Table of Contents

Table of Contents	1
pgRouting Manual (3.7)	14
pgRouting Manual (3.7)	14
Table of Contents	14
General¶	14
Introduction¶	14
Licensing¶ Contributors¶	14 14
This Release Contributors¶	14
Individuals in this release v3.7.x (in alphabetical order)¶ Corporate Sponsors in this release (in alphabetical order)¶ Coatchust two Devel & Devence if	14 14
More Information	15
	15
Short Version¶ Get the sources¶	15 15
Enabling and upgrading in the database¶	15
Dependencies¶ Configuring¶	15
Configurable variables¶ Building	17 17
Testing	17
See Also¶	17
Reporting Problems	17
Mailing List and GIS StackExchange¶	18
Sample Data¶	18
Main graph¶	18
Edges ¶ Edges data¶	18 19
Vertices ¶ Vertices data¶	19 20
The topology¶ Topology data¶	20 20
Points outside the graph¶ Points of interest¶	20 20
Points of interest fillup¶ Support tables¶	²¹ 21
Combinations	21
Restrictions data	21
Images¶	21
Directed graph with cost and reverse_cost¶ Undirected graph with cost and reverse_cost¶	21 22
Directed graph with cost¶ Undirected graph with cost¶	22 22
Pick & Deliver Data¶ The vehicles¶	22
The original orders¶	22
Parouting Concepts¶	24
pgRouting Concepts	24
Graphs	24
Graph definition¶ Graph with cost¶	24 25
Graph with cost and reverse_cost¶ Graphs without geometries¶	25 26
Wiki example¶ Prover the delaber	26
Create a table¶	26 27
Find the shortest path1 Vertex information1	27 27
Graphs with geometries¶ Create a routing Database¶	27 27
Load Data¶	27
Adjust costs¶	28
Update costs to length of geometry¶ Update costs based on codes¶	28
Check the Routing Topology¶ Crossing edges¶	29 29
Adding split edges¶ Adding new vertices¶	30 30
Updating edges topology¶ Removing the surplus edges¶	30 31
Updating vertices topology* Checking for crossing edges* Disconnected version	31 31 31
Prepare storage for connection information	31
Save the vertues connection information	31
Connecting components¶ Checking components¶	31
Contraction of a graph¶ Dead ends¶	32
Linear edges¶ Function's structure¶	33
Function's overloads¶	33
One to Many¶ One to Many¶	33 33
Many to One¶ Many to Many¶	34 34
Combinations¶	34
Edges SOL¶	34
General without Id¶ General without Id¶ General with V/ VI	34
Flow¶ Combinations SQL¶	35 35 36
Restrictions SQL¶ Points SQL¶	36

2
2
4

aStar optional parameters¶	71 71
Edges SQL¶	71
Hesur Coumins Additional Examples	/2 72
See Also1 Description1	72 72
See Alsoft Ridirectional Diikstra - Family of functions	73 73
Dar bolinktra (73
Uescription Signatures¶	/3 74
One to One¶ One to Many¶	74
Many to One¶ Many to Many Many Many Many Many Many Many Many	74 74
Combinations1	75
rarameters1 Optional parameters1	
Inner Queries	
Combinations SQL¶ Result columns1	76 76
Additional Examples	76
Gee Alson a pgr_bd0jkstraCost¶	
Lescription Signatures¶	78
One to One¶ One to One¶ One to Many¶	
Many to One¶	78 78
Combinations	78
raianiesis Optional parameters¶	73 79
Inner Queries	79 79
Combinations SQL¶ Result columns¶	79 80
Additional Examples 1 See Along	80 80
pg_toDDjkstraCostMatrix1	80 80
Signatures	80 81
rarameters y Optional parameters y	81 82
Inner Queries¶ Edges SOL¶	82 89
Result columns¶ Additional Examples¶	82 87
See Also	82
Characteristics	82 83
see Alson Components - Family of functions¶	83 83
pgr_connectedComponents¶	83
Signaptions Signaptions	84
Parameters	84 84
Edges SOL¶ Result columns¶	
Additional Examples	85 85
Proper storage for connection information	85
Save the degise connection information¶	80 85
Get the closest vertext Connecting components	85 85
Checking components¶ See Also¶	86 86
pgr_strongComponents¶ Descriptions	86 86
Signatures	87 97
ratallieuts Inner Querisej	67 87
Edges SCLI Result columns1	8/ 87
See Also¶ par biconceptcComponents¶	
Description	88
Parameters	89
Inner Goeries) Edges SOLI	33
Hesui colums1 See Also1	89 89
pgr_ariculationPoints¶ Description¶	89 89
Signatures	90
Inner Queiteg	90
Luges Suc_ Result columns	90
see Alson pgr_bridges¶	90 91
Description	91. 91
Parameters¶ Inner Queries¶	91 91
Edges SQL¶ Result columns¶	91
See Alsof por makeConnected - Exnerimental	92
	92 92
Signatures1	92 93
Inner Queries¶ Edges SOL¶	93 93
Result columns¶ See Also¶	93 93
See Also¶ Contraction - Family of functions¶	93 02
pgr_contraction¶	93
Description¶ Signatures¶	94 94 94
Parameters¶ Optional parameters¶	94 94
Contraction optional parameters¶	94 94
Edges SOL1	94
Additional Examples	95 95
Jee ANDU I	96
Llead end contraction¶ Dead end¶	
	96 96
Dead end vertex on directed graph¶	96 96 96 96
Lead end vertex on undrected graph1 Dead end vertex on directed graph1 Operation: Dead End Contraction1	96 96 96 96 96 96 96 96
Dead end vertex on undrected graph1 Dead end vertex on directed graph1 Operation: Dead End Contraction1 Linear contraction1 Linear1	96 96 96 96 96 96 96 97 97 97
Jead end vertex on undrected graph¶ Dead end vertex on directed graph¶ Operation: Dead End Contraction¶ Linear contraction¶ Linear vertex on undrected graph¶ Linear vertex on undrected graph¶ Linear vertex on directed graph¶ Linear vertex on directed graph¶	96 96 96 96 96 97 97 97 97 97 97
Jead end vertex on lineted graph¶ Dead end vertex on directed graph¶ Operation: Dead End Contraction¶ Linear vertex on undirected graph¶ Linear vertex on undirected graph¶ Linear vertex on directed graph	96 96 96 97 97 97 97 97 97 97 97 97 97 97
Jead end vertex on indrected graph¶ Dead end vertex on indrected graph¶ Operation: Dead End Contraction¶ Linear vertex on undrected graph¶ Linear vertex on undrected graph¶ Linear vertex on undrected graph¶ Linear vertex on indrected graph¶ Contraction Inder Contraction¶ Contraction Inder Contraction	96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97
Jead end vertex on indrected graph¶ Dead end vertex on indrected graph¶ Operation: Dead End Contraction¶ Linear vertex on undrected graph¶ Linear vertex on undrected graph¶ Linear vertex on undrected graph¶ Contraction ¶ Linear vertex on indrected graph¶ Contraction The graph ¶ Contraction The graph ¶ Contraction The graph ¶ Contraction The database¶ Construction College Gata¶ Construction College Gata Const	966 966 966 977 977 977 977 977 977 977
Jead end vertex on indrected graph1 Dead end vertex on indrected graph1 Operation: Dead End Contraction1 Linear vertex on undrected graph1 Linear vertex on undrected graph1 Linear vertex on undrected graph1 Devertex on undrected graph1 Operation: Linear Contraction1 The cycle1 Contraction of the graph in the database1 Construction of the graph in the database1 Construction of the graph in the database1 Construction of used and1 Store contraction information1 Store contraction information1	96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97
Jead end vertex on indirected graph¶ Dead end vertex on indirected graph¶ Operation: Dead End Contraction¶ Linear vertex on indirected graph¶ Linear vertex on undirected graph¶ Linear vertex on undirected graph¶ Deartif Linear vertex on undirected graph¶ Contraction ¶ Linear vertex on indirected graph¶ Contraction the graph in the database¶ Contraction the graph in the database¶ Construction of leagraph in the database¶ Construction columns¶ Store contraction information¶ The vertef Linear vertex on the database¶ Contraction information¶	96 96 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97

Vertices that belong to the contracted graph.	100
Edges that belong to the contracted graph.¶ Contracted graph¶	100 100
Using the contracted graph¶ Case 1: Both source and target belong to the contracted graph.¶	100
Case 2: Source and/or target belong to an edge subgraph.¶ Case 3: Source and/or target belong to a vertex.¶	101
See Alsof Berror - Ten to fanational	102
ijesna - ranny or functions	102
Description	103
One to Cone of	104 104
Many to One¶	104
Combinations 1	105
ra an enoises Optional parameters	105
Inner Quenes) Edges SQL	105
Combinations SQL¶ Result columns¶	106
Additional Examples For directed graphs with cost and reverse_cost columns For directed graphs with cost and reverse_cost columns	106
1) Path from (6) to (10)¶ 2) Path from (6) to (7)¶	108 108
3) Path from \(12) to \(10) \(108
5) Using One to Many to get the solution of examples 1 and 24 Di Using News to Davis bar bet solution of examples 1 and 24	108
O Using Many to Many to get the solution of examples a tor s₁) Using Many to Many to get the solution of examples 1 to s₁)	109
o) Using Commissions to get the source on to examples 1 to 3 For undirected graphs with costs and reverse, cost columns 1	109
9) Path from \6(b) to \(10)\1 10) Path form \6(b) to \(7)\1	109
11) Path from \(12) bo \(10)\{ 12) Path from \(12) bo \(10)\{	<u>110</u> 110
13) Using One to Many to get the solution of examples 9 and 10¶ 14) Using Many to One to get the solution of examples 10 and 12¶	110 110
15) Using Many to Many to get the solution of examples 9 to 129	110
For directed graphs only with cost column¶ T/D Path from V(%) in V(%) in V(%)	110
18) Path from \(6) to \(7)\f 19) Dath from \(2) to \(7)\f	111
20) Path from \(12) to \(7)\	111
21) Using Une to Many to get the solution of examples 1/ and 18¶ 22) Using Many to One to get the solution of examples 18 and 20¶	111
23) Using Many to Many to get the solution of examples 17 to 20¶ 24) Using Combinations to get the solution of examples 17 to 19¶	111
For undirected graphs only with cost column¶ 25) Path form (\05) to (10)¶	112
26) Path from \(6) to \(7)\¶ 27) Path from \(12) to \(10)\¶	112 112
28) Path from \(12) to \(7)\)¶ 29) Using One to Marv to get the solution of examples 25 and 26¶	112 112
30) Using Many to One to get the solution of examples 26 and 281 31) Using Many to One to get the solution of examples 25 in 281	113
32) Using Combinations to get the solution of examples 25 to 27¶ Fourielprose herwises simplures¶	113
33) Using One to One 1	113
35) Using Many to One¶	113
37) Using Combinations¶	114
oor nastra cost	114
Signatures	114
One io Onerg	115
wany to Jone 1 Many to Many 1	115
Comonators) Parameters	115
Uptional parameters	116
Edges SCLP Combinations SCLP	116
Hesuit columns Additional Examples	116
See Also1 gpr_dijkstraCostMarix1	117
Description Signatures	117 118
Parameters Qplional parameters	118 118
Inner Queries¶ Edges SQL ¶	118
Result columns¶ Additional Examples¶	119 119
See Also¶ pgr_drivingDistance¶	119 119
Description¶ Signatures¶	119 120
Single Vertex¶ Multiple Vertices¶	120 120
Parameters¶ Optional parameters¶	120 120
Driving distance optional parameters¶ Inner Queries¶	120 121
Edges SQL¶ Result columns¶	121
Additional Examples¶ See Also¶	121
ppr_KSP1 Description	122
Signatures¶	122
One to Many¶	122
Many to Many f	123
Parameters	124
KSP Optional parameters	124
nnier Guerres y Edges SOLI Combinations SOLI	125
Cumunatarini SULT Result Columns¶	125
Audununia Examples See Alsof 	125
pgr oikstravia - Moposeon Description	127 127
Signatures¶ One Via¶	128 128
Parameters¶ Optional parameters¶	128 128
Via optional parameters¶ Inner Queries¶	128 128
Edges SQL¶ Result columns¶	128 129
Additional Examples¶ The main query¶	129 129
Aggregate cost of the third path.¶ Route's aggregate cost of the route at the end of the third path.¶	129 129
Nodes visited in the route. The aggregate costs of the route when the visited vertices are reached.	129 130
Status of "passes in front" or "visits" of the nodes.	
See Also	130
See Also¶ pgr_diijkstraNear - Proposed¶ Description¶	130 130 130 130

and to constant a second s	13
any to Mariny mbinations	
randers	1
kstra optional parameters ar optional carameters	
ner Queriest	13
liges SOL	
ninimation o ce	13
ie Alsof	13
[]ukstanWearCost - Proposed] scrimtion{	$\frac{13}{13}$
raracteristics¶	13
	13
a or way any to One	13
any to Mary	13
moinaloons	$\frac{13}{15}$
ikstra optional parameters¶	13
ara optional parameters	
	13
mbinations SQL	13
ssuit courms) no Alsof	
roducion	13
in an and the second	
	13
iges GOL1	13
mbinations SQL support the second	$\frac{12}{12}$
vance occurrentation (Advanced documentation)¶	13
ie Alsof	13
v - Falmiy Gi Luncuonsy r movEnud	1/
analues]	14
	<u>14</u> 14
iny to Onet	14
uny to Many mininations	<u>14</u> 1/
rameters	14
ines SOI (
miniations SOL¶	14
suit columns	14
nauona Laanipuest la Alsof	14
r_boykovKolmogorov¶	14
Sscrption	
te to Onef	14
re to Many	14
	14
imbinations (14
irameters ■ Churice	14
	14
mbinations SQL	14
suit courms)	14
ne Alsof	14
r_edmondsKary	14
analyses	14
	14
	14
e unany any to One	14
ar unany any to One¶ any to Many¶	14
le uraan any to One¶ any to Many¶ mbinations¶ rameters¶	14 14 14
ia Unany any to One¶ any to Many¶ mbinations¶ rameters¶ re Queries¶	14 14 14 14 14
la Unany any to One any to Many mbinations g rarameters j liges SQL squees SQL	14 14 14 14 14 14 14
a or kany my to One¶ any to Many¶ mbinations¶ rameters¶ re Ouenis¶ ges SOL¶ mbinations SOL¶	14 14 14 14 14 14 14 14 14 14 14
a to Many my to Many my to Many inameters ier Queries ges SQL mbinations SQL mbinations SQL iditional Examples other	14 14 14 14 14 14 14 14 14 14 14 14 14
e u many my to Many my to Many famoters er Queries ge SQL sut columnes dional Examples e Also pushRelate/	$ \begin{array}{ccccccccccccccccccccccccccccccccc$
ia lo kany my to Many my to Many institutions fer Queries jees SQL jees SQL jee	14 14 14 14 14 14 14 14 14 14 14 14 14
a lo Many my to Many my to Many transitions f compositions f compositions f compositions ditional Examples f compositions ditional Examples f compositions compositions ditional Examples f compositions ditional Examples ditional Exampl	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
a lo Many my to Any miniations rameters ges SOL ges SOL ges SOL f umbinations SOL ges SOL f umbinations SOL ges SOL f ges SOL f umbinations SOL f sol f ges SOL f umbinations SOL f ges SOL f ges SOL f umbinations SOL f ges SOL f umbinations SOL f sol f f ges SOL f f f f f f f f f f f f f f f f f f f	14 14 14 14 14 14 14 14 14 14 14 14 14 1
an U Many my to Many my to Many my to Many monotonic for Queries ges SOL ges SOL for Queries for Que	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ia Unany any to Many miniations rarameters fee Societ societ societ re Ause fee Societ societ re Ause fee Societ societ re Ause fee Societ societ fee Societ re Ause fee Societ societ fee Societ fee Soci	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
any to Many any to Many miniations rarameters j rer Queries j ges SQL giss SQL suit columns i ditional Examples suit columns i ditional Examples suit columns i e i SQL suit columns i ditional Examples sci e i SQL suit columns i ditional Examples sci e i SQL suit columns i ditional Examples i e i SQL suit columns i ditional Examples i ditional Examples i ditional ditional Examples i ditional Examples i ditionale	14 14 14 14 14 14 14 14 14 14 14 14 14 1
ia Uraayi ay to Manyi mininations] trameters] fee Asofi for Asofi	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ia Unany my to One farmeters rameters farmeter	14 14 14 14 14 14 14 14 14 14 14 14 14 1
ia Unany my to Dnef any to Many miniations grant comes grant comes	14 14 14 14 14 14 14 14 14 14 14 14 14 1
We be any to Deef any to Many miniations ¶ rer Queries¶ jees SQL¶ miniations SQL¶ suit columns¶ difficient Examples¶ ie Also¶ r_pushifielabel¶ section = Constant = C	14 14 14 14 14 14 14 14 14 14 14 14 14 1
ia Unany my to Many motivations farameters ges SOL ges SOL dificiant Examples for Overs for Sol section for Sol for So	14 14 14 14 14 14 14 14 14 14 14 14 14 1
We be any to Deep service of the ser	14 14 14 14 14 14 14 14 14 14 14 14 14 1
ia U Anay my to Many miniations fare Queries fages SQL fages SQL faces f	14 14 14 14 14 14 14 14 14 14 14 14 14 1
ia U kan'i minimised any to Man'i minimised gay to Man'i minimised gay to Man'i minimised difficient Examples f te to Manyi any to Manyi minimised gas Sol i f secretion f f f f f f f f f f f f f f f f f f f	14 14 14 14 14 14 14 14 14 14 14 14 14 1
a unany my to Anay my to Anay my to Anay rer Queriest (giss SQL) subtractions SQL(subtractions SQL) (subtractions SQL) (subtra	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
a u u any i a	14 14 14 14 14 14 14 14 14 14 14 14 14 1
an Unany 1 and I and I a	141 141 141 141 141 141 141 141 141 141
an Union protocol pro	141 141 141 141 141 141 141 141 141 141
an Union of a second	144 141 141 141 141 141 141 141 141 141
any io Oraf metanional in provide ges SQL1 sectores ges SQL1 sectores didnome Examples didnome Examples didnome Examples didnome Examples didnome Examples sectores to Examples to Doraf sectores to Doraf sectore	144 14 14 14 14 14 14 14 14 14 14 14 14
an uno oral and uno oral minimitors increations incre	144 14 14 14 14 14 14 14 14 14 14 14 14
a v o o na pro na pr	141 441 441 441 441 441 441 441 441 441
any io Origi monitations serious ser	141 441 441 441 441 441 441 441 441 441
any io Conf mobile mobile mobile arr Confiel mobile mobi	1414 1414 1414 1414 1414 1414 1414 141
any io Cond instructions instru	
ang io Cond mbraiters in o bland armeters armeters in o Control isolators in o Control isolators in o Cond isolators in o Cond isolators in o Cond isona Escaped isona Esc	
any io Cond mbraitons problems	
ang to Grant and Section 2015 and 2015	
awy to Any in yo hary in yo	
aw boy of for for for for for for for for for	
aw boy of for for for for for for for for for	141414414414414414414414414414414414414
aw bond arbond arbond arbond arbond arbond be Solf arbond arbo	
any boys y bo	
an y boly y b	
ar ye bany and and and and and and and and and and	144 144 144 144 144 144 144 144 144 144
an e bard metaurany bard metaurany bard metaurany bard voor Consert voor Consert	144 144 144 144 144 144 144 144 144 144
	144 144 144 144 144 144 144 144 144 144
	144 144 144 144 144 144 144 144 144 144
	141414414414414414414414414414414414414
	14141444444444444444444444444444444444
y y	14141444444444444444444444444444444444
	144 144 144 144 144 144 144 144 144 144

Inner Queries*	162
Edges SQL¶	163
Cumunaanin SOLT Return columns	163 163
Additional Examples1	163 164
Flow Functions General Information	164
Inne Gontes	164
Combinations SQL¶	165 165
Advanced Documentations	166
Kruskal - Family of functions¶	166
pgr_kruskan Description¶	167 167
Signatures	167 167
	167
Coges Such Result columns¶	167
See Also pr_kuskalf55¶	168
Description Signatures	168 168
	168
mounter ventoes	169
BFS optional parameters[Inner Queries]	169 169
Edges IOL ⁴	169
See Alori	170
Pescription 1	170
Supariores	171
Multiple vertices¶ Parameters¶	171 171
Inner Queries¶ Edges SQL¶	171 171
Result columns¶	172
pgr kruskaDFS¶	172
Lessinguon Signatures¶	172 172
Single vertex Multiple vertices	173 173
Parameters¶ DFS optional parameters¶	173
Inner Queries	173
Euges out 1 Result columns	173 174
See Alson Description¶	174 174
Inner Queries	174 175
rim - Family of functions	175
pgr_pmm Description¶	1/5
Signatures	175 176
Inner Querins I	176
Coges occ. Result columns¶	176
See Also ger_piont	1/6 176
Description	177
Single vertex	
Multinle vertices	177
Multiple vertices Parameters Para	177 177 177
Multiple vertices¶ Parameters¶ BFS optional parameters¶ Inner Queries¶	177 177 177 178 178 178
Multiple vertices¶ Parameters¶ BFS optional parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶	177 177 177 177 178 178 178 178 178
Multiple vertices¶ Parameters¶ BFS optional parameters¶ Inter Queries Edges SQL¶ Edges SQL¶ See Also¶ See Also¶ See Also¶	177 177 177 178 178 178 178 178 178 178
Multiple vertices1 Multiple vertices1 Parameters1 BFS optional parameters1 Inner Queries2 Edges SOL1 Edges SOL4 Result columns1 See Also1 ger, primD01 Description1	177 177 178 178 178 178 178 178 178 179 179 179
Multiple vertices1 Parameters1 BFS optional parameters1 Inner Queries2 Result columns1 See Alco1 Description1 Signatures1 Signatures1 Signatures1	177 177 178 178 178 178 178 178 178 179 179 179 179 179 179
Multiple vertices1 Parameters1 BFS optional parameters1 Inner Queries2 Result columns1 See Alco1 Description1 Signatures1 Single vertex1 Multiple vertices1 Parameters1	177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179
Multiple vertices Multiple vertices Parameters BFS optional parameters Edges SOL1 Result columns See Also See Also See Also See Also Autople vertices Parameters Multiple vertices Parameters Inner Queries Inner Qu	177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices Multiple vertices Parameters BFS optional parameters Edges SOL1 Result columns See Also Column Autor A	177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices Multiple vertices Parameters BFS optional parameters Edges SOL1 Result columns See Alsof See Alsof Single vertex Multiple vertices Parameters Inner Oueries Result columns Result colum	177 177 178 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices Multiple vertices Parameters BFS optional parameters Inner Queries Edges SOL1 Result columns See Also1 Single vertex Multiple vertices Single vertex Edges SOL1 Result columns See Also1 Single vertex Vertex Single vertex See Also1 Description1 Single vertex Sin	177 177 178 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices Multiple ver	177 177 178 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 180 180 180 180 180 180 180 180 181 181
Multiple vertices¶ Multiple vertices¶ Multiple vertices¶ Parameters¶ BFS optional parameters¶ DFS optional parameters DFS option	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 180 180 180 180 180 181 181 181 181 181
Multiple vertices¶ Multiple vertices¶ Multiple vertices¶ BFS optional parameters¶ SFS optional parameters SFS optional parameters SFS optional par	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices1 Parameters1 BFS optional parameters1 Inner Oueries1 Edges SOL1 Result columns1 See Also1 Description1 Description1 Signatures1 Single vertex3 Multiple vertices1 Parameters1 See Also1 See Also1 Signatures	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices¶ Multiple vertices¶ Multiple vertices¶ BFS optional parameters¶ DFS optional parameters DFS option	177 177 178 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Multiple vertices Parameters Seg Alof Parameters Single vertices Sec Slot Sec Slot Sec Slot Single vertices Single vert	177 177 178 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 180 180 180 180 181 181 181 181 181 181
Multiple vertices Multiple vertices BFS optional parameters Inere Queries Edges SQL1 Result columes See Also1 Ogg_ purtDD1 Description1 Single vertex Multiple vertices Parameters Inere Queries See Also1 Single vertex Multiple vertices Single vertex Multiple vertices Parameters Inere Queries Single vertex Multipe vertices Parameters Inere Queries Single vertex Multipe vertices Parameters Inere Queries See Also1 Description1 Single vertex Multipe vertices Parameters Inere Queries See Also1 Description2 Description3 Description4 Inere Queries See Also1 Description4 Description5 See Also1 Description5 See Also1 Description5 See Also1 Description5 See Also1 Des	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 180 180 180 180 180 181 181 181 181 181
Multiple vertices1 Parameters1 Lever Societs1 Edges SOL1 Result columns1 See Also1 per_primD01 Description1 Single vertex1 Multiple vertices1 Parameters1 Lever SoL1 Result columns1 See Also1 See Also1 Description1 Single vertex1 Single vertex1 Si	177 177 177 178 178 178 178 178 179 179 179 179 179 179 179 180 180 180 180 180 181 181 181 181 181
Multiple vertices Parameters Para	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 180 180 180 180 180 180 181 181 181 181
Multiple vertices Perameters Perameters Perameter	177 177 177 178 178 178 178 178 179 179 179 179 179 179 179 180 180 180 180 180 180 180 180 180 180
Multiple vertices Parameters BFS optional parameters Inere Queries Edges SOL1 Result columes See Also1 pr_primtD41 Description1 See Also1 See Als	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 180 180 180 180 180 180 180 180 181 181
Multiple vertices Parameters BFS optional parameters Inter Quonies See Also See Also See Also See Also Single vertices Single vertice	177 177 177 178 178 178 178 178 179 179 179 179 179 179 179 180 180 180 180 180 180 180 180 180 180
Multiple vertices Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters Parameters	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 180 180 180 180 180 180 181 181 181 181
Matipie verificati	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 180 180 180 180 180 180 181 181 181 181
Mulpie verices Parametes Parametes	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 180 180 180 180 180 180 180 181 181 181
Mulpie veroiest Province Provi	177 177 177 178 178 178 178 178 178 179 179 179 179 179 180 180 180 180 180 180 181 181 181 181
Mulpieventosi Paranteosi Paranteosi Paranteosi Paranteosi Paranteosi Paranteosi Paranteosi Paranteosi Paranteosi Suppieventosi Suppieventosi Suppieventosi Suppieventosi Suppieventosi Paranteosi	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 180 180 180 180 180 180 181 181 181 181
Majpe ventoes1 Perandensy Perande	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 180 180 180 180 180 181 181 181 181 181
Mulpieventes1 Formations For	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 180 180 180 180 181 181 181 181 181 181
Maje vertes f Provide f Pr	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 179 179 179
Mulpie weiches{ Premieters Premie	177 177 177 178 178 178 178 178 178 178
Madje vertest Free	177 177 177 178 178 178 178 178 178 178
Majbe verted Functionard Exercised Specified Specif	177 177 177 178 178 178 178 178 178 179 179 179 179 179 179 179 180 180 180 180 180 180 180 180 180 180
Majbe version Service Servic	177 177 177 178 178 178 178 178 178 178
Augice verset Section Sectio	177 177 177 178 178 178 178 178 178 178
Majles autoof Series	177 177 177 178 178 178 178 178 178 178
Addies wates Section Sec	177 177 177 178 178 178 178 178 178 178
Mappe automs	177 177 177 178 178 178 178 178 178 178
kup is even is a second	177 177 177 178 178 178 178 178 178 178

	200
Description¶	200
Signatures	201
ratanieursy Additional Examples [¶]	201
See Also	202
pgr_nodeNetwork¶ Description	202
Parameters	202
Examples [®]	203
Comparing the results	204
See Also* pri: extract/virtices - Pronosed*	206
Description¶	206
Signatures¶	206
Tadameters	200
Inner Queries	206
Leges out	207
When vertex geometry is known	207
Result columns¶	207
Additional Examples	208
Create a routing topology¶	208
Make sure the database does not have the vertices table¶	208
Create the vertices table¶	208
Inspect the vertices table¶ Create the runting table¶	208
Inspect the round property in the second s	209
Crossing edges¶ Addina split ednes¶	209 210
Adding new vertices¶	210
Updating edges topology¶ Bernoving the surplus extensis	210 210
Updating vertices topology1	211
Cirecomg un crossing eques 1 Graphs without geometries 1	211 211
Inset the data1	211
rink ure sink ses paug	211 211
See Alexan Emersed	211
Mar Logaree - ropoort	211 212
Signatures	212
Optional parameters¶	212 212
Inner Queries] E-drag S/II €	212
Luges Out.j Venex SOLI 1 Venex SOLI 1	212 212
Result columns	213
Degree of a sub graph	213 213
Dry run execution 1	213
Dead ends	213
Linear edges ¶	214
See Alson	214
Traveling Sales Person - Family of functions	214
	214
Problem Definition(214
	214
Parameters	215
	215
nue denne I	
Matrix SOLS	216
Matrix SOL¶ Result columns¶ Additional Examples¶	216 216 216
Marix SOL [®] Result columns [®] Additional Examples [®] Start from vertex (11) [®] Using points of interest in generate an asymetric matrix [®]	216 216 216 216 216 216
Marix SOL [®] Result columns [®] Additional Examples [®] Start from vertex (11) [®] Using points of interest to generate an asymetric matrix. [®] Connected incomplete data [®]	216 216 216 216 216 216 216 217
Matrix SQL Result columns Additional Examples Start from vertex (11) Using points of interest to generate an asymetric matrix. Connected incomplete data See Alsof par TSPeucidean	216 216 216 216 216 217 217 217 217
Matrix SOL [¶] Result columns [¶] Additional Examples [¶] Start from vertex (11) [¶] Using points of interest to generate an asymetric matrix. [¶] Connected incomplete data [¶] See Also [¶] Description [¶] Description [¶] Description [¶]	216 216 216 216 217 217 217 217 217
Matrix SOL Result columns Additional Examples Star from vertex (1) Using points of interest to generate an asymetric matrix Connected incomplete data See Alsof pgr_TSPeucidean Description Problem Definition Characterists	216 216 216 216 217 217 217 217 217 217 217 217 217 217
Matrix SQL[Result columns] Additional Examples] Star from vertex (11)[Using points of interest to generate an asymetric matrix.] Connected incomplete data] See Also] pgr_TSPeucidean] Description] Problem Definition] Characteristics] Signatures]	216 216 216 216 217 217 217 217 217 217 218 218 218 218 218 218 218
Matrix SQL Result columns Additional Examples Start from vertex (11) Using points of interest to generate an asymetric matrix. Connected incomplete data See Alsof por_TSPeucidean por_TSPeucidean Problem Definition Problem Definition Characteristics Signatures Parameters SP optional parameters Set Space Set Set Set Set Set Set Set Set Set Se	216 216 216 216 217 217 217 217 217 217 217 218 218 218 218 218 218
Matrix SQL Result columns Additional Examples Start from vertex (11) Using points of interest to generate an asymetric matrix. Connected incomplete data See Also pgr. TSPeucildean Problem Definition Characteristics Signatures Parameters Parameters Stor Sol 1	216 216 216 216 217 217 217 217 217 217 217 218 218 218 218 218 218 218 218 218 218
Mark SOL Posult columns1 Additional Examples1 Start from vertex (1\)1 Using points of interest to generate an asymetric mark 1 Connected incomplete data1 See Also1 pgr TSPeucidean1 Description1 Problem Definition1 Characteristics1 Signatures1 Parameters1 TSP optional parameters1 Inter Queries1 Coordinates SOL1 Result columns1	216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 218 218 218 218
Main: SOL ⁴ Reault columns ⁴ Additional Examples ¹ Star from ventav (1) ⁴ Using points of interest to generate an asymetric matrix. ⁴ Connected incomplete data ⁵ See Also ⁴ pgr_T5Peucildean ¹ Description ⁴ Problem Definition ⁴ Characteristics ⁴ Signatures ⁵ Parameters ⁵ TSP optional parameters ⁶ Inner Cueries ⁶ Coordinates SOL ⁴ Result columns ⁴ Additional Examples ⁴	216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 218 218 219 219 219 219 219
Matrix SOL Result columns Factor Matrix SOL Additional Examples Star from vertex (1) Ling points of interest to generate an asymetric matrix Connected incomplete data See Alsof pgr_TSPeucidean Description Problem Definition Characteristics Signatures Problem Definition TSP optional parameters Inser Queries Coordinates SOL Post columns Additional Examples Test 20 cities of Western Sahara Cost in a columns Additional Examples Test 20 cities of Western Sahara Cost in a columns Additional Examples Test 20 cities of Western Sahara Cost in a columns Additional Examples Test 20 cities of Western Sahara Cost in a columns Additional Examples Test 20 cities of Western Sahara Cost in a columns Cost in a columns Cost in a columns Additional Examples Test 20 cities of Western Sahara Cost in a columns Cost in a column Cost in a col	216 216 216 216 217 217 217 217 217 218 218 218 218 218 219 219 219 219 219 219
Matrix SOL Result columns Facility of the stamples Star from vertex (11) Using points of interest to generate an asymetric matrix. Connected incomplete data See Alsof pgr_TSPsucilean Description Problem Definition Characteristics Signatures Frablem Definitions TSP optional parameters TSP optional parameter	216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219
Matrix SQL Result columns Additional Examples Start from vertex (11) Using points of interest to generate an asymetric matrix. Connected incomplete data See Also pgr.TSPeucidean Description Problem Definition Characteristics Signatures Problem Definition Connected incomplete data Signatures Problem Definition Signatures Problem Definition Signatures Problem Definition Signatures Sig	216 216 216 216 217 217 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Matrix SQL Result Columns Additional Examples Start from vertex (11) Using points of interest to generate an asymetric matrix. Connected incomplete data See Alsof pgr. TSPeucidean Problem Definition Problem Definition Problem Definition Problem Definition Characteristics Signatures Problem Definition Characteristics Signatures Problem Definition Characteristics Signatures Problem Definition Problem Def	216 216 216 216 216 217 217 217 217 217 217 217 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Matrix SOL 1 Result columns1 Additional Examples1 Start from vertex (1)(1 Using points of inferest to generate an asymetric matrix 1 Connected incomplete data1 See Also 1 Description 1 Problem Definition 1 Characteristics 1 Signatures 1 Parameters 1 TSP optional parameters 1 Inser Cueries 1 Coordinates SOL 1 Result columns 1 Additional Examples 1 Test 20 cities Of Western Sahara 1 Creating a table for the data and storing the data1 Additional Examples 1 Total four cost 1 Genting a table for the data and storing the data1 Additional examples 1 Total four cost 1 Genting a table for the data and storing the data1 Additional results 1 Total four cost 1 Genting a table for the data and storing the data1 Additional results 1 Total four cost 1 Genting a table for the data and storing the data1 Addition 2 From the molecule 1 From the molecule	216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 220 220
Matrix SOL ¶ Result columns¶ Additional Examples¶ Result columns¶ Result columns¶ Result columns¶ Result columns¶ Result columns¶ Result columns Result columns¶ Result columns Result column	216 216 216 216 217 217 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Main: SOL¶ Result columns¶ Additonal Examples¶ Star from vertex (11)¶ Connected incomplete data¶ See Also¶ pgr_T5Peucidean¶ Sec Also¶ Problem Definition¶ Connected incomplete data¶ Sec Also¶ Problem Definition¶ Connected incomplete data¶ Sec Also¶ Problem Definition¶ Connected incomplete data¶ Sec Also¶ Signatures¶ S	216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Mark SOL 1 Result columns1 Additional Examples1 Start from verice to generate an asymetric matrix.1 Connected incomplete data1 See Ato1 pgTSPatients1 Froblem Definition1 Characteristics1 TSP opticnal parameters1 TSP opticnal parameters1 Total tour cos1 General Information1 Problem Definition1 Origin1 TSP opticnal parameters1 TSP opticnal parameters1 See Also9 See A	216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Mark SOL Facult columns facult columns facu	216 216 216 216 217 217 217 217 217 217 217 218 218 218 218 218 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Mark SQL 1 Result columns 1 Additional Examples 1 Sard from verds V(1) 1 Using points of interest to generate an asymetric mark 1 Connected incomposed data 1 See Alog 1 Opt. TSPeucidean 1 Description 1 Problem Definition 1 Characteristics 1 Signatures 1 Parameters 1 TSP optional parameters 1 Test 200 interest to the data and storing the data 1 Additional Examples 1 Test 200 interest to the data and storing the data 1 Additional Examples 1 Test 200 interest to the data and storing the data 1 Additional Examples 1 Catal cours 1 Central cours	216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Mark SQL { Healt Columns { Additional Examples { Sat from virts	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Mark SOL(1 Result columns) Additional Examples (Sard from ends ()(1){ Using points of interest to generate an asymetric matrix, { Connected incomplete data See Alsof ggr_ TSPoulchang() Description() Problem Definitions() Characteristics() Signatures { Parameters { TSP optional parameters { Inner Cueries { Coding a table the balang f Coding the balang f C	216 216 216 216 217 217 217 217 218 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Main SOLI Feasible Additional Examples f Second Solutions of Interest to generate an asymetric matrix. (Connected incomplete data Connected incomplete data Deckription Poster Data asymetric matrix. (Second Solution Second Solution	216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 218 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Main SOL4 Result columes Additional Examples 1 Starf from vertex (11) Using points of interest to generate an asymetric matrix. 1 Connected incomplet data1 See Also1 pgr_TSPeuclidear1 Description1 Problem Definition1 Ornanationistics1 Signatures1 Problem Definition2 Ornanationistics2 Signatures1 Problem Definition2 Ornanationistics2 Signatures1 Problem Definition2 Ornanationistics2 Signatures1 Problem Definition2 Ornanationistes2 Signatures1 Problem Definition3 Constraints2 Signatures1 Problem Definition3 Constraints2 Signatures1 Problem Definition3 Constraints2 Constraints2 Signatures1 Signatures1 Constraints2 Constraints2 Conastints2 Conastints2	216 216 216 216 216 217 217 217 217 217 217 217 217 218 218 218 218 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Main Sol 4 Boalt cloures 1 Additional Examples 1 Star frow retex 1/194 Connected incomplet data 1 See Auof Open 2 Shrward 1 Problem Definition 1 Franceins 1 Franceins 1 Franceins 1 Franceins 1 Franceins 2 Franceins 2 Franc	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Mark SQL 1 Reaut Columes 1 Additional Examples 1 Start from vetor V(1V) 1 Using points of interest to grounds an asymetric matrix 1 Dornschol Incomposite data Dyre 1 Synshines 1 Dyre 1 <td>216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219</td>	216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Marin Sold Sold Sold Sold Sold Sold Sold Sold	216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Marin Soli f Boaia columes Addional Examples Ser Alorg Ser Alorg Data ton verter (V) Examples Ser Alorg Data ton verter (V) Examples Data ton verter (V) Examples	216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Matris Sols 1 Addinon Examples 1 Social Joint Form etch 1 University 1 Social Joint Form etch 1 Social Joint Form etc	216 216 216 216 217 217 217 217 217 217 217 217
Math. SOLI See Alco: Result Columpsi Additional Examplesi See Alco: See Alco: Description Description Description <td>216 216 216 216 216 217 217 217 217 217 218 218 218 218 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22</td>	216 216 216 216 216 217 217 217 217 217 218 218 218 218 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Name Solf Reaut columps Additional Examplest Sale Name Yeas (Y) Consider I compare call Sole Name Yeas (Y) Consider I compare call Sole Name Yeas (Y) Description Sole Name Yeas (Y) Dyr. TSP Nockloars Sole Name Yeas (Y) Nockloars Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloars Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloars Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloars Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloar Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloar Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloar Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloar Sole Name Yeas (Y) Sole Name Yeas (Y) Nockloar Sole Name Yeas (Y)	216 216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 220 220 220 220 220 220 220 220 220 22
Math. Solf 1 Additional Examplest Additional Examplest Besult oblumyst Additional Examplest Box points of two popensite and symmetry math. 1 Constant incompliant data[Densite incompliant data[216 216 216 216 216 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Name SQ1 Security Addication Security Addication Security Addication Security Constrain Security Constrain Security Derivation Security	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219 219 219
Mark 504 ¹ Addical Example? Addical Example? Addical Example? Desig point of Interest Experious an asymptic matix { Concect incomptice data} Design Struct Interest Experious an asymptic matix { Concect incomptice data} Design Struct Interest Experious an asymptic matix { Concect incomptice data} Design Struct Interest Experious an asymptic matix { Concect incomptice data Design Struct Interest Experious an asymptic matix { Concent incomptice data Struct Interest Experious an asymptic matix { Design Struct Interest Experious an asymptic matix { Concent interest Experious Asymptic Mathematics Experious Asymptics Mathematics Mathmatematics Mathmathmatics Mathmatics Mathmatics Mathmatics Mathmat	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 218
Name SQ1 Addreal Example Using pote of Invention Example Concert Example Description Description Description Description Description Description TSP option Example TSP option Example <td< td=""><td>216 216 216 216 216 217 217 217 217 217 217 218 218 218 218 219 219 219 219 219 219 219 220 220 220 220 220 220 220 22</td></td<>	216 216 216 216 216 217 217 217 217 217 217 218 218 218 218 219 219 219 219 219 219 219 220 220 220 220 220 220 220 22
kmr. S04 Additude Example()	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 219 219 219 219 219 219 219 219
kmin SQ1	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219
kmm SQ1	216 216 216 216 217 217 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219
None Solid Read columed Main then were (1) Using paties of investor toperation an anymotic mati	216 216 216 216 216 217 217 217 217 217 217 217 217
kin	216 216 216 216 216 217 217 217 217 217 217 217 217
kin	216 216 216 216 216 217 217 217 217 217 218 218 218 218 219 219 219 219 219 219 219 219
kun: SQL ⁴ Add convert Kan to werk vill	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219
Kein Solf Section	216 216 216 216 216 217 217 217 217 217 218 218 218 218 218 218 219 219 219 219 219 219 219 219
Nome Sold Sold Sold Sold Sold Sold Sold Sold Sold Sold Sold Sold Sold	216 216 216 216 217 217 217 217 217 217 218 218 218 218 218 218 218 219 219 219 219 219 219 219 219

