

Returns set of:

seq:
row sequence
id1:
route ID
id2:
node ID
id3:
edge ID (-1 for the last row)
cost:
cost to traverse from id2 using id3

Additional Examples

Example:
Without turn restrictions

SELECT * FROM pgr_trsp(
 'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
 7, 12, false, false
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 7 | 6 | 1
 1 | 8 | 7 | 1
 2 | 5 | 8 | 1
 3 | 6 | 9 | 1
 4 | 9 | 15 | 1
 5 | 12 | -1 | 0
(6 rows)

Example:
With turn restrictions

Then a query with turn restrictions is created as:

SELECT * FROM pgr_trsp(
 'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
 2, 7, false, false,
 'SELECT to_cost, target_id::int4,
 from_edge || coalesce('','' || via_path, '''') AS via_path
 FROM restrictions'
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 2 | 4 | 1
 1 | 5 | 10 | 1
 2 | 10 | 12 | 1
 3 | 11 | 11 | 1
 4 | 6 | 8 | 1
 5 | 5 | 7 | 1
 6 | 8 | 6 | 1
 7 | 7 | -1 | 0
(8 rows)

SELECT * FROM pgr_trsp(
 'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
 7, 11, false, false,
 'SELECT to_cost, target_id::int4,
 from_edge || coalesce('','' || via_path, '''') AS via_path
 FROM restrictions'
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 7 | 6 | 1
 1 | 8 | 7 | 1
 2 | 5 | 8 | 1
 3 | 6 | 9 | 1
 4 | 9 | 15 | 1
 5 | 12 | 13 | 1
 6 | 11 | -1 | 0
(7 rows)

An example query using vertex ids and via points:

SELECT * FROM pgr_trspViaVertices(
 'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table',
 ARRAY[2,7,11]::INTEGER[],
 false, false,
 'SELECT to_cost, target_id::int4, from_edge ||
 coalesce('',''||via_path,'''') AS via_path FROM restrictions');
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | 2 | 4 | 1
 2 | 1 | 5 | 10 | 1
 3 | 1 | 10 | 12 | 1
 4 | 1 | 11 | 11 | 1
 5 | 1 | 6 | 8 | 1
 6 | 1 | 5 | 7 | 1
 7 | 1 | 8 | 6 | 1
 8 | 2 | 7 | 6 | 1
 9 | 2 | 8 | 7 | 1
 10 | 2 | 5 | 8 | 1
 11 | 2 | 6 | 9 | 1
 12 | 2 | 9 | 15 | 1
 13 | 2 | 12 | 13 | 1
 14 | 2 | 11 | -1 | 0
(14 rows)

An example query using edge ids and vias:

SELECT * FROM pgr_trspViaEdges(
 'SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost,
 reverse_cost FROM edge_table',
 ARRAY[2,7,11]::INTEGER[],
 ARRAY[0.5, 0.5, 0.5]::FLOAT[],
 true,
 true,
 'SELECT to_cost, target_id::int4, FROM_edge ||
 coalesce('',''||via_path,'''') AS via_path FROM restrictions');
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | -1 | 2 | 0.5
 2 | 1 | 2 | 4 | 1
 3 | 1 | 5 | 8 | 1
 4 | 1 | 6 | 9 | 1
 5 | 1 | 9 | 16 | 1
 6 | 1 | 4 | 3 | 1
 7 | 1 | 3 | 5 | 1
 8 | 1 | 6 | 8 | 1
 9 | 1 | 5 | 7 | 1
 10 | 2 | 5 | 8 | 1
 11 | 2 | 6 | 9 | 1
 12 | 2 | 9 | 16 | 1
 13 | 2 | 4 | 3 | 1
 14 | 2 | 3 | 5 | 1
 15 | 2 | 6 | 11 | 0.5
(15 rows)

The queries use the Sample Data network.

Known Issues

Introduction

pgr_trsp code has issues that are not being fixed yet, but as time passes and new functionality is added to pgRouting with
wrappers to hide the issues, not to fix them.

For clarity on the queries:

_pgr_trsp (internal_function) is the original code
pgr_trsp (lower case) represents the wrapper calling the original code
pgr_TRSP (upper case) represents the wrapper calling the replacement function, depending on the function, it can be:

pgr_dijkstra
pgr_dijkstraVia
pgr_withPoints
_pgr_withPointsVia (internal function)

The restrictions

The restriction used in the examples does not have to do anything with the graph:

No vertex has id: 25, 32 or 33
No edge has id: 25, 32 or 33

A restriction is assigned as:

SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path;
 to_cost | target_id | via_path
---------+-----------+----------
 100 | 25 | 32, 33
(1 row)

The back end code has that same restriction as follows

SELECT 1 AS id, 100::float AS cost, 25::INTEGER AS target_id, ARRAY[33, 32, 25] AS path;
 id | cost | target_id | path
----+------+-----------+------------
 1 | 100 | 25 | {33,32,25}
(1 row)

therefore the shortest path expected are as if there was no restriction involved

The “Vertices” signature version

pgr_trsp(sql text, source integer, target integer,
 directed boolean, has_rcost boolean [,restrict_sql text]);

Different ways to represent ‘no path found`

Sometimes represents with EMPTY SET a no path found
Sometimes represents with Error a no path found

Returning EMPTY SET to represent no path found

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 15, true, true
);
 seq | id1 | id2 | cost
-----+-----+-----+------
(0 rows)

pgr_trsp calls pgr_dijkstra when there are no restrictions which returns EMPTY SET when a path is not found

SELECT * FROM pgr_dijkstra(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 15
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

Throwing EXCEPTION to represent no path found

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 15, true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
ERROR: Error computing path: Path Not Found

pgr_trsp use the original code when there are restrictions, even if they have nothing to do with the graph, which will throw an
EXCEPTION to represent no path found.

Routing from/to same location

When routing from location \(1\) to the same location \(1\), no path is needed to reach the destination, its already there.
Therefore is expected to return an EMPTY SET or an EXCEPTION depending on the parameters

Sometimes represents with EMPTY SET no path found (expected)
Sometimes represents with EXCEPTION no path found (expected)
Sometimes finds a path (not expected)

Returning expected EMPTY SET to represent no path found

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 1, true, true
);
 seq | id1 | id2 | cost
-----+-----+-----+------
(0 rows)

pgr_trsp calls pgr_dijkstra when there are no restrictions which returns the expected to return EMPTY SET to represent no path
found.

Returning expected EXCEPTION to represent no path found

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 14, 14, true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
ERROR: Error computing path: Path Not Found

In this case pgr_trsp calls the original code when there are restrictions, even if they have nothing to do with the graph, in this
case that code throws the expected EXCEPTION

Returning unexpected path

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 1, true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 1 | 1 | 1
 1 | 2 | 4 | 1
 2 | 5 | 8 | 1
 3 | 6 | 9 | 1
 4 | 9 | 16 | 1
 5 | 4 | 3 | 1
 6 | 3 | 2 | 1
 7 | 2 | 1 | 1
 8 | 1 | -1 | 0
(9 rows)

In this case pgr_trsp calls the original code when there are restrictions, even if they have nothing to do with the graph, in this
case that code finds an unexpected path.

User contradictions

pgr_trsp unlike other pgRouting functions does not autodectect the existence of reverse_cost column. Therefor it has has_rcost

parameter to check the existence of reverse_cost column. Contradictions happen:

When the reverse_cost is missing, and the flag has_rcost is set to true
When the reverse_cost exists, and the flag has_rcost is set to false

When the reverse_cost is missing, and the flag has_rcost is set to true.

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table$$,
 2, 3, false, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
ERROR: Error, reverse_cost is used, but query did't return 'reverse_cost' column

An EXCEPTION is thrown.

When the reverse_cost exists, and the flag has_rcost is set to false

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 2, 3, false, false,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 2 | 4 | 1
 1 | 5 | 8 | 1
 2 | 6 | 5 | 1
 3 | 3 | -1 | 0
(4 rows)

The reverse_cost column will be effectively removed and will cost execution time

The “Edges” signature version

pgr_trsp(sql text, source_edge integer, source_pos float8,
 target_edge integer, target_pos float8,
 directed boolean, has_rcost boolean [,restrict_sql text]);

Different ways to represent ‘no path found`

Sometimes represents with EMPTY SET a no path found
Sometimes represents with EXCEPTION a no path found

Returning EMPTY SET to represent no path found

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 17, 0.5, true, true
);
 seq | id1 | id2 | cost
-----+-----+-----+------
(0 rows)

pgr_trsp calls pgr_withPoints - Proposed when there are no restrictions which returns EMPTY SET when a path is not found

Throwing EXCEPTION to represent no path found

SELECT * FROM _pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 17, 0.5, true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
ERROR: Error computing path: Path Not Found

pgr_trsp use the original code when there are restrictions, even if they have nothing to do with the graph, which will throw an
EXCEPTION to represent no path found.

Paths with equal number of vertices and edges

A path is made of N vertices and N - 1 edges.

Sometimes returns N vertices and N - 1 edges.
Sometimes returns N - 1 vertices and N - 1 edges.

Returning N vertices and N - 1 edges.

SELECT * FROM pgr_TRSP(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 1, 0.8, true, true
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 1 | 0.3
 1 | -2 | -1 | 0
(2 rows)

pgr_trsp calls pgr_withPoints - Proposed when there are no restrictions which returns the correct number of rows that will
include all the vertices. The last row will have a -1 on the edge column to indicate the edge number is invalidu for that row.

Returning N - 1 vertices and N - 1 edges.

SELECT * FROM pgr_TRSP(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 1, 0.8, true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 1 | 0.3
(1 row)

pgr_trsp use the original code when there are restrictions, even if they have nothing to do with the graph, and will not return
the last vertex of the path.

Routing from/to same location

When routing from the same edge and position to the same edge and position, no path is needed to reach the destination, its
already there. Therefore is expected to return an EMPTY SET or an EXCEPTION depending on the parameters, non of which is
happening.

A path with 2 vertices and edge cost 0

SELECT * FROM pgr_TRSP(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 1, 0.5, true, true
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 1 | 0
 1 | -2 | -1 | 0
(2 rows)

pgr_trsp calls pgr_withPoints - Proposed setting the first \((edge, position)\) with a differenct point id from the second \
((edge, position)\) making them different points. But the cost using the edge, is \(0\).

A path with 1 vertices and edge cost 0

SELECT * FROM pgr_TRSP(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 1, 0.5, true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 1 | 0
(1 row)

pgr_trsp use the original code when there are restrictions, even if they have nothing to do with the graph, and will not have the
row for the vertex \(-2\).

User contradictions

pgr_trsp unlike other pgRouting functions does not autodectect the existence of reverse_cost column. Therefor it has has_rcost

parameter to check the existence of reverse_cost column. Contradictions happen:

When the reverse_cost is missing, and the flag has_rcost is set to true
When the reverse_cost exists, and the flag has_rcost is set to false

When the reverse_cost is missing, and the flag has_rcost is set to true.

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost FROM edge_table$$,
 1, 0.5, 1, 0.8, false, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
ERROR: Error, reverse_cost is used, but query did't return 'reverse_cost' column

An EXCEPTION is thrown.

When the reverse_cost exists, and the flag has_rcost is set to false

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 1, 0.5, 1, 0.8, false, false,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 1 | 0.3
(1 row)

The reverse_cost column will be effectively removed and will cost execution time

Using a points of interest table

Given a set of points of interest:

SELECT * FROM pointsOfInterest;
 pid | x | y | edge_id | side | fraction | the_geom | newpoint
-----+-----+-----+---------+------+----------+--+--
 1 | 1.8 | 0.4 | 1 | l | 0.4 | 0101000000CDCCCCCCCCCCFC3F9A9999999999D93F | 010100000000000000000000409A9999999999D93F
 2 | 4.2 | 2.4 | 15 | r | 0.4 | 0101000000CDCCCCCCCCCC10403333333333330340 | 010100000000000000000010403333333333330340
 3 | 2.6 | 3.2 | 12 | l | 0.6 | 0101000000CDCCCCCCCCCC04409A99999999990940 | 0101000000CDCCCCCCCCCC04400000000000000840
 4 | 0.3 | 1.8 | 6 | r | 0.3 | 0101000000333333333333D33FCDCCCCCCCCCCFC3F | 0101000000333333333333D33F0000000000000040
 5 | 2.9 | 1.8 | 5 | l | 0.8 | 01010000003333333333330740CDCCCCCCCCCCFC3F | 01010000000000000000000840CDCCCCCCCCCCFC3F
 6 | 2.2 | 1.7 | 4 | b | 0.7 | 01010000009A99999999990140333333333333FB3F | 01010000000000000000000040333333333333FB3F
(6 rows)

Using pgr_trsp

SELECT * FROM pgr_TRSP(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 (SELECT edge_id::INTEGER FROM pointsOfInterest WHERE pid = 1),
 (SELECT fraction FROM pointsOfInterest WHERE pid = 1),
 (SELECT edge_id::INTEGER FROM pointsOfInterest WHERE pid = 6),
 (SELECT fraction FROM pointsOfInterest WHERE pid = 6),
 true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 1 | 0.6
 1 | 2 | 4 | 0.7
(2 rows)

On pgr_trsp, to be able to use the table information:

Each parameter has to be extracted explicitly from the table
Regardles of the point pid original value

will always be -1 for the first point
will always be -2 for the second point

the row reaching point -2 will not be shown

Using pgr_withPoints - Proposed

SELECT * FROM pgr_withPoints(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 $$SELECT pid, edge_id, fraction FROM pointsOfInterest$$,
 -1, -6
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 2 | 2 | 4 | 0.7 | 0.6
 3 | 3 | -6 | -1 | 0 | 1.3
(3 rows)

Suggestion: use pgr_withPoints - Proposed when there are no turn restrictions:

Results are more complete
Column names are meaningful

Routing from a vertex to a point

Solving a shortest path from vertex \(6\) to pid 1 using a points of interest table

Using pgr_trsp

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 8, 1,
 (SELECT edge_id::INTEGER FROM pointsOfInterest WHERE pid = 1),
 (SELECT fraction FROM pointsOfInterest WHERE pid = 1),
 true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 6 | 8 | 1
 1 | 5 | 4 | 1
 2 | 2 | 1 | 0.6
(3 rows)

Vertex 6 is on edge 8 at 1 fraction

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 11, 0,
 (SELECT edge_id::INTEGER FROM pointsOfInterest WHERE pid = 1),
 (SELECT fraction FROM pointsOfInterest WHERE pid = 1),
 true, true,
 $$SELECT 100::float AS to_cost, 25::INTEGER AS target_id, '32, 33'::TEXT AS via_path$$
);
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 6 | 8 | 1
 1 | 5 | 4 | 1
 2 | 2 | 1 | 0.6
(3 rows)

Vertex 6 is also edge 11 at 0 fraction

Using pgr_withPoints - Proposed

SELECT * FROM pgr_withPoints(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edge_table$$,
 $$SELECT pid, edge_id, fraction FROM pointsOfInterest$$,
 6, -1
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 8 | 1 | 0
 2 | 2 | 5 | 4 | 1 | 1
 3 | 3 | 2 | 1 | 0.6 | 2
 4 | 4 | -1 | -1 | 0 | 2.6
(4 rows)

Suggestion: use pgr_withPoints - Proposed when there are no turn restrictions:

No need to choose where the vertex is located.
Results are more complete
Column names are meaningful

prototypes

pgr_trspViaVertices and pgr_trspViaEdges were added to pgRouting as prototypes

These functions use the pgr_trsp functions inheriting all the problems mentioned above. When there are no restrictions and
have a routing “via” problem with vertices:

pgr_dijkstraVia - Proposed

See Also

Indices and tables

Index
Search Page

Cost - Category

pgr_aStarCost
pgr_dijkstraCost

Proposed

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_withPointsCost - Proposed

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

General Information

Characteristics

The main Characteristics are:

Each function works as part of the family it belongs to.
It does not return a path.
Returns the sum of the costs of the resulting path(s) for pair combination of nodes in the graph.
Process is done only on edges with positive costs.
Values are returned when there is a path.

The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost int the non included values (v, v) is 0.
When the starting vertex and ending vertex are the different and there is no path.

The agg_cost in the non included values (u, v) is \(\infty\).
Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
Depending on the function and its parameters, the results can be symmetric.

The agg_cost of (u, v) is the same as for (v, u).
Any duplicated value in the start_vids or in end_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

See Also

Indices and tables

Index
Search Page

Cost Matrix - Category

pgr_aStarCostMatrix
pgr_dijkstraCostMatrix

proposed

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

pgr_withPointsCostMatrix - proposed

pgr_withPointsCostMatrix - proposed

pgr_withPointsCostMatrix - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the
combination of points given.

Warning

Proposed functions for next mayor release.

They are not officially in the current release.

https://docs.pgrouting.org/3.0/en/cost-category.html
https://docs.pgrouting.org/2.6/en/cost-category.html
https://docs.pgrouting.org/2.5/en/cost-category.html
https://docs.pgrouting.org/2.4/en/cost-category.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

They will likely officially be part of the next mayor release:
The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0
New proposed function

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3

Description

TBD

Signatures

Summary

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids [, directed] [, driving_side])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note

There is no details flag, unlike the other members of the withPoints family of functions.

Using default

The minimal signature:
Is for a directed graph.
The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for points \(\{1, 6\}\) and vertices \(\{3, 6\}\) on a directed graph

SELECT * FROM pgr_withPointsCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction from pointsOfInterest',
 array[-1, 3, 6, -6]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 -6 | -1 | 1.3
 -6 | 3 | 4.3
 -6 | 6 | 1.3
 -1 | -6 | 1.3
 -1 | 3 | 5.6
 -1 | 6 | 2.6
 3 | -6 | 1.7
 3 | -1 | 1.6
 3 | 6 | 1
 6 | -6 | 1.3
 6 | -1 | 2.6
 6 | 3 | 3
(12 rows)

Complete Signature

https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_withPointsCostMatrix.html
https://docs.pgrouting.org/2.6/en/pgr_withPointsCostMatrix.html
https://docs.pgrouting.org/2.5/en/pgr_withPointsCostMatrix.html
https://docs.pgrouting.org/2.4/en/pgr_withPointsCostMatrix.html
https://docs.pgrouting.org/2.3/en/src/costMatrix/doc/pgr_withPointsCostMatrix.html

pgr_withPointsCostMatrix(edges_sql, points_sql, start_vids,
 directed:=true, driving_side:='b')
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
Cost matrix for points \(\{1, 6\}\) and vertices \(\{3, 6\}\) on an undirected graph

Returning a symmetrical cost matrix
Using the default side value on the points_sql query
Using the default driving_side value

SELECT * FROM pgr_withPointsCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction from pointsOfInterest',
 array[-1, 3, 6, -6], directed := false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 -6 | -1 | 1.3
 -6 | 3 | 1.7
 -6 | 6 | 1.3
 -1 | -6 | 1.3
 -1 | 3 | 1.6
 -1 | 6 | 2.6
 3 | -6 | 1.7
 3 | -1 | 1.6
 3 | 6 | 1
 6 | -6 | 1.3
 6 | -1 | 2.6
 6 | 3 | 1
(12 rows)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
points_sql TEXT Points SQL query as described above.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting vertices. When negative: is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which

considers the graph as Directed.
driving_side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

In the right or left or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Returns SET OF (start_vid, end_vid, agg_cost)

Column Type Description
start_vid BIGINT Identifier of the starting vertex. Used when multiple starting vetrices are in the

query.
end_vid BIGINT Identifier of the ending vertex. Used when multiple ending vertices are in the query.
agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER (optional) Identifier of the point.

If column present, it can not be NULL.
If column not present, a sequential identifier will be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the

edge.
side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

In the right, left of the edge or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Where:

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Additional Examples

Example:
pgr_TSP using pgr_withPointsCostMatrix for points \(\{1, 6\}\) and vertices \(\{3, 6\}\) on an undirected graph

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_withPointsCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction from pointsOfInterest',
 array[-1, 3, 6, -6], directed := false);
 $$,
 randomize := false
);
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | -6 | 1.3 | 0
 2 | -1 | 1.6 | 1.3
 3 | 3 | 1 | 2.9
 4 | 6 | 1.3 | 3.9
 5 | -6 | 0 | 5.2
(5 rows)

See Also

pgr_withPoints - Proposed
Cost Matrix - Category
pgr_TSP
sampledata network.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

General Information

Synopsis

Traveling Sales Person - Family of functions needs as input a symmetric cost matrix and no edge (u, v) must value \

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/costMatrix-category.html
https://docs.pgrouting.org/2.6/en/costMatrix-category.html
https://docs.pgrouting.org/2.5/en/costMatrix-category.html
https://docs.pgrouting.org/2.4/en/costMatrix-category.html

(\infty\).

This collection of functions will return a cost matrix in form of a table.

Characteristics

The main Characteristics are:

Can be used as input to pgr_TSP.

directly:
when the resulting matrix is symmetric and there is no \(\infty\) value.

It will be the users responsibility to make the matrix symmetric.
By using geometric or harmonic average of the non symmetric values.
By using max or min the non symmetric values.
By setting the upper triangle to be the mirror image of the lower triangle.
By setting the lower triangle to be the mirror image of the upper triangle.

It is also the users responsibility to fix an \(\infty\) value.
Each function works as part of the family it belongs to.
It does not return a path.
Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
Process is done only on edges with positive costs.
Values are returned when there is a path.

The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost int the non included values (v, v) is 0.
When the starting vertex and ending vertex are the different and there is no path.

The agg_cost in the non included values (u, v) is \(\infty\).
Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).
Depending on the function and its parameters, the results can be symmetric.

