

 pgRouting Manual (3.7)

pgRouting Manual (3.7)

pgRouting Manual (3.7)

Contents

Table of Contents¶

pgRouting extends the PostGIS/PostgreSQL geospatial database to provide geospatial routing and other network analysis functionality.

This is the manual for pgRouting v3.7.1.

[image: Creative Commons Attribution-Share Alike 3.0 License]
The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and wherever possible, a link back to https://pgrouting.org. For other licenses used in pgRouting see the Licensing page.

General¶

Introduction¶

pgRouting is an extension of PostGIS and PostgreSQL geospatial database and adds routing and other network analysis functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp, was later extended by Orkney and renamed to pgRouting. The project is now supported and maintained by Georepublic, Paragon Corporation and a broad user community.

pgRouting is part of OSGeo Community Projects from the OSGeo Foundation and included on OSGeoLive.

Licensing¶

The following licenses can be found in pgRouting:

	License

	

	GNU General Public License v2.0 or later

	Most features of pgRouting are available under GNU General Public License v2.0 or later.

	Boost Software License - Version 1.0

	Some Boost extensions are available under Boost Software License - Version 1.0.

	MIT-X License

	Some code contributed by iMaptools.com is available under MIT-X license.

	Creative Commons Attribution-Share Alike 3.0 License

	The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

In general license information should be included in the header of each source file.

Contributors¶

This Release Contributors¶

Individuals in this release v3.7.x (in alphabetical order)¶

(Alphabetical order)

Regina Obe, Vicky Vergara

And all the people that give us a little of their time making comments, finding issues, making pull requests etc. in any of our products: osm2pgrouting, pgRouting, pgRoutingLayer, workshop.

Corporate Sponsors in this release (in alphabetical order)¶

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

	OSGeo

	OSGeo UK

	Google Summer of Code

	Paragon Corporation

Contributors Past & Present:¶

Individuals (in alphabetical order)¶

Aasheesh Tiwari, Abhinav Jain, Aditya Pratap Singh, Adrien Berchet, Akio Takubo, Andrea Nardelli, Anthony Tasca, Anton Patrushev, Aryan Gupta, Ashraf Hossain, Ashish Kumar, Cayetano Benavent, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis Rykov, Ema Miyawaki, Esteban Zimanyi, Florian Thurkow, Frederic Junod, Gerald Fenoy, Gudesa Venkata Sai Akhil, Hang Wu, Himanshu Raj, Imre Samu, Jay Mahadeokar, Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Mahmoud Sakr, Manikata Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Maoguang Wang, Mohamed Bakli, Mohamed Zia, Mukul Priya, Nitish Chauhan, Rajat Shinde, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal, Shobhit Chaurasia, Sourabh Garg, Stephen Woodbridge, Swapnil Joshi, Sylvain Housseman, Sylvain Pasche, Veenit Kumar, Vidhan Jain, Virginia Vergara, Yige Huang

Corporate Sponsors (in alphabetical order)¶

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

	Camptocamp

	CSIS (University of Tokyo)

	Georepublic

	Google Summer of Code

	iMaptools

	Leopark

	Orkney

	OSGeo

	OSGeo UK

	Paragon Corporation

	Versaterm Inc.

More Information¶

	The latest software, documentation and news items are available at the pgRouting web site https://pgrouting.org.

	PostgreSQL database server at the PostgreSQL main site https://www.postgresql.org.

	PostGIS extension at the PostGIS project web site https://postgis.net.

	Boost C++ source libraries at https://www.boost.org.

	Migration guide

Installation¶

Table of Contents

	Short Version

	Get the sources

	Enabling and upgrading in the database

	Dependencies

	Configuring

	Building

	Testing

Instructions for downloading and installing binaries for different operating systems, additional notes and corrections not included in this documentation can be found in Installation wiki

To use pgRouting PostGIS needs to be installed, please read the information about installation in this Install Guide

Short Version¶

Extracting the tar ball

tar xvfz pgrouting-3.7.1.tar.gz
cd pgrouting-3.7.1

To compile assuming you have all the dependencies in your search path:

mkdir build
cd build
cmake ..
make
sudo make install

Once pgRouting is installed, it needs to be enabled in each individual database you want to use it in.

createdb routing
psql routing -c 'CREATE EXTENSION PostGIS'
psql routing -c 'CREATE EXTENSION pgRouting'

Get the sources¶

The pgRouting latest release can be found in https://github.com/pgRouting/pgrouting/releases/latest

To download this release:

wget -O pgrouting-3.7.1.tar.gz https://github.com/pgRouting/pgrouting/archive/v3.7.1.tar.gz

Go to Short Version for more instructions on extracting tar ball and compiling pgRouting.

git

To download the repository

git clone git://github.com/pgRouting/pgrouting.git
cd pgrouting
git checkout v3.7.1

Go to Short Version for more instructions on compiling pgRouting (there is no tar ball involved while downloading pgRouting repository from GitHub).

Enabling and upgrading in the database¶

Enabling the database

pgRouting is a PostgreSQL extension and depends on PostGIS to provide functionalities to end user. Below given code demonstrates enabling PostGIS and pgRouting in the database.

CREATE EXTENSION postgis;
CREATE EXTENSION pgrouting;

Checking PostGIS and pgRouting version after enabling them in the database.

SELECT PostGIS_full_version();
SELECT * FROM pgr_version();

Upgrading the database

To upgrade pgRouting in the database to version 3.7.1 use the following command:

ALTER EXTENSION pgrouting UPDATE TO "3.7.1";

More information can be found in https://www.postgresql.org/docs/current/sql-createextension.html

Dependencies¶

Compilation Dependencies

To be able to compile pgRouting, make sure that the following dependencies are met:

	C and C++0x compilers

	Compiling with Boost 1.56 up to Boost 1.74 requires C++ Compiler with C++03 or C++11 standard support

	Compiling with Boost 1.75 requires C++ Compiler with C++14 standard support

	Postgresql version = Supported versions by PostgreSQL

	The Boost Graph Library (BGL). Version >= 1.56

	CMake >= 3.2

optional dependencies

For user’s documentation

	Sphinx >= 1.1

	Latex

For developer’s documentation

	Doxygen >= 1.7

For testing

	pgtap

	pg_prove

For using:

	PostGIS version >= 2.2

Example: Installing dependencies on linux

Installing the compilation dependencies

Database dependencies

sudo apt install postgresql-15
sudo apt install postgresql-server-dev-15
sudo apt install postgresql-15-postgis

Configuring PostgreSQL

Entering psql console

sudo systemctl start postgresql.service
sudo -i -u postgres
psql

To exit psql console

q

Entering psql console directly without switching roles can be done by the following commands

sudo -u postgres psql

Then use the above given method to exit out of the psql console

Checking PostgreSQL version

psql --version

or

Enter the psql console using above given method and then enter

SELECT VERSION();

Creating PostgreSQL role

sudo -i -u postgres
createuser --interactive

or

sudo -u postgres createuser --interactive

Default role provided by PostgreSQL is postgres. To create new roles you can use the above provided commands. The prompt will ask the user to type name of the role and then provide affirmation. Proceed with the steps and you will succeed in creating PostgreSQL role successfully.

To add password to the role or change previously created password of the role use the following commands

ALTER USER <role name> PASSWORD <password>

To get additional details on the flags associated with createuser below given command can be used

man createuser

Creating Database in PostgreSQL

sudo -i -u postgres
createdb <database name>

or

sudo -u postgres createdb <database name>

Connecting to a PostgreSQL Database

Enter the psql console and type the following commands

connect <database name>

Build dependencies

sudo apt install cmake
sudo apt install g++
sudo apt install libboost-graph-dev

Optional dependencies

For documentation and testing

pip install sphinx
pip install sphinx-bootstrap-theme
sudo apt install texlive
sudo apt install doxygen
sudo apt install libtap-parser-sourcehandler-pgtap-perl
sudo apt install postgresql-15-pgtap

Configuring¶

pgRouting uses the cmake system to do the configuration.

The build directory is different from the source directory

Create the build directory

$ mkdir build

Configurable variables¶

To see the variables that can be configured

$ cd build
$ cmake -L ..

Configuring The Documentation

Most of the effort of the documentation has been on the HTML files. Some variables for building documentation:

	Variable

	Default

	Comment

	WITH_DOC

	BOOL=OFF

	Turn on/off building the documentation

	BUILD_HTML

	BOOL=ON

	If ON, turn on/off building HTML for user’s documentation

	BUILD_DOXY

	BOOL=ON

	If ON, turn on/off building HTML for developer’s documentation

	BUILD_LATEX

	BOOL=OFF

	If ON, turn on/off building PDF

	BUILD_MAN

	BOOL=OFF

	If ON, turn on/off building MAN pages

	DOC_USE_BOOTSTRAP

	BOOL=OFF

	If ON, use sphinx-bootstrap for HTML pages of the users documentation

Configuring cmake to create documentation before building pgRouting

$ cmake -DWITH_DOC=ON -DDOC_USE_BOOTSTRAP=ON ..

Note

Most of the effort of the documentation has been on the html files.

Building¶

Using make to build the code and the documentation

The following instructions start from path/to/pgrouting/build

$ make # build the code but not the documentation
$ make doc # build only the user's documentation
$ make all doc # build both the code and the user's documentation
$ make doxy # build only the developer's documentation

We have tested on several platforms, For installing or reinstalling all the steps are needed.

Warning

The sql signatures are configured and build in the cmake command.

MinGW on Windows

$ mkdir build
$ cd build
$ cmake -G"MSYS Makefiles" ..
$ make
$ make install

Linux

The following instructions start from path/to/pgrouting

mkdir build
cd build
cmake ..
make
sudo make install

To remove the build when the configuration changes, use the following code:

rm -rf build

and start the build process as mentioned previously.

Testing¶

Currently there is no make test and testing is done as follows

The following instructions start from path/to/pgrouting/

tools/testers/doc_queries_generator.pl
createdb -U <user> ___pgr___test___
sh ./tools/testers/pg_prove_tests.sh <user>
dropdb -U <user> ___pgr___test___

See Also¶

Indices and tables

	Index

	Search Page

Support¶

pgRouting community support is available through the pgRouting website, documentation, tutorials, mailing lists and others. If you’re looking for commercial support, find below a list of companies providing pgRouting development and consulting services.

Reporting Problems¶

Bugs are reported and managed in an issue tracker. Please follow these steps:

	Search the tickets to see if your problem has already been reported. If so, add any extra context you might have found, or at least indicate that you too are having the problem. This will help us prioritize common issues.

	If your problem is unreported, create a new issue for it.

	In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL necessary to replicate a problem.

	If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest version the problem appears.

	For the versions where you can replicate the problem, note the operating system and version of pgRouting, PostGIS and PostgreSQL.

	It is recommended to use the following wrapper on the problem to pin point the step that is causing the problem.

SET client_min_messages TO debug;
 <your code>
SET client_min_messages TO notice;

Mailing List and GIS StackExchange¶

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

	User mailing list: https://lists.osgeo.org/mailman/listinfo/pgrouting-users

	Developer mailing list: https://discourse.osgeo.org/c/pgrouting/pgrouting-dev/

	Subscribe: https://discourse.osgeo.org/g/pgrouting-dev

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange and tag the question with pgrouting. Find all questions tagged with pgrouting under https://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting questions feed.

Commercial Support¶

For users who require professional support, development and consulting services, consider contacting any of the following organizations, which have significantly contributed to the development of pgRouting:

	Company

	Offices in

	Website

	Georepublic

	Germany, Japan

	https://georepublic.info

	Paragon Corporation

	United States

	https://www.paragoncorporation.com

	Netlab

	Capranica, Italy

	https://www.osgeo.org/service-providers/netlab/

	Sample Data that is used in the examples of this manual.

Sample Data¶

The documentation provides very simple example queries based on a small sample network that resembles a city. To be able to execute the mayority of the examples queries, follow the instructions bellow.

	Main graph

	Edges

	Edges data

	Vertices

	Vertices data

	The topology

	Topology data

	Points outside the graph

	Points of interest

	Points of interest fillup

	Support tables

	Combinations

	Combinations data

	Restrictions

	Restrictions data

	Images

	Directed graph with cost and reverse_cost

	Undirected graph with cost and reverse_cost

	Directed graph with cost

	Undirected graph with cost

	Pick & Deliver Data

	The vehicles

	The original orders

	The orders

Main graph¶

A graph consists of a set of edges and a set of vertices.

The following city is to be inserted into the database:

Information known at this point is the geometry of the edges, cost values, cpacity values, category values and some locations that are not in the graph.

The process to have working topology starts by inserting the edges. After that everything else is calculated.

Edges¶

The database design for the documentation of pgRouting, keeps in the same row 2 segments, one in the direction of the geometry and the second in the oposite direction. Therfore some information has the reverse_ prefix which corresponds to the segment on the oposite direction of the geometry.

	Column

	Description

	id

	A unique identifier.

	source

	Identifier of the starting vertex of the geometry geom.

	target

	Identifier of the ending vertex of the geometry geom

	cost

	Cost to traverse from source to target.

	reverse_cost

	Cost to traverse from target to source.

	capacity

	Flow capacity from source to target.

	reverse_capacity

	Flow capacity from target to source.

	category

	Flow capacity from target to source.

	reverse_category

	Flow capacity from target to source.

	x1

	\(x\) coordinate of the starting vertex of the geometry.

	For convinience it is saved on the table but can be calculated as ST_X(ST_StartPoint(geom)).

	y2

	\(y\) coordinate of the ending vertex of the geometry.

	For convinience it is saved on the table but can be calculated as ST_Y(ST_EndPoint(geom)).

	geom

	The geometry of the segments.

CREATE TABLE edges (
 id BIGSERIAL PRIMARY KEY,
 source BIGINT,
 target BIGINT,
 cost FLOAT,
 reverse_cost FLOAT,
 capacity BIGINT,
 reverse_capacity BIGINT,
 x1 FLOAT,
 y1 FLOAT,
 x2 FLOAT,
 y2 FLOAT,
 geom geometry
);
CREATE TABLE

Starting on PostgreSQL 12:

...
x1 FLOAT GENERATED ALWAYS AS (ST_X(ST_StartPoint(geom))) STORED,
y1 FLOAT GENERATED ALWAYS AS (ST_Y(ST_StartPoint(geom))) STORED,
x1 FLOAT GENERATED ALWAYS AS (ST_X(ST_EndPoint(geom))) STORED,
y1 FLOAT GENERATED ALWAYS AS (ST_Y(ST_EndPoint(geom))) STORED,
...

Optionally indexes on different columns can be created. The recomendation is to have

	id indexed.

	source and target columns indexed to speed up pgRouting queries.

	geom indexed to speed up gemetry processes that might be needed in the front end.

For this small example the indexes are skipped, except for id

Edges data¶

Inserting into the database the information of the edges:

INSERT INTO edges (
 cost, reverse_cost,
 capacity, reverse_capacity, geom) VALUES
(1, 1, 80, 130, ST_MakeLine(ST_POINT(2, 0), ST_POINT(2, 1))),
(-1, 1, -1, 100, ST_MakeLine(ST_POINT(2, 1), ST_POINT(3, 1))),
(-1, 1, -1, 130, ST_MakeLine(ST_POINT(3, 1), ST_POINT(4, 1))),
(1, 1, 100, 50, ST_MakeLine(ST_POINT(2, 1), ST_POINT(2, 2))),
(1, -1, 130, -1, ST_MakeLine(ST_POINT(3, 1), ST_POINT(3, 2))),
(1, 1, 50, 100, ST_MakeLine(ST_POINT(0, 2), ST_POINT(1, 2))),
(1, 1, 50, 130, ST_MakeLine(ST_POINT(1, 2), ST_POINT(2, 2))),
(1, 1, 100, 130, ST_MakeLine(ST_POINT(2, 2), ST_POINT(3, 2))),
(1, 1, 130, 80, ST_MakeLine(ST_POINT(3, 2), ST_POINT(4, 2))),
(1, 1, 130, 50, ST_MakeLine(ST_POINT(2, 2), ST_POINT(2, 3))),
(1, -1, 130, -1, ST_MakeLine(ST_POINT(3, 2), ST_POINT(3, 3))),
(1, -1, 100, -1, ST_MakeLine(ST_POINT(2, 3), ST_POINT(3, 3))),
(1, -1, 100, -1, ST_MakeLine(ST_POINT(3, 3), ST_POINT(4, 3))),
(1, 1, 80, 130, ST_MakeLine(ST_POINT(2, 3), ST_POINT(2, 4))),
(1, 1, 80, 50, ST_MakeLine(ST_POINT(4, 2), ST_POINT(4, 3))),
(1, 1, 80, 80, ST_MakeLine(ST_POINT(4, 1), ST_POINT(4, 2))),
(1, 1, 130, 100, ST_MakeLine(ST_POINT(0.5, 3.5), ST_POINT(1.999999999999, 3.5))),
(1, 1, 50, 130, ST_MakeLine(ST_POINT(3.5, 2.3), ST_POINT(3.5, 4)));
INSERT 0 18

Negative values on the cost, capacity and category means that the edge do not exist.

Vertices¶

The vertex information is calculated based on the identifier of the edge and the geometry and saved on a table. Saving all the information provided by pgr_extractVertices – Proposed:

SELECT * INTO vertices
FROM pgr_extractVertices('SELECT id, geom FROM edges ORDER BY id');
SELECT 17

In this case the because the CREATE statement was not used, the definition of an index on the table is needed.

CREATE SEQUENCE vertices_id_seq;
CREATE SEQUENCE
ALTER TABLE vertices ALTER COLUMN id SET DEFAULT nextval('vertices_id_seq');
ALTER TABLE
ALTER SEQUENCE vertices_id_seq OWNED BY vertices.id;
ALTER SEQUENCE
SELECT setval('vertices_id_seq', (SELECT coalesce(max(id)) FROM vertices));
 setval

 17
(1 row)

The structure of the table is:

 Table "public.vertices"
 Column | Type | Collation | Nullable | Default
-----------+------------------+-----------+----------+--------------------------------------
 id | bigint | | | nextval('vertices_id_seq'::regclass)
 in_edges | bigint[] | | |
 out_edges | bigint[] | | |
 x | double precision | | |
 y | double precision | | |
 geom | geometry | | |

Vertices data¶

The saved information of the vertices is:

SELECT * FROM vertices;
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+----------------+-----+--
 1 | | {6} | 0 | 2 | 010100000000000000000000000000000000000040
 2 | | {17} | 0.5 | 3.5 | 0101000000000000000000E03F0000000000000C40
 3 | {6} | {7} | 1 | 2 | 0101000000000000000000F03F0000000000000040
 4 | {17} | | 1.999999999999 | 3.5 | 010100000068EEFFFFFFFFFF3F0000000000000C40
 5 | | {1} | 2 | 0 | 010100000000000000000000400000000000000000
 6 | {1} | {2,4} | 2 | 1 | 01010000000000000000000040000000000000F03F
 7 | {4,7} | {8,10} | 2 | 2 | 010100000000000000000000400000000000000040
 8 | {10} | {12,14} | 2 | 3 | 010100000000000000000000400000000000000840
 9 | {14} | | 2 | 4 | 010100000000000000000000400000000000001040
 10 | {2} | {3,5} | 3 | 1 | 01010000000000000000000840000000000000F03F
 11 | {5,8} | {9,11} | 3 | 2 | 010100000000000000000008400000000000000040
 12 | {11,12} | {13} | 3 | 3 | 010100000000000000000008400000000000000840
 13 | | {18} | 3.5 | 2.3 | 01010000000000000000000C406666666666660240
 14 | {18} | | 3.5 | 4 | 01010000000000000000000C400000000000001040
 15 | {3} | {16} | 4 | 1 | 01010000000000000000001040000000000000F03F
 16 | {9,16} | {15} | 4 | 2 | 010100000000000000000010400000000000000040
 17 | {13,15} | | 4 | 3 | 010100000000000000000010400000000000000840
(17 rows)

Here is where adding more columns to the vertices table can be done. Additional columns names and types will depend on the application.

The topology¶

This queries based on the vertices data create a topology by filling the source and target columns in the edges table.

/* -- set the source information */
UPDATE edges AS e
SET source = v.id, x1 = x, y1 = y
FROM vertices AS v
WHERE ST_StartPoint(e.geom) = v.geom;
UPDATE 18
/* -- set the target information */
UPDATE edges AS e
SET target = v.id, x2 = x, y2 = y
FROM vertices AS v
WHERE ST_EndPoint(e.geom) = v.geom;
UPDATE 18

Topology data¶

SELECT id, source, target
FROM edges ORDER BY id;
 id | source | target
----+--------+--------
 1 | 5 | 6
 2 | 6 | 10
 3 | 10 | 15
 4 | 6 | 7
 5 | 10 | 11
 6 | 1 | 3
 7 | 3 | 7
 8 | 7 | 11
 9 | 11 | 16
 10 | 7 | 8
 11 | 11 | 12
 12 | 8 | 12
 13 | 12 | 17
 14 | 8 | 9
 15 | 16 | 17
 16 | 15 | 16
 17 | 2 | 4
 18 | 13 | 14
(18 rows)

Points outside the graph¶

Points of interest¶

Some times the applications work “on the fly” starting from a location that is not a vertex in the graph. Those locations, in pgRrouting are called points of interest.

The information needed in the points of interest is pid, edge_id, side, fraction.

On this documentation there will be some 6 fixed points of interest and they will be stored on a table.

	Column

	Description

	pid

	A unique identifier.

	edge_id

	Identifier of the edge nearest edge that allows an arrival to the point.

	side

	Is it on the left, right or both sides of the segment edge_id

	fraction

	Where in the segment is the point located.

	geom

	The geometry of the points.

	newPoint

	The geometry of the points moved on top of the segment.

CREATE TABLE pointsOfInterest(
 pid BIGSERIAL PRIMARY KEY,
 edge_id BIGINT,
 side CHAR,
 fraction FLOAT,
 geom geometry);
CREATE TABLE

Points of interest fillup¶

INSERT INTO pointsOfInterest (edge_id, side, fraction, geom) VALUES
(1, 'l' , 0.4, ST_POINT(1.8, 0.4)),
(15, 'r' , 0.4, ST_POINT(4.2, 2.4)),
(12, 'l' , 0.6, ST_POINT(2.6, 3.2)),
(6, 'r' , 0.3, ST_POINT(0.3, 1.8)),
(5, 'l' , 0.8, ST_POINT(2.9, 1.8)),
(4, 'b' , 0.7, ST_POINT(2.2, 1.7));
INSERT 0 6

Support tables¶

Combinations¶

Many functions can be used with a combinations of (source, target) pairs when wanting a route from source to target.

For convinence of this documentations, some combinations will be stored on a table:

CREATE TABLE combinations (
 source BIGINT,
 target BIGINT
);
CREATE TABLE

Inserting the data:

INSERT INTO combinations (
 source, target) VALUES
(5, 6),
(5, 10),
(6, 5),
(6, 15),
(6, 14);
INSERT 0 5

Combinations data¶

SELECT * FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

Restrictions¶

Some functions accept soft restrictions about the segments.

The creation of the restrictions table

CREATE TABLE restrictions (
 id SERIAL PRIMARY KEY,
 path BIGINT[],
 cost FLOAT
);
CREATE TABLE

Adding the restrictions

INSERT INTO restrictions (path, cost) VALUES
(ARRAY[4, 7], 100),
(ARRAY[8, 11], 100),
(ARRAY[7, 10], 100),
(ARRAY[3, 5, 9], 4),
(ARRAY[9, 16], 100);
INSERT 0 5

Restrictions data¶

SELECT * FROM restrictions;
 id | path | cost
----+---------+------
 1 | {4,7} | 100
 2 | {8,11} | 100
 3 | {7,10} | 100
 4 | {3,5,9} | 4
 5 | {9,16} | 100
(5 rows)

Images¶

	Red arrows correspond when cost > 0 in the edge table.

	Blue arrows correspond when reverse_cost > 0 in the edge table.

	Points are outside the graph.

	Click on the graph to enlarge.

Directed graph with cost and reverse_cost¶

When working with city networks, this is recommended for point of view of vehicles.

[image: Directed, with cost and reverse_cost¶]Directed, with cost and reverse_cost¶

Undirected graph with cost and reverse_cost¶

When working with city networks, this is recommended for point of view of pedestrians.

[image: Undirected, with cost and reverse cost¶]Undirected, with cost and reverse cost¶

Directed graph with cost¶

[image: Directed, with cost¶]Directed, with cost¶

Undirected graph with cost¶

[image: Undirected, with cost¶]Undirected, with cost¶

Pick & Deliver Data¶

This data example lc101 is from data published at https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

The vehicles¶

There are 25 vehciles in the problem all with the same characteristics.

CREATE TABLE v_lc101(
 id BIGINT NOT NULL primary key,
 capacity BIGINT DEFAULT 200,
 start_x FLOAT DEFAULT 30,
 start_y FLOAT DEFAULT 50,
 start_open INTEGER DEFAULT 0,
 start_close INTEGER DEFAULT 1236);
CREATE TABLE
/* create 25 vehciles */
INSERT INTO v_lc101 (id)
(SELECT * FROM generate_series(1, 25));
INSERT 0 25

The original orders¶

The data comes in different rows for the pickup and the delivery of the same order.

CREATE table lc101_c(
 id BIGINT not null primary key,
 x DOUBLE PRECISION,
 y DOUBLE PRECISION,
 demand INTEGER,
 open INTEGER,
 close INTEGER,
 service INTEGER,
 pindex BIGINT,
 dindex BIGINT
);
CREATE TABLE
/* the original data */
INSERT INTO lc101_c(
 id, x, y, demand, open, close, service, pindex, dindex) VALUES
(1, 45, 68, -10, 912, 967, 90, 11, 0),
(2, 45, 70, -20, 825, 870, 90, 6, 0),
(3, 42, 66, 10, 65, 146, 90, 0, 75),
(4, 42, 68, -10, 727, 782, 90, 9, 0),
(5, 42, 65, 10, 15, 67, 90, 0, 7),
(6, 40, 69, 20, 621, 702, 90, 0, 2),
(7, 40, 66, -10, 170, 225, 90, 5, 0),
(8, 38, 68, 20, 255, 324, 90, 0, 10),
(9, 38, 70, 10, 534, 605, 90, 0, 4),
(10, 35, 66, -20, 357, 410, 90, 8, 0),
(11, 35, 69, 10, 448, 505, 90, 0, 1),
(12, 25, 85, -20, 652, 721, 90, 18, 0),
(13, 22, 75, 30, 30, 92, 90, 0, 17),
(14, 22, 85, -40, 567, 620, 90, 16, 0),
(15, 20, 80, -10, 384, 429, 90, 19, 0),
(16, 20, 85, 40, 475, 528, 90, 0, 14),
(17, 18, 75, -30, 99, 148, 90, 13, 0),
(18, 15, 75, 20, 179, 254, 90, 0, 12),
(19, 15, 80, 10, 278, 345, 90, 0, 15),
(20, 30, 50, 10, 10, 73, 90, 0, 24),
(21, 30, 52, -10, 914, 965, 90, 30, 0),
(22, 28, 52, -20, 812, 883, 90, 28, 0),
(23, 28, 55, 10, 732, 777, 0, 0, 103),
(24, 25, 50, -10, 65, 144, 90, 20, 0),
(25, 25, 52, 40, 169, 224, 90, 0, 27),
(26, 25, 55, -10, 622, 701, 90, 29, 0),
(27, 23, 52, -40, 261, 316, 90, 25, 0),
(28, 23, 55, 20, 546, 593, 90, 0, 22),
(29, 20, 50, 10, 358, 405, 90, 0, 26),
(30, 20, 55, 10, 449, 504, 90, 0, 21),
(31, 10, 35, -30, 200, 237, 90, 32, 0),
(32, 10, 40, 30, 31, 100, 90, 0, 31),
(33, 8, 40, 40, 87, 158, 90, 0, 37),
(34, 8, 45, -30, 751, 816, 90, 38, 0),
(35, 5, 35, 10, 283, 344, 90, 0, 39),
(36, 5, 45, 10, 665, 716, 0, 0, 105),
(37, 2, 40, -40, 383, 434, 90, 33, 0),
(38, 0, 40, 30, 479, 522, 90, 0, 34),
(39, 0, 45, -10, 567, 624, 90, 35, 0),
(40, 35, 30, -20, 264, 321, 90, 42, 0),
(41, 35, 32, -10, 166, 235, 90, 43, 0),
(42, 33, 32, 20, 68, 149, 90, 0, 40),
(43, 33, 35, 10, 16, 80, 90, 0, 41),
(44, 32, 30, 10, 359, 412, 90, 0, 46),
(45, 30, 30, 10, 541, 600, 90, 0, 48),
(46, 30, 32, -10, 448, 509, 90, 44, 0),
(47, 30, 35, -10, 1054, 1127, 90, 49, 0),
(48, 28, 30, -10, 632, 693, 90, 45, 0),
(49, 28, 35, 10, 1001, 1066, 90, 0, 47),
(50, 26, 32, 10, 815, 880, 90, 0, 52),
(51, 25, 30, 10, 725, 786, 0, 0, 101),
(52, 25, 35, -10, 912, 969, 90, 50, 0),
(53, 44, 5, 20, 286, 347, 90, 0, 58),
(54, 42, 10, 40, 186, 257, 90, 0, 60),
(55, 42, 15, -40, 95, 158, 90, 57, 0),
(56, 40, 5, 30, 385, 436, 90, 0, 59),
(57, 40, 15, 40, 35, 87, 90, 0, 55),
(58, 38, 5, -20, 471, 534, 90, 53, 0),
(59, 38, 15, -30, 651, 740, 90, 56, 0),
(60, 35, 5, -40, 562, 629, 90, 54, 0),
(61, 50, 30, -10, 531, 610, 90, 67, 0),
(62, 50, 35, 20, 262, 317, 90, 0, 68),
(63, 50, 40, 50, 171, 218, 90, 0, 74),
(64, 48, 30, 10, 632, 693, 0, 0, 102),
(65, 48, 40, 10, 76, 129, 90, 0, 72),
(66, 47, 35, 10, 826, 875, 90, 0, 69),
(67, 47, 40, 10, 12, 77, 90, 0, 61),
(68, 45, 30, -20, 734, 777, 90, 62, 0),
(69, 45, 35, -10, 916, 969, 90, 66, 0),
(70, 95, 30, -30, 387, 456, 90, 81, 0),
(71, 95, 35, 20, 293, 360, 90, 0, 77),
(72, 53, 30, -10, 450, 505, 90, 65, 0),
(73, 92, 30, -10, 478, 551, 90, 76, 0),
(74, 53, 35, -50, 353, 412, 90, 63, 0),
(75, 45, 65, -10, 997, 1068, 90, 3, 0),
(76, 90, 35, 10, 203, 260, 90, 0, 73),
(77, 88, 30, -20, 574, 643, 90, 71, 0),
(78, 88, 35, 20, 109, 170, 0, 0, 104),
(79, 87, 30, 10, 668, 731, 90, 0, 80),
(80, 85, 25, -10, 769, 820, 90, 79, 0),
(81, 85, 35, 30, 47, 124, 90, 0, 70),
(82, 75, 55, 20, 369, 420, 90, 0, 85),
(83, 72, 55, -20, 265, 338, 90, 87, 0),
(84, 70, 58, 20, 458, 523, 90, 0, 89),
(85, 68, 60, -20, 555, 612, 90, 82, 0),
(86, 66, 55, 10, 173, 238, 90, 0, 91),
(87, 65, 55, 20, 85, 144, 90, 0, 83),
(88, 65, 60, -10, 645, 708, 90, 90, 0),
(89, 63, 58, -20, 737, 802, 90, 84, 0),
(90, 60, 55, 10, 20, 84, 90, 0, 88),
(91, 60, 60, -10, 836, 889, 90, 86, 0),
(92, 67, 85, 20, 368, 441, 90, 0, 93),
(93, 65, 85, -20, 475, 518, 90, 92, 0),
(94, 65, 82, -10, 285, 336, 90, 96, 0),
(95, 62, 80, -20, 196, 239, 90, 98, 0),
(96, 60, 80, 10, 95, 156, 90, 0, 94),
(97, 60, 85, 30, 561, 622, 0, 0, 106),
(98, 58, 75, 20, 30, 84, 90, 0, 95),
(99, 55, 80, -20, 743, 820, 90, 100, 0),
(100, 55, 85, 20, 647, 726, 90, 0, 99),
(101, 25, 30, -10, 725, 786, 90, 51, 0),
(102, 48, 30, -10, 632, 693, 90, 64, 0),
(103, 28, 55, -10, 732, 777, 90, 23, 0),
(104, 88, 35, -20, 109, 170, 90, 78, 0),
(105, 5, 45, -10, 665, 716, 90, 36, 0),
(106, 60, 85, -30, 561, 622, 90, 97, 0);
INSERT 0 106

The orders¶

The original data needs to be converted to an appropiate table:

WITH deliveries AS (SELECT * FROM lc101_c WHERE dindex = 0)
SELECT
 row_number() over() AS id, p.demand,
 p.id as p_node_id, p.x AS p_x, p.y AS p_y, p.open AS p_open, p.close as p_close, p.service as p_service,
 d.id as d_node_id, d.x AS d_x, d.y AS d_y, d.open AS d_open, d.close as d_close, d.service as d_service
INTO c_lc101
FROM deliveries as d JOIN lc101_c as p ON (d.pindex = p.id);
SELECT 53
SELECT * FROM c_lc101 LIMIT 1;
 id | demand | p_node_id | p_x | p_y | p_open | p_close | p_service | d_node_id | d_x | d_y | d_open | d_close | d_service
----+--------+-----------+-----+-----+--------+---------+-----------+-----------+-----+-----+--------+---------+-----------
 1 | 10 | 3 | 42 | 66 | 65 | 146 | 90 | 75 | 45 | 65 | 997 | 1068 | 90
(1 row)

Pgrouting Concepts¶

pgRouting Concepts¶

This is a simple guide that go through some of the steps for getting started with pgRouting. This guide covers:

	Graphs

	Graphs without geometries

	Graphs with geometries

	Check the Routing Topology

	Function’s structure

	Function’s overloads

	Inner Queries

	Parameters

	Result columns

	Performance Tips

	How to contribute

Graphs¶

	Graph definition

	Graph with cost

	Graph with cost and reverse_cost

Graph definition¶

A graph is an ordered pair \(G = (V ,E)\) where:

	\(V\) is a set of vertices, also called nodes.

	\(E \subseteq \{(u, v) \mid u , v \in V \}\)

There are different kinds of graphs:

	Undirected graph

	\(E \subseteq \{(u, v) \mid u , v \in V\}\)

	Undirected simple graph

	\(E \subseteq \{(u, v) \mid u , v \in V, u \neq v\}\)

	Directed graph

	\(E \subseteq \{(u, v) \mid (u , v) \in (V X V) \}\)

	Directed simple graph

	\(E \subseteq \{(u, v) \mid (u , v) \in (V X V), u \neq v\}\)

Graphs:

	Do not have geometries.

	Some graph theory problems require graphs to have weights, called cost in pgRouting.

In pgRouting there are several ways to represent a graph on the database:

	With cost

	(id, source, target, cost)

	With cost and reverse_cost

	(id, source, target, cost, reverse_cost)

Where:

	Column

	Description

	id

	Identifier of the edge. Requirement to use the database in a consistent. manner.

	source

	Identifier of a vertex.

	target

	Identifier of a vertex.

	cost

	Weight of the edge (source, target):

	When negative the edge (source, target) do not exist on the graph.

	cost must exist in the query.

	reverse_cost

	Weight of the edge (target, source)

	When negative the edge (target, source) do not exist on the graph.

The decision of the graph to be directed or undirected is done when executing a pgRouting algorithm.

Graph with cost¶

The weighted directed graph, \(G_d(V,E)\):

	Graph data is obtained with a query

SELECT id, source, target, cost FROM edges

	the set of edges \(E\)

	\(E = \{(source_{id}, target_{id}, cost_{id}) \text{ when } cost_{id} \ge 0 \}\)

	Edges where cost is non negative are part of the graph.

	the set of vertices \(V\)

	\(V = \{source_{id} \cup target_{id}\}\)

	All vertices in source and target are part of the graph.

Directed graph

In a directed graph the edge \((source_{id}, target_{id}, cost_{id})\) has directionality: \(source_{id} \rightarrow target_{id}\)

For the following data:

SELECT *
FROM (VALUES (1, 1, 2, 5), (2, 1, 3, -3))
 AS t(id, source, target, cost);
 id | source | target | cost
----+--------+--------+------
 1 | 1 | 2 | 5
 2 | 1 | 3 | -3
(2 rows)

Edge \(2\) (\(1 \rightarrow 3\)) is not part of the graph.

The data is representing the following graph:

[image: digraph G { 1 -> 2 [label="1(5)"]; 3; }]

Undirected graph

In an undirected graph the edge \((source_{id}, target_{id}, cost_{id})\) does not have directionality: \(source_{id} \frac{\;\;\;\;\;}{} target_{id}\)

	In terms of a directed graph is like having two edges: \(source_{id} \leftrightarrow target_{id}\)

For the following data:

SELECT *
FROM (VALUES (1, 1, 2, 5), (2, 1, 3, -3))
 AS t(id, source, target, cost);
 id | source | target | cost
----+--------+--------+------
 1 | 1 | 2 | 5
 2 | 1 | 3 | -3
(2 rows)

Edge \(2\) (\(1 \frac{\;\;\;\;\;}{} 3\)) is not part of the graph.

The data is representing the following graph:

[image: graph G { 1 -- 2 [label="1(5)"]; 3; }]

Graph with cost and reverse_cost¶

The weighted directed graph, \(G_d(V,E)\), is defined by:

	Graph data is obtained with a query

SELECT id, source, target, cost, reverse_cost FROM edges

	The set of edges \(E\):

	\(E = \begin{split} \begin{align} & {\{(source_{id}, target_{id}, cost_{id}) \text{ when } cost_{id} >=0 \}} \\ & \cup \\ & {\{(target_{id}, source_{id}, reverse_cost_{id}) \text{ when } reverse_cost_{id} >=0 \}} \end{align} \end{split}\)

	Edges \((source \rightarrow target)\) where cost is non negative are part of the graph.

	Edges \((target \rightarrow source)\) where reverse_cost is non negative are part of the graph.

	The set of vertices \(V\):

	\(V = \{source_{id} \cup target_{id}\}\)

	All vertices in source and target are part of the graph.

Directed graph

In a directed graph both edges have directionality

	edge \((source_{id}, target_{id}, cost_{id})\) has directionality: \(source_{id} \rightarrow target_{id}\)

	edge \((target_{id}, source_{id}, reverse_cost_{id})\) has directionality: \(target_{id} \rightarrow source_{id}\)

For the following data:

SELECT *
FROM (VALUES (1, 1, 2, 5, 2), (2, 1, 3, -3, 4), (3, 2, 3, 7, -1))
 AS t(id, source, target, cost, reverse_cost);
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 1 | 1 | 2 | 5 | 2
 2 | 1 | 3 | -3 | 4
 3 | 2 | 3 | 7 | -1
(3 rows)

Edges not part of the graph:

	\(2\) (\(1 \rightarrow 3\))

	\(3\) (\(3 \rightarrow 2\))

The data is representing the following graph:

[image: digraph G { 1 -> 2 [label="1(5)"]; 2 -> 1 [label="1(2)"]; 3 -> 1 [label="2(4)"]; 2 -> 3 [label="3(7)"]; }]

Undirected graph

In a directed graph both edges do not have directionality

	Edge \((source_{id}, target_{id}, cost_{id})\) is \(source_{id} \frac{\;\;\;\;\;}{} target_{id}\)

	Edge \((target_{id}, source_{id}, reverse_cost_{id})\) is \(target_{id} \frac{\;\;\;\;\;}{} source_{id}\)

	In terms of a directed graph is like having four edges:

	\(source_i \leftrightarrow target_i\)

	\(target_i \leftrightarrow source_i\)

For the following data:

SELECT *
FROM (VALUES (1, 1, 2, 5, 2), (2, 1, 3, -3, 4), (3, 2, 3, 7, -1))
 AS t(id, source, target, cost, reverse_cost);
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 1 | 1 | 2 | 5 | 2
 2 | 1 | 3 | -3 | 4
 3 | 2 | 3 | 7 | -1
(3 rows)

Edges not part of the graph:

	\(2\) (\(1 \frac{\;\;\;\;\;}{} 3\))

	\(3\) (\(3 \frac{\;\;\;\;\;}{} 2\))

The data is representing the following graph:

[image: graph G { 1 -- 2 [label="1(5)"]; 2 -- 1 [label="1(2)"]; 3 -- 1 [label="2(4)"]; 2 -- 3 [label="3(7)"]; }]

Graphs without geometries¶

Personal relationships, genealogy, file dependency problems can be solved using pgRouting. Those problems, normally, do not come with geometries associated with the graph.

	Wiki example

	Prepare the database

	Create a table

	Insert the data

	Find the shortest path

	Vertex information

Wiki example¶

Solve the example problem taken from wikipedia):

Where:

	Problem is to find the shortest path from \(1\) to \(5\).

	Is an undirected graph.

	Although visually looks like to have geometries, the drawing is not to scale.

	No geometries associated to the vertices or edges

	Has 6 vertices \(\{1,2,3,4,5,6\}\)

	Has 9 edges:

\(\begin{split} \begin{align} E = & \{(1,2,7), (1,3,9), (1,6,14), \\ & (2,3,10), (2,4,13), \\ & (3,4,11), (3,6,2), \\ & (4,5,6), \\ & (5,6,9) \} \end{align} \end{split}\)

	The graph can be represented in many ways for example:

[image: graph G { rankdir="LR"; 1 [color="red"]; 5 [color="green"]; 1 -- 2 [label="(7)"]; 5 -- 6 [label="(9)"]; 1 -- 3 [label="(9)"]; 1 -- 6 [label="(14)"]; 2 -- 3 [label="(10)"]; 2 -- 4 [label="(13)"]; 3 -- 4 [label="(11)"]; 3 -- 6 [label="(2)"]; 4 -- 5 [label="(6)"]; }]

Prepare the database¶

Create a database for the example, access the database and install pgRouting:

$ createdb wiki
$ psql wiki
wiki =# CREATE EXTENSION pgRouting CASCADE;

Create a table¶

The basic elements needed to perform basic routing on an undirected graph are:

	Column

	Type

	Description

	id

	ANY-INTEGER

	Identifier of the edge.

	source

	ANY-INTEGER

	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	Weight of the edge (source, target)

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Using this table design for this example:

CREATE TABLE wiki (
 id SERIAL,
 source INTEGER,
 target INTEGER,
 cost INTEGER);
CREATE TABLE

Insert the data¶

INSERT INTO wiki (source, target, cost) VALUES
(1, 2, 7), (1, 3, 9), (1, 6, 14),
(2, 3, 10), (2, 4, 15),
(3, 6, 2), (3, 4, 11),
(4, 5, 6),
(5, 6, 9);
INSERT 0 9

Find the shortest path¶

To solve this example pgr_dijkstra is used:

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM wiki',
 1, 5, false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 1 | 2 | 9 | 0
 2 | 2 | 1 | 5 | 3 | 6 | 2 | 9
 3 | 3 | 1 | 5 | 6 | 9 | 9 | 11
 4 | 4 | 1 | 5 | 5 | -1 | 0 | 20
(4 rows)

To go from \(1\) to \(5\) the path goes thru the following vertices: \(1 \rightarrow 3 \rightarrow 6 \rightarrow 5\)

[image: graph G { rankdir="LR"; 1 [color="red"]; 5 [color="green"]; 1 -- 2 [label="(7)"]; 5 -- 6 [label="(9)", color="blue"]; 1 -- 3 [label="(9)", color="blue"]; 1 -- 6 [label="(14)"]; 2 -- 3 [label="(10)"]; 2 -- 4 [label="(13)"]; 3 -- 4 [label="(11)"]; 3 -- 6 [label="(2)", color="blue"]; 4 -- 5 [label="(6)"]; }]

Vertex information¶

To obtain the vertices information, use pgr_extractVertices – Proposed

SELECT id, in_edges, out_edges
FROM pgr_extractVertices('SELECT id, source, target FROM wiki');
 id | in_edges | out_edges
----+----------+-----------
 3 | {2,4} | {6,7}
 5 | {8} | {9}
 4 | {5,7} | {8}
 2 | {1} | {4,5}
 1 | | {1,2,3}
 6 | {3,6,9} |
(6 rows)

Graphs with geometries¶

	Create a routing Database

	Load Data

	Build a routing topology

	Adjust costs

	Update costs to length of geometry

	Update costs based on codes

Create a routing Database¶

The first step is to create a database and load pgRouting in the database.

Typically create a database for each project.

Once having the database to work in, load your data and build the routing application in that database.

createdb sampledata
psql sampledata -c "CREATE EXTENSION pgrouting CASCADE"

Load Data¶

There are several ways to load your data into pgRouting.

	Manually creating a database.

	Graphs without geometries

	Sample Data: a small graph used in the documentation examples

	Using osm2pgrouting

There are various open source tools that can help, like:

	shp2pgsql:

	
	postgresql shapefile loader

	ogr2ogr:

	
	vector data conversion utility

	osm2pgsql:

	
	load OSM data into postgresql

Please note that these tools will not import the data in a structure compatible with pgRouting and when this happens the topology needs to be adjusted.

	Breakup a segments on each segment-segment intersection

	When missing, add columns and assign values to source, target, cost, reverse_cost.

	Connect a disconnected graph.

	Create the complete graph topology

	Create one or more graphs based on the application to be developed.

	Create a contracted graph for the high speed roads

	Create graphs per state/country

In few words:

Prepare the graph

What and how to prepare the graph, will depend on the application and/or on the quality of the data and/or on how close the information is to have a topology usable by pgRouting and/or some other factors not mentioned.

The steps to prepare the graph involve geometry operations using PostGIS and some others involve graph operations like pgr_contraction to contract a graph.

The workshop has a step by step on how to prepare a graph using Open Street Map data, for a small application.

The use of indexes on the database design in general:

	Have the geometries indexed.

	Have the identifiers columns indexed.

Please consult the PostgreSQL documentation and the PostGIS documentation.

Build a routing topology¶

The basic information to use the majority of the pgRouting functions id, source, target, cost, [reverse_cost] is what in pgRouting is called the routing topology.

reverse_cost is optional but strongly recommended to have in order to reduce the size of the database due to the size of the geometry columns. Having said that, in this documentation reverse_cost is used in this documentation.

When the data comes with geometries and there is no routing topology, then this step is needed.

All the start and end vertices of the geometries need an identifier that is to be stored in a source and target columns of the table of the data. Likewise, cost and reverse_cost need to have the value of traversing the edge in both directions.

If the columns do not exist they need to be added to the table in question. (see ALTER TABLE)

The function pgr_extractVertices – Proposed is used to create a vertices table based on the edge identifier and the geometry of the edge of the graph.

Finally using the data stored on the vertices tables the source and target are filled up.

See Sample Data for an example for building a topology.

Data coming from OSM and using osm2pgrouting as an import tool, comes with the routing topology. See an example of using osm2pgrouting on the workshop.

Adjust costs¶

For this example the cost and reverse_cost values are going to be the double of the length of the geometry.

Update costs to length of geometry¶

Suppose that cost and reverse_cost columns in the sample data represent:

	\(1\) when the edge exists in the graph

	\(-1\) when the edge does not exist in the graph

Using that information updating to the length of the geometries:

UPDATE edges SET
cost = sign(cost) * ST_length(geom) * 2,
reverse_cost = sign(reverse_cost) * ST_length(geom) * 2;
UPDATE 18

Which gives the following results:

SELECT id, cost, reverse_cost FROM edges;
 id | cost | reverse_cost
----+--------------------+--------------------
 6 | 2 | 2
 7 | 2 | 2
 4 | 2 | 2
 5 | 2 | -2
 8 | 2 | 2
 12 | 2 | -2
 11 | 2 | -2
 10 | 2 | 2
 17 | 2.999999999998 | 2.999999999998
 14 | 2 | 2
 18 | 3.4000000000000004 | 3.4000000000000004
 13 | 2 | -2
 15 | 2 | 2
 16 | 2 | 2
 9 | 2 | 2
 3 | -2 | 2
 1 | 2 | 2
 2 | -2 | 2
(18 rows)

Note that to be able to follow the documentation examples, everything is based on the original graph.

Returning to the original data:

UPDATE edges SET
cost = sign(cost),
reverse_cost = sign(reverse_cost);
UPDATE 18

Update costs based on codes¶

Other datasets, can have a column with values like

	FT vehicle flow on the direction of the geometry

	TF vehicle flow opposite of the direction of the geometry

	B vehicle flow on both directions

Preparing a code column for the example:

ALTER TABLE edges ADD COLUMN direction TEXT;
ALTER TABLE
UPDATE edges SET
direction = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' /* both ways */
 WHEN (cost>0 AND reverse_cost<0) THEN 'FT' /* direction of the LINESSTRING */
 WHEN (cost<0 AND reverse_cost>0) THEN 'TF' /* reverse direction of the LINESTRING */
 ELSE '' END;
UPDATE 18
/* unknown */

Adjusting the costs based on the codes:

UPDATE edges SET
cost = CASE WHEN (direction = 'B' OR direction = 'FT')
 THEN ST_length(geom) * 2
 ELSE -1 END,
reverse_cost = CASE WHEN (direction = 'B' OR direction = 'TF')
 THEN ST_length(geom) * 2
 ELSE -1 END;
UPDATE 18

Which gives the following results:

SELECT id, cost, reverse_cost FROM edges;
 id | cost | reverse_cost
----+--------------------+--------------------
 6 | 2 | 2
 7 | 2 | 2
 4 | 2 | 2
 5 | 2 | -1
 8 | 2 | 2
 12 | 2 | -1
 11 | 2 | -1
 10 | 2 | 2
 17 | 2.999999999998 | 2.999999999998
 14 | 2 | 2
 18 | 3.4000000000000004 | 3.4000000000000004
 13 | 2 | -1
 15 | 2 | 2
 16 | 2 | 2
 9 | 2 | 2
 3 | -1 | 2
 1 | 2 | 2
 2 | -1 | 2
(18 rows)

Returning to the original data:

UPDATE edges SET
cost = sign(cost),
reverse_cost = sign(reverse_cost);
UPDATE 18
ALTER TABLE edges DROP COLUMN direction;
ALTER TABLE

Check the Routing Topology¶

	Crossing edges

	Adding split edges

	Adding new vertices

	Updating edges topology

	Removing the surplus edges

	Updating vertices topology

	Checking for crossing edges

	Disconnected graphs

	Prepare storage for connection information

	Save the vertices connection information

	Save the edges connection information

	Get the closest vertex

	Connecting components

	Checking components

	Contraction of a graph

	Dead ends

	Linear edges

There are lots of possible problems in a graph.

	The data used may not have been designed with routing in mind.

	A graph has some very specific requirements.

	The graph is disconnected.

	There are unwanted intersections.

	The graph is too large and needs to be contracted.

	A sub graph is needed for the application.

	and many other problems that the pgRouting user, that is the application developer might encounter.

Crossing edges¶

To get the crossing edges:

SELECT a.id, b.id
FROM edges AS a, edges AS b
WHERE a.id < b.id AND st_crosses(a.geom, b.geom);
 id | id
----+----
 13 | 18
(1 row)

That information is correct, for example, when in terms of vehicles, is it a tunnel or bridge crossing over another road.

It might be incorrect, for example:

	When it is actually an intersection of roads, where vehicles can make turns.

	When in terms of electrical lines, the electrical line is able to switch roads even on a tunnel or bridge.

When it is incorrect, it needs fixing:

	For vehicles and pedestrians

	If the data comes from OSM and was imported to the database using osm2pgrouting, the fix needs to be done in the OSM portal and the data imported again.

	In general when the data comes from a supplier that has the data prepared for routing vehicles, and there is a problem, the data is to be fixed from the supplier

	For very specific applications

	The data is correct when from the point of view of routing vehicles or pedestrians.

	The data needs a local fix for the specific application.

Once analyzed one by one the crossings, for the ones that need a local fix, the edges need to be split.

SELECT ST_AsText((ST_Dump(ST_Split(a.geom, b.geom))).geom)
FROM edges AS a, edges AS b
WHERE a.id = 13 AND b.id = 18
UNION
SELECT ST_AsText((ST_Dump(ST_Split(b.geom, a.geom))).geom)
FROM edges AS a, edges AS b
WHERE a.id = 13 AND b.id = 18;
 st_astext

 LINESTRING(3.5 2.3,3.5 3)
 LINESTRING(3 3,3.5 3)
 LINESTRING(3.5 3,4 3)
 LINESTRING(3.5 3,3.5 4)
(4 rows)

The new edges need to be added to the edges table, the rest of the attributes need to be updated in the new edges, the old edges need to be removed and the routing topology needs to be updated.

Adding split edges¶

For each pair of crossing edges a process similar to this one must be performed.

The columns inserted and the way are calculated are based on the application. For example, if the edges have a trait name, then that column is to be copied.

For pgRouting calculations

	factor based on the position of the intersection of the edges can be used to adjust the cost and reverse_cost columns.

	Capacity information, used in the Flow - Family of functions functions does not need to change when splitting edges.

WITH
first_edge AS (
 SELECT (ST_Dump(ST_Split(a.geom, b.geom))).path[1],
 (ST_Dump(ST_Split(a.geom, b.geom))).geom,
 ST_LineLocatePoint(a.geom,ST_Intersection(a.geom,b.geom)) AS factor
 FROM edges AS a, edges AS b
 WHERE a.id = 13 AND b.id = 18),
first_segments AS (
 SELECT path, first_edge.geom,
 capacity, reverse_capacity,
 CASE WHEN path=1 THEN factor * cost
 ELSE (1 - factor) * cost END AS cost,
 CASE WHEN path=1 THEN factor * reverse_cost
 ELSE (1 - factor) * reverse_cost END AS reverse_cost
 FROM first_edge , edges WHERE id = 13),
second_edge AS (
 SELECT (ST_Dump(ST_Split(b.geom, a.geom))).path[1],
 (ST_Dump(ST_Split(b.geom, a.geom))).geom,
 ST_LineLocatePoint(b.geom,ST_Intersection(a.geom,b.geom)) AS factor
 FROM edges AS a, edges AS b
 WHERE a.id = 13 AND b.id = 18),
second_segments AS (
 SELECT path, second_edge.geom,
 capacity, reverse_capacity,
 CASE WHEN path=1 THEN factor * cost
 ELSE (1 - factor) * cost END AS cost,
 CASE WHEN path=1 THEN factor * reverse_cost
 ELSE (1 - factor) * reverse_cost END AS reverse_cost
 FROM second_edge , edges WHERE id = 18),
all_segments AS (
 SELECT * FROM first_segments
 UNION
 SELECT * FROM second_segments)
INSERT INTO edges
 (capacity, reverse_capacity,
 cost, reverse_cost,
 x1, y1, x2, y2,
 geom)
(SELECT capacity, reverse_capacity, cost, reverse_cost,
 ST_X(ST_StartPoint(geom)), ST_Y(ST_StartPoint(geom)),
 ST_X(ST_EndPoint(geom)), ST_Y(ST_EndPoint(geom)),
 geom
 FROM all_segments);
INSERT 0 4

Adding new vertices¶

After adding all the split edges required by the application, the newly created vertices need to be added to the vertices table.

INSERT INTO vertices (in_edges, out_edges, x, y, geom)
(SELECT nv.in_edges, nv.out_edges, nv.x, nv.y, nv.geom
FROM pgr_extractVertices('SELECT id, geom FROM edges') AS nv
LEFT JOIN vertices AS v USING(geom) WHERE v.geom IS NULL);
INSERT 0 1

Updating edges topology¶

/* -- set the source information */
UPDATE edges AS e
SET source = v.id
FROM vertices AS v
WHERE source IS NULL AND ST_StartPoint(e.geom) = v.geom;
UPDATE 4
/* -- set the target information */
UPDATE edges AS e
SET target = v.id
FROM vertices AS v
WHERE target IS NULL AND ST_EndPoint(e.geom) = v.geom;
UPDATE 4

Removing the surplus edges¶

Once all significant information needed by the application has been transported to the new edges, then the crossing edges can be deleted.

DELETE FROM edges WHERE id IN (13, 18);
DELETE 2

There are other options to do this task, like creating a view, or a materialized view.

Updating vertices topology¶

To keep the graph consistent, the vertices topology needs to be updated

UPDATE vertices AS v SET
in_edges = nv.in_edges, out_edges = nv.out_edges
FROM (SELECT * FROM pgr_extractVertices('SELECT id, geom FROM edges')) AS nv
WHERE v.geom = nv.geom;
UPDATE 18

Checking for crossing edges¶

There are no crossing edges on the graph.

SELECT a.id, b.id
FROM edges AS a, edges AS b
WHERE a.id < b.id AND st_crosses(a.geom, b.geom);
 id | id
----+----
(0 rows)

Disconnected graphs¶

To get the graph connectivity:

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 3
 3 | 1 | 5
 4 | 1 | 6
 5 | 1 | 7
 6 | 1 | 8
 7 | 1 | 9
 8 | 1 | 10
 9 | 1 | 11
 10 | 1 | 12
 11 | 1 | 13
 12 | 1 | 14
 13 | 1 | 15
 14 | 1 | 16
 15 | 1 | 17
 16 | 1 | 18
 17 | 2 | 2
 18 | 2 | 4
(18 rows)

In this example, the component \(2\) consists of vertices \(\{2, 4\}\) and both vertices are also part of the dead end result set.

This graph needs to be connected.

Note

With the original graph of this documentation, there would be 3 components as the crossing edge in this graph is a different component.

Prepare storage for connection information¶

ALTER TABLE vertices ADD COLUMN component BIGINT;
ALTER TABLE
ALTER TABLE edges ADD COLUMN component BIGINT;
ALTER TABLE

Save the vertices connection information¶

UPDATE vertices SET component = c.component
FROM (SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
)) AS c
WHERE id = node;
UPDATE 18

Save the edges connection information¶

UPDATE edges SET component = v.component
FROM (SELECT id, component FROM vertices) AS v
WHERE source = v.id;
UPDATE 20

Get the closest vertex¶

Using pgr_findCloseEdges the closest vertex to component \(1\) is vertex \(4\). And the closest edge to vertex \(4\) is edge \(14\).

SELECT edge_id, fraction, ST_AsText(edge) AS edge, id AS closest_vertex
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges WHERE component = 1$$,
 (SELECT array_agg(geom) FROM vertices WHERE component = 2),
 2, partial => false) JOIN vertices USING (geom) ORDER BY distance LIMIT 1;
 edge_id | fraction | edge | closest_vertex
---------+----------+--------------------------------------+----------------
 14 | 0.5 | LINESTRING(1.999999999999 3.5,2 3.5) | 4
(1 row)

The edge can be used to connect the components, using the fraction information about the edge \(14\) to split the connecting edge.

Connecting components¶

There are three basic ways to connect the components

	From the vertex to the starting point of the edge

	From the vertex to the ending point of the edge

	From the vertex to the closest vertex on the edge

	This solution requires the edge to be split.

The following query shows the three ways to connect the components:

WITH
info AS (
 SELECT
 edge_id, fraction, side, distance, ce.geom, edge, v.id AS closest,
 source, target, capacity, reverse_capacity, e.geom AS e_geom
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges WHERE component = 1$$,
 (SELECT array_agg(geom) FROM vertices WHERE component = 2),
 2, partial => false) AS ce
 JOIN vertices AS v USING (geom)
 JOIN edges AS e ON (edge_id = e.id)
 ORDER BY distance LIMIT 1),
three_options AS (
 SELECT
 closest AS source, target, 0 AS cost, 0 AS reverse_cost,
 capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_EndPoint(e_geom)) AS x2, ST_Y(ST_EndPoint(e_geom)) AS y2,
 ST_MakeLine(geom, ST_EndPoint(e_geom)) AS geom
 FROM info
 UNION
 SELECT closest, source, 0, 0, capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_StartPoint(e_geom)) AS x2, ST_Y(ST_StartPoint(e_geom)) AS y2,
 ST_MakeLine(info.geom, ST_StartPoint(e_geom))
 FROM info
 /*
 UNION
 -- This option requires splitting the edge
 SELECT closest, NULL, 0, 0, capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_EndPoint(edge)) AS x2, ST_Y(ST_EndPoint(edge)) AS y2,
 edge
 FROM info */
)
INSERT INTO edges
 (source, target,
 cost, reverse_cost,
 capacity, reverse_capacity,
 x1, y1, x2, y2,
 geom)
(SELECT
 source, target, cost, reverse_cost, capacity, reverse_capacity,
 x1, y1, x2, y2, geom
 FROM three_options);
INSERT 0 2

Checking components¶

Ignoring the edge that requires further work. The graph is now fully connected as there is only one component.

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 2
 3 | 1 | 3
 4 | 1 | 4
 5 | 1 | 5
 6 | 1 | 6
 7 | 1 | 7
 8 | 1 | 8
 9 | 1 | 9
 10 | 1 | 10
 11 | 1 | 11
 12 | 1 | 12
 13 | 1 | 13
 14 | 1 | 14
 15 | 1 | 15
 16 | 1 | 16
 17 | 1 | 17
 18 | 1 | 18
(18 rows)

Contraction of a graph¶

The graph can be reduced in size using Contraction - Family of functions

When to contract will depend on the size of the graph, processing times, correctness of the data, on the final application, or any other factor not mentioned.

A fairly good method of finding out if contraction can be useful is because of the number of dead ends and/or the number of linear edges.

A complete method on how to contract and how to use the contracted graph is described on Contraction - Family of functions

Dead ends¶

To get the dead ends:

SELECT id FROM vertices
WHERE array_length(in_edges || out_edges, 1) = 1;
 id

 1
 5
 9
 13
 14
 2
 4
(7 rows)

That information is correct, for example, when the dead end is on the limit of the imported graph.

Visually node \(4\) looks to be as start/ending of 3 edges, but it is not.

Is that correct?

	Is there such a small curb:

	That does not allow a vehicle to use that visual intersection?

	Is the application for pedestrians and therefore the pedestrian can easily walk on the small curb?

	Is the application for the electricity and the electrical lines than can easily be extended on top of the small curb?

	Is there a big cliff and from eagles view look like the dead end is close to the segment?

When there are many dead ends, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

Linear edges¶

To get the linear edges:

SELECT id FROM vertices
WHERE array_length(in_edges || out_edges, 1) = 2;
 id

 3
 15
 17
(3 rows)

This information is correct, for example, when the application is taking into account speed bumps, stop signals.

When there are many linear edges, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

Function’s structure¶

Once the graph preparation work has been done above, it is time to use a

The general form of a pgRouting function call is:

pgr_<name>(Inner queries, parameters, [Optional parameters)

Where:

	Inner queries: Are compulsory parameters that are TEXT strings containing SQL queries.

	parameters: Additional compulsory parameters needed by the function.

	Optional parameters: Are non compulsory named parameters that have a default value when omitted.

The compulsory parameters are positional parameters, the optional parameters are named parameters.

For example, for this pgr_dijkstra signature:

pgr_dijkstra(Edges SQL, start vids, end vids, [directed])

	Edges SQL:

	Is the first parameter.

	It is compulsory.

	It is an inner query.

	It has no name, so Edges SQL gives an idea of what kind of inner query needs to be used

	start vid:

	Is the second parameter.

	It is compulsory.

	It has no name, so start vid gives an idea of what the second parameter’s value should contain.

	end vid

	Is the third parameter.

	It is compulsory.

	It has no name, so end vid gives an idea of what the third parameter’s value should contain

	directed

	Is the fourth parameter.

	It is optional.

	It has a name.

The full description of the parameters are found on the Parameters section of each function.

Function’s overloads¶

A function might have different overloads. The most common are called:

	One to One

	One to Many

	Many to One

	Many to Many

	Combinations

Depending on the overload the parameters types change.

	One: ANY-INTEGER

	Many: ARRAY [ANY-INTEGER]

Depending of the function the overloads may vary. But the concept of parameter type change remains the same.

One to One¶

When routing from:

	From one starting vertex

	to one ending vertex

One to Many¶

When routing from:

	From one starting vertex

	to many ending vertices

Many to One¶

When routing from:

	From many starting vertices

	to one ending vertex

Many to Many¶

When routing from:

	From many starting vertices

	to many ending vertices

Combinations¶

When routing from:

	From many different starting vertices

	to many different ending vertices

	Every tuple specifies a pair of a start vertex and an end vertex

	Users can define the combinations as desired.

	Needs a Combinations SQL

Inner Queries¶

	Edges SQL

	General

	General without id

	General with (X,Y)

	Flow

	Combinations SQL

	Restrictions SQL

	Points SQL

There are several kinds of valid inner queries and also the columns returned are depending of the function. Which kind of inner query will depend on the function’s requirements. To simplify the variety of types, ANY-INTEGER and ANY-NUMERICAL is used.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Edges SQL¶

General¶

Edges SQL for

	Dijkstra - Family of functions

	withPoints - Family of functions

	Bidirectional Dijkstra - Family of functions

	Components - Family of functions

	Kruskal - Family of functions

	Prim - Family of functions

	Some uncategorised functions

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

General without id¶

Edges SQL for

	All Pairs - Family of Functions

	Column

	Type

	Default

	Description

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

General with (X,Y)¶

Edges SQL for

	A* - Family of functions

	Bidirectional A* - Family of functions

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Flow¶

Edges SQL for Flow - Family of functions

Edges SQL for

	pgr_pushRelabel

	pgr_edmondsKarp

	pgr_boykovKolmogorov

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Weight of the edge (source, target)

	reverse_capacity

	ANY-INTEGER

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Edges SQL for the following functions of Flow - Family of functions

	pgr_maxFlowMinCost - Experimental

	pgr_maxFlowMinCost_Cost - Experimental

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Capacity of the edge (source, target)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	reverse_capacity

	ANY-INTEGER

	-1

	Capacity of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target) if it exist

	reverse_cost

	ANY-NUMERICAL

	\(-1\)

	Weight of the edge (target, source) if it exist

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

Used in combination signatures

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

Points SQL for

	withPoints - Family of functions

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameters¶

The main parameter of the majority of the pgRouting functions is a query that selects the edges of the graph.

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Depending on the family or category of a function it will have additional parameters, some of them are compulsory and some are optional.

The compulsory parameters are nameless and must be given in the required order. The optional parameters are named parameters and will have a default value.

Parameters for the Via functions¶

	pgr_dijkstraVia - Proposed

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	SQL query as described.

	via vertices

	ARRAY [ANY-INTEGER]

	
	Array of ordered vertices identifiers that are going to be visited.

	directed

	BOOLEAN

	true

	
	When true Graph is considered Directed

	When false the graph is considered as Undirected.

	strict

	BOOLEAN

	false

	
	When true if a path is missing stops and returns EMPTY SET

	When false ignores missing paths returning all paths found

	U_turn_on_edge

	BOOLEAN

	true

	
	When true departing from a visited vertex will not try to avoid using the edge used to reach it. In other words, U turn using the edge with same identifier is allowed.

	When false when a departing from a visited vertex tries to avoid using the edge used to reach it. In other words, U turn using the edge with same identifier is used when no other path is found.

For the TRSP functions¶

	pgr_trsp - Proposed

	Column

	Type

	Description

	Edges SQL

	TEXT

	SQL query as described.

	Restrictions SQL

	TEXT

	SQL query as described.

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	ANY-INTEGER

	Identifier of the departure vertex.

	start vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of destination vertices.

	end vid

	ANY-INTEGER

	Identifier of the departure vertex.

	end vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of destination vertices.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Result columns for a path

	Multiple paths

	Selective for multiple paths.

	Non selective for multiple paths

	Result columns for cost functions

	Result columns for flow functions

	Result columns for spanning tree functions

There are several kinds of columns returned are depending of the function.

Result columns for a path¶

Used in functions that return one path solution

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Used in functions the following:

	pgr_withPoints - Proposed

Returns set of (seq, path_seq [, start_pid] [, end_pid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path.

	1 For the first row of the path.

	start_pid

	BIGINT

	Identifier of a starting vertex/point of the path.

	When positive is the identifier of the starting vertex.

	When negative is the identifier of the starting point.

	Returned on Many to One and Many to Many

	end_pid

	BIGINT

	Identifier of an ending vertex/point of the path.

	When positive is the identifier of the ending vertex.

	When negative is the identifier of the ending point.

	Returned on One to Many and Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_pid to end_pid.

	When positive is the identifier of the a vertex.

	When negative is the identifier of the a point.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last row of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	0 For the first row of the path.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	0 For the first row of the path.

Used in functions the following:

	pgr_dijkstraNear - Proposed

Returns (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the current path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the current path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Multiple paths¶

Selective for multiple paths.¶

The columns depend on the function call.

Set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	Combinations

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	Combinations

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Non selective for multiple paths¶

Regardless of the call, al the columns are returned.

	pgr_trsp - Proposed

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Result columns for cost functions¶

Used in the following

	Cost - Category

	Cost Matrix - Category

	All Pairs - Family of Functions

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Note

When start_vid or end_vid columns have negative values, the identifier is for a Point.

Result columns for flow functions¶

Edges SQL for the following

	Flow - Family of functions

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	start_vid

	BIGINT

	Identifier of the first end point vertex of the edge.

	end_vid

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (start_vid, end_vid).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (start_vid, end_vid).

Edges SQL for the following functions of Flow - Family of functions

	pgr_maxFlowMinCost - Experimental

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	source

	BIGINT

	Identifier of the first end point vertex of the edge.

	target

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (source, target).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (source, target).

	cost

	FLOAT

	The cost of sending this flow through the edge in the direction (source, target).

	agg_cost

	FLOAT

	The aggregate cost.

Result columns for spanning tree functions¶

Edges SQL for the following

	pgr_prim

	pgr_kruskal

Returns set of (edge, cost)

	Column

	Type

	Description

	edge

	BIGINT

	Identifier of the edge.

	cost

	FLOAT

	Cost to traverse the edge.

Performance Tips¶

	For the Routing functions

For the Routing functions¶

To get faster results bound the queries to an area of interest of routing.

In this example Use an inner query SQL that does not include some edges in the routing function and is within the area of the results.

SELECT * FROM pgr_dijkstra($$
 SELECT id, source, target, cost, reverse_cost from edges
 WHERE geom && (SELECT st_buffer(geom, 1) AS myarea
 FROM edges WHERE id = 2)$$,
 1, 2);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

How to contribute¶

Wiki

	Edit an existing pgRouting Wiki page.

	Or create a new Wiki page

	Create a page on the pgRouting Wiki

	Give the title an appropriate name

	Example

Adding Functionaity to pgRouting

Consult the developer’s documentation

Indices and tables

	Index

	Search Page

Function Families¶

Function Families¶

All Pairs - Family of Functions

	pgr_floydWarshall - Floyd-Warshall’s algorithm.

	pgr_johnson - Johnson’s algorithm

A* - Family of functions

	pgr_aStar - A* algorithm for the shortest path.

	pgr_aStarCost - Get the aggregate cost of the shortest paths.

	pgr_aStarCostMatrix - Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

	pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.

	pgr_bdAstarCost - Bidirectional A* algorithm to calculate the cost of the paths.

	pgr_bdAstarCostMatrix - Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

	pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.

	pgr_bdDijkstraCost - Bidirectional Dijkstra to calculate the cost of the shortest paths

	pgr_bdDijkstraCostMatrix - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Components - Family of functions

	pgr_connectedComponents - Connected components of an undirected graph.

	pgr_strongComponents - Strongly connected components of a directed graph.

	pgr_biconnectedComponents - Biconnected components of an undirected graph.

	pgr_articulationPoints - Articulation points of an undirected graph.

	pgr_bridges - Bridges of an undirected graph.

Contraction - Family of functions

	pgr_contraction

Dijkstra - Family of functions

	pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.

	pgr_dijkstraCost - Get the aggregate cost of the shortest paths.

	pgr_dijkstraCostMatrix - Use pgr_dijkstra to create a costs matrix.

	pgr_drivingDistance - Use pgr_dijkstra to calculate catchament information.

	pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Flow - Family of functions

	pgr_maxFlow - Only the Max flow calculation using Push and Relabel algorithm.

	pgr_boykovKolmogorov - Boykov and Kolmogorov with details of flow on edges.

	pgr_edmondsKarp - Edmonds and Karp algorithm with details of flow on edges.

	pgr_pushRelabel - Push and relabel algorithm with details of flow on edges.

	Applications

	pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.

	pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Kruskal - Family of functions

	pgr_kruskal

	pgr_kruskalBFS

	pgr_kruskalDD

	pgr_kruskalDFS

Prim - Family of functions

	pgr_prim

	pgr_primBFS

	pgr_primDD

	pgr_primDFS

Reference

	pgr_version

	pgr_full_version

Topology - Family of Functions

The following functions modify the database directly therefore the user must have special permissions given by the administrators to use them.

	pgr_createTopology - create a topology based on the geometry.

	pgr_createVerticesTable - reconstruct the vertices table based on the source and target information.

	pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

	pgr_analyzeOneWay - to analyze directionality of the edges.

	pgr_nodeNetwork - to create nodes to a not noded edge table.

Traveling Sales Person - Family of functions

	pgr_TSP - When input is given as matrix cell information.

	pgr_TSPeuclidean - When input are coordinates.

pgr_trsp - Proposed - Turn Restriction Shortest Path (TRSP)

Functions by categories¶

Cost - Category

	pgr_aStarCost

	pgr_bdAstarCost

	pgr_dijkstraCost

	pgr_bdDijkstraCost

	pgr_dijkstraNearCost - Proposed

Cost Matrix - Category

	pgr_aStarCostMatrix

	pgr_dijkstraCostMatrix

	pgr_bdAstarCostMatrix

	pgr_bdDijkstraCostMatrix

Driving Distance - Category

	pgr_drivingDistance - Driving Distance based on Dijkstra’s algorithm

	pgr_primDD - Driving Distance based on Prim’s algorithm

	pgr_kruskalDD - Driving Distance based on Kruskal’s algorithm

	Post pocessing

	pgr_alphaShape - Alpha shape computation

K shortest paths - Category

	pgr_KSP - Yen’s algorithm based on pgr_dijkstra

Spanning Tree - Category

	Kruskal - Family of functions

	Prim - Family of functions

BFS - Category

	pgr_kruskalBFS

	pgr_primBFS

DFS - Category

	pgr_kruskalDFS

	pgr_primDFS

All Pairs - Family of Functions¶

The following functions work on all vertices pair combinations

	pgr_floydWarshall - Floyd-Warshall’s algorithm.

	pgr_johnson - Johnson’s algorithm

pgr_floydWarshall¶

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 2.2.0

	Signature change

	Old signature no longer supported

	Version 2.0.0

	Official function

Description¶

The Floyd-Warshall algorithm, also known as Floyd’s algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for dense graphs. We use Boost’s implementation which runs in \(\Theta(V^3)\) time,

The main characteristics are:

	It does not return a path.

	Returns the sum of the costs of the shortest path for each pair of nodes in the graph.

	Process is done only on edges with positive costs.

	Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which there is no path.

	We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).

	For the undirected graph, the results are symmetric.

	The agg_cost of (u, v) is the same as for (v, u).

	When start_vid = end_vid, the agg_cost = 0.

	Recommended, use a bounding box of no more than 3500 edges.

Signatures¶

Summary

pgr_floydWarshall(Edges SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	For a directed subgraph with edges \(\{1, 2, 3, 4\}\).

SELECT * FROM pgr_floydWarshall(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges where id < 5'
) ORDER BY start_vid, end_vid;
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 7 | 2
 6 | 5 | 1
 6 | 7 | 1
 7 | 5 | 2
 7 | 6 | 1
 10 | 5 | 2
 10 | 6 | 1
 10 | 7 | 2
 15 | 5 | 3
 15 | 6 | 2
 15 | 7 | 3
 15 | 10 | 1
(13 rows)

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	Edges SQL as described below.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

See Also¶

	pgr_johnson

	Boost floyd-Warshall

	Queries uses the Sample Data network.

Indices and tables

	Index

	Search Page

pgr_johnson¶

pgr_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 2.2.0

	Signature change

	Old signature no longer supported

	Version 2.0.0

	Official function

Description¶

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for sparse graphs. It usees the Boost’s implementation which runs in \(O(V E \log V)\) time,

The main characteristics are:

	It does not return a path.

	Returns the sum of the costs of the shortest path for each pair of nodes in the graph.

	Process is done only on edges with positive costs.

	Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which there is no path.

	We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).

	For the undirected graph, the results are symmetric.

	The agg_cost of (u, v) is the same as for (v, u).

	When start_vid = end_vid, the agg_cost = 0.

	Recommended, use a bounding box of no more than 3500 edges.

Signatures¶

Summary

pgr johnson(Edges SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	For a directed subgraph with edges \(\{1, 2, 3, 4\}\).

SELECT * FROM pgr_johnson(
 'SELECT source, target, cost FROM edges
 WHERE id < 5'
) ORDER BY start_vid, end_vid;
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 7 | 2
 6 | 7 | 1
(3 rows)

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	Edges SQL as described below.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

See Also¶

	pgr_floydWarshall

	Boost Johnson

	Queries uses the Sample Data network.

Indices and tables

	Index

	Search Page

Introduction¶

The main characteristics are:

	It does not return a path.

	Returns the sum of the costs of the shortest path for each pair of nodes in the graph.

	Process is done only on edges with positive costs.

	Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which there is no path.

	We return only the non infinity values in form of a set of (start_vid, end_vid, agg_cost).

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).

	For the undirected graph, the results are symmetric.

	The agg_cost of (u, v) is the same as for (v, u).

	When start_vid = end_vid, the agg_cost = 0.

	Recommended, use a bounding box of no more than 3500 edges.

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	Edges SQL as described below.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Performance¶

	The following tests:

	
	non server computer

	with AMD 64 CPU

	4G memory

	trusty

	posgreSQL version 9.3

Data¶

The following data was used

BBOX="-122.8,45.4,-122.5,45.6"
wget --progress=dot:mega -O "sampledata.osm" "https://www.overpass-api.de/api/xapi?*[bbox=][@meta]"

Data processing was done with osm2pgrouting-alpha

createdb portland
psql -c "create extension postgis" portland
psql -c "create extension pgrouting" portland
osm2pgrouting -f sampledata.osm -d portland -s 0

Results¶

	Test:

	One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests were executed to get the average The tested query is:

SELECT count(*) FROM pgr_floydWarshall(
 'SELECT gid as id, source, target, cost, reverse_cost
 FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson(
 'SELECT gid as id, source, target, cost, reverse_cost
 FROM ways where id <= <SIZE>');

The results of this tests are presented as:

	SIZE:

	is the number of edges given as input.

	EDGES:

	is the total number of records in the query.

	DENSITY:

	is the density of the data \(\dfrac{E}{V \times (V-1)}\).

	OUT ROWS:

	is the number of records returned by the queries.

	Floyd-Warshall:

	is the average execution time in seconds of pgr_floydWarshall.

	Johnson:

	is the average execution time in seconds of pgr_johnson.

	SIZE

	EDGES

	DENSITY

	OUT ROWS

	Floyd-Warshall

	Johnson

	500

	500

	0.18E-7

	1346

	0.14

	0.13

	1000

	1000

	0.36E-7

	2655

	0.23

	0.18

	1500

	1500

	0.55E-7

	4110

	0.37

	0.34

	2000

	2000

	0.73E-7

	5676

	0.56

	0.37

	2500

	2500

	0.89E-7

	7177

	0.84

	0.51

	3000

	3000

	1.07E-7

	8778

	1.28

	0.68

	3500

	3500

	1.24E-7

	10526

	2.08

	0.95

	4000

	4000

	1.41E-7

	12484

	3.16

	1.24

	4500

	4500

	1.58E-7

	14354

	4.49

	1.47

	5000

	5000

	1.76E-7

	16503

	6.05

	1.78

	5500

	5500

	1.93E-7

	18623

	7.53

	2.03

	6000

	6000

	2.11E-7

	20710

	8.47

	2.37

	6500

	6500

	2.28E-7

	22752

	9.99

	2.68

	7000

	7000

	2.46E-7

	24687

	11.82

	3.12

	7500

	7500

	2.64E-7

	26861

	13.94

	3.60

	8000

	8000

	2.83E-7

	29050

	15.61

	4.09

	8500

	8500

	3.01E-7

	31693

	17.43

	4.63

	9000

	9000

	3.17E-7

	33879

	19.19

	5.34

	9500

	9500

	3.35E-7

	36287

	20.77

	6.24

	10000

	10000

	3.52E-7

	38491

	23.26

	6.51

	Test:

	Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE> 30 tests were executed to get the average The tested edge query is:

WITH
buffer AS (
 SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom
 FROM ways),
bbox AS (
 SELECT ST_Envelope(ST_Extent(geom)) as box FROM buffer)
SELECT gid as id, source, target, cost, reverse_cost
FROM ways where the_geom && (SELECT box from bbox);

The tested queries

SELECT count(*) FROM pgr_floydWarshall(<edge query>)
SELECT count(*) FROM pgr_johnson(<edge query>)

The results of this tests are presented as:

	SIZE:

	is the size of the bounding box.

	EDGES:

	is the total number of records in the query.

	DENSITY:

	is the density of the data \(\dfrac{E}{V \times (V-1)}\).

	OUT ROWS:

	is the number of records returned by the queries.

	Floyd-Warshall:

	is the average execution time in seconds of pgr_floydWarshall.

	Johnson:

	is the average execution time in seconds of pgr_johnson.

	SIZE

	EDGES

	DENSITY

	OUT ROWS

	Floyd-Warshall

	Johnson

	0.001

	44

	0.0608

	1197

	0.10

	0.10

	0.002

	99

	0.0251

	4330

	0.10

	0.10

	0.003

	223

	0.0122

	18849

	0.12

	0.12

	0.004

	358

	0.0085

	71834

	0.16

	0.16

	0.005

	470

	0.0070

	116290

	0.22

	0.19

	0.006

	639

	0.0055

	207030

	0.37

	0.27

	0.007

	843

	0.0043

	346930

	0.64

	0.38

	0.008

	996

	0.0037

	469936

	0.90

	0.49

	0.009

	1146

	0.0032

	613135

	1.26

	0.62

	0.010

	1360

	0.0027

	849304

	1.87

	0.82

	0.011

	1573

	0.0024

	1147101

	2.65

	1.04

	0.012

	1789

	0.0021

	1483629

	3.72

	1.35

	0.013

	1975

	0.0019

	1846897

	4.86

	1.68

	0.014

	2281

	0.0017

	2438298

	7.08

	2.28

	0.015

	2588

	0.0015

	3156007

	10.28

	2.80

	0.016

	2958

	0.0013

	4090618

	14.67

	3.76

	0.017

	3247

	0.0012

	4868919

	18.12

	4.48

See Also¶

	pgr_johnson

	pgr_floydWarshall

	Boost floyd-Warshall

Indices and tables

	Index

	Search Page

A* - Family of functions¶

The A* (pronounced “A Star”) algorithm is based on Dijkstra’s algorithm with a heuristic that allow it to solve most shortest path problems by evaluation only a sub-set of the overall graph.

	pgr_aStar - A* algorithm for the shortest path.

	pgr_aStarCost - Get the aggregate cost of the shortest paths.

	pgr_aStarCostMatrix - Get the cost matrix of the shortest paths.

pgr_aStar¶

pgr_aStar — Shortest path using the A* algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.6.0

	Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_aStar (One to One) added start_vid and end_vid columns.

	pgr_aStar (One to Many) added end_vid column.

	pgr_aStar (Many to One) added start_vid column.

	Version 3.2.0

	New proposed signature:

	pgr_aStar (Combinations)

	Version 3.0.0

	Official function

	Version 2.4.0

	New Proposed signatures:

	pgr_aStar (One to Many)

	pgr_aStar (Many to One)

	pgr_aStar (Many to Many)

	Version 2.3.0

	Signature change on pgr_astar (One to One)

	Old signature no longer supported

	Version 2.0.0

	Official pgr_aStar (One to One)

Description¶

The main characteristics are:

	Process works for directed and undirected graphs.

	Ordering is:

	first by start_vid (if exists)

	then by end_vid

	Values are returned when there is a path.

	Let \(v\) and \(u\) be nodes on the graph:

	If there is no path from \(v\) to \(u\):

	no corresponding row is returned

	agg_cost from \(v\) to \(u\) is \(\infty\)

	There is no path when \(v = u\) therefore

	no corresponding row is returned

	agg_cost from v to u is \(0\)

	When \((x,y)\) coordinates for the same vertex identifier differ:

	A random selection of the vertex’s \((x,y)\) coordinates is used.

	Running time: \(O((E + V) * \log V)\)

	The results are equivalent to the union of the results of the pgr_aStar(One to One) on the:

	pgr_aStar (One to Many)

	pgr_aStar (Many to One)

	pgr_aStar (Many to Many)

	pgr_aStar (Combinations)

Signatures¶

Summary

pgr_aStar(Edges SQL, start vid, end vid, [options])

pgr_aStar(Edges SQL, start vid, end vids, [options])

pgr_aStar(Edges SQL, start vids, end vid, [options])

pgr_aStar(Edges SQL, start vids, end vids, [options])

pgr_aStar(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

Optional parameters are named parameters and have a default value.

One to One¶

pgr_aStar(Edges SQL, start vid, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, 12,
 directed => true, heuristic => 2);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 12 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 12 | 7 | 10 | 1 | 1
 3 | 3 | 6 | 12 | 8 | 12 | 1 | 2
 4 | 4 | 6 | 12 | 12 | -1 | 0 | 3
(4 rows)

One to Many¶

pgr_aStar(Edges SQL, start vid, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, ARRAY[10, 12],
 heuristic => 3, factor := 3.5);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 12 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 12 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 12 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 12 | -1 | 0 | 3
(10 rows)

Many to One¶

pgr_aStar(Edges SQL, start vids, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertex \(10\) on an undirected graph with heuristic \(4\)

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], 10,
 false, heuristic => 4);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 2 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 3 | 1 | 8 | 10 | 8 | 12 | 1 | 0
 4 | 2 | 8 | 10 | 12 | 11 | 1 | 1
 5 | 3 | 8 | 10 | 11 | 5 | 1 | 2
 6 | 4 | 8 | 10 | 10 | -1 | 0 | 3
(6 rows)

Many to Many¶

pgr_aStar(Edges SQL, start vids, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertices \(\{10, 12\}\) on a directed graph with factor \(0.5\)

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], ARRAY[10, 12],
 factor => 0.5);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 12 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 12 | 7 | 10 | 1 | 1
 9 | 3 | 6 | 12 | 8 | 12 | 1 | 2
 10 | 4 | 6 | 12 | 12 | -1 | 0 | 3
 11 | 1 | 8 | 10 | 8 | 10 | 1 | 0
 12 | 2 | 8 | 10 | 7 | 8 | 1 | 1
 13 | 3 | 8 | 10 | 11 | 9 | 1 | 2
 14 | 4 | 8 | 10 | 16 | 16 | 1 | 3
 15 | 5 | 8 | 10 | 15 | 3 | 1 | 4
 16 | 6 | 8 | 10 | 10 | -1 | 0 | 5
 17 | 1 | 8 | 12 | 8 | 12 | 1 | 0
 18 | 2 | 8 | 12 | 12 | -1 | 0 | 1
(18 rows)

Combinations¶

pgr_aStar(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on a directed graph with factor \(0.5\).

The combinations table:

SELECT * FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM combinations',
 factor => 0.5);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 4 | 1 | 1
 5 | 3 | 5 | 10 | 7 | 8 | 1 | 2
 6 | 4 | 5 | 10 | 11 | 9 | 1 | 3
 7 | 5 | 5 | 10 | 16 | 16 | 1 | 4
 8 | 6 | 5 | 10 | 15 | 3 | 1 | 5
 9 | 7 | 5 | 10 | 10 | -1 | 0 | 6
 10 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 11 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 12 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 13 | 2 | 6 | 15 | 7 | 8 | 1 | 1
 14 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 15 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 16 | 5 | 6 | 15 | 15 | -1 | 0 | 4
(16 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Inner Queries¶

Edges SQL¶

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

 SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 2 | 1 | 1
 19 | 3 | 15 | 7 | 6 | 4 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 2 | 1 | 1
 19 | 3 | 15 | 7 | 6 | 4 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_aStar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

See Also¶

	A* - Family of functions

	Bidirectional A* - Family of functions

	Sample Data

	https://www.boost.org/libs/graph/doc/astar_search.html

	https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

	Index

	Search Page

pgr_aStarCost¶

pgr_aStarCost - Total cost of the shortest path using the A* algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature:

	pgr_aStarCost (Combinations)

	Version 3.0.0

	Official function

	Version 2.4.0

	New proposed function

Description¶

The pgr_aStarCost function sumarizes of the cost of the shortest path using the A* algorithm.

The main characteristics are:

	Process works for directed and undirected graphs.

	Ordering is:

	first by start_vid (if exists)

	then by end_vid

	Values are returned when there is a path.

	Let \(v\) and \(u\) be nodes on the graph:

	If there is no path from \(v\) to \(u\):

	no corresponding row is returned

	agg_cost from \(v\) to \(u\) is \(\infty\)

	There is no path when \(v = u\) therefore

	no corresponding row is returned

	agg_cost from v to u is \(0\)

	When \((x,y)\) coordinates for the same vertex identifier differ:

	A random selection of the vertex’s \((x,y)\) coordinates is used.

	Running time: \(O((E + V) * \log V)\)

	It does not return a path.

	Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid)

	For undirected graphs, the results are symmetric.

	The agg_cost of (u, v) is the same as for (v, u).

	The returned values are ordered in ascending order:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_aStarCost(Edges SQL, start vid, end vid, [options])

pgr_aStarCost(Edges SQL, start vid, end vids, [options])

pgr_aStarCost(Edges SQL, start vids, end vid, [options])

pgr_aStarCost(Edges SQL, start vids, end vids, [options])

pgr_aStarCost(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

One to One¶

pgr_aStarCost(Edges SQL, start vid, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, 12,
 directed => true, heuristic => 2);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 12 | 3
(1 row)

One to Many¶

pgr_aStarCost(Edges SQL, start vid, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, ARRAY[10, 12],
 heuristic => 3, factor => 3.5);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
 6 | 12 | 3
(2 rows)

Many to One¶

pgr_aStarCost(Edges SQL, start vids, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertex \(10\) on an undirected graph with heuristic \(4\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], 10,
 false, heuristic => 4);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 1
 8 | 10 | 3
(2 rows)

Many to Many¶

pgr_aStarCost(Edges SQL, start vids, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertices \(\{10, 12\}\) on a directed graph with factor \(0.5\)

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], ARRAY[10, 12],
 factor => 0.5);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
 6 | 12 | 3
 8 | 10 | 5
 8 | 12 | 1
(4 rows)

Combinations¶

pgr_aStarCost(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on a directed graph with factor \(0.5\).

The combinations table:

SELECT * FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM combinations',
 factor => 0.5);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 6
 6 | 5 | 1
 6 | 15 | 4
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Inner Queries¶

Edges SQL¶

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

 SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_aStarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 7 | 1
 6 | 10 | 5
 12 | 10 | 4
(3 rows)

See Also¶

	A* - Family of functions

	Cost - Category

	Sample Data

Indices and tables

	Index

	Search Page

pgr_aStarCostMatrix¶

pgr_aStarCostMatrix - Calculates the a cost matrix using pgr_aStar.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Official function

	Version 2.4.0

	New proposed function

Description¶

The main characteristics are:

	Using internaly the pgr_aStar algorithm

	Returns a cost matrix.

	No ordering is performed

	let v and u are nodes on the graph:

	when there is no path from v to u:

	no corresponding row is returned

	cost from v to u is \(\inf\)

	when \(v = u\) then

	no corresponding row is returned

	cost from v to u is \(0\)

	When the graph is undirected the cost matrix is symmetric

Signatures¶

Summary

pgr_aStarCostMatrix(Edges SQL, start vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an undirected graph using heuristic \(2\)

SELECT * FROM pgr_aStarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges',
 (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)),
 directed => false, heuristic => 2);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 2
 5 | 15 | 3
 6 | 5 | 1
 6 | 10 | 1
 6 | 15 | 2
 10 | 5 | 2
 10 | 6 | 1
 10 | 15 | 1
 15 | 5 | 3
 15 | 6 | 2
 15 | 10 | 1
(12 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Inner Queries¶

Edges SQL¶

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example:

	Use with pgr_TSP

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_aStarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges',
 (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)),
 directed=> false, heuristic => 2)
 $$);
NOTICE: pgr_TSP no longer solving with simulated annaeling
HINT: Ignoring annaeling parameters
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 5 | 0 | 0
 2 | 6 | 1 | 1
 3 | 10 | 1 | 2
 4 | 15 | 1 | 3
 5 | 5 | 3 | 6
(5 rows)

See Also¶

	A* - Family of functions

	Cost Matrix - Category

	Traveling Sales Person - Family of functions

	Sample Data

Indices and tables

	Index

	Search Page

Description¶

The main Characteristics are:

	Process works for directed and undirected graphs.

	Ordering is:

	first by start_vid (if exists)

	then by end_vid

	Values are returned when there is a path.

	Let \(v\) and \(u\) be nodes on the graph:

	If there is no path from \(v\) to \(u\):

	no corresponding row is returned

	agg_cost from \(v\) to \(u\) is \(\infty\)

	There is no path when \(v = u\) therefore

	no corresponding row is returned

	agg_cost from v to u is \(0\)

	When \((x,y)\) coordinates for the same vertex identifier differ:

	A random selection of the vertex’s \((x,y)\) coordinates is used.

	Running time: \(O((E + V) * \log V)\)

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Advanced documentation¶

Heuristic¶

Currently the heuristic functions available are:

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

where \(\Delta x = x_1 - x_0\) and \(\Delta y = y_1 - y_0\)

Factor¶

Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the points:

	Latitude

	Conversion

	Factor

	45

	1 longitude degree is 78846.81 m

	78846

	0

	1 longitude degree is 111319.46 m

	111319

Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the points and on the average speed say 25m/s is the speed.

	Latitude

	Conversion

	Factor

	45

	1 longitude degree is (78846.81m)/(25m/s)

	3153 s

	0

	1 longitude degree is (111319.46 m)/(25m/s)

	4452 s

See Also¶

	Bidirectional A* - Family of functions

	https://www.boost.org/libs/graph/doc/astar_search.html

	https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

	Index

	Search Page

Bidirectional A* - Family of functions¶

The bidirectional A* (pronounced “A Star”) algorithm is based on the A* algorithm.

	pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.

	pgr_bdAstarCost - Bidirectional A* algorithm to calculate the cost of the paths.

	pgr_bdAstarCostMatrix - Bidirectional A* algorithm to calculate a cost matrix of paths.

pgr_bdAstar¶

pgr_bdAstar — Shortest path using the bidirectional A* algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.6.0

	Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_bdAstar (One to One) added start_vid and end_vid columns.

	pgr_bdAstar (One to Many) added end_vid column.

	pgr_bdAstar (Many to One) added start_vid column.

	Version 3.2.0

	New proposed signature:

	pgr_bdAstar (Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	New Proposed signatures:

	pgr_bdAstar (One to Many)

	pgr_bdAstar (Many to One)

	pgr_bdAstar (Many to Many)

	Signature change on pgr_bdAstar (One to One)

	Old signature no longer supported

	Version 2.0.0

	Official pgr_bdAstar (One to One)

Description¶

The main characteristics are:

	Process works for directed and undirected graphs.

	Ordering is:

	first by start_vid (if exists)

	then by end_vid

	Values are returned when there is a path.

	Let \(v\) and \(u\) be nodes on the graph:

	If there is no path from \(v\) to \(u\):

	no corresponding row is returned

	agg_cost from \(v\) to \(u\) is \(\infty\)

	There is no path when \(v = u\) therefore

	no corresponding row is returned

	agg_cost from v to u is \(0\)

	When \((x,y)\) coordinates for the same vertex identifier differ:

	A random selection of the vertex’s \((x,y)\) coordinates is used.

	Running time: \(O((E + V) * \log V)\)

	The results are equivalent to the union of the results of the pgr_bdAStar(One to One) on the:

	pgr_bdAstar (One to Many)

	pgr_bdAstar (Many to One)

	pgr_bdAstar (Many to Many)

	pgr_bdAstar (Combinations)

Signatures¶

Summary

pgr_bdAstar(Edges SQL, start vid, end vid, [options])

pgr_bdAstar(Edges SQL, start vid, end vids, [options])

pgr_bdAstar(Edges SQL, start vids, end vid, [options])

pgr_bdAstar(Edges SQL, start vids, end vids, [options])

pgr_bdAstar(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

Optional parameters are named parameters and have a default value.

One to One¶

pgr_bdAstar(Edges SQL, start vid, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, 12,
 directed => true, heuristic => 2
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 12 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 12 | 7 | 10 | 1 | 1
 3 | 3 | 6 | 12 | 8 | 12 | 1 | 2
 4 | 4 | 6 | 12 | 12 | -1 | 0 | 3
(4 rows)

One to Many¶

pgr_bdAstar(Edges SQL, start vid, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, ARRAY[10, 12],
 heuristic => 3, factor := 3.5
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 12 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 12 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 12 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 12 | -1 | 0 | 3
(10 rows)

Many to One¶

pgr_bdAstar(Edges SQL, start vids, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertex \(10\) on an undirected graph with heuristic \(4\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], 10,
 false, heuristic => 4
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 2 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 3 | 1 | 8 | 10 | 8 | 10 | 1 | 0
 4 | 2 | 8 | 10 | 7 | 4 | 1 | 1
 5 | 3 | 8 | 10 | 6 | 2 | 1 | 2
 6 | 4 | 8 | 10 | 10 | -1 | 0 | 3
(6 rows)

Many to Many¶

pgr_bdAstar(Edges SQL, start vids, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertices \(\{10, 12\}\) on a directed graph with factor \(0.5\)

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], ARRAY[10, 12],
 factor => 0.5
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 12 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 12 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 12 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 12 | -1 | 0 | 3
 11 | 1 | 8 | 10 | 8 | 10 | 1 | 0
 12 | 2 | 8 | 10 | 7 | 8 | 1 | 1
 13 | 3 | 8 | 10 | 11 | 9 | 1 | 2
 14 | 4 | 8 | 10 | 16 | 16 | 1 | 3
 15 | 5 | 8 | 10 | 15 | 3 | 1 | 4
 16 | 6 | 8 | 10 | 10 | -1 | 0 | 5
 17 | 1 | 8 | 12 | 8 | 12 | 1 | 0
 18 | 2 | 8 | 12 | 12 | -1 | 0 | 1
(18 rows)

Combinations¶

pgr_bdAstar(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on a directed graph with factor \(0.5\).