General Information¶	233
Via optional parameters¶	230 230
Inner Queries¶	200
Edges SQL¶	230
Points SQL¶	200
Result columns¶	231
See Also¶ Vehicle Bouting Function	231 ns - Cataonnal
par pickDeliver - Experime	is - category 201 minute 201 2010
Synopsis¶	233
Characteristics	233
Signature¶ Parameters¶	233
Pick-Deliver optional parar	meters¶ 234
Orders SQL¶	234
Matrix SQL	233 235
Result columns¶	235
See Also¶	286
Synopsis¶	* Experimentar] 200
Characteristics¶	237
Signature¶	237
Parameters	meters¶ 200
Orders SQL¶	238
Vehicles SQL¶	239
Example¶	240 240
The vehicles¶	240
The original orders¶	240
The query¶	242
See Also¶	242
pgr_vrpOneDepot - Experi Description¶	imental 242 243
Signatures¶	242
Parameters¶	242
Result columns¶	242 242
Additional Example:	243
See Also¶	243 043
Characteristics¶	243
Pick & Delivery¶	244
Pick & deliver¶	244 244
Pick-Deliver optional parar	meters1 244
Inner Queries¶	244 241
Vehicles SQL¶	244
Matrix SQL¶	246
Summary Row	240 240
Handling Parameters¶	248
Capacity and Demand Uni	its Handling¶
Time Handling¶	240
Factor handling¶	248
See Also¶ withPoints - Category¶	249 240
Introduction¶	
Parameters¶	250
Optional parameters¶	250
Edges SQL	200 250
Points SQL¶	251
Combinations SQL¶	251
Advanced documentation	251
Driving side¶	
	252
Right driving side¶	252 252 252
Right driving side¶ Left driving side¶ Driving side does not matt	253 252 252 252 252 253 253
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice	262 262 269 269 269 269 250 253 253 253 253 253 253 253 253 253 253
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side drivin On a left hand side drivin	262 273 275 252 252 253 253 253 253 253 253 253 25
Right driving side¶ Left driving side Driving side does not matt Creating temporary vertice On a right hand side drivin On a left hand side driving When driving side does no	262 675 671 671 671 753 79 network1 764 765 765 767 767 767 767 767 767 767 767
Right driving side¶ Lett driving side¶ Driving side does not matt Creating temporary vertice On a right hand side drivin On a lett hand side driving When driving side does no See Alsof See Alsof	252 262 263 264 265 275 275 275 275 275 275 275 275 275 27
Right driving side¶ Left driving side¶ Driving side does not math Creating temporary vertice On a right hand side driving When a left hand side driving When driving side does no See Also¶ See Also¶	1 262 1 252 1 252 1 253 1 253 1 253 1 254 1 254 1 254 2 255 1 255
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Also¶ Functions by cat	262 263 551 551 551 551 551 551 551 551 551 551 551 552 555 255 256 256 256 256 256
Right driving side¶ Left driving side¶ Driving side does not mait Creating temporary vertice On a right hand side driving On a left hand side driving When driving side does no See Also¶ Functions by cat Available Functic	ter¶ ss¶ ss¶ ss¶ sequence interned sequence sequ
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side drivin On a left hand side driving When driving side does no See Also¶ Functions by cat Available Functio	ier1
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Also¶ Functions by cat Available Function Proposed Function	ier1
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Also¶ Functions by cat Available Function Proposed Function TRSP - Family of func	iten 252 iten 253 iten 253 iten 253 iten 253 iten 253 iten 253 iten 255 iten 255 iten 255 iten 257 itens 257 itens 257 itens 257 itens 257 itens 257
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Aiso¶ Functions by cat Available Functice Proposed Function TRSP - Family of func pg^_trsp - Proposed¶	ier1 252 isr1 253 isr1 253 isr1 253 isr1 253 isr1 253 isr1 253 isr1 254 isr1 255 regories¶ 256 ons but not official pgRouting functions¶ 257 ctions¶ 257 <td< td=""></td<>
Right driving side¶ Left driving side¶ Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Also¶ Functions by cat Available Function Proposed Function TRSP - Family of func og_trisp - Proposed¶ Description¶	ier1 252 isr1 253 isr1 253 instruction 253 instruction 255 icegories¶ 256 ons but not official pgRouting functions¶ 257 ns¶ 257 ctions¶ 257 258 257 258 257 257 257 258 257 257 257 258 257 259 257 250 257 256 257 257 257 258 257 259 257 250 257 257 257 258 257 259 257 250 257 256 257 256 257 256 257 257 258 258 258 259 259 259
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Alsot Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Description Signatures One to Onet	ier1 252 be1 253 ig nework1 253 insect1 254 icegories1 254 icegories1 256 icegories1 257 ins1 257 ctions1 257 258 257 259 257 ins1 257 258 257 259 257 250 257 250 257 257 257 258 257 259 257 250 257 257 257 258 257 259 257 250 257 250 257 257 257 258 258 259 259 250 259 250 259 250 259 250 259 250 259
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Also1 See Also1 See Also1 Functions by cat Available Function TRSP - Family of func pgr [rsp - Proposed1 Description1 Signatures1 One to One1 One to Man1	ief 1 200 set 1 200 set 1 200 set 1 200 set 1 200 set 1 200 set 200
Right driving sidet Let driving sidet Driving side does not mat Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Descriptionf Signaturesf One to Onef One to Manyf Many to Dnef	ier1
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function THSP - Family of func pgr (rsp - Proposed Description Signatures One to Many Many to Onef Many to Onef Many to Onef Many to Onef	ier1 es1 g network1 g
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Descriptionf Descriptionf Descriptionf Descriptionf One to Many to Onef Many to Onef Combinationsf Parametersf	ief est ig nework in nater icegories segories fors but not official pgRouting functions fors f
Right driving sidet Left driving sidet Driving side does not mait Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function TRSP - Family of func proposed Function TRSP - Family of func proposed function (Description) Signatures One to One! Many to Many! Combinations Parameters Optional parameters	ier1 252 isf 253 isf 255 regories¶ 256 ons but not official pgRouting functions¶ 257 isf 257 ctions¶ 257 258 259 259 250 250 250 250 257 250 257 250 257 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 2
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Description Signatures One to Onet Many to Onet Many to Many Combinations Parameters Optional parameters Distances Control parameters Distances Parameters Distances Control Many Combinations Parameters Distances Control parameters Distances Parameters Distances Parameters Distances Parameters Distances Parameters Distances Parameters Distances Parameters Distances Parameters Distances Distances Parameters Distances Distances Parameters Distances Distances Parameters Distances Distances Distances Parameters Distances Distances Parameters Distances	ief 1 as 1 pretwork 1 in entwork 1 is egories ¶ cons but not official pgRouting functions ¶ ctions ¶ ctions ¶ ctions ¶ ctions 1 ctions 1
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func Proposed Function TRSP - Family of func Description Signatures One to Manyf Many to Onef Many to Onef Many to Onef Many to Onef Parametersf One to Quartersf One to Cust Parametersf Edges SOLf Combinatione SOLf	ief est is network in network is network is egories fegories fons but not official pgRouting functions fors fon
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Descriptionf Descriptionf Descriptionf Descriptionf Combinations f Descriptionf Many to Onef Many to Onef Many to Onef Descriptionsf Parametersf Optional parametersf Inner Queriesf Edges SQLf Probinations SQLf Combinations SQLf Combinationsf	ier 252 est 253 is network 253 is network 254 is network 254 is network 254 is network 255 is network 255 is network 257 is ns 257 is ns 257 is ns 257 is not official pgRouting functions 257 is ns 257 is ns </td
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no See Alsof Functions by cat Available Function TRSP - Family of func proposed Function TRSP - Family of func proposed function TRSP - Family of func proposed function TRSP - Family of func proposed function Descriptionf Signatures One to One 1 One to Amy1 Mary to Many1 Combinations Parameters1 Optional parameters1 Inner Queries1 Edges SOL1 Restrictions SOL1 Combinations SOL1 Combinations SOL1 Combinations SOL1 Restrict Columns1 Restrict Columns1 Restrict Columns1 See Alsof	ter¶ es¶ protections¶ 222 223 223 223 223 223 224 224 224 224
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does not See Alsoft Functions by cat Available Function TRSP - Family of func page function TRSP - Family of func page function TRSP - Family of func page function Transform Signatures One to Onet Many to Onet Many to Manyf Combinations Parameters Optional parameters Districtions SUL Restrictions SUL Result columns See Alsoft Page SUL Result columns See Alsoft Page SUL Restrictions SUL Combinations SUL Result columns See Alsoft Page SUL Restrictions SUL Combinations SUL Result columns See Alsoft Page SUL Page SUL Restrictions SUL Combinations SUL Restrictions SUL Combinations SUL Restrictions SUL See Alsoft Page For Proposed Description	ier¶ es¶ is network¶ in network¶ in mater¶ is egories¶ cons but not official pgRouting functions¶ 257 ctions¶ 257 257 257 257 257 257 257 257
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed{ Description{ Description{ Description{ Descriptions} One to Many1 Many to One1 One to Many1 Many to One1 One to Many1 Many to One1 One to Many1 Many to One1 One to Many1 Many to One1 Parameters{ One to Compare Sol_1 Parameters{ Description{ See Alsof Parameters{ Description{ See Alsof Parameters{ Description{ See Alsof Parameters{ Description{ See Alsof Parameters{ Description{ See Alsof Description{ Sec A	ter¶ esf in pretwork¶ in rander] is gories ¶ is gories P is gories ¶ is gories P is gories
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Also¶ Functions by cat Available Function TRSP - Family of func perception¶ Description¶ Description¶ Description¶ Descriptions Det Dany¶ Descriptions Description¶ Descriptions Parameters¶ Optional parameters¶ Optional parameters¶ Display Sol.¶ Restrictions Sol.¶ Combinations Sol.¶ Combinations Sol.¶ Description¶ See Also¶ Description¶ See Also¶ Description Description¶ Description¶ Description¶ Description¶ Descr	is granter of the set
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does not see Also1 See Also1 See Also1 Functions by cat Available Function TRSP - Family of funct pgr_trsp - Proposed1 Description1 Signatures1 One to One1 Many to Many1 Combinations1 Parameters1 Discons Sol.1 Result columns1 See Also1 Bescription1 Signatures1 Optional parameters1 Disconstructions Sol.1 Result columns1 Signatures1 One to Gene1 Description1 Signatures1 Description1 Signatures1 Description1 Signatures1 Description1 Signatures1 Description1 Signatures1 One to Gene1 Description1 Signatures1 One to Gene1 Signatures1 One	ter 1 to resort 1
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function THSP - Family of func pgr (rsp - Proposed) Description Description Signatures One to Many Combinations Parameters Description See Solf Restrictions Solf Result columns See Solf Result columns See Solf Parameters One to Kany Parameters Description Signatures One Via Parameters Description Signatures One Via Parameters Description See Solf Result columns See Alsof Parameters Description Signatures One Via Parameters Description Signatures One Via Parameters Optional parameters Optional parameters Description Signatures Optional parameters Parameters Optional parameters Description Signatures Optional parameters Via Optional paramet	is a second seco
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsot Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Description Signatures One to Many 1 Many to Onet Many to Onet Many to Onet One to Many 1 Many to Onet Many to Onet Optional parameters Inner Quarinet See Alsot Description See Alsot Description See Alsot Description See Alsot Description Signaturest Optional parameterst Description Signaturest Optional parameterst Description Signaturest Optional parameterst Description Signaturest Optional parameterst Net Note Net No	In a material second se
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of funct Descriptionf Descriptionf Descriptionf One to Manyl Mary to Onef One to Manyl One to Manyl Combinations Parametersf Optional parametersf Discriptionf See Alsof Bescriptionf See Alsof Descriptionf Bescriptions Solf Combinations Parametersf Optional parametersf Descriptionf See Alsof Descriptionf See Alsof Descriptionf Descriptionf Descriptionf See Alsof Descriptionf Descriptionf See Alsof Descriptionf Signaturesf One to Jeff Descriptionf See Alsof Descriptionf Descriptionf Signaturesf One tor Descriptionf Signaturesf One Veraf Parametersf Optional parametersf Net voltaf Parametersf Optional parametersf Net voltaf Parametersf Optional parametersf Net voltaf Parametersf Discriptionf Signaturesf Optional parametersf Net voltaf Parametersf Optional parametersf Net voltaf Parametersf Descriptionf Signaturesf Optional parametersf Net voltaf Parametersf Descriptionf Signaturesf Optional parametersf Net voltaf Parametersf Net voltaf Parametersf	in restrict a second
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does not see Also1 See Also1 See Also1 See Also1 See Also1 Functions by cat Available Function TRSP - Family of funct proposed Function TRSP - Family of funct Description1 Signatures1 One to One1 Mary to Many1 Combinations1 Parameters1 Optional parameters1 Inner Queries1 Restrictions SOL1 Restrictions SOL1 Restrictions2 Description1 Signatures1 One to Queries1 Inner Queries1 Restrictions SOL1 Restrictions SO	is a mathematical second secon
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func Description Description Description Many to Onef One to Manyf Many to Onef Parametersf One to Conf Combinationsf Parametersf Description See Alsof Parametersf One Viaf Parametersf One Viaf Parametersf Optional parametersf Nine Cuernesf Edges SOL f Parametersf Optional parametersf Via optional parametersf Network o	in random grandom grandom Grandom grandom gra
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsot See Alsot Functions by cat Available Function TRSP - Family of funct perception Description Signatures On to Many Many to Anay Many to Anay Many to Anay Many to Cheft Description See Solt Parameters Edges Solt Restrictions Solt Re	ing instant ing instant ing instant
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof See Alsof Functions by cat Available Function TRSP - Family of funct proposed Function TRSP - Family of funct proposed functions Combinations Descriptionf Signaturesf One to Manyf Many to Anayf Combinations Parametersf Optional parametersf Descriptionf Signaturesf One Viaf Parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Optional parametersf Descriptionf Signaturesf Optional parametersf Discriptionf Signaturesf Optional parametersf Discriptionf Signaturesf Optional parametersf Discriptionf Signaturesf Optional parametersf Discriptionf Signaturesf Optional parametersf Inner Cueriesf Inner Cueriesf In	apath.¶ To rote at the end of the hird pah.¶
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function THSP - Family of func Proposed Function THSP - Family of func pgr (rsp - Proposed) Description Description Many to Onet One to Many Combinations Parameters Optional parameters Inner Queries Sol 4 Restrictions Sol 4 Restrictions Sol 4 Parameters Optional parameters Optional parameters Optional parameters Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Inner Queries Sol 4 Restrictions Sol 4 R	in a function of the bid pant 1
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Description Description Signatures One to Many 1 Many to Onef One to Many 1 Many to Onef One to Many 1 Many to Onef Description See Alsof Parameters Inner Oueneof Edges SOL Proposed Description Signatures One to Cal Description Signatures Description See Alsof Parameters Description Signatures Description Signatures Description Signatures Description Signatures One Via Parameters Via Optional parameters Via Optional parameters Via Optional parameters Description Signatures Optional parameters Via Optional parameters Via Op	instant straint trai
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func proposed Function TRSP - Family of func Descriptionf Signaturesf One to Manyf Many to Onef One to Manyf Many to Onef One to Manyf Many to Onef One to Manyf Many to Onef One to Manyf Combinationsf Parametersf Optional parametersf Optional parametersf One Viaf Parametersf One Viaf Parametersf One Viaf Parametersf One Viaf Parametersf One Viaf Parametersf Via optional parametersf Via optional parametersf Via optional parametersf Many to Combinations Sol.ff Combinationsf See Alsof Parametersf Via optional parametersf Ne visif The main queryf Aggregate cost of the thre Route's aggregate cost of the Manyf Signature of Node's visited in the route. The sign of the single	is 1 is which is which is month is month
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function THSP - Family of func pgr (rsp - Proposed Description Description Signatures One to Many Many to Onef Many to Onef Many to Onef Many to Onef Many to Onef Many to Onef Many to Onef Parameters Parameters Edges SOL Restrictions SOL Description Signatures Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Many to Colored Description Signatures Optional parameters Inner Queries See Alsof Parameters Many to Colored Description Signatures Optional parameters Inner Queries See SOL Restrictions SOL Res	is f in month is manuf is manuf
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func TRSP - Family of func Description Description Description Many to Onet One to Many to Many to Onet One to Many to Many to Onet One to Many to Many to Conet Many to Conet Many to Conet Many to Conet Many to Conet Many to Conet Many to Conet Description See Alsof Parameters One to Sol t Restrictions Sol t Restrictions Sol t Parameters Optional parameters Discription Signatures One Veat Parameters Optional parameters No for a parameters N	is f in which is month is month
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Descriptionf Descriptionf Combinations On to Many to Analy Combinations Descriptionf See Alsof Descriptionf See Stolf Descriptionf See Stolf Descriptionf See Stolf Descriptionf See Stolf Descriptionf See Stolf Descriptionf See Stolf Descriptionf See Alsof Parametersf Onto I a parametersf Droposed Stolf Descriptionf See Alsof Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf See Stolf Parametersf Descriptionf Signaturesf Descriptionf Signaturesf Descriptionf Signaturesf Descriptionf Signaturesf Descriptionf Signaturesf Descriptionf Signaturesf Additional Examplesf The main queryf Adgregate cost of the Stolf Route's aggregate cost of the Stolf Rout	with and with in notation 256 costs 257 notation 257 notation 257 notation 257 costs 257 <
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func port of the transmitter Droposed Function TRSP - Family of func port (transmitter) One to Onet One to Many Many to Onet Many to Anny Combinations Parameters Optional parameters Discription See Alsof Best Alsof Description Best Alsof Description Braumeters Dotonal parameters Edges SOLf Description Signatures Description Signatures Description Signatures Description Signatures Description Signatures Dotonal parameters Discription Signatures Description Signatures Description Signatures Dotonal parameters The main query Additional Examples The main query Additional Examples The main query Additional Solf Description Status of passes in from' Status of passes in from' Status of passes in from' Signatures Don to Anot Node's agregate cost of the Status of passes in from' Signatures Description Description Signatures Description Description Description Signatures Description Description Signatures Description Signatures Description Description Signatures Description Description Signatures Description Description Signatures Description Description Signatures Description Signatures Description Description Description Desc	in stands in resolution in resolution in resolution in the resolution resolution in resolut
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func Proposed Function TRSP - Family of func Description Description Signatures One to Mary 1 Mary to Onef Description Sol 1 Parameters One to Mary 1 Mary to Onef Parameters One to Mary 1 Mary to Conf Result columns See Sol 1 Perciption Signatures One to Sol 1 Result columns See Sol 1 Parameters Optional parameters Optional parameters Description Signatures Optional parameters Nodes visited in the route. The Result columns See Sol 1 Restrictions Sol 1 Result columns Resol 1 Restrictions Sol 1	with
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsoft Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Descriptionf Descriptionf Descriptionf Combinations One to Manyf Many to Onef Descriptionf See Alsoft Parametersf Optional parametersf Inner Oueriesf Edges SOLf Descriptionf Signaturesf One to Cal Descriptionf Signaturesf One to Cal Parametersf Optional parametersf Inner Oueriesf Edges SOLf Parametersf Optional parametersf Optional parametersf Inner Oueriesf Edges SOLf Parametersf Optional parametersf One Viaff Parametersf Optional parametersf Optional parametersf Optional parametersf One Viaff Parametersf Optional parametersf Optional para	in a start of the start of the bind part 1 in costs of the bind par
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func proposed Function TRSP - Family of func Descriptionf Signaturesf One to Onef One to Manyf Many to Onef Many to Doesf Many to Soluff Combinations Soluff Combinationsf Signaturesf One Viaff Persposed functionsf Bearborg See Alsof Descriptionf Signaturesf Optional parametersf Optional parametersf Optional parametersf Descriptionf Signaturesf One Viaff Persposed functionsf Result columnsf See Alsof Descriptionf Signaturesf One Viaff Paramotersf Optional parametersf Via optional parametersf Via optional parametersf Na optional parametersf Descriptionf Signaturesf Combinations for fill Result columnsf Additional Examplesf The main queryf Aggregate cost of the thre Route's aggregate cost of the Status of passes in front Signaturesf One to Onef One to Manyf Descriptionf Signaturesf One to Anef Descriptionf Signaturesf One to Manyf Many to Manyf Combinationsf Parametersf Na optional parametersf Na opti	ind of the set of the
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function THSP - Family of func Proposed Function THSP - Family of func pgr trsp - Proposed Description Signatures One to Many Combinations Parameters Description See Sol f Restrictions Sol f Combinations Sol f Restrictions Sol f Parameters Description Signatures One to any Combinations See Sol f Restrictions f Restriction	<pre>inf for the set of the set o</pre>
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsoft Functions by cat Available Function TRSP - Family of func pgr_trsp - Proposed Description Description Signatures One to Mary to Mary to Oneft Description See Alsoft Parameters Optional parameters Discription See Solt Restrictions Rot Restrictions Rot Restriction	interstand recorded for the held dath { } reports rep
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func page risp - Proposed Descriptionf Signaturesf One to Manyf Many to Onef Many to Onef Many to Onef Many to Conf Many to Manyf Combinationsf Parametersf Optional parametersf Many to Manyf Combinationsf Parametersf Many to Manyf Combinationsf Parametersf	aid of the second set of the s
Right driving sidet Left driving sidet Driving side does not mail Creating temporary vertice On a right hand side driving When driving side does no see Alsof Functions by cat Available Function TRSP - Family of func page type - Proposed Description Description Signatures One to Many Many to One Many to Many Many to Many	in served is a ser
Right driving side 1 Left driving side 1 Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Also 1 See Also 1 Functions by cat Available Function TRSP - Family of func Proposed Function TRSP - Family of func Proposed Function TRSP - Family of func Proposed Function TRSP - Family of func Description Description Signatures One to Any 1 Many to One1 One to Any 1 Many to One1 Many to One1 Parameters Optional parameters Description Signatures Optional parameters Optional parameters Optional parameters Optional parameters Optional parameters Optional parameters Optional parameters Optional parameters Description Signatures Optional parameters Description Signatures Optional parameters Description Signatures Description Signatures Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description Description De	sing of the second seco
Right driving sidet Left driving sidet Driving side does not matt Creating temporary vertice On a right hand side driving When driving side does no see Alsoft Functions by cat Available Function TRSP - Family of func proposed Function TRSP - Family of func proposed Function TRSP - Family of func proposed Function TRSP - Family of func proposed Description Signatures One to Oneft One to Many to Oneft Many to Oneft Many to Oneft Parameters One to Company Combinations Parameters One Via Parameters One Via Parameters Via optional parameters Via optional parameters One to Many to Oneft Many to Onef	served to the here and the needed served to the nen

Pass in front or visits.¶ Show details on undirected graph.¶ See Also¶		
Show details on undirected graph.¶ See Also¶		
See Also¶		
ar trop///a withliauta liropood		
gr_trspVia_withPoints - Proposed¶		
Signatures		
One Via¶		
Parameters¶		
Via optional parameters¶		
With points optional parameters¶		
Inner Queries¶		
Edges SQL¶ Restrictions SQL¶		
Points SQL¶		
Result columns¶		
Additional Examples		
Use pgr_findCloseEdges for points on the fly¶		
Aggregate cost of the third path.¶		
Route's aggregate cost of the route at the end of the	e third path.¶	
Nodes visited in the route.¶	uniform and smaller of the state of the stat	
Status of "passes in front" or "visits" of the nodes a	Arruces are reached	
Simulation of how algorithm works.¶		
See Also¶		
gr_turnRestrictedPath - Experimental¶		
Signatures		
Parameters¶		
Optional parameters¶		
KSP Optional parameters¶		
Inner Queries		
Edges SQL¶		
Restrictions SQL¶		
Additional Examples		
See Also¶		
troduction¶		
TRSP algorithm		
Parameters¶		
Edaes SOL		
Restrictions SQL¶		
ee Also¶		
versal - Family of functions¶		
gr_depthFirstSearch - Proposed¶		
Description¶		
Signatures¶		
Multiple vertices¶		
Parameters¶		
Optional parameters¶		
DFS optional parameters¶ Inner Oueries¶		
Edges SQL¶		
Result columns¶		
Additional Examples		
breadthFirstSearch - Experimental		
Description¶		
Signatures¶		
Single vertex¶		
Parameters		
Optional parameters¶		
DFS optional parameters¶		
Inner Queries		
Result columns¶		
Additional Examples¶		
See Also probinaryBreadthEirstSearch - Experimental	۲ · · · · · · · · · · · · · · · · · · ·	
Description¶		
Signatures		
One to Many		
Many to One¶		
Many to Many¶		
Combinations¶		
Optional parameters¶		
Inner Queries¶		
Edges SQL¶		
Combinations SQL¶		
Additional Examples¶		
See Also¶		
See Also¶ ee Also¶		
See Also¶ iee Also¶ loring - Family of functions¶		
See Also¶ ee Also¶ loring - Family of functions¶ gr_sequentialVertexColoring - Proposed¶		
See Alsof ee Alsof loring - Family of functions¶ gr_sequentialVertexColoring - Proposed¶ Description¶		
See Alsof ee Alsof loring - Family of functions¶ gr sequentialVertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶		
See Alsof ee Alsof loring - Family of functions¶ gr.sequential/vertexColoring - Proposed¶ Description Signatures¶ Parameters¶ more Queries¶		
See Alsof ee Alsof pring - Family of functions¶ gr_sequentialVertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶ Inner Queres¶ Edges SQL¶ Besuit rolumes¶		
See Also¶ ee Also¶ oring - Family of functions¶ gr_sequentialVertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶ Edges SOL¶ Result columns¶ See Also¶		
See Alsof ex Alsof oring - Family of functions¶ yr_sequential/vertexColoring - Proposed¶ Description Signatures1 Parameters1 nor Cuonies1 Reguit columns1 See Alsof Jr_bipartie - Experimental¶		
See Alsof ee Alsof oring - Family of functions¶ Description¶ Signatures¶ Parameters¶ Inner Oueries¶ Edges SOL¶ Result columns¶ See Alsof pr_bipartite - Experimental¶ Description¶		
See Alsof ee Alsof oring - Family of functions¶ gr_sequential/VertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶ Inere Queries¶ Edges SOL¶ Result columns¶ See Alsof gr_bipartite - Experimental¶ Description¶ Bionatures¶		
See Alsof ee Alsof oring - Family of functions ¶ yr_sequential/VertexColoring - Proposed ¶ Description Signatures ¶ Parameters ¶ Result columns ¶ See Alsof yr_bipartie - Experimental ¶ Description ¶ Signatures ¶ Parameters ¶		
See Alsof ee Alsof pr: sequential/vertex/Coloring - Proposed (Description) Signatures Parameters Edges SOL(Result columns) See Alsof y: bipartite -Experimental (Description) Signatures Parameters Inner Queries) Edges SOL(Edges SOL(Parameters) Inner Queries) Edges SOL(Edges SOL(Parameters) Inner Queries) Edges SOL(Parameters) Edges SOL(Parameters) Edges SOL(Parameters) Edges SOL(Parameters)		
See Alsof ee Alsof pring - Family of functions¶ Description¶ Signatures¶ Parameters¶ Result columns¶ See Alsof gr_bipartite - Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Result columns¶		
See Also] ex Also] oring - Family of functions¶ yr_sequential/vertex/Coloring - Proposed¶ Description¶ Signatures! Parameters¶ Inner Queries¶ Colories¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Parameters¶ Parameters¶ Result columns¶ Additional Example¶ See Also]		
See Also¶ ex Also¶ prig = Family of functions¶ pr_sequential/vertex/Coloring - Proposed¶ Signatures¶ Signatures¶ Farameters¶ See Also¶ problements Signatures¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Signatures¶ Parameters¶ See Also¶ produces¶ See Also¶ produces¶ See Also¶ produces¶ See Also¶ produces¶ See Also¶ produces¶ See Also¶ produces¶ See Also¶ produces See Also¶ produces P		
See Also¶ See Also¶ See Also¶ Family of functions¶ Signatures¶ Signatures¶ Signatures¶ See Also¶ Tr SequentialVertexColoring - Proposed¶ Signatures¶ See Also¶ Tr Upertite - Experimental¶ Signatures¶ Signatures¶ Signatures¶ Signatures¶ Signatures¶ Signatures¶ Signatures¶ See Also¶ Tr Outries¶ See Also See Sign See Sig		
See Also] ex Also] oring - Family of functions¶ yr_sequential/vertex/Coloring - Proposed¶ Description¶ Signatures! Parameters¶ Inner Queries¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Parameters¶ Parameters¶ Result columns¶ Additional Example¶ See Also] yr_edgeColoring - Experimental¶ Description¶ Signatures¶ Description¶ Signatures¶ Description¶ Signatures¶ Description¶ Signatures¶ Description¶ Signatures¶ Description¶ Signatures¶ Description¶ Signatures¶		
See Alsof ex Alsof packplionf gr.gequential/Vertex/Coloring - Proposed f Descriptionf Signatures f arameters f mor Cubries f Result columns f Result columns f Result columns f Signatures f Parameters f mor Cubries f Edges SOL f Result columns f Additional Example f Result Solimns f Additional Example f Result Solimns f Additional Example f Result Solimns f Result Solimns f Additional Example f Result Solimns f Resul		
See Also] see Also] oring - Family of functions¶ pr_sequential/vertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶ See Also] y bipartie - Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Quenes¶ Edges SOL¶ Result columns¶ Additional Example¶ See Also] y - edgeColoring - Experimental¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Parameters¶ Inner Quenes¶ Signatures¶ Parameters¶ Inner Quenes¶ Signatures¶ Parameters¶ Inner Quenes¶ Signatures¶ Inner Quenes¶ Signatures¶ Inner Quenes¶ Signatures¶ Inner Quenes¶ Signatures¶ Inner Quenes¶ Signatures¶ Inner Quenes¶ Signatures¶ Inner Quenes¶ Signatures Signatures		
See Also] ex Also] oring - Family of functions¶ yr_sequential/vertex/Coloring - Proposed¶ Description¶ Signatures! Parameters¶ Inner Queries¶ Couries Couries¶ Couries Couries¶ Couries Co		
See Also] See Also] oring - Family of functions¶ yr sequential/vertex/coloring - Proposed¶ Description¶ Parameters¶ frame/contes¶ Edges SOL¶ Result columns¶ See Also] yr, bipartie - Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Edges SOL¶ Result columns¶ Additional Example¶ See Also] yr, edge:Coloring - Experimental¶ Description¶ Signatures¶ Parameters¶ Parameters¶ Edges SOL¶ Result columns¶ Additional Example¶ Signatures¶ Parameters¶ Parameters¶ Base Also] Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Parameters¶ Base Also] Parameters¶ Parameters¶ Base Also] Parameters¶ Base Also] Parameters¶ Parameters¶ Parameters¶ Base Also] Parameters¶ Base Also] Pa		
See Also] See Also] oring - Family of functions ¶ y: sequential/vertex/coloring - Proposed ¶ Description Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SOL ¶ Result columns ¶ Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SOL ¶ Result columns ¶ See Also ¶ y: edgeColoring - Experimental ¶ Description ¶ Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SOL ¶ Result columns ¶ See Also ¶ y: edgeColoring - Experimental ¶ Description ¶ Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SOL ¶ Result columns ¶ Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SOL ¶ Result columns ¶ See Also ¶ See Al		
See Also] ee Also] loring - Family of functions ¶ gr_sequential/VertexColoring - Proposed ¶ Description ¶ Signatures ¶ Parameters ¶ There Cueres ¶ Edges SOL ¶ Parameters ¶ Pa		
See Also1 See Also1 Person Person P		
See Alsof ee Alsof oring - Family of functions¶ jr_sequential/VertexColoring - Proposed¶ Description¶ Signatures¶ Parameters1 Inner Queries¶ Edges SOL¶ Parameters1 Description¶ Signatures¶ Parameters1 Inner Queries¶ Edges SOL¶ Result columns¶ Parameters1 Inner Queries¶ Edges SOL¶ Result columns¶ Additional Example¶ See Alsof Jr_edgeColoring - Experimental¶ Description¶ Signatures1 Parameters1 Inner Queries1 Edges SOL¶ Result columns¶ Signatures1 Parameters1 Inner Queries1 Edges SOL¶ Result columns1 see Alsof Points - Family of functions¶ jr_withPoints - Proposed¶ Description¶		
See Alsof ee Alsof pring - Family of functions ¶ gr_sequential/VertexColoring - Proposed ¶ Description ¶ Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SQL ¶ Parameters ¶ Inner Queries ¶ Edges SQL ¶ Parameters ¶ Inner Queries ¶ Edges SQL ¶ Result columns ¶ Additional Example ¶ See Also ¶ pr edge Coloring - Experimental ¶ Description ¶ Signatures ¶ Parameters ¶ Inner Queries ¶ Edges SQL ¶ Result columns ¶ Additional Example ¶ See Also ¶ Parameters ¶ Parameters ¶ Result columns ¶ See Also ¶ Parameters ¶ Beaution ¶ See Also ¶ Points - Family of functions ¶ 		
See Alsof ee Alsof Doring - Family of functions ¶ gr_sequential/VertexColoring - Proposed ¶ Description ¶ Signatures ¶ Parameters ¶ Inter Queries ¶ Edges SQL ¶ Result columns ¶ See Also ¶ gr_bipartice - Experimental ¶ Description ¶ Signatures ¶ Parameters ¶ Result columns ¶ Additional Example ¶ See Also ¶ gr_adgeColoring - Experimental ¶ Description ¶ Signatures ¶ Parameters ¶ Result columns ¶ See Also ¶ ee Also ¶ gr_withPoints - Framily of functions ¶ gr_withPoints - Proposed ¶ Description ¶ Signatures ¶		
See Alsof ee Alsof loring - Family of functions¶ gr_sequential/VertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Additional Example¶ Signatures¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Additional Example¶ See Alsof gr_edgeColoring - Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Additional Example¶ See Alsof Perameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ ee Alsof Phoints - Proposed¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Columns¶ ee Alsof pr_others - Proposed¶ Description¶ Signatures¶ One to One¶		
See Alsof ee Alsof loring - Family of functions ¶ gr_sequential/Vertex/Coloring - Proposed ¶ Description { Signatures { Parameters { liner Queries { Edges SQL { Result columns { See Alsof gr_edgeColoring - Experimental { Description { Signatures { Parameters { Iner Queries { Edges SQL { Result columns { Additional Example { See Alsof gr_edgeColoring - Experimental { Description { Signatures { Parameters { Iner Queries { Edges SQL { Result columns { Additional Example { See Alsof Parameters { Iner Queries { Edges SQL { Result columns { See Alsof ee Also { the Cueries { Edges SQL { Result columns { See Also { Bescription { Signatures { Parameters { Iner Queries { Edges SQL { Result columns { See Also { the Cueries { Edges SQL { Result columns { Result		
See Alsof ee Alsof loring - Family of functions ¶ gr_sequential/VertexColoring - Proposed ¶ Description ¶ Signatures1 Parameter5 Imar Queries1 Edges SQL1 Result columns1 See Also1 gr_blartite - Experimental ¶ Description1 Signatures1 Parameter5 Imar Queries1 Edges SQL1 Result columns1 Additional Example1 See Also1 gr_edgeColoring - Experimental ¶ Description1 Signatures1 Parameter5 Imar Queries1 Edges SQL1 Result columns1 See Also1 gr_withPoints - Framily of functions ¶ gr_withPoints - Proposed1 Description1 Signatures1 Description2 Signatures1 Description3 Signatures1 Description3 Signatures1 Description3 Signatures1 Description3 Signatures1 Description3 Signatures1 Description3 Signatures1 Description3 Signatu		
See Also] ee Also] Doring - Family of functions¶ gr_sequential/Vertex/Coloring - Proposed¶ Description? Signatures! Parameters! Inner Queries? Edges SQL! Result columns! Parameters! Inner Queries? Edges SQL! Result columns! Additional Example! Soe Also] gr_edgeColoring - Experimental! Description? Signatures! Parameters! Inner Queries? Edges SQL! Result columns! Additional Example! Soe Also] gr_edgeColoring - Experimental! Description? Signatures! Parameters! Inner Queries? Edges SQL! Result columns! Result columns! See Also] Points - Family of functions! gr_withPoints - Proposed! Description? Signatures! Parameters! Description? Signatures! Points - Family of functions! gr_withPoints - Proposed! Description? Signatures! Description? Signatures! One to Many! Combinations! Parameters!		
See Alsof ee Alsof loring - Family of functions ¶ gr_sequential/Vertex/Coloring - Proposed ¶ Description { Signatures { Parameters { loner Queres } Edges SQL { Result columns { See Also { gr_otgetColoring - Experimental ¶ Description { Signatures { Parameters { Inner Queres { Edges SQL { Result columns { Additional Example { See Also { gr_otgetColoring - Experimental { Description { Signatures { Parameters { Inner Queres { Edges SQL { Result columns { Additional Example { See Also { gr_otgetColoring - Experimental { Description { Signatures { Parameters { Inner Queres { Edges SQL { Result columns { see Also { result columns { gr_otgetColoring = Coloring { gr		
See Alsof ee Alsof loring - Family of functions ¶ gr_sequential/VertexColoring - Proposed ¶ Description ¶ Signatures1 Parameter5 Imer Queries1 Edges SQL1 Result columns1 See Alsof gr_blartite - Experimental ¶ Description ¶ Signatures1 Parameter5 Imer Queries1 Edges SQL1 Result columns1 Additional Example1 See Alsof gr_edgeColoring - Experimental ¶ Description ¶ Signatures1 Parameter5 Imer Queries1 Edges SQL1 Result columns1 Additional Example1 See Alsof gr_edgeColoring - Experimental ¶ Description ¶ Signatures1 Parameter5 Imer Queries1 Edges SQL1 Result columns1 See Also1 gr_withPoints - Framily of functions ¶ gr_withPoints - Froposed1 Description1 Signatures1 Description1 Signatures1 Description1 Signatures1 Description1 Signatures1 Description1 Description1 Signatures1 Description1 Description1 Description1 Description1 Description1 Description1 Description1 Description1 Description1 Description1 Description2 Description1 Description2 Description1 Description2 Description2 Description3 Des		
See Alsof ee Alsof loring - Family of functions¶ gr_sequential/VertexColoring - Proposed¶ Description¶ Signatures¶ Parameters¶ Inner Courtes¶ Beauto columns¶ Parameters¶ problements Beauto columns¶ Additional Example¶ Signatures¶ Parameters¶ Beauto columns¶ Additional Example¶ See Alsof gr_edgeColoring - Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Courtes¶ Edges SOL¶ Result columns¶ Beauto columns¶ ee Alsof prof to con¶ Green Courtes¶ Beauto columns¶ ee Alsof prof to Con¶ Description¶ Signatures¶ Parameters¶ Beauto columns¶ ee Alsof prof to Con¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Description¶ Description¶ Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signatures¶ Description Signature		
See Alsof ee Alsof Doring - Family of functions ¶ gr_sequential/Vertex/Coloring - Proposed ¶ Description { Signatures { Parameters { Inner Cueres { Edges SOL { Result columns { See Alsof gr_adgeColoring - Experimental { Description { Signatures { Parameters { Inner Cueres { Edges SOL { Result columns { Additional Example { See Also { gr_adgeColoring - Experimental { Description { Signatures { Parameters { Inner Cueres { Edges SOL { Result columns { Additional Example { See Also { gr_adgeColoring - Experimental { Description { Signatures { Parameters { Inner Cueres { Edges SOL { Result columns { see Also { mer Cueres { Edges SOL { Result columns { See Also { gr_uthPoints - Proposed { Description { Signatures { One to One { One to Many { Many to Many { Combinations { Parameters { Min points optional parameters { Description { Signatures { Description { Description { Signatures { Description { Signatures { Description { Des		
See Alsof ee Alsof loring - Family of functions [] gr_sequential/Vertex/Coloring - Proposed [] Description [] Signatures [] Parameters [] Beaut columns [] See Alsof gr_source [] Parameters [] Description [] Signatures [] Description		
See Alsof ee Alsof loring - Family of functions¶ gr_sequential/Vertex/Coloring - Proposed¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Additional Example¶ See Alsof gr_edgeColoring - Experimental¶ Description¶ Signatures¶ Parameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ Additional Example¶ See Alsof Perameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ ee Alsof Perameters¶ Inner Queries¶ Edges SQL¶ Result columns¶ ee Alsof Perameters¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Parameters¶ Description¶ Signatures¶ Parameters¶ One to Anary¶ Combinations SQL¶ Parameters¶ One ing Darameters¶ Inner Queries¶ Edges SQL¶ Parameters¶ One ing Darameters¶ Inner Queries¶ Edges SQL¶ Points SQL¶ Points SQL¶ Points SQL¶ Result columns SQL¶ Result columns SQL¶ Result columns SL¶ Combinations SQL¶ Result columns¶		
See Also ⁴ ee Also ⁴ ee Also ⁴ loring - Family of functions ⁴ gr_sequentialVertexColoring - Proposed ⁴ Description ⁴ Signatures ¹ Parameters ⁴ Inner Queries ⁴ Edges SOL ⁴ Result columns ⁶ See Also ⁴ gr_bipartite - Experimental ⁴ Description ⁴ Signatures ¹ Parameters ⁴ Inner Queries ⁴ Edges SOL ⁴ Result columns ⁶ Additional Example ⁴ See Also ⁴ Result columns ⁶ Additional Example ⁴ Signatures ¹ Parameters ⁴ Inner Queries ⁴ Edges SOL ⁴ Result columns ⁶ Additional Example ⁴ Signatures ¹ Parameters ⁴ Inner Queries ¹ Edges SOL ⁴ Result columns ⁶ ee Also ⁴ Signatures ¹ Parameters ⁴ Presult columns ⁴ ee Also ⁴ Signatures ¹ Points - Family of functions ⁶ gr_withPoints - Proposed ⁴ Description ⁴ Signatures ¹ One to Ane ⁴ One to Ane ⁴ Anay to Ane ⁴ Anay to One ⁴ Anay to One ⁴ Anay to One ⁴ Anay to One ⁴ Anay to Ane ⁴ Combinations ⁵ Edges SOL ⁴ Points SOL ⁴ Points SOL ⁴ Points SOL ⁴ Points SOL ⁴ Points SOL ⁴ Points SOL ⁴ Result columns ⁶		