The agg_cost of (u, v) is the same as for (v, u).
Any duplicated value in the start_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: approximately \(O(| start_vids | * (V \log V + E))\)

See Also

Traveling Sales Person - Family of functions

Indices and tables

Index
Search Page

Driving Distance - Category

pgr_drivingDistance - Driving Distance based on Dijkstra’s algorithm
pgr_primDD - Driving Distance based on Prim’s algorithm
pgr_kruskalDD - Driving Distance based on Kruskal’s algorithm
Post pocessing

pgr_alphaShape - Alpha shape computation

Proposed

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_withPointsDD - Proposed - Driving Distance based on pgr_withPoints

pgr_alphaShape

pgr_alphaShape — Polygon part of an alpha shape.

Availability

Version 3.0.0
Breaking change on signature
Old signature no longer supported
Boost 1.54 & Boost 1.55 are supported
Boost 1.56+ is preferable

Boost Geometry is stable on Boost 1.56
Version 2.1.0

Added alpha argument with default 0 (use optimal value)
Support to return multiple outer/inner ring

Version 2.0.0
Official function
Renamed from version 1.x

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2 2.1 2.0

Description

Returns the polygon part of an alpha shape.

Characteristics

Input is a geometry and returns a geometry
Uses PostGis ST_DelaunyTriangles
Instead of using CGAL’s definition of alpha it use the spoon_radius

\(spoon_radius = \sqrt alpha\)
A Triangle area is considered part of the alpha shape when \(circumcenter\ radius < spoon_radius\)
When the total number of points is less than 3, returns an EMPTY geometry

Signatures

Summary

pgr_alphaShape(geometry, [spoon_radius])
RETURNS geometry

Example: passing a geometry collection with spoon radius \(1.5\) using the return variable geom

SELECT ST_Area(pgr_alphaShape((SELECT ST_Collect(the_geom) FROM edge_table_vertices_pgr), 1.5));
 st_area

 9.75
(1 row)

Parameters

Parameter Type Default Description
geometry geometry Geometry with at least \(3\)

points

spoon_radius FLOAT The radius of the spoon

Return Value

Kind of geometry Description
GEOMETRY
COLLECTION

A Geometry collection of
Polygons

See Also

https://docs.pgrouting.org/3.0/en/pgr_alphaShape.html
https://docs.pgrouting.org/2.6/en/pgr_alphaShape.html
https://docs.pgrouting.org/2.5/en/pgr_alphaShape.html
https://docs.pgrouting.org/2.4/en/pgr_alphaShape.html
https://docs.pgrouting.org/2.3/en/src/alpha_shape/doc/pgr_alphaShape.html
https://docs.pgrouting.org/2.2/en/src/alpha_shape/doc/pgr_alphaShape.html
https://docs.pgrouting.org/2.1/en/src/driving_distance/doc/dd_alphashape.html
https://docs.pgrouting.org/2.0/en/src/driving_distance/doc/dd_alphashape.html

pgr_drivingDistance
Sample Data network.
ST_ConcaveHull

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4

See Also

Indices and tables

Index
Search Page

See Also

Indices and tables

Index
Search Page

All Pairs - Family of Functions

pgr_floydWarshall - Floyd-Warshall’s algorithm.
pgr_johnson - Johnson’s algorithm

aStar - Family of functions

pgr_aStar - A* algorithm for the shortest path.
pgr_aStarCost - Get the aggregate cost of the shortest paths.
pgr_aStarCostMatrix - Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.
pgr_bdAstarCost - Bidirectional A* algorithm to calculate the cost of the paths.
pgr_bdAstarCostMatrix - Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.
pgr_bdDijkstraCost - Bidirectional Dijkstra to calculate the cost of the shortest paths
pgr_bdDijkstraCostMatrix - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Components - Family of functions

pgr_connectedComponents - Connected components of an undirected graph.
pgr_strongComponents - Strongly connected components of a directed graph.
pgr_biconnectedComponents - Biconnected components of an undirected graph.
pgr_articulationPoints - Articulation points of an undirected graph.
pgr_bridges - Bridges of an undirected graph.

Contraction - Family of functions

pgr_contraction

Dijkstra - Family of functions

pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.
pgr_dijkstraCost - Get the aggregate cost of the shortest paths.
pgr_dijkstraCostMatrix - Use pgr_dijkstra to create a costs matrix.
pgr_drivingDistance - Use pgr_dijkstra to calculate catchament information.
pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Flow - Family of functions

pgr_maxFlow - Only the Max flow calculation using Push and Relabel algorithm.

https://postgis.net/docs/ST_ConcaveHull.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/drivingDistance-category.html
https://docs.pgrouting.org/2.6/en/drivingDistance-category.html
https://docs.pgrouting.org/2.5/en/drivingDistance-category.html
https://docs.pgrouting.org/2.4/en/drivingDistance-category.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_boykovKolmogorov - Boykov and Kolmogorov with details of flow on edges.
pgr_edmondsKarp - Edmonds and Karp algorithm with details of flow on edges.
pgr_pushRelabel - Push and relabel algorithm with details of flow on edges.
Applications

pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.
pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Kruskal - Family of functions

pgr_kruskal
pgr_kruskalBFS
pgr_kruskalDD
pgr_kruskalDFS

Prim - Family of functions

pgr_prim
pgr_primBFS
pgr_primDD
pgr_primDFS

Topology - Family of Functions

pgr_createTopology - to create a topology based on the geometry.
pgr_createVerticesTable - to reconstruct the vertices table based on the source and target information.
pgr_analyzeGraph - to analyze the edges and vertices of the edge table.
pgr_analyzeOneWay - to analyze directionality of the edges.
pgr_nodeNetwork -to create nodes to a not noded edge table.

Traveling Sales Person - Family of functions

pgr_TSP - When input is given as matrix cell information.
pgr_TSPeuclidean - When input are coordinates.

pgr_trsp - Turn Restriction Shortest Path (TRSP) - Turn Restriction Shortest Path (TRSP)

Functions by categories

Cost - Category

pgr_aStarCost
pgr_dijkstraCost

Cost Matrix - Category

pgr_aStarCostMatrix
pgr_dijkstraCostMatrix

Driving Distance - Category

pgr_drivingDistance - Driving Distance based on Dijkstra’s algorithm
pgr_primDD - Driving Distance based on Prim’s algorithm
pgr_kruskalDD - Driving Distance based on Kruskal’s algorithm
Post pocessing

pgr_alphaShape - Alpha shape computation

K shortest paths - Category

pgr_KSP - Yen’s algorithm based on pgr_dijkstra

Spanning Tree - Category

Kruskal - Family of functions
Prim - Family of functions

Available Functions but not official pgRouting functions

Proposed Functions
Experimental Functions

Proposed Functions

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Families

Dijkstra - Family of functions

pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

withPoints - Family of functions

pgr_withPoints - Proposed - Route from/to points anywhere on the graph.
pgr_withPointsCost - Proposed - Costs of the shortest paths.
pgr_withPointsCostMatrix - proposed - Costs of the shortest paths.
pgr_withPointsKSP - Proposed - K shortest paths.
pgr_withPointsDD - Proposed - Driving distance.

categories

Cost - Category

pgr_withPointsCost - Proposed

Cost Matrix - Category

pgr_withPointsCostMatrix - proposed

Driving Distance - Category

pgr_withPointsDD - Proposed - Driving Distance based on pgr_withPoints

K shortest paths - Category

pgr_withPointsKSP - Proposed - Yen’s algorithm based on pgr_withPoints

withPoints - Family of functions

When points are also given as input:

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

pgr_withPoints - Proposed - Route from/to points anywhere on the graph.
pgr_withPointsCost - Proposed - Costs of the shortest paths.
pgr_withPointsCostMatrix - proposed - Costs of the shortest paths.
pgr_withPointsKSP - Proposed - K shortest paths.
pgr_withPointsDD - Proposed - Driving distance.

pgr_withPoints - Proposed

pgr_withPoints - Returns the shortest path in a graph with additional temporary vertices.

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0
New proposed function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2

Description

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path(s)

The main characteristics are:

Process is done only on edges with positive costs.
Vertices of the graph are:

positive when it belongs to the edges_sql
negative when it belongs to the points_sql

Values are returned when there is a path.
When the starting vertex and ending vertex are the same, there is no path. - The agg_cost the non included values (v,
v) is 0
When the starting vertex and ending vertex are the different and there is no path: - The agg_cost the non included
values (u, v) is ∞

For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
The returned values are ordered: - start_vid ascending - end_vid ascending

Running time: \(O(|start_vids|\times(V \log V + E))\)

Signatures

Summary

pgr_withPoints(edges_sql, points_sql, from_vid, to_vid [, directed] [, driving_side] [, details])
pgr_withPoints(edges_sql, points_sql, from_vid, to_vids [, directed] [, driving_side] [, details])
pgr_withPoints(edges_sql, points_sql, from_vids, to_vid [, directed] [, driving_side] [, details])
pgr_withPoints(edges_sql, points_sql, from_vids, to_vids [, directed] [, driving_side] [, details])
RETURNS SET OF (seq, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)

Using defaults

pgr_withPoints(edges_sql, points_sql, from_vid, to_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:
From point \(1\) to point \(3\)

For a directed graph.
The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.
No details are given about distance of other points of points_sql query.

https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_withPoints.html
https://docs.pgrouting.org/2.6/en/pgr_withPoints.html
https://docs.pgrouting.org/2.5/en/pgr_withPoints.html
https://docs.pgrouting.org/2.4/en/pgr_withPoints.html
https://docs.pgrouting.org/2.3/en/src/withPoints/doc/pgr_withPoints.html
https://docs.pgrouting.org/2.2/en/src/withPoints/doc/pgr_withPoints.html

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -3);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 2 | 2 | 4 | 1 | 0.6
 3 | 3 | 5 | 10 | 1 | 1.6
 4 | 4 | 10 | 12 | 0.6 | 2.6
 5 | 5 | -3 | -1 | 0 | 3.2
(5 rows)

One to One

pgr_withPoints(edges_sql, points_sql, from_vid, to_vid [, directed] [, driving_side] [, details])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)

Example:
From point \(1\) to vertex \(3\) with details of passing points

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3,
 details := true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 2 | 2 | 4 | 0.7 | 0.6
 3 | 3 | -6 | 4 | 0.3 | 1.3
 4 | 4 | 5 | 8 | 1 | 1.6
 5 | 5 | 6 | 9 | 1 | 2.6
 6 | 6 | 9 | 16 | 1 | 3.6
 7 | 7 | 4 | 3 | 1 | 4.6
 8 | 8 | 3 | -1 | 0 | 5.6
(8 rows)

One to Many

pgr_withPoints(edges_sql, points_sql, from_vid, to_vids [, directed] [, driving_side] [, details])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)

Example:
From point \(1\) to point \(3\) and vertex \(5\)

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, ARRAY[-3,5]);
 seq | path_seq | end_pid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | -3 | -1 | 1 | 0.6 | 0
 2 | 2 | -3 | 2 | 4 | 1 | 0.6
 3 | 3 | -3 | 5 | 10 | 1 | 1.6
 4 | 4 | -3 | 10 | 12 | 0.6 | 2.6
 5 | 5 | -3 | -3 | -1 | 0 | 3.2
 6 | 1 | 5 | -1 | 1 | 0.6 | 0
 7 | 2 | 5 | 2 | 4 | 1 | 0.6
 8 | 3 | 5 | 5 | -1 | 0 | 1.6
(8 rows)

Many to One

pgr_withPoints(edges_sql, points_sql, from_vids, to_vid [, directed] [, driving_side] [, details])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)

Example:
From point \(1\) and vertex \(2\) to point \(3\)

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], -3);
 seq | path_seq | start_pid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | -1 | -1 | 1 | 0.6 | 0
 2 | 2 | -1 | 2 | 4 | 1 | 0.6
 3 | 3 | -1 | 5 | 10 | 1 | 1.6
 4 | 4 | -1 | 10 | 12 | 0.6 | 2.6
 5 | 5 | -1 | -3 | -1 | 0 | 3.2
 6 | 1 | 2 | 2 | 4 | 1 | 0
 7 | 2 | 2 | 5 | 10 | 1 | 1
 8 | 3 | 2 | 10 | 12 | 0.6 | 2
 9 | 4 | 2 | -3 | -1 | 0 | 2.6
(9 rows)

Many to Many

pgr_withPoints(edges_sql, points_sql, from_vids, to_vids [, directed] [, driving_side] [, details])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Example:
From point \(1\) and vertex \(2\) to point \(3\) and vertex \(7\)

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], ARRAY[-3,7]);
 seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 2 | -1 | -3 | 2 | 4 | 1 | 0.6
 3 | 3 | -1 | -3 | 5 | 10 | 1 | 1.6
 4 | 4 | -1 | -3 | 10 | 12 | 0.6 | 2.6
 5 | 5 | -1 | -3 | -3 | -1 | 0 | 3.2
 6 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0
 7 | 2 | -1 | 7 | 2 | 4 | 1 | 0.6
 8 | 3 | -1 | 7 | 5 | 7 | 1 | 1.6
 9 | 4 | -1 | 7 | 8 | 6 | 1 | 2.6
 10 | 5 | -1 | 7 | 7 | -1 | 0 | 3.6
 11 | 1 | 2 | -3 | 2 | 4 | 1 | 0
 12 | 2 | 2 | -3 | 5 | 10 | 1 | 1
 13 | 3 | 2 | -3 | 10 | 12 | 0.6 | 2
 14 | 4 | 2 | -3 | -3 | -1 | 0 | 2.6
 15 | 1 | 2 | 7 | 2 | 4 | 1 | 0
 16 | 2 | 2 | 7 | 5 | 7 | 1 | 1
 17 | 3 | 2 | 7 | 8 | 6 | 1 | 2
 18 | 4 | 2 | 7 | 7 | -1 | 0 | 3
(18 rows)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
points_sql TEXT Points SQL query as described above.
start_vid ANY-INTEGER Starting vertex identifier. When negative: is a point’s pid.
end_vid ANY-INTEGER Ending vertex identifier. When negative: is a point’s pid.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting vertices. When negative: is a point’s pid.
end_vids ARRAY[ANY-INTEGER] Array of identifiers of ending vertices. When negative: is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which

considers the graph as Directed.
driving_side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

In the right or left or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

details BOOLEAN (optional). When true the results will include the points in points_sql that are in the path.
Default is false which ignores other points of the points_sql.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.

target ANY-INTEGER Identifier of the second end point vertex of the edge.

cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER (optional) Identifier of the point.

If column present, it can not be NULL.
If column not present, a sequential identifier will be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the

edge.
side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

In the right, left of the edge or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Where:

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

Column Type Description
seq INTEGER Row sequence.
path_seq INTEGER Path sequence that indicates the relative position on the path.
start_vid BIGINT Identifier of the starting vertex. When negative: is a point’s pid.
end_vid BIGINT Identifier of the ending vertex. When negative: is a point’s pid.
node BIGINT Identifier of the node:

A positive value indicates the node is a vertex of edges_sql.
A negative value indicates the node is a point of points_sql.

edge BIGINT Identifier of the edge used to go from node to the next node in the path
sequence.

-1 for the last row in the path sequence.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.

0 for the last row in the path sequence.
agg_cost FLOAT Aggregate cost from start_pid to node.

0 for the first row in the path sequence.

Additional Examples

Example:
Which path (if any) passes in front of point \(6\) or vertex \(6\) with right side driving topology.

SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:')::TEXT AS path_at,
 CASE WHEN edge = -1 THEN ' visits'
 ELSE ' passes in front of'
 END as status,
 CASE WHEN node < 0 THEN 'Point'
 ELSE 'Vertex'
 END as is_a,
 abs(node) as id
 FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
 driving_side := 'r',
 details := true)
 WHERE node IN (-6,6);
 path_at | status | is_a | id
-------------------------+---------------------+--------+----
 (-1 => -6) at 4th step: | visits | Point | 6
 (-1 => -3) at 4th step: | passes in front of | Point | 6
 (-1 => -2) at 4th step: | passes in front of | Point | 6
 (-1 => -2) at 6th step: | passes in front of | Vertex | 6
 (-1 => 3) at 4th step: | passes in front of | Point | 6
 (-1 => 3) at 6th step: | passes in front of | Vertex | 6
 (-1 => 6) at 4th step: | passes in front of | Point | 6
 (-1 => 6) at 6th step: | visits | Vertex | 6
 (1 => -6) at 3th step: | visits | Point | 6
 (1 => -3) at 3th step: | passes in front of | Point | 6
 (1 => -2) at 3th step: | passes in front of | Point | 6
 (1 => -2) at 5th step: | passes in front of | Vertex | 6
 (1 => 3) at 3th step: | passes in front of | Point | 6
 (1 => 3) at 5th step: | passes in front of | Vertex | 6
 (1 => 6) at 3th step: | passes in front of | Point | 6
 (1 => 6) at 5th step: | visits | Vertex | 6
(16 rows)

Example:
Which path (if any) passes in front of point \(6\) or vertex \(6\) with left side driving topology.

SELECT ('(' || start_pid || ' => ' || end_pid ||') at ' || path_seq || 'th step:')::TEXT AS path_at,
 CASE WHEN edge = -1 THEN ' visits'
 ELSE ' passes in front of'
 END as status,
 CASE WHEN node < 0 THEN 'Point'
 ELSE 'Vertex'
 END as is_a,
 abs(node) as id
 FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[1,-1], ARRAY[-2,-3,-6,3,6],
 driving_side := 'l',
 details := true)
 WHERE node IN (-6,6);
 path_at | status | is_a | id
-------------------------+---------------------+--------+----
 (-1 => -6) at 3th step: | visits | Point | 6
 (-1 => -3) at 3th step: | passes in front of | Point | 6
 (-1 => -2) at 3th step: | passes in front of | Point | 6
 (-1 => -2) at 5th step: | passes in front of | Vertex | 6
 (-1 => 3) at 3th step: | passes in front of | Point | 6
 (-1 => 3) at 5th step: | passes in front of | Vertex | 6
 (-1 => 6) at 3th step: | passes in front of | Point | 6
 (-1 => 6) at 5th step: | visits | Vertex | 6
 (1 => -6) at 4th step: | visits | Point | 6
 (1 => -3) at 4th step: | passes in front of | Point | 6
 (1 => -2) at 4th step: | passes in front of | Point | 6
 (1 => -2) at 6th step: | passes in front of | Vertex | 6
 (1 => 3) at 4th step: | passes in front of | Point | 6
 (1 => 3) at 6th step: | passes in front of | Vertex | 6
 (1 => 6) at 4th step: | passes in front of | Point | 6
 (1 => 6) at 6th step: | visits | Vertex | 6
(16 rows)

Example:
From point \(1\) and vertex \(2\) to point \(3\) to vertex \(7\) on an undirected graph, with details.

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], ARRAY[-3,7],
 directed := false,
 details := true);
 seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 2 | -1 | -3 | 2 | 4 | 0.7 | 0.6
 3 | 3 | -1 | -3 | -6 | 4 | 0.3 | 1.3
 4 | 4 | -1 | -3 | 5 | 10 | 1 | 1.6
 5 | 5 | -1 | -3 | 10 | 12 | 0.6 | 2.6
 6 | 6 | -1 | -3 | -3 | -1 | 0 | 3.2
 7 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0
 8 | 2 | -1 | 7 | 2 | 4 | 0.7 | 0.6
 9 | 3 | -1 | 7 | -6 | 4 | 0.3 | 1.3
 10 | 4 | -1 | 7 | 5 | 7 | 1 | 1.6
 11 | 5 | -1 | 7 | 8 | 6 | 0.7 | 2.6
 12 | 6 | -1 | 7 | -4 | 6 | 0.3 | 3.3
 13 | 7 | -1 | 7 | 7 | -1 | 0 | 3.6
 14 | 1 | 2 | -3 | 2 | 4 | 0.7 | 0
 15 | 2 | 2 | -3 | -6 | 4 | 0.3 | 0.7
 16 | 3 | 2 | -3 | 5 | 10 | 1 | 1
 17 | 4 | 2 | -3 | 10 | 12 | 0.6 | 2
 18 | 5 | 2 | -3 | -3 | -1 | 0 | 2.6
 19 | 1 | 2 | 7 | 2 | 4 | 0.7 | 0
 20 | 2 | 2 | 7 | -6 | 4 | 0.3 | 0.7
 21 | 3 | 2 | 7 | 5 | 7 | 1 | 1
 22 | 4 | 2 | 7 | 8 | 6 | 0.7 | 2
 23 | 5 | 2 | 7 | -4 | 6 | 0.3 | 2.7
 24 | 6 | 2 | 7 | 7 | -1 | 0 | 3
(24 rows)

The queries use the Sample Data network

See Also

withPoints - Family of functions

Indices and tables

Index
Search Page

pgr_withPointsCost - Proposed

pgr_withPointsCost - Calculates the shortest path and returns only the aggregate cost of the shortest path(s) found, for the
combination of points given.

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0
New proposed function

Support

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2

Description

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost of the
shortest path(s) found.

The main characteristics are:
It does not return a path.
Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.
Vertices of the graph are:

positive when it belongs to the edges_sql
negative when it belongs to the points_sql

Process is done only on edges with positive costs.
Values are returned when there is a path.

The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
When the starting vertex and ending vertex are the same, there is no path.

The agg_cost in the non included values (v, v) is 0

When the starting vertex and ending vertex are the different and there is no path.
The agg_cost in the non included values (u, v) is \(\infty\)

If the values returned are stored in a table, the unique index would be the pair: (start_vid, end_vid).
For undirected graphs, the results are symmetric.

The agg_cost of (u, v) is the same as for (v, u).

For optimization purposes, any duplicated value in the start_vids or end_vids is ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: \(O(| start_vids | * (V \log V + E))\)

Signatures

Summary

pgr_withPointsCost(edges_sql, points_sql, from_vid, to_vid [, directed] [, driving_side])
pgr_withPointsCost(edges_sql, points_sql, from_vid, to_vids [, directed] [, driving_side])
pgr_withPointsCost(edges_sql, points_sql, from_vids, to_vid [, directed] [, driving_side])
pgr_withPointsCost(edges_sql, points_sql, from_vids, to_vids [, directed] [, driving_side])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Note

There is no details flag, unlike the other members of the withPoints family of functions.