The combinations table:

SELECT * FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM combinations',
 factor => 0.5
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 4 | 1 | 1
 5 | 3 | 5 | 10 | 7 | 8 | 1 | 2
 6 | 4 | 5 | 10 | 11 | 9 | 1 | 3
 7 | 5 | 5 | 10 | 16 | 16 | 1 | 4
 8 | 6 | 5 | 10 | 15 | 3 | 1 | 5
 9 | 7 | 5 | 10 | 10 | -1 | 0 | 6
 10 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 11 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 12 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 13 | 2 | 6 | 15 | 7 | 8 | 1 | 1
 14 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 15 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 16 | 5 | 6 | 15 | 15 | -1 | 0 | 4
(16 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Inner Queries¶

Edges SQL¶

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

 SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 5 | 1 | 1
 19 | 3 | 15 | 7 | 11 | 8 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 5 | 1 | 1
 19 | 3 | 15 | 7 | 11 | 8 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_bdAstar(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

See Also¶

	A* - Family of functions

	Bidirectional A* - Family of functions

	Sample Data

	https://www.boost.org/libs/graph/doc/astar_search.html

	https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

	Index

	Search Page

pgr_bdAstarCost¶

pgr_bdAstarCost - Total cost of the shortest path using the bidirectional A* algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature:

	pgr_bdAstarCost (Combinations)

	Version 3.0.0

	Official function

	Version 2.4.0

	New proposed function

Description¶

The pgr_bdAstarCost function sumarizes of the cost of the shortest path using the bidirectional A* algorithm.

The main characteristics are:

	Process works for directed and undirected graphs.

	Ordering is:

	first by start_vid (if exists)

	then by end_vid

	Values are returned when there is a path.

	Let \(v\) and \(u\) be nodes on the graph:

	If there is no path from \(v\) to \(u\):

	no corresponding row is returned

	agg_cost from \(v\) to \(u\) is \(\infty\)

	There is no path when \(v = u\) therefore

	no corresponding row is returned

	agg_cost from v to u is \(0\)

	When \((x,y)\) coordinates for the same vertex identifier differ:

	A random selection of the vertex’s \((x,y)\) coordinates is used.

	Running time: \(O((E + V) * \log V)\)

	It does not return a path.

	Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid)

	For undirected graphs, the results are symmetric.

	The agg_cost of (u, v) is the same as for (v, u).

	The returned values are ordered in ascending order:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_bdAstarCost(Edges SQL, start vid, end vid, [options])

pgr_bdAstarCost(Edges SQL, start vid, end vids, [options])

pgr_bdAstarCost(Edges SQL, start vids, end vid, [options])

pgr_bdAstarCost(Edges SQL, start vids, end vids, [options])

pgr_bdAstarCost(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

One to One¶

pgr_bdAstarCost(Edges SQL, start vid, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, 12,
 directed => true, heuristic => 2
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 12 | 3
(1 row)

One to Many¶

pgr_bdAstarCost(Edges SQL, start vid, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 6, ARRAY[10, 12],
 heuristic => 3, factor := 3.5
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
 6 | 12 | 3
(2 rows)

Many to One¶

pgr_bdAstarCost(Edges SQL, start vids, end vid, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertex \(10\) on an undirected graph with heuristic \(4\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], 10,
 false, heuristic => 4
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 1
 8 | 10 | 3
(2 rows)

Many to Many¶

pgr_bdAstarCost(Edges SQL, start vids, end vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 8\}\) to vertices \(\{10, 12\}\) on a directed graph with factor \(0.5\)

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[6, 8], ARRAY[10, 12],
 factor => 0.5
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
 6 | 12 | 3
 8 | 10 | 5
 8 | 12 | 1
(4 rows)

Combinations¶

pgr_bdAstarCost(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on a directed graph with factor \(0.5\).

The combinations table:

SELECT * FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM combinations',
 factor => 0.5
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 6
 6 | 5 | 1
 6 | 15 | 4
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Inner Queries¶

Edges SQL¶

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

 SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_bdAstarCost(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
 FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 7 | 1
 6 | 10 | 5
 12 | 10 | 4
(3 rows)

See Also¶

	Bidirectional A* - Family of functions

	Cost - Category

	Sample Data

Indices and tables

	Index

	Search Page

pgr_bdAstarCostMatrix¶

pgr_bdAstarCostMatrix - Calculates the a cost matrix using pgr_aStar.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Official function

	Version 2.5.0

	New proposed function

Description¶

The main characteristics are:

	Using internaly the pgr_bdAstar algorithm

	Returns a cost matrix.

	No ordering is performed

	let v and u are nodes on the graph:

	when there is no path from v to u:

	no corresponding row is returned

	cost from v to u is \(\inf\)

	when \(v = u\) then

	no corresponding row is returned

	cost from v to u is \(0\)

	When the graph is undirected the cost matrix is symmetric

Signatures¶

Summary

pgr_bdAstarCostMatrix(Edges SQL, start vids, [options])

options: [directed, heuristic, factor, epsilon]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an undirected graph using heuristic \(2\)

SELECT * FROM pgr_bdAstarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges',
 (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)),
 directed => false, heuristic => 2
);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 2
 5 | 15 | 3
 6 | 5 | 1
 6 | 10 | 1
 6 | 15 | 2
 10 | 5 | 2
 10 | 6 | 1
 10 | 15 | 1
 15 | 5 | 3
 15 | 6 | 2
 15 | 10 | 1
(12 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

aStar optional parameters¶

	Parameter

	Type

	Default

	Description

	heuristic

	INTEGER

	5

	Heuristic number. Current valid values 0~5.

	0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)

	1: \(h(v) = abs(max(\Delta x, \Delta y))\)

	2: \(h(v) = abs(min(\Delta x, \Delta y))\)

	3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)

	4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)

	5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

	factor

	FLOAT

	1

	For units manipulation. \(factor > 0\).

	epsilon

	FLOAT

	1

	For less restricted results. \(epsilon >= 1\).

See heuristics available and factor handling.

Inner Queries¶

Edges SQL¶

	Parameter

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source),

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	x1

	ANY-NUMERICAL

	
	X coordinate of source vertex.

	y1

	ANY-NUMERICAL

	
	Y coordinate of source vertex.

	x2

	ANY-NUMERICAL

	
	X coordinate of target vertex.

	y2

	ANY-NUMERICAL

	
	Y coordinate of target vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example:

	Use with pgr_TSP

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_bdAstarCostMatrix(
 'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges',
 (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)),
 directed=> false, heuristic => 2
)
 $$
);
NOTICE: pgr_TSP no longer solving with simulated annaeling
HINT: Ignoring annaeling parameters
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 5 | 0 | 0
 2 | 6 | 1 | 1
 3 | 10 | 1 | 2
 4 | 15 | 1 | 3
 5 | 5 | 3 | 6
(5 rows)

See Also¶

	Bidirectional A* - Family of functions

	Cost Matrix - Category

	Traveling Sales Person - Family of functions

	Sample Data

Indices and tables

	Index

	Search Page

Description¶

Based on A* algorithm, the bidirectional search finds a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid). It runs two simultaneous searches: one forward from the start_vid, and one backward from the end_vid, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

	Process works for directed and undirected graphs.

	Ordering is:

	first by start_vid (if exists)

	then by end_vid

	Values are returned when there is a path.

	Let \(v\) and \(u\) be nodes on the graph:

	If there is no path from \(v\) to \(u\):

	no corresponding row is returned

	agg_cost from \(v\) to \(u\) is \(\infty\)

	There is no path when \(v = u\) therefore

	no corresponding row is returned

	agg_cost from v to u is \(0\)

	When \((x,y)\) coordinates for the same vertex identifier differ:

	A random selection of the vertex’s \((x,y)\) coordinates is used.

	Running time: \(O((E + V) * \log V)\)

	For large graphs where there is a path bewtween the starting vertex and ending vertex:

	It is expected to terminate faster than pgr_astar

See heuristics available and factor handling.

See Also¶

	A* - Family of functions

	https://www.boost.org/libs/graph/doc/astar_search.html

	https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

	Index

	Search Page

Bidirectional Dijkstra - Family of functions¶

	pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.

	pgr_bdDijkstraCost - Bidirectional Dijkstra to calculate the cost of the shortest paths

	pgr_bdDijkstraCostMatrix - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

pgr_bdDijkstra¶

pgr_bdDijkstra — Returns the shortest path using Bidirectional Dijkstra algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability:

	Version 3.2.0

	New proposed signature:

	pgr_bdDijkstra(Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	New Proposed functions:

	pgr_bdDijkstra (One to Many)

	pgr_bdDijkstra (Many to One)

	pgr_bdDijkstra (Many to Many)

	Version 2.4.0

	Signature change on pgr_bdDijsktra (One to One)

	Old signature no longer supported

	Version 2.0.0

	Official pgr_bdDijkstra (One to One)

Description¶

The main characteristics are:

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time (worse case scenario): \(O((V \log V + E))\)

	For large graphs where there is a path bewtween the starting vertex and ending vertex:

	It is expected to terminate faster than pgr_dijkstra

Signatures¶

Summary

pgr_bdDijkstra(Edges SQL, start vid, end vid, [directed])

pgr_bdDijkstra(Edges SQL, start vid, end vids, [directed])

pgr_bdDijkstra(Edges SQL, start vids, end vid, [directed])

pgr_bdDijkstra(Edges SQL, start vids, end vids, [directed])

pgr_bdDijkstra(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_bdDijkstra(Edges SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_bdDijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 6, 10, true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

One to Many¶

pgr_bdDijkstra(Edges SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

SELECT * FROM pgr_bdDijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 6, ARRAY[10, 17]);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 17 | 6 | 4 | 1 | 0
 8 | 2 | 17 | 7 | 8 | 1 | 1
 9 | 3 | 17 | 11 | 11 | 1 | 2
 10 | 4 | 17 | 12 | 13 | 1 | 3
 11 | 5 | 17 | 17 | -1 | 0 | 4
(11 rows)

Many to One¶

pgr_bdDijkstra(Edges SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_bdDijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], 17);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 1 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 7 | 8 | 1 | 2
 4 | 4 | 1 | 11 | 11 | 1 | 3
 5 | 5 | 1 | 12 | 13 | 1 | 4
 6 | 6 | 1 | 17 | -1 | 0 | 5
 7 | 1 | 6 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 13 | 1 | 3
 11 | 5 | 6 | 17 | -1 | 0 | 4
(11 rows)

Many to Many¶

pgr_bdDijkstra(Edges SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_bdDijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 10 | 7 | 4 | 1 | 2
 4 | 4 | 1 | 10 | 6 | 2 | 1 | 3
 5 | 5 | 1 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 7 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 8 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 9 | 4 | 1 | 17 | 11 | 11 | 1 | 3
 10 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 11 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 12 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 13 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 14 | 1 | 6 | 17 | 6 | 2 | 1 | 0
 15 | 2 | 6 | 17 | 10 | 5 | 1 | 1
 16 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 17 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 18 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(18 rows)

Combinations¶

pgr_bdDijkstra(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 2 | 1 | 1
 5 | 3 | 5 | 10 | 10 | -1 | 0 | 2
 6 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 7 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 8 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 9 | 2 | 6 | 15 | 10 | 3 | 1 | 1
 10 | 3 | 6 | 15 | 15 | -1 | 0 | 2
(10 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bdDijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 2 | 1 | 0
 11 | 2 | 10 | 7 | 6 | 4 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 2 | 1 | 1
 19 | 3 | 15 | 7 | 6 | 4 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_bdDijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 2 | 1 | 0
 11 | 2 | 10 | 7 | 6 | 4 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 2 | 1 | 1
 19 | 3 | 15 | 7 | 6 | 4 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_bdDijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

See Also¶

	Bidirectional Dijkstra - Family of functions

	Sample Data

	https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

	https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

	Index

	Search Page

pgr_bdDijkstraCost¶

pgr_bdDijkstraCost — Returns the shortest path’s cost using Bidirectional Dijkstra algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature:

	pgr_bdDijkstraCost (Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	New proposed function

Description¶

The pgr_bdDijkstraCost function sumarizes of the cost of the shortest path using the bidirectional Dijkstra Algorithm.

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time (worse case scenario): \(O((V \log V + E))\)

	For large graphs where there is a path bewtween the starting vertex and ending vertex:

	It is expected to terminate faster than pgr_dijkstra

	It does not return a path.

	Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of \((u, v)\) is the same as for \((v, u)\).

	Any duplicated value in the start or end vertex identifiers are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_bdDijkstraCost(Edges SQL, start vid, end vid , [directed])

pgr_bdDijkstraCost(Edges SQL, start vid, end vids, [directed])

pgr_bdDijkstraCost(Edges SQL, start vids, end vid , [directed])

pgr_bdDijkstraCost(Edges SQL, start vids, end vids, [directed])

pgr_bdDijkstraCost(Edges SQL, Combinations SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

One to One¶

pgr_bdDijkstraCost(Edges SQL, start vid, end vid , [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10, true);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
(1 row)

One to Many¶

pgr_bdDijkstraCost(Edges SQL, start vid, end vids, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10, 17]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
 6 | 17 | 4
(2 rows)

Many to One¶

pgr_bdDijkstraCost(Edges SQL, start vids, end vid , [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], 17);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 17 | 5
 6 | 17 | 4
(2 rows)

Many to Many¶

pgr_bdDijkstraCost(Edges SQL, start vids, end vids, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 10 | 4
 1 | 17 | 5
 6 | 10 | 1
 6 | 17 | 4
(4 rows)

Combinations¶

pgr_bdDijkstraCost(Edges SQL, Combinations SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 2
 6 | 5 | 1
 6 | 15 | 2
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_bdDijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 7 | 1
 6 | 10 | 5
 12 | 10 | 4
(3 rows)

See Also¶

	Bidirectional Dijkstra - Family of functions

	Sample Data

	https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

	https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

	Index

	Search Page

pgr_bdDijkstraCostMatrix¶

pgr_bdDijkstraCostMatrix - Calculates a cost matrix using pgr_bdDijkstra.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Official function

	Version 2.5.0

	New proposed function

Description¶

Using bidirectional Dijkstra algorithm, calculate and return a cost matrix.

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time (worse case scenario): \(O((V \log V + E))\)

	For large graphs where there is a path bewtween the starting vertex and ending vertex:

	It is expected to terminate faster than pgr_dijkstra

The main Characteristics are:

	Can be used as input to pgr_TSP.

	Use directly when the resulting matrix is symmetric and there is no \(\infty\) value.

	It will be the users responsibility to make the matrix symmetric.

	By using geometric or harmonic average of the non symmetric values.

	By using max or min the non symmetric values.

	By setting the upper triangle to be the mirror image of the lower triangle.

	By setting the lower triangle to be the mirror image of the upper triangle.

	It is also the users responsibility to fix an \(\infty\) value.

	Each function works as part of the family it belongs to.

	It does not return a path.

	Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.

	Process is done only on edges with positive costs.

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The aggregate cost in the non included values (v, v) is 0.

	When the starting vertex and ending vertex are the different and there is no path.

	The aggregate cost in the non included values (u, v) is \(\infty\).

	Let be the case the values returned are stored in a table:

	The unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of (u, v) is the same as for (v, u).

	Any duplicated value in the start vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_bdDijkstraCostMatrix(Edges SQL, start vids, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an undirected graph

SELECT * FROM pgr_bdDijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 (SELECT array_agg(id)
 FROM vertices
 WHERE id IN (5, 6, 10, 15)),
 false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 2
 5 | 15 | 3
 6 | 5 | 1
 6 | 10 | 1
 6 | 15 | 2
 10 | 5 | 2
 10 | 6 | 1
 10 | 15 | 1
 15 | 5 | 3
 15 | 6 | 2
 15 | 10 | 1
(12 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example:

	Use with pgr_TSP.

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_bdDijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 (SELECT array_agg(id)
 FROM vertices
 WHERE id IN (5, 6, 10, 15)),
 false)
 $$);
NOTICE: pgr_TSP no longer solving with simulated annaeling
HINT: Ignoring annaeling parameters
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 5 | 0 | 0
 2 | 6 | 1 | 1
 3 | 10 | 1 | 2
 4 | 15 | 1 | 3
 5 | 5 | 3 | 6
(5 rows)

See Also¶

	Bidirectional Dijkstra - Family of functions

	Cost Matrix - Category

	Traveling Sales Person - Family of functions

	Sample Data

Indices and tables

	Index

	Search Page

Synopsis¶

Based on Dijkstra’s algorithm, the bidirectional search finds a shortest path a starting vertex to an ending vertex.

It runs two simultaneous searches: one forward from the source, and one backward from the target, stopping when the two meet in the middle.

This implementation can be used with a directed graph and an undirected graph.

Characteristics¶

The main Characteristics are:

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time (worse case scenario): \(O((V \log V + E))\)

	For large graphs where there is a path bewtween the starting vertex and ending vertex:

	It is expected to terminate faster than pgr_dijkstra

See Also¶

Indices and tables

	Index

	Search Page

Components - Family of functions¶

	pgr_connectedComponents - Connected components of an undirected graph.

	pgr_strongComponents - Strongly connected components of a directed graph.

	pgr_biconnectedComponents - Biconnected components of an undirected graph.

	pgr_articulationPoints - Articulation points of an undirected graph.

	pgr_bridges - Bridges of an undirected graph.

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_makeConnected - Experimental - Details of edges to make graph connected.

pgr_connectedComponents¶

pgr_connectedComponents — Connected components of an undirected graph using a DFS-based approach.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Result columns change:

	n_seq is removed

	seq changed type to BIGINT

	Official function

	Version 2.5.0

	New experimental function

Description¶

A connected component of an undirected graph is a set of vertices that are all reachable from each other.

The main characteristics are:

	Works for undirected graphs.

	Components are described by vertices

	The returned values are ordered:

	component ascending

	node ascending

	Running time: \(O(V + E)\)

Signatures¶

pgr_connectedComponents(Edges SQL)

Returns set of (seq, component, node)

OR EMPTY SET

	Example:

	The connected components of the graph

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 3
 3 | 1 | 5
 4 | 1 | 6
 5 | 1 | 7
 6 | 1 | 8
 7 | 1 | 9
 8 | 1 | 10
 9 | 1 | 11
 10 | 1 | 12
 11 | 1 | 15
 12 | 1 | 16
 13 | 1 | 17
 14 | 2 | 2
 15 | 2 | 4
 16 | 13 | 13
 17 | 13 | 14
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, component, node)

	Column

	Type

	Description

	seq

	BIGINT

	Sequential value starting from 1.

	component

	BIGINT

	Component identifier.

	Has the value of the minimum node identifier in the component.

	node

	BIGINT

	Identifier of the vertex that belongs to the component.

Additional Examples¶

Connecting disconnected components¶

To get the graph connectivity:

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 3
 3 | 1 | 5
 4 | 1 | 6
 5 | 1 | 7
 6 | 1 | 8
 7 | 1 | 9
 8 | 1 | 10
 9 | 1 | 11
 10 | 1 | 12
 11 | 1 | 13
 12 | 1 | 14
 13 | 1 | 15
 14 | 1 | 16
 15 | 1 | 17
 16 | 1 | 18
 17 | 2 | 2
 18 | 2 | 4
(18 rows)

In this example, the component \(2\) consists of vertices \(\{2, 4\}\) and both vertices are also part of the dead end result set.

This graph needs to be connected.

Note

With the original graph of this documentation, there would be 3 components as the crossing edge in this graph is a different component.

Prepare storage for connection information¶

ALTER TABLE vertices ADD COLUMN component BIGINT;
ALTER TABLE
ALTER TABLE edges ADD COLUMN component BIGINT;
ALTER TABLE

Save the vertices connection information¶

UPDATE vertices SET component = c.component
FROM (SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
)) AS c
WHERE id = node;
UPDATE 18

Save the edges connection information¶

UPDATE edges SET component = v.component
FROM (SELECT id, component FROM vertices) AS v
WHERE source = v.id;
UPDATE 20

Get the closest vertex¶

Using pgr_findCloseEdges the closest vertex to component \(1\) is vertex \(4\). And the closest edge to vertex \(4\) is edge \(14\).

SELECT edge_id, fraction, ST_AsText(edge) AS edge, id AS closest_vertex
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges WHERE component = 1$$,
 (SELECT array_agg(geom) FROM vertices WHERE component = 2),
 2, partial => false) JOIN vertices USING (geom) ORDER BY distance LIMIT 1;
 edge_id | fraction | edge | closest_vertex
---------+----------+--------------------------------------+----------------
 14 | 0.5 | LINESTRING(1.999999999999 3.5,2 3.5) | 4
(1 row)

The edge can be used to connect the components, using the fraction information about the edge \(14\) to split the connecting edge.

Connecting components¶

There are three basic ways to connect the components

	From the vertex to the starting point of the edge

	From the vertex to the ending point of the edge

	From the vertex to the closest vertex on the edge

	This solution requires the edge to be split.

The following query shows the three ways to connect the components:

WITH
info AS (
 SELECT
 edge_id, fraction, side, distance, ce.geom, edge, v.id AS closest,
 source, target, capacity, reverse_capacity, e.geom AS e_geom
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges WHERE component = 1$$,
 (SELECT array_agg(geom) FROM vertices WHERE component = 2),
 2, partial => false) AS ce
 JOIN vertices AS v USING (geom)
 JOIN edges AS e ON (edge_id = e.id)
 ORDER BY distance LIMIT 1),
three_options AS (
 SELECT
 closest AS source, target, 0 AS cost, 0 AS reverse_cost,
 capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_EndPoint(e_geom)) AS x2, ST_Y(ST_EndPoint(e_geom)) AS y2,
 ST_MakeLine(geom, ST_EndPoint(e_geom)) AS geom
 FROM info
 UNION
 SELECT closest, source, 0, 0, capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_StartPoint(e_geom)) AS x2, ST_Y(ST_StartPoint(e_geom)) AS y2,
 ST_MakeLine(info.geom, ST_StartPoint(e_geom))
 FROM info
 /*
 UNION
 -- This option requires splitting the edge
 SELECT closest, NULL, 0, 0, capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_EndPoint(edge)) AS x2, ST_Y(ST_EndPoint(edge)) AS y2,
 edge
 FROM info */
)
INSERT INTO edges
 (source, target,
 cost, reverse_cost,
 capacity, reverse_capacity,
 x1, y1, x2, y2,
 geom)
(SELECT
 source, target, cost, reverse_cost, capacity, reverse_capacity,
 x1, y1, x2, y2, geom
 FROM three_options);
INSERT 0 2

Checking components¶

Ignoring the edge that requires further work. The graph is now fully connected as there is only one component.

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 2
 3 | 1 | 3
 4 | 1 | 4
 5 | 1 | 5
 6 | 1 | 6
 7 | 1 | 7
 8 | 1 | 8
 9 | 1 | 9
 10 | 1 | 10
 11 | 1 | 11
 12 | 1 | 12
 13 | 1 | 13
 14 | 1 | 14
 15 | 1 | 15
 16 | 1 | 16
 17 | 1 | 17
 18 | 1 | 18
(18 rows)

See Also¶

	Components - Family of functions

	The queries use the Sample Data network.

	Boost: Connected components

	wikipedia: Connected component

Indices and tables

	Index

	Search Page

pgr_strongComponents¶

pgr_strongComponents — Strongly connected components of a directed graph using Tarjan’s algorithm based on DFS.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Result columns change:

	n_seq is removed

	seq changed type to BIGINT

	Official function

	Version 2.5.0

	New experimental function

Description¶

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other.

The main characteristics are:

	Works for directed graphs.

	Components are described by vertices identifiers.

	The returned values are ordered:

	component ascending

	node ascending

	Running time: \(O(V + E)\)

Signatures¶

pgr_strongComponents(Edges SQL)

Returns set of (seq, component, node)

OR EMPTY SET

	Example:

	The strong components of the graph

SELECT * FROM pgr_strongComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 3
 3 | 1 | 5
 4 | 1 | 6
 5 | 1 | 7
 6 | 1 | 8
 7 | 1 | 9
 8 | 1 | 10
 9 | 1 | 11
 10 | 1 | 12
 11 | 1 | 15
 12 | 1 | 16
 13 | 1 | 17
 14 | 2 | 2
 15 | 2 | 4
 16 | 13 | 13
 17 | 13 | 14
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, component, node)

	Column

	Type

	Description

	seq

	BIGINT

	Sequential value starting from 1.

	component

	BIGINT

	Component identifier.

	Has the value of the minimum node identifier in the component.

	node

	BIGINT

	Identifier of the vertex that belongs to the component.

See Also¶

	Components - Family of functions

	The queries use the Sample Data network.

	Boost: Strong components

	wikipedia: Strongly connected component

Indices and tables

	Index

	Search Page

pgr_biconnectedComponents¶

pgr_biconnectedComponents — Biconnected components of an undirected graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Result columns change:

	n_seq is removed

	seq changed type to BIGINT

	Official function

	Version 2.5.0

	New experimental function

Description¶

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained in a single biconnected component.

The main characteristics are:

	Works for undirected graphs.

	Components are described by edges.

	The returned values are ordered:

	component ascending.

	edge ascending.

	Running time: \(O(V + E)\)

Signatures¶

pgr_biconnectedComponents(Edges SQL)

Returns set of (seq, component, edge)

OR EMPTY SET

	Example:

	The biconnected components of the graph

SELECT * FROM pgr_biconnectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | edge
-----+-----------+------
 1 | 1 | 1
 2 | 2 | 2
 3 | 2 | 3
 4 | 2 | 4
 5 | 2 | 5
 6 | 2 | 8
 7 | 2 | 9
 8 | 2 | 10
 9 | 2 | 11
 10 | 2 | 12
 11 | 2 | 13
 12 | 2 | 15
 13 | 2 | 16
 14 | 6 | 6
 15 | 7 | 7
 16 | 14 | 14
 17 | 17 | 17
 18 | 18 | 18
(18 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, component, edge)

	Column

	Type

	Description

	seq

	BIGINT

	Sequential value starting from 1.

	component

	BIGINT

	Component identifier.

	Has the value of the minimum edge identifier in the component.

	edge

	BIGINT

	Identifier of the edge that belongs to the component.

See Also¶

	Components - Family of functions

	The queries use the Sample Data network.

	Boost: Biconnected components

	wikipedia: Biconnected component

Indices and tables

	Index

	Search Page

pgr_articulationPoints¶

pgr_articulationPoints - Return the articulation points of an undirected graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Result columns change: seq is removed

	Official function

	Version 2.5.0

	New experimental function

Description¶

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph. This implementation can only be used with an undirected graph.

The main characteristics are:

	Works for undirected graphs.

	The returned values are ordered:

	node ascending

	Running time: \(O(V + E)\)

Signatures¶

pgr_articulationPoints(Edges SQL)

Returns set of (node)

OR EMPTY SET

	Example:

	The articulation points of the graph

SELECT * FROM pgr_articulationPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 node

 3
 6
 7
 8
(4 rows)

Nodes in red are the articulation points.

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (node)

	Column

	Type

	Description

	node

	BIGINT

	Identifier of the vertex.

See Also¶

	Components - Family of functions

	The queries use the Sample Data network.

	Boost: Biconnected components & articulation points

	wikipedia: Biconnected component

Indices and tables

	Index

	Search Page

pgr_bridges¶

pgr_bridges - Return the bridges of an undirected graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Result columns change: seq is removed

	Official function

	Version 2.5.0

	New experimental function

Description¶

A bridge is an edge of an undirected graph whose deletion increases its number of connected components. This implementation can only be used with an undirected graph.

The main characteristics are:

	Works for undirected graphs.

	The returned values are ordered:

	edge ascending

	Running time: \(O(E * (V + E))\)

Signatures¶

pgr_bridges(Edges SQL)

Returns set of (edge)

OR EMPTY SET

	Example:

	The bridges of the graph

SELECT * FROM pgr_bridges(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 edge

 1
 6
 7
 14
 17
 18
(6 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (edge)

	Column

	Type

	Description

	edge

	BIGINT

	Identifier of the edge that is a bridge.

See Also¶

	https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29

	The queries use the Sample Data network.

Indices and tables

	Index

	Search Page

pgr_makeConnected - Experimental¶

pgr_makeConnected — Set of edges that will connect the graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental function

Description¶

Adds the minimum number of edges needed to make the input graph connected. The algorithm first identifies all of the connected components in the graph, then adds edges to connect those components together in a path. For example, if a graph contains three connected components A, B, and C, make_connected will add two edges. The two edges added might consist of one connecting a vertex in A with a vertex in B and one connecting a vertex in B with a vertex in C.

The main characteristics are:

	Works for undirected graphs.

	It will give a minimum list of all edges which are needed in the graph to make connect it.

	The algorithm does not considers traversal costs in the calculations.

	The algorithm does not considers geometric topology in the calculations.

	Running time: \(O(V + E)\)

Signatures¶

pgr_makeConnected(Edges SQL)

Returns set of (seq, start_vid, end_vid)

OR EMPTY SET

	Example:

	Query done on Sample Data network gives the list of edges that are needed to connect the graph.

SELECT * FROM pgr_makeConnected(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | start_vid | end_vid
-----+-----------+---------
 1 | 5 | 2
 2 | 4 | 13
(2 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, start_vid, end_vid)

	Column

	Type

	Description

	seq

	BIGINT

	Sequential value starting from 1.

	start_vid

	BIGINT

	Identifier of the first end point vertex of the edge.

	end_vid

	BIGINT

	Identifier of the second end point vertex of the edge.

See Also¶

	https://www.boost.org/libs/graph/doc/make_connected.html

	The queries use the Sample Data network.

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

Contraction - Family of functions¶

	pgr_contraction

pgr_contraction¶

pgr_contraction — Performs graph contraction and returns the contracted vertices and edges.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Result columns change: seq is removed

	Name change from pgr_contractGraph

	Bug fixes

	Official function

	Version 2.3.0

	New experimental function

Description¶

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

The main Characteristics are:

	Process is done only on edges with positive costs.

	Does not return the full contracted graph

	Only changes on the graph are returned

	Currnetly there are two types of contraction methods

	Dead End Contraction

	Linear Contraction

	The returned values include

	the added edges by linear contraction.

	the modified vertices by dead end contraction.

	The returned values are ordered as follows:

	column id ascending when type is v

	column id descending when type is e

Signatures¶

Summary

The pgr_contraction function has the following signature:

pgr_contraction(Edges SQL, contraction order, [options])

options: [max_cycles, forbidden_vertices, directed]

Returns set of (type, id, contracted_vertices, source, target, cost)

	Example:

	Making a dead end and linear contraction in that order on an undirected graph.

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[1, 2], directed => false);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 v | 4 | {2} | -1 | -1 | -1
 v | 7 | {1,3} | -1 | -1 | -1
 v | 14 | {13} | -1 | -1 | -1
 e | -1 | {5,6} | 7 | 10 | 2
 e | -2 | {8,9} | 7 | 12 | 2
 e | -3 | {17} | 12 | 16 | 2
 e | -4 | {15} | 10 | 16 | 2
(7 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	contraction Order

	ARRAY[ANY-INTEGER]

	Ordered contraction operations.

	1 = Dead end contraction

	2 = Linear contraction

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Contraction optional parameters¶

	Column

	Type

	Default

	Description

	forbidden_vertices

	ARRAY[ANY-INTEGER]

	Empty

	Identifiers of vertices forbidden for contraction.

	max_cycles

	INTEGER

	\(1\)

	Number of times the contraction operations on contraction_order will be performed.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (type, id, contracted_vertices, source, target, cost)

The function returns a single row. The columns of the row are:

	Column

	Type

	Description

	type

	TEXT

	Type of the id.

	v when the row is a vertex.

	Column id has a positive value

	e when the row is an edge.

	Column id has a negative value

	id

	BIGINT

	All numbers on this column are DISTINCT

	When type = ‘v’.

	Identifier of the modified vertex.

	When type = ‘e’.

	Decreasing sequence starting from -1.

	Representing a pseudo id as is not incorporated in the set of original edges.

	contracted_vertices

	ARRAY[BIGINT]

	Array of contracted vertex identifiers.

	source

	BIGINT

	
	When type = ‘v’: \(-1\)

	When type = ‘e’: Identifier of the source vertex of the current edge (source, target).

	target

	BIGINT

	
	When type = ‘v’: \(-1\)

	When type = ‘e’: Identifier of the target vertex of the current edge (source, target).

	cost

	FLOAT

	
	When type = ‘v’: \(-1\)

	When type = ‘e’: Weight of the current edge (source, target).

Additional Examples¶

	Example:

	Only dead end contraction

SELECT type, id, contracted_vertices FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[1]);
 type | id | contracted_vertices
------+----+---------------------
 v | 4 | {2}
 v | 6 | {5}
 v | 7 | {1,3}
 v | 8 | {9}
 v | 14 | {13}
(5 rows)

	Example:

	Only linear contraction

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[2]);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 e | -1 | {3} | 1 | 7 | 2
 e | -2 | {3} | 7 | 1 | 2
(2 rows)

See Also¶

	Contraction - Family of functions

Indices and tables

	Index

	Search Page

Introduction¶

In large graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph algorithms. Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it supports two algorithms:

	Dead end contraction

	Linear contraction

Allowing the user to:

	Forbid contraction on a set of nodes.

	Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Dead end contraction¶

Contraction of the leaf nodes of the graph.

Dead end¶

A node is considered a dead end node when

	On undirected graphs:

	The number of adjacent vertices is 1.

	On directed graphs:

	The number of adjacent vertices is 1.

	There are no outgoing edges and has at least one incoming edge.

	There are no incoming edges and has at least one outgoing edge.

When the conditions are true then the Operation: Dead End Contraction can be done.

Dead end vertex on undirected graph¶

	The green nodes are dead end nodes

	The blue nodes have an unlimited number of edges.

[image: graph G { u, v [shape=circle;style=filled;width=.4;color=deepskyblue]; a, b [style=filled; color=green]; G [shape=tripleoctagon;width=1.5;style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; G -- {u, v} [dir=none, weight=1, penwidth=3]; u -- a [color=black]; u -- a [color=darkgray]; v -- b; }]

	Node

	Adjecent nodes

	Number of adjacent nodes

	\(a\)

	\(\{u\}\)

	1

	\(b\)

	\(\{v\}\)

	1

Dead end vertex on directed graph¶

	The green nodes are dead end nodes

	The blue nodes have an unlimited number of incoming and/or outgoing edges.

[image: digraph G { u, v, w, x, y [shape=circle;style=filled;width=.4;color=deepskyblue]; a, b, c, d, e [style=filled; color=green]; G [shape=tripleoctagon;width=1.5;style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; G -> {u, v, w} [dir=none, weight=1, penwidth=3]; {x, y} -> G [dir=none, weight=1, penwidth=3]; u -> a -> u; v -> b; {w, v} -> c; d -> x; e -> {x, y}; }]

	Node

	Adjecent nodes

	Number of adjacent nodes

	Number of incoming edges

	Number of outgoing edges

	\(a\)

	\(\{u\}\)

	1

	
	

	\(b\)

	\(\{v\}\)

	1

	
	

	\(c\)

	\(\{v, w\}\)

	2

	2

	0

	\(d\)

	\(\{x\}\)

	1

	
	

	\(e\)

	\(\{x, y\}\)

	2

	0

	2

From above, nodes \(\{a, b, d\}\) are dead ends because the number of adjacent vertices is 1. No further checks are needed for those nodes.

On the following table, nodes \(\{c, e\}\) because the even that the number of adjacent vertices is not 1 for

	\(c\)

	There are no outgoing edges and has at least one incoming edge.

	\(e\)

	There are no incoming edges and has at least one outgoing edge.

Operation: Dead End Contraction¶

The dead end contraction will stop until there are no more dead end nodes. For example from the following graph where \(w\) is the dead end node:

[image: digraph G { u, v [shape=circle;style=filled;width=.4;color=deepskyblue]; w [style=filled; color=green]; "G" [shape=tripleoctagon;style=filled; color=deepskyblue; label = "Rest of the Graph"]; rankdir=LR; G -> u [dir=none, weight=1, penwidth=3]; u -> v -> w; }]

After contracting \(w\), node \(v\) is now a dead end node and is contracted:

[image: digraph G { u [shape=circle;style=filled;width=.4;color=deepskyblue]; v [style=filled; color=green, label="v{w}"]; "G" [shape=tripleoctagon;style=filled; color=deepskyblue; label = "Rest of the Graph"]; rankdir=LR; G -> u [dir=none, weight=1, penwidth=3]; u -> v; }]

After contracting \(v\), stop. Node \(u\) has the information of nodes that were contrcted.

[image: digraph G { u [style=filled; color=green, label="u{v,w}"]; "G" [shape=tripleoctagon;style=filled; color=deepskyblue; label = "Rest of the Graph"]; rankdir=LR; G -> u [dir=none, weight=1, penwidth=3]; }]

Node \(u\) has the information of nodes that were contracted.

Linear contraction¶

In the algorithm, linear contraction is represented by 2.

Linear¶

In case of an undirected graph, a node is considered a linear node when

	The number of adjacent vertices is 2.

In case of a directed graph, a node is considered a linear node when

	The number of adjacent vertices is 2.

	Linearity is symmetrical

Linear vertex on undirected graph¶

	The green nodes are linear nodes

	The blue nodes have an unlimited number of incoming and outgoing edges.

Undirected

[image: graph G { u, w [shape=circle;style=filled;width=.4;color=deepskyblue]; v [style=filled; color=green]; G [shape=tripleoctagon;width=1.5;style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; w -- G -- u [dir=none, weight=1, penwidth=3]; u -- v -- w; }]

	Node

	Adjecent nodes

	Number of adjacent nodes

	\(v\)

	\(\{u, w\}\)

	2

Linear vertex on directed graph¶

	The green nodes are linear nodes

	The blue nodes have an unlimited number of incoming and outgoing edges.

	The white node is not linear because the linearity is not symetrical.

	It is possible to go \(y \rightarrow c \rightarrow z\)

	It’s not possible to go \(z \rightarrow c \rightarrow y\)

[image: digraph G { u, v, w, x, y, z [shape=circle;style=filled;width=.4;color=deepskyblue]; a, b [style=filled; color=green]; G [shape=tripleoctagon;width=1.5;style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; {u, v} -> G -> {x, w, y, z} [dir=none, weight=1, penwidth=3]; u -> a -> v; w -> b -> x; x -> b -> w [color=darkgray]; y -> c -> z -> c; }]

	Node

	Adjecent nodes

	Number of adjacent nodes

	Is symmetrical?

	\(a\)

	\(\{u, v\}\)

	2

	yes

	\(b\)

	\(\{w, x\}\)

	2

	yes

	\(c\)

	\(\{y, z\}\)

	2

	no

Operation: Linear Contraction¶

The linear contraction will stop when there are no more linear nodes. For example from the following graph where \(v\) and \(w\) are linear nodes:

[image: digraph G { u, z [shape=circle;style=filled;color=deepskyblue]; v, w [style=filled; color=green]; "G" [shape=tripleoctagon; style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; G -> {u, z} [dir=none, weight=1, penwidth=3]; u -> v -> w -> z; }]

Contracting \(w\),

	The vertex \(w\) is removed from the graph

	The edges \(v \rightarrow w\) and \(w \rightarrow z\) are removed from the graph.

	A new edge \(v \rightarrow z\) is inserted represented with red color.

[image: digraph G { u, z [shape=circle;style=filled;color=deepskyblue]; v [style=filled; color=green]; "G" [shape=tripleoctagon; style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; G -> {u, z} [dir=none, weight=1, penwidth=3]; u -> v; v -> z [label="{w}";color=red] }]

Contracting \(v\):

	The vertex \(v\) is removed from the graph

	The edges \(u \rightarrow v\) and \(v \rightarrow z\) are removed from the graph.

	A new edge \(u \rightarrow z\) is inserted represented with red color.

[image: digraph G { u, z [shape=circle;style=filled;color=deepskyblue]; "G" [shape=tripleoctagon; style=filled; color=deepskyblue;label = "Rest of the Graph"]; rankdir=LR; G -> {u, z} [dir=none, weight=1, penwidth=3]; u -> z [label="{v, w}";color=red] }]

Edge \(u \rightarrow z\) has the information of nodes that were contracted.

The cycle¶

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting contracted graph, after applying one operation, the set of vertices that can be contracted by another operation changes.

This implementation, cycles max_cycles times through operations_order .

<input>
do max_cycles times {
 for (operation in operations_order)
 { do operation }
}
<output>

Contracting sample data¶

In this section, building and using a contracted graph will be shown by example.

	The Sample Data for an undirected graph is used

	a dead end operation first followed by a linear operation.

	Construction of the graph in the database

	Contraction results

	Add additional columns

	Store contraction information

	The vertex table update

	The edge table update

	The contracted graph

	Vertices that belong to the contracted graph.

	Edges that belong to the contracted graph.

	Contracted graph

	Using the contracted graph

	Case 1: Both source and target belong to the contracted graph.

	Case 2: Source and/or target belong to an edge subgraph.

	Case 3: Source and/or target belong to a vertex.

Construction of the graph in the database¶

Original Data

The following query shows the original data involved in the contraction operation.

SELECT id, source, target, cost, reverse_cost
FROM edges ORDER BY id;
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 1 | 5 | 6 | 1 | 1
 2 | 6 | 10 | -1 | 1
 3 | 10 | 15 | -1 | 1
 4 | 6 | 7 | 1 | 1
 5 | 10 | 11 | 1 | -1
 6 | 1 | 3 | 1 | 1
 7 | 3 | 7 | 1 | 1
 8 | 7 | 11 | 1 | 1
 9 | 11 | 16 | 1 | 1
 10 | 7 | 8 | 1 | 1
 11 | 11 | 12 | 1 | -1
 12 | 8 | 12 | 1 | -1
 13 | 12 | 17 | 1 | -1
 14 | 8 | 9 | 1 | 1
 15 | 16 | 17 | 1 | 1
 16 | 15 | 16 | 1 | 1
 17 | 2 | 4 | 1 | 1
 18 | 13 | 14 | 1 | 1
(18 rows)

The original graph:

[image: _images/Fig6-undirected.png]

Contraction results¶

The results do not represent the contracted graph. They represent the changes done to the graph after applying the contraction algorithm.

Observe that vertices, for example, \(6\) do not appear in the results because it was not affected by the contraction algorithm.

SELECT * FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 array[1, 2], directed => false);
 type | id | contracted_vertices | source | target | cost
------+----+---------------------+--------+--------+------
 v | 4 | {2} | -1 | -1 | -1
 v | 7 | {1,3} | -1 | -1 | -1
 v | 14 | {13} | -1 | -1 | -1
 e | -1 | {5,6} | 7 | 10 | 2
 e | -2 | {8,9} | 7 | 12 | 2
 e | -3 | {17} | 12 | 16 | 2
 e | -4 | {15} | 10 | 16 | 2
(7 rows)

After doing the dead end contraction operation:

[image: _images/undirected_sampledata_b.png]
After doing the linear contraction operation to the graph above:

[image: _images/undirected_sampledata_c.png]
The process to create the contraction graph on the database:

Add additional columns¶

Adding extra columns to the edge_table and edge_table_vertices_pgr tables, where:

	Column

	Description

	contracted_vertices

	The vertices set belonging to the vertex/edge

	is_contracted

	On the vertex table

	when true the vertex is contracted, its not part of the contracted graph.

	when false the vertex is not contracted, its part of the contracted graph.

	is_new

	On the edge table

	when true the edge was generated by the contraction algorithm. its part of the contracted graph.

	when false the edge is an original edge, might be or not part of the contracted graph.

ALTER TABLE vertices ADD is_contracted BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE vertices ADD contracted_vertices BIGINT[];
ALTER TABLE
ALTER TABLE edges ADD is_new BOOLEAN DEFAULT false;
ALTER TABLE
ALTER TABLE edges ADD contracted_vertices BIGINT[];
ALTER TABLE

Store contraction information¶

Store the contraction results in a table

SELECT * INTO contraction_results
FROM pgr_contraction(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 array[1, 2], directed => false);
SELECT 7

The vertex table update¶

Use is_contracted column to indicate the vertices that are contracted.

UPDATE vertices
SET is_contracted = true
WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results);
UPDATE 10

Fill contracted_vertices with the information from the results tha belong to the vertices.

UPDATE vertices
SET contracted_vertices = contraction_results.contracted_vertices
FROM contraction_results
WHERE type = 'v' AND vertices.id = contraction_results.id;
UPDATE 3

The modified vertices table:

SELECT id, contracted_vertices, is_contracted
FROM vertices
ORDER BY id;
 id | contracted_vertices | is_contracted
----+---------------------+---------------
 1 | | t
 2 | | t
 3 | | t
 4 | {2} | f
 5 | | t
 6 | | t
 7 | {1,3} | f
 8 | | t
 9 | | t
 10 | | f
 11 | | f
 12 | | f
 13 | | t
 14 | {13} | f
 15 | | t
 16 | | f
 17 | | t
(17 rows)

The edge table update¶

Insert the new edges generated by pgr_contraction.

INSERT INTO edges(source, target, cost, reverse_cost, contracted_vertices, is_new)
SELECT source, target, cost, -1, contracted_vertices, true
FROM contraction_results
WHERE type = 'e';
INSERT 0 4

The modified edge_table.

SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_new
FROM edges
ORDER BY id;
 id | source | target | cost | reverse_cost | contracted_vertices | is_new
----+--------+--------+------+--------------+---------------------+--------
 1 | 5 | 6 | 1 | 1 | | f
 2 | 6 | 10 | -1 | 1 | | f
 3 | 10 | 15 | -1 | 1 | | f
 4 | 6 | 7 | 1 | 1 | | f
 5 | 10 | 11 | 1 | -1 | | f
 6 | 1 | 3 | 1 | 1 | | f
 7 | 3 | 7 | 1 | 1 | | f
 8 | 7 | 11 | 1 | 1 | | f
 9 | 11 | 16 | 1 | 1 | | f
 10 | 7 | 8 | 1 | 1 | | f
 11 | 11 | 12 | 1 | -1 | | f
 12 | 8 | 12 | 1 | -1 | | f
 13 | 12 | 17 | 1 | -1 | | f
 14 | 8 | 9 | 1 | 1 | | f
 15 | 16 | 17 | 1 | 1 | | f
 16 | 15 | 16 | 1 | 1 | | f
 17 | 2 | 4 | 1 | 1 | | f
 18 | 13 | 14 | 1 | 1 | | f
 19 | 7 | 10 | 2 | -1 | {5,6} | t
 20 | 7 | 12 | 2 | -1 | {8,9} | t
 21 | 12 | 16 | 2 | -1 | {17} | t
 22 | 10 | 16 | 2 | -1 | {15} | t
(22 rows)

The contracted graph¶

Vertices that belong to the contracted graph.¶

SELECT id
FROM vertices
WHERE is_contracted = false
ORDER BY id;
 id

 4
 7
 10
 11
 12
 14
 16
(7 rows)

Edges that belong to the contracted graph.¶

WITH
vertices_in_graph AS (
 SELECT id
 FROM vertices
 WHERE is_contracted = false
)
SELECT id, source, target, cost, reverse_cost, contracted_vertices
FROM edges
WHERE source IN (SELECT * FROM vertices_in_graph)
AND target IN (SELECT * FROM vertices_in_graph)
ORDER BY id;
 id | source | target | cost | reverse_cost | contracted_vertices
----+--------+--------+------+--------------+---------------------
 5 | 10 | 11 | 1 | -1 |
 8 | 7 | 11 | 1 | 1 |
 9 | 11 | 16 | 1 | 1 |
 11 | 11 | 12 | 1 | -1 |
 19 | 7 | 10 | 2 | -1 | {5,6}
 20 | 7 | 12 | 2 | -1 | {8,9}
 21 | 12 | 16 | 2 | -1 | {17}
 22 | 10 | 16 | 2 | -1 | {15}
(8 rows)

Contracted graph¶

[image: _images/newgraph.png]

Using the contracted graph¶

Using the contracted graph with pgr_dijkstra

There are three cases when calculating the shortest path between a given source and target in a contracted graph:

	Case 1: Both source and target belong to the contracted graph.

	Case 2: Source and/or target belong to an edge subgraph.

	Case 3: Source and/or target belong to a vertex.

Case 1: Both source and target belong to the contracted graph.¶

Using the Edges that belong to the contracted graph. on lines 11 to 20.

 1CREATE OR REPLACE FUNCTION my_dijkstra(
 2 departure BIGINT, destination BIGINT,
 3 OUT seq INTEGER, OUT path_seq INTEGER,
 4 OUT start_vid BIGINT, OUT end_vid BIGINT,
 5 OUT node BIGINT, OUT edge BIGINT,
 6 OUT cost FLOAT, OUT agg_cost FLOAT)
 7RETURNS SETOF RECORD AS
 8$BODY$
 9SELECT * FROM pgr_dijkstra(
10 $$
11 WITH
12 vertices_in_graph AS (
13 SELECT id
14 FROM vertices
15 WHERE is_contracted = false
16)
17 SELECT id, source, target, cost, reverse_cost
18 FROM edges
19 WHERE source IN (SELECT * FROM vertices_in_graph)
20 AND target IN (SELECT * FROM vertices_in_graph)
21 $$,
22 departure, destination, false);
23$BODY$
24LANGUAGE SQL VOLATILE;
25CREATE FUNCTION

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(10, 12);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 10 | 12 | 10 | 5 | 1 | 0
 2 | 2 | 10 | 12 | 11 | 11 | 1 | 1
 3 | 3 | 10 | 12 | 12 | -1 | 0 | 2
(3 rows)

Case 2

When source and/or target belong to an edge subgraph then a path is not found.

In this case, the contracted graph do not have an edge connecting with node \(4\).

SELECT * FROM my_dijkstra(15, 12);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

Case 3

When source and/or target belong to a vertex then a path is not found.

In this case, the contracted graph do not have an edge connecting with node \(7\) and of node \(4\) of the second case.

SELECT * FROM my_dijkstra(15, 1);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

Case 2: Source and/or target belong to an edge subgraph.¶

Refining the above function to include nodes that belong to an edge.

	The vertices that need to be expanded are calculated on lines 11 to 17.

	Adding to the contracted graph that additional section on lines 26 to 28.

 1CREATE OR REPLACE FUNCTION my_dijkstra(
 2 departure BIGINT, destination BIGINT,
 3 OUT seq INTEGER, OUT path_seq INTEGER,
 4 OUT start_vid BIGINT, OUT end_vid BIGINT,
 5 OUT node BIGINT, OUT edge BIGINT,
 6 OUT cost FLOAT, OUT agg_cost FLOAT)
 7RETURNS SETOF RECORD AS
 8$BODY$
 9SELECT * FROM pgr_dijkstra(
10 $$
11 WITH
12 edges_to_expand AS (
13 SELECT id
14 FROM edges
15 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices
16 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices
17),
18
19 vertices_in_graph AS (
20 SELECT id
21 FROM vertices
22 WHERE is_contracted = false
23
24 UNION
25
26 SELECT unnest(contracted_vertices)
27 FROM edges
28 WHERE id IN (SELECT id FROM edges_to_expand)
29)
30
31 SELECT id, source, target, cost, reverse_cost
32 FROM edges
33 WHERE source IN (SELECT * FROM vertices_in_graph)
34 AND target IN (SELECT * FROM vertices_in_graph)
35 $$,
36 departure, destination, false);
37$BODY$
38LANGUAGE SQL VOLATILE;
39CREATE FUNCTION

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(10, 12);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 10 | 12 | 10 | 5 | 1 | 0
 2 | 2 | 10 | 12 | 11 | 11 | 1 | 1
 3 | 3 | 10 | 12 | 12 | -1 | 0 | 2
(3 rows)

Case 2

When source and/or target belong to an edge subgraph, now, a path is found.

The routing graph now has an edge connecting with node \(4\).

SELECT * FROM my_dijkstra(15, 12);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 15 | 12 | 15 | 16 | 1 | 0
 2 | 2 | 15 | 12 | 16 | 21 | 2 | 1
 3 | 3 | 15 | 12 | 12 | -1 | 0 | 3
(3 rows)

Case 3

When source and/or target belong to a vertex then a path is not found.

In this case, the contracted graph do not have an edge connecting with node \(7\).

SELECT * FROM my_dijkstra(15, 1);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

Case 3: Source and/or target belong to a vertex.¶

Refining the above function to include nodes that belong to an edge.

	The vertices that need to be expanded are calculated on lines 19 to 24.

	Adding to the contracted graph that additional section on lines 38 to 40.

 1CREATE OR REPLACE FUNCTION my_dijkstra(
 2 departure BIGINT, destination BIGINT,
 3 OUT seq INTEGER, OUT path_seq INTEGER,
 4 OUT start_vid BIGINT, OUT end_vid BIGINT,
 5 OUT node BIGINT, OUT edge BIGINT,
 6 OUT cost FLOAT, OUT agg_cost FLOAT)
 7RETURNS SETOF RECORD AS
 8$BODY$
 9SELECT * FROM pgr_dijkstra(
10 $$
11 WITH
12 edges_to_expand AS (
13 SELECT id
14 FROM edges
15 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices
16 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices
17),
18
19 vertices_to_expand AS (
20 SELECT id
21 FROM vertices
22 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices
23 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices
24),
25
26 vertices_in_graph AS (
27 SELECT id
28 FROM vertices
29 WHERE is_contracted = false
30
31 UNION
32
33 SELECT unnest(contracted_vertices)
34 FROM edges
35 WHERE id IN (SELECT id FROM edges_to_expand)
36
37 UNION
38
39 SELECT unnest(contracted_vertices)
40 FROM vertices
41 WHERE id IN (SELECT id FROM vertices_to_expand)
42)
43
44 SELECT id, source, target, cost, reverse_cost
45 FROM edges
46 WHERE source IN (SELECT * FROM vertices_in_graph)
47 AND target IN (SELECT * FROM vertices_in_graph)
48 $$,
49 departure, destination, false);
50$BODY$
51LANGUAGE SQL VOLATILE;
52CREATE FUNCTION

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(10, 12);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 10 | 12 | 10 | 5 | 1 | 0
 2 | 2 | 10 | 12 | 11 | 11 | 1 | 1
 3 | 3 | 10 | 12 | 12 | -1 | 0 | 2
(3 rows)

Case 2

The code change do not affect this case so when source and/or target belong to an edge subgraph, a path is still found.

SELECT * FROM my_dijkstra(15, 12);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 15 | 12 | 15 | 16 | 1 | 0
 2 | 2 | 15 | 12 | 16 | 21 | 2 | 1
 3 | 3 | 15 | 12 | 12 | -1 | 0 | 3
(3 rows)

Case 3

When source and/or target belong to a vertex, now, a path is found.

Now, the routing graph has an edge connecting with node \(7\).

SELECT * FROM my_dijkstra(15, 1);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 15 | 1 | 15 | 3 | 1 | 0
 2 | 2 | 15 | 1 | 10 | 19 | 2 | 1
 3 | 3 | 15 | 1 | 7 | 7 | 1 | 3
 4 | 4 | 15 | 1 | 3 | 6 | 1 | 4
 5 | 5 | 15 | 1 | 1 | -1 | 0 | 5
(5 rows)

See Also¶

	pgr_contraction

	Sample Data

	https://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf

	https://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf

Indices and tables

	Index

	Search Page

Dijkstra - Family of functions¶

	pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.

	pgr_dijkstraCost - Get the aggregate cost of the shortest paths.

	pgr_dijkstraCostMatrix - Use pgr_dijkstra to create a costs matrix.

	pgr_drivingDistance - Use pgr_dijkstra to calculate catchament information.

	pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

	pgr_dijkstraNear - Proposed - Get the route to the nearest vertex.

	pgr_dijkstraNearCost - Proposed - Get the cost to the nearest vertex.

pgr_dijkstra¶

pgr_dijkstra — Shortest path using Dijkstra algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.5.0

	Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_dijkstra (One to One) added start_vid and end_vid columns.

	pgr_dijkstra (One to Many) added end_vid column.

	pgr_dijkstra (Many to One) added start_vid column.

	Version 3.1.0

	New Proposed functions:

	pgr_dijkstra (Combinations)

	Version 3.0.0

	Official functions

	Version 2.2.0

	New proposed functions:

	pgr_dijkstra (One to Many)

	pgr_dijkstra (Many to One)

	pgr_dijkstra (Many to Many)

	Version 2.1.0

	Signature change on pgr_dijkstra (One to One)

	Version 2.0.0

	Official pgr_dijkstra (One to One)

Description¶

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time: \(O(| start\ vids | * (V \log V + E))\)

Signatures¶

Summary

pgr_dijkstra(Edges SQL, start vid, end vid, [directed])

pgr_dijkstra(Edges SQL, start vid, end vids, [directed])

pgr_dijkstra(Edges SQL, start vids, end vid, [directed])

pgr_dijkstra(Edges SQL, start vids, end vids, [directed])

pgr_dijkstra(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

Warning

Breaking change on 3.5.0

Read the Migration guide about how to migrate from the old result columns to the new result columns.

One to One¶

pgr_dijkstra(Edges SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_Dijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 6, 10, true);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

One to Many¶

pgr_dijkstra(Edges SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 17\}\) on a directed

SELECT * FROM pgr_Dijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 6, ARRAY[10, 17]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 10 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 11 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(11 rows)

Many to One¶

pgr_dijkstra(Edges SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_Dijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], 17);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 4 | 4 | 1 | 17 | 11 | 11 | 1 | 3
 5 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 6 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 7 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 11 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(11 rows)

Many to Many¶

pgr_dijkstra(Edges SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_Dijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 10 | 7 | 4 | 1 | 2
 4 | 4 | 1 | 10 | 6 | 2 | 1 | 3
 5 | 5 | 1 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 7 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 8 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 9 | 4 | 1 | 17 | 11 | 9 | 1 | 3
 10 | 5 | 1 | 17 | 16 | 15 | 1 | 4
 11 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 12 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 13 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 14 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 15 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 16 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 17 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 18 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(18 rows)

Combinations¶

pgr_dijkstra(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_Dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 2 | 1 | 1
 5 | 3 | 5 | 10 | 10 | -1 | 0 | 2
 6 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 7 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 8 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 9 | 2 | 6 | 15 | 10 | 3 | 1 | 1
 10 | 3 | 6 | 15 | 15 | -1 | 0 | 2
(10 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_Dijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 16 | 1 | 0
 18 | 2 | 15 | 7 | 16 | 9 | 1 | 1
 19 | 3 | 15 | 7 | 11 | 8 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 2:

	Making start_vids the same as end_vids

SELECT * FROM pgr_Dijkstra(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 16 | 1 | 0
 18 | 2 | 15 | 7 | 16 | 9 | 1 | 1
 19 | 3 | 15 | 7 | 11 | 8 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_Dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

The examples of this section are based on the Sample Data network.

	For directed graphs with cost and reverse_cost columns

	1) Path from \(6\) to \(10\)

	2) Path from \(6\) to \(7\)

	3) Path from \(12\) to \(10\)

	4) Path from \(12\) to \(7\)

	5) Using One to Many to get the solution of examples 1 and 2

	6) Using Many to One to get the solution of examples 2 and 4

	7) Using Many to Many to get the solution of examples 1 to 4

	8) Using Combinations to get the solution of examples 1 to 3

	For undirected graphs with cost and reverse_cost columns

	9) Path from \(6\) to \(10\)

	10) Path from \(6\) to \(7\)

	11) Path from \(12\) to \(10\)

	12) Path from \(12\) to \(7\)

	13) Using One to Many to get the solution of examples 9 and 10

	14) Using Many to One to get the solution of examples 10 and 12

	15) Using Many to Many to get the solution of examples 9 to 12

	16) Using Combinations to get the solution of examples 9 to 11

	For directed graphs only with cost column

	17) Path from \(6\) to \(10\)

	18) Path from \(6\) to \(7\)

	19) Path from \(12\) to \(10\)

	20) Path from \(12\) to \(7\)

	21) Using One to Many to get the solution of examples 17 and 18

	22) Using Many to One to get the solution of examples 18 and 20

	23) Using Many to Many to get the solution of examples 17 to 20

	24) Using Combinations to get the solution of examples 17 to 19

	For undirected graphs only with cost column

	25) Path from \(6\) to \(10\)

	26) Path from \(6\) to \(7\)

	27) Path from \(12\) to \(10\)

	28) Path from \(12\) to \(7\)

	29) Using One to Many to get the solution of examples 25 and 26

	30) Using Many to One to get the solution of examples 26 and 28

	31) Using Many to Many to get the solution of examples 25 to 28

	32) Using Combinations to get the solution of examples 25 to 27

	Equvalences between signatures

	33) Using One to One

	34) Using One to Many

	35) Using Many to One

	36) Using Many to Many

	37) Using Combinations

For directed graphs with cost and reverse_cost columns¶

[image: Directed graph with cost and reverse cost columns¶]Directed graph with cost and reverse cost columns¶

1) Path from \(6\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

2) Path from \(6\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

3) Path from \(12\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 12, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 2 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 3 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(5 rows)

4) Path from \(12\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 12, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 12 | 7 | 12 | 13 | 1 | 0
 2 | 2 | 12 | 7 | 17 | 15 | 1 | 1
 3 | 3 | 12 | 7 | 16 | 9 | 1 | 2
 4 | 4 | 12 | 7 | 11 | 8 | 1 | 3
 5 | 5 | 12 | 7 | 7 | -1 | 0 | 4
(5 rows)

5) Using One to Many to get the solution of examples 1 and 2¶

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10, 7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(8 rows)

6) Using Many to One to get the solution of examples 2 and 4¶

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 12], 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 12 | 7 | 12 | 13 | 1 | 0
 4 | 2 | 12 | 7 | 17 | 15 | 1 | 1
 5 | 3 | 12 | 7 | 16 | 9 | 1 | 2
 6 | 4 | 12 | 7 | 11 | 8 | 1 | 3
 7 | 5 | 12 | 7 | 7 | -1 | 0 | 4
(7 rows)

7) Using Many to Many to get the solution of examples 1 to 4¶

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 12], ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 7 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 7 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 7 | 16 | 9 | 1 | 2
 12 | 4 | 12 | 7 | 11 | 8 | 1 | 3
 13 | 5 | 12 | 7 | 7 | -1 | 0 | 4
 14 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 15 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 16 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 17 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 18 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(18 rows)

8) Using Combinations to get the solution of examples 1 to 3¶

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

For undirected graphs with cost and reverse_cost columns¶

[image: Undirected graph with cost and reverse cost columns¶]Undirected graph with cost and reverse cost columns¶

9) Path from \(6\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 2 | 2 | 6 | 10 | 10 | -1 | 0 | 1
(2 rows)

10) Path from \(6\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 7,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

11) Path from \(12\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 12, 10,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 12 | 10 | 12 | 11 | 1 | 0
 2 | 2 | 12 | 10 | 11 | 5 | 1 | 1
 3 | 3 | 12 | 10 | 10 | -1 | 0 | 2
(3 rows)

12) Path from \(12\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 12, 7,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 12 | 7 | 12 | 12 | 1 | 0
 2 | 2 | 12 | 7 | 8 | 10 | 1 | 1
 3 | 3 | 12 | 7 | 7 | -1 | 0 | 2
(3 rows)

13) Using One to Many to get the solution of examples 9 and 10¶

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10,7],
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 4 | 2 | 6 | 10 | 10 | -1 | 0 | 1
(4 rows)

14) Using Many to One to get the solution of examples 10 and 12¶

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6,12], 7,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 12 | 7 | 12 | 12 | 1 | 0
 4 | 2 | 12 | 7 | 8 | 10 | 1 | 1
 5 | 3 | 12 | 7 | 7 | -1 | 0 | 2
(5 rows)

15) Using Many to Many to get the solution of examples 9 to 12¶

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 12], ARRAY[10,7],
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 4 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 5 | 1 | 12 | 7 | 12 | 12 | 1 | 0
 6 | 2 | 12 | 7 | 8 | 10 | 1 | 1
 7 | 3 | 12 | 7 | 7 | -1 | 0 | 2
 8 | 1 | 12 | 10 | 12 | 11 | 1 | 0
 9 | 2 | 12 | 10 | 11 | 5 | 1 | 1
 10 | 3 | 12 | 10 | 10 | -1 | 0 | 2
(10 rows)

16) Using Combinations to get the solution of examples 9 to 11¶

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)',
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 4 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 5 | 1 | 12 | 10 | 12 | 11 | 1 | 0
 6 | 2 | 12 | 10 | 11 | 5 | 1 | 1
 7 | 3 | 12 | 10 | 10 | -1 | 0 | 2
(7 rows)

For directed graphs only with cost column¶

[image: Directed graph only with cost column¶]Directed graph only with cost column¶

17) Path from \(6\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 6, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

18) Path from \(6\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 6, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

19) Path from \(12\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 12, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

20) Path from \(12\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 12, 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
(0 rows)

21) Using One to Many to get the solution of examples 17 and 18¶

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 6, ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

22) Using Many to One to get the solution of examples 18 and 20¶

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[6,12], 7
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

23) Using Many to Many to get the solution of examples 17 to 20¶

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[6, 12], ARRAY[10,7]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

24) Using Combinations to get the solution of examples 17 to 19¶

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

For undirected graphs only with cost column¶

[image: Undirected graph only with cost column¶]Undirected graph only with cost column¶

25) Path from \(6\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 6, 10,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 5 | 1 | 2
 4 | 4 | 6 | 10 | 10 | -1 | 0 | 3
(4 rows)

26) Path from \(6\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 6, 7,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
(2 rows)

27) Path from \(12\) to \(10\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 12, 10,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 12 | 10 | 12 | 11 | 1 | 0
 2 | 2 | 12 | 10 | 11 | 5 | 1 | 1
 3 | 3 | 12 | 10 | 10 | -1 | 0 | 2
(3 rows)

28) Path from \(12\) to \(7\)¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 12, 7,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 12 | 7 | 12 | 12 | 1 | 0
 2 | 2 | 12 | 7 | 8 | 10 | 1 | 1
 3 | 3 | 12 | 7 | 7 | -1 | 0 | 2
(3 rows)

29) Using One to Many to get the solution of examples 25 and 26¶

Paths \(\{6\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 6, ARRAY[10,7],
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 4 | 6 | 10 | 10 | -1 | 0 | 3
(6 rows)

30) Using Many to One to get the solution of examples 26 and 28¶

Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[6,12], 7,
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 12 | 7 | 12 | 12 | 1 | 0
 4 | 2 | 12 | 7 | 8 | 10 | 1 | 1
 5 | 3 | 12 | 7 | 7 | -1 | 0 | 2
(5 rows)

31) Using Many to Many to get the solution of examples 25 to 28¶

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[6, 12], ARRAY[10,7],
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 4 | 6 | 10 | 10 | -1 | 0 | 3
 7 | 1 | 12 | 7 | 12 | 12 | 1 | 0
 8 | 2 | 12 | 7 | 8 | 10 | 1 | 1
 9 | 3 | 12 | 7 | 7 | -1 | 0 | 2
 10 | 1 | 12 | 10 | 12 | 11 | 1 | 0
 11 | 2 | 12 | 10 | 11 | 5 | 1 | 1
 12 | 3 | 12 | 10 | 10 | -1 | 0 | 2
(12 rows)

32) Using Combinations to get the solution of examples 25 to 27¶

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)',
 false
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 4 | 6 | 10 | 10 | -1 | 0 | 3
 7 | 1 | 12 | 10 | 12 | 11 | 1 | 0
 8 | 2 | 12 | 10 | 11 | 5 | 1 | 1
 9 | 3 | 12 | 10 | 10 | -1 | 0 | 2
(9 rows)

Equvalences between signatures¶

The following examples find the path for \(\{6\}\rightarrow\{10\}\)

33) Using One to One¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

34) Using One to Many¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

35) Using Many to One¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6], 10
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

36) Using Many to Many¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6], ARRAY[10]
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

37) Using Combinations¶

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES(6, 10)) AS combinations (source, target)'
);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

See Also¶

	https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

	The queries use the Sample Data network.

Indices and tables

	Index

	Search Page

pgr_dijkstraCost¶

pgr_dijkstraCost - Total cost of the shortest path using Dijkstra algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.1.0

	New proposed signature:

	pgr_dijkstraCost (Combinations)

	Version 2.2.0

	New Official function

Description¶

The pgr_dijkstraCost function sumarizes of the cost of the shortest path using Dijkstra Algorithm.

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time: \(O(| start\ vids | * (V \log V + E))\)

	It does not return a path.

	Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of \((u, v)\) is the same as for \((v, u)\).

	Any duplicated value in the start or end vertex identifiers are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_dijkstraCost(Edges SQL, start vid, end vid, [directed])

pgr_dijkstraCost(Edges SQL, start vid, end vids, [directed])

pgr_dijkstraCost(Edges SQL, start vids, end vid, [directed])

pgr_dijkstraCost(Edges SQL, start vids, end vids, [directed])

pgr_dijkstraCost(Edges SQL, Combinations SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

One to One¶

pgr_dijkstraCost(Edges SQL, start vid, end vid, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10, true);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
(1 row)

One to Many¶

pgr_dijkstraCost(Edges SQL, start vid, end vids, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10, 17]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 10 | 5
 6 | 17 | 4
(2 rows)

Many to One¶

pgr_dijkstraCost(Edges SQL, start vids, end vid, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], 17);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 17 | 5
 6 | 17 | 4
(2 rows)

Many to Many¶

pgr_dijkstraCost(Edges SQL, start vids, end vids, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 1 | 10 | 4
 1 | 17 | 5
 6 | 10 | 1
 6 | 17 | 4
(4 rows)

Combinations¶

pgr_dijkstraCost(Edges SQL, Combinations SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 2
 6 | 5 | 1
 6 | 15 | 2
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 2:

	Making start_vids the same as end_vids

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 7 | 10 | 4
 7 | 15 | 3
 10 | 7 | 2
 10 | 15 | 3
 15 | 7 | 3
 15 | 10 | 1
(6 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_dijkstraCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 start_vid | end_vid | agg_cost
-----------+---------+----------
 6 | 7 | 1
 6 | 10 | 5
 12 | 10 | 4
(3 rows)

See Also¶

	Dijkstra - Family of functions

	Sample Data

	https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Indices and tables

	Index

	Search Page

pgr_dijkstraCostMatrix¶

pgr_dijkstraCostMatrix - Calculates a cost matrix using pgr_dijkstra.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	Official function

	Version 2.3.0

	New proposed function

Description¶

Using Dijkstra algorithm, calculate and return a cost matrix.

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

	Can be used as input to pgr_TSP.

	Use directly when the resulting matrix is symmetric and there is no \(\infty\) value.

	It will be the users responsibility to make the matrix symmetric.

	By using geometric or harmonic average of the non symmetric values.

	By using max or min the non symmetric values.

	By setting the upper triangle to be the mirror image of the lower triangle.

	By setting the lower triangle to be the mirror image of the upper triangle.

	It is also the users responsibility to fix an \(\infty\) value.

	Each function works as part of the family it belongs to.

	It does not return a path.

	Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.

	Process is done only on edges with positive costs.

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The aggregate cost in the non included values (v, v) is 0.

	When the starting vertex and ending vertex are the different and there is no path.

	The aggregate cost in the non included values (u, v) is \(\infty\).

	Let be the case the values returned are stored in a table:

	The unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of (u, v) is the same as for (v, u).

	Any duplicated value in the start vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_dijkstraCostMatrix(Edges SQL, start vids, [directed])

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an undirected graph

SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 (SELECT array_agg(id)
 FROM vertices
 WHERE id IN (5, 6, 10, 15)),
 false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 5 | 6 | 1
 5 | 10 | 2
 5 | 15 | 3
 6 | 5 | 1
 6 | 10 | 1
 6 | 15 | 2
 10 | 5 | 2
 10 | 6 | 1
 10 | 15 | 1
 15 | 5 | 3
 15 | 6 | 2
 15 | 10 | 1
(12 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Example:

	Use with pgr_TSP.

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_dijkstraCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 (SELECT array_agg(id)
 FROM vertices
 WHERE id IN (5, 6, 10, 15)),
 false)
 $$);
NOTICE: pgr_TSP no longer solving with simulated annaeling
HINT: Ignoring annaeling parameters
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | 5 | 0 | 0
 2 | 6 | 1 | 1
 3 | 10 | 1 | 2
 4 | 15 | 1 | 3
 5 | 5 | 3 | 6
(5 rows)

See Also¶

	Dijkstra - Family of functions

	Cost Matrix - Category

	Traveling Sales Person - Family of functions

	Sample Data

Indices and tables

	Index

	Search Page

pgr_drivingDistance¶

pgr_drivingDistance - Returns the driving distance from a start node.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

Version 3.6.0

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	pgr_drivingdistance (Single vertex)

	Added depth and start_vid result columns.

	pgr_drivingdistance (Multiple vertices)

	Result column name change: from_v to start_vid.

	Added depth and pred result columns.

Version 2.1.0

	Signature change pgr_drivingDistance(single vertex)

	New Official pgr_drivingDistance(multiple vertices)

Version 2.0.0

	Official:: pgr_drivingDistance(single vertex)

Description¶

Using the Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value distance. The edges extracted will conform to the corresponding spaning tree.

Signatures¶

pgr_drivingDistance(Edges SQL, Root vid, distance, [directed])

pgr_drivingDistance(Edges SQL, Root vids, distance, [options])

options: [directed, equicost]

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single Vertex¶

pgr_drivingDistance(Edges SQL, Root vid, distance, [directed])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	From vertex \(11\) for a distance of \(3.0\)

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 11, 3.0);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 11 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 11 | 7 | 8 | 1 | 1
 3 | 1 | 11 | 11 | 12 | 11 | 1 | 1
 4 | 1 | 11 | 11 | 16 | 9 | 1 | 1
 5 | 2 | 11 | 7 | 3 | 7 | 1 | 2
 6 | 2 | 11 | 7 | 6 | 4 | 1 | 2
 7 | 2 | 11 | 7 | 8 | 10 | 1 | 2
 8 | 2 | 11 | 16 | 15 | 16 | 1 | 2
 9 | 2 | 11 | 16 | 17 | 15 | 1 | 2
 10 | 3 | 11 | 3 | 1 | 6 | 1 | 3
 11 | 3 | 11 | 6 | 5 | 1 | 1 | 3
 12 | 3 | 11 | 8 | 9 | 14 | 1 | 3
 13 | 3 | 11 | 15 | 10 | 3 | 1 | 3
(13 rows)

Multiple Vertices¶

pgr_drivingDistance(Edges SQL, Root vids, distance, [options])

options: [directed, equicost]

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	From vertices \(\{11, 16\}\) for a distance of \(3.0\) with equi-cost on a directed graph

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 array[11, 16], 3.0, equicost => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 11 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 11 | 7 | 8 | 1 | 1
 3 | 1 | 11 | 11 | 12 | 11 | 1 | 1
 4 | 2 | 11 | 7 | 3 | 7 | 1 | 2
 5 | 2 | 11 | 7 | 6 | 4 | 1 | 2
 6 | 2 | 11 | 7 | 8 | 10 | 1 | 2
 7 | 3 | 11 | 3 | 1 | 6 | 1 | 3
 8 | 3 | 11 | 6 | 5 | 1 | 1 | 3
 9 | 3 | 11 | 8 | 9 | 14 | 1 | 3
 10 | 0 | 16 | 16 | 16 | -1 | 0 | 0
 11 | 1 | 16 | 16 | 15 | 16 | 1 | 1
 12 | 1 | 16 | 16 | 17 | 15 | 1 | 1
 13 | 2 | 16 | 15 | 10 | 3 | 1 | 2
(13 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Driving distance optional parameters¶

	Column

	Type

	Default

	Description

	equicost

	BOOLEAN

	true

	
	When true the node will only appear in the closest start_vid list. Tie brakes are arbitrary.

	When false which resembles several calls using the single vertex signature.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example:

	From vertices \(\{11, 16\}\) for a distance of \(3.0\) on an undirected graph

SELECT * FROM pgr_drivingDistance(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 array[11, 16], 3.0, directed => false);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 11 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 11 | 7 | 8 | 1 | 1
 3 | 1 | 11 | 11 | 10 | 5 | 1 | 1
 4 | 1 | 11 | 11 | 12 | 11 | 1 | 1
 5 | 1 | 11 | 11 | 16 | 9 | 1 | 1
 6 | 2 | 11 | 7 | 3 | 7 | 1 | 2
 7 | 2 | 11 | 10 | 6 | 2 | 1 | 2
 8 | 2 | 11 | 7 | 8 | 10 | 1 | 2
 9 | 2 | 11 | 10 | 15 | 3 | 1 | 2
 10 | 2 | 11 | 16 | 17 | 15 | 1 | 2
 11 | 3 | 11 | 3 | 1 | 6 | 1 | 3
 12 | 3 | 11 | 6 | 5 | 1 | 1 | 3
 13 | 3 | 11 | 8 | 9 | 14 | 1 | 3
 14 | 0 | 16 | 16 | 16 | -1 | 0 | 0
 15 | 1 | 16 | 16 | 11 | 9 | 1 | 1
 16 | 1 | 16 | 16 | 15 | 16 | 1 | 1
 17 | 1 | 16 | 16 | 17 | 15 | 1 | 1
 18 | 2 | 16 | 11 | 7 | 8 | 1 | 2
 19 | 2 | 16 | 11 | 10 | 5 | 1 | 2
 20 | 2 | 16 | 17 | 12 | 13 | 1 | 2
 21 | 3 | 16 | 7 | 3 | 7 | 1 | 3
 22 | 3 | 16 | 7 | 6 | 4 | 1 | 3
 23 | 3 | 16 | 7 | 8 | 10 | 1 | 3
(23 rows)

See Also¶

	pgr_alphaShape - Alpha shape computation

	Sample Data network.

Indices and tables

	Index

	Search Page

pgr_KSP¶

pgr_KSP — Yen’s algorithm for K shortest paths using Dijkstra.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

Version 3.6.0

	Result columns standarized to: (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_ksp (One to One)

	Added start_vid and end_vid result columns.

	New overload functions:

	pgr_ksp (One to Many)

	pgr_ksp (Many to One)

	pgr_ksp (Many to Many)

	pgr_ksp (Combinations)

Version 2.1.0

	Signature change

	Old signature no longer supported

Version 2.0.0

	Official function

Description¶

The K shortest path routing algorithm based on Yen’s algorithm. “K” is the number of shortest paths desired.

Signatures¶

Summary

pgr_KSP(Edges SQL, start vid, end vid, K, [options])

pgr_KSP(Edges SQL, start vid, end vids, K, [options])

pgr_KSP(Edges SQL, start vids, end vid, K, [options])

pgr_KSP(Edges SQL, start vids, end vids, K, [options])

pgr_KSP(Edges SQL, Combinations SQL, K, [options])

options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_KSP(Edges SQL, start vid, end vid, K, [options])

options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Get 2 paths from \(6\) to \(17\) on a directed graph.

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 17, 2);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 2 | 1 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 3 | 1 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 4 | 1 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 5 | 1 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 6 | 2 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 7 | 2 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 9 | 2 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 10 | 2 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(10 rows)

One to Many¶

pgr_KSP(Edges SQL, start vid, end vids, K, [options])

options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Get 2 paths from vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph.

SELECT * FROM pgr_KSP(
 'select id, source, target, cost, reverse_cost from edges',
 6, ARRAY[10, 17], 2);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 1 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 1 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 1 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 1 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 1 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 2 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 8 | 2 | 2 | 6 | 10 | 7 | 10 | 1 | 1
 9 | 2 | 3 | 6 | 10 | 8 | 12 | 1 | 2
 10 | 2 | 4 | 6 | 10 | 12 | 13 | 1 | 3
 11 | 2 | 5 | 6 | 10 | 17 | 15 | 1 | 4
 12 | 2 | 6 | 6 | 10 | 16 | 16 | 1 | 5
 13 | 2 | 7 | 6 | 10 | 15 | 3 | 1 | 6
 14 | 2 | 8 | 6 | 10 | 10 | -1 | 0 | 7
 15 | 3 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 16 | 3 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 17 | 3 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 18 | 3 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 19 | 3 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 20 | 4 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 21 | 4 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 22 | 4 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 23 | 4 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 24 | 4 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(24 rows)

Many to One¶

pgr_KSP(Edges SQL, start vids, end vid, K, [options])

options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Get 2 paths from vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph.

SELECT * FROM pgr_KSP(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], 17, 2);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 2 | 1 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 3 | 1 | 3 | 1 | 17 | 7 | 10 | 1 | 2
 4 | 1 | 4 | 1 | 17 | 8 | 12 | 1 | 3
 5 | 1 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 6 | 1 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 7 | 2 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 8 | 2 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 9 | 2 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 10 | 2 | 4 | 1 | 17 | 11 | 9 | 1 | 3
 11 | 2 | 5 | 1 | 17 | 16 | 15 | 1 | 4
 12 | 2 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 13 | 3 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 14 | 3 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 15 | 3 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 16 | 3 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 17 | 3 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 18 | 4 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 19 | 4 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 20 | 4 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 21 | 4 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 22 | 4 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(22 rows)

Many to Many¶

pgr_KSP(Edges SQL, start vids, end vids, K, [options])

options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Get 2 paths vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on a directed graph.

SELECT * FROM pgr_KSP(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], ARRAY[10, 17], 2);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 1 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 1 | 3 | 1 | 10 | 7 | 8 | 1 | 2
 4 | 1 | 4 | 1 | 10 | 11 | 9 | 1 | 3
 5 | 1 | 5 | 1 | 10 | 16 | 16 | 1 | 4
 6 | 1 | 6 | 1 | 10 | 15 | 3 | 1 | 5
 7 | 1 | 7 | 1 | 10 | 10 | -1 | 0 | 6
 8 | 2 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 9 | 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 10 | 2 | 3 | 1 | 10 | 7 | 10 | 1 | 2
 11 | 2 | 4 | 1 | 10 | 8 | 12 | 1 | 3
 12 | 2 | 5 | 1 | 10 | 12 | 13 | 1 | 4
 13 | 2 | 6 | 1 | 10 | 17 | 15 | 1 | 5
 14 | 2 | 7 | 1 | 10 | 16 | 16 | 1 | 6
 15 | 2 | 8 | 1 | 10 | 15 | 3 | 1 | 7
 16 | 2 | 9 | 1 | 10 | 10 | -1 | 0 | 8
 17 | 3 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 18 | 3 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 19 | 3 | 3 | 1 | 17 | 7 | 10 | 1 | 2
 20 | 3 | 4 | 1 | 17 | 8 | 12 | 1 | 3
 21 | 3 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 22 | 3 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 23 | 4 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 24 | 4 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 25 | 4 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 26 | 4 | 4 | 1 | 17 | 11 | 9 | 1 | 3
 27 | 4 | 5 | 1 | 17 | 16 | 15 | 1 | 4
 28 | 4 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 29 | 5 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 30 | 5 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 31 | 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 32 | 5 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 33 | 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 34 | 5 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 35 | 6 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 36 | 6 | 2 | 6 | 10 | 7 | 10 | 1 | 1
 37 | 6 | 3 | 6 | 10 | 8 | 12 | 1 | 2
 38 | 6 | 4 | 6 | 10 | 12 | 13 | 1 | 3
 39 | 6 | 5 | 6 | 10 | 17 | 15 | 1 | 4
 40 | 6 | 6 | 6 | 10 | 16 | 16 | 1 | 5
 41 | 6 | 7 | 6 | 10 | 15 | 3 | 1 | 6
 42 | 6 | 8 | 6 | 10 | 10 | -1 | 0 | 7
 43 | 7 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 44 | 7 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 45 | 7 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 46 | 7 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 47 | 7 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 48 | 8 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 49 | 8 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 50 | 8 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 51 | 8 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 52 | 8 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(52 rows)

Combinations¶

pgr_KSP(Edges SQL, Combinations SQL, K, [options])

options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an directed graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations', 2);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 1 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 2 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 2 | 5 | 10 | 6 | 4 | 1 | 1
 5 | 2 | 3 | 5 | 10 | 7 | 8 | 1 | 2
 6 | 2 | 4 | 5 | 10 | 11 | 9 | 1 | 3
 7 | 2 | 5 | 5 | 10 | 16 | 16 | 1 | 4
 8 | 2 | 6 | 5 | 10 | 15 | 3 | 1 | 5
 9 | 2 | 7 | 5 | 10 | 10 | -1 | 0 | 6
 10 | 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 11 | 3 | 2 | 5 | 10 | 6 | 4 | 1 | 1
 12 | 3 | 3 | 5 | 10 | 7 | 10 | 1 | 2
 13 | 3 | 4 | 5 | 10 | 8 | 12 | 1 | 3
 14 | 3 | 5 | 5 | 10 | 12 | 13 | 1 | 4
 15 | 3 | 6 | 5 | 10 | 17 | 15 | 1 | 5
 16 | 3 | 7 | 5 | 10 | 16 | 16 | 1 | 6
 17 | 3 | 8 | 5 | 10 | 15 | 3 | 1 | 7
 18 | 3 | 9 | 5 | 10 | 10 | -1 | 0 | 8
 19 | 4 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 20 | 4 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 21 | 5 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 22 | 5 | 2 | 6 | 15 | 7 | 8 | 1 | 1
 23 | 5 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 24 | 5 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 25 | 5 | 5 | 6 | 15 | 15 | -1 | 0 | 4
 26 | 6 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 27 | 6 | 2 | 6 | 15 | 7 | 10 | 1 | 1
 28 | 6 | 3 | 6 | 15 | 8 | 12 | 1 | 2
 29 | 6 | 4 | 6 | 15 | 12 | 13 | 1 | 3
 30 | 6 | 5 | 6 | 15 | 17 | 15 | 1 | 4
 31 | 6 | 6 | 6 | 15 | 16 | 16 | 1 | 5
 32 | 6 | 7 | 6 | 15 | 15 | -1 | 0 | 6
(32 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	SQL query as described.

	start vid

	ANY-INTEGER

	Identifier of the departure vertex.

	end vid

	ANY-INTEGER

	Identifier of the destination vertex.

	K

	ANY-INTEGER

	Number of required paths.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

KSP Optional parameters¶

	Column

	Type

	Default

	Description

	heap_paths

	BOOLEAN

	false

	
	When false Returns at most K paths.

	When true all the calculated paths while processing are returned.

	Roughly, when the shortest path has N edges, the heap will contain about than N * K paths for small value of K and K > 5.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	\(0\) for the last node of the path.

	agg_cost

	FLOAT

	Aggregate cost from start vid to node.

Additional Examples¶

	Example:

	Get 2 paths from \(6\) to \(17\) on an undirected graph

Also get the paths in the heap.

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 17, 2,
 directed => false, heap_paths => true
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 2 | 1 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 3 | 1 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 4 | 1 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 5 | 1 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 6 | 2 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 7 | 2 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 9 | 2 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 10 | 2 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 11 | 3 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 12 | 3 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 13 | 3 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 14 | 3 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 15 | 3 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 16 | 4 | 1 | 6 | 17 | 6 | 2 | 1 | 0
 17 | 4 | 2 | 6 | 17 | 10 | 5 | 1 | 1
 18 | 4 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 19 | 4 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 20 | 4 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(20 rows)

	Example:

	Get 2 paths using combinations table on an undirected graph

Also get the paths in the heap.

SELECT * FROM pgr_KSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations', 2, directed => false, heap_paths => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 1 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 2 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 2 | 5 | 10 | 6 | 2 | 1 | 1
 5 | 2 | 3 | 5 | 10 | 10 | -1 | 0 | 2
 6 | 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 7 | 3 | 2 | 5 | 10 | 6 | 4 | 1 | 1
 8 | 3 | 3 | 5 | 10 | 7 | 8 | 1 | 2
 9 | 3 | 4 | 5 | 10 | 11 | 5 | 1 | 3
 10 | 3 | 5 | 5 | 10 | 10 | -1 | 0 | 4
 11 | 4 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 12 | 4 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 13 | 5 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 14 | 5 | 2 | 6 | 15 | 10 | 3 | 1 | 1
 15 | 5 | 3 | 6 | 15 | 15 | -1 | 0 | 2
 16 | 6 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 17 | 6 | 2 | 6 | 15 | 7 | 8 | 1 | 1
 18 | 6 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 19 | 6 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 20 | 6 | 5 | 6 | 15 | 15 | -1 | 0 | 4
 21 | 7 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 22 | 7 | 2 | 6 | 15 | 10 | 5 | 1 | 1
 23 | 7 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 24 | 7 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 25 | 7 | 5 | 6 | 15 | 15 | -1 | 0 | 4
(25 rows)

	Example:

	Get 2 paths from vertices \(\{6, 1\}\) to vertex \(17\) on a undirected graph.

SELECT * FROM pgr_KSP(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], 17, 2, directed => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 2 | 1 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 3 | 1 | 3 | 1 | 17 | 7 | 10 | 1 | 2
 4 | 1 | 4 | 1 | 17 | 8 | 12 | 1 | 3
 5 | 1 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 6 | 1 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 7 | 2 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 8 | 2 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 9 | 2 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 10 | 2 | 4 | 1 | 17 | 11 | 9 | 1 | 3
 11 | 2 | 5 | 1 | 17 | 16 | 15 | 1 | 4
 12 | 2 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 13 | 3 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 14 | 3 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 15 | 3 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 16 | 3 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 17 | 3 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 18 | 4 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 19 | 4 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 20 | 4 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 21 | 4 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 22 | 4 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(22 rows)

	Example:

	Get 2 paths vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on a directed graph.

Also get the paths in the heap.

SELECT * FROM pgr_KSP(
 'select id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], ARRAY[10, 17], 2, heap_paths => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 1 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 1 | 3 | 1 | 10 | 7 | 8 | 1 | 2
 4 | 1 | 4 | 1 | 10 | 11 | 9 | 1 | 3
 5 | 1 | 5 | 1 | 10 | 16 | 16 | 1 | 4
 6 | 1 | 6 | 1 | 10 | 15 | 3 | 1 | 5
 7 | 1 | 7 | 1 | 10 | 10 | -1 | 0 | 6
 8 | 2 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 9 | 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 10 | 2 | 3 | 1 | 10 | 7 | 10 | 1 | 2
 11 | 2 | 4 | 1 | 10 | 8 | 12 | 1 | 3
 12 | 2 | 5 | 1 | 10 | 12 | 13 | 1 | 4
 13 | 2 | 6 | 1 | 10 | 17 | 15 | 1 | 5
 14 | 2 | 7 | 1 | 10 | 16 | 16 | 1 | 6
 15 | 2 | 8 | 1 | 10 | 15 | 3 | 1 | 7
 16 | 2 | 9 | 1 | 10 | 10 | -1 | 0 | 8
 17 | 3 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 18 | 3 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 19 | 3 | 3 | 1 | 10 | 7 | 8 | 1 | 2
 20 | 3 | 4 | 1 | 10 | 11 | 11 | 1 | 3
 21 | 3 | 5 | 1 | 10 | 12 | 13 | 1 | 4
 22 | 3 | 6 | 1 | 10 | 17 | 15 | 1 | 5
 23 | 3 | 7 | 1 | 10 | 16 | 16 | 1 | 6
 24 | 3 | 8 | 1 | 10 | 15 | 3 | 1 | 7
 25 | 3 | 9 | 1 | 10 | 10 | -1 | 0 | 8
 26 | 4 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 27 | 4 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 28 | 4 | 3 | 1 | 17 | 7 | 10 | 1 | 2
 29 | 4 | 4 | 1 | 17 | 8 | 12 | 1 | 3
 30 | 4 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 31 | 4 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 32 | 5 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 33 | 5 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 34 | 5 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 35 | 5 | 4 | 1 | 17 | 11 | 11 | 1 | 3
 36 | 5 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 37 | 5 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 38 | 6 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 39 | 6 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 40 | 6 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 41 | 6 | 4 | 1 | 17 | 11 | 9 | 1 | 3
 42 | 6 | 5 | 1 | 17 | 16 | 15 | 1 | 4
 43 | 6 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 44 | 7 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 45 | 7 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 46 | 7 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 47 | 7 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 48 | 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 49 | 7 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 50 | 8 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 51 | 8 | 2 | 6 | 10 | 7 | 10 | 1 | 1
 52 | 8 | 3 | 6 | 10 | 8 | 12 | 1 | 2
 53 | 8 | 4 | 6 | 10 | 12 | 13 | 1 | 3
 54 | 8 | 5 | 6 | 10 | 17 | 15 | 1 | 4
 55 | 8 | 6 | 6 | 10 | 16 | 16 | 1 | 5
 56 | 8 | 7 | 6 | 10 | 15 | 3 | 1 | 6
 57 | 8 | 8 | 6 | 10 | 10 | -1 | 0 | 7
 58 | 9 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 59 | 9 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 60 | 9 | 3 | 6 | 10 | 11 | 11 | 1 | 2
 61 | 9 | 4 | 6 | 10 | 12 | 13 | 1 | 3
 62 | 9 | 5 | 6 | 10 | 17 | 15 | 1 | 4
 63 | 9 | 6 | 6 | 10 | 16 | 16 | 1 | 5
 64 | 9 | 7 | 6 | 10 | 15 | 3 | 1 | 6
 65 | 9 | 8 | 6 | 10 | 10 | -1 | 0 | 7
 66 | 10 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 67 | 10 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 68 | 10 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 69 | 10 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 70 | 10 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 71 | 11 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 72 | 11 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 73 | 11 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 74 | 11 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 75 | 11 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 76 | 12 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 77 | 12 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 78 | 12 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 79 | 12 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 80 | 12 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(80 rows)

See Also¶

	K shortest paths - Category

	Sample Data

	https://en.wikipedia.org/wiki/K_shortest_path_routing

Indices and tables

	Index

	Search Page

pgr_dijkstraVia - Proposed¶

pgr_dijkstraVia — Route that goes through a list of vertices.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 2.2.0

	New proposed function

Description¶

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between \(vertex_i\) and \(vertex_{i+1}\) for all \(i < size_of(via\;vertices)\).

	Route:

	is a sequence of paths.

	Path:

	is a section of the route.

Signatures¶

One Via¶

pgr_dijkstraVia(Edges SQL, via vertices, [options])

options: [directed, strict, U_turn_on_edge]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost)

OR EMPTY SET

	Example:

	Find the route that visits the vertices \(\{5, 1, 8\}\) in that order on an directed graph.

SELECT * FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 1, 8]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 5 | 1 | 5 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 5 | 1 | 6 | 4 | 1 | 1 | 1
 3 | 1 | 3 | 5 | 1 | 7 | 7 | 1 | 2 | 2
 4 | 1 | 4 | 5 | 1 | 3 | 6 | 1 | 3 | 3
 5 | 1 | 5 | 5 | 1 | 1 | -1 | 0 | 4 | 4
 6 | 2 | 1 | 1 | 8 | 1 | 6 | 1 | 0 | 4
 7 | 2 | 2 | 1 | 8 | 3 | 7 | 1 | 1 | 5
 8 | 2 | 3 | 1 | 8 | 7 | 10 | 1 | 2 | 6
 9 | 2 | 4 | 1 | 8 | 8 | -2 | 0 | 3 | 7
(9 rows)

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	SQL query as described.

	via vertices

	ARRAY [ANY-INTEGER]

	
	Array of ordered vertices identifiers that are going to be visited.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Via optional parameters¶

	Parameter

	Type

	Default

	Description

	strict

	BOOLEAN

	false

	
	When true if a path is missing stops and returns EMPTY SET

	When false ignores missing paths returning all paths found

	U_turn_on_edge

	BOOLEAN

	true

	
	When true departing from a visited vertex will not try to avoid

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Identifier of a path. Has value 1 for the first path.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last node of the path.

	-2 for the last node of the route.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	route_agg_cost

	FLOAT

	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Additional Examples¶

	The main query

	Aggregate cost of the third path.

	Route’s aggregate cost of the route at the end of the third path.

	Nodes visited in the route.

	The aggregate costs of the route when the visited vertices are reached.

	Status of “passes in front” or “visits” of the nodes.

All this examples are about the route that visits the vertices \(\{5, 7, 1, 8, 15\}\) in that order on a directed graph.