See Also¶ or with PointsCost - Proposed¶	305 305
pg_mmontect report	306
Signatures¶ One to One¶	306
One to Many 1 Many to Toe	306 307
Many to Many	307
Comprised is 1 Parameters	307
Optional parameters1 With points optional parameters1	307 308
Inner Queries	308 308
Points SQL	308
Gunoradous SGL 1 Result Columns 1 Result Columns 1	309
Additional Examples Use pg_find/closeEdges in the Points SQL ¶	309
Right side driving topology¶ Left side driving topology¶	309 309
Does not matter driving side driving topology¶	310 310
pgr_withPointsCostMatrix - proposed¶	310
Description	310
Parameters1 Octional parameters1	311 311
With points optional parameters¶	311
Edges SQL1	311
Points SUC1 Result Columns[312
Additional Examples Use pgr_find/coseEdges in the Points SQL ¶	312 312
Use with pgr TSP.¶ See Also	313 313
pgr_withPointsKSP - Proposed¶	313
Signatures 1	313
Une to Une 1 One to Many 1	314 314
Many to One¶ Many to Many¶	314 315
Combinations¶ Parameters¶	315
Optional parameters¶	315
withPointsKSP optional parameters¶	316 316
inner Guenesy Edges SQL¶	316 316
Points SQL¶ Combinations SQL¶	316 317
Result columns¶ Additional Examples¶	317 317
Use pgr_findCloseEdges in the Points SQL ¶	317
Leit diving such Right diving side1	317
See Also¶ pgr_withPointsDD - Proposed¶	318 318
Description Singluse	319
Single vertex1	319
Mulpe verifices	319
Optional parameters With points optional parameters	320 320
Driving distance optional parameters¶ Inner Queries¶	320 320
Edges SQL¶	320 320
Result columns	321
Addutoral Examples1 Use pgr_ind/doseEdges in the Points SQL1	321
Driving side does not matter[See Also]	322 322
pgr_withPointsVia Proposed¶	322
Signatures1	322
Der vrach	323
Optional parameters¶ Via optional parameters¶	323 323
With points optional parameters¶ Inner Queries¶	323 323
Edges SQL Points Points Points Points Points Points Points Points Points Poin	323 324
Pesul columns	324
Addutoral Examples1 Use pgr_ind/doseEdges in the Points SQL¶	324
Usage variations1 Aggregate cost of the third path.¶	325 325
Route's aggregate cost of the route at the end of the third path.	325 325
The aggregate costs of the route when the visited vertices are reached. Status of "passes in front" or "visits" of the nodes and points.	325 326
See Also¶ Introduction¶	326
Parameters	326
Optional parameters¶ With points optional parameters¶	326 326
Inner Queries¶	327
Points SQL¶	327
Comminations Social Advanced Documentation	327 328
About points¶ Driving side¶	328 328
Right driving side¶ Left driving side¶	328
Driving side does not matter	329
On a right hand side driving network	330
Un a termano sue unvilig herwork	330 331
see Alson par findCloseEdaes¶	331 331
pgr_mideleccugot ii Description¶	331
Signatures¶	331
one point Many points Parameters€	332 332
r arameters y Optional parameters y	332
Inner Queries¶	332
cuges cuci Result columns¶	332
Additional Examples¶ One point examples¶	333
At most two answers¶	333
One answer, an commest At most two answers with all columns	334 334
Une point ay run execution¶ Many points examples¶	335 335
At most two answers per point¶ One answer per point, all columns¶	335 336
Many points dry run execution¶ Find at most two routes to a given point¶	336 337
A point of interest table¶	337
Points of interest fillup¶ Comparison disconnected components	337

Prepare storage for connection information¶	338
Save the deges contrection information¶	338
Get the closest writes	338
Commeaning componentits	338 338
See Also	339
See Also¶	339
Experimental Functions¶	339
Chinese Postman Problem - Family of functions (Experimental)¶	340
pgr_chinesePostman - Experimental¶	340
Description	340
Signatures 1	340
r a duitettes s	341
Edges SQL1	341
Hesur coumns See Also 1	341
pgr_chinesePostmanCost - Experimental¶	341
Description	342
Signatures 1 Parameters 1	342
Inner Queries	342
Edges SQL Besuit noturns 4	342
See Also1	343
Description	343
Parameters	343
	343
See Also 1	343
Transformation - Family of functions¶	344
pgr_lineGraph - Proposed¶	344
Description	344
oginauros i Parameters ¶	345
Optional parameters¶	345
Edges SOL	345 345
Result columns	345
Auduurura Examples 1 Representation as directed with shared edge identifiers 1	346 346
Line Graph of a directed graph represented with shared edges	346
Hepresentation as orrected with unique edge identifiers" Line Graph for a directed graph represented with unique edges	347 347
See Also1	347
pgIneCraph=UII - Experimental¶	347
uescapion Signatues1	348 348
Parameterst	348
Inner Queries	348
Result columns1	349
Additional Examples	349
ine usag The transformation¶	349
Creating table that identifies transformed vertices	350
store edge results* Create the mapping table*	350
Filling the mapping table	350
Adding a soft restriction	351
Adding a value to the restriction	352
Simplifying leaf vertices¶	352
using me venex map give me wai venes mer original value.1 Removing self loops on leaf nodes ⁶	352
Complete routing graph	353
Aod edges mon the onginal graphing Add the newly calculated edges	353
Using the routing graph1	353
See Alsof Introduction	353
See Also 1	353
Ordering - Family of functions¶	353
pgr_cuthillMckeeOrdering - Experimental¶	354
Description	354
Signatures	354
i administra Inner Querics	355
Edges SQL	355
Hesur Columns	355
pgr_topologicalSort - Experimental¶	355
Description	356
Signatures 1 Parameters 1	356
Inner Oueries	356
Edges SQL ¹ Besuit to futures 4	356
Additional examples	357
See Alson	357 257
Metrics - Eamily of functions	230 130
gg_betweennessCentrality¶	358
Description¶	358
Signatures1 Personeref	358
· automotos	358
Innar Quaries 1	359
cuyus Such Result cummaf	359
See Also	359
See Alson	359
pgr_perimanrovo - Experimental¶	359
uesunpuon Sinnahirest	360 260
One to One¶	000 038
One to Many	361
Many to One ¶ Many to Many ¶	361
Combinations	361
Parameters 1	362
Optional parameters	362
inter deprintsij	362
Combinans SQL¶	362
Result columns	363
Accinicate Examples	363
oee Alsun norr dan ShortaetPath - Evnerimental∉	364
yg_uagynonosa all ' LApetintentan] Describtion€	364
Signatures	365
One to One 1	365
One to Many1	365
າດສາງພວກອງ Many to ປາຍໆ	365
Combinations¶	366
rarameters	366
Edos SOL4	300
Combinations SQL1	300
Heturn columns ¹	367
Aconional Examples	367
	36/

pgr_edwardMoore - Experimental¶		368
Description¶		36
One to One		36
One to Many¶ Many to One¶		36 36
Many to Many¶ Combinations¶		36
Parameters¶		37
Optional parameters¶ Inner Queries¶		37
Edges SQL¶		37
Result columns¶		37
Additional Examples¶		37
pgr isPlanar - Experimental¶		372
Description		37
Signatures¶ Parameters¶		37
Inner Queries¶		37
Edges SQL¶ Result columns¶		37 37
Additional Examples¶		37
See Also	rimontal f	37
Description¶	innoinea l	37
Signatures¶		37
Inner Queries¶		37
Edges SQL¶ Besult columns¶		37
Additional Examples¶		37
See Also		37
Description¶		37
Signatures		37
Farameters		37
Edges SQL¶ Besult columns¶		37
Additional Example:		
See Also¶		37
pgr_transitiveClosure - Experimental¶ Description¶		37
Signatures		37
Parameters¶ Inner Queries¶		37
Edges SQL		37
See Also		37
pgr_hawickCircuits - Experimental¶		37
Description¶ Signatures¶		38
Parameters¶		38
Optional parameters¶ Inner Queries¶		38
Edges SQL¶ Besult columns¶		38
See Also¶		
See Also¶		382
lease Notes¶		382
lease Notes¶ current release¶		382 382
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶		382 382 382
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶		382 382 382 382
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶		382 382 382 382 382 382
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶		382 382 382 382 382 382 382
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7		382 382 382 382 382 382 382 383 383
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.71 pgRouting 3.71 Pielease Notes¶ pgRouting 3.71 Pielease Notes¶		382 382 382 382 382 382 382 382 383 383
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ ppRouting 3.71 Release Notes¶ ppRouting 3.70 Release Notes¶		382 382 382 382 382 382 382 382 383 383
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ ppRouting 3.71 Release Notes¶ ppRouting 3.71 Release Notes¶ ppRouting 3.63 Release Notes¶		382 382 382 382 382 382 382 382 383 383
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ ppRouting 3.71 Release Notes¶ ppRouting 3.71 Release Notes¶ ppRouting 3.61 Release Notes¶		382 382 382 382 382 382 382 382 383 383
lease Notes¶ current release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ ppRouting 3.7 phouting 3.7 phouting 3.7 phouting 3.7 phouting 3.7 phouting 3.6 papadia 3.5 papadia papad		382 382 382 382 382 382 383 383 383 383
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.6.1 Release Notes¶ partial S.6.1 Release Notes¶ pRouting 3.6.1 Release Notes¶		382 382 382 382 382 382 382 382 382 382
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouti		382 383 383 383 383 383 383 383 383 383
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.5.1 Release Notes¶ pgRouting 3.5.1 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.4.1 Release Notes¶		382 383 383 383 383 383 383 383 383 383
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7.0 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.4.1 Release Notes¶ pgRouting 3.4.2 Release Notes¶ pgRouting 3.4.3 Release Notes¶ pgRouting 3.4.4 Release Notes¶ pgRouting 3.4.4 Release Notes¶ pgRouting 3.4.4 Release Notes¶ pgRouting 3.4 Release		382 38 38 38 38 38 38 38 38 38 38 38 38 38
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes↑ pgRouting 3.7.1 Release Notes↑ pgRouting 3.6.1 Release Notes↑ pgRouting 3.4.1 Release Notes↑ pgRouting 3.4.3 Release Notes↑ pgRouting 3.4.4 Release Notes↑ pgRouting 3.4.4 Release Notes↑ pgRouting 3.4.4 Release Notes↑ pgRouting 3.4.5 Release Notes↑ pgRouting 3.4.5 Release Notes↑ pgRouting 3.4.4 Release Notes↑ pgRouting 3.4 Release Notes↑ pgRouting		38; 38 38 38 38 38 38 38 38 38 38 38 38 38
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.7.1 Release Notes¶ ppRouting 3.6.1 Release Notes¶ ppRouting 3.4.1 Release Notes¶ ppRouti		384 38 38 38 38 38 38 38 38 38 38 38 38 38
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7 pgRouting 3.6 pgRouting 3		384 38 38 38 38 38 38 38 38 38 38 38 38 38
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ gRouting 3.7.0 Release Notes¶ pgRouting 3.7 pgRouting 3.6 pgRouting		382 38 38 38 38 38 38 38 38 38 38 38 38 38
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ pgRouting 3.7 pgRouting 3.6 pgRouting 3.2 pgRouting 3		382 38 38 38 38 38 38 38 38 38 38 38 38 38
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ I releases¶ Release Notes¶ pgRouting 3.7 pgRouting 3.6 pgRouting 3.7 pgRouting 3.7 pgRouting 3.7 pgRouting 3.7 pgRouting 3.7 pgRouting 3.7 pgRouting 3.		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ release Notes¶ pgRouting 3.7.0 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.7.1 Rele		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ release Notes¶ pgRouting 3.7 release Notes¶ pgRouting 3.6 release Notes¶ pgRouting 3.5 release Notes¶ pgRouting 3.4 release Notes¶ pgRouting 3.4 release Notes¶ pgRouting 3.4 release Notes¶ pgRouting 3.3 release Notes¶ pgRouting 3.4 release Notes¶		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ gRouting 3.7.0 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.1 Release Notes¶		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ gRouting 3.7.0 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.1 Release Notes¶		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ gRouting 3.7.0 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.1.1 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRou		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Release Notes¶ Release Notes¶ pRouting 3.7 phanting 3.7 pha		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ PpRouting 3.7 ppRouting 3.6 ppRouting 3.4 ppRouting 3		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ Il releases¶ Release Notes¶ PpRouting 3.7 pRouting 3.5 pRouting 3.5 Particlease Notes PROuting 3.6 PROUTING 3.1 PROBALESE NOTES PROUTING 3.6 PROUTING		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ gRouting 3.7.0 Release Notes¶ pgRouting 3.7 release Notes¶ pgRouting 3.7 release Notes¶ pgRouting 3.7 release Notes pgRouting 3.7 release Notes pgRouting 3.7 release Notes pgRouting 3.6 release Notes pgRouting 3.5 release Notes pgRouting 3.4 release		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ release Notes re		
lease Notes¶ urrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ releases¶ Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.1.1 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting		
lease Notes¶ Surrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ releases¶ Release Notes¶ pgRouting 3.7.1 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.6.2 Release Notes¶ pgRouting 3.6.2 Release Notes¶ pgRouting 3.5.2 Release Notes¶ pgRouting 3.3.2 Release Notes¶ pgRouting 3.3.2 Release Notes¶ pgRouting 3.2.2 Release Notes¶ pgRouting 3.2.2 Release Notes¶ pgRouting 3.2.1 Release Notes¶ pgRouting 3.2.1 Release Notes¶ pgRouting 3.1.4 Release Notes¶ pgRouting 3.1.4 Release Notes¶ pgRouting 3.0 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.7 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRouting 2.6.7 Release Notes¶ pgRouting 2		
lease Notes¶ Surrent release¶ gRouting 3.7.1 Release Notes¶ gRouting 3.7.0 Release Notes¶ gRouting 3.7.1 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.3 Release Notes¶ pgRouting 3.6.1 Release Notes¶ pgRouting 3.1.1 Release Notes¶ pgRouting 3.1.1 Release Notes¶ pgRouting 3.0.6 Release Notes¶ pgRo		
lease Notes ¶ surrent release ¶ gRouting 3.7.1 Release Notes ¶ gRouting 3.7.0 Release Notes ¶ pgRouting 3.7.1 Release Notes ¶ pgRouting 3.6.3 Release Notes ¶ pgRouting 3.6.3 Release Notes ¶ pgRouting 3.6.1 Release Notes ¶ pgRouting 3.1.1 Release Notes ¶ pgRouting 3.0.6 Release Notes ¶ pgRouting 3.0.8 Release Notes ¶ p		
lease Notes ¶ surrent release ¶ gRouting 3.7.1 Release Notes ¶ gRouting 3.7.0 Release Notes ¶ release Notes ¶ pgRouting 3.7 pgRouting 3.6 pgRouting 3.4 pgRouting 3.2 pgRouting 3.2 pgRouting 3.2 pgRouting 3.2 pgRouting 3.1 pgRouting 3		
lease Notes ¶ surrent release ¶ gRouting 3.7.1 Release Notes ¶ gRouting 3.7.0 Release Notes ¶ release Notes ¶ pgRouting 3.7.1 Release Notes ¶ pgRouting 3.6.3 Release Notes ¶ pgRouting 3.6.3 Release Notes ¶ pgRouting 3.6.1 Release Notes ¶ pgRouting 3.6.2 Release Notes ¶ pgRouting 3.6.2 Release Notes ¶ pgRouting 3.6.4 Release Notes ¶ pgRouting 3.7.1 Release Notes ¶ pgRouting 3.7.1 Release Notes ¶ pgRouting 3.1.4 Release Notes ¶ pgRouting 3.1.6 Release Notes ¶ pgRouting 3.0.6 Release Notes ¶ pgRouting 3.0.7 R		
lease Notes ¶ surrent release ¶ gRouting 3.7.1 Release Notes ¶ gRouting 3.7.0 Release Notes ¶ release Notes ¶ pgRouting 3.7.1 Release Notes ¶ pgRouting 3.6.3 Release Notes ¶ pgRouting 3.6.3 Release Notes ¶ pgRouting 3.6.1 Release Notes ¶ pgRouting 3.1.1 Release Notes ¶ pgRouting 3.1.2 Release Notes ¶ pgRouting 3.1.2 Release Notes ¶ pgRouting 3.0.6 Release Notes ¶ pgRouting 3.0.7 Release Notes ¶ pgRouting 3.0.7 Release Notes ¶ pgRouting 3.0.7 Release Notes ¶ pgRouting 3.0.6 R		

pgRouting 2.3.1 Release Notes¶		3
pgRouting 2.3.0 Release Notes¶		3
pgRouting 2.2¶		3
pgRouting 2.2.4 Release Notes¶		3
pgRouting 2.2.3 Release Notes¶		- 39
pgRouting 2.2.2 Release Notes¶		3
pgRouting 2.2.1 Release Notes¶		3
pgRouting 2.2.0 Release Notes¶		3
pgRouting 2.1¶		3
pgRouting 2.1.0 Release Notes¶		3
pgRouting 2.0¶		3
pgRouting 2.0.1 Release Notes¶		3
pgRouting 2.0.0 Release Notes¶		3
ogRouting 1¶		4
paRouting 1.0¶		4
Changes for release 1.05¶		4
Changes for release 1.03¶		4
Changes for release 1.02¶		4
Changes for release 1.01¶		4
Changes for release 1.0¶		4
Changes for release 1.0.0b¶		4
Changes for release 1.0.0a¶		4
Changes for release 0.9.9¶		4
Changes for release 0.9.8¶		4
		10
vigration of functions¶		41
Migration of pgr_aStar¶		4
Migration of pgr_bdAstar¶		4
Migration of pgr_dijkstra¶		4
Migration of pgr_drivingdistance¶		4
pgr_drivingdistance (Single vertex)¶		4
pgr_drivingdistance (Multiple vertices)¶		4
Migration of pgr_kruskalDD / pgr_kruskalB	·S / pgr_kruskalDFS¶	4
Kruskal single vertex¶		4(
Kruskal multiple vertices		4
Migration of pgr_KSP¶		4
pgr_KSP (One to One)¶		4
Migration of pgr_maxCardinalityMatch		4
Migration of pgr_primDD / pgr_primBFS / p	gr_pnmDFS¶	4
Prim single vertex		4
Prim multiple vertices		4
Migration of pgr_withPointsDD¶		4
pgr_withPointsDD (Single vertex)		4
pgr_withPointsDD (Multiple vertices)		4
Migration of pgr_withPointsKSP¶		4
pgr_witnPointsKSP (One to One)		4
vigration of turn restrictions 1		
Migration of restrictions¶		4
Old restrictions structure¶		4
Old restrictions contents¶		4
New restrictions structure¶		4
Restrictions data¶		4
Migration¶		4
Migration of pgr_trsp (Vertices)¶		4
Migrating pgr_trsp (Vertices) using pgr_dijk	stra	4
Migrating pgr_trsp (Vertices) using pgr_trsp	1	4
Migration of pgr_trsp (Edges)¶		4
Migrating pgr_trsp (Edges) using pgr_withF	oints¶	4
Migrating pgr_trsp (Edges) using pgr_trsp_	withPoints¶	4
Migration of pgr_trspViaVertices¶		4
Migrating pgr_trspViaVertices using pgr_di	kstraVia¶	4
Migrating pgr_trspViaVertices using pgr_trs	ρVia¶	4
Migration of pgr_trspViaEdges¶		4
		43
Migrating pgr_trspViaEdges using pgr_with	PointsVia	
Migrating pgr_trspViaEdges using pgr_with Migrating pgr_trspViaEdges using pgr_trsp	PontsVa§ Va_wihPoins¶	42

pgRouting Manual (3.7)

pgRouting Manual (3.7)

Contents

Table of Contents

pgRouting extends the PostGIS/PostgreSQL geospatial database to provide geospatial routing and other network analysis functionality.

This is the manual for pgRouting v3.7.1.

The pgRouting Manual is licensed under a <u>Creative Commons Attribution-Share Alike 3.0 License</u>. Feel free to use this material any way you like, but we ask that you attribute credit to the pgRouting Project and wherever possible, a link back to <u>https://pgrouting.org</u>. For other licenses used in pgRouting see the<u>Licensing</u> page.

General

Introduction

pgRouting is an extension of PostGIS and PostgreSQL geospatial database and adds routing and other network analysis functionality. A predecessor of pgRouting – pgDijkstra, written by Sylvain Pasche from Camptocamp, was later extended by Orkney and renamed to pgRouting. The project is now supported and maintained by Georepublic, Paragon Corporation and a broad user community.

pgRouting is part of OSGeo Community Projects from the OSGeo Foundation and included on OSGeoLive.

Licensing

The following licenses can be found in pgRouting:

License

GNU General Public License v2.0 or later Most features of pgRouting are available under GNU General Public License v2.0 or later

Boost Software License - Version 1.0 Some Boost extensions are available under Boost Software License - Version 1.0

MIT-X License

Creative Commons Attribution-Share Alike 3.0 The pgRouting Manual is licensed under a Creative Commons Attribution-Share Alike 3.0 License

In general license information should be included in the header of each source file.

Contributors

This Belease Contributors

Individuals in this release v3.7.x (in alphabetical order)

(Alphabetical order)

Regina Obe, Vicky Vergara

And all the people that give us a little of their time making comments, finding issues, making pull requests etc. in any of our products: osm2pgrouting, pgRouting, pgRoutingLayer, workshop.

Some code contributed by iMaptools.com is available under MIT-X license.

Corporate Sponsors in this release (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- OSGeo
- OSGeo UK
- Google Summer of Code
- Paragon Corporation

Contributors Past & Present:

Individuals (in alphabetical order)

Aasheesh Tiwari, Abhinav Jain, Aditya Pratap Singh, Adrien Berchet, Akio Takubo, Andrea Nardelli, Anthony Tasca, Anton Patrushev, Aryan Gupta, Ashraf Hossain, Ashish Kumar, Cayetano Benavent, Christian Gonzalez, Daniel Kastl, Dave Potts, David Techer, Denis Rykov, Ema Miyawaki, Esteban Zimanyi, Florian Thurkow, Frederic Junod, Gerald Fenoy, Gudesa Venkata Sai Akhil, Hang Wu, Himanshu Raj, Imre Samu, Jay Mahadeokar, Jinfu Leng, Kai Behncke, Kishore Kumar, Ko Nagase, Mahmoud Sakr, Manikata Kondeti, Mario Basa, Martin Wiesenhaan, Maxim Dubinin, Maoguang Wang, Mohamed Bakli, Mohamed Zia, Mukul Priya, Nitish Chauhan, Rajat Shinde, Razequl Islam, Regina Obe, Rohith Reddy, Sarthak Agarwal, Shobhit Chaurasia, Sourabh Garg, Stephen Woodbridge, Swapnil Joshi, Sylvain Housseman, Sylvain Pasche, Veenit Kumar, Vidhan Jain, Virginia Vergara, Yige Huang

Corporate Sponsors (in alphabetical order)

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the pgRouting project:

- Camptocamp
- · CSIS (University of Tokyo)
- Georepublic
- Google Summer of Code
- iMaptools
- Leopark
- Orkney
- OSGeo
- OSGeo UK
- Paragon Corporation

Versaterm Inc.

More Information

- The latest software, documentation and news items are available at the pgRouting web sitehttps://pgrouting.org
- PostgreSQL database server at the PostgreSQL main site<u>https://www.postgresgl.org</u>.
- · PostGIS extension at the PostGIS project web site https://postgis.net.
- Boost C++ source libraries at https://www.boost.org.
- Migration guide

Installation

Table of Contents

- Short Version
- Get the sources
- Enabling and upgrading in the database
- Dependencies
- <u>Configuring</u>
- Building
- Testing

Instructions for downloading and installing binaries for different operating systems, additional notes and corrections not included in this documentation can be found in installation wiki

To use pgRouting PostGIS needs to be installed, please read the information about installation in thisInstall Guide

Short Version

Extracting the tar ball

tar xvfz pgrouting-3.7.1.tar.gz cd pgrouting-3.7.1

To compile assuming you have all the dependencies in your search path:

mkdir build cd build cmake make sudo make instal

Once pgRouting is installed, it needs to be enabled in each individual database you want to use it in.

createdb routing psql routing -c 'CREATE EXTENSION PostGIS' psql routing -c 'CREATE EXTENSION pgRouting'

Get the sources

The pgRouting latest release can be found in https://github.com/pgRouting/pgrouting/releases/latest

To download this release:

wget -O pgrouting-3.7.1.tar.gz https://github.com/pgRouting/pgrouting/archive/v3.7.1.tar.gz

Go to Short Version for more instructions on extracting tar ball and compiling pgRouting.

ait

To download the repository

git clone git://github.com/pgRouting/pgrouting.git cd pgrouting git checkout v3.7.1

Go to Short Version for more instructions on compiling pgRouting (there is no tar ball involved while downloading pgRouting repository from GitHub).

Enabling and upgrading in the database

Enabling the database

pgRouting is a PostgreSQL extension and depends on PostGIS to provide functionalities to end user. Below given code demonstrates enabling PostGIS and pgRouting in the database.

CREATE EXTENSION postgis; CREATE EXTENSION pgrouting

Checking PostGIS and pgRouting version after enabling them in the database

SELECT PostGIS_full_version(); SELECT * FROM pgr_version();

Upgrading the database

To upgrade pgRouting in the database to version 3.7.1 use the following command:

ALTER EXTENSION pgrouting UPDATE TO "3.7.1";

More information can be found in https://www.postgresql.org/docs/current/sql-createextension.html

Dependencies

Compilation Dependencies

To be able to compile pgRouting, make sure that the following dependencies are met:

- · C and C++0x compilers
 - · Compiling with Boost 1.56 up to Boost 1.74 requires C++ Compiler with C++03 or C++11 standard support
 - · Compiling with Boost 1.75 requires C++ Compiler with C++14 standard support
- · Postgresql version = Supported versions by PostgreSQL
- The Boost Graph Library (BGL). Version >= 1.56
- CMake >= 3.2

optional dependencies

For user's documentation

- Sphinx >= 1.1
- Latex

For developer's documentation

• Doxygen >= 1.7

For testing

pgtap

pg_prove

For using:

PostGIS version >= 2.2

Example: Installing dependencies on linux

Installing the compilation dependencies

Database dependencies

sudo apt install postgresql-15 sudo apt install postgresql-server-dev-15 sudo apt install postgresql-15-postgis

Configuring PostgreSQL

Entering psql console

sudo systemctl start postgresql.service sudo -i -u postgres psql

To exit psql console

q

Entering psql console directly without switching roles can be done by the following commands

sudo -u postgres psql

Then use the above given method to exit out of the psql console

Checking PostgreSQL version

psql --version

or

Enter the psql console using above given method and then enter

SELECT VERSION();

Creating PostgreSQL role

sudo -i -u postgres createuser --interactive

or

sudo -u postgres createuser --interactive

Default role provided by PostgreSQL is postgres. To create new roles you can use the above provided commands. The prompt will ask the user to type name of the role and then provide affirmation. Proceed with the steps and you will succeed in creating PostgreSQL role successfully.

To add password to the role or change previously created password of the role use the following commands

ALTER USER <role name> PASSWORD <password>

To get additional details on the flags associated withcreateuser below given command can be used

man createuser

Creating Database in PostgreSQL

sudo -i -u postgres createdb <database name>

or

sudo -u postgres createdb <database name>

Connecting to a PostgreSQL Database

Enter the psql console and type the following commands

connect <database name>

Build dependencies

sudo apt install cmake sudo apt install g++ sudo apt install libboost-graph-dev

Optional dependencies

For documentation and testing

pip install sphinx pip install sphinx-bootstrap-theme sudo apt install texlive sudo apt install idoxygen sudo apt install ibitap-parser-sourcehandler-pgtap-perl sudo apt install ipostgresql-15-pgtap

Configuring

pgRouting uses the cmake system to do the configuration.

The build directory is different from the source directory

Create the build directory

\$ mkdir build

Configurable variables

To see the variables that can be configured

\$ cd build \$ cmake -L .

Configuring The Documentation

Most of the effort of the documentation has been on the HTML files. Some variables for building documentation:

Variable	Default	Comment
WITH_DOC	BOOL=OFF Turn on/off building the docur	nentation
BUILD_HTML	BOOL=ON If ON, turn on/off building HTM	ML for user's documentation
BUILD_DOXY	BOOL=ON If ON, turn on/off building HTM	ML for developer's documentation
BUILD_LATEX	BOOL=OFF If ON, turn on/off building PDI	=
BUILD_MAN	BOOL=OFF If ON, turn on/off building MA	N pages

DOC_USE_BOOTSTRAP BOOL=OFF If ON, use sphinx-bootstrap for HTML pages of the users documentation

Configuring cmake to create documentation before building pgRouting

\$ cmake -DWITH_DOC=ON -DDOC_USE_BOOTSTRAP=ON .

Note

Most of the effort of the documentation has been on the html files.

Building

Using make to build the code and the documentation

The following instructions start from path/to/pgrouting/build

 \$ make
 # build the code but not the documentation

 \$ make doc
 # build only the user's documentation

 \$ make all doc
 # build both the code and the user's documentation

 \$ make doxy
 # build only the developer's documentation

We have tested on several platforms, For installing or reinstalling all the steps are needed.

Warning

The sql signatures are configured and build in the cmake command.

MinGW on Windows

\$ mkdir build
\$ cd build
\$ cmake -G"MSYS Makefiles" .
\$ make
\$ make install

Linux

The following instructions start from path/to/pgrouting

mkdir build cd build cmake .. make sudo make install

To remove the build when the configuration changes, use the following code:

rm -rf build

and start the build process as mentioned previously.

Testing

Currently there is no make test and testing is done as follows

The following instructions start from *path/to/pgrouting/* tools/testers/doc_queries_generator.pl

createdb-U <user> _____rest____sh /tools/testers/pg_prove_tests.sh <user> dropdb-U <user> ____pgr___test___

See Also

Indices and tables

- Index
- Search Page

Support¶

pgRouting community support is available through thepgRouting website, documentation, tutorials, mailing lists and others. If you're looking for commercial support, find below a list of companies providing pgRouting development and consulting services.

Reporting Problems

Bugs are reported and managed in an issue tracker. Please follow these steps:

- 1. Search the tickets to see if your problem has already been reported. If so, add any extra context you might have found, or at least indicate that you too are having the problem. This will help us prioritize common issues.
- 2. If your problem is unreported, create a new issue for it.

- 3. In your report include explicit instructions to replicate your issue. The best tickets include the exact SQL necessary to replicate a problem.
- 4. If you can test older versions of PostGIS for your problem, please do. On your ticket, note the earliest version the problem appears.
- 5. For the versions where you can replicate the problem, note the operating system and version of pgRouting, PostGIS and PostgreSQL.

6. It is recommended to use the following wrapper on the problem to pin point the step that is causing the problem.

SET client_min_messages TO debug; <your code> SET client_min_messages TO notice;

Mailing List and GIS StackExchange

There are two mailing lists for pgRouting hosted on OSGeo mailing list server:

- User mailing list: https://lists.osgeo.org/mailman/listinfo/pgrouting-users
- Developer mailing list: https://discourse.osgeo.org/c/pgrouting/pgrouting-dev/
 - Subscribe: <u>https://discourse.osgeo.org/g/pgrouting-dev</u>

For general questions and topics about how to use pgRouting, please write to the user mailing list.

You can also ask at GIS StackExchange and tag the question withpgrouting. Find all questions tagged withpgrouting under https://gis.stackexchange.com/questions/tagged/pgrouting or subscribe to the pgRouting questions feed.

Commercial Support

For users who require professional support, development and consulting services, consider contacting any of the following organizations, which have significantly contributed to the development of pgRouting:

Company	Offices in	Website
Georepublic	Germany, Japan	https://georepublic.info
Paragon Corporation	United States	https://www.paragoncorporation.com
Netlab	Capranica, Italy	https://www.osgeo.org/service- providers/netlab/

• Sample Data that is used in the examples of this manual.

Sample Data

The documentation provides very simple example queries based on a small sample network that resembles a city. To be able to execute the mayority of the examples queries, follow the instructions below.