Using defaults

pgr_withPointsCost(edges_sql, points_sql, start_vid, end_vid)
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
From point \(1\) to point \(3\)

For a directed graph.
The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -3);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
(1 row)

One to One

pgr_withPointsCost(edges_sql, points_sql, from_vid, to_vid [, directed] [, driving_side])
RETURNS SET OF (seq, node, edge, cost, agg_cost)

https://docs.pgrouting.org/3.0/en/pgr_withPointsCost.html
https://docs.pgrouting.org/2.6/en/pgr_withPointsCost.html
https://docs.pgrouting.org/2.5/en/pgr_withPointsCost.html
https://docs.pgrouting.org/2.4/en/pgr_withPointsCost.html
https://docs.pgrouting.org/2.3/en/src/withPoints/doc/pgr_withPointsCost.html
https://docs.pgrouting.org/2.2/en/src/withPoints/doc/pgr_withPointsCost.html

Example:
From point \(1\) to vertex \(3\) on an undirected graph.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3,
 directed := false);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | 3 | 1.6
(1 row)

One to Many

pgr_withPointsCost(edges_sql, points_sql, from_vid, to_vids [, directed] [, driving_side])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
From point \(1\) to point \(3\) and vertex \(5\) on a directed graph.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, ARRAY[-3,5]);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 -1 | 5 | 1.6
(2 rows)

Many to One

pgr_withPointsCost(edges_sql, points_sql, from_vids, to_vid [, directed] [, driving_side])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
From point \(1\) and vertex \(2\) to point \(3\) on a directed graph.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], -3);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 2 | -3 | 2.6
(2 rows)

Many to Many

pgr_withPointsCost(edges_sql, points_sql, from_vids, to_vids [, directed] [, driving_side])
RETURNS SET OF (start_vid, end_vid, agg_cost)

Example:
From point \(1\) and vertex \(2\) to point \(3\) and vertex \(7\) on a directed graph.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], ARRAY[-3,7]);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 -1 | 7 | 3.6
 2 | -3 | 2.6
 2 | 7 | 3
(4 rows)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.

points_sql TEXT Points SQL query as described above.

start_vid ANY-INTEGER Starting vertex identifier. When negative: is a point’s pid.
end_vid ANY-INTEGER Ending vertex identifier. When negative: is a point’s pid.
start_vids ARRAY[ANY-INTEGER] Array of identifiers of starting vertices. When negative: is a point’s pid.
end_vids ARRAY[ANY-INTEGER] Array of identifiers of ending vertices. When negative: is a point’s pid.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which

considers the graph as Directed.
driving_side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

In the right or left or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Parameter Type Description

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER (optional) Identifier of the point.

If column present, it can not be NULL.
If column not present, a sequential identifier will be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the

edge.
side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

In the right, left of the edge or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Where:

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

Column Type Description
start_vid BIGINT Identifier of the starting vertex. When negative: is a point’s

pid.
end_vid BIGINT Identifier of the ending point. When negative: is a point’s pid.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.
Column Type Description

Additional Examples

Example:
From point \(1\) and vertex \(2\) to point \(3\) and vertex \(7\), with right side driving topology

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], ARRAY[-3,7],
 driving_side := 'l');
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 -1 | 7 | 3.6
 2 | -3 | 2.6
 2 | 7 | 3
(4 rows)

Example:
From point \(1\) and vertex \(2\) to point \(3\) and vertex \(7\), with left side driving topology

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], ARRAY[-3,7],
 driving_side := 'r');
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 4
 -1 | 7 | 4.4
 2 | -3 | 2.6
 2 | 7 | 3
(4 rows)

Example:
From point \(1\) and vertex \(2\) to point \(3\) and vertex \(7\), does not matter driving side.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1,2], ARRAY[-3,7],
 driving_side := 'b');
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 -1 | 7 | 3.6
 2 | -3 | 2.6
 2 | 7 | 3
(4 rows)

The queries use the Sample Data network.

See Also

withPoints - Family of functions

Indices and tables

Index
Search Page

pgr_withPointsKSP - Proposed

pgr_withPointsKSP - Find the K shortest paths using Yen’s algorithm.

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0
New proposed function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2

Description

Modifies the graph to include the points defined in the points_sql and using Yen algorithm, finds the \(K\) shortest paths.

Signatures

Summary

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K [, directed] [, heap_paths] [, driving_side] [, details])
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Using defaults

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K)
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Example:
From point \(1\) to point \(2\) in \(2\) cycles

For a directed graph.
The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.
No details are given about distance of other points of the query.
No heap paths are returned.

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -2, 2);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | 2 | 4 | 1 | 0.6
 3 | 1 | 3 | 5 | 8 | 1 | 1.6
 4 | 1 | 4 | 6 | 9 | 1 | 2.6
 5 | 1 | 5 | 9 | 15 | 0.4 | 3.6
 6 | 1 | 6 | -2 | -1 | 0 | 4
 7 | 2 | 1 | -1 | 1 | 0.6 | 0
 8 | 2 | 2 | 2 | 4 | 1 | 0.6
 9 | 2 | 3 | 5 | 8 | 1 | 1.6
 10 | 2 | 4 | 6 | 11 | 1 | 2.6
 11 | 2 | 5 | 11 | 13 | 1 | 3.6
 12 | 2 | 6 | 12 | 15 | 0.6 | 4.6
 13 | 2 | 7 | -2 | -1 | 0 | 5.2
(13 rows)

Complete Signature

Finds the \(K\) shortest paths depending on the optional parameters setup.

https://www.boost.org/libs/graph/doc/table_of_contents.html
https://docs.pgrouting.org/3.0/en/pgr_withPointsKSP.html
https://docs.pgrouting.org/2.6/en/pgr_withPointsKSP.html
https://docs.pgrouting.org/2.5/en/pgr_withPointsKSP.html
https://docs.pgrouting.org/2.4/en/pgr_withPointsKSP.html
https://docs.pgrouting.org/2.3/en/src/withPoints/doc/pgr_withPointsKSP.html
https://docs.pgrouting.org/2.2/en/src/withPoints/doc/pgr_withPointsKSP.html

pgr_withPointsKSP(edges_sql, points_sql, start_pid, end_pid, K [, directed] [, heap_paths] [, driving_side] [, details])
RETURNS SET OF (seq, path_id, path_seq, node, edge, cost, agg_cost)

Example:
From point \(1\) to vertex \(6\) in \(2\) cycles with details.

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 6, 2, details := true);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | 2 | 4 | 0.7 | 0.6
 3 | 1 | 3 | -6 | 4 | 0.3 | 1.3
 4 | 1 | 4 | 5 | 8 | 1 | 1.6
 5 | 1 | 5 | 6 | -1 | 0 | 2.6
 6 | 2 | 1 | -1 | 1 | 0.6 | 0
 7 | 2 | 2 | 2 | 4 | 0.7 | 0.6
 8 | 2 | 3 | -6 | 4 | 0.3 | 1.3
 9 | 2 | 4 | 5 | 10 | 1 | 1.6
 10 | 2 | 5 | 10 | 12 | 0.6 | 2.6
 11 | 2 | 6 | -3 | 12 | 0.4 | 3.2
 12 | 2 | 7 | 11 | 13 | 1 | 3.6
 13 | 2 | 8 | 12 | 15 | 0.6 | 4.6
 14 | 2 | 9 | -2 | 15 | 0.4 | 5.2
 15 | 2 | 10 | 9 | 9 | 1 | 5.6
 16 | 2 | 11 | 6 | -1 | 0 | 6.6
(16 rows)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
points_sql TEXT Points SQL query as described above.
start_pid ANY-INTEGER Starting point id.
end_pid ANY-INTEGER Ending point id.
K INTEGER Number of shortest paths.
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers the

graph as Directed.
heap_paths BOOLEAN (optional). When true the paths calculated to get the shortests paths will be returned also.

Default is false only the K shortest paths are returned.
driving_side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

In the right or left or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

details BOOLEAN (optional). When true the results will include the driving distance to the points with in the distance.
Default is false which ignores other points of the points_sql.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER (optional) Identifier of the point.

If column present, it can not be NULL.
If column not present, a sequential identifier will be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the

edge.
side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

In the right, left of the edge or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Where:

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

Column Type Description
seq INTEGER Row sequence.
path_seq INTEGER Relative position in the path of node and edge. Has value 1 for the beginning of a path.
path_id INTEGER Path identifier. The ordering of the paths: For two paths i, j if i < j then agg_cost(i) <=

agg_cost(j).
node BIGINT Identifier of the node in the path. Negative values are the identifiers of a point.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence.

-1 for the last row in the path sequence.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.

0 for the last row in the path sequence.
agg_cost FLOAT Aggregate cost from start_pid to node.

0 for the first row in the path sequence.

Additional Examples

Example:
Left side driving topology from point \(1\) to point \(2\) in \(2\) cycles, with details

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -2, 2,
 driving_side := 'l', details := true);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | 2 | 4 | 0.7 | 0.6
 3 | 1 | 3 | -6 | 4 | 0.3 | 1.3
 4 | 1 | 4 | 5 | 8 | 1 | 1.6
 5 | 1 | 5 | 6 | 9 | 1 | 2.6
 6 | 1 | 6 | 9 | 15 | 1 | 3.6
 7 | 1 | 7 | 12 | 15 | 0.6 | 4.6
 8 | 1 | 8 | -2 | -1 | 0 | 5.2
 9 | 2 | 1 | -1 | 1 | 0.6 | 0
 10 | 2 | 2 | 2 | 4 | 0.7 | 0.6
 11 | 2 | 3 | -6 | 4 | 0.3 | 1.3
 12 | 2 | 4 | 5 | 8 | 1 | 1.6
 13 | 2 | 5 | 6 | 11 | 1 | 2.6
 14 | 2 | 6 | 11 | 13 | 1 | 3.6
 15 | 2 | 7 | 12 | 15 | 0.6 | 4.6
 16 | 2 | 8 | -2 | -1 | 0 | 5.2
(16 rows)

Example:
Right side driving topology from point \(1\) to point \(2\) in \(2\) cycles, with heap paths and details

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -2, 2,
 heap_paths := true, driving_side := 'r', details := true);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | -1 | 1 | 0.4 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 0.4
 3 | 1 | 3 | 2 | 4 | 0.7 | 1.4
 4 | 1 | 4 | -6 | 4 | 0.3 | 2.1
 5 | 1 | 5 | 5 | 8 | 1 | 2.4
 6 | 1 | 6 | 6 | 9 | 1 | 3.4
 7 | 1 | 7 | 9 | 15 | 0.4 | 4.4
 8 | 1 | 8 | -2 | -1 | 0 | 4.8
 9 | 2 | 1 | -1 | 1 | 0.4 | 0
 10 | 2 | 2 | 1 | 1 | 1 | 0.4
 11 | 2 | 3 | 2 | 4 | 0.7 | 1.4
 12 | 2 | 4 | -6 | 4 | 0.3 | 2.1
 13 | 2 | 5 | 5 | 8 | 1 | 2.4
 14 | 2 | 6 | 6 | 11 | 1 | 3.4
 15 | 2 | 7 | 11 | 13 | 1 | 4.4
 16 | 2 | 8 | 12 | 15 | 1 | 5.4
 17 | 2 | 9 | 9 | 15 | 0.4 | 6.4
 18 | 2 | 10 | -2 | -1 | 0 | 6.8
 19 | 3 | 1 | -1 | 1 | 0.4 | 0
 20 | 3 | 2 | 1 | 1 | 1 | 0.4
 21 | 3 | 3 | 2 | 4 | 0.7 | 1.4
 22 | 3 | 4 | -6 | 4 | 0.3 | 2.1
 23 | 3 | 5 | 5 | 10 | 1 | 2.4
 24 | 3 | 6 | 10 | 12 | 0.6 | 3.4
 25 | 3 | 7 | -3 | 12 | 0.4 | 4
 26 | 3 | 8 | 11 | 13 | 1 | 4.4
 27 | 3 | 9 | 12 | 15 | 1 | 5.4
 28 | 3 | 10 | 9 | 15 | 0.4 | 6.4
 29 | 3 | 11 | -2 | -1 | 0 | 6.8
(29 rows)

The queries use the Sample Data network.

See Also

withPoints - Family of functions

Indices and tables

Index
Search Page

pgr_withPointsDD - Proposed

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning

Proposed functions for next mayor release.

They are not officially in the current release.
They will likely officially be part of the next mayor release:

The functions make use of ANY-INTEGER and ANY-NUMERICAL
Name might not change. (But still can)
Signature might not change. (But still can)
Functionality might not change. (But still can)
pgTap tests have being done. But might need more.
Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0
New proposed function

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/table_of_contents.html

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2

Description

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have costs less than or
equal to the value distance from the starting point. The edges extracted will conform the corresponding spanning tree.

Signatures

Summary

pgr_withPointsDD(edges_sql, points_sql, from_vids, distance [, directed] [, driving_side] [, details] [, equicost])
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Using defaults

For a directed graph.
The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.
No details are given about distance of other points of the query.

pgr_withPointsDD(edges_sql, points_sql, start_vid, distance)
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:
From point \(1\) with \(agg_cost <= 3.8\)

For a directed graph.
The driving side is set as b both. So arriving/departing to/from the point(s) can be in any direction.
No details are given about distance of other points of the query.

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3.8);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 1 | 1 | 0.4 | 0.4
 3 | 2 | 1 | 0.6 | 0.6
 4 | 5 | 4 | 1 | 1.6
 5 | 6 | 8 | 1 | 2.6
 6 | 8 | 7 | 1 | 2.6
 7 | 10 | 10 | 1 | 2.6
 8 | 7 | 6 | 1 | 3.6
 9 | 9 | 9 | 1 | 3.6
 10 | 11 | 11 | 1 | 3.6
 11 | 13 | 14 | 1 | 3.6
(11 rows)

Single vertex

Finds the driving distance depending on the optional parameters setup.

pgr_withPointsDD(edges_sql, points_sql, from_vid, distance [, directed] [, driving_side] [, details])
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Example:
Right side driving topology, from point \(1\) with \(agg_cost <= 3.8\)

https://docs.pgrouting.org/3.0/en/pgr_withPointsDD.html
https://docs.pgrouting.org/2.6/en/pgr_withPointsDD.html
https://docs.pgrouting.org/2.5/en/pgr_withPointsDD.html
https://docs.pgrouting.org/2.4/en/pgr_withPointsDD.html
https://docs.pgrouting.org/2.3/en/src/withPoints/doc/pgr_withPointsDD.html
https://docs.pgrouting.org/2.2/en/src/withPoints/doc/pgr_withPointsDD.html

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3.8,
 driving_side := 'r',
 details := true);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 1 | 1 | 0.4 | 0.4
 3 | 2 | 1 | 1 | 1.4
 4 | -6 | 4 | 0.7 | 2.1
 5 | 5 | 4 | 0.3 | 2.4
 6 | 6 | 8 | 1 | 3.4
 7 | 8 | 7 | 1 | 3.4
 8 | 10 | 10 | 1 | 3.4
(8 rows)

Multiple vertices

Finds the driving distance depending on the optional parameters setup.

pgr_withPointsDD(edges_sql, points_sql, from_vids, distance [, directed] [, driving_side] [, details] [, equicost])
RETURNS SET OF (seq, node, edge, cost, agg_cost)

Parameters

Parameter Type Description
edges_sql TEXT Edges SQL query as described above.
points_sql TEXT Points SQL query as described above.
start_vid ANY-INTEGER Starting point id
distance ANY-NUMERICAL Distance from the start_pid
directed BOOLEAN (optional). When false the graph is considered as Undirected. Default is true which considers the

graph as Directed.
driving_side CHAR (optional). Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the driving side is:

In the right or left or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

details BOOLEAN (optional). When true the results will include the driving distance to the points with in the
distance. Default is false which ignores other points of the points_sql.

equicost BOOLEAN (optional). When true the nodes will only appear in the closest start_v list. Default is false which
resembles several calls using the single starting point signatures. Tie brakes are arbitrary.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Description of the Points SQL query

points_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Description
pid ANY-INTEGER (optional) Identifier of the point.

If column present, it can not be NULL.
If column not present, a sequential identifier will be given automatically.

edge_id ANY-INTEGER Identifier of the “closest” edge to the point.
fraction ANY-NUMERICAL Value in <0,1> that indicates the relative postition from the first end point of the

edge.
side CHAR (optional) Value in [‘b’, ‘r’, ‘l’, NULL] indicating if the point is:

In the right, left of the edge or
If it doesn’t matter with ‘b’ or NULL.
If column not present ‘b’ is considered.

Where:

ANY-INTEGER:
smallint, int, bigint
ANY-NUMERICAL:
smallint, int, bigint, real, float

Result Columns

Column Type Description
seq INT row sequence.
node BIGINT Identifier of the node within the Distance from start_pid. If details =: true a negative value is the identifier of a

point.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence.

-1 when start_vid = node.
cost FLOAT Cost to traverse edge.

0 when start_vid = node.
agg_cost FLOAT Aggregate cost from start_vid to node.

0 when start_vid = node.

Additional Examples

Examples for queries marked as directed with cost and reverse_cost columns.

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost
columns are used

Example:
Left side driving topology from point \(1\) with \(agg_cost <= 3.8\), with details

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3.8,
 driving_side := 'l',
 details := true);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 2 | 1 | 0.6 | 0.6
 3 | -6 | 4 | 0.7 | 1.3
 4 | 5 | 4 | 0.3 | 1.6
 5 | 1 | 1 | 1 | 1.6
 6 | 6 | 8 | 1 | 2.6
 7 | 8 | 7 | 1 | 2.6
 8 | 10 | 10 | 1 | 2.6
 9 | -3 | 12 | 0.6 | 3.2
 10 | -4 | 6 | 0.7 | 3.3
 11 | 7 | 6 | 0.3 | 3.6
 12 | 9 | 9 | 1 | 3.6
 13 | 11 | 11 | 1 | 3.6
 14 | 13 | 14 | 1 | 3.6
(14 rows)

Example:
From point \(1\) with \(agg_cost <= 3.8\), does not matter driving side, with details

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3.8,
 driving_side := 'b',
 details := true);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 1 | 1 | 0.4 | 0.4
 3 | 2 | 1 | 0.6 | 0.6
 4 | -6 | 4 | 0.7 | 1.3
 5 | 5 | 4 | 0.3 | 1.6
 6 | 6 | 8 | 1 | 2.6
 7 | 8 | 7 | 1 | 2.6
 8 | 10 | 10 | 1 | 2.6
 9 | -3 | 12 | 0.6 | 3.2
 10 | -4 | 6 | 0.7 | 3.3
 11 | 7 | 6 | 0.3 | 3.6
 12 | 9 | 9 | 1 | 3.6
 13 | 11 | 11 | 1 | 3.6
 14 | 13 | 14 | 1 | 3.6
(14 rows)

The queries use the Sample Data network.

See Also

pgr_drivingDistance - Driving distance using dijkstra.
pgr_alphaShape - Alpha shape computation.

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0) 2.6
Unsupported versions: 2.5 2.4 2.3 2.2

Images

The squared vertices are the temporary vertices, The temporary vertices are added according to the driving side, The following
images visually show the differences on how depending on the driving side the data is interpreted.

Right driving side

Left driving side

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/withPoints-family.html
https://docs.pgrouting.org/2.6/en/withPoints-family.html
https://docs.pgrouting.org/2.5/en/withPoints-family.html
https://docs.pgrouting.org/2.4/en/withPoints-family.html
https://docs.pgrouting.org/2.3/en/src/withPoints/doc/withPoints.html
https://docs.pgrouting.org/2.2/en/src/withPoints/doc/withPoints.html
file:///opt/git/pgrouting/singlehtml/_images/rightDrivingSide.png

doesn’t matter the driving side

Introduction

This family of functions was thought for routing vehicles, but might as well work for some other application that we can not
think of.

The with points family of function give you the ability to route between arbitrary points located outside the original graph.

When given a point identified with a pid that its being mapped to and edge with an identifier edge_id, with a fraction along that
edge (from the source to the target of the edge) and some additional information about which side of the edge the point is on,
then routing from arbitrary points more accurately reflect routing vehicles in road networks,

I talk about a family of functions because it includes different functionalities.
pgr_withPoints is pgr_dijkstra based
pgr_withPointsCost is pgr_dijkstraCost based
pgr_withPointsKSP is pgr_ksp based
pgr_withPointsDD is pgr_drivingDistance based

In all this functions we have to take care of as many aspects as possible:

Must work for routing:
Cars (directed graph)
Pedestrians (undirected graph)

Arriving at the point:
In either side of the street.

file:///opt/git/pgrouting/singlehtml/_images/leftDrivingSide.png
file:///opt/git/pgrouting/singlehtml/_images/noMatterDrivingSide.png

Compulsory arrival on the side of the street where the point is located.
Countries with:

Right side driving
Left side driving

Some points are:
Permanent, for example the set of points of clients stored in a table in the data base
Temporal, for example points given through a web application

The numbering of the points are handled with negative sign.
Original point identifiers are to be positive.
Transformation to negative is done internally.
For results for involving vertices identifiers

positive sign is a vertex of the original graph
negative sign is a point of the temporary points

The reason for doing this is to avoid confusion when there is a vertex with the same number as identifier as the points
identifier.

Graph & edges

Let \(G_d(V,E)\) where \(V\) is the set of vertices and \(E\) is the set of edges be the original directed graph.
An edge of the original edges_sql is \((id, source, target, cost, reverse_cost)\) will generate internally

\((id, source, target, cost)\)
\((id, target, source, reverse_cost)\)

Point Definition

A point is defined by the quadruplet: \((pid, eid, fraction, side)\)
pid is the point identifier
eid is an edge id of the edges_sql
fraction represents where the edge eid will be cut.
side Indicates the side of the edge where the point is located.