The main query¶

SELECT * FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 7, 1, 8, 15]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 5 | 7 | 5 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 5 | 7 | 6 | 4 | 1 | 1 | 1
 3 | 1 | 3 | 5 | 7 | 7 | -1 | 0 | 2 | 2
 4 | 2 | 1 | 7 | 1 | 7 | 7 | 1 | 0 | 2
 5 | 2 | 2 | 7 | 1 | 3 | 6 | 1 | 1 | 3
 6 | 2 | 3 | 7 | 1 | 1 | -1 | 0 | 2 | 4
 7 | 3 | 1 | 1 | 8 | 1 | 6 | 1 | 0 | 4
 8 | 3 | 2 | 1 | 8 | 3 | 7 | 1 | 1 | 5
 9 | 3 | 3 | 1 | 8 | 7 | 10 | 1 | 2 | 6
 10 | 3 | 4 | 1 | 8 | 8 | -1 | 0 | 3 | 7
 11 | 4 | 1 | 8 | 15 | 8 | 12 | 1 | 0 | 7
 12 | 4 | 2 | 8 | 15 | 12 | 13 | 1 | 1 | 8
 13 | 4 | 3 | 8 | 15 | 17 | 15 | 1 | 2 | 9
 14 | 4 | 4 | 8 | 15 | 16 | 16 | 1 | 3 | 10
 15 | 4 | 5 | 8 | 15 | 15 | -2 | 0 | 4 | 11
(15 rows)

Aggregate cost of the third path.¶

SELECT agg_cost FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 7, 1, 8, 15])
WHERE path_id = 3 AND edge <0;
 agg_cost

 3
(1 row)

Route’s aggregate cost of the route at the end of the third path.¶

SELECT route_agg_cost FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 7, 1, 8, 15])
WHERE path_id = 3 AND edge < 0;
 route_agg_cost

 7
(1 row)

Nodes visited in the route.¶

SELECT row_number() over () as node_seq, node
FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 7, 1, 8, 15])
WHERE edge <> -1 ORDER BY seq;
 node_seq | node
----------+------
 1 | 5
 2 | 6
 3 | 7
 4 | 3
 5 | 1
 6 | 3
 7 | 7
 8 | 8
 9 | 12
 10 | 17
 11 | 16
 12 | 15
(12 rows)

The aggregate costs of the route when the visited vertices are reached.¶

SELECT path_id, route_agg_cost FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 7, 1, 8, 15])
WHERE edge < 0;
 path_id | route_agg_cost
---------+----------------
 1 | 2
 2 | 4
 3 | 7
 4 | 11
(4 rows)

Status of “passes in front” or “visits” of the nodes.¶

SELECT seq, route_agg_cost, node, agg_cost ,
 CASE WHEN edge = -1 THEN 'visits'
 ELSE 'passes in front'
 END as status
FROM pgr_dijkstraVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 ARRAY[5, 7, 1, 8, 15])
WHERE agg_cost <> 0 or seq = 1;
 seq | route_agg_cost | node | agg_cost | status
-----+----------------+------+----------+-----------------
 1 | 0 | 5 | 0 | passes in front
 2 | 1 | 6 | 1 | passes in front
 3 | 2 | 7 | 2 | visits
 5 | 3 | 3 | 1 | passes in front
 6 | 4 | 1 | 2 | visits
 8 | 5 | 3 | 1 | passes in front
 9 | 6 | 7 | 2 | passes in front
 10 | 7 | 8 | 3 | visits
 12 | 8 | 12 | 1 | passes in front
 13 | 9 | 17 | 2 | passes in front
 14 | 10 | 16 | 3 | passes in front
 15 | 11 | 15 | 4 | passes in front
(12 rows)

See Also¶

	Via - Category.

	Dijkstra - Family of functions.

	Sample Data network.

	https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Indices and tables

	Index

	Search Page

pgr_dijkstraNear - Proposed¶

pgr_dijkstraNear — Using Dijkstra’s algorithm, finds the route that leads to the nearest vertex.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.3.0

	Promoted to proposed function

	Version 3.2.0

	New experimental function

Description¶

Given a graph, a starting vertex and a set of ending vertices, this function finds the shortest path from the starting vertex to the nearest ending vertex.

Characteristics¶

	Uses Dijkstra algorithm.

	Works for directed and undirected graphs.

	When there are more than one path to the same vertex with same cost:

	The algorithm will return just one path

	Optionally allows to find more than one path.

	When more than one path is to be returned:

	Results are sorted in increasing order of:

	aggregate cost

	Within the same value of aggregate costs:

	results are sorted by (source, target)

	Running time: Dijkstra running time: \(drt = O((|E| + |V|)log|V|)\)

	One to Many; \(drt\)

	Many to One: \(drt\)

	Many to Many: \(drt * |Starting vids|\)

	Combinations: \(drt * |Starting vids|\)

Signatures¶

Summary

pgr_dijkstraNear(Edges SQL, start vid, end vids, [options A])

pgr_dijkstraNear(Edges SQL, start vids, end vid, [options A])

pgr_dijkstraNear(Edges SQL, start vids, end vids, [options B])

pgr_dijkstraNear(Edges SQL, Combinations SQL, [options B])

options A: [directed, cap]

options B: [directed, cap, global]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

One to Many¶

pgr_dijkstraNear(Edges SQL, start vid, end vids, [options])

options: [directed, cap]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Departing on car from vertex \(6\) find the nearest subway station.

	Using a directed graph for car routing.

	The subway stations are on the following vertices \(\{1, 10, 11\}\)

	The defaults used:

	directed => true

	cap => 1

 1SELECT * FROM pgr_dijkstraNear(
 2 'SELECT id, source, target, cost, reverse_cost FROM edges',
 3 6, ARRAY[10, 11, 1]);
 4 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 5-----+----------+-----------+---------+------+------+------+----------
 6 1 | 1 | 6 | 11 | 6 | 4 | 1 | 0
 7 2 | 2 | 6 | 11 | 7 | 8 | 1 | 1
 8 3 | 3 | 6 | 11 | 11 | -1 | 0 | 2
 9(3 rows)
10

The result shows that station at vertex \(11\) is the nearest.

Many to One¶

pgr_dijkstraNear(Edges SQL, start vids, end vid, [options])

options: [directed, cap]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Departing on a car from a subway station find the nearest two stations to vertex \(2\)

	Using a directed graph for car routing.

	The subway stations are on the following vertices \(\{1, 10, 11\}\)

	On line 4: using the positional parameter: directed set to true

	In line 5: using named parameter cap => 2

 1SELECT * FROM pgr_dijkstraNear(
 2 'SELECT id, source, target, cost, reverse_cost FROM edges',
 3 ARRAY[10, 11, 1], 6,
 4 true,
 5 cap => 2);
 6 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 7-----+----------+-----------+---------+------+------+------+----------
 8 1 | 1 | 10 | 6 | 10 | 2 | 1 | 0
 9 2 | 2 | 10 | 6 | 6 | -1 | 0 | 1
10 3 | 1 | 11 | 6 | 11 | 8 | 1 | 0
11 4 | 2 | 11 | 6 | 7 | 4 | 1 | 1
12 5 | 3 | 11 | 6 | 6 | -1 | 0 | 2
13(5 rows)
14

The result shows that station at vertex \(10\) is the nearest and the next best is \(11\).

Many to Many¶

pgr_dijkstraNear(Edges SQL, start vids, end vids, [options])

options: [directed, cap, global]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Find the best pedestrian connection between two lines of buses

	Unsing an undirected graph for pedestrian routing

	The first subway line stations are at \(\{15, 16\}\)

	The second subway line stations stops are at \(\{1, 10, 11\}\)

	On line 4: using the named parameter: directed => false

	The defaults used:

	cap => 1

	global => true

 1SELECT * FROM pgr_dijkstraNear(
 2 'SELECT id, source, target, cost, reverse_cost FROM edges',
 3 ARRAY[15, 16], ARRAY[10, 11, 1],
 4 directed => false);
 5 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 6-----+----------+-----------+---------+------+------+------+----------
 7 1 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 8 2 | 2 | 15 | 10 | 10 | -1 | 0 | 1
 9(2 rows)
10

For a pedestrian the best connection is to get on/off is at vertex \(15\) of the first subway line and at vertex \(10\) of the second subway line.

Only one route is returned because global is true and cap is 1

Combinations¶

pgr_dijkstraNear(Edges SQL, Combinations SQL, [options])

options: [directed, cap, global]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Find the best car connection between all the stations of two subway lines

	Using a directed graph for car routing.

	The first subway line stations stops are at \(\{1, 10, 11\}\)

	The second subway line stations are at \(\{15, 16\}\)

The combinations contents:

SELECT unnest(ARRAY[10, 11, 1]) as source, target
FROM (SELECT unnest(ARRAY[15, 16]) AS target) a
 UNION
SELECT unnest(ARRAY[15, 16]), target
FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b ORDER BY source, target;
 source | target
--------+--------
 1 | 15
 1 | 16
 10 | 15
 10 | 16
 11 | 15
 11 | 16
 15 | 1
 15 | 10
 15 | 11
 16 | 1
 16 | 10
 16 | 11
(12 rows)

The query:

	lines 3~4 sets the start vertices to be from the first subway line and the ending vertices to be from the second subway line

	lines 6~7 sets the start vertices to be from the first subway line and the ending vertices to be from the first subway line

	On line 8: using the named parameter is global => false

	The defaults used:

	directed => true

	cap => 1

 1SELECT * FROM pgr_dijkstraNear(
 2 'SELECT id, source, target, cost, reverse_cost FROM edges',
 3 'SELECT unnest(ARRAY[10, 11, 1]) as source, target
 4 FROM (SELECT unnest(ARRAY[15, 16]) AS target) a
 5 UNION
 6 SELECT unnest(ARRAY[15, 16]), target
 7 FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b',
 8 global => false);
 9 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
10-----+----------+-----------+---------+------+------+------+----------
11 1 | 1 | 11 | 16 | 11 | 9 | 1 | 0
12 2 | 2 | 11 | 16 | 16 | -1 | 0 | 1
13 3 | 1 | 15 | 10 | 15 | 3 | 1 | 0
14 4 | 2 | 15 | 10 | 10 | -1 | 0 | 1
15 5 | 1 | 16 | 11 | 16 | 9 | 1 | 0
16 6 | 2 | 16 | 11 | 11 | -1 | 0 | 1
17 7 | 1 | 10 | 16 | 10 | 5 | 1 | 0
18 8 | 2 | 10 | 16 | 11 | 9 | 1 | 1
19 9 | 3 | 10 | 16 | 16 | -1 | 0 | 2
20 10 | 1 | 1 | 16 | 1 | 6 | 1 | 0
21 11 | 2 | 1 | 16 | 3 | 7 | 1 | 1
22 12 | 3 | 1 | 16 | 7 | 8 | 1 | 2
23 13 | 4 | 1 | 16 | 11 | 9 | 1 | 3
24 14 | 5 | 1 | 16 | 16 | -1 | 0 | 4
25(14 rows)
26

From the results:

	making a connection from the first subway line \(\{1, 10, 11\}\) to the second \(\{15, 16\}\):

	The best connections from all the stations from the first line are: \({(1 \rightarrow 16) (10 \rightarrow 16) (11 \rightarrow 16)}\)

	The best one is \((11 \rightarrow 16)\) with a cost of \(1\) (lines: 11 and 12)

	making a connection from the second subway line \(\{15, 16\}\) to the first \(\{1, 10, 11\}\):

	The best connections from all the stations from the second line are: \({(15 \rightarrow 10) (16 \rightarrow 11)}\)

	Both are equaly good as they have the same cost. (lines: 13 and 14 and lines: 15 and 16)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Dijkstra optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Near optional parameters¶

	Parameter

	Type

	Default

	Description

	cap

	BIGINT

	1

	Find at most cap number of nearest shortest paths

	global

	BOOLEAN

	true

	
	When true: only cap limit results will be returned

	When false: cap limit per Start vid will be returned

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the current path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the current path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Dijkstra - Family of functions

	pgr_dijkstraNearCost - Proposed

	Sample Data network.

	boost: https://www.boost.org/libs/graph/doc/table_of_contents.html

	Wikipedia: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Indices and tables

	Index

	Search Page

pgr_dijkstraNearCost - Proposed¶

pgr_dijkstraNearCost — Using dijkstra algorithm, finds the route that leads to the nearest vertex.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.3.0

	Promoted to proposed function

	Version 3.2.0

	New experimental function

Description¶

Given a graph, a starting vertex and a set of ending vertices, this function finds the shortest path from the starting vertex to the nearest ending vertex.

Characteristics¶

	Uses Dijkstra algorithm.

	Works for directed and undirected graphs.

	When there are more than one path to the same vertex with same cost:

	The algorithm will return just one path

	Optionally allows to find more than one path.

	When more than one path is to be returned:

	Results are sorted in increasing order of:

	aggregate cost

	Within the same value of aggregate costs:

	results are sorted by (source, target)

	Running time: Dijkstra running time: \(drt = O((|E| + |V|)log|V|)\)

	One to Many; \(drt\)

	Many to One: \(drt\)

	Many to Many: \(drt * |Starting vids|\)

	Combinations: \(drt * |Starting vids|\)

Signatures¶

Summary

pgr_dijkstraNearCost(Edges SQL, start vid, end vids, [options A])

pgr_dijkstraNearCost(Edges SQL, start vids, end vid, [options A])

pgr_dijkstraNearCost(Edges SQL, start vids, end vids, [options B])

pgr_dijkstraNearCost(Edges SQL, Combinations SQL, [options B])

options A: [directed, cap]

options B: [directed, cap, global]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

One to Many¶

pgr_dijkstraNearCost(Edges SQL, start vid, end vids, [options])

options: [directed, cap]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Departing on car from vertex \(6\) find the nearest subway station.

	Using a directed graph for car routing.

	The subway stations are on the following vertices \(\{1, 10, 11\}\)

	The defaults used:

	directed => true

	cap => 1

1SELECT * FROM pgr_dijkstraNearCost(
2 'SELECT id, source, target, cost, reverse_cost FROM edges',
3 6, ARRAY[10, 11, 1]);
4 start_vid | end_vid | agg_cost
5-----------+---------+----------
6 6 | 11 | 2
7(1 row)
8

The result shows that station at vertex \(11\) is the nearest.

Many to One¶

pgr_dijkstraNearCost(Edges SQL, start vids, end vid, [options])

options: [directed, cap]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Departing on a car from a subway station find the nearest two stations to vertex \(6\)

	Using a directed graph for car routing.

	The subway stations are on the following vertices \(\{1, 10, 11\}\)

	On line 4: using the positional parameter: directed set to true

	In line 5: using named parameter cap => 2

 1SELECT * FROM pgr_dijkstraNearCost(
 2 'SELECT id, source, target, cost, reverse_cost FROM edges',
 3 ARRAY[10, 11, 1], 6,
 4 true,
 5 cap => 2) ORDER BY agg_cost;
 6 start_vid | end_vid | agg_cost
 7-----------+---------+----------
 8 10 | 6 | 1
 9 11 | 6 | 2
10(2 rows)
11

The result shows that station at vertex \(10\) is the nearest and the next best is \(11\).

Many to Many¶

pgr_dijkstraNearCost(Edges SQL, start vids, end vids, [options])

options: [directed, cap, global]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Find the best pedestrian connection between two lines of buses

	Unsing an undirected graph for pedestrian routing

	The first subway line stations are at \(\{15, 16\}\)

	The second subway line stations stops are at \(\{1, 10, 11\}\)

	On line 4: using the named parameter: directed => false

	The defaults used:

	cap => 1

	global => true

1SELECT * FROM pgr_dijkstraNearCost(
2 'SELECT id, source, target, cost, reverse_cost FROM edges',
3 ARRAY[15, 16], ARRAY[10, 11, 1],
4 directed => false);
5 start_vid | end_vid | agg_cost
6-----------+---------+----------
7 15 | 10 | 1
8(1 row)
9

For a pedestrian the best connection is to get on/off is at vertex \(15\) of the first subway line and at vertex \(10\) of the second subway line.

Only one route is returned because global is true and cap is 1

Combinations¶

pgr_dijkstraNearCost(Edges SQL, Combinations SQL, [options])

options: [directed, cap, global]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

	Example:

	Find the best car connection between all the stations of two subway lines

	Using a directed graph for car routing.

	The first subway line stations stops are at \(\{1, 10, 11\}\)

	The second subway line stations are at \(\{15, 16\}\)

The combinations contents:

SELECT unnest(ARRAY[10, 11, 1]) as source, target
FROM (SELECT unnest(ARRAY[15, 16]) AS target) a
 UNION
SELECT unnest(ARRAY[15, 16]), target
FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b ORDER BY source, target;
 source | target
--------+--------
 1 | 15
 1 | 16
 10 | 15
 10 | 16
 11 | 15
 11 | 16
 15 | 1
 15 | 10
 15 | 11
 16 | 1
 16 | 10
 16 | 11
(12 rows)

The query:

	lines 3~4 sets the start vertices to be from the fisrt subway line and the ending vertices to be from the second subway line

	lines 6~7 sets the start vertices to be from the first subway line and the ending vertices to be from the first subway line

	On line 8: using the named parameter is global => false

	The defaults used:

	directed => true

	cap => 1

 1SELECT * FROM pgr_dijkstraNearCost(
 2 'SELECT id, source, target, cost, reverse_cost FROM edges',
 3 'SELECT unnest(ARRAY[10, 11, 1]) as source, target
 4 FROM (SELECT unnest(ARRAY[15, 16]) AS target) a
 5 UNION
 6 SELECT unnest(ARRAY[15, 16]), target
 7 FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b',
 8 global => false);
 9 start_vid | end_vid | agg_cost
10-----------+---------+----------
11 11 | 16 | 1
12 15 | 10 | 1
13 16 | 11 | 1
14 10 | 16 | 2
15 1 | 16 | 4
16(5 rows)
17

From the results:

	making a connection from the first subway line \(\{1, 10, 11\}\) to the second \(\{15, 16\}\):

	The best connections from all the stations from the first line are: \({(1 \rightarrow 16) (10 \rightarrow 16) (11 \rightarrow 16)}\)

	The best one is \((11 \rightarrow 16)\) with a cost of \(1\) (lines: 1)

	making a connection from the second subway line \(\{15, 16\}\) to the first \(\{1, 10, 11\}\):

	The best connections from all the stations from the second line are: \({(15 \rightarrow 10) (16 \rightarrow 11)}\)

	Both are equaly good as they have the same cost. (lines: 12 and 13)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Dijkstra optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Near optional parameters¶

	Parameter

	Type

	Default

	Description

	cap

	BIGINT

	1

	Find at most cap number of nearest shortest paths

	global

	BOOLEAN

	true

	
	When true: only cap limit results will be returned

	When false: cap limit per Start vid will be returned

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

See Also¶

	Dijkstra - Family of functions

	pgr_dijkstraNear - Proposed

	Sample Data network.

	boost: https://www.boost.org/libs/graph/doc/table_of_contents.html

	Wikipedia: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Indices and tables

	Index

	Search Page

Introduction¶

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

The main characteristics are:

	Process is done only on edges with positive costs.

	A negative value on a cost column is interpreted as the edge does not exist.

	Values are returned when there is a path.

	When there is no path:

	When the starting vertex and ending vertex are the same.

	The aggregate cost of the non included values \((v, v)\) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The aggregate cost the non included values \((u, v)\) is \(\infty\)

	For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.

	Running time: \(O(| start\ vids | * (V \log V + E))\)

The Dijkstra family functions are based on the Dijkstra algorithm.

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Advanced documentation¶

The problem definition (Advanced documentation)¶

Given the following query:

pgr_dijkstra(\(sql, start_{vid}, end_{vid}, directed\))

where \(sql = \{(id_i, source_i, target_i, cost_i, reverse_cost_i)\}\)

and

	\(source = \bigcup source_i\),

	\(target = \bigcup target_i\),

The graphs are defined as follows:

Directed graph

The weighted directed graph, \(G_d(V,E)\), is definied by:

	the set of vertices \(V\)

	\(V = source \cup target \cup {start_{vid}} \cup {end_{vid}}\)

	the set of edges \(E\)

	\(E = \begin{cases} \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{if } reverse_cost = \varnothing \\ \text{ } \text{ } & \quad \text{ } \\ \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ } \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i>=0 \} & \quad \text{if } reverse_cost \neq \varnothing \\ \end{cases}\)

Undirected graph

The weighted undirected graph, \(G_u(V,E)\), is definied by:

	the set of vertices \(V\)

	\(V = source \cup target \cup {start_v{vid}} \cup {end_{vid}}\)

	the set of edges \(E\)

	\(E = \begin{cases} \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ } \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ if } reverse_cost = \varnothing \\ \text{ } \text{ } & \text{ } \\ \text{ } \{(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \text{ } \\ \cup \{(target_i, source_i, cost_i) \text{ when } cost >=0 \} & \text{ } \\ \cup \{(target_i, source_i, reverse_cost_i) \text{ when } reverse_cost_i >=0)\} & \text{ } \\ \cup \{(source_i, target_i, reverse_cost_i) \text{ when } reverse_cost_i >=0)\} & \quad \text{ if } reverse_cost \neq \varnothing \\ \end{cases}\)

The problem

Given:

	\(start_{vid} \in V\) a starting vertex

	\(end_{vid} \in V\) an ending vertex

	\(G(V,E) = \begin{cases} G_d(V,E) & \quad \text{ if6 } directed = true \\ G_u(V,E) & \quad \text{ if5 } directed = false \\ \end{cases}\)

Then:

	\(\boldsymbol{\pi} = \{(path_seq_i, node_i, edge_i, cost_i, agg_cost_i)\}\)

	where:

	
	\(path_seq_i = i\)

	\(path_seq_{| \pi |} = | \pi |\)

	\(node_i \in V\)

	\(node_1 = start_{vid}\)

	\(node_{| \pi |} = end_{vid}\)

	\(\forall i \neq | \pi |, \quad (node_i, node_{i+1}, cost_i) \in E\)

	\(edge_i = \begin{cases} id_{(node_i, node_{i+1},cost_i)} &\quad \text{when } i \neq | \pi | \\ -1 &\quad \text{when } i = | \pi | \\ \end{cases}\)

	\(cost_i = cost_{(node_i, node_{i+1})}\)

	\(agg_cost_i = \begin{cases} 0 &\quad \text{when } i = 1 \\ \displaystyle\sum_{k=1}^{i} cost_{(node_{k-1}, node_k)} &\quad \text{when } i \neq 1 \\ \end{cases}\)

In other words: The algorithm returns a the shortest path between \(start_{vid}\) and \(end_{vid}\), if it exists, in terms of a sequence of nodes and of edges,

	\(path_seq\) indicates the relative position in the path of the \(node\) or \(edge\).

	\(cost\) is the cost of the edge to be used to go to the next node.

	\(agg_cost\) is the cost from the \(start_{vid}\) up to the node.

If there is no path, the resulting set is empty.

See Also¶

Indices and tables

	Index

	Search Page

Flow - Family of functions¶

	pgr_maxFlow - Only the Max flow calculation using Push and Relabel algorithm.

	pgr_boykovKolmogorov - Boykov and Kolmogorov with details of flow on edges.

	pgr_edmondsKarp - Edmonds and Karp algorithm with details of flow on edges.

	pgr_pushRelabel - Push and relabel algorithm with details of flow on edges.

	Applications

	pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.

	pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_maxFlowMinCost - Experimental - Details of flow and cost on edges.

	pgr_maxFlowMinCost_Cost - Experimental - Only the Min Cost calculation.

pgr_maxFlow¶

pgr_maxFlow — Calculates the maximum flow in a directed graph from the source(s) to the targets(s) using the Push Relabel algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature

	pgr_maxFlow (Combinations)

	Version 3.0.0

	Official function

	Version 2.4.0

	New Proposed function

Description¶

The main characteristics are:

	The graph is directed.

	Calculates the maximum flow from the sources to the targets.

	When the maximum flow is 0 then there is no flow and 0 is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Uses the pgr_pushRelabel algorithm.

	Running time: \(O(V ^ 3)\)

Signatures¶

Summary

pgr_maxFlow(Edges SQL, start vid, end vid)

pgr_maxFlow(Edges SQL, start vid, end vids)

pgr_maxFlow(Edges SQL, start vids, end vid)

pgr_maxFlow(Edges SQL, start vids, end vids)

pgr_maxFlow(Edges SQL, Combinations SQL)

RETURNS BIGINT

One to One¶

pgr_maxFlow(Edges SQL, start vid, end vid)

RETURNS BIGINT

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_maxFlow(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, 12);
 pgr_maxflow

 230
(1 row)

One to Many¶

pgr_maxFlow(Edges SQL, start vid, end vids)

RETURNS BIGINT

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlow(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, ARRAY[5, 10, 12]);
 pgr_maxflow

 340
(1 row)

Many to One¶

pgr_maxFlow(Edges SQL, start vids, end vid)

RETURNS BIGINT

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_maxFlow(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], 12);
 pgr_maxflow

 230
(1 row)

Many to Many¶

pgr_maxFlow(Edges SQL, start vids, end vids)

RETURNS BIGINT

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlow(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 pgr_maxflow

 360
(1 row)

Combinations¶

pgr_maxFlow(Edges SQL, Combinations SQL)

RETURNS BIGINT

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_maxFlow(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)');
 pgr_maxflow

 80
(1 row)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Weight of the edge (source, target)

	reverse_capacity

	ANY-INTEGER

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Type

	Description

	BIGINT

	Maximum flow possible from the source(s) to the target(s)

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_maxFlow(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)');
 pgr_maxflow

 80
(1 row)

See Also¶

	Flow - Family of functions

	pgr_pushRelabel

	https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

	https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

	Index

	Search Page

pgr_boykovKolmogorov¶

pgr_boykovKolmogorov — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Boykov Kolmogorov algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature

	pgr_boykovKolmogorov (Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	Renamed from pgr_maxFlowBoykovKolmogorov

	Proposed function

	Version 2.3.0

	New Experimental function

Description¶

The main characteristics are:

	The graph is directed.

	Process is done only on edges with positive capacities.

	When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Calculates the flow/residual capacity for each edge. In the output

	Edges with zero flow are omitted.

	Creates

	a super source and edges from it to all the sources,

	a super target and edges from it to all the targetss.

	The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the same parameters and can be calculated:

	By aggregation of the outgoing flow from the sources

	By aggregation of the incoming flow to the targets

	Running time: Polynomial

Signatures¶

Summary

pgr_boykovKolmogorov(Edges SQL, start vid, end vid)

pgr_boykovKolmogorov(Edges SQL, start vid, end vids)

pgr_boykovKolmogorov(Edges SQL, start vids, end vid)

pgr_boykovKolmogorov(Edges SQL, start vids, end vids)

pgr_boykovKolmogorov(Edges SQL, Combinations SQL)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

One to One¶

pgr_boykovKolmogorov(Edges SQL, start vid, end vid)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, 12);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 7 | 8 | 100 | 30
 2 | 12 | 8 | 12 | 100 | 0
 3 | 8 | 11 | 7 | 100 | 30
 4 | 11 | 11 | 12 | 130 | 0
(4 rows)

One to Many¶

pgr_boykovKolmogorov(Edges SQL, start vid, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, ARRAY[5, 10, 12]);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 6 | 5 | 50 | 80
 2 | 4 | 7 | 6 | 50 | 0
 3 | 10 | 7 | 8 | 80 | 50
 4 | 12 | 8 | 12 | 80 | 20
 5 | 8 | 11 | 7 | 130 | 0
 6 | 11 | 11 | 12 | 130 | 0
 7 | 9 | 11 | 16 | 80 | 50
 8 | 3 | 15 | 10 | 80 | 50
 9 | 16 | 16 | 15 | 80 | 0
(9 rows)

Many to One¶

pgr_boykovKolmogorov(Edges SQL, start vids, end vid)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], 12);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 7 | 3 | 7 | 50 | 0
 2 | 10 | 7 | 8 | 100 | 30
 3 | 12 | 8 | 12 | 100 | 0
 4 | 8 | 11 | 7 | 50 | 80
 5 | 11 | 11 | 12 | 130 | 0
(5 rows)

Many to Many¶

pgr_boykovKolmogorov(Edges SQL, start vids, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 7 | 3 | 7 | 50 | 0
 2 | 1 | 6 | 5 | 50 | 80
 3 | 4 | 7 | 6 | 50 | 0
 4 | 10 | 7 | 8 | 100 | 30
 5 | 12 | 8 | 12 | 100 | 0
 6 | 8 | 11 | 7 | 100 | 30
 7 | 11 | 11 | 12 | 130 | 0
 8 | 9 | 11 | 16 | 80 | 50
 9 | 3 | 15 | 10 | 80 | 50
 10 | 16 | 16 | 15 | 80 | 0
(10 rows)

Combinations¶

pgr_boykovKolmogorov(Edges SQL, Combinations SQL)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)');
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 4 | 6 | 7 | 80 | 20
 2 | 8 | 7 | 11 | 80 | 20
 3 | 9 | 11 | 16 | 80 | 50
 4 | 16 | 16 | 15 | 80 | 0
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Weight of the edge (source, target)

	reverse_capacity

	ANY-INTEGER

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	start_vid

	BIGINT

	Identifier of the first end point vertex of the edge.

	end_vid

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (start_vid, end_vid).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (start_vid, end_vid).

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_boykovKolmogorov(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)');
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 4 | 6 | 7 | 80 | 20
 2 | 8 | 7 | 11 | 80 | 20
 3 | 9 | 11 | 16 | 80 | 50
 4 | 16 | 16 | 15 | 80 | 0
(4 rows)

See Also¶

	Flow - Family of functions

	pgr_edmondsKarp

	pgr_pushRelabel

	https://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html

Indices and tables

	Index

	Search Page

pgr_edmondsKarp¶

pgr_edmondsKarp — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Edmonds Karp Algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature

	pgr_edmondsKarp (Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	Renamed from pgr_maxFlowEdmondsKarp

	Proposed function

	Version 2.3.0

	New Experimental function

Description¶

The main characteristics are:

	The graph is directed.

	Process is done only on edges with positive capacities.

	When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Calculates the flow/residual capacity for each edge. In the output

	Edges with zero flow are omitted.

	Creates

	a super source and edges from it to all the sources,

	a super target and edges from it to all the targetss.

	The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the same parameters and can be calculated:

	By aggregation of the outgoing flow from the sources

	By aggregation of the incoming flow to the targets

	Running time: \(O(V * E ^ 2)\)

Signatures¶

Summary

pgr_edmondsKarp(Edges SQL, start vid, end vid)

pgr_edmondsKarp(Edges SQL, start vid, end vids)

pgr_edmondsKarp(Edges SQL, start vids, end vid)

pgr_edmondsKarp(Edges SQL, start vids, end vids)

pgr_edmondsKarp(Edges SQL, Combinations SQL)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

One to One¶

pgr_edmondsKarp(Edges SQL, start vid, end vid)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, 12);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 7 | 8 | 100 | 30
 2 | 12 | 8 | 12 | 100 | 0
 3 | 8 | 11 | 7 | 100 | 30
 4 | 11 | 11 | 12 | 130 | 0
(4 rows)

One to Many¶

pgr_edmondsKarp(Edges SQL, start vid, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, ARRAY[5, 10, 12]);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 1 | 6 | 5 | 50 | 80
 2 | 4 | 7 | 6 | 50 | 0
 3 | 10 | 7 | 8 | 80 | 50
 4 | 12 | 8 | 12 | 80 | 20
 5 | 8 | 11 | 7 | 130 | 0
 6 | 11 | 11 | 12 | 130 | 0
 7 | 9 | 11 | 16 | 80 | 50
 8 | 3 | 15 | 10 | 80 | 50
 9 | 16 | 16 | 15 | 80 | 0
(9 rows)

Many to One¶

pgr_edmondsKarp(Edges SQL, start vids, end vid)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], 12);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 7 | 3 | 7 | 50 | 0
 2 | 10 | 7 | 8 | 100 | 30
 3 | 12 | 8 | 12 | 100 | 0
 4 | 8 | 11 | 7 | 50 | 80
 5 | 11 | 11 | 12 | 130 | 0
(5 rows)

Many to Many¶

pgr_edmondsKarp(Edges SQL, start vids, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_edmondsKarp(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 7 | 3 | 7 | 50 | 0
 2 | 1 | 6 | 5 | 50 | 80
 3 | 4 | 7 | 6 | 50 | 0
 4 | 10 | 7 | 8 | 100 | 30
 5 | 12 | 8 | 12 | 100 | 0
 6 | 8 | 11 | 7 | 100 | 30
 7 | 11 | 11 | 12 | 130 | 0
 8 | 9 | 11 | 16 | 80 | 50
 9 | 3 | 15 | 10 | 80 | 50
 10 | 16 | 16 | 15 | 80 | 0
(10 rows)

Combinations¶

pgr_edmondsKarp(Edges SQL, Combinations SQL)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_edmondsKarp(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)');
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 4 | 6 | 7 | 80 | 20
 2 | 8 | 7 | 11 | 80 | 20
 3 | 9 | 11 | 16 | 80 | 50
 4 | 16 | 16 | 15 | 80 | 0
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Weight of the edge (source, target)

	reverse_capacity

	ANY-INTEGER

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	start_vid

	BIGINT

	Identifier of the first end point vertex of the edge.

	end_vid

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (start_vid, end_vid).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (start_vid, end_vid).

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_edmondsKarp(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)');
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 4 | 6 | 7 | 80 | 20
 2 | 8 | 7 | 11 | 80 | 20
 3 | 9 | 11 | 16 | 80 | 50
 4 | 16 | 16 | 15 | 80 | 0
(4 rows)

See Also¶

	Flow - Family of functions

	pgr_boykovKolmogorov

	pgr_pushRelabel

	https://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html

	https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

Indices and tables

	Index

	Search Page

pgr_pushRelabel¶

pgr_pushRelabel — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed signature

	pgr_pushRelabel (Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	Renamed from pgr_maxFlowPushRelabel

	Proposed function

	Version 2.3.0

	New Experimental function

Description¶

The main characteristics are:

	The graph is directed.

	Process is done only on edges with positive capacities.

	When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Calculates the flow/residual capacity for each edge. In the output

	Edges with zero flow are omitted.

	Creates

	a super source and edges from it to all the sources,

	a super target and edges from it to all the targetss.

	The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the same parameters and can be calculated:

	By aggregation of the outgoing flow from the sources

	By aggregation of the incoming flow to the targets

	Running time: \(O(V ^ 3)\)

Signatures¶

Summary

pgr_pushRelabel(Edges SQL, start vid, end vid)

pgr_pushRelabel(Edges SQL, start vid, end vids)

pgr_pushRelabel(Edges SQL, start vids, end vid)

pgr_pushRelabel(Edges SQL, start vids, end vids)

pgr_pushRelabel(Edges SQL, Combinations SQL)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

One to One¶

pgr_pushRelabel(Edges SQL, start vid, end vid)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, 12);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 7 | 8 | 100 | 30
 2 | 12 | 8 | 12 | 100 | 0
 3 | 8 | 11 | 7 | 100 | 30
 4 | 11 | 11 | 12 | 130 | 0
(4 rows)

One to Many¶

pgr_pushRelabel(Edges SQL, start vid, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 11, ARRAY[5, 10, 12]);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 6 | 1 | 3 | 50 | 0
 2 | 6 | 3 | 1 | 50 | 50
 3 | 7 | 3 | 7 | 50 | 0
 4 | 1 | 6 | 5 | 30 | 100
 5 | 7 | 7 | 3 | 50 | 80
 6 | 4 | 7 | 6 | 30 | 20
 7 | 10 | 7 | 8 | 100 | 30
 8 | 12 | 8 | 12 | 100 | 0
 9 | 8 | 11 | 7 | 130 | 0
 10 | 11 | 11 | 12 | 130 | 0
 11 | 9 | 11 | 16 | 80 | 50
 12 | 3 | 15 | 10 | 80 | 50
 13 | 16 | 16 | 15 | 80 | 0
(13 rows)

Many to One¶

pgr_pushRelabel(Edges SQL, start vids, end vid)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], 12);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 10 | 7 | 8 | 100 | 30
 2 | 12 | 8 | 12 | 100 | 0
 3 | 8 | 11 | 7 | 100 | 30
 4 | 11 | 11 | 12 | 130 | 0
(4 rows)

Many to Many¶

pgr_pushRelabel(Edges SQL, start vids, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_pushRelabel(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 7 | 3 | 7 | 20 | 30
 2 | 1 | 6 | 5 | 50 | 80
 3 | 4 | 7 | 6 | 50 | 0
 4 | 10 | 7 | 8 | 100 | 30
 5 | 12 | 8 | 12 | 100 | 0
 6 | 8 | 11 | 7 | 130 | 0
 7 | 11 | 11 | 12 | 130 | 0
 8 | 9 | 11 | 16 | 80 | 50
 9 | 3 | 15 | 10 | 80 | 50
 10 | 16 | 16 | 15 | 80 | 0
(10 rows)

Combinations¶

pgr_pushRelabel(Edges SQL, Combinations SQL)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity)

OR EMPTY SET

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_pushRelabel(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)');
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 4 | 6 | 7 | 80 | 20
 2 | 8 | 7 | 11 | 80 | 20
 3 | 11 | 11 | 12 | 50 | 80
 4 | 9 | 11 | 16 | 30 | 100
 5 | 13 | 12 | 17 | 50 | 50
 6 | 16 | 16 | 15 | 80 | 0
 7 | 15 | 17 | 16 | 50 | 0
(7 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Weight of the edge (source, target)

	reverse_capacity

	ANY-INTEGER

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	start_vid

	BIGINT

	Identifier of the first end point vertex of the edge.

	end_vid

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (start_vid, end_vid).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (start_vid, end_vid).

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_pushRelabel(
 'SELECT id, source, target, capacity, reverse_capacity
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)');
 seq | edge | start_vid | end_vid | flow | residual_capacity
-----+------+-----------+---------+------+-------------------
 1 | 4 | 6 | 7 | 80 | 20
 2 | 8 | 7 | 11 | 80 | 20
 3 | 11 | 11 | 12 | 50 | 80
 4 | 9 | 11 | 16 | 30 | 100
 5 | 13 | 12 | 17 | 50 | 50
 6 | 16 | 16 | 15 | 80 | 0
 7 | 15 | 17 | 16 | 50 | 0
(7 rows)

See Also¶

	Flow - Family of functions

	pgr_boykovKolmogorov

	pgr_edmondsKarp

	https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html

	https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

	Index

	Search Page

pgr_edgeDisjointPaths¶

pgr_edgeDisjointPaths — Calculates edge disjoint paths between two groups of vertices.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed function:

	pgr_edgeDisjointPaths(Combinations)

	Version 3.0.0

	Official function

	Version 2.5.0

	Proposed function

	Version 2.3.0

	New Experimental function

Description¶

Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow algorithms to calculate the paths.

	The main characterics are:

	
	Calculates the edge disjoint paths between any two groups of vertices.

	Returns EMPTY SET when source and destination are the same, or cannot be reached.

	The graph can be directed or undirected.

	Uses pgr_boykovKolmogorov to calculate the paths.

Signatures¶

Summary

pgr_edgeDisjointPaths(Edges SQL, start vid, end vid, [directed])

pgr_edgeDisjointPaths(Edges SQL, start vid, end vids, [directed])

pgr_edgeDisjointPaths(Edges SQL, start vids, end vid, [directed])

pgr_edgeDisjointPaths(Edges SQL, start vids, end vids, [directed])

pgr_edgeDisjointPaths(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_id, path_seq, [start_vid,] [end_vid,] node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_edgeDisjointPaths(Edges SQL, start vid, end vid, [directed])

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges',
 11, 12);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 11 | 8 | 1 | 0
 2 | 1 | 2 | 7 | 10 | 1 | 1
 3 | 1 | 3 | 8 | 12 | 1 | 2
 4 | 1 | 4 | 12 | -1 | 0 | 3
 5 | 2 | 1 | 11 | 11 | 1 | 0
 6 | 2 | 2 | 12 | -1 | 0 | 1
(6 rows)

One to Many¶

pgr_edgeDisjointPaths(Edges SQL, start vid, end vids, [directed])

Returns set of (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges',
 11, ARRAY[5, 10, 12]);
 seq | path_id | path_seq | end_vid | node | edge | cost | agg_cost
-----+---------+----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 11 | 8 | 1 | 0
 2 | 1 | 2 | 5 | 7 | 4 | 1 | 1
 3 | 1 | 3 | 5 | 6 | 1 | 1 | 2
 4 | 1 | 4 | 5 | 5 | -1 | 0 | 3
 5 | 2 | 1 | 10 | 11 | 9 | 1 | 0
 6 | 2 | 2 | 10 | 16 | 16 | 1 | 1
 7 | 2 | 3 | 10 | 15 | 3 | 1 | 2
 8 | 2 | 4 | 10 | 10 | -1 | 0 | 3
 9 | 3 | 1 | 12 | 11 | 8 | 1 | 0
 10 | 3 | 2 | 12 | 7 | 10 | 1 | 1
 11 | 3 | 3 | 12 | 8 | 12 | 1 | 2
 12 | 3 | 4 | 12 | 12 | -1 | 0 | 3
 13 | 4 | 1 | 12 | 11 | 11 | 1 | 0
 14 | 4 | 2 | 12 | 12 | -1 | 0 | 1
(14 rows)

Many to One¶

pgr_edgeDisjointPaths(Edges SQL, start vids, end vid, [directed])

Returns set of (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges',
 ARRAY[11, 3, 17], 12);
 seq | path_id | path_seq | start_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+------+------+------+----------
 1 | 1 | 1 | 3 | 3 | 7 | 1 | 0
 2 | 1 | 2 | 3 | 7 | 8 | 1 | 1
 3 | 1 | 3 | 3 | 11 | 11 | 1 | 2
 4 | 1 | 4 | 3 | 12 | -1 | 0 | 3
 5 | 2 | 1 | 11 | 11 | 8 | 1 | 0
 6 | 2 | 2 | 11 | 7 | 10 | 1 | 1
 7 | 2 | 3 | 11 | 8 | 12 | 1 | 2
 8 | 2 | 4 | 11 | 12 | -1 | 0 | 3
 9 | 3 | 1 | 11 | 11 | 11 | 1 | 0
 10 | 3 | 2 | 11 | 12 | -1 | 0 | 1
 11 | 4 | 1 | 17 | 17 | 15 | 1 | 0
 12 | 4 | 2 | 17 | 16 | 9 | 1 | 1
 13 | 4 | 3 | 17 | 11 | 11 | 1 | 2
 14 | 4 | 4 | 17 | 12 | -1 | 0 | 3
(14 rows)

Many to Many¶

pgr_edgeDisjointPaths(Edges SQL, start vids, end vids, [directed])

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 3 | 5 | 3 | 7 | 1 | 0
 2 | 1 | 2 | 3 | 5 | 7 | 4 | 1 | 1
 3 | 1 | 3 | 3 | 5 | 6 | 1 | 1 | 2
 4 | 1 | 4 | 3 | 5 | 5 | -1 | 0 | 3
 5 | 2 | 1 | 3 | 10 | 3 | 7 | 1 | 0
 6 | 2 | 2 | 3 | 10 | 7 | 8 | 1 | 1
 7 | 2 | 3 | 3 | 10 | 11 | 9 | 1 | 2
 8 | 2 | 4 | 3 | 10 | 16 | 16 | 1 | 3
 9 | 2 | 5 | 3 | 10 | 15 | 3 | 1 | 4
 10 | 2 | 6 | 3 | 10 | 10 | -1 | 0 | 5
 11 | 3 | 1 | 3 | 12 | 3 | 7 | 1 | 0
 12 | 3 | 2 | 3 | 12 | 7 | 8 | 1 | 1
 13 | 3 | 3 | 3 | 12 | 11 | 11 | 1 | 2
 14 | 3 | 4 | 3 | 12 | 12 | -1 | 0 | 3
 15 | 4 | 1 | 11 | 5 | 11 | 8 | 1 | 0
 16 | 4 | 2 | 11 | 5 | 7 | 4 | 1 | 1
 17 | 4 | 3 | 11 | 5 | 6 | 1 | 1 | 2
 18 | 4 | 4 | 11 | 5 | 5 | -1 | 0 | 3
 19 | 5 | 1 | 11 | 10 | 11 | 9 | 1 | 0
 20 | 5 | 2 | 11 | 10 | 16 | 16 | 1 | 1
 21 | 5 | 3 | 11 | 10 | 15 | 3 | 1 | 2
 22 | 5 | 4 | 11 | 10 | 10 | -1 | 0 | 3
 23 | 6 | 1 | 11 | 12 | 11 | 8 | 1 | 0
 24 | 6 | 2 | 11 | 12 | 7 | 10 | 1 | 1
 25 | 6 | 3 | 11 | 12 | 8 | 12 | 1 | 2
 26 | 6 | 4 | 11 | 12 | 12 | -1 | 0 | 3
 27 | 7 | 1 | 11 | 12 | 11 | 11 | 1 | 0
 28 | 7 | 2 | 11 | 12 | 12 | -1 | 0 | 1
 29 | 8 | 1 | 17 | 5 | 17 | 15 | 1 | 0
 30 | 8 | 2 | 17 | 5 | 16 | 16 | 1 | 1
 31 | 8 | 3 | 17 | 5 | 15 | 3 | 1 | 2
 32 | 8 | 4 | 17 | 5 | 10 | 2 | 1 | 3
 33 | 8 | 5 | 17 | 5 | 6 | 1 | 1 | 4
 34 | 8 | 6 | 17 | 5 | 5 | -1 | 0 | 5
 35 | 9 | 1 | 17 | 10 | 17 | 15 | 1 | 0
 36 | 9 | 2 | 17 | 10 | 16 | 16 | 1 | 1
 37 | 9 | 3 | 17 | 10 | 15 | 3 | 1 | 2
 38 | 9 | 4 | 17 | 10 | 10 | -1 | 0 | 3
 39 | 10 | 1 | 17 | 12 | 17 | 15 | 1 | 0
 40 | 10 | 2 | 17 | 12 | 16 | 9 | 1 | 1
 41 | 10 | 3 | 17 | 12 | 11 | 11 | 1 | 2
 42 | 10 | 4 | 17 | 12 | 12 | -1 | 0 | 3
(42 rows)

Combinations¶

pgr_edgeDisjointPaths(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\) on an undirected graph.

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)',
 directed => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 2 | 1 | 2 | 5 | 10 | 6 | 2 | -1 | 1
 3 | 1 | 3 | 5 | 10 | 10 | -1 | 0 | 0
 4 | 2 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 5 | 2 | 2 | 6 | 15 | 7 | 8 | 1 | 1
 6 | 2 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 7 | 2 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 8 | 2 | 5 | 6 | 15 | 15 | -1 | 0 | 4
 9 | 3 | 1 | 6 | 15 | 6 | 2 | -1 | 0
 10 | 3 | 2 | 6 | 15 | 10 | 3 | -1 | -1
 11 | 3 | 3 | 6 | 15 | 15 | -1 | 0 | -2
(11 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	Combinations

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	Combinations

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example:

	Manually assigned vertex combinations on an undirected graph.

SELECT * FROM pgr_edgeDisjointPaths(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)',
 directed => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 2 | 1 | 2 | 5 | 10 | 6 | 2 | -1 | 1
 3 | 1 | 3 | 5 | 10 | 10 | -1 | 0 | 0
 4 | 2 | 1 | 6 | 15 | 6 | 4 | 1 | 0
 5 | 2 | 2 | 6 | 15 | 7 | 8 | 1 | 1
 6 | 2 | 3 | 6 | 15 | 11 | 9 | 1 | 2
 7 | 2 | 4 | 6 | 15 | 16 | 16 | 1 | 3
 8 | 2 | 5 | 6 | 15 | 15 | -1 | 0 | 4
 9 | 3 | 1 | 6 | 15 | 6 | 2 | -1 | 0
 10 | 3 | 2 | 6 | 15 | 10 | 3 | -1 | -1
 11 | 3 | 3 | 6 | 15 | 15 | -1 | 0 | -2
(11 rows)

See Also¶

	Flow - Family of functions

Indices and tables

	Index

	Search Page

pgr_maxCardinalityMatch¶

pgr_maxCardinalityMatch — Calculates a maximum cardinality matching in a graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.4.0

	Use cost and reverse_cost on the inner query

	Results are ordered

	Works for undirected graphs.

	New signature

	pgr_maxCardinalityMatch(text) returns only edge column.

	Deprecated signature

	pgr_maxCardinalityMatch(text,boolean)

	directed => false when used.

	Version 3.0.0

	Official function

	Version 2.5.0

	Renamed from pgr_maximumCardinalityMatching

	Proposed function

	Version 2.3.0

	New Experimental function

Description¶

The main characteristics are:

	Works for undirected graphs.

	A matching or independent edge set in a graph is a set of edges without common vertices.

	A maximum matching is a matching that contains the largest possible number of edges.

	There may be many maximum matchings.

	Calculates one possible maximum cardinality matching in a graph.

	Running time: \(O(E*V * \alpha(E,V))\)

	\(\alpha(E,V)\) is the inverse of the Ackermann function.

Signatures¶

pgr_maxCardinalityMatch(Edges SQL)

Returns set of (edge)

OR EMPTY SET

	Example:

	Using all edges.

SELECT * FROM pgr_maxCardinalityMatch(
 'SELECT id, source, target, cost, reverse_cost FROM edges');
 edge

 1
 5
 6
 13
 14
 16
 17
 18
(8 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

SQL query, which should return a set of rows with the following columns:

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	A positive value represents the existence of the edge (source, target).

	reverse_cost

	ANY-NUMERICAL

	-1

	A positive value represents the existence of the edge (target, source)

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	edge

	BIGINT

	Identifier of the edge in the original query.

See Also¶

	Flow - Family of functions

	Migration guide

	https://www.boost.org/libs/graph/doc/maximum_matching.html

	https://en.wikipedia.org/wiki/Matching_%28graph_theory%29

	https://en.wikipedia.org/wiki/Ackermann_function

Indices and tables

	Index

	Search Page

pgr_maxFlowMinCost - Experimental¶

pgr_maxFlowMinCost — Calculates the edges that minimizes the total cost of the maximum flow on a graph

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental function:

	pgr_maxFlowMinCost (Combinations)

	Version 3.0.0

	New experimental function

Description¶

The main characteristics are:

	The graph is directed.

	Process is done only on edges with positive capacities.

	When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Calculates the flow/residual capacity for each edge. In the output

	Edges with zero flow are omitted.

	Creates

	a super source and edges from it to all the sources,

	a super target and edges from it to all the targetss.

	The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the same parameters and can be calculated:

	By aggregation of the outgoing flow from the sources

	By aggregation of the incoming flow to the targets

	TODO check which statement is true:

	The cost value of all input edges must be nonnegative.

	Process is done when the cost value of all input edges is nonnegative.

	Process is done on edges with nonnegative cost.

	Running time: \(O(U * (E + V * logV))\)

	where \(U\) is the value of the max flow.

	\(U\) is upper bound on number of iterations. In many real world cases number of iterations is much smaller than \(U\).

Signatures¶

Summary

pgr_maxFlowMinCost(Edges SQL, start vid, end vid)

pgr_maxFlowMinCost(Edges SQL, start vid, end vids)

pgr_maxFlowMinCost(Edges SQL, start vids, end vid)

pgr_maxFlowMinCost(Edges SQL, start vids, end vids)

pgr_maxFlowMinCost(Edges SQL, Combinations SQL)

Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_maxFlowMinCost(Edges SQL, start vid, end vid)

Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_maxFlowMinCost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 11, 12);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 10 | 7 | 8 | 100 | 30 | 100 | 100
 2 | 12 | 8 | 12 | 100 | 0 | 100 | 200
 3 | 8 | 11 | 7 | 100 | 30 | 100 | 300
 4 | 11 | 11 | 12 | 130 | 0 | 130 | 430
(4 rows)

One to Many¶

pgr_maxFlowMinCost(Edges SQL, start vid, end vids)

Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlowMinCost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 11, ARRAY[5, 10, 12]);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 1 | 6 | 5 | 30 | 100 | 30 | 30
 2 | 4 | 7 | 6 | 30 | 20 | 30 | 60
 3 | 10 | 7 | 8 | 100 | 30 | 100 | 160
 4 | 12 | 8 | 12 | 100 | 0 | 100 | 260
 5 | 8 | 11 | 7 | 130 | 0 | 130 | 390
 6 | 11 | 11 | 12 | 130 | 0 | 130 | 520
 7 | 9 | 11 | 16 | 80 | 50 | 80 | 600
 8 | 3 | 15 | 10 | 80 | 50 | 80 | 680
 9 | 16 | 16 | 15 | 80 | 0 | 80 | 760
(9 rows)

Many to One¶

pgr_maxFlowMinCost(Edges SQL, start vids, end vid)

Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_maxFlowMinCost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 ARRAY[11, 3, 17], 12);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 7 | 3 | 7 | 50 | 0 | 50 | 50
 2 | 10 | 7 | 8 | 100 | 30 | 100 | 150
 3 | 12 | 8 | 12 | 100 | 0 | 100 | 250
 4 | 8 | 11 | 7 | 50 | 80 | 50 | 300
 5 | 11 | 11 | 12 | 130 | 0 | 130 | 430
(5 rows)

Many to Many¶

pgr_maxFlowMinCost(Edges SQL, start vids, end vids)

Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlowMinCost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 7 | 3 | 7 | 50 | 0 | 50 | 50
 2 | 1 | 6 | 5 | 50 | 80 | 50 | 100
 3 | 4 | 7 | 6 | 50 | 0 | 50 | 150
 4 | 10 | 7 | 8 | 100 | 30 | 100 | 250
 5 | 12 | 8 | 12 | 100 | 0 | 100 | 350
 6 | 8 | 11 | 7 | 100 | 30 | 100 | 450
 7 | 11 | 11 | 12 | 130 | 0 | 130 | 580
 8 | 9 | 11 | 16 | 30 | 100 | 30 | 610
 9 | 3 | 15 | 10 | 80 | 50 | 80 | 690
 10 | 16 | 16 | 15 | 80 | 0 | 80 | 770
 11 | 15 | 17 | 16 | 50 | 0 | 50 | 820
(11 rows)

Combinations¶

pgr_maxFlowMinCost(Edges SQL, Combinations SQL)

Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_maxFlowMinCost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)');
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 4 | 6 | 7 | 80 | 20 | 80 | 80
 2 | 8 | 7 | 11 | 80 | 20 | 80 | 160
 3 | 9 | 11 | 16 | 80 | 50 | 80 | 240
 4 | 16 | 16 | 15 | 80 | 0 | 80 | 320
(4 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Capacity of the edge (source, target)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	reverse_capacity

	ANY-INTEGER

	-1

	Capacity of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target) if it exist

	reverse_cost

	ANY-NUMERICAL

	\(-1\)

	Weight of the edge (target, source) if it exist

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	source

	BIGINT

	Identifier of the first end point vertex of the edge.

	target

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (source, target).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (source, target).

	cost

	FLOAT

	The cost of sending this flow through the edge in the direction (source, target).

	agg_cost

	FLOAT

	The aggregate cost.

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_maxFlowMinCost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)');
 seq | edge | source | target | flow | residual_capacity | cost | agg_cost
-----+------+--------+--------+------+-------------------+------+----------
 1 | 4 | 6 | 7 | 80 | 20 | 80 | 80
 2 | 8 | 7 | 11 | 80 | 20 | 80 | 160
 3 | 9 | 11 | 16 | 80 | 50 | 80 | 240
 4 | 16 | 16 | 15 | 80 | 0 | 80 | 320
(4 rows)

See Also¶

	Flow - Family of functions

	https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html

Indices and tables

	Index

	Search Page

pgr_maxFlowMinCost_Cost - Experimental¶

pgr_maxFlowMinCost_Cost — Calculates the minimum total cost of the maximum flow on a graph

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental function:

	pgr_maxFlowMinCost_Cost (Combinations)

	Version 3.0.0

	New experimental function

Description¶

The main characteristics are:

	The graph is directed.

	Process is done only on edges with positive capacities.

	When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Calculates the flow/residual capacity for each edge. In the output

	Edges with zero flow are omitted.

	Creates

	a super source and edges from it to all the sources,

	a super target and edges from it to all the targetss.

	The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the same parameters and can be calculated:

	By aggregation of the outgoing flow from the sources

	By aggregation of the incoming flow to the targets

The main characteristics are:

	The graph is directed.

	The cost value of all input edges must be nonnegative.

	When the maximum flow is 0 then there is no flow and 0 is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Uses pgr_maxFlowMinCost - Experimental.

	Running time: \(O(U * (E + V * logV))\)

	where \(U\) is the value of the max flow.

	\(U\) is upper bound on number of iterations. In many real world cases number of iterations is much smaller than \(U\).

Signatures¶

Summary

pgr_maxFlowMinCost_Cost(Edges SQL, start vid, end vid)

pgr_maxFlowMinCost_Cost(Edges SQL, start vid, end vids)

pgr_maxFlowMinCost_Cost(Edges SQL, start vids, end vid)

pgr_maxFlowMinCost_Cost(Edges SQL, start vids, end vids)

pgr_maxFlowMinCost_Cost(Edges SQL, Combinations SQL)

RETURNS FLOAT

One to One¶

pgr_maxFlowMinCost_Cost(Edges SQL, start vid, end vid)

RETURNS FLOAT

	Example:

	From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_maxFlowMinCost_Cost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 11, 12);
 pgr_maxflowmincost_cost

 430
(1 row)

One to Many¶

pgr_maxFlowMinCost_Cost(Edges SQL, start vid, end vids)

RETURNS FLOAT

	Example:

	From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlowMinCost_Cost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 ARRAY[11, 3, 17], 12);
 pgr_maxflowmincost_cost

 430
(1 row)

Many to One¶

pgr_maxFlowMinCost_Cost(Edges SQL, start vids, end vid)

RETURNS FLOAT

	Example:

	From vertices \(\{11, 3, 17\}\) to vertex \(12\)

SELECT * FROM pgr_maxFlowMinCost_Cost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 11, ARRAY[5, 10, 12]);
 pgr_maxflowmincost_cost

 760
(1 row)

Many to Many¶

pgr_maxFlowMinCost_Cost(Edges SQL, start vids, end vids)

RETURNS FLOAT

	Example:

	From vertices \(\{11, 3, 17\}\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlowMinCost_Cost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 ARRAY[11, 3, 17], ARRAY[5, 10, 12]);
 pgr_maxflowmincost_cost

 820
(1 row)

Combinations¶

pgr_maxFlowMinCost_Cost(Edges SQL, Combinations SQL)

RETURNS FLOAT

	Example:

	Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations
WHERE target NOT IN (5, 6);
 source | target
--------+--------
 5 | 10
 6 | 15
 6 | 14
(3 rows)

The query:

SELECT * FROM pgr_maxFlowMinCost_Cost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 'SELECT * FROM combinations WHERE target NOT IN (5, 6)');
 pgr_maxflowmincost_cost

 320
(1 row)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Capacity of the edge (source, target)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	reverse_capacity

	ANY-INTEGER

	-1

	Capacity of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target) if it exist

	reverse_cost

	ANY-NUMERICAL

	\(-1\)

	Weight of the edge (target, source) if it exist

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Return columns¶

	Type

	Description

	FLOAT

	Minimum Cost Maximum Flow possible from the source(s) to the target(s)

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_maxFlowMinCost_Cost(
 'SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost
 FROM edges',
 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)');
 pgr_maxflowmincost_cost

 320
(1 row)

See Also¶

	Flow - Family of functions

	https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html

Indices and tables

	Index

	Search Page

Flow Functions General Information¶

The main characteristics are:

	The graph is directed.

	Process is done only on edges with positive capacities.

	When the maximum flow is 0 then there is no flow and EMPTY SET is returned.

	There is no flow when source has the same vaule as target.

	Any duplicated values in source or target are ignored.

	Calculates the flow/residual capacity for each edge. In the output

	Edges with zero flow are omitted.

	Creates

	a super source and edges from it to all the sources,

	a super target and edges from it to all the targetss.

	The maximum flow through the graph is guaranteed to be the value returned by pgr_maxFlow when executed with the same parameters and can be calculated:

	By aggregation of the outgoing flow from the sources

	By aggregation of the incoming flow to the targets

pgr_maxFlow is the maximum Flow and that maximum is guaranteed to be the same on the functions pgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov, but the actual flow through each edge may vary.

Inner Queries¶

Edges SQL¶

Capacity edges

	pgr_pushRelabel

	pgr_edmondsKarp

	pgr_boykovKolmogorov

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Weight of the edge (source, target)

	reverse_capacity

	ANY-INTEGER

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Capacity-Cost edges

	pgr_maxFlowMinCost - Experimental

	pgr_maxFlowMinCost_Cost - Experimental

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	capacity

	ANY-INTEGER

	
	Capacity of the edge (source, target)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	reverse_capacity

	ANY-INTEGER

	-1

	Capacity of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target) if it exist

	reverse_cost

	ANY-NUMERICAL

	\(-1\)

	Weight of the edge (target, source) if it exist

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Cost edges

	pgr_edgeDisjointPaths

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Used in

	pgr_pushRelabel

	pgr_edmondsKarp

	pgr_boykovKolmogorov

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	start_vid

	BIGINT

	Identifier of the first end point vertex of the edge.

	end_vid

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (start_vid, end_vid).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (start_vid, end_vid).

For pgr_maxFlowMinCost - Experimental

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Identifier of the edge in the original query (edges_sql).

	source

	BIGINT

	Identifier of the first end point vertex of the edge.

	target

	BIGINT

	Identifier of the second end point vertex of the edge.

	flow

	BIGINT

	Flow through the edge in the direction (source, target).

	residual_capacity

	BIGINT

	Residual capacity of the edge in the direction (source, target).

	cost

	FLOAT

	The cost of sending this flow through the edge in the direction (source, target).

	agg_cost

	FLOAT

	The aggregate cost.

Advanced Documentation¶

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not exceed the capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except for source which only has outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow through each edge may vary.

Given the following query:

pgr_maxFlow \((edges_sql, source_vertex, sink_vertex)\)

where \(edges_sql = \{(id_i, source_i, target_i, capacity_i, reverse_capacity_i)\}\)

Graph definition

The weighted directed graph, \(G(V,E)\), is defined as:

	the set of vertices \(V\)

	\(source_vertex \cup sink_vertex \bigcup source_i \bigcup target_i\)

	the set of edges \(E\)

	\(E = \begin{cases} \text{ } \{(source_i, target_i, capacity_i) \text{ when } capacity > 0 \} & \quad \text{ if } reverse_capacity = \varnothing \\ \text{ } & \quad \text{ } \\ \{(source_i, target_i, capacity_i) \text{ when } capacity > 0 \} & \text{ } \\ \cup \{(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0)\} & \quad \text{ if } reverse_capacity \neq \varnothing \\ \end{cases}\)

Maximum flow problem

Given:

	\(G(V,E)\)

	\(source_vertex \in V\) the source vertex

	\(sink_vertex \in V\) the sink vertex

Then:

	\(pgr_maxFlow(edges_sql, source, sink) = \boldsymbol{\Phi}\)

	\(\boldsymbol{\Phi} = {(id_i, edge_id_i, source_i, target_i, flow_i, residual_capacity_i)}\)

Where:

\(\boldsymbol{\Phi}\) is a subset of the original edges with their residual capacity and flow. The maximum flow through the graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In particular:

	\(id_i = i\)

	\(edge_id = id_i\) in edges_sql

	\(residual_capacity_i = capacity_i - flow_i\)

See Also¶

	https://en.wikipedia.org/wiki/Maximum_flow_problem

Indices and tables

	Index

	Search Page

Kruskal - Family of functions¶

	pgr_kruskal

	pgr_kruskalBFS

	pgr_kruskalDD

	pgr_kruskalDFS

[image: Boost Graph Inside¶]Boost Graph Inside¶

pgr_kruskal¶

pgr_kruskal — Minimum spanning tree of a graph using Kruskal’s algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	New Official function

Description¶

This algorithm finds the minimum spanning forest in a possibly disconnected graph using Kruskal’s algorithm.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	The total weight of all the edges in the tree or forest is minimized.

	Kruskal’s running time: \(O(E * log E)\)

	EMPTY SET is returned when there are no edges in the graph.

Signatures¶

Summary

pgr_kruskal(Edges SQL)

Returns set of (edge, cost)

OR EMPTY SET

	Example:

	Minimum spanning forest

SELECT * FROM pgr_kruskal(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges ORDER BY id'
) ORDER BY edge;
 edge | cost
------+------
 1 | 1
 2 | 1
 3 | 1
 6 | 1
 7 | 1
 10 | 1
 11 | 1
 12 | 1
 13 | 1
 14 | 1
 15 | 1
 16 | 1
 17 | 1
 18 | 1
(14 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (edge, cost)

	Column

	Type

	Description

	edge

	BIGINT

	Identifier of the edge.

	cost

	FLOAT

	Cost to traverse the edge.

See Also¶

	Spanning Tree - Category

	Kruskal - Family of functions

	The queries use the Sample Data network.

	Boost: Kruskal’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

pgr_kruskalBFS¶

pgr_kruskalBFS — Kruskal’s algorithm for Minimum Spanning Tree with breadth First Search ordering.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.7.0:

	

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

	Version 3.0.0:

	
	New Official function

Description¶

Visits and extracts the nodes information in Breath First Search ordering of the Minimum Spanning Tree created using Kruskal’s algorithm.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	The total weight of all the edges in the tree or forest is minimized.

	Kruskal’s running time: \(O(E * log E)\)

	Returned tree nodes from a root vertex are on Breath First Search order

	Breath First Search Running time: \(O(E + V)\)

Signatures¶

pgr_kruskalBFS(Edges SQL, root vid, [max_depth])

pgr_kruskalBFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex¶

pgr_kruskalBFS(Edges SQL, root vid, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_kruskalBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
 6 | 4 | 6 | 16 | 17 | 15 | 1 | 4
 7 | 5 | 6 | 17 | 12 | 13 | 1 | 5
 8 | 6 | 6 | 12 | 11 | 11 | 1 | 6
 9 | 6 | 6 | 12 | 8 | 12 | 1 | 6
 10 | 7 | 6 | 8 | 7 | 10 | 1 | 7
 11 | 7 | 6 | 8 | 9 | 14 | 1 | 7
 12 | 8 | 6 | 7 | 3 | 7 | 1 | 8
 13 | 9 | 6 | 3 | 1 | 6 | 1 | 9
(13 rows)

Multiple vertices¶

pgr_kruskalBFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(depth \leq 3\)

SELECT * FROM pgr_kruskalBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], max_depth => 3);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
 6 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 7 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 8 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 9 | 2 | 9 | 8 | 12 | 12 | 1 | 2
 10 | 3 | 9 | 7 | 3 | 7 | 1 | 3
 11 | 3 | 9 | 12 | 11 | 11 | 1 | 3
 12 | 3 | 9 | 12 | 17 | 13 | 1 | 3
(12 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

BFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Spanning Tree - Category

	Kruskal - Family of functions

	Sample Data

	Boost: Kruskal’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

pgr_kruskalDD¶

pgr_kruskalDD — Catchament nodes using Kruskal’s algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.7.0:

	

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

	Version 3.0.0:

	
	New Official function

Description¶

Using Kruskal’s algorithm, extracts the nodes that have aggregate costs less than or equal to a distance from a root vertex (or vertices) within the calculated minimum spanning tree.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	The total weight of all the edges in the tree or forest is minimized.

	Kruskal’s running time: \(O(E * log E)\)

	Extracts all the nodes that have costs less than or equal to the value distance.

	The edges extracted will conform to the corresponding spanning tree.

	Edge \((u, v)\) will not be included when:

	The distance from the root to \(u\) > limit distance.

	The distance from the root to \(v\) > limit distance.

	No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.

	Returned tree nodes from a root vertex are on Depth First Search order.

	Depth First Search running time: \(O(E + V)\)

Signatures¶

pgr_kruskalDD(Edges SQL, root vid, distance)

pgr_kruskalDD(Edges SQL, root vids, distance)

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex¶

pgr_kruskalDD(Edges SQL, root vid, distance)

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertex \(6\) with \(distance \leq 3.5\)

SELECT * FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6, 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
(5 rows)

Multiple vertices¶

pgr_kruskalDD(Edges SQL, root vids, distance)

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(distance \leq 3.5\)

SELECT * FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
 6 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 7 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 8 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 9 | 3 | 9 | 7 | 3 | 7 | 1 | 3
 10 | 2 | 9 | 8 | 12 | 12 | 1 | 2
 11 | 3 | 9 | 12 | 11 | 11 | 1 | 3
 12 | 3 | 9 | 12 | 17 | 13 | 1 | 3
(12 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Spanning Tree - Category

	Kruskal - Family of functions

	Sample Data

	Boost: Kruskal’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

pgr_kruskalDFS¶

pgr_kruskalDFS — Kruskal’s algorithm for Minimum Spanning Tree with Depth First Search ordering.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.7.0:

	

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

	Version 3.0.0:

	
	New Official function

Description¶

Visits and extracts the nodes information in Depth First Search ordering of the Minimum Spanning Tree created using Kruskal’s algorithm.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	The total weight of all the edges in the tree or forest is minimized.

	Kruskal’s running time: \(O(E * log E)\)

	Returned tree nodes from a root vertex are on Depth First Search order

	Depth First Search Running time: \(O(E + V)\)

Signatures¶

pgr_kruskalDFS(Edges SQL, root vid, [max_depth])

pgr_kruskalDFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex¶

pgr_kruskalDFS(Edges SQL, root vid, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_kruskalDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
 6 | 4 | 6 | 16 | 17 | 15 | 1 | 4
 7 | 5 | 6 | 17 | 12 | 13 | 1 | 5
 8 | 6 | 6 | 12 | 11 | 11 | 1 | 6
 9 | 6 | 6 | 12 | 8 | 12 | 1 | 6
 10 | 7 | 6 | 8 | 7 | 10 | 1 | 7
 11 | 8 | 6 | 7 | 3 | 7 | 1 | 8
 12 | 9 | 6 | 3 | 1 | 6 | 1 | 9
 13 | 7 | 6 | 8 | 9 | 14 | 1 | 7
(13 rows)

Multiple vertices¶

pgr_kruskalDFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(depth \leq 3\)

SELECT * FROM pgr_kruskalDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], max_depth => 3);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
 6 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 7 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 8 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 9 | 3 | 9 | 7 | 3 | 7 | 1 | 3
 10 | 2 | 9 | 8 | 12 | 12 | 1 | 2
 11 | 3 | 9 | 12 | 11 | 11 | 1 | 3
 12 | 3 | 9 | 12 | 17 | 13 | 1 | 3
(12 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

DFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Spanning Tree - Category

	Kruskal - Family of functions

	Sample Data

	Boost: Kruskal’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

Description¶

Kruskal’s algorithm is a greedy minimum spanning tree algorithm that in each cycle finds and adds the edge of the least possible weight that connects any two trees in the forest.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	The total weight of all the edges in the tree or forest is minimized.

	Kruskal’s running time: \(O(E * log E)\)

Inner Queries¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also¶

	Spanning Tree - Category

	Boost: Kruskal’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

Prim - Family of functions¶

	pgr_prim

	pgr_primBFS

	pgr_primDD

	pgr_primDFS

[image: Boost Graph Inside¶]Boost Graph Inside¶

pgr_prim¶

pgr_prim — Minimum spanning forest of a graph using Prim’s algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.0.0

	New Official function

Description¶

This algorithm finds the minimum spanning forest in a possibly disconnected graph using Prim’s algorithm.

The main characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	Prim’s running time: \(O(E * log V)\)

	EMPTY SET is returned when there are no edges in the graph.

Signatures¶

Summary

pgr_prim(Edges SQL)

Returns set of (edge, cost)

OR EMPTY SET

	Example:

	Minimum spanning forest of a subgraph

SELECT edge, cost FROM pgr_prim(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id < 14'
) ORDER BY edge;
 edge | cost
------+------
 1 | 1
 2 | 1
 3 | 1
 4 | 1
 6 | 1
 7 | 1
 8 | 1
 9 | 1
 10 | 1
 12 | 1
 13 | 1
(11 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (edge, cost)

	Column

	Type

	Description

	edge

	BIGINT

	Identifier of the edge.

	cost

	FLOAT

	Cost to traverse the edge.

See Also¶

	Spanning Tree - Category

	Prim - Family of functions

	The queries use the Sample Data network.

	Boost: Prim’s algorithm documentation

	Wikipedia: Prim’s algorithm

Indices and tables

	Index

	Search Page

pgr_primBFS¶

pgr_primBFS — Prim’s algorithm for Minimum Spanning Tree with Depth First Search ordering.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.7.0:

	

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

	Version 3.0.0:

	
	New Official function

Description¶

Visits and extracts the nodes information in Breath First Search ordering of the Minimum Spanning Tree created using Prims’s algorithm.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	Prim’s running time: \(O(E * log V)\)

	Returned tree nodes from a root vertex are on Breath First Search order

	Breath First Search Running time: \(O(E + V)\)

Signatures¶

pgr_primBFS(Edges SQL, root vid, [max_depth])

pgr_primBFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex¶

pgr_primBFS(Edges SQL, root vid, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_primBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 5 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 6 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 7 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 8 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 9 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 10 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 11 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
 13 | 4 | 6 | 12 | 17 | 13 | 1 | 4
(13 rows)

Multiple vertices¶

pgr_primBFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(depth \leq 3\)

SELECT * FROM pgr_primBFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], max_depth => 3);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 5 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 6 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 7 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 8 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 9 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 10 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 11 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
 13 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 14 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 15 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 16 | 3 | 9 | 7 | 6 | 4 | 1 | 3
 17 | 3 | 9 | 7 | 3 | 7 | 1 | 3
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

BFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Spanning Tree - Category

	Prim - Family of functions

	Sample Data

	Boost: Prim’s algorithm documentation

	Wikipedia: Prim’s algorithm

Indices and tables

	Index

	Search Page

pgr_primDD¶

pgr_primDD — Catchament nodes using Prim’s algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

Version 3.7.0

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

Version 3.0.0

	New Official function

Description¶

Using Prim’s algorithm, extracts the nodes that have aggregate costs less than or equal to a distance from a root vertex (or vertices) within the calculated minimum spanning tree.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	Prim’s running time: \(O(E * log V)\)

	Extracts all the nodes that have costs less than or equal to the value distance.

	The edges extracted will conform to the corresponding spanning tree.

	Edge \((u, v)\) will not be included when:

	The distance from the root to \(u\) > limit distance.

	The distance from the root to \(v\) > limit distance.

	No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.

	Returned tree nodes from a root vertex are on Depth First Search order.

	Depth First Search running time: \(O(E + V)\)

Signatures¶

pgr_primDD(Edges SQL, root vid, distance)

pgr_primDD(Edges SQL, root vids, distance)

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex¶

pgr_primDD(Edges SQL, root vid, distance)

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertex \(6\) with \(distance \leq 3.5\)

SELECT * FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6, 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
(12 rows)

Multiple vertices¶

pgr_primDD(Edges SQL, root vids, distance)

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(distance \leq 3.5\)

SELECT * FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
 13 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 14 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 15 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 16 | 3 | 9 | 7 | 6 | 4 | 1 | 3
 17 | 3 | 9 | 7 | 3 | 7 | 1 | 3
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Spanning Tree - Category

	Prim - Family of functions

	Sample Data

	Boost: Prim’s algorithm documentation

	Wikipedia: Prim’s algorithm

Indices and tables

	Index

	Search Page

pgr_primDFS¶

pgr_primDFS — Prim algorithm for Minimum Spanning Tree with Depth First Search ordering.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.7.0:

	

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

	Version 3.0.0:

	
	New Official function

Description¶

Visits and extracts the nodes information in Depth First Search ordering of the Minimum Spanning Tree created using Prims’s algorithm.

The main Characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	Prim’s running time: \(O(E * log V)\)

	Returned tree nodes from a root vertex are on Depth First Search order

	Depth First Search Running time: \(O(E + V)\)

Signatures¶

pgr_primDFS(Edges SQL, root vid, [max_depth])

pgr_primDFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex¶

pgr_primDFS(Edges SQL, root vid, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_primDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 8 | 4 | 6 | 12 | 17 | 13 | 1 | 4
 9 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 10 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 11 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 12 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 13 | 3 | 6 | 8 | 9 | 14 | 1 | 3
(13 rows)

Multiple vertices¶

pgr_primDFS(Edges SQL, root vids, [max_depth])

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Example:

	The Minimum Spanning Tree starting on vertices \(\{9, 6\}\) with \(depth \leq 3\)

SELECT * FROM pgr_primDFS(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], max_depth => 3);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
 13 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 14 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 15 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 16 | 3 | 9 | 7 | 6 | 4 | 1 | 3
 17 | 3 | 9 | 7 | 3 | 7 | 1 | 3
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

DFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	Spanning Tree - Category

	Prim - Family of functions

	Sample Data

	Boost: Prim’s algorithm documentation

	Wikipedia: Prim’s algorithm

Indices and tables

	Index

	Search Page

Description¶

The prim algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník. It is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.

This algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim’s algorithm only finds minimum spanning trees in connected graphs. However, running Prim’s algorithm separately for each connected component of the graph, then it is called minimum spanning forest.

The main characteristics are:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

	Prim’s running time: \(O(E * log V)\)

Note

From boost Graph: “The algorithm as implemented in Boost.Graph does not produce correct results on graphs with parallel edges.”

Inner Queries¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also¶

	Spanning Tree - Category

	Boost: Prim’s algorithm

	Wikipedia: Prim’s algorithm

Indices and tables

	Index

	Search Page

Reference¶

	pgr_version

	pgr_full_version

pgr_version¶

pgr_version — Query for pgRouting version information.

Availability

	Version 3.0.0

	Breaking change on result columns

	Support for old signature ends

	Version 2.0.0

	Official function

Description¶

Returns pgRouting version information.

Signature¶

pgr_version()

RETURNS TEXT

	Example:

	pgRouting Version for this documentation

SELECT pgr_version();
 pgr_version

 3.7.1
(1 row)

Result columns¶

	Type

	Description

	TEXT

	pgRouting version

See Also¶

	Reference

	pgr_full_version

Indices and tables

	Index

	Search Page

pgr_full_version¶

pgr_full_version — Get the details of pgRouting version information.

Availability

	Version 3.0.0

	New official function

Description¶

Get complete details of pgRouting version information

Signatures¶

pgr_full_version()

RETURNS (version, build_type, compile_date, library, system, PostgreSQL, compiler, boost, hash)

	Example:

	Information about when this documentation was built

SELECT version, library FROM pgr_full_version();
 version | library
---------+-----------------
 3.7.1 | pgrouting-3.7.1
(1 row)

Result columns¶

	Column

	Type

	Description

	version

	TEXT

	pgRouting version

	build_type

	TEXT

	The Build type

	compile_date

	TEXT

	Compilation date

	library

	TEXT

	Library name and version

	system

	TEXT

	Operative system

	postgreSQL

	TEXT

	pgsql used

	compiler

	TEXT

	Compiler and version

	boost

	TEXT

	Boost version

	hash

	TEXT

	Git hash of pgRouting build

See Also¶

	Reference

	pgr_version

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

Topology - Family of Functions¶

The pgRouting’s topology of a network represented with a graph in form of two tables: and edge table and a vertex table.

Attributes associated to the tables help to indicate if the graph is directed or undirected, if an edge is one way on a directed graph, and depending on the final application needs, suitable topology(s) need to be created.

pgRouting suplies some functions to create a routing topology and to analyze the topology.

Additional functions to create a graph:

	Contraction - Family of functions

Additional functions to analyze a graph:

	Components - Family of functions

The following functions modify the database directly therefore the user must have special permissions given by the administrators to use them.

	pgr_createTopology - create a topology based on the geometry.

	pgr_createVerticesTable - reconstruct the vertices table based on the source and target information.

	pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

	pgr_analyzeOneWay - to analyze directionality of the edges.

	pgr_nodeNetwork - to create nodes to a not noded edge table.

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

These proposed functions do not modify the database.

	pgr_degree – Proposed - Returns a set of vertices and corresponding count of incidet edges to the vertex.

	pgr_extractVertices – Proposed - Extracts vertex information based on the edge table information.

pgr_createTopology¶

pgr_createTopology — Builds a network topology based on the geometry information.

Availability

	Version 2.0.0

	Renamed from version 1.x

	Official function

Description¶

The function returns:

	OK after the network topology has been built and the vertices table created.

	FAIL when the network topology was not built due to an error.

Signatures¶

pgr_createTopology(edge_table, tolerance, [options])

options: [the_geom, id, source, target, rows_where, clean]

RETURNS VARCHAR

Parameters¶

The topology creation function accepts the following parameters:

	edge_table:

	text Network table name. (may contain the schema name as well)

	tolerance:

	float8 Snapping tolerance of disconnected edges. (in projection unit)

	the_geom:

	text Geometry column name of the network table. Default value is the_geom.

	id:

	text Primary key column name of the network table. Default value is id.

	source:

	text Source column name of the network table. Default value is source.

	target:

	text Target column name of the network table. Default value is target.

	rows_where:

	text Condition to SELECT a subset or rows. Default value is true to indicate all rows that where source or target have a null value, otherwise the condition is used.

	clean:

	boolean Clean any previous topology. Default value is false.

Warning

The edge_table will be affected

	The source column values will change.

	The target column values will change.

	An index will be created, if it doesn’t exists, to speed up the process to the following columns:

	id

	the_geom

	source

	target

The function returns:

	OK after the network topology has been built.

	Creates a vertices table: <edge_table>_vertices_pgr.

	Fills id and the_geom columns of the vertices table.

	Fills the source and target columns of the edge table referencing the id of the vertices table.

	FAIL when the network topology was not built due to an error:

	A required column of the Network table is not found or is not of the appropriate type.

	The condition is not well formed.

	The names of source , target or id are the same.

	The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneWay functions.

The structure of the vertices table is:

	id:

	bigint Identifier of the vertex.

	cnt:

	integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGraph.

	chk:

	integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.

	ein:

	integer Number of vertices in the edge_table that reference this vertex AS incoming. See pgr_analyzeOneWay.

	eout:

	integer Number of vertices in the edge_table that reference this vertex AS outgoing. See pgr_analyzeOneWay.

	the_geom:

	geometry Point geometry of the vertex.

Usage when the edge table’s columns MATCH the default values:¶

The simplest way to use pgr_createTopology is:

SELECT pgr_createTopology('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

When the arguments are given in the order described in the parameters:

We get the sameresult as the simplest way to use the function.

SELECT pgr_createTopology('edges', 0.001,
 'geom', 'id', 'source', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column id of the table ege_table is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the id column.

SELECT pgr_createTopology('edges', 0.001,
 'id', 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'id', 'geom', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:geom
HINT: ----> Expected type of geom is integer,smallint or bigint but USER-DEFINED was found
NOTICE: Unexpected error raise_exception
 pgr_createtopology

 FAIL
(1 row)

When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of the parameters would not matter.

SELECT pgr_createTopology('edges', 0.001,
 the_geom:='geom', id:='id', source:='source', target:='target');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('edges', 0.001,
 source:='source', id:='id', target:='target', the_geom:='geom');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('edges', 0.001, 'geom', source:='source');
 pgr_createtopology

 OK
(1 row)

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_createTopology('edges', 0.001, 'geom', rows_where:='id < 10');
 pgr_createtopology

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of row with id = 5.

SELECT pgr_createTopology('edges', 0.001, 'geom',
 rows_where:='geom && (SELECT st_buffer(geom, 0.05) FROM edges WHERE id=5)');
 pgr_createtopology

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom);
SELECT 1
SELECT pgr_createTopology('edges', 0.001, 'geom',
 rows_where:='geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
 pgr_createtopology

 OK
(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:¶

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, geom AS mygeom, source AS src , target AS tgt FROM edges) ;
SELECT 18

Using positional notation:

The arguments need to be given in the order described in the parameters.

Note that this example uses clean flag. So it recreates the whole vertices table.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := TRUE);
 pgr_createtopology

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropiriate order: In this example, the column gid of the table mytable is passed to the function AS the geometry column, and the geometry column mygeom is passed to the function AS the id column.

SELECT pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createTopology: Wrong type of Column id:mygeom
HINT: ----> Expected type of mygeom is integer,smallint or bigint but USER-DEFINED was found
NOTICE: Unexpected error raise_exception
 pgr_createtopology

 FAIL
(1 row)

When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table. The order of the parameters do not matter:

SELECT pgr_createTopology('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src', target:='tgt');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom');
 pgr_createtopology

 OK
(1 row)

Selecting rows using rows_where parameter

Based on id:

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='gid < 10');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom', rows_where:='gid < 10');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
 rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)');
 pgr_createtopology

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt',
 rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)');
 pgr_createtopology

 OK
(1 row)

Additional Examples¶

	Create a routing topology

	Make sure the database does not have the vertices_table

	Clean up the columns of the routing topology to be created

	Create the vertices table

	Inspect the vertices table

	Create the routing topology on the edge table

	Inspect the routing topology

	With full output

Create a routing topology¶

An alternate method to create a routing topology use pgr_extractVertices – Proposed

Make sure the database does not have the vertices_table¶

DROP TABLE IF EXISTS vertices_table;
NOTICE: table "vertices_table" does not exist, skipping
DROP TABLE

Clean up the columns of the routing topology to be created¶

UPDATE edges
SET source = NULL, target = NULL,
x1 = NULL, y1 = NULL,
x2 = NULL, y2 = NULL;
UPDATE 18

Create the vertices table¶

	When the LINESTRING has a SRID then use geom::geometry(POINT, <SRID>)

	For big edge tables that are been prepared,

	Create it as UNLOGGED and

	After the table is created ALTER TABLE .. SET LOGGED

SELECT * INTO vertices_table
FROM pgr_extractVertices('SELECT id, geom FROM edges ORDER BY id');
SELECT 17

Inspect the vertices table¶

SELECT *
FROM vertices_table;
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+----------------+-----+--
 1 | | {6} | 0 | 2 | 010100000000000000000000000000000000000040
 2 | | {17} | 0.5 | 3.5 | 0101000000000000000000E03F0000000000000C40
 3 | {6} | {7} | 1 | 2 | 0101000000000000000000F03F0000000000000040
 4 | {17} | | 1.999999999999 | 3.5 | 010100000068EEFFFFFFFFFF3F0000000000000C40
 5 | | {1} | 2 | 0 | 010100000000000000000000400000000000000000
 6 | {1} | {2,4} | 2 | 1 | 01010000000000000000000040000000000000F03F
 7 | {4,7} | {8,10} | 2 | 2 | 010100000000000000000000400000000000000040
 8 | {10} | {12,14} | 2 | 3 | 010100000000000000000000400000000000000840
 9 | {14} | | 2 | 4 | 010100000000000000000000400000000000001040
 10 | {2} | {3,5} | 3 | 1 | 01010000000000000000000840000000000000F03F
 11 | {5,8} | {9,11} | 3 | 2 | 010100000000000000000008400000000000000040
 12 | {11,12} | {13} | 3 | 3 | 010100000000000000000008400000000000000840
 13 | | {18} | 3.5 | 2.3 | 01010000000000000000000C406666666666660240
 14 | {18} | | 3.5 | 4 | 01010000000000000000000C400000000000001040
 15 | {3} | {16} | 4 | 1 | 01010000000000000000001040000000000000F03F
 16 | {9,16} | {15} | 4 | 2 | 010100000000000000000010400000000000000040
 17 | {13,15} | | 4 | 3 | 010100000000000000000010400000000000000840
(17 rows)

Create the routing topology on the edge table¶

Updating the source information

WITH
out_going AS (
 SELECT id AS vid, unnest(out_edges) AS eid, x, y
 FROM vertices_table
)
UPDATE edges
SET source = vid, x1 = x, y1 = y
FROM out_going WHERE id = eid;
UPDATE 18

Updating the target information

WITH
in_coming AS (
 SELECT id AS vid, unnest(in_edges) AS eid, x, y
 FROM vertices_table
)
UPDATE edges
SET target = vid, x2 = x, y2 = y
FROM in_coming WHERE id = eid;
UPDATE 18

Inspect the routing topology¶

SELECT id, source, target, x1, y1, x2, y2
FROM edges ORDER BY id;
 id | source | target | x1 | y1 | x2 | y2
----+--------+--------+-----+-----+----------------+-----
 1 | 5 | 6 | 2 | 0 | 2 | 1
 2 | 6 | 10 | 2 | 1 | 3 | 1
 3 | 10 | 15 | 3 | 1 | 4 | 1
 4 | 6 | 7 | 2 | 1 | 2 | 2
 5 | 10 | 11 | 3 | 1 | 3 | 2
 6 | 1 | 3 | 0 | 2 | 1 | 2
 7 | 3 | 7 | 1 | 2 | 2 | 2
 8 | 7 | 11 | 2 | 2 | 3 | 2
 9 | 11 | 16 | 3 | 2 | 4 | 2
 10 | 7 | 8 | 2 | 2 | 2 | 3
 11 | 11 | 12 | 3 | 2 | 3 | 3
 12 | 8 | 12 | 2 | 3 | 3 | 3
 13 | 12 | 17 | 3 | 3 | 4 | 3
 14 | 8 | 9 | 2 | 3 | 2 | 4
 15 | 16 | 17 | 4 | 2 | 4 | 3
 16 | 15 | 16 | 4 | 1 | 4 | 2
 17 | 2 | 4 | 0.5 | 3.5 | 1.999999999999 | 3.5
 18 | 13 | 14 | 3.5 | 2.3 | 3.5 | 4
(18 rows)

[image: Generated topology¶]Generated topology¶

With full output¶

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

SELECT pgr_createTopology('edges', 0.001, 'geom', rows_where:='id < 6', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'id < 6', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 5 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_createTopology('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 13 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

The example uses the Sample Data network.

See Also¶

	Topology - Family of Functions

	pgr_createVerticesTable

	pgr_analyzeGraph

Indices and tables

	Index

	Search Page

pgr_createVerticesTable¶

pgr_createVerticesTable — Reconstructs the vertices table based on the source and target information.

Availability

	Version 2.0.0

	Renamed from version 1.x

	Official function

Description¶

The function returns:

	OK after the vertices table has been reconstructed.

	FAIL when the vertices table was not reconstructed due to an error.

Signatures¶

pgr_createVerticesTable(edge_table, [the_geom, source, target, rows_where])

RETURNS VARCHAR

Parameters¶

The reconstruction of the vertices table function accepts the following parameters:

	edge_table:

	text Network table name. (may contain the schema name as well)

	the_geom:

	text Geometry column name of the network table. Default value is the_geom.

	source:

	text Source column name of the network table. Default value is source.

	target:

	text Target column name of the network table. Default value is target.

	rows_where:

	text Condition to SELECT a subset or rows. Default value is true to indicate all rows.

Warning

The edge_table will be affected

	An index will be created, if it doesn’t exists, to speed up the process to the following columns:

	the_geom

	source

	target

The function returns:

	OK after the vertices table has been reconstructed.

	Creates a vertices table: <edge_table>_vertices_pgr.

	Fills id and the_geom columns of the vertices table based on the source and target columns of the edge table.

	FAIL when the vertices table was not reconstructed due to an error.

	A required column of the Network table is not found or is not of the appropriate type.

	The condition is not well formed.

	The names of source, target are the same.

	The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneWay functions.

The structure of the vertices table is:

	id:

	bigint Identifier of the vertex.

	cnt:

	integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGraph.

	chk:

	integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.

	ein:

	integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneWay.

	eout:

	integer Number of vertices in the edge_table that reference this vertex as outgoing. See pgr_analyzeOneWay.

	the_geom:

	geometry Point geometry of the vertex.

	Example 1:

	The simplest way to use pgr_createVerticesTable

SELECT pgr_createVerticesTable('edges', 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Additional Examples¶

	Example 2:

	When the arguments are given in the order described in the parameters:

SELECT pgr_createVerticesTable('edges', 'geom', 'source', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

We get the same result as the simplest way to use the function.

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column source column source of the table mytable is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the source column.

SELECT pgr_createVerticesTable('edges', 'source', 'geom', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','source','geom','target','true')
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: geom
HINT: ----> Expected type of geom is integer, smallint or bigint but USER-DEFINED was found
NOTICE: Unexpected error raise_exception
 pgr_createverticestable

 FAIL
(1 row)

When using the named notation

	Example 3:

	The order of the parameters do not matter:

SELECT pgr_createVerticesTable('edges', the_geom:='geom', source:='source', target:='target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 4:

	Using a different ordering

SELECT pgr_createVerticesTable('edges', source:='source', target:='target', the_geom:='geom');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 5:

	Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_createVerticesTable('edges', 'geom', source:='source');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Selecting rows using rows_where parameter

	Example 6:

	Selecting rows based on the id.

SELECT pgr_createVerticesTable('edges', 'geom', rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','id < 10')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 10 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 10
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 7:

	Selecting the rows where the geometry is near the geometry of row with id =5 .

SELECT pgr_createVerticesTable('edges', 'geom',
 rows_where:='geom && (select st_buffer(geom,0.5) FROM edges WHERE id=5)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','geom && (select st_buffer(geom,0.5) FROM edges WHERE id=5)')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 9 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 9
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 8:

	Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
NOTICE: table "othertable" does not exist, skipping
DROP TABLE
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT 1
SELECT pgr_createVerticesTable('edges', 'geom',
 rows_where:='geom && (select st_buffer(other_geom,0.5) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','geom && (select st_buffer(other_geom,0.5) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 10 VERTICES
NOTICE: FOR 12 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 12
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:¶

Using the following table

DROP TABLE IF EXISTS mytable;
NOTICE: table "mytable" does not exist, skipping
DROP TABLE
CREATE TABLE mytable AS (SELECT id AS gid, geom AS mygeom, source AS src ,target AS tgt FROM edges) ;
SELECT 18

Using positional notation:

	Example 9:

	The arguments need to be given in the order described in the parameters:

SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column src of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the source column.

SELECT pgr_createVerticesTable('mytable', 'src', 'mygeom', 'tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','src','mygeom','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: ----> PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: mygeom
HINT: ----> Expected type of mygeom is integer, smallint or bigint but USER-DEFINED was found
NOTICE: Unexpected error raise_exception
 pgr_createverticestable

 FAIL
(1 row)

When using the named notation

	Example 10:

	The order of the parameters do not matter:

SELECT pgr_createVerticesTable('mytable',the_geom:='mygeom',source:='src',target:='tgt');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 11:

	Using a different ordering

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

SELECT pgr_createVerticesTable(
 'mytable', source:='src', target:='tgt',
 the_geom:='mygeom');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

Selecting rows using rows_where parameter

	Example 12:

	Selecting rows based on the gid. (positional notation)

SELECT pgr_createVerticesTable(
 'mytable', 'mygeom', 'src', 'tgt',
 rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','gid < 10')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 10 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 10
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 13:

	Selecting rows based on the gid. (named notation)

SELECT pgr_createVerticesTable(
 'mytable', source:='src', target:='tgt', the_geom:='mygeom',
 rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','gid < 10')
NOTICE: Performing checks, please wait
NOTICE: Populating public.mytable_vertices_pgr, please wait...
NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE: FOR 10 EDGES
NOTICE: Edges with NULL geometry,source or target: 0
NOTICE: Edges processed: 10
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createverticestable

 OK
(1 row)

	Example 14:

	Selecting the rows where the geometry is near the geometry of row with gid = 5.

SELECT pgr_createVerticesTable(
 'mytable', 'mygeom', 'src', 'tgt',
 rows_where := 'the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)')
NOTICE: Performing checks, please wait
NOTICE: Got column "the_geom" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

	Example 15:

	TBD

SELECT pgr_createVerticesTable(
 'mytable', source:='src', target:='tgt', the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)')
NOTICE: Performing checks, please wait
NOTICE: Got column "id" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

	Example 16:

	Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable;
DROP TABLE
CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT 1

SELECT pgr_createVerticesTable(
 'mytable', 'mygeom', 'src', 'tgt',
 rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait
NOTICE: Got column "the_geom" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

	Example 17:

	TBD

SELECT pgr_createVerticesTable(
 'mytable',source:='src',target:='tgt',the_geom:='mygeom',
 rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait
NOTICE: Got column "the_geom" does not exist
NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition
NOTICE: select * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)) limit 1
 pgr_createverticestable

 FAIL
(1 row)

The example uses the Sample Data network.

See Also¶

	Topology - Family of Functions for an overview of a topology for routing algorithms.

	pgr_createTopology <pgr_create_topology>` to create a topology based on the geometry.

	pgr_analyzeGraph to analyze the edges and vertices of the edge table.

	pgr_analyzeOneWay to analyze directionality of the edges.

Indices and tables

	Index

	Search Page

pgr_analyzeGraph¶

pgr_analyzeGraph — Analyzes the network topology.

Availability

	Version 2.0.0

	Official function

Description¶

The function returns:

	OK after the analysis has finished.

	FAIL when the analysis was not completed due to an error.

pgr_analyzeGraph(edge_table, tolerance, [options])

options: [the_geom, id, source, target, rows_where]

RETURNS VARCHAR

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id’s of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

	Use pgr_createVerticesTable to create the vertices table.

	Use pgr_createTopology to create the topology and the vertices table.

Parameters¶

The analyze graph function accepts the following parameters:

	edge_table:

	text Network table name. (may contain the schema name as well)

	tolerance:

	float8 Snapping tolerance of disconnected edges. (in projection unit)

	the_geom:

	text Geometry column name of the network table. Default value is the_geom.

	id:

	text Primary key column name of the network table. Default value is id.

	source:

	text Source column name of the network table. Default value is source.

	target:

	text Target column name of the network table. Default value is target.

	rows_where:

	text Condition to select a subset or rows. Default value is true to indicate all rows.

The function returns:

	OK after the analysis has finished.

	Uses the vertices table: <edge_table>_vertices_pgr.

	Fills completely the cnt and chk columns of the vertices table.

	Returns the analysis of the section of the network defined by rows_where

	FAIL when the analysis was not completed due to an error.

	The vertices table is not found.

	A required column of the Network table is not found or is not of the appropriate type.

	The condition is not well formed.

	The names of source , target or id are the same.

	The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

	id:

	bigint Identifier of the vertex.

	cnt:

	integer Number of vertices in the edge_table that reference this vertex.

	chk:

	integer Indicator that the vertex might have a problem.

	ein:

	integer Number of vertices in the edge_table that reference this vertex as incoming. See pgr_analyzeOneWay.

	eout:

	integer Number of vertices in the edge_table that reference this vertex as outgoing. See pgr_analyzeOneWay.

	the_geom:

	geometry Point geometry of the vertex.