- Main graph
 - Edges
 - Edges data
 - Vertices
 - Vertices data
 - The topology
 - Topology data
 - · Points outside the graph
 - Points of interest
 - Points of interest fillup
- Support tables
 - Combinations
 - <u>Combinations data</u>
 - <u>Restrictions</u>
 - <u>Restrictions data</u>
- Images
 - Directed graph with cost and reverse_cost
 - <u>Undirected graph with cost and reverse_cost</u>
 - Directed graph with cost
 - Undirected graph with cost
- Pick & Deliver Data
 - The vehicles
 - The original orders
 - <u>The orders</u>

Main graph¶

A graph consists of a set of edges and a set of vertices.

The following city is to be inserted into the database:

Information known at this point is the geometry of the edges, cost values, cpacity values, category values and some locations that are not in the graph.

The process to have working topology starts by inserting the edges. After that everything else is calculated.

The database design for the documentation of pgRouting, keeps in the same row 2 segments, one in the direction of the geometry and the second in the oposite direction. Therfore some information

Column	Description
id	A unique identifier.
source	Identifier of the starting vertex of the geometrygeom.
target	Identifier of the ending vertex of the geometrygeom
cost	Cost to traverse from source to target.
reverse_cost	Cost to traverse from target to source.
capacity	Flow capacity from source to target.
reverse_capacity	Flow capacity from target to source.
category	Flow capacity from target to source.
reverse_categor	y Flow capacity from target to source.
	$\mbox{$\langle x \rangle $}$ coordinate of the starting vertex of the geometry.
k1	 For convinience it is saved on the table but can be calculated as ST_X(ST_StartPoint(geom)).
	$\backslash (y \!\!\!\! \rangle)$ coordinate of the ending vertex of the geometry.
y2	- For convinience it is saved on the table but can be calculated as ST_Y(ST_EndPoint(geom))
geom	The geometry of the segments.
CREATE TABLE id BIGSERIAL source BIGINT cost FLOAT, reverse_cost F capacity BIGIN reverse_capac x1 FLOAT, y1 FLOAT, y2 FLOAT, geom geometr	edges (PRIMARY KEY, , LOAT, IT, ity BIGINT,
CREATE TABLE	
Starting on Po	stgreSQL 12:
 (1 FLOAT GENE (1 FLOAT GENE (1 FLOAT GENE (1 FLOAT GENE 	RATED ALWAYS AS (ST_X(ST_StartPoint(geom))) STORED, RATED ALWAYS AS (ST_Y(ST_StartPoint(geom))) STORED, RATED ALWAYS AS (ST_X(ST_EndPoint(geom))) STORED, RATED ALWAYS AS (ST_Y(ST_EndPoint(geom))) STORED,
Optionally ind	exes on different columns can be created. The recomendation is to have
 id indexe 	bd.
 source ar 	d target columns indexed to speed up pgRouting queries.

· geom indexed to speed up gemetry processes that might be needed in the front end.

For this small example the indexes are skipped, except forid

Edges data¶

Inserting into the database the information of the edges:

INSERT INTO edges (

cost, reverse cost,

- INSERT INTO edges (cost, reverse_cost, capacity, reverse_cost, (1, 1, 80, 130, ST_MakeLine(ST_POINT(2, 0), ST_POINT(2, 1))), (1, 1, -1, 100, ST_MakeLine(ST_POINT(2, 1), ST_POINT(3, 1))), (1, 1, -1, 130, ST_MakeLine(ST_POINT(2, 1), ST_POINT(4, 1))), (1, 1, -1, 130, ST_MakeLine(ST_POINT(2, 1), ST_POINT(3, 2))), (1, -1, 130, -1, ST_MakeLine(ST_POINT(1, 2), ST_POINT(3, 2))), (1, -1, 50, 130, ST_MakeLine(ST_POINT(1, 2), ST_POINT(3, 2))), (1, -1, 50, 130, ST_MakeLine(ST_POINT(1, 2), ST_POINT(3, 2))), (1, -1, 130, -1, ST_MakeLine(ST_POINT(1, 2), ST_POINT(3, 2))), (1, -1, 130, 80, ST_MakeLine(ST_POINT(2, 2), ST_POINT(3, 2))), (1, -1, 130, 80, ST_MakeLine(ST_POINT(2, 2), ST_POINT(2, 2))), (1, -1, 130, 80, ST_MakeLine(ST_POINT(2, 2), ST_POINT(2, 3))), (1, -1, 100, -1, ST_MakeLine(ST_POINT(2, 3), ST_POINT(3, 3))), (1, -1, 100, -1, ST_MakeLine(ST_POINT(2, 3), ST_POINT(4, 3))), (1, -1, 100, -1, ST_MakeLine(ST_POINT(2, 3), ST_POINT(4, 3))), (1, -1, 80, 50, ST_MakeLine(ST_POINT(2, 3), ST_POINT(4, 3))), (1, -1, 80, 50, ST_MakeLine(ST_POINT(2, 3), ST_POINT(4, 3))), (1, -1, 80, 80, ST_MakeLine(ST_POINT(4, 2), ST_POINT(4, 3))), (1, -1, 30, -10, ST_MakeLine(ST_POINT(4, 2), ST_POINT(4, 3))), (1, -1, 50, 130, ST_MakeLine(ST_POINT(2, 5, S), ST_POINT(4, 3))), (1, -1, 50, 130, ST_MakeLine(ST_POINT(5, 5, 5), ST_POINT(3, 5, 4)))); INSERT 0 18

Negative values on the cost, capacity and category means that the edge do not exist.

Vertices¶

The vertex information is calculated based on the identifier of the edge and the geometry and saved on a table. Saving all the information provided by gr_extractVertices - Proposed:

SELECT * INTO vertices FROM pgr_extractVertices(SELECT id, geom FROM edges ORDER BY id'); SELECT 17

In this case the because the CREATE statement was not used, the definition of an index on the table is needed.

CREATE SEQUENCE vertices_id_seq; CREATE SEQUENCE ALTER TABLE vertices ALTER COLUMN id SET DEFAULT nextval(vertices_id_seq); ALTER TABLE ALTER SEQUENCE vertices_id_seq OWNED BY vertices.id; ALTER SEQUENCE SELECT setval(vertices_id_seq', (SELECT coalesce(max(id)) FROM vertices)); setval ------17 (1 row)

The structure of the table is:

Table "pub Column Type Collat	lic.vertices" ion Nullable	Default
id bigint in_edges bigint[] out_edges bigint[] x double precision y double precision geom geometry	nextval('vertice: 	s_id_seq'::regclass)

Vertices data

The saved information of the vertices is:

SELECT * FROM vertices;

id in_edges out_edges	x	y	geom	
1 {6}	0 2 0	01000000000	000000000000000000000000000000000000000	00000040
2 {17}	0.5 3.5	010100000000	00000000000E03F000000	0000000C40
3 {6} {7}	1 2 0	10100000000	000000000F03F000000	000000040
4 {17} 1.9999	9999999999	3.5 010100	000068EEFFFFFFFFFF3	F00000000000C40
5 {1}	2 0 01	0100000000	00000000000400000000	00000000
6 {1} {2,4}	2 1 0	010100000000	0000000000040000000	00000F03F
7 {4,7} {8,10}	2 2	01010000000	00000000000004000000	0000000040
8 {10} {12,14}	2 3	0101000000	00000000000004000000	0000000840
9 {14}	2 4 0	10100000000	0000000000040000000	000001040
10 {2} {3,5}	3 1	01010000000	0000000000084000000	000000F03F
11 {5,8} {9,11}	3 2	0101000000	000000000008400000	0000000040
12 {11,12} {13}	3 3	0101000000	0000000000008400000	00000000840
13 {18}	3.5 2.3	01010000000	00000000000C4066666	66666660240
14 {18}	3.5 4	01010000000	00000000000C4000000	0000001040
15 {3} {16}	4 1	01010000000	0000000000104000000	000000F03F
16 {9,16} {15}	4 2	0101000000	00000000000104000000	00000000040
17 {13,15}	4 3	01010000000	0000000000104000000	0000000840
(17 rows)				

Here is where adding more columns to the vertices table can be done. Additional columns names and types will depend on the application.

The topology

This queries based on the vertices data create a topology by filling thesource and target columns in the edges table.

/* -- set the source information */ UPDATE edges AS e SET source = v.id, x1 = x, y1 = y FROM vertices AS v WHERE ST_StartPoint(e.geom) = v.geom; UPDATE 18 /* -- set the target information */ UPDATE edges AS e SET target = v.id, x2 = x, y2 = y FROM vertices AS v WHERE ST_EndPoint(e.geom) = v.geom; UPDATE 18

Topology data¶

SELECT id, source, target FROM edges ORDER BY id; id | source | target

1	5	6	
2	6	10	
3	10	15	
4	6	7	
5	10	11	
6	1	3	
7	3	7	
8	7	11	
9	11	16	
10	7	8	
11	11	12	
12	8	12	
13	12	17	
14	8	9	
15	16	17	
16	15	16	
17	2	4	
18	13	14	
(18 ro	ws)		

Points outside the graph¶

Points of interest¶

Some times the applications work "on the fly" starting from a location that is not a vertex in the graph. Those locations, in pgRrouting are called points of interest.

The information needed in the points of interest ispid, edge_id, side, fraction.

On this documentation there will be some 6 fixed points of interest and they will be stored on a table.

Columr	Description
pid	A unique identifier.
edge_id	Identifier of the edge nearest edge that allows an arrival to the point.

Column

Description

side Is it on the left, right or both sides of the segmentedge_id

fraction Where in the segment is the point located.

geom The geometry of the points.

newPoint The geometry of the points moved on top of the segment.

CREATE TABLE pointsOfInterest(pid BIGSERIAL PRIMARY KEY, edge_id BIGINT, side CHAR, fraction FLOAT, geom geometry); CREATE TABLE

Points of interest fillup¶

INSERT INTO pointsOfinterest (edge_id, side, fraction, geom) VALUES (1, ⁺, 0.4, ST_POINT(1.8, 0.4)), (15, ⁺, 0.4, ST_POINT(4.2, 2.4)), (12, ⁺, 0.6, ST_POINT(6.2, 0.4)), (6, ⁺, 0.3, ST_POINT(0.3, 1.8)), (5, ⁺, 0.8, ST_POINT(2.9, 1.8)), (4, ⁺b⁻, 0.7, ST_POINT(2.2, 1.7)); INSERT 0 6

Support tables

Combinations¶

Many functions can be used with a combinations of(source, target) pairs when wanting a route from source to target.

For convinence of this documentations, some combinations will be stored on a table:

CREATE TABLE combinations (source BIGINT, target BIGINT); CREATE TABLE

Inserting the data:

INSERT INTO combinations (source, target) VALUES (5, 6), (6, 5), (6, 5), (6, 15), (6, 14); INSERT 0 5

Combinations data

SELECT * FROM combinations; source | target

5 | 6 5 | 10 6 | 5 6 | 15 6 | 14 (5 rows)

Restrictions

Some functions accept soft restrictions about the segments.

The creation of the restrictions table

CREATE TABLE restrictions (id SERIAL PRIMARY KEY, path BIGINT[], cost FLOAT

); CREATE TABLE Adding the restrictions

INSERT INTO restrictions (path, cost) VALUES (ARRAY[4, 7], 100), (ARRAY[7, 10, 100), (ARRAY[7, 10, 100), (ARRAY[3, 5, 9], 4), (ARRAY[8, 16], 100); INSERT 0 5

Restrictions data

SELECT * FROM restrictions; id | path | cost

 1 | {4,7} | 100

 2 | {8,11} | 100

 3 | {7,10} | 100

 4 | {3,5,9} | 4

 5 | {9,16} | 100

 (5 rows)

Images

- Red arrows correspond when cost > 0 in the edge table.
- Blue arrows correspond when reverse_cost > 0 in the edge table.
- · Points are outside the graph.
- · Click on the graph to enlarge.

When working with city networks, this is recommended for point of view of vehicles.

Directed, with cost and reverse_cost

Undirected graph with cost and reverse cost

When working with city networks, this is recommended for point of view of pedestrians.

Undirected, with cost and reverse cost

Directed graph with cost¶

Undirected graph with cost¶

Undirected, with cost

Pick & Deliver Data

This data example Ic101 is from data published at https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

The vehicles

There are 25 vehciles in the problem all with the same characteristics.

CREATE TABLE v_lc101(id BIGINT NOT NULL primary key, capacity BIGINT DEFAULT 200, start_xFLOAT DEFAULT 200, start_yFLOAT DEFAULT 300, start_open INTEGER DEFAULT 10, start_close INTEGER DEFAULT 1236); CREATE TABLE /* create 25 vehclies */ /* create 25 vehciles */ INSERT INTO v_lc101 (id) (SELECT * FROM generate_series(1, 25)); INSERT 0 25

The original orders

The data comes in different rows for the pickup and the delivery of the same order.

CREATE table lc101_c(id BIGINT not null primary key, x DOUBLE PRECISION, y DOUBLE PRECISION, demand INTEGER. demand INTEGER open INTEGER, close INTEGER, service INTEGER, pindex BIGINT, dindex BIGINT); CREATE TABLE
 Inserte
 JABLE

 /* the original data '/

 INSERT INTO lc101_c(

 (1, 45, 68, -10, 912,

 (2, 45, 70, -20, 825,

 (3, 42, 66, 10, 65,

 (4, 42, 68, -10, 170,

 (5, 44, 66, -10, 170,

 (7, 40, 66, -10, 170,

 (8, 38, 68, 20, 255,

 (9, 38, 70, 10, 534,

 (10, 35, 66, -20, 357,

 (11, 32, 69, 10, 448,

 (12, 25, 85, -20, 652,

 (13, 22, 75, 30, 30,

 (14, 22, 85, -40, 567,

 (15, 20, 80, -10, 384,

 (12, 22, 85, -20, 179,

 (13, 15, 75, 20, 199,

 (18, 15, 75, 20, 179,

 (19, 15, 80, 10, 278,

 (20, 30, 50, 10, 10,

 (22, 28, 55, 10, 622,

 (23, 55, 20, -10, 651,

 (24, 25, 55, 10, 622,

 (25, 25, 52, 40, 169,

 (26, 25, 55, 10, 622,

 (27, 23, 52, 40, 266, 1

 (28, 20, 55, 10, 448, 5

 (31, 10, 35, -30, 200, 12

 (32, 10, 40, 30, 31, 11

 (33, 32, -10, 166, 2

 (34, 33, 35, 10, 16, 82, 7

 (37, 2, 40, 40, 383, 4

 (36, 32, -10, 1645, 7 en, close, service, pindex, dindex) VALUES , 967, 90, 11, 0), 146, 90, 0, 75), 782, 90, 9, 0), 67, 90, 0, 2), 225, 90, 5, 0), 324, 90, 0, 10), 605, 90, 0, 4), 7, 410, 90, 8, 0), 5 505, 90, 0, 11, 5 505, 90, 0, 11, 7, 211, 90, 18, 0), 5 229, 90, 0, 17, 7 (220, 90, 0, 112), 5 284, 90, 0, 12), 5 284, 90, 0, 12), 7 390, 0, 24), 1, 965, 90, 0, 115, 7 390, 0, 24), 1, 965, 90, 30, 0), 2, 843, 90, 28, 0), 2, 777, 0, 0, 103), 144, 90, 20, 0), 1, 316, 90, 25, 0), 5 434, 90, 0, 271, 2, 701, 90, 29, 0), 1, 316, 90, 25, 0), 5 533, 90, 0, 22), 3, 405, 90, 0, 21), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 31), 158, 90, 0, 42, 0), 3, 213, 90, 42, 0), 4, 412, 90, 0, 42), 1, 324, 90, 0, 42), 1, 324, 90, 0, 42), 1, 324, 90, 0, 42), 1, 324, 90, 0, 42), 1, 324, 90, 0, 42), 1, 324, 90, 0, 42], 1, 434, 90, 33, 0), 1, 525, 90, 43, 0), 1, 434, 90, 0, 40], 1, 127, 90, 0, 46], 1, 106, 90, 0, 41], 1, 412, 90, 0, 40], 1, 127, 90, 0, 60], 1, 412, 90, 0, 53], 1, 235, 90, 44, 0), 4, 1127, 90, 0, 65], 5, 235, 90, 45, 0], 1, 412, 90, 0, 53], 3, 275, 90, 0, 60], 1, 412, 90, 0, 53], 3, 275, 90, 0, 60], 1, 77, 90, 0, 61], 1, 77, 90, 0, 62], 1, 77, 90, 0, 62], 1, 77, 90, 0, 63], 1, 77, 90, 0, 64], 1, 77, 90, 0, 65], 1, 534, 90, 53, 0], 1, 77, 90, 0, 62], 1, 77, 90, 0, 62], 1, 77, 90, 0, 62], 1, 77, 90, 0, 63], 1, 77, 90, 0, 64], 1, 77, 90, 0, 64], 1, 77, 90, 0, 65], 1, 328, 90, 0, 71, 0], 1, 420, 90, 0, 71, 0], 1, 420, 90, 0, 71, 0], 1, 420, 90, 0, 71, 0], 1, 420, 90, 0, 90], 1, 231, 90, 98, 0], 1, 565, 90, 0, 65, 0], 1, 564, 90, 0, 85], 1, 534, 90, 74, 0], 3, 736, 90, 98, 0], 1, 564, 90, 0, 86], 1, 731, 90, 0, 64], 1, 731, 90, 0, 64], 1, 731, 90, 0, 64], 1, 731, 90, 0, 64], 1, 731, 90, 0, 64], 1, 731, 90, 0, 64], 1, 731, 90, 0, 71, 0], 1, 734, 90, 0, 71, 0], 1, 734, 90, 0, 73, 0], 1, 736, 90, 94, INSERT 0 106

The orders¶

The original data needs to be converted to an appropiate table:

WITH deliveries AS (SELECT * FROM lc101_c WHERE dindex = 0) SELECT

row_number() over() AS id, p.demand,

Pgrouting Concepts

pgRouting Concepts

This is a simple guide that go through some of the steps for getting started with pgRouting. This guide covers:

- <u>Graphs</u>
- Graphs without geometries
- Graphs with geometries
- <u>Check the Routing Topology</u>
- Function's structure
- <u>Function's overloads</u>
- Inner Queries
- Parameters
- <u>Result columns</u>
- Performance Tips
- How to contribute

Graphs¶

- Graph definition
- Graph with cost
- Graph with cost and reverse_cost

Graph definition¶

- A graph is an ordered pair (G = (V, E)) where:
 - \(V\) is a set of vertices, also called nodes.
 - $(E \quad v \in V)$
- There are different kinds of graphs:

· Undirected graph

- $(E \quad v \in V)$
- Undirected simple graph
 - $\circ \ \ (E \ u \ v) \ (u \ v \ u \ v \ v) \ (u \ v \ v) \ (u \ v \ v) \ v \ v)$
- Directed graph
 - $\circ \ \ \ (E \ \ u, v) \ \ (V \ X \ V) \))$
- · Directed simple graph
 - $\circ \ (E \ (u, v) \ (u, v) \ (v \ X \ V), \ u \ (v \ v) \)$

Graphs:

- · Do not have geometries.
- Some graph theory problems require graphs to have weights, called cost in pgRouting.
- In pgRouting there are several ways to represent a graph on the database:
 - With cost
 - (id, source, target, cost)
 - · With cost and reverse_cost
 - (id, source, target, cost, reverse_cost)

Where:

cost

Column

Description

id	Identifier of the edge. Requirement to use the database in a consistent manner.
source	Identifier of a vertex.

target Identifier of a vertex.

Weight of the edge (source, target):

- When negative the edge (source, target) do not exist on the graph.
- · cost must exist in the query.

Column

Description

Weight of the edge (target, source) reverse cost

• When negative the edge (target, source) do not exist on the graph.

The decision of the graph to be directed or undirected is done when executing a pgRouting algorithm.

Graph with cost¶

The weighted directed graph, \(G d(V,E)\):

· Graph data is obtained with a query

SELECT id, source, target, cost FROM edges

- the set of edges \(E\)
 - \(E = \{(source_{id}, target_{id}, cost_{id}) \text{ when } cost_{id} \ge 0 \}\)
 - · Edges where cost is non negative are part of the graph.
- the set of vertices \(V\)
 - $(V = \{source_{id} \setminus cup target_{id}\})$
 - · All vertices in source and target are part of the graph.

Directed graph

 $\label{eq:linear} In \ a \ directed \ graph \ the \ edge \ ((source_{id}, \ target_{id}))) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ has \ directionality: \ (source_{id} \ ightarrow \ target_{id})) \ directionality: \ (source_{id} \ ightarrow \ target_{id}) \ directionality: \ (source_{$

For the following data:

SELECT FROM (VALUES (1, 1, 2, 5), (2, 1, 3, -3)) AS t(id, source, target, cost); id | source | target | cost 1| 1| 2| 5 2| 1| 3| -3 (2 rows)

Edge \(2\) (\(1 \rightarrow 3\)) is not part of the graph.

The data is representing the following graph:

Undirected graph

In an undirected graph the edge \((source_{id}, target_{id}, cost_{id}))) does not have directionality: \(source_{id} \frac{\;\;\;\;\}{} target_{id}))

- In terms of a directed graph is like having two edges: (source_{id} \leftrightarrow target_{id})

For the following data:

1| 1| 2| 5 2| 1| 3| -3 (2 rows)

Edge $(2) ((1 \frac{1}{1} 3))$ is not part of the graph.

The data is representing the following graph:

Graph with cost and reverse_cost

The weighted directed graph, $(G_d(V,E))$, is defined by:

- · Graph data is obtained with a query
- SELECT id, source, target, cost, reverse_cost FROM edges
- The set of edges \(E\):
 - \{E = \begin{split} \begin{align} & {\(source_{id}, target_{id}, cost_{id}) \text{ when } cost_{id} >=0 \}} \\ & \cup \\ & {\(target_{id}, source_{id}, reverse_cost_{id}) \text{ when } reverse_cost_{id} >=0 \}} \\
 - · Edges \((source \rightarrow target)\) where cost is non negative are part of the graph.
 - Edges \((target \rightarrow source)\) where reverse_cost is non negative are part of the graph
- The set of vertices \(V\);
 - $(V = \{source_{id} \setminus cup target_{id}\})$
 - · All vertices in source and target are part of the graph.

Directed graph

In a directed graph both edges have directionality

- $\bullet \ \ edge \ \ \ ((source_{id}, target_{id}, cost_{id}))) \ \ has \ directionality: \ \ (source_{id} \ \) \ \ target_{id})) \ \$

For the following data:

SELECT '

FROM (VALUES (1, 1, 2, 5, 2), (2, 1, 3, -3, 4), (3, 2, 3, 7, -1)) AS t(id, source, target, cost, reverse_cost); id | source | target | cost | reverse_cost

Edges not part of the graph:

- \(2\) (\(1 \rightarrow 3\))
- \(3\) (\(3 \rightarrow 2\))

The data is representing the following graph:

Undirected graph

In a directed graph both edges do not have directionality

- + Edge $((source_{id}, target_{id}, cost_{id}))) is (source_{id} \frac{,;,;,;,}{} target_{id})) is (source_{id}, frac{,;,;,;,}} target_{id})) is (source_{id}, frac{,;,;,;,;}} target_{id}))) is (source_{id}, frac{,;,;,;,;}} target_{id})) is (source_{id}, frac{,;,;,;,;}} target_{id}))) is (source_{id}, frac{,;,;,;,;}} target_{id})) is (source_{id}, frac{,;,;,;,;}} target_{id}))) is (source_{id}, fra$
- Edge \((target_{id}, source_{id}, reverse_cost_{id}))) is \(target_{id} \frac{\;\;\;\;\;}{} source_{id}))
- In terms of a directed graph is like having four edges:
 - \(source_i \leftrightarrow target_i\)
 - \(target_i \leftrightarrow source_i\)

For the following data:

SELECT * FROM (VALUES (1, 1, 2, 5, 2), (2, 1, 3, -3, 4), (3, 2, 3, 7, -1)) AS t(id, source, target, cost, reverse_cost) id | source | target | cost | reverse_cost

```
1| 2| 5|
1| 3| -3|
2| 3| 7|
                                               2
4
-1
3 | 2
(3 rows)
```

Edges not part of the graph:

- \(2\) (\(1 \frac{\;\;\;\;\;}{} 3\))
- \(3\) (\(3 \frac{\;\;\;\;\;}{} 2\))

The data is representing the following graph:

Graphs without geometries¶

Personal relationships, genealogy, file dependency problems can be solved using pgRouting. Those problems, normally, do not come with geometries associated with the graph.

- Wiki example
 - Prepare the database
 - Create a table
 - Insert the data
 - Find the shortest path
 - Vertex information

Wiki example¶

Solve the example problem taken from wikipedia):

Where:

- Problem is to find the shortest path from \(1\) to \(5\).
- · Is an undirected graph.
- · Although visually looks like to have geometries, the drawing is not to scale.
- · No geometries associated to the vertices or edges
- Has 6 vertices \(\{1,2,3,4,5,6\}\)
- Has 9 edges:

\(begin{split} \begin{align} E = & \{(1,2,7), (1,3,9), (1,6,14), \\\ & (2,3,10), (2,4,13), \\ & (3,4,11), (3,6,2), \\ & (4,5,6), \\ & (5,6,9) \} \end{align} \end{split} \)

• The graph can be represented in many ways for example:

Prepare the database¶

Create a database for the example, access the database and install pgRouting:

\$ createdb wiki \$ psql wiki wiki =# CREATE EXTENSION pgRouting CASCADE;

Create a table¶

The basic elements needed to perform basic routing on an undirected graph are:

Column	Туре	Description
id	ANY-INTEGER	Identifier of the edge.
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.
target	ANY-INTEGER	Identifier of the second end point vertex of the edge.

Column Туре

ANY-NUMERICAL Weight of the edge (source, target) cost

Description

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Using this table design for this example:

CREATE TABLE wiki (id SERIAL, source INTEGER, target INTEGER, cost INTEGER); CREATE TABLE

Insert the data

INSERT INTO wiki (source, target, cost) VALUES (1, 2, 7), (1, 3, 9), (1, 6, 14), (2, 3, 10), (2, 4, 15), (3, 6, 2), (3, 4, 11), (4, 5, 6), (5, 6, 9); INSERT 0 9

Find the shortest path

To solve this example pgr_dijkstra is used:

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM wiki', 1, 5, talse); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

 +----+
 +---++

 5|
 1|
 2|
 9|

 5|
 3|
 6|
 2|

 5|
 6|
 9|
 9|

 5|
 6|
 9|
 9|

 5|
 5|
 -1|
 0|

 1| 1| 1| 1| 1 11 0 2 | 3 | 4 | (4 rows) 2| 3| 4| 9 11 20

To go from (1) to (5) the path goes thru the following vertices: $(1 \operatorname{rightarrow 3 \operatorname{rightarrow 6 \operatorname{rightarrow 5}})$

Vertex information¶

To obtain the vertices information, use pgr_extractVertices - Proposed

SELECT id, in_edges, out_edges FROM pgr_extractVertices("SELECT id, source, target FROM wiki"); id | in_edges | out_edges $\begin{array}{c} & + & + \\ 3 \mid \{2,4\} \mid \{6,7\} \\ 5 \mid \{8\} \mid \{9\} \\ 4 \mid \{5,7\} \mid \{8\} \\ 2 \mid \{1\} \mid \{4,5\} \\ 1 \mid \quad |\{1,2,3\} \\ 6 \mid \{3,6,9\} \mid \\ (6 \mid rous) \end{array}$

Graphs with geometries

- <u>Create a routing Database</u>
- Load Data

(6 rows)

- Build a routing topology
- Adjust costs
 - · Update costs to length of geometry
 - Update costs based on codes

Create a routing Database¶

The first step is to create a database and load pgRouting in the database.

Typically create a database for each project.

Once having the database to work in, load your data and build the routing application in that database.

createdb sampledata psql sampledata -c "CREATE EXTENSION pgrouting CASCADE"

Load Data¶

There are several ways to load your data into pgRouting.

· Manually creating a database.

- Graphs without geometries
- Sample Data: a small graph used in the documentation examples
- Using osm2pgrouting

There are various open source tools that can help, like:

shp2pgsql:

· postgresql shapefile loader

ogr2ogr:

vector data conversion utility

osm2pgsql:

· load OSM data into postgresql

Please note that these tools will not import the data in a structure compatible with pgRouting and when this happens the topology needs to be adjusted.

- · Breakup a segments on each segment-segment intersection
- When missing, add columns and assign values to source, target, cost, reverse_cost.
- Connect a disconnected graph.
- · Create the complete graph topology
- · Create one or more graphs based on the application to be developed.
 - Create a contracted graph for the high speed roads
 - Create graphs per state/country

In few words:

Prepare the graph

What and how to prepare the graph, will depend on the application and/or on the quality of the data and/or on how close the information is to have a topology usable by pgRouting and/or some other factors not mentioned.

The steps to prepare the graph involve geometry operations usingPostGIS and some others involve graph operations likepgr_contraction to contract a graph.

The workshop has a step by step on how to prepare a graph using Open Street Map data, for a small application.

The use of indexes on the database design in general:

- · Have the geometries indexed.
- · Have the identifiers columns indexed.

Please consult the PostgreSQL documentation and the PostGIS documentation.

Build a routing topology

The basic information to use the majority of the pgRouting functionsid, source, target, cost, [reverse_cost] is what in pgRouting is called the routing topology.

reverse_cost is optional but strongly recommended to have in order to reduce the size of the database due to the size of the geometry columns. Having said that, in this documentationeverse_cost is used in this documentation.

When the data comes with geometries and there is no routing topology, then this step is needed.

All the start and end vertices of the geometries need an identifier that is to be stored in &ource and target columns of the table of the data. Likewise,cost and reverse_cost need to have the value of traversing the edge in both directions.

If the columns do not exist they need to be added to the table in question. (see<u>ALTER TABLE</u>)

The function pgr extractVertices - Proposed is used to create a vertices table based on the edge identifier and the geometry of the edge of the graph.

Finally using the data stored on the vertices tables thesource and target are filled up.

See <u>Sample Data</u> for an example for building a topology.

Data coming from OSM and using osm2pgrouting as an import tool, comes with the routing topology. See an example of usingsm2pgrouting on the workshop.

Adjust costs¶

For this example the cost and reverse_cost values are going to be the double of the length of the geometry.

Update costs to length of geometry

Suppose that cost and reverse_cost columns in the sample data represent:

- (1) when the edge exists in the graph
- \(-1\) when the edge does not exist in the graph

Using that information updating to the length of the geometries:

UPDATE edges SET cost = sign(cost) * ST_length(geom) * 2, reverse_cost = sign(reverse_cost) * ST_length(geom) * 2; UPDATE 18

Which gives the following results:

Note that to be able to follow the documentation examples, everything is based on the original graph.

Returning to the original data: UPDATE edges SET

cost = sign(cost), reverse_cost = sign(reverse_cost); UPDATE 18

Update costs based on codes

Other datasets, can have a column with values like

· FT vehicle flow on the direction of the geometry

- TF vehicle flow opposite of the direction of the geometry
- · B vehicle flow on both directions

Preparing a code column for the example:

ALTER TABLE edges ADD COLUMN direction TEXT;
ALTER TABLE
UPDATE edges SET
direction = CASE WHEN (cost>0 AND reverse_cost>0) THEN 'B' /* both ways */
WHEN (cost>0 AND reverse_cost<0) THEN 'FT' /* direction of the LINESSTRING */
WHEN (cost<0 AND reverse_cost>0) THEN 'TF' /* reverse direction of the LINESTRING */
ELSE " END;

UPDATE 18 /* unknown */

Adjusting the costs based on the codes:

UPDATE edges SET cost = CASE WHEN (direction = 'B' OR direction = 'FT') THEN ST_length(geom) * 2 ELSE -1 END, reverse_cost = CASE WHEN (direction = 'B' OR direction = 'TF') THEN ST_length(geom) * 2 ELSE -1 END; UPDATE 18

Which gives the following results:

SELECT id, cost, reverse_cost FROM edges;

Id	cost	reverse_cost
6	2	2
7	2	2
4	2	2
5	2	-1
8	2	2
12	2	-1
11	2	-1
10	2	2
17	2.999999999	998 2.999999999998
14	2	2
18	3.4000000000	00004 3.400000000000004
13	2	-1
15	2	2
16	2	2
9	2	2
3	-1	2
1	2	2
2	-1	2
(18	rows)	

Returning to the original data:

UPDATE edges SET cost = sign(cost), reverse_cost = sign(reverse_cost); UPDATE 18 ALTER TABLE edges DROP COLUMN direction; ALTER TABLE ALTER TABLE

Check the Routing Topology

- <u>Crossing edges</u>
 - Adding split edges
 - Adding new vertices
 - Updating edges topology
 - Removing the surplus edges
 - <u>Updating vertices topology</u>
 - <u>Checking for crossing edges</u>
- Disconnected graphs
 - Prepare storage for connection information
 - Save the vertices connection information
 - Save the edges connection information
 - Get the closest vertex
 - <u>Connecting components</u>
 - <u>Checking components</u>
- <u>Contraction of a graph</u>
 - Dead ends
 - Linear edges
- There are lots of possible problems in a graph.
 - The data used may not have been designed with routing in mind.
 - A graph has some very specific requirements.
 - · The graph is disconnected.
 - · There are unwanted intersections.
 - The graph is too large and needs to be contracted.
 - A sub graph is needed for the application.
 - and many other problems that the pgRouting user, that is the application developer might encounter.

Crossing edges

To get the crossing edges:

SELECT a.id, b.id FROM edges AS a, edges AS b WHERE a.id < b.id AND st_crosses(a.geom, b.geom); id | id

13 | 18 (1 row)

That information is correct, for example, when in terms of vehicles, is it a tunnel or bridge crossing over another road.

It might be incorrect, for example:

1. When it is actually an intersection of roads, where vehicles can make turns.

2. When in terms of electrical lines, the electrical line is able to switch roads even on a tunnel or bridge.

When it is incorrect, it needs fixing:

- 1. For vehicles and pedestrians
 - If the data comes from OSM and was imported to the database usingsm2pgrouting, the fix needs to be done in the OSM portal and the data imported again.
 - In general when the data comes from a supplier that has the data prepared for routing vehicles, and there is a problem, the data is to be fixed from the supplier

2. For very specific applications

- The data is correct when from the point of view of routing vehicles or pedestrians.
- The data needs a local fix for the specific application.

Once analyzed one by one the crossings, for the ones that need a local fix, the edges need to besplit.

 SELECT ST_ASText!(ST_Dump(ST_Split(a.geom, b.geom))).geom)

 FROM edges AS a, edges AS b

 WHERE a.id = 13 AND b.id = 18

 UNION

 SELECT ST_ASText!(ST_Dump(ST_Split(b.geom, a.geom))).geom)

 FROM edges AS a, edges AS b

 WHERE a.id = 13 AND b.id = 18;

 st_astext

 LINESTRING(3.5 2.3, 3.5 3)

 LINESTRING(3.5 3.4 3)

 LINESTRING(3.5 3.4 3)

 LINESTRING(3.5 3.5 4)

The new edges need to be added to the edges table, the rest of the attributes need to be updated in the new edges, the old edges need to be removed and the routing topology needs to be updated.

Adding split edges¶

(4 rows)

For each pair of crossing edges a process similar to this one must be performed.

The columns inserted and the way are calculated are based on the application. For example, if the edges have a trainame, then that column is to be copied.

For pgRouting calculations

- factor based on the position of the intersection of the edges can be used to adjust thecost and reverse_cost columns.
- . Capacity information, used in the Flow Family of functions functions does not need to change when splitting edges
- WITH first_edge AS (SELECT (ST_Dump(ST_Split(a.geom, b.geom))).path[1], (ST_Dump(ST_Split(a.geom, St_geom)).geom, ST_LineLocatePoint(a.geom,ST_Intersection(a.geom,b.geom)) AS factor FROM edges AS a, edges AS b WHERE a.id = 13 AND b.id = 18), first_geoments AS (SELECT path, first_edge.geom, capacity, reverse_capacity, CASE WHEN path=1 THEN factor * roost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * reverse_cost ELSE (1 - factor) * cost END AS roverse_cost FROM first_edge, edges WHERE id = 13), second_edge AS (SELECT (ST_Dump(ST_Split(b.geom, a.geom))).path[1], (ST_Dump(ST_Split(b.geom, a.geom))).path[1], (ST_Dump(ST_Split(b.geom, a.geom))).geom, ST_LineLocatePoint(b.geom,ST_Intersection(a.geom,b.geom)) AS factor FROM edges AS a, edges AS b WHERE a.id = 13 AND b.id = 18), second_segments AS (SELECT (I - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * reverse_cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * reverse_cost FROM second_edge, edges WHERE id = 18), all_segments AS (SELECT * FROM firs_segments) INSERT INTO edges (capacity, reverse_capacity, cost, reverse_cost, x1, y1, x2, y2, geom) (SELECT * frADWint(geom)), ST_Y(ST_StardPoint(geom)), ST_X(ST_EndPoint(geom)), ST_Y(ST_StardPoint(geom)), ST_X(ST_EndPoint(geom)), ST_Y(ST_StardPoint(geom)), geom

Adding new vertices

After adding all the split edges required by the application, the newly created vertices need to be added to the vertices table.

INSERT INTO vertices (in_edges, out_edges, x, y, geom) (SELECT nv.in_edges, nv.out_edges, nv.x, nv.y, nv.geom FROM pgr_extractVertices(SELECT id, geom FROM edges') AS nv LEFT JOIN vertices AS v USING(geom) WHERE v.geom IS NULL); INSERT 0 1

Updating edges topology¶

/* -- set the source information */ UPDATE edges AS e SET source = v.id FROM vertices AS v WHERE source IS NULL AND ST_StartPoint(e.geom) = v.geom; UPDATE 4 /* -- set the target information */ UPDATE edges AS e SET target = v.id FROM vertices AS v WHERE target IS NULL AND ST_EndPoint(e.geom) = v.geom; UPDATE 4

Removing the surplus edges¶

Once all significant information needed by the application has been transported to the new edges, then the crossing edges can be deleted.

DELETE FROM edges WHERE id IN (13, 18); DELETE 2

There are other options to do this task, like creating a view, or a materialized view.

Updating vertices topology¶

To keep the graph consistent, the vertices topology needs to be updated

I. STILL FORUGE AS V SET in_edges = nv.in_edges, out_edges = nv.out_edges FROM (SELECT * FROM pgr_extractVertices('SELECT id, geom FROM edges')) AS nv WHERE v_geom = nv.geom; UPDATE 18 UPDATE vertices AS v SET

Checking for crossing edges

There are no crossing edges on the graph.