Creating Temporary Vertices in the Graph

For edge (15, 9,12 10, 20), & lets insert point (2, 12, 0.3, r)

On a right hand side driving network

From first image above:

We can arrive to the point only via vertex 9.
It only affects the edge (15, 9,12, 10) so that edge is removed.
Edge (15, 12,9, 20) is kept.
Create new edges:

(15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
(15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

On a left hand side driving network

From second image above:

We can arrive to the point only via vertex 12.
It only affects the edge (15, 12,9 20) so that edge is removed.
Edge (15, 9,12, 10) is kept.
Create new edges:

(15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
(15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

Remember:
that fraction is from vertex 9 to vertex 12

When driving side does not matter

From third image above:

We can arrive to the point either via vertex 12 or via vertex 9
Edge (15, 12,9 20) is removed.
Edge (15, 9,12, 10) is removed.
Create new edges:

(15, 12,-1, 14) edge from vertex 12 to point 1 has cost 14
(15, -1,9, 6) edge from point 1 to vertex 9 has cost 6

(15, 9,-1, 3) edge from vertex 9 to point 1 has cost 3
(15, -1,12, 7) edge from point 1 to vertex 12 has cost 7

See Also

Indices and tables

Index
Search Page

See Also

Experimental Functions

Indices and tables

Index
Search Page

Experimental Functions

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Families

Flow - Family of functions

pgr_maxFlowMinCost - Experimental - Details of flow and cost on edges.
pgr_maxFlowMinCost_Cost - Experimental - Only the Min Cost calculation.

Chinese Postman Problem - Family of functions (Experimental)

pgr_chinesePostman - Experimental
pgr_chinesePostmanCost - Experimental

Topology - Family of Functions

pgr_extractVertices – Experimental - Extracts vertices information based on the source and target.

Transformation - Family of functions (Experimental)

pgr_lineGraph - Experimental - Transformation algorithm for generating a Line Graph.
pgr_lineGraphFull - Experimental - Transformation algorithm for generating a Line Graph out of each vertex in the
input graph.

Chinese Postman Problem - Family of functions (Experimental)

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_chinesePostman - Experimental
pgr_chinesePostmanCost - Experimental

pgr_chinesePostman - Experimental

pgr_chinesePostman — Calculates the shortest circuit path which contains every edge in a directed graph and starts and ends on
the same vertex.

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions current(3.0)

Description

The main characteristics are:

Process is done only on edges with positive costs.
Running time: \(O(E * (E + V * logV))\)
Graph must be connected.

Returns EMPTY SET on a disconnected graph

Signatures

pgr_chinesePostman(edges_sql)
RETURNS SET OF (seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:

https://docs.pgrouting.org/3.0/en/pgr_chinesePostman.html

SELECT * FROM pgr_chinesePostman(
 'SELECT id,
 source, target,
 cost, reverse_cost FROM edge_table where id < 17'
);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 1 | 1 | 1 | 0
 2 | 2 | 4 | 1 | 1
 3 | 5 | 4 | 1 | 2
 4 | 2 | 4 | 1 | 3
 5 | 5 | 7 | 1 | 4
 6 | 8 | 6 | 1 | 5
 7 | 7 | 6 | 1 | 6
 8 | 8 | 7 | 1 | 7
 9 | 5 | 8 | 1 | 8
 10 | 6 | 8 | 1 | 9
 11 | 5 | 10 | 1 | 10
 12 | 10 | 10 | 1 | 11
 13 | 5 | 10 | 1 | 12
 14 | 10 | 14 | 1 | 13
 15 | 13 | 14 | 1 | 14
 16 | 10 | 12 | 1 | 15
 17 | 11 | 13 | 1 | 16
 18 | 12 | 15 | 1 | 17
 19 | 9 | 9 | 1 | 18
 20 | 6 | 9 | 1 | 19
 21 | 9 | 15 | 1 | 20
 22 | 12 | 15 | 1 | 21
 23 | 9 | 16 | 1 | 22
 24 | 4 | 3 | 1 | 23
 25 | 3 | 5 | 1 | 24
 26 | 6 | 11 | 1 | 25
 27 | 11 | 13 | 1 | 26
 28 | 12 | 15 | 1 | 27
 29 | 9 | 16 | 1 | 28
 30 | 4 | 16 | 1 | 29
 31 | 9 | 16 | 1 | 30
 32 | 4 | 3 | 1 | 31
 33 | 3 | 2 | 1 | 32
 34 | 2 | 1 | 1 | 33
 35 | 1 | -1 | 0 | 34
(35 rows)

Parameters

Column Type Default Description
edges_sql TEXT The edges SQL query as described in Inner

query.

Inner query

An Edges SQL that represents a directed graph with the following columns

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, node, edge, cost, agg_cost)

Column Type Description

seq INT Sequential value starting from 1.

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the

path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Column Type Description

See Also

Chinese Postman Problem - Family of functions (Experimental)

Indices and tables

Index
Search Page

pgr_chinesePostmanCost - Experimental

pgr_chinesePostmanCost — Calculates the minimum costs of a circuit path which contains every edge in a directed graph and starts
and ends on the same vertex.

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions current(3.0)

Description

The main characteristics are:

Process is done only on edges with positive costs.
Running time: \(O(E * (E + V * logV))\)
Graph must be connected.

[TBD] Return value when the graph if disconnected

Signatures

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/pgr_chinesePostmanCost.html

pgr_chinesePostmanCost(edges_sql)
RETURNS FLOAT

Example:

SELECT * FROM pgr_chinesePostmanCost(
 'SELECT id,
 source, target,
 cost, reverse_cost FROM edge_table where id < 17'
);
 pgr_chinesepostmancost

 34
(1 row)

Parameters

Column Type Default Description
edges_sql TEXT The edges SQL query as described in Inner

query.

Inner query

An Edges SQL that represents a directed graph with the following columns

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Type Description
FLOAT Minimum costs of a circuit

path.

See Also

Chinese Postman Problem - Family of functions (Experimental)

Indices and tables

Index
Search Page

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Versions of this page

Supported versions: current(3.0)

Description

The main characteristics are:

Process is done only on edges with positive costs.
Running time: \(O(E * (E + V * logV))\)
Graph must be connected.

Parameters

Column Type Default Description
edges_sql TEXT The edges SQL query as described in Inner

query.

Inner query

An Edges SQL that represents a directed graph with the following columns

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also

Indices and tables

Index
Search Page

categories

Vehicle Routing Functions - Category (Experimental)

Pickup and delivery problem
pgr_pickDeliver - Experimental - Pickup & Delivery using a Cost Matrix

https://docs.pgrouting.org/3.0/en/chinesePostmanProblem-family.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_pickDeliverEuclidean - Experimental - Pickup & Delivery with Euclidean distances
Distribution problem

pgr_vrpOneDepot - Experimental - From a single depot, distributes orders

Vehicle Routing Functions - Category (Experimental)

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Pickup and delivery problem
pgr_pickDeliver - Experimental - Pickup & Delivery using a Cost Matrix
pgr_pickDeliverEuclidean - Experimental - Pickup & Delivery with Euclidean distances

Distribution problem
pgr_vrpOneDepot - Experimental - From a single depot, distributes orders

Contents

Vehicle Routing Functions - Category (Experimental)
Introduction

Characteristics
Pick & Delivery
Parameters

Pick & deliver
Inner Queries

Pick & Deliver Orders SQL
Pick & Deliver Vehicles SQL
Pick & Deliver Matrix SQL

Results
Description of the result (TODO Disussion: Euclidean & Matrix)
Description of the result (TODO Disussion: Euclidean & Matrix)

Handling Parameters
Capacity and Demand Units Handling
Locations
Time Handling
Factor Handling

See Also

pgr_pickDeliver - Experimental

pgr_pickDeliver - Pickup and delivery Vehicle Routing Problem

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)

Synopsis

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

Optimization problem is NP-hard.
pickup and Delivery with time windows.
All vehicles are equal.

Same Starting location.
Same Ending location which is the same as Starting location.
All vehicles travel at the same speed.

A customer is for doing a pickup or doing a deliver.
has an open time.
has a closing time.
has a service time.
has an (x, y) location.

There is a customer where to deliver a pickup.
travel time between customers is distance / speed
pickup and delivery pair is done with the same vehicle.
A pickup is done before the delivery.

Characteristics

All trucks depart at time 0.
No multiple time windows for a location.
Less vehicle used is considered better.
Less total duration is better.
Less wait time is better.
the algorithm will raise an exception when

If there is a pickup-deliver pair than violates time window
The speed, max_cycles, ma_capacity have illegal values

Six different initial will be optimized - the best solution found will be result

Signature

pgr_pickDeliver(orders_sql, vehicles_sql, matrix_sql [, factor, max_cycles, initial_sol])
RETURNS SET OF (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo,
 travel_time, arrival_time, wait_time, service_time, departure_time)

https://docs.pgrouting.org/3.0/en/pgr_pickDeliver.html

Parameters

The parameters are:

orders_sql, vehicles_sql, matrix_sql [, factor, max_cycles, initial_sol]

Column Type Default Description
orders_sql TEXT Pick & Deliver Orders SQL query contianing the orders to be processed.
vehicles_sql TEXT Pick & Deliver Vehicles SQL query containing the vehicles to be used.
matrix_sql TEXT Pick & Deliver Matrix SQL query containing the distance or travel

times.
factor NUMERIC 1 Travel time multiplier. See Factor Handling
max_cycles INTEGER 10 Maximum number of cycles to perform on the optimization.
initial_sol INTEGER 4 Initial solution to be used.

1 One order per truck
2 Push front order.
3 Push back order.
4 Optimize insert.
5 Push back order that allows more orders to be inserted at the back
6 Push front order that allows more orders to be inserted at the front

Pick & Deliver Orders SQL

A SELECT statement that returns the following columns:

id, demand
p_node_id, p_open, p_close, [p_service,]
d_node_id, d_open, d_close, [d_service,]

where:

Column Type Default Description
id ANY-INTEGER Identifier of the pick-delivery order pair.
demand ANY-NUMERICAL Number of units in the order
p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens.
p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes.
d_service ANY-NUMERICAL 0 The duration of the loading at the pickup location.
d_open ANY-NUMERICAL The time, relative to 0, when the delivery location

opens.
d_close ANY-NUMERICAL The time, relative to 0, when the delivery location

closes.
d_service ANY-NUMERICAL 0 The duration of the loading at the delivery location.

For the non euclidean implementation, the starting and ending identifiers are needed:

Column Type Description
p_node_id ANY-INTEGER The node identifier of the pickup, must match a node identifier in the matrix table.
d_node_id ANY-INTEGER The node identifier of the delivery, must match a node identifier in the matrix

table.

Pick & Deliver Vehicles SQL

A SELECT statement that returns the following columns:

id, capacity
start_node_id, start_open, start_close [, start_service,]
[end_node_id, end_open, end_close, end_service]

where:

Column Type Default Description
id ANY-INTEGER Identifier of the pick-delivery order pair.
capacity ANY-NUMERICAL Number of units in the order
speed ANY-NUMERICAL 1 Average speed of the vehicle.
start_open ANY-NUMERICAL The time, relative to 0, when the starting location

opens.

start_close ANY-NUMERICAL The time, relative to 0, when the starting location
closes.

start_service ANY-NUMERICAL 0 The duration of the loading at the starting location.
end_open ANY-NUMERICAL start_open The time, relative to 0, when the ending location opens.
end_close ANY-NUMERICAL start_close The time, relative to 0, when the ending location closes.
end_service ANY-NUMERICAL start_service The duration of the loading at the ending location.

Column Type Default Description

For the non euclidean implementation, the starting and ending identifiers are needed:

Column Type Default Description
start_node_id ANY-

INTEGER
The node identifier of the starting location, must match a node identifier in the
matrix table.

end_node_id ANY-
INTEGER

start_node_id The node identifier of the ending location, must match a node identifier in the
matrix table.

Pick & Deliver Matrix SQL

A SELECT statement that returns the following columns:

Warning

TODO

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Example

This example use the following data: TODO put link

SELECT * FROM pgr_pickDeliver(
 $$ SELECT * FROM orders ORDER BY id $$,
 $$ SELECT * FROM vehicles ORDER BY id$$,
 $$ SELECT * from pgr_dijkstraCostMatrix(
 'SELECT * FROM edge_table ',
 (SELECT array_agg(id) FROM (SELECT p_node_id AS id FROM orders
 UNION
 SELECT d_node_id FROM orders
 UNION
 SELECT start_node_id FROM vehicles) a))
 $$
);
 seq | vehicle_seq | vehicle_id | stop_seq | stop_type | stop_id | order_id | cargo | travel_time | arrival_time | wait_time | service_time | departure_time
-----+-------------+------------+----------+-----------+---------+----------+-------+-------------+--------------+-----------+--------------+----------------
 1 | 1 | 1 | 1 | 1 | 6 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 2 | 1 | 1 | 2 | 2 | 5 | 3 | 30 | 1 | 1 | 1 | 3 | 5
 3 | 1 | 1 | 3 | 3 | 11 | 3 | 0 | 2 | 7 | 0 | 3 | 10
 4 | 1 | 1 | 4 | 2 | 9 | 2 | 20 | 2 | 12 | 0 | 2 | 14
 5 | 1 | 1 | 5 | 3 | 4 | 2 | 0 | 1 | 15 | 0 | 3 | 18
 6 | 1 | 1 | 6 | 6 | 6 | -1 | 0 | 2 | 20 | 0 | 0 | 20
 7 | 2 | 1 | 1 | 1 | 6 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 8 | 2 | 1 | 2 | 2 | 3 | 1 | 10 | 3 | 3 | 0 | 3 | 6
 9 | 2 | 1 | 3 | 3 | 8 | 1 | 0 | 3 | 9 | 0 | 3 | 12
 10 | 2 | 1 | 4 | 6 | 6 | -1 | 0 | 2 | 14 | 0 | 0 | 14
 11 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | 16 | -1 | 1 | 17 | 34
(11 rows)

See Also

Vehicle Routing Functions - Category (Experimental)
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_pickDeliverEuclidean - Experimental

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_pickDeliverEuclidean - Pickup and delivery Vehicle Routing Problem

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
Replaces pgr_gsoc_vrppdtw

New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2 2.1

Synopsis

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

Optimization problem is NP-hard.
Pickup and Delivery:

capacitated
with time windows.

The vehicles
have (x, y) start and ending locations.
have a start and ending service times.
have opening and closing times for the start and ending locations.

An order is for doing a pickup and a a deliver.
has (x, y) pickup and delivery locations.
has opening and closing times for the pickup and delivery locations.
has a pickup and deliver service times.

There is a customer where to deliver a pickup.
travel time between customers is distance / speed
pickup and delivery pair is done with the same vehicle.
A pickup is done before the delivery.

Characteristics

No multiple time windows for a location.
Less vehicle used is considered better.
Less total duration is better.
Less wait time is better.
Six different optional different initial solutions

the best solution found will be result

Signature

https://docs.pgrouting.org/3.0/en/pgr_pickDeliverEuclidean.html
https://docs.pgrouting.org/2.6/en/pgr_gsoc_vrppdtw.html
https://docs.pgrouting.org/2.5/en/pgr_gsoc_vrppdtw.html
https://docs.pgrouting.org/2.4/en/pgr_gsoc_vrppdtw.html
https://docs.pgrouting.org/2.3/en/src/vrppdtw/doc/pgr_gsoc_vrppdtw.html
https://docs.pgrouting.org/2.2/en/src/vrppdtw/doc/index.html
https://docs.pgrouting.org/2.1/en/src/vrppdtw/doc/index.html

pgr_pickDeliverEuclidean(orders_sql, vehicles_sql [,factor, max_cycles, initial_sol])
RETURNS SET OF (seq, vehicle_seq, vehicle_id, stop_seq, stop_type, order_id,
 cargo, travel_time, arrival_time, wait_time, service_time, departure_time)

Parameters

The parameters are:

orders_sql, vehicles_sql [,factor, max_cycles, initial_sol]

Where:

Column Type Default Description
orders_sql TEXT Pick & Deliver Orders SQL query containing the orders to be

processed.
vehicles_sql TEXT Pick & Deliver Vehicles SQL query containing the vehicles to be used.
factor NUMERIC 1 (Optional) Travel time multiplier. See Factor Handling
max_cycles INTEGER 10 (Optional) Maximum number of cycles to perform on the optimization.

initial_sol INTEGER 4 (Optional) Initial solution to be used.

1 One order per truck
2 Push front order.
3 Push back order.
4 Optimize insert.
5 Push back order that allows more orders to be inserted at the back
6 Push front order that allows more orders to be inserted at the front

Pick & Deliver Orders SQL

A SELECT statement that returns the following columns:

id, demand
p_x, p_y, p_open, p_close, [p_service,]
d_x, d_y, d_open, d_close, [d_service,]

Where:

Column Type Default Description
id ANY-INTEGER Identifier of the pick-delivery order pair.
demand ANY-NUMERICAL Number of units in the order
p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens.
p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes.
d_service ANY-NUMERICAL 0 The duration of the loading at the pickup location.
d_open ANY-NUMERICAL The time, relative to 0, when the delivery location

opens.
d_close ANY-NUMERICAL The time, relative to 0, when the delivery location

closes.
d_service ANY-NUMERICAL 0 The duration of the loading at the delivery location.

For the euclidean implementation, pick up and delivery \((x,y)\) locations are needed:

Column Type Description
p_x ANY-NUMERICAL \(x\) value of the pick up location
p_y ANY-NUMERICAL \(y\) value of the pick up location
d_x ANY-NUMERICAL \(x\) value of the delivery

location
d_y ANY-NUMERICAL \(y\) value of the delivery

location

Pick & Deliver Vehicles SQL

A SELECT statement that returns the following columns:

id, capacity
start_x, start_y, start_open, start_close [, start_service,]
[end_x, end_y, end_open, end_close, end_service]

where:

Column Type Default Description
id ANY-INTEGER Identifier of the pick-delivery order pair.
capacity ANY-NUMERICAL Number of units in the order
speed ANY-NUMERICAL 1 Average speed of the vehicle.
start_open ANY-NUMERICAL The time, relative to 0, when the starting location

opens.
start_close ANY-NUMERICAL The time, relative to 0, when the starting location

closes.
start_service ANY-NUMERICAL 0 The duration of the loading at the starting location.
end_open ANY-NUMERICAL start_open The time, relative to 0, when the ending location opens.

end_close ANY-NUMERICAL start_close The time, relative to 0, when the ending location closes.
end_service ANY-NUMERICAL start_service The duration of the loading at the ending location.

For the euclidean implementation, starting and ending \((x,y)\) locations are needed:

Column Type Default Description
start_x ANY-NUMERICAL \(x\) value of the coordinate of the starting

location.
start_y ANY-NUMERICAL \(y\) value of the coordinate of the starting

location.
end_x ANY-NUMERICAL start_x \(x\) value of the coordinate of the ending location.
end_y ANY-NUMERICAL start_y \(y\) value of the coordinate of the ending location.

Description of the result (TODO Disussion: Euclidean & Matrix)

RETURNS SET OF
 (seq, vehicle_seq, vehicle_id, stop_seq, stop_type,
 travel_time, arrival_time, wait_time, service_time, departure_time)
 UNION
 (summary row)

Column Type Description
seq INTEGER Sequential value starting from 1.
vehicle_seq INTEGER Sequential value starting from 1 for current vehicles. The \(n_{th}\) vehicle in the solution.
vehicle_id BIGINT Current vehicle identifier.
stop_seq INTEGER Sequential value starting from 1 for the stops made by the current vehicle. The \(m_{th}\) stop

of the current vehicle.
stop_type INTEGER Kind of stop location the vehicle is at:

1: Starting location
2: Pickup location
3: Delivery location
6: Ending location

order_id BIGINT Pickup-Delivery order pair identifier.

-1: When no order is involved on the current stop location.
cargo FLOAT Cargo units of the vehicle when leaving the stop.
travel_time FLOAT Travel time from previous stop_seq to current stop_seq.

0 When stop_type = 1

arrival_time FLOAT Previous departure_time plus current travel_time.
wait_time FLOAT Time spent waiting for current location to open.
service_time FLOAT Service time at current location.
departure_time FLOAT \(arrival_time + wait_time + service_time\).

When stop_type = 6 has the total_time used for the current vehicle.

Summary Row

Warning

TODO: Review the summary

Column Type Description

seq INTEGER Continues the Sequential value
vehicle_seq INTEGER -2 to indicate is a summary row
vehicle_id BIGINT Total Capacity Violations in the solution.
stop_seq INTEGER Total Time Window Violations in the solution.
stop_type INTEGER -1

order_id BIGINT -1

cargo FLOAT -1

travel_time FLOAT total_travel_time The sum of all the travel_time
arrival_time FLOAT -1

wait_time FLOAT total_waiting_time The sum of all the wait_time
service_time FLOAT total_service_time The sum of all the service_time
departure_time FLOAT total_solution_time = \(total_travel_time + total_wait_time +

total_service_time\).