Usage when the edge table’s columns MATCH the default values:¶

The simplest way to use pgr_analyzeGraph is:

SELECT pgr_createTopology('edges',0.001, 'geom', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_analyzeGraph('edges',0.001,'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Arguments are given in the order described in the parameters:

SELECT pgr_analyzeGraph('edges',0.001,'geom','id','source','target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

We get the same result as the simplest way to use the function.

Warning

An error would occur when

the arguments are not given in the appropriate order:

In this example, the column id of the table mytable is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the id column.

SELECT pgr_analyzeGraph('edges',0.001,'id','geom','source','target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'id','geom','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Got function st_srid(bigint) does not exist
NOTICE: ERROR: something went wrong when checking for SRID of id in table public.edges
 pgr_analyzegraph

 FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('edges',0.001,the_geom:='geom',id:='id',source:='source',target:='target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edges',0.001,source:='source',id:='id',target:='target',the_geom:='geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_analyzeGraph('edges',0.001, 'geom', source:='source');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting rows using rows_where parameter

Selecting rows based on the id. Displays the analysis a the section of the network.

SELECT pgr_analyzeGraph('edges',0.001, 'geom', rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows where the geometry is near the geometry of row with id = 5

SELECT pgr_analyzeGraph('edges',0.001, 'geom', rows_where:='geom && (SELECT st_buffer(geom,0.05) FROM edge_table WHERE id=5)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','geom && (SELECT st_buffer(geom,0.05) FROM edge_table WHERE id=5)')
NOTICE: Performing checks, please wait ...
NOTICE: Got relation "edge_table" does not exist
NOTICE: ERROR: Condition is not correct. Please execute the following query to test your condition
NOTICE: select count(*) from public.edges WHERE true AND (geom && (SELECT st_buffer(geom,0.05) FROM edge_table WHERE id=5))
 pgr_analyzegraph

 FAIL
(1 row)

Selecting the rows where the geometry is near the geometry of the row with gid =100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;
SELECT 1
SELECT pgr_analyzeGraph('edges',0.001, 'geom', rows_where:='geom && (SELECT st_buffer(geom,1) FROM otherTable WHERE gid=100)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','geom && (SELECT st_buffer(geom,1) FROM otherTable WHERE gid=100)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Usage when the edge table’s columns DO NOT MATCH the default values:¶

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , geom AS mygeom FROM edges);
SELECT 18
SELECT pgr_createTopology('mytable',0.001,'mygeom','gid','src','tgt', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Using positional notation:

The arguments need to be given in the order described in the parameters:

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column gid of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the id column.

SELECT pgr_analyzeGraph('mytable',0.0001,'gid','mygeom','src','tgt');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.0001,'gid','mygeom','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Got function st_srid(bigint) does not exist
NOTICE: ERROR: something went wrong when checking for SRID of gid in table public.mytable
 pgr_analyzegraph

 FAIL
(1 row)

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('mytable',0.001,the_geom:='mygeom',id:='gid',source:='src',target:='tgt');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','gid < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',rows_where:='gid < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','gid < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows WHERE the geometry is near the geometry of row with id =5 .

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',
 rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 1
NOTICE: Dead ends: 5
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 1
NOTICE: Dead ends: 5
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Selecting the rows WHERE the geometry is near the place=’myhouse’ of the table othertable. (note the use of quote_literal)

DROP TABLE IF EXISTS otherTable;
DROP TABLE
CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS other_geom) ;
SELECT 1
SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',
 rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='myhouse')')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 10
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',
 rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='myhouse')')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 10
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Additional Examples¶

SELECT pgr_createTopology('edges',0.001, 'geom', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_analyzeGraph('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edges',0.001,'geom', rows_where:='id < 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id < 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edges',0.001,'geom', rows_where:='id >= 10');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id >= 10')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 8
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_analyzeGraph('edges',0.001,'geom', rows_where:='id < 17');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id < 17')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

SELECT pgr_createTopology('edges', 0.001,'geom', rows_where:='id <17', clean := true);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'id <17', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 16 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

SELECT pgr_analyzeGraph('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

The examples use the Sample Data network.

See Also¶

	Topology - Family of Functions

	pgr_analyzeOneWay

	pgr_createVerticesTable

	pgr_nodeNetwork to create nodes to a not noded edge table.

Indices and tables

	Index

	Search Page

pgr_analyzeOneWay¶

pgr_analyzeOneWay — Analyzes oneway Sstreets and identifies flipped segments.

This function analyzes oneway streets in a graph and identifies any flipped segments.

Availability

	Version 2.0.0

	Official function

Description¶

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential problems created by setting the direction of a segment the wrong way. A node is a source if it has edges the exit from that node and no edges enter that node. Conversely, a node is a sink if all edges enter the node but none exit that node. For a source type node it is logically impossible to exist because no vehicle can exit the node if no vehicle and enter the node. Likewise, if you had a sink node you would have an infinite number of vehicle piling up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could generate exactly these conditions. Think about a divided highway and on the north bound lane one segment got entered wrong or maybe a sequence of multiple segments got entered wrong or maybe this happened on a round-about. The result would be potentially a source and/or a sink node.

So by counting the number of edges entering and exiting each node we can identify both source and sink nodes so that you can look at those areas of your network to make repairs and/or report the problem back to your data vendor.

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id’s of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

	Use pgr_createVerticesTable to create the vertices table.

	Use pgr_createTopology to create the topology and the vertices table.

Signatures¶

pgr_analyzeOneWay(geom_table, s_in_rules, s_out_rules, t_in_rules, t_out_rules, [options])

options: [oneway, source, target, two_way_if_null]

RETURNS TEXT

Parameters¶

	edge_table:

	text Network table name. (may contain the schema name as well)

	s_in_rules:

	text[] source node in rules

	s_out_rules:

	text[] source node out rules

	t_in_rules:

	text[] target node in rules

	t_out_rules:

	text[] target node out rules

	oneway:

	text oneway column name name of the network table. Default value is oneway.

	source:

	text Source column name of the network table. Default value is source.

	target:

	text Target column name of the network table. Default value is target.

	two_way_if_null:

	boolean flag to treat oneway NULL values as bi-directional. Default value is true.

Note

It is strongly recommended to use the named notation. See pgr_createVerticesTable or pgr_createTopology for examples.

The function returns:

	OK after the analysis has finished.

	Uses the vertices table: <edge_table>_vertices_pgr.

	Fills completely the ein and eout columns of the vertices table.

	FAIL when the analysis was not completed due to an error.

	The vertices table is not found.

	A required column of the Network table is not found or is not of the appropriate type.

	The names of source , target or oneway are the same.

The rules are defined as an array of text strings that if match the oneway value would be counted as true for the source or target in or out condition.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

	id:

	bigint Identifier of the vertex.

	cnt:

	integer Number of vertices in the edge_table that reference this vertex. See pgr_analyzeGgraph.

	chk:

	integer Indicator that the vertex might have a problem. See pgr_analyzeGraph.

	ein:

	integer Number of vertices in the edge_table that reference this vertex as incoming.

	eout:

	integer Number of vertices in the edge_table that reference this vertex as outgoing.

	the_geom:

	geometry Point geometry of the vertex.

Additional Examples¶

ALTER TABLE edges ADD COLUMN dir TEXT;
ALTER TABLE
SELECT pgr_createTopology('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 0 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

UPDATE edges SET
dir = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' /* both ways */
 WHEN (cost>0 AND reverse_cost<0) THEN 'FT' /* direction of the LINESSTRING */
 WHEN (cost<0 AND reverse_cost>0) THEN 'TF' /* reverse direction of the LINESTRING */
 ELSE '' END;
UPDATE 18
/* unknown */
 SELECT pgr_analyzeOneWay('edges',
 ARRAY['', 'B', 'TF'],
 ARRAY['', 'B', 'FT'],
 ARRAY['', 'B', 'FT'],
 ARRAY['', 'B', 'TF'],
 oneway:='dir');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeOneway('edges','{"",B,TF}','{"",B,FT}','{"",B,FT}','{"",B,TF}','dir','source','target',t)
NOTICE: Analyzing graph for one way street errors.
NOTICE: Analysis 25% complete ...
NOTICE: Analysis 50% complete ...
NOTICE: Analysis 75% complete ...
NOTICE: Analysis 100% complete ...
NOTICE: Found 0 potential problems in directionality
 pgr_analyzeoneway

 OK
(1 row)

See Also¶

	Topology - Family of Functions

	pgr_analyzeGraph

	pgr_createVerticesTable

	Sample Data

Indices and tables

	Index

	Search Page

pgr_nodeNetwork¶

pgr_nodeNetwork - Nodes an network edge table.

	Author:

	Nicolas Ribot

	Copyright:

	Nicolas Ribot, The source code is released under the MIT-X license.

The function reads edges from a not “noded” network table and writes the “noded” edges into a new table.

| pgr_nodenetwork(edge_table, tolerance, [options])
| options: [id, text the_geom, table_ending, rows_where, outall]

| RETURNS TEXT

Availability

	Version 2.0.0

	Official function

Description¶

The main characteristics are:

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not “noded” correctly. This will create invalid topologies, which will result in routes that are incorrect.

What we mean by “noded” is that at every intersection in the road network all the edges will be broken into separate road segments. There are cases like an over-pass and under-pass intersection where you can not traverse from the over-pass to the under-pass, but this function does not have the ability to detect and accommodate those situations.

This function reads the edge_table table, that has a primary key column id and geometry column named the_geom and intersect all the segments in it against all the other segments and then creates a table edge_table_noded. It uses the tolerance for deciding that multiple nodes within the tolerance are considered the same node.

Parameters¶

	edge_table:

	text Network table name. (may contain the schema name as well)

	tolerance:

	float8 tolerance for coincident points (in projection unit)dd

	id:

	text Primary key column name of the network table. Default value is id.

	the_geom:

	text Geometry column name of the network table. Default value is the_geom.

	table_ending:

	text Suffix for the new table’s. Default value is noded.

The output table will have for edge_table_noded

	id:

	bigint Unique identifier for the table

	old_id:

	bigint Identifier of the edge in original table

	sub_id:

	integer Segment number of the original edge

	source:

	integer Empty source column to be used with pgr_createTopology function

	target:

	integer Empty target column to be used with pgr_createTopology function

	the geom:

	geometry Geometry column of the noded network

Examples¶

Let’s create the topology for the data in Sample Data

SELECT pgr_createTopology('edges', 0.001, 'geom', clean := TRUE);
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := t)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 18 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Now we can analyze the network.

SELECT pgr_analyzegraph('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

The analysis tell us that the network has a gap and an intersection. We try to fix the problem using:

SELECT pgr_nodeNetwork('edges', 0.001, the_geom => 'geom');
NOTICE: PROCESSING:
NOTICE: id: id
NOTICE: the_geom: geom
NOTICE: table_ending: noded
NOTICE: rows_where:
NOTICE: outall: f
NOTICE: pgr_nodeNetwork('edges', 0.001, 'id', 'geom', 'noded', '', f)
NOTICE: Performing checks, please wait
NOTICE: Processing, please wait
NOTICE: Split Edges: 3
NOTICE: Untouched Edges: 15
NOTICE: Total original Edges: 18
NOTICE: Edges generated: 6
NOTICE: Untouched Edges: 15
NOTICE: Total New segments: 21
NOTICE: New Table: public.edges_noded
NOTICE: ----------------------------------
 pgr_nodenetwork

 OK
(1 row)

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

SELECT old_id, sub_id FROM edges_noded ORDER BY old_id, sub_id;
 old_id | sub_id
--------+--------
 1 | 1
 2 | 1
 3 | 1
 4 | 1
 5 | 1
 6 | 1
 7 | 1
 8 | 1
 9 | 1
 10 | 1
 11 | 1
 12 | 1
 13 | 1
 13 | 2
 14 | 1
 14 | 2
 15 | 1
 16 | 1
 17 | 1
 18 | 1
 18 | 2
(21 rows)

We can create the topology of the new network

SELECT pgr_createTopology('edges_noded', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges_noded', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 21 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges_noded is: public.edges_noded_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

Now let’s analyze the new topology

SELECT pgr_analyzegraph('edges_noded', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges_noded',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Images¶

Before Image

[image: Before image]
After Image

[image: After image]

Comparing the results¶

Comparing with the Analysis in the original edge_table, we see that.

	
	Before

	After

	Table name

	edge_table

	edge_table_noded

	Fields

	All original fields

	Has only basic fields to do a topology analysis

	Dead ends

	
	Edges with 1 dead end: 1,6,24

	Edges with 2 dead ends: 17,18

Edge 17’s right node is a dead end because there is no other edge sharing that same node. (cnt=1)

	Edges with 1 dead end: 1-1 ,6-1,14-2, 18-1 17-1 18-2

	Isolated segments

	two isolated segments: 17 and 18 both they have 2 dead ends

	
	No Isolated segments

	
	Edge 17 now shares a node with edges 14-1 and 14-2

	Edges 18-1 and 18-2 share a node with edges 13-1 and 13-2

	Gaps

	There is a gap between edge 17 and 14 because edge 14 is near to the right node of edge 17

	Edge 14 was segmented Now edges: 14-1 14-2 17 share the same node The tolerance value was taken in account

	Intersections

	Edges 13 and 18 were intersecting

	Edges were segmented, So, now in the interection’s point there is a node and the following edges share it: 13-1 13-2 18-1 18-2

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2 ,18-1 and 18-2 into our edge-table, copying the data for dir,cost,and reverse cost with tho following steps:

	Add a column old_id into edge_table, this column is going to keep track the id of the original edge

	Insert only the segmented edges, that is, the ones whose max(sub_id) >1

alter table edges drop column if exists old_id;
NOTICE: column "old_id" of relation "edges" does not exist, skipping
ALTER TABLE
alter table edges add column old_id integer;
ALTER TABLE
insert into edges (old_id, cost, reverse_cost, geom)
 (with
 segmented as (select old_id,count(*) as i from edges_noded group by old_id)
 select segments.old_id, cost, reverse_cost, segments.geom
 from edges as edges join edges_noded as segments on (edges.id = segments.old_id)
 where edges.id in (select old_id from segmented where i>1));
INSERT 0 6

We recreate the topology:

SELECT pgr_createTopology('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f)
NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait...
NOTICE: -------------> TOPOLOGY CREATED FOR 6 edges
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE: --
 pgr_createtopology

 OK
(1 row)

To get the same analysis results as the topology of edge_table_noded, we do the following query:

SELECT pgr_analyzegraph('edges', 0.001, 'geom', rows_where:='id not in (select old_id from edges where old_id is not null)');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id not in (select old_id from edges where old_id is not null)')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

To get the same analysis results as the original edge_table, we do the following query:

SELECT pgr_analyzegraph('edges', 0.001, 'geom', rows_where:='old_id is null');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','old_id is null')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a street level juction, and the same happens with edges 17 and 13.

SELECT pgr_analyzegraph('edges', 0.001, 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait ...
NOTICE: Analyzing for dead ends. Please wait...
NOTICE: Analyzing for gaps. Please wait...
NOTICE: Analyzing for isolated edges. Please wait...
NOTICE: Analyzing for ring geometries. Please wait...
NOTICE: Analyzing for intersections. Please wait...
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 3
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 5
NOTICE: Ring geometries: 0
 pgr_analyzegraph

 OK
(1 row)

See Also¶

Topology - Family of Functions for an overview of a topology for routing algorithms. pgr_analyzeOneWay to analyze directionality of the edges. pgr_createTopology to create a topology based on the geometry. pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

	Index

	Search Page

pgr_extractVertices – Proposed¶

pgr_extractVertices — Extracts the vertices information

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.3.0

	Classified as proposed function

	Version 3.0.0

	New experimental function

Description¶

This is an auxiliary function for extracting the vertex information of the set of edges of a graph.

	When the edge identifier is given, then it will also calculate the in and out edges

Signatures¶

Summary

pgr_extractVertices(Edges SQL, [dryrun])

RETURNS SETOF (id, in_edges, out_edges, x, y, geom)

OR EMTPY SET

	Example:

	Extracting the vertex information

SELECT * FROM pgr_extractVertices(
 'SELECT id, geom FROM edges');
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+----------------+-----+--
 1 | | {6} | 0 | 2 | 010100000000000000000000000000000000000040
 2 | | {17} | 0.5 | 3.5 | 0101000000000000000000E03F0000000000000C40
 3 | {6} | {7} | 1 | 2 | 0101000000000000000000F03F0000000000000040
 4 | {17} | | 1.999999999999 | 3.5 | 010100000068EEFFFFFFFFFF3F0000000000000C40
 5 | | {1} | 2 | 0 | 010100000000000000000000400000000000000000
 6 | {1} | {2,4} | 2 | 1 | 01010000000000000000000040000000000000F03F
 7 | {4,7} | {8,10} | 2 | 2 | 010100000000000000000000400000000000000040
 8 | {10} | {12,14} | 2 | 3 | 010100000000000000000000400000000000000840
 9 | {14} | | 2 | 4 | 010100000000000000000000400000000000001040
 10 | {2} | {3,5} | 3 | 1 | 01010000000000000000000840000000000000F03F
 11 | {5,8} | {9,11} | 3 | 2 | 010100000000000000000008400000000000000040
 12 | {11,12} | {13} | 3 | 3 | 010100000000000000000008400000000000000840
 13 | | {18} | 3.5 | 2.3 | 01010000000000000000000C406666666666660240
 14 | {18} | | 3.5 | 4 | 01010000000000000000000C400000000000001040
 15 | {3} | {16} | 4 | 1 | 01010000000000000000001040000000000000F03F
 16 | {9,16} | {15} | 4 | 2 | 010100000000000000000010400000000000000040
 17 | {13,15} | | 4 | 3 | 010100000000000000000010400000000000000840
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

Optional parameters¶

	Parameter

	Type

	Default

	Description

	dryrun

	BOOLEAN

	false

	
	When true do not process and get in a NOTICE the resulting query.

Inner Queries¶

	Edges SQL

	When line geometry is known

	When vertex geometry is known

	When identifiers of vertices are known

Edges SQL¶

When line geometry is known¶

	Column

	Type

	Description

	id

	BIGINT

	(Optional) identifier of the edge.

	geom

	LINESTRING

	Geometry of the edge.

This inner query takes precedence over the next two inner query, therefore other columns are ignored when geom column appears.

	Ignored columns:

	startpoint

	endpoint

	source

	target

When vertex geometry is known¶

To use this inner query the column geom should not be part of the set of columns.

	Column

	Type

	Description

	id

	BIGINT

	(Optional) identifier of the edge.

	startpoint

	POINT

	POINT geometry of the starting vertex.

	endpoint

	POINT

	POINT geometry of the ending vertex.

This inner query takes precedence over the next inner query, therefore other columns are ignored when startpoint and endpoint columns appears.

	Ignored columns:

	source

	target

When identifiers of vertices are known¶

To use this inner query the columns geom, startpoint and endpoint should not be part of the set of columns.

	Column

	Type

	Description

	id

	BIGINT

	(Optional) identifier of the edge.

	source

	ANY-INTEGER

	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	Identifier of the second end point vertex of the edge.

Result columns¶

	Column

	Type

	Description

	id

	BIGINT

	Vertex identifier

	in_edges

	BIGINT[]

	Array of identifiers of the edges that have the vertex id as first end point.

	NULL When the id is not part of the inner query

	out_edges

	BIGINT[]

	Array of identifiers of the edges that have the vertex id as second end point.

	NULL When the id is not part of the inner query

	x

	FLOAT

	X value of the point geometry

	NULL When no geometry is provided

	y

	FLOAT

	X value of the point geometry

	NULL When no geometry is provided

	geom

	POINT

	Geometry of the point

	NULL When no geometry is provided

Additional Examples¶

	Dry run execution

	Create a routing topology

	Make sure the database does not have the vertices_table

	Clean up the columns of the routing topology to be created

	Create the vertices table

	Inspect the vertices table

	Create the routing topology on the edge table

	Inspect the routing topology

	Crossing edges

	Adding split edges

	Adding new vertices

	Updating edges topology

	Removing the surplus edges

	Updating vertices topology

	Checking for crossing edges

	Graphs without geometries

	Insert the data

	Find the shortest path

	Vertex information

Dry run execution¶

To get the query generated used to get the vertex information, use dryrun := true.

The results can be used as base code to make a refinement based on the backend development needs.

SELECT * FROM pgr_extractVertices(
 'SELECT id, geom FROM edges',
 dryrun => true);
NOTICE:
 WITH

 main_sql AS (
 SELECT id, geom FROM edges
),

 the_out AS (
 SELECT id::BIGINT AS out_edge, ST_StartPoint(geom) AS geom
 FROM main_sql
),

 agg_out AS (
 SELECT array_agg(out_edge ORDER BY out_edge) AS out_edges, ST_x(geom) AS x, ST_Y(geom) AS y, geom
 FROM the_out
 GROUP BY geom
),

 the_in AS (
 SELECT id::BIGINT AS in_edge, ST_EndPoint(geom) AS geom
 FROM main_sql
),

 agg_in AS (
 SELECT array_agg(in_edge ORDER BY in_edge) AS in_edges, ST_x(geom) AS x, ST_Y(geom) AS y, geom
 FROM the_in
 GROUP BY geom
),

 the_points AS (
 SELECT in_edges, out_edges, coalesce(agg_out.geom, agg_in.geom) AS geom
 FROM agg_out
 FULL OUTER JOIN agg_in USING (x, y)
)

 SELECT row_number() over(ORDER BY ST_X(geom), ST_Y(geom)) AS id, in_edges, out_edges, ST_X(geom), ST_Y(geom), geom
 FROM the_points;
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+---+---+------
(0 rows)

Create a routing topology¶

Make sure the database does not have the vertices_table¶

DROP TABLE IF EXISTS vertices_table;
NOTICE: table "vertices_table" does not exist, skipping
DROP TABLE

Clean up the columns of the routing topology to be created¶

UPDATE edges
SET source = NULL, target = NULL,
x1 = NULL, y1 = NULL,
x2 = NULL, y2 = NULL;
UPDATE 18

Create the vertices table¶

	When the LINESTRING has a SRID then use geom::geometry(POINT, <SRID>)

	For big edge tables that are been prepared,

	Create it as UNLOGGED and

	After the table is created ALTER TABLE .. SET LOGGED

SELECT * INTO vertices_table
FROM pgr_extractVertices('SELECT id, geom FROM edges ORDER BY id');
SELECT 17

Inspect the vertices table¶

SELECT *
FROM vertices_table;
 id | in_edges | out_edges | x | y | geom
----+----------+-----------+----------------+-----+--
 1 | | {6} | 0 | 2 | 010100000000000000000000000000000000000040
 2 | | {17} | 0.5 | 3.5 | 0101000000000000000000E03F0000000000000C40
 3 | {6} | {7} | 1 | 2 | 0101000000000000000000F03F0000000000000040
 4 | {17} | | 1.999999999999 | 3.5 | 010100000068EEFFFFFFFFFF3F0000000000000C40
 5 | | {1} | 2 | 0 | 010100000000000000000000400000000000000000
 6 | {1} | {2,4} | 2 | 1 | 01010000000000000000000040000000000000F03F
 7 | {4,7} | {8,10} | 2 | 2 | 010100000000000000000000400000000000000040
 8 | {10} | {12,14} | 2 | 3 | 010100000000000000000000400000000000000840
 9 | {14} | | 2 | 4 | 010100000000000000000000400000000000001040
 10 | {2} | {3,5} | 3 | 1 | 01010000000000000000000840000000000000F03F
 11 | {5,8} | {9,11} | 3 | 2 | 010100000000000000000008400000000000000040
 12 | {11,12} | {13} | 3 | 3 | 010100000000000000000008400000000000000840
 13 | | {18} | 3.5 | 2.3 | 01010000000000000000000C406666666666660240
 14 | {18} | | 3.5 | 4 | 01010000000000000000000C400000000000001040
 15 | {3} | {16} | 4 | 1 | 01010000000000000000001040000000000000F03F
 16 | {9,16} | {15} | 4 | 2 | 010100000000000000000010400000000000000040
 17 | {13,15} | | 4 | 3 | 010100000000000000000010400000000000000840
(17 rows)

Create the routing topology on the edge table¶

Updating the source information

WITH
out_going AS (
 SELECT id AS vid, unnest(out_edges) AS eid, x, y
 FROM vertices_table
)
UPDATE edges
SET source = vid, x1 = x, y1 = y
FROM out_going WHERE id = eid;
UPDATE 18

Updating the target information

WITH
in_coming AS (
 SELECT id AS vid, unnest(in_edges) AS eid, x, y
 FROM vertices_table
)
UPDATE edges
SET target = vid, x2 = x, y2 = y
FROM in_coming WHERE id = eid;
UPDATE 18

Inspect the routing topology¶

SELECT id, source, target, x1, y1, x2, y2
FROM edges ORDER BY id;
 id | source | target | x1 | y1 | x2 | y2
----+--------+--------+-----+-----+----------------+-----
 1 | 5 | 6 | 2 | 0 | 2 | 1
 2 | 6 | 10 | 2 | 1 | 3 | 1
 3 | 10 | 15 | 3 | 1 | 4 | 1
 4 | 6 | 7 | 2 | 1 | 2 | 2
 5 | 10 | 11 | 3 | 1 | 3 | 2
 6 | 1 | 3 | 0 | 2 | 1 | 2
 7 | 3 | 7 | 1 | 2 | 2 | 2
 8 | 7 | 11 | 2 | 2 | 3 | 2
 9 | 11 | 16 | 3 | 2 | 4 | 2
 10 | 7 | 8 | 2 | 2 | 2 | 3
 11 | 11 | 12 | 3 | 2 | 3 | 3
 12 | 8 | 12 | 2 | 3 | 3 | 3
 13 | 12 | 17 | 3 | 3 | 4 | 3
 14 | 8 | 9 | 2 | 3 | 2 | 4
 15 | 16 | 17 | 4 | 2 | 4 | 3
 16 | 15 | 16 | 4 | 1 | 4 | 2
 17 | 2 | 4 | 0.5 | 3.5 | 1.999999999999 | 3.5
 18 | 13 | 14 | 3.5 | 2.3 | 3.5 | 4
(18 rows)

[image: Generated topology¶]Generated topology¶

Crossing edges¶

To get the crossing edges:

SELECT a.id, b.id
FROM edges AS a, edges AS b
WHERE a.id < b.id AND st_crosses(a.geom, b.geom);
 id | id
----+----
 13 | 18
(1 row)

That information is correct, for example, when in terms of vehicles, is it a tunnel or bridge crossing over another road.

It might be incorrect, for example:

	When it is actually an intersection of roads, where vehicles can make turns.

	When in terms of electrical lines, the electrical line is able to switch roads even on a tunnel or bridge.

When it is incorrect, it needs fixing:

	For vehicles and pedestrians

	If the data comes from OSM and was imported to the database using osm2pgrouting, the fix needs to be done in the OSM portal and the data imported again.

	In general when the data comes from a supplier that has the data prepared for routing vehicles, and there is a problem, the data is to be fixed from the supplier

	For very specific applications

	The data is correct when from the point of view of routing vehicles or pedestrians.

	The data needs a local fix for the specific application.

Once analyzed one by one the crossings, for the ones that need a local fix, the edges need to be split.

SELECT ST_AsText((ST_Dump(ST_Split(a.geom, b.geom))).geom)
FROM edges AS a, edges AS b
WHERE a.id = 13 AND b.id = 18
UNION
SELECT ST_AsText((ST_Dump(ST_Split(b.geom, a.geom))).geom)
FROM edges AS a, edges AS b
WHERE a.id = 13 AND b.id = 18;
 st_astext

 LINESTRING(3.5 2.3,3.5 3)
 LINESTRING(3 3,3.5 3)
 LINESTRING(3.5 3,4 3)
 LINESTRING(3.5 3,3.5 4)
(4 rows)

The new edges need to be added to the edges table, the rest of the attributes need to be updated in the new edges, the old edges need to be removed and the routing topology needs to be updated.

Adding split edges¶

For each pair of crossing edges a process similar to this one must be performed.

The columns inserted and the way are calculated are based on the application. For example, if the edges have a trait name, then that column is to be copied.

For pgRouting calculations

	factor based on the position of the intersection of the edges can be used to adjust the cost and reverse_cost columns.

	Capacity information, used in the Flow - Family of functions functions does not need to change when splitting edges.

WITH
first_edge AS (
 SELECT (ST_Dump(ST_Split(a.geom, b.geom))).path[1],
 (ST_Dump(ST_Split(a.geom, b.geom))).geom,
 ST_LineLocatePoint(a.geom,ST_Intersection(a.geom,b.geom)) AS factor
 FROM edges AS a, edges AS b
 WHERE a.id = 13 AND b.id = 18),
first_segments AS (
 SELECT path, first_edge.geom,
 capacity, reverse_capacity,
 CASE WHEN path=1 THEN factor * cost
 ELSE (1 - factor) * cost END AS cost,
 CASE WHEN path=1 THEN factor * reverse_cost
 ELSE (1 - factor) * reverse_cost END AS reverse_cost
 FROM first_edge , edges WHERE id = 13),
second_edge AS (
 SELECT (ST_Dump(ST_Split(b.geom, a.geom))).path[1],
 (ST_Dump(ST_Split(b.geom, a.geom))).geom,
 ST_LineLocatePoint(b.geom,ST_Intersection(a.geom,b.geom)) AS factor
 FROM edges AS a, edges AS b
 WHERE a.id = 13 AND b.id = 18),
second_segments AS (
 SELECT path, second_edge.geom,
 capacity, reverse_capacity,
 CASE WHEN path=1 THEN factor * cost
 ELSE (1 - factor) * cost END AS cost,
 CASE WHEN path=1 THEN factor * reverse_cost
 ELSE (1 - factor) * reverse_cost END AS reverse_cost
 FROM second_edge , edges WHERE id = 18),
all_segments AS (
 SELECT * FROM first_segments
 UNION
 SELECT * FROM second_segments)
INSERT INTO edges
 (capacity, reverse_capacity,
 cost, reverse_cost,
 x1, y1, x2, y2,
 geom)
(SELECT capacity, reverse_capacity, cost, reverse_cost,
 ST_X(ST_StartPoint(geom)), ST_Y(ST_StartPoint(geom)),
 ST_X(ST_EndPoint(geom)), ST_Y(ST_EndPoint(geom)),
 geom
 FROM all_segments);
INSERT 0 4

Adding new vertices¶

After adding all the split edges required by the application, the newly created vertices need to be added to the vertices table.

INSERT INTO vertices (in_edges, out_edges, x, y, geom)
(SELECT nv.in_edges, nv.out_edges, nv.x, nv.y, nv.geom
FROM pgr_extractVertices('SELECT id, geom FROM edges') AS nv
LEFT JOIN vertices AS v USING(geom) WHERE v.geom IS NULL);
INSERT 0 1

Updating edges topology¶

/* -- set the source information */
UPDATE edges AS e
SET source = v.id
FROM vertices AS v
WHERE source IS NULL AND ST_StartPoint(e.geom) = v.geom;
UPDATE 4
/* -- set the target information */
UPDATE edges AS e
SET target = v.id
FROM vertices AS v
WHERE target IS NULL AND ST_EndPoint(e.geom) = v.geom;
UPDATE 4

Removing the surplus edges¶

Once all significant information needed by the application has been transported to the new edges, then the crossing edges can be deleted.

DELETE FROM edges WHERE id IN (13, 18);
DELETE 2

There are other options to do this task, like creating a view, or a materialized view.

Updating vertices topology¶

To keep the graph consistent, the vertices topology needs to be updated

UPDATE vertices AS v SET
in_edges = nv.in_edges, out_edges = nv.out_edges
FROM (SELECT * FROM pgr_extractVertices('SELECT id, geom FROM edges')) AS nv
WHERE v.geom = nv.geom;
UPDATE 18

Checking for crossing edges¶

There are no crossing edges on the graph.

SELECT a.id, b.id
FROM edges AS a, edges AS b
WHERE a.id < b.id AND st_crosses(a.geom, b.geom);
 id | id
----+----
(0 rows)

Graphs without geometries¶

Using this table design for this example:

CREATE TABLE wiki (
 id SERIAL,
 source INTEGER,
 target INTEGER,
 cost INTEGER);
CREATE TABLE

Insert the data¶

INSERT INTO wiki (source, target, cost) VALUES
(1, 2, 7), (1, 3, 9), (1, 6, 14),
(2, 3, 10), (2, 4, 15),
(3, 6, 2), (3, 4, 11),
(4, 5, 6),
(5, 6, 9);
INSERT 0 9

Find the shortest path¶

To solve this example pgr_dijkstra is used:

SELECT * FROM pgr_dijkstra(
 'SELECT id, source, target, cost FROM wiki',
 1, 5, false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 5 | 1 | 2 | 9 | 0
 2 | 2 | 1 | 5 | 3 | 6 | 2 | 9
 3 | 3 | 1 | 5 | 6 | 9 | 9 | 11
 4 | 4 | 1 | 5 | 5 | -1 | 0 | 20
(4 rows)

To go from \(1\) to \(5\) the path goes thru the following vertices: \(1 \rightarrow 3 \rightarrow 6 \rightarrow 5\)

[image: graph G { rankdir="LR"; 1 [color="red"]; 5 [color="green"]; 1 -- 2 [label="(7)"]; 5 -- 6 [label="(9)", color="blue"]; 1 -- 3 [label="(9)", color="blue"]; 1 -- 6 [label="(14)"]; 2 -- 3 [label="(10)"]; 2 -- 4 [label="(13)"]; 3 -- 4 [label="(11)"]; 3 -- 6 [label="(2)", color="blue"]; 4 -- 5 [label="(6)"]; }]

Vertex information¶

To obtain the vertices information, use pgr_extractVertices – Proposed

SELECT id, in_edges, out_edges
FROM pgr_extractVertices('SELECT id, source, target FROM wiki');
 id | in_edges | out_edges
----+----------+-----------
 3 | {2,4} | {6,7}
 5 | {8} | {9}
 4 | {5,7} | {8}
 2 | {1} | {4,5}
 1 | | {1,2,3}
 6 | {3,6,9} |
(6 rows)

See Also¶

	Topology - Family of Functions

	pgr_createVerticesTable

Indices and tables

	Index

	Search Page

pgr_degree – Proposed¶

pgr_degree — For each vertex in an undirected graph, return the count of edges incident to the vertex.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.4.0

	New proposed function

Description¶

Calculates the degree of the vertices of an undirected graph

Signatures¶

pgr_degree(Edges SQL , Vertex SQL, [dryrun])

RETURNS SETOF (node, degree)

OR EMTPY SET

	Example:

	Extracting the vertex information

pgr_degree can utilize output from pgr_extractVertices or can have pgr_extractVertices embedded in the call. For decent size networks, it is best to prep your vertices table before hand and use that vertices table for pgr_degree calls.

DROP TABLE IF EXISTS tmp_edges_vertices_pgr;
NOTICE: table "tmp_edges_vertices_pgr" does not exist, skipping
DROP TABLE
CREATE TEMP TABLE tmp_edges_vertices_pgr AS
SELECT id, in_edges, out_edges
 FROM pgr_extractVertices('SELECT id, geom FROM edges');
SELECT 17
SELECT * FROM pgr_degree(
 $$SELECT id FROM edges$$,
 $$SELECT id, in_edges, out_edges
 FROM tmp_edges_vertices_pgr$$);
 node | degree
------+--------
 1 | 1
 2 | 1
 3 | 2
 4 | 1
 5 | 1
 6 | 3
 7 | 4
 8 | 3
 9 | 1
 10 | 3
 11 | 4
 12 | 3
 13 | 1
 14 | 1
 15 | 2
 16 | 3
 17 | 2
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Vertex SQL

	TEXT

	Vertex SQL as described below

Optional parameters¶

	Parameter

	Type

	Default

	Description

	dryrun

	BOOLEAN

	false

	
	When true do not process and get in a NOTICE the resulting query.

Inner Queries¶

	Edges SQL

	Vertex SQL

Edges SQL¶

	Column

	Type

	Description

	id

	BIGINT

	Identifier of the edge.

Vertex SQL¶

	Column

	Type

	Description

	id

	BIGINT

	Identifier of the first end point vertex of the edge.

	in_edges

	BIGINT[]

	Array of identifiers of the edges that have the vertex id as first end point.

	When missing, out_edges must exist.

	out_edges

	BIGINT[]

	Array of identifiers of the edges that have the vertex id as second end point.

	When missing, in_edges must exist.

Result columns¶

	Column

	Type

	Description

	node

	BIGINT

	Vertex identifier

	degree

	BIGINT

	Number of edges that are incident to the vertex id

Additional Examples¶

	Degree of a sub graph

	Dry run execution

	Degree from an existing table

	Dead ends

	Linear edges

Degree of a sub graph¶

SELECT * FROM pgr_degree(
 $$SELECT id FROM edges WHERE id < 17$$,
 $$SELECT id, in_edges, out_edges
 FROM pgr_extractVertices('SELECT id, geom FROM edges')$$);
 node | degree
------+--------
 1 | 1
 2 | 0
 3 | 2
 4 | 0
 5 | 1
 6 | 3
 7 | 4
 8 | 3
 9 | 1
 10 | 3
 11 | 4
 12 | 3
 13 | 0
 14 | 0
 15 | 2
 16 | 3
 17 | 2
(17 rows)

Dry run execution¶

To get the query generated used to get the vertex information, use dryrun => true.

The results can be used as base code to make a refinement based on the backend development needs.

SELECT * FROM pgr_degree(
 $$SELECT id FROM edges WHERE id < 17$$,
 $$SELECT id, in_edges, out_edges
 FROM pgr_extractVertices('SELECT id, geom FROM edges')$$,
 dryrun => true);
NOTICE:
 WITH

 -- a sub set of edges of the graph goes here
 g_edges AS (
 SELECT id FROM edges WHERE id < 17
),

 -- sub set of vertices of the graph goes here
 all_vertices AS (
 SELECT id, in_edges, out_edges
 FROM pgr_extractVertices('SELECT id, geom FROM edges')
),

 g_vertices AS (
 SELECT id,
 unnest(
 coalesce(in_edges::BIGINT[], '{}'::BIGINT[])
 ||
 coalesce(out_edges::BIGINT[], '{}'::BIGINT[])) AS eid
 FROM all_vertices
),

 totals AS (
 SELECT v.id, count(*)
 FROM g_vertices AS v
 JOIN g_edges AS e ON (e.id = eid) GROUP BY v.id
)

 SELECT id::BIGINT, coalesce(count, 0)::BIGINT FROM all_vertices LEFT JOIN totals USING (id)
 ;
 node | degree
------+--------
(0 rows)

Degree from an existing table¶

If you have a vertices table already built using pgr_extractVertices and want the degree of the whole graph rather than a subset, you can forgo using pgr_degree and work with the in_edges and out_edges columns directly.

Dead ends¶

To get the dead ends:

SELECT id FROM vertices
WHERE array_length(in_edges || out_edges, 1) = 1;
 id

 1
 5
 9
 13
 14
 2
 4
(7 rows)

That information is correct, for example, when the dead end is on the limit of the imported graph.

Visually node \(4\) looks to be as start/ending of 3 edges, but it is not.

Is that correct?

	Is there such a small curb:

	That does not allow a vehicle to use that visual intersection?

	Is the application for pedestrians and therefore the pedestrian can easily walk on the small curb?

	Is the application for the electricity and the electrical lines than can easily be extended on top of the small curb?

	Is there a big cliff and from eagles view look like the dead end is close to the segment?

When there are many dead ends, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

Linear edges¶

To get the linear edges:

SELECT id FROM vertices
WHERE array_length(in_edges || out_edges, 1) = 2;
 id

 3
 15
 17
(3 rows)

This information is correct, for example, when the application is taking into account speed bumps, stop signals.

When there are many linear edges, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

See Also¶

	Topology - Family of Functions

	pgr_extractVertices – Proposed

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

Traveling Sales Person - Family of functions¶

	pgr_TSP - When input is given as matrix cell information.

	pgr_TSPeuclidean - When input are coordinates.

pgr_TSP¶

	pgr_TSP - Aproximation using metric algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability:

	Version 3.2.1

	Metric Algorithm from Boost library

	Simulated Annealing Algorithm no longer supported

	The Simulated Annealing Algorithm related parameters are ignored: max_processing_time, tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes, initial_temperature, final_temperature, cooling_factor, randomize

	Version 2.3.0

	Signature change

	Old signature no longer supported

	Version 2.0.0

	Official function

Description¶

Problem Definition¶

The travelling salesperson problem (TSP) asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?

Characteristics¶

	This problem is an NP-hard optimization problem.

	Metric Algorithm is used

	Implementation generates solutions that are twice as long as the optimal tour in the worst case when:

	Graph is undirected

	Graph is fully connected

	Graph where traveling costs on edges obey the triangle inequality.

	On an undirected graph:

	The traveling costs are symmetric:

	Traveling costs from u to v are just as much as traveling from v to u

	Can be Used with Cost Matrix - Category functions preferably with directed => false.

	With directed => false

	Will generate a graph that:

	is undirected

	is fully connected (As long as the graph has one component)

	all traveling costs on edges obey the triangle inequality.

	When start_vid = 0 OR end_vid = 0

	The solutions generated is garanteed to be twice as long as the optimal tour in the worst case

	When start_vid != 0 AND end_vid != 0 AND start_vid != end_vid

	It is not garanteed that the solution will be, in the worse case, twice as long as the optimal tour, due to the fact that end_vid is forced to be in a fixed position.

	With directed => true

	It is not garanteed that the solution will be, in the worse case, twice as long as the optimal tour

	Will generate a graph that:

	is directed

	is fully connected (As long as the graph has one component)

	some (or all) traveling costs on edges might not obey the triangle inequality.

	As an undirected graph is required, the directed graph is transformed as follows:

	edges (u, v) and (v, u) is considered to be the same edge (denoted (u, v)

	if agg_cost differs between one or more instances of edge (u, v)

	The minimum value of the agg_cost all instances of edge (u, v) is going to be considered as the agg_cost of edge (u, v)

	Some (or all) traveling costs on edges will still might not obey the triangle inequality.

	When the data is incomplete, but it is a connected graph:

	the missing values will be calculated with dijkstra algorithm.

Signatures¶

Summary

pgr_TSP(Matrix SQL, [start_id, end_id])

Returns set of (seq, node, cost, agg_cost)

OR EMTPY SET

	Example:

	Using pgr_dijkstraCostMatrix to generate the matrix information

	Line 4 Vertices \(\{2, 4, 13, 14\}\) are not included because they are not connected.

 1SELECT * FROM pgr_TSP(
 2 $$SELECT * FROM pgr_dijkstraCostMatrix(
 3 'SELECT id, source, target, cost, reverse_cost FROM edges',
 4 (SELECT array_agg(id) FROM vertices WHERE id NOT IN (2, 4, 13, 14)),
 5 directed => false) $$);
 6 seq | node | cost | agg_cost
 7-----+------+------+----------
 8 1 | 1 | 0 | 0
 9 2 | 3 | 1 | 1
10 3 | 7 | 1 | 2
11 4 | 6 | 1 | 3
12 5 | 5 | 1 | 4
13 6 | 10 | 2 | 6
14 7 | 11 | 1 | 7
15 8 | 12 | 1 | 8
16 9 | 16 | 2 | 10
17 10 | 15 | 1 | 11
18 11 | 17 | 2 | 13
19 12 | 9 | 3 | 16
20 13 | 8 | 1 | 17
21 14 | 1 | 3 | 20
22(14 rows)
23

Parameters¶

	Parameter

	Type

	Description

	Matrix SQL

	TEXT

	Matrix SQL as described below

TSP optional parameters¶

	Column

	Type

	Default

	Description

	start_id

	ANY-INTEGER

	0

	The first visiting vertex

	When 0 any vertex can become the first visiting vertex.

	end_id

	ANY-INTEGER

	0

	Last visiting vertex before returning to start_vid.

	When 0 any vertex can become the last visiting vertex before returning to start_id.

	When NOT 0 and start_id = 0 then it is the first and last vertex

Inner Queries¶

Matrix SQL¶

	Column

	Type

	Description

	start_vid

	ANY-INTEGER

	Identifier of the starting vertex.

	end_vid

	ANY-INTEGER

	Identifier of the ending vertex.

	agg_cost

	ANY-NUMERICAL

	Cost for going from start_vid to end_vid

Result columns¶

Returns SET OF (seq, node, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Row sequence.

	node

	BIGINT

	Identifier of the node/coordinate/point.

	cost

	FLOAT

	Cost to traverse from the current node to the next node in the path sequence.

	0 for the last row in the tour sequence.

	agg_cost

	FLOAT

	Aggregate cost from the node at seq = 1 to the current node.

	0 for the first row in the tour sequence.

Additional Examples¶

	Start from vertex \(1\)

	Using points of interest to generate an asymetric matrix.

	Connected incomplete data

Start from vertex \(1\)¶

	Line 6 start_vid => 1

 1SELECT * FROM pgr_TSP(
 2 $$SELECT * FROM pgr_dijkstraCostMatrix(
 3 'SELECT id, source, target, cost, reverse_cost FROM edges',
 4 (SELECT array_agg(id) FROM vertices WHERE id NOT IN (2, 4, 13, 14)),
 5 directed => false) $$,
 6 start_id => 1);
 7 seq | node | cost | agg_cost
 8-----+------+------+----------
 9 1 | 1 | 0 | 0
10 2 | 3 | 1 | 1
11 3 | 7 | 1 | 2
12 4 | 6 | 1 | 3
13 5 | 5 | 1 | 4
14 6 | 10 | 2 | 6
15 7 | 11 | 1 | 7
16 8 | 12 | 1 | 8
17 9 | 16 | 2 | 10
18 10 | 15 | 1 | 11
19 11 | 17 | 2 | 13
20 12 | 9 | 3 | 16
21 13 | 8 | 1 | 17
22 14 | 1 | 3 | 20
23(14 rows)
24

Using points of interest to generate an asymetric matrix.¶

To generate an asymmetric matrix:

	Line 4 The side information of pointsOfInterset is ignored by not including it in the query

	Line 6 Generating an asymetric matrix with directed => true

	\(min(agg_cost(u, v), agg_cost(v, u))\) is going to be considered as the agg_cost

	The solution that can be larger than twice as long as the optimal tour because:

	Triangle inequality might not be satisfied.

	start_id != 0 AND end_id != 0

 1SELECT * FROM pgr_TSP(
 2 $$SELECT * FROM pgr_withPointsCostMatrix(
 3 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 4 'SELECT pid, edge_id, fraction from pointsOfInterest',
 5 array[-1, 10, 7, 11, -6],
 6 directed => true) $$,
 7 start_id => 7,
 8 end_id => 11);
 9 seq | node | cost | agg_cost
10-----+------+------+----------
11 1 | 7 | 0 | 0
12 2 | -6 | 0.3 | 0.3
13 3 | -1 | 1.3 | 1.6
14 4 | 10 | 1.6 | 3.2
15 5 | 11 | 1 | 4.2
16 6 | 7 | 1 | 5.2
17(6 rows)
18

Connected incomplete data¶

Using selected edges \(\{2, 4, 5, 8, 9, 15\}\) the matrix is not complete.

 1SELECT * FROM pgr_dijkstraCostMatrix(
 2 $q1$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (2, 4, 5, 8, 9, 15)$q1$,
 3 (SELECT ARRAY[6, 7, 10, 11, 16, 17]),
 4 directed => true);
 5 start_vid | end_vid | agg_cost
 6-----------+---------+----------
 7 6 | 7 | 1
 8 6 | 11 | 2
 9 6 | 16 | 3
10 6 | 17 | 4
11 7 | 6 | 1
12 7 | 11 | 1
13 7 | 16 | 2
14 7 | 17 | 3
15 10 | 6 | 1
16 10 | 7 | 2
17 10 | 11 | 1
18 10 | 16 | 2
19 10 | 17 | 3
20 11 | 6 | 2
21 11 | 7 | 1
22 11 | 16 | 1
23 11 | 17 | 2
24 16 | 6 | 3
25 16 | 7 | 2
26 16 | 11 | 1
27 16 | 17 | 1
28 17 | 6 | 4
29 17 | 7 | 3
30 17 | 11 | 2
31 17 | 16 | 1
32(25 rows)
33

Cost value for \(17 \rightarrow 10\) do not exist on the matrix, but the value used is taken from \(10 \rightarrow 17\).

 1SELECT * FROM pgr_TSP(
 2 $$SELECT * FROM pgr_dijkstraCostMatrix(
 3 $q1$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (2, 4, 5, 8, 9, 15)$q1$,
 4 (SELECT ARRAY[6, 7, 10, 11, 16, 17]),
 5 directed => true)$$);
 6 seq | node | cost | agg_cost
 7-----+------+------+----------
 8 1 | 6 | 0 | 0
 9 2 | 7 | 1 | 1
10 3 | 11 | 1 | 2
11 4 | 16 | 1 | 3
12 5 | 17 | 1 | 4
13 6 | 10 | 3 | 7
14 7 | 6 | 1 | 8
15(7 rows)
16

See Also¶

	Traveling Sales Person - Family of functions

	Sample Data

	Boost’s metric appro’s metric approximation

	Wikipedia: Traveling Salesman Problem

Indices and tables

	Index

	Search Page

pgr_TSPeuclidean¶

	pgr_TSPeuclidean - Aproximation using metric algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability:

	Version 3.2.1

	Metric Algorithm from Boost library

	Simulated Annealing Algorithm no longer supported

	The Simulated Annealing Algorithm related parameters are ignored: max_processing_time, tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes, initial_temperature, final_temperature, cooling_factor, randomize

	Version 3.0.0

	Name change from pgr_eucledianTSP

	Version 2.3.0

	New Official function

Description¶

Problem Definition¶

The travelling salesperson problem (TSP) asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?

Characteristics¶

	This problem is an NP-hard optimization problem.

	Metric Algorithm is used

	Implementation generates solutions that are twice as long as the optimal tour in the worst case when:

	Graph is undirected

	Graph is fully connected

	Graph where traveling costs on edges obey the triangle inequality.

	On an undirected graph:

	The traveling costs are symmetric:

	Traveling costs from u to v are just as much as traveling from v to u

	
	Any duplicated identifier will be ignored. The coordinates that will be kept

	is arbitrarly.

	The coordinates are quite similar for the same identifier, for example

1, 3.5, 1
1, 3.499999999999 0.9999999

	The coordinates are quite different for the same identifier, for example

2, 3.5, 1.0
2, 3.6, 1.1

Signatures¶

Summary

pgr_TSPeuclidean(Coordinates SQL, [start_id, end_id])

Returns set of (seq, node, cost, agg_cost)

OR EMTPY SET

	Example:

	With default values

SELECT * FROM pgr_TSPeuclidean(
 $$
 SELECT id, st_X(geom) AS x, st_Y(geom)AS y FROM vertices
 $$);
 seq | node | cost | agg_cost
-----+------+----------------+---------------
 1 | 1 | 0 | 0
 2 | 6 | 2.2360679775 | 2.2360679775
 3 | 5 | 1 | 3.2360679775
 4 | 10 | 1.41421356237 | 4.65028153987
 5 | 7 | 1.41421356237 | 6.06449510225
 6 | 2 | 2.12132034356 | 8.18581544581
 7 | 9 | 1.58113883008 | 9.76695427589
 8 | 4 | 0.5 | 10.2669542759
 9 | 14 | 1.58113883009 | 11.848093106
 10 | 17 | 1.11803398875 | 12.9661270947
 11 | 16 | 1 | 13.9661270947
 12 | 15 | 1 | 14.9661270947
 13 | 11 | 1.41421356237 | 16.3803406571
 14 | 13 | 0.583095189485 | 16.9634358466
 15 | 12 | 0.860232526704 | 17.8236683733
 16 | 8 | 1 | 18.8236683733
 17 | 3 | 1.41421356237 | 20.2378819357
 18 | 1 | 1 | 21.2378819357
(18 rows)

Parameters¶

	Parameter

	Type

	Description

	Coordinates SQL

	TEXT

	Coordinates SQL as described below

TSP optional parameters¶

	Column

	Type

	Default

	Description

	start_id

	ANY-INTEGER

	0

	The first visiting vertex

	When 0 any vertex can become the first visiting vertex.

	end_id

	ANY-INTEGER

	0

	Last visiting vertex before returning to start_vid.

	When 0 any vertex can become the last visiting vertex before returning to start_id.

	When NOT 0 and start_id = 0 then it is the first and last vertex

Inner Queries¶

Coordinates SQL¶

	Column

	Type

	Description

	id

	ANY-INTEGER

	Identifier of the starting vertex.

	x

	ANY-NUMERICAL

	X value of the coordinate.

	y

	ANY-NUMERICAL

	Y value of the coordinate.

Result columns¶

Returns SET OF (seq, node, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Row sequence.

	node

	BIGINT

	Identifier of the node/coordinate/point.

	cost

	FLOAT

	Cost to traverse from the current node to the next node in the path sequence.

	0 for the last row in the tour sequence.

	agg_cost

	FLOAT

	Aggregate cost from the node at seq = 1 to the current node.

	0 for the first row in the tour sequence.

Additional Examples¶

	Test 29 cities of Western Sahara

	Creating a table for the data and storing the data

	Adding a geometry (for visual purposes)

	Total tour cost

	Getting a geometry of the tour

	Visual results

Test 29 cities of Western Sahara¶

This example shows how to make performance tests using University of Waterloo’s example data using the 29 cities of Western Sahara dataset

Creating a table for the data and storing the data¶

CREATE TABLE wi29 (id BIGINT, x FLOAT, y FLOAT, geom geometry);
INSERT INTO wi29 (id, x, y) VALUES
(1,20833.3333,17100.0000),
(2,20900.0000,17066.6667),
(3,21300.0000,13016.6667),
(4,21600.0000,14150.0000),
(5,21600.0000,14966.6667),
(6,21600.0000,16500.0000),
(7,22183.3333,13133.3333),
(8,22583.3333,14300.0000),
(9,22683.3333,12716.6667),
(10,23616.6667,15866.6667),
(11,23700.0000,15933.3333),
(12,23883.3333,14533.3333),
(13,24166.6667,13250.0000),
(14,25149.1667,12365.8333),
(15,26133.3333,14500.0000),
(16,26150.0000,10550.0000),
(17,26283.3333,12766.6667),
(18,26433.3333,13433.3333),
(19,26550.0000,13850.0000),
(20,26733.3333,11683.3333),
(21,27026.1111,13051.9444),
(22,27096.1111,13415.8333),
(23,27153.6111,13203.3333),
(24,27166.6667,9833.3333),
(25,27233.3333,10450.0000),
(26,27233.3333,11783.3333),
(27,27266.6667,10383.3333),
(28,27433.3333,12400.0000),
(29,27462.5000,12992.2222);

Adding a geometry (for visual purposes)¶

UPDATE wi29 SET geom = ST_makePoint(x,y);

Total tour cost¶

Getting a total cost of the tour, compare the value with the length of an optimal tour is 27603, given on the dataset

SELECT *
FROM pgr_TSPeuclidean($$SELECT * FROM wi29$$)
WHERE seq = 30;
 seq | node | cost | agg_cost
-----+------+---------------+---------------
 30 | 1 | 2266.91173136 | 28777.4854127
(1 row)

Getting a geometry of the tour¶

WITH
tsp_results AS (SELECT seq, geom FROM pgr_TSPeuclidean($$SELECT * FROM wi29$$) JOIN wi29 ON (node = id))
SELECT ST_MakeLine(ARRAY(SELECT geom FROM tsp_results ORDER BY seq));
 st_makeline
--
 01020000001E000000F085C9545558D4400000000000B3D040000000000069D440107A36ABAAAAD040000000000018D54000000000001DD040107A36AB2A10D7401FF46C5655FDCE40000000000025D740E10B93A9AA1ECF40F085C954D552D740E10B93A9AA62CC40107A36ABAA99D7400000000000E1C940107A36AB4A8FD840E10B93A9EA26C840F085C954D5AAD9401FF46C5655EFC840F085C95455D0D940E10B93A9AA3CCA40F085C9545585D940000000000052CC400000000080EDD94000000000000DCB40A52C431C0776DA40E10B93A9EA33CA40A52C431C6784DA40E10B93A9AAC9C940A52C431C8764DA402C6519E2F87DC94000000000A0D1DA4096B20C711C60C940F085C95455CADA40000000000038C840F085C9545598DA40E10B93A9AA03C740F085C954551BDA40E10B93A9AAD1C640F085C9545598DA40000000000069C440107A36ABAAA0DA40E10B93A9AA47C440107A36ABAA87DA40E10B93A9AA34C340000000008089D94000000000009BC440F085C954D526D6401FF46C5655D6C840F085C954D5A9D540E10B93A9AAA6C9400000000000CDD4401FF46C56556CC940000000000018D5400000000000A3CB40F085C954D50DD6400000000000EECB40000000000018D5401FF46C56553BCD40F085C9545558D4400000000000B3D040
(1 row)

Visual results¶

Visualy, The first image is the optimal solution and the second image is the solution obtained with pgr_TSPeuclidean.

[image: _images/wi29optimal.png] [image: _images/wi29Solution.png]

See Also¶

	Traveling Sales Person - Family of functions

	Sample Data network.

	Boost’s metric appro’s metric approximation

	University of Waterloo TSP

	Wikipedia: Traveling Salesman Problem

Indices and tables

	Index

	Search Page

Table of Contents

	General Information

	Problem Definition

	Origin

	Characteristics

	TSP optional parameters

	See Also

General Information¶

Problem Definition¶

The travelling salesperson problem (TSP) asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?

Origin¶

The traveling sales person problem was studied in the 18th century by mathematicians Sir William Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the book Graph Theory (Biggs et al. 1976).

	ISBN-13: 978-0198539162

	ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the connection between Menger & Whitney, and the development of the TSP can be found in On the history of combinatorial optimization (till 1960)

To calculate the number of different tours through \(n\) cities:

	Given a starting city,

	There are \(n-1\) choices for the second city,

	And \(n-2\) choices for the third city, etc.

	Multiplying these together we get \((n-1)! = (n-1) (n-2) . . 1\).

	Now since the travel costs do not depend on the direction taken around the tour:

	this number by 2

	\((n-1)!/2\).

Characteristics¶

	This problem is an NP-hard optimization problem.

	Metric Algorithm is used

	Implementation generates solutions that are twice as long as the optimal tour in the worst case when:

	Graph is undirected

	Graph is fully connected

	Graph where traveling costs on edges obey the triangle inequality.

	On an undirected graph:

	The traveling costs are symmetric:

	Traveling costs from u to v are just as much as traveling from v to u

TSP optional parameters¶

	Column

	Type

	Default

	Description

	start_id

	ANY-INTEGER

	0

	The first visiting vertex

	When 0 any vertex can become the first visiting vertex.

	end_id

	ANY-INTEGER

	0

	Last visiting vertex before returning to start_vid.

	When 0 any vertex can become the last visiting vertex before returning to start_id.

	When NOT 0 and start_id = 0 then it is the first and last vertex

See Also¶

References

	Boost’s metric appro’s metric approximation

	University of Waterloo TSP

	Wikipedia: Traveling Salesman Problem

Indices and tables

	Index

	Search Page

BFS - Category¶

	pgr_kruskalBFS

	pgr_primBFS

Traversal using breadth first search.

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	root vid

	BIGINT

	Identifier of the root vertex of the tree.

	When value is \(0\) then gets the spanning forest starting in aleatory nodes for each tree in the forest.

	root vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

BFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	start_vid

	BIGINT

	Identifier of the root vertex.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

See Also¶

	Boost: Prim’s algorithm

	Boost: Kruskal’s algorithm

	Wikipedia: Prim’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

Cost - Category¶

	pgr_aStarCost

	pgr_bdAstarCost

	pgr_dijkstraCost

	pgr_bdDijkstraCost

	pgr_dijkstraNearCost - Proposed

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_withPointsCost - Proposed

General Information¶

Characteristics¶

Each function works as part of the family it belongs to.

The main Characteristics are:

	It does not return a path.

	Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

	Let be the case the values returned are stored in a table, so the unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of \((u, v)\) is the same as for \((v, u)\).

	Any duplicated value in the start or end vertex identifiers are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

See Also¶

Indices and tables

	Index

	Search Page

Cost Matrix - Category¶

	pgr_aStarCostMatrix

	pgr_dijkstraCostMatrix

	pgr_bdAstarCostMatrix

	pgr_bdDijkstraCostMatrix

proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_withPointsCostMatrix - proposed

General Information¶

Synopsis¶

Traveling Sales Person - Family of functions needs as input a symmetric cost matrix and no edge (u, v) must value \(\infty\).

This collection of functions will return a cost matrix in form of a table.

Characteristics¶

The main Characteristics are:

	Can be used as input to pgr_TSP.

	Use directly when the resulting matrix is symmetric and there is no \(\infty\) value.

	It will be the users responsibility to make the matrix symmetric.

	By using geometric or harmonic average of the non symmetric values.

	By using max or min the non symmetric values.

	By setting the upper triangle to be the mirror image of the lower triangle.

	By setting the lower triangle to be the mirror image of the upper triangle.

	It is also the users responsibility to fix an \(\infty\) value.

	Each function works as part of the family it belongs to.

	It does not return a path.

	Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.

	Process is done only on edges with positive costs.

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The aggregate cost in the non included values (v, v) is 0.

	When the starting vertex and ending vertex are the different and there is no path.

	The aggregate cost in the non included values (u, v) is \(\infty\).

	Let be the case the values returned are stored in a table:

	The unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of (u, v) is the same as for (v, u).

	Any duplicated value in the start vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

Parameters¶

Used in:

	pgr_aStarCostMatrix

	pgr_dijkstraCostMatrix

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Used in:

	pgr_withPointsCostMatrix - proposed

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

Used in:

	pgr_withPointsCostMatrix - proposed

	pgr_dijkstraCostMatrix

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

See Also¶

	Traveling Sales Person - Family of functions

Indices and tables

	Index

	Search Page

DFS - Category¶

Traversal using Depth First Search.

	pgr_kruskalDFS

	pgr_primDFS

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_depthFirstSearch - Proposed - Depth first search traversal of the graph.

In general:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

See Also¶

	Boost: Prim’s algorithm

	Boost: Kruskal’s algorithm

	Wikipedia: Prim’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

Driving Distance - Category¶

	pgr_drivingDistance - Driving Distance based on Dijkstra’s algorithm

	pgr_primDD - Driving Distance based on Prim’s algorithm

	pgr_kruskalDD - Driving Distance based on Kruskal’s algorithm

	Post pocessing

	pgr_alphaShape - Alpha shape computation

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_withPointsDD - Proposed - Driving Distance based on pgr_withPoints

pgr_alphaShape¶

pgr_alphaShape — Polygon part of an alpha shape.

Availability

	Version 3.0.0

	Breaking change on signature

	Old signature no longer supported

	Boost 1.54 & Boost 1.55 are supported

	Boost 1.56+ is preferable

	Boost Geometry is stable on Boost 1.56

	Version 2.1.0

	Added alpha argument with default 0 (use optimal value)

	Support to return multiple outer/inner ring

	Version 2.0.0

	Official function

	Renamed from version 1.x

Support

Description¶

Returns the polygon part of an alpha shape.

Characteristics

	Input is a geometry and returns a geometry

	Uses PostGis ST_DelaunyTriangles

	Instead of using CGAL’s definition of alpha it use the spoon_radius

	\(spoon_radius = \sqrt alpha\)

	A Triangle area is considered part of the alpha shape when \(circumcenter\ radius < spoon_radius\)

	The alpha parameter is the spoon radius

	When the total number of points is less than 3, returns an EMPTY geometry

Signatures¶

Summary

pgr_alphaShape(geometry, [alpha])

RETURNS geometry

	Example:

	passing a geometry collection with spoon radius \(1.5\) using the return variable geom

SELECT ST_Area(pgr_alphaShape((SELECT ST_Collect(geom)
 FROM vertices), 1.5));
 st_area

 9.75
(1 row)

Parameters¶

	Parameter

	Type

	Default

	Description

	geometry

	geometry

	
	Geometry with at least \(3\) points

	alpha

	FLOAT

	0

	The radius of the spoon.

Return Value¶

	Kind of geometry

	Description

	GEOMETRY COLLECTION

	A Geometry collection of Polygons

See Also¶

	pgr_drivingDistance

	Sample Data network.

	ST_ConcaveHull

Indices and tables

	Index

	Search Page

Calculate nodes that are within a distance.

	Extracts all the nodes that have costs less than or equal to the value distance.

	The edges extracted will conform to the corresponding spanning tree.

	Edge \((u, v)\) will not be included when:

	The distance from the root to \(u\) > limit distance.

	The distance from the root to \(v\) > limit distance.

	No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Root vids

	ARRAY[ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

Where:

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

Indices and tables

	Index

	Search Page

K shortest paths - Category¶

	pgr_KSP - Yen’s algorithm based on pgr_dijkstra

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_withPointsKSP - Proposed - Yen’s algorithm based on pgr_withPoints

Indices and tables

	Index

	Search Page

Spanning Tree - Category¶

	Kruskal - Family of functions

	Prim - Family of functions

A spanning tree of an undirected graph is a tree that includes all the vertices of G with the minimum possible number of edges.

For a disconnected graph, there there is no single tree, but a spanning forest, consisting of a spanning tree of each connected component.

Characteristics:

	It’s implementation is only on undirected graph.

	Process is done only on edges with positive costs.

	When the graph is connected

	The resulting edges make up a tree

	When the graph is not connected,

	Finds a minimum spanning tree for each connected component.

	The resulting edges make up a forest.

See Also¶

	Boost: Prim’s algorithm

	Boost: Kruskal’s algorithm

	Wikipedia: Prim’s algorithm

	Wikipedia: Kruskal’s algorithm

Indices and tables

	Index

	Search Page

Via - Category¶

proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_dijkstraVia - Proposed

	pgr_withPointsVia - Proposed

	pgr_trspVia - Proposed

	pgr_trspVia_withPoints - Proposed

General Information¶

This category intends to solve the general problem:

Given a graph and a list of vertices, find the shortest path between \(vertex_i\) and \(vertex_{i+1}\) for all vertices

In other words, find a continuos route that visits all the vertices in the order given.

	path:

	represents a section of a route.

	route:

	is a sequence of paths

Parameters¶

Used in:

	pgr_dijkstraVia - Proposed

	pgr_trspVia - Proposed

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	SQL query as described.

	via vertices

	ARRAY [ANY-INTEGER]

	
	Array of ordered vertices identifiers that are going to be visited.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Used in:

	pgr_withPointsVia - Proposed

	pgr_trspVia_withPoints - Proposed

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	SQL query as described.

	Points SQL

	TEXT

	
	SQL query as described.

	via vertices

	ARRAY [ANY-INTEGER]

	
	Array of ordered vertices identifiers that are going to be visited.

	When positive it is considered a vertex identifier

	When negative it is considered a point identifier

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Besides the compulsory parameters each function has, there are optional parameters that exist due to the kind of function.

Via optional parameters¶

Used in all Via functions

	Parameter

	Type

	Default

	Description

	strict

	BOOLEAN

	false

	
	When true if a path is missing stops and returns EMPTY SET

	When false ignores missing paths returning all paths found

	U_turn_on_edge

	BOOLEAN

	true

	
	When true departing from a visited vertex will not try to avoid

Inner Queries¶

Depending on the function one or more inner queries are needed.

Edges SQL¶

Used in all Via functions

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

Used in

	pgr_trspVia - Proposed

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

Used in

	pgr_withPointsVia - Proposed

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Identifier of a path. Has value 1 for the first path.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last node of the path.

	-2 for the last node of the route.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	route_agg_cost

	FLOAT

	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Note

When start_vid, end_vid and node columns have negative values, the identifier is for a Point.

See Also¶

	pgr_dijkstraVia - Proposed

	pgr_trspVia - Proposed

	pgr_withPointsVia - Proposed

Indices and tables

	Index

	Search Page

Vehicle Routing Functions - Category¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	Pickup and delivery problem

	pgr_pickDeliver - Experimental - Pickup & Delivery using a Cost Matrix

	pgr_pickDeliverEuclidean - Experimental - Pickup & Delivery with Euclidean distances

	Distribution problem

	pgr_vrpOneDepot - Experimental - From a single depot, distributes orders

Contents

	Vehicle Routing Functions - Category

	Introduction

	Characteristics

	Pick & Delivery

	Parameters

	Pick & deliver

	Pick-Deliver optional parameters

	Inner Queries

	Orders SQL

	Vehicles SQL

	Matrix SQL

	Result columns

	Summary Row

	Handling Parameters

	Capacity and Demand Units Handling

	Locations

	Time Handling

	Factor handling

	See Also

pgr_pickDeliver - Experimental¶

pgr_pickDeliver - Pickup and delivery Vehicle Routing Problem

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental function

Synopsis¶

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

	Optimization problem is NP-hard.

	pickup and Delivery with time windows.

	All vehicles are equal.

	Same Starting location.

	Same Ending location which is the same as Starting location.

	All vehicles travel at the same speed.

	A customer is for doing a pickup or doing a deliver.

	has an open time.

	has a closing time.

	has a service time.

	has an (x, y) location.

	There is a customer where to deliver a pickup.

	travel time between customers is distance / speed

	pickup and delivery pair is done with the same vehicle.

	A pickup is done before the delivery.

Characteristics¶

	All trucks depart at time 0.

	No multiple time windows for a location.

	Less vehicle used is considered better.

	Less total duration is better.

	Less wait time is better.

	the algorithm will raise an exception when

	If there is a pickup-deliver pair than violates time window

	The speed, max_cycles, ma_capacity have illegal values

	Six different initial will be optimized - the best solution found will be result

Signature¶

pgr_pickDeliver(Orders SQL, Vehicles SQL, Matrix SQL, [options])

options: [factor, max_cycles, initial_sol]

Returns set of (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo, travel_time, arrival_time, wait_time, service_time, departure_time)

	Example:

	Solve the following problem

Given the vehicles:

SELECT id, capacity, start_node_id, start_open, start_close
FROM vehicles;
 id | capacity | start_node_id | start_open | start_close
----+----------+---------------+------------+-------------
 1 | 50 | 11 | 0 | 50
 2 | 50 | 11 | 0 | 50
(2 rows)

and the orders:

SELECT id, demand,
 p_node_id, p_open, p_close, p_service,
 d_node_id, d_open, d_close, d_service
FROM orders;
 id | demand | p_node_id | p_open | p_close | p_service | d_node_id | d_open | d_close | d_service
----+--------+-----------+--------+---------+-----------+-----------+--------+---------+-----------
 1 | 10 | 10 | 2 | 10 | 3 | 3 | 6 | 15 | 3
 2 | 20 | 16 | 4 | 15 | 2 | 15 | 6 | 20 | 3
 3 | 30 | 7 | 2 | 10 | 3 | 12 | 3 | 20 | 3
(3 rows)

The query:

SELECT * FROM pgr_pickDeliver(
 $$SELECT id, demand,
 p_node_id, p_open, p_close, p_service,
 d_node_id, d_open, d_close, d_service
 FROM orders$$,
 $$SELECT id, capacity, start_node_id, start_open, start_close
 FROM vehicles$$,
 $$SELECT * from pgr_dijkstraCostMatrix(
 'SELECT * FROM edges ',
 (SELECT array_agg(id) FROM (SELECT p_node_id AS id FROM orders
 UNION
 SELECT d_node_id FROM orders
 UNION
 SELECT start_node_id FROM vehicles) a))
 $$);
 seq | vehicle_seq | vehicle_id | stop_seq | stop_type | stop_id | order_id | cargo | travel_time | arrival_time | wait_time | service_time | departure_time
-----+-------------+------------+----------+-----------+---------+----------+-------+-------------+--------------+-----------+--------------+----------------
 1 | 1 | 1 | 1 | 1 | 11 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 2 | 1 | 1 | 2 | 2 | 7 | 3 | 30 | 1 | 1 | 1 | 3 | 5
 3 | 1 | 1 | 3 | 3 | 12 | 3 | 0 | 2 | 7 | 0 | 3 | 10
 4 | 1 | 1 | 4 | 2 | 16 | 2 | 20 | 2 | 12 | 0 | 2 | 14
 5 | 1 | 1 | 5 | 3 | 15 | 2 | 0 | 1 | 15 | 0 | 3 | 18
 6 | 1 | 1 | 6 | 6 | 11 | -1 | 0 | 2 | 20 | 0 | 0 | 20
 7 | 2 | 2 | 1 | 1 | 11 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 8 | 2 | 2 | 2 | 2 | 10 | 1 | 10 | 3 | 3 | 0 | 3 | 6
 9 | 2 | 2 | 3 | 3 | 3 | 1 | 0 | 3 | 9 | 0 | 3 | 12
 10 | 2 | 2 | 4 | 6 | 11 | -1 | 0 | 2 | 14 | 0 | 0 | 14
 11 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | 16 | -1 | 1 | 17 | 34
(11 rows)

Parameters¶

The parameters are:

	Column

	Type

	Description

	Orders SQL

	TEXT

	Orders SQL as described below.

	Vehicles SQL

	TEXT

	Vehicles SQL as described below.

	Matrix SQL

	TEXT

	Matrix SQL as described below.

Pick-Deliver optional parameters¶

	Column

	Type

	Default

	Description

	factor

	NUMERIC

	1

	Travel time multiplier. See Factor handling

	max_cycles

	INTEGER

	10

	Maximum number of cycles to perform on the optimization.

	initial_sol

	INTEGER

	4

	Initial solution to be used.

	1 One order per truck

	2 Push front order.

	3 Push back order.

	4 Optimize insert.

	5 Push back order that allows more orders to be inserted at the back

	6 Push front order that allows more orders to be inserted at the front

Orders SQL¶

A SELECT statement that returns the following columns:

id, demand

p_node_id, p_open, p_close, [p_service,]

d_node_id, d_open, d_close, [d_service,]

where:

	Column

	Type

	Description

	id

	ANY-INTEGER

	Identifier of the pick-delivery order pair.

	demand

	ANY-NUMERICAL

	Number of units in the order

	p_open

	ANY-NUMERICAL

	The time, relative to 0, when the pickup location opens.

	p_close

	ANY-NUMERICAL

	The time, relative to 0, when the pickup location closes.

	[p_service]

	ANY-NUMERICAL

	The duration of the loading at the pickup location.

	When missing: 0 time units are used

	d_open

	ANY-NUMERICAL

	The time, relative to 0, when the delivery location opens.

	d_close

	ANY-NUMERICAL

	The time, relative to 0, when the delivery location closes.

	[d_service]

	ANY-NUMERICAL

	The duration of the unloading at the delivery location.

	When missing: 0 time units are used

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

	Column

	Type

	Description

	p_node_id

	ANY-INTEGER

	The node identifier of the pickup, must match a vertex identifier in the Matrix SQL.

	d_node_id

	ANY-INTEGER

	The node identifier of the delivery, must match a vertex identifier in the Matrix SQL.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Vehicles SQL¶

A SELECT statement that returns the following columns:

id, capacity

start_node_id, start_open, start_close [, start_service,]

[end_node_id, end_open, end_close, end_service]

where:

	Column

	Type

	Description

	id

	ANY-NUMERICAL

	Identifier of the vehicle.

	capacity

	ANY-NUMERICAL

	Maiximum capacity units

	start_open

	ANY-NUMERICAL

	The time, relative to 0, when the starting location opens.

	start_close

	ANY-NUMERICAL

	The time, relative to 0, when the starting location closes.

	[start_service]

	ANY-NUMERICAL

	The duration of the loading at the starting location.

	When missing: A duration of \(0\) time units is used.

	[end_open]

	ANY-NUMERICAL

	The time, relative to 0, when the ending location opens.

	When missing: The value of start_open is used

	[end_close]

	ANY-NUMERICAL

	The time, relative to 0, when the ending location closes.

	When missing: The value of start_close is used

	[end_service]

	ANY-NUMERICAL

	The duration of the loading at the ending location.

	When missing: A duration in start_service is used.

	Column

	Type

	Description

	start_node_id

	ANY-INTEGER

	The node identifier of the start location, must match a vertex identifier in the Matrix SQL.

	[end_node_id]

	ANY-INTEGER

	The node identifier of the end location, must match a vertex identifier in the Matrix SQL.

	When missing: end_node_id is used.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Matrix SQL¶

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of
 (seq, vehicle_seq, vehicle_id, stop_seq, stop_type,
 travel_time, arrival_time, wait_time, service_time, departure_time)
 UNION
 (summary row)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	vehicle_seq

	INTEGER

	Sequential value starting from 1 for current vehicles. The \(n_{th}\) vehicle in the solution.

	Value \(-2\) indicates it is the summary row.

	vehicle_id

	BIGINT

	Current vehicle identifier.

	Sumary row has the total capacity violations.

	A capacity violation happens when overloading or underloading a vehicle.

	stop_seq

	INTEGER

	Sequential value starting from 1 for the stops made by the current vehicle. The \(m_{th}\) stop of the current vehicle.

	Sumary row has the total time windows violations.

	A time window violation happens when arriving after the location has closed.

	stop_type

	INTEGER

	
	Kind of stop location the vehicle is at

	\(-1\): at the solution summary row

	\(1\): Starting location

	\(2\): Pickup location

	\(3\): Delivery location

	\(6\): Ending location and indicates the vehicle’s summary row

	order_id

	BIGINT

	Pickup-Delivery order pair identifier.

	Value \(-1\): When no order is involved on the current stop location.

	cargo

	FLOAT

	Cargo units of the vehicle when leaving the stop.

	Value \(-1\) on solution summary row.

	travel_time

	FLOAT

	Travel time from previous stop_seq to current stop_seq.

	Summary has the total traveling time:

	The sum of all the travel_time.

	arrival_time

	FLOAT

	Time spent waiting for current location to open.

	\(-1\): at the solution summary row.

	\(0\): at the starting location.

	wait_time

	FLOAT

	Time spent waiting for current location to open.

	Summary row has the total waiting time:

	The sum of all the wait_time.

	service_time

	FLOAT

	Service duration at current location.

	Summary row has the total service time:

	The sum of all the service_time.

	departure_time

	FLOAT

	
	The time at which the vehicle departs from the stop.

	\(arrival_time + wait_time + service_time\).

	The ending location has the total time used by the current vehicle.

	Summary row has the total solution time:

	\(total\ traveling\ time + total\ waiting\ time + total\ service\ time\).

See Also¶

	Vehicle Routing Functions - Category

	Sample Data

Indices and tables

	Index

	Search Page

pgr_pickDeliverEuclidean - Experimental¶

pgr_pickDeliverEuclidean - Pickup and delivery Vehicle Routing Problem

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	Replaces pgr_gsoc_vrppdtw

	New experimental function

Synopsis¶

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

	Optimization problem is NP-hard.

	Pickup and Delivery:

	capacitated

	with time windows.

	The vehicles

	have (x, y) start and ending locations.

	have a start and ending service times.

	have opening and closing times for the start and ending locations.

	An order is for doing a pickup and a a deliver.

	has (x, y) pickup and delivery locations.

	has opening and closing times for the pickup and delivery locations.

	has a pickup and deliver service times.

	There is a customer where to deliver a pickup.

	travel time between customers is distance / speed

	pickup and delivery pair is done with the same vehicle.

	A pickup is done before the delivery.

Characteristics¶

	No multiple time windows for a location.

	Less vehicle used is considered better.

	Less total duration is better.

	Less wait time is better.

	Six different optional different initial solutions

	the best solution found will be result

Signature¶

pgr_pickDeliverEuclidean(Orders SQL, Vehicles SQL, [options])

options: [factor, max_cycles, initial_sol]

Returns set of (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo, travel_time, arrival_time, wait_time, service_time, departure_time)

	Example:

	Solve the following problem

Given the vehicles:

SELECT id, capacity, start_x, start_y, start_open, start_close
FROM vehicles;
 id | capacity | start_x | start_y | start_open | start_close
----+----------+---------+---------+------------+-------------
 1 | 50 | 3 | 2 | 0 | 50
 2 | 50 | 3 | 2 | 0 | 50
(2 rows)

and the orders:

SELECT id, demand,
 p_x, p_y, p_open, p_close, p_service,
 d_x, d_y, d_open, d_close, d_service
FROM orders;
 id | demand | p_x | p_y | p_open | p_close | p_service | d_x | d_y | d_open | d_close | d_service
----+--------+-----+-----+--------+---------+-----------+-----+-----+--------+---------+-----------
 1 | 10 | 3 | 1 | 2 | 10 | 3 | 1 | 2 | 6 | 15 | 3
 2 | 20 | 4 | 2 | 4 | 15 | 2 | 4 | 1 | 6 | 20 | 3
 3 | 30 | 2 | 2 | 2 | 10 | 3 | 3 | 3 | 3 | 20 | 3
(3 rows)

The query:

SELECT * FROM pgr_pickDeliverEuclidean(
 $$SELECT id, demand,
 p_x, p_y, p_open, p_close, p_service,
 d_x, d_y, d_open, d_close, d_service
 FROM orders$$,
 $$SELECT id, capacity, start_x, start_y, start_open, start_close
 FROM vehicles$$);
 seq | vehicle_seq | vehicle_id | stop_seq | stop_type | order_id | cargo | travel_time | arrival_time | wait_time | service_time | departure_time
-----+-------------+------------+----------+-----------+----------+-------+---------------+---------------+-----------+--------------+----------------
 1 | 1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 2 | 1 | 1 | 2 | 2 | 3 | 30 | 1 | 1 | 1 | 3 | 5
 3 | 1 | 1 | 3 | 3 | 3 | 0 | 1.41421356237 | 6.41421356237 | 0 | 3 | 9.41421356237
 4 | 1 | 1 | 4 | 2 | 2 | 20 | 1.41421356237 | 10.8284271247 | 0 | 2 | 12.8284271247
 5 | 1 | 1 | 5 | 3 | 2 | 0 | 1 | 13.8284271247 | 0 | 3 | 16.8284271247
 6 | 1 | 1 | 6 | 6 | -1 | 0 | 1.41421356237 | 18.2426406871 | 0 | 0 | 18.2426406871
 7 | 2 | 2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0
 8 | 2 | 2 | 2 | 2 | 1 | 10 | 1 | 1 | 1 | 3 | 5
 9 | 2 | 2 | 3 | 3 | 1 | 0 | 2.2360679775 | 7.2360679775 | 0 | 3 | 10.2360679775
 10 | 2 | 2 | 4 | 6 | -1 | 0 | 2 | 12.2360679775 | 0 | 0 | 12.2360679775
 11 | -2 | 0 | 0 | -1 | -1 | -1 | 11.4787086646 | -1 | 2 | 17 | 30.4787086646
(11 rows)

Parameters¶

	Column

	Type

	Description

	Orders SQL

	TEXT

	Orders SQL as described below.

	Vehicles SQL

	TEXT

	Vehicles SQL as described below.

Pick-Deliver optional parameters¶

	Column

	Type

	Default

	Description

	factor

	NUMERIC

	1

	Travel time multiplier. See Factor handling

	max_cycles

	INTEGER

	10

	Maximum number of cycles to perform on the optimization.

	initial_sol

	INTEGER

	4

	Initial solution to be used.

	1 One order per truck

	2 Push front order.

	3 Push back order.

	4 Optimize insert.

	5 Push back order that allows more orders to be inserted at the back

	6 Push front order that allows more orders to be inserted at the front

Orders SQL¶

A SELECT statement that returns the following columns:

id, demand

p_x, p_y, p_open, p_close, [p_service,]

d_x, d_y, d_open, d_close, [d_service]

Where:

	Column

	Type

	Description

	id

	ANY-INTEGER

	Identifier of the pick-delivery order pair.

	demand

	ANY-NUMERICAL

	Number of units in the order

	p_open

	ANY-NUMERICAL

	The time, relative to 0, when the pickup location opens.

	p_close

	ANY-NUMERICAL

	The time, relative to 0, when the pickup location closes.

	[p_service]

	ANY-NUMERICAL

	The duration of the loading at the pickup location.

	When missing: 0 time units are used

	d_open

	ANY-NUMERICAL

	The time, relative to 0, when the delivery location opens.

	d_close

	ANY-NUMERICAL

	The time, relative to 0, when the delivery location closes.

	[d_service]

	ANY-NUMERICAL

	The duration of the unloading at the delivery location.

	When missing: 0 time units are used

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

	Column

	Type

	Description

	p_x

	ANY-NUMERICAL

	\(x\) value of the pick up location

	p_y

	ANY-NUMERICAL

	\(y\) value of the pick up location

	d_x

	ANY-NUMERICAL

	\(x\) value of the delivery location

	d_y

	ANY-NUMERICAL

	\(y\) value of the delivery location

Where:

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Vehicles SQL¶

A SELECT statement that returns the following columns:

id, capacity

start_x, start_y, start_open, start_close [, start_service,]

[end_x, end_y, end_open, end_close, end_service]

where:

	Column

	Type

	Description

	id

	ANY-NUMERICAL

	Identifier of the vehicle.

	capacity

	ANY-NUMERICAL

	Maiximum capacity units

	start_open

	ANY-NUMERICAL

	The time, relative to 0, when the starting location opens.

	start_close

	ANY-NUMERICAL

	The time, relative to 0, when the starting location closes.

	[start_service]

	ANY-NUMERICAL

	The duration of the loading at the starting location.

	When missing: A duration of \(0\) time units is used.

	[end_open]

	ANY-NUMERICAL

	The time, relative to 0, when the ending location opens.

	When missing: The value of start_open is used

	[end_close]

	ANY-NUMERICAL

	The time, relative to 0, when the ending location closes.

	When missing: The value of start_close is used

	[end_service]

	ANY-NUMERICAL

	The duration of the loading at the ending location.

	When missing: A duration in start_service is used.

	Column

	Type

	Description

	start_x

	ANY-NUMERICAL

	\(x\) value of the starting location

	start_y

	ANY-NUMERICAL

	\(y\) value of the starting location

	[end_x]

	ANY-NUMERICAL

	\(x\) value of the ending location

	When missing: start_x is used.

	[end_y]

	ANY-NUMERICAL

	\(y\) value of the ending location

	When missing: start_y is used.

Where:

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of
 (seq, vehicle_seq, vehicle_id, stop_seq, stop_type,
 travel_time, arrival_time, wait_time, service_time, departure_time)
 UNION
 (summary row)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	vehicle_seq

	INTEGER

	Sequential value starting from 1 for current vehicles. The \(n_{th}\) vehicle in the solution.

	Value \(-2\) indicates it is the summary row.

	vehicle_id

	BIGINT

	Current vehicle identifier.

	Sumary row has the total capacity violations.

	A capacity violation happens when overloading or underloading a vehicle.

	stop_seq

	INTEGER

	Sequential value starting from 1 for the stops made by the current vehicle. The \(m_{th}\) stop of the current vehicle.

	Sumary row has the total time windows violations.

	A time window violation happens when arriving after the location has closed.

	stop_type

	INTEGER

	
	Kind of stop location the vehicle is at

	\(-1\): at the solution summary row

	\(1\): Starting location

	\(2\): Pickup location

	\(3\): Delivery location

	\(6\): Ending location and indicates the vehicle’s summary row

	order_id

	BIGINT

	Pickup-Delivery order pair identifier.

	Value \(-1\): When no order is involved on the current stop location.

	cargo

	FLOAT

	Cargo units of the vehicle when leaving the stop.

	Value \(-1\) on solution summary row.

	travel_time

	FLOAT

	Travel time from previous stop_seq to current stop_seq.

	Summary has the total traveling time:

	The sum of all the travel_time.

	arrival_time

	FLOAT

	Time spent waiting for current location to open.

	\(-1\): at the solution summary row.

	\(0\): at the starting location.

	wait_time

	FLOAT

	Time spent waiting for current location to open.

	Summary row has the total waiting time:

	The sum of all the wait_time.

	service_time

	FLOAT

	Service duration at current location.

	Summary row has the total service time:

	The sum of all the service_time.

	departure_time

	FLOAT

	
	The time at which the vehicle departs from the stop.

	\(arrival_time + wait_time + service_time\).

	The ending location has the total time used by the current vehicle.

	Summary row has the total solution time:

	\(total\ traveling\ time + total\ waiting\ time + total\ service\ time\).

Example¶

	The vehicles

	The original orders

	The orders

	The query

This data example lc101 is from data published at https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

The vehicles¶

There are 25 vehciles in the problem all with the same characteristics.

CREATE TABLE v_lc101(
 id BIGINT NOT NULL primary key,
 capacity BIGINT DEFAULT 200,
 start_x FLOAT DEFAULT 30,
 start_y FLOAT DEFAULT 50,
 start_open INTEGER DEFAULT 0,
 start_close INTEGER DEFAULT 1236);
CREATE TABLE
/* create 25 vehciles */
INSERT INTO v_lc101 (id)
(SELECT * FROM generate_series(1, 25));
INSERT 0 25

The original orders¶

The data comes in different rows for the pickup and the delivery of the same order.

CREATE table lc101_c(
 id BIGINT not null primary key,
 x DOUBLE PRECISION,
 y DOUBLE PRECISION,
 demand INTEGER,
 open INTEGER,
 close INTEGER,
 service INTEGER,
 pindex BIGINT,
 dindex BIGINT
);
CREATE TABLE
/* the original data */
INSERT INTO lc101_c(
 id, x, y, demand, open, close, service, pindex, dindex) VALUES
(1, 45, 68, -10, 912, 967, 90, 11, 0),
(2, 45, 70, -20, 825, 870, 90, 6, 0),
(3, 42, 66, 10, 65, 146, 90, 0, 75),
(4, 42, 68, -10, 727, 782, 90, 9, 0),
(5, 42, 65, 10, 15, 67, 90, 0, 7),
(6, 40, 69, 20, 621, 702, 90, 0, 2),
(7, 40, 66, -10, 170, 225, 90, 5, 0),
(8, 38, 68, 20, 255, 324, 90, 0, 10),
(9, 38, 70, 10, 534, 605, 90, 0, 4),
(10, 35, 66, -20, 357, 410, 90, 8, 0),
(11, 35, 69, 10, 448, 505, 90, 0, 1),
(12, 25, 85, -20, 652, 721, 90, 18, 0),
(13, 22, 75, 30, 30, 92, 90, 0, 17),
(14, 22, 85, -40, 567, 620, 90, 16, 0),
(15, 20, 80, -10, 384, 429, 90, 19, 0),
(16, 20, 85, 40, 475, 528, 90, 0, 14),
(17, 18, 75, -30, 99, 148, 90, 13, 0),
(18, 15, 75, 20, 179, 254, 90, 0, 12),
(19, 15, 80, 10, 278, 345, 90, 0, 15),
(20, 30, 50, 10, 10, 73, 90, 0, 24),
(21, 30, 52, -10, 914, 965, 90, 30, 0),
(22, 28, 52, -20, 812, 883, 90, 28, 0),
(23, 28, 55, 10, 732, 777, 0, 0, 103),
(24, 25, 50, -10, 65, 144, 90, 20, 0),
(25, 25, 52, 40, 169, 224, 90, 0, 27),
(26, 25, 55, -10, 622, 701, 90, 29, 0),
(27, 23, 52, -40, 261, 316, 90, 25, 0),
(28, 23, 55, 20, 546, 593, 90, 0, 22),
(29, 20, 50, 10, 358, 405, 90, 0, 26),
(30, 20, 55, 10, 449, 504, 90, 0, 21),
(31, 10, 35, -30, 200, 237, 90, 32, 0),
(32, 10, 40, 30, 31, 100, 90, 0, 31),
(33, 8, 40, 40, 87, 158, 90, 0, 37),
(34, 8, 45, -30, 751, 816, 90, 38, 0),
(35, 5, 35, 10, 283, 344, 90, 0, 39),
(36, 5, 45, 10, 665, 716, 0, 0, 105),
(37, 2, 40, -40, 383, 434, 90, 33, 0),
(38, 0, 40, 30, 479, 522, 90, 0, 34),
(39, 0, 45, -10, 567, 624, 90, 35, 0),
(40, 35, 30, -20, 264, 321, 90, 42, 0),
(41, 35, 32, -10, 166, 235, 90, 43, 0),
(42, 33, 32, 20, 68, 149, 90, 0, 40),
(43, 33, 35, 10, 16, 80, 90, 0, 41),
(44, 32, 30, 10, 359, 412, 90, 0, 46),
(45, 30, 30, 10, 541, 600, 90, 0, 48),
(46, 30, 32, -10, 448, 509, 90, 44, 0),
(47, 30, 35, -10, 1054, 1127, 90, 49, 0),
(48, 28, 30, -10, 632, 693, 90, 45, 0),
(49, 28, 35, 10, 1001, 1066, 90, 0, 47),
(50, 26, 32, 10, 815, 880, 90, 0, 52),
(51, 25, 30, 10, 725, 786, 0, 0, 101),
(52, 25, 35, -10, 912, 969, 90, 50, 0),
(53, 44, 5, 20, 286, 347, 90, 0, 58),
(54, 42, 10, 40, 186, 257, 90, 0, 60),
(55, 42, 15, -40, 95, 158, 90, 57, 0),
(56, 40, 5, 30, 385, 436, 90, 0, 59),
(57, 40, 15, 40, 35, 87, 90, 0, 55),
(58, 38, 5, -20, 471, 534, 90, 53, 0),
(59, 38, 15, -30, 651, 740, 90, 56, 0),
(60, 35, 5, -40, 562, 629, 90, 54, 0),
(61, 50, 30, -10, 531, 610, 90, 67, 0),
(62, 50, 35, 20, 262, 317, 90, 0, 68),
(63, 50, 40, 50, 171, 218, 90, 0, 74),
(64, 48, 30, 10, 632, 693, 0, 0, 102),
(65, 48, 40, 10, 76, 129, 90, 0, 72),
(66, 47, 35, 10, 826, 875, 90, 0, 69),
(67, 47, 40, 10, 12, 77, 90, 0, 61),
(68, 45, 30, -20, 734, 777, 90, 62, 0),
(69, 45, 35, -10, 916, 969, 90, 66, 0),
(70, 95, 30, -30, 387, 456, 90, 81, 0),
(71, 95, 35, 20, 293, 360, 90, 0, 77),
(72, 53, 30, -10, 450, 505, 90, 65, 0),
(73, 92, 30, -10, 478, 551, 90, 76, 0),
(74, 53, 35, -50, 353, 412, 90, 63, 0),
(75, 45, 65, -10, 997, 1068, 90, 3, 0),
(76, 90, 35, 10, 203, 260, 90, 0, 73),
(77, 88, 30, -20, 574, 643, 90, 71, 0),
(78, 88, 35, 20, 109, 170, 0, 0, 104),
(79, 87, 30, 10, 668, 731, 90, 0, 80),
(80, 85, 25, -10, 769, 820, 90, 79, 0),
(81, 85, 35, 30, 47, 124, 90, 0, 70),
(82, 75, 55, 20, 369, 420, 90, 0, 85),
(83, 72, 55, -20, 265, 338, 90, 87, 0),
(84, 70, 58, 20, 458, 523, 90, 0, 89),
(85, 68, 60, -20, 555, 612, 90, 82, 0),
(86, 66, 55, 10, 173, 238, 90, 0, 91),
(87, 65, 55, 20, 85, 144, 90, 0, 83),
(88, 65, 60, -10, 645, 708, 90, 90, 0),
(89, 63, 58, -20, 737, 802, 90, 84, 0),
(90, 60, 55, 10, 20, 84, 90, 0, 88),
(91, 60, 60, -10, 836, 889, 90, 86, 0),
(92, 67, 85, 20, 368, 441, 90, 0, 93),
(93, 65, 85, -20, 475, 518, 90, 92, 0),
(94, 65, 82, -10, 285, 336, 90, 96, 0),
(95, 62, 80, -20, 196, 239, 90, 98, 0),
(96, 60, 80, 10, 95, 156, 90, 0, 94),
(97, 60, 85, 30, 561, 622, 0, 0, 106),
(98, 58, 75, 20, 30, 84, 90, 0, 95),
(99, 55, 80, -20, 743, 820, 90, 100, 0),
(100, 55, 85, 20, 647, 726, 90, 0, 99),
(101, 25, 30, -10, 725, 786, 90, 51, 0),
(102, 48, 30, -10, 632, 693, 90, 64, 0),
(103, 28, 55, -10, 732, 777, 90, 23, 0),
(104, 88, 35, -20, 109, 170, 90, 78, 0),
(105, 5, 45, -10, 665, 716, 90, 36, 0),
(106, 60, 85, -30, 561, 622, 90, 97, 0);
INSERT 0 106

The orders¶

The original data needs to be converted to an appropiate table:

WITH deliveries AS (SELECT * FROM lc101_c WHERE dindex = 0)
SELECT
 row_number() over() AS id, p.demand,
 p.id as p_node_id, p.x AS p_x, p.y AS p_y, p.open AS p_open, p.close as p_close, p.service as p_service,
 d.id as d_node_id, d.x AS d_x, d.y AS d_y, d.open AS d_open, d.close as d_close, d.service as d_service
INTO c_lc101
FROM deliveries as d JOIN lc101_c as p ON (d.pindex = p.id);
SELECT 53
SELECT * FROM c_lc101 LIMIT 1;
 id | demand | p_node_id | p_x | p_y | p_open | p_close | p_service | d_node_id | d_x | d_y | d_open | d_close | d_service
----+--------+-----------+-----+-----+--------+---------+-----------+-----------+-----+-----+--------+---------+-----------
 1 | 10 | 3 | 42 | 66 | 65 | 146 | 90 | 75 | 45 | 65 | 997 | 1068 | 90
(1 row)

The query¶

Showing only the relevant information to compare with the best solution information published on https://www.sintef.no/projectweb/top/pdptw/100-customers/

	The best solution found for lc101 is a travel time: 828.94

	This implementation’s travel time: 854.54

SELECT travel_time, 828.94 AS best
FROM pgr_pickDeliverEuclidean(
 $$SELECT * FROM c_lc101 $$,
 $$SELECT * FROM v_lc101 $$,
 max_cycles => 2, initial_sol => 4) WHERE vehicle_seq = -2;
 travel_time | best
-------------------+--------
 854.5412705652799 | 828.94
(1 row)

See Also¶

	Vehicle Routing Functions - Category

	The queries use the Sample Data network.