SELECT a.id, b.id FROM edges AS a, edges AS b WHERE a.id < b.id AND st_crosses(a.geom, b.geom); id | id (0 rows)

Disconnected graphs

To get the graph connectivity:

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges'

seq | component | node

1	1	1	
2	1	3	
3	1	5	
4	1	6	
5	1	7	
6	1	8	
7	1	9	
8	1	10	
9	1	11	
10	1	12	
11	1	13	
12	1	14	
13	1	15	
14	1	16	
15	1	17	
16	1	18	
17	2	2	
18	2	4	
(18 rows)			

In this example, the component \(2\) consists of vertices \(\{2, 4\}\) and both vertices are also part of the dead end result set.

This graph needs to be connected.

Note

With the original graph of this documentation, there would be 3 components as the crossing edge in this graph is a different component.

Prepare storage for connection information¶

ALTER TABLE vertices ADD COLUMN component BIGINT; ALTER TABLE ALTER TABLE ALTER TABLE edges ADD COLUMN component BIGINT; ALTER TABLE

Save the vertices connection information¶

UPDATE vertices SET component = c.component FROM (SELECT * FROM pgr_connectedComponents("SELECT id, source, target, cost, reverse_cost FROM edges")) AS c WHERE id = node; UPDATE 18

Save the edges connection information

UPDATE edges SET component = v.component FROM (SELECT id, component FROM vertices) AS v WHERE source = v.id; UPDATE 20

Get the closest vertex

Using pgr_findCloseEdges the closest vertex to component\(1)) is vertex \(4)). And the closest edge to vertex \(4\) is edge \(14\).

14 | (1 row) 0.5 | LINESTRING(1.999999999999 3.5,2 3.5) | 4

The edge can be used to connect the components, using the fraction information about the edge \(14\) to split the connecting edge.

Conr ecting com

There are three basic ways to connect the components

· From the vertex to the starting point of the edge

- · From the vertex to the ending point of the edge
- · From the vertex to the closest vertex on the edge
 - · This solution requires the edge to be split.

The following query shows the three ways to connect the components:

WITH info AS (SELECT edge_id, fraction, side, distance, ce.geom, edge, v.id AS closest, edge_id, fraction, side, distance, ce.geom, edge, v.id AS closest, source, target, capacity, reverse_capacity, e.geom AS e_geom FROM pgr_findCloseEdges(\$\$SELECT rid, geom FROM edges WHERE component = 1\$\$, (SELECT array_agg(geom) FROM vertices WHERE component = 2), 2, partial => false) AS ce JOIN vertices AS v USING (geom) JOIN edges AS e ON (edge_id = e.id) ORDER BY distance LIMIT 1), three ontimes AS (three_options AS (SELECT SELECT closest AS source, target, 0 AS cost, 0 AS reverse_cost, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_EndPoint(e_geom)) AS x2, ST_Y(ST_EndPoint(e_geom)) AS y2, ST_MakeLine(geom, ST_EndPoint(e_geom)) AS geom FROM info UNION UNION SELECT dosest, source, 0, 0, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_StartPoint(e_geom)) AS x2, ST_Y(ST_StartPoint(e_geom)) AS y2, ST_MakeLine(info.geom, ST_StartPoint(e_geom)) FROM info UNION - This option requires splitting the edge SELECT closest, NULL, 0, 0, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_EndPoint(edge)) AS x2, ST_Y(ST_EndPoint(edge)) AS y2, edge FROM info */) INSERT INTO edges (source, target, cost, reverse_cost, capacity, reverse_capacity, x1, y1, x2, y2, geom) (SELECT Source, larget, cost, reverse_cost, capacity, reverse_capacity, x1, y1, x2, y2, geom FROM three_options); INSERT 0 2

Checking components

Ignoring the edge that requires further work. The graph is now fully connected as there is only one component.

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges'

)

, seq | component | node 1 11 2 2 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | (18 rows) 3 4 5 6 7 1| 8 10 11 12 13 14 15 16 17 18 1| 1 1 1j

Contraction of a graph¶

The graph can be reduced in size using Contraction - Family of functions

When to contract will depend on the size of the graph, processing times, correctness of the data, on the final application, or any other factor not mentioned

A fairly good method of finding out if contraction can be useful is because of the number of dead ends and/or the number of linear edges.

A complete method on how to contract and how to use the contracted graph is described on Contraction - Family of functions

Dead ends

To get the dead ends:

SELECT id FROM vertices WHERE array_length(in_edges out_edges, 1) = 1; id
1
5
9
13
14
2
4
(7 rows)

That information is correct, for example, when the dead end is on the limit of the imported graph.

Visually node \(4\) looks to be as start/ending of 3 edges, but it is not.

Is that correct?

· Is there such a small curb:

- That does not allow a vehicle to use that visual intersection?
- · Is the application for pedestrians and therefore the pedestrian can easily walk on the small curb?

- Is the application for the electricity and the electrical lines than can easily be extended on top of the small curb?
- · Is there a big cliff and from eagles view look like the dead end is close to the segment?

When there are many dead ends, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

Linear edges¶

To get the linear edges:

```
SELECT id FROM vertices
WHERE array_length(in_edges || out_edges, 1) = 2;
id
```

3 15 17 (3 rows)

This information is correct, for example, when the application is taking into account speed bumps, stop signals.

When there are many linear edges, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

Function's structure

Once the graph preparation work has been done above, it is time to use a

The general form of a pgRouting function call is:

pgr_<name>(Inner queries, parameters, [Optional parameters)

Where:

- Inner queries: Are compulsory parameters that are TEXT strings containing SQL queries.
- parameters: Additional compulsory parameters needed by the function.
- Optional parameters: Are non compulsory named parameters that have a default value when omitted.

The compulsory parameters are positional parameters, the optional parameters are named parameters.

For example, for this pgr_dijkstra signature:

pgr_dijkstra(Edges SQL, start vids, end vids, [directed])

- Edges SQL:
 - Is the first parameter.
 - It is compulsory.
 - It is an inner query.

• It has no name, so Edges SQL gives an idea of what kind of inner query needs to be used

start vid:

- · Is the second parameter.
- · It is compulsory.

• It has no name, so start vid gives an idea of what the second parameter's value should contain.

end vid

- · Is the third parameter.
- · It is compulsory.

• It has no name, so end vid gives an idea of what the third parameter's value should contain

directed

- · Is the fourth parameter
- It is optional.
- It has a name.

The full description of the parameters are found on the Parameters section of each function.

Function's overloads¶

A function might have different overloads. The most common are called:

- One to One
- One to Many
- Many to One
- Many to Many
- <u>Combinations</u>

Depending on the overload the parameters types change.

One: ANY-INTEGER

Many: ARRAY [ANY-INTEGER]

Depending of the function the overloads may vary. But the concept of parameter type change remains the same.

One to One

When routing from:

- From one starting vertex
- to one ending vertex

One to Many

When routing from:

From one starting vertex

• to many ending vertices

Many to One

When routing from:

- From many starting vertices
- to one ending vertex

Many to Many

When routing from:

- From many starting vertices
- to many ending vertices

Combinations

When routing from:

- From many different starting vertices
- to many different ending vertices
- · Every tuple specifies a pair of a start vertex and an end vertex
- Users can define the combinations as desired.
- Needs a Combinations SQL

Inner Queries

- Edges SQL
 - General
 - General without id
 - General with (X,Y)
 - Flow
- <u>Combinations SQL</u>
- <u>Restrictions SQL</u>
- Points SQL

There are several kinds of valid inner queries and also the columns returned are depending of the function. Which kind of inner query will depend on the function's requirements. To simplify the variety of types, ANY-INTEGER and ANY-NUMERICAL is used.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Edges SQL¶

General

Edges SQL for

- Dijkstra Family of functions
- withPoints Family of functions
- Bidirectional Dijkstra Family of functions
- Components Family of functions
- Kruskal Family of functions
- Prim Family of functions
- · Some uncategorised functions

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Edges SQL for

• All Pairs - Family of Functions

Column	Туре	Defaul	t Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGEF	, BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTEGEF	, BIGINT, REAL, FLOAT		
General with (X,Y)¶			
Edges SQL for			
 <u>A* - Family of func</u> 	tions		
Bidirectional A* - F	amily of functions		
Parameter	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		 Weight of the edge (source, target) When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source),When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of source vertex.
y1	ANY-NUMERICAL		Y coordinate of source vertex.
x2	ANY-NUMERICAL		X coordinate of target vertex.
y2	ANY-NUMERICAL		Y coordinate of target vertex.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGEF	, BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTEGEF	, BIGINT, REAL, FLOAT		
Flow			
Edges SQL for Flow - F	amily of functions		
pgr. pushBelabel			
pgr_edmondsKarr)		
 pgr_boykovKolmo 	gorov		
Column	Туре	Defaul	t Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.

target ANY-INTEGER Identifier of the second end point vertex of the edge.

Column	Туре	Default	Description
capacity	ANY-INTEGER		Weight of the edge (source, target)
reverse_capacity	ANY-INTEGER	-1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Edges SQL for the following functions of Flow - Family of functions

- pgr_maxFlowMinCost Experimental
- pgr_maxFlowMinCost_Cost Experimental

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Capacity of the edge (source, target) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
reverse_capacity	ANY-INTEGER	-1	Capacity of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
cost	ANY-NUMERICAL		Weight of the edge (source, target) if it exist
reverse_cost	ANY-NUMERICAL	\(-1\)	Weight of the edge (target, source) if it exist
Where:			

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL¶

Used in combination signatures

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.

target ANY-INTEGER Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Restrictions SQL¶

Column	Туре	Description
path	ARRAY [ANY-INTEGER]	Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays that have a NULL element will raise an exception.
Cost	ANY-NUMERICAL	Cost of taking the forbidden path.
Where:		
ANY-INTEGER:		
SMALLINT, INTI	EGER, BIGINT	
ANY-NUMERICAL:		
SMALLINT, INTI	EGER, BIGINT, REAL, FLOAT	
Points SQL¶

Points SQL for

• withPoints - Family of functions

Parameter	Туре	Default	Description
pid	ANY-INTEGER	value	 Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically.
edge_id	ANY-INTEGER		Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	b	 Value in [b, r, I, NULL] indicating if the point is: In the right r, In the left1, In both sides b, NULL
Where:			

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameters¶

The main parameter of the majority of the pgRouting functions is a query that selects the edges of the graph.

Parameter Type	Description

Edges SQL TEXT Edges SQL as described below.

Depending on the family or category of a function it will have additional parameters, some of them are compulsory and some are optional.

The compulsory parameters are nameless and must be given in the required order. The optional parameters are named parameters and will have a default value.

Parameters for the Via functions

pgr_dijkstraVia - Proposed

Parameter	Туре	Default	Description
Edges SQL	TEXT		SQL query as described.
via vertices	ARRAY [ANY-INTEGER]		Array of ordered vertices identifiers that are going to be visited.
directed	BOOLEAN	true	 When true Graph is considered <i>Directed</i> When false the graph is considered as Undirected.
strict	BOOLEAN	false	 When true if a path is missing stops and returns EMPTY SET When false ignores missing paths returning all paths found
U_turn_on_edge	BOOLEAN	true	 When true departing from a visited vertex will not try to avoid using the edge used to reach it. In other words, U turn using the edge with same identifier is allowed. When take when a departing from a visited vertex tries to avoid using the edge used to reach it. In other words, U turn using the edge with same identifier is used when no other path is found.

For the TRSP functions

pgr_trsp - Proposed

Column	Туре	Description
Edges SQL	TEXT	SQL query as described.
Restrictions SQL	TEXT	SQL query as described.
Combinations SQL	TEXT	Combinations SQL as described below
start vid	ANY-INTEGER	Identifier of the departure vertex.

Column

start vids	ARRAY [ANY-INTEGER]	Array of identifiers of destination vertices.
end vid	ANY-INTEGER	Identifier of the departure vertex.

Туре

end vids ARRAY [ANY-INTEGER] Array of identifiers of destination vertices.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns¶

- Result columns for a path
- <u>Multiple paths</u>
 - Selective for multiple paths.
 - Non selective for multiple paths
- <u>Result columns for cost functions</u>
- Result columns for flow functions
- Result columns for spanning tree functions

There are several kinds of columns returned are depending of the function.

Result columns for a path¶

Used in functions that return one path solution

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. <u>Many to One</u> <u>Many to Many</u>
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. <u>One to Many</u> <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from star_vid to node.

Used in functions the following:

pgr_withPoints - Proposed

Returns set of (seq, path_seq [, start_pid] [, end_pid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path.1 For the first row of the path.
start_pid	BIGINT	 Identifier of a starting vertex/point of the path. When positive is the identifier of the starting vertex. When negative is the identifier of the starting point. Returned on <u>Many to One</u> and <u>Many to Many</u>
end_pid	BIGINT	 Identifier of an ending vertex/point of the path. When positive is the identifier of the ending vertex. When negative is the identifier of the ending point. Returned on <u>One to Many</u> and <u>Many to Many</u>

Column	Туре	Description
node	BIGINT	Identifier of the node in the path fromstart_pid to end_pid. When positive is the identifier of the a vertex. When negative is the identifier of the a point.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence. • -1 for the last row of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence. • 0 For the first row of the path.
agg_cost	FLOAT	Aggregate cost from start_vid to node. • 0 For the first row of the path.

Used in functions the following:

pgr_dijkstraNear - Proposed

Returns (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value 1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex of the current path.
end_vid	BIGINT	Identifier of the ending vertex of the current path.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Multiple paths¶

Selective for multiple paths.

The columns depend on the function call.

Set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Path identifier.Has value 1 for the first of a path fromstart_vid to end_vid.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. <u>Many to One</u> <u>Many to Many</u> <u>Combinations</u>
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. • <u>One to Many</u> • <u>Many to Many</u> • <u>Combinations</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Non selective for multiple paths

Regardless of the call, al the columns are returned.

pgr_trsp - Proposed

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Path identifier.Has value 1 for the first of a path fromstart_vid to end_vid.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Result columns for cost functions¶

Used in the following

- <u>Cost Category</u>
- <u>Cost Matrix Category</u>
- All Pairs Family of Functions

Set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
agg_cost	FLOAT	Aggregate cost from start_vid to end_vid.

Note

When start_vid or end_vid columns have negative values, the identifier is for a Point.

Result columns for flow functions¶

Edges SQL for the following

• Flow - Family of functions

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGINT	Identifier of the edge in the original query (edges_sql).
start_vid	BIGINT	Identifier of the first end point vertex of the edge.
end_vid	BIGINT	Identifier of the second end point vertex of the edge.
flow	BIGINT	Flow through the edge in the direction (start_vid, end_vid).
residual_capacity	BIGINT	Residual capacity of the edge in the direction (tart_vid, end_vid).

Edges SQL for the following functions of Flow - Family of functions

• pgr_maxFlowMinCost - Experimental

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGIN	T Identifier of the edge in the original query (edges_sql).
source	BIGIN	T Identifier of the first end point vertex of the edge.
target	BIGIN	T Identifier of the second end point vertex of the edge.

flow BIGINT Flow through the edge in the direction (source, target).

residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).

cost	$_{\mbox{FLOAT}}$ The cost of sending this flow through the edge in the direction (source target).
------	--

agg_cost FLOAT The aggregate cost.

Result columns for spanning tree functions ¶

Edges SQL for the following

- pgr_prim
- pgr_kruskal

Returns set of (edge, cost)

Column Type Description

edge BIGINT Identifier of the edge.

cost FLOAT Cost to traverse the edge.

Performance Tips¶

For the Routing functions

For the Routing functions

To get faster results bound the queries to an area of interest of routing.

In this example Use an inner query SQL that does not include some edges in the routing function and is within the area of the results.

SELECT * FROM pgr_dljkstra(\$\$ SELECT id, source, target, cost, reverse, cost from edges WHERE geom && (SELECT st_buffer(geom, 1) AS myarea FROM edges WHERE id = 2)\$\$,

1, 2); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost (0 rows)

How to contribute¶

Wiki

- Edit an existing pgRouting Wiki page.
- Or create a new Wiki page
 - Create a page on the pgRouting Wiki
 - Give the title an appropriate name
- Example

Adding Functionaity to pgRouting

Consult the developer's documentation

Indices and tables

- Index
- Search Page

Function Families¶

Function Families

All Pairs - Family of Functions

- pgr_floydWarshall Floyd-Warshall's algorithm.
- <u>pgr_johnson</u> Johnson's algorithm

A* - Family of functions

- pgr_aStar A* algorithm for the shortest path.
- pgr_aStarCost Get the aggregate cost of the shortest paths.
- pgr_aStarCostMatrix Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

- pgr_bdAstar Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

- pgr_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr_bdDijkstraCostMatrix Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Components - Family of functions

- pgr_connectedComponents Connected components of an undirected graph.
- pgr_strongComponents Strongly connected components of a directed graph.
- pgr_biconnectedComponents Biconnected components of an undirected graph.
- pgr_articulationPoints Articulation points of an undirected graph.
- pgr_bridges Bridges of an undirected graph.

Contraction - Family of functions

pgr contraction

Dijkstra - Family of functions

- pgr_dijkstra Dijkstra's algorithm for the shortest paths.
- pgr dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Flow - Family of functions

- pgr_maxFlow Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Push and relabel algorithm with details of flow on edges.
- Applications
 - pgr_edgeDisjointPaths Calculates edge disjoint paths between two groups of vertices.
 - pgr_maxCardinalityMatch Calculates a maximum cardinality matching in a graph.

Kruskal - Family of functions

- pgr_kruskal
- pgr_kruskalBFS
- pgr_kruskalDD
- pgr_kruskalDFS

Prim - Family of functions

- pgr_prim
- pgr_primBFS
- pgr_primDD
- pgr primDFS

Reference

- pgr_version
- pgr_full_version

Topology - Family of Functions

The following functions modify the database directly therefore the user must have special permissions given by the administrators to use them.

- <u>pgr_createTopology</u> create a topology based on the geometry.
- pgr_createVerticesTable reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneWay to analyze directionality of the edges.
- pgr_nodeNetwork to create nodes to a not noded edge table

Traveling Sales Person - Family of functions

- pgr_TSP When input is given as matrix cell information.
- pgr_TSPeuclidean When input are coordinates.

pgr_trsp - Proposed - Turn Restriction Shortest Path (TRSP)

Functions by categories

Cost - Category

- pgr_aStarCost
- pgr_bdAstarCost
- pgr_dijkstraCost
- pgr_bdDijkstraCost

• pgr_dijkstraNearCost - Proposed

Cost Matrix - Category

- pgr_aStarCostMatrix
- pgr_dijkstraCostMatrix
- pgr_bdAstarCostMatrix
- pgr bdDijkstraCostMatrix

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on Dijkstra's algorithm
- pgr_primDD Driving Distance based on Prim's algorithm
- pgr_kruskalDD Driving Distance based on Kruskal's algorithm
- · Post pocessing
- pgr alphaShape Alpha shape computation

K shortest paths - Category

• pgr_KSP - Yen's algorithm based on pgr_dijkstra

Spanning Tree - Category

- Kruskal Family of functions
- Prim Family of functions

BFS - Category

- pgr_kruskalBFS
- pgr_primBFS

DFS - Category

- pgr_kruskalDFS
- pgr_primDFS

All Pairs - Family of Functions

The following functions work on all vertices pair combinations

- pgr_floydWarshall Floyd-Warshall's algorithm.
- pgr_johnson Johnson's algorithm

pgr_floydWarshall

pgr_floydWarshall - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

Boost Graph Inside

Availability

Version 2.2.0

- Signature change
- Old signature no longer supported
- Version 2.0.0
 - Official function

Description

The Floyd-Warshall algorithm, also known as Floyd's algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for each pair of nodes in the graph of the graph. The for each pair of nodes in the graph of the graph o

The main characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of(start_vid, end_vid, agg_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid).
- For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When start_vid = end_vid, the agg_cost = 0.
- Recommended, use a bounding box of no more than 3500 edges.

Signatures

Summary

pgr_floydWarshall(<u>Edges SQL</u>, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

For a directed subgraph with edges $({1, 2, 3, 4})$.

SELECT * FROM pgr_floydWarshall("SELECT id, source, target, cost, reverse_cost FROM edges where id < 5' ORDER BV start_vid, end_vid; start_vid | end_vid | agg_cost

+-	+	
5	6	1
5	7	2
6	5	1
6	7	1
7	5	2
7	6	1
10	5	2
10	6	1
10	7	2
15	5	3
15	6	2
15	7	3
15	10	1
(13 rows)		

Parameters 1

Parameter Type Defaul	t Description
Edges SQL TEXT	Edges SQL as described below.

Optional parameters

Columr	n Type Defa	ault Description
		• When true the graph is considered Directed
directed BOOLEAN tr	BOOLEAN true	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Set of (start_vid, end_vid, agg_cost)

Column	а Туре	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

See Also

- pgr_johnson
- Boost <u>floyd-Warshall</u>
- Queries uses the Sample Data network.

Indices and tables

- Index
- Search Page

pgr_johnson - Returns the sum of the costs of the shortest path for each pair of nodes in the graph using Floyd-Warshall algorithm.

Boost Graph Inside

Availability

Availability

- Version 2.2.0
 - Signature change
 - · Old signature no longer supported
- Version 2.0.0
- Official function

Description

The Johnson algorithm, is a good choice to calculate the sum of the costs of the shortest path for each pair of nodes in the graph, for graphs. It usees the Boost's implementation which runs in (O(V E \log V)) time,

The main characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- · Process is done only on edges with positive costs.
- Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of(start_vid, end_vid, agg_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid).
- · For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When *start_vid* = *end_vid*, the *agg_cost* = 0.
- · Recommended, use a bounding box of no more than 3500 edges.

Signatures

Summary

pgr johnson(Edges SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

For a directed subgraph with edges $({1, 2, 3, 4})$.

Parameters 9

- Parameter Type Default Description
- Edges SQL TEXT Edges SQL as described

Optional parameters

directed BOOLEAN true

- Column Type Default
- Description
- When true the graph is considered Directed
- When false the graph is considered as Undirected.
- Inner Queries

Edges SQL

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Set of (start_vid, end_vid, agg_cost)

Column	Туре	Description

start_vid BIGINT Identifier of the starting vertex.

end_vid BIGINT Identifier of the ending vertex.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

See Also

- pgr_floydWarshall
- Boost <u>Johnson</u>
- Queries uses the <u>Sample Data</u> network.

Indices and tables

- Index
- Search Page

Introduction

The main characteristics are:

- · It does not return a path.
- Returns the sum of the costs of the shortest path for each pair of nodes in the graph.
- Process is done only on edges with positive costs.
- Boost returns a \(V \times V\) matrix, where the infinity values. Represent the distance between vertices for which there is no path.
 - We return only the non infinity values in form of a set of(start_vid, end_vid, agg_cost).
- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid).
- For the undirected graph, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- When start_vid = end_vid, the agg_cost = 0.
- · Recommended, use a bounding box of no more than 3500 edges.

Description

Parameters 9

Parameter Type Default

Edges SQL TEXT	Edges SQL as described
	below.

Optional parameters

Colum	n Type Do	efault	Description
		•	When true the graph is considered Directed
directed	BOOLEAN tru	•	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Set of (start_vid, end_vid, agg_cost)

Columr	а Туре	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Performance

The following tests:

- non server computer
- with AMD 64 CPU
- 4G memory
- trusty
- posgreSQL version 9.3

Data

The following data was used

BBOX="-122.8,45.4,-122.5,45.6" wget --progress=dot:mega -O "sampledata.osm" "https://www.overpass-api.de/api/xapi?"[bbox=][@meta]"

Data processing was done with osm2pgrouting-alpha createdb portland

psql -c "create extension postgis" portland psql -c "create extension pgrouting" portland osm2pgrouting -f sampledata.osm -d portland -s 0

Results

Test:

One

This test is not with a bounding box The density of the passed graph is extremely low. For each <SIZE> 30 tests were executed to get the average The tested query is:

SELECT count(*) FROM pgr_floydWarshall('SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

SELECT count(*) FROM pgr_johnson('SELECT gid as id, source, target, cost, reverse_cost FROM ways where id <= <SIZE>');

The results of this tests are presented as:

SIZE:

is the number of edges given as input.

EDGES:

is the total number of records in the query.

DENSITY:

is the density of the data $(\E \{V \in (V-1)\})$.

OUT ROWS:

is the number of records returned by the queries.

Floyd-Warshall:

is the average execution time in seconds of pgr_floydWarshall.

Johnson:

is the average execution time in seconds of pgr_johnson.

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson

500	500	0.18E-7	1346	0.14	0.13
1000	1000	0.36E-7	2655	0.23	0.18
1500	1500	0.55E-7	4110	0.37	0.34
2000	2000	0.73E-7	5676	0.56	0.37
2500	2500	0.89E-7	7177	0.84	0.51
3000	3000	1.07E-7	8778	1.28	0.68

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson

3500	3500	1.24E-7	10526	2.08	0.95
4000	4000	1.41E-7	12484	3.16	1.24
4500	4500	1.58E-7	14354	4.49	1.47
5000	5000	1.76E-7	16503	6.05	1.78
5500	5500	1.93E-7	18623	7.53	2.03
6000	6000	2.11E-7	20710	8.47	2.37
6500	6500	2.28E-7	22752	9.99	2.68
7000	7000	2.46E-7	24687	11.82	3.12
7500	7500	2.64E-7	26861	13.94	3.60
8000	8000	2.83E-7	29050	15.61	4.09
8500	8500	3.01E-7	31693	17.43	4.63
9000	9000	3.17E-7	33879	19.19	5.34
9500	9500	3.35E-7	36287	20.77	6.24
10000	10000	3.52E-7	38491	23.26	6.51

Test: Two

This test is with a bounding box The density of the passed graph higher than of the Test One. For each <SIZE> 30 tests were executed to get the average The tested edge query is:

WITH

WITH buffer AS (SELECT ST_Buffer(ST_Centroid(ST_Extent(the_geom)), SIZE) AS geom FROM ways), bbox AS (SELECT ST_Envelope(ST_Extent(geom)) as box FROM buffer) SELECT gid as id, source, target, cost, reverse_cost FROM ways where the_geom && (SELECT box from bbox);

The tested queries

SELECT count(*) FROM pgr_floydWarshall(<edge query>) SELECT count(*) FROM pgr_johnson(<edge query>)

The results of this tests are presented as:

SIZE:

is the size of the bounding box.

EDGES:

is the total number of records in the query.

DENSITY:

is the density of the data $(\E \in V \times (V-1))$.

OUT ROWS:

is the number of records returned by the queries.

Floyd-Warshall:

is the average execution time in seconds of pgr_floydWarshall.

Johnson[.]

is the average execution time in seconds of pgr_johnson.

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson

0.001 44	0.0608	1197	0.10	0.10
0.002 99	0.0251	4330	0.10	0.10
0.003 223	0.0122	18849	0.12	0.12
0.004 358	0.0085	71834	0.16	0.16
0.005 470	0.0070	116290	0.22	0.19
0.006 639	0.0055	207030	0.37	0.27
0.007 843	0.0043	346930	0.64	0.38

SIZE EDGES DENSITY OUT ROWS Floyd-Warshall Johnson

0.008 996	0.0037	469936	0.90	0.49
0.009 1146	0.0032	613135	1.26	0.62
0.010 1360	0.0027	849304	1.87	0.82
0.011 1573	0.0024	1147101	2.65	1.04
0.012 1789	0.0021	1483629	3.72	1.35
0.013 1975	0.0019	1846897	4.86	1.68
0.014 2281	0.0017	2438298	7.08	2.28
0.015 2588	0.0015	3156007	10.28	2.80
0.016 2958	0.0013	4090618	14.67	3.76
0.017 3247	0.0012	4868919	18.12	4.48

See Also

- pgr_johnson
- pgr_floydWarshall
- Boost <u>floyd-Warshall</u>

Indices and tables

- Index
- Search Page

A* - Family of functions

The A* (pronounced "A Star") algorithm is based on Dijkstra's algorithm with a heuristic that allow it to solve most shortest path problems by evaluation only a sub-set of the overall graph.

- pgr_aStar A* algorithm for the shortest path.
- pgr_aStarCost Get the aggregate cost of the shortest paths.
- pgr_aStarCostMatrix Get the cost matrix of the shortest paths.

pgr_aStar

pgr_aStar — Shortest path using the A* algorithm.

Boost Graph Inside

Availability

- Version 3.6.0
 - Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_aStar (<u>One to One</u>) added start_vid and end_vid columns.
 - pgr_aStar (<u>One to Many</u>) added end_vid column.
 - pgr_aStar (Many to One) added start_vid column.
- Version 3.2.0
 - New proposed signature:
 - pgr_aStar (<u>Combinations</u>)
- Version 3.0.0
 - · Official function
- Version 2.4.0
 - New Proposed signatures:
 - pgr_aStar (<u>One to Many</u>)
 - pgr_aStar (Many to One)
 - pgr_aStar (Many to Many)
- Version 2.3.0
 - Signature change on pgr_astar (One to One)
 - Old signature no longer supported
- Version 2.0.0
 - Official pgr_aStar (One to One)

Description

- · Process works for directed and undirected graphs.
- · Ordering is:
 - first by start_vid (if exists)
 - then by end_vid
- Values are returned when there is a path.
- Let \(v\) and \(u\) be nodes on the graph:
 - If there is no path from \(v\) to \(u\):
 - no corresponding row is returned
 - agg_cost from \(v\) to \(u\) is \(\infty\)
 - There is no path when (v = u) therefore
 - no corresponding row is returned
 - agg_cost from v to u is \(0\)
- When $\((x,y)\)$ coordinates for the same vertex identifier differ:
 - A random selection of the vertex's\((x,y)\) coordinates is used.
- Running time: $(O((E + V) * (\log V)))$
- The results are equivalent to the union of the results of thepgr_aStar(One to One) on the:
 - pgr_aStar (One to Many)
 - pgr_aStar (Many to One)
 - pgr_aStar (Many to Many)
 - pgr_aStar (Combinations)

Signatures

Summarv

pgr_aStar(Edges SQL, start vid, end vid, [options]) pgr_astar(Edges SQL, start vids, end vids, [options]) pgr_astar(Edges SQL, combinations SQL, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Optional parameters are named parameters and have a default value.

One to One

pgr_aStar(<u>Edges SQL</u>, start vid, end vid, [options]) options: [directed, heuristic, factor, epsilon]

Returns set of (see, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_aStar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, 12, directed => true, heuristic => 2); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost 12| 6| 4| 1| 12| 7| 10| 1| 12| 8| 12| 1| 12| 12| -1| 0| 1 1 | 6| 0 6| 6| 6| 1 2 3 2 2 3 3 | 4 |

4 (4 rows)

One to Many

pgr_aStar(Edges SQL, start vid, end vids, [options])

options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_aStar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, ARRAY[10, 12], heuristic => 3, factor := 3.5);

		- /			- / /						
seq	path_	seq	start_	vid	end	_vid	node	edge	cost	agg	_cost
				+							

1	1	6	10 6 4 1	0
2	2	6	10 7 8 1	1
3	3	6	10 11 9 1	2
4	4	6	10 16 16 1	3
5	5	6	10 15 3 1	4
6	6	6	10 10 -1 0	5
7	1	6	12 6 4 1	0
8	2	6	12 7 8 1	1
9	3	6	12 11 11 1	2
10	4	6	12 12 -1 0	3
(10 row	vs)			

Many to One

pgr_aStar(Edges SQL, start vids, end vid, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(({6, 8}))$ to vertex (10) on an **undirected** graph with heuristic (4)

SELECT * FROM pgr_aStar(SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], 10, false, heuristic => 4); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost
 1|
 1|
 6|
 10|
 6|
 2|
 1|
 0

 2
 2
 6
 10
 10
 1
 0
 1

2	2	6	10	10	-1	0	1
3	1	8	10	8	12	1	0
4	2	8	10	12	11	1	1
5	3	8	10	11	5	1	2
6	4	8	10	10	-1	0	3
(6 rows)							

Many to Many

pgr_aStar(<u>Edges SQL</u>, start vids, end vids, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 8\}))$ to vertices $((\{10, 12\}))$ on a directed graph with factor (0.5)

SELECT * FROM pgr_aStar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], ARRAY[10, 12], factor => 0.5); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10 6 4 1 0
2	2	6	10 7 8 1 1
3	3	6	10 11 9 1 2
4	4	6	10 16 16 1 3
5	5	6	10 15 3 1 4
6	6	6	10 10 -1 0 5
7	1	6	12 6 4 1 0
8	2	6	12 7 10 1 1
9	3	6	12 8 12 1 2
10	4	6	12 12 -1 0 3
11	1	8	10 8 10 1 0
12	2	8	10 7 8 1 1
13	3	8	10 11 9 1 2
14	4	8	10 16 16 1 3
15	5	8	10 15 3 1 4
16	6	8	10 10 -1 0 5
17	1	8	12 8 12 1 0
18	2	8	12 12 -1 0 1
(18 row	s)		

Combinations

pgr_aStar(Edges SQL, Combinations SQL, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on a **directed** graph with factor (0.5).

The combinations table:

SELECT * FROM combinations;

source	target
+	
5	6
5	10
6	5
6	15
6	14
(5 rows)	

The query:

SELECT * FROM pgr_aStar(
'SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2
FROM edges',
'SELECT * FROM combinations',

factor => 0.5); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	5	6 5 1 1	0
2	2	5	6 6 -1 0	1
3	1	5	10 5 1 1	0
4	2	5	10 6 4 1	1
5	3	5	10 7 8 1	2
6	4	5	10 11 9 1	3
7	5	5	10 16 16 1	4
8	6	5	10 15 3 1	5
9	7	5	10 10 -1 0	6
10	1	6	5 6 1 1	0
11	2	6	5 5 -1 0	1
12	1	6	15 6 4 1	0
13	2	6	15 7 8 1	1
14	3	6	15 11 9 1	2
15	4	6	15 16 16 1	3
16	5	6	15 15 -1 0	4
(16 row	/s)			

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
<u>Combinations</u> SQL	TEXT	Combinations SQL as described below

Column	Туре	D	escription			
start vid	BIGINT	Identifier of the starting ve	ortex of the path.			
start vids	ARRAY[BIGINT]	BIGINT] Array of identifiers of starting vertices.				
end vid	BIGINT	Identifier of the ending ve	rtex of the path.			
end vids	ARRAY[BIGINT]	Array of identifiers of endi	ng vertices.			
Optional parameters						
Column Type	Default	Description				
directed BOOLEAN	• Whe ^{N true} • Whe <i>Una</i>	en true the graph is considere en false the graph is consider <i>lirected</i> .	ed Directed ed as			
aStar optional paramete	rrs <u>"</u>					
Parameter Typ	e Default	Descriptic	on			
	Heuristii • 0: pg • 1:	c number. Current valid valu \($h(v) = 0$)) (Use this value to rr_dijkstra) \($h(v) = abs(max(\Delta x, \E$	es 0~5. o compare with Delta y))\)			
heuristic INTEG	• 2:	 2: \(h(v) = abs(min(\Delta x, \Delta y))\) 				
	• 3:	 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y) 				
	• 4: • 5:	$h(v) = abs(\Delta v + abs($	(x + \Delta y))) \Delta y)))			
factor FLOAT	1 For units	s manipulation. \(factor > 0\).				
epsilon FLOAT	1 For less	restricted results. \(epsilon :	>= 1\).			
See heuristics ava	ailable and <u>factor</u> ha	andling.				
Inner Queries						
Edges SQL						
Parameter	r	Type Default	Description			
id	ANY-INTEC	GER	Identifier of the edge.			
source	ANY-INTEC	GER	Identifier of the first end point vertex of the edge.			
target	ANY-INTEC	GER	Identifier of the second end point vertex of the edge.			
cost	ANY-NUME	FRICAL	Weight of the edge (source, target) When negative: edge (source, target) does not exist, therefore it's not part of the graph. 			
reverse_cost	ANY-NUME	ERICAL -1	Weight of the edge (target, source),When negative: edge (target, source) does not exist, therefore it's not part of the graph.			
x1	ANY-NUME	ERICAL	X coordinate of source vertex.			
y1	ANY-NUME	ERICAL	Y coordinate of source vertex.			
x2	ANY-NUME	ERICAL	X coordinate of target vertex.			
y2	ANY-NUME	ERICAL	Y coordinate of target vertex.			
Where:						
ANY-INTEGER:						
SMALLINT, IN	ITEGER, BIGINT					

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter Туре Description

source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. Many to One Many to Many
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. One to Many Many to Many
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_aStar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]); seq path_seq start_vid end_vid node edge cost agg_cost				
11	11	7	10 7 8 1	0
2	2	7	10 11 9 11	1
3	3 j	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 3 1	0
18	2	15	7 10 2 1	1
19	3	15	7 6 4 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 ro	ws)			

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_aStar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); seq [path_seq] start_vid | end_vid | node | edge | cost | agg_cost

1	1	7	10 7 8 1	0
2	2	7	10 11 9 1	1
3	3	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_aStar('SELECT id, source, larget, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); cont both seq | start vid | end_vid | node | edge | cost | agg_cost

seq p	bath_sec	start_	vid end_vid node edge c
+	+		+++++++
1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	6	10 6 4 1 0
4	2	6	10 7 8 1 1
5	3	6	10 11 9 1 2
6	4	6	10 16 16 1 3
7	5	6	10 15 3 1 4
8	6	6	10 10 -1 0 5
9	1	12	10 12 13 1 0
10	2	12	10 17 15 1 1
11	3	12	10 16 16 1 2
12	4	12	10 15 3 1 3
13	5	12	10 10 -1 0 4
(13 rov	vs)		

See Also

- A* Family of functions
- Bidirectional A* Family of functions
- Sample Data
- https://www.boost.org/libs/graph/doc/astar_search.html
- <u>https://en.wikipedia.org/wiki/A*_search_algorithm</u>

Indices and tables

- Index
- Search Page

pgr_aStarCost

pgr_aStarCost - Total cost of the shortest path using the A* algorithm.

Boost Graph Inside

Availability

- Version 3.2.0
 - New proposed signature:
 - pgr_aStarCost (<u>Combinations</u>)
- Version 3.0.0
 - · Official function
- Version 2.4.0
 - New proposed function

Description

The pgr_aStarCost function sumarizes of the cost of the shortest path using the A* algorithm.