Column Type Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Example

This example use the following data: TODO put link

SELECT * FROM pgr_pickDeliverEuclidean(
 'SELECT * FROM orders ORDER BY id',
 'SELECT * from vehicles'
);
 seq | vehicle_seq | vehicle_id | stop_seq | stop_type | order_id | cargo | travel_time | arrival_time | wait_time | service_time | departure_time
-----+-------------+------------+----------+-----------+----------+-------+---------------+---------------+-----------+--------------+----------------
 1 | 1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 2 | 1 | 1 | 2 | 2 | 3 | 30 | 1 | 1 | 1 | 3 | 5
 3 | 1 | 1 | 3 | 3 | 3 | 0 | 1.41421356237 | 6.41421356237 | 0 | 3 | 9.41421356237
 4 | 1 | 1 | 4 | 2 | 2 | 20 | 1.41421356237 | 10.8284271247 | 0 | 2 | 12.8284271247
 5 | 1 | 1 | 5 | 3 | 2 | 0 | 1 | 13.8284271247 | 0 | 3 | 16.8284271247
 6 | 1 | 1 | 6 | 6 | -1 | 0 | 1.41421356237 | 18.2426406871 | 0 | 0 | 18.2426406871
 7 | 2 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 8 | 2 | 1 | 2 | 2 | 1 | 10 | 1 | 1 | 1 | 3 | 5
 9 | 2 | 1 | 3 | 3 | 1 | 0 | 2.2360679775 | 7.2360679775 | 0 | 3 | 10.2360679775
 10 | 2 | 1 | 4 | 6 | -1 | 0 | 2 | 12.2360679775 | 0 | 0 | 12.2360679775
 11 | -2 | 0 | 0 | -1 | -1 | -1 | 11.4787086646 | -1 | 2 | 17 | 30.4787086646
(11 rows)

See Also

Vehicle Routing Functions - Category (Experimental)
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_vrpOneDepot - Experimental

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

No documentation available

Availability

Version 2.1.0
New experimental function

Support

Supported versions: current(3.0)
Unsupported versions: 2.6 2.5 2.4 2.3 2.2 2.1
TBD

Description

TBD

Signatures

TBD

Parameters

TBD

Inner query

TBD

Result Columns

TBD

Additional Example:

https://docs.pgrouting.org/3.0/en/pgr_vrpOneDepot.html
https://docs.pgrouting.org/2.6/en/pgr_vrpOneDepot.html
https://docs.pgrouting.org/2.5/en/pgr_vrpOneDepot.html
https://docs.pgrouting.org/2.4/en/pgr_vrpOneDepot.html
https://docs.pgrouting.org/2.3/en/src/vrp_basic/doc/pgr_vrpOneDepot.html
https://docs.pgrouting.org/2.2/en/src/vrp_basic/doc/pgr_vrpOneDepot.html
https://docs.pgrouting.org/2.1/en/src/vrp_basic/doc/index.html

BEGIN;
BEGIN
SET client_min_messages TO NOTICE;
SET
SELECT * FROM pgr_vrpOneDepot(
 'SELECT * FROM solomon_100_RC_101',
 'SELECT * FROM vrp_vehicles',
 'SELECT * FROM vrp_distance',
 1);
 oid | opos | vid | tarrival | tdepart
-----+------+-----+----------+---------
 -1 | 1 | 1 | 0 | 0
 7 | 2 | 1 | 0 | 0
 9 | 3 | 1 | 0 | 0
 8 | 4 | 1 | 0 | 0
 6 | 5 | 1 | 0 | 0
 5 | 6 | 1 | 0 | 0
 4 | 7 | 1 | 0 | 0
 2 | 8 | 1 | 0 | 0
 6 | 9 | 1 | 40 | 51
 8 | 10 | 1 | 62 | 89
 9 | 11 | 1 | 94 | 104
 7 | 12 | 1 | 110 | 120
 4 | 13 | 1 | 131 | 141
 2 | 14 | 1 | 144 | 155
 5 | 15 | 1 | 162 | 172
 -1 | 16 | 1 | 208 | 208
 -1 | 1 | 2 | 0 | 0
 10 | 2 | 2 | 0 | 0
 11 | 3 | 2 | 0 | 0
 10 | 4 | 2 | 34 | 101
 11 | 5 | 2 | 106 | 129
 -1 | 6 | 2 | 161 | 161
 -1 | 1 | 3 | 0 | 0
 3 | 2 | 3 | 0 | 0
 3 | 3 | 3 | 31 | 60
 -1 | 4 | 3 | 91 | 91
 -1 | 0 | 0 | -1 | 460
(27 rows)

ROLLBACK;
ROLLBACK

Data

DROP TABLE IF EXISTS solomon_100_RC_101 cascade;
CREATE TABLE solomon_100_RC_101 (
 id integer NOT NULL PRIMARY KEY,
 order_unit integer,
 open_time integer,
 close_time integer,
 service_time integer,
 x float8,
 y float8
);

COPY solomon_100_RC_101
(id, x, y, order_unit, open_time, close_time, service_time) FROM stdin;
1 40.000000 50.000000 0 0 240 0
2 25.000000 85.000000 20 145 175 10
3 22.000000 75.000000 30 50 80 10
4 22.000000 85.000000 10 109 139 10
5 20.000000 80.000000 40 141 171 10
6 20.000000 85.000000 20 41 71 10
7 18.000000 75.000000 20 95 125 10
8 15.000000 75.000000 20 79 109 10
9 15.000000 80.000000 10 91 121 10
10 10.000000 35.000000 20 91 121 10
11 10.000000 40.000000 30 119 149 10
\.

DROP TABLE IF EXISTS vrp_vehicles cascade;
CREATE TABLE vrp_vehicles (
 vehicle_id integer not null primary key,
 capacity integer,
 case_no integer
);

copy vrp_vehicles (vehicle_id, capacity, case_no) from stdin;
1 200 5
2 200 5
3 200 5
\.

DROP TABLE IF EXISTS vrp_distance cascade;
WITH
the_matrix_info AS (
 SELECT A.id AS src_id, B.id AS dest_id, sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)) AS cost
 FROM solomon_100_rc_101 AS A, solomon_100_rc_101 AS B WHERE A.id != B.id
)
SELECT src_id, dest_id, cost, cost AS distance, cost AS traveltime
INTO vrp_distance
FROM the_matrix_info;

See Also

https://en.wikipedia.org/wiki/Vehicle_routing_problem

Indices and tables

Index
Search Page

Previous versions of this page

Supported versions: current(3.0)

Introduction

Vehicle Routing Problems VRP are NP-hard optimization problem, it generalises the travelling salesman problem (TSP).

The objective of the VRP is to minimize the total route cost.
There are several variants of the VRP problem,

pgRouting does not try to implement all variants.

Characteristics

Capacitated Vehicle Routing Problem CVRP where The vehicles have limited carrying capacity of the goods.
Vehicle Routing Problem with Time Windows VRPTW where the locations have time windows within which the vehicle’s
visits must be made.
Vehicle Routing Problem with Pickup and Delivery VRPPD where a number of goods need to be moved from certain pickup
locations to other delivery locations.

Limitations

No multiple time windows for a location.

https://en.wikipedia.org/wiki/Vehicle_routing_problem
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://docs.pgrouting.org/3.0/en/VRP-category.html

Less vehicle used is considered better.
Less total duration is better.
Less wait time is better.

Pick & Delivery

Problem: CVRPPDTW Capacitated Pick and Delivery Vehicle Routing problem with Time Windows

Times are relative to 0
The vehicles

have start and ending service duration times.
have opening and closing times for the start and ending locations.
have a capacity.

The orders
Have pick up and delivery locations.
Have opening and closing times for the pickup and delivery locations.
Have pickup and delivery duration service times.
have a demand request for moving goods from the pickup location to the delivery location.

Time based calculations:
Travel time between customers is \(distance / speed\)
Pickup and delivery order pair is done by the same vehicle.
A pickup is done before the delivery.

Parameters

Pick & deliver

Both implementations use the following same parameters:

Column Type Default Description
orders_sql TEXT Pick & Deliver Orders SQL query containing the orders to be

processed.
vehicles_sql TEXT Pick & Deliver Vehicles SQL query containing the vehicles to be used.
factor NUMERIC 1 (Optional) Travel time multiplier. See Factor Handling
max_cycles INTEGER 10 (Optional) Maximum number of cycles to perform on the optimization.
initial_sol INTEGER 4 (Optional) Initial solution to be used.

1 One order per truck
2 Push front order.
3 Push back order.
4 Optimize insert.
5 Push back order that allows more orders to be inserted at the back
6 Push front order that allows more orders to be inserted at the front

The non euclidean implementation, additionally has:

Column Type Description
matrix_sql TEXT Pick & Deliver Matrix SQL query containing the distance or travel

times.

Inner Queries

Pick & Deliver Orders SQL
Pick & Deliver Vehicles SQL
Pick & Deliver Matrix SQL

return columns

Description of return columns
Description of the return columns for Euclidean version

Pick & Deliver Orders SQL

In general, the columns for the orders SQL is the same in both implementation of pick and delivery:

Column Type Default Description
id ANY-INTEGER Identifier of the pick-delivery order pair.
demand ANY-NUMERICAL Number of units in the order
p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens.

p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes.
d_service ANY-NUMERICAL 0 The duration of the loading at the pickup location.
d_open ANY-NUMERICAL The time, relative to 0, when the delivery location

opens.
d_close ANY-NUMERICAL The time, relative to 0, when the delivery location

closes.
d_service ANY-NUMERICAL 0 The duration of the loading at the delivery location.

Column Type Default Description

For the non euclidean implementation, the starting and ending identifiers are needed:

Column Type Description
p_node_id ANY-INTEGER The node identifier of the pickup, must match a node identifier in the matrix table.
d_node_id ANY-INTEGER The node identifier of the delivery, must match a node identifier in the matrix

table.

For the euclidean implementation, pick up and delivery \((x,y)\) locations are needed:

Column Type Description
p_x ANY-NUMERICAL \(x\) value of the pick up location
p_y ANY-NUMERICAL \(y\) value of the pick up location
d_x ANY-NUMERICAL \(x\) value of the delivery

location
d_y ANY-NUMERICAL \(y\) value of the delivery

location

Pick & Deliver Vehicles SQL

In general, the columns for the vehicles_sql is the same in both implementation of pick and delivery:

Column Type Default Description
id ANY-INTEGER Identifier of the pick-delivery order pair.
capacity ANY-NUMERICAL Number of units in the order
speed ANY-NUMERICAL 1 Average speed of the vehicle.
start_open ANY-NUMERICAL The time, relative to 0, when the starting location

opens.
start_close ANY-NUMERICAL The time, relative to 0, when the starting location

closes.
start_service ANY-NUMERICAL 0 The duration of the loading at the starting location.
end_open ANY-NUMERICAL start_open The time, relative to 0, when the ending location opens.
end_close ANY-NUMERICAL start_close The time, relative to 0, when the ending location closes.
end_service ANY-NUMERICAL start_service The duration of the loading at the ending location.

For the non euclidean implementation, the starting and ending identifiers are needed:

Column Type Default Description
start_node_id ANY-

INTEGER
The node identifier of the starting location, must match a node identifier in the
matrix table.

end_node_id ANY-
INTEGER

start_node_id The node identifier of the ending location, must match a node identifier in the
matrix table.

For the euclidean implementation, starting and ending \((x,y)\) locations are needed:

Column Type Default Description
start_x ANY-NUMERICAL \(x\) value of the coordinate of the starting

location.
start_y ANY-NUMERICAL \(y\) value of the coordinate of the starting

location.
end_x ANY-NUMERICAL start_x \(x\) value of the coordinate of the ending location.
end_y ANY-NUMERICAL start_y \(y\) value of the coordinate of the ending location.

Pick & Deliver Matrix SQL

Warning

TODO

Results

Description of the result (TODO Disussion: Euclidean & Matrix)

RETURNS SET OF
 (seq, vehicle_seq, vehicle_id, stop_seq, stop_type,
 travel_time, arrival_time, wait_time, service_time, departure_time)
 UNION
 (summary row)

Column Type Description
seq INTEGER Sequential value starting from 1.
vehicle_seq INTEGER Sequential value starting from 1 for current vehicles. The \(n_{th}\) vehicle in the solution.
vehicle_id BIGINT Current vehicle identifier.
stop_seq INTEGER Sequential value starting from 1 for the stops made by the current vehicle. The \(m_{th}\) stop

of the current vehicle.
stop_type INTEGER Kind of stop location the vehicle is at:

1: Starting location
2: Pickup location
3: Delivery location
6: Ending location

order_id BIGINT Pickup-Delivery order pair identifier.

-1: When no order is involved on the current stop location.
cargo FLOAT Cargo units of the vehicle when leaving the stop.
travel_time FLOAT Travel time from previous stop_seq to current stop_seq.

0 When stop_type = 1

arrival_time FLOAT Previous departure_time plus current travel_time.
wait_time FLOAT Time spent waiting for current location to open.
service_time FLOAT Service time at current location.
departure_time FLOAT \(arrival_time + wait_time + service_time\).

When stop_type = 6 has the total_time used for the current vehicle.

Summary Row

Warning

TODO: Review the summary

Column Type Description
seq INTEGER Continues the Sequential value
vehicle_seq INTEGER -2 to indicate is a summary row
vehicle_id BIGINT Total Capacity Violations in the solution.

stop_seq INTEGER Total Time Window Violations in the solution.
stop_type INTEGER -1

order_id BIGINT -1

cargo FLOAT -1

travel_time FLOAT total_travel_time The sum of all the travel_time
arrival_time FLOAT -1

wait_time FLOAT total_waiting_time The sum of all the wait_time
service_time FLOAT total_service_time The sum of all the service_time
departure_time FLOAT total_solution_time = \(total_travel_time + total_wait_time +

total_service_time\).

Description of the result (TODO Disussion: Euclidean & Matrix)

RETURNS SET OF
 (seq, vehicle_seq, vehicle_id, stop_seq, stop_type,
 travel_time, arrival_time, wait_time, service_time, departure_time)
 UNION
 (summary row)

Column Type Description

seq INTEGER Sequential value starting from 1.

vehicle_seq INTEGER Sequential value starting from 1 for current vehicles. The \(n_{th}\) vehicle in the solution.
vehicle_id BIGINT Current vehicle identifier.
stop_seq INTEGER Sequential value starting from 1 for the stops made by the current vehicle. The \(m_{th}\) stop

of the current vehicle.
stop_type INTEGER Kind of stop location the vehicle is at:

1: Starting location
2: Pickup location
3: Delivery location
6: Ending location

order_id BIGINT Pickup-Delivery order pair identifier.

-1: When no order is involved on the current stop location.
cargo FLOAT Cargo units of the vehicle when leaving the stop.
travel_time FLOAT Travel time from previous stop_seq to current stop_seq.

0 When stop_type = 1

arrival_time FLOAT Previous departure_time plus current travel_time.
wait_time FLOAT Time spent waiting for current location to open.
service_time FLOAT Service time at current location.
departure_time FLOAT \(arrival_time + wait_time + service_time\).

When stop_type = 6 has the total_time used for the current vehicle.

Column Type Description

Summary Row

Warning

TODO: Review the summary

Column Type Description
seq INTEGER Continues the Sequential value
vehicle_seq INTEGER -2 to indicate is a summary row
vehicle_id BIGINT Total Capacity Violations in the solution.
stop_seq INTEGER Total Time Window Violations in the solution.
stop_type INTEGER -1

order_id BIGINT -1

cargo FLOAT -1

travel_time FLOAT total_travel_time The sum of all the travel_time
arrival_time FLOAT -1

wait_time FLOAT total_waiting_time The sum of all the wait_time
service_time FLOAT total_service_time The sum of all the service_time
departure_time FLOAT total_solution_time = \(total_travel_time + total_wait_time +

total_service_time\).

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Handling Parameters

To define a problem, several considerations have to be done, to get consistent results. This section gives an insight of how
parameters are to be considered.

Capacity and Demand Units Handling
Locations
Time Handling
Factor Handling

Capacity and Demand Units Handling

The capacity of a vehicle, can be measured in:

Volume units like \(m^3\).
Area units like \(m^2\) (when no stacking is allowed).
Weight units like \(kg\).
Number of boxes that fit in the vehicle.
Number of seats in the vehicle

The demand request of the pickup-deliver orders must use the same units as the units used in the vehicle’s capacity.

To handle problems like: 10 (equal dimension) boxes of apples and 5 kg of feathers that are to be transported (not packed in
boxes).

If the vehicle’s capacity is measured by boxes, a conversion of kg of feathers to equivalent number of boxes is needed. If the
vehicle’s capacity is measured by kg, a conversion of box of apples to equivalent number of kg is needed.

Showing how the 2 possible conversions can be done

Let: - \(f_boxes\): number of boxes that would be used for 1 kg of feathers. - \(a_weight\): weight of 1 box of apples.

Capacity Units apples feathers
boxes 10 \(5 *

f_boxes\)
kg \(10 * a_weight\) 5

Locations

When using the Euclidean signatures:
The vehicles have \((x, y)\) pairs for start and ending locations.
The orders Have \((x, y)\) pairs for pickup and delivery locations.

When using a matrix:
The vehicles have identifiers for the start and ending locations.
The orders have identifiers for the pickup and delivery locations.
All the identifiers are indices to the given matrix.

Time Handling

The times are relative to 0

Suppose that a vehicle’s driver starts the shift at 9:00 am and ends the shift at 4:30 pm and the service time duration is 10
minutes with 30 seconds.

All time units have to be converted

Meaning of 0 time units 9:00 am 4:30 pm 10 min 30 secs
0:00 am hours 9 16.5 \(10.5 / 60 =

0.175\)
9:00 am hours 0 7.5 \(10.5 / 60 =

0.175\)
0:00 am minutes \(9*60 = 54\) \(16.5*60 = 990\) 10.5
9:00 am minutes 0 \(7.5*60 = 540\) 10.5

Factor Handling

Warning

TODO

See Also

https://en.wikipedia.org/wiki/Vehicle_routing_problem
The queries use the Sample Data network.

Indices and tables

Index
Search Page

Not classified

https://en.wikipedia.org/wiki/Vehicle_routing_problem
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_bellmanFord - Experimental
pgr_binaryBreadthFirstSearch - Experimental
pgr_breadthFirstSearch - Experimental
pgr_dagShortestPath - Experimental
pgr_edwardMoore - Experimental
pgr_stoerWagner - Experimental
pgr_topologicalSort - Experimental
pgr_transitiveClosure - Experimental
pgr_turnRestrictedPath - Experimental

pgr_bellmanFord - Experimental

pgr_bellmanFord — Returns the shortest path(s) using Bellman-Ford algorithm. In particular, the Bellman-Ford algorithm
implemented by Boost.Graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)

Description

Bellman-Ford’s algorithm, is named after Richard Bellman and Lester Ford, who first published it in 1958 and 1956,
respectively. It is a graph search algorithm that computes shortest paths from a starting vertex (start_vid) to an ending vertex
(end_vid) in a graph where some of the edge weights may be negative number. Though it is more versatile, it is slower than
Dijkstra’s algorithm/ This implementation can be used with a directed graph and an undirected graph.

The main characteristics are:
Process is valid for edges with both positive and negative edge weights.
Values are returned when there is a path.

When the start vertex and the end vertex are the same, there is no path. The agg_cost would be 0.
When the start vertex and the end vertex are different, and there exists a path between them without having a

https://www.boost.org/libs/graph/doc/bellman_ford_shortest.html
https://docs.pgrouting.org/3.0/en/pgr_bellmanFord.html

negative cycle. The agg_cost would be some finite value denoting the shortest distance between them.
When the start vertex and the end vertex are different, and there exists a path between them, but it contains a
negative cycle. In such case, agg_cost for those vertices keep on decreasing furthermore, Hence agg_cost can’t be
defined for them.
When the start vertex and the end vertex are different, and there is no path. The agg_cost is \(\infty\).

For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: \(O(| start_vids | * (V * E))\)

Signatures

Summary

pgr_bellmanFord(edges_sql, from_vid, to_vid [, directed])
pgr_bellmanFord(edges_sql, from_vid, to_vids [, directed])
pgr_bellmanFord(edges_sql, from_vids, to_vid [, directed])
pgr_bellmanFord(edges_sql, from_vids, to_vids [, directed])

RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Using defaults

pgr_bellmanFord(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

One to One

pgr_bellmanFord(edges_sql, from_vid, to_vid [, directed])
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an undirected graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

One to many

pgr_bellmanFord(edges_sql, from_vid, to_vids [, directed])
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:

From vertex \(2\) to vertices \(\{ 3, 5\}\) on an undirected graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 5 | 5 | -1 | 0 | 1
(4 rows)

Many to One

pgr_bellmanFord(edges_sql, from_vids, to_vid [, directed])
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertex \(5\) on a directed graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 13 | 1 | 0
 4 | 2 | 11 | 12 | 15 | 1 | 1
 5 | 3 | 11 | 9 | 9 | 1 | 2
 6 | 4 | 11 | 6 | 8 | 1 | 3
 7 | 5 | 11 | 5 | -1 | 0 | 4
(7 rows)

Many to Many

pgr_bellmanFord(edges_sql, from_vids, to_vids [, directed])
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertices \(\{3, 5\}\) on an undirected graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], ARRAY[3,5]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 8 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 9 | 1 | 11 | 3 | 11 | 13 | 1 | 0
 10 | 2 | 11 | 3 | 12 | 15 | 1 | 1
 11 | 3 | 11 | 3 | 9 | 16 | 1 | 2
 12 | 4 | 11 | 3 | 4 | 3 | 1 | 3
 13 | 5 | 11 | 3 | 3 | -1 | 0 | 4
 14 | 1 | 11 | 5 | 11 | 13 | 1 | 0
 15 | 2 | 11 | 5 | 12 | 15 | 1 | 1
 16 | 3 | 11 | 5 | 9 | 9 | 1 | 2
 17 | 4 | 11 | 5 | 6 | 8 | 1 | 3
 18 | 5 | 11 | 5 | 5 | -1 | 0 | 4
(18 rows)

Parameters

Description of the parameters of the signatures

Parameter Type Default Description

edges_sql TEXT SQL query as described above.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Parameter Type Default Description

Inner Query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Results Columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

See Also

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_binaryBreadthFirstSearch - Experimental

pgr_binaryBreadthFirstSearch — Returns the shortest path(s) in a binary graph. Any graph whose edge-weights belongs to the set
{0,X}, where ‘X’ is any non-negative real integer, is termed as a ‘binary graph’.

https://en.wikipedia.org/wiki/Bellman%25E2%2580%2593Ford_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

To-be experimental on v3.0.0

Description

It is well-known that the shortest paths between a single source and all other vertices can be found using Breadth First Search
in \(O(|E|)\) in an unweighted graph, i.e. the distance is the minimal number of edges that you need to traverse from the source
to another vertex. We can interpret such a graph also as a weighted graph, where every edge has the weight 1. If not all edges
in graph have the same weight, that we need a more general algorithm, like Dijkstra’s Algorithm which runs in \(O(|E|log|V|)\)
time.