Indices and tables

	Index

	Search Page

pgr_vrpOneDepot - Experimental¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

No documentation available

Availability

	Version 2.1.0

	New experimental function

	TBD

Description¶

	TBD

Signatures¶

	TBD

Parameters¶

	TBD

Inner Queries¶

	TBD

Result columns¶

	TBD

Additional Example:¶

BEGIN;
BEGIN
SET client_min_messages TO NOTICE;
SET
SELECT * FROM pgr_vrpOneDepot(
 'SELECT * FROM solomon_100_RC_101',
 'SELECT * FROM vrp_vehicles',
 'SELECT * FROM vrp_distance',
 1);
 oid | opos | vid | tarrival | tdepart
-----+------+-----+----------+---------
 -1 | 1 | 1 | 0 | 0
 7 | 2 | 1 | 0 | 0
 9 | 3 | 1 | 0 | 0
 8 | 4 | 1 | 0 | 0
 6 | 5 | 1 | 0 | 0
 5 | 6 | 1 | 0 | 0
 4 | 7 | 1 | 0 | 0
 2 | 8 | 1 | 0 | 0
 6 | 9 | 1 | 40 | 51
 8 | 10 | 1 | 62 | 89
 9 | 11 | 1 | 94 | 104
 7 | 12 | 1 | 110 | 120
 4 | 13 | 1 | 131 | 141
 2 | 14 | 1 | 144 | 155
 5 | 15 | 1 | 162 | 172
 -1 | 16 | 1 | 208 | 208
 -1 | 1 | 2 | 0 | 0
 10 | 2 | 2 | 0 | 0
 11 | 3 | 2 | 0 | 0
 10 | 4 | 2 | 34 | 101
 11 | 5 | 2 | 106 | 129
 -1 | 6 | 2 | 161 | 161
 -1 | 1 | 3 | 0 | 0
 3 | 2 | 3 | 0 | 0
 3 | 3 | 3 | 31 | 60
 -1 | 4 | 3 | 91 | 91
 -1 | 0 | 0 | -1 | 460
(27 rows)

ROLLBACK;
ROLLBACK

Data

DROP TABLE IF EXISTS solomon_100_RC_101 cascade;
CREATE TABLE solomon_100_RC_101 (
 id integer NOT NULL PRIMARY KEY,
 order_unit integer,
 open_time integer,
 close_time integer,
 service_time integer,
 x float8,
 y float8
);

INSERT INTO solomon_100_RC_101 (id, x, y, order_unit, open_time, close_time, service_time) VALUES
(1, 40.000000, 50.000000, 0, 0, 240, 0),
(2, 25.000000, 85.000000, 20, 145, 175, 10),
(3, 22.000000, 75.000000, 30, 50, 80, 10),
(4, 22.000000, 85.000000, 10, 109, 139, 10),
(5, 20.000000, 80.000000, 40, 141, 171, 10),
(6, 20.000000, 85.000000, 20, 41, 71, 10),
(7, 18.000000, 75.000000, 20, 95, 125, 10),
(8, 15.000000, 75.000000, 20, 79, 109, 10),
(9, 15.000000, 80.000000, 10, 91, 121, 10),
(10, 10.000000, 35.000000, 20, 91, 121, 10),
(11, 10.000000, 40.000000, 30, 119, 149, 10);

DROP TABLE IF EXISTS vrp_vehicles cascade;
CREATE TABLE vrp_vehicles (
 vehicle_id integer not null primary key,
 capacity integer,
 case_no integer
);

INSERT INTO vrp_vehicles (vehicle_id, capacity, case_no) VALUES
(1, 200, 5),
(2, 200, 5),
(3, 200, 5);

DROP TABLE IF EXISTS vrp_distance cascade;
WITH
the_matrix_info AS (
 SELECT A.id AS src_id, B.id AS dest_id, sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)) AS cost
 FROM solomon_100_rc_101 AS A, solomon_100_rc_101 AS B WHERE A.id != B.id
)
SELECT src_id, dest_id, cost, cost AS distance, cost AS traveltime
INTO vrp_distance
FROM the_matrix_info;

See Also¶

	https://en.wikipedia.org/wiki/Vehicle_routing_problem

Indices and tables

	Index

	Search Page

Introduction¶

Vehicle Routing Problems VRP are NP-hard optimization problem, it generalises the travelling salesman problem (TSP).

	The objective of the VRP is to minimize the total route cost.

	There are several variants of the VRP problem,

pgRouting does not try to implement all variants.

Characteristics¶

	Capacitated Vehicle Routing Problem CVRP where The vehicles have limited carrying capacity of the goods.

	Vehicle Routing Problem with Time Windows VRPTW where the locations have time windows within which the vehicle’s visits must be made.

	Vehicle Routing Problem with Pickup and Delivery VRPPD where a number of goods need to be moved from certain pickup locations to other delivery locations.

Limitations

	No multiple time windows for a location.

	Less vehicle used is considered better.

	Less total duration is better.

	Less wait time is better.

Pick & Delivery¶

Problem: CVRPPDTW Capacitated Pick and Delivery Vehicle Routing problem with Time Windows

	Times are relative to 0

	The vehicles

	have start and ending service duration times.

	have opening and closing times for the start and ending locations.

	have a capacity.

	The orders

	Have pick up and delivery locations.

	Have opening and closing times for the pickup and delivery locations.

	Have pickup and delivery duration service times.

	have a demand request for moving goods from the pickup location to the delivery location.

	Time based calculations:

	Travel time between customers is \(distance / speed\)

	Pickup and delivery order pair is done by the same vehicle.

	A pickup is done before the delivery.

Parameters¶

Pick & deliver¶

Used in pgr_pickDeliverEuclidean - Experimental

	Column

	Type

	Description

	Orders SQL

	TEXT

	Orders SQL as described below.

	Vehicles SQL

	TEXT

	Vehicles SQL as described below.

Used in pgr_pickDeliver - Experimental

	Column

	Type

	Description

	Orders SQL

	TEXT

	Orders SQL as described below.

	Vehicles SQL

	TEXT

	Vehicles SQL as described below.

	Matrix SQL

	TEXT

	Matrix SQL as described below.

Pick-Deliver optional parameters¶

	Column

	Type

	Default

	Description

	factor

	NUMERIC

	1

	Travel time multiplier. See Factor handling

	max_cycles

	INTEGER

	10

	Maximum number of cycles to perform on the optimization.

	initial_sol

	INTEGER

	4

	Initial solution to be used.

	1 One order per truck

	2 Push front order.

	3 Push back order.

	4 Optimize insert.

	5 Push back order that allows more orders to be inserted at the back

	6 Push front order that allows more orders to be inserted at the front

Inner Queries¶

Orders SQL¶

Common columns for the orders SQL in both implementations:

	Column

	Type

	Description

	id

	ANY-INTEGER

	Identifier of the pick-delivery order pair.

	demand

	ANY-NUMERICAL

	Number of units in the order

	p_open

	ANY-NUMERICAL

	The time, relative to 0, when the pickup location opens.

	p_close

	ANY-NUMERICAL

	The time, relative to 0, when the pickup location closes.

	[p_service]

	ANY-NUMERICAL

	The duration of the loading at the pickup location.

	When missing: 0 time units are used

	d_open

	ANY-NUMERICAL

	The time, relative to 0, when the delivery location opens.

	d_close

	ANY-NUMERICAL

	The time, relative to 0, when the delivery location closes.

	[d_service]

	ANY-NUMERICAL

	The duration of the unloading at the delivery location.

	When missing: 0 time units are used

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

For pgr_pickDeliver - Experimental the pickup and delivery identifiers of the locations are needed:

	Column

	Type

	Description

	p_node_id

	ANY-INTEGER

	The node identifier of the pickup, must match a vertex identifier in the Matrix SQL.

	d_node_id

	ANY-INTEGER

	The node identifier of the delivery, must match a vertex identifier in the Matrix SQL.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

For pgr_pickDeliverEuclidean - Experimental the \((x, y)\) values of the locations are needed:

	Column

	Type

	Description

	p_x

	ANY-NUMERICAL

	\(x\) value of the pick up location

	p_y

	ANY-NUMERICAL

	\(y\) value of the pick up location

	d_x

	ANY-NUMERICAL

	\(x\) value of the delivery location

	d_y

	ANY-NUMERICAL

	\(y\) value of the delivery location

Where:

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Vehicles SQL¶

Common columns for the vehicles SQL in both implementations:

	Column

	Type

	Description

	id

	ANY-NUMERICAL

	Identifier of the vehicle.

	capacity

	ANY-NUMERICAL

	Maiximum capacity units

	start_open

	ANY-NUMERICAL

	The time, relative to 0, when the starting location opens.

	start_close

	ANY-NUMERICAL

	The time, relative to 0, when the starting location closes.

	[start_service]

	ANY-NUMERICAL

	The duration of the loading at the starting location.

	When missing: A duration of \(0\) time units is used.

	[end_open]

	ANY-NUMERICAL

	The time, relative to 0, when the ending location opens.

	When missing: The value of start_open is used

	[end_close]

	ANY-NUMERICAL

	The time, relative to 0, when the ending location closes.

	When missing: The value of start_close is used

	[end_service]

	ANY-NUMERICAL

	The duration of the loading at the ending location.

	When missing: A duration in start_service is used.

For pgr_pickDeliver - Experimental the starting and ending identifiers of the locations are needed:

	Column

	Type

	Description

	start_node_id

	ANY-INTEGER

	The node identifier of the start location, must match a vertex identifier in the Matrix SQL.

	[end_node_id]

	ANY-INTEGER

	The node identifier of the end location, must match a vertex identifier in the Matrix SQL.

	When missing: end_node_id is used.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

For pgr_pickDeliverEuclidean - Experimental the \((x, y)\) values of the locations are needed:

	Column

	Type

	Description

	start_x

	ANY-NUMERICAL

	\(x\) value of the starting location

	start_y

	ANY-NUMERICAL

	\(y\) value of the starting location

	[end_x]

	ANY-NUMERICAL

	\(x\) value of the ending location

	When missing: start_x is used.

	[end_y]

	ANY-NUMERICAL

	\(y\) value of the ending location

	When missing: start_y is used.

Where:

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Matrix SQL¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Result columns¶

Returns set of
 (seq, vehicle_seq, vehicle_id, stop_seq, stop_type,
 travel_time, arrival_time, wait_time, service_time, departure_time)
 UNION
 (summary row)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	vehicle_seq

	INTEGER

	Sequential value starting from 1 for current vehicles. The \(n_{th}\) vehicle in the solution.

	Value \(-2\) indicates it is the summary row.

	vehicle_id

	BIGINT

	Current vehicle identifier.

	Sumary row has the total capacity violations.

	A capacity violation happens when overloading or underloading a vehicle.

	stop_seq

	INTEGER

	Sequential value starting from 1 for the stops made by the current vehicle. The \(m_{th}\) stop of the current vehicle.

	Sumary row has the total time windows violations.

	A time window violation happens when arriving after the location has closed.

	stop_type

	INTEGER

	
	Kind of stop location the vehicle is at

	\(-1\): at the solution summary row

	\(1\): Starting location

	\(2\): Pickup location

	\(3\): Delivery location

	\(6\): Ending location and indicates the vehicle’s summary row

	order_id

	BIGINT

	Pickup-Delivery order pair identifier.

	Value \(-1\): When no order is involved on the current stop location.

	cargo

	FLOAT

	Cargo units of the vehicle when leaving the stop.

	Value \(-1\) on solution summary row.

	travel_time

	FLOAT

	Travel time from previous stop_seq to current stop_seq.

	Summary has the total traveling time:

	The sum of all the travel_time.

	arrival_time

	FLOAT

	Time spent waiting for current location to open.

	\(-1\): at the solution summary row.

	\(0\): at the starting location.

	wait_time

	FLOAT

	Time spent waiting for current location to open.

	Summary row has the total waiting time:

	The sum of all the wait_time.

	service_time

	FLOAT

	Service duration at current location.

	Summary row has the total service time:

	The sum of all the service_time.

	departure_time

	FLOAT

	
	The time at which the vehicle departs from the stop.

	\(arrival_time + wait_time + service_time\).

	The ending location has the total time used by the current vehicle.

	Summary row has the total solution time:

	\(total\ traveling\ time + total\ waiting\ time + total\ service\ time\).

Summary Row¶

	Column

	Type

	Description

	seq

	INTEGER

	Continues the sequence

	vehicle_seq

	INTEGER

	Value \(-2\) indicates it is the summary row.

	vehicle_id

	BIGINT

	total capacity violations:

	A capacity violation happens when overloading or underloading a vehicle.

	stop_seq

	INTEGER

	total time windows violations:

	A time window violation happens when arriving after the location has closed.

	stop_type

	INTEGER

	\(-1\)

	order_id

	BIGINT

	\(-1\)

	cargo

	FLOAT

	\(-1\)

	travel_time

	FLOAT

	total traveling time:

	The sum of all the travel_time.

	arrival_time

	FLOAT

	\(-1\)

	wait_time

	FLOAT

	total waiting time:

	The sum of all the wait_time.

	service_time

	FLOAT

	total service time:

	The sum of all the service_time.

	departure_time

	FLOAT

	Summary row has the total solution time:

	\(total\ traveling\ time + total\ waiting\ time + total\ service\ time\).

Handling Parameters¶

To define a problem, several considerations have to be done, to get consistent results. This section gives an insight of how parameters are to be considered.

	Capacity and Demand Units Handling

	Locations

	Time Handling

	Factor Handling

Capacity and Demand Units Handling¶

The capacity of a vehicle, can be measured in:

	Volume units like \(m^3\).

	Area units like \(m^2\) (when no stacking is allowed).

	Weight units like \(kg\).

	Number of boxes that fit in the vehicle.

	Number of seats in the vehicle

The demand request of the pickup-deliver orders must use the same units as the units used in the vehicle’s capacity.

To handle problems like: 10 (equal dimension) boxes of apples and 5 kg of feathers that are to be transported (not packed in boxes).

	If the vehicle’s capacity is measured in boxes, a conversion of kg of feathers to number of boxes is needed.

	If the vehicle’s capacity is measured in kg, a conversion of box of apples to kg is needed.

Showing how the 2 possible conversions can be done

Let: - \(f_boxes\): number of boxes needed for 1 kg of feathers. - \(a_weight\): weight of 1 box of apples.

	Capacity Units

	apples

	feathers

	boxes

	10

	\(5 * f_boxes\)

	kg

	\(10 * a_weight\)

	5

Locations¶

	When using pgr_pickDeliverEuclidean - Experimental:

	The vehicles have \((x, y)\) pairs for start and ending locations.

	The orders Have \((x, y)\) pairs for pickup and delivery locations.

	When using pgr_pickDeliver - Experimental:

	The vehicles have identifiers for the start and ending locations.

	The orders have identifiers for the pickup and delivery locations.

	All the identifiers are indices to the given matrix.

Time Handling¶

The times are relative to 0. All time units have to be converted to a 0 reference and the same time units.

Suppose that a vehicle’s driver starts the shift at 9:00 am and ends the shift at 4:30 pm and the service time duration is 10 minutes with 30 seconds.

	Meaning of 0

	time units

	9:00 am

	4:30 pm

	10 min 30 secs

	0:00 am

	hours

	9

	16.5

	\(10.5 / 60 = 0.175\)

	0:00 am

	minutes

	\(9*60 = 54\)

	\(16.5*60 = 990\)

	10.5

	9:00 am

	hours

	0

	7.5

	\(10.5 / 60 = 0.175\)

	9:00 am

	minutes

	0

	\(7.5*60 = 540\)

	10.5

Factor handling¶

factor acts as a multiplier to convert from distance values to time units the matrix values or the euclidean values.

	When the values are already in the desired time units

	factor should be 1

	When factor > 1 the travel times are faster

	When factor < 1 the travel times are slower

For the pgr_pickDeliverEuclidean - Experimental:

Working with time units in seconds, and x/y in lat/lon: Factor: would depend on the location of the points and on the average velocity say 25m/s is the velocity.

	Latitude

	Conversion

	Factor

	45

	1 longitude degree is (78846.81m)/(25m/s)

	3153 s

	0

	1 longitude degree is (111319.46 m)/(25m/s)

	4452 s

For the pgr_pickDeliver - Experimental:

Given \(v = d / t\) therefore \(t = d / v\) And the factor becomes \(1 / v\)

Where:

	v:

	Velocity

	d:

	Distance

	t:

	Time

For the following equivalences \(10m/s \approx 600m/min \approx 36 km/hr\)

Working with time units in seconds and the matrix been in meters: For a 1000m lenght value on the matrix:

	Units

	velocity

	Conversion

	Factor

	Result

	seconds

	\(10 m/s\)

	\(\frac{1}{10m/s}\)

	\(0.1s/m\)

	\(1000m * 0.1s/m = 100s\)

	minutes

	\(600 m/min\)

	\(\frac{1}{600m/min}\)

	\(0.0016min/m\)

	\(1000m * 0.0016min/m = 1.6min\)

	Hours

	\(36 km/hr\)

	\(\frac{1}{36 km/hr}\)

	\(0.0277hr/km\)

	\(1km * 0.0277hr/km = 0.0277hr\)

See Also¶

	https://en.wikipedia.org/wiki/Vehicle_routing_problem

	The queries use the Sample Data network.

Indices and tables

	Index

	Search Page

withPoints - Category¶

When points are added to the graph.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	withPoints - Family of functions - Functions based on Dijkstra algorithm.

	From the TRSP - Family of functions:

	pgr_trsp_withPoints - Proposed - Vertex/Point routing with restrictions.

	pgr_trspVia_withPoints - Proposed - Via Vertex/point routing with restrictions.

Introduction¶

The with points category modifies the graph on the fly by adding points on edges as required by the Points SQL query.

The functions within this category give the ability to process between arbitrary points located outside the original graph.

This category of functions was thought for routing vehicles, but might as well work for some other application not involving vehicles.

When given a point identifier pid that its being mapped to an edge with an identifier edge_id, with a fraction from the source to the target along the edge fraction and some additional information about which side of the edge the point is on side, then processing from arbitrary points can be done on fixed networks.

All this functions consider as many traits from the “real world” as possible:

	Kind of graph:

	directed graph

	undirected graph

	Arriving at the point:

	Compulsory arrival on the side of the segment where the point is located.

	On either side of the segment.

	Countries with:

	Right side driving

	Left side driving

	Some points are:

	Permanent: for example the set of points of clients stored in a table in the data base.

	The graph has been modified to permanently have those points as vertices.

	There is a table on the database that describes the points

	Temporal: for example points given through a web application

	Use pgr_findCloseEdges in the Points SQL.

	The numbering of the points are handled with negative sign.

	This sign change is to avoid confusion when there is a vertex with the same identifier as the point identifier.

	Original point identifiers are to be positive.

	Transformation to negative is done internally.

	Interpretation of the sign on the node information of the output

	positive sign is a vertex of the original graph

	negative sign is a point of the Points SQL

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path. Negative value is for point’s identifier.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices. Negative values are for point’s identifiers.

	end vid

	BIGINT

	Identifier of the ending vertex of the path. Negative value is for point’s identifier.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices. Negative values are for point’s identifiers.

Optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	r

	Value in [r, l] indicating if the driving side is:

	r for right driving side

	l for left driving side

	Any other value will be considered as r

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Advanced documentation¶

Contents

	About points

	Driving side

	Right driving side

	Left driving side

	Driving side does not matter

	Creating temporary vertices

	On a right hand side driving network

	On a left hand side driving network

	When driving side does not matter

About points¶

For this section the following city (see Sample Data) some interesing points such as restaurant, supermarket, post office, etc. will be used as example.

	The graph is directed

	Red arrows show the (source, target) of the edge on the edge table

	Blue arrows show the (target, source) of the edge on the edge table

	Each point location shows where it is located with relation of the edge (source, target)

	On the right for points 2 and 4.

	On the left for points 1, 3 and 5.

	On both sides for point 6.

The representation on the data base follows the Points SQL description, and for this example:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest;
 pid | edge_id | fraction | side
-----+---------+----------+------
 1 | 1 | 0.4 | l
 2 | 15 | 0.4 | r
 3 | 12 | 0.6 | l
 4 | 6 | 0.3 | r
 5 | 5 | 0.8 | l
 6 | 4 | 0.7 | b
(6 rows)

Driving side¶

In the the folowwing images:

	The squared vertices are the temporary vertices,

	The temporary vertices are added according to the driving side,

	visually showing the differences on how depending on the driving side the data is interpreted.

Right driving side¶

[image: _images/rightDrivingSide.png]

	Point 1 located on edge (6, 5)

	Point 2 located on edge (16, 17)

	Point 3 located on edge (8, 12)

	Point 4 located on edge (1, 3)

	Point 5 located on edge (10, 11)

	Point 6 located on edges (6, 7) and (7, 6)

Left driving side¶

[image: _images/leftDrivingSide.png]

	Point 1 located on edge (5, 6)

	Point 2 located on edge (17, 16)

	Point 3 located on edge (8, 12)

	Point 4 located on edge (3, 1)

	Point 5 located on edge (10, 11)

	Point 6 located on edges (6, 7) and (7, 6)

Driving side does not matter¶

	Like having all points to be considered in both sides b

	Prefered usage on undirected graphs

	On the TRSP - Family of functions this option is not valid

[image: _images/noMatterDrivingSide.png]

	Point 1 located on edge (5, 6) and (6, 5)

	Point 2 located on edge (17, 16)``and ``16, 17

	Point 3 located on edge (8, 12)

	Point 4 located on edge (3, 1) and (1, 3)

	Point 5 located on edge (10, 11)

	Point 6 located on edges (6, 7) and (7, 6)

Creating temporary vertices¶

This section will demonstrate how a temporary vertex is created internally on the graph.

Problem

For edge:

SELECT id, source, target, cost, reverse_cost
FROM edges WHERE id = 15;
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 15 | 16 | 17 | 1 | 1
(1 row)

insert point:

SELECT pid, edge_id, fraction, side
FROM pointsOfInterest WHERE pid = 2;
 pid | edge_id | fraction | side
-----+---------+----------+------
 2 | 15 | 0.4 | r
(1 row)

On a right hand side driving network¶

Right driving side

[image: _images/rightDrivingSide.png]

	Arrival to point -2 can be achived only via vertex 16.

	Does not affects edge (17, 16), therefore the edge is kept.

	It only affects the edge (16, 17), therefore the edge is removed.

	Create two new edges:

	Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4\))

	Edge (-2, 17) with cost 0.6 (the remaing cost)

	The total cost of the additional edges is equal to the original cost.

	If more points are on the same edge, the process is repeated recursevly.

On a left hand side driving network¶

Left driving side

[image: _images/leftDrivingSide.png]

	Arrival to point -2 can be achived only via vertex 17.

	Does not affects edge (16, 17), therefore the edge is kept.

	It only affects the edge (17, 16), therefore the edge is removed.

	Create two new edges:

	Work with the original edge (16, 17) as the fraction is a fraction of the original:

	Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4\))

	Edge (-2, 17) with cost 0.6 (the remaing cost)

	If more points are on the same edge, the process is repeated recursevly.

	Flip the Edges and add them to the graph:

	Edge (17, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.

	Edge (-2, 16) becomes (17, -2) with cost 0.6 and is added to the graph.

	The total cost of the additional edges is equal to the original cost.

When driving side does not matter¶

[image: _images/noMatterDrivingSide.png]

	Arrival to point -2 can be achived via vertices 16 or 17.

	Affects the edges (16, 17) and (17, 16), therefore the edges are removed.

	Create four new edges:

	Work with the original edge (16, 17) as the fraction is a fraction of the original:

	Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4\))

	Edge (-2, 17) with cost 0.6 (the remaing cost)

	If more points are on the same edge, the process is repeated recursevly.

	Flip the Edges and add all the edges to the graph:

	Edge (16, -2) is added to the graph.

	Edge (-2, 17) is added to the graph.

	Edge (16, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.

	Edge (-2, 17) becomes (17, -2) with cost 0.6 and is added to the graph.

See Also¶

	withPoints - Family of functions

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

All Pairs - Family of Functions

	pgr_floydWarshall - Floyd-Warshall’s algorithm.

	pgr_johnson - Johnson’s algorithm

A* - Family of functions

	pgr_aStar - A* algorithm for the shortest path.

	pgr_aStarCost - Get the aggregate cost of the shortest paths.

	pgr_aStarCostMatrix - Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

	pgr_bdAstar - Bidirectional A* algorithm for obtaining paths.

	pgr_bdAstarCost - Bidirectional A* algorithm to calculate the cost of the paths.

	pgr_bdAstarCostMatrix - Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

	pgr_bdDijkstra - Bidirectional Dijkstra algorithm for the shortest paths.

	pgr_bdDijkstraCost - Bidirectional Dijkstra to calculate the cost of the shortest paths

	pgr_bdDijkstraCostMatrix - Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Components - Family of functions

	pgr_connectedComponents - Connected components of an undirected graph.

	pgr_strongComponents - Strongly connected components of a directed graph.

	pgr_biconnectedComponents - Biconnected components of an undirected graph.

	pgr_articulationPoints - Articulation points of an undirected graph.

	pgr_bridges - Bridges of an undirected graph.

Contraction - Family of functions

	pgr_contraction

Dijkstra - Family of functions

	pgr_dijkstra - Dijkstra’s algorithm for the shortest paths.

	pgr_dijkstraCost - Get the aggregate cost of the shortest paths.

	pgr_dijkstraCostMatrix - Use pgr_dijkstra to create a costs matrix.

	pgr_drivingDistance - Use pgr_dijkstra to calculate catchament information.

	pgr_KSP - Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Flow - Family of functions

	pgr_maxFlow - Only the Max flow calculation using Push and Relabel algorithm.

	pgr_boykovKolmogorov - Boykov and Kolmogorov with details of flow on edges.

	pgr_edmondsKarp - Edmonds and Karp algorithm with details of flow on edges.

	pgr_pushRelabel - Push and relabel algorithm with details of flow on edges.

	Applications

	pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.

	pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Kruskal - Family of functions

	pgr_kruskal

	pgr_kruskalBFS

	pgr_kruskalDD

	pgr_kruskalDFS

Prim - Family of functions

	pgr_prim

	pgr_primBFS

	pgr_primDD

	pgr_primDFS

Reference

	pgr_version

	pgr_full_version

Topology - Family of Functions

The following functions modify the database directly therefore the user must have special permissions given by the administrators to use them.

	pgr_createTopology - create a topology based on the geometry.

	pgr_createVerticesTable - reconstruct the vertices table based on the source and target information.

	pgr_analyzeGraph - to analyze the edges and vertices of the edge table.

	pgr_analyzeOneWay - to analyze directionality of the edges.

	pgr_nodeNetwork - to create nodes to a not noded edge table.

Traveling Sales Person - Family of functions

	pgr_TSP - When input is given as matrix cell information.

	pgr_TSPeuclidean - When input are coordinates.

pgr_trsp - Proposed - Turn Restriction Shortest Path (TRSP)

Functions by categories¶

Cost - Category

	pgr_aStarCost

	pgr_bdAstarCost

	pgr_dijkstraCost

	pgr_bdDijkstraCost

	pgr_dijkstraNearCost - Proposed

Cost Matrix - Category

	pgr_aStarCostMatrix

	pgr_dijkstraCostMatrix

	pgr_bdAstarCostMatrix

	pgr_bdDijkstraCostMatrix

Driving Distance - Category

	pgr_drivingDistance - Driving Distance based on Dijkstra’s algorithm

	pgr_primDD - Driving Distance based on Prim’s algorithm

	pgr_kruskalDD - Driving Distance based on Kruskal’s algorithm

	Post pocessing

	pgr_alphaShape - Alpha shape computation

K shortest paths - Category

	pgr_KSP - Yen’s algorithm based on pgr_dijkstra

Spanning Tree - Category

	Kruskal - Family of functions

	Prim - Family of functions

BFS - Category

	pgr_kruskalBFS

	pgr_primBFS

DFS - Category

	pgr_kruskalDFS

	pgr_primDFS

Available Functions but not official pgRouting functions¶

	Proposed Functions

	Experimental Functions

Proposed Functions¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Families

Dijkstra - Family of functions

	pgr_dijkstraVia - Proposed - Get a route of a seuence of vertices.

	pgr_dijkstraNear - Proposed - Get the route to the nearest vertex.

	pgr_dijkstraNearCost - Proposed - Get the cost to the nearest vertex.

withPoints - Family of functions

	pgr_withPoints - Proposed - Route from/to points anywhere on the graph.

	pgr_withPointsCost - Proposed - Costs of the shortest paths.

	pgr_withPointsCostMatrix - proposed - Costs of the shortest paths.

	pgr_withPointsKSP - Proposed - K shortest paths.

	pgr_withPointsDD - Proposed - Driving distance.

	pgr_withPointsVia - Proposed - Via routing

TRSP - Family of functions

	pgr_trsp - Proposed - Vertex - Vertex routing with restrictions.

	pgr_trspVia - Proposed - Via Vertices routing with restrictions.

	pgr_trsp_withPoints - Proposed - Vertex/Point routing with restrictions.

	pgr_trspVia_withPoints - Proposed - Via Vertex/point routing with restrictions.

TRSP - Family of functions¶

When points are also given as input:

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_trsp - Proposed - Vertex - Vertex routing with restrictions.

	pgr_trspVia - Proposed - Via Vertices routing with restrictions.

	pgr_trsp_withPoints - Proposed - Vertex/Point routing with restrictions.

	pgr_trspVia_withPoints - Proposed - Via Vertex/point routing with restrictions.

Warning

Read the Migration guide about how to migrate from the deprecated TRSP functionality to the new signatures or replacement functions.

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_turnRestrictedPath - Experimental - Routing with restrictions.

pgr_trsp - Proposed¶

pgr_trsp - routing vertices with restrictions.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.4.0

	New proposed signatures

	pgr_trsp (One to One)

	pgr_trsp (One to Many)

	pgr_trsp (Many to One)

	pgr_trsp (Many to Many)

	pgr_trsp (Combinations)

	Deprecated signatures

	pgr_trsp(text,integer,integer,boolean,boolean,text)

	pgr_trsp(text,integer,float,integer,float,boolean,boolean,text)

	pgr_trspViaVertices(text,anyarray,boolean,boolean,text)

	pgr_trspviaedges(text,integer[],double precision[],boolean,boolean,text)

	Version 2.1.0

	New prototypes

	pgr_trspViaVertices

	pgr_trspViaEdges

	Version 2.0.0

	Official function

Description¶

Turn restricted shortest path (TRSP) is an algorithm that receives turn restrictions in form of a query like those found in real world navigable road networks.

The main characteristics are:

	It does no guarantee the shortest path as it might contain restriction paths.

The general algorithm is as follows:

	Execute a Dijkstra.

	If the solution passes thru a restriction then.

	Execute the TRSP algorithm with restrictions.

Signatures¶

Proposed

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vid, [directed])

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vids, [directed])

pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vid, [directed])

pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vids, [directed])

pgr_trsp(Edges SQL, Restrictions SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on an undirected graph.

SELECT * FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 6, 10,
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 2 | 2 | 6 | 10 | 10 | -1 | 0 | 1
(2 rows)

One to Many¶

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 1\}\) on an undirected graph.

SELECT * FROM pgr_trsp(
 $$SELECT id, source, target, cost FROM edges$$,
 $$SELECT * FROM restrictions$$,
 6, ARRAY[10, 1],
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 1 | 7 | 10 | 1 | 1
 3 | 3 | 6 | 1 | 8 | 12 | 1 | 2
 4 | 4 | 6 | 1 | 12 | 11 | 1 | 3
 5 | 5 | 6 | 1 | 11 | 8 | 1 | 4
 6 | 6 | 6 | 1 | 7 | 7 | 1 | 5
 7 | 7 | 6 | 1 | 3 | 6 | 1 | 6
 8 | 8 | 6 | 1 | 1 | -1 | 0 | 7
 9 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 10 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 11 | 3 | 6 | 10 | 11 | 5 | 1 | 2
 12 | 4 | 6 | 10 | 10 | -1 | 0 | 3
(12 rows)

Many to One¶

pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(8\) on a directed graph.

SELECT * FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[6, 1], 8);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 8 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 8 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 8 | 7 | 10 | 101 | 2
 4 | 4 | 1 | 8 | 8 | -1 | 0 | 103
 5 | 1 | 6 | 8 | 6 | 4 | 1 | 0
 6 | 2 | 6 | 8 | 7 | 10 | 1 | 1
 7 | 3 | 6 | 8 | 8 | -1 | 0 | 2
(7 rows)

Many to Many¶

pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 8\}\) on an undirected graph.

SELECT * FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[6, 1], ARRAY[10, 8],
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 8 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 8 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 8 | 7 | 4 | 1 | 2
 4 | 4 | 1 | 8 | 6 | 2 | 1 | 3
 5 | 5 | 1 | 8 | 10 | 5 | 1 | 4
 6 | 6 | 1 | 8 | 11 | 11 | 1 | 5
 7 | 7 | 1 | 8 | 12 | 12 | 1 | 6
 8 | 8 | 1 | 8 | 8 | -1 | 0 | 7
 9 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 10 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 11 | 3 | 1 | 10 | 7 | 4 | 1 | 2
 12 | 4 | 1 | 10 | 6 | 2 | 1 | 3
 13 | 5 | 1 | 10 | 10 | -1 | 0 | 4
 14 | 1 | 6 | 8 | 6 | 4 | 1 | 0
 15 | 2 | 6 | 8 | 7 | 10 | 1 | 1
 16 | 3 | 6 | 8 | 8 | -1 | 0 | 2
 17 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 18 | 2 | 6 | 10 | 10 | -1 | 0 | 1
(18 rows)

Combinations¶

pgr_trsp(Edges SQL, Restrictions SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph.

SELECT * FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT * FROM (VALUES (6, 10), (6, 1), (6, 8), (1, 8)) AS combinations (source, target)$$);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 8 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 8 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 8 | 7 | 10 | 101 | 2
 4 | 4 | 1 | 8 | 8 | -1 | 0 | 103
 5 | 1 | 6 | 1 | 6 | 4 | 1 | 0
 6 | 2 | 6 | 1 | 7 | 10 | 1 | 1
 7 | 3 | 6 | 1 | 8 | 12 | 1 | 2
 8 | 4 | 6 | 1 | 12 | 13 | 1 | 3
 9 | 5 | 6 | 1 | 17 | 15 | 1 | 4
 10 | 6 | 6 | 1 | 16 | 9 | 1 | 5
 11 | 7 | 6 | 1 | 11 | 8 | 1 | 6
 12 | 8 | 6 | 1 | 7 | 7 | 1 | 7
 13 | 9 | 6 | 1 | 3 | 6 | 1 | 8
 14 | 10 | 6 | 1 | 1 | -1 | 0 | 9
 15 | 1 | 6 | 8 | 6 | 4 | 1 | 0
 16 | 2 | 6 | 8 | 7 | 10 | 1 | 1
 17 | 3 | 6 | 8 | 8 | -1 | 0 | 2
 18 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 19 | 2 | 6 | 10 | 7 | 10 | 1 | 1
 20 | 3 | 6 | 10 | 8 | 12 | 1 | 2
 21 | 4 | 6 | 10 | 12 | 13 | 1 | 3
 22 | 5 | 6 | 10 | 17 | 15 | 1 | 4
 23 | 6 | 6 | 10 | 16 | 16 | 1 | 5
 24 | 7 | 6 | 10 | 15 | 3 | 1 | 6
 25 | 8 | 6 | 10 | 10 | -1 | 0 | 7
(25 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	SQL query as described.

	Restrictions SQL

	TEXT

	SQL query as described.

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	ANY-INTEGER

	Identifier of the departure vertex.

	start vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of destination vertices.

	end vid

	ANY-INTEGER

	Identifier of the departure vertex.

	end vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of destination vertices.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

See Also¶

	TRSP - Family of functions

	Deprecated documentation

	Migration guide

	Sample Data

Indices and tables

	Index

	Search Page

pgr_trspVia - Proposed¶

pgr_trspVia Route that goes through a list of vertices with restrictions.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.4.0

	New proposed function:

	pgr_trspVia (One Via)

Description¶

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between \(vertex_i\) and \(vertex_{i+1}\) for all \(i < size_of(via\;vertices)\) trying not to use restricted paths.

The paths represents the sections of the route.

The general algorithm is as follows:

	Execute a pgr_dijkstraVia - Proposed.

	For the set of sub paths of the solution that pass through a restriction then

	Execute the TRSP algorithm with restrictions for the paths.

	NOTE when this is done, U_turn_on_edge flag is ignored.

Signatures¶

One Via¶

pgr_trspVia(Edges SQL, Restrictions SQL, via vertices, [options])

options: [directed, strict, U_turn_on_edge]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost)

OR EMPTY SET

	Example:

	Find the route that visits the vertices \(\{5, 1, 8\}\) in that order on an directed graph.

SELECT * FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 1, 8]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 5 | 1 | 5 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 5 | 1 | 6 | 4 | 1 | 1 | 1
 3 | 1 | 3 | 5 | 1 | 7 | 10 | 1 | 2 | 2
 4 | 1 | 4 | 5 | 1 | 8 | 12 | 1 | 3 | 3
 5 | 1 | 5 | 5 | 1 | 12 | 13 | 1 | 4 | 4
 6 | 1 | 6 | 5 | 1 | 17 | 15 | 1 | 5 | 5
 7 | 1 | 7 | 5 | 1 | 16 | 9 | 1 | 6 | 6
 8 | 1 | 8 | 5 | 1 | 11 | 8 | 1 | 7 | 7
 9 | 1 | 9 | 5 | 1 | 7 | 7 | 1 | 8 | 8
 10 | 1 | 10 | 5 | 1 | 3 | 6 | 1 | 9 | 9
 11 | 1 | 11 | 5 | 1 | 1 | -1 | 0 | 10 | 10
 12 | 2 | 1 | 1 | 8 | 1 | 6 | 1 | 0 | 10
 13 | 2 | 2 | 1 | 8 | 3 | 7 | 1 | 1 | 11
 14 | 2 | 3 | 1 | 8 | 7 | 10 | 101 | 2 | 12
 15 | 2 | 4 | 1 | 8 | 8 | -2 | 0 | 103 | 113
(15 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL query as described.

	Restrictions SQL

	TEXT

	Restrictions SQL query as described.

	via vertices

	ARRAY[ANY-INTEGER]

	Array of ordered vertices identifiers that are going to be visited.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Via optional parameters¶

	Parameter

	Type

	Default

	Description

	strict

	BOOLEAN

	false

	
	When true if a path is missing stops and returns EMPTY SET

	When false ignores missing paths returning all paths found

	U_turn_on_edge

	BOOLEAN

	true

	
	When true departing from a visited vertex will not try to avoid

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Identifier of a path. Has value 1 for the first path.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last node of the path.

	-2 for the last node of the route.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	route_agg_cost

	FLOAT

	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Additional Examples¶

	The main query

	Aggregate cost of the third path.

	Route’s aggregate cost of the route at the end of the third path.

	Nodes visited in the route.

	The aggregate costs of the route when the visited vertices are reached.

	Status of “passes in front” or “visits” of the nodes.

	Simulation of how algorithm works.

All this examples are about the route that visits the vertices \(\{5, 7, 1, 8, 15\}\) in that order on a directed graph.

The main query¶

SELECT * FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 7, 1, 8, 15]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 5 | 7 | 5 | 1 | 1 | 0 | 0
 2 | 1 | 2 | 5 | 7 | 6 | 4 | 1 | 1 | 1
 3 | 1 | 3 | 5 | 7 | 7 | -1 | 0 | 2 | 2
 4 | 2 | 1 | 7 | 1 | 7 | 7 | 1 | 0 | 2
 5 | 2 | 2 | 7 | 1 | 3 | 6 | 1 | 1 | 3
 6 | 2 | 3 | 7 | 1 | 1 | -1 | 0 | 2 | 4
 7 | 3 | 1 | 1 | 8 | 1 | 6 | 1 | 0 | 4
 8 | 3 | 2 | 1 | 8 | 3 | 7 | 1 | 1 | 5
 9 | 3 | 3 | 1 | 8 | 7 | 10 | 101 | 2 | 6
 10 | 3 | 4 | 1 | 8 | 8 | -1 | 0 | 103 | 107
 11 | 4 | 1 | 8 | 15 | 8 | 12 | 1 | 0 | 107
 12 | 4 | 2 | 8 | 15 | 12 | 13 | 1 | 1 | 108
 13 | 4 | 3 | 8 | 15 | 17 | 15 | 1 | 2 | 109
 14 | 4 | 4 | 8 | 15 | 16 | 16 | 1 | 3 | 110
 15 | 4 | 5 | 8 | 15 | 15 | -2 | 0 | 4 | 111
(15 rows)

Aggregate cost of the third path.¶

SELECT agg_cost FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 7, 1, 8, 15])
WHERE path_id = 3 AND edge < 0;
 agg_cost

 103
(1 row)

Route’s aggregate cost of the route at the end of the third path.¶

SELECT route_agg_cost FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 7, 1, 8, 15])
WHERE path_id = 3 AND edge < 0;
 route_agg_cost

 107
(1 row)

Nodes visited in the route.¶

SELECT row_number() over () as node_seq, node
FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 7, 1, 8, 15])
WHERE edge <> -1 ORDER BY seq;
 node_seq | node
----------+------
 1 | 5
 2 | 6
 3 | 7
 4 | 3
 5 | 1
 6 | 3
 7 | 7
 8 | 8
 9 | 12
 10 | 17
 11 | 16
 12 | 15
(12 rows)

The aggregate costs of the route when the visited vertices are reached.¶

SELECT path_id, route_agg_cost FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 7, 1, 8, 15])
WHERE edge < 0;
 path_id | route_agg_cost
---------+----------------
 1 | 2
 2 | 4
 3 | 107
 4 | 111
(4 rows)

Status of “passes in front” or “visits” of the nodes.¶

SELECT seq, route_agg_cost, node, agg_cost ,
CASE WHEN edge = -1 THEN $$visits$$
ELSE $$passes in front$$
END as status
FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[5, 7, 1, 8, 15])
WHERE agg_cost <> 0 or seq = 1;
 seq | route_agg_cost | node | agg_cost | status
-----+----------------+------+----------+-----------------
 1 | 0 | 5 | 0 | passes in front
 2 | 1 | 6 | 1 | passes in front
 3 | 2 | 7 | 2 | visits
 5 | 3 | 3 | 1 | passes in front
 6 | 4 | 1 | 2 | visits
 8 | 5 | 3 | 1 | passes in front
 9 | 6 | 7 | 2 | passes in front
 10 | 107 | 8 | 103 | visits
 12 | 108 | 12 | 1 | passes in front
 13 | 109 | 17 | 2 | passes in front
 14 | 110 | 16 | 3 | passes in front
 15 | 111 | 15 | 4 | passes in front
(12 rows)

Simulation of how algorithm works.¶

The algorithm performs a pgr_dijkstraVia - Proposed

SELECT * FROM pgr_dijkstraVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[6, 3, 6]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 3 | 7 | 7 | 1 | 1 | 1
 3 | 1 | 3 | 6 | 3 | 3 | -1 | 0 | 2 | 2
 4 | 2 | 1 | 3 | 6 | 3 | 7 | 1 | 0 | 2
 5 | 2 | 2 | 3 | 6 | 7 | 4 | 1 | 1 | 3
 6 | 2 | 3 | 3 | 6 | 6 | -2 | 0 | 2 | 4
(6 rows)

Detects which of the sub paths pass through a restriction in this case is for the path_id = 5 from 6 to 3 because the path \(15 \rightarrow 1\) is restricted.

Executes the pgr_trsp - Proposed algorithm for the conflicting paths.

SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 6, 3);
 path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0
 1 | 2 | 6 | 3 | 7 | 10 | 1 | 1
 1 | 3 | 6 | 3 | 8 | 12 | 1 | 2
 1 | 4 | 6 | 3 | 12 | 13 | 1 | 3
 1 | 5 | 6 | 3 | 17 | 15 | 1 | 4
 1 | 6 | 6 | 3 | 16 | 9 | 1 | 5
 1 | 7 | 6 | 3 | 11 | 8 | 1 | 6
 1 | 8 | 6 | 3 | 7 | 7 | 1 | 7
 1 | 9 | 6 | 3 | 3 | -1 | 0 | 8
(9 rows)

From the pgr_dijkstraVia - Proposed result it removes the conflicting paths and builds the solution with the results of the pgr_trsp - Proposed algorithm:

WITH
solutions AS (
 SELECT path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_dijkstraVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[6, 3, 6]) WHERE path_id != 1
 UNION
 SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 6, 3)),
with_seq AS (
 SELECT row_number() over(ORDER BY path_id, path_seq) AS seq, *
 FROM solutions),
aggregation AS (SELECT seq, SUM(cost) OVER(ORDER BY seq) AS route_agg_cost FROM with_seq)
SELECT with_seq.*, COALESCE(route_agg_cost, 0) AS route_agg_cost
FROM with_seq LEFT JOIN aggregation ON (with_seq.seq = aggregation.seq + 1);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 3 | 7 | 10 | 1 | 1 | 1
 3 | 1 | 3 | 6 | 3 | 8 | 12 | 1 | 2 | 2
 4 | 1 | 4 | 6 | 3 | 12 | 13 | 1 | 3 | 3
 5 | 1 | 5 | 6 | 3 | 17 | 15 | 1 | 4 | 4
 6 | 1 | 6 | 6 | 3 | 16 | 9 | 1 | 5 | 5
 7 | 1 | 7 | 6 | 3 | 11 | 8 | 1 | 6 | 6
 8 | 1 | 8 | 6 | 3 | 7 | 7 | 1 | 7 | 7
 9 | 1 | 9 | 6 | 3 | 3 | -1 | 0 | 8 | 8
 10 | 2 | 1 | 3 | 6 | 3 | 7 | 1 | 0 | 8
 11 | 2 | 2 | 3 | 6 | 7 | 4 | 1 | 1 | 9
 12 | 2 | 3 | 3 | 6 | 6 | -2 | 0 | 2 | 10
(12 rows)

Getting the same result as pgr_trspVia:

SELECT * FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[6, 3, 6]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 3 | 7 | 10 | 1 | 1 | 1
 3 | 1 | 3 | 6 | 3 | 8 | 12 | 1 | 2 | 2
 4 | 1 | 4 | 6 | 3 | 12 | 13 | 1 | 3 | 3
 5 | 1 | 5 | 6 | 3 | 17 | 15 | 1 | 4 | 4
 6 | 1 | 6 | 6 | 3 | 16 | 9 | 1 | 5 | 5
 7 | 1 | 7 | 6 | 3 | 11 | 8 | 1 | 6 | 6
 8 | 1 | 8 | 6 | 3 | 7 | 7 | 1 | 7 | 7
 9 | 1 | 9 | 6 | 3 | 3 | -1 | 0 | 8 | 8
 10 | 2 | 1 | 3 | 6 | 3 | 7 | 1 | 0 | 8
 11 | 2 | 2 | 3 | 6 | 7 | 4 | 1 | 1 | 9
 12 | 2 | 3 | 3 | 6 | 6 | -2 | 0 | 2 | 10
(12 rows)

	Example 8:

	Sometimes U_turn_on_edge flag is ignored when is set to false.

The first step, doing a pgr_dijkstraVia - Proposed does consider not making a U turn on the same edge. But the path \(16 \rightarrow 13\) (Rows 4 and 5) is restricted and the result is using it.

SELECT * FROM pgr_dijkstraVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[6, 7, 6], U_turn_on_edge => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 7 | 7 | -1 | 0 | 1 | 1
 3 | 2 | 1 | 7 | 6 | 7 | 8 | 1 | 0 | 1
 4 | 2 | 2 | 7 | 6 | 11 | 9 | 1 | 1 | 2
 5 | 2 | 3 | 7 | 6 | 16 | 16 | 1 | 2 | 3
 6 | 2 | 4 | 7 | 6 | 15 | 3 | 1 | 3 | 4
 7 | 2 | 5 | 7 | 6 | 10 | 2 | 1 | 4 | 5
 8 | 2 | 6 | 7 | 6 | 6 | -2 | 0 | 5 | 6
(8 rows)

When executing the pgr_trsp - Proposed algorithm for the conflicting path, there is no U_turn_on_edge flag.

SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 7, 6);
 path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 6 | 7 | 4 | 1 | 0
 1 | 2 | 7 | 6 | 6 | -1 | 0 | 1
(2 rows)

Therefore the result ignores the U_turn_on_edge flag when set to false.

SELECT * FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 ARRAY[6, 7, 6], U_turn_on_edge => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 7 | 7 | -1 | 0 | 1 | 1
 3 | 2 | 1 | 7 | 6 | 7 | 4 | 1 | 0 | 1
 4 | 2 | 2 | 7 | 6 | 6 | -2 | 0 | 1 | 2
(4 rows)

See Also¶

	Via - Category

	Sample Data network.

Indices and tables

	Index

	Search Page

pgr_trsp_withPoints - Proposed¶

pgr_trsp_withPoints Routing Vertex/Point with restrictions.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.4.0

	New proposed signatures:

	pgr_trsp_withPoints (One to One)

	pgr_trsp_withPoints (One to Many)

	pgr_trsp_withPoints (Many to One)

	pgr_trsp_withPoints (Many to Many)

	pgr_trsp_withPoints (Combinations)

Description¶

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path

Characteristics:

	Vertices of the graph are:

	positive when it belongs to the Edges SQL

	negative when it belongs to the Points SQL

	Driving side can not be b

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The agg_cost the non included values (v, v) is 0

	When the starting vertex and ending vertex are the different and there is no path:

	The agg_cost the non included values (u, v) is ∞

	For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

	The returned values are ordered: - start_vid ascending - end_vid ascending

	Running time: \(O(|start_vids|\times(V \log V + E))\)

Signatures¶

Summary

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vid, [options])

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vids, [options])

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vid, [options])

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vids, [options])

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Combinations SQL, Points SQL, [options])

options: [directed, driving_side, details]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vid, [options])

options: [directed, driving_side, details]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) to vertex \(10\) with details on a left driving side configuration on a directed graph with details.

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 -1, 10,
 details => true);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | 10 | -1 | 1 | 0.4 | 0
 2 | 2 | -1 | 10 | 5 | 1 | 1 | 0.4
 3 | 3 | -1 | 10 | 6 | 4 | 0.7 | 1.4
 4 | 4 | -1 | 10 | -6 | 4 | 0.3 | 2.1
 5 | 5 | -1 | 10 | 7 | 10 | 1 | 2.4
 6 | 6 | -1 | 10 | 8 | 12 | 0.6 | 3.4
 7 | 7 | -1 | 10 | -3 | 12 | 0.4 | 4
 8 | 8 | -1 | 10 | 12 | 13 | 1 | 4.4
 9 | 9 | -1 | 10 | 17 | 15 | 1 | 5.4
 10 | 10 | -1 | 10 | 16 | 16 | 1 | 6.4
 11 | 11 | -1 | 10 | 15 | 3 | 1 | 7.4
 12 | 12 | -1 | 10 | 10 | -1 | 0 | 8.4
(12 rows)

One to Many¶

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vids, [options])

options: [directed, driving_side, details]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) to point \(3\) and vertex \(7\).

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 -1, ARRAY[-3, 7]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 1.4 | 0
 2 | 2 | -1 | -3 | 6 | 4 | 1 | 1.4
 3 | 3 | -1 | -3 | 7 | 10 | 1 | 2.4
 4 | 4 | -1 | -3 | 8 | 12 | 0.6 | 3.4
 5 | 5 | -1 | -3 | -3 | -1 | 0 | 4
 6 | 1 | -1 | 7 | -1 | 1 | 1.4 | 0
 7 | 2 | -1 | 7 | 6 | 4 | 1 | 1.4
 8 | 3 | -1 | 7 | 7 | -1 | 0 | 2.4
(8 rows)

Many to One¶

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vid, [options])

options: [directed, driving_side, details]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) and vertex \(6\) to point \(3\).

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 ARRAY[-1, 6], -3);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 1.4 | 0
 2 | 2 | -1 | -3 | 6 | 4 | 1 | 1.4
 3 | 3 | -1 | -3 | 7 | 10 | 1 | 2.4
 4 | 4 | -1 | -3 | 8 | 12 | 0.6 | 3.4
 5 | 5 | -1 | -3 | -3 | -1 | 0 | 4
 6 | 1 | 6 | -3 | 6 | 4 | 1 | 0
 7 | 2 | 6 | -3 | 7 | 10 | 1 | 1
 8 | 3 | 6 | -3 | 8 | 12 | 0.6 | 2
 9 | 4 | 6 | -3 | -3 | -1 | 0 | 2.6
(9 rows)

Many to Many¶

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vids, [options])

options: [directed, driving_side, details]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) and vertex \(6\) to point \(3\) and vertex \(1\).

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 ARRAY[-1, 6], ARRAY[-3, 1]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 1.4 | 0
 2 | 2 | -1 | -3 | 6 | 4 | 1 | 1.4
 3 | 3 | -1 | -3 | 7 | 10 | 1 | 2.4
 4 | 4 | -1 | -3 | 8 | 12 | 0.6 | 3.4
 5 | 5 | -1 | -3 | -3 | -1 | 0 | 4
 6 | 1 | -1 | 1 | -1 | 1 | 1.4 | 0
 7 | 2 | -1 | 1 | 6 | 4 | 1 | 1.4
 8 | 3 | -1 | 1 | 7 | 10 | 1 | 2.4
 9 | 4 | -1 | 1 | 8 | 12 | 1 | 3.4
 10 | 5 | -1 | 1 | 12 | 13 | 1 | 4.4
 11 | 6 | -1 | 1 | 17 | 15 | 1 | 5.4
 12 | 7 | -1 | 1 | 16 | 9 | 1 | 6.4
 13 | 8 | -1 | 1 | 11 | 8 | 1 | 7.4
 14 | 9 | -1 | 1 | 7 | 7 | 1 | 8.4
 15 | 10 | -1 | 1 | 3 | 6 | 1 | 9.4
 16 | 11 | -1 | 1 | 1 | -1 | 0 | 10.4
 17 | 1 | 6 | -3 | 6 | 4 | 1 | 0
 18 | 2 | 6 | -3 | 7 | 10 | 1 | 1
 19 | 3 | 6 | -3 | 8 | 12 | 0.6 | 2
 20 | 4 | 6 | -3 | -3 | -1 | 0 | 2.6
 21 | 1 | 6 | 1 | 6 | 4 | 1 | 0
 22 | 2 | 6 | 1 | 7 | 10 | 1 | 1
 23 | 3 | 6 | 1 | 8 | 12 | 1 | 2
 24 | 4 | 6 | 1 | 12 | 13 | 1 | 3
 25 | 5 | 6 | 1 | 17 | 15 | 1 | 4
 26 | 6 | 6 | 1 | 16 | 9 | 1 | 5
 27 | 7 | 6 | 1 | 11 | 8 | 1 | 6
 28 | 8 | 6 | 1 | 7 | 7 | 1 | 7
 29 | 9 | 6 | 1 | 3 | 6 | 1 | 8
 30 | 10 | 6 | 1 | 1 | -1 | 0 | 9
(30 rows)

Combinations¶

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Combinations SQL, Points SQL, [options])

options: [directed, driving_side, details]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) to vertex \(10\) and from vertex \(6\) to point \(3\) with right side driving configuration.

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 $$SELECT * FROM (VALUES (-1, 10), (6, -3)) AS t(source, target)$$,
 driving_side => 'r',
 details => true);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | 10 | -1 | 1 | 0.4 | 0
 2 | 2 | -1 | 10 | 5 | 1 | 1 | 0.4
 3 | 3 | -1 | 10 | 6 | 4 | 0.7 | 1.4
 4 | 4 | -1 | 10 | -6 | 4 | 0.3 | 2.1
 5 | 5 | -1 | 10 | 7 | 10 | 1 | 2.4
 6 | 6 | -1 | 10 | 8 | 12 | 0.6 | 3.4
 7 | 7 | -1 | 10 | -3 | 12 | 0.4 | 4
 8 | 8 | -1 | 10 | 12 | 13 | 1 | 4.4
 9 | 9 | -1 | 10 | 17 | 15 | 1 | 5.4
 10 | 10 | -1 | 10 | 16 | 16 | 1 | 6.4
 11 | 11 | -1 | 10 | 15 | 3 | 1 | 7.4
 12 | 12 | -1 | 10 | 10 | -1 | 0 | 8.4
 13 | 1 | 6 | -3 | 6 | 4 | 0.7 | 0
 14 | 2 | 6 | -3 | -6 | 4 | 0.3 | 0.7
 15 | 3 | 6 | -3 | 7 | 10 | 1 | 1
 16 | 4 | 6 | -3 | 8 | 12 | 0.6 | 2
 17 | 5 | 6 | -3 | -3 | -1 | 0 | 2.6
(17 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	SQL query as described.

	Restrictions SQL

	TEXT

	SQL query as described.

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	ANY-INTEGER

	Identifier of the departure vertex.

	start vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of destination vertices.

	end vid

	ANY-INTEGER

	Identifier of the departure vertex.

	end vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of destination vertices.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	r

	Value in [r, l] indicating if the driving side is:

	r for right driving side

	l for left driving side

	Any other value will be considered as r

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Use pgr_findCloseEdges for points on the fly

	Pass in front or visits.

	Show details on undirected graph.

Use pgr_findCloseEdges for points on the fly¶

Using pgr_findCloseEdges:

Find the routes from vertex \(1\) to the two closest locations on the graph of point (2.9, 1.8).

SELECT * FROM pgr_trsp_withPoints(
 e SELECT * FROM edges e,
 r SELECT id, path, cost FROM restrictions r,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 1, ARRAY[-1, -2],
 driving_side => 'r');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -2 | 1 | 6 | 1 | 0
 2 | 2 | 1 | -2 | 3 | 7 | 1 | 1
 3 | 3 | 1 | -2 | 7 | 8 | 0.9 | 2
 4 | 4 | 1 | -2 | -2 | -1 | 0 | 2.9
 5 | 1 | 1 | -1 | 1 | 6 | 1 | 0
 6 | 2 | 1 | -1 | 3 | 7 | 1 | 1
 7 | 3 | 1 | -1 | 7 | 8 | 2 | 2
 8 | 4 | 1 | -1 | 7 | 10 | 1 | 4
 9 | 5 | 1 | -1 | 8 | 12 | 1 | 5
 10 | 6 | 1 | -1 | 12 | 13 | 1 | 6
 11 | 7 | 1 | -1 | 17 | 15 | 1 | 7
 12 | 8 | 1 | -1 | 16 | 16 | 1 | 8
 13 | 9 | 1 | -1 | 15 | 3 | 1 | 9
 14 | 10 | 1 | -1 | 10 | 5 | 0.8 | 10
 15 | 11 | 1 | -1 | -1 | -1 | 0 | 10.8
(15 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

	Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

Pass in front or visits.¶

Which path (if any) passes in front of point \(6\) or vertex \(11\) with right side driving topology.

SELECT ('(' || start_vid || ' => ' || end_vid ||') at ' || path_seq || 'th step:')::TEXT AS path_at,
CASE WHEN edge = -1 THEN ' visits'
ELSE ' passes in front of'
 END as status,
 CASE WHEN node < 0 THEN 'Point'
 ELSE 'Vertex'
 END as is_a,
 abs(node) as id
 FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 ARRAY[5, -1], ARRAY[-6, -3, -6, 10, 11],
 driving_side => 'r',
 details => true)
 WHERE node IN (-6, 11);
 path_at | status | is_a | id
-------------------------+---------------------+--------+----
 (-1 => -6) at 4th step: | visits | Point | 6
 (-1 => -3) at 4th step: | passes in front of | Point | 6
 (-1 => 10) at 4th step: | passes in front of | Point | 6
 (-1 => 11) at 4th step: | passes in front of | Point | 6
 (-1 => 11) at 6th step: | visits | Vertex | 11
 (5 => -6) at 3th step: | visits | Point | 6
 (5 => -3) at 3th step: | passes in front of | Point | 6
 (5 => 10) at 3th step: | passes in front of | Point | 6
 (5 => 11) at 3th step: | passes in front of | Point | 6
 (5 => 11) at 5th step: | visits | Vertex | 11
(10 rows)

Show details on undirected graph.¶

From point \(1\) and vertex \(6\) to point \(3\) to vertex \(1\) on an undirected graph, with details.

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT id, path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, fraction, side FROM pointsOfInterest$$,
 ARRAY[-1, 6], ARRAY[-3, 1],
 directed => false,
 details => true);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 2 | -1 | -3 | 6 | 4 | 0.7 | 0.6
 3 | 3 | -1 | -3 | -6 | 4 | 0.3 | 1.3
 4 | 4 | -1 | -3 | 7 | 10 | 1 | 1.6
 5 | 5 | -1 | -3 | 8 | 12 | 0.6 | 2.6
 6 | 6 | -1 | -3 | -3 | -1 | 0 | 3.2
 7 | 1 | -1 | 1 | -1 | 1 | 0.6 | 0
 8 | 2 | -1 | 1 | 6 | 4 | 0.7 | 0.6
 9 | 3 | -1 | 1 | -6 | 4 | 0.3 | 1.3
 10 | 4 | -1 | 1 | 7 | 7 | 1 | 1.6
 11 | 5 | -1 | 1 | 3 | 6 | 0.7 | 2.6
 12 | 6 | -1 | 1 | -4 | 6 | 0.3 | 3.3
 13 | 7 | -1 | 1 | 1 | -1 | 0 | 3.6
 14 | 1 | 6 | -3 | 6 | 4 | 0.7 | 0
 15 | 2 | 6 | -3 | -6 | 4 | 0.3 | 0.7
 16 | 3 | 6 | -3 | 7 | 10 | 1 | 1
 17 | 4 | 6 | -3 | 8 | 12 | 0.6 | 2
 18 | 5 | 6 | -3 | -3 | -1 | 0 | 2.6
 19 | 1 | 6 | 1 | 6 | 4 | 0.7 | 0
 20 | 2 | 6 | 1 | -6 | 4 | 0.3 | 0.7
 21 | 3 | 6 | 1 | 7 | 7 | 1 | 1
 22 | 4 | 6 | 1 | 3 | 6 | 0.7 | 2
 23 | 5 | 6 | 1 | -4 | 6 | 0.3 | 2.7
 24 | 6 | 6 | 1 | 1 | -1 | 0 | 3
(24 rows)

See Also¶

	TRSP - Family of functions

	withPoints - Category

	Sample Data

Indices and tables

	Index

	Search Page

pgr_trspVia_withPoints - Proposed¶

pgr_trspVia_withPoints - Route that goes through a list of vertices and/or points with restrictions.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.4.0

	New proposed function:

pgr_trspVia_withPoints (One Via)

Description¶

Given a graph, a set of restriction on the graph edges, a set of points on the graphs edges and a list of vertices, this function is equivalent to finding the shortest path between \(vertex_i\) and \(vertex_{i+1}\) (where \(vertex\) can be a vertex or a point on the graph) for all \(i < size_of(via\;vertices)\) trying not to use restricted paths.

	Route:

	is a sequence of paths

	Path:

	is a section of the route.

The general algorithm is as follows:

	Build the Graph with the new points.

	The points identifiers will be converted to negative values.

	The vertices identifiers will remain positive.

	Execute a pgr_withPointsVia - Proposed.

	For the set of paths of the solution that pass through a restriction then

	Execute the TRSP algorithm with restrictions for the path.

	NOTE when this is done, U_turn_on_edge flag is ignored.

Note

Do not use negative values on identifiers of the inner queries.

Signatures¶

One Via¶

pgr_trspVia_withPoints(Edges SQL, Restrictions SQL, Points SQL, via vertices, [options])

options: [directed, strict, U_turn_on_edge]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost)

OR EMPTY SET

	Example:

	Find the route that visits the vertices \(\{-6, 15, -5\}\) in that order on an directed graph.

SELECT * FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 15, -5]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
 2 | 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3 | 0.3
 3 | 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3 | 1.3
 4 | 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3 | 2.3
 5 | 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3 | 3.3
 6 | 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3 | 4.3
 7 | 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3 | 5.3
 8 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 5.3
 9 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 6.3
 10 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 7.1
(10 rows)

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	SQL query as described.

	Points SQL

	TEXT

	
	SQL query as described.

	via vertices

	ARRAY [ANY-INTEGER]

	
	Array of ordered vertices identifiers that are going to be visited.

	When positive it is considered a vertex identifier

	When negative it is considered a point identifier

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Via optional parameters¶

	Parameter

	Type

	Default

	Description

	strict

	BOOLEAN

	false

	
	When true if a path is missing stops and returns EMPTY SET

	When false ignores missing paths returning all paths found

	U_turn_on_edge

	BOOLEAN

	true

	
	When true departing from a visited vertex will not try to avoid

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	r

	Value in [r, l] indicating if the driving side is:

	r for right driving side

	l for left driving side

	Any other value will be considered as r

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Identifier of a path. Has value 1 for the first path.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last node of the path.

	-2 for the last node of the route.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	route_agg_cost

	FLOAT

	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Note

When start_vid, end_vid and node columns have negative values, the identifier is for a Point.

Additional Examples¶

	Use pgr_findCloseEdges for points on the fly

	Usage variations

	Aggregate cost of the third path.

	Route’s aggregate cost of the route at the end of the third path.

	Nodes visited in the route.

	The aggregate costs of the route when the visited vertices are reached.

	Status of “passes in front” or “visits” of the nodes and points.

	Simulation of how algorithm works.

Use pgr_findCloseEdges for points on the fly¶

Using pgr_findCloseEdges:

Visit from vertex \(1\) to the two locations on the graph of point (2.9, 1.8) in order of closeness to the graph.

SELECT * FROM pgr_trspVia_withPoints(
 e SELECT * FROM edges e,
 r SELECT path, cost FROM restrictions r,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 ARRAY[1, -1, -2], details => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 1 | -1 | 1 | 6 | 1 | 0 | 0
 2 | 1 | 2 | 1 | -1 | 3 | 7 | 1 | 1 | 1
 3 | 1 | 3 | 1 | -1 | 7 | 8 | 0.9 | 2 | 2
 4 | 1 | 4 | 1 | -1 | -2 | 8 | 0.1 | 2.9 | 2.9
 5 | 1 | 5 | 1 | -1 | 11 | 8 | 1 | 3 | 3
 6 | 1 | 6 | 1 | -1 | 7 | 10 | 1 | 4 | 4
 7 | 1 | 7 | 1 | -1 | 8 | 12 | 1 | 5 | 5
 8 | 1 | 8 | 1 | -1 | 12 | 13 | 1 | 6 | 6
 9 | 1 | 9 | 1 | -1 | 17 | 15 | 1 | 7 | 7
 10 | 1 | 10 | 1 | -1 | 16 | 16 | 1 | 8 | 8
 11 | 1 | 11 | 1 | -1 | 15 | 3 | 1 | 9 | 9
 12 | 1 | 12 | 1 | -1 | 10 | 5 | 0.8 | 10 | 10
 13 | 1 | 13 | 1 | -1 | -1 | -1 | 0 | 10.8 | 10.8
 14 | 2 | 1 | -1 | -2 | -1 | 5 | 0.2 | 0 | 10.8
 15 | 2 | 2 | -1 | -2 | 11 | 8 | 1 | 0.2 | 11
 16 | 2 | 3 | -1 | -2 | 7 | 8 | 0.9 | 1.2 | 12
 17 | 2 | 4 | -1 | -2 | -2 | -2 | 0 | 2.1 | 12.9
(17 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

	Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

	Point \(-2\) is visited on the route to from vertex \(1\) to Point \(-1\) (See row where \(seq = 4\)).

Usage variations¶

All this examples are about the route that visits the vertices \(\{-6, 7, -4, 8, -2\}\) in that order on a directed graph.

SELECT * FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 7, -4, 8, -2]
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -6 | 7 | -6 | 4 | 0.3 | 0 | 0
 2 | 1 | 2 | -6 | 7 | 7 | -1 | 0 | 0.3 | 0.3
 3 | 2 | 1 | 7 | -4 | 7 | 7 | 1 | 0 | 0.3
 4 | 2 | 2 | 7 | -4 | 3 | 6 | 1.3 | 1 | 1.3
 5 | 2 | 3 | 7 | -4 | -4 | -1 | 0 | 2.3 | 2.6
 6 | 3 | 1 | -4 | 8 | -4 | 6 | 0.7 | 0 | 2.6
 7 | 3 | 2 | -4 | 8 | 3 | 7 | 1 | 0.7 | 3.3
 8 | 3 | 3 | -4 | 8 | 7 | 4 | 0.6 | 1.7 | 4.3
 9 | 3 | 4 | -4 | 8 | 7 | 10 | 1 | 2.3 | 4.9
 10 | 3 | 5 | -4 | 8 | 8 | -1 | 0 | 3.3 | 5.9
 11 | 4 | 1 | 8 | -2 | 8 | 10 | 1 | 0 | 5.9
 12 | 4 | 2 | 8 | -2 | 7 | 8 | 1 | 1 | 6.9
 13 | 4 | 3 | 8 | -2 | 11 | 9 | 1 | 2 | 7.9
 14 | 4 | 4 | 8 | -2 | 16 | 15 | 0.4 | 3 | 8.9
 15 | 4 | 5 | 8 | -2 | -2 | -2 | 0 | 3.4 | 9.3
(15 rows)

Aggregate cost of the third path.¶

SELECT agg_cost FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 7, -4, 8, -2]
)
WHERE path_id = 3 AND edge <0;
 agg_cost

 3.3
(1 row)

Route’s aggregate cost of the route at the end of the third path.¶

SELECT route_agg_cost FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 7, -4, 8, -2]
)
WHERE path_id = 3 AND edge < 0;
 route_agg_cost

 5.9
(1 row)

Nodes visited in the route.¶

SELECT row_number() over () as node_seq, node
FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 7, -4, 8, -2]
)
WHERE edge <> -1 ORDER BY seq;
 node_seq | node
----------+------
 1 | -6
 2 | 7
 3 | 3
 4 | -4
 5 | 3
 6 | 7
 7 | 7
 8 | 8
 9 | 7
 10 | 11
 11 | 16
 12 | -2
(12 rows)

The aggregate costs of the route when the visited vertices are reached.¶

SELECT path_id, route_agg_cost FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 7, -4, 8, -2]
)
WHERE edge < 0;
 path_id | route_agg_cost
---------+----------------
 1 | 0.3
 2 | 2.6
 3 | 5.9
 4 | 9.3
(4 rows)

Status of “passes in front” or “visits” of the nodes and points.¶

SELECT seq, route_agg_cost, node, agg_cost ,
CASE WHEN edge = -1 THEN $$visits$$
ELSE $$passes in front$$
END as status
FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 7, -4, 8, -2])
WHERE agg_cost <> 0 or seq = 1;
 seq | route_agg_cost | node | agg_cost | status
-----+----------------+------+----------+-----------------
 1 | 0 | -6 | 0 | passes in front
 2 | 0.3 | 7 | 0.3 | visits
 4 | 1.3 | 3 | 1 | passes in front
 5 | 2.6 | -4 | 2.3 | visits
 7 | 3.3 | 3 | 0.7 | passes in front
 8 | 4.3 | 7 | 1.7 | passes in front
 9 | 4.9 | 7 | 2.3 | passes in front
 10 | 5.9 | 8 | 3.3 | visits
 12 | 6.9 | 7 | 1 | passes in front
 13 | 7.9 | 11 | 2 | passes in front
 14 | 8.9 | 16 | 3 | passes in front
 15 | 9.3 | -2 | 3.4 | passes in front
(12 rows)

Simulation of how algorithm works.¶

The algorithm performs a pgr_withPointsVia - Proposed

SELECT * FROM pgr_withPointsVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 15, -5]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
 2 | 1 | 2 | -6 | 15 | 7 | 8 | 1 | 0.3 | 0.3
 3 | 1 | 3 | -6 | 15 | 11 | 9 | 1 | 1.3 | 1.3
 4 | 1 | 4 | -6 | 15 | 16 | 16 | 1 | 2.3 | 2.3
 5 | 1 | 5 | -6 | 15 | 15 | -1 | 0 | 3.3 | 3.3
 6 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 3.3
 7 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 4.3
 8 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 5.1
(8 rows)

Detects which of the paths pass through a restriction in this case is for the path_id = 1 from -6 to 15 because the path \(9 \rightarrow 16\) is restricted.

Executes the TRSP algorithm for the conflicting paths.

SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 -6, 15);
 path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0
 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3
 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3
 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3
 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3
 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3
 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3
(7 rows)

From the pgr_withPointsVia - Proposed result it removes the conflicting paths and builds the solution with the results of the pgr_trsp - Proposed algorithm:

WITH
solutions AS (
 SELECT path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
 FROM pgr_withPointsVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 15, -5]) WHERE path_id != 1
 UNION
 SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
 FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 -6, 15)),
with_seq AS (
 SELECT row_number() over(ORDER BY path_id, path_seq) AS seq, *
 FROM solutions),
aggregation AS (SELECT seq, SUM(cost) OVER(ORDER BY seq) AS route_agg_cost FROM with_seq)
SELECT with_seq.*, COALESCE(route_agg_cost, 0) AS route_agg_cost
FROM with_seq LEFT JOIN aggregation ON (with_seq.seq = aggregation.seq + 1);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
 2 | 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3 | 0.3
 3 | 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3 | 1.3
 4 | 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3 | 2.3
 5 | 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3 | 3.3
 6 | 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3 | 4.3
 7 | 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3 | 5.3
 8 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 5.3
 9 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 6.3
 10 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 7.1
(10 rows)

Getting the same result as pgr_trspVia_withPoints:

SELECT * FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[-6, 15, -5]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
 2 | 1 | 2 | -6 | 15 | 7 | 10 | 1 | 0.3 | 0.3
 3 | 1 | 3 | -6 | 15 | 8 | 12 | 1 | 1.3 | 1.3
 4 | 1 | 4 | -6 | 15 | 12 | 13 | 1 | 2.3 | 2.3
 5 | 1 | 5 | -6 | 15 | 17 | 15 | 1 | 3.3 | 3.3
 6 | 1 | 6 | -6 | 15 | 16 | 16 | 1 | 4.3 | 4.3
 7 | 1 | 7 | -6 | 15 | 15 | -1 | 0 | 5.3 | 5.3
 8 | 2 | 1 | 15 | -5 | 15 | 3 | 1 | 0 | 5.3
 9 | 2 | 2 | 15 | -5 | 10 | 5 | 0.8 | 1 | 6.3
 10 | 2 | 3 | 15 | -5 | -5 | -2 | 0 | 1.8 | 7.1
(10 rows)

	Example 8:

	Sometimes U_turn_on_edge flag is ignored when is set to false.

The first step, doing a pgr_withPointsVia - Proposed does consider not making a U turn on the same edge. But the path \(9 \rightarrow 16\) (Rows 4 and 5) is restricted and the result is using it.

SELECT * FROM pgr_withPointsVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[6, 7, 6], U_turn_on_edge => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 7 | 7 | -1 | 0 | 1 | 1
 3 | 2 | 1 | 7 | 6 | 7 | 8 | 1 | 0 | 1
 4 | 2 | 2 | 7 | 6 | 11 | 9 | 1 | 1 | 2
 5 | 2 | 3 | 7 | 6 | 16 | 16 | 1 | 2 | 3
 6 | 2 | 4 | 7 | 6 | 15 | 3 | 1 | 3 | 4
 7 | 2 | 5 | 7 | 6 | 10 | 2 | 1 | 4 | 5
 8 | 2 | 6 | 7 | 6 | 6 | -2 | 0 | 5 | 6
(8 rows)

When executing the pgr_trsp_withPoints - Proposed algorithm for the conflicting path, there is no U_turn_on_edge flag.

SELECT 5 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost
FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 7, 6);
 path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
---------+----------+-----------+---------+------+------+------+----------
 5 | 1 | 7 | 6 | 7 | 4 | 1 | 0
 5 | 2 | 7 | 6 | 6 | -1 | 0 | 1
(2 rows)

Therefore the result ignores the U_turn_on_edge flag when set to false. From the pgr_withPointsVia - Proposed result it removes the conflicting paths and builds the solution with the results of the pgr_trsp - Proposed algorithm. In this case a U turn is been done using the same edge.

SELECT * FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT path, cost FROM restrictions$$,
 $$SELECT pid, edge_id, side, fraction FROM pointsOfInterest$$,
 ARRAY[6, 7, 6], U_turn_on_edge => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 7 | 7 | -1 | 0 | 1 | 1
 3 | 2 | 1 | 7 | 6 | 7 | 4 | 1 | 0 | 1
 4 | 2 | 2 | 7 | 6 | 6 | -2 | 0 | 1 | 2
(4 rows)

See Also¶

	TRSP - Family of functions

	Via - Category

	withPoints - Category

	Sample Data network.

Indices and tables

	Index

	Search Page

pgr_turnRestrictedPath - Experimental¶

pgr_turnRestrictedPath Using Yen’s algorithm Vertex - Vertex routing with restrictions

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental function

Description¶

Using Yen’s algorithm to obtain K shortest paths and analyze the paths to select the paths that do not use the restrictions

Signatures¶

pgr_turnRestrictedPath(Edges SQL, Restrictions SQL, start vid, end vid, K, [options])

options: [directed, heap_paths, stop_on_first, strict]

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(3\) to vertex \(8\) on a directed graph

SELECT * FROM pgr_turnRestrictedPath(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 3, 8, 3);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 3 | 7 | 1 | Infinity
 2 | 1 | 2 | 7 | 10 | 1 | 1
 3 | 1 | 3 | 8 | -1 | 0 | 2
(3 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	SQL query as described.

	start vid

	ANY-INTEGER

	Identifier of the departure vertex.

	end vid

	ANY-INTEGER

	Identifier of the destination vertex.

	K

	ANY-INTEGER

	Number of required paths.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

KSP Optional parameters¶

	Column

	Type

	Default

	Description

	heap_paths

	BOOLEAN

	false

	
	When false Returns at most K paths.

	When true all the calculated paths while processing are returned.

	Roughly, when the shortest path has N edges, the heap will contain about than N * K paths for small value of K and K > 5.

Special optional parameters¶

	Column

	Type

	Default

	Description

	stop_on_first

	BOOLEAN

	true

	
	When true stops on first path found that dos not violate restrictions

	When false returns at most K paths

	strict

	BOOLEAN

	false

	
	When true returns only paths that do not violate restrictions

	When false returns the paths found

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example:

	From vertex \(3\) to \(8\) with strict flag on.

No results because the only path available follows a restriction.

SELECT * FROM pgr_turnRestrictedPath(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 3, 8, 3,
 strict => true);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
(0 rows)

	Example:

	From vertex \(3\) to vertex \(8\) on an undirected graph

SELECT * FROM pgr_turnRestrictedPath(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 3, 8, 3,
 directed => false);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 3 | 7 | 1 | 0
 2 | 1 | 2 | 7 | 4 | 1 | 1
 3 | 1 | 3 | 6 | 2 | 1 | 2
 4 | 1 | 4 | 10 | 5 | 1 | 3
 5 | 1 | 5 | 11 | 11 | 1 | 4
 6 | 1 | 6 | 12 | 12 | 1 | 5
 7 | 1 | 7 | 8 | -1 | 0 | 6
(7 rows)

	Example:

	From vertex \(3\) to vertex \(8\) with more alternatives

SELECT * FROM pgr_turnRestrictedPath(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT path, cost FROM restrictions$$,
 3, 8, 3,
 directed => false,
 heap_paths => true,
 stop_on_first => false);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 3 | 7 | 1 | 0
 2 | 1 | 2 | 7 | 4 | 1 | 1
 3 | 1 | 3 | 6 | 2 | 1 | 2
 4 | 1 | 4 | 10 | 5 | 1 | 3
 5 | 1 | 5 | 11 | 11 | 1 | 4
 6 | 1 | 6 | 12 | 12 | 1 | 5
 7 | 1 | 7 | 8 | -1 | 0 | 6
 8 | 2 | 1 | 3 | 7 | 1 | 0
 9 | 2 | 2 | 7 | 8 | 1 | 1
 10 | 2 | 3 | 11 | 9 | 1 | 2
 11 | 2 | 4 | 16 | 15 | 1 | 3
 12 | 2 | 5 | 17 | 13 | 1 | 4
 13 | 2 | 6 | 12 | 12 | 1 | 5
 14 | 2 | 7 | 8 | -1 | 0 | 6
(14 rows)

See Also¶

	K shortest paths - Category

	Sample Data

Indices and tables

	Index

	Search Page

Introduction¶

Road restrictions are a sequence of road segments that can not be taken in a sequential manner. Some restrictions are implicit on a directed graph, for example, one way roads where the wrong way edge is not even inserted on the graph. But normally on turns like no left turn or no right turn, hence the name turn restrictions, there are sometimes restrictions.

[image: _images/restrictions.png]

TRSP algorithm¶

The internal TRSP algorithm performs a lookahead over the dijkstra algorithm in order to find out if the attempted path has a restriction. This allows the algorithm to pass twice on the same vertex.

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL query as described.

	Restrictions SQL

	TEXT

	Restrictions SQL query as described.

	via vertices

	ARRAY[ANY-INTEGER]

	Array of ordered vertices identifiers that are going to be visited.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Restrictions¶

On road networks, there are restrictions such as left or right turn restrictions, no U turn restrictions.

A restriction is a sequence of edges, called path and that path is to be avoided.

[image: Restrictions on the road network¶]Restrictions on the road network¶

These restrictions are represented on a table as follows:

/* -- r1 */
CREATE TABLE restrictions (
 id SERIAL PRIMARY KEY,
 path BIGINT[],
 cost FLOAT
);
/* -- r2 */
INSERT INTO restrictions (path, cost) VALUES
(ARRAY[4, 7], 100),
(ARRAY[8, 11], 100),
(ARRAY[7, 10], 100),
(ARRAY[3, 5, 9], 4),
(ARRAY[9, 16], 100);
/* -- r3 */
SELECT * FROM restrictions;
/* -- r4 */

Note

The table has an identifier, which maybe is needed for the administration of the restrictions, but the algorithms do not need that information. If given it will be ignored.

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL¶

	Column

	Type

	Description

	path

	ARRAY [ANY-INTEGER]

	Sequence of edge identifiers that form a path that is not allowed to be taken. - Empty arrays or NULL arrays are ignored. - Arrays that have a NULL element will raise an exception.

	Cost

	ANY-NUMERICAL

	Cost of taking the forbidden path.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also¶

Indices and tables

	Index

	Search Page

Topology - Family of Functions

These proposed functions do not modify the database.

	pgr_degree – Proposed - Returns a set of vertices and corresponding count of incidet edges to the vertex.

	pgr_extractVertices – Proposed - Extracts vertex information based on the edge table information.

Transformation - Family of functions

	pgr_lineGraph - Proposed - Transformation algorithm for generating a Line Graph.

Coloring - Family of functions

	pgr_sequentialVertexColoring - Proposed - Vertex coloring algorithm using greedy approach.

Traversal - Family of functions

	pgr_depthFirstSearch - Proposed - Depth first search traversal of the graph.

Traversal - Family of functions¶

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_depthFirstSearch - Proposed - Depth first search traversal of the graph.

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_breadthFirstSearch - Experimental - Breath first search traversal of the graph.

	pgr_binaryBreadthFirstSearch - Experimental - Breath first search traversal of the graph.

Aditionaly there are 2 categories under this family

	BFS - Category

	DFS - Category

pgr_depthFirstSearch - Proposed¶

pgr_depthFirstSearch — Returns a depth first search traversal of the graph. The graph can be directed or undirected.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.3.0

	Promoted to proposed function

	Version 3.2.0

	New experimental signatures:

	pgr_depthFirstSearch (Single Vertex)

	pgr_depthFirstSearch (Multiple Vertices)

Description¶

Depth First Search algorithm is a traversal algorithm which starts from a root vertex, goes as deep as possible, and backtracks once a vertex is reached with no adjacent vertices or with all visited adjacent vertices. The traversal continues until all the vertices reachable from the root vertex are visited.

The main Characteristics are:

	The implementation works for both directed and undirected graphs.

	Provides the Depth First Search traversal order from a root vertex or from a set of root vertices.

	An optional non-negative maximum depth parameter to limit the results up to a particular depth.

	For optimization purposes, any duplicated values in the Root vids are ignored.

	It does not produce the shortest path from a root vertex to a target vertex.

	The aggregate cost of traversal is not guaranteed to be minimal.

	The returned values are ordered in ascending order of start_vid.

	Depth First Search Running time: \(O(E + V)\)

Signatures¶

Summary

pgr_depthFirstSearch(Edges SQL, root vid, [options])

pgr_depthFirstSearch(Edges SQL, root vids, [options])

options: [directed, max_depth]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex¶

pgr_depthFirstSearch(Edges SQL, root vid, [options])

options: [directed, max_depth]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Example:

	From root vertex \(6\) on a directed graph with edges in ascending order of id

SELECT * FROM pgr_depthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edges
 ORDER BY id',
 6);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 7 | 4 | 1 | 1
 4 | 2 | 6 | 3 | 7 | 1 | 2
 5 | 3 | 6 | 1 | 6 | 1 | 3
 6 | 2 | 6 | 11 | 8 | 1 | 2
 7 | 3 | 6 | 16 | 9 | 1 | 3
 8 | 4 | 6 | 17 | 15 | 1 | 4
 9 | 4 | 6 | 15 | 16 | 1 | 4
 10 | 5 | 6 | 10 | 3 | 1 | 5
 11 | 3 | 6 | 12 | 11 | 1 | 3
 12 | 2 | 6 | 8 | 10 | 1 | 2
 13 | 3 | 6 | 9 | 14 | 1 | 3
(13 rows)

Multiple vertices¶

pgr_depthFirstSearch(Edges SQL, root vids, [options])

options: [directed, max_depth]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Example:

	From root vertices \(\{12, 6\}\) on an undirected graph with depth \(<= 2\) and edges in ascending order of id

SELECT * FROM pgr_depthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edges
 ORDER BY id',
 ARRAY[12, 6], directed => false, max_depth => 2);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 11 | 5 | 1 | 2
 6 | 1 | 6 | 7 | 4 | 1 | 1
 7 | 2 | 6 | 3 | 7 | 1 | 2
 8 | 2 | 6 | 8 | 10 | 1 | 2
 9 | 0 | 12 | 12 | -1 | 0 | 0
 10 | 1 | 12 | 11 | 11 | 1 | 1
 11 | 2 | 12 | 10 | 5 | 1 | 2
 12 | 2 | 12 | 7 | 8 | 1 | 2
 13 | 2 | 12 | 16 | 9 | 1 | 2
 14 | 1 | 12 | 8 | 12 | 1 | 1
 15 | 2 | 12 | 9 | 14 | 1 | 2
 16 | 1 | 12 | 17 | 13 | 1 | 1
(16 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	root vid

	BIGINT

	Identifier of the root vertex of the tree.

	When value is \(0\) then gets the spanning forest starting in aleatory nodes for each tree in the forest.

	root vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

DFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	start_vid

	BIGINT

	Identifier of the root vertex.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Additional Examples¶

	Example:

	Same as Single vertex but with edges in descending order of id.

SELECT * FROM pgr_depthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edges
 ORDER BY id DESC',
 6);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 7 | 4 | 1 | 1
 3 | 2 | 6 | 8 | 10 | 1 | 2
 4 | 3 | 6 | 9 | 14 | 1 | 3
 5 | 3 | 6 | 12 | 12 | 1 | 3
 6 | 4 | 6 | 17 | 13 | 1 | 4
 7 | 5 | 6 | 16 | 15 | 1 | 5
 8 | 6 | 6 | 15 | 16 | 1 | 6
 9 | 7 | 6 | 10 | 3 | 1 | 7
 10 | 8 | 6 | 11 | 5 | 1 | 8
 11 | 2 | 6 | 3 | 7 | 1 | 2
 12 | 3 | 6 | 1 | 6 | 1 | 3
 13 | 1 | 6 | 5 | 1 | 1 | 1
(13 rows)

The resulting traversal is different.

The left image shows the result with ascending order of ids and the right image shows with descending order of the edge identifiers.

[image: ascending] [image: descending]

See Also¶

	DFS - Category

	Sample Data

	Boost: Depth First Search algorithm documentation

	Boost: Undirected DFS algorithm documentation

	Wikipedia: Depth First Search algorithm

Indices and tables

	Index

	Search Page

pgr_breadthFirstSearch - Experimental¶

pgr_breadthFirstSearch — Returns the traversal order(s) using Breadth First Search algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental signature:

	pgr_breadthFirstSearch (Single Vertex)

	pgr_breadthFirstSearch (Multiple Vertices)

Description¶

Provides the Breadth First Search traversal order from a root vertex to a particular depth.

The main Characteristics are:

	The implementation will work on any type of graph.

	Provides the Breadth First Search traversal order from a source node to a target depth level.

	Running time: \(O(E + V)\)

Signatures¶

Summary

pgr_breadthFirstSearch(Edges SQL, root vid, [options])

pgr_breadthFirstSearch(Edges SQL, root vids, [options])

options: [max_depth, directed]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex¶

pgr_breadthFirstSearch(Edges SQL, root vid, [options])

options: [max_depth, directed]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Example:

	From root vertex \(6\) on a directed graph with edges in ascending order of id

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges ORDER BY id',
 6);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 7 | 4 | 1 | 1
 4 | 2 | 6 | 3 | 7 | 1 | 2
 5 | 2 | 6 | 11 | 8 | 1 | 2
 6 | 2 | 6 | 8 | 10 | 1 | 2
 7 | 3 | 6 | 1 | 6 | 1 | 3
 8 | 3 | 6 | 16 | 9 | 1 | 3
 9 | 3 | 6 | 12 | 11 | 1 | 3
 10 | 3 | 6 | 9 | 14 | 1 | 3
 11 | 4 | 6 | 17 | 15 | 1 | 4
 12 | 4 | 6 | 15 | 16 | 1 | 4
 13 | 5 | 6 | 10 | 3 | 1 | 5
(13 rows)

Multiple vertices¶

pgr_breadthFirstSearch(Edges SQL, root vids, [options])

options: [max_depth, directed]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Example:

	From root vertices \(\{12, 6\}\) on an undirected graph with depth \(<= 2\) and edges in ascending order of id

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges ORDER BY id',
 ARRAY[12, 6], directed => false, max_depth => 2);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 10 | 2 | 1 | 1
 4 | 1 | 6 | 7 | 4 | 1 | 1
 5 | 2 | 6 | 15 | 3 | 1 | 2
 6 | 2 | 6 | 11 | 5 | 1 | 2
 7 | 2 | 6 | 3 | 7 | 1 | 2
 8 | 2 | 6 | 8 | 10 | 1 | 2
 9 | 0 | 12 | 12 | -1 | 0 | 0
 10 | 1 | 12 | 11 | 11 | 1 | 1
 11 | 1 | 12 | 8 | 12 | 1 | 1
 12 | 1 | 12 | 17 | 13 | 1 | 1
 13 | 2 | 12 | 10 | 5 | 1 | 2
 14 | 2 | 12 | 7 | 8 | 1 | 2
 15 | 2 | 12 | 16 | 9 | 1 | 2
 16 | 2 | 12 | 9 | 14 | 1 | 2
(16 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	root vid

	BIGINT

	Identifier of the root vertex of the tree.

	When value is \(0\) then gets the spanning forest starting in aleatory nodes for each tree in the forest.

	root vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of the root vertices.

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

DFS optional parameters¶

	Parameter

	Type

	Default

	Description

	max_depth

	BIGINT

	\(9223372036854775807\)

	Upper limit of the depth of the tree.

	When negative throws an error.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	start_vid

	BIGINT

	Identifier of the root vertex.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERIC:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Additional Examples¶

	Example:

	Same as Single vertex with edges in ascending order of id.

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges ORDER BY id',
 6);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 7 | 4 | 1 | 1
 4 | 2 | 6 | 3 | 7 | 1 | 2
 5 | 2 | 6 | 11 | 8 | 1 | 2
 6 | 2 | 6 | 8 | 10 | 1 | 2
 7 | 3 | 6 | 1 | 6 | 1 | 3
 8 | 3 | 6 | 16 | 9 | 1 | 3
 9 | 3 | 6 | 12 | 11 | 1 | 3
 10 | 3 | 6 | 9 | 14 | 1 | 3
 11 | 4 | 6 | 17 | 15 | 1 | 4
 12 | 4 | 6 | 15 | 16 | 1 | 4
 13 | 5 | 6 | 10 | 3 | 1 | 5
(13 rows)

	Example:

	Same as Single vertex with edges in descending order of id.

SELECT * FROM pgr_breadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges ORDER BY id DESC',
 6);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 7 | 4 | 1 | 1
 3 | 1 | 6 | 5 | 1 | 1 | 1
 4 | 2 | 6 | 8 | 10 | 1 | 2
 5 | 2 | 6 | 11 | 8 | 1 | 2
 6 | 2 | 6 | 3 | 7 | 1 | 2
 7 | 3 | 6 | 9 | 14 | 1 | 3
 8 | 3 | 6 | 12 | 12 | 1 | 3
 9 | 3 | 6 | 16 | 9 | 1 | 3
 10 | 3 | 6 | 1 | 6 | 1 | 3
 11 | 4 | 6 | 17 | 13 | 1 | 4
 12 | 4 | 6 | 15 | 16 | 1 | 4
 13 | 5 | 6 | 10 | 3 | 1 | 5
(13 rows)

The resulting traversal is different.

The left image shows the result with ascending order of ids and the right image shows with descending order of the edge identifiers.

[image: ascending] [image: descending]

See Also¶

	BFS - Category

	Sample Data

	Boost: Breadth First Search algorithm documentation

	Wikipedia: Breadth First Search algorithm

Indices and tables

	Index

	Search Page

pgr_binaryBreadthFirstSearch - Experimental¶

pgr_binaryBreadthFirstSearch — Returns the shortest path in a binary graph.

Any graph whose edge-weights belongs to the set {0,X}, where ‘X’ is any non-negative integer, is termed as a ‘binary graph’.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental signature:

	pgr_binaryBreadthFirstSearch(Combinations)

	Version 3.0.0

	New experimental signatures:

	pgr_binaryBreadthFirstSearch(One to One)

	pgr_binaryBreadthFirstSearch(One to Many)

	pgr_binaryBreadthFirstSearch(Many to One)

	pgr_binaryBreadthFirstSearch(Many to Many)

Description¶

It is well-known that the shortest paths between a single source and all other vertices can be found using Breadth First Search in \(O(|E|)\) in an unweighted graph, i.e. the distance is the minimal number of edges that you need to traverse from the source to another vertex. We can interpret such a graph also as a weighted graph, where every edge has the weight \(1\). If not alledges in graph have the same weight, that we need a more general algorithm, like Dijkstra’s Algorithm which runs in \(O(|E|log|V|)\) time.

However if the weights are more constrained, we can use a faster algorithm. This algorithm, termed as ‘Binary Breadth First Search’ as well as ‘0-1 BFS’, is a variation of the standard Breadth First Search problem to solve the SSSP (single-source shortest path) problem in \(O(|E|)\), if the weights of each edge belongs to the set {0,X}, where ‘X’ is any non-negative real integer.

The main Characteristics are:

	Process is done only on ‘binary graphs’. (‘Binary Graph’: Any graph whose edge-weights belongs to the set {0,X}, where ‘X’ is any non-negative real integer.)

	For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

	Running time: \(O(| start_vids | * |E|)\)

Signatures¶

Summary

pgr_binaryBreadthFirstSearch(Edges SQL, start vid, end vid, [directed])

pgr_binaryBreadthFirstSearch(Edges SQL, start vid, end vids, [directed])

pgr_binaryBreadthFirstSearch(Edges SQL, start vids, end vid, [directed])

pgr_binaryBreadthFirstSearch(Edges SQL, start vids, end vids, [directed])

pgr_binaryBreadthFirstSearch(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

Note: Using the Sample Data Network as all weights are same (i.e \(1`\))

One to One¶

pgr_binaryBreadthFirstSearch(Edges SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost from edges',
 6, 10, true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

One to Many¶

pgr_binaryBreadthFirstSearch(Edges SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost from edges',
 6, ARRAY[10, 17]);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 17 | 6 | 4 | 1 | 0
 8 | 2 | 17 | 7 | 8 | 1 | 1
 9 | 3 | 17 | 11 | 11 | 1 | 2
 10 | 4 | 17 | 12 | 13 | 1 | 3
 11 | 5 | 17 | 17 | -1 | 0 | 4
(11 rows)

Many to One¶

pgr_binaryBreadthFirstSearch(Edges SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], 17);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 1 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 7 | 8 | 1 | 2
 4 | 4 | 1 | 11 | 11 | 1 | 3
 5 | 5 | 1 | 12 | 13 | 1 | 4
 6 | 6 | 1 | 17 | -1 | 0 | 5
 7 | 1 | 6 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 13 | 1 | 3
 11 | 5 | 6 | 17 | -1 | 0 | 4
(11 rows)

Many to Many¶

pgr_binaryBreadthFirstSearch(Edges SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost from edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 10 | 7 | 4 | 1 | 2
 4 | 4 | 1 | 10 | 6 | 2 | 1 | 3
 5 | 5 | 1 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 7 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 8 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 9 | 4 | 1 | 17 | 11 | 11 | 1 | 3
 10 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 11 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 12 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 13 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 14 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 15 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 16 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 17 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 18 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(18 rows)

Combinations¶

pgr_binaryBreadthFirstSearch(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 2 | 1 | 1
 5 | 3 | 5 | 10 | 10 | -1 | 0 | 2
 6 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 7 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 8 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 9 | 2 | 6 | 15 | 10 | 3 | 1 | 1
 10 | 3 | 6 | 15 | 15 | -1 | 0 | 2
(10 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	Combinations

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	Combinations

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example:

	Manually assigned vertex combinations.