The main characteristics are:

- · Process works for directed and undirected graphs.
- Ordering is:
 - first by start_vid (if exists)
 - then by end vid
- Values are returned when there is a path.
- Let (v) and (u) be nodes on the graph:
 - If there is no path from \(v\) to \(u\):
 - no corresponding row is returned
 - agg_cost from \(v\) to \(u\) is \(\infty\)
 - There is no path when (v = u) therefore
 - no corresponding row is returned
 - agg_cost from v to u is \(0\)
- When ((x,y)) coordinates for the same vertex identifier differ:
- $\circ~$ A random selection of the vertex's $\((x,y)\)$ coordinates is used.
- Running time: $(O((E + V) * \log V)))$
- It does not return a path.
- · Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

- . Let be the case the values returned are stored in a table, so the unique index would be the pair(start vid, end vid)
- · For undirected graphs, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- The returned values are ordered in ascending order.
 - start_vid ascending
 - end_vid ascending

Signatures

Summary

pgr_aStarCost(<u>Edges SQL</u>, start vid, end vid, [options]) pgr_aStarCost(<u>Edges SQL</u>, start vid, end vids, [options]) pgr_aStarCost(<u>Edges SQL</u>, start vids, end vid, [options]) pgr_aStarCost(<u>Edges SQL</u>, start vids, end vids, [options]) pgr_aStarCost(Edges SQL, Combinations SQL, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

One to One

pgr_aStarCost(Edges SQL, start vid, end vid, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

Example:

From vertex (6) to vertex (12) on a **directed** graph with heuristic (2)

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, 12, directed => true, heuristic => 2); start_vid | end_vid | agg_cost 12 | 61 3 (1 row)

One to Many

pgr_aStarCost(Edges SQL, start vid, end vids, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, ARRAY[10, 12], heuristic => 3, factor => 3.5); start_vid | end_vid | agg_cost 61 10 | 5 3

6 12 (2 rows)

Many to One

pgr_aStarCost(Edges SQL, start vids, end vid, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 8\}))$ to vertex (10) on an **undirected** graph with heuristic (4)

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], 10, ____ false, heuristic => 4); start_vid | end_vid | agg_cost

10 | 10 | 6 | 8 | 3 (2 rows)

Many to Many

pgr_aStarCost(Edges_SQL, start vids, end vids, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices \(\{6, 8\}\) to vertices \(\{10, 12\}\) on a directed graph with factor $(0.5 \)$

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], ARRAY[10, 12], factor => 0.5); start_vid | end_vid | agg_cost

Combinations¹

pgr_aStarCost(<u>Edges SQL, Combinations SQL</u>, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Using a combinations table on a directed graph with factor (0.5).

The combinations table:

SELECT * FROM combinations; source | target

The query:

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 'SELECT * FROM combinations', factor => 0.5); start_vid end_vid agg_cost			
5	6	1	
5	10	6	
6	5	1	
6	15	4	
(4 rows)			

Parameters

Column	Туре	Description	
Edges SQL	TEXT	Edges SQL as described below	
Combinations SQL	TEXT	Combinations SQL as described below	
start vid	BIGINT	Identifier of the starting vertex of the path.	
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.	
end vid	BIGINT	Identifier of the ending vertex of the path.	
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.	
Optional parameters			
Column Type	Default	Description	
	• Whe	n true the graph is considered Directed	
directed BOOLEAN	I true • Whe Undi	n false the graph is considered as rected.	
aStar optional parameters			
Parameter Type	e Default	Description	
	Houristic	number. Current valid values 0~5	

			riedhalic humber: Ourient valid values 0 5.	
			 0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra) 	
		-	 1: \(h(v) = abs(max(\Delta x, \Delta y))\) 	
heuristic	INTEGER 5	15	 2: \(h(v) = abs(min(\Delta x, \Delta y))\) 	
			 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\) 	
			 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\) 	
			 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\) 	
factor	FLOAT	1	For units manipulation. $(factor > 0)$.	
epsilon	FLOAT	1	For less restricted results. (epsilon >= 1).	
See heuristics available and factor handling.				
Inner Queries				
Edges SQL¶				

Parameter

Default

Туре

Description

Parameter	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		 Weight of the edge (source, target) When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source),When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of source vertex.
y1	ANY-NUMERICAL		Y coordinate of source vertex.
x2	ANY-NUMERICAL		X coordinate of target vertex.
y2	ANY-NUMERICAL		Y coordinate of target vertex.
Where: ANY-INTEGER: SMALLINT, INTEGEF	R, BIGINT		

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description		
source	ANY- INTEGER	Identifier of the departure vertex.		
target	ANY- INTEGER	Identifier of the arrival vertex.		

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]); start_vid | end_vid| agg_cost

7	10	4
7	15	3
10	7	2
10	15	3
15	7	3
15	10	1
(6 rows)		

Example 2:

Making start vids the same as end vids.

7 | 10 | 4

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_aStarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); start_vid | end_vid | agg_cost

6 | 6 | 12 | 7 | 1 10 | 5 10 | 4 (3 rows)

See Also

- <u>A* Family of functions</u>
- <u>Cost Category</u>
- Sample Data

Indices and tables

- Index
- Search Page

pgr aStarCostMatrix

pgr_aStarCostMatrix - Calculates the a cost matrix usingpgr_aStar.

Boost Graph Inside

Availability

- Version 3.0.0
 - Official function
- Version 2.4.0
 - New proposed function

Description

The main characteristics are:

- Using internaly the pgr_aStar algorithm
- · Returns a cost matrix.
- No ordering is performed
- let v and u are nodes on the graph:
 - when there is no path from v to u:
 - no corresponding row is returned
 - cost from v to u is \(\inf\)
 - when (v = u) then
 - no corresponding row is returned
 - cost from v to u is \(0\)

• When the graph is undirected the cost matrix is symmetric

Signatures

Summary

pgr_aStarCostMatrix(Edges SQL, start vids, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an **undirected** graph using heuristic \(2\)

SELECT * FROM pgr_aStarCostMatrix("SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)), directed => false, heuristic => 2); start_vid | end_vid | agg_cost

	- T	
5	6	1
5	10	2
5	15	3
6	5	1
6	10	1
6	15	2
10	5	2
10	6	1
10	15	1
15	5	3
15	6	2
15	10	1

(12 rows)

Column	Ту	pe	Description		
Edges SQL	TEXT	Ec	dges SQL as described b	elow	
start vids	ARRAY	(^{BIGINT)} Ar	rray of identifiers of startir ertices.	ng	
Optional parame	eters <mark>1</mark>				
Column 1	Гуре	Default	Desc	ription	
			When true the graph	is considered	Directed
directed BO	OLEAN	true	• When false the graph Undirected.	is considered	as
aStar optional pa	arameters	1			
Parameter	Туре	Default	t	Description	
			Heuristic number. Curren	nt valid values	0~5.
			 0: \(h(v) = 0\) (Use 	this value to c	ompare with
			pgr_dijkstra)		
heuristic	INTEGE	r 5	 1. (II(v) = abs(IIIax 2. \(h(v) = abs(min) 	\Delta x \Delt	
			 3: \(h(v) = \Delta x) 	* \Delta x + \D	elta y * ∖Delta y∖)
			 4: \(h(v) = sqrt(\Del 	ta x * \Delta x	+ \Delta y * \Delta y)\)
			 5: \(h(v) = abs(\Del 	ta x) + abs(\De	elta y)\)
factor	FLOAT	1	For units manipulation. \	factor > 0).	
epsilon	FLOAT	1	For less restricted results	s. \(epsilon >=	1\).
Para	meter		Туре	Default	Description
id		AN	IY-INTEGER		Identifier of the edge.
source		AN	IY-INTEGER		Identifier of the first end point vertex of the edge.
target		AN	IY-INTEGER		Identifier of the second end point vertex of the edge.
					Weight of the edge (source, target)
ost		AN	IY-NUMERICAL		When negative: edge (source, target) does not exist, therefore it's not part of the graph.
					Weight of the edge (target, source),
everse_cost		AN	IY-NUMERICAL	-1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1		AN	IY-NUMERICAL		X coordinate of source vertex.
y1		AN	IY-NUMERICAL		Y coordinate of source vertex.
x2		AN	IY-NUMERICAL		X coordinate of target vertex.
y2		AN	IY-NUMERICAL		Y coordinate of target vertex.
Where:					
ANY-INTEG	ER:				
SMALLI	INT, INT	EGER, BIG	INT		
ANY-NUME	RICAL	:			
SMALLI	INT, INT	EGER, BIG	INT, REAL, FLOAT		
Result columns	1				
Set of (start_v	vid, end_	vid, agg_co	ost)		

Column Type Description

Column Type Description

start_vid BIGINT Identifier of the starting vertex.

Identifier of the ending vertex. end vid BIGINT

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example:

Use with pgr_TSP

SELECT * FROM pgr_TSP(

\$ SELECT * FROM pg_aStarCostMatrix(SELECT * FROM pg_aStarCostMatrix(SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)), directed=> false, heuristic => 2)

St; NOTICE: pg_TSP no longer solving with simulated annaeling HINT: Ignoring annaeling parameters seq | node | cost | agg_cost

1	5	0	0
2	6	1	1
3	10	1	2
4	15	1	3
5	5	3	6
(5 rov	vs)		

See Also

- A* Family of functions
- <u>Cost Matrix Category</u>
- Traveling Sales Person Family of functions

Sample Data

- Indices and tables
 - Index
 - Search Page

Description

The main Characteristics are:

- · Process works for directed and undirected graphs.
- Ordering is:
 - first by start_vid (if exists)
 - then by end_vid
- Values are returned when there is a path.
- Let \(v\) and \(u\) be nodes on the graph:
 - If there is no path from \(v\) to \(u\):
 - no corresponding row is returned
 - agg_cost from \(v\) to \(u\) is \(\infty\)
 - There is no path when \(v = u\) therefore
 - no corresponding row is returned
 - agg_cost from v to u is \(0\)
- When ((x,y)) coordinates for the same vertex identifier differ:
 - A random selection of the vertex's\((x,y)\) coordinates is used.
- Running time: \(O((E + V) * \log V)\)

aStar optional parameters

Parameter Type Default

Description

		Heuristic number. Current valid values 0~5.				
heuristic		 0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra) 				
		 1: \(h(v) = abs(max(\Delta x, \Delta y))\) 				
	INTEGER 5	 2: \(h(v) = abs(min(\Delta x, \Delta y))\) 				
		 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\) 				
		 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\) 				
		 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\) 				
factor	FLOAT 1	For units manipulation. \(factor > 0\).				
epsilon	FLOAT 1	For less restricted results. $(epsilon >= 1)$.				

Advanced documentation

Heuristic

Currently the heuristic functions available are:

- 0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)
- 1: \(h(v) = abs(max(\Delta x, \Delta y))\)
- 2: \(h(v) = abs(min(\Delta x, \Delta y))\)
- 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)
- 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)
- 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

where $(\Delta x = x_1 - x_0)$ and $(\Delta y = y_1 - y_0)$

Factor

Analysis 1

Working with cost/reverse_cost as length in degrees, x/y in lat/lon: Factor = 1 (no need to change units)

Analysis 2

Working with cost/reverse_cost as length in meters, x/y in lat/lon: Factor = would depend on the location of the points:

Latitude	e Conversion	Factor	
45	1 langituda dagras is 70040.01 m	70040	

10	r longitude degree lo 70040.01 m	10040

0 1 longitude degree is 111319.46 111319 m 111319

Analysis 3

Working with cost/reverse_cost as time in seconds, x/y in lat/lon: Factor: would depend on the location of the points and on the average speed say 25m/s is the speed.

Latitude	e Conversion	Factor	
45	1 longitude degree is (78846.81m)/(25m/s)	3153 s	
	1 longitude degree is (111319.46		

0 1 longitude degree is (111319.46 4452 s m)/(25m/s) 4452 s

See Also

- Bidirectional A* Family of functions
- https://www.boost.org/libs/graph/doc/astar_search.html
- <u>https://en.wikipedia.org/wiki/A*_search_algorithm</u>
- Indices and tables
 - Index
 - Search Page

Bidirectional A* - Family of functions

The bidirectional A* (pronounced "A Star") algorithm is based on the A* algorithm.

- pgr_bdAstar Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix Bidirectional A* algorithm to calculate a cost matrix of paths.

pgr_bdAstar

pgr_bdAstar — Shortest path using the bidirectional A* algorithm.

Boost Graph Inside

Availability

- Version 3.6.0
 - Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_bdAstar (<u>One to One</u>) added start_vid and end_vid columns.
 - pgr_bdAstar (<u>One to Many</u>) added end_vid column.
 - pgr_bdAstar (Many to One) added start_vid column.
- Version 3.2.0
 - New proposed signature:
 - pgr_bdAstar (<u>Combinations</u>)
- Version 3.0.0
 - Official function
- Version 2.5.0

· New Proposed signatures:

- pgr_bdAstar (One to Many)
- pgr_bdAstar (Many to One)
- pgr_bdAstar (Many to Many)
- Signature change on pgr_bdAstar (One to One)
 - Old signature no longer supported
- Version 2.0.0

• Official pgr_bdAstar (One to One)

Description

The main characteristics are:

- · Process works for directed and undirected graphs.
- Ordering is:
 - first by start_vid (if exists)
 - then by end_vid
- · Values are returned when there is a path.
- Let (v) and (u) be nodes on the graph:
 - $\circ~$ If there is no path from \(v\) to \(u\):
 - no corresponding row is returned
 - agg_cost from \(v\) to \(u\) is \(\infty\)
 - There is no path when (v = u) therefore
 - no corresponding row is returned
 - agg_cost from v to u is \(0\)
- When \((x,y)\) coordinates for the same vertex identifier differ:
 - A random selection of the vertex's\((x,y)\) coordinates is used.
- Running time: $(O((E + V) * (\log V)))$
- The results are equivalent to the union of the results of thepgr_bdAStar(One to One) on the:
 - pgr_bdAstar (One to Many)
 - pgr_bdAstar (Many to One)
 - pgr_bdAstar (Many to Many)
 - pgr_bdAstar (Combinations)

Signatures

Summarv

pgr_bdAstar(Edges SQL, start vid, end vid, [options]) pgr_bdAstar(Edges SQL, start vid, end vids, [options]) pgr_bdAstar(Edges SQL, start vids, end vids, [options]) pgr_bdAstar(Edges SQL, start vids, end vids, [options]) pgr_bdAstar(Edges SQL, combinations SQL, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (see, path_see, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Optional parameters are named parameters and have a default value.

One to One

pgr_bdAstar(<u>Edges SQL</u>, start vid, end vid, [options]) options: [directed, heuristic, factor, epsilon] Returns Set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, 12, directed => true, heuristic => 2

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	12	6	4	1	0
2	2	6	12	7	10	1	1
3	3	6	12	8	12	1	2
4	4	6	12	12	-1	0	3
(4 rows	5)						

One to Many

pgr_bdAstar(Edges_SQL, start vid, end vids, [options]) options: [directed, heuristic, factor, epsilon]

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, ARRAV[10, 12], heuristic => 3, factor := 3.5

			1				
1	1	6	10	6	4	1	0
2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
7	1	6	12	6	4	1	0
8	2	6	12	7	8	1	1
9	3	6	12	11	11	1	2
10	4	6	12	12	-1	0	3
(10 row	/S)						

Many to One

pgr_bdAstar(Edges SQL, start vids, end vid, [options])

pgr_bon tata (<u>regoo dat</u>, stat viss, one vis, pprovid)) options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 8\}))$ to vertex (10) on an **undirected** graph with heuristic (4)

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], 10, false, heuristic => 4

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10	6	2	1	0
2	2	6	10	10	-1	0	1
3	1	8	10	8	10	1	0
4	2	8	10	7	4	1	1
5	3	8	10	6	2	1	2
6	4	8	10	10	-1	0	3
(6 rows)							

Many to Many

pgr_bdAstar(Edges SQL, start vids, end vids, [options])

options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 8\}))$ to vertices $((\{10, 12\}))$ on a **directed** graph with factor ((0.5))

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], ARRAY[10, 12], factor => 0.5

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10 6 4 1 0
2	2	6	10 7 8 1 1
3	3	6	10 11 9 1 2
4	4	6	10 16 16 1 3
5	5	6	10 15 3 1 4
6	6	6	10 10 -1 0 5
7	1	6	12 6 4 1 0
8	2	6	12 7 8 1 1
9	3	6	12 11 11 1 2
10	4	6	12 12 -1 0 3
11	1	8	10 8 10 1 0
12	2	8	10 7 8 1 1
13	3	8	10 11 9 1 2
14	4	8	10 16 16 1 3
15	5	8	10 15 3 1 4
16	6	8	10 10 -1 0 5
17	1	8	12 8 12 1 0
18	2	8	12 12 -1 0 1
(18 row	/s)		

Combinations

pgr_bdAstar(Edges SQL, Combinations SQL, [options])

options: [directed, heuristic, factor, epsilon] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on a directed graph with factor (0.5).

The combinations table:

SELECT * FROM combinations; source | target

	-+-	
5	1	6
5	1	10
6	1	5
6	1	15
6	1	14
(5 rov	NS)	

The query:

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 'SELECT * FROM combinations', factor => 0.5

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	5	6 5 1 1 0	
2	2	5	6 6 -1 0 1	
3	1	5	10 5 1 1 0	
4	2	5	10 6 4 1 1	
5	3	5	10 7 8 1 2	
6	4	5	10 11 9 1 3	

7	5	5	10 16 16 1	4
8	6	5	10 15 3 1	5
9	7	5	10 10 -1 0	6
10	1	6	5 6 1 1	0
11	2	6	5 5 -1 0	1
12	1	6	15 6 4 1	0
13	2	6	15 7 8 1	1
14	3	6	15 11 9 1	2
15	4	6	15 16 16 1	3
16	5	6	15 15 -1 0	4
(16 row	/s)			

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Colum	n Type	Default	Description
			• When true the graph is considered Directed
directed	BOOLEAN true	• When false the graph is considered as Undirected.	

aStar optional parameters

Paramete	er Type Defau	It Description
		Heuristic number. Current valid values 0~5.
		 0: \(h(v) = 0\) (Use this value to compare with pgr_dijkstra)
		 1:\(h(v) = abs(max(\Delta x, \Delta y))\)
heuristic	INTEGER 5	 2: \(h(v) = abs(min(\Delta x, \Delta y))\)
		 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y))
		 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)
		 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)
factor	FLOAT 1	For units manipulation. $(factor > 0)$.
epsilon	FLOAT 1	For less restricted results. $(epsilon \ge 1)$.

See heuristics available and factor handling.

Inner Queries

Edges SQL

Parameter	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)When negative: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source),When negative: edge (target, source) does not exist, therefore it's not part of the graph.
x1	ANY-NUMERICAL		X coordinate of source vertex.

	Parameter	Туре	Default		Description		
y1		ANY-NUMERICAL		Y coordinate of source vertex.			
x2		ANY-NUMERICAL		X coordinate of target vertex.			
y2		ANY-NUMERICAL		Y coordinate of target vertex.			
Wh	ere:						
AN	Y-INTEGER:						
	SMALLINT, INTE	EGER, BIGINT					
AN	ANY-NUMERICAL:						
	SMALLINT, INTEGER, BIGINT, REAL, FLOAT						
Com	binations SQL						
P	arameter	Туре	Descript	ion			

source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

target

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. <u>Many to One</u> <u>Many to Many</u>
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. <u>One to Many</u> <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELE SELE FROM ARRA seq p	CT * FR ECT id, s A edges AY[7, 10 path_se	OM pgr source, 1 ',), 15, 10 q start_	_bdAstar(target, cost, reverse_cost, x1, y1, x2, y2), 10, 15], ARRAY[10, 7, 10, 15]); _vid end_vid node edge cost agg_cost
11	11	7	++++++
21	21	7	
3	3	7	10 16 16 1 2
4	4	7	10 15 3 1 3
5	5	7	10 10 -1 0 4
6	11	7	15 7 8 1 0
7	2	7	15 11 9 1 1
8	3	7	15 16 16 1 2
9	4	7	15 15 -1 0 3
10	1	10	7 10 5 1 0
11	2	10	7 11 8 1 1
12	3	10	7 7 -1 0 2
13	1	10	15 10 5 1 0
14	2	10	15 11 9 1 1
15	3	10	15 16 16 1 2
16	4	10	15 15 -1 0 3
17	1	15	7 15 3 1 0
18	2	15	7 10 5 1 1
19	3	15	7 11 8 1 2
20	4	15	7 7 -1 0 3
21	1	15	10 15 3 1 0

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	7	10 7 8 1	0
2	2	7	10 11 9 1	1
3	3	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 3 1	0
18	2	15	7 10 5 1	1
19	3	15	7 11 8 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 row	s)			

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_bdAstar('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); seq [path_seq] start_vid | end_vid | node | edge | cost | agg_cost

See Also

- <u>A* Family of functions</u>
- Bidirectional A* Family of functions
- Sample Data
- <u>https://www.boost.org/libs/graph/doc/astar_search.html</u>
- https://en.wikipedia.org/wiki/A*_search_algorithm

Indices and tables

- Index
- Search Page

pgr_bdAstarCost

pgr_bdAstarCost - Total cost of the shortest path using the bidirectional A* algorithm.

Boost Graph Inside

Availability

- Version 3.2.0
 - New proposed signature:
 - pgr_bdAstarCost (<u>Combinations</u>)
- Version 3.0.0
 - Official function
- Version 2.4.0
 - New proposed function

Description

The pgr_bdAstarCost function sumarizes of the cost of the shortest path using the bidirectional A* algorithm.

The main characteristics are:

· Process works for directed and undirected graphs.

- · Ordering is:
 - first by start_vid (if exists)
 - then by end_vid

- Values are returned when there is a path.
- Let \(v\) and \(u\) be nodes on the graph:
 - If there is no path from \(v\) to \(u\):
 - no corresponding row is returned
 - agg_cost from \(v\) to \(u\) is \(\infty\)
 - $\circ~$ There is no path when $\backslash (v=u \backslash)$ therefore
 - no corresponding row is returned
 - agg_cost from v to u is \(0\)
- When \((x,y)\) coordinates for the same vertex identifier differ:
 - A random selection of the vertex's\((x,y)\) coordinates is used.
- Running time: \(O((E + V) * \log V)\)
- · It does not return a path
- Returns the sum of the costs of the shortest path of each pair combination of nodes requested.
- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid)
- · For undirected graphs, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- The returned values are ordered in ascending order:
 - start_vid ascending
 - end vid ascending

Signatures

Summary

pgr_bdAstarCost(Edges SQL, start vid, end vid, [options]) pgr_bdAstarCost(Edges SQL, start vid, end vids, [options]) pgr_bdAstarCost(Edges SQL, start vids, end vid, [options]) pgr_bdAstarCost(Edges SQL, start vids, end vids, [options]) pgr_bdAstarCost(Edges SQL, Combinations SQL, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

One to One

pgr_bdAstarCost(<u>Edges SQL</u>, start vid, end vid, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(12\) on a directed graph with heuristic \(2\)

SELECT * FROM pgr_bdAstarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 6, 12, directed => true, heuristic => 2); start_vid | end_vid | agg_cost 6 | 12 | 3

(1 row)

One to Many

pgr_bdAstarCost(Edges SQL, start vid, end vids, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 12\}\) on a directed graph with heuristic \(3\) and factor \(3.5\)

SELECT * FROM pgr_bdAstarCost("SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges", 6, ARRAY[10, 12], heuristic => 3, factor := 3.5); start_vid | end_vid | agg_cost

6 | 10 | 5 6 | 12 | 3 (2 rows)

Many to One

pgr_bdAstarCost(<u>Edges SQL</u>, start vids, end vid, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices $(\{6, 8\})$ to vertex (10) on an **undirected** graph with heuristic (4)

SELECT * FROM pgr_bdAstarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY(6, 81, 10, false, heuristic => 4); start_vid | end_vid | agg_cost

```
6 10 1
```

Many to Many

pgr_bdAstarCost(<u>Edges SQL</u>, **start vids**, **end vids**, **[options]**) **options:** [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices $(({6, 8}))$ to vertices $(({10, 12}))$ on a **directed** graph with factor (0.5)

SELECT * FROM pgr_bdAstarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[6, 8], ARRAY[10, 12], factor => 0.5); start_vid | end_vid | agg_cost

Combinations

pgr_bdAstarCost(<u>Edges SQL</u>, <u>Combinations SQL</u>, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Using a combinations table on a directed graph with factor (0.5).

The combinations table:

SELECT * FROM combinations;

The query:

Parameters 9

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.
Optional parameters		

Columr	і Туре	Default	Description
directed	BOOLEAN	N true	 When true the graph is considered <i>Directed</i> When talse the graph is considered as <i>Undirected</i>.

aStar optional parameters

Parameter Type Default

Description

Parameter Type Default

		Heuristic number. Current valid values 0~5.
heuristic	INTEGER 5	• 0: $(h(v) = 0)$ (Use this value to compare with pgr_dijkstra)
		 1: \(h(v) = abs(max(\Delta x, \Delta y))\)
		 2: \(h(v) = abs(min(\Delta x, \Delta y))\)
		 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y\)
		 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)
		 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)

factor	FLOAT	1	For units manipulation. \(factor > 0\).
--------	-------	---	---------------------------------------	----

See heuristics available and factor handling.

Inner Queries

Edges SQL

Luges of	x -1

Parameter	Type Default	Description		
id	ANY-INTEGER	Identifier of the edge.		
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.		
target	ANY-INTEGER	Identifier of the second end point vertex of the edge.		
cost	ANY-NUMERICAL	 Weight of the edge (source, target) When negative: edge (source, target) does not exist, therefore it's not part of the graph. 		
reverse_cost	ANY-NUMERICAL -1	 Weight of the edge (target, source), When negative: edge (target, source) does not exist, therefore it's not part of the graph. 		
x1	ANY-NUMERICAL	X coordinate of source vertex.		
y1	ANY-NUMERICAL	Y coordinate of source vertex.		
x2	ANY-NUMERICAL	X coordinate of target vertex.		
y2	ANY-NUMERICAL	Y coordinate of target vertex.		
Where:				
ANY-INTEGER:				
SMALLINT, INTEGE	R, BIGINT			
ANY-NUMERICAL:				
SMALLINT. INTEGE	R. BIGINT. REAL. FLOAT			
Combinations SQL	, , , , ,			
Parameter Typ	De Descri	otion		
source ANY- INTEGE	R Identifier of the departure vertex.			
target INTEGE	R Identifier of the arrival vertex.			
Where:				
ANY-INTEGER:				
SMALLINT, INTEGER, BIGINT				
Result columns¶				
Set of (start_vid, end_vid, agg_cost)				
Column Type	Description			
start_vid BIGINT Identifier of the starting vertex.				
end_vid BIGINT Ide	ntifier of the ending vertex.			

Column Type

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bdAstarCost('SELECT id, source, target, cost, reverse, cost, x1, v1, x2, v2
FROM edges',
ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);
start_vid end_vid agg_cost

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_bdAstarCost("SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); start_vid | end_vid | agg_cost

7	10	4
1	15	3
10	7	2
10	15	3
15	7	3
15	10	1
(6 rows)		

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_bdAstarCost('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); start_vid | end_vid | agg_cost 6 7 1

0	1	
6	10	5
12	10	4
(3 rows)		

See Also

- Bidirectional A* Family of functions
- <u>Cost Category</u>
- Sample Data

Indices and tables

- Index
- Search Page

pgr_bdAstarCostMatrix

pgr_bdAstarCostMatrix - Calculates the a cost matrix usingpgr_aStar.

Boost Graph Inside

Availability

- Version 3.0.0
 - Official function
- Version 2.5.0
 - New proposed function

Description

The main characteristics are:

- Using internaly the pgr_bdAstar algorithm
- · Returns a cost matrix.
- No ordering is performed
- let v and u are nodes on the graph:
 - when there is no path from v to u:
 - no corresponding row is returned
 - cost from v to u is \(\inf\)
 - when \(v = u\) then
 - no corresponding row is returned

Signatures

Summary

pgr_bdAstarCostMatrix(<u>Edges SQL</u>, start vids, [options]) options: [directed, heuristic, factor, epsilon] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

 $Symmetric \ cost \ matrix \ for \ vertices \ \(\ 5, \ 6, \ 10, \ 15\)) \ on \ an \ undirected \ graph \ using \ heuristic \ \(2\)$

SELECT * FROM pgr_bdAstarCostMatrix("SELECT id, source, target, cost, reverse, cost, x1, y1, x2, y2 FROM edges', (SELECT array, agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)), directed => false, heuristic => 2

); start_vid | end_vid | agg_cost

(-=----,

Parameters 1

Column	Туре	Description
Edges SQL TEXT		Edges SQL as described below

start vids ARRAY[BIGINT] Array of identifiers of starting vertices.

Optional parameters

Colum	n Type	Default	Description
directed BOOLEAN true			• When true the graph is considered Directed
	l true	• When false the graph is considered as Undirected.	

aStar optional parameters

Parameter	Туре	Default	Description
			Heuristic number. Current valid values 0~5.
heuristic INTEGER 5			- 0: $\langle (h(v)=0 \rangle)$ (Use this value to compare with pgr_dijkstra)
		 1: \(h(v) = abs(max(\Delta x, \Delta y))\) 	
	35	 2: \(h(v) = abs(min(\Delta x, \Delta y))\) 	
		 3: \(h(v) = \Delta x * \Delta x + \Delta y * \Delta y) 	
		•	 4: \(h(v) = sqrt(\Delta x * \Delta x + \Delta y * \Delta y)\)
			 5: \(h(v) = abs(\Delta x) + abs(\Delta y)\)
factor	FLOAT	1	For units manipulation. $(factor > 0)$.
epsilon	FLOAT	1	For less restricted results. $(epsilon \ge 1)$.

See heuristics available and factor handling.

Inner Queries

Edges SQL

Parameter	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.

Parameter	Type Defau	It Description			
		Weight of the edge (source target)			
cost	ANY-NUMERICAL	 When negative: edge (source, target) does not exist, therefore it's not part of the graph. 			
		Weight of the edge (target, source),			
reverse_cost	ANY-NUMERICAL -1	• When negative: edge (target, source) does not exist, therefore it's not part of the graph.			
x1	ANY-NUMERICAL	X coordinate of source vertex.			
y1	ANY-NUMERICAL	Y coordinate of source vertex.			
x2	ANY-NUMERICAL	X coordinate of target vertex.			
y2	ANY-NUMERICAL	Y coordinate of target vertex.			
Where:					
ANY-INTEGER:					
SMALLINT, INT	TEGER, BIGINT				
ANY-NUMERICAL					
SMALLINT, INT	FEGER, BIGINT, REAL, FLOAT				
Result columns					
Set of (start_vid, end_	_vid, agg_cost)				
Column Type	Description				
start_vid BIGINT	Identifier of the starting vertex.				
end_vid BIGINT	Identifier of the ending vertex.				
agg_cost FLOAT	Aggregate cost from start_vid to end_vid.				
Additional Examples					
Example:					
Use with pgr	TSP				
SELECT * FROM pgr_TSP(\$ SELECT * FROM pgr_bdAstarCostMatrix('SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges', (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)), directed=> talse, heuristic => 2					
) \$\$) \$\$				
): NOTICE: pgr_TSP no longer solving with simulated annaeling HINT: Ignoring annaeling parameters seq node cost agg_cost					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

See Also

- Bidirectional A* Family of functions
- <u>Cost Matrix Category</u>
- Traveling Sales Person Family of functions

Sample Data

- Indices and tables
 - Index
 - Search Page

Description

Based on A* algorithm, the bidirectional search finds a shortest path from a starting vertex {tart_vid} to an ending vertex (end_vid). It runs two simultaneous searches: one forward from thestart_vid, and one backward from the end_vid, stopping when the two meet in the middle. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

- Process works for directed and undirected graphs.
- Ordering is:
 - first by start_vid (if exists)
 - then by end_vid
- Values are returned when there is a path.
- Let (v) and (u) be nodes on the graph:
- If there is no path from \(v\) to \(u\):
 - no corresponding row is returned
 - agg_cost from \(v\) to \(u\) is \(\infty\)
- There is no path when (v = u) therefore
- no corresponding row is returned
 - agg_cost from v to u is \(0\)
- When \((x,y)\) coordinates for the same vertex identifier differ:
- A random selection of the vertex's\((x,y)\) coordinates is used.
- Running time: $(O((E + V) * (\log V)))$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_astar

See heuristics available and factor handling.

See Also

- <u>A* Family of functions</u>
- https://www.boost.org/libs/graph/doc/astar_search.html
- <u>https://en.wikipedia.org/wiki/A*_search_algorithm</u>

Indices and tables

Index

Search Page

Bidirectional Dijkstra - Family of functions

- pgr bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr_bdDijkstraCostMatrix Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

pgr_bdDijkstra

pgr_bdDijkstra — Returns the shortest path using Bidirectional Dijkstra algorithm.

Boost Graph Inside

Availability:

• Version 3.2.0

- New proposed signature:
 - pgr_bdDijkstra(<u>Combinations</u>)
- Version 3.0.0
 - Official function

• Version 2.5.0

- New Proposed functions:
 - pgr_bdDijkstra (<u>One to Many</u>)
 - pgr_bdDijkstra (Many to One)
 - pgr_bdDijkstra (Many to Many)
- Version 2.4.0
 - Signature change on pgr_bdDijsktra (One to One)
 - Old signature no longer supported
- Version 2.0.0
 - Official pgr_bdDijkstra (One to One)

Description

The main characteristics are:

- Process is done only on edges with positive costs.
 - A negative value on a cost column is interpreted as the edge does not exist.
- · Values are returned when there is a path.
- When there is no path:
 - $\circ\;$ When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values ((v, v)) is (0)
 - $\circ\;$ When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values ((u, v)) is ((infty))
- · For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- + Running time (worse case scenario): $(O((V \log V + E))))$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_dijkstra

Signatures

Summary

pgr_bdDijkstra(Edges SQL, start vid, end vid, [directed]) pgr_bdDjikstra[Edges SQL, start vid, end vids, [directed]) pgr_bdDijkstra[Edges SQL, start vids, end vids, [directed]) pgr_bdDijkstra[Edges SQL, start vids, end vids, [directed]) pgr_bdDijkstra[Edges SQL, start vids, end vids, [directed]) pgr_bdDijkstra[Edges SQL, Combinations SQL, [directed]) Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_bdDijkstra(<u>Edges SQL</u>, start vid, end vid, [directed]) Returns set of (seq. path_seq. node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_bdDijkstra('select id, source, target, cost, reverse_cost from edges', 6, 10, true); seq | path_seq | node | edge | cost | agg_cost

1	1	6	4	1	0
2	2	7	8	1	1
3	3	11	9	1	2
4	4	16	16	1	3
5	5	15	3	1	4
6	6	10	-1	0	5
(6 rows)					

One to Many

pgr_bdDijkstra(<u>Edges SQL</u>, **start vid**, **end vids**, [directed]) Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

SELECT * FROM pgr_bdDijkstra('select id, source, target, cost, reverse_cost from edges', 6, ARRAY[10, 17]); seq | path_seq | end_vid | node | edge | cost | agg_cost

1	1	10	6	4	1	0
2	2	10	7	8	1	1
3	3	10	11	9	1	2
4	4	10	16	16	1	3
5	5	10	15	3	1	4
6	6	10	10	-1	0	5
7	1	17	6	4	1	0
8	2	17	7	8	1	1
9	3	17	11	11	1	2
10	4	17	12	13	1	3
11	5	17	17	-1	0	4
(11 row	s)					

Many to One

pgr_bdDijkstra(<u>Edges SQL</u>, start vids, end vid, [directed]) Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices \(\{6, 1\}\) to vertex \(17\) on a **directed** graph

SELECT * FROM pgr_bdDijkstra('select id, source, larget, cost, reverse_cost from edges', ARRAY[6, 1], 17); seq | path_seq | start_vid | node | edge | cost | agg_cost

+	+	++++++
1	1	1 1 6 1 0
2	2	1 3 7 1 1
3	3	1 7 8 1 2
4	4	1 11 11 1 3
5	5	1 12 13 1 4
6	6	1 17 -1 0 5
7	1	6 6 4 1 0
8	2	6 7 8 1 1
9	3	6 11 11 1 2
10	4	6 12 13 1 3
11	5	6 17 -1 0 4
(11 row	/s)	

Many to Many

pgr_bdDijkstra(<u>Edges SQL</u>, **start vids**, end **vids**, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\{6, 1\})$ to vertices $(\{10, 17\})$ on an **undirected** graph

SELECT * FROM pgr_bdDijkstra(Sector intom pg__doipsiat Select id, source, target, cost, reverse_cost from edges', ARRAY[6, 1], ARRAY[10, 17], directed => false); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	10	1	6	1	0
2	2	1	10	3	7	1	1
3	3	1	10	7	4	1	2
4	4	1	10	6	2	1	3
5	5	1	10	10	-1	0	4
6	1	1	17	1	6	1	0
7	2	1	17	3	7	1	1
8	3	1	17	7	8	1	2
9	4	1	17	11	11	1	3
10	5	1	17	12	13	1	4

Combinations

pgr_bdDijkstra(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations; source | target

5 | 6 5 | 10 6 | 5 6 | 15 6 | 14 (5 rows)

The query:

SELECT * FROM pgr_bdDijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT source, target FROM combinations', false);

laide),	
seq path_seq start_vid end_vid r	node edge cost agg_cost
	I I

1	1	5	6 5 1 1	0
2	2	5	6 6 -1 0	1
3	1	5	10 5 1 1	0
4	2	5	10 6 2 1	1
5	3	5	10 10 -1 0	2
6	1	6	5 6 1 1	0
7	2	6	5 5 -1 0	1
8	1	6	15 6 2 1	0
9	2	6	15 10 3 1	1
10	3	6	15 15 -1 0	2
(10 row	rs)			

Parameters 9

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Colum	п Туре	Default	Description
			• When true the graph is considered Directed
directed	BOOLEAN	N true	When false the graph is considered as Undirected.

Inner Queries

```
Edges SQL
```

Column	Type Default		Description			
id	ANY-INTEGER		Identifier of the edge.			
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.			
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.			
cost	ANY-NUMERICAL		Weight of the edge (source, target)			
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.			

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. Many to One Many to Many
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. <u>One to Many</u> <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bdDijkstra('select id, source, target, cost, reverse_cost from edges', ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]);

seq path_seq start_vid end_vid node edge cost agg_cost								
+	+-		+	+	+	+	+	
1	1	7	10	7	8	1	0	
2	2	7	10	11	9	1	1	
3	3	7	10	16	16	1	2	
4	4	7	10	15	3	1	3	
5	5	7	10	10	-1	0	4	
6	1	7	15	7	8	1	0	
7	2	7	15	11	9	1	1	

8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 2 1	0
11	2	10	7 6 4 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 3 1	0
18	2	15	7 10 2 1	1
19	3	15	7 6 4 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 row	/s)			

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_bdDijkstra('select id, source, target, cost, reverse_cost from edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	7	10	7	8	1	0
2	2	7	10	11	9	1	1
3	3	7	10	16	16	1	2

4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 2 1	0
11	2	10	7 6 4 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 3 1	0
18	2	15	7 10 2 1	1
19	3	15	7 6 4 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 rov	vs)			

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_bdDijkstra(

 SELECT is source, target, cost, reverse_cost FROM edges',

 'SELECT is source, target, cost, reverse_cost, reverse_cost, cost, reverse, target, cost, edge, c

3	1	6	10 6 4 1	0
4	2	6	10 7 8 1	1
5	3	6	10 11 9 1	2
6	4	6	10 16 16 1	3
7	5	6	10 15 3 1	4
8	6	6	10 10 -1 0	5
9	1	12	10 12 13 1	0
10	2	12	10 17 15 1	1
11	3	12	10 16 16 1	2
12	4	12	10 15 3 1	3
13	5	12	10 10 -1 0	4
(13 row	rs)			

See Also

Bidirectional Dijkstra - Family of functions

• Sample Data

- https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
- <u>https://en.wikipedia.org/wiki/Bidirectional_search</u>

Indices and tables

- Index
- Search Page

pgr_bdDijkstraCost

pgr_bdDijkstraCost — Returns the shortest path's cost using Bidirectional Dijkstra algorithm.