However if the weights are more constrained, we can use a faster algorithm. This algorithm, termed as ‘Binary Breadth First
Search’ as well as ‘0-1 BFS’, is a variation of the standard Breadth First Search problem to solve the SSSP (single-source
shortest path) problem in \(O(|E|)\), if the weights of each edge belongs to the set {0,X}, where ‘X’ is any non-negative real
integer.

The main Characteristics are:

Process is done only on ‘binary graphs’. (‘Binary Graph’: Any graph whose edge-weights belongs to the set
{0,X}, where ‘X’ is any non-negative real integer.)
For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: \(O(| start_vids | * |E|)\)

Signatures

pgr_binaryBreadthFirstSearch(edges_sql, start_vid, end_vid [, directed])
pgr_binaryBreadthFirstSearch(edges_sql, start_vid, end_vids [, directed])
pgr_binaryBreadthFirstSearch(edges_sql, start_vids, end_vid [, directed])
pgr_binaryBreadthFirstSearch(edges_sql, start_vids, end_vids [, directed])
RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

pgr_binaryBreadthFirstSearch(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

https://www.boost.org/libs/graph/doc/breadth_first_search.html

Example:
From vertex \(2\) to vertex \(3\) on a directed binary graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, road_work as cost, reverse_road_work as reverse_cost FROM roadworks',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 0 | 0
 2 | 2 | 5 | 8 | 1 | 0
 3 | 3 | 6 | 9 | 1 | 1
 4 | 4 | 9 | 16 | 0 | 2
 5 | 5 | 4 | 3 | 0 | 2
 6 | 6 | 3 | -1 | 0 | 2
(6 rows)

One to One

pgr_binaryBreadthFirstSearch(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an undirected binary graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, road_work as cost, reverse_road_work as reverse_cost FROM roadworks',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

One to many

pgr_binaryBreadthFirstSearch(TEXT edges_sql, BIGINT start_vid, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 5\}\) on an undirected binary graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, road_work as cost FROM roadworks',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 0 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 0
 3 | 3 | 3 | 6 | 5 | 1 | 1
 4 | 4 | 3 | 3 | -1 | 0 | 2
 5 | 1 | 5 | 2 | 4 | 0 | 0
 6 | 2 | 5 | 5 | -1 | 0 | 0
(6 rows)

Many to One

pgr_binaryBreadthFirstSearch(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, BIGINT end_vid,
 BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertex \(5\) on a directed binary graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, road_work as cost, reverse_road_work as reverse_cost FROM roadworks',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 0 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 0
 3 | 1 | 11 | 11 | 13 | 1 | 0
 4 | 2 | 11 | 12 | 15 | 0 | 1
 5 | 3 | 11 | 9 | 16 | 0 | 1
 6 | 4 | 11 | 4 | 3 | 0 | 1
 7 | 5 | 11 | 3 | 2 | 1 | 1
 8 | 6 | 11 | 2 | 4 | 0 | 2
 9 | 7 | 11 | 5 | -1 | 0 | 2
(9 rows)

Many to Many

pgr_binaryBreadthFirstSearch(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,
 BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertices \(\{3, 5\}\) on an undirected binary graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, road_work as cost, reverse_road_work as reverse_cost FROM roadworks',
 ARRAY[2,11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 2 | 5 | 2 | 4 | 0 | 0
 4 | 2 | 2 | 5 | 5 | -1 | 0 | 0
 5 | 1 | 11 | 3 | 11 | 13 | 1 | 0
 6 | 2 | 11 | 3 | 12 | 15 | 0 | 1
 7 | 3 | 11 | 3 | 9 | 16 | 0 | 1
 8 | 4 | 11 | 3 | 4 | 3 | 0 | 1
 9 | 5 | 11 | 3 | 3 | -1 | 0 | 1
 10 | 1 | 11 | 5 | 11 | 12 | 0 | 0
 11 | 2 | 11 | 5 | 10 | 10 | 1 | 0
 12 | 3 | 11 | 5 | 5 | -1 | 0 | 1
(12 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Example Data

This type of data is used on the examples of this page.

Edwards-Moore Algorithm is best applied when trying to answer queries such as the following: “Find the path with the
minimum number from Source to Destination” Here: * Source = Source Vertex, Destination = Any arbitrary destination
vertex * X is an event/property * Each edge in the graph is either “X” or “Not X” .

Example: “Find the path with the minimum number of road works from Source to Destination”

Here, a road under work(aka road works) means that part of the road is occupied for construction work/maintenance.

Here: * Edge (u , v) has weight = 0 if no road work is ongoing on the road from u to v. * Edge (u, v) has weight = 1 if road
work is ongoing on the road from u to v.

Then, upon running the algorithm, we obtain the path with the minimum number of road works from the given source and
destination.

Thus, the queries used in the previous section can be interpreted in this manner.

Table Data

The queries in the previous sections use the table ‘roadworks’. The data of the table:

DROP TABLE IF EXISTS roadworks CASCADE;
NOTICE: table "roadworks" does not exist, skipping
DROP TABLE
CREATE table roadworks (
 id BIGINT not null primary key,
 source BIGINT,
 target BIGINT,
 road_work FLOAT,
 reverse_road_work FLOAT
);
CREATE TABLE
INSERT INTO roadworks(
 id, source, target, road_work, reverse_road_work) VALUES
 (1, 1, 2, 0, 0),
 (2, 2, 3, -1, 1),
 (3, 3, 4, -1, 0),
 (4, 2, 5, 0, 0),
 (5, 3, 6, 1, -1),
 (6, 7, 8, 1, 1),
 (7, 8, 5, 0, 0),
 (8, 5, 6, 1, 1),
 (9, 6, 9, 1, 1),
 (10, 5, 10, 1, 1),
 (11, 6, 11, 1, -1),
 (12, 10, 11, 0, -1),
 (13, 11, 12, 1, -1),
 (14, 10, 13, 1, 1),
 (15, 9, 12, 0, 0),
 (16, 4, 9, 0, 0),
 (17, 14, 15, 0, 0),
 (18, 16, 17, 0, 0);
INSERT 0 18

See Also

https://cp-algorithms.com/graph/01_bfs.html
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Specialized_variants

Indices and tables

Index
Search Page

pgr_breadthFirstSearch - Experimental

pgr_breadthFirstSearch — Returns the traversal order(s) using Breadth First Search algorithm.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.

https://cp-algorithms.com/graph/01_bfs.html
https://en.wikipedia.org/wiki/Dijkstra%2527s_algorithm#Specialized_variants
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/breadth_first_search.html

Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Description

Provides the Breadth First Search traversal order from a root vertex to a particular depth.

The main Characteristics are:

The implementation will work on any type of graph.
Provides the Breadth First Search traversal order from a source node to a target depth level
Breath First Search Running time: \(O(E + V)\)

Signatures

pgr_breadthFirstSearch(Edges SQL, Root vid [, max_depth] [, directed])
pgr_breadthFirstSearch(Edges SQL, Root vids [, max_depth] [, directed])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Single Vertex

pgr_breadthFirstSearch(Edges SQL, Root vid [, max_depth] [, directed])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Breadth First Search traversal with root vertex \(2\)

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 2
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 2 | 2 | -1 | 0 | 0
 2 | 1 | 2 | 1 | 1 | 1 | 1
 3 | 1 | 2 | 5 | 4 | 1 | 1
 4 | 2 | 2 | 8 | 7 | 1 | 2
 5 | 2 | 2 | 6 | 8 | 1 | 2
 6 | 2 | 2 | 10 | 10 | 1 | 2
 7 | 3 | 2 | 7 | 6 | 1 | 3
 8 | 3 | 2 | 9 | 9 | 1 | 3
 9 | 3 | 2 | 11 | 11 | 1 | 3
 10 | 3 | 2 | 13 | 14 | 1 | 3
 11 | 4 | 2 | 12 | 15 | 1 | 4
 12 | 4 | 2 | 4 | 16 | 1 | 4
 13 | 5 | 2 | 3 | 3 | 1 | 5
(13 rows)

Multiple Vertices

pgr_breadthFirstSearch(Edges SQL, Root vids [, max_depth] [, directed])

RETURNS SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:
The Breadth First Search traverls starting on vertices \(\{11, 12\}\) with \(depth <= 2\)

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[11,12], max_depth := 2
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 12 | 13 | 1 | 1
 3 | 2 | 11 | 9 | 15 | 1 | 2
 4 | 0 | 12 | 12 | -1 | 0 | 0
 5 | 1 | 12 | 9 | 15 | 1 | 1
 6 | 2 | 12 | 6 | 9 | 1 | 2
 7 | 2 | 12 | 4 | 16 | 1 | 2
(7 rows)

Parameters

Parameter Type Description
Edges SQL TEXT SQL query described in Inner query.
Root vid BIGINT Identifier of the root vertex of the tree.

Used on Single Vertex.
Root vids ARRAY[ANY-INTEGER] Array of identifiers of the root vertices.

Used on Multiple Vertices.
For optimization purposes, any duplicated value is
ignored.

Optional Parameters

Parameter Type Default Description
max_depth BIGINT \(9223372036854775807\) Upper limit for depth of node in the tree

When value is Negative then throws error
directed BOOLEAN true When true Graph is considered Directed

W h e n false the graph is considered as
Undirected.

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns SET OF (seq, depth, start_vid, node, edge, cost, agg_cost)

Column Type Description
seq BIGINT Sequential value starting from \(1\).
depth BIGINT Depth of the node.

\(0\) when node = start_vid.

start_vid BIGINT Identifier of the root vertex.

I n Multiple Vertices results are in ascending
order.

node BIGINT Identifier of node reached using edge.
edge BIGINT Identifier of the edge used to arrive to node.

\(-1\) when node = start_vid.
cost FLOAT Cost to traverse edge.
agg_cost FLOAT Aggregate cost from start_vid to node.

Additional Examples

Undirected Graph

Example:
The Breadth First Search traverls starting on vertices \(\{11, 12\}\) with \(depth <= 2\) as well as considering the graph to be
undirected.

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 ARRAY[11,12], max_depth := 2, directed := false
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 6 | 11 | 1 | 1
 3 | 1 | 11 | 10 | 12 | 1 | 1
 4 | 1 | 11 | 12 | 13 | 1 | 1
 5 | 2 | 11 | 3 | 5 | 1 | 2
 6 | 2 | 11 | 5 | 8 | 1 | 2
 7 | 2 | 11 | 9 | 9 | 1 | 2
 8 | 2 | 11 | 13 | 14 | 1 | 2
 9 | 0 | 12 | 12 | -1 | 0 | 0
 10 | 1 | 12 | 11 | 13 | 1 | 1
 11 | 1 | 12 | 9 | 15 | 1 | 1
 12 | 2 | 12 | 6 | 11 | 1 | 2
 13 | 2 | 12 | 10 | 12 | 1 | 2
 14 | 2 | 12 | 4 | 16 | 1 | 2
(14 rows)

Vertex Out Of Graph

Example:
The output of the function when a vertex not present in the graph is passed as a parameter.

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ORDER BY id',
 -10
);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
(0 rows)

See Also

The queries use the Sample Data network.
Boost: Breadth First Search algorithm documentation
Wikipedia: Breadth First Search algorithm

Indices and tables

Index
Search Page

pgr_dagShortestPath - Experimental

pgr_dagShortestPath — Returns the shortest path(s) for weighted directed acyclic graphs(DAG). In particular, the DAG shortest
paths algorithm implemented by Boost.Graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

https://www.boost.org/libs/graph/doc/breadth_first_search.html
https://en.wikipedia.org/wiki/Breadth-first_search
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/libs/graph/doc/dag_shortest_paths.html

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)

Description

Shortest Path for Directed Acyclic Graph(DAG) is a graph search algorithm that solves the shortest path problem for weighted
directed acyclic graph, producing a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid).

This implementation can only be used with a directed graph with no cycles i.e. directed acyclic graph.

The algorithm relies on topological sorting the dag to impose a linear ordering on the vertices, and thus is more efficient for
DAG’s than either the Dijkstra or Bellman-Ford algorithm.

The main characteristics are:
Process is valid for weighted directed acyclic graphs only. otherwise it will throw warnings.
Values are returned when there is a path.

When the starting vertex and ending vertex are the same, there is no path.
The agg_cost the non included values (v, v) is 0

When the starting vertex and ending vertex are the different and there is no path:
The agg_cost the non included values (u, v) is \(\infty\)

For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: \(O(| start_vids | * (V + E))\)

Signatures

Summary

pgr_dagShortestPath(edges_sql, from_vid, to_vid)
pgr_dagShortestPath(edges_sql, from_vid, to_vids)
pgr_dagShortestPath(edges_sql, from_vids, to_vid)
pgr_dagShortestPath(edges_sql, from_vids, to_vids)

RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

One to One

pgr_dagShortestPath(edges_sql, from_vid, to_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(1\) to vertex \(6\)

https://docs.pgrouting.org/3.0/en/pgr_dagShortestPath.html

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edge_table',
 1, 6
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 1 | 1 | 1 | 0
 2 | 2 | 2 | 4 | 1 | 1
 3 | 3 | 5 | 8 | 1 | 2
 4 | 4 | 6 | -1 | 0 | 3
(4 rows)

One to Many

pgr_dagShortestPath(edges_sql, from_vid, to_vids)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(1\) to vertices \(\{ 5, 6\}\)

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edge_table',
 1, ARRAY[5,6]
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 1 | 1 | 1 | 0
 2 | 2 | 2 | 4 | 1 | 1
 3 | 3 | 5 | -1 | 0 | 2
 4 | 1 | 1 | 1 | 1 | 0
 5 | 2 | 2 | 4 | 1 | 1
 6 | 3 | 5 | 8 | 1 | 2
 7 | 4 | 6 | -1 | 0 | 3
(7 rows)

Many to One

pgr_dagShortestPath(edges_sql, from_vids, to_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{1, 3\}\) to vertex \(6\)

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[1,3], 6
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 1 | 1 | 1 | 0
 2 | 2 | 2 | 4 | 1 | 1
 3 | 3 | 5 | 8 | 1 | 2
 4 | 4 | 6 | -1 | 0 | 3
 5 | 1 | 3 | 5 | 1 | 0
 6 | 2 | 6 | -1 | 0 | 1
(6 rows)

Many to Many

pgr_dagShortestPath(edges_sql, from_vids, to_vids)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{1, 4\}\) to vertices \(\{12, 6\}\)

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[1, 4],ARRAY[12,6]
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 1 | 1 | 1 | 0
 2 | 2 | 2 | 4 | 1 | 1
 3 | 3 | 5 | 8 | 1 | 2
 4 | 4 | 6 | -1 | 0 | 3
 5 | 1 | 1 | 1 | 1 | 0
 6 | 2 | 2 | 4 | 1 | 1
 7 | 3 | 5 | 10 | 1 | 2
 8 | 4 | 10 | 12 | 1 | 3
 9 | 5 | 11 | 13 | 1 | 4
 10 | 6 | 12 | -1 | 0 | 5
 11 | 1 | 4 | 16 | 1 | 0
 12 | 2 | 9 | 15 | 1 | 1
 13 | 3 | 12 | -1 | 0 | 2
(13 rows)

Parameters

Description of the parameters of the signatures

Parameter Type Default Description
edges_sql TEXT SQL query as described above.
start_vid BIGINT Identifier of the starting vertex of the

path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.

Inner Query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Results Columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.

edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of
the path.

cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Column Type Description

See Also

https://en.wikipedia.org/wiki/Topological_sorting
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_edwardMoore - Experimental

pgr_edwardMoore — Returns the shortest path(s) using Edward-Moore algorithm. Edward Moore’s Algorithm is an improvement of
the Bellman-Ford Algorithm.

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Description

Edward Moore’s Algorithm is an improvement of the Bellman-Ford Algorithm. It can compute the shortest paths from a single
source vertex to all other vertices in a weighted directed graph. The main difference between Edward Moore’s Algorithm and
Bellman Ford’s Algorithm lies in the run time.

The worst-case running time of the algorithm is \(O(| V | * | E |)\) similar to the time complexity of Bellman-Ford algorithm.
However, experiments suggest that this algorithm has an average running time complexity of \(O(| E |)\) for random graphs.
This is significantly faster in terms of computation speed.

Thus, the algorithm is at-best, significantly faster than Bellman-Ford algorithm and is at-worst, as good as Bellman-Ford
algorithm

The main characteristics are:
Values are returned when there is a path.

When the starting vertex and ending vertex are the same, there is no path.
The agg_cost the non included values (v, v) is 0

https://en.wikipedia.org/wiki/Topological_sorting
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

When the starting vertex and ending vertex are the different and there is no path:
The agg_cost the non included values (u, v) is \(\infty\)

For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
The returned values are ordered:

start_vid ascending
end_vid ascending

Running time: - Worst case: \(O(| V | * | E |)\) - Average case: \(O(| E |)\)

Signatures

pgr_edwardMoore(edges_sql, start_vid, end_vid [, directed])
pgr_edwardMoore(edges_sql, start_vid, end_vids [, directed])
pgr_edwardMoore(edges_sql, start_vids, end_vid [, directed])
pgr_edwardMoore(edges_sql, start_vids, end_vids [, directed])
RETURNS SET OF (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)
OR EMPTY SET

pgr_edwardMoore(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid)
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost) or EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on a directed graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

One to One

pgr_edwardMoore(TEXT edges_sql, BIGINT start_vid, BIGINT end_vid,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertex \(3\) on an undirected graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

One to many

pgr_edwardMoore(TEXT edges_sql, BIGINT start_vid, ARRAY[ANY_INTEGER] end_vids,
BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertex \(2\) to vertices \(\{3, 5\}\) on an undirected graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 3 | 3 | -1 | 0 | 3
 5 | 1 | 5 | 2 | 4 | 1 | 0
 6 | 2 | 5 | 5 | -1 | 0 | 1
(6 rows)

Many to One

pgr_edwardMoore(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, BIGINT end_vid,
 BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertex \(5\) on a directed graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 13 | 1 | 0
 4 | 2 | 11 | 12 | 15 | 1 | 1
 5 | 3 | 11 | 9 | 9 | 1 | 2
 6 | 4 | 11 | 6 | 8 | 1 | 3
 7 | 5 | 11 | 5 | -1 | 0 | 4
(7 rows)

Many to Many

pgr_edwardMoore(TEXT edges_sql, ARRAY[ANY_INTEGER] start_vids, ARRAY[ANY_INTEGER] end_vids,
 BOOLEAN directed:=true);
RETURNS SET OF (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OR EMPTY SET

Example:
From vertices \(\{2, 11\}\) to vertices \(\{3, 5\}\) on an undirected graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 5 | 1 | 11 | 3 | 11 | 11 | 1 | 0
 6 | 2 | 11 | 3 | 6 | 5 | 1 | 1
 7 | 3 | 11 | 3 | 3 | -1 | 0 | 2
 8 | 1 | 11 | 5 | 11 | 11 | 1 | 0
 9 | 2 | 11 | 5 | 6 | 8 | 1 | 1
 10 | 3 | 11 | 5 | 5 | -1 | 0 | 2
(10 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT Inner SQL query as described below.
start_vid BIGINT Identifier of the starting vertex of the path.
start_vids ARRAY[BIGINT] Array of identifiers of starting vertices.
end_vid BIGINT Identifier of the ending vertex of the path.
end_vids ARRAY[BIGINT] Array of identifiers of ending vertices.

directed BOOLEAN true When true Graph is considered Directed
W h e n false the graph is considered as
Undirected.

Parameter Type Default Description

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Return Columns

Returns set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column Type Description
seq INT Sequential value starting from 1.
path_id INT Path identifier. Has value 1 for the first of a path. Used when there are multiple paths for the same start_vid

to end_vid combination.
path_seq INT Relative position in the path. Has value 1 for the beginning of a path.
start_vid BIGINT Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

Many to One
Many to Many

end_vid BIGINT Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

One to Many
Many to Many

node BIGINT Identifier of the node in the path from start_vid to end_vid.
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of

the path.
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.
agg_cost FLOAT Aggregate cost from start_v to node.

Example Application

The examples of this section are based on the Sample Data network.

The examples include combinations from starting vertices 2 and 11 to ending vertices 3 and 5 in a directed and undirected
graph with and with out reverse_cost.