SELECT * FROM pgr_binaryBreadthFirstSearch(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

See Also¶

	Sample Data

	https://cp-algorithms.com/graph/01_bfs.html

	https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Specialized_variants

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

Coloring - Family of functions¶

Proposed

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_sequentialVertexColoring - Proposed - Vertex coloring algorithm using greedy approach.

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_bipartite -Experimental - Bipartite graph algorithm using a DFS-based coloring approach.

	pgr_edgeColoring - Experimental - Edge Coloring algorithm using Vizing’s theorem.

pgr_sequentialVertexColoring - Proposed¶

pgr_sequentialVertexColoring — Returns the vertex coloring of an undirected graph, using greedy approach.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.3.0

	Promoted to proposed signature

	Version 3.2.0

	New experimental signature

Description¶

Sequential vertex coloring algorithm is a graph coloring algorithm in which color identifiers are assigned to the vertices of a graph in a sequential manner, such that no edge connects two identically colored vertices.

The main Characteristics are:

	The implementation is applicable only for undirected graphs.

	Provides the color to be assigned to all the vertices present in the graph.

	Color identifiers values are in the Range \([1, |V|]\)

	The algorithm tries to assign the least possible color to every vertex.

	Efficient graph coloring is an NP-Hard problem, and therefore, this algorithm does not always produce optimal coloring. It follows a greedy strategy by iterating through all the vertices sequentially, and assigning the smallest possible color that is not used by its neighbors, to each vertex.

	The returned rows are ordered in ascending order of the vertex value.

	Sequential Vertex Coloring Running Time: \(O(|V|*(d + k))\)

	where \(|V|\) is the number of vertices,

	\(d\) is the maximum degree of the vertices in the graph,

	\(k\) is the number of colors used.

Signatures¶

pgr_sequentialVertexColoring(Edges SQL)

Returns set of (vertex_id, color_id)

OR EMPTY SET

	Example:

	Graph coloring of pgRouting Sample Data

SELECT * FROM pgr_sequentialVertexColoring(
 'SELECT id, source, target, cost, reverse_cost FROM edges
 ORDER BY id'
);
 vertex_id | color_id
-----------+----------
 1 | 1
 2 | 1
 3 | 2
 4 | 2
 5 | 1
 6 | 2
 7 | 1
 8 | 2
 9 | 1
 10 | 1
 11 | 2
 12 | 1
 13 | 1
 14 | 2
 15 | 2
 16 | 1
 17 | 2
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (vertex_id, color_id)

	Column

	Type

	Description

	vertex_id

	BIGINT

	Identifier of the vertex.

	color_id

	BIGINT

	Identifier of the color of the vertex.

	The minimum value of color is 1.

See Also¶

	The queries use the Sample Data network.

	Boost: Sequential Vertex Coloring algorithm documentation

	Wikipedia: Graph coloring

Indices and tables

	Index

	Search Page

pgr_bipartite -Experimental¶

pgr_bipartite — Disjoint sets of vertices such that no two vertices within the same set are adjacent.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental signature

Description¶

A bipartite graph is a graph with two sets of vertices which are connected to each other, but not within themselves. A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color.

The main Characteristics are:

	The algorithm works in undirected graph only.

	The returned values are not ordered.

	The algorithm checks graph is bipartite or not. If it is bipartite then it returns the node along with two colors 0 and 1 which represents two different sets.

	If graph is not bipartite then algorithm returns empty set.

	Running time: \(O(V + E)\)

Signatures¶

pgr_bipartite(Edges SQL)

Returns set of (vertex_id, color_id)

OR EMPTY SET

	Example:

	When the graph is bipartite

SELECT * FROM pgr_bipartite(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$
) ORDER BY vertex_id;
 vertex_id | color_id
-----------+----------
 1 | 0
 2 | 0
 3 | 1
 4 | 1
 5 | 0
 6 | 1
 7 | 0
 8 | 1
 9 | 0
 10 | 0
 11 | 1
 12 | 0
 13 | 0
 14 | 1
 15 | 1
 16 | 0
 17 | 1
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (vertex_id, color_id)

	Column

	Type

	Description

	vertex_id

	BIGINT

	Identifier of the vertex.

	color_id

	BIGINT

	Identifier of the color of the vertex.

	The minimum value of color is 1.

Additional Example¶

	Example:

	The odd length cyclic graph can not be bipartite.

The edge \(5 \rightarrow 1\) will make subgraph with vertices \(\{1, 3, 7, 6, 5\}\) an odd length cyclic graph, as the cycle has 5 vertices.

INSERT INTO edges (source, target, cost, reverse_cost) VALUES
(5, 1, 1, 1);
INSERT 0 1

Edges in blue represent odd length cycle subgraph.

[image: _images/bipartite.png]

SELECT * FROM pgr_bipartite(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$
);
 vertex_id | color_id
-----------+----------
(0 rows)

See Also¶

	Boost: is_bipartite

	Wikipedia: bipartite graph

	Sample Data network.

Indices and tables

	Index

	Search Page

pgr_edgeColoring - Experimental¶

pgr_edgeColoring — Returns the edge coloring of undirected and loop-free graphs

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.3.0

	New experimental signature

Description¶

Edge Coloring is an algorithm used for coloring of the edges for the vertices in the graph. It is an assignment of colors to the edges of the graph so that no two adjacent edges have the same color.

The main Characteristics are:

	The implementation is for undirected and loop-free graphs

	
	loop free:

	no self-loops and no parallel edges.

	Provides the color to be assigned to all the edges present in the graph.

	At most \(\Delta + 1\) colors are used, where \(\Delta\) is the degree of the graph.

	This is optimal for some graphs, and by Vizing’s theorem it uses at most one color more than the optimal for all others.

	When the graph is bipartite

	the chromatic number \(x'(G)\) (minimum number of colors needed for proper edge coloring of graph) is equal to the degree \(\Delta + 1\) of the graph, (\(x'(G) = \Delta\))

	The algorithm tries to assign the least possible color to every edge.

	Does not always produce optimal coloring.

	The returned rows are ordered in ascending order of the edge identifier.

	Efficient graph coloring is an NP-Hard problem, and therefore:

	In this implelentation the running time: \(O(|E|*|V|)\)

	where \(|E|\) is the number of edges in the graph,

	\(|V|\) is the number of vertices in the graph.

Signatures¶

pgr_edgeColoring(Edges SQL)

Returns set of (edge_id, color_id)

OR EMPTY SET

	Example:

	Graph coloring of pgRouting Sample Data

SELECT * FROM pgr_edgeColoring(
 'SELECT id, source, target, cost, reverse_cost FROM edges
 ORDER BY id'
);
 edge_id | color_id
---------+----------
 1 | 3
 2 | 2
 3 | 3
 4 | 4
 5 | 4
 6 | 1
 7 | 2
 8 | 1
 9 | 2
 10 | 5
 11 | 5
 12 | 3
 13 | 2
 14 | 1
 15 | 3
 16 | 1
 17 | 1
 18 | 1
(18 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (edge_id, color_id)

	Column

	Type

	Description

	edge_id

	BIGINT

	Identifier of the edge.

	color_id

	BIGINT

	Identifier of the color of the edge.

	The minimum value of color is 1.

See Also¶

	The queries use the Sample Data network.

	Boost: Edge Coloring Algorithm documentation

	Wikipedia: Graph coloring

Indices and tables

	Index

	Search Page

Result columns¶

Returns set of (vertex_id, color_id)

	Column

	Type

	Description

	vertex_id

	BIGINT

	Identifier of the vertex.

	color_id

	BIGINT

	Identifier of the color of the vertex.

	The minimum value of color is 1.

Returns set of (edge_id, color_id)

	Column

	Type

	Description

	edge_id

	BIGINT

	Identifier of the edge.

	color_id

	BIGINT

	Identifier of the color of the edge.

	The minimum value of color is 1.

See Also¶

	Boost: Sequential Vertex Coloring algorithm documentation

	Wikipedia: Graph coloring

	Boost: is_bipartite

	Wikipedia: bipartite graph

	Boost: Edge Coloring Algorithm documentation

	Wikipedia: Graph coloring

Indices and tables

	Index

	Search Page

categories

Cost - Category

	pgr_withPointsCost - Proposed

Cost Matrix - Category

	pgr_withPointsCostMatrix - proposed

Driving Distance - Category

	pgr_withPointsDD - Proposed - Driving Distance based on pgr_withPoints

K shortest paths - Category

	pgr_withPointsKSP - Proposed - Yen’s algorithm based on pgr_withPoints

Via - Category

	pgr_dijkstraVia - Proposed

	pgr_withPointsVia - Proposed

	pgr_trspVia - Proposed

	pgr_trspVia_withPoints - Proposed

withPoints - Category

	withPoints - Family of functions - Functions based on Dijkstra algorithm.

	From the TRSP - Family of functions:

	pgr_trsp_withPoints - Proposed - Vertex/Point routing with restrictions.

	pgr_trspVia_withPoints - Proposed - Via Vertex/point routing with restrictions.

withPoints - Family of functions¶

When points are also given as input:

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_withPoints - Proposed - Route from/to points anywhere on the graph.

	pgr_withPointsCost - Proposed - Costs of the shortest paths.

	pgr_withPointsCostMatrix - proposed - Costs of the shortest paths.

	pgr_withPointsKSP - Proposed - K shortest paths.

	pgr_withPointsDD - Proposed - Driving distance.

	pgr_withPointsVia - Proposed - Via routing

pgr_withPoints - Proposed¶

pgr_withPoints - Returns the shortest path in a graph with additional temporary vertices.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed function:

	pgr_withPoints(Combinations)

	Version 2.2.0

	New proposed function

Description¶

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path

The main characteristics are:

	Process is done only on edges with positive costs.

	Vertices of the graph are:

	positive when it belongs to the edges_sql

	negative when it belongs to the points_sql

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path. - The agg_cost the non included values (v, v) is 0

	When the starting vertex and ending vertex are the different and there is no path: - The agg_cost the non included values (u, v) is ∞

	For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

	The returned values are ordered: - start_vid ascending - end_vid ascending

	Running time: \(O(|start_vids|\times(V \log V + E))\)

Signatures¶

Summary

pgr_withPoints(Edges SQL, Points SQL, start vid, end vid, [options])

pgr_withPoints(Edges SQL, Points SQL, start vid, end vids, [options])

pgr_withPoints(Edges SQL, Points SQL, start vids, end vid, [options])

pgr_withPoints(Edges SQL, Points SQL, start vids, end vids, [options])

pgr_withPoints(Edges SQL, Points SQL, Combinations SQL, [options])

options: [directed, driving_side, details])

Returns set of (seq, path_seq, [start_pid], [end_pid], node, edge, cost, agg_cost)

OR EMTPY SET

One to One¶

pgr_withPoints(Edges SQL, Points SQL, start vid, end vid, [options])

options: [directed, driving_side, details])

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	From point \(1\) to vertex \(10\) with details

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 10,
 details => true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 2 | 6 | 4 | 0.7 | 0.6
 3 | 3 | -6 | 4 | 0.3 | 1.3
 4 | 4 | 7 | 8 | 1 | 1.6
 5 | 5 | 11 | 9 | 1 | 2.6
 6 | 6 | 16 | 16 | 1 | 3.6
 7 | 7 | 15 | 3 | 1 | 4.6
 8 | 8 | 10 | -1 | 0 | 5.6
(8 rows)

One to Many¶

pgr_withPoints(Edges SQL, Points SQL, start vid, end vids, [options])

options: [directed, driving_side, details])

Returns set of (seq, path_seq, end_pid, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	From point \(1\) to point \(3\) and vertex \(7\) on an undirected graph

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, ARRAY[-3, 7],
 directed => false);
 seq | path_seq | end_pid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | -3 | -1 | 1 | 0.6 | 0
 2 | 2 | -3 | 6 | 4 | 1 | 0.6
 3 | 3 | -3 | 7 | 10 | 1 | 1.6
 4 | 4 | -3 | 8 | 12 | 0.6 | 2.6
 5 | 5 | -3 | -3 | -1 | 0 | 3.2
 6 | 1 | 7 | -1 | 1 | 0.6 | 0
 7 | 2 | 7 | 6 | 4 | 1 | 0.6
 8 | 3 | 7 | 7 | -1 | 0 | 1.6
(8 rows)

Many to One¶

pgr_withPoints(Edges SQL, Points SQL, start vids, end vid, [options])

options: [directed, driving_side, details])

Returns set of (seq, path_seq, start_pid, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	From point \(1\) and vertex \(6\) to point \(3\)

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 6], -3);
 seq | path_seq | start_pid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | -1 | -1 | 1 | 0.6 | 0
 2 | 2 | -1 | 6 | 4 | 1 | 0.6
 3 | 3 | -1 | 7 | 10 | 1 | 1.6
 4 | 4 | -1 | 8 | 12 | 0.6 | 2.6
 5 | 5 | -1 | -3 | -1 | 0 | 3.2
 6 | 1 | 6 | 6 | 4 | 1 | 0
 7 | 2 | 6 | 7 | 10 | 1 | 1
 8 | 3 | 6 | 8 | 12 | 0.6 | 2
 9 | 4 | 6 | -3 | -1 | 0 | 2.6
(9 rows)

Many to Many¶

pgr_withPoints(Edges SQL, Points SQL, start vids, end vids, [options])

options: [directed, driving_side, details])

Returns set of (seq, path_seq, start_pid, end_pid, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	From point \(1\) and vertex \(6\) to point \(3\) and vertex \(1\)

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 6], ARRAY[-3, 1]);
 seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 2 | -1 | -3 | 6 | 4 | 1 | 0.6
 3 | 3 | -1 | -3 | 7 | 10 | 1 | 1.6
 4 | 4 | -1 | -3 | 8 | 12 | 0.6 | 2.6
 5 | 5 | -1 | -3 | -3 | -1 | 0 | 3.2
 6 | 1 | -1 | 1 | -1 | 1 | 0.6 | 0
 7 | 2 | -1 | 1 | 6 | 4 | 1 | 0.6
 8 | 3 | -1 | 1 | 7 | 7 | 1 | 1.6
 9 | 4 | -1 | 1 | 3 | 6 | 1 | 2.6
 10 | 5 | -1 | 1 | 1 | -1 | 0 | 3.6
 11 | 1 | 6 | -3 | 6 | 4 | 1 | 0
 12 | 2 | 6 | -3 | 7 | 10 | 1 | 1
 13 | 3 | 6 | -3 | 8 | 12 | 0.6 | 2
 14 | 4 | 6 | -3 | -3 | -1 | 0 | 2.6
 15 | 1 | 6 | 1 | 6 | 4 | 1 | 0
 16 | 2 | 6 | 1 | 7 | 7 | 1 | 1
 17 | 3 | 6 | 1 | 3 | 6 | 1 | 2
 18 | 4 | 6 | 1 | 1 | -1 | 0 | 3
(18 rows)

Combinations¶

pgr_withPoints(Edges SQL, Points SQL, Combinations SQL, [options])

options: [directed, driving_side, details])

Returns set of (seq, path_seq, start_pid, end_pid, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	Two combinations

From point \(1\) to vertex \(10\), and from vertex \(6\) to point \(3\) with right side driving.

SELECT * FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 'SELECT * FROM (VALUES (-1, 10), (6, -3)) AS combinations(source, target)',
 driving_side => 'r', details => true);
 seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | 10 | -1 | 1 | 0.4 | 0
 2 | 2 | -1 | 10 | 5 | 1 | 1 | 0.4
 3 | 3 | -1 | 10 | 6 | 4 | 0.7 | 1.4
 4 | 4 | -1 | 10 | -6 | 4 | 0.3 | 2.1
 5 | 5 | -1 | 10 | 7 | 8 | 1 | 2.4
 6 | 6 | -1 | 10 | 11 | 9 | 1 | 3.4
 7 | 7 | -1 | 10 | 16 | 16 | 1 | 4.4
 8 | 8 | -1 | 10 | 15 | 3 | 1 | 5.4
 9 | 9 | -1 | 10 | 10 | -1 | 0 | 6.4
 10 | 1 | 6 | -3 | 6 | 4 | 0.7 | 0
 11 | 2 | 6 | -3 | -6 | 4 | 0.3 | 0.7
 12 | 3 | 6 | -3 | 7 | 10 | 1 | 1
 13 | 4 | 6 | -3 | 8 | 12 | 0.6 | 2
 14 | 5 | 6 | -3 | -3 | -1 | 0 | 2.6
(14 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path. Negative value is for point’s identifier.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices. Negative values are for point’s identifiers.

	end vid

	BIGINT

	Identifier of the ending vertex of the path. Negative value is for point’s identifier.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices. Negative values are for point’s identifiers.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	b

	Value in [r, l, b] indicating if the driving side is:

	r for right driving side.

	l for left driving side.

	b for both.

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_pid] [, end_pid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path.

	1 For the first row of the path.

	start_pid

	BIGINT

	Identifier of a starting vertex/point of the path.

	When positive is the identifier of the starting vertex.

	When negative is the identifier of the starting point.

	Returned on Many to One and Many to Many

	end_pid

	BIGINT

	Identifier of an ending vertex/point of the path.

	When positive is the identifier of the ending vertex.

	When negative is the identifier of the ending point.

	Returned on One to Many and Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_pid to end_pid.

	When positive is the identifier of the a vertex.

	When negative is the identifier of the a point.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last row of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	0 For the first row of the path.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	0 For the first row of the path.

Additional Examples¶

	Use pgr_findCloseEdges in the Points SQL.

	Usage variations

	Passes in front or visits with right side driving.

	Passes in front or visits with left side driving.

Use pgr_findCloseEdges in the Points SQL.¶

Find the routes from vertex \(1\) to the two closest locations on the graph of point (2.9, 1.8).

SELECT * FROM pgr_withPoints(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 1, ARRAY[-1, -2]);
 seq | path_seq | end_pid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | -2 | 1 | 6 | 1 | 0
 2 | 2 | -2 | 3 | 7 | 1 | 1
 3 | 3 | -2 | 7 | 8 | 0.9 | 2
 4 | 4 | -2 | -2 | -1 | 0 | 2.9
 5 | 1 | -1 | 1 | 6 | 1 | 0
 6 | 2 | -1 | 3 | 7 | 1 | 1
 7 | 3 | -1 | 7 | 8 | 1 | 2
 8 | 4 | -1 | 11 | 9 | 1 | 3
 9 | 5 | -1 | 16 | 16 | 1 | 4
 10 | 6 | -1 | 15 | 3 | 1 | 5
 11 | 7 | -1 | 10 | 5 | 0.8 | 6
 12 | 8 | -1 | -1 | -1 | 0 | 6.8
(12 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

	Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

Usage variations¶

All the examples are about traveling from point \(1\) and vertex \(5\) to points \(\{2, 3, 6\}\) and vertices \(\{10, 11\}\)

SELECT *
FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11],
 driving_side => 'r', details => true);
 seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -1 | -6 | -1 | 1 | 0.4 | 0
 2 | 2 | -1 | -6 | 5 | 1 | 1 | 0.4
 3 | 3 | -1 | -6 | 6 | 4 | 0.7 | 1.4
 4 | 4 | -1 | -6 | -6 | -1 | 0 | 2.1
 5 | 1 | -1 | -3 | -1 | 1 | 0.4 | 0
 6 | 2 | -1 | -3 | 5 | 1 | 1 | 0.4
 7 | 3 | -1 | -3 | 6 | 4 | 0.7 | 1.4
 8 | 4 | -1 | -3 | -6 | 4 | 0.3 | 2.1
 9 | 5 | -1 | -3 | 7 | 10 | 1 | 2.4
 10 | 6 | -1 | -3 | 8 | 12 | 0.6 | 3.4
 11 | 7 | -1 | -3 | -3 | -1 | 0 | 4
 12 | 1 | -1 | -2 | -1 | 1 | 0.4 | 0
 13 | 2 | -1 | -2 | 5 | 1 | 1 | 0.4
 14 | 3 | -1 | -2 | 6 | 4 | 0.7 | 1.4
 15 | 4 | -1 | -2 | -6 | 4 | 0.3 | 2.1
 16 | 5 | -1 | -2 | 7 | 8 | 1 | 2.4
 17 | 6 | -1 | -2 | 11 | 9 | 1 | 3.4
 18 | 7 | -1 | -2 | 16 | 15 | 0.4 | 4.4
 19 | 8 | -1 | -2 | -2 | -1 | 0 | 4.8
 20 | 1 | -1 | 10 | -1 | 1 | 0.4 | 0
 21 | 2 | -1 | 10 | 5 | 1 | 1 | 0.4
 22 | 3 | -1 | 10 | 6 | 4 | 0.7 | 1.4
 23 | 4 | -1 | 10 | -6 | 4 | 0.3 | 2.1
 24 | 5 | -1 | 10 | 7 | 8 | 1 | 2.4
 25 | 6 | -1 | 10 | 11 | 9 | 1 | 3.4
 26 | 7 | -1 | 10 | 16 | 16 | 1 | 4.4
 27 | 8 | -1 | 10 | 15 | 3 | 1 | 5.4
 28 | 9 | -1 | 10 | 10 | -1 | 0 | 6.4
 29 | 1 | -1 | 11 | -1 | 1 | 0.4 | 0
 30 | 2 | -1 | 11 | 5 | 1 | 1 | 0.4
 31 | 3 | -1 | 11 | 6 | 4 | 0.7 | 1.4
 32 | 4 | -1 | 11 | -6 | 4 | 0.3 | 2.1
 33 | 5 | -1 | 11 | 7 | 8 | 1 | 2.4
 34 | 6 | -1 | 11 | 11 | -1 | 0 | 3.4
 35 | 1 | 5 | -6 | 5 | 1 | 1 | 0
 36 | 2 | 5 | -6 | 6 | 4 | 0.7 | 1
 37 | 3 | 5 | -6 | -6 | -1 | 0 | 1.7
 38 | 1 | 5 | -3 | 5 | 1 | 1 | 0
 39 | 2 | 5 | -3 | 6 | 4 | 0.7 | 1
 40 | 3 | 5 | -3 | -6 | 4 | 0.3 | 1.7
 41 | 4 | 5 | -3 | 7 | 10 | 1 | 2
 42 | 5 | 5 | -3 | 8 | 12 | 0.6 | 3
 43 | 6 | 5 | -3 | -3 | -1 | 0 | 3.6
 44 | 1 | 5 | -2 | 5 | 1 | 1 | 0
 45 | 2 | 5 | -2 | 6 | 4 | 0.7 | 1
 46 | 3 | 5 | -2 | -6 | 4 | 0.3 | 1.7
 47 | 4 | 5 | -2 | 7 | 8 | 1 | 2
 48 | 5 | 5 | -2 | 11 | 9 | 1 | 3
 49 | 6 | 5 | -2 | 16 | 15 | 0.4 | 4
 50 | 7 | 5 | -2 | -2 | -1 | 0 | 4.4
 51 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 52 | 2 | 5 | 10 | 6 | 4 | 0.7 | 1
 53 | 3 | 5 | 10 | -6 | 4 | 0.3 | 1.7
 54 | 4 | 5 | 10 | 7 | 8 | 1 | 2
 55 | 5 | 5 | 10 | 11 | 9 | 1 | 3
 56 | 6 | 5 | 10 | 16 | 16 | 1 | 4
 57 | 7 | 5 | 10 | 15 | 3 | 1 | 5
 58 | 8 | 5 | 10 | 10 | -1 | 0 | 6
 59 | 1 | 5 | 11 | 5 | 1 | 1 | 0
 60 | 2 | 5 | 11 | 6 | 4 | 0.7 | 1
 61 | 3 | 5 | 11 | -6 | 4 | 0.3 | 1.7
 62 | 4 | 5 | 11 | 7 | 8 | 1 | 2
 63 | 5 | 5 | 11 | 11 | -1 | 0 | 3
(63 rows)

Passes in front or visits with right side driving.¶

For point \(6\) and vertex \(11\).

SELECT (start_pid || ' -> ' || end_pid ||' at ' || path_seq || 'th step')::TEXT AS path_at,
 CASE WHEN edge = -1 THEN ' visits'
 ELSE ' passes in front of'
 END as status,
 CASE WHEN node < 0 THEN 'Point'
 ELSE 'Vertex'
 END as is_a,
 abs(node) as id
FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11],
 driving_side => 'r', details => true)
WHERE node IN (-6, 11);
 path_at | status | is_a | id
----------------------+---------------------+--------+----
 -1 -> -6 at 4th step | visits | Point | 6
 -1 -> -3 at 4th step | passes in front of | Point | 6
 -1 -> -2 at 4th step | passes in front of | Point | 6
 -1 -> -2 at 6th step | passes in front of | Vertex | 11
 -1 -> 10 at 4th step | passes in front of | Point | 6
 -1 -> 10 at 6th step | passes in front of | Vertex | 11
 -1 -> 11 at 4th step | passes in front of | Point | 6
 -1 -> 11 at 6th step | visits | Vertex | 11
 5 -> -6 at 3th step | visits | Point | 6
 5 -> -3 at 3th step | passes in front of | Point | 6
 5 -> -2 at 3th step | passes in front of | Point | 6
 5 -> -2 at 5th step | passes in front of | Vertex | 11
 5 -> 10 at 3th step | passes in front of | Point | 6
 5 -> 10 at 5th step | passes in front of | Vertex | 11
 5 -> 11 at 3th step | passes in front of | Point | 6
 5 -> 11 at 5th step | visits | Vertex | 11
(16 rows)

Passes in front or visits with left side driving.¶

For point \(6\) and vertex \(11\).

SELECT (start_pid || ' => ' || end_pid ||' at ' || path_seq || 'th step')::TEXT AS path_at,
 CASE WHEN edge = -1 THEN ' visits'
 ELSE ' passes in front of'
 END as status,
 CASE WHEN node < 0 THEN 'Point'
 ELSE 'Vertex'
 END as is_a,
 abs(node) as id
FROM pgr_withPoints(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11],
 driving_side => 'l', details => true)
WHERE node IN (-6, 11);
 path_at | status | is_a | id
----------------------+---------------------+--------+----
 -1 => -6 at 3th step | visits | Point | 6
 -1 => -3 at 3th step | passes in front of | Point | 6
 -1 => -2 at 3th step | passes in front of | Point | 6
 -1 => -2 at 5th step | passes in front of | Vertex | 11
 -1 => 10 at 3th step | passes in front of | Point | 6
 -1 => 10 at 5th step | passes in front of | Vertex | 11
 -1 => 11 at 3th step | passes in front of | Point | 6
 -1 => 11 at 5th step | visits | Vertex | 11
 5 => -6 at 4th step | visits | Point | 6
 5 => -3 at 4th step | passes in front of | Point | 6
 5 => -2 at 4th step | passes in front of | Point | 6
 5 => -2 at 6th step | passes in front of | Vertex | 11
 5 => 10 at 4th step | passes in front of | Point | 6
 5 => 10 at 6th step | passes in front of | Vertex | 11
 5 => 11 at 4th step | passes in front of | Point | 6
 5 => 11 at 6th step | visits | Vertex | 11
(16 rows)

See Also¶

	withPoints - Family of functions

	withPoints - Category

	Sample Data

Indices and tables

	Index

	Search Page

pgr_withPointsCost - Proposed¶

pgr_withPointsCost - Calculates the shortest path and returns only the aggregate cost of the shortest path found, for the combination of points given.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.2.0

	New proposed function:

	pgr_withPointsCost(Combinations)

	Version 2.2.0

	New proposed function

Description¶

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost of the shortest path found.

	The main characteristics are:

	
	It does not return a path.

	Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.

	Vertices of the graph are:

	positive when it belongs to the edges_sql

	negative when it belongs to the points_sql

	Process is done only on edges with positive costs.

	Values are returned when there is a path.

	The returned values are in the form of a set of (start_vid, end_vid, agg_cost).

	When the starting vertex and ending vertex are the same, there is no path.

	The agg_cost in the non included values (v, v) is 0

	When the starting vertex and ending vertex are the different and there is no path.

	The agg_cost in the non included values (u, v) is \(\infty\)

	If the values returned are stored in a table, the unique index would be the pair: (start_vid, end_vid).

	For undirected graphs, the results are symmetric.

	The agg_cost of (u, v) is the same as for (v, u).

	For optimization purposes, any duplicated value in the start_vids or end_vids is ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

	Running time: \(O(|start_vids|\times(V \log V + E))\)

Signatures¶

Summary

pgr_withPointsCost(Edges SQL, ‘Points SQL`_, start vid, end vid, [options])

pgr_withPointsCost(Edges SQL, ‘Points SQL`_, start vid, end vids, [options])

pgr_withPointsCost(Edges SQL, ‘Points SQL`_, start vids, end vid, [options])

pgr_withPointsCost(Edges SQL, ‘Points SQL`_, start vids, end vids, [options])

pgr_withPointsCost(Edges SQL, ‘Points SQL`_, Combinations SQL, [options])

options: [directed, driving_side]

Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

Note

There is no details flag, unlike the other members of the withPoints family of functions.

One to One¶

pgr_withPointsCost(Edges SQL, ‘Points SQL`_, start vid, end vid, [options])

options: [directed, driving_side]

Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) to vertex \(10\) with defaults

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 10);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | 10 | 5.6
(1 row)

One to Many¶

pgr_withPointsCost(Edges SQL, Points SQL, start vid, end vids, [options])

options: [directed, driving_side]

Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) to point \(3\) and vertex \(7\) on an undirected graph

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, ARRAY[-3, 7],
 directed => false);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 -1 | 7 | 1.6
(2 rows)

Many to One¶

pgr_withPointsCost(Edges SQL, Points SQL, start vids, end vid, [options])

options: [directed, driving_side]

Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) and vertex \(6\) to point \(3\)

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 6], -3);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 6 | -3 | 2.6
(2 rows)

Many to Many¶

pgr_withPointsCost(Edges SQL, Points SQL, start vids, end vids, [options])

options: [directed, driving_side]

Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

	Example:

	From point \(15\) and vertex \(6\) to point \(3\) and vertex \(1\)

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 6], ARRAY[-3, 1]);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -3 | 3.2
 -1 | 1 | 3.6
 6 | -3 | 2.6
 6 | 1 | 3
(4 rows)

Combinations¶

pgr_withPointsCost(Edges SQL, Points SQL, Combinations SQL, [options])

options: [directed, driving_side]

Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

	Example:

	Two combinations

From point \(1\) to vertex \(10\), and from vertex \(6\) to point \(3\) with right side driving.

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 'SELECT * FROM (VALUES (-1, 10), (6, -3)) AS combinations(source, target)',
 driving_side => 'r');
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | 10 | 6.4
 6 | -3 | 2.6
(2 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path. Negative value is for point’s identifier.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices. Negative values are for point’s identifiers.

	end vid

	BIGINT

	Identifier of the ending vertex of the path. Negative value is for point’s identifier.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices. Negative values are for point’s identifiers.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	b

	Value in [r, l, b] indicating if the driving side is:

	r for right driving side.

	l for left driving side.

	b for both.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

	Column

	Type

	Description

	start_pid

	BIGINT

	Identifier of the starting vertex or point.

	When positive: is a vertex’s identifier.

	When negative: is a point’s identifier.

	end_pid

	BIGINT

	Identifier of the ending vertex or point.

	When positive: is a vertex’s identifier.

	When negative: is a point’s identifier.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Additional Examples¶

	Use pgr_findCloseEdges in the Points SQL.

	Right side driving topology

	Left side driving topology

	Does not matter driving side driving topology

Use pgr_findCloseEdges in the Points SQL.¶

Find the cost of the routes from vertex \(1\) to the two closest locations on the graph of point (2.9, 1.8).

SELECT * FROM pgr_withPointsCost(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 1, ARRAY[-1, -2]);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 1 | -2 | 2.9
 1 | -1 | 6.8
(2 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

	Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

	Being close to the graph does not mean have a shorter route.

Right side driving topology¶

Traveling from point \(1\) and vertex \(5\) to points \(\{2, 3, 6\}\) and vertices \(\{10, 11\}\)

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11],
 driving_side => 'r');
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -6 | 2.1
 -1 | -3 | 4
 -1 | -2 | 4.8
 -1 | 10 | 6.4
 -1 | 11 | 3.4
 5 | -6 | 1.7
 5 | -3 | 3.6
 5 | -2 | 4.4
 5 | 10 | 6
 5 | 11 | 3
(10 rows)

Left side driving topology¶

Traveling from point \(1\) and vertex \(5\) to points \(\{2, 3, 6\}\) and vertices \(\{10, 11\}\)

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11],
 driving_side => 'l');
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -6 | 1.3
 -1 | -3 | 3.2
 -1 | -2 | 5.2
 -1 | 10 | 5.6
 -1 | 11 | 2.6
 5 | -6 | 1.7
 5 | -3 | 3.6
 5 | -2 | 5.6
 5 | 10 | 6
 5 | 11 | 3
(10 rows)

Does not matter driving side driving topology¶

Traveling from point \(1\) and vertex \(5\) to points \(\{2, 3, 6\}\) and vertices \(\{10, 11\}\)

SELECT * FROM pgr_withPointsCost(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11]);
 start_pid | end_pid | agg_cost
-----------+---------+----------
 -1 | -6 | 1.3
 -1 | -3 | 3.2
 -1 | -2 | 4
 -1 | 10 | 5.6
 -1 | 11 | 2.6
 5 | -6 | 1.7
 5 | -3 | 3.6
 5 | -2 | 4.4
 5 | 10 | 6
 5 | 11 | 3
(10 rows)

The queries use the Sample Data network.

See Also¶

	withPoints - Family of functions

Indices and tables

	Index

	Search Page

pgr_withPointsCostMatrix - proposed¶

pgr_withPointsCostMatrix - Calculates a cost matrix using pgr_withPoints - Proposed.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 2.2.0

	New proposed function

Description¶

Using Dijkstra algorithm, calculate and return a cost matrix.

Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

	Can be used as input to pgr_TSP.

	Use directly when the resulting matrix is symmetric and there is no \(\infty\) value.

	It will be the users responsibility to make the matrix symmetric.

	By using geometric or harmonic average of the non symmetric values.

	By using max or min the non symmetric values.

	By setting the upper triangle to be the mirror image of the lower triangle.

	By setting the lower triangle to be the mirror image of the upper triangle.

	It is also the users responsibility to fix an \(\infty\) value.

	Each function works as part of the family it belongs to.

	It does not return a path.

	Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.

	Process is done only on edges with positive costs.

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The aggregate cost in the non included values (v, v) is 0.

	When the starting vertex and ending vertex are the different and there is no path.

	The aggregate cost in the non included values (u, v) is \(\infty\).

	Let be the case the values returned are stored in a table:

	The unique index would be the pair: (start_vid, end_vid).

	Depending on the function and its parameters, the results can be symmetric.

	The aggregate cost of (u, v) is the same as for (v, u).

	Any duplicated value in the start vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

Signatures¶

Summary

pgr_withPointsCostMatrix(Edges SQL, Points SQL, start vids, [options])

options: [directed, driving_side]

Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

Note

There is no details flag, unlike the other members of the withPoints family of functions.

	Example:

	Cost matrix for points \(\{1, 6\}\) and vertices \(\{10, 11\}\) on an undirected graph

	Returning a symmetrical cost matrix

	Using the default side value on the points_sql query

	Using the default driving_side value

SELECT * FROM pgr_withPointsCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction from pointsOfInterest',
 array[-1, 10, 11, -6], directed := false);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 -6 | -1 | 1.3
 -6 | 10 | 1.7
 -6 | 11 | 1.3
 -1 | -6 | 1.3
 -1 | 10 | 1.6
 -1 | 11 | 2.6
 10 | -6 | 1.7
 10 | -1 | 1.6
 10 | 11 | 1
 11 | -6 | 1.3
 11 | -1 | 2.6
 11 | 10 | 1
(12 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	b

	Value in [r, l, b] indicating if the driving side is:

	r for right driving side.

	l for left driving side.

	b for both.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Set of (start_vid, end_vid, agg_cost)

	Column

	Type

	Description

	start_vid

	BIGINT

	Identifier of the starting vertex.

	end_vid

	BIGINT

	Identifier of the ending vertex.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to end_vid.

Note

When start_vid or end_vid columns have negative values, the identifier is for a Point.

Additional Examples¶

	Use pgr_findCloseEdges in the Points SQL.

	Use with pgr_TSP.

Use pgr_findCloseEdges in the Points SQL.¶

Find the matrix cost of the routes from vertex \(1\) and the two closest locations on the graph of point (2.9, 1.8).

SELECT * FROM pgr_withPointsCostMatrix(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 ARRAY[5, 10, -1, -2]);
 start_vid | end_vid | agg_cost
-----------+---------+----------
 -2 | -1 | 3.9
 -2 | 5 | 2.9
 -2 | 10 | 3.1
 -1 | -2 | 0.3
 -1 | 5 | 3.2
 -1 | 10 | 3.2
 5 | -2 | 2.9
 5 | -1 | 6.8
 5 | 10 | 6
 10 | -2 | 1.1
 10 | -1 | 0.8
 10 | 5 | 2
(12 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

	Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

Use with pgr_TSP.¶

SELECT * FROM pgr_TSP(
 $$
 SELECT * FROM pgr_withPointsCostMatrix(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction from pointsOfInterest',
 array[-1, 10, 11, -6], directed := false);
 $$
);
NOTICE: pgr_TSP no longer solving with simulated annaeling
HINT: Ignoring annaeling parameters
 seq | node | cost | agg_cost
-----+------+------+----------
 1 | -6 | 0 | 0
 2 | -1 | 1.3 | 1.3
 3 | 10 | 1.6 | 2.9
 4 | 11 | 1 | 3.9
 5 | -6 | 1.3 | 5.2
(5 rows)

See Also¶

	withPoints - Family of functions

	Cost Matrix - Category

	Traveling Sales Person - Family of functions

	Sample Data

Indices and tables

	Index

	Search Page

pgr_withPointsKSP - Proposed¶

pgr_withPointsKSP — Yen’s algorithm for K shortest paths using Dijkstra.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

Version 3.6.0

	Standarizing output columns to (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_withPointsKSP (One to One)

	Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.

	Added start_vid and end_vid result columns.

	New overload functions

	pgr_withPointsKSP (One to Many)

	pgr_withPointsKSP (Many to One)

	pgr_withPointsKSP (Many to Many)

	pgr_withPointsKSP (Combinations)

	Deprecated signature

	pgr_withpointsksp(text,text,bigint,bigint,integer,boolean,boolean,char,boolean)

Version 2.2.0

	New proposed function

Description¶

Modifies the graph to include the points defined in the Points SQL and using Yen algorithm, finds the \(K\) shortest paths.

Signatures¶

pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vid, K, driving_side, [options])

pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vids, K, driving_side, [options])

pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vid, K, driving_side, [options])

pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vids, K, driving_side, [options])

pgr_withPointsKSP(Edges SQL, Points SQL, Combinations SQL, K, driving_side, [options])

options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vid, K, driving_side, [options])

options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	Get 2 paths from Point \(1\) to point \(2\) on a directed graph with left side driving.

	For a directed graph.

	No details are given about distance of other points of the query.

	No heap paths are returned.

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -2, 2, 'l');
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -2 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | -1 | -2 | 6 | 4 | 1 | 0.6
 3 | 1 | 3 | -1 | -2 | 7 | 8 | 1 | 1.6
 4 | 1 | 4 | -1 | -2 | 11 | 11 | 1 | 2.6
 5 | 1 | 5 | -1 | -2 | 12 | 13 | 1 | 3.6
 6 | 1 | 6 | -1 | -2 | 17 | 15 | 0.6 | 4.6
 7 | 1 | 7 | -1 | -2 | -2 | -1 | 0 | 5.2
 8 | 2 | 1 | -1 | -2 | -1 | 1 | 0.6 | 0
 9 | 2 | 2 | -1 | -2 | 6 | 4 | 1 | 0.6
 10 | 2 | 3 | -1 | -2 | 7 | 8 | 1 | 1.6
 11 | 2 | 4 | -1 | -2 | 11 | 9 | 1 | 2.6
 12 | 2 | 5 | -1 | -2 | 16 | 15 | 1.6 | 3.6
 13 | 2 | 6 | -1 | -2 | -2 | -1 | 0 | 5.2
(13 rows)

One to Many¶

pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vids, K, driving_side, [options])

options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	Get 2 paths from point \(1\) to point \(3\) and vertex \(7\) on an undirected graph

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, ARRAY[-3, 7], 2, 'B',
 directed => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | -1 | -3 | 6 | 4 | 1 | 0.6
 3 | 1 | 3 | -1 | -3 | 7 | 10 | 1 | 1.6
 4 | 1 | 4 | -1 | -3 | 8 | 12 | 0.6 | 2.6
 5 | 1 | 5 | -1 | -3 | -3 | -1 | 0 | 3.2
 6 | 2 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 7 | 2 | 2 | -1 | -3 | 6 | 4 | 1 | 0.6
 8 | 2 | 3 | -1 | -3 | 7 | 8 | 1 | 1.6
 9 | 2 | 4 | -1 | -3 | 11 | 11 | 1 | 2.6
 10 | 2 | 5 | -1 | -3 | 12 | 12 | 0.4 | 3.6
 11 | 2 | 6 | -1 | -3 | -3 | -1 | 0 | 4
 12 | 3 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0
 13 | 3 | 2 | -1 | 7 | 6 | 4 | 1 | 0.6
 14 | 3 | 3 | -1 | 7 | 7 | -1 | 0 | 1.6
 15 | 4 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0
 16 | 4 | 2 | -1 | 7 | 6 | 2 | 1 | 0.6
 17 | 4 | 3 | -1 | 7 | 10 | 5 | 1 | 1.6
 18 | 4 | 4 | -1 | 7 | 11 | 8 | 1 | 2.6
 19 | 4 | 5 | -1 | 7 | 7 | -1 | 0 | 3.6
(19 rows)

Many to One¶

pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vid, K, driving_side, [options])

options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	Get a path from point \(1\) and vertex \(6\) to point \(3\) on a directed graph with right side driving and details set to True

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 6], -3, 1, 'r', details=> true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -3 | -1 | 1 | 0.4 | 0
 2 | 1 | 2 | -1 | -3 | 5 | 1 | 1 | 0.4
 3 | 1 | 3 | -1 | -3 | 6 | 4 | 0.7 | 1.4
 4 | 1 | 4 | -1 | -3 | -6 | 4 | 0.3 | 2.1
 5 | 1 | 5 | -1 | -3 | 7 | 10 | 1 | 2.4
 6 | 1 | 6 | -1 | -3 | 8 | 12 | 0.6 | 3.4
 7 | 1 | 7 | -1 | -3 | -3 | -1 | 0 | 4
 8 | 2 | 1 | 6 | -3 | 6 | 4 | 0.7 | 0
 9 | 2 | 2 | 6 | -3 | -6 | 4 | 0.3 | 0.7
 10 | 2 | 3 | 6 | -3 | 7 | 10 | 1 | 1
 11 | 2 | 4 | 6 | -3 | 8 | 12 | 0.6 | 2
 12 | 2 | 5 | 6 | -3 | -3 | -1 | 0 | 2.6
(12 rows)

Many to Many¶

pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vids, K, driving_side, [options])

options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	Get a path from point \(1\) and vertex \(6\) to point \(3\) and vertex \(1\) on a directed graph with left side driving and heap_paths set to True

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 6], ARRAY[-3, 1], 1, 'l', heap_paths => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | -1 | -3 | 6 | 4 | 1 | 0.6
 3 | 1 | 3 | -1 | -3 | 7 | 10 | 1 | 1.6
 4 | 1 | 4 | -1 | -3 | 8 | 12 | 0.6 | 2.6
 5 | 1 | 5 | -1 | -3 | -3 | -1 | 0 | 3.2
 6 | 2 | 1 | -1 | 1 | -1 | 1 | 0.6 | 0
 7 | 2 | 2 | -1 | 1 | 6 | 4 | 1 | 0.6
 8 | 2 | 3 | -1 | 1 | 7 | 7 | 1 | 1.6
 9 | 2 | 4 | -1 | 1 | 3 | 6 | 1 | 2.6
 10 | 2 | 5 | -1 | 1 | 1 | -1 | 0 | 3.6
 11 | 3 | 1 | 6 | -3 | 6 | 4 | 1 | 0
 12 | 3 | 2 | 6 | -3 | 7 | 10 | 1 | 1
 13 | 3 | 3 | 6 | -3 | 8 | 12 | 0.6 | 2
 14 | 3 | 4 | 6 | -3 | -3 | -1 | 0 | 2.6
 15 | 4 | 1 | 6 | 1 | 6 | 4 | 1 | 0
 16 | 4 | 2 | 6 | 1 | 7 | 7 | 1 | 1
 17 | 4 | 3 | 6 | 1 | 3 | 6 | 1 | 2
 18 | 4 | 4 | 6 | 1 | 1 | -1 | 0 | 3
(18 rows)

Combinations¶

pgr_withPointsKSP(Edges SQL, Points SQL, Combinations SQL, K, driving_side, [options])

options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost)

OR EMTPY SET

	Example:

	Using a combinations table on an directed graph

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 'SELECT * FROM (VALUES (-1, 10), (6, -3)) AS combinations(source, target)',
 2, 'r', details => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | 10 | -1 | 1 | 0.4 | 0
 2 | 1 | 2 | -1 | 10 | 5 | 1 | 1 | 0.4
 3 | 1 | 3 | -1 | 10 | 6 | 4 | 0.7 | 1.4
 4 | 1 | 4 | -1 | 10 | -6 | 4 | 0.3 | 2.1
 5 | 1 | 5 | -1 | 10 | 7 | 8 | 1 | 2.4
 6 | 1 | 6 | -1 | 10 | 11 | 9 | 1 | 3.4
 7 | 1 | 7 | -1 | 10 | 16 | 16 | 1 | 4.4
 8 | 1 | 8 | -1 | 10 | 15 | 3 | 1 | 5.4
 9 | 1 | 9 | -1 | 10 | 10 | -1 | 0 | 6.4
 10 | 2 | 1 | -1 | 10 | -1 | 1 | 0.4 | 0
 11 | 2 | 2 | -1 | 10 | 5 | 1 | 1 | 0.4
 12 | 2 | 3 | -1 | 10 | 6 | 4 | 0.7 | 1.4
 13 | 2 | 4 | -1 | 10 | -6 | 4 | 0.3 | 2.1
 14 | 2 | 5 | -1 | 10 | 7 | 8 | 1 | 2.4
 15 | 2 | 6 | -1 | 10 | 11 | 11 | 1 | 3.4
 16 | 2 | 7 | -1 | 10 | 12 | 13 | 1 | 4.4
 17 | 2 | 8 | -1 | 10 | 17 | 15 | 1 | 5.4
 18 | 2 | 9 | -1 | 10 | 16 | 16 | 1 | 6.4
 19 | 2 | 10 | -1 | 10 | 15 | 3 | 1 | 7.4
 20 | 2 | 11 | -1 | 10 | 10 | -1 | 0 | 8.4
 21 | 3 | 1 | 6 | -3 | 6 | 4 | 0.7 | 0
 22 | 3 | 2 | 6 | -3 | -6 | 4 | 0.3 | 0.7
 23 | 3 | 3 | 6 | -3 | 7 | 10 | 1 | 1
 24 | 3 | 4 | 6 | -3 | 8 | 12 | 0.6 | 2
 25 | 3 | 5 | 6 | -3 | -3 | -1 | 0 | 2.6
(25 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL query as described.

	Points SQL

	TEXT

	Points SQL query as described.

	start vid

	ANY-INTEGER

	Identifier of the departure vertex.

	Negative values represent a point

	end vid

	ANY-INTEGER

	Identifier of the destination vertex.

	Negative values represent a point

	K

	ANY-INTEGER

	Number of required paths

	driving_side

	CHAR

	Value in [r, R, l, L, b, B] indicating if the driving side is:

	[r, R] for right driving side (for directed graph only)

	[l, L] for left driving side (for directed graph only)

	[b, B] for both (only for undirected graph)

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

KSP Optional parameters¶

	Column

	Type

	Default

	Description

	heap_paths

	BOOLEAN

	false

	
	When false Returns at most K paths.

	When true all the calculated paths while processing are returned.

	Roughly, when the shortest path has N edges, the heap will contain about than N * K paths for small value of K and K > 5.

withPointsKSP optional parameters¶

	Parameter

	Type

	Default

	Description

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Path identifier.

	Has value 1 for the first of a path from start_vid to end_vid

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	\(0\) for the last node of the path.

	agg_cost

	FLOAT

	Aggregate cost from start vid to node.

Additional Examples¶

	Use pgr_findCloseEdges in the Points SQL.

	Left driving side

	Right driving side

Use pgr_findCloseEdges in the Points SQL.¶

Get \(2\) paths using left side driving topology, from vertex \(1\) to the closest location on the graph of point (2.9, 1.8).

SELECT * FROM pgr_withPointsKSP(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 1, -1, 2,'r');
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 1 | -1 | 1 | 6 | 1 | 0
 2 | 1 | 2 | 1 | -1 | 3 | 7 | 1 | 1
 3 | 1 | 3 | 1 | -1 | 7 | 8 | 1 | 2
 4 | 1 | 4 | 1 | -1 | 11 | 9 | 1 | 3
 5 | 1 | 5 | 1 | -1 | 16 | 16 | 1 | 4
 6 | 1 | 6 | 1 | -1 | 15 | 3 | 1 | 5
 7 | 1 | 7 | 1 | -1 | 10 | 5 | 0.8 | 6
 8 | 1 | 8 | 1 | -1 | -1 | -1 | 0 | 6.8
 9 | 2 | 1 | 1 | -1 | 1 | 6 | 1 | 0
 10 | 2 | 2 | 1 | -1 | 3 | 7 | 1 | 1
 11 | 2 | 3 | 1 | -1 | 7 | 10 | 1 | 2
 12 | 2 | 4 | 1 | -1 | 8 | 12 | 1 | 3
 13 | 2 | 5 | 1 | -1 | 12 | 13 | 1 | 4
 14 | 2 | 6 | 1 | -1 | 17 | 15 | 1 | 5
 15 | 2 | 7 | 1 | -1 | 16 | 16 | 1 | 6
 16 | 2 | 8 | 1 | -1 | 15 | 3 | 1 | 7
 17 | 2 | 9 | 1 | -1 | 10 | 5 | 0.8 | 8
 18 | 2 | 10 | 1 | -1 | -1 | -1 | 0 | 8.8
(18 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

Left driving side¶

Get \(2\) paths using left side driving topology, from point \(1\) to point \(3\) with details.

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -3, 2, 'l', details => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -3 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | -1 | -3 | 6 | 4 | 0.7 | 0.6
 3 | 1 | 3 | -1 | -3 | -6 | 4 | 0.3 | 1.3
 4 | 1 | 4 | -1 | -3 | 7 | 10 | 1 | 1.6
 5 | 1 | 5 | -1 | -3 | 8 | 12 | 0.6 | 2.6
 6 | 1 | 6 | -1 | -3 | -3 | -1 | 0 | 3.2
(6 rows)

Right driving side¶

Get \(2\) paths using right side driving topology from, point \(1\) to point \(2\) with heap paths and details.

SELECT * FROM pgr_withPointsKSP(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, -2, 2, 'r',
 heap_paths => true, details => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -2 | -1 | 1 | 0.4 | 0
 2 | 1 | 2 | -1 | -2 | 5 | 1 | 1 | 0.4
 3 | 1 | 3 | -1 | -2 | 6 | 4 | 0.7 | 1.4
 4 | 1 | 4 | -1 | -2 | -6 | 4 | 0.3 | 2.1
 5 | 1 | 5 | -1 | -2 | 7 | 8 | 1 | 2.4
 6 | 1 | 6 | -1 | -2 | 11 | 9 | 1 | 3.4
 7 | 1 | 7 | -1 | -2 | 16 | 15 | 0.4 | 4.4
 8 | 1 | 8 | -1 | -2 | -2 | -1 | 0 | 4.8
 9 | 2 | 1 | -1 | -2 | -1 | 1 | 0.4 | 0
 10 | 2 | 2 | -1 | -2 | 5 | 1 | 1 | 0.4
 11 | 2 | 3 | -1 | -2 | 6 | 4 | 0.7 | 1.4
 12 | 2 | 4 | -1 | -2 | -6 | 4 | 0.3 | 2.1
 13 | 2 | 5 | -1 | -2 | 7 | 8 | 1 | 2.4
 14 | 2 | 6 | -1 | -2 | 11 | 11 | 1 | 3.4
 15 | 2 | 7 | -1 | -2 | 12 | 13 | 1 | 4.4
 16 | 2 | 8 | -1 | -2 | 17 | 15 | 1 | 5.4
 17 | 2 | 9 | -1 | -2 | 16 | 15 | 0.4 | 6.4
 18 | 2 | 10 | -1 | -2 | -2 | -1 | 0 | 6.8
 19 | 3 | 1 | -1 | -2 | -1 | 1 | 0.4 | 0
 20 | 3 | 2 | -1 | -2 | 5 | 1 | 1 | 0.4
 21 | 3 | 3 | -1 | -2 | 6 | 4 | 0.7 | 1.4
 22 | 3 | 4 | -1 | -2 | -6 | 4 | 0.3 | 2.1
 23 | 3 | 5 | -1 | -2 | 7 | 10 | 1 | 2.4
 24 | 3 | 6 | -1 | -2 | 8 | 12 | 0.6 | 3.4
 25 | 3 | 7 | -1 | -2 | -3 | 12 | 0.4 | 4
 26 | 3 | 8 | -1 | -2 | 12 | 13 | 1 | 4.4
 27 | 3 | 9 | -1 | -2 | 17 | 15 | 1 | 5.4
 28 | 3 | 10 | -1 | -2 | 16 | 15 | 0.4 | 6.4
 29 | 3 | 11 | -1 | -2 | -2 | -1 | 0 | 6.8
(29 rows)

The queries use the Sample Data network.

See Also¶

	withPoints - Family of functions

	K shortest paths - Category

	Sample Data

Indices and tables

	Index

	Search Page

pgr_withPointsDD - Proposed¶

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

Version 3.6.0

	Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.

	pgr_withPointsDD (Single vertex)

	pgr_withPointsDD (Multiple vertices)

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	pgr_withPointsDD (Single vertex)

	Added depth, pred and start_vid column.

	pgr_withPointsDD (Multiple vertices)

	Added depth, pred columns.

	When details is false:

	Only points that are visited are removed, that is, points reached within the distance are included

	Deprecated signatures

	pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean)

	pgr_withpointsdd(text,text,anyarray,double precision,boolean,character,boolean,boolean)

Version 2.2.0

	New proposed function

Description¶

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have costs less than or equal to the value **distance** from the starting point. The edges extracted will conform the corresponding spanning tree.

Signatures¶

pgr_withPointsDD(Edges SQL, Points SQL, root vid, distance, driving side, [options A])

pgr_withPointsDD(Edges SQL, Points SQL, root vids, distance, driving side, [options B])

options A: [directed, details]

options B: [directed, details, equicost]

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

OR EMPTY SET

Single vertex¶

pgr_withPointsDD(Edges SQL, Points SQL, root vid, distance, driving side, [options])

options: [directed, details]

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Right side driving topology, from point \(1\) within a distance of \(3.3\) with details.

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3.3, 'r',
 details => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 2 | 1 | -1 | -1 | 5 | 1 | 0.4 | 0.4
 3 | 2 | -1 | 5 | 6 | 1 | 1 | 1.4
 4 | 3 | -1 | 6 | -6 | 4 | 0.7 | 2.1
 5 | 4 | -1 | -6 | 7 | 4 | 0.3 | 2.4
(5 rows)

Multiple vertices¶

pgr_withPointsDD(Edges SQL, Points SQL, root vids, distance, driving side, [options])

options: [directed, details, equicost]

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From point \(1\) and vertex \(16\) within a distance of \(3.3\) with equicost on a directed graph

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 16], 3.3, 'l',
 equicost => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 2 | 1 | -1 | -1 | 6 | 1 | 0.6 | 0.6
 3 | 2 | -1 | 6 | 7 | 4 | 1 | 1.6
 4 | 2 | -1 | 6 | 5 | 1 | 1 | 1.6
 5 | 3 | -1 | 7 | 3 | 7 | 1 | 2.6
 6 | 3 | -1 | 7 | 8 | 10 | 1 | 2.6
 7 | 4 | -1 | 8 | -3 | 12 | 0.6 | 3.2
 8 | 4 | -1 | 3 | -4 | 6 | 0.7 | 3.3
 9 | 0 | 16 | 16 | 16 | -1 | 0 | 0
 10 | 1 | 16 | 16 | 11 | 9 | 1 | 1
 11 | 1 | 16 | 16 | 15 | 16 | 1 | 1
 12 | 1 | 16 | 16 | 17 | 15 | 1 | 1
 13 | 2 | 16 | 15 | 10 | 3 | 1 | 2
 14 | 2 | 16 | 11 | 12 | 11 | 1 | 2
(14 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	Root vid

	BIGINT

	Identifier of the root vertex of the tree.

	Negative values represent a point

	Root vids

	ARRAY [ANY-INTEGER]

	Array of identifiers of the root vertices.

	Negative values represent a point

	\(0\) values are ignored

	For optimization purposes, any duplicated value is ignored.

	distance

	FLOAT

	Upper limit for the inclusion of a node in the result.

	driving side

	CHAR

	
	Value in [r, R, l, L, b, B] indicating if the driving side is:

	r, R for right driving side,

	l, L for left driving side.

	b, B for both.

	Valid values differ for directed and undirected graphs:

	In directed graphs: [r, R, l, L].

	In undirected graphs: [b, B].

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Driving distance optional parameters¶

	Column

	Type

	Default

	Description

	equicost

	BOOLEAN

	true

	
	When true the node will only appear in the closest start_vid list. Tie brakes are arbitrary.

	When false which resembles several calls using the single vertex signature.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Parameter

	Type

	Description

	seq

	BIGINT

	Sequential value starting from \(1\).

	depth

	BIGINT

	Depth of the node.

	\(0\) when node = start_vid.

	\(depth-1\) is the depth of pred

	start_vid

	BIGINT

	Identifier of the root vertex.

	pred

	BIGINT

	Predecessor of node.

	When node = start_vid then has the value node.

	node

	BIGINT

	Identifier of node reached using edge.

	edge

	BIGINT

	Identifier of the edge used to arrive from pred to node.

	\(-1\) when node = start_vid.

	cost

	FLOAT

	Cost to traverse edge.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Use pgr_findCloseEdges in the Points SQL.

	Driving side does not matter

Use pgr_findCloseEdges in the Points SQL.¶

Find the driving distance from the two closest locations on the graph of point (2.9, 1.8).

SELECT * FROM pgr_withPointsDD(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 ARRAY[-1, -2], 2.3, 'r',
 details => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -2 | -2 | -2 | -1 | 0 | 0
 2 | 1 | -2 | -2 | 11 | 8 | 0.1 | 0.1
 3 | 2 | -2 | 11 | 16 | 9 | 1 | 1.1
 4 | 2 | -2 | 11 | 12 | 11 | 1 | 1.1
 5 | 2 | -2 | 11 | 7 | 8 | 1 | 1.1
 6 | 3 | -2 | 12 | 17 | 13 | 1 | 2.1
 7 | 3 | -2 | 16 | 15 | 16 | 1 | 2.1
 8 | 3 | -2 | 7 | 8 | 10 | 1 | 2.1
 9 | 3 | -2 | 7 | 6 | 4 | 1 | 2.1
 10 | 3 | -2 | 7 | 3 | 7 | 1 | 2.1
 11 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 12 | 1 | -1 | -1 | 11 | 5 | 0.2 | 0.2
 13 | 2 | -1 | 11 | 7 | 8 | 1 | 1.2
 14 | 2 | -1 | 11 | 16 | 9 | 1 | 1.2
 15 | 2 | -1 | 11 | 12 | 11 | 1 | 1.2
 16 | 3 | -1 | 7 | -2 | 8 | 0.9 | 2.1
 17 | 3 | -1 | 7 | 3 | 7 | 1 | 2.2
 18 | 3 | -1 | 7 | 6 | 4 | 1 | 2.2
 19 | 3 | -1 | 7 | 8 | 10 | 1 | 2.2
 20 | 3 | -1 | 16 | 15 | 16 | 1 | 2.2
 21 | 3 | -1 | 12 | 17 | 13 | 1 | 2.2
(21 rows)

	Point \(-1\) corresponds to the closest edge from point \((2.9, 1.8)\).

	Point \(-2\) corresponds to the next close edge from point \((2.9, 1.8)\).

Driving side does not matter¶

From point \(1\) within a distance of \(3.3\), does not matter driving side, with details.

SELECT * FROM pgr_withPointsDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 -1, 3.3, 'b',
 directed => false,
 details => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 2 | 1 | -1 | -1 | 5 | 1 | 0.4 | 0.4
 3 | 1 | -1 | -1 | 6 | 1 | 0.6 | 0.6
 4 | 2 | -1 | 6 | -6 | 4 | 0.7 | 1.3
 5 | 2 | -1 | 6 | 10 | 2 | 1 | 1.6
 6 | 3 | -1 | -6 | 7 | 4 | 0.3 | 1.6
 7 | 3 | -1 | 10 | -5 | 5 | 0.8 | 2.4
 8 | 3 | -1 | 10 | 15 | 3 | 1 | 2.6
 9 | 4 | -1 | 7 | 3 | 7 | 1 | 2.6
 10 | 4 | -1 | 7 | 8 | 10 | 1 | 2.6
 11 | 4 | -1 | 7 | 11 | 8 | 1 | 2.6
 12 | 5 | -1 | 8 | -3 | 12 | 0.6 | 3.2
 13 | 5 | -1 | 3 | -4 | 6 | 0.7 | 3.3
(13 rows)

See Also¶

	pgr_drivingDistance

	pgr_alphaShape

	Sample Data

Indices and tables

	Index

	Search Page

pgr_withPointsVia - Proposed¶

pgr_withPointsVia - Route that goes through a list of vertices and/or points.

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.4.0

	New proposed function pgr_withPointsVia (One Via)

Description¶

Given a graph, a set of points on the graphs edges and a list of vertices, this function is equivalent to finding the shortest path between \(vertex_i\) and \(vertex_{i+1}\) (where \(vertex\) can be a vertex or a point on the graph) for all \(i < size_of(via\;vertices)\).

	Route:

	is a sequence of paths.

	Path:

	is a section of the route.

The general algorithm is as follows:

	Build the Graph with the new points.

	The points identifiers will be converted to negative values.

	The vertices identifiers will remain positive.

	Execute a pgr_dijkstraVia - Proposed.

Signatures¶

One Via¶

pgr_withPointsVia(Edges SQL, Points SQL, via vertices, [options])

options: [directed, strict, U_turn_on_edge]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost)

OR EMPTY SET

	Example:

	Find the route that visits the vertices \(\{ -6, 15, -1\}\) in that order on a directed graph.

SELECT * FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-6, 15, -1]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -6 | 15 | -6 | 4 | 0.3 | 0 | 0
 2 | 1 | 2 | -6 | 15 | 7 | 8 | 1 | 0.3 | 0.3
 3 | 1 | 3 | -6 | 15 | 11 | 9 | 1 | 1.3 | 1.3
 4 | 1 | 4 | -6 | 15 | 16 | 16 | 1 | 2.3 | 2.3
 5 | 1 | 5 | -6 | 15 | 15 | -1 | 0 | 3.3 | 3.3
 6 | 2 | 1 | 15 | -1 | 15 | 3 | 1 | 0 | 3.3
 7 | 2 | 2 | 15 | -1 | 10 | 2 | 1 | 1 | 4.3
 8 | 2 | 3 | 15 | -1 | 6 | 1 | 0.6 | 2 | 5.3
 9 | 2 | 4 | 15 | -1 | -1 | -2 | 0 | 2.6 | 5.9
(9 rows)

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	SQL query as described.

	Points SQL

	TEXT

	
	SQL query as described.

	via vertices

	ARRAY [ANY-INTEGER]

	
	Array of ordered vertices identifiers that are going to be visited.

	When positive it is considered a vertex identifier

	When negative it is considered a point identifier

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Via optional parameters¶

	Parameter

	Type

	Default

	Description

	strict

	BOOLEAN

	false

	
	When true if a path is missing stops and returns EMPTY SET

	When false ignores missing paths returning all paths found

	U_turn_on_edge

	BOOLEAN

	true

	
	When true departing from a visited vertex will not try to avoid

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	b

	Value in [r, l, b] indicating if the driving side is:

	r for right driving side.

	l for left driving side.

	b for both.

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_id

	INTEGER

	Identifier of a path. Has value 1 for the first path.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex of the path.

	end_vid

	BIGINT

	Identifier of the ending vertex of the path.

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence.

	-1 for the last node of the path.

	-2 for the last node of the route.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

	route_agg_cost

	FLOAT

	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Note

When start_vid, end_vid and node columns have negative values, the identifier is for a Point.

Additional Examples¶

	Use pgr_findCloseEdges in the Points SQL

	Usage variations

	Aggregate cost of the third path.

	Route’s aggregate cost of the route at the end of the third path.

	Nodes visited in the route.

	The aggregate costs of the route when the visited vertices are reached.

	Status of “passes in front” or “visits” of the nodes and points.

Use pgr_findCloseEdges in the Points SQL¶

Visit from vertex \(1\) to the two locations on the graph of point (2.9, 1.8) in order of closeness to the graph.

SELECT * FROM pgr_withPointsVia(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT ST_POINT(2.9, 1.8)),
 0.5, cap => 2)
 p,
 ARRAY[1, -1, -2], details => true);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 1 | -1 | 1 | 6 | 1 | 0 | 0
 2 | 1 | 2 | 1 | -1 | 3 | 7 | 1 | 1 | 1
 3 | 1 | 3 | 1 | -1 | 7 | 8 | 0.9 | 2 | 2
 4 | 1 | 4 | 1 | -1 | -2 | 8 | 0.1 | 2.9 | 2.9
 5 | 1 | 5 | 1 | -1 | 11 | 9 | 1 | 3 | 3
 6 | 1 | 6 | 1 | -1 | 16 | 16 | 1 | 4 | 4
 7 | 1 | 7 | 1 | -1 | 15 | 3 | 1 | 5 | 5
 8 | 1 | 8 | 1 | -1 | 10 | 5 | 0.8 | 6 | 6
 9 | 1 | 9 | 1 | -1 | -1 | -1 | 0 | 6.8 | 6.8
 10 | 2 | 1 | -1 | -2 | -1 | 5 | 0.2 | 0 | 6.8
 11 | 2 | 2 | -1 | -2 | 11 | 8 | 0.1 | 0.2 | 7
 12 | 2 | 3 | -1 | -2 | -2 | -2 | 0 | 0.3 | 7.1
(12 rows)

	Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

	Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

	Point \(-2\) is visited on the route to from vertex \(1\) to Point \(-1\) (See row where \(seq = 4\)).

Usage variations¶

All this examples are about the route that visits the vertices \(\{-1, 7, -3, 16, 15\}\) in that order on a directed graph.

SELECT * FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 7, -3, 16, 15]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -1 | 7 | -1 | 1 | 0.6 | 0 | 0
 2 | 1 | 2 | -1 | 7 | 6 | 4 | 1 | 0.6 | 0.6
 3 | 1 | 3 | -1 | 7 | 7 | -1 | 0 | 1.6 | 1.6
 4 | 2 | 1 | 7 | -3 | 7 | 10 | 1 | 0 | 1.6
 5 | 2 | 2 | 7 | -3 | 8 | 12 | 0.6 | 1 | 2.6
 6 | 2 | 3 | 7 | -3 | -3 | -1 | 0 | 1.6 | 3.2
 7 | 3 | 1 | -3 | 16 | -3 | 12 | 0.4 | 0 | 3.2
 8 | 3 | 2 | -3 | 16 | 12 | 13 | 1 | 0.4 | 3.6
 9 | 3 | 3 | -3 | 16 | 17 | 15 | 1 | 1.4 | 4.6
 10 | 3 | 4 | -3 | 16 | 16 | -1 | 0 | 2.4 | 5.6
 11 | 4 | 1 | 16 | 15 | 16 | 16 | 1 | 0 | 5.6
 12 | 4 | 2 | 16 | 15 | 15 | -2 | 0 | 1 | 6.6
(12 rows)

Aggregate cost of the third path.¶

SELECT agg_cost FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 7, -3, 16, 15])
WHERE path_id = 3 AND edge < 0;
 agg_cost

 2.4
(1 row)

Route’s aggregate cost of the route at the end of the third path.¶

SELECT route_agg_cost FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 7, -3, 16, 15])
WHERE path_id = 3 AND edge < 0;
 route_agg_cost

 5.6
(1 row)

Nodes visited in the route.¶

SELECT row_number() over () as node_seq, node
FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 7, -3, 16, 15])
WHERE edge <> -1 ORDER BY seq;
 node_seq | node
----------+------
 1 | -1
 2 | 6
 3 | 7
 4 | 8
 5 | -3
 6 | 12
 7 | 17
 8 | 16
 9 | 15
(9 rows)

The aggregate costs of the route when the visited vertices are reached.¶

SELECT path_id, route_agg_cost FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 7, -3, 16, 15])
WHERE edge < 0;
 path_id | route_agg_cost
---------+----------------
 1 | 1.6
 2 | 3.2
 3 | 5.6
 4 | 6.6
(4 rows)

Status of “passes in front” or “visits” of the nodes and points.¶

SELECT seq, node,
CASE WHEN edge = -1 THEN 'visits'
ELSE 'passes in front'
END as status
FROM pgr_withPointsVia(
 'SELECT id, source, target, cost, reverse_cost FROM edges order by id',
 'SELECT pid, edge_id, fraction, side from pointsOfInterest',
 ARRAY[-1, 7, -3, 16, 15], details => true)
WHERE agg_cost <> 0 or seq = 1;
 seq | node | status
-----+------+-----------------
 1 | -1 | passes in front
 2 | 6 | passes in front
 3 | -6 | passes in front
 4 | 7 | visits
 6 | 8 | passes in front
 7 | -3 | visits
 9 | 12 | passes in front
 10 | 17 | passes in front
 11 | -2 | passes in front
 12 | 16 | visits
 14 | 15 | passes in front
(11 rows)

See Also¶

	withPoints - Family of functions

	Via - Category

	Sample Data network.

Indices and tables

	Index

	Search Page

Introduction¶

This family of functions belongs to the withPoints - Category and the functions that compose them are based one way or another on dijkstra algorithm.

Depending on the name:

	pgr_withPoints is pgr_dijkstra with points

	pgr_withPointsCost is pgr_dijkstraCost with points

	pgr_withPointsCostMatrix is pgr_dijkstraCostMatrix with points

	pgr_withPointsKSP is pgr_ksp with points

	pgr_withPointsDD is pgr_drivingDistance with points

	pgr_withPointsvia is pgr_dijkstraVia with points

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Points SQL

	TEXT

	Points SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path. Negative value is for point’s identifier.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices. Negative values are for point’s identifiers.

	end vid

	BIGINT

	Identifier of the ending vertex of the path. Negative value is for point’s identifier.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices. Negative values are for point’s identifiers.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

With points optional parameters¶

	Parameter

	Type

	Default

	Description

	driving_side

	CHAR

	b

	Value in [r, l, b] indicating if the driving side is:

	r for right driving side.

	l for left driving side.

	b for both.

	details

	BOOLEAN

	false

	
	When true the results will include the points that are in the path.

	When false the results will not include the points that are in the path.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL¶

	Parameter

	Type

	Default

	Description

	pid

	ANY-INTEGER

	value

	Identifier of the point.

	Use with positive value, as internally will be converted to negative value

	If column is present, it can not be NULL.

	If column is not present, a sequential negative value will be given automatically.

	edge_id

	ANY-INTEGER

	
	Identifier of the “closest” edge to the point.

	fraction

	ANY-NUMERICAL

	
	Value in <0,1> that indicates the relative postition from the first end point of the edge.

	side

	CHAR

	b

	Value in [b, r, l, NULL] indicating if the point is:

	In the right r,

	In the left l,

	In both sides b, NULL

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Advanced Documentation¶

Contents

	About points

	Driving side

	Right driving side

	Left driving side

	Driving side does not matter

	Creating temporary vertices

	On a right hand side driving network

	On a left hand side driving network

	When driving side does not matter

About points¶

For this section the following city (see Sample Data) some interesing points such as restaurant, supermarket, post office, etc. will be used as example.

	The graph is directed

	Red arrows show the (source, target) of the edge on the edge table

	Blue arrows show the (target, source) of the edge on the edge table

	Each point location shows where it is located with relation of the edge (source, target)

	On the right for points 2 and 4.

	On the left for points 1, 3 and 5.

	On both sides for point 6.

The representation on the data base follows the Points SQL description, and for this example:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest;
 pid | edge_id | fraction | side
-----+---------+----------+------
 1 | 1 | 0.4 | l
 2 | 15 | 0.4 | r
 3 | 12 | 0.6 | l
 4 | 6 | 0.3 | r
 5 | 5 | 0.8 | l
 6 | 4 | 0.7 | b
(6 rows)

Driving side¶

In the the folowwing images:

	The squared vertices are the temporary vertices,

	The temporary vertices are added according to the driving side,

	visually showing the differences on how depending on the driving side the data is interpreted.

Right driving side¶

[image: _images/rightDrivingSide.png]

	Point 1 located on edge (6, 5)

	Point 2 located on edge (16, 17)

	Point 3 located on edge (8, 12)

	Point 4 located on edge (1, 3)

	Point 5 located on edge (10, 11)

	Point 6 located on edges (6, 7) and (7, 6)

Left driving side¶

[image: _images/leftDrivingSide.png]

	Point 1 located on edge (5, 6)

	Point 2 located on edge (17, 16)

	Point 3 located on edge (8, 12)

	Point 4 located on edge (3, 1)

	Point 5 located on edge (10, 11)

	Point 6 located on edges (6, 7) and (7, 6)

Driving side does not matter¶

	Like having all points to be considered in both sides b

	Prefered usage on undirected graphs

	On the TRSP - Family of functions this option is not valid

[image: _images/noMatterDrivingSide.png]

	Point 1 located on edge (5, 6) and (6, 5)

	Point 2 located on edge (17, 16)``and ``16, 17

	Point 3 located on edge (8, 12)

	Point 4 located on edge (3, 1) and (1, 3)

	Point 5 located on edge (10, 11)

	Point 6 located on edges (6, 7) and (7, 6)

Creating temporary vertices¶

This section will demonstrate how a temporary vertex is created internally on the graph.

Problem

For edge:

SELECT id, source, target, cost, reverse_cost
FROM edges WHERE id = 15;
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 15 | 16 | 17 | 1 | 1
(1 row)

insert point:

SELECT pid, edge_id, fraction, side
FROM pointsOfInterest WHERE pid = 2;
 pid | edge_id | fraction | side
-----+---------+----------+------
 2 | 15 | 0.4 | r
(1 row)

On a right hand side driving network¶

Right driving side

[image: _images/rightDrivingSide.png]

	Arrival to point -2 can be achived only via vertex 16.

	Does not affects edge (17, 16), therefore the edge is kept.

	It only affects the edge (16, 17), therefore the edge is removed.

	Create two new edges:

	Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4\))

	Edge (-2, 17) with cost 0.6 (the remaing cost)

	The total cost of the additional edges is equal to the original cost.

	If more points are on the same edge, the process is repeated recursevly.

On a left hand side driving network¶

Left driving side

[image: _images/leftDrivingSide.png]

	Arrival to point -2 can be achived only via vertex 17.

	Does not affects edge (16, 17), therefore the edge is kept.

	It only affects the edge (17, 16), therefore the edge is removed.

	Create two new edges:

	Work with the original edge (16, 17) as the fraction is a fraction of the original:

	Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4\))

	Edge (-2, 17) with cost 0.6 (the remaing cost)

	If more points are on the same edge, the process is repeated recursevly.

	Flip the Edges and add them to the graph:

	Edge (17, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.

	Edge (-2, 16) becomes (17, -2) with cost 0.6 and is added to the graph.

	The total cost of the additional edges is equal to the original cost.

When driving side does not matter¶

[image: _images/noMatterDrivingSide.png]

	Arrival to point -2 can be achived via vertices 16 or 17.

	Affects the edges (16, 17) and (17, 16), therefore the edges are removed.

	Create four new edges:

	Work with the original edge (16, 17) as the fraction is a fraction of the original:

	Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4\))

	Edge (-2, 17) with cost 0.6 (the remaing cost)

	If more points are on the same edge, the process is repeated recursevly.

	Flip the Edges and add all the edges to the graph:

	Edge (16, -2) is added to the graph.

	Edge (-2, 17) is added to the graph.

	Edge (16, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.

	Edge (-2, 17) becomes (17, -2) with cost 0.6 and is added to the graph.

See Also¶

	withPoints - Category

Indices and tables

	Index

	Search Page

Utilities Category

pgr_findCloseEdges

pgr_findCloseEdges¶

pgr_findCloseEdges - Finds the close edges to a point geometry.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.4.0

	New proposed signatures:

	pgr_findCloseEdges (One point)

	pgr_findCloseEdges (Many points)

Description¶

pgr_findCloseEdges - An utility function that finds the closest edge to a point geometry.

	The geometries must be in the same coordinate system (have the same SRID).

	The code to do the calculations can be obtained for further specific adjustments needed by the application.

	EMTPY SET is returned on dryrun executions

Signatures¶

Summary

pgr_findCloseEdges(Edges SQL, point, tolerance, [options])

pgr_findCloseEdges(Edges SQL, points, tolerance, [options])

options: [cap, partial, dryrun]

Returns set of (edge_id, fraction, side, distance, geom, edge)

OR EMPTY SET

One point¶

pgr_findCloseEdges(Edges SQL, point, tolerance, [options])

options: [cap, partial, dryrun]

Returns set of (edge_id, fraction, side, distance, geom, edge)

OR EMPTY SET

	Example:

	With default values

	Default: cap => 1

	Maximum one row answer.

	Default: partial => true

	With less calculations as possible.

	Default: dryrun => false

	Process query

	Returns

	values on edge_id, fraction, side columns.

	NULL on distance, geom, edge columns.

SELECT *
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT geom FROM pointsOfInterest WHERE pid = 5),
 0.5);
 edge_id | fraction | side | distance | geom | edge
---------+----------+------+----------+------+------
 5 | 0.8 | l | | |
(1 row)

Many points¶

pgr_findCloseEdges(Edges SQL, points, tolerance, [options])

options: [cap, partial, dryrun]

Returns set of (edge_id, fraction, side, distance, geom, edge)

OR EMPTY SET

	Example:

	Find at most \(2\) edges close to all vertices on the points of interest table.

One answer per point, as small as possible.

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, ST_AsText(geom) AS original_point
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT array_agg(geom) FROM pointsOfInterest),
 0.5);
 edge_id | fraction | side | original_point
---------+----------+------+----------------
 1 | 0.40 | l | POINT(1.8 0.4)
 6 | 0.30 | r | POINT(0.3 1.8)
 12 | 0.60 | l | POINT(2.6 3.2)
 15 | 0.40 | r | POINT(4.2 2.4)
 5 | 0.80 | l | POINT(2.9 1.8)
 4 | 0.70 | r | POINT(2.2 1.7)
(6 rows)

Columns edge_id, fraction, side and geom are returned with values.

geom contains the original point geometry to assist on deterpartialing to which point geometry the row belongs to.

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

	point

	POINT

	The point geometry

	points

	POINT[]

	An array of point geometries

	tolerance

	FLOAT

	Max distance between geometries

Optional parameters¶

	Parameter

	Type

	Default

	Description

	cap

	INTEGER

	\(1\)

	Limit output rows

	partial

	BOOLEAN

	true

	
	When true only columns needed for withPoints - Category are calculated.

	When false all columns are calculated

	dryrun

	BOOLEAN

	false

	
	When false calculations are performed.

	When true calculations are not performed and the query to do the calculations is exposed in a PostgreSQL NOTICE.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Description

	id

	ANY-INTEGER

	Identifier of the edge.

	geom

	geometry

	The LINESTRING geometry of the edge.

Result columns¶

Returns set of (edge_id, fraction, side, distance, geom, edge)

	Column

	Type

	Description

	edge_id

	BIGINT

	Identifier of the edge.

	When \(cap = 1\), it is the closest edge.

	fraction

	FLOAT

	Value in <0,1> that indicates the relative postition from the first end-point of the edge.

	side

	CHAR

	Value in [r, l] indicating if the point is:

	In the right r.

	In the left l.

	When the point is on the line it is considered to be on the right.

	distance

	FLOAT

	Distance from point to edge.

	NULL when cap = 1 on the One point signature

	geom

	geometry

	POINT geometry

	One Point: Contains the point on the edge that is fraction away from the starting point of the edge.

	Many Points: Contains the corresponding original point

	edge

	geometry

	LINESTRING geometry from the original point to the closest point of the edge with identifier edge_id

One point results

	The green nodes is the original point

	The geometry geom is a point on the \(sp \rightarrow ep\) edge.

	The geometry edge is a line that connects the original point with geom

[image: digraph G { splines=false; subgraph cluster0 { point [shape=circle;style=filled;color=green]; geom [shape=point;color=black;size=0]; sp, ep; edge[weight=0]; point -> geom [dir=none; penwidth=0, color=red]; edge[weight=2]; sp -> geom -> ep [dir=none;penwidth=3]; {rank=same; point, geom} } subgraph cluster1 { point1 [shape=circle;style=filled;color=green;label=point]; geom1 [shape=point;color=deepskyblue; xlabel="geom"; width=0.3]; sp1 [label=sp]; ep1 [label=ep]; edge[weight=0]; point1 -> geom1 [weight=0, penwidth=3, color=red, label="edge"]; edge[weight=2]; sp1 -> geom1 -> ep1 [dir=none;weight=1, penwidth=3]; geom1 -> point1 [dir=none;weight=0, penwidth=0, color=red]; {rank=same; point1, geom1} } }]

Many point results

	The green nodes are the original points

	The geometry geom, marked as g1 and g2 are the original points

	The geometry edge, marked as edge1 and edge2 is a line that connects the original point with the closest point on the \(sp \rightarrow ep\) edge.

[image: digraph G { splines = false; subgraph cluster0 { p1 [shape=circle;style=filled;color=green]; g1 [shape=point;color=black;size=0]; g2 [shape=point;color=black;size=0]; sp, ep; p2 [shape=circle;style=filled;color=green]; sp -> g1 [dir=none;weight=1, penwidth=3]; g1 -> g2 [dir=none;weight=1, penwidth=3]; g2 -> ep [weight=1, penwidth=3]; g2 -> p2 [dir=none;weight=0, penwidth=0, color=red, partiallen=3]; p1 -> g1 [dir=none;weight=0, penwidth=0, color=red, partiallen=3]; p1 -> {g1, g2} [dir=none;weight=0, penwidth=0, color=red;] {rank=same; p1; g1} {rank=same; p2; g2} } subgraph cluster1 { p3 [shape=circle;style=filled;color=deepskyblue;label=g1]; g3 [shape=point;color=black;size=0]; g4 [shape=point;color=black;size=0]; sp1 [label=sp]; ep1 [label=ep]; p4 [shape=circle;style=filled;color=deepskyblue;label=g2]; sp1 -> g3 [dir=none;weight=1, penwidth=3]; g3 -> g4 [dir=none;weight=1, penwidth=3,len=10]; g4 -> ep1 [weight=1, penwidth=3, len=10]; g4 -> p4 [dir=back;weight=0, penwidth=3, color=red, partiallen=3, label="edge2"]; p3 -> g3 [weight=0, penwidth=3, color=red, partiallen=3, label="edge1"]; p3 -> {g3, g4} [dir=none;weight=0, penwidth=0, color=red]; {rank=same; p3; g3} {rank=same; p4; g4} } }]

Additional Examples¶

	One point examples

	At most two answers

	One answer, all columns

	At most two answers with all columns

	One point dry run execution

	Many points examples

	At most two answers per point

	One answer per point, all columns

	Many points dry run execution

	Find at most two routes to a given point

	A point of interest table

	Points of interest

	Points of interest fillup

	Connecting disconnected components

	Prepare storage for connection information

	Save the vertices connection information

	Save the edges connection information

	Get the closest vertex

	Connecting components

	Checking components

One point examples¶

At most two answers¶

	cap => 2

	Maximum two row answer.

	Default: partial => true

	With less calculations as possible.

	Default: dryrun => false

	Process query

SELECT *
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT geom FROM pointsOfInterest WHERE pid = 5),
 0.5, cap => 2);
 edge_id | fraction | side | distance | geom | edge
---------+--------------------+------+---------------------+------+------
 5 | 0.8 | l | 0.10000000000000009 | |
 8 | 0.8999999999999999 | r | 0.19999999999999996 | |
(2 rows)

Understanding the result

	NULL on geom, edge

	edge_id identifier of the edge close to the original point

	Two edges are withing \(0.5\) distance units from the original point: \({5, 8}\)

	For edge \(5\):

	fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).

	side: The original point is located to the left side of edge \(5\).

	distance: The original point is located \(0.1\) length units from edge \(5\).

	For edge \(8\):

	fraction: The closest point from the original point is at the \(0.89..\) fraction of the edge \(8\).

	side: The original point is located to the right side of edge \(8\).

	distance: The original point is located \(0.19..\) length units from edge \(8\).

One answer, all columns¶

	Default: cap => 1

	Maximum one row answer.

	partial => false

	Calculate all columns

	Default: dryrun => false

	Process query

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, round(distance::numeric, 3) AS distance,
 ST_AsText(geom) AS new_point,
 ST_AsText(edge) AS original_to_new_point
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT geom FROM pointsOfInterest WHERE pid = 5),
 0.5, partial => false);
 edge_id | fraction | side | distance | new_point | original_to_new_point
---------+----------+------+----------+--------------+---------------------------
 5 | 0.80 | l | 0.100 | POINT(3 1.8) | LINESTRING(2.9 1.8,3 1.8)
(1 row)

Understanding the result

	edge_id identifier of the edge closest to the original point

	From all edges within \(0.5\) distance units from the original point: \({5}\) is the closest one.

	For edge \(5\):

	fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).

	side: The original point is located to the left side of edge \(5\).

	distance: The original point is located \(0.1\) length units from edge \(5\).

	geom: Contains the geometry of the closest point on edge \(5\) from the original point.

	edge: Contains the LINESTRING geometry of the original point to the closest point on on edge \(5\) geom

At most two answers with all columns¶

	cap => 2

	Maximum two row answer.

	partial => false

	Calculate all columns

	Default: dryrun => false

	Process query

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, round(distance::numeric, 3) AS distance,
 ST_AsText(geom) AS new_point,
 ST_AsText(edge) AS original_to_new_point
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT geom FROM pointsOfInterest WHERE pid = 5),
 0.5, cap => 2, partial => false);
 edge_id | fraction | side | distance | new_point | original_to_new_point
---------+----------+------+----------+--------------+---------------------------
 5 | 0.80 | l | 0.100 | POINT(3 1.8) | LINESTRING(2.9 1.8,3 1.8)
 8 | 0.90 | r | 0.200 | POINT(2.9 2) | LINESTRING(2.9 1.8,2.9 2)
(2 rows)

Understanding the result:

	edge_id identifier of the edge close to the original point

	Two edges are withing \(0.5\) distance units from the original point: \({5, 8}\)

	For edge \(5\):

	fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).

	side: The original point is located to the left side of edge \(5\).

	distance: The original point is located \(0.1\) length units from edge \(5\).

	geom: Contains the geometry of the closest point on edge \(5\) from the original point.

	edge: Contains the LINESTRING geometry of the original point to the closest point on on edge \(5\) geom

	For edge \(8\):

	fraction: The closest point from the original point is at the \(0.89..\) fraction of the edge \(8\).

	side: The original point is located to the right side of edge \(8\).

	distance: The original point is located \(0.19..\) length units from edge \(8\).

	geom: Contains the geometry of the closest point on edge \(8\) from the original point.

	edge: Contains the LINESTRING geometry of the original point to the closest point on on edge \(8\) geom

One point dry run execution¶

	Returns EMPTY SET.

	partial => true

	Is ignored

	Because it is a dry run excecution, the code for all calculations are shown on the PostgreSQL NOTICE.

	dryrun => true

	Do not process query

	Generate a PostgreSQL NOTICE with the code used to calculate all columns

	cap and original point are used in the code

SELECT *
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT geom FROM pointsOfInterest WHERE pid = 5),
 0.5,
 dryrun => true);
NOTICE:
 WITH
 edges_sql AS (SELECT id, geom FROM edges),
 point_sql AS (SELECT '01010000003333333333330740CDCCCCCCCCCCFC3F'::geometry AS point)

 SELECT
 id::BIGINT AS edge_id,
 ST_LineLocatePoint(geom, point) AS fraction,
 CASE WHEN ST_Intersects(ST_Buffer(geom, 0.5, 'side=right endcap=flat'), point)
 THEN 'r'
 ELSE 'l' END::CHAR AS side,

 geom <-> point AS distance,
 ST_ClosestPoint(geom, point) AS new_point,
 ST_MakeLine(point, ST_ClosestPoint(geom, point)) AS new_line

 FROM edges_sql, point_sql
 WHERE ST_DWithin(geom, point, 0.5)
 ORDER BY geom <-> point LIMIT 1

 edge_id | fraction | side | distance | geom | edge
---------+----------+------+----------+------+------
(0 rows)

Many points examples¶

At most two answers per point¶

	cap => 2

	Maximum two row answer.

	Default: partial => true

	With less calculations as possible.

	Default: dryrun => false

	Process query

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, round(distance::numeric, 3) AS distance,
 ST_AsText(geom) AS geom_is_original, edge
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT array_agg(geom) FROM pointsOfInterest),
 0.5, cap => 2);
 edge_id | fraction | side | distance | geom_is_original | edge
---------+----------+------+----------+------------------+------
 1 | 0.40 | l | 0.200 | POINT(1.8 0.4) |
 6 | 0.30 | r | 0.200 | POINT(0.3 1.8) |
 12 | 0.60 | l | 0.200 | POINT(2.6 3.2) |
 11 | 1.00 | l | 0.447 | POINT(2.6 3.2) |
 15 | 0.40 | r | 0.200 | POINT(4.2 2.4) |
 9 | 1.00 | l | 0.447 | POINT(4.2 2.4) |
 5 | 0.80 | l | 0.100 | POINT(2.9 1.8) |
 8 | 0.90 | r | 0.200 | POINT(2.9 1.8) |
 4 | 0.70 | r | 0.200 | POINT(2.2 1.7) |
 8 | 0.20 | r | 0.300 | POINT(2.2 1.7) |
(10 rows)

Understanding the result

	NULL on edge

	edge_id identifier of the edge close to a original point (geom)

	Two edges at most withing \(0.5\) distance units from each of the original points:

	For POINT(1.8 0.4) and POINT(0.3 1.8) only one edge was found.

	For the rest of the points two edges were found.

	For point POINT(2.9 1.8)

	Edge \(5\) is before \(8\) therefore edge \(5\) has the shortest distance to POINT(2.9 1.8).

	For edge \(5\):

	fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).

	side: The original point is located to the left side of edge \(5\).

	distance: The original point is located \(0.1\) length units from edge \(5\).

	For edge \(8\):

	fraction: The closest point from the original point is at the \(0.89..\) fraction of the edge \(8\).

	side: The original point is located to the right side of edge \(8\).

	distance: The original point is located \(0.19..\) length units from edge \(8\).

One answer per point, all columns¶

	Default: cap => 1

	Maximum one row answer.

	partial => false

	Calculate all columns

	Default: dryrun => false

	Process query

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, round(distance::numeric, 3) AS distance,
 ST_AsText(geom) AS geom_is_original,
 ST_AsText(edge) AS original_to_new_point
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT array_agg(geom) FROM pointsOfInterest),
 0.5, partial => false);
 edge_id | fraction | side | distance | geom_is_original | original_to_new_point
---------+----------+------+----------+------------------+---------------------------
 1 | 0.40 | l | 0.200 | POINT(1.8 0.4) | LINESTRING(1.8 0.4,2 0.4)
 6 | 0.30 | r | 0.200 | POINT(0.3 1.8) | LINESTRING(0.3 1.8,0.3 2)
 12 | 0.60 | l | 0.200 | POINT(2.6 3.2) | LINESTRING(2.6 3.2,2.6 3)
 15 | 0.40 | r | 0.200 | POINT(4.2 2.4) | LINESTRING(4.2 2.4,4 2.4)
 5 | 0.80 | l | 0.100 | POINT(2.9 1.8) | LINESTRING(2.9 1.8,3 1.8)
 4 | 0.70 | r | 0.200 | POINT(2.2 1.7) | LINESTRING(2.2 1.7,2 1.7)
(6 rows)

Understanding the result

	edge_id identifier of the edge closest to the original point

	From all edges within \(0.5\) distance units from the original point: \({5}\) is the closest one.

	For the original point POINT(2.9 1.8)

	Edge \(5\) is the closest edge to the original point

	fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).

	side: The original point is located to the left side of edge \(5\).

	distance: The original point is located \(0.1\) length units from edge \(5\).

	geom: Contains the geometry of the original point POINT(2.9 1.8)

	edge: Contains the LINESTRING geometry of the original point (geom) to the closest point on on edge.

Many points dry run execution¶

	Returns EMPTY SET.

	partial => true

	Is ignored

	Because it is a dry run excecution, the code for all calculations are shown on the PostgreSQL NOTICE.

	dryrun => true

	Do not process query

	Generate a PostgreSQL NOTICE with the code used to calculate all columns

	cap and original point are used in the code

SELECT *
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT array_agg(geom) FROM pointsOfInterest),
 0.5,
 dryrun => true);
NOTICE:
WITH
edges_sql AS (SELECT id, geom FROM edges),
point_sql AS (SELECT unnest('{0101000000CDCCCCCCCCCCFC3F9A9999999999D93F:0101000000CDCCCCCCCCCC10403333333333330340:0101000000CDCCCCCCCCCC04409A99999999990940:0101000000333333333333D33FCDCCCCCCCCCCFC3F:01010000003333333333330740CDCCCCCCCCCCFC3F:01010000009A99999999990140333333333333FB3F}'::geometry[]) AS point),
results AS (
 SELECT
 id::BIGINT AS edge_id,
 ST_LineLocatePoint(geom, point) AS fraction,
 CASE WHEN ST_Intersects(ST_Buffer(geom, 0.5, 'side=right endcap=flat'), point)
 THEN 'r'
 ELSE 'l' END::CHAR AS side,
 geom <-> point AS distance,
 point,
 ST_MakeLine(point, ST_ClosestPoint(geom, point)) AS new_line
 FROM edges_sql, point_sql
 WHERE ST_DWithin(geom, point, 0.5)
 ORDER BY geom <-> point),
prepare_cap AS (
 SELECT row_number() OVER (PARTITION BY point ORDER BY point, distance) AS rn, *
 FROM results)
SELECT edge_id, fraction, side, distance, point, new_line
FROM prepare_cap
WHERE rn <= 1

 edge_id | fraction | side | distance | geom | edge
---------+----------+------+----------+------+------
(0 rows)

Find at most two routes to a given point¶

Using pgr_withPoints - Proposed

SELECT * FROM pgr_withPoints(
 e SELECT * FROM edges e,
 p SELECT edge_id, round(fraction::numeric, 2) AS fraction, side
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges$$,
 (SELECT geom FROM pointsOfInterest WHERE pid = 5),
 0.5, cap => 2)
 p,
 1, ARRAY[-1, -2]);
 seq | path_seq | end_pid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | -2 | 1 | 6 | 1 | 0
 2 | 2 | -2 | 3 | 7 | 1 | 1
 3 | 3 | -2 | 7 | 8 | 0.9 | 2
 4 | 4 | -2 | -2 | -1 | 0 | 2.9
 5 | 1 | -1 | 1 | 6 | 1 | 0
 6 | 2 | -1 | 3 | 7 | 1 | 1
 7 | 3 | -1 | 7 | 8 | 1 | 2
 8 | 4 | -1 | 11 | 9 | 1 | 3
 9 | 5 | -1 | 16 | 16 | 1 | 4
 10 | 6 | -1 | 15 | 3 | 1 | 5
 11 | 7 | -1 | 10 | 5 | 0.8 | 6
 12 | 8 | -1 | -1 | -1 | 0 | 6.8
(12 rows)

A point of interest table¶

Handling points outside the graph.

Points of interest¶

Some times the applications work “on the fly” starting from a location that is not a vertex in the graph. Those locations, in pgRrouting are called points of interest.

The information needed in the points of interest is pid, edge_id, side, fraction.

On this documentation there will be some 6 fixed points of interest and they will be stored on a table.

	Column

	Description

	pid

	A unique identifier.

	edge_id

	Identifier of the edge nearest edge that allows an arrival to the point.

	side

	Is it on the left, right or both sides of the segment edge_id

	fraction

	Where in the segment is the point located.

	geom

	The geometry of the points.

	newPoint

	The geometry of the points moved on top of the segment.