Boost Graph Inside

Availability

Version 3.2.0

- New proposed signature:
 - pgr_bdDijkstraCost (<u>Combinations</u>)
- Version 3.0.0
 - Official function
- Version 2.5.0
 - New proposed function

Description

The pgr_bdDijkstraCost function sumarizes of the cost of the shortest path using the bidirectional Dijkstra Algorithm.

- Process is done only on edges with positive costs.
 - $\circ~$ A negative value on a cost column is interpreted as the edge does not exist.
- · Values are returned when there is a path.
- When there is no path:
 - $\circ\;$ When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values ((v, v)) is (0)
 - · When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values \((u, v)\) is \(\infty\)
- · For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- Running time (worse case scenario): $(O((V \log V + E))))$
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_dijkstra
- · It does not return a path.
- · Returns the sum of the costs of the shortest path of each pair combination of nodes requested.

- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid).
- · Depending on the function and its parameters, the results can be symmetric.
 - The aggregate cost of ((u, v)) is the same as for ((v, u)).
- Any duplicated value in the start or end vertex identifiers are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending

Signatures

Summary

pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vid**, end vid , [directed]) pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vid**, end vids, [directed]) pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vids**, end vids, [directed]) pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vids**, end vids, [directed]) pgr_bdDijkstraCost(<u>Edges SQL</u>, <u>combinations SQL</u>, [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

One to One

pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vid**, **end vid**, [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_bdDijkstraCost("SELECT id, source, target, cost, reverse_cost FROM edges', 6, 10, true); start_vid | end_vid | agg_cost

6 | 10 | 5

(1 row)

One to Many

pgr_bdDijkstraCost(<u>Edges SQL</u>, start vid, end vids, [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

(2 rows)

Many to One

pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vids**, **end vid** , [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

(2 rows)

Many to Many

pgr_bdDijkstraCost(<u>Edges SQL</u>, **start vids**, **end vids**, [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices $(({6, 1}))$ to vertices $(({10, 17}))$ on an **undirected** graph

SELECT * FROM pgr_bdDijkstraCost('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 1], ARRAY[10, 17], directed => false); start vid | end_vid | agg_cost

1 | 10 | 4 1 | 17 | 5 6 | 10 | 1 6 | 17 | 4 (4 rows)

Combinations

pgr_bdDijkstraCost(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an undirected graph

The combinations table:

SELECT source, target FROM combinations; source | target

5 | 6 5 | 10 6 | 5 6 | 15 6 | 14 (5 rows)

The query:

5 | 5 | 6 | 6 | (4 rows)

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Column	Туре	Default	Description
			• When true the graph is considered Directed
directed	BOOLEAN	l true	• When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Set of (start vid, end vid, agg cost)

Column Type	Description
start_vid BIGINT	Identifier of the starting vertex

end vid BIGINT Identifier of the ending vertex.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bdDijkstraCost(SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]); star_vid | end_vid | agg_cost

7 7 10 15 15	10 15 7 15 7 10	4 3 2 3 3 1	
15	10	1	
(6 rows)			

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_bdDijkstraCost("SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); start_vid | end_vid | agg_cost

7	10	4
7	15	3
10	7	2
10	15	3
15	7	3
15	10	1
(6 rows)		

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_bdDijkstraCost("SELECT id, source, target, cost, reverse_cost FROM edges', "SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); start_vid | end_vid | agg_cost

6 | 6 | 12 | 7 | 10 | 10 | 5 4 (3 rows)

See Also

- Bidirectional Dijkstra Family of functions
- Sample Data
- https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
- https://en.wikipedia.org/wiki/Bidirectional_search

Indices and tables

- Index
- Search Page

pgr_bdDijkstraCostMatrix¶

pgr_bdDijkstraCostMatrix - Calculates a cost matrix using pgr_bdDijkstra.

Boost Graph Inside

Availability

- Version 3.0.0
 - Official function
- Version 2.5.0
 - New proposed function

Description

Using bidirectional Dijkstra algorithm, calculate and return a cost matrix.

- · Process is done only on edges with positive costs.
 - A negative value on a cost column is interpreted as the edge does not exist.

- Values are returned when there is a path.
- · When there is no path:
 - · When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values \((v, v)\) is \(0\)
 - When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values $\((u, v)\)$ is $\(\infty\)$
- · For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- Running time (worse case scenario):\(O((V \log V + E))\)
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_dijkstra

The main Characteristics are:

- · Can be used as input to pgr_TSP.
 - Use directly when the resulting matrix is symmetric and there is no\(\infty\) value.
 - · It will be the users responsibility to make the matrix symmetric.
 - By using geometric or harmonic average of the non symmetric values.
 - By using max or min the non symmetric values.
 - By setting the upper triangle to be the mirror image of the lower triangle.
 - By setting the lower triangle to be the mirror image of the upper triangle.
 - It is also the users responsibility to fix an\(\infty\) value.
- Each function works as part of the family it belongs to.
- · It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- Process is done only on edges with positive costs.
- · Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - The aggregate cost in the non included values (v, v) is 0.
 - When the starting vertex and ending vertex are the different and there is no path.
 - The aggregate cost in the non included values (u, v) is \(\infty\).
- Let be the case the values returned are stored in a table:
 - The unique index would be the pair: (start_vid, end_vid).
- · Depending on the function and its parameters, the results can be symmetric.
 - The aggregate cost of (u, v) is the same as for (v, u).
- Any duplicated value in the start vids are ignored.
- · The returned values are ordered:
 - start_vid ascending
 - · end_vid ascending

Signatures

Summary

pgr_bdDijkstraCostMatrix(<u>Edges SQL</u>, **start vids**, [directed]) Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an **undirected** graph

SELECT * FROM 'SELECT id, sou (SELECT array_ FROM vertices WHERE id IN (false); start_vid end_vi	SELECT * FROM pgr_bdDijkstraCostMatrix('SELECT id, source, target, cost, reverse_cost FROM edges', (SELECT array_agg(d) FROM vertices WHERE id IN (5, 6, 10, 15)), false); start vid l end vid I agg cost				
5 6 5 10 5 15 6 5 6 5 6 15 10 5 10 6 10 15 15 5 15 10 (12 rows)	1 2 3 1 1 2 2 1 1 3 2 1 3 2 1				
Parameters ¹					
Column	Туре	Description			
Edges SQL TE	ХT	Edges SQL as described below			
start vids AF	RAY[BIGIN	Array of identifiers of starting vertices.			

Optional parameters

Colum	n Type Defau	It Description
		• When true the graph is considered Directed
directed	BOOLEAN true	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	I	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid B	BIGINT	Identifier of the starting vertex.
end_vid B	BIGINT	Identifier of the ending vertex.
agg_cost F	LOAT	Aggregate cost from start_vid to end_vid.

Additional Examples

Example:

Use with pgr_TSP.

SELECT * FROM pgr_TSP(\$\$ SELECT * FROM pgr_bdDijkstraCostMatrix('SELECT id, source, target, cost, reverse_cost FROM edges', (SELECT array_agg(id) FROM vertices WHERE id IN (5, 6, 10, 15)), false) \$\$); NOTICE: pgr_TSP no longer solving with simulated annaeling HINT: Ignoring annaeling parameters seq I node | cost | agg_cost

1	5	0	0		
2	6	1	1		
3	10	1	2		
4	15	1	3		
5	5	3	6		
(5 rows)					

See Also

- Bidirectional Dijkstra Family of functions
- <u>Cost Matrix Category</u>
- Traveling Sales Person Family of functions
- Sample Data

Indices and tables

- Index
- Search Page

Synopsis

Based on Dijkstra's algorithm, the bidirectional search finds a shortest path a starting vertex to an ending vertex.

It runs two simultaneous searches: one forward from the source, and one backward from the target, stopping when the two meet in the middle.

Characteristics

The main Characteristics are:

- · Process is done only on edges with positive costs.
 - A negative value on a cost column is interpreted as the edge does not exist.
- Values are returned when there is a path.
- When there is no path:
 - $\circ\,$ When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values \((v, v)\) is \(0\)
 - · When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values $\backslash ((u, v) \backslash)$ is $\backslash \langle infty \rangle)$
- · For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- Running time (worse case scenario):\(O((V \log V + E))\)
- For large graphs where there is a path bewtween the starting vertex and ending vertex:
 - It is expected to terminate faster than pgr_dijkstra

See Also

Indices and tables

- Index
- Search Page

Components - Family of functions

- pgr_connectedComponents Connected components of an undirected graph.
- pgr_strongComponents Strongly connected components of a directed graph.
- pgr_biconnectedComponents Biconnected components of an undirected graph.
- pgr_articulationPoints Articulation points of an undirected graph.
- pgr_bridges Bridges of an undirected graph.

Experimental

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

• pgr_makeConnected - Experimental - Details of edges to make graph connected.

pgr_connectedComponents

pgr_connectedComponents — Connected components of an undirected graph using a DFS-based approach.

Boost Graph Inside

Availability

- Version 3.0.0
 - · Result columns change:
 - n_seq is removed
 - seq changed type to BIGINT
 - · Official function
- Version 2.5.0
 - · New experimental function

Description

A connected component of an undirected graph is a set of vertices that are all reachable from each other.

The main characteristics are:

- Works for undirected graphs.
- · Components are described by vertices
- The returned values are ordered:
 - · component ascending
 - node ascending
- Running time: \(O(V + E)\)

Signatures

pgr_connectedComponents(<u>Edges SQL</u>) Returns set of (seq, component, node) OR EMPTY SET

Example:

The connected components of the graph

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges'); seq | component | node

_images/cc_sampledata.png

Parameters 1

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, component, node)

Column Type

BIGINT Sequential value starting from 1. seq

Component identifier.

component BIGINT · Has the value of the minimum node identifier in the component.

BIGINT Identifier of the vertex that belongs to the component. node

Additional Examples

Connecting disconnected components

To get the graph connectivity:

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges

seq | component | node

-		T
1	1	1
2	1	3
3	1	5
4	1	6
5	1	7
6	1	8
7	1	9
8	1	10
9	1	11
10	1	12
11	1	13
12	1	14
13	1	15
14	1	16
15	1	17
16	1	18
17	2	2
18	2	4
(18 rows)		

In this example, the component ((2)) consists of vertices (({2, 4})) and both vertices are also part of the dead end result set.

This graph needs to be connected

Note

With the original graph of this documentation, there would be 3 components as the crossing edge in this graph is a different component.

Prepare storage for connection information

ALTER TABLE vertices ADD COLUMN component BIGINT; ALTER TABLE ALTER TABLE edges ADD COLUMN component BIGINT; ALTER TABLE

Save the vertices connection information

UPDATE vertices SET component = c.component FROM (SELECT * FROM pgr_connectedComponents("SELECT id, source, target, cost, reverse_cost FROM edges")) AS c WHERE id = node; UPDATE 18

Save the edges connection information

UPDATE edges SET component = v.component FROM (SELECT id, component FROM vertices) AS v WHERE source = v.id; UPDATE 20

Get the closest vertex

Using pgr_findCloseEdges the closest vertex to component (1) is vertex (4). And the closest edge to vertex (4) is edge (14).

SELECT edge_id, fraction, ST_AsText(edge) AS edge, id AS closest_vertex SELECT ledge_U, faction, 51_x1 Extended X edge, A X Subset_vertex FROM pgr_findCloseEdge(\$\$SELECT id, geom FROM edges WHERE component = 1\$\$, (SELECT array_agg(geom) FROM vertices WHERE component = 2), 2, partial => talse) JOIN vertices USING (geom) ORDER BY distance LIMIT 1; edge_id | fraction | edge | closest_vertex 0.5 | LINESTRING(1.9999999999999 3.5,2 3.5) | 14 | 4

(1 row)

The edge can be used to connect the components, using the fraction information about the edge \(14\) to split the connecting edge.

Connecting components

There are three basic ways to connect the components

- · From the vertex to the starting point of the edge
- · From the vertex to the ending point of the edge
- · From the vertex to the closest vertex on the edge
 - · This solution requires the edge to be split.

The following query shows the three ways to connect the components:

WITH

WITH info AS (SELECT edge, id, fraction, side, distance, ce.geom, edge, v.id AS closest, source, target, capacity, reverse_capacity, e.geom AS e_geom FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges WHERE component = 1\$\$, (SELECT array_agg(geom) FROM vertices WHERE component = 2), 2, partial => false) AS ce JOIN vertices AS v USING (geom)

JOIN edges AS e ON (edge_id = e.id) ORDER BY distance LIMIT 1), three_options AS (SELECT closest AS source, target, 0 AS cost, 0 AS reverse_cost, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_EndPoint(e_geom)) AS x2, ST_Y(ST_EndPoint(e_geom)) AS y2, ST_MakeLine(geom, ST_EndPoint(e_geom)) AS geom FROM into '' UNION SELECT closest, source, 0, 0, capacity, reverse_capacity, ST_X(sT_StartPoint(e_geom)) AS x2, ST_Y(ST_StartPoint(e_geom)) AS y2, ST_MakeLine(into.geom, ST_StartPoint(e_geom)) FROM into '' UNION - This option requires splitting the edge SELECT closest, NULL, 0, 0, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_EndPoint(edge)) AS x2, ST_Y(ST_EndPoint(edge)) AS y2, edge (source, target, cost, reverse_cost, capacity, reverse_capacity, x1, y1, x2, y2, geom FROM three_options); INSERT IO 2

Checking components

Ignoring the edge that requires further work. The graph is now fully connected as there is only one component.

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges'

); seq | component | node 1 1| 1 2 1 İ 2 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 1İ 3 4 5 7 8 9 1 1 1| 1| 1| 10 11 12 13 14 15 16 17 18 1 11 11 1j (18 rc ws)

See Also

- <u>Components Family of functions</u>
- The queries use the Sample Data network.
- Boost: Connected components
- wikipedia: Connected component
- Indices and tables

Index

Search Page

pgr_strongComponents

pgr_strongComponents — Strongly connected components of a directed graph using Tarjan's algorithm based on DFS.

Boost Graph Inside

Availability

- Version 3.0.0
 - · Result columns change:
 - n_seq is removed
 - seq changed type to BIGINT
 - Official function
- Version 2.5.0
 - · New experimental function

Description

A strongly connected component of a directed graph is a set of vertices that are all reachable from each other.

The main characteristics are:

Works for directed graphs.

- · Components are described by vertices identifiers
- The returned values are ordered:
 - · component ascending

node ascending

Running time: \(O(V + E)\)

Signatures

pgr_strongComponents(<u>Edges SQL</u>) Returns set of (seq, component, node) OR EMPTY SET

Example:

The strong components of the graph

SELECT * FROM pgr_strongComponents('SELECT id, source, target, cost, reverse_cost FROM edges');

),		
seq cor	npor	ient node
+		
1	1	1
2	1 j	3
3	1	5
4	1	6
5	1	7
6	1	8
7	1	9
8	1	10
9	1	11
10	1	12
11	1	15
12	1	16
13	1	17
14	2	2
15	2	4
16	13	13
17	13	14
(17 rows)		

_images/scc_sampledata.png

Parameters 9

Description Parameter Type

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, component, node)

Column Type

BIGINT Sequential value starting from 1. seq

Component identifier.

 $^{\mbox{component BIGINT}}$ $\ \ \, \ \,$ Has the value of the minimum node identifier in the component.

Description

Column Type

node BIGINT Identifier of the vertex that belongs to the component.

See Also

- Components Family of functions
- The queries use the Sample Data network.
- Boost: <u>Strong components</u>
- wikipedia: Strongly connected component

Indices and tables

- Index
- Search Page

pgr_biconnectedComponents

pgr_biconnectedComponents - Biconnected components of an undirected graph.

Boost Graph Inside

Availability

- Version 3.0.0
 - · Result columns change:
 - n_seq is removed
 - seq changed type to BIGINT
 - Official function
- Version 2.5.0

• New experimental function

Description

The biconnected components of an undirected graph are the maximal subsets of vertices such that the removal of a vertex from particular component will not disconnect the component. Unlike connected components, vertices may belong to multiple biconnected components. Vertices can be present in multiple biconnected components, but each edge can only be contained in a single biconnected component.

The main characteristics are:

- Works for undirected graphs.
- · Components are described by edges.
- The returned values are ordered:
 - · component ascending.
 - edge ascending.
- Running time: \(O(V + E)\)

Signatures

pgr_biconnectedComponents(Edges SQL) Returns set of (seq, component, edge) OR EMPTY SET

Example:

The biconnected components of the graph

SELECT * FROM pgr_biconnectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges'

_images/bcc_sampledata.png

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, component, edge)

Column Type Description

seq BIGINT Sequential value starting from 1.

Component identifier.

component BIGINT
 Has the value of the minimum edge identifier in the component.

edge BIGINT Identifier of the edge that belongs to the component.

See Also

- Components Family of functions
- The queries use the Sample Data network.
- Boost: Biconnected components
- wikipedia: Biconnected component

Indices and tables

- Index
- Search Page

pgr_articulationPoints

pgr_articulationPoints - Return the articulation points of an undirected graph.

Boost Graph Inside

Availability

Version 3.0.0

- Result columns change: seq is removed
- Official function
- Version 2.5.0
- New experimental function

Description

Those vertices that belong to more than one biconnected component are called articulation points or, equivalently, cut vertices. Articulation points are vertices whose removal would increase the number of connected components in the graph. This implementation can only be used with an undirected graph.

The main characteristics are:

• Works for undirected graphs.

- The returned values are ordered:
 - node ascending
- Running time: \(O(V + E)\)

Signatures

pgr_articulationPoints(<u>Edges SQL</u>) Returns set of (node) OR EMPTY SET

Example:

The articulation points of the graph

SELECT * FROM pgr_articulationPoints('SELECT id, source, target, cost, reverse_cost FROM edges

Nodes in red are the articulation points.

Parameters

Description Parameter Type

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (node)

Description Column Type

BIGINT Identifier of the vertex. node

See Also

- <u>Components Family of functions</u>
- The queries use the Sample Data network.
- Boost: Biconnected components & articulation points
- wikipedia: Biconnected component

Indices and tables

• Index

Search Page

pgr_bridges

pgr_bridges - Return the bridges of an undirected graph.

Boost Graph Inside

Availability

- Version 3.0.0
 - Result columns change: seq is removed
 - Official function
- Version 2.5.0
 - New experimental function

Description

A bridge is an edge of an undirected graph whose deletion increases its number of connected components. This implementation can only be used with an undirected graph.

The main characteristics are:

- Works for undirected graphs.
- The returned values are ordered:
 - edge ascending
- Running time: \(O(E * (V + E))\)

Signatures

pgr_bridges(<u>Edges SQL</u>) Returns set of (edge) OR EMPTY SET

Example:

The bridges of the graph

SELECT * FROM pgr_bridges('SELECT id, source, target, cost, reverse_cost FROM edges

); edge 1 6 7 14 17 18 (6 rows)

_images/bridge_sampledata.png

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (edge)

Column Type Description

Identifier of the edge that is a BIGINT bridge.

See Also

<u>https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29</u>

• The queries use the Sample Data network.

Indices and tables

- Index
- Search Page

pgr_makeConnected - Experimental

pgr_makeConnected - Set of edges that will connect the graph.

Boost Graph Inside

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Availability

• Version 3.2.0

New experimental function

Description

Adds the minimum number of edges needed to make the input graph connected. The algorithm first identifies all of the connected components in the graph, then adds edges to connect those components together in a path. For example, if a graph contains three connected components A, B, and C, make_connected will add two edges. The two edges added might consist of one connecting a vertex in A with a vertex in B and one connecting a vertex in B.

The main characteristics are:

- Works for undirected graphs.
- · It will give a minimum list of all edges which are needed in the graph to make connect it
- The algorithm does not considers traversal costs in the calculations.
- The algorithm does not considers geometric topology in the calculations.
- Running time: \(O(V + E)\)

Signatures

pgr_makeConnected(Edges_SQL) Returns set of (seq, start_vid, end_vid) OR EMPTY SET

Example:

Query done on Sample Data network gives the list of edges that are needed to connect the graph.

SELECT * FROM pgr_makeConnected('SELECT id, source, target, cost, reverse_cost FROM edges'

seq | start_vid | end_vid

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGER, BI	GINT		
ANY-NUMERICAL:			

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, start_vid, end_vid)

```
Column Type Description
```

seq BIGINT Sequential value starting from 1.

start_vid BIGINT Identifier of the first end point vertex of the edge.

end_vid BIGINT Identifier of the second end point vertex of the edge.

See Also

- https://www.boost.org/libs/graph/doc/make_connected.html
- The queries use the <u>Sample Data</u> network.

Indices and tables

- Index
- Search Page

See Also

Indices and tables

- Index
- Search Page

Contraction - Family of functions

• pgr_contraction

pgr_contraction

pgr_contraction — Performs graph contraction and returns the contracted vertices and edges.

Boost Graph Inside

Availability

- Version 3.0.0
 - Result columns change: seq is removed
 - Name change from pgr_contractGraph

- Bug fixes
- Official function
- Version 2.3.0

· New experimental function

Description

Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

The main Characteristics are:

- Process is done only on edges with positive costs.
- Does not return the full contracted graph
 - Only changes on the graph are returned
- · Currnetly there are two types of contraction methods
 - Dead End Contraction
 - · Linear Contraction
- · The returned values include
 - the added edges by linear contraction.
 - the modified vertices by dead end contraction.
- The returned values are ordered as follows:
 - column id ascending when type is v
 - column id descending when type is e

Signatures

Summary

The pgr_contraction function has the following signature:

pgr_contraction(<u>Edges SQL</u>, contraction order, [options]) options: [max_cycles, forbidden_vertices, directed] Returns set of (type, id, contracted_vertices, source, target, cost)

neturns set of (type, id, contracted_ventices, source, target, cost)

Example:

Making a dead end and linear contraction in that order on an undirected graph.

SELECT * FROM pgr_contraction("SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[1, 2], directed => false); type | id | contracted_vertices | source | target | cost

· · ·				····	
v	4 {2}		-1	-1 -1	
v	7 {1,3}	- I	-1	-1 -1	
v	14 {13}		-1	-1 -1	
е	-1 {5,6}		7	10 2	
е	-2 {8,9}		7	12 2	
е	-3 {17}		12	16 2	
е	-4 {15}		10	16 2	
(7 ro	ws)				

Parameters 9

Туре	Description
TEXT	Edges SQL as described below.
	Ordered contraction operations.
r ARRAY[ANY-INTEGER	• 1 = Dead end contraction
	• 2 = Linear contraction
	Type TEXT ARRAY[ANY-INTEGER]

Optional parameters

Column	Type Default	Description	
			. When the graph is cansidered Directed
			 when true the graph is considered <i>Directed</i>

directed BOOLEAN true • When false the graph is considered as Undirected.

```
Contraction optional parameters
```

Column	Туре	Default	Description
forbidden_vertices	ARRAY[ANY-INTEGER]	Empty	Identifiers of vertices forbidden for contraction.
max_cycles	INTEGER	\(1\)	Number of times the contraction operations oncontraction_order will be performed.

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGE			

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

 $Returns \ set \ of \ (type, \ id, \ contracted_vertices, \ source, \ target, \ cost)$

The function returns a single row. The columns of the row are:

Column	Туре	Description
		Type of the id.
		• v when the row is a vertex.
type	TEXT	 Column id has a positive value
		e when the row is an edge.
		Column id has a negative value
		All numbers on this column are DISTINCT
		• When type = 'v'.
		 Identifier of the modified vertex.
id	BIGINT	• When type = 'e'.
		 Decreasing sequence starting from-1.
		 Representing a pseudo <i>id</i> as is not incorporated in the set of original edges.
contracted_vertic	es ARRAY[BIGII	דן Array of contracted vertex identifiers.
		 When type = 'v': \(-1\)
source	BIGINT	- When ${\sf type}={\sf `e'}{\sf :}$ Identifier of the source vertex of the current edge ${\sf fource}, {\sf target}).$
target		 When type = 'v': \(-1\)
	BIGINT	- When \mbox{type} = 'e': Identifier of the target vertex of the current edge $\mbox{kource, target}).$
aaat	FLOAT	 When type = 'v': \(-1\)
CUSI	FLOAT	• When type = 'e': Weight of the current edge (source, target).

Additional Examples

Example:

Only dead end contraction

SELECT type, id, contracted_vertices FROM pgr_contraction('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[1]); type | id | contracted_vertices

- v | 4 | {2} v | 6 | {5} v | 7 | {1,3} v | 8 | {9} v | 14 | {13} (5 rows)

Example:

Only linear contraction

SELECT * FROM pgr_contraction('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[2]); type |id| contracted_vertices | source | target | cost

```
e | -1 | {3}
e | -2 | {3}
(2 rows)
                                     | 1| 7| 2
| 7| 1| 2
```

See Also

Contraction - Family of functions

Indices and tables

- Index
- Search Page

Introduction

In large graphs, like the road graphs, or electric networks, graph contraction can be used to speed up some graph algorithms. Contraction reduces the size of the graph by removing some of the vertices and edges and, for example, might add edges that represent a sequence of original edges decreasing the total time and space used in graph algorithms.

This implementation gives a flexible framework for adding contraction algorithms in the future, currently, it supports two algorithms:

1. Dead end contraction

2. Linear contraction

Allowing the user to:

• Forbid contraction on a set of nodes.

• Decide the order of the contraction algorithms and set the maximum number of times they are to be executed.

Dead end contraction

Contraction of the leaf nodes of the graph.

Dead end

A node is considered a **dead end** node when

- On undirected graphs:
 - The number of adjacent vertices is 1.

· On directed graphs:

- The number of adjacent vertices is 1.
- · There are no outgoing edges and has at least one incoming edge.
- · There are no incoming edges and has at least one outgoing edge.

When the conditions are true then the Operation: Dead End Contraction can be done.

Dead end vertex on undirected graph

• The green nodes are dead end nodes

The blue nodes have an unlimited number of edges.

Node	Adjecent nodes	Number of adjacent nodes	
\(a\) \((\{u\}\)	1	
\(b\) \((\{v\}\)	1	
Dead end	vertex on directed gra	ıph <mark>1</mark>	

• The green nodes are dead end nodes

• The blue nodes have an unlimited number of incoming and/or outgoing edges.

Node	Adjecent nodes	Number of adjacent nodes	Number of incoming edges	Number of outgoing edges	
\(a\)	\(\{u\}\)	1			
\(b\)	\(\{v\}\)	1			
/(c/)	\(\{v, w\}\)	2	2	0	
\(d\)	\(\{x\}\)	1			
\(e\)	\(\{x, y\}\)	2	0	2	

From above, nodes \(\{a, b, d\}\) are dead ends because the number of adjacent vertices is 1. No further checks are needed for those nodes.

On the following table, nodes ((c, e)) because the even that the number of adjacent vertices is not 1 for

- \(C\)
 - There are no outgoing edges and has at least one incoming edge.
- \(e\)
 - · There are no incoming edges and has at least one outgoing edge.

Operation: Dead End Contraction

The dead end contraction will stop until there are no more dead end nodes. For example from the following graph wherh(w\) is the dead end node:

After contracting (v), stop. Node (u) has the information of nodes that were contrcted.

Node (u) has the information of nodes that were contracted.

Linear contraction

In the algorithm, linear contraction is represented by 2.

Linear

In case of an undirected graph, a node is considered a linear node when

• The number of adjacent vertices is 2.

In case of a directed graph, a node is considered alinear node when

- The number of adjacent vertices is 2.
- · Linearity is symmetrical

Linear vertex on undirected graph

• The green nodes are linear nodes

• The blue nodes have an unlimited number of incoming and outgoing edges.

Undirected

Node	Adjecent nodes	Number of adjacent nodes	

\(v\) \(\{u, w\}\) 2

Linear vertex on directed graph

- The green nodes are linear nodes
- The blue nodes have an unlimited number of incoming and outgoing edges.
- The white node is not linear because the linearity is not symetrical.
 - It is possible to go \(y \rightarrow c \rightarrow z\)
 - It's not possible to go \(z \rightarrow c \rightarrow y\)

Node	Adjecent nodes	Number of adjacent nodes	ls symmetrical?
\(a\) \(\{i	u, v\}\)	2	yes
\(b\) \(\{	w, x\}\)	2	yes
/(c/) /(/{	y, z\}\)	2	no

Operation: Linear Contraction

The linear contraction will stop when there are no more linear nodes. For example from the following graph where(v\) and \(w\) are linear nodes:

Contracting \(w\),

- The vertex \(w\) is removed from the graph
- The edges $(v \quad w)$ and $(w \quad z)$ are removed from the graph.
- A new edge \(v \rightarrow z\) is inserted represented with red color.

Contracting \(v\):

- The vertex $\(v\)$ is removed from the graph
- The edges $(u \operatorname{rightarrow} v)$ and $(v \operatorname{rightarrow} z)$ are removed from the graph.
- A new edge \(u \rightarrow z\) is inserted represented with red color.

Edge $(u \ rightarrow z)$ has the information of nodes that were contracted.

The cycle

Contracting a graph, can be done with more than one operation. The order of the operations affect the resulting contracted graph, after applying one operation, the set of vertices that can be contracted by another operation changes.

This implementation, $\ensuremath{\mathsf{cycles}}\xspace$ times through $\ensuremath{\mathsf{operations_order}}\xspace$.

<input> do max_cycles times { for (operation in operations_order) { do operation } } <urtext

Contracting sample data

In this section, building and using a contracted graph will be shown by example.

- The <u>Sample Data</u> for an undirected graph is used
- a dead end operation first followed by a linear operation.
- Construction of the graph in the database
 - <u>Contraction results</u>
 - Add additional columns
 - Store contraction information
 - The vertex table update
 - The edge table update
- <u>The contracted graph</u>
 - Vertices that belong to the contracted graph.
 - Edges that belong to the contracted graph.
 - <u>Contracted graph</u>
- Using the contracted graph
 - Case 1: Both source and target belong to the contracted graph.
 - Case 2: Source and/or target belong to an edge subgraph.
 - Case 3: Source and/or target belong to a vertex.

Construction of the graph in the database

Original Data

The following query shows the original data involved in the contraction operation.

SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id;

i nom cuge	S OI IDI		iu,	
id source	target	cost	reverse	_cost

+	+-	++	
1	5	6 1	1
2	6	10 -1	1
3	10	15 -1	1
4	6	7 1	1
5	10	11 1	-1
6	1	3 1	1
7	3	7 1	1
8	7	11 1	1
9	11	16 1	1
10	7	8 1	1
11	11	12 1	-1
12	8	12 1	-1
13	12	17 1	-1
14	8	9 1	1
15	16	17 1	1
16	15	16 1	1
17	2	4 1	1
18	13	14 1	1
(18 ro	ws)		

The original graph:

_images/Fig6-undirected.png

Contraction results

The results do not represent the contracted graph. They represent the changes done to the graph after applying the contraction algorithm.

Observe that vertices, for example, \(6\) do not appear in the results because it was not affected by the contraction algorithm.

SELECT * FROM pgr_contraction("SELECT id, source, target, cost, reverse_cost FROM edges', array[1, 2], directed => false); type | id | contracted_vertices | source | target | cost

31 1	
++	++++
v 4 {2}	-1 -1 -1
v 7 {1,3}	-1 -1 -1
v 14 {13}	-1 -1 -1
e -1 {5,6}	7 10 2
e -2 {8,9}	7 12 2
e -3 {17}	12 16 2
e -4 {15}	10 16 2
(7 rows)	

After doing the dead end contraction operation:

After doing the linear contraction operation to the graph above:

The process to create the contraction graph on the database:

Add additional columns

Adding extra columns to the edge_table and edge_table_vertices_pgr tables, where:

Column

Description

contracted_vertices The vertices set belonging to the vertex/edge

On the vertex table

• when true the vertex is contracted, its not part of the contracted graph. is contracted

• when false the vertex is not contracted, its part of the contracted graph.

On the edge table

is new

- when true the edge was generated by the contraction algorithm. its part of the contracted graph.
- when false the edge is an original edge, might be or not part of the contracted graph.

ALTER TABLE vertices ADD is_contracted BOOLEAN DEFAULT false; ALTER TABLE ALTER TABLE vertices ADD contracted_vertices BIGINT[]; ALTER TABLE ALTER TABLE ALTER TABLE ALTER TABLE ALTER TABLE ALTER TABLE edges ADD contracted_vertices BIGINT[]; ALTER TABLE edges ADD contracted_vertices BIGINT[]; ALTER TABLE

Store contraction information

Store the contraction results in a table

SELECT * INTO contraction_results FROM pgr_contraction('SELECT id, source, target, cost, reverse_cost FROM edges', array[1, 2], directed => false); SELECT 7

The vertex table update¶

Use is_contracted column to indicate the vertices that are contracted.

UPDATE vertices SET is_contracted = true WHERE id IN (SELECT unnest(contracted_vertices) FROM contraction_results); UPDATE 10

Fill contracted_vertices with the information from the results tha belong to the vertices.

UPDATE vertices SET contracted_vertices = contraction_results.contracted_vertices FROM contraction_results WHERE type = V' AND vertices.id = contraction_results.id; UPDATE 3

The modified vertices table:

SELECT id, contracted_vertices, is_contracted FROM vertices ORDER BY id; id | contracted_vertices | is_contracted

1	t
2	t
3	t
4 {2}	f
5	t
6	t
7 {1,3}	f
8	t
9	t
10	f
11	f
12	f
13	t
14 {13}	f
15	t
16	f
17	t
(17 rows)	

The edge table update ¶

Insert the new edges generated by pgr_contraction.

INSERT INTO edges(source, target, cost, reverse_cost, contracted_vertices, is_new) SELECT source, target, cost, -1, contracted_vertices, true FROM contraction_results WHERE type = 'e'; INSERT 0 4

The modified edge_table.

SELECT id, source, target, cost, reverse_cost, contracted_vertices, is_new FROM edges ORDER BY id; id | source | target | cost | reverse_cost | contracted_vertices | is_new

1| 5| 6| 1| 2| 6| 10| -1| 1| 1| | f | f

The contracted graph¶

Vertices that belong to the contracted graph.

SELECT id FROM vertices WHERE is_contracted = false ORDER BY id; id 4 7 10 11 12 14 16 (7 rows)

Edges that belong to the contracted graph.

WITH vertices_in_graph AS (SELECT id FROM vertices WHERE is_contracted = false) SELECT id, source, target, cost, reverse_cost, contracted_vertices SELECT in source, target, cost, reverse_cost, contracted_ve FROM edges WHERE source IN (SELECT * FROM vertices_in_graph) AND target IN (SELECT * FROM vertices_in_graph) ORDER BV id; id | source | target | cost | reverse_cost | contracted_vertices 5| 10| 11| 1| 8| 7| 11| 1| -1 | 1 |

qi	111	16	11	11
		101	1.1.	- 11.
11	11	12	1	-1
19	7	10	2	-1 {5,6}
20	7	12	2	-1 {8,9}
21	12	16	2	-1 {17}
22	10	16	2	-1 {15}
(8 rov	vs)			

Contracted graph¶

Using the contracted graph

Using the contracted graph with pgr_dijkstra

There are three cases when calculating the shortest path between a given source and target in a contracted graph:

- Case 1: Both source and target belong to the contracted graph.
- Case 2: Source and/or target belong to an edge subgraph.
- · Case 3: Source and/or target belong to a vertex.

Case 1: Both source and target belong to the contracted graph.

Using the Edges that belong to the contracted graph on lines 11 to 20.

1 CREATE OR REPLACE FUNCTION my_dijkstra(2 departure BIGINT, destination BIGINT, 3 OUT seq INTEGER, OUT path_seq INTEGER, 4 OUT start, vid BIGINT, OUT edge BIGINT, 5 OUT node BIGINT, OUT edge BIGINT, 6 OUT cost FLOAT, OUT agg_cost FLOAT) 7 RETURNS SETOF RECORD AS 85600YS 7RETURNS SETOF RECORD AS 8\$BODY\$ 9SELECT * FROM pgr_dijkstra(10 \$\$ 11 WITH 12 vertices_in_graph AS (13 SELECT id 14 FROM vertices 15 WHERE is_contracted = false 16. 15 WHERE is_contracted = taise 16) 17 SELECT id, source, target, cost, reverse_cost 18 FROM edges 19 WHERE source IN (SELECT * FROM vertices_in_graph) 20 AND target IN (SELECT * FROM vertices_in_graph) 21 \$\$, 22 departure, destination, false); 23&RONV\$ 23\$BODY\$ 24LANGUAGE SQL VOLATILE;

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(10, 12); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

 1
 1
 10
 12
 10
 5
 1
 0

 2
 2
 10
 12
 11
 11
 1
 1

 3
 3
 10
 12
 12
 -1
 0
 2

 (3 rows)
 3
 10
 12
 12
 -1
 0
 2

Case 2

When source and/or target belong to an edge subgraph then a path is not found.

In this case, the contracted graph do not have an edge connecting with node\(4\).

SELECT * FROM my_dijkstra(15, 12); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

Case 3

When source and/or target belong to a vertex then a path is not found.

In this case, the contracted graph do not have an edge connecting with node(7) and of node (4) of the second case.

SELECT * FROM my_dijkstra(15, 1); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

Case 2: Source and/or target belong to an edge subgraph.¶

Refining the above function to include nodes that belong to an edge.

• The vertices that need to be expanded are calculated on lines 11 to 17.

Adding to the contracted graph that additional section on lines 26 to 28.