Examples:
For queries marked as directed with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as directed and cost and reverse_cost
columns are used

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 9 | 1 | 2

 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 9 | 16 | 1 | 3
 5 | 5 | 4 | 3 | 1 | 4
 6 | 6 | 3 | -1 | 0 | 5
(6 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3,5]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 5 | 2 | 4 | 1 | 0
 8 | 2 | 5 | 5 | -1 | 0 | 1
(8 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 13 | 1 | 0
 2 | 2 | 12 | 15 | 1 | 1
 3 | 3 | 9 | 16 | 1 | 2
 4 | 4 | 4 | 3 | 1 | 3
 5 | 5 | 3 | -1 | 0 | 4
(5 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 13 | 1 | 0
 2 | 2 | 12 | 15 | 1 | 1
 3 | 3 | 9 | 9 | 1 | 2
 4 | 4 | 6 | 8 | 1 | 3
 5 | 5 | 5 | -1 | 0 | 4
(5 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 13 | 1 | 0
 4 | 2 | 11 | 12 | 15 | 1 | 1
 5 | 3 | 11 | 9 | 9 | 1 | 2
 6 | 4 | 11 | 6 | 8 | 1 | 3
 7 | 5 | 11 | 5 | -1 | 0 | 4
(7 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 9 | 1 | 2
 4 | 4 | 2 | 3 | 9 | 16 | 1 | 3
 5 | 5 | 2 | 3 | 4 | 3 | 1 | 4
 6 | 6 | 2 | 3 | 3 | -1 | 0 | 5
 7 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 8 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 9 | 1 | 11 | 3 | 11 | 13 | 1 | 0
 10 | 2 | 11 | 3 | 12 | 15 | 1 | 1
 11 | 3 | 11 | 3 | 9 | 16 | 1 | 2
 12 | 4 | 11 | 3 | 4 | 3 | 1 | 3
 13 | 5 | 11 | 3 | 3 | -1 | 0 | 4
 14 | 1 | 11 | 5 | 11 | 13 | 1 | 0
 15 | 2 | 11 | 5 | 12 | 15 | 1 | 1
 16 | 3 | 11 | 5 | 9 | 9 | 1 | 2
 17 | 4 | 11 | 5 | 6 | 8 | 1 | 3

 17 | 4 | 11 | 5 | 6 | 8 | 1 | 3
 18 | 5 | 11 | 5 | 5 | -1 | 0 | 4
(18 rows)

Examples:
For queries marked as undirected with cost and reverse_cost columns

The examples in this section use the following Network for queries marked as undirected and cost and reverse_cost
columns are used

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 2 | 1 | 0
 2 | 2 | 3 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 5 | 1 | 1
 3 | 3 | 3 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 11, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 8 | 1 | 1
 3 | 3 | 5 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2,11], 5,
 FALSE
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 11 | 1 | 0
 4 | 2 | 11 | 6 | 8 | 1 | 1
 5 | 3 | 11 | 5 | -1 | 0 | 2
(5 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 5 | 5 | -1 | 0 | 1
(4 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 2 | 1 | 0
 2 | 2 | 2 | 3 | 3 | -1 | 0 | 1
 3 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 4 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 5 | 1 | 11 | 3 | 11 | 11 | 1 | 0
 6 | 2 | 11 | 3 | 6 | 5 | 1 | 1
 7 | 3 | 11 | 3 | 3 | -1 | 0 | 2
 8 | 1 | 11 | 5 | 11 | 11 | 1 | 0
 9 | 2 | 11 | 5 | 6 | 8 | 1 | 1
 10 | 3 | 11 | 5 | 5 | -1 | 0 | 2
(10 rows)

Examples:
For queries marked as directed with cost column

The examples in this section use the following Network for queries marked as directed and only cost column is used

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 11, 3
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 11, 5
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
(0 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2,11], 5
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, ARRAY[3,5]
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 5 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | 5 | -1 | 0 | 1
(2 rows)

Examples:
For queries marked as undirected with cost column

The examples in this section use the following Network for queries marked as undirected and only cost column is used

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | 8 | 1 | 1
 3 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 3 | -1 | 0 | 3
(4 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, 5,

 2, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 2 | 4 | 1 | 0
 2 | 2 | 5 | -1 | 0 | 1
(2 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 11, 3,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 5 | 1 | 1
 3 | 3 | 3 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 11, 5,
 FALSE
);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 11 | 11 | 1 | 0
 2 | 2 | 6 | 8 | 1 | 1
 3 | 3 | 5 | -1 | 0 | 2
(3 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2,11], 5,
 FALSE
);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 2 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 5 | -1 | 0 | 1
 3 | 1 | 11 | 11 | 11 | 1 | 0
 4 | 2 | 11 | 6 | 8 | 1 | 1
 5 | 3 | 11 | 5 | -1 | 0 | 2
(5 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 2, ARRAY[3,5],
 FALSE
);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 3 | 3 | -1 | 0 | 3
 5 | 1 | 5 | 2 | 4 | 1 | 0
 6 | 2 | 5 | 5 | -1 | 0 | 1
(6 rows)

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost FROM edge_table',
 ARRAY[2, 11], ARRAY[3,5],
 FALSE
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 2 | 3 | 2 | 4 | 1 | 0
 2 | 2 | 2 | 3 | 5 | 8 | 1 | 1
 3 | 3 | 2 | 3 | 6 | 5 | 1 | 2
 4 | 4 | 2 | 3 | 3 | -1 | 0 | 3
 5 | 1 | 2 | 5 | 2 | 4 | 1 | 0
 6 | 2 | 2 | 5 | 5 | -1 | 0 | 1
 7 | 1 | 11 | 3 | 11 | 11 | 1 | 0
 8 | 2 | 11 | 3 | 6 | 5 | 1 | 1
 9 | 3 | 11 | 3 | 3 | -1 | 0 | 2
 10 | 1 | 11 | 5 | 11 | 11 | 1 | 0
 11 | 2 | 11 | 5 | 6 | 8 | 1 | 1
 12 | 3 | 11 | 5 | 5 | -1 | 0 | 2
(12 rows)

See Also

https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm

Indices and tables

Index
Search Page

https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

pgr_stoerWagner - Experimental

pgr_stoerWagner — Returns the weight of the min-cut of graph using stoerWagner algorithm. Function determines a min-cut and
the min-cut weight of a connected, undirected graph implemented by Boost.Graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 2.3.0

New Experimental function

Support

Supported versions: current(3.0)

Description

In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted
graphs with non-negative weights. The essential idea of this algorithm is to shrink the graph by merging the most intensive
vertices, until the graph only contains two combined vertex sets. At each phase, the algorithm finds the minimum s-t cut for
two vertices s and t chosen as its will. Then the algorithm shrinks the edge between s and t to search for non s-t cuts. The
minimum cut found in all phases will be the minimum weighted cut of the graph.

A cut is a partition of the vertices of a graph into two disjoint subsets. A minimum cut is a cut for which the size or weight of
the cut is not larger than the size of any other cut. For an unweighted graph, the minimum cut would simply be the cut with the
least edges. For a weighted graph, the sum of all edges’ weight on the cut determines whether it is a minimum cut.

The main characteristics are:

Process is done only on edges with positive costs.
It’s implementation is only on undirected graph.
Sum of the weights of all edges between the two sets is mincut.

A mincut is a cut having the least weight.
Values are returned when graph is connected.

When there is no edge in graph then EMPTY SET is return.
When the graph is unconnected then EMPTY SET is return.

Sometimes a graph has multiple min-cuts, but all have the same weight. The this function determines exactly one of the
min-cuts as well as its weight.

https://www.boost.org/doc/libs/1_64_0/libs/graph/doc/stoer_wagner_min_cut.html
https://docs.pgrouting.org/3.0/en/pgr_stoerWagner.html

Running time: \(O(V*E + V^2*log V)\).

Signatures

pgr_stoerWagner(edges_sql)

RETURNS SET OF (seq, edge, cost, mincut)
OR EMPTY SET

Example:
TBD

pgr_stoerWagner(TEXT edges_sql);
RETURNS SET OF (seq, edge, cost, mincut)
OR EMPTY SET

SELECT * FROM pgr_stoerWagner(
 'SELECT id, source, target, cost, reverse_cost
 FROM edge_table
 WHERE id < 17'
);
 seq | edge | cost | mincut
-----+------+------+--------
 1 | 1 | 1 | 1
(1 row)

Parameters

Parameter Type Default Description
edges_sql TEXT SQL query as described

above.

Inner query

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, edge, cost, mincut)

Column Type Description
seq INT Sequential value starting from 1.
edge BIGINT Edges which divides the set of vertices into

two.
cost FLOAT Cost to traverse of edge.
mincut FLOAT Min-cut weight of a undirected graph.

Additional Example:

SELECT * FROM pgr_stoerWagner(
 'SELECT id, source, target, cost, reverse_cost
 FROM edge_table
 WHERE id = 18'
);
 seq | edge | cost | mincut
-----+------+------+--------
 1 | 18 | 1 | 1
(1 row)

Use pgr_connectedComponents() function in query:

SELECT * FROM pgr_stoerWagner(
$$
 SELECT id, source, target, cost, reverse_cost FROM edge_table
 where source = any (ARRAY(SELECT node FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ')
 WHERE component = 14)
)
 OR
 target = any (ARRAY(SELECT node FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edge_table ')
 WHERE component = 14)
)
$$
);
 seq | edge | cost | mincut
-----+------+------+--------
 1 | 17 | 1 | 1
(1 row)

See Also

https://en.wikipedia.org/wiki/Stoer%E2%80%93Wagner_algorithm
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_topologicalSort - Experimental

pgr_topologicalSort — Returns the linear ordering of the vertices(s) for weighted directed acyclic graphs(DAG). In particular, the
topological sort algorithm implemented by Boost.Graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.

https://en.wikipedia.org/wiki/Stoer%25E2%2580%2593Wagner_algorithm
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/doc/libs/1_65_1/libs/graph/doc/topological_sort.html

Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)
TBD

Description

The topological sort algorithm creates a linear ordering of the vertices such that if edge (u,v) appears in the graph, then v
comes before u in the ordering.

This implementation can only be used with a directed graph with no cycles i.e. directed acyclic graph.

The main characteristics are:
Process is valid for directed acyclic graphs only. otherwise it will throw warnings.
For optimization purposes, if there are more than one answer, the function will return one of them.
The returned values are ordered in topological order:

Running time: \(O((V + E))\)

Signatures

Summary

pgr_topologicalSort(edges_sql)

RETURNS SET OF (seq, sorted_v)
OR EMPTY SET

Example:
For a directed graph

SELECT * FROM pgr_topologicalsort(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table1'
);
 seq | sorted_v
-----+----------
 1 | 0
 2 | 1
 3 | 3
 4 | 2
(4 rows)

Parameters

Parameter Type Default Description
edges_sql TEXT SQL query as described

above.

Inner query

edges_sql:
an SQL query, which should return a set of rows with the following columns:

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

https://docs.pgrouting.org/3.0/en/pgr_topologicalSort.html

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Column Type Default Description

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

Returns set of (seq, sorted_v)

Column Type Description
seq INT Sequential value starting from 1.
sorted_v BIGINT Linear ordering of the vertices(ordered in topological

order)

See Also

https://en.wikipedia.org/wiki/Topological_sorting
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_transitiveClosure - Experimental

pgr_transitiveClosure — Returns the transitive closure graph of the input graph. In particular, the transitive closure algorithm
implemented by Boost.Graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

https://en.wikipedia.org/wiki/Topological_sorting
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.boost.org/doc/libs/1_70_0/libs/graph/doc/transitive_closure.html

Availability

Version 3.0.0
New experimental function

Support

Supported versions: current(3.0)

Description

The transitive_closure() function transforms the input graph g into the transitive closure graph tc.

This implementation can only be used with a directed graph with no cycles i.e. directed acyclic graph.

The main characteristics are:
Process is valid for directed acyclic graphs only. otherwise it will throw warnings.
The returned values are not ordered:

Running time: \(O(|V||E|)\)

Signatures

Summary

The pgr_transitiveClosure function has the following signature:

pgr_transitiveClosure(Edges SQL)
RETURNS SETOF (id, vid, target_array)

Example:
Complete Graph of 3 vertexs

SELECT * FROM pgr_transitiveclosure(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table1'
);
 seq | vid | target_array
-----+-----+--------------
 1 | 0 | {1,3,2}
 2 | 1 | {3,2}
 3 | 3 | {2}
 4 | 2 | {}
(4 rows)

Parameters

Column Type Description
Edges SQL TEXT SQL query as described in Inner

query

Inner query

Column Type Default Description
id ANY-INTEGER Identifier of the edge.
source ANY-INTEGER Identifier of the first end point vertex of the edge.
target ANY-INTEGER Identifier of the second end point vertex of the edge.
cost ANY-NUMERICAL Weight of the edge (source, target)

When negative: edge (source, target) does not exist, therefore it’s not part of
the graph.

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source),

When negative: edge (target, source) does not exist, therefore it’s not part of
the graph.

Where:

ANY-INTEGER:
SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL:
SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns

https://docs.pgrouting.org/3.0/en/pgr_transitiveClosure.html

RETURNS SETOF (seq, vid, target_array)

The function returns a single row. The columns of the row are:

Column Type Description
seq INTEGER Sequential value starting from 1.
vid BIGINT Identifier of the vertex.
target_array ARRAY[BIGINT] Array of identifiers of the vertices that are reachable from vertex

v.

Additional Examples

Example:
Some sub graphs of the sample data

SELECT * FROM pgr_transitiveclosure(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table where id=2'
);
 seq | vid | target_array
-----+-----+--------------
 1 | 2 | {}
 2 | 3 | {2}
(2 rows)

SELECT * FROM pgr_transitiveclosure(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table where id=3'
);
 seq | vid | target_array
-----+-----+--------------
 1 | 3 | {}
 2 | 4 | {3}
(2 rows)

SELECT * FROM pgr_transitiveclosure(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table where id=2 or id=3'
);
 seq | vid | target_array
-----+-----+--------------
 1 | 2 | {}
 2 | 3 | {2}
 3 | 4 | {3,2}
(3 rows)

SELECT * FROM pgr_transitiveclosure(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table where id=11'
);
 seq | vid | target_array
-----+-----+--------------
 1 | 6 | {11}
 2 | 11 | {}
(2 rows)

-- q3
SELECT * FROM pgr_transitiveclosure(
 'SELECT id,source,target,cost,reverse_cost FROM edge_table where cost=-1 or reverse_cost=-1'
);
 seq | vid | target_array
-----+-----+---------------
 1 | 2 | {}
 2 | 3 | {11,12,6,2}
 3 | 4 | {11,12,3,6,2}
 4 | 6 | {11,12}
 5 | 11 | {12}
 6 | 10 | {11,12}
 7 | 12 | {}
(7 rows)

See Also

https://en.wikipedia.org/wiki/Transitive_closure
The queries use the Sample Data network.

Indices and tables

Index
Search Page

pgr_turnRestrictedPath - Experimental

pgr_turnRestrictedPath

https://en.wikipedia.org/wiki/Transitive_closure
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.
They likely will not be officially be part of the next release:

The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
Name might change.
Signature might change.
Functionality might change.
pgTap tests might be missing.
Might need c/c++ coding.
May lack documentation.
Documentation if any might need to be rewritten.
Documentation examples might need to be automatically generated.
Might need a lot of feedback from the comunity.
Might depend on a proposed function of pgRouting
Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0
New Experimental function

Support

Supported versions: current(3.0)

Description

TBD

Signatures

TBD

Parameters

TBD

Inner query

TBD

Result Columns

TBD

Additional Examples

Example:

See Also

Indices and tables

Index
Search Page

See Also

Indices and tables

Index

https://docs.pgrouting.org/3.0/en/pgr_turnRestrictedPath.html
file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
file:///opt/git/pgrouting/singlehtml/genindex.html

Search Page

Release Notes

pgRouting 3.0.6 Release Notes
pgRouting 3.0.5 Release Notes
pgRouting 3.0.4 Release Notes
pgRouting 3.0.3 Release Notes
pgRouting 3.0.2 Release Notes
pgRouting 3.0.1 Release Notes
pgRouting 3.0.0 Release Notes
pgRouting 2.6.3 Release Notes
pgRouting 2.6.2 Release Notes
pgRouting 2.6.1 Release Notes
pgRouting 2.6.0 Release Notes
pgRouting 2.5.5 Release Notes
pgRouting 2.5.4 Release Notes
pgRouting 2.5.3 Release Notes
pgRouting 2.5.2 Release Notes
pgRouting 2.5.1 Release Notes
pgRouting 2.5.0 Release Notes
pgRouting 2.4.2 Release Notes
pgRouting 2.4.1 Release Notes
pgRouting 2.4.0 Release Notes
pgRouting 2.3.2 Release Notes
pgRouting 2.3.1 Release Notes
pgRouting 2.3.0 Release Notes
pgRouting 2.2.4 Release Notes
pgRouting 2.2.3 Release Notes
pgRouting 2.2.2 Release Notes
pgRouting 2.2.1 Release Notes
pgRouting 2.2.0 Release Notes
pgRouting 2.1.0 Release Notes
pgRouting 2.0.1 Release Notes
pgRouting 2.0.0 Release Notes
pgRouting 1.x Release Notes

Release Notes

To see the full list of changes check the list of Git commits on Github.

Table of contents

pgRouting 3.0.6 Release Notes
pgRouting 3.0.5 Release Notes
pgRouting 3.0.4 Release Notes
pgRouting 3.0.3 Release Notes
pgRouting 3.0.2 Release Notes
pgRouting 3.0.1 Release Notes
pgRouting 3.0.0 Release Notes
pgRouting 2.6.3 Release Notes
pgRouting 2.6.2 Release Notes
pgRouting 2.6.1 Release Notes
pgRouting 2.6.0 Release Notes
pgRouting 2.5.5 Release Notes
pgRouting 2.5.4 Release Notes
pgRouting 2.5.3 Release Notes
pgRouting 2.5.2 Release Notes
pgRouting 2.5.1 Release Notes
pgRouting 2.5.0 Release Notes
pgRouting 2.4.2 Release Notes
pgRouting 2.4.1 Release Notes
pgRouting 2.4.0 Release Notes
pgRouting 2.3.2 Release Notes
pgRouting 2.3.1 Release Notes
pgRouting 2.3.0 Release Notes
pgRouting 2.2.4 Release Notes

file:///opt/git/pgrouting/singlehtml/search.html
https://github.com/pgRouting/pgrouting/commits

pgRouting 2.2.3 Release Notes
pgRouting 2.2.2 Release Notes
pgRouting 2.2.1 Release Notes
pgRouting 2.2.0 Release Notes
pgRouting 2.1.0 Release Notes
pgRouting 2.0.1 Release Notes
pgRouting 2.0.0 Release Notes
pgRouting 1.x Release Notes

pgRouting 3.0.6 Release Notes

To see all issues & pull requests closed by this release see the [Git closed milestone for 3.0.6]
(https://github.com/pgRouting/pgrouting/issues?utf8=%E2%9C%93&q=milestone%3A%22Release%203.0.6%22)
on Github.

Issues fixes

[#2189](https://github.com/pgRouting/pgrouting/issues/2189): Build error on RHEL 7

pgRouting 3.0.5 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.5 on Github.

Backport issues fixes

#1825: Boost versions are not honored
#1849: Boost 1.75.0 geometry “point_xy.hpp” build error on macOS environment
#1861: vrp functions crash server

pgRouting 3.0.4 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.4 on Github.

Backport issues fixes

#1304: FreeBSD 12 64-bit crashes on pgr_vrOneDepot tests Experimental Function
#1356: tools/testers/pg_prove_tests.sh fails when PostgreSQL port is not passed
#1725: Server crash on pgr_pickDeliver and pgr_vrpOneDepot on openbsd
#1760: TSP server crash on ubuntu 20.04 #1760
#1770: Remove warnings when using clang compiler

pgRouting 3.0.3 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.3 on Github.

Backport issues fixes

#1733: pgr_bdAstar fails when source or target vertex does not exist in the graph
#1647: Linear Contraction contracts self loops
#1640: pgr_withPoints fails when points_sql is empty
#1616: Path evaluation on C++ not updated before the results go back to C
#1300: pgr_chinesePostman crash on test data

pgRouting 3.0.2 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.2 on Github.

Issues fixes

#1378: Visual Studio build failing

pgRouting 3.0.1 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.1 on Github.

Issues fixes

https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.6%2522
https://github.com/pgRouting/pgrouting/issues/2189
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.5%2522
https://github.com/pgRouting/pgrouting/issues/1825
https://github.com/pgRouting/pgrouting/issues/1849
https://github.com/pgRouting/pgrouting/issues/1861
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.4%2522
https://github.com/pgRouting/pgrouting/issues/1304
https://github.com/pgRouting/pgrouting/issues/1356
https://github.com/pgRouting/pgrouting/issues/1725
https://github.com/pgRouting/pgrouting/issues/1760
https://github.com/pgRouting/pgrouting/issues/1770
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.3%2522
https://github.com/pgRouting/pgrouting/issues/1733
https://github.com/pgRouting/pgrouting/issues/1647
https://github.com/pgRouting/pgrouting/issues/1640
https://github.com/pgRouting/pgrouting/issues/1616
https://github.com/pgRouting/pgrouting/issues/1300
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.2%2522
https://github.com/pgRouting/pgrouting/issues/1378
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.1%2522

#232: Honor client cancel requests in C /C++ code

pgRouting 3.0.0 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.0 on Github.