CREATE TABLE pointsOfInterest(
 pid BIGSERIAL PRIMARY KEY,
 edge_id BIGINT,
 side CHAR,
 fraction FLOAT,
 geom geometry);
CREATE TABLE

Points of interest fillup¶

INSERT INTO pointsOfInterest (edge_id, side, fraction, geom) VALUES
(1, 'l' , 0.4, ST_POINT(1.8, 0.4)),
(15, 'r' , 0.4, ST_POINT(4.2, 2.4)),
(12, 'l' , 0.6, ST_POINT(2.6, 3.2)),
(6, 'r' , 0.3, ST_POINT(0.3, 1.8)),
(5, 'l' , 0.8, ST_POINT(2.9, 1.8)),
(4, 'b' , 0.7, ST_POINT(2.2, 1.7));
INSERT 0 6

Connecting disconnected components¶

To get the graph connectivity:

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 3
 3 | 1 | 5
 4 | 1 | 6
 5 | 1 | 7
 6 | 1 | 8
 7 | 1 | 9
 8 | 1 | 10
 9 | 1 | 11
 10 | 1 | 12
 11 | 1 | 13
 12 | 1 | 14
 13 | 1 | 15
 14 | 1 | 16
 15 | 1 | 17
 16 | 1 | 18
 17 | 2 | 2
 18 | 2 | 4
(18 rows)

In this example, the component \(2\) consists of vertices \(\{2, 4\}\) and both vertices are also part of the dead end result set.

This graph needs to be connected.

Note

With the original graph of this documentation, there would be 3 components as the crossing edge in this graph is a different component.

Prepare storage for connection information¶

ALTER TABLE vertices ADD COLUMN component BIGINT;
ALTER TABLE
ALTER TABLE edges ADD COLUMN component BIGINT;
ALTER TABLE

Save the vertices connection information¶

UPDATE vertices SET component = c.component
FROM (SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
)) AS c
WHERE id = node;
UPDATE 18

Save the edges connection information¶

UPDATE edges SET component = v.component
FROM (SELECT id, component FROM vertices) AS v
WHERE source = v.id;
UPDATE 20

Get the closest vertex¶

Using pgr_findCloseEdges the closest vertex to component \(1\) is vertex \(4\). And the closest edge to vertex \(4\) is edge \(14\).

SELECT edge_id, fraction, ST_AsText(edge) AS edge, id AS closest_vertex
FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges WHERE component = 1$$,
 (SELECT array_agg(geom) FROM vertices WHERE component = 2),
 2, partial => false) JOIN vertices USING (geom) ORDER BY distance LIMIT 1;
 edge_id | fraction | edge | closest_vertex
---------+----------+--------------------------------------+----------------
 14 | 0.5 | LINESTRING(1.999999999999 3.5,2 3.5) | 4
(1 row)

The edge can be used to connect the components, using the fraction information about the edge \(14\) to split the connecting edge.

Connecting components¶

There are three basic ways to connect the components

	From the vertex to the starting point of the edge

	From the vertex to the ending point of the edge

	From the vertex to the closest vertex on the edge

	This solution requires the edge to be split.

The following query shows the three ways to connect the components:

WITH
info AS (
 SELECT
 edge_id, fraction, side, distance, ce.geom, edge, v.id AS closest,
 source, target, capacity, reverse_capacity, e.geom AS e_geom
 FROM pgr_findCloseEdges(
 $$SELECT id, geom FROM edges WHERE component = 1$$,
 (SELECT array_agg(geom) FROM vertices WHERE component = 2),
 2, partial => false) AS ce
 JOIN vertices AS v USING (geom)
 JOIN edges AS e ON (edge_id = e.id)
 ORDER BY distance LIMIT 1),
three_options AS (
 SELECT
 closest AS source, target, 0 AS cost, 0 AS reverse_cost,
 capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_EndPoint(e_geom)) AS x2, ST_Y(ST_EndPoint(e_geom)) AS y2,
 ST_MakeLine(geom, ST_EndPoint(e_geom)) AS geom
 FROM info
 UNION
 SELECT closest, source, 0, 0, capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_StartPoint(e_geom)) AS x2, ST_Y(ST_StartPoint(e_geom)) AS y2,
 ST_MakeLine(info.geom, ST_StartPoint(e_geom))
 FROM info
 /*
 UNION
 -- This option requires splitting the edge
 SELECT closest, NULL, 0, 0, capacity, reverse_capacity,
 ST_X(geom) AS x1, ST_Y(geom) AS y1,
 ST_X(ST_EndPoint(edge)) AS x2, ST_Y(ST_EndPoint(edge)) AS y2,
 edge
 FROM info */
)
INSERT INTO edges
 (source, target,
 cost, reverse_cost,
 capacity, reverse_capacity,
 x1, y1, x2, y2,
 geom)
(SELECT
 source, target, cost, reverse_cost, capacity, reverse_capacity,
 x1, y1, x2, y2, geom
 FROM three_options);
INSERT 0 2

Checking components¶

Ignoring the edge that requires further work. The graph is now fully connected as there is only one component.

SELECT * FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | component | node
-----+-----------+------
 1 | 1 | 1
 2 | 1 | 2
 3 | 1 | 3
 4 | 1 | 4
 5 | 1 | 5
 6 | 1 | 6
 7 | 1 | 7
 8 | 1 | 8
 9 | 1 | 9
 10 | 1 | 10
 11 | 1 | 11
 12 | 1 | 12
 13 | 1 | 13
 14 | 1 | 14
 15 | 1 | 15
 16 | 1 | 16
 17 | 1 | 17
 18 | 1 | 18
(18 rows)

See Also¶

	withPoints - Category

	Sample Data

Indices and tables

	Index

	Search Page

See Also¶

	Experimental Functions

Indices and tables

	Index

	Search Page

Experimental Functions¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Families

Flow - Family of functions

	pgr_maxFlowMinCost - Experimental - Details of flow and cost on edges.

	pgr_maxFlowMinCost_Cost - Experimental - Only the Min Cost calculation.

Chinese Postman Problem - Family of functions (Experimental)

	pgr_chinesePostman - Experimental

	pgr_chinesePostmanCost - Experimental

Coloring - Family of functions

	pgr_bipartite -Experimental - Bipartite graph algorithm using a DFS-based coloring approach.

	pgr_edgeColoring - Experimental - Edge Coloring algorithm using Vizing’s theorem.

Transformation - Family of functions

	pgr_lineGraphFull - Experimental - Transformation algorithm for generating a Line Graph out of each vertex in the input graph.

Traversal - Family of functions

	pgr_breadthFirstSearch - Experimental - Breath first search traversal of the graph.

	pgr_binaryBreadthFirstSearch - Experimental - Breath first search traversal of the graph.

Components - Family of functions

	pgr_makeConnected - Experimental - Details of edges to make graph connected.

Ordering - Family of functions

	pgr_cuthillMckeeOrdering - Experimental - Return reverse Cuthill-McKee ordering of an undirected graph.

	pgr_topologicalSort - Experimental - Linear ordering of the vertices for directed acyclic graph.

Metrics - Family of functions

	pgr_betweennessCentrality - Calculates relative betweenness centrality using Brandes Algorithm

TRSP - Family of functions

	pgr_turnRestrictedPath - Experimental - Routing with restrictions.

Chinese Postman Problem - Family of functions (Experimental)¶

	pgr_chinesePostman - Experimental

	pgr_chinesePostmanCost - Experimental

	Supported versions

pgr_chinesePostman - Experimental¶

pgr_chinesePostman — Calculates the shortest circuit path which contains every edge in a directed graph and starts and ends on the same vertex.

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental signature

Description¶

The main characteristics are:

	Process is done only on edges with positive costs.

	Running time: \(O(E * (E + V * logV))\)

	Graph must be connected.

	Returns EMPTY SET on a disconnected graph

Signatures¶

pgr_chinesePostman(Edges SQL)

Returns set of (seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	

SELECT * FROM pgr_chinesePostman(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id < 17');
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 1 | 6 | 1 | 0
 2 | 3 | 7 | 1 | 1
 3 | 7 | 4 | 1 | 2
 4 | 6 | 4 | 1 | 3
 5 | 7 | 8 | 1 | 4
 6 | 11 | 8 | 1 | 5
 7 | 7 | 10 | 1 | 6
 8 | 8 | 12 | 1 | 7
 9 | 12 | 13 | 1 | 8
 10 | 17 | 15 | 1 | 9
 11 | 16 | 15 | 1 | 10
 12 | 17 | 15 | 1 | 11
 13 | 16 | 16 | 1 | 12
 14 | 15 | 16 | 1 | 13
 15 | 16 | 9 | 1 | 14
 16 | 11 | 11 | 1 | 15
 17 | 12 | 13 | 1 | 16
 18 | 17 | 15 | 1 | 17
 19 | 16 | 16 | 1 | 18
 20 | 15 | 3 | 1 | 19
 21 | 10 | 5 | 1 | 20
 22 | 11 | 9 | 1 | 21
 23 | 16 | 16 | 1 | 22
 24 | 15 | 3 | 1 | 23
 25 | 10 | 2 | 1 | 24
 26 | 6 | 1 | 1 | 25
 27 | 5 | 1 | 1 | 26
 28 | 6 | 4 | 1 | 27
 29 | 7 | 10 | 1 | 28
 30 | 8 | 14 | 1 | 29
 31 | 9 | 14 | 1 | 30
 32 | 8 | 10 | 1 | 31
 33 | 7 | 7 | 1 | 32
 34 | 3 | 6 | 1 | 33
 35 | 1 | -1 | 0 | 34
(35 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

An Edges SQL that represents a directed graph with the following columns

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_v to node.

See Also¶

	Chinese Postman Problem - Family of functions (Experimental)

	Sample Data

Indices and tables

	Index

	Search Page

pgr_chinesePostmanCost - Experimental¶

pgr_chinesePostmanCost — Calculates the minimum costs of a circuit path which contains every edge in a directed graph and starts and ends on the same vertex.

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental signature

Description¶

The main characteristics are:

	Process is done only on edges with positive costs.

	Running time: \(O(E * (E + V * logV))\)

	Graph must be connected.

	Return value when the graph if disconnected

Signatures¶

pgr_chinesePostmanCost(Edges SQL)

RETURNS FLOAT

	Example:

	

SELECT * FROM pgr_chinesePostmanCost(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id < 17');
 pgr_chinesepostmancost

 34
(1 row)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

An Edges SQL that represents a directed graph with the following columns

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	pgr_chinesepostmancost

	FLOAT

	Minimum costs of a circuit path.

See Also¶

	Chinese Postman Problem - Family of functions (Experimental)

	Sample Data

Indices and tables

	Index

	Search Page

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Description¶

The main characteristics are:

	Process is done only on edges with positive costs.

	Running time: \(O(E * (E + V * logV))\)

	Graph must be connected.

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

An Edges SQL that represents a directed graph with the following columns

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also¶

Indices and tables

	Index

	Search Page

Transformation - Family of functions¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

	pgr_lineGraph - Proposed - Transformation algorithm for generating a Line Graph.

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_lineGraphFull - Experimental - Transformation algorithm for generating a Line Graph out of each vertex in the input graph.

pgr_lineGraph - Proposed¶

pgr_lineGraph — Transforms the given graph into its corresponding edge-based graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Proposed functions for next mayor release.

	They are not officially in the current release.

	They will likely officially be part of the next mayor release:

	The functions make use of ANY-INTEGER and ANY-NUMERICAL

	Name might not change. (But still can)

	Signature might not change. (But still can)

	Functionality might not change. (But still can)

	pgTap tests have being done. But might need more.

	Documentation might need refinement.

Availability

	Version 3.7.0

	Promoted to proposed signature.

	Works for directed and undirected graphs.

	Version 2.5.0

	New Experimental function

Description¶

Given a graph \(G\), its line graph \(L(G)\) is a graph such that:

	Each vertex of \(L(G)\) represents an edge of \(G\).

	Two vertices of \(L(G)\) are adjacent if and only if their corresponding edges share a common endpoint in \(G\)

The main characteristics are:

	Works for directed and undirected graphs.

	The cost and reverse_cost columns of the result represent existence of the edge.

	When the graph is directed the result is directed.

	To get the complete Line Graph use unique identifiers on the double way edges (See Additional Examples).

	When the graph is undirected the result is undirected.

	The reverse_cost is always \(-1\).

Signatures¶

pgr_lineGraph(Edges SQL, [directed])

Returns set of (seq, source, target, cost, reverse_cost)

OR EMPTY SET

	Example:

	For an undirected graph with edges :math:’{2,4,5,8}’

SELECT * FROM pgr_lineGraph(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id IN (2,4,5,8)',
 false);
 seq | source | target | cost | reverse_cost
-----+--------+--------+------+--------------
 1 | 2 | 4 | 1 | -1
 2 | 2 | 5 | 1 | -1
 3 | 4 | 8 | 1 | -1
 4 | 5 | 8 | 1 | -1
(4 rows)

[image: graph G { v6 [label=6,shape=circle;style=filled;fixedsize=true;width=.4;color=deepskyblue,pos="0,0!"]; v7 [label=7,shape=circle;style=filled;fixedsize=true;width=.4;color=deepskyblue,pos="0,2!"]; v10 [label=10,shape=circle;style=filled;fixedsize=true;width=.4;color=deepskyblue,pos="2,0!"]; v11 [label=11,shape=circle;style=filled;fixedsize=true;width=.4;color=deepskyblue,pos="2,2!"]; v7--v6 [color=blue]; v7--v11 [color=blue]; v10--v6 [color=blue]; v10--v11 [color=blue]; s2 [label="2",shape=circle;style=filled;width=.4;color=yellow,pos="1,0!"]; s4 [label="4",shape=circle;style=filled;width=.4;color=yellow,pos="0,1!"]; s5 [label="5",shape=circle;style=filled;width=.4;color=yellow,pos="2,1!"]; s8 [label="8",shape=circle;style=filled;width=.4;color=yellow,pos="1,2!"]; s2--s4 [color=red]; s2--s5 [color=red]; s4--s8 [color=red]; s5--s8 [color=red]; }]

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, source, target, cost, reverse_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	Gives a local identifier for the edge

	source

	BIGINT

	Identifier of the source vertex of the current edge.

	When negative: the source is the reverse edge in the original graph.

	target

	BIGINT

	Identifier of the target vertex of the current edge.

	When negative: the target is the reverse edge in the original graph.

	cost

	FLOAT

	Weight of the edge (source, target).

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	FLOAT

	Weight of the edge (target, source).

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Additional Examples¶

	Representation as directed with shared edge identifiers

	Line Graph of a directed graph represented with shared edges

	Representation as directed with unique edge identifiers

	Line Graph of a directed graph represented with unique edges

Given the following directed graph

\(G(V,E) = G(\{1,2,3,4\},\{ 1 \rightarrow 2, 1 \rightarrow 4, 2 \rightarrow 3, 3 \rightarrow 1, 3 \rightarrow 2, 3 \rightarrow 4, 4 \rightarrow 3\})\)

[image: digraph G { subgraph clusterA { style=invis; edge [arrowsize=0.5,color=blue]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=deepskyblue]; v1 [label=1,pos="0,2!"]; v2 [label=2,pos="2,2!"]; v3 [label=3,pos="2,0!"]; v4 [label=4,pos="0,0!"]; v1->{v2,v4} [color=blue]; v3->{v2,v4} [dir=both,color=blue]; v3->v1 [arrowsize=0.5,color=blue]; } }]

Representation as directed with shared edge identifiers¶

For the simplicity, the design of the edges table on the database, has the edge’s identifiers are represented with 3 digits:

	hundreds:

	the source vertex

	tens:

	always 0, acts as a separator

	units:

	the target vertex

In this image,

	Single or double head arrows represent one edge (row) on the edges table.

	The numbers in the yellow shadow are the edge identifiers.

[image: digraph G { subgraph clusterA { style=invis; edge [arrowsize=0.5,color=blue]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=deepskyblue]; v1 [label=1,pos="0,2!"]; v2 [label=2,pos="2,2!"]; v3 [label=3,pos="2,0!"]; v4 [label=4,pos="0,0!"]; v1->{v2,v4} [color=blue]; v3->{v2,v4} [dir=both,color=blue]; v3->v1 [arrowsize=0.5,color=blue]; } subgraph clusterB { style=invis; edge [arrowsize=0.5,color=red,fontsize=10,fontcolor=red]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=yellow] s102 [label="102",pos="1,2!"]; s104 [label="104",pos="0,1!"]; s301 [label="301",pos="1,1!"]; s203 [label="203",pos="2,1!"]; s304 [label="304",pos="1,0!"]; } }]

Two pair of edges share the same identifier when the reverse_cost column is used.

	Edges \({2 \rightarrow 3, 3 \rightarrow 2}\) are represented with one edge row with \(id=203\).

	Edges \({3 \rightarrow 4, 4 \rightarrow 3}\) are represented with one edge row with \(id=304\).

The graph can be created as follows:

CREATE TABLE edges_shared (
 id BIGINT,
 source BIGINT,
 target BIGINT,
 cost FLOAT,
 reverse_cost FLOAT,
 geom geometry
);
CREATE TABLE
INSERT INTO edges_shared (id, source, target, cost, reverse_cost, geom) VALUES
 (102, 1, 2, 1, -1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(2, 2))),
 (104, 1, 4, 1, -1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(0, 0))),
 (301, 3, 1, 1, -1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(0, 2))),
 (203, 2, 3, 1, 1, ST_MakeLine(ST_POINT(2, 2), ST_POINT(2, 0))),
 (304, 3, 4, 1, 1, ST_MakeLine(ST_POINT(0, 0), ST_POINT(2, 0)));

Line Graph of a directed graph represented with shared edges¶

SELECT seq, source, target, cost, reverse_cost
FROM pgr_lineGraph(
 'SELECT id, source, target, cost, reverse_cost FROM edges_shared',
 true);
 seq | source | target | cost | reverse_cost
-----+--------+--------+------+--------------
 1 | 102 | 203 | 1 | -1
 2 | 104 | 304 | 1 | -1
 3 | 203 | 203 | 1 | 1
 4 | 203 | 301 | 1 | -1
 5 | 203 | 304 | 1 | 1
 6 | 301 | 102 | 1 | -1
 7 | 301 | 104 | 1 | -1
 8 | 304 | 301 | 1 | -1
 9 | 304 | 304 | 1 | 1
(9 rows)

	The result is a directed graph.

	For \(seq=4\) from \(203 \leftrightarrow 304\) represent two edges

	For all the other values of seq represent one edge.

	The cost and reverse_cost values represent the existence of the edge.

	When positive: the edge exists.

	When negative: the edge does not exist.

[image: digraph G { subgraph clusterA { style=invis; edge [arrowsize=0.5,color=blue]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=deepskyblue]; v1 [label=1,pos="0,4!"]; v2 [label=2,pos="4,4!"]; v3 [label=3,pos="4,0!"]; v4 [label=4,pos="0,0!"]; v1->{v2,v4} [color=blue]; v3->{v2,v4} [dir=both,color=blue]; v3->v1 [arrowsize=0.5,color=blue]; } subgraph clusterB { style=invis; edge [arrowsize=0.5,labelfloat=true,color=red,fontsize=14,fontcolor=red]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=yellow] s102 [label="102",pos="2,4!"]; s104 [label="104",pos="0,2!"]; s301 [label="301",pos="2,2!"]; s203 [label="203",pos="4,2!"]; s304 [label="304",pos="2,0!"]; s102 -> s203 [label=1]; s104 -> s304 [label=2]; s203 -> s203 [label=3,dir=both]; s203 -> s301 [label=4]; s203 -> s304 [label=5,dir=both]; s301 -> s102 [label=6]; s301 -> s104 [label=7]; s304 -> s301 [label=8]; s304 -> s304 [label=9,dir=both]; } }]

Representation as directed with unique edge identifiers¶

For the simplicity, the design of the edges table on the database, has the edge’s identifiers are represented with 3 digits:

	hundreds:

	the source vertex

	tens:

	always 0, acts as a separator

	units:

	the target vertex

In this image,

	Single head arrows represent one edge (row) on the edges table.

	There are no double head arrows

	The numbers in the yellow shadow are the edge identifiers.

[image: digraph G { subgraph clusterA { style=invis; edge [arrowsize=0.5,color=blue]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=deepskyblue] v1 [label=1,pos="0,2!"]; v2 [label=2,pos="2,2!"]; v3 [label=3,pos="2,0!"]; v4 [label=4,pos="0,0!"]; v1->{v2,v4}; v3->{v1,v2,v4}; {v4,v2}->v3; } subgraph clusterB { style=invis; edge [arrowsize=0.5,color=red,fontsize=6,fontcolor=red]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=yellow] sa [label="102",pos="1,2!"]; sb [label="203",pos="2.2,1!"]; sc [label="302",pos="1.8,1!"]; sd [label="104",pos="0,1!"]; se [label="403",pos="1,0.2!"]; sf [label="304",pos="1,-0.2!"]; sg [label="301",pos="1,1!"]; } }]

Two pair of edges share the same ending nodes and the reverse_cost column is not used.

	Edges \({2 \rightarrow 3, 3 \rightarrow 2}\) are represented with two edges \(id=203\) and \(id=302\) respectively.

	Edges \({3 \rightarrow 4, 4 \rightarrow 3}\) are represented with two edges \(id=304\) and \(id=403\) respectively.

The graph can be created as follows:

CREATE TABLE edges_unique (
 id BIGINT,
 source BIGINT,
 target BIGINT,
 cost FLOAT,
 geom geometry
);
CREATE TABLE
INSERT INTO edges_unique (id, source, target, cost, geom) VALUES
 (102, 1, 2, 1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(2, 2))),
 (104, 1, 4, 1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(0, 0))),
 (301, 3, 1, 1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(0, 2))),
 (203, 2, 3, 1, ST_MakeLine(ST_POINT(2, 2), ST_POINT(2, 0))),
 (304, 3, 4, 1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(0, 0))),
 (302, 3, 2, 1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(2, 2))),
 (403, 4, 3, 1, ST_MakeLine(ST_POINT(0, 0), ST_POINT(2, 0)));

Line Graph of a directed graph represented with unique edges¶

SELECT seq, source, target, cost, reverse_cost
FROM pgr_lineGraph(
 'SELECT id, source, target, cost FROM edges_unique',
 true);
 seq | source | target | cost | reverse_cost
-----+--------+--------+------+--------------
 1 | 102 | 203 | 1 | -1
 2 | 104 | 403 | 1 | -1
 3 | 203 | 301 | 1 | -1
 4 | 203 | 304 | 1 | -1
 5 | 301 | 102 | 1 | -1
 6 | 301 | 104 | 1 | -1
 7 | 302 | 203 | 1 | 1
 8 | 304 | 403 | 1 | 1
 9 | 403 | 301 | 1 | -1
 10 | 403 | 302 | 1 | -1
(10 rows)

	The result is a directed graph.

	For \(seq=7\) from \(203 \leftrightarrow 302\) represent two edges.

	For \(seq=8\) from \(304 \leftrightarrow 403\) represent two edges.

	For all the other values of seq represent one edge.

	The cost and reverse_cost values represent the existence of the edge.

	When positive: the edge exists.

	When negative: the edge does not exist.

[image: digraph G { subgraph clusterA { style=invis; edge [arrowsize=0.5,color=blue]; node [shape=circle;style=filled;fontsize=10;fixedsize=true;width=.4;color=deepskyblue] v1 [label=1,pos="0,4!"]; v2 [label=2,pos="4,4!"]; v3 [label=3,pos="4,0!"]; v4 [label=4,pos="0,0!"]; v1->{v2,v4}; v3->{v1,v2,v4}; {v4,v2}->v3; } subgraph clusterB { style=invis; edge [arrowsize=0.5,labelfloat=true,color=red,fontsize=14,fontcolor=red]; node [shape=circle;style=filled;fontsize=8;fixedsize=true;width=.4;color=yellow] sa [label="102",pos="2,4!"]; sb [label="203",pos="4.4,2!"]; sc [label="302",pos="3.6,2!"]; sd [label="104",pos="0,2!"]; se [label="403",pos="2,0.4!"]; sf [label="304",pos="2,-0.4!"]; sg [label="301",pos="2,2!"]; sa -> sb [label=1]; sd -> se [label=2]; sb -> sg [label=3]; sb -> sf [label=4]; sg -> sa [label=5]; sg -> sd [label=6]; sc -> sb [dir=both,label=7]; sf -> se [dir=both,label=8]; se -> sg [label=9]; se -> sc [label=10]; } }]

See Also¶

	wikipedia: Line Graph

	mathworld: Line Graph

	Sample Data

Indices and tables

	Index

	Search Page

pgr_lineGraphFull - Experimental¶

pgr_lineGraphFull — Transforms a given graph into a new graph where all of the vertices from the original graph are converted to line graphs.

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 2.6.0

	New Experimental function

Description¶

pgr_lineGraphFull, converts original directed graph to a directed line graph by converting each vertex to a complete graph and keeping all the original edges. The new connecting edges have a cost 0 and go between the adjacent original edges, respecting the directionality.

A possible application of the resulting graph is “routing with two edge restrictions”:

	Setting a cost of using the vertex when routing between edges on the connecting edge

	Forbid the routing between two edges by removing the connecting edge

This is possible because each of the intersections (vertices) in the original graph are now complete graphs that have a new edge for each possible turn across that intersection.

The main characteristics are:

	This function is for directed graphs.

	Results are undefined when a negative vertex id is used in the input graph.

	Results are undefined when a duplicated edge id is used in the input graph.

	Running time: TBD

Signatures¶

Summary

pgr_lineGraphFull(Edges SQL)

Returns set of (seq, source, target, cost, edge)

OR EMPTY SET

	Example:

	Full line graph of subgraph of edges \(\{4, 7, 8, 10\}\)

SELECT * FROM pgr_lineGraphFull(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges
 WHERE id IN (4, 7, 8, 10)$$);
 seq | source | target | cost | edge
-----+--------+--------+------+------
 1 | -1 | 7 | 1 | 4
 2 | 6 | -1 | 0 | 0
 3 | -2 | 6 | 1 | -4
 4 | -3 | 3 | 1 | -7
 5 | -4 | 11 | 1 | 8
 6 | -5 | 8 | 1 | 10
 7 | 7 | -2 | 0 | 0
 8 | 7 | -3 | 0 | 0
 9 | 7 | -4 | 0 | 0
 10 | 7 | -5 | 0 | 0
 11 | -6 | -2 | 0 | 0
 12 | -6 | -3 | 0 | 0
 13 | -6 | -4 | 0 | 0
 14 | -6 | -5 | 0 | 0
 15 | -7 | -2 | 0 | 0
 16 | -7 | -3 | 0 | 0
 17 | -7 | -4 | 0 | 0
 18 | -7 | -5 | 0 | 0
 19 | -8 | -2 | 0 | 0
 20 | -8 | -3 | 0 | 0
 21 | -8 | -4 | 0 | 0
 22 | -8 | -5 | 0 | 0
 23 | -9 | -6 | 1 | 7
 24 | 3 | -9 | 0 | 0
 25 | -10 | -7 | 1 | -8
 26 | 11 | -10 | 0 | 0
 27 | -11 | -8 | 1 | -10
 28 | 8 | -11 | 0 | 0
(28 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, source, target, cost, edge)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	Gives a local identifier for the edge

	source

	BIGINT

	Identifier of the source vertex of the current edge.

	When negative: the source is the reverse edge in the original graph.

	target

	BIGINT

	Identifier of the target vertex of the current edge.

	When negative: the target is the reverse edge in the original graph.

	cost

	FLOAT

	Weight of the edge (source, target).

	When negative: edge (source, target) does not exist, therefore it’s not part of the graph.

	reverse_cost

	FLOAT

	Weight of the edge (target, source).

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Additional Examples¶

	The data

	The transformation

	Creating table that identifies transformed vertices

	Store edge results

	Create the mapping table

	Filling the mapping table

	Adding a soft restriction

	Idenifying the restriction

	Adding a value to the restriction

	Simplifying leaf vertices

	Using the vertex map give the leaf verices their original value.

	Removing self loops on leaf nodes

	Complete routing graph

	Add edges from the original graph

	Add the newly calculated edges

	Using the routing graph

The examples of this section are based on the Sample Data network. The examples include the subgraph including edges 4, 7, 8, and 10 with reverse_cost.

The data¶

This example displays how this graph transformation works to create additional edges for each possible turn in a graph.

SELECT id, source, target, cost, reverse_cost
FROM edges
WHERE id IN (4, 7, 8, 10);
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 4 | 6 | 7 | 1 | 1
 7 | 3 | 7 | 1 | 1
 8 | 7 | 11 | 1 | 1
 10 | 7 | 8 | 1 | 1
(4 rows)

[image: first]

The transformation¶

SELECT * FROM pgr_lineGraphFull(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges
 WHERE id IN (4, 7, 8, 10)$$);
 seq | source | target | cost | edge
-----+--------+--------+------+------
 1 | -1 | 7 | 1 | 4
 2 | 6 | -1 | 0 | 0
 3 | -2 | 6 | 1 | -4
 4 | -3 | 3 | 1 | -7
 5 | -4 | 11 | 1 | 8
 6 | -5 | 8 | 1 | 10
 7 | 7 | -2 | 0 | 0
 8 | 7 | -3 | 0 | 0
 9 | 7 | -4 | 0 | 0
 10 | 7 | -5 | 0 | 0
 11 | -6 | -2 | 0 | 0
 12 | -6 | -3 | 0 | 0
 13 | -6 | -4 | 0 | 0
 14 | -6 | -5 | 0 | 0
 15 | -7 | -2 | 0 | 0
 16 | -7 | -3 | 0 | 0
 17 | -7 | -4 | 0 | 0
 18 | -7 | -5 | 0 | 0
 19 | -8 | -2 | 0 | 0
 20 | -8 | -3 | 0 | 0
 21 | -8 | -4 | 0 | 0
 22 | -8 | -5 | 0 | 0
 23 | -9 | -6 | 1 | 7
 24 | 3 | -9 | 0 | 0
 25 | -10 | -7 | 1 | -8
 26 | 11 | -10 | 0 | 0
 27 | -11 | -8 | 1 | -10
 28 | 8 | -11 | 0 | 0
(28 rows)

[image: second]

In the transformed graph, all of the edges from the original graph are still present (yellow), but we now have additional edges for every turn that could be made across vertex 7 (orange).

Creating table that identifies transformed vertices¶

The vertices in the transformed graph are each created by splitting up the vertices in the original graph. Unless a vertex in the original graph is a leaf vertex, it will generate more than one vertex in the transformed graph. One of the newly created vertices in the transformed graph will be given the same vertex identifier as the vertex that it was created from in the original graph, but the rest of the newly created vertices will have negative vertex ids.

Following is an example of how to generate a table that maps the ids of the newly created vertices with the original vertex that they were created from

Store edge results¶

The first step is to store the results of the pgr_lineGraphFull call into a table

SELECT seq AS id, source, target, cost, edge
INTO lineGraph_edges
FROM pgr_lineGraphFull(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges
 WHERE id IN (4, 7, 8, 10)$$);
SELECT 28

Create the mapping table¶

From the original graph’s vertex information

SELECT id, NULL::BIGINT original_id
INTO vertex_map
FROM vertices;
SELECT 17

Add the new vertices

INSERT INTO vertex_map (id)
(SELECT id
FROM pgr_extractVertices(
 $$SELECT id, source, target FROM lineGraph_edges$$) WHERE id < 0);
INSERT 0 11

Filling the mapping table¶

The positive vertex identifiers are the original identifiers

UPDATE vertex_map
SET original_id = id
WHERE id > 0;
UPDATE 17

Inspecting the vertices map

SELECT *
FROM vertex_map ORDER BY id DESC;
 id | original_id
-----+-------------
 17 | 17
 16 | 16
 15 | 15
 14 | 14
 13 | 13
 12 | 12
 11 | 11
 10 | 10
 9 | 9
 8 | 8
 7 | 7
 6 | 6
 5 | 5
 4 | 4
 3 | 3
 2 | 2
 1 | 1
 -1 |
 -2 |
 -3 |
 -4 |
 -5 |
 -6 |
 -7 |
 -8 |
 -9 |
 -10 |
 -11 |
(28 rows)

The self loops happen when there is no cost traveling to the target and the source has an original value.

SELECT *, source AS targets_original_id
 FROM lineGraph_edges
 WHERE cost = 0 and source > 0;
 id | source | target | cost | edge | targets_original_id
----+--------+--------+------+------+---------------------
 2 | 6 | -1 | 0 | 0 | 6
 7 | 7 | -2 | 0 | 0 | 7
 8 | 7 | -3 | 0 | 0 | 7
 9 | 7 | -4 | 0 | 0 | 7
 10 | 7 | -5 | 0 | 0 | 7
 24 | 3 | -9 | 0 | 0 | 3
 26 | 11 | -10 | 0 | 0 | 11
 28 | 8 | -11 | 0 | 0 | 8
(8 rows)

Updating values from self loops

WITH
self_loops AS (
 SELECT DISTINCT source, target, source AS targets_original_id
 FROM lineGraph_edges
 WHERE cost = 0 and source > 0)
UPDATE vertex_map SET original_id = targets_original_id
FROM self_loops WHERE target = id;
UPDATE 8

Inspecting the vertices table

SELECT *
FROM vertex_map WHERE id < 0
ORDER BY id DESC;
 id | original_id
-----+-------------
 -1 | 6
 -2 | 7
 -3 | 7
 -4 | 7
 -5 | 7
 -6 |
 -7 |
 -8 |
 -9 | 3
 -10 | 11
 -11 | 8
(11 rows)

Updating from inner self loops

WITH
assigned_vertices
AS (SELECT id, original_id
 FROM vertex_map
 WHERE original_id IS NOT NULL),
cross_edges
AS (SELECT DISTINCT e.source, v.original_id AS source_original_id
 FROM lineGraph_edges AS e
 JOIN vertex_map AS v ON (e.target = v.id)
 WHERE source NOT IN (SELECT id FROM assigned_vertices)
)
UPDATE vertex_map SET original_id = source_original_id
FROM cross_edges WHERE source = id;
UPDATE 3

Inspecting the vertices map

SELECT *
FROM vertex_map WHERE id < 0
ORDER BY id DESC;
 id | original_id
-----+-------------
 -1 | 6
 -2 | 7
 -3 | 7
 -4 | 7
 -5 | 7
 -6 | 7
 -7 | 7
 -8 | 7
 -9 | 3
 -10 | 11
 -11 | 8
(11 rows)

Adding a soft restriction¶

A soft restriction going from vertex 6 to vertex 3 using edges 4 -> 7 is wanted.

Idenifying the restriction¶

Running a pgr_dijkstraNear - Proposed the edge with cost 0, edge 8, is where the cost will be increased

SELECT seq, path_seq, start_vid, end_vid, node, original_id, edge, cost, agg_cost
FROM (SELECT * FROM pgr_dijkstraNear(
 $$SELECT * FROM lineGraph_edges$$,
 (SELECT array_agg(id) FROM vertex_map where original_id = 6),
 (SELECT array_agg(id) FROM vertex_map where original_id = 3))) dn
JOIN vertex_map AS v1 ON (node = v1.id);
 seq | path_seq | start_vid | end_vid | node | original_id | edge | cost | agg_cost
-----+----------+-----------+---------+------+-------------+------+------+----------
 3 | 3 | -1 | 3 | -3 | 7 | 4 | 1 | 1
 1 | 1 | -1 | 3 | -1 | 6 | 1 | 1 | 0
 4 | 4 | -1 | 3 | 3 | 3 | -1 | 0 | 2
 2 | 2 | -1 | 3 | 7 | 7 | 8 | 0 | 1
(4 rows)

The edge to be altered is WHERE cost = 0 AND seq != 1 AND edge != -1 from the previus query:

SELECT edge FROM pgr_dijkstraNear(
 $$SELECT * FROM lineGraph_edges$$,
 (SELECT array_agg(id) FROM vertex_map where original_id = 6),
 (SELECT array_agg(id) FROM vertex_map where original_id = 3))
WHERE cost = 0 AND seq != 1 AND edge != -1;
 edge

 8
(1 row)

Adding a value to the restriction¶

Updating the cost to the edge:

UPDATE lineGraph_edges
SET cost = 100
WHERE id IN (
SELECT edge FROM pgr_dijkstraNear(
 $$SELECT * FROM lineGraph_edges$$,
 (SELECT array_agg(id) FROM vertex_map where original_id = 6),
 (SELECT array_agg(id) FROM vertex_map where original_id = 3))
WHERE cost = 0 AND seq != 1 AND edge != -1);
UPDATE 1

	Example:

	Routing from \(6\) to \(3\)

Now the route does not use edge 8 and does a U turn on a leaf vertex.

WITH
results AS (
 SELECT * FROM pgr_dijkstraNear(
 $$SELECT * FROM lineGraph_edges$$,
 (SELECT array_agg(id) FROM vertex_map where original_id = 6),
 (SELECT array_agg(id) FROM vertex_map where original_id = 3)))
SELECT seq, path_seq, start_vid, end_vid, node, original_id, edge, cost, agg_cost
FROM results
LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq;
 seq | path_seq | start_vid | end_vid | node | original_id | edge | cost | agg_cost
-----+----------+-----------+---------+------+-------------+------+------+----------
 1 | 1 | -1 | 3 | -1 | 6 | 1 | 1 | 0
 2 | 2 | -1 | 3 | 7 | 7 | 10 | 0 | 1
 3 | 3 | -1 | 3 | -5 | 7 | 6 | 1 | 1
 4 | 4 | -1 | 3 | 8 | 8 | 28 | 0 | 2
 5 | 5 | -1 | 3 | -11 | 8 | 27 | 1 | 2
 6 | 6 | -1 | 3 | -8 | 7 | 20 | 0 | 3
 7 | 7 | -1 | 3 | -3 | 7 | 4 | 1 | 3
 8 | 8 | -1 | 3 | 3 | 3 | -1 | 0 | 4
(8 rows)

Simplifying leaf vertices¶

In this example, there is no additional cost for traversing a leaf vertex.

Using the vertex map give the leaf verices their original value.¶

On the source column

WITH
u_turns AS (
SELECT e.id AS eid, v1.original_id
FROM linegraph_edges as e
JOIN vertex_map AS v1 ON (source = v1.id)
AND v1.original_id IN (3, 6, 8, 11))
UPDATE lineGraph_edges
SET source = original_id
FROM u_turns
WHERE id = eid;
UPDATE 8

On the target column

WITH
u_turns AS (
SELECT e.id AS eid, v1.original_id
FROM linegraph_edges as e
JOIN vertex_map AS v1 ON (target = v1.id)
AND v1.original_id IN (3, 6, 8, 11))
UPDATE lineGraph_edges
SET target = original_id
FROM u_turns
WHERE id = eid;
UPDATE 8

Removing self loops on leaf nodes¶

The self loops of the leaf nodes are

SELECT * FROM linegraph_edges
WHERE source = target
ORDER BY id;
 id | source | target | cost | edge
----+--------+--------+------+------
 2 | 6 | 6 | 0 | 0
 24 | 3 | 3 | 0 | 0
 26 | 11 | 11 | 0 | 0
 28 | 8 | 8 | 0 | 0
(4 rows)

Which can be removed

DELETE FROM linegraph_edges
WHERE source = target;
DELETE 4

	Example:

	Routing from \(6\) to \(3\)

Routing can be done now using the original vertices id using pgr_dijkstra

WITH
results AS (
 SELECT * FROM pgr_dijkstra(
 $$SELECT * FROM lineGraph_edges$$, 6, 3))
SELECT seq, path_seq, node, original_id, edge, cost, agg_cost
FROM results
LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq;
 seq | path_seq | node | original_id | edge | cost | agg_cost
-----+----------+------+-------------+------+------+----------
 1 | 1 | 6 | 6 | 1 | 1 | 0
 2 | 2 | 7 | 7 | 9 | 0 | 1
 3 | 3 | -4 | 7 | 5 | 1 | 1
 4 | 4 | 11 | 11 | 25 | 1 | 2
 5 | 5 | -7 | 7 | 16 | 0 | 3
 6 | 6 | -3 | 7 | 4 | 1 | 3
 7 | 7 | 3 | 3 | -1 | 0 | 4
(7 rows)

Complete routing graph¶

Add edges from the original graph¶

Add all the edges that are not involved in the line graph process to the new table

SELECT id, source, target, cost, reverse_cost
INTO new_graph from edges
WHERE id NOT IN (4, 7, 8, 10);
SELECT 14

Some administrative tasks to get new identifiers for the edges

CREATE SEQUENCE new_graph_id_seq;
CREATE SEQUENCE
ALTER TABLE new_graph ALTER COLUMN id SET DEFAULT nextval('new_graph_id_seq');
ALTER TABLE
ALTER TABLE new_graph ALTER COLUMN id SET NOT NULL;
ALTER TABLE
ALTER SEQUENCE new_graph_id_seq OWNED BY new_graph.id;
ALTER SEQUENCE
SELECT setval('new_graph_id_seq', (SELECT max(id) FROM new_graph));
 setval

 18
(1 row)

Add the newly calculated edges¶

INSERT INTO new_graph (source, target, cost, reverse_cost)
SELECT source, target, cost, -1 FROM lineGraph_edges;
INSERT 0 24

Using the routing graph¶

When using this method for routing with soft restrictions there will be uturns

	Example:

	Routing from \(6\) to \(3\)

WITH
results AS (
 SELECT * FROM pgr_dijkstra(
 $$SELECT * FROM new_graph$$, 6, 3))
SELECT seq, path_seq, node, original_id, edge, cost, agg_cost
FROM results
LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq;
 seq | path_seq | node | original_id | edge | cost | agg_cost
-----+----------+------+-------------+------+------+----------
 1 | 1 | 6 | 6 | 35 | 1 | 0
 2 | 2 | 7 | 7 | 20 | 0 | 1
 3 | 3 | -4 | 7 | 41 | 1 | 1
 4 | 4 | 11 | 11 | 37 | 1 | 2
 5 | 5 | -7 | 7 | 27 | 0 | 3
 6 | 6 | -3 | 7 | 40 | 1 | 3
 7 | 7 | 3 | 3 | -1 | 0 | 4
(7 rows)

	Example:

	Routing from \(5\) to \(1\)

WITH
results AS (
 SELECT * FROM pgr_dijkstra(
 $$SELECT * FROM new_graph$$, 5, 1))
SELECT seq, path_seq, node, original_id, edge, cost, agg_cost
FROM results
LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq;
 seq | path_seq | node | original_id | edge | cost | agg_cost
-----+----------+------+-------------+------+------+----------
 1 | 1 | 5 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 6 | 35 | 1 | 1
 3 | 3 | 7 | 7 | 20 | 0 | 2
 4 | 4 | -4 | 7 | 41 | 1 | 2
 5 | 5 | 11 | 11 | 37 | 1 | 3
 6 | 6 | -7 | 7 | 27 | 0 | 4
 7 | 7 | -3 | 7 | 40 | 1 | 4
 8 | 8 | 3 | 3 | 6 | 1 | 5
 9 | 9 | 1 | 1 | -1 | 0 | 6
(9 rows)

See Also¶

	https://en.wikipedia.org/wiki/Line_graph

	https://en.wikipedia.org/wiki/Complete_graph

Indices and tables

	Index

	Search Page

Introduction¶

This family of functions is used for transforming a given input graph \(G(V,E)\) into a new graph \(G'(V',E')\).

See Also¶

Indices and tables

	Index

	Search Page

Ordering - Family of functions¶

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_cuthillMckeeOrdering - Experimental - Return reverse Cuthill-McKee ordering of an undirected graph.

	pgr_topologicalSort - Experimental - Linear ordering of the vertices for directed acyclic graph.

pgr_cuthillMckeeOrdering - Experimental¶

pgr_cuthillMckeeOrdering — Returns the reverse Cuthill-Mckee ordering of an undirected graphs

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.4.0

	New experimental function

Description¶

In numerical linear algebra, the Cuthill-McKee algorithm (CM), named after Elizabeth Cuthill and James McKee, is an algorithm to permute a sparse matrix that has a symmetric sparsity pattern into a band matrix form with a small bandwidth.

The vertices are basically assigned a breadth-first search order, except that at each step, the adjacent vertices are placed in the queue in order of increasing degree.

The main Characteristics are:

	The implementation is for undirected graphs.

	The bandwidth minimization problems are considered NP-complete problems.

	The running time complexity is: \(O(m log(m)|V|)\)

	where \(|V|\) is the number of vertices,

	\(m\) is the maximum degree of the vertices in the graph.

Signatures¶

pgr_cuthillMckeeOrdering(Edges SQL)

Returns set of (seq, node)

OR EMPTY SET

	Example:

	Graph ordering of pgRouting Sample Data

SELECT * FROM pgr_cuthillMckeeOrdering(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | node
-----+------
 1 | 13
 2 | 14
 3 | 2
 4 | 4
 5 | 1
 6 | 9
 7 | 3
 8 | 8
 9 | 5
 10 | 7
 11 | 12
 12 | 6
 13 | 11
 14 | 17
 15 | 10
 16 | 16
 17 | 15
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, node)

	Column

	Type

	Description

	seq

	BIGINT

	Sequence of the order starting from 1.

	node

	BIGINT

	New ordering in reverse order.

See Also¶

	The queries use the Sample Data network.

	Boost: Cuthill-McKee Ordering

	Wikipedia: Cuthill-McKee Ordering

Indices and tables

	Index

	Search Page

pgr_topologicalSort - Experimental¶

pgr_topologicalSort — Linear ordering of the vertices for directed acyclic graphs (DAG).

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental function

Description¶

The topological sort algorithm creates a linear ordering of the vertices such that if edge \((u,v)\) appears in the graph, then \(v\) comes before \(u\) in the ordering.

The main characteristics are:

	Process is valid for directed acyclic graphs only. otherwise it will throw warnings.

	
	For optimization purposes, if there are more than one answer, the function

	will return one of them.

	The returned values are ordered in topological order:

	Running time: \(O(V + E)\)

Signatures¶

Summary

pgr_topologicalSort(Edges SQL)

Returns set of (seq, sorted_v)

OR EMPTY SET

	Example:

	Topologically sorting the graph

SELECT * FROM pgr_topologicalsort(
 $$SELECT id, source, target, cost
 FROM edges WHERE cost >= 0
 UNION
 SELECT id, target, source, reverse_cost
 FROM edges WHERE cost < 0$$);
 seq | sorted_v
-----+----------
 1 | 1
 2 | 5
 3 | 2
 4 | 4
 5 | 3
 6 | 13
 7 | 14
 8 | 15
 9 | 10
 10 | 6
 11 | 7
 12 | 8
 13 | 9
 14 | 11
 15 | 16
 16 | 12
 17 | 17
(17 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, sorted_v)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from \(1\)

	sorted_v

	BIGINT

	Linear topological ordering of the vertices

Additional examples¶

	Example:

	Topologically sorting the one way segments

SELECT * FROM pgr_topologicalsort(
 $$SELECT id, source, target, cost, -1 AS reverse_cost
 FROM edges WHERE cost >= 0
 UNION
 SELECT id, source, target, -1, reverse_cost
 FROM edges WHERE cost < 0$$);
 seq | sorted_v
-----+----------
 1 | 5
 2 | 2
 3 | 4
 4 | 13
 5 | 14
 6 | 1
 7 | 3
 8 | 15
 9 | 10
 10 | 6
 11 | 7
 12 | 8
 13 | 9
 14 | 11
 15 | 12
 16 | 16
 17 | 17
(17 rows)

	Example:

	Graph is not a DAG

SELECT * FROM pgr_topologicalsort(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$);
ERROR: Graph is not DAG
HINT:
CONTEXT: SQL function "pgr_topologicalsort" statement 1

See Also¶

	Sample Data

	https://en.wikipedia.org/wiki/Topological_sorting

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

Metrics - Family of functions¶

Experimental

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

	pgr_betweennessCentrality - Calculates relative betweenness centrality using Brandes Algorithm

pgr_betweennessCentrality¶

pgr_betweennessCentrality - Calculates the relative betweeness centrality using Brandes Algorithm

[image: Boost Graph Inside¶]Boost Graph Inside¶

Availability

	Version 3.7.0

	New experimental function:

	pgr_betweennessCentrality

Description¶

The Brandes Algorithm takes advantage of the sparse graphs for evaluating the betweenness centrality score of all vertices.

Betweenness centrality measures the extent to which a vertex lies on the shortest paths between all other pairs of vertices. Vertices with a high betweenness centrality score may have considerable influence in a network by the virtue of their control over the shortest paths passing between them.

The removal of these vertices will affect the network by disrupting the it, as most of the shortest paths between vertices pass through them.

This implementation work for both directed and undirected graphs.

	Running time: \(\Theta(VE)\)

	Running space: \(\Theta(VE)\)

	Throws when there are no edges in the graph

Signatures¶

Summary

pgr_betweennessCentrality(Edges SQL, [directed])

Returns set of (vid, centrality)

	Example:

	For a directed graph with edges \(\{1, 2, 3, 4\}\).

SELECT * FROM pgr_betweennessCentrality(
'SELECT id, source, target, cost, reverse_cost
FROM edges where id < 5'
) ORDER BY vid;
 vid | centrality
-----+------------
 5 | 0
 6 | 0.5
 7 | 0
 10 | 0.25
 15 | 0
(5 rows)

Explanation

	The betweenness centrality are between parenthesis.

	The leaf vertices have betweenness centrality \(0\).

	Betweenness centrality of vertex \(6\) is higher than of vertex \(10\).

	Removing vertex \(6\) will create three graph components.

	Removing vertex \(10\) will create two graph components.

[image: digraph G { 5, 7, 15 [shape=circle;style=filled;width=.5;color=deepskyblue;fontsize=8;fixedsize=true;]; 6, 10 [shape=circle;style=filled;width=.5;color=green;fontsize=8;fixedsize=true;]; 5 [pos="0,0!";label="5 (0)"]; 6 [pos="0,1!"label="6 (0.5)"]; 7 [pos="0,2!"label="7 (0)"]; 10 [pos="1,1!"label="10 (0.25)"]; 15 [pos="2,1!"label="15 (0)"]; 5 -> 6 [dir=both;label="1 "]; 6->7 [dir=both;label="4 "]; 10->6 [label="3"]; 15->10 [label="4"]; }]

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	Edges SQL as described below.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	vid

	BIGINT

	Identifier of the vertex.

	centrality

	FLOAT

	Relative betweenness centrality score of the vertex (will be in range [0,1])

See Also¶

	Boost’s betweenness_centrality

	Queries use the Sample Data network.

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

categories

Vehicle Routing Functions - Category

	Pickup and delivery problem

	pgr_pickDeliver - Experimental - Pickup & Delivery using a Cost Matrix

	pgr_pickDeliverEuclidean - Experimental - Pickup & Delivery with Euclidean distances

	Distribution problem

	pgr_vrpOneDepot - Experimental - From a single depot, distributes orders

Shortest Path Category

	pgr_bellmanFord - Experimental

	pgr_dagShortestPath - Experimental

	pgr_edwardMoore - Experimental

pgr_bellmanFord - Experimental¶

pgr_bellmanFord — Shortest path using Bellman-Ford algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental signature:

	pgr_bellmanFord (Combinations)

	Version 3.0.0

	New experimental signatures:

	pgr_bellmanFord (One to One)

	pgr_bellmanFord (One to Many)

	pgr_bellmanFord (Many to One)

	pgr_bellmanFord (Many to Many)

Description¶

Bellman-Ford’s algorithm, is named after Richard Bellman and Lester Ford, who first published it in 1958 and 1956, respectively.It is a graph search algorithm that computes shortest paths from a starting vertex (start_vid) to an ending vertex (end_vid) in a graph where some of the edge weights may be negative. Though it is more versatile, it is slower than Dijkstra’s algorithm.This implementation can be used with a directed graph and an undirected graph.

	The main characteristics are:

	
	Process is valid for edges with both positive and negative edge weights.

	Values are returned when there is a path.

	When the start vertex and the end vertex are the same, there is no path. The agg_cost would be \(0\).

	When the start vertex and the end vertex are different, and there exists a path between them without having a negative cycle. The agg_cost would be some finite value denoting the shortest distance between them.

	When the start vertex and the end vertex are different, and there exists a path between them, but it contains a negative cycle. In such case, agg_cost for those vertices keep on decreasing furthermore, Hence agg_cost can’t be defined for them.

	When the start vertex and the end vertex are different, and there is no path. The agg_cost is \(\infty\).

	For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

	Running time: \(O(| start_vids | * (V * E))\)

Signatures¶

Summary

pgr_bellmanFord(Edges SQL, start vid, end vid, [directed])

pgr_bellmanFord(Edges SQL, start vid, end vids, [directed])

pgr_bellmanFord(Edges SQL, start vids, end vid, [directed])

pgr_bellmanFord(Edges SQL, start vids, end vids, [directed])

pgr_bellmanFord(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_bellmanFord(Edges SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10, true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

One to Many¶

pgr_bellmanFord(Edges SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{ 10, 17\}\) on a directed graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10, 17]);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 17 | 6 | 4 | 1 | 0
 8 | 2 | 17 | 7 | 8 | 1 | 1
 9 | 3 | 17 | 11 | 11 | 1 | 2
 10 | 4 | 17 | 12 | 13 | 1 | 3
 11 | 5 | 17 | 17 | -1 | 0 | 4
(11 rows)

Many to One¶

pgr_bellmanFord(Edges SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], 17);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 1 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 7 | 8 | 1 | 2
 4 | 4 | 1 | 11 | 11 | 1 | 3
 5 | 5 | 1 | 12 | 13 | 1 | 4
 6 | 6 | 1 | 17 | -1 | 0 | 5
 7 | 1 | 6 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 13 | 1 | 3
 11 | 5 | 6 | 17 | -1 | 0 | 4
(11 rows)

Many to Many¶

pgr_bellmanFord(Edges SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 10 | 7 | 4 | 1 | 2
 4 | 4 | 1 | 10 | 6 | 2 | 1 | 3
 5 | 5 | 1 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 7 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 8 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 9 | 4 | 1 | 17 | 11 | 11 | 1 | 3
 10 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 11 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 12 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 13 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 14 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 15 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 16 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 17 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 18 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(18 rows)

Combinations¶

pgr_bellmanFord(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph.

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 2 | 1 | 1
 5 | 3 | 5 | 10 | 10 | -1 | 0 | 2
 6 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 7 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 8 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 9 | 2 | 6 | 15 | 10 | 3 | 1 | 1
 10 | 3 | 6 | 15 | 15 | -1 | 0 | 2
(10 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 2 | 1 | 1
 19 | 3 | 15 | 7 | 6 | 4 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 3 | 1 | 0
 18 | 2 | 15 | 7 | 10 | 2 | 1 | 1
 19 | 3 | 15 | 7 | 6 | 4 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_bellmanFord(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

See Also¶

	https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

	Sample Data

Indices and tables

	Index

	Search Page

pgr_dagShortestPath - Experimental¶

pgr_dagShortestPath — Returns the shortest path for weighted directed acyclic graphs(DAG). In particular, the DAG shortest paths algorithm implemented by Boost.Graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental function:

	pgr_dagShortestPath(Combinations)

	Version 3.0.0

	New experimental function

Description¶

Shortest Path for Directed Acyclic Graph(DAG) is a graph search algorithm that solves the shortest path problem for weighted directed acyclic graph, producing a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid).

This implementation can only be used with a directed graph with no cycles i.e. directed acyclic graph.

The algorithm relies on topological sorting the dag to impose a linear ordering on the vertices, and thus is more efficient for DAG’s than either the Dijkstra or Bellman-Ford algorithm.

	The main characteristics are:

	
	Process is valid for weighted directed acyclic graphs only. otherwise it will throw warnings.

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The agg_cost the non included values (v, v) is 0

	When the starting vertex and ending vertex are the different and there is no path:

	The agg_cost the non included values (u, v) is \(\infty\)

	For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

	Running time: \(O(| start_vids | * (V + E))\)

Signatures¶

Summary

pgr_dagShortestPath(Edges SQL, start vid, end vid)

pgr_dagShortestPath(Edges SQL, start vid, end vids)

pgr_dagShortestPath(Edges SQL, start vids, end vid)

pgr_dagShortestPath(Edges SQL, start vids, end vids)

pgr_dagShortestPath(Edges SQL, Combinations SQL)

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_dagShortestPath(Edges SQL, start vid, end vid)

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(5\) to vertex \(11\) on a directed graph

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 5, 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 4 | 1 | 1
 3 | 3 | 7 | 8 | 1 | 2
 4 | 4 | 11 | -1 | 0 | 3
(4 rows)

One to Many¶

pgr_dagShortestPath(Edges SQL, start vid, end vids)

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(5\) to vertices \(\{7, 11\}\)

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 5, ARRAY[7, 11]);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 4 | 1 | 1
 3 | 3 | 7 | -1 | 0 | 2
 4 | 1 | 5 | 1 | 1 | 0
 5 | 2 | 6 | 4 | 1 | 1
 6 | 3 | 7 | 8 | 1 | 2
 7 | 4 | 11 | -1 | 0 | 3
(7 rows)

Many to One¶

pgr_dagShortestPath(Edges SQL, start vids, end vid)

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{5, 10\}\) to vertex \(11\)

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[5, 10], 11);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 4 | 1 | 1
 3 | 3 | 7 | 8 | 1 | 2
 4 | 4 | 11 | -1 | 0 | 3
 5 | 1 | 10 | 5 | 1 | 0
 6 | 2 | 11 | -1 | 0 | 1
(6 rows)

Many to Many¶

pgr_dagShortestPath(Edges SQL, start vids, end vids)

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{5, 15\}\) to vertices \(\{11, 17\}\) on an undirected graph

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[5, 15], ARRAY[11, 17]);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 4 | 1 | 1
 3 | 3 | 7 | 8 | 1 | 2
 4 | 4 | 11 | -1 | 0 | 3
 5 | 1 | 5 | 1 | 1 | 0
 6 | 2 | 6 | 4 | 1 | 1
 7 | 3 | 7 | 8 | 1 | 2
 8 | 4 | 11 | 9 | 1 | 3
 9 | 5 | 16 | 15 | 1 | 4
 10 | 6 | 17 | -1 | 0 | 5
 11 | 1 | 15 | 16 | 1 | 0
 12 | 2 | 16 | 15 | 1 | 1
 13 | 3 | 17 | -1 | 0 | 2
(13 rows)

Combinations¶

pgr_dagShortestPath(Edges SQL, Combinations SQL)

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 'SELECT source, target FROM combinations');
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | -1 | 0 | 1
(2 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Return columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[5, 10, 5, 10, 10, 5], ARRAY[11, 17, 17, 11]);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 4 | 1 | 1
 3 | 3 | 7 | 8 | 1 | 2
 4 | 4 | 11 | -1 | 0 | 3
 5 | 1 | 5 | 1 | 1 | 0
 6 | 2 | 6 | 4 | 1 | 1
 7 | 3 | 7 | 8 | 1 | 2
 8 | 4 | 11 | 9 | 1 | 3
 9 | 5 | 16 | 15 | 1 | 4
 10 | 6 | 17 | -1 | 0 | 5
 11 | 1 | 10 | 5 | 1 | 0
 12 | 2 | 11 | -1 | 0 | 1
 13 | 1 | 10 | 5 | 1 | 0
 14 | 2 | 11 | 9 | 1 | 1
 15 | 3 | 16 | 15 | 1 | 2
 16 | 4 | 17 | -1 | 0 | 3
(16 rows)

	Example 2:

	Making start_vids the same as end_vids

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 ARRAY[5, 10, 11], ARRAY[5, 10, 11]);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 5 | 1 | 1 | 0
 2 | 2 | 6 | 4 | 1 | 1
 3 | 3 | 7 | 8 | 1 | 2
 4 | 4 | 11 | -1 | 0 | 3
 5 | 1 | 10 | 5 | 1 | 0
 6 | 2 | 11 | -1 | 0 | 1
(6 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_dagShortestPath(
 'SELECT id, source, target, cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | -1 | 0 | 1
(2 rows)

See Also¶

	Sample Data

	https://en.wikipedia.org/wiki/Topological_sorting

Indices and tables

	Index

	Search Page

pgr_edwardMoore - Experimental¶

pgr_edwardMoore — Returns the shortest path using Edward-Moore algorithm.

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental signature:

	pgr_edwardMoore (Combinations)

	Version 3.0.0

	New experimental signatures:

	pgr_edwardMoore (One to One)

	pgr_edwardMoore (One to Many)

	pgr_edwardMoore (Many to One)

	pgr_edwardMoore (Many to Many)

Description¶

Edward Moore’s Algorithm is an improvement of the Bellman-Ford Algorithm. It can compute the shortest paths from a single source vertex to all other vertices in a weighted directed graph. The main difference between Edward Moore’s Algorithm and Bellman Ford’s Algorithm lies in the run time.

The worst-case running time of the algorithm is \(O(| V | * | E |)\) similar to the time complexity of Bellman-Ford algorithm. However, experiments suggest that this algorithm has an average running time complexity of \(O(| E |)\) for random graphs. This is significantly faster in terms of computation speed.

Thus, the algorithm is at-best, significantly faster than Bellman-Ford algorithm and is at-worst,as good as Bellman-Ford algorithm

The main characteristics are:

	Values are returned when there is a path.

	When the starting vertex and ending vertex are the same, there is no path.

	The agg_cost the non included values (v, v) is \(0\)

	When the starting vertex and ending vertex are the different and there is no path:

	The agg_cost the non included values (u, v) is \(\infty\)

	For optimization purposes, any duplicated value in the start vids or end vids are ignored.

	The returned values are ordered:

	start_vid ascending

	end_vid ascending

	Running time:

	Worst case: \(O(| V | * | E |)\)

	Average case: \(O(| E |)\)

Signatures¶

Summary

pgr_edwardMoore(Edges SQL, start vid, end vid, [directed])

pgr_edwardMoore(Edges SQL, start vid, end vids, [directed])

pgr_edwardMoore(Edges SQL, start vids, end vid, [directed])

pgr_edwardMoore(Edges SQL, start vids, end vids, [directed])

pgr_edwardMoore(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

One to One¶

pgr_edwardMoore(Edges SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, 10, true);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

One to Many¶

pgr_edwardMoore(Edges SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertex \(6\) to vertices \(\{ 10, 17\}\) on a directed graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 6, ARRAY[10, 17]);
 seq | path_seq | end_vid | node | edge | cost | agg_cost
-----+----------+---------+------+------+------+----------
 1 | 1 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 17 | 6 | 4 | 1 | 0
 8 | 2 | 17 | 7 | 8 | 1 | 1
 9 | 3 | 17 | 11 | 11 | 1 | 2
 10 | 4 | 17 | 12 | 13 | 1 | 3
 11 | 5 | 17 | 17 | -1 | 0 | 4
(11 rows)

Many to One¶

pgr_edwardMoore(Edges SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], 17);
 seq | path_seq | start_vid | node | edge | cost | agg_cost
-----+----------+-----------+------+------+------+----------
 1 | 1 | 1 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 7 | 8 | 1 | 2
 4 | 4 | 1 | 11 | 11 | 1 | 3
 5 | 5 | 1 | 12 | 13 | 1 | 4
 6 | 6 | 1 | 17 | -1 | 0 | 5
 7 | 1 | 6 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 11 | 11 | 1 | 2
 10 | 4 | 6 | 12 | 13 | 1 | 3
 11 | 5 | 6 | 17 | -1 | 0 | 4
(11 rows)

Many to Many¶

pgr_edwardMoore(Edges SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	From vertices \(\{6, 1\}\) to vertices \(\{10, 17\}\) on an undirected graph

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[6, 1], ARRAY[10, 17],
 directed => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 10 | 1 | 6 | 1 | 0
 2 | 2 | 1 | 10 | 3 | 7 | 1 | 1
 3 | 3 | 1 | 10 | 7 | 4 | 1 | 2
 4 | 4 | 1 | 10 | 6 | 2 | 1 | 3
 5 | 5 | 1 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 1 | 17 | 1 | 6 | 1 | 0
 7 | 2 | 1 | 17 | 3 | 7 | 1 | 1
 8 | 3 | 1 | 17 | 7 | 8 | 1 | 2
 9 | 4 | 1 | 17 | 11 | 11 | 1 | 3
 10 | 5 | 1 | 17 | 12 | 13 | 1 | 4
 11 | 6 | 1 | 17 | 17 | -1 | 0 | 5
 12 | 1 | 6 | 10 | 6 | 2 | 1 | 0
 13 | 2 | 6 | 10 | 10 | -1 | 0 | 1
 14 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 15 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 16 | 3 | 6 | 17 | 11 | 11 | 1 | 2
 17 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 18 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(18 rows)

Combinations¶

pgr_edwardMoore(Edges SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Using a combinations table on an undirected graph.

The combinations table:

SELECT source, target FROM combinations;
 source | target
--------+--------
 5 | 6
 5 | 10
 6 | 5
 6 | 15
 6 | 14
(5 rows)

The query:

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT source, target FROM combinations',
 false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 5 | 6 | 5 | 1 | 1 | 0
 2 | 2 | 5 | 6 | 6 | -1 | 0 | 1
 3 | 1 | 5 | 10 | 5 | 1 | 1 | 0
 4 | 2 | 5 | 10 | 6 | 2 | 1 | 1
 5 | 3 | 5 | 10 | 10 | -1 | 0 | 2
 6 | 1 | 6 | 5 | 6 | 1 | 1 | 0
 7 | 2 | 6 | 5 | 5 | -1 | 0 | 1
 8 | 1 | 6 | 15 | 6 | 2 | 1 | 0
 9 | 2 | 6 | 15 | 10 | 3 | 1 | 1
 10 | 3 | 6 | 15 | 15 | -1 | 0 | 2
(10 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below

	Combinations SQL

	TEXT

	Combinations SQL as described below

	start vid

	BIGINT

	Identifier of the starting vertex of the path.

	start vids

	ARRAY[BIGINT]

	Array of identifiers of starting vertices.

	end vid

	BIGINT

	Identifier of the ending vertex of the path.

	end vids

	ARRAY[BIGINT]

	Array of identifiers of ending vertices.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

	Parameter

	Type

	Description

	source

	ANY-INTEGER

	Identifier of the departure vertex.

	target

	ANY-INTEGER

	Identifier of the arrival vertex.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

Result columns¶

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	path_seq

	INTEGER

	Relative position in the path. Has value 1 for the beginning of a path.

	start_vid

	BIGINT

	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query.

	Many to One

	Many to Many

	end_vid

	BIGINT

	Identifier of the ending vertex. Returned when multiple ending vertices are in the query.

	One to Many

	Many to Many

	node

	BIGINT

	Identifier of the node in the path from start_vid to end_vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_vid to node.

Additional Examples¶

	Example 1:

	Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 16 | 1 | 0
 18 | 2 | 15 | 7 | 16 | 9 | 1 | 1
 19 | 3 | 15 | 7 | 11 | 8 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 2:

	Making start vids the same as end vids.

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 ARRAY[7, 10, 15], ARRAY[7, 10, 15]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 7 | 10 | 7 | 8 | 1 | 0
 2 | 2 | 7 | 10 | 11 | 9 | 1 | 1
 3 | 3 | 7 | 10 | 16 | 16 | 1 | 2
 4 | 4 | 7 | 10 | 15 | 3 | 1 | 3
 5 | 5 | 7 | 10 | 10 | -1 | 0 | 4
 6 | 1 | 7 | 15 | 7 | 8 | 1 | 0
 7 | 2 | 7 | 15 | 11 | 9 | 1 | 1
 8 | 3 | 7 | 15 | 16 | 16 | 1 | 2
 9 | 4 | 7 | 15 | 15 | -1 | 0 | 3
 10 | 1 | 10 | 7 | 10 | 5 | 1 | 0
 11 | 2 | 10 | 7 | 11 | 8 | 1 | 1
 12 | 3 | 10 | 7 | 7 | -1 | 0 | 2
 13 | 1 | 10 | 15 | 10 | 5 | 1 | 0
 14 | 2 | 10 | 15 | 11 | 9 | 1 | 1
 15 | 3 | 10 | 15 | 16 | 16 | 1 | 2
 16 | 4 | 10 | 15 | 15 | -1 | 0 | 3
 17 | 1 | 15 | 7 | 15 | 16 | 1 | 0
 18 | 2 | 15 | 7 | 16 | 9 | 1 | 1
 19 | 3 | 15 | 7 | 11 | 8 | 1 | 2
 20 | 4 | 15 | 7 | 7 | -1 | 0 | 3
 21 | 1 | 15 | 10 | 15 | 3 | 1 | 0
 22 | 2 | 15 | 10 | 10 | -1 | 0 | 1
(22 rows)

	Example 3:

	Manually assigned vertex combinations.

SELECT * FROM pgr_edwardMoore(
 'SELECT id, source, target, cost, reverse_cost FROM edges',
 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)');
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 7 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 7 | 7 | -1 | 0 | 1
 3 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 4 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 5 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 6 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 7 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 8 | 6 | 6 | 10 | 10 | -1 | 0 | 5
 9 | 1 | 12 | 10 | 12 | 13 | 1 | 0
 10 | 2 | 12 | 10 | 17 | 15 | 1 | 1
 11 | 3 | 12 | 10 | 16 | 16 | 1 | 2
 12 | 4 | 12 | 10 | 15 | 3 | 1 | 3
 13 | 5 | 12 | 10 | 10 | -1 | 0 | 4
(13 rows)

See Also¶

	Sample Data

	https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm

Indices and tables

	Index

	Search Page

Planar Family

	pgr_isPlanar - Experimental

pgr_isPlanar - Experimental¶

pgr_isPlanar — Returns a boolean depending upon the planarity of the graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental function

Description¶

A graph is planar if it can be drawn in two-dimensional space with no two of its edges crossing. Such a drawing of a planar graph is called a plane drawing. Every planar graph also admits a straight-line drawing, which is a plane drawing where each edge is represented by a line segment. When a graph has \(K_5\) or \(K_{3, 3}\) as subgraph then the graph is not planar.

The main characteristics are:

	This implementation use the Boyer-Myrvold Planarity Testing.

	It will return a boolean value depending upon the planarity of the graph.

	Applicable only for undirected graphs.

	The algorithm does not considers traversal costs in the calculations.

	Running time: \(O(|V|)\)

Signatures¶

Summary

pgr_isPlanar(Edges SQL)

RETURNS BOOLEAN

SELECT * FROM pgr_isPlanar(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges'
);
 pgr_isplanar

 t
(1 row)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns a boolean (pgr_isplanar)

	Column

	Type

	Description

	pgr_isplanar

	BOOLEAN

	
	true when the graph is planar.

	false when the graph is not planar.

Additional Examples¶

The following edges will make the subgraph with vertices {10, 15, 11, 16, 13} a \(K_1\) graph.

INSERT INTO edges (source, target, cost, reverse_cost) VALUES
 (10, 16, 1, 1), (10, 13, 1, 1),
 (15, 11, 1, 1), (15, 13, 1, 1),
 (11, 13, 1, 1), (16, 13, 1, 1);
INSERT 0 6

The new graph is not planar because it has a \(K_5\) subgraph. Edges in blue represent \(K_5\) subgraph.

[image: _images/nonPlanar.png]

SELECT * FROM pgr_isPlanar(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges');
 pgr_isplanar

 f
(1 row)

See Also¶

	Sample Data

	https://www.boost.org/libs/graph/doc/boyer_myrvold.html

Indices and tables

	Index

	Search Page

Miscellaneous Algoritms

	pgr_lengauerTarjanDominatorTree -Experimental

	pgr_stoerWagner - Experimental

	pgr_transitiveClosure - Experimental

	pgr_hawickCircuits - Experimental

pgr_lengauerTarjanDominatorTree -Experimental¶

pgr_lengauerTarjanDominatorTree — Returns the immediate dominator of all vertices.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.2.0

	New experimental function

Description¶

The algorithm calculates the immidiate dominator of each vertex called idom, once idom of each vertex is calculated then by making every idom of each vertex as its parent, the dominator tree can be built.

The main Characteristics are:

	The algorithm works in directed graph only.

	The returned values are not ordered.

	The algorithm returns idom of each vertex.

	If the root vertex not present in the graph then it returns empty set.

	Running time: \(O((V+E)log(V+E))\)

Signatures¶

Summary

pgr_lengauerTarjanDominatorTree(Edges SQL, root vertex)

Returns set of (seq, vertex_id, idom)

OR EMPTY SET

	Example:

	The dominator tree with root vertex \(5\)

SELECT * FROM pgr_lengauertarjandominatortree(
 $$SELECT id,source,target,cost,reverse_cost FROM edges$$,
 5) ORDER BY vertex_id;
 seq | vertex_id | idom
-----+-----------+------
 1 | 1 | 2
 9 | 2 | 0
 2 | 3 | 3
 10 | 4 | 0
 17 | 5 | 0
 4 | 6 | 17
 3 | 7 | 4
 7 | 8 | 3
 11 | 9 | 7
 5 | 10 | 16
 6 | 11 | 3
 8 | 12 | 3
 12 | 13 | 0
 13 | 14 | 0
 16 | 15 | 15
 15 | 16 | 3
 14 | 17 | 3
(17 rows)

Parameters¶

	Column

	Type

	Description

	Edges SQL

	TEXT

	SQL query as described above.

	root vertex

	BIGINT

	Identifier of the starting vertex.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, vertex_id, idom)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1.

	vertex_id

	BIGINT

	Identifier of vertex .

	idom

	BIGINT

	Immediate dominator of vertex.

Additional Examples¶

	Example:

	Dominator tree of another component.

SELECT * FROM pgr_lengauertarjandominatortree(
 $$SELECT id,source,target,cost,reverse_cost FROM edges$$,
 13) ORDER BY vertex_id;
 seq | vertex_id | idom
-----+-----------+------
 1 | 1 | 0
 9 | 2 | 0
 2 | 3 | 0
 10 | 4 | 0
 17 | 5 | 0
 4 | 6 | 0
 3 | 7 | 0
 7 | 8 | 0
 11 | 9 | 0
 5 | 10 | 0
 6 | 11 | 0
 8 | 12 | 0
 12 | 13 | 0
 13 | 14 | 12
 16 | 15 | 0
 15 | 16 | 0
 14 | 17 | 0
(17 rows)

See Also¶

	Sample Data

	Boost: Lengauer-Tarjan dominator tree algorithm

	Wikipedia: dominator tree

Indices and tables

	Index

	Search Page

pgr_stoerWagner - Experimental¶

pgr_stoerWagner — The min-cut of graph using stoerWagner algorithm.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0

	New Experimental function

Description¶

In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights. The essential idea of this algorithm is to shrink the graph by merging the most intensive vertices, until the graph only contains two combined vertex sets. At each phase, the algorithm finds the minimum s-t cut for two vertices s and t chosen as its will. Then the algorithm shrinks the edge between s and t to search for non s-t cuts. The minimum cut found in all phases will be the minimum weighted cut of the graph.

A cut is a partition of the vertices of a graph into two disjoint subsets. A minimum cut is a cut for which the size or weight of the cut is not larger than the size of any other cut. For an unweighted graph, the minimum cut would simply be the cut with the least edges. For a weighted graph, the sum of all edges’ weight on the cut determines whether it is a minimum cut.

The main characteristics are:

	Process is done only on edges with positive costs.

	It’s implementation is only on undirected graph.

	Sum of the weights of all edges between the two sets is mincut.

	A mincut is a cut having the least weight.

	Values are returned when graph is connected.

	When there is no edge in graph then EMPTY SET is return.

	When the graph is unconnected then EMPTY SET is return.

	Sometimes a graph has multiple min-cuts, but all have the same weight. The this function determines exactly one of the min-cuts as well as its weight.

	Running time: \(O(V*E + V^2*log V)\).

Signatures¶

pgr_stoerWagner(Edges SQL)

Returns set of (seq, edge, cost, mincut)

OR EMPTY SET

	Example:

	min cut of the main subgraph

SELECT * FROM pgr_stoerWagner(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id < 17');
 seq | edge | cost | mincut
-----+------+------+--------
 1 | 6 | 1 | 1
(1 row)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, edge, cost, mincut)

	Column

	Type

	Description

	seq

	INT

	Sequential value starting from 1.

	edge

	BIGINT

	Edges which divides the set of vertices into two.

	cost

	FLOAT

	Cost to traverse of edge.

	mincut

	FLOAT

	Min-cut weight of a undirected graph.

Additional Example:¶

	Example:

	min cut of an edge

SELECT * FROM pgr_stoerWagner(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id = 18');
 seq | edge | cost | mincut
-----+------+------+--------
 1 | 18 | 1 | 1
(1 row)

	Example:

	Using pgr_connectedComponents

SELECT * FROM pgr_stoerWagner(
 $$
 SELECT id, source, target, cost, reverse_cost FROM edges
 WHERE source IN (
 SELECT node FROM pgr_connectedComponents(
 'SELECT id, source, target, cost, reverse_cost FROM edges ')
 WHERE component = 2)
 $$
);
 seq | edge | cost | mincut
-----+------+------+--------
 1 | 17 | 1 | 1
(1 row)

See Also¶

	Sample Data

	https://en.wikipedia.org/wiki/Stoer%E2%80%93Wagner_algorithm

Indices and tables

	Index

	Search Page

pgr_transitiveClosure - Experimental¶

pgr_transitiveClosure — Transitive closure graph of a directed graph.

[image: Boost Graph Inside¶]Boost Graph Inside¶

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.0.0

	New experimental function

Description¶

Transforms the input directed graph into the transitive closure of the graph.

The main characteristics are:

	Process is valid for directed graphs.

	The transitive closure of an undirected graph produces a cluster graph

	Reachability between vertices on an undirected graph happens when they belong to the same connected component. (see pgr_connectedComponents)

	The returned values are not ordered

	The returned graph is compresed

	Running time: \(O(|V||E|)\)

Signatures¶

Summary

The pgr_transitiveClosure function has the following signature:

pgr_transitiveClosure(Edges SQL)

Returns set of (seq, vid, target_array)

	Example:

	Rechability of a subgraph

SELECT * FROM pgr_transitiveclosure(
 'SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id IN (2, 3, 5, 11, 12, 13, 15)')
ORDER BY vid;
 seq | vid | target_array
-----+-----+--------------------
 1 | 6 | {}
 6 | 8 | {12,17,16}
 2 | 10 | {12,17,16,11,6}
 4 | 11 | {12,17,16}
 5 | 12 | {17,16}
 3 | 15 | {12,17,16,10,11,6}
 8 | 16 | {17,16}
 7 | 17 | {17,16}
(8 rows)

Parameters¶

	Parameter

	Type

	Description

	Edges SQL

	TEXT

	Edges SQL as described below.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	id

	ANY-INTEGER

	
	Identifier of the edge.

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

Returns set of (seq, vid, target_array)

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from \(1\)

	vid

	BIGINT

	Identifier of the source of the edges

	target_array

	BIGINT

	Identifiers of the targets of the edges

	Identifiers of the vertices that are reachable from vertex v.

See Also¶

	Sample Data

	https://en.wikipedia.org/wiki/Transitive_closure

Indices and tables

	Index

	Search Page

pgr_hawickCircuits - Experimental¶

pgr_hawickCircuits — Returns the list of cirucits using hawick circuits algorithm.

Warning

Possible server crash

	These functions might create a server crash

Warning

Experimental functions

	They are not officially of the current release.

	They likely will not be officially be part of the next release:

	The functions might not make use of ANY-INTEGER and ANY-NUMERICAL

	Name might change.

	Signature might change.

	Functionality might change.

	pgTap tests might be missing.

	Might need c/c++ coding.

	May lack documentation.

	Documentation if any might need to be rewritten.

	Documentation examples might need to be automatically generated.

	Might need a lot of feedback from the comunity.

	Might depend on a proposed function of pgRouting

	Might depend on a deprecated function of pgRouting

Availability

	Version 3.4.0

	New experimental signature:

	pgr_hawickCircuits

Description¶

Hawick Circuit algorithm, is published in 2008 by Ken Hawick and Health A. James. This algorithm solves the problem of detecting and enumerating circuits in graphs. It is capable of circuit enumeration in graphs with directed-arcs, multiple-arcs and self-arcs with a memory efficient and high-performance im-plementation. It is an extension of Johnson’s Algorithm of finding all the elementary circuits of a directed graph.

There are 2 variations defined in the Boost Graph Library. Here, we have implemented only 2nd as it serves the most suitable and practical usecase. In this variation we get the circuits after filtering out the circuits caused by parallel edges. Parallel edge circuits have more use cases when you want to count the no. of circuits.Maybe in future, we will also implemenent this variation.

The main Characteristics are:

	The algorithm implementation works only for directed graph

	It is a variation of Johnson’s algorithm for circuit enumeration.

	The algorithm outputs the distinct circuits present in the graph.

	Time Complexity: \(O((V + E) (c + 1))\)

	where \(|E|\) is the number of edges in the graph,

	\(|V|\) is the number of vertices in the graph.

	\(|c|\) is the number of circuts in the graph.

Signatures¶

Summary

pgr_hawickCircuits(Edges SQL)

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

	Example:

	Circuits present in the pgRouting Sample Data

SELECT * FROM pgr_hawickCircuits(
 'SELECT id, source, target, cost, reverse_cost FROM edges'
);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 0 | 1 | 1 | 1 | 6 | 1 | 0
 2 | 1 | 1 | 1 | 1 | 3 | 6 | 1 | 1
 3 | 1 | 2 | 1 | 1 | 1 | -1 | 0 | 2
 4 | 2 | 0 | 3 | 3 | 3 | 7 | 1 | 0
 5 | 2 | 1 | 3 | 3 | 7 | 7 | 1 | 1
 6 | 2 | 2 | 3 | 3 | 3 | -1 | 0 | 2
 7 | 3 | 0 | 7 | 7 | 7 | 4 | 1 | 0
 8 | 3 | 1 | 7 | 7 | 6 | 4 | 1 | 1
 9 | 3 | 2 | 7 | 7 | 7 | -1 | 0 | 2
 10 | 4 | 0 | 7 | 7 | 7 | 8 | 1 | 0
 11 | 4 | 1 | 7 | 7 | 11 | 8 | 1 | 1
 12 | 4 | 2 | 7 | 7 | 7 | -1 | 0 | 2
 13 | 5 | 0 | 7 | 7 | 7 | 8 | 1 | 0
 14 | 5 | 1 | 7 | 7 | 11 | 11 | 1 | 1
 15 | 5 | 2 | 7 | 7 | 12 | 13 | 1 | 2
 16 | 5 | 3 | 7 | 7 | 17 | 15 | 1 | 3
 17 | 5 | 4 | 7 | 7 | 16 | 16 | 1 | 4
 18 | 5 | 5 | 7 | 7 | 15 | 3 | 1 | 5
 19 | 5 | 6 | 7 | 7 | 10 | 2 | 1 | 6
 20 | 5 | 7 | 7 | 7 | 6 | 4 | 1 | 7
 21 | 5 | 8 | 7 | 7 | 7 | -1 | 0 | 8
 22 | 6 | 0 | 7 | 7 | 7 | 8 | 1 | 0
 23 | 6 | 1 | 7 | 7 | 11 | 9 | 1 | 1
 24 | 6 | 2 | 7 | 7 | 16 | 16 | 1 | 2
 25 | 6 | 3 | 7 | 7 | 15 | 3 | 1 | 3
 26 | 6 | 4 | 7 | 7 | 10 | 2 | 1 | 4
 27 | 6 | 5 | 7 | 7 | 6 | 4 | 1 | 5
 28 | 6 | 6 | 7 | 7 | 7 | -1 | 0 | 6
 29 | 7 | 0 | 7 | 7 | 7 | 10 | 1 | 0
 30 | 7 | 1 | 7 | 7 | 8 | 10 | 1 | 1
 31 | 7 | 2 | 7 | 7 | 7 | -1 | 0 | 2
 32 | 8 | 0 | 7 | 7 | 7 | 10 | 1 | 0
 33 | 8 | 1 | 7 | 7 | 8 | 12 | 1 | 1
 34 | 8 | 2 | 7 | 7 | 12 | 13 | 1 | 2
 35 | 8 | 3 | 7 | 7 | 17 | 15 | 1 | 3
 36 | 8 | 4 | 7 | 7 | 16 | 9 | 1 | 4
 37 | 8 | 5 | 7 | 7 | 11 | 8 | 1 | 5
 38 | 8 | 6 | 7 | 7 | 7 | -1 | 0 | 6
 39 | 9 | 0 | 7 | 7 | 7 | 10 | 1 | 0
 40 | 9 | 1 | 7 | 7 | 8 | 12 | 1 | 1
 41 | 9 | 2 | 7 | 7 | 12 | 13 | 1 | 2
 42 | 9 | 3 | 7 | 7 | 17 | 15 | 1 | 3
 43 | 9 | 4 | 7 | 7 | 16 | 16 | 1 | 4
 44 | 9 | 5 | 7 | 7 | 15 | 3 | 1 | 5
 45 | 9 | 6 | 7 | 7 | 10 | 2 | 1 | 6
 46 | 9 | 7 | 7 | 7 | 6 | 4 | 1 | 7
 47 | 9 | 8 | 7 | 7 | 7 | -1 | 0 | 8
 48 | 10 | 0 | 7 | 7 | 7 | 10 | 1 | 0
 49 | 10 | 1 | 7 | 7 | 8 | 12 | 1 | 1
 50 | 10 | 2 | 7 | 7 | 12 | 13 | 1 | 2
 51 | 10 | 3 | 7 | 7 | 17 | 15 | 1 | 3
 52 | 10 | 4 | 7 | 7 | 16 | 16 | 1 | 4
 53 | 10 | 5 | 7 | 7 | 15 | 3 | 1 | 5
 54 | 10 | 6 | 7 | 7 | 10 | 5 | 1 | 6
 55 | 10 | 7 | 7 | 7 | 11 | 8 | 1 | 7
 56 | 10 | 8 | 7 | 7 | 7 | -1 | 0 | 8
 57 | 11 | 0 | 6 | 6 | 6 | 1 | 1 | 0
 58 | 11 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 59 | 11 | 2 | 6 | 6 | 6 | -1 | 0 | 2
 60 | 12 | 0 | 10 | 10 | 10 | 5 | 1 | 0
 61 | 12 | 1 | 10 | 10 | 11 | 11 | 1 | 1
 62 | 12 | 2 | 10 | 10 | 12 | 13 | 1 | 2
 63 | 12 | 3 | 10 | 10 | 17 | 15 | 1 | 3
 64 | 12 | 4 | 10 | 10 | 16 | 16 | 1 | 4
 65 | 12 | 5 | 10 | 10 | 15 | 3 | 1 | 5
 66 | 12 | 6 | 10 | 10 | 10 | -1 | 0 | 6
 67 | 13 | 0 | 10 | 10 | 10 | 5 | 1 | 0
 68 | 13 | 1 | 10 | 10 | 11 | 9 | 1 | 1
 69 | 13 | 2 | 10 | 10 | 16 | 16 | 1 | 2
 70 | 13 | 3 | 10 | 10 | 15 | 3 | 1 | 3
 71 | 13 | 4 | 10 | 10 | 10 | -1 | 0 | 4
 72 | 14 | 0 | 11 | 11 | 11 | 11 | 1 | 0
 73 | 14 | 1 | 11 | 11 | 12 | 13 | 1 | 1
 74 | 14 | 2 | 11 | 11 | 17 | 15 | 1 | 2
 75 | 14 | 3 | 11 | 11 | 16 | 9 | 1 | 3
 76 | 14 | 4 | 11 | 11 | 11 | -1 | 0 | 4
 77 | 15 | 0 | 11 | 11 | 11 | 9 | 1 | 0
 78 | 15 | 1 | 11 | 11 | 16 | 9 | 1 | 1
 79 | 15 | 2 | 11 | 11 | 11 | -1 | 0 | 2
 80 | 16 | 0 | 8 | 8 | 8 | 14 | 1 | 0
 81 | 16 | 1 | 8 | 8 | 9 | 14 | 1 | 1
 82 | 16 | 2 | 8 | 8 | 8 | -1 | 0 | 2
 83 | 17 | 0 | 2 | 2 | 2 | 17 | 1 | 0
 84 | 17 | 1 | 2 | 2 | 4 | 17 | 1 | 1
 85 | 17 | 2 | 2 | 2 | 2 | -1 | 0 | 2
 86 | 18 | 0 | 13 | 13 | 13 | 18 | 1 | 0
 87 | 18 | 1 | 13 | 13 | 14 | 18 | 1 | 1
 88 | 18 | 2 | 13 | 13 | 13 | -1 | 0 | 2
 89 | 19 | 0 | 17 | 17 | 17 | 15 | 1 | 0
 90 | 19 | 1 | 17 | 17 | 16 | 15 | 1 | 1
 91 | 19 | 2 | 17 | 17 | 17 | -1 | 0 | 2
 92 | 20 | 0 | 16 | 16 | 16 | 16 | 1 | 0
 93 | 20 | 1 | 16 | 16 | 15 | 16 | 1 | 1
 94 | 20 | 2 | 16 | 16 | 16 | -1 | 0 | 2
(94 rows)

Parameters¶

	Parameter

	Type

	Default

	Description

	Edges SQL

	TEXT

	
	Edges SQL as described below.

Optional parameters¶

	Column

	Type

	Default

	Description

	directed

	BOOLEAN

	true

	
	When true the graph is considered Directed

	When false the graph is considered as Undirected.

Inner Queries¶

Edges SQL¶

	Column

	Type

	Default

	Description

	source

	ANY-INTEGER

	
	Identifier of the first end point vertex of the edge.

	target

	ANY-INTEGER

	
	Identifier of the second end point vertex of the edge.

	cost

	ANY-NUMERICAL

	
	Weight of the edge (source, target)

	reverse_cost

	ANY-NUMERICAL

	-1

	Weight of the edge (target, source)

	When negative: edge (target, source) does not exist, therefore it’s not part of the graph.

Where:

	ANY-INTEGER:

	SMALLINT, INTEGER, BIGINT

	ANY-NUMERICAL:

	SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns¶

	Column

	Type

	Description

	seq

	INTEGER

	Sequential value starting from 1

	path_id

	INTEGER

	Id of the circuit starting from 1

	path_seq

	INTEGER

	Relative postion in the path. Has value 0 for beginning of the path

	start_vid

	BIGINT

	Identifier of the starting vertex of the circuit.

	end_vid

	BIGINT

	Identifier of the ending vertex of the circuit.

	node

	BIGINT

	Identifier of the node in the path from a vid to next vid.

	edge

	BIGINT

	Identifier of the edge used to go from node to the next node in the path sequence. -1 for the last node of the path.

	cost

	FLOAT

	Cost to traverse from node using edge to the next node in the path sequence.

	agg_cost

	FLOAT

	Aggregate cost from start_v to node.

See Also¶

	Sample Data

	Boost: Hawick Circuit Algorithm

Indices and tables

	Index

	Search Page

See Also¶

Indices and tables

	Index

	Search Page

Release Notes¶

Current release¶

pgRouting 3.7.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.1

Bug fixes

	#2680 fails to compile under mingw64 gcc 13.2

	#2689 When point is a vertex, the withPoints family do not return results.

C/C++ code enhancemet

	TRSP family

pgRouting 3.7.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.0

Support

	#2656 Stop support of PostgreSQL12 on pgrouting v3.7

	Stopping support of PostgreSQL 12

	CI does not test for PostgreSQL 12

New experimental functions

	Metrics

	pgr_betweennessCentrality

Official functions changes

	#2605 Standarize spanning tree functions output

	Functions:

	pgr_kruskalDD

	pgr_kruskalDFS

	pgr_kruskalBFS

	pgr_primDD

	pgr_primDFS

	pgr_primBFS

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

Experimental promoted to proposed.

	#2635 pgr_LineGraph ignores directed flag and use negative values for identifiers.

	pgr_lineGraph

	Promoted to proposed signature.

	Works for directed and undirected graphs.

	

Code enhancement

	#2599 Driving distance cleanup

	#2607 Read postgresql data on C++

	#2614 Clang tidy does not work

All releases¶

Release Notes¶

To see the full list of changes check the list of Git commits on Github.

Mayors

	pgRouting 3

	pgRouting 2

	pgRouting 1

pgRouting 3¶

Minors 3.x

	pgRouting 3.7

	pgRouting 3.6

	pgRouting 3.5

	pgRouting 3.4

	pgRouting 3.3

	pgRouting 3.2

	pgRouting 3.1

	pgRouting 3.0

pgRouting 3.7¶

Contents

	pgRouting 3.7.1 Release Notes

	pgRouting 3.7.0 Release Notes

pgRouting 3.7.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.1

Bug fixes

	#2680 fails to compile under mingw64 gcc 13.2

	#2689 When point is a vertex, the withPoints family do not return results.

C/C++ code enhancemet

	TRSP family

pgRouting 3.7.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.0

Support

	#2656 Stop support of PostgreSQL12 on pgrouting v3.7

	Stopping support of PostgreSQL 12

	CI does not test for PostgreSQL 12

New experimental functions

	Metrics

	pgr_betweennessCentrality

Official functions changes

	#2605 Standarize spanning tree functions output

	Functions:

	pgr_kruskalDD

	pgr_kruskalDFS

	pgr_kruskalBFS

	pgr_primDD

	pgr_primDFS

	pgr_primBFS

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	Added pred result columns.

Experimental promoted to proposed.

	#2635 pgr_LineGraph ignores directed flag and use negative values for identifiers.

	pgr_lineGraph

	Promoted to proposed signature.

	Works for directed and undirected graphs.

	

Code enhancement

	#2599 Driving distance cleanup

	#2607 Read postgresql data on C++

	#2614 Clang tidy does not work

pgRouting 3.6¶

Contents

	pgRouting 3.6.3 Release Notes

	pgRouting 3.6.2 Release Notes

	pgRouting 3.6.1 Release Notes

	pgRouting 3.6.0 Release Notes

pgRouting 3.6.3 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.3

Build

	Explicit minimum requirements:

	postgres 11.0.0

	postgis 3.0.0

	g++ 13+ is supported

Code fixes

	Fix warnings from cpplint.

	Fix warnings from clang 18.

CI tests

	Add a clang tidy test on changed files.

	Update test not done on versions: 3.0.1, 3.0.2, 3.0.3, 3.0.4, 3.1.0, 3.1.1, 3.1.2

Documentation

	Results of documentation queries adujsted to boost 1.83.0 version:

	pgr_edgeDisjointPaths

	pgr_stoerWagner

pgtap tests

	bug fixes

pgRouting 3.6.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.2

Upgrade fix

	The upgrade was failing for same minor

Code fixes

	Fix warnings from cpplint

Others

	Adjust NEWS generator

	Name change to NEWS.md for better visualization on GitHub

pgRouting 3.6.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.1

	#2588 pgrouting 3.6.0 fails to build on OSX

pgRouting 3.6.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.0

Official functions changes

	#2516 Standarize output pgr_aStar

	Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_aStar (One to One) added start_vid and end_vid columns.

	pgr_aStar (One to Many) added end_vid column.

	pgr_aStar (Many to One) added start_vid column.

	#2523 Standarize output pgr_bdAstar

	Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_bdAstar (One to One) added start_vid and end_vid columns.

	pgr_bdAstar (One to Many) added end_vid column.

	pgr_bdAstar (Many to One) added start_vid column.

	#2547 Standarize output and modifying signature pgr_KSP

	Result columns standarized to: (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_ksp (One to One)

	Added start_vid and end_vid result columns.

	New overload functions:

	pgr_ksp (One to Many)

	pgr_ksp (Many to One)

	pgr_ksp (Many to Many)

	pgr_ksp (Combinations)

	#2548 Standarize output pgr_drivingdistance

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	pgr_drivingdistance (Single vertex)

	Added depth and start_vid result columns.

	pgr_drivingdistance (Multiple vertices)

	Result column name change: from_v to start_vid.

	Added depth and pred result columns.

Proposed functions changes

	#2544 Standarize output and modifying signature pgr_withPointsDD

	Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.

	pgr_withPointsDD (Single vertex)

	pgr_withPointsDD (Multiple vertices)

	Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	pgr_withPointsDD (Single vertex)

	Added depth, pred and start_vid column.

	pgr_withPointsDD (Multiple vertices)

	Added depth, pred columns.

	When details is false:

	Only points that are visited are removed, that is, points reached within the distance are included

	Deprecated signatures

	pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean)

	pgr_withpointsdd(text,text,anyarray,double precision,boolean,character,boolean,boolean)

	#2546 Standarize output and modifying signature pgr_withPointsKSP

	Standarizing output columns to (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_withPointsKSP (One to One)

	Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.

	Added start_vid and end_vid result columns.

	New overload functions

	pgr_withPointsKSP (One to Many)

	pgr_withPointsKSP (Many to One)

	pgr_withPointsKSP (Many to Many)

	pgr_withPointsKSP (Combinations)

	Deprecated signature

	pgr_withpointsksp(text,text,bigint,bigint,integer,boolean,boolean,char,boolean)

C/C++ code enhancements

	#2504 To C++ pg data get, fetch and check.

	Stopping support for compilation with MSVC.

	#2505 Using namespace.

	#2512 [Dijkstra] Removing duplicate code on Dijkstra.

	#2517 Astar code simplification.

	#2521 Dijkstra code simplification.

	#2522 bdAstar code simplification.

Documentation

	#2490 Automatic page history links.

	..rubric:: SQL standarization

	#2555 standarize deprecated messages

	On new internal function: do not use named parameters and default parameters.

pgRouting 3.5¶

Contents

	pgRouting 3.5.1 Release Notes

	pgRouting 3.5.0 Release Notes

pgRouting 3.5.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.5.1

Documentation fixes

Changes on the documentation to the following:

	pgr_degree

	pgr_dijkstra

	pgr_ksp

	Automatic page history links

	using bootstrap_version 2 because 3+ does not do dropdowns

Issue fixes

	#2565 pgr_lengauerTarjanDominatorTree triggers an assertion

SQL enhancements

	#2561 Not use wildcards on SQL

pgtap tests

	#2559 pgtap test using sampledata

Build fixes

	Fix winnie build

Code fixes

	Fix clang warnings

	Grouping headers of postgres readers

pgRouting 3.5.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.5.0

Official functions changes

	Dijkstra

	Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	pgr_dijkstra (One to One) added start_vid and end_vid columns.

	pgr_dijkstra (One to Many) added end_vid column.

	pgr_dijkstra (Many to One) added start_vid column.

pgRouting 3.4¶

Contents

	pgRouting 3.4.2 Release Notes

	pgRouting 3.4.1 Release Notes

	pgRouting 3.4.0 Release Notes

pgRouting 3.4.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.4.2

Issue fixes

	#2394: pgr_bdAstar accumulates heuristic cost in visited node cost.