Fixed Issues

#1153: Renamed pgr_eucledianTSP to pgr_TSPeuclidean
#1188: Removed CGAL dependency
#1002: Fixed contraction issues:

#1004: Contracts when forbidden vertices do not belong to graph
#1005: Intermideate results eliminated
#1006: No loss of information

New functions

Kruskal family
pgr_kruskal
pgr_kruskalBFS
pgr_kruskalDD
pgr_kruskalDFS

Prim family
pgr_prim
pgr_primDD
pgr_primDFS
pgr_primBFS

Proposed moved to official on pgRouting

aStar Family
pgr_aStar(one to many)
pgr_aStar(many to one)
pgr_aStar(many to many)
pgr_aStarCost(one to one)
pgr_aStarCost(one to many)
pgr_aStarCost(many to one)
pgr_aStarCost(many to many)
pgr_aStarCostMatrix(one to one)
pgr_aStarCostMatrix(one to many)
pgr_aStarCostMatrix(many to one)
pgr_aStarCostMatrix(many to many)

bdAstar Family
pgr_bdAstar(one to many)
pgr_bdAstar(many to one)
pgr_bdAstar(many to many)
pgr_bdAstarCost(one to one)
pgr_bdAstarCost(one to many)
pgr_bdAstarCost(many to one)
pgr_bdAstarCost(many to many)
pgr_bdAstarCostMatrix(one to one)
pgr_bdAstarCostMatrix(one to many)
pgr_bdAstarCostMatrix(many to one)
pgr_bdAstarCostMatrix(many to many)

bdDijkstra Family
pgr_bdDijkstra(one to many)
pgr_bdDijkstra(many to one)
pgr_bdDijkstra(many to many)
pgr_bdDijkstraCost(one to one)
pgr_bdDijkstraCost(one to many)
pgr_bdDijkstraCost(many to one)
pgr_bdDijkstraCost(many to many)
pgr_bdDijkstraCostMatrix(one to one)
pgr_bdDijkstraCostMatrix(one to many)
pgr_bdDijkstraCostMatrix(many to one)
pgr_bdDijkstraCostMatrix(many to many)

Flow Family

https://github.com/pgRouting/pgrouting/issues/232
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%203.0.0%2522
https://github.com/pgRouting/pgrouting/issues/1153
https://github.com/pgRouting/pgrouting/issues/1188
https://github.com/pgRouting/pgrouting/issues/1002
https://github.com/pgRouting/pgrouting/issues/1004
https://github.com/pgRouting/pgrouting/issues/1005
https://github.com/pgRouting/pgrouting/issues/1006

pgr_pushRelabel(one to one)
pgr_pushRelabel(one to many)
pgr_pushRelabel(many to one)
pgr_pushRelabel(many to many)
pgr_edmondsKarp(one to one)
pgr_edmondsKarp(one to many)
pgr_edmondsKarp(many to one)
pgr_edmondsKarp(many to many)
pgr_boykovKolmogorov (one to one)
pgr_boykovKolmogorov (one to many)
pgr_boykovKolmogorov (many to one)
pgr_boykovKolmogorov (many to many)
pgr_maxCardinalityMatching
pgr_maxFlow
pgr_edgeDisjointPaths(one to one)
pgr_edgeDisjointPaths(one to many)
pgr_edgeDisjointPaths(many to one)
pgr_edgeDisjointPaths(many to many)

Components family
pgr_connectedComponents
pgr_strongComponents
pgr_biconnectedComponents
pgr_articulationPoints
pgr_bridges

Contraction:
Removed unnecessary column seq
Bug Fixes

New Experimental functions

pgr_maxFlowMinCost
pgr_maxFlowMinCost_Cost
pgr_extractVertices
pgr_turnRestrictedPath
pgr_stoerWagner
pgr_dagShortestpath
pgr_topologicalSort
pgr_transitiveClosure
VRP category

pgr_pickDeliverEuclidean
pgr_pickDeliver

Chinese Postman family
pgr_chinesePostman
pgr_chinesePostmanCost

Breadth First Search family
pgr_breadthFirstSearch
pgr_binaryBreadthFirstSearch

Bellman Ford family
pgr_bellmanFord
pgr_edwardMoore

Moved to legacy

Experimental functions
pgr_labelGraph - Use the components family of functions instead.
Max flow - functions were renamed on v2.5.0

pgr_maxFlowPushRelabel
pgr_maxFlowBoykovKolmogorov
pgr_maxFlowEdmondsKarp
pgr_maximumcardinalitymatching

VRP
pgr_gsoc_vrppdtw

TSP old signatures
pgr_pointsAsPolygon
pgr_alphaShape old signature

pgRouting 2.6.3 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.6.3 on Github.

Bug fixes

#1219 Implicit cast for via_path integer to text
#1193 Fixed pgr_pointsAsPolygon breaking when comparing strings in WHERE clause
#1185 Improve FindPostgreSQL.cmake

pgRouting 2.6.2 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.6.2 on Github.

Bug fixes

#1152 Fixes driving distance when vertex is not part of the graph
#1098 Fixes windows test
#1165 Fixes build for python3 and perl5

pgRouting 2.6.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.6.1 on Github.

Fixes server crash on several functions.
pgr_floydWarshall
pgr_johnson
pgr_astar
pgr_bdAstar
pgr_bdDijstra
pgr_alphashape
pgr_dijkstraCostMatrix
pgr_dijkstra
pgr_dijkstraCost
pgr_drivingDistance
pgr_KSP
pgr_dijkstraVia (proposed)
pgr_boykovKolmogorov (proposed)
pgr_edgeDisjointPaths (proposed)
pgr_edmondsKarp (proposed)
pgr_maxCardinalityMatch (proposed)
pgr_maxFlow (proposed)
pgr_withPoints (proposed)
pgr_withPointsCost (proposed)
pgr_withPointsKSP (proposed)
pgr_withPointsDD (proposed)
pgr_withPointsCostMatrix (proposed)
pgr_contractGraph (experimental)
pgr_pushRelabel (experimental)
pgr_vrpOneDepot (experimental)
pgr_gsoc_vrppdtw (experimental)
Fixes for deprecated functions where also applied but not tested

Removed compilation warning for g++8
Fixed a fallthrugh on Astar and bdAstar.

pgRouting 2.6.0 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.6.0 on Github.

New fexperimental functions

pgr_lineGraphFull

Bug fixes

Fix pgr_trsp(text,integer,double precision,integer,double precision,boolean,boolean[,text])
without restrictions

calls pgr_dijkstra when both end points have a fraction IN (0,1)
calls pgr_withPoints when at least one fraction NOT IN (0,1)

https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.6.3%2522%20
https://github.com/pgRouting/pgrouting/pull/1219
https://github.com/pgRouting/pgrouting/pull/1193
https://github.com/pgRouting/pgrouting/pull/1185
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.6.2%2522%20
https://github.com/pgRouting/pgrouting/issues/1152
https://github.com/pgRouting/pgrouting/issues/1098
https://github.com/pgRouting/pgrouting/issues/1165
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.6.1%2522%20
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.6.0%2522%20

with restrictions
calls original trsp code

Internal code

Cleaned the internal code of trsp(text,integer,integer,boolean,boolean [, text])
Removed the use of pointers
Internal code can accept BIGINT

Cleaned the internal code of withPoints

pgRouting 2.5.5 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.5 on Github.

Bug fixes

Fixes driving distance when vertex is not part of the graph
Fixes windows test
Fixes build for python3 and perl5

pgRouting 2.5.4 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.4 on Github.

Fixes server crash on several functions.
pgr_floydWarshall
pgr_johnson
pgr_astar
pgr_bdAstar
pgr_bdDijstra
pgr_alphashape
pgr_dijkstraCostMatrix
pgr_dijkstra
pgr_dijkstraCost
pgr_drivingDistance
pgr_KSP
pgr_dijkstraVia (proposed)
pgr_boykovKolmogorov (proposed)
pgr_edgeDisjointPaths (proposed)
pgr_edmondsKarp (proposed)
pgr_maxCardinalityMatch (proposed)
pgr_maxFlow (proposed)
pgr_withPoints (proposed)
pgr_withPointsCost (proposed)
pgr_withPointsKSP (proposed)
pgr_withPointsDD (proposed)
pgr_withPointsCostMatrix (proposed)
pgr_contractGraph (experimental)
pgr_pushRelabel (experimental)
pgr_vrpOneDepot (experimental)
pgr_gsoc_vrppdtw (experimental)
Fixes for deprecated functions where also applied but not tested

Removed compilation warning for g++8
Fixed a fallthrugh on Astar and bdAstar.

pgRouting 2.5.3 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.3 on Github.

Bug fixes

Fix for postgresql 11: Removed a compilation error when compiling with postgreSQL

pgRouting 2.5.2 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.2 on Github.

https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.5.5%2522%20
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.5.4%2522%20
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.5.3%2522%20
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.5.2%2522%20

Bug fixes

Fix for postgresql 10.1: Removed a compiler condition

pgRouting 2.5.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.1 on Github.

Bug fixes

Fixed prerequisite minimum version of: cmake

pgRouting 2.5.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.5.0 on Github.

enhancement:

pgr_version is now on SQL language

Breaking change on:

pgr_edgeDisjointPaths:
Added path_id, cost and agg_cost columns on the result
Parameter names changed
The many version results are the union of the one to one version

New Signatures:

pgr_bdAstar(one to one)

New Proposed functions

pgr_bdAstar(one to many)
pgr_bdAstar(many to one)
pgr_bdAstar(many to many)
pgr_bdAstarCost(one to one)
pgr_bdAstarCost(one to many)
pgr_bdAstarCost(many to one)
pgr_bdAstarCost(many to many)
pgr_bdAstarCostMatrix
pgr_bdDijkstra(one to many)
pgr_bdDijkstra(many to one)
pgr_bdDijkstra(many to many)
pgr_bdDijkstraCost(one to one)
pgr_bdDijkstraCost(one to many)
pgr_bdDijkstraCost(many to one)
pgr_bdDijkstraCost(many to many)
pgr_bdDijkstraCostMatrix
pgr_lineGraph
pgr_lineGraphFull
pgr_connectedComponents
pgr_strongComponents
pgr_biconnectedComponents
pgr_articulationPoints
pgr_bridges

Deprecated Signatures

pgr_bdastar - use pgr_bdAstar instead

Renamed Functions

pgr_maxFlowPushRelabel - use pgr_pushRelabel instead
pgr_maxFlowEdmondsKarp -use pgr_edmondsKarp instead
pgr_maxFlowBoykovKolmogorov - use pgr_boykovKolmogorov instead
pgr_maximumCardinalityMatching - use pgr_maxCardinalityMatch instead

https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.5.1%2522%20
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.5.0%2522+is%253Aclosed

Deprecated function

pgr_pointToEdgeNode

pgRouting 2.4.2 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.4.2 on Github.

Improvement

Works for postgreSQL 10

Bug fixes

Fixed: Unexpected error column “cname”
Replace __linux__ with __GLIBC__ for glibc-specific headers and functions

pgRouting 2.4.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.4.1 on Github.

Bug fixes

Fixed compiling error on macOS
Condition error on pgr_withPoints

pgRouting 2.4.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.4.0 on Github.

New Signatures

pgr_bdDijkstra

New Proposed Signatures

pgr_maxFlow
pgr_astar(one to many)
pgr_astar(many to one)
pgr_astar(many to many)
pgr_astarCost(one to one)
pgr_astarCost(one to many)
pgr_astarCost(many to one)
pgr_astarCost(many to many)
pgr_astarCostMatrix

Deprecated Signatures

pgr_bddijkstra - use pgr_bdDijkstra instead

Deprecated Functions

pgr_pointsToVids

Bug fixes

Bug fixes on proposed functions
pgr_withPointsKSP: fixed ordering

TRSP original code is used with no changes on the compilation warnings

pgRouting 2.3.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.2 on Github.

Bug Fixes

Fixed pgr_gsoc_vrppdtw crash when all orders fit on one truck.

https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.4.2%2522%20
https://github.com/pgRouting/pgrouting/issues?utf8=%25E2%259C%2593&q=milestone%253A%2522Release%202.4.1%2522%20
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.4.0%2522+is%253Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.3.2%2522+is%253Aclosed

Fixed pgr_trsp:
Alternate code is not executed when the point is in reality a vertex
Fixed ambiguity on seq

pgRouting 2.3.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.1 on Github.

Bug Fixes

Leaks on proposed max_flow functions
Regression error on pgr_trsp
Types discrepancy on pgr_createVerticesTable

pgRouting 2.3.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.0 on Github.

New Signatures

pgr_TSP
pgr_aStar

New Functions

pgr_eucledianTSP

New Proposed functions

pgr_dijkstraCostMatrix
pgr_withPointsCostMatrix
pgr_maxFlowPushRelabel(one to one)
pgr_maxFlowPushRelabel(one to many)
pgr_maxFlowPushRelabel(many to one)
pgr_maxFlowPushRelabel(many to many)
pgr_maxFlowEdmondsKarp(one to one)
pgr_maxFlowEdmondsKarp(one to many)
pgr_maxFlowEdmondsKarp(many to one)
pgr_maxFlowEdmondsKarp(many to many)
pgr_maxFlowBoykovKolmogorov (one to one)
pgr_maxFlowBoykovKolmogorov (one to many)
pgr_maxFlowBoykovKolmogorov (many to one)
pgr_maxFlowBoykovKolmogorov (many to many)
pgr_maximumCardinalityMatching
pgr_edgeDisjointPaths(one to one)
pgr_edgeDisjointPaths(one to many)
pgr_edgeDisjointPaths(many to one)
pgr_edgeDisjointPaths(many to many)
pgr_contractGraph

Deprecated Signatures

pgr_tsp - use pgr_TSP or pgr_eucledianTSP instead
pgr_astar - use pgr_aStar instead

Deprecated Functions

pgr_flip_edges
pgr_vidsToDmatrix
pgr_pointsToDMatrix
pgr_textToPoints

pgRouting 2.2.4 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.4 on Github.

Bug Fixes

https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.3.1%2522+is%253Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.3.0%2522+is%253Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.2.4%2522+is%253Aclosed

Bogus uses of extern “C”
Build error on Fedora 24 + GCC 6.0
Regression error pgr_nodeNetwork

pgRouting 2.2.3 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.3 on Github.

Bug Fixes

Fixed compatibility issues with PostgreSQL 9.6.

pgRouting 2.2.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.2 on Github.

Bug Fixes

Fixed regression error on pgr_drivingDistance

pgRouting 2.2.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.1 on Github.

Bug Fixes

Server crash fix on pgr_alphaShape
Bug fix on With Points family of functions

pgRouting 2.2.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.0 on Github.

Improvements

pgr_nodeNetwork
Adding a row_where and outall optional parameters

Signature fix
pgr_dijkstra – to match what is documented

New Functions

pgr_floydWarshall
pgr_Johnson
pgr_dijkstraCost(one to one)
pgr_dijkstraCost(one to many)
pgr_dijkstraCost(many to one)
pgr_dijkstraCost(many to many)

Proposed functionality

pgr_withPoints(one to one)
pgr_withPoints(one to many)
pgr_withPoints(many to one)
pgr_withPoints(many to many)
pgr_withPointsCost(one to one)
pgr_withPointsCost(one to many)
pgr_withPointsCost(many to one)
pgr_withPointsCost(many to many)
pgr_withPointsDD(single vertex)
pgr_withPointsDD(multiple vertices)
pgr_withPointsKSP
pgr_dijkstraVia

Deprecated functions:

https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.2.3%2522+is%253Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.2.2%2522+is%253Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A2.2.1+is%253Aclosed
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.2.0%2522+is%253Aclosed

pgr_apspWarshall use pgr_floydWarshall instead
pgr_apspJohnson use pgr_Johnson instead
pgr_kDijkstraCost use pgr_dijkstraCost instead
pgr_kDijkstraPath use pgr_dijkstra instead

Renamed and deprecated function

pgr_makeDistanceMatrix renamed to _pgr_makeDistanceMatrix

pgRouting 2.1.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.1.0 on Github.

New Signatures

pgr_dijkstra(one to many)
pgr_dijkstra(many to one)
pgr_dijkstra(many to many)
pgr_drivingDistance(multiple vertices)

Refactored

pgr_dijkstra(one to one)
pgr_ksp
pgr_drivingDistance(single vertex)

Improvements

pgr_alphaShape function now can generate better (multi)polygon with holes and alpha parameter.

Proposed functionality

Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)
pgr_pointToEdgeNode - convert a point geometry to a vertex_id based on closest edge.
pgr_flipEdges - flip the edges in an array of geometries so the connect end to end.
pgr_textToPoints - convert a string of x,y;x,y;… locations into point geometries.
pgr_pointsToVids - convert an array of point geometries into vertex ids.
pgr_pointsToDMatrix - Create a distance matrix from an array of points.
pgr_vidsToDMatrix - Create a distance matrix from an array of vertix_id.
pgr_vidsToDMatrix - Create a distance matrix from an array of vertix_id.

Added proposed functions from GSoc Projects:
pgr_vrppdtw
pgr_vrponedepot

Deprecated functions

pgr_getColumnName
pgr_getTableName
pgr_isColumnCndexed
pgr_isColumnInTable
pgr_quote_ident
pgr_versionless
pgr_startPoint
pgr_endPoint
pgr_pointToId

No longer supported

Removed the 1.x legacy functions

Bug Fixes

Some bug fixes in other functions

Refactoring Internal Code

A C and C++ library for developer was created
encapsulates postgreSQL related functions

https://github.com/pgRouting/pgrouting/issues?q=is%253Aissue+milestone%253A%2522Release+2.1.0%2522+is%253Aclosed

encapsulates Boost.Graph graphs
Directed Boost.Graph
Undirected Boost.graph.

allow any-integer in the id’s
allow any-numerical on the cost/reverse_cost columns

Instead of generating many libraries: - All functions are encapsulated in one library - The library has the prefix 2-1-0

pgRouting 2.0.1 Release Notes

Minor bug fixes.

Bug Fixes

No track of the bug fixes were kept.

pgRouting 2.0.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.0.0 on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility to pgRouting 1.x releases. The main
Goals for this release are:

Major restructuring of pgRouting.
Standardization of the function naming
Preparation of the project for future development.

As a result of this effort:

pgRouting has a simplified structure
Significant new functionality has being added
Documentation has being integrated
Testing has being integrated
And made it easier for multiple developers to make contributions.

Important Changes

Graph Analytics - tools for detecting and fixing connection some problems in a graph
A collection of useful utility functions
Two new All Pairs Short Path algorithms (pgr_apspJohnson, pgr_apspWarshall)
Bi-directional Dijkstra and A-star search algorithms (pgr_bdAstar, pgr_bdDijkstra)
One to many nodes search (pgr_kDijkstra)
K alternate paths shortest path (pgr_ksp)
New TSP solver that simplifies the code and the build process (pgr_tsp), dropped “Gaul Library” dependency
Turn Restricted shortest path (pgr_trsp) that replaces Shooting Star
Dropped support for Shooting Star
Built a test infrastructure that is run before major code changes are checked in
Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.
Improved build process for Windows
Automated testing on Linux and Windows platforms trigger by every commit
Modular library design
Compatibility with PostgreSQL 9.1 or newer
Compatibility with PostGIS 2.0 or newer
Installs as PostgreSQL EXTENSION
Return types re factored and unified
Support for table SCHEMA in function parameters
Support for st_ PostGIS function prefix
Added pgr_ prefix to functions and types
Better documentation: https://docs.pgrouting.org
shooting_star is discontinued

pgRouting 1.x Release Notes

To see the issues closed by this release see the Git closed issues for 1.x on Github. The following release notes have been
copied from the previous RELEASE_NOTES file and are kept as a reference.

Changes for release 1.05

Bug fixes

https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+2.0.0%2522+is%253Aclosed
https://docs.pgrouting.org
https://github.com/pgRouting/pgrouting/issues?q=milestone%253A%2522Release+1.x%2522+is%253Aclosed

Changes for release 1.03

Much faster topology creation
Bug fixes

Changes for release 1.02

Shooting* bug fixes
Compilation problems solved

Changes for release 1.01

Shooting* bug fixes

Changes for release 1.0

Core and extra functions are separated
Cmake build process
Bug fixes

Changes for release 1.0.0b

Additional SQL file with more simple names for wrapper functions
Bug fixes

Changes for release 1.0.0a

Shooting* shortest path algorithm for real road networks
Several SQL bugs were fixed

Changes for release 0.9.9

PostgreSQL 8.2 support
Shortest path functions return empty result if they could not find any path

Changes for release 0.9.8

Renumbering scheme was added to shortest path functions
Directed shortest path functions were added
routing_postgis.sql was modified to use dijkstra in TSP search

Indices and tables

Index
Search Page

Contents

© Copyright pgRouting Contributors - Version v3.0.6. Last updated on Apr 03, 2023. Created using Sphinx 5.3.0.

file:///opt/git/pgrouting/singlehtml/genindex.html
file:///opt/git/pgrouting/singlehtml/search.html
https://www.sphinx-doc.org/

	Table of Contents
	pgRouting Manual (3.0)
	PGROUTING MANUAL (3.0)

	Table of Contents
	General
	Introduction
	Licensing
	Contributors
	More Information

	Installation
	Short Version
	Get the sources
	Enabling and upgrading in the database
	Dependencies
	Configuring
	Building
	Testing
	See Also

	Support
	Reporting Problems
	Mailing List and GIS StackExchange
	Commercial Support

	Sample Data
	Images

	Pgrouting Concepts
	pgRouting Concepts
	Getting Started
	Group of Functions
	Inner Queries
	Parameters
	Return columns & values
	Advanced Topics
	Performance Tips
	How to contribute

	pgr_version
	Description
	Signature
	Result Columns
	See Also

	pgr_full_version
	Description
	Signatures
	Result Columns
	See Also

	Function Families
	Function Families
	Functions by categories

	Functions by categories
	Available Functions but not official pgRouting functions
	Proposed Functions
	withPoints - Family of functions
	See Also

	Experimental Functions
	Chinese Postman Problem - Family of functions (Experimental)
	Vehicle Routing Functions - Category (Experimental)
	pgr_bellmanFord - Experimental
	pgr_binaryBreadthFirstSearch - Experimental
	pgr_breadthFirstSearch - Experimental
	pgr_dagShortestPath - Experimental
	pgr_edwardMoore - Experimental
	pgr_stoerWagner - Experimental
	pgr_topologicalSort - Experimental
	pgr_transitiveClosure - Experimental
	pgr_turnRestrictedPath - Experimental
	See Also

	Release Notes
	Release Notes
	pgRouting 3.0.6 Release Notes
	pgRouting 3.0.5 Release Notes
	pgRouting 3.0.4 Release Notes
	pgRouting 3.0.3 Release Notes
	pgRouting 3.0.2 Release Notes
	pgRouting 3.0.1 Release Notes
	pgRouting 3.0.0 Release Notes
	pgRouting 2.6.3 Release Notes
	pgRouting 2.6.2 Release Notes
	pgRouting 2.6.1 Release Notes
	pgRouting 2.6.0 Release Notes
	pgRouting 2.5.5 Release Notes
	pgRouting 2.5.4 Release Notes
	pgRouting 2.5.3 Release Notes
	pgRouting 2.5.2 Release Notes
	pgRouting 2.5.1 Release Notes
	pgRouting 2.5.0 Release Notes
	pgRouting 2.4.2 Release Notes
	pgRouting 2.4.1 Release Notes
	pgRouting 2.4.0 Release Notes
	pgRouting 2.3.2 Release Notes
	pgRouting 2.3.1 Release Notes
	pgRouting 2.3.0 Release Notes
	pgRouting 2.2.4 Release Notes
	pgRouting 2.2.3 Release Notes
	pgRouting 2.2.2 Release Notes
	pgRouting 2.2.1 Release Notes
	pgRouting 2.2.0 Release Notes
	pgRouting 2.1.0 Release Notes
	pgRouting 2.0.1 Release Notes
	pgRouting 2.0.0 Release Notes
	pgRouting 1.x Release Notes