	#2427: pgr_createVerticesTable & pgr_createTopology, variable should be of type Record.

pgRouting 3.4.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.4.1

Issue fixes

	#2401: pgRouting 3.4.0 do not build docs when sphinx is too low or missing

	#2398: v3.4.0 does not upgrade from 3.3.3

pgRouting 3.4.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.4.0

Issue fixes

	#1891: pgr_ksp doesn’t give all correct shortest path

New proposed functions

	With points

	pgr_withPointsVia (One Via)

	Turn Restrictions

	Via with turn restrictions

	pgr_trspVia (One Via)

	pgr_trspVia_withPoints (One Via)

	pgr_trsp

	pgr_trsp (One to One)

	pgr_trsp (One to Many)

	pgr_trsp (Many to One)

	pgr_trsp (Many to Many)

	pgr_trsp (Combinations)

	pgr_trsp_withPoints

	pgr_trsp_withPoints (One to One)

	pgr_trsp_withPoints (One to Many)

	pgr_trsp_withPoints (Many to One)

	pgr_trsp_withPoints (Many to Many)

	pgr_trsp_withPoints (Combinations)

	Topology

	pgr_degree

	Utilities

	pgr_findCloseEdges (One point)

	pgr_findCloseEdges (Many points)

New experimental functions

	Ordering

	pgr_cuthillMckeeOrdering

	Unclassified

	pgr_hawickCircuits

Official functions changes

	Flow functions

	pgr_maxCardinalityMatch(text)

	Deprecating pgr_maxCardinalityMatch(text,boolean)

Deprecated Functions

	Turn Restrictions

	pgr_trsp(text,integer,integer,boolean,boolean,text)

	pgr_trsp(text,integer,float8,integer,float8,boolean,boolean,text)

	pgr_trspViaVertices(text,anyarray,boolean,boolean,text)

	pgr_trspViaEdges(text,integer[],float[],boolean,boolean,text)

pgRouting 3.3¶

Contents

	pgRouting 3.3.5 Release Notes

	pgRouting 3.3.4 Release Notes

	pgRouting 3.3.3 Release Notes

	pgRouting 3.3.2 Release Notes

	pgRouting 3.3.1 Release Notes

	pgRouting 3.3.0 Release Notes

pgRouting 3.3.5 Release Notes¶

	#2401: pgRouting 3.4.0 do not build docs when sphinx is too low or missing

pgRouting 3.3.4 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.4

Issue fixes

	#2400: pgRouting 3.3.3 does not build in focal

pgRouting 3.3.3 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.3

Issue fixes

	#1891: pgr_ksp doesn’t give all correct shortest path

Official functions changes

	Flow functions

	pgr_maxCardinalityMatch(text,boolean)

	Ignoring optional boolean parameter, as the algorithm works only for undirected graphs.

pgRouting 3.3.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.2

	Revised documentation

	Simplifying table names and table columns, for example:

	edges instead of edge_table

	Removing unused columns category_id and reverse_category_id.

	combinations instead of combinations_table

	Using PostGIS standard for geometry column.

	geom instead of the_geom

	Avoiding usage of functions that modify indexes, columns etc on tables.

	Using pgr_extractVertices to create a routing topology

	Restructure of the pgRouting concepts page.

Issue fixes

	#2276: edgeDisjointPaths issues with start_vid and combinations

	#2312: pgr_extractVertices error when target is not BIGINT

	#2357: Apply clang-tidy performance-*

pgRouting 3.3.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.1 on Github.

Issue fixes

	#2216: Warnings when using clang

	#2266: Error processing restrictions

pgRouting 3.3.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.0 on Github.

Issue fixes

	#2057: trspViaEdges columns in different order

	#2087: pgr_extractVertices to proposed

	#2201: pgr_depthFirstSearch to proposed

	#2202: pgr_sequentialVertexColoring to proposed

	#2203: pgr_dijkstraNear and pgr_dijkstraNearCost to proposed

New experimental functions

	Coloring

	pgr_edgeColoring

Experimental promoted to Proposed

	Dijkstra

	pgr_dijkstraNear

	pgr_dijkstraNear(Combinations)

	pgr_dijkstraNear(Many to Many)

	pgr_dijkstraNear(Many to One)

	pgr_dijkstraNear(One to Many)

	pgr_dijkstraNearCost

	pgr_dijkstraNearCost(Combinations)

	pgr_dijkstraNearCost(Many to Many)

	pgr_dijkstraNearCost(Many to One)

	pgr_dijkstraNearCost(One to Many)

	Coloring

	pgr_sequentialVertexColoring

	Topology

	pgr_extractVertices

	Traversal

	pgr_depthFirstSearch(Multiple vertices)

	pgr_depthFirstSearch(Single vertex)

pgRouting 3.2¶

Contents

	pgRouting 3.2.2 Release Notes

	pgRouting 3.2.1 Release Notes

	pgRouting 3.2.0 Release Notes

pgRouting 3.2.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.2.2 on Github.

Issue fixes

	#2093: Compilation on Visual Studio

	#2189: Build error on RHEL 7

pgRouting 3.2.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.2.1 on Github.

Issue fixes

	#1883: pgr_TSPEuclidean crashes connection on Windows

	The solution is to use Boost::graph::metric_tsp_approx

	To not break user’s code the optional parameters related to the TSP Annaeling are ignored

	The function with the annaeling optional parameters is deprecated

pgRouting 3.2.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.2.0 on Github.

Build

	#1850: Change Boost min version to 1.56

	Removing support for Boost v1.53, v1.54 & v1.55

New experimental functions

	pgr_bellmanFord(Combinations)

	pgr_binaryBreadthFirstSearch(Combinations)

	pgr_bipartite

	pgr_dagShortestPath(Combinations)

	pgr_depthFirstSearch

	Dijkstra Near

	pgr_dijkstraNear

	pgr_dijkstraNear(One to Many)

	pgr_dijkstraNear(Many to One)

	pgr_dijkstraNear(Many to Many)

	pgr_dijkstraNear(Combinations)

	pgr_dijkstraNearCost

	pgr_dijkstraNearCost(One to Many)

	pgr_dijkstraNearCost(Many to One)

	pgr_dijkstraNearCost(Many to Many)

	pgr_dijkstraNearCost(Combinations)

	pgr_edwardMoore(Combinations)

	pgr_isPlanar

	pgr_lengauerTarjanDominatorTree

	pgr_makeConnected

	Flow

	pgr_maxFlowMinCost(Combinations)

	pgr_maxFlowMinCost_Cost(Combinations)

	pgr_sequentialVertexColoring

New proposed functions

	Astar

	pgr_aStar(Combinations)

	pgr_aStarCost(Combinations)

	Bidirectional Astar

	pgr_bdAstar(Combinations)

	pgr_bdAstarCost(Combinations)

	Bidirectional Dijkstra

	pgr_bdDijkstra(Combinations)

	pgr_bdDijkstraCost(Combinations)

	Flow

	pgr_boykovKolmogorov(Combinations)

	pgr_edgeDisjointPaths(Combinations)

	pgr_edmondsKarp(Combinations)

	pgr_maxFlow(Combinations)

	pgr_pushRelabel(Combinations)

	pgr_withPoints(Combinations)

	pgr_withPointsCost(Combinations)

pgRouting 3.1¶

Contents

	pgRouting 3.1.4 Release Notes

	pgRouting 3.1.3 Release Notes

	pgRouting 3.1.2 Release Notes

	pgRouting 3.1.1 Release Notes

	pgRouting 3.1.0 Release Notes

pgRouting 3.1.4 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.4 on Github.

Issues fixes

	#2189: Build error on RHEL 7

pgRouting 3.1.3 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.3 on Github.

Issues fixes

	#1825: Boost versions are not honored

	#1849: Boost 1.75.0 geometry “point_xy.hpp” build error on macOS environment

	#1861: vrp functions crash server

pgRouting 3.1.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.2 on Github.

Issues fixes

	#1304: FreeBSD 12 64-bit crashes on pgr_vrOneDepot tests Experimental Function

	#1356: tools/testers/pg_prove_tests.sh fails when PostgreSQL port is not passed

	#1725: Server crash on pgr_pickDeliver and pgr_vrpOneDepot on openbsd

	#1760: TSP server crash on ubuntu 20.04 #1760

	#1770: Remove warnings when using clang compiler

pgRouting 3.1.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.1 on Github.

Issues fixes

	#1733: pgr_bdAstar fails when source or target vertex does not exist in the graph

	#1647: Linear Contraction contracts self loops

	#1640: pgr_withPoints fails when points_sql is empty

	#1616: Path evaluation on C++ not updated before the results go back to C

	#1300: pgr_chinesePostman crash on test data

pgRouting 3.1.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.0 on Github.

New proposed functions

	pgr_dijkstra(combinations)

	pgr_dijkstraCost(combinations)

Build changes

	Minimal requirement for Sphinx: version 1.8

pgRouting 3.0¶

Contents

	pgRouting 3.0.6 Release Notes

	pgRouting 3.0.5 Release Notes

	pgRouting 3.0.4 Release Notes

	pgRouting 3.0.3 Release Notes

	pgRouting 3.0.2 Release Notes

	pgRouting 3.0.1 Release Notes

	pgRouting 3.0.0 Release Notes

pgRouting 3.0.6 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.6 on Github.

Issues fixes

	#2189: Build error on RHEL 7

pgRouting 3.0.5 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.5 on Github.

Backport issue fixes

	#1825: Boost versions are not honored

	#1849: Boost 1.75.0 geometry “point_xy.hpp” build error on macOS environment

	#1861: vrp functions crash server

pgRouting 3.0.4 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.4 on Github.

Backport issue fixes

	#1304: FreeBSD 12 64-bit crashes on pgr_vrOneDepot tests Experimental Function

	#1356: tools/testers/pg_prove_tests.sh fails when PostgreSQL port is not passed

	#1725: Server crash on pgr_pickDeliver and pgr_vrpOneDepot on openbsd

	#1760: TSP server crash on ubuntu 20.04 #1760

	#1770: Remove warnings when using clang compiler

pgRouting 3.0.3 Release Notes¶

Backport issue fixes

	#1733: pgr_bdAstar fails when source or target vertex does not exist in the graph

	#1647: Linear Contraction contracts self loops

	#1640: pgr_withPoints fails when points_sql is empty

	#1616: Path evaluation on C++ not updated before the results go back to C

	#1300: pgr_chinesePostman crash on test data

pgRouting 3.0.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.2 on Github.

Issues fixes

	#1378: Visual Studio build failing

pgRouting 3.0.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.1 on Github.

Issues fixes

	#232: Honor client cancel requests in C /C++ code

pgRouting 3.0.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.0 on Github.

Fixed Issues

	#1153: Renamed pgr_eucledianTSP to pgr_TSPeuclidean

	#1188: Removed CGAL dependency

	#1002: Fixed contraction issues:

	#1004: Contracts when forbidden vertices do not belong to graph

	#1005: Intermideate results eliminated

	#1006: No loss of information

New functions

	Kruskal family

	pgr_kruskal

	pgr_kruskalBFS

	pgr_kruskalDD

	pgr_kruskalDFS

	Prim family

	pgr_prim

	pgr_primDD

	pgr_primDFS

	pgr_primBFS

Proposed moved to official on pgRouting

	aStar Family

	pgr_aStar(one to many)

	pgr_aStar(many to one)

	pgr_aStar(many to many)

	pgr_aStarCost(one to one)

	pgr_aStarCost(one to many)

	pgr_aStarCost(many to one)

	pgr_aStarCost(many to many)

	pgr_aStarCostMatrix(one to one)

	pgr_aStarCostMatrix(one to many)

	pgr_aStarCostMatrix(many to one)

	pgr_aStarCostMatrix(many to many)

	bdAstar Family

	pgr_bdAstar(one to many)

	pgr_bdAstar(many to one)

	pgr_bdAstar(many to many)

	pgr_bdAstarCost(one to one)

	pgr_bdAstarCost(one to many)

	pgr_bdAstarCost(many to one)

	pgr_bdAstarCost(many to many)

	pgr_bdAstarCostMatrix(one to one)

	pgr_bdAstarCostMatrix(one to many)

	pgr_bdAstarCostMatrix(many to one)

	pgr_bdAstarCostMatrix(many to many)

	bdDijkstra Family

	pgr_bdDijkstra(one to many)

	pgr_bdDijkstra(many to one)

	pgr_bdDijkstra(many to many)

	pgr_bdDijkstraCost(one to one)

	pgr_bdDijkstraCost(one to many)

	pgr_bdDijkstraCost(many to one)

	pgr_bdDijkstraCost(many to many)

	pgr_bdDijkstraCostMatrix(one to one)

	pgr_bdDijkstraCostMatrix(one to many)

	pgr_bdDijkstraCostMatrix(many to one)

	pgr_bdDijkstraCostMatrix(many to many)

	Flow Family

	pgr_pushRelabel(one to one)

	pgr_pushRelabel(one to many)

	pgr_pushRelabel(many to one)

	pgr_pushRelabel(many to many)

	pgr_edmondsKarp(one to one)

	pgr_edmondsKarp(one to many)

	pgr_edmondsKarp(many to one)

	pgr_edmondsKarp(many to many)

	pgr_boykovKolmogorov (one to one)

	pgr_boykovKolmogorov (one to many)

	pgr_boykovKolmogorov (many to one)

	pgr_boykovKolmogorov (many to many)

	pgr_maxCardinalityMatching

	pgr_maxFlow

	pgr_edgeDisjointPaths(one to one)

	pgr_edgeDisjointPaths(one to many)

	pgr_edgeDisjointPaths(many to one)

	pgr_edgeDisjointPaths(many to many)

	Components family

	pgr_connectedComponents

	pgr_strongComponents

	pgr_biconnectedComponents

	pgr_articulationPoints

	pgr_bridges

	Contraction:

	Removed unnecessary column seq

	Bug Fixes

New experimental functions

	pgr_maxFlowMinCost

	pgr_maxFlowMinCost_Cost

	pgr_extractVertices

	pgr_turnRestrictedPath

	pgr_stoerWagner

	pgr_dagShortestpath

	pgr_topologicalSort

	pgr_transitiveClosure

	VRP category

	pgr_pickDeliverEuclidean

	pgr_pickDeliver

	Chinese Postman family

	pgr_chinesePostman

	pgr_chinesePostmanCost

	Breadth First Search family

	pgr_breadthFirstSearch

	pgr_binaryBreadthFirstSearch

	Bellman Ford family

	pgr_bellmanFord

	pgr_edwardMoore

Moved to legacy

	Experimental functions

	pgr_labelGraph - Use the components family of functions instead.

	Max flow - functions were renamed on v2.5.0

	pgr_maxFlowPushRelabel

	pgr_maxFlowBoykovKolmogorov

	pgr_maxFlowEdmondsKarp

	pgr_maximumcardinalitymatching

	VRP

	pgr_gsoc_vrppdtw

	TSP old signatures

	pgr_pointsAsPolygon

	pgr_alphaShape old signature

pgRouting 2¶

Minors 2.x

	pgRouting 2.6

	pgRouting 2.5

	pgRouting 2.4

	pgRouting 2.3

	pgRouting 2.2

	pgRouting 2.1

	pgRouting 2.0

pgRouting 2.6¶

Contents

	pgRouting 2.6.3 Release Notes

	pgRouting 2.6.2 Release Notes

	pgRouting 2.6.1 Release Notes

	pgRouting 2.6.0 Release Notes

pgRouting 2.6.3 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.6.3 on Github.

Bug fixes

	#1219 Implicit cast for via_path integer to text

	#1193 Fixed pgr_pointsAsPolygon breaking when comparing strings in WHERE clause

	#1185 Improve FindPostgreSQL.cmake

pgRouting 2.6.2 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.6.2 on Github.

Bug fixes

	#1152 Fixes driving distance when vertex is not part of the graph

	#1098 Fixes windows test

	#1165 Fixes build for python3 and perl5

pgRouting 2.6.1 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.6.1 on Github.

	Fixes server crash on several functions.

	pgr_floydWarshall

	pgr_johnson

	pgr_astar

	pgr_bdAstar

	pgr_bdDijstra

	pgr_alphashape

	pgr_dijkstraCostMatrix

	pgr_dijkstra

	pgr_dijkstraCost

	pgr_drivingDistance

	pgr_KSP

	pgr_dijkstraVia (proposed)

	pgr_boykovKolmogorov (proposed)

	pgr_edgeDisjointPaths (proposed)

	pgr_edmondsKarp (proposed)

	pgr_maxCardinalityMatch (proposed)

	pgr_maxFlow (proposed)

	pgr_withPoints (proposed)

	pgr_withPointsCost (proposed)

	pgr_withPointsKSP (proposed)

	pgr_withPointsDD (proposed)

	pgr_withPointsCostMatrix (proposed)

	pgr_contractGraph (experimental)

	pgr_pushRelabel (experimental)

	pgr_vrpOneDepot (experimental)

	pgr_gsoc_vrppdtw (experimental)

	Fixes for deprecated functions where also applied but not tested

	Removed compilation warning for g++8

	Fixed a fallthrugh on Astar and bdAstar.

pgRouting 2.6.0 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.6.0 on Github.

New experimental functions

	pgr_lineGraphFull

Bug fixes

	Fix pgr_trsp(text,integer,double precision,integer,double precision,boolean,boolean[,text])

	without restrictions

	calls pgr_dijkstra when both end points have a fraction IN (0,1)

	calls pgr_withPoints when at least one fraction NOT IN (0,1)

	with restrictions

	calls original trsp code

Internal code

	Cleaned the internal code of trsp(text,integer,integer,boolean,boolean [, text])

	Removed the use of pointers

	Internal code can accept BIGINT

	Cleaned the internal code of withPoints

pgRouting 2.5¶

Contents

	pgRouting 2.5.5 Release Notes

	pgRouting 2.5.4 Release Notes

	pgRouting 2.5.3 Release Notes

	pgRouting 2.5.2 Release Notes

	pgRouting 2.5.1 Release Notes

	pgRouting 2.5.0 Release Notes

pgRouting 2.5.5 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.5.5 on Github.

Bug fixes

	Fixes driving distance when vertex is not part of the graph

	Fixes windows test

	Fixes build for python3 and perl5

pgRouting 2.5.4 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.5.4 on Github.

	Fixes server crash on several functions.

	pgr_floydWarshall

	pgr_johnson

	pgr_astar

	pgr_bdAstar

	pgr_bdDijstra

	pgr_alphashape

	pgr_dijkstraCostMatrix

	pgr_dijkstra

	pgr_dijkstraCost

	pgr_drivingDistance

	pgr_KSP

	pgr_dijkstraVia (proposed)

	pgr_boykovKolmogorov (proposed)

	pgr_edgeDisjointPaths (proposed)

	pgr_edmondsKarp (proposed)

	pgr_maxCardinalityMatch (proposed)

	pgr_maxFlow (proposed)

	pgr_withPoints (proposed)

	pgr_withPointsCost (proposed)

	pgr_withPointsKSP (proposed)

	pgr_withPointsDD (proposed)

	pgr_withPointsCostMatrix (proposed)

	pgr_contractGraph (experimental)

	pgr_pushRelabel (experimental)

	pgr_vrpOneDepot (experimental)

	pgr_gsoc_vrppdtw (experimental)

	Fixes for deprecated functions where also applied but not tested

	Removed compilation warning for g++8

	Fixed a fallthrugh on Astar and bdAstar.

pgRouting 2.5.3 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.5.3 on Github.

Bug fixes

	Fix for postgresql 11: Removed a compilation error when compiling with postgreSQL

pgRouting 2.5.2 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.5.2 on Github.

Bug fixes

	Fix for postgresql 10.1: Removed a compiler condition

pgRouting 2.5.1 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.5.1 on Github.

Bug fixes

	Fixed prerequisite minimum version of: cmake

pgRouting 2.5.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.5.0 on Github.

enhancement:

	pgr_version is now on SQL language

Breaking change on:

	pgr_edgeDisjointPaths:

	Added path_id, cost and agg_cost columns on the result

	Parameter names changed

	The many version results are the union of the one to one version

New Signatures

	pgr_bdAstar(one to one)

New Proposed functions

	pgr_bdAstar(one to many)

	pgr_bdAstar(many to one)

	pgr_bdAstar(many to many)

	pgr_bdAstarCost(one to one)

	pgr_bdAstarCost(one to many)

	pgr_bdAstarCost(many to one)

	pgr_bdAstarCost(many to many)

	pgr_bdAstarCostMatrix

	pgr_bdDijkstra(one to many)

	pgr_bdDijkstra(many to one)

	pgr_bdDijkstra(many to many)

	pgr_bdDijkstraCost(one to one)

	pgr_bdDijkstraCost(one to many)

	pgr_bdDijkstraCost(many to one)

	pgr_bdDijkstraCost(many to many)

	pgr_bdDijkstraCostMatrix

	pgr_lineGraph

	pgr_lineGraphFull

	pgr_connectedComponents

	pgr_strongComponents

	pgr_biconnectedComponents

	pgr_articulationPoints

	pgr_bridges

Deprecated signatures

	pgr_bdastar - use pgr_bdAstar instead

Renamed functions

	pgr_maxFlowPushRelabel - use pgr_pushRelabel instead

	pgr_maxFlowEdmondsKarp -use pgr_edmondsKarp instead

	pgr_maxFlowBoykovKolmogorov - use pgr_boykovKolmogorov instead

	pgr_maximumCardinalityMatching - use pgr_maxCardinalityMatch instead

Deprecated Function

	pgr_pointToEdgeNode

pgRouting 2.4¶

Contents

	pgRouting 2.4.2 Release Notes

	pgRouting 2.4.1 Release Notes

	pgRouting 2.4.0 Release Notes

pgRouting 2.4.2 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.4.2 on Github.

Improvement

	Works for postgreSQL 10

Bug fixes

	Fixed: Unexpected error column “cname”

	Replace __linux__ with __GLIBC__ for glibc-specific headers and functions

pgRouting 2.4.1 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.4.1 on Github.

Bug fixes

	Fixed compiling error on macOS

	Condition error on pgr_withPoints

pgRouting 2.4.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.4.0 on Github.

New Signatures

	pgr_bdDijkstra

New Proposed Signatures

	pgr_maxFlow

	pgr_astar(one to many)

	pgr_astar(many to one)

	pgr_astar(many to many)

	pgr_astarCost(one to one)

	pgr_astarCost(one to many)

	pgr_astarCost(many to one)

	pgr_astarCost(many to many)

	pgr_astarCostMatrix

Deprecated signatures

	pgr_bddijkstra - use pgr_bdDijkstra instead

Deprecated Functions

	pgr_pointsToVids

Bug fixes

	Bug fixes on proposed functions

	pgr_withPointsKSP: fixed ordering

	TRSP original code is used with no changes on the compilation warnings

pgRouting 2.3¶

pgRouting 2.3.2 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.3.2 on Github.

Bug Fixes

	Fixed pgr_gsoc_vrppdtw crash when all orders fit on one truck.

	Fixed pgr_trsp:

	Alternate code is not executed when the point is in reality a vertex

	Fixed ambiguity on seq

pgRouting 2.3.1 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.3.1 on Github.

Bug Fixes

	Leaks on proposed max_flow functions

	Regression error on pgr_trsp

	Types discrepancy on pgr_createVerticesTable

pgRouting 2.3.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.3.0 on Github.

New Signatures

	pgr_TSP

	pgr_aStar

New Functions

	pgr_eucledianTSP

New Proposed functions

	pgr_dijkstraCostMatrix

	pgr_withPointsCostMatrix

	pgr_maxFlowPushRelabel(one to one)

	pgr_maxFlowPushRelabel(one to many)

	pgr_maxFlowPushRelabel(many to one)

	pgr_maxFlowPushRelabel(many to many)

	pgr_maxFlowEdmondsKarp(one to one)

	pgr_maxFlowEdmondsKarp(one to many)

	pgr_maxFlowEdmondsKarp(many to one)

	pgr_maxFlowEdmondsKarp(many to many)

	pgr_maxFlowBoykovKolmogorov (one to one)

	pgr_maxFlowBoykovKolmogorov (one to many)

	pgr_maxFlowBoykovKolmogorov (many to one)

	pgr_maxFlowBoykovKolmogorov (many to many)

	pgr_maximumCardinalityMatching

	pgr_edgeDisjointPaths(one to one)

	pgr_edgeDisjointPaths(one to many)

	pgr_edgeDisjointPaths(many to one)

	pgr_edgeDisjointPaths(many to many)

	pgr_contractGraph

Deprecated signatures

	pgr_tsp - use pgr_TSP or pgr_eucledianTSP instead

	pgr_astar - use pgr_aStar instead

Deprecated Functions

	pgr_flip_edges

	pgr_vidsToDmatrix

	pgr_pointsToDMatrix

	pgr_textToPoints

pgRouting 2.2¶

Contents

	pgRouting 2.2.4 Release Notes

	pgRouting 2.2.3 Release Notes

	pgRouting 2.2.2 Release Notes

	pgRouting 2.2.1 Release Notes

	pgRouting 2.2.0 Release Notes

pgRouting 2.2.4 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.4 on Github.

Bug Fixes

	Bogus uses of extern “C”

	Build error on Fedora 24 + GCC 6.0

	Regression error pgr_nodeNetwork

pgRouting 2.2.3 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.3 on Github.

Bug Fixes

	Fixed compatibility issues with PostgreSQL 9.6.

pgRouting 2.2.2 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.2 on Github.

Bug Fixes

	Fixed regression error on pgr_drivingDistance

pgRouting 2.2.1 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.1 on Github.

Bug Fixes

	Server crash fix on pgr_alphaShape

	Bug fix on With Points family of functions

pgRouting 2.2.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.0 on Github.

Improvements

	pgr_nodeNetwork

	Adding a row_where and outall optional parameters

	Signature fix

	pgr_dijkstra – to match what is documented

New Functions

	pgr_floydWarshall

	pgr_Johnson

	pgr_dijkstraCost(one to one)

	pgr_dijkstraCost(one to many)

	pgr_dijkstraCost(many to one)

	pgr_dijkstraCost(many to many)

Proposed Functionality

	pgr_withPoints(one to one)

	pgr_withPoints(one to many)

	pgr_withPoints(many to one)

	pgr_withPoints(many to many)

	pgr_withPointsCost(one to one)

	pgr_withPointsCost(one to many)

	pgr_withPointsCost(many to one)

	pgr_withPointsCost(many to many)

	pgr_withPointsDD(single vertex)

	pgr_withPointsDD(multiple vertices)

	pgr_withPointsKSP

	pgr_dijkstraVia

Deprecated Functions

	pgr_apspWarshall use pgr_floydWarshall instead

	pgr_apspJohnson use pgr_Johnson instead

	pgr_kDijkstraCost use pgr_dijkstraCost instead

	pgr_kDijkstraPath use pgr_dijkstra instead

Renamed and Deprecated Function

	pgr_makeDistanceMatrix renamed to _pgr_makeDistanceMatrix

pgRouting 2.1¶

Contents

	pgRouting 2.1.0 Release Notes

pgRouting 2.1.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.1.0 on Github.

New Signatures

	pgr_dijkstra(one to many)

	pgr_dijkstra(many to one)

	pgr_dijkstra(many to many)

	pgr_drivingDistance(multiple vertices)

Refactored

	pgr_dijkstra(one to one)

	pgr_ksp

	pgr_drivingDistance(single vertex)

Improvements

	pgr_alphaShape function now can generate better (multi)polygon with holes and alpha parameter.

Proposed Functionality

	Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)

	pgr_pointToEdgeNode - convert a point geometry to a vertex_id based on closest edge.

	pgr_flipEdges - flip the edges in an array of geometries so the connect end to end.

	pgr_textToPoints - convert a string of x,y;x,y;… locations into point geometries.

	pgr_pointsToVids - convert an array of point geometries into vertex ids.

	pgr_pointsToDMatrix - Create a distance matrix from an array of points.

	pgr_vidsToDMatrix - Create a distance matrix from an array of vertix_id.

	pgr_vidsToDMatrix - Create a distance matrix from an array of vertix_id.

	Added proposed functions from GSoc Projects:

	pgr_vrppdtw

	pgr_vrponedepot

Deprecated Functions

	pgr_getColumnName

	pgr_getTableName

	pgr_isColumnCndexed

	pgr_isColumnInTable

	pgr_quote_ident

	pgr_versionless

	pgr_startPoint

	pgr_endPoint

	pgr_pointToId

No longer supported

	Removed the 1.x legacy functions

Bug Fixes

	Some bug fixes in other functions

Refactoring Internal Code

	A C and C++ library for developer was created

	encapsulates postgreSQL related functions

	encapsulates Boost.Graph graphs

	Directed Boost.Graph

	Undirected Boost.graph.

	allow any-integer in the id’s

	allow any-numerical on the cost/reverse_cost columns

	Instead of generating many libraries: - All functions are encapsulated in one library - The library has the prefix 2-1-0

pgRouting 2.0¶

Contents

	pgRouting 2.0.1 Release Notes

	pgRouting 2.0.0 Release Notes

pgRouting 2.0.1 Release Notes¶

Minor bug fixes.

Bug Fixes

	No track of the bug fixes were kept.

pgRouting 2.0.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.0.0 on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility to pgRouting 1.0 releases. The main Goals for this release are:

	Major restructuring of pgRouting.

	Standardization of the function naming

	Preparation of the project for future development.

As a result of this effort:

	pgRouting has a simplified structure

	Significant new functionality has being added

	Documentation has being integrated

	Testing has being integrated

	And made it easier for multiple developers to make contributions.

Important Changes

	Graph Analytics - tools for detecting and fixing connection some problems in a graph

	A collection of useful utility functions

	Two new All Pairs Short Path algorithms (pgr_apspJohnson, pgr_apspWarshall)

	Bi-directional Dijkstra and A-star search algorithms (pgr_bdAstar, pgr_bdDijkstra)

	One to many nodes search (pgr_kDijkstra)

	K alternate paths shortest path (pgr_ksp)

	New TSP solver that simplifies the code and the build process (pgr_tsp), dropped “Gaul Library” dependency

	Turn Restricted shortest path (pgr_trsp) that replaces Shooting Star

	Dropped support for Shooting Star

	Built a test infrastructure that is run before major code changes are checked in

	Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.

	Improved build process for Windows

	Automated testing on Linux and Windows platforms trigger by every commit

	Modular library design

	Compatibility with PostgreSQL 9.1 or newer

	Compatibility with PostGIS 2.0 or newer

	Installs as PostgreSQL EXTENSION

	Return types re factored and unified

	Support for table SCHEMA in function parameters

	Support for st_ PostGIS function prefix

	Added pgr_ prefix to functions and types

	Better documentation: https://docs.pgrouting.org

	shooting_star is discontinued

pgRouting 1¶

pgRouting 1.0¶

Contents

	Changes for release 1.05

	Changes for release 1.03

	Changes for release 1.02

	Changes for release 1.01

	Changes for release 1.0

	Changes for release 1.0.0b

	Changes for release 1.0.0a

	Changes for release 0.9.9

	Changes for release 0.9.8

To see the issues closed by this release see the Git closed issues for 1.x on Github. The following release notes have been copied from the previous RELEASE_NOTES file and are kept as a reference.

Changes for release 1.05¶

	Bug fixes

Changes for release 1.03¶

	Much faster topology creation

	Bug fixes

Changes for release 1.02¶

	Shooting* bug fixes

	Compilation problems solved

Changes for release 1.01¶

	Shooting* bug fixes

Changes for release 1.0¶

	Core and extra functions are separated

	Cmake build process

	Bug fixes

Changes for release 1.0.0b¶

	Additional SQL file with more simple names for wrapper functions

	Bug fixes

Changes for release 1.0.0a¶

	Shooting* shortest path algorithm for real road networks

	Several SQL bugs were fixed

Changes for release 0.9.9¶

	PostgreSQL 8.2 support

	Shortest path functions return empty result if they could not find any path

Changes for release 0.9.8¶

	Renumbering scheme was added to shortest path functions

	Directed shortest path functions were added

	routing_postgis.sql was modified to use dijkstra in TSP search

Migration guide¶

Several functions are having changes on the signatures, and/or have been replaced by new functions.

Results can be different because of the changes.

Warning

All deprecated functions will be removed on next mayor version 4.0.0

Contents

	Migration guide

	Migration of functions

	Migration of pgr_aStar

	Migration of pgr_bdAstar

	Migration of pgr_dijkstra

	Migration of pgr_drivingdistance

	pgr_drivingdistance (Single vertex)

	pgr_drivingdistance (Multiple vertices)

	Migration of pgr_kruskalDD / pgr_kruskalBFS / pgr_kruskalDFS

	Kruskal single vertex

	Kruskal multiple vertices

	Migration of pgr_KSP

	pgr_KSP (One to One)

	Migration of pgr_maxCardinalityMatch

	Migration of pgr_primDD / pgr_primBFS / pgr_primDFS

	Prim single vertex

	Prim multiple vertices

	Migration of pgr_withPointsDD

	pgr_withPointsDD (Single vertex)

	pgr_withPointsDD (Multiple vertices)

	Migration of pgr_withPointsKSP

	pgr_withPointsKSP (One to One)

	Migration of turn restrictions

	Migration of restrictions

	Old restrictions structure

	Old restrictions contents

	New restrictions structure

	Restrictions data

	Migration

	Migration of pgr_trsp (Vertices)

	Migrating pgr_trsp (Vertices) using pgr_dijkstra

	Migrating pgr_trsp (Vertices) using pgr_trsp

	Migration of pgr_trsp (Edges)

	Migrating pgr_trsp (Edges) using pgr_withPoints

	Migrating pgr_trsp (Edges) using pgr_trsp_withPoints

	Migration of pgr_trspViaVertices

	Migrating pgr_trspViaVertices using pgr_dijkstraVia

	Migrating pgr_trspViaVertices using pgr_trspVia

	Migration of pgr_trspViaEdges

	Migrating pgr_trspViaEdges using pgr_withPointsVia

	Migrating pgr_trspViaEdges using pgr_trspVia_withPoints

	See Also

Migration of functions¶

Migrating functions

	Migration of pgr_aStar

	Migration of pgr_bdAstar

	Migration of pgr_dijkstra

	Migration of pgr_drivingdistance

	pgr_drivingdistance (Single vertex)

	pgr_drivingdistance (Multiple vertices)

	Migration of pgr_kruskalDD / pgr_kruskalBFS / pgr_kruskalDFS

	Kruskal single vertex

	Kruskal multiple vertices

	Migration of pgr_KSP

	pgr_KSP (One to One)

	Migration of pgr_maxCardinalityMatch

	Migration of pgr_primDD / pgr_primBFS / pgr_primDFS

	Prim single vertex

	Prim multiple vertices

	Migration of pgr_withPointsDD

	pgr_withPointsDD (Single vertex)

	pgr_withPointsDD (Multiple vertices)

	Migration of pgr_withPointsKSP

	pgr_withPointsKSP (One to One)

Migration of pgr_aStar¶

Starting from v3.6.0

Signatures to be migrated:

	pgr_aStar (One to One)

	pgr_aStar (One to Many)

	pgr_aStar (Many to One)

	Before Migration:

	

	Output columns were (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

	Depending on the overload used, the columns start_vid and end_vid might be missing:

	pgr_aStar (One to One) does not have start_vid and end_vid.

	pgr_aStar (One to Many) does not have start_vid.

	pgr_aStar (Many to One) does not have end_vid.

	Migration:

	

	Be aware of the existence of the additional columns.

	In pgr_aStar (One to One)

	start_vid contains the start vid parameter value.

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_aStar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 6, 10);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

	In pgr_aStar (One to Many)

	start_vid contains the start vid parameter value.

SELECT * FROM pgr_aStar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 6, ARRAY[3, 10]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 3 | 7 | 7 | 1 | 1
 3 | 3 | 6 | 3 | 3 | -1 | 0 | 2
 4 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 5 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 6 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 7 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 8 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 9 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(9 rows)

	In pgr_aStar (Many to One)

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_aStar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 ARRAY[3, 6], 10);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 3 | 10 | 3 | 7 | 1 | 0
 2 | 2 | 3 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 3 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 3 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 3 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 10 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 11 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 12 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(12 rows)

	If needed filter out the added columns, for example:

SELECT seq, path_seq, node, edge, cost, agg_cost FROM pgr_aStar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 6, 10);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

	If needed add the new columns, similar to the following example where pgr_dijkstra is used, and the function had to be modified to be able to return the new columns:

	In v3.0 the function my_dijkstra uses pgr_dijkstra.

	Starting from v3.5 the function my_dijkstra returns the new additional columns of pgr_dijkstra.

Migration of pgr_bdAstar¶

Starting from v3.6.0

Signatures to be migrated:

	pgr_bdAstar (One to One)

	pgr_bdAstar (One to Many)

	pgr_bdAstar (Many to One)

	Before Migration:

	

	Output columns were (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

	Depending on the overload used, the columns start_vid and end_vid might be missing:

	pgr_bdAstar (One to One) does not have start_vid and end_vid.

	pgr_bdAstar (One to Many) does not have start_vid.

	pgr_bdAstar (Many to One) does not have end_vid.

	Migration:

	

	Be aware of the existence of the additional columns.

	In pgr_bdAstar (One to One)

	start_vid contains the start vid parameter value.

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_bdAstar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 6, 10);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

	In pgr_bdAstar (One to Many)

	start_vid contains the start vid parameter value.

SELECT * FROM pgr_bdAstar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 6, ARRAY[3, 10]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 3 | 7 | 7 | 1 | 1
 3 | 3 | 6 | 3 | 3 | -1 | 0 | 2
 4 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 5 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 6 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 7 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 8 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 9 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(9 rows)

	In pgr_bdAstar (Many to One)

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_bdAstar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 ARRAY[3, 6], 10);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 3 | 10 | 3 | 7 | 1 | 0
 2 | 2 | 3 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 3 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 3 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 3 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 10 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 11 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 12 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(12 rows)

	If needed filter out the added columns, for example:

SELECT seq, path_seq, node, edge, cost, agg_cost FROM pgr_bdAstar(
 $$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges$$,
 6, 10);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

	If needed add the new columns, similar to the following example where pgr_dijkstra is used, and the function had to be modified to be able to return the new columns:

	In v3.0 the function my_dijkstra uses pgr_dijkstra.

	Starting from v3.5 the function my_dijkstra returns the new additional columns of pgr_dijkstra.

Migration of pgr_dijkstra¶

Starting from v3.5.0

Signatures to be migrated:

	pgr_dijkstra (One to One)

	pgr_dijkstra (One to Many)

	pgr_dijkstra (Many to One)

	Before Migration:

	

	Output columns were (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

	Depending on the overload used, the columns start_vid and end_vid might be missing:

	pgr_dijkstra (One to One) does not have start_vid and end_vid.

	pgr_dijkstra (One to Many) does not have start_vid.

	pgr_dijkstra (Many to One) does not have end_vid.

	Migration:

	

	Be aware of the existence of the additional columns.

	In pgr_dijkstra (One to One)

	start_vid contains the start vid parameter value.

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_dijkstra(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 6, 10);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(6 rows)

	In pgr_dijkstra (One to Many)

	start_vid contains the start vid parameter value.

SELECT * FROM pgr_dijkstra(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 6, ARRAY[3, 10]);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0
 2 | 2 | 6 | 3 | 7 | 7 | 1 | 1
 3 | 3 | 6 | 3 | 3 | -1 | 0 | 2
 4 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 5 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 6 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 7 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 8 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 9 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(9 rows)

	In pgr_dijkstra (Many to One)

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_dijkstra(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[3, 6], 10);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 3 | 10 | 3 | 7 | 1 | 0
 2 | 2 | 3 | 10 | 7 | 8 | 1 | 1
 3 | 3 | 3 | 10 | 11 | 9 | 1 | 2
 4 | 4 | 3 | 10 | 16 | 16 | 1 | 3
 5 | 5 | 3 | 10 | 15 | 3 | 1 | 4
 6 | 6 | 3 | 10 | 10 | -1 | 0 | 5
 7 | 1 | 6 | 10 | 6 | 4 | 1 | 0
 8 | 2 | 6 | 10 | 7 | 8 | 1 | 1
 9 | 3 | 6 | 10 | 11 | 9 | 1 | 2
 10 | 4 | 6 | 10 | 16 | 16 | 1 | 3
 11 | 5 | 6 | 10 | 15 | 3 | 1 | 4
 12 | 6 | 6 | 10 | 10 | -1 | 0 | 5
(12 rows)

	If needed filter out the added columns, for example:

SELECT seq, path_seq, node, edge, cost, agg_cost FROM pgr_dijkstra(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 6, 10);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | 6 | 4 | 1 | 0
 2 | 2 | 7 | 8 | 1 | 1
 3 | 3 | 11 | 9 | 1 | 2
 4 | 4 | 16 | 16 | 1 | 3
 5 | 5 | 15 | 3 | 1 | 4
 6 | 6 | 10 | -1 | 0 | 5
(6 rows)

	If needed add the new columns, for example:

	In v3.0 the function my_dijkstra uses pgr_dijkstra.

	Starting from v3.5 the function my_dijkstra returns the new additional columns of pgr_dijkstra.

Migration of pgr_drivingdistance¶

Starting from v3.6.0 pgr_drivingDistance result columns are being standardized.

	from:

	(seq, [from_v,] node, edge, cost, agg_cost)

	to:

	(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Signatures to be migrated:

	pgr_drivingdistance (Single vertex)

	pgr_drivingdistance (Multiple vertices)

	Before Migration:

	

Output columns were (seq, [from_v,] node, edge, cost, agg_cost)

	pgr_drivingdistance (Single vertex)

	Does not have start_vid and depth result columns.

	pgr_drivingdistance (Multiple vertices)

	Has from_v instead of start_vid result column.

	does not have depth result column.

	Migration:

	

	Be aware of the existence and name change of the result columns.

pgr_drivingdistance (Single vertex)¶

Using this example.

	start_vid contains the start vid parameter value.

	depth contains the depth of the node.

	pred contains the predecessor of the node.

SELECT * FROM pgr_drivingDistance(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 11, 3.0);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 11 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 11 | 7 | 8 | 1 | 1
 3 | 1 | 11 | 11 | 12 | 11 | 1 | 1
 4 | 1 | 11 | 11 | 16 | 9 | 1 | 1
 5 | 2 | 11 | 7 | 3 | 7 | 1 | 2
 6 | 2 | 11 | 7 | 6 | 4 | 1 | 2
 7 | 2 | 11 | 7 | 8 | 10 | 1 | 2
 8 | 2 | 11 | 16 | 15 | 16 | 1 | 2
 9 | 2 | 11 | 16 | 17 | 15 | 1 | 2
 10 | 3 | 11 | 3 | 1 | 6 | 1 | 3
 11 | 3 | 11 | 6 | 5 | 1 | 1 | 3
 12 | 3 | 11 | 8 | 9 | 14 | 1 | 3
 13 | 3 | 11 | 15 | 10 | 3 | 1 | 3
(13 rows)

If needed filter out the added columns, for example, to return the original columns

SELECT seq, node, edge, cost, agg_cost
FROM pgr_drivingDistance(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 11, 3.0);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | 11 | -1 | 0 | 0
 2 | 7 | 8 | 1 | 1
 3 | 12 | 11 | 1 | 1
 4 | 16 | 9 | 1 | 1
 5 | 3 | 7 | 1 | 2
 6 | 6 | 4 | 1 | 2
 7 | 8 | 10 | 1 | 2
 8 | 15 | 16 | 1 | 2
 9 | 17 | 15 | 1 | 2
 10 | 1 | 6 | 1 | 3
 11 | 5 | 1 | 1 | 3
 12 | 9 | 14 | 1 | 3
 13 | 10 | 3 | 1 | 3
(13 rows)

pgr_drivingdistance (Multiple vertices)¶

Using this example.

	The from_v result column name changes to start_vid.

	depth contains the depth of the node.

	pred contains the predecessor of the node.

SELECT *
FROM pgr_drivingDistance(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[11, 16], 3.0, equicost => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 11 | 11 | 11 | -1 | 0 | 0
 2 | 1 | 11 | 11 | 7 | 8 | 1 | 1
 3 | 1 | 11 | 11 | 12 | 11 | 1 | 1
 4 | 2 | 11 | 7 | 3 | 7 | 1 | 2
 5 | 2 | 11 | 7 | 6 | 4 | 1 | 2
 6 | 2 | 11 | 7 | 8 | 10 | 1 | 2
 7 | 3 | 11 | 3 | 1 | 6 | 1 | 3
 8 | 3 | 11 | 6 | 5 | 1 | 1 | 3
 9 | 3 | 11 | 8 | 9 | 14 | 1 | 3
 10 | 0 | 16 | 16 | 16 | -1 | 0 | 0
 11 | 1 | 16 | 16 | 15 | 16 | 1 | 1
 12 | 1 | 16 | 16 | 17 | 15 | 1 | 1
 13 | 2 | 16 | 15 | 10 | 3 | 1 | 2
(13 rows)

If needed filter out and rename columns, for example, to return the original columns:

SELECT seq, start_vid AS from_v, node, edge, cost, agg_cost
FROM pgr_drivingDistance(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[11, 16], 3.0, equicost => true);
 seq | from_v | node | edge | cost | agg_cost
-----+--------+------+------+------+----------
 1 | 11 | 11 | -1 | 0 | 0
 2 | 11 | 7 | 8 | 1 | 1
 3 | 11 | 12 | 11 | 1 | 1
 4 | 11 | 3 | 7 | 1 | 2
 5 | 11 | 6 | 4 | 1 | 2
 6 | 11 | 8 | 10 | 1 | 2
 7 | 11 | 1 | 6 | 1 | 3
 8 | 11 | 5 | 1 | 1 | 3
 9 | 11 | 9 | 14 | 1 | 3
 10 | 16 | 16 | -1 | 0 | 0
 11 | 16 | 15 | 16 | 1 | 1
 12 | 16 | 17 | 15 | 1 | 1
 13 | 16 | 10 | 3 | 1 | 2
(13 rows)

Migration of pgr_kruskalDD / pgr_kruskalBFS / pgr_kruskalDFS¶

Starting from v3.7.0 pgr_kruskalDD, pgr_kruskalBFS and pgr_kruskalDFS result columns are being standardized.

	from:

	(seq, depth, start_vid, node, edge, cost, agg_cost)

	to:

	(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	pgr_kruskalDD

	Single vertex

	Multiple vertices

	pgr_kruskalDFS

	Single vertex

	Multiple vertices

	pgr_kruskalBFS

	Single vertex

	Multiple vertices

	Before Migration:

	

Output columns were (seq, depth, start_vid, node, edge, cost, agg_cost)

	Single vertex and Multiple vertices

	Do not have pred result column.

	Migration:

	

	Be aware of the existence of pred result columns.

	If needed filter out the added columns

Kruskal single vertex¶

Using pgr_KruskalDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of the node.

SELECT * FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6, 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
(5 rows)

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost
FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6, 3.5);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 16 | 16 | 1 | 3
(5 rows)

Kruskal multiple vertices¶

Using pgr_KruskalDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of the node.

SELECT * FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 15 | 16 | 16 | 1 | 3
 6 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 7 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 8 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 9 | 3 | 9 | 7 | 3 | 7 | 1 | 3
 10 | 2 | 9 | 8 | 12 | 12 | 1 | 2
 11 | 3 | 9 | 12 | 11 | 11 | 1 | 3
 12 | 3 | 9 | 12 | 17 | 13 | 1 | 3
(12 rows)

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost
FROM pgr_kruskalDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], 3.5);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 15 | 3 | 1 | 2
 5 | 3 | 6 | 16 | 16 | 1 | 3
 6 | 0 | 9 | 9 | -1 | 0 | 0
 7 | 1 | 9 | 8 | 14 | 1 | 1
 8 | 2 | 9 | 7 | 10 | 1 | 2
 9 | 3 | 9 | 3 | 7 | 1 | 3
 10 | 2 | 9 | 12 | 12 | 1 | 2
 11 | 3 | 9 | 11 | 11 | 1 | 3
 12 | 3 | 9 | 17 | 13 | 1 | 3
(12 rows)

Migration of pgr_KSP¶

Starting from v3.6.0 pgr_KSP result columns are being standardized.

	from:

	(seq, path_id, path_seq, node, edge, cost, agg_cost)

	from:

	(seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Signatures to be migrated:

	pgr_KSP (One to One)

	Before Migration:

	

	Output columns were (seq, path_id, path_seq, node, edge, cost, agg_cost)

	the columns start_vid and end_vid do not exist.

	pgr_KSP (One to One) does not have start_vid and end_vid.

	Migration:

	

	Be aware of the existence of the additional columns.

pgr_KSP (One to One)¶

Using this example.

	start_vid contains the start vid parameter value.

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_KSP(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 6, 17, 2);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 2 | 1 | 2 | 6 | 17 | 7 | 10 | 1 | 1
 3 | 1 | 3 | 6 | 17 | 8 | 12 | 1 | 2
 4 | 1 | 4 | 6 | 17 | 12 | 13 | 1 | 3
 5 | 1 | 5 | 6 | 17 | 17 | -1 | 0 | 4
 6 | 2 | 1 | 6 | 17 | 6 | 4 | 1 | 0
 7 | 2 | 2 | 6 | 17 | 7 | 8 | 1 | 1
 8 | 2 | 3 | 6 | 17 | 11 | 9 | 1 | 2
 9 | 2 | 4 | 6 | 17 | 16 | 15 | 1 | 3
 10 | 2 | 5 | 6 | 17 | 17 | -1 | 0 | 4
(10 rows)

If needed filter out the added columns, for example, to return the original columns:

SELECT seq, path_id, path_seq, node, edge, cost, agg_cost FROM pgr_KSP(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 6, 17, 2);
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | 6 | 4 | 1 | 0
 2 | 1 | 2 | 7 | 10 | 1 | 1
 3 | 1 | 3 | 8 | 12 | 1 | 2
 4 | 1 | 4 | 12 | 13 | 1 | 3
 5 | 1 | 5 | 17 | -1 | 0 | 4
 6 | 2 | 1 | 6 | 4 | 1 | 0
 7 | 2 | 2 | 7 | 8 | 1 | 1
 8 | 2 | 3 | 11 | 9 | 1 | 2
 9 | 2 | 4 | 16 | 15 | 1 | 3
 10 | 2 | 5 | 17 | -1 | 0 | 4
(10 rows)

Migration of pgr_maxCardinalityMatch¶

pgr_maxCardinalityMatch works only for undirected graphs, therefore the directed flag has been removed.

Starting from v3.4.0

Signature to be migrated:

pgr_maxCardinalityMatch(Edges SQL, [directed])
 RETURNS SETOF (seq, edge, source, target)

Migration is needed, because:

	Use cost and reverse_cost on the inner query

	Results are ordered

	Works for undirected graphs.

	New signature

	pgr_maxCardinalityMatch(text) returns only edge column.

	The optional flag directed is removed.

	Before migration:

	

SELECT * FROM pgr_maxCardinalityMatch(
 $$SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edges$$,
 directed => true
);
WARNING: pgr_maxCardinalityMatch(text,boolean) deprecated signature on v3.4.0
 seq | edge | source | target
-----+------+--------+--------
 1 | 1 | 5 | 6
 2 | 5 | 10 | 11
 3 | 6 | 1 | 3
 4 | 13 | 12 | 17
 5 | 14 | 8 | 9
 6 | 16 | 15 | 16
 7 | 17 | 2 | 4
 8 | 18 | 13 | 14
(8 rows)

	Columns used are going and coming to represent the existence of an edge.

	Flag directed was used to indicate if it was for a directed or undirected graph.

	The flag directed is ignored.

	Regardless of it’s value it gives the result considering the graph as undirected.

	Migration:

	

	Use the columns cost and reverse_cost to represent the existence of an edge.

	Do not use the flag directed.

	In the query returns only edge column.

SELECT * FROM pgr_maxCardinalityMatch(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$
);
 edge

 1
 5
 6
 13
 14
 16
 17
 18
(8 rows)

Migration of pgr_primDD / pgr_primBFS / pgr_primDFS¶

Starting from v3.7.0 pgr_primDD, pgr_primBFS and pgr_primDFS result columns are being standardized.

	from:

	(seq, depth, start_vid, node, edge, cost, agg_cost)

	to:

	(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	pgr_primDD

	Single vertex

	Multiple vertices

	pgr_primDFS

	Single vertex

	Multiple vertices

	pgr_primBFS

	Single vertex

	Multiple vertices

	Before Migration:

	

Output columns were (seq, depth, start_vid, node, edge, cost, agg_cost)

	Single vertex and Multiple vertices

	Do not have pred result column.

	Migration:

	

	Be aware of the existence of pred result columns.

	If needed filter out the added columns

Prim single vertex¶

Using pgr_primDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of the node.

SELECT * FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6, 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
(12 rows)

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost
FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 6, 3.5);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 9 | 14 | 1 | 3
(12 rows)

Prim multiple vertices¶

Using pgr_primDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of the node.

SELECT * FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], 3.5);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | 6 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 10 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 10 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 11 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 11 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 7 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 3 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 7 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 8 | 9 | 14 | 1 | 3
 13 | 0 | 9 | 9 | 9 | -1 | 0 | 0
 14 | 1 | 9 | 9 | 8 | 14 | 1 | 1
 15 | 2 | 9 | 8 | 7 | 10 | 1 | 2
 16 | 3 | 9 | 7 | 6 | 4 | 1 | 3
 17 | 3 | 9 | 7 | 3 | 7 | 1 | 3
(17 rows)

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost
FROM pgr_primDD(
 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
 ARRAY[9, 6], 3.5);
 seq | depth | start_vid | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+----------
 1 | 0 | 6 | 6 | -1 | 0 | 0
 2 | 1 | 6 | 5 | 1 | 1 | 1
 3 | 1 | 6 | 10 | 2 | 1 | 1
 4 | 2 | 6 | 15 | 3 | 1 | 2
 5 | 2 | 6 | 11 | 5 | 1 | 2
 6 | 3 | 6 | 16 | 9 | 1 | 3
 7 | 3 | 6 | 12 | 11 | 1 | 3
 8 | 1 | 6 | 7 | 4 | 1 | 1
 9 | 2 | 6 | 3 | 7 | 1 | 2
 10 | 3 | 6 | 1 | 6 | 1 | 3
 11 | 2 | 6 | 8 | 10 | 1 | 2
 12 | 3 | 6 | 9 | 14 | 1 | 3
 13 | 0 | 9 | 9 | -1 | 0 | 0
 14 | 1 | 9 | 8 | 14 | 1 | 1
 15 | 2 | 9 | 7 | 10 | 1 | 2
 16 | 3 | 9 | 6 | 4 | 1 | 3
 17 | 3 | 9 | 3 | 7 | 1 | 3
(17 rows)

Migration of pgr_withPointsDD¶

Starting from v3.6.0 pgr_withPointsDD - Proposed result columns are being standardized.

	from:

	(seq, [start_vid], node, edge, cost, agg_cost)

	to:

	(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

And driving_side parameter changed from named optional to unnamed compulsory driving side and its validity differ for directed and undirected graphs.

Signatures to be migrated:

	pgr_withPointsDD (Single vertex)

	pgr_withPointsDD (Multiple vertices)

	Before Migration:

	

	pgr_withPointsDD (Single vertex)

	Output columns were (seq, node, edge, cost, agg_cost)

	Does not have start_vid, pred and depth result columns.

	driving_side parameter was named optional now it is compulsory unnamed.

	pgr_withPointsDD (Multiple vertices)

	Output columns were (seq, start_vid, node, edge, cost, agg_cost)

	Does not have depth and pred result columns.

	driving_side parameter was named optional now it is compulsory unnamed.

Driving side was optional

The default values on this query are:

	directed:

	true

	driving_side:

	‘b’

	details:

	false

SELECT * FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, 3.3);
WARNING: pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean) deprecated signature on 3.6.0
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 5 | 1 | 0.4 | 0.4
 3 | 6 | 1 | 0.6 | 0.6
 4 | 7 | 4 | 1 | 1.6
 5 | 3 | 7 | 1 | 2.6
 6 | 8 | 10 | 1 | 2.6
 7 | 11 | 8 | 1 | 2.6
 8 | -3 | 12 | 0.6 | 3.2
 9 | -4 | 6 | 0.7 | 3.3
(9 rows)

Driving side was named optional

The default values on this query are:

	directed:

	true

	details:

	false

SELECT * FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, 3.3, driving_side => 'r');
WARNING: pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean) deprecated signature on 3.6.0
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 5 | 1 | 0.4 | 0.4
 3 | 6 | 1 | 1 | 1.4
 4 | 7 | 4 | 1 | 2.4
(4 rows)

On directed graph b could be used as driving side

The default values on this query are:

	details:

	false

SELECT * FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, 3.3, directed => true, driving_side => 'b');
WARNING: pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean) deprecated signature on 3.6.0
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 5 | 1 | 0.4 | 0.4
 3 | 6 | 1 | 0.6 | 0.6
 4 | 7 | 4 | 1 | 1.6
 5 | 3 | 7 | 1 | 2.6
 6 | 8 | 10 | 1 | 2.6
 7 | 11 | 8 | 1 | 2.6
 8 | -3 | 12 | 0.6 | 3.2
 9 | -4 | 6 | 0.7 | 3.3
(9 rows)

On undirected graph r could be used as driving side

Also l could be used as driving side

SELECT * FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, 3.3, 'r', directed => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 2 | 1 | -1 | -1 | 5 | 1 | 0.4 | 0.4
 3 | 2 | -1 | 5 | 6 | 1 | 1 | 1.4
 4 | 3 | -1 | -6 | 7 | 4 | 1 | 2.4
(4 rows)

	After Migration:

	

	Be aware of the existence of the additional result Columns.

	New output columns are (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	driving side parameter is unnamed compulsory, and valid values differ for directed and undirected graphs.

	Does not have a default value.

	In directed graph: valid values are [r, R, l, L]

	In undirected graph: valid values are [b, B]

	Using an invalid value throws an ERROR.

pgr_withPointsDD (Single vertex)¶

Using this example.

	(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	start_vid contains the start vid parameter value.

	depth contains the depth from the start_vid vertex to the node.

	pred contains the predecessor of the node.

To migrate, use an unnamed valid value for driving side after the distance parameter:

SELECT * FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, 3.3, 'r', directed => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 2 | 1 | -1 | -1 | 5 | 1 | 0.4 | 0.4
 3 | 2 | -1 | 5 | 6 | 1 | 1 | 1.4
 4 | 3 | -1 | -6 | 7 | 4 | 1 | 2.4
(4 rows)

To get results from previous versions:

	filter out the additional columns, for example;

	When details => false to remove the points use WHERE node >= 0 OR cost = 0

SELECT seq, node, edge, cost, agg_cost FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, 3.3, 'r', details => true);
 seq | node | edge | cost | agg_cost
-----+------+------+------+----------
 1 | -1 | -1 | 0 | 0
 2 | 5 | 1 | 0.4 | 0.4
 3 | 6 | 1 | 1 | 1.4
 4 | -6 | 4 | 0.7 | 2.1
 5 | 7 | 4 | 0.3 | 2.4
(5 rows)

pgr_withPointsDD (Multiple vertices)¶

Using this example.

	(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

	depth contains the depth from the start_vid vertex to the node.

	pred contains the predecessor of the node.

SELECT * FROM pgr_withPointsDD(
 $$SELECT * FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 ARRAY[-1, 16], 3.3, 'l', equicost => true);
 seq | depth | start_vid | pred | node | edge | cost | agg_cost
-----+-------+-----------+------+------+------+------+----------
 1 | 0 | -1 | -1 | -1 | -1 | 0 | 0
 2 | 1 | -1 | -1 | 6 | 1 | 0.6 | 0.6
 3 | 2 | -1 | 6 | 7 | 4 | 1 | 1.6
 4 | 2 | -1 | 6 | 5 | 1 | 1 | 1.6
 5 | 3 | -1 | 7 | 3 | 7 | 1 | 2.6
 6 | 3 | -1 | 7 | 8 | 10 | 1 | 2.6
 7 | 4 | -1 | 8 | -3 | 12 | 0.6 | 3.2
 8 | 4 | -1 | 3 | -4 | 6 | 0.7 | 3.3
 9 | 0 | 16 | 16 | 16 | -1 | 0 | 0
 10 | 1 | 16 | 16 | 11 | 9 | 1 | 1
 11 | 1 | 16 | 16 | 15 | 16 | 1 | 1
 12 | 1 | 16 | 16 | 17 | 15 | 1 | 1
 13 | 2 | 16 | 15 | 10 | 3 | 1 | 2
 14 | 2 | 16 | 11 | 12 | 11 | 1 | 2
(14 rows)

To get results from previous versions:

	Filter out the additional columns

	When details => false to remove the points use WHERE node >= 0 OR cost = 0

SELECT seq, start_vid, node, edge, cost, agg_cost FROM pgr_withPointsDD(
 $$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 ARRAY[-1, 16], 3.3, 'l', equicost => true) WHERE node >= 0 OR cost = 0;
 seq | start_vid | node | edge | cost | agg_cost
-----+-----------+------+------+------+----------
 1 | -1 | -1 | -1 | 0 | 0
 2 | -1 | 6 | 1 | 0.6 | 0.6
 3 | -1 | 7 | 4 | 1 | 1.6
 4 | -1 | 5 | 1 | 1 | 1.6
 5 | -1 | 3 | 7 | 1 | 2.6
 6 | -1 | 8 | 10 | 1 | 2.6
 9 | 16 | 16 | -1 | 0 | 0
 10 | 16 | 11 | 9 | 1 | 1
 11 | 16 | 15 | 16 | 1 | 1
 12 | 16 | 17 | 15 | 1 | 1
 13 | 16 | 10 | 3 | 1 | 2
 14 | 16 | 12 | 11 | 1 | 2
(12 rows)

Migration of pgr_withPointsKSP¶

Starting from v3.6.0 pgr_withPointsKSP - Proposed result columns are being standardized.

	from:

	(seq, path_id, path_seq, node, edge, cost, agg_cost)

	from:

	(seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

And driving side parameter changed from named optional to unnamed compulsory driving side and its validity differ for directed and undirected graphs.

Signatures to be migrated:

	pgr_withPointsKSP (One to One)

	Before Migration:

	

	Output columns were (seq, path_seq, [start_pid], [end_pid], node, edge, cost, agg_cost)

	the columns start_vid and end_vid do not exist.

	Migration:

	

	Be aware of the existence of the additional result Columns.

	New output columns are (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

	driving side parameter is unnamed compulsory, and valid values differ for directed and undirected graphs.

	Does not have a default value.

	In directed graph: valid values are [r, R, l, L]

	In undirected graph: valid values are [b, B]

	Using an invalid value throws an ERROR.

pgr_withPointsKSP (One to One)¶

Using this example.

	start_vid contains the start vid parameter value.

	end_vid contains the end vid parameter value.

SELECT * FROM pgr_withPointsKSP(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, -2, 2, 'l');
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------
 1 | 1 | 1 | -1 | -2 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | -1 | -2 | 6 | 4 | 1 | 0.6
 3 | 1 | 3 | -1 | -2 | 7 | 8 | 1 | 1.6
 4 | 1 | 4 | -1 | -2 | 11 | 11 | 1 | 2.6
 5 | 1 | 5 | -1 | -2 | 12 | 13 | 1 | 3.6
 6 | 1 | 6 | -1 | -2 | 17 | 15 | 0.6 | 4.6
 7 | 1 | 7 | -1 | -2 | -2 | -1 | 0 | 5.2
 8 | 2 | 1 | -1 | -2 | -1 | 1 | 0.6 | 0
 9 | 2 | 2 | -1 | -2 | 6 | 4 | 1 | 0.6
 10 | 2 | 3 | -1 | -2 | 7 | 8 | 1 | 1.6
 11 | 2 | 4 | -1 | -2 | 11 | 9 | 1 | 2.6
 12 | 2 | 5 | -1 | -2 | 16 | 15 | 1.6 | 3.6
 13 | 2 | 6 | -1 | -2 | -2 | -1 | 0 | 5.2
(13 rows)

If needed filter out the additional columns, for example, to return the original columns:

SELECT seq, path_id, path_seq, node, edge, cost, agg_cost FROM pgr_withPointsKSP(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT pid, edge_id, fraction, side from pointsOfInterest$$,
 -1, -2, 2, 'l');
 seq | path_id | path_seq | node | edge | cost | agg_cost
-----+---------+----------+------+------+------+----------
 1 | 1 | 1 | -1 | 1 | 0.6 | 0
 2 | 1 | 2 | 6 | 4 | 1 | 0.6
 3 | 1 | 3 | 7 | 8 | 1 | 1.6
 4 | 1 | 4 | 11 | 11 | 1 | 2.6
 5 | 1 | 5 | 12 | 13 | 1 | 3.6
 6 | 1 | 6 | 17 | 15 | 0.6 | 4.6
 7 | 1 | 7 | -2 | -1 | 0 | 5.2
 8 | 2 | 1 | -1 | 1 | 0.6 | 0
 9 | 2 | 2 | 6 | 4 | 1 | 0.6
 10 | 2 | 3 | 7 | 8 | 1 | 1.6
 11 | 2 | 4 | 11 | 9 | 1 | 2.6
 12 | 2 | 5 | 16 | 15 | 1.6 | 3.6
 13 | 2 | 6 | -2 | -1 | 0 | 5.2
(13 rows)

Migration of turn restrictions¶

Contents

	Migration of restrictions

	Old restrictions structure

	Old restrictions contents

	New restrictions structure

	Restrictions data

	Migration

	Migration of pgr_trsp (Vertices)

	Migrating pgr_trsp (Vertices) using pgr_dijkstra

	Migrating pgr_trsp (Vertices) using pgr_trsp

	Migration of pgr_trsp (Edges)

	Migrating pgr_trsp (Edges) using pgr_withPoints

	Migrating pgr_trsp (Edges) using pgr_trsp_withPoints

	Migration of pgr_trspViaVertices

	Migrating pgr_trspViaVertices using pgr_dijkstraVia

	Migrating pgr_trspViaVertices using pgr_trspVia

	Migration of pgr_trspViaEdges

	Migrating pgr_trspViaEdges using pgr_withPointsVia

	Migrating pgr_trspViaEdges using pgr_trspVia_withPoints

	See Also

Migration of restrictions¶

Starting from v3.4.0

The structure of the restrictions have changed:

Old restrictions structure¶

On the deprecated signatures:

	Column rid is ignored

	via_path

	Must be in reverse order.

	Is of type TEXT.

	When more than one via edge must be separated with ,.

	target_id

	Is the last edge of the forbidden path.

	Is of type INTEGER.

	to_cost

	Is of type FLOAT.

Creation of the old restrictions table

CREATE TABLE old_restrictions (
 rid BIGINT NOT NULL,
 to_cost FLOAT,
 target_id BIGINT,
 via_path TEXT
);
CREATE TABLE

Old restrictions fill up

INSERT INTO old_restrictions (rid, to_cost, target_id, via_path) VALUES
(1, 100, 7, '4'),
(1, 100, 11, '8'),
(1, 100, 10, '7'),
(2, 4, 9, '5, 3'),
(3, 100, 9, '16');
INSERT 0 5

Old restrictions contents¶

SELECT * FROM old_restrictions;
 rid | to_cost | target_id | via_path
-----+---------+-----------+----------
 1 | 100 | 7 | 4
 1 | 100 | 11 | 8
 1 | 100 | 10 | 7
 2 | 4 | 9 | 5, 3
 3 | 100 | 9 | 16
(5 rows)

The restriction with rid = 2 is representing \(3 \rightarrow 5 \rightarrow9\)

	\(3\rightarrow5\)

	is on column via_path in reverse order

	is of type TEXT

	\(9\)

	is on column target_id

	is of type INTEGER

New restrictions structure¶

	Column id is ignored

	Column path

	Is of type ARRAY[ANY-INTEGER].

	Contains all the edges involved on the restriction.

	The array has the ordered edges of the restriction.

	Column cost

	Is of type ANY-NUMERICAL

The creation of the restrictions table

CREATE TABLE restrictions (
 id SERIAL PRIMARY KEY,
 path BIGINT[],
 cost FLOAT
);
CREATE TABLE

Adding the restrictions

INSERT INTO restrictions (path, cost) VALUES
(ARRAY[4, 7], 100),
(ARRAY[8, 11], 100),
(ARRAY[7, 10], 100),
(ARRAY[3, 5, 9], 4),
(ARRAY[9, 16], 100);
INSERT 0 5

Restrictions data¶

SELECT * FROM restrictions;
 id | path | cost
----+---------+------
 1 | {4,7} | 100
 2 | {8,11} | 100
 3 | {7,10} | 100
 4 | {3,5,9} | 4
 5 | {9,16} | 100
(5 rows)

The restriction with rid = 2 represents the path \(3 \rightarrow5 \rightarrow9\).

	By inspection the path is clear.

Migration¶

To transform the old restrictions table to the new restrictions structure,

	Create a new table with the new restrictions structure.

	In this migration guide new_restrictions is been used.

	For this migration pgRouting supplies an auxiliary function for reversal of an array _pgr_array_reverse needed for the migration.

	_pgr_array_reverse:

	Was created temporally for this migration

	Is not documented.

	Will be removed on the next mayor version 4.0.0

SELECT rid AS id,
 _pgr_array_reverse(
 array_prepend(target_id, string_to_array(via_path::text, ',')::BIGINT[])) AS path,
 to_cost AS cost
 INTO new_restrictions
FROM old_restrictions;
SELECT 5

The migrated table contents:

SELECT * FROM new_restrictions;
 id | path | cost
----+---------+------
 1 | {4,7} | 100
 1 | {8,11} | 100
 1 | {7,10} | 100
 2 | {3,5,9} | 4
 3 | {16,9} | 100
(5 rows)

Migration of pgr_trsp (Vertices)¶

pgr_trsp - Proposed signatures have changed and many issues have been fixed in the new signatures. This section will show how to migrate from the old signatures to the new replacement functions. This also affects the restrictions.

Starting from v3.4.0

Signature to be migrated:

pgr_trsp(Edges SQL, source, target,
 directed boolean, has_rcost boolean
 [,restrict_sql text]);
 RETURNS SETOF (seq, id1, id2, cost)

	The integral type of the Edges SQL can only be INTEGER.

	The floating point type of the Edges SQL can only be FLOAT.

	directed flag is compulsory.

	Does not have a default value.

	Does not autodetect if reverse_cost column exist.

	User must be careful to match the existence of the column with the value of has_rcost parameter.

	The restrictions inner query is optional.

	The output column names are meaningless

Migrate by using:

	pgr_dijkstra when there are no restrictions,

	pgr_trsp - Proposed (One to One) when there are restrictions.

Migrating pgr_trsp (Vertices) using pgr_dijkstra¶

The following query does not have restrictions.

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost
 FROM edges WHERE id != 16$$,
 15, 16,
 true, true);
WARNING: pgr_trsp(text,integer,integer,boolean,boolean) deprecated signature on v3.4.0
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 15 | 3 | 1
 1 | 10 | 5 | 1
 2 | 11 | 9 | 1
 3 | 16 | -1 | 0
(4 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_dijkstra instead.

SELECT * FROM pgr_dijkstra(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id != 16$$,
 15, 16);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 15 | 16 | 15 | 3 | 1 | 0
 2 | 2 | 15 | 16 | 10 | 5 | 1 | 1
 3 | 3 | 15 | 16 | 11 | 9 | 1 | 2
 4 | 4 | 15 | 16 | 16 | -1 | 0 | 3
(4 rows)

	The types casting has been removed.

	pgr_dijkstra:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost
FROM pgr_dijkstra(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id != 16$$,
 15, 16);
 seq | id1 | id2 | cost
-----+-----+-----+------
 1 | 15 | 3 | 1
 2 | 10 | 5 | 1
 3 | 11 | 9 | 1
 4 | 16 | -1 | 0
(4 rows)

	id1 is the node

	id2 is the edge

Migrating pgr_trsp (Vertices) using pgr_trsp¶

The following query has restrictions.

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost
 FROM edges WHERE id != 16$$,
 15, 16,
 true, true,
 $$SELECT to_cost, target_id::INTEGER, via_path
 FROM old_restrictions$$);
WARNING: pgr_trsp(text,integer,integer,boolean,boolean) deprecated signature on v3.4.0
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | 15 | 3 | 1
 1 | 10 | 5 | 1
 2 | 11 | 11 | 1
 3 | 12 | 13 | 1
 4 | 17 | 15 | 1
 5 | 16 | -1 | 0
(6 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

	The restrictions are the last parameter of the function

	Using the old structure of restrictions

Use pgr_trsp - Proposed (One to One) instead.

SELECT * FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id != 16$$,
 $$SELECT * FROM new_restrictions$$,
 15, 16);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | 15 | 16 | 15 | 3 | 1 | 0
 2 | 2 | 15 | 16 | 10 | 5 | 1 | 1
 3 | 3 | 15 | 16 | 11 | 11 | 1 | 2
 4 | 4 | 15 | 16 | 12 | 13 | 1 | 3
 5 | 5 | 15 | 16 | 17 | 15 | 1 | 4
 6 | 6 | 15 | 16 | 16 | -1 | 0 | 5
(6 rows)

	The new structure of restrictions is been used.

	It is the second parameter.

	The types casting has been removed.

	pgr_trsp - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost
FROM pgr_trsp(
 $$SELECT id, source, target, cost, reverse_cost
 FROM edges WHERE id != 16$$,
 $$SELECT * FROM new_restrictions$$,
 15, 16);
 seq | id1 | id2 | cost
-----+-----+-----+------
 1 | 15 | 3 | 1
 2 | 10 | 5 | 1
 3 | 11 | 11 | 1
 4 | 12 | 13 | 1
 5 | 17 | 15 | 1
 6 | 16 | -1 | 0
(6 rows)

	id1 is the node

	id2 is the edge

Migration of pgr_trsp (Edges)¶

Signature to be migrated:

pgr_trsp(sql text, source_edge integer, source_pos float8,
 target_edge integer, target_pos float8,
 directed boolean, has_rcost boolean
 [,restrict_sql text]);
RETURNS SETOF (seq, id1, id2, cost)

	The integral types of the sql can only be INTEGER.

	The floating point type of the sql can only be FLOAT.

	directed flag is compulsory.

	Does not have a default value.

	Does not autodetect if reverse_cost column exist.

	User must be careful to match the existence of the column with the value of has_rcost parameter.

	The restrictions inner query is optional.

For these migration guide the following points will be used:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest
WHERE pid IN (3, 4);
 pid | edge_id | fraction | side
-----+---------+----------+------
 3 | 12 | 0.6 | l
 4 | 6 | 0.3 | r
(2 rows)

Migrate by using:

	pgr_withPoints - Proposed when there are no restrictions,

	pgr_trsp_withPoints - Proposed (One to One) when there are restrictions.

Migrating pgr_trsp (Edges) using pgr_withPoints¶

The following query does not have restrictions.

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost
 FROM edges$$,
 6, 0.3, 12, 0.6,
 true, true);
WARNING: pgr_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 6 | 0.7
 1 | 3 | 7 | 1
 2 | 7 | 10 | 1
 3 | 8 | 12 | 0.6
 4 | -2 | -1 | 0
(5 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_withPoints - Proposed instead.

SELECT * FROM pgr_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (4, 3)$$,
 -4, -3,
 details => false);
 seq | path_seq | node | edge | cost | agg_cost
-----+----------+------+------+------+----------
 1 | 1 | -4 | 6 | 0.7 | 0
 2 | 2 | 3 | 7 | 1 | 0.7
 3 | 3 | 7 | 10 | 1 | 1.7
 4 | 4 | 8 | 12 | 0.6 | 2.7
 5 | 5 | -3 | -1 | 0 | 3.3
(5 rows)

	The types casting has been removed.

	Do not show details, as the deprecated function does not show details.

	pgr_withPoints - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

	On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost
FROM pgr_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM (VALUES (1, 6, 0.3),(2, 12, 0.6)) AS t(pid, edge_id, fraction)$$,
 -1, -2,
 details => false);
 seq | id1 | id2 | cost
-----+-----+-----+------
 1 | -1 | 6 | 0.7
 2 | 3 | 7 | 1
 3 | 7 | 10 | 1
 4 | 8 | 12 | 0.6
 5 | -2 | -1 | 0
(5 rows)

	id1 is the node

	id2 is the edge

Migrating pgr_trsp (Edges) using pgr_trsp_withPoints¶

The following query has restrictions.

SELECT * FROM pgr_trsp(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges$$,
 6, 0.3, 12, 0.6, true, true,
 $$SELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions$$);
WARNING: pgr_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0
 seq | id1 | id2 | cost
-----+-----+-----+------
 0 | -1 | 6 | 0.7
 1 | 3 | 7 | 1
 2 | 7 | 8 | 1
 3 | 11 | 9 | 1
 4 | 16 | 16 | 1
 5 | 15 | 3 | 1
 6 | 10 | 2 | 1
 7 | 6 | 4 | 1
 8 | 7 | 10 | 1
 9 | 8 | 12 | 0.6
(10 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

	The restrictions are the last parameter of the function

	Using the old structure of restrictions

Use pgr_trsp_withPoints - Proposed instead.

SELECT * FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM new_restrictions$$,
 $$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (4, 3)$$,
 -4, -3,
 details => false);
 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
-----+----------+-----------+---------+------+------+------+----------
 1 | 1 | -4 | -3 | -4 | 6 | 0.7 | 0
 2 | 2 | -4 | -3 | 3 | 7 | 1 | 0.7
 3 | 3 | -4 | -3 | 7 | 8 | 1 | 1.7
 4 | 4 | -4 | -3 | 11 | 9 | 1 | 2.7
 5 | 5 | -4 | -3 | 16 | 16 | 1 | 3.7
 6 | 6 | -4 | -3 | 15 | 3 | 1 | 4.7
 7 | 7 | -4 | -3 | 10 | 2 | 1 | 5.7
 8 | 8 | -4 | -3 | 6 | 4 | 1 | 6.7
 9 | 9 | -4 | -3 | 7 | 10 | 1 | 7.7
 10 | 10 | -4 | -3 | 8 | 12 | 0.6 | 8.7
 11 | 11 | -4 | -3 | -3 | -1 | 0 | 9.3
(11 rows)

	The new structure of restrictions is been used.

	It is the second parameter.

	The types casting has been removed.

	Do not show details, as the deprecated function does not show details.

	pgr_trsp_withPoints - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

	On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost
FROM pgr_trsp_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM new_restrictions$$,
 $$SELECT * FROM (VALUES (1, 6, 0.3),(2, 12, 0.6)) AS t(pid, edge_id, fraction)$$,
 -1, -2,
 details => false)
WHERE edge != -1;
 seq | id1 | id2 | cost
-----+-----+-----+------
 1 | -1 | 6 | 0.7
 2 | 3 | 7 | 1
 3 | 7 | 8 | 1
 4 | 11 | 9 | 1
 5 | 16 | 16 | 1
 6 | 15 | 3 | 1
 7 | 10 | 2 | 1
 8 | 6 | 4 | 1
 9 | 7 | 10 | 1
 10 | 8 | 12 | 0.6
(10 rows)

	id1 is the node

	id2 is the edge

Migration of pgr_trspViaVertices¶

Signature to be migrated:

pgr_trspViaVertices(sql text, vids integer[],
 directed boolean, has_rcost boolean
 [, turn_restrict_sql text]);
RETURNS SETOF (seq, id1, id2, id3, cost)

	The integral types of the Edges SQL can only be INTEGER.

	The floating point type of the Edges SQL can only be FLOAT.

	directed flag is compulsory.

	Does not have a default value.

	Does not autodetect if reverse_cost column exist.

	User must be careful to match the existence of the column with the value of has_rcost parameter.

	The restrictions inner query is optional.

Migrate by using:

	pgr_dijkstraVia - Proposed when there are no restrictions,

	pgr_trspVia - Proposed when there are restrictions.

Migrating pgr_trspViaVertices using pgr_dijkstraVia¶

The following query does not have restrictions.

SELECT * FROM pgr_trspViaVertices(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges$$,
 ARRAY[6, 3, 6],
 true, true);
WARNING: pgr_trspViaVertices(text,anyarray,boolean,boolean,text) deprecated function on v3.4.0
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | 6 | 4 | 1
 2 | 1 | 7 | 7 | 1
 3 | 2 | 3 | 7 | 1
 4 | 2 | 7 | 4 | 1
 5 | 2 | 6 | -1 | 0
(5 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_dijkstraVia - Proposed instead.

SELECT * FROM pgr_dijkstraVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[6, 3, 6]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 3 | 7 | 7 | 1 | 1 | 1
 3 | 1 | 3 | 6 | 3 | 3 | -1 | 0 | 2 | 2
 4 | 2 | 1 | 3 | 6 | 3 | 7 | 1 | 0 | 2
 5 | 2 | 2 | 3 | 6 | 7 | 4 | 1 | 1 | 3
 6 | 2 | 3 | 3 | 6 | 6 | -2 | 0 | 2 | 4
(6 rows)

	The types casting has been removed.

	pgr_dijkstraVia - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

	On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq,
 path_id::INTEGER AS id1, node::INTEGER AS id2,
 CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT
FROM pgr_dijkstraVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 ARRAY[6, 3, 6])
WHERE edge != -1;
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | 6 | 4 | 1
 2 | 1 | 7 | 7 | 1
 3 | 2 | 3 | 7 | 1
 4 | 2 | 7 | 4 | 1
 5 | 2 | 6 | -1 | 0
(5 rows)

	id1 is the path identifier

	id2 is the node

	id3 is the edge

Migrating pgr_trspViaVertices using pgr_trspVia¶

The following query has restrictions.

SELECT * FROM pgr_trspViaVertices(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges$$,
 ARRAY[6, 3, 6],
 true, true,
 $$SELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions$$);
WARNING: pgr_trspViaVertices(text,anyarray,boolean,boolean,text) deprecated function on v3.4.0
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | 6 | 4 | 1
 2 | 1 | 7 | 8 | 1
 3 | 1 | 11 | 9 | 1
 4 | 1 | 16 | 16 | 1
 5 | 1 | 15 | 3 | 1
 6 | 1 | 10 | 5 | 1
 7 | 1 | 11 | 8 | 1
 8 | 1 | 7 | 7 | 1
 9 | 2 | 3 | 7 | 1
 10 | 2 | 7 | 4 | 1
 11 | 2 | 6 | -1 | 0
(11 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

	The restrictions are the last parameter of the function

	Using the old structure of restrictions

Use pgr_trspVia - Proposed instead.

SELECT * FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM new_restrictions$$,
 ARRAY[6, 3, 6]);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | 6 | 3 | 6 | 4 | 1 | 0 | 0
 2 | 1 | 2 | 6 | 3 | 7 | 8 | 1 | 1 | 1
 3 | 1 | 3 | 6 | 3 | 11 | 9 | 1 | 2 | 2
 4 | 1 | 4 | 6 | 3 | 16 | 16 | 1 | 3 | 3
 5 | 1 | 5 | 6 | 3 | 15 | 3 | 1 | 4 | 4
 6 | 1 | 6 | 6 | 3 | 10 | 5 | 1 | 5 | 5
 7 | 1 | 7 | 6 | 3 | 11 | 8 | 1 | 6 | 6
 8 | 1 | 8 | 6 | 3 | 7 | 7 | 1 | 7 | 7
 9 | 1 | 9 | 6 | 3 | 3 | -1 | 0 | 8 | 8
 10 | 2 | 1 | 3 | 6 | 3 | 7 | 1 | 0 | 8
 11 | 2 | 2 | 3 | 6 | 7 | 4 | 1 | 1 | 9
 12 | 2 | 3 | 3 | 6 | 6 | -2 | 0 | 2 | 10
(12 rows)

	The new structure of restrictions is been used.

	It is the second parameter.

	The types casting has been removed.

	pgr_trspVia - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

	On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq,
 path_id::INTEGER AS id1, node::INTEGER AS id2,
 CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT
FROM pgr_trspVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM new_restrictions$$,
 ARRAY[6, 3, 6])
WHERE edge != -1;
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | 6 | 4 | 1
 2 | 1 | 7 | 8 | 1
 3 | 1 | 11 | 9 | 1
 4 | 1 | 16 | 16 | 1
 5 | 1 | 15 | 3 | 1
 6 | 1 | 10 | 5 | 1
 7 | 1 | 11 | 8 | 1
 8 | 1 | 7 | 7 | 1
 9 | 2 | 3 | 7 | 1
 10 | 2 | 7 | 4 | 1
 11 | 2 | 6 | -1 | 0
(11 rows)

	id1 is the path identifier

	id2 is the node

	id3 is the edge

Migration of pgr_trspViaEdges¶

Signature to be migrated:

pgr_trspViaEdges(sql text, eids integer[], pcts float8[],
 directed boolean, has_rcost boolean
 [, turn_restrict_sql text]);
RETURNS SETOF (seq, id1, id2, id3, cost)

	The integral types of the Edges SQL can only be INTEGER.

	The floating point type of the Edges SQL can only be FLOAT.

	directed flag is compulsory.

	Does not have a default value.

	Does not autodetect if reverse_cost column exist.

	User must be careful to match the existence of the column with the value of has_rcost parameter.

	The restrictions inner query is optional.

For these migration guide the following points will be used:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest
WHERE pid IN (3, 4, 6);
 pid | edge_id | fraction | side
-----+---------+----------+------
 3 | 12 | 0.6 | l
 4 | 6 | 0.3 | r
 6 | 4 | 0.7 | b
(3 rows)

And will travel thru the following Via points \(4\rightarrow3\rightarrow6\)

Migrate by using:

	pgr_withPointsVia - Proposed when there are no restrictions,

	pgr_trspVia_withPoints - Proposed when there are restrictions.

Migrating pgr_trspViaEdges using pgr_withPointsVia¶

The following query does not have restrictions.

SELECT * FROM pgr_trspViaEdges(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges$$,
 ARRAY[6, 12, 4], ARRAY[0.3, 0.6, 0.7],
 true, true);
WARNING: pgr_trspViaEdges(text,integer[],float[],boolean,boolean,text) deprecated function on v3.4.0
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | -1 | 6 | 0.7
 2 | 1 | 3 | 7 | 1
 3 | 1 | 7 | 10 | 1
 4 | 1 | 8 | 12 | 0.6
 5 | 1 | -2 | -1 | 0
 6 | 2 | -2 | 12 | 0.4
 7 | 2 | 12 | 13 | 1
 8 | 2 | 17 | 15 | 1
 9 | 2 | 16 | 9 | 1
 10 | 2 | 11 | 8 | 1
 11 | 2 | 7 | 4 | 0.7
 12 | 2 | -3 | -2 | 0
(12 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_withPointsVia - Proposed instead.

SELECT * FROM pgr_withPointsVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (3, 4, 6)$$,
 ARRAY[-4, -3, -6],
 details => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -4 | -3 | -4 | 6 | 0.7 | 0 | 0
 2 | 1 | 2 | -4 | -3 | 3 | 7 | 1 | 0.7 | 0.7
 3 | 1 | 3 | -4 | -3 | 7 | 10 | 1 | 1.7 | 1.7
 4 | 1 | 4 | -4 | -3 | 8 | 12 | 0.6 | 2.7 | 2.7
 5 | 1 | 5 | -4 | -3 | -3 | -1 | 0 | 3.3 | 3.3
 6 | 2 | 1 | -3 | -6 | -3 | 12 | 0.4 | 0 | 3.3
 7 | 2 | 2 | -3 | -6 | 12 | 13 | 1 | 0.4 | 3.7
 8 | 2 | 3 | -3 | -6 | 17 | 15 | 1 | 1.4 | 4.7
 9 | 2 | 4 | -3 | -6 | 16 | 9 | 1 | 2.4 | 5.7
 10 | 2 | 5 | -3 | -6 | 11 | 8 | 1 | 3.4 | 6.7
 11 | 2 | 6 | -3 | -6 | 7 | 4 | 0.3 | 4.4 | 7.7
 12 | 2 | 7 | -3 | -6 | -6 | -2 | 0 | 4.7 | 8
(12 rows)

	The types casting has been removed.

	Do not show details, as the deprecated function does not show details.

	pgr_withPointsVia - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

	On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq,
path_id::INTEGER AS id1, node::INTEGER AS id2,
CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT
FROM pgr_withPointsVia(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM (VALUES (1, 6, 0.3),(2, 12, 0.6),(3, 4, 0.7)) AS t(pid, edge_id, fraction)$$,
 ARRAY[-1, -2, -3],
 details=> false);
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | -1 | 6 | 0.7
 2 | 1 | 3 | 7 | 1
 3 | 1 | 7 | 10 | 1
 4 | 1 | 8 | 12 | 0.6
 5 | 1 | -2 | -1 | 0
 6 | 2 | -2 | 12 | 0.4
 7 | 2 | 12 | 13 | 1
 8 | 2 | 17 | 15 | 1
 9 | 2 | 16 | 9 | 1
 10 | 2 | 11 | 8 | 1
 11 | 2 | 7 | 4 | 0.3
 12 | 2 | -3 | -1 | 0
(12 rows)

	id1 is the path identifier

	id2 is the node

	id3 is the edge

Migrating pgr_trspViaEdges using pgr_trspVia_withPoints¶

The following query has restrictions.

SELECT * FROM pgr_trspViaEdges(
 $$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges$$,
 ARRAY[6, 12, 4], ARRAY[0.3, 0.6, 0.7],
 true, true,
 $$SELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions$$);
WARNING: pgr_trspViaEdges(text,integer[],float[],boolean,boolean,text) deprecated function on v3.4.0
WARNING: pgr_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0
WARNING: pgr_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | -1 | 6 | 0.7
 2 | 1 | 3 | 7 | 1
 3 | 1 | 7 | 8 | 1
 4 | 1 | 11 | 9 | 1
 5 | 1 | 16 | 16 | 1
 6 | 1 | 15 | 3 | 1
 7 | 1 | 10 | 2 | 1
 8 | 1 | 6 | 4 | 1
 9 | 1 | 7 | 10 | 1
 10 | 1 | 8 | 12 | 1
 11 | 2 | 12 | 13 | 1
 12 | 2 | 17 | 15 | 1
 13 | 2 | 16 | 9 | 1
 14 | 2 | 11 | 8 | 1
 15 | 2 | 7 | 4 | 0.3
(15 rows)

	A message about deprecation is shown

	Deprecated functions will be removed on the next mayor version 4.0.0

	The restrictions are the last parameter of the function

	Using the old structure of restrictions

Use pgr_trspVia_withPoints - Proposed instead.

SELECT * FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM new_restrictions$$,
 $$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (3, 4, 6)$$,
 ARRAY[-4, -3, -6],
 details => false);
 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost
-----+---------+----------+-----------+---------+------+------+------+----------+----------------
 1 | 1 | 1 | -4 | -3 | -4 | 6 | 0.7 | 0 | 0
 2 | 1 | 2 | -4 | -3 | 3 | 7 | 1 | 0.7 | 0.7
 3 | 1 | 3 | -4 | -3 | 7 | 4 | 0.6 | 1.7 | 1.7
 4 | 1 | 4 | -4 | -3 | 7 | 10 | 1 | 2.3 | 2.3
 5 | 1 | 5 | -4 | -3 | 8 | 12 | 0.6 | 3.3 | 3.3
 6 | 1 | 6 | -4 | -3 | -3 | -1 | 0 | 3.9 | 3.9
 7 | 2 | 1 | -3 | -6 | -3 | 12 | 0.4 | 0 | 3.9
 8 | 2 | 2 | -3 | -6 | 12 | 13 | 1 | 0.4 | 4.3
 9 | 2 | 3 | -3 | -6 | 17 | 15 | 1 | 1.4 | 5.3
 10 | 2 | 4 | -3 | -6 | 16 | 9 | 1 | 2.4 | 6.3
 11 | 2 | 5 | -3 | -6 | 11 | 8 | 1 | 3.4 | 7.3
 12 | 2 | 6 | -3 | -6 | 7 | 4 | 0.3 | 4.4 | 8.3
 13 | 2 | 7 | -3 | -6 | -6 | -2 | 0 | 4.7 | 8.6
(13 rows)

	The new structure of restrictions is been used.

	It is the second parameter.

	The types casting has been removed.

	Do not show details, as the deprecated function does not show details.

	pgr_trspVia_withPoints - Proposed:

	Autodetects if reverse_cost column is in the edges SQL.

	Accepts ANY-INTEGER on integral types

	Accepts ANY-NUMERICAL on floating point types

	directed flag has a default value of true.

	Use the same value that on the original query.

	In this example it is true which is the default value.

	The flag has been omitted and the default is been used.

	On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq,
path_id::INTEGER AS id1, node::INTEGER AS id2,
CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT
FROM pgr_trspVia_withPoints(
 $$SELECT id, source, target, cost, reverse_cost FROM edges$$,
 $$SELECT * FROM new_restrictions$$,
 $$SELECT * FROM (VALUES (1, 6, 0.3),(2, 12, 0.6),(3, 4, 0.7)) AS t(pid, edge_id, fraction)$$,
 ARRAY[-1, -2, -3],
 details => false);
 seq | id1 | id2 | id3 | cost
-----+-----+-----+-----+------
 1 | 1 | -1 | 6 | 0.7
 2 | 1 | 3 | 7 | 1
 3 | 1 | 7 | 4 | 0.6
 4 | 1 | 7 | 10 | 1
 5 | 1 | 8 | 12 | 0.6
 6 | 1 | -2 | -1 | 0
 7 | 2 | -2 | 12 | 0.4
 8 | 2 | 12 | 13 | 1
 9 | 2 | 17 | 15 | 1
 10 | 2 | 16 | 9 | 1
 11 | 2 | 11 | 8 | 1
 12 | 2 | 7 | 4 | 0.3
 13 | 2 | -3 | -1 | 0
(13 rows)

	id1 is the path identifier

	id2 is the node

	id3 is the edge

See Also¶

	TRSP - Family of functions

	withPoints - Category

Indices and tables

	Index

	Search Page

Indices and tables

	Index

	Search Page

Contents

© Copyright pgRouting Contributors - Version v3.7.1. Last updated on Jan 10, 2025. Created using Sphinx 7.4.7.

EPUB/media/file13.jpg
& boost

EPUB/media/file4.png

EPUB/media/file52.png

EPUB/media/file27.png
Rest of the Graph
/ N
z

. w}

EPUB/media/file43.png

EPUB/media/file18.png

EPUB/media/file44.png

EPUB/media/file26.png

EPUB/media/file35.png

EPUB/media/file53.png

EPUB/media/file28.png
u{mz
_/

Rest of the Graph

EPUB/media/file10.png

EPUB/media/file5.png

EPUB/media/file19.png

EPUB/media/file45.png

EPUB/media/file6.png

EPUB/media/file36.png

EPUB/nav.xhtml

pgRouting Manual (3.7)

		pgRouting Manual (3.7)		pgRouting Manual (3.7)

		Table of Contents¶		General¶		Introduction¶

		Installation¶

		Support¶

		Sample Data¶

		Pgrouting Concepts¶		pgRouting Concepts¶

		Function Families¶		Function Families¶

		Functions by categories¶

		Available Functions but not official pgRouting functions¶		Proposed Functions¶

		Experimental Functions¶

		Release Notes¶		Current release¶

		pgRouting 3.7.1 Release Notes¶

		pgRouting 3.7.0 Release Notes¶

		All releases¶

 		
 Title Page

EPUB/media/file11.png

EPUB/media/file54.png

EPUB/media/file41.png

EPUB/media/file2.png

EPUB/media/file9.gif

EPUB/media/file37.png

EPUB/media/file24.png
Rest of the Graph

/ \W

u

EPUB/media/file12.png

EPUB/media/file3.png

EPUB/media/file42.png

EPUB/media/file55.png

EPUB/media/file56.png

EPUB/media/file38.png

EPUB/media/file25.png

EPUB/media/file30.png
{13}

EPUB/media/file57.png

EPUB/media/file31.png
{13}

21{17}

EPUB/media/file48.png

EPUB/media/file39.png

EPUB/media/file22.png

EPUB/media/file23.png
'ﬁs—t of the Graph

EPUB/media/file58.png

EPUB/media/file40.png
N) ® & (@) &

NOUTURN NORIGHT NOLEFT RIGHTTURN LEFTTURN
TURNS TURNS ONLY oMy

EPUB/media/file15.png

EPUB/media/file32.png
id-o id=s
(srotgt) (srctgt)
) ©9)

id=2
(srctat)
2.3),

id=3
(srctgt)
(4),

EPUB/media/file14.png

EPUB/media/file49.png

EPUB/media/file46.png

EPUB/media/file29.png
{2} .

{9

{1,3}

{5}

{13}

EPUB/media/file1.png

EPUB/media/file16.png

EPUB/media/file20.png

EPUB/media/file50.png

EPUB/media/file7.png

EPUB/media/file33.png
oy
a (B>s)
Lsiepr o0 Loi=prp0

2
(1)
za1=prp0

w1
o)
Lseprpo

(eron)
1)
L=prp

e
Loi=prpI0

EPUB/media/file47.png
P

EPUB/media/file0.png
) ®O

EPUB/media/file17.png

EPUB/media/file8.png

EPUB/media/file51.png

EPUB/media/file34.png

EPUB/media/file21.png