 1 CREATE OR REPLACE FUNCTION my_dijkstra(

 2 departure BIGINT, destination BIGINT,

 3 OUT seq INTEGER, OUT path_seq INTEGER,

 4 OUT star_vid BIGINT, OUT end, vid BIGINT,

 5 OUT node BIGINT, OUT end, vid BIGINT,

 6 OUT cost FLOAT, OUT agg_cost FLOAT)

 7RETURNS SETOF RECORD AS

 \$850DV\$

 9SELECT * FROM pgr_dijkstra(

 10 \$\$

 11 WITH

 12 edges_te_expand AS (

 13 SELECT id

 14 FROM edges

 15 WHERE ARRAY[\$\$ || departure || \$\$]:BIGINT[] <@ contracted_vertices</td>

 16 OR ARRAY[\$\$ || destination || \$\$]:BIGINT[] <@ contracted_vertices</td>

 17 NHERE ARRAY[\$\$ || destination || \$\$]:BIGINT[] <@ contracted_vertices</td>

 18

 19 vertices in_graph AS (

 02 SELECT id

 21 FROM vertices

 22 WHERE is_contracted = false

 33

 34 UNION

 25

 26

 27 FROM edges

 38 WHERE id IN (SELECT i FROM vertices)

 29 PROMedges

 33 WHERE id IN (SELECT * FROM vertices, in_graph)

 34 AND target IN (SELECT * FROM vertices, in_graph)

 34 AND target IN (SELECT * FROM vertices, in_graph)

 35 \$\$

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(10, 12); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

Case 2

When source and/or target belong to an edge subgraph, now, a path is found.

The routing graph now has an edge connecting with node\(4\).

SELECT * FROM my_dijkstra(15, 12); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

Case 3

When source and/or target belong to a vertex then a path is not found.

In this case, the contracted graph do not have an edge connecting with node\(7\).

SELECT * FROM my_dijkstra(15, 1); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

(0 rows)

Case 3: Source and/or target belong to a vertex.

Refining the above function to include nodes that belong to an edge.

- The vertices that need to be expanded are calculated on lines 19 to 24.
- Adding to the contracted graph that additional section on lines 38 to 40.

```
1CREATE OR REPLACE FUNCTION my_dijkstra(
2 departure BIGINT, destination BIGINT,
3 OUT seq INTEGER, OUT path_seq INTEGER,
4 OUT start_vid BIGINT, OUT end_vid BIGINT,
5 OUT node BIGINT, OUT edge BIGINT,
6 OUT cost FLOAT, OUT agg_cost FLOAT)
7RETURNS SETOF RECORD AS
8$BODY$
9SELECT * FROM pgr_dijkstra(
10 $$
11 WITH
12 edges to expand AS (
11 WITH

12 edges_to_expand AS (

13 SELECT id

14 FROM edges

15 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices

16 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices

17 ),

18

19 vertices_to_expand AS (

20 SELECT id

21 FROM vertices

22 WHERE ARRAY[$$ || departure || $$]::BIGINT[] <@ contracted_vertices

23 OR ARRAY[$$ || destination || $$]::BIGINT[] <@ contracted_vertices

24 ),
   20 S
21 F
22 V
23 C
24 ),
25
   26 vertices_in_graph AS (
27 SELECT id
                       FROM vertices
WHERE is_contracted = false
     28
29
30
31
32
                       UNION
   33
34
                       SELECT unnest(contracted vertices)

      34
      FROM edges

      35
      WHERE id IN (SELECT id FROM edges_to_expand)

      36
      37

      37
      UNION

      38
      39

      39
      SELECT unnest(contracted_vertices)

      40
      FROM vertices

      41
      WHERE id IN (SELECT id FROM vertices_to_expand)

      42
      )

      43
      SELECT id, source, target, cost, reverse_cost

      45
      FROM edges

      46
      WHERE source IN (SELECT * FROM vertices_in_graph)

      47
      AND target IN (SELECT * FROM vertices_in_graph)

      48
      $$$

      49
      departure, destination, false);

                           FROM edge
   40 $$,
49 departure, destination, false);
50$BODY$
51LANGUAGE SQL VOLATILE;
52CREATE FUNCTION
```

Case 1

When both source and target belong to the contracted graph, a path is found.

SELECT * FROM my_dijkstra(10, 12); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

+	+	+		+	+	+	+	
1	1	10	12	10	5	1	0	
2	2	10	12	11	11	1	1	
3	3	10	12	12	-1	0	2	
(3 rows)							

Case 2

The code change do not affect this case so when source and/or target belong to an edge subgraph, a path is still found.

SELECT * FROM my_dijkstra(15, 12); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

- 11	- 11	15	12	15	10	- 11	0
2	2	15	12	16	21	2	1
3	3	15	12	12	-1	0	3
(3 rows)						

Case 3

When source and/or target belong to a vertex, now, a path is found.

Now, the routing graph has an edge connecting with node\(7\).

SELECT * FROM my_dijkstra(15, 1); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	15	1 15 3 1	0
2	2	15	1 10 19 2	1
3	3	15	1 7 7 1	3
4	4	15	1 3 6 1	4
5	5	15	1 1 -1 0	5
(5 rows)				

See Also

- pgr contraction
- Sample Data
- https://www.cs.cmu.edu/afs/cs/academic/class/15210-f12/www/lectures/lecture16.pdf
- https://algo2.iti.kit.edu/documents/routeplanning/geisberger_dipl.pdf
- Indices and tables

Index

Search Page

Dijkstra - Family of functions

par dijkstra - Dijkstra's algorithm for the shortest paths

- pgr_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Proposed

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- · They will likely officially be part of the next mayor releases
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.
- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.
- pgr_dijkstraNear Proposed Get the route to the nearest vertex
- pgr_dijkstraNearCost Proposed Get the cost to the nearest vertex.

pgr_dijkstra

pgr_dijkstra - Shortest path using Dijkstra algorithm.

Boost Graph Inside

Availability

- Version 3.5.0
 - Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_dijkstra (One to One) added start_vid and end_vid columns.
 - pgr_dijkstra (One to Many) added end_vid column.
 - pgr_dijkstra (Many to One) added start_vid column.
- Version 3.1.0
 - New Proposed functions:
 - pgr_dijkstra (<u>Combinations</u>)
- Version 3.0.0
 - Official functions
- Version 2.2.0
 - New proposed functions:
 - pgr_dijkstra (<u>One to Many</u>)
 - pgr_dijkstra (Many to One)
 - pgr_dijkstra (Many to Many)
- Version 2.1.0
 - Signature change on pgr_dijkstra (One to One)

Version 2.0.0

• Official pgr_dijkstra (One to One)

Description

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

- · Process is done only on edges with positive costs.
 - · A negative value on a cost column is interpreted as the edge does not exist.
- Values are returned when there is a path.
- When there is no path:
 - · When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values \((v, v)\) is \(0\)
 - When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values \((u, v)\) is \(\infty\)
- · For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- Running time: \(O(| start\ vids | * (V \log V + E))\)

Signatures Summary

pgr_dijkstra(<u>Edges SQL</u>, start vid, end vid, [directed]) pgr_dijkstra(<u>Edges SQL</u>, start vid, end vids, [directed]) pgr_dijkstra(<u>Edges SQL</u>, start vids, end vid, [directed]) pgr_dijkstra(<u>Edges SQL</u>, start vids, end vids, [directed]) pgr_dijkstra(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Warning

Breaking change on 3.5.0

Read the Migration guide about how to migrate from the old result columns to the new result columns.

One to One

pgr_dijkstra(<u>Edges SQL</u>, start vid, end vid, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on a directed graph

SELECT * FROM pgr_Dijkstra('select id, source, target, cost, reverse_cost from edges', 6, 10, true);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10	6	4	1	0
2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
(6 rows)							

One to Many

pgr_dijkstra(<u>Edges SQL</u>, start vid, end vids, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 17\}\) on a directed

SELECT * FROM pgr_Dijkstra(
'select id, source, target, cost, reverse_cost from edges',
6, ARRAY[10, 17]);
seq path_seq start_vid end_vid node edge cost agg_cost

		110.00.0	
1	1	6	10 6 4 1 0
2	2	6	10 7 8 1 1
3	3	6	10 11 9 1 2
4	4	6	10 16 16 1 3
5	5	6	10 15 3 1 4
6	6	6	10 10 -1 0 5
7	1	6	17 6 4 1 0
8	2	6	17 7 8 1 1
9	3	6	17 11 9 1 2
10	4	6	17 16 15 1 3
11	5	6	17 17 -1 0 4
(11 rov	vs)		

Many to One

pgr_dijkstra(Edges SQL, start vids, end vid, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices \(\{6, 1\}\) to vertex \(17\) on a **directed** graph

SELECT * FROM pgr_Dijkstra('select id, source, target, cost, reverse_cost from edges', ARRAY(6, 1, 17); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	17 1 6 1 0
2	2	1	17 3 7 1 1
3	3	1	17 7 8 1 2
4	4	1	17 11 11 1 3
5	5	1	17 12 13 1 4
6	6	1	17 17 -1 0 5
7	1	6	17 6 4 1 0
8	2	6	17 7 8 1 1
9	3	6	17 11 11 1 2
10	4	6	17 12 13 1 3
11	5	6	17 17 -1 0 4
(11 row	/S)		

Many to Many

pgr_dijkstra(<u>Edges SQL</u>, start vids, end vids, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\{6, 1\})$ to vertices $(\{10, 17\})$ on an **undirected** graph

SELEC	T * FRC	DM pgr	_Dijkst	ra(
'select	t id, sour	ce, tar	get, co	st, re	verse	e_cost	t from e	dges',	
ARRA	Y[6, 1],	ARRA	Y[10, 1	7],					
directe	ed => fal	se);							
seq p	ath_seq	start	vid e	end_v	/id r	node	edge	cost a	agg_cost
+	+		+	+	+-	+-	+		
11	11	11	10	11	61	11	0		

2| 3| 4| 5| 2| 3| 4| 5| 6| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 1| 1| 1| 1| 1| 1| 1| 1| 1| 6| 1 2 3 4 0 1 2 3 4 5 0

Combinations

pgr_dijkstra(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq. path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an $\ensuremath{\textbf{undirected}}$ graph

The combinations table:

SELECT source, target FROM combinations; source | target

+	
5	6
5	10
6	5
6	15
6	14
(5 rows)	

The query:

SELECT * FROM pgr_Dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT source, target FROM combinations',

OLLEOT Source, larger Thom combinations,	
false);	
seq path_seq start_vid end_vid node edge cost agg_co	st

11	11	51	6 5 1 1	0
2	2	5	6 6 -1 0	1
3	1	5	10 5 1 1	0
4	2	5	10 6 2 1	1
5	3	5	10 10 -1 0	2
6	1	6	5 6 1 1	0
7	2	6	5 5 -1 0	1
8	1	6	15 6 2 1	0
9	2	6	15 10 3 1	1
10	3	6	15 15 -1 0	2
(10 row	vs)			

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

- Column Type Default Description • When true the graph is considered Directed directed BOOLEAN true
 - When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.

target	ANY- INTEGER	Identifier of the arrival vertex.
	INTEGER	

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. Many to One Many to Many
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. • <u>One to Many</u> • <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_Dijkstra('select id, source, target, cost, reverse_cost from edges', ARRAY[7, 10, 15, 10, 15], ARRAY[10, 7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			++++++++	
1	1	7	10 7 8 1	0
2	2	7	10 11 9 1	1
3	3	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 16 1	0
18	2	15	7 16 9 1	1
19	3	15	7 11 8 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 rov	NS)			

Example 2:

Making ${\tt start_vids}$ the same as ${\tt end_vids}$

SELECT * FROM pgr_Dijkstra('select id, source, target, cost, reverse_cost from edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	7	10	7	8	1	0
2	7	10	11	9	1	1
3	7	10	16	16	1	2
4	7	10	15	3	1	3
5	7	10	10	-1	0	4
	1 2 3 4 5	1 7 2 7 3 7 4 7 5 7	1 7 10 2 7 10 3 7 10 4 7 10 5 7 10	1 7 10 7 2 7 10 11 3 7 10 16 4 7 10 15 5 7 10 10	1 7 10 7 8 2 7 10 11 9 3 7 10 16 16 4 7 10 15 3 5 7 10 10 -1	+ 1 1

6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 16 1	0
18	2	15	7 16 9 1	1
19	3	15	7 11 8 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 row	(S)			

Example:

Manually assigned vertex combinations.

SELECT * FROM pgr_Dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7 6 4 1	0
2	2	6	7 7 -1 0	1
3	1	6	10 6 4 1	0
4	2	6	10 7 8 1	1
5	3	6	10 11 9 1	2
6	4	6	10 16 16 1	3
7	5	6	10 15 3 1	4
8	6	6	10 10 -1 0	5
9	1	12	10 12 13 1	0
10	2	12	10 17 15 1	1
11	3	12	10 16 16 1	2
12	4	12	10 15 3 1	3
13	5	12	10 10 -1 0	4
(13 row	/S)			

The examples of this section are based on the Sample Data network.

For directed graphs with cost and reverse_cost columns

- 1) Path from \(6\) to \(10\)
- 2) Path from \(6\) to \(7\)
- 3) Path from \(12\) to \(10\)
- 4) Path from \(12\) to \(7\)
- 5) Using One to Many to get the solution of examples 1 and 2
- 6) Using Many to One to get the solution of examples 2 and 4
- 7) Using Many to Many to get the solution of examples 1 to 4
- 8) Using Combinations to get the solution of examples 1 to 3
- For undirected graphs with cost and reverse cost columns
 - 9) Path from \(6\) to \(10\)

 - 10) Path from \(6\) to \(7\)
 - 11) Path from \(12\) to \(10\)
 - 12) Path from \(12\) to \(7\)
 - 13) Using One to Many to get the solution of examples 9 and 10
 - 14) Using Many to One to get the solution of examples 10 and 12
 - 15) Using Many to Many to get the solution of examples 9 to 12
 - 16) Using Combinations to get the solution of examples 9 to 11
- For directed graphs only with cost column
 - 17) Path from \(6\) to \(10\)
 - 18) Path from \(6\) to \(7\)
 - 19) Path from \(12\) to \(10\)
 - 20) Path from \(12\) to \(7\)
 - 21) Using One to Many to get the solution of examples 17 and 18
 - 22) Using Many to One to get the solution of examples 18 and 20
 - 23) Using Many to Many to get the solution of examples 17 to 20
 - 24) Using Combinations to get the solution of examples 17 to 19
- For undirected graphs only with cost column
 - 25) Path from \(6\) to \(10\)
 - 26) Path from \(6\) to \(7\)
 - 27) Path from \(12\) to \(10\)
 - 28) Path from \(12\) to \(7\)
 - 29) Using One to Many to get the solution of examples 25 and 26
 - 30) Using Many to One to get the solution of examples 26 and 28
 - 31) Using Many to Many to get the solution of examples 25 to 28
 - 32) Using Combinations to get the solution of examples 25 to 27
- Equvalences between signatures
 - 33) Using One to One

- <u>34) Using One to Many</u>
- 35) Using Many to One
- 36) Using Many to Many
- 37) Using Combinations

For directed graphs with cost and reverse cost columns

Directed graph with cost and reverse cost columns

1) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 6, 10

seq p	ath_sec	q start	_vid e	end_v	vid r	node	edge	cost ag	g_cost
+	+-		+	+	+-	+- 4	+		
	11	6	10	0	4	11	0		

2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
(6 rows)							

2) Path from \(6\) to \(7\)

SELECT * FROM pgr_dljkstra(SELECT id, source, target, cost, reverse_cost FROM edges', 6, 7

seq p	oath_see	q start	_vid	end_	vid	node	edge	cost ag	gg_cos
+	+-		+	+-	+	+	+		
1	1	6	7	6	4	1	0		
21	21	61	71	71	.11	01	1		

2 | 2 | 6 | 7 | 7 | -1 | 0 | 1 (2 rows)

3) Path from (12) to (10)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 12, 10);

seq p	ath_sec	start_	vid e	nd_vi	d no	de eo	dge c	ost agg	_cost
+	+		+	+	+	+	+		
11	11	12	10	12	13	11	0		

		12	101	12	101		0
2	2	12	10	17	15	1	1
3	3	12	10	16	16	1	2
4	4	12	10	15	3	1	3
5	5	12	10	10	-1	0	4
(5 rows	.)						

4) Path from \(12\) to \(7\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 12, 7

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

								-
1	1	12	7	12	13	1	0	
2	2	12	7	17	15	1	1	
3	3	12	7	16	9	1	2	
4	4	12	7	11	8	1	3	
5	5	12	7	7	-1	0	4	
(5 rows	5)							

5) Using One to Many to get the solution of examples 1 and 2

Paths $(\ 6\ 10, 7\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 6, ARRAY[10, 7]

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7	6 4 1	0
2	2	6	7	7 -1 0	1
3	1	6	10	6 4 1	0
4	2	6	10	7 8 1	1
5	3	6	10	11 9 1	2
6	4	6	10	16 16 1	3
7	5	6	10	15 3 1	4
8	6	6	10	10 -1 0	5
(8 rows)					
Paths \(\{6, 12\}\rightarrow\{7\}\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 12], 7

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

7) Using Many to Many to get the solution of examples 1 to 4

Paths $(\ 12\ 12\ 10, 7\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 12], ARRAY[10,7]

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	6	10 6 4 1 0
4	2	6	10 7 8 1 1
5	3	6	10 11 9 1 2
6	4	6	10 16 16 1 3
7	5	6	10 15 3 1 4
8	6	6	10 10 -1 0 5
9	1	12	7 12 13 1 0
10	2	12	7 17 15 1 1
11	3	12	7 16 9 1 2
12	4	12	7 11 8 1 3
13	5	12	7 7 -1 0 4
14	1	12	10 12 13 1 0
15	2	12	10 17 15 1 1
16	3	12	10 16 16 1 2
17	4	12	10 15 3 1 3
18	5	12	10 10 -1 0 4
(18 row	/s)		

8) Using <u>Combinations</u> to get the solution of examples 1 to 3

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			++++++++	
1	1	6	7 6 4 1	0
2	2	6	7 7 -1 0	1
3	1	6	10 6 4 1	0
4	2	6	10 7 8 1	1
5	3	6	10 11 9 1	2
6	4	6	10 16 16 1	3
7	5	6	10 15 3 1	4
8	6	6	10 10 -1 0	5
9	1	12	10 12 13 1	0
10	2	12	10 17 15 1	1
11	3	12	10 16 16 1	2
12	4	12	10 15 3 1	3
13	5	12	10 10 -1 0	4
(13 row	/s)			

For undirected graphs with cost and reverse cost columns

Undirected graph with cost and reverse cost columns

9) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 6, 10, false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

10) Path from \(6\) to \(7\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges',

11) Path from \(12\) to \(10\)

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

τ.	-			Ŧ	-	-	+
1	1	12	10	12	11	1	0
2	2	12	10	11	5	1	1
3	3	12	10	10	-1	0	2
(3 rows)							

12) Path from \(12\) to \(7\)

SELECT * FROM pgr_dljkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 12, 7, false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

 1
 12
 7
 12
 12
 1
 0

 2
 12
 7
 8
 10
 1
 1

 3
 12
 7
 7
 -1
 0
 2
 1 | 2 | 3 | (3 rows)

13) Using One to Many to get the solution of examples 9 and 10

Paths $(\ 6\ \ 10, 7\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 6, ARRAY[10,7], false); poo Lotit and the content of the cost of the

seq path_seq start_vid end_vid node edge cost agg_cost
++++++

1	1	6	7 6 4 1	0
2	2	6	7 7 -1 0	1
3	1	6	10 6 2 1	0
4	2	6	10 10 -1 0	1
(4 rows	5)			

14) Using Many to One to get the solution of examples 10 and 12

Paths $(\ 12\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6,12], 7, false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	12	7 12 12 1 0
4	2	12	7 8 10 1 1
5	3	12	7 7 -1 0 2
(5 rows)		

15) Using Many to Many to get the solution of examples 9 to 12

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra(*SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 12], ARRAY[10,7], false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7 6 4 1	0
2	2	6	7 7 -1 0	1
3	1	6	10 6 2 1	0
4	2	6	10 10 -1 0	1
5	1	12	7 12 12 1	0
6	2	12	7 8 10 1	1
7	3	12	7 7 -1 0	2
8	1	12	10 12 11 1	0
9	2	12	10 11 5 1	1
10	3	12	10 10 -1 0	2
(10 rov	ws)			

16) Using Combinations to get the solution of examples 9 to 11

SELECT * FROM pgr_dijkstra("SELECT id, source, target, cost, reverse_cost FROM edges', "SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)', false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

	+-		+++++	
1	1	6	7 6 4 1	0
2	2	6	7 7 -1 0	1
3	1	6	10 6 2 1	0
4	2	6	10 10 -1 0	1
5	1	12	10 12 11 1	0
6	2	12	10 11 5 1	1
7	3	12	10 10 -1 0	2
(7 rows	s)			

Directed graph only with cost column

17) Path from \(6\) to \(10\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 6, 10); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost (0 rows)

18) Path from \(6\) to \(7\)¶

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 6, 7 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost 1 | 2 | (2 rows) 1 | 2 | 6| 7| 6| 4| 1| 6| 7| 7| -1| 0| 0 1

19) Path from \(12\) to \(10\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 12, 10); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost (0 rows)

20) Path from (12) to (7)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 12, 7

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost (0 rows)

21) Using One to Many to get the solution of examples 17 and 18

Paths $(\ 6\ \ 10, 7\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 6, ARRAY[10,7]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 | 1 | 2 | 2 | (2 rows) 6| 7| 6| 4| 1| 0 6| 7| 7| -1| 0| 1

22) Using Many to One to get the solution of examples 18 and 20

Paths $(\ 12\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', ARRAY[6,12], 7); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 | 1 | 2 | 2 | (2 rows) 6 | 7 | 6 | 4 | 1 | 0 6 | 7 | 7 | -1 | 0 | 1

23) Using Many to Many to get the solution of examples 17 to 20

Paths \(\{6, 12\}\rightarrow\{10, 7\}\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', ARRAY[6, 12], ARRAY[10,7]

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost 0 1

 1
 1
 6
 7
 6
 4
 1
 2
 2
 6
 7
 7
 -1
 0
 (2 rows)

Paths \(\{6\}\rightarrow\{10, 7\}\cup\{12\}\rightarrow\{10\}\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			+		+	+	
1	1	6	7	6	4	1	0
2	2	6	7	7	-1	0	1
(2 rows	5)						

For undirected graphs only with cost column

_images/Fig	y4-costUndi	rected.png		

Undirected graph only with cost column

25) Path from \(6\) to \(10\)

SELEC 'SELI 6, 10 false	CT * FRC ECT id, s ,	OM pgr ource,	_dijkstr target,	ra(cost	FRC	M edg	jes',		
); seq	path_seq	start	_vid e	end_v	/id r	node	edge	cost a	igg_cost
11	1	61	10	6	4	11	0		

2	2	6	10 j	7	8	1 j -	1
3	3	6	10	11	5	1	2
4	4	6	10	10	-1	0	3
(4 rows)						

26) Path from \(6\) to \(7\)

27) Path from \(12\) to \(10\)

SELECT * FR 'SELECT id, 12, 10, false	OM pgr source,	_dijkstr target,	a(cost	FRO	M ec	lges',	
);							

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	12	10	12	11	1	0	
2	2	12	10	11	5	1	1	
3	3	12	10	10	-1	0	2	
(3 rows)							

28) Path from \(12\) to \(7\)

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 12, 7, false

 taise

);
 seq [start_vid | end_vid | node | edge | cost | agg_cost

 1
 1

 2
 2

 3
 3

 12
 7

 3
 12

 7
 7

 10
 1

 1
 12

 10
 1

 11
 12

 12
 7

 13
 12

 12
 7

 13
 12

 12
 7

 12
 1

 12
 1

 12
 1

 12
 1

 12
 1

 14
 1

 15
 10

 16
 1

 17
 1

 18
 10

 19
 2

 10
 1

29) Using One to Many to get the solution of examples 25 and 26

Paths $(\ 0, 7)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 6, ARRAY[10,7], false); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 1 6 7 6 4 1 0

		0	1	0 4		0
2	2	6	7	7 -1	0	1
3	1	6	10	6 4	1	0
4	2	6	10	7 8	1	1
5	3	6	10	11 5	1	2
6	4	6	10	10 -1	0	3
(6 rows	5)					

Paths $(\ 12\)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', ARRAY[6, 12], 7, false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7	6 4 1	0
2	2	6	7	7 -1 0	1
3	1	12	7	12 12 1	0
4	2	12	7	8 10 1	1
5	3	12	7	7 -1 0	2
(5 rows	s)				

31) Using Many to Many to get the solution of examples 25 to 28

Paths $(\ 12\ 10, 7)$

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', ARRAY[6, 12], ARRAY[10,7], false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	6	10 6 4 1 0
4	2	6	10 7 8 1 1
5	3	6	10 11 5 1 2
6	4	6	10 10 -1 0 3
7	1	12	7 12 12 1 0
8	2	12	7 8 10 1 1
9	3	12	7 7 -1 0 2
10	1	12	10 12 11 1 0
11	2	12	10 11 5 1 1
12	3	12	10 10 -1 0 2
(12 row	/s)		

32) Using Combinations to get the solution of examples 25 to 27

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)', false

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	6	10 6 4 1 0
4	2	6	10 7 8 1 1
5	3	6	10 11 5 1 2
6	4	6	10 10 -1 0 3
7	1	12	10 12 11 1 0
8	2	12	10 11 5 1 1
9	3	12	10 10 -1 0 2
(9 rows))		

Equvalences between signatures

33) Using One to One

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 6, 10

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10	6	4 1	0
2	2	6	10	7	8 1	1
3	3	6	10	11	9 1	2
4	4	6	10	16	16 1	3
5	5	6	10	15	3 1	4
6	6	6	10	10	-1 0	5
(6 rows	5)					

34) Using One to Many

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', 6, ARRAY[10]

); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10	6	4	1	0
2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
(6 rows)							

35) Using Many to One

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6], 10

', seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

-	T		Τ.	T	-	T	T	
1	1	6	10	6	4	1	0	
2	2	6	10	7	8	1	1	
3	3	6	10	11	9	1	2	
4	4	6	10	16	16	1	3	
5	5	6	10	15	3	1	4	
6	6	6	10	10	-1	0	5	
(6 rows)								

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6], ARRAY[10]

seq pat	th_seq	start_	vid e	end_v	id n	ode (edge cos	t agg_cost
+	+	4		+	+	+	+	
1	1	6	10	6	4	1	0	
2	2	6	10	7	8	1	1	
3	3	6	10	11	9	1	2	
4	4	6	10	16	16	1	3	
5	5	6	10	15	3	1	4	
6	6	6	10	10	-1	0	5	
(6 rows)								

37) Using Combinations

SELECT * FROM pgr_dijkstra(

"SELECT 11, source, target, cost, reverse_cost FROM edges', "SELECT * FROM (VALUES(6, 10)) AS combinations (source, target)"); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10	6	4	1	0
2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
(G round)							

See Also

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

• The queries use the Sample Data network.

Indices and tables

- Index
- Search Page

pgr dijkstraCost

por diikstraCost - Total cost of the shortest path using Diikstra algorithm.

Boost Graph Inside

Availability

- Version 3.1.0
 - New proposed signature:
 - pgr_dijkstraCost (<u>Combinations</u>)
- Version 2.2.0
 - New Official function

Description

The pgr_dijkstraCost function sumarizes of the cost of the shortest path using Dijkstra Algorithm.

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

- Process is done only on edges with positive costs.
- A negative value on a cost column is interpreted as the edge does not exist.
- Values are returned when there is a path.
- · When there is no path:
 - · When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values \((v, v)\) is \(0\)
 - When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values \((u, v)\) is \(\infty\)
- · For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- Running time: $(O(| \text{ start} \vee ids | * (V \log V + E))))$
- · It does not return a path.
- Returns the sum of the costs of the shortest path of each pair combination of nodes requested.
- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid).
- · Depending on the function and its parameters, the results can be symmetric.
 - $\circ~$ The aggregate cost of $((u,\,v) \)$ is the same as for $((v,\,u) \).$
- · Any duplicated value in the start or end vertex identifiers are ignored.
- · The returned values are ordered:
 - start vid ascending
 - · end_vid ascending

Signatures

Summary

pgr_dijkstraCost(<u>Edges SQL</u>, start vid, end vid, [directed]) pgr_dijkstraCost(<u>Edges SQL</u>, start vid, end vids, [directed]) pgr_dijkstraCost(<u>Edges SQL</u>, start vids, end vid, [directed])

pgr_dijkstraCost(<u>Edges SQL</u>, **start vids**, end vids, [directed]) pgr_dijkstraCost(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (star_vid, end_vid, agg_cost) OR EMPTY SET

One to One

pgr_dijkstraCost(Edges SQL, start vid, end vid, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on a directed graph

(1 row)

One to Many

pgr_dijkstraCost(Edges SQL, start vid, end vids, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 17\}\) on a directed graph

SELECT * FROM pgr_dijkstraCost('SELECT id, source, target, cost, reverse_cost FROM edges', 6, ARRAY(10, 17)); start_vid | end_vid | agg_cost

Many to One

pgr_dijkstraCost(Edges SQL, start vids, end vid, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices \(\{6, 1\}\) to vertex \(17\) on a directed graph

SELECT * FROM pgr_dijkstraCost("SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 1], 17); start_vid | end_vid | agg_cost

Many to Many

pgr_dijkstraCost(Edges SQL, start vids, end vids, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 1\}))$ to vertices $((\{10, 17\}))$ on an undirected graph

SELECT * FROM pgr_dijkstraCost('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY(6, 1), ARRAY(10, 17), directed => false); start_vid | end_vid | agg_cost

+-	++	
1	10	4
1	17	5
6	10	1
6	17	4
(4 rows)		

Combinations

pgr_dijkstraCost(Edges SQL, Combinations SQL, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an **undirected** graph

The combinations table:

SELECT source, target FROM combinations;

5	6
5	10
6	5
6	15
6	14
(5 rows)	

source | target

The query:

SELECT * FROM pgr_dijkstraCost('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT source, target FROM combinations', false);

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.
Optional parameters		

Colum	n Type Default	Description
		• When true the graph is considered Directed
directed	BOOLEAN true	When talse the graph is considered as Undirected.

Inner Queries

Edges SQL

Co	olumn	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost		ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:				
ANY-INTEGI	ER:			
SMALLIN	NT, INTEGER, BIO	GINT		
ANY-NUMER	RICAL:			
SMALLIN	NT, INTEGER, BIC	BINT, REAL, FLOAT		
Combinations SC	ar i			
Parameter	Туре		Description	
source	ANY- INTEGER	Identifier of the departure	vertex.	
target	ANY- INTEGER	Identifier of the arrival vert	ex.	
Where:				
ANY-INTEGI	ER:			
SMALLIN	NT, INTEGER, BIO	GINT		
Result columns				
Set of (start_vi	id, end_vid, agg_c	ost)		

start_vid BIGINT Identifier of the starting vertex.

Description

Column Type

Identifier of the ending vertex. end_vid BIGINT

Aggregate cost from start_vid to end vid. agg_cost FLOAT

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dijkstraCost('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15, 10, 15], ARRAY[10, 7, 10, 15]); start_vid | end_vid | agg_cost

Example 2:

Making start_vids the same as end_vids

SELECT * FROM pgr_dijkstraCost('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); start_vid |end_vid | agg_cost

10 15	4 3
7	2
15	3
7	3
10	1
	10 15 7 15 7 7 10

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_dijkstraCost("SELECT id, source, target, cost, reverse_cost FROM edges', "SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); start_vid | end_vid | agg_cost

```
6 |
6 |
12 |
                 7 |
10 |
10 |
                             5
4
(3 rows)
```

See Also

- Dijkstra Family of functions
- Sample Data

<u>https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm</u>

- Indices and tables
 - Index
 - Search Page

pgr_dijkstraCostMatrix

pgr_dijkstraCostMatrix - Calculates a cost matrix usingpgr_dijkstra.

Boost Graph Inside

Availability

• Version 3.0.0

· Official function

Version 2.3.0

· New proposed function

Description

Using Dijkstra algorithm, calculate and return a cost matrix.

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

- · Can be used as input to pgr TSP.
 - Use directly when the resulting matrix is symmetric and there is no\(\infty\) value.
 - · It will be the users responsibility to make the matrix symmetric.
 - By using geometric or harmonic average of the non symmetric values.
 - By using max or min the non symmetric values.
 - By setting the upper triangle to be the mirror image of the lower triangle
 - By setting the lower triangle to be the mirror image of the upper triangle.

- It is also the users responsibility to fix an\(\infty\) value.
- Each function works as part of the family it belongs to.
- · It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- · Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - The aggregate cost in the non included values (v, v) is 0.
 - · When the starting vertex and ending vertex are the different and there is no path.
 - The aggregate cost in the non included values (u, v) is \(\infty\).
- · Let be the case the values returned are stored in a table:
 - The unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The aggregate cost of (u, v) is the same as for (v, u).
- Any duplicated value in the start vids are ignored.
- · The returned values are ordered:
 - start_vid ascending
 - end_vid ascending

Signatures

Summary

pgr_dijkstraCostMatrix(Edges SQL, start vids, [directed])

Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Symmetric cost matrix for vertices \(\{5, 6, 10, 15\}\) on an undirected graph

 SELECT id, source, target, cost, reverse_cost FROM edges',

 (SELECT raray_agg(id)

 FROM vertices

 WHERE id IN (5, 6, 10, 15)),

 false);

 start_vid | end_vid | agg_cost

 5

 5

 6

 1

 5

10	2
15	3
5	1
10	1
15	2
5	2
6	1
15	1
5	3
6	2
10	1
	15 5 10 15 5 6 10

Parameters

Column Type Description

Edges SQL TEXT Edges SQL as described below

start vids ARRAY[BIGINT] Array of identifiers of starting vertices.

Optional parameters

Column	Туре	Default	Description

 When true the graph is considered Directed
 When talse the graph is considered as Undirected.

Inner Queries

Edges SQL

	Column	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)

Column	Туре	Default	Description
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGER,	BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTEGER,	BIGINT, REAL, FLOAT		
Result columns			
Set of (start_vid, end_vid, age	g_cost)		
Column Type	Description		
start_vid BIGINT Ident	ifier of the starting vertex.		
end_vid BIGINT Ident	ifier of the ending vertex.		
agg_cost FLOAT Aggr	egate cost from start_vid to end_vid.		
Additional Examples			
Example:			
Use with pgr_TSP.			
SELECT * FROM pgr_TSP(\$\$			
SELECT * FROM pgr_dijkstra 'SELECT id, source, target, (SELECT array_agg(id)	aCostMatrix(cost, reverse_cost FROM edges',		
WHERE id IN (5, 6, 10, 15)),		
\$\$); NOTICE: pgr_TSP no longer s	solving with simulated annaeling		
HINT: Ignoring annaeling para seq node cost agg_cost	imeters		
1 5 0 0			

 1
 5
 0
 0

 2
 6
 1
 1

 3
 10
 1
 2

 4
 15
 1
 3

 5
 5
 3
 6

 (5 rows)
 6
 1
 1

See Also

- Dijkstra Family of functions
- <u>Cost Matrix Category</u>
- Traveling Sales Person Family of functions

<u>Sample Data</u>

Indices and tables

- Index
- Search Page

pgr_drivingDistance

pgr_drivingDistance - Returns the driving distance from a start node.

Boost Graph Inside

Availability

Version 3.6.0

• Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

- pgr_drivingdistance (Single vertex)
 - Added depth and start_vid result columns.
- pgr_drivingdistance (Multiple vertices)
 - Result column name change: from_v to start_vid.
 - Added depth and pred result columns.

Version 2.1.0

• Signature change pgr_drivingDistance(single vertex)

New Official pgr_drivingDistance(multiple vertices)

Version 2.0.0

Official:: pgr_drivingDistance(single vertex)

Description

Using the Dijkstra algorithm, extracts all the nodes that have costs less than or equal to the value/istance. The edges extracted will conform to the corresponding spaning tree.

Signatures

pgr_drivingDistance(<u>Edges SQL</u>, **Root vid**, distance, [directed]) pgr_drivingDistance(<u>Edges SQL</u>, **Root vids**, distance, [options]) options: [directed, equicost] Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single Vertex

pgr_drivingDistance(<u>Edges SQL</u>, Root vid, distance, [directed]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

From vertex (11) for a distance of (3.0)

SELECT * FROM pgr_drivingDistance("SELECT id, source, target, cost, reverse_cost FROM edges', 11, 3.0); seq | depth | start_vid | pred | node | edge | cost | agg_cost

		and the second second second second second second	
1 2 3 4	0 1 1	11 11 11 -1 0 11 11 7 8 1 11 11 7 8 1 11 11 12 11 1 11 11 16 9 1	+ 0 1 1
5	2	11 7 3 7 1	2
6	2	11 7 6 4 1	2
7	2	11 7 8 10 1	2
8	2	11 16 15 16 1	2
9	2	11 16 17 15 1	2
10	3	11 3 1 6 1	3
11	3	11 6 5 1 1	3
12	3	11 8 9 14 1	3
13	3	11 15 10 3 1	3
(13 rov	ws)		

Multiple Vertices

pgr_drivingDistance(<u>Edges SQL</u>, **Root vids**, **distance**, [**options**]) **options:** [directed, equicost] Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

From vertices ((11, 16)) for a distance of (3.0) with equi-cost on a directed graph

SELECT * FROM pgr_drivingDistance("SELECT id, source, target, cost, reverse_cost FROM edges', array[11, 16], 30, equicost => true); seq | depth | start_vid | pred | node | edge | cost | agg_cost

1	0	11 11	11 -1 0	0
2	1	11 11	7 8 1	1
3	1	11 11	12 11 1	1
4	2	11 7	3 7 1	2
5	2	11 7	6 4 1	2
6	2	11 7	8 10 1	2
7	3	11 3	1 6 1	3
8	3	11 6	5 1 1	3
9	3	11 8	9 14 1	3
10	0	16 16	16 -1 0	0
11	1	16 16	15 16 1	1
12	1	16 16	17 15 1	1
13	2	16 15	10 3 1	2
(13 rov	ws)			

Parameters 1

Parameter		Туре	Description
Edges SQL	TEXT		Edges SQL as described below.
Root vid	BIGINT		Identifier of the root vertex of the tree.
Root vids	ARRAY[ANY	INTEGER]	 Array of identifiers of the root vertices. \(0\) values are ignored For optimization purposes, any duplicated value is ignored.
distance	FLOAT		Upper limit for the inclusion of a node in the result.
Where: ANY-NUMERIC: SMALLINT, INT Optional parameters	EGER, BIGINT	, REAL, FLOAT	
Column Type	Default		Description
directed BOOLEAN	true parameters	When true the g When false the Undirected.	graph is considered <i>Directed</i> graph is considered as
Column	Туре	Default	Description

Column	Туре	Default

BOOLEAN true

Description

•	When true the node will only appear in the closeststart_vid list. Tie brakes are
	arbitrary.

• When false which resembles several calls using the single vertex signature.

Inner Queries

Edges SQL

equicost

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Parameter	Type Description
seq	BIGINT Sequential value starting from \(1\).
depth	Depth of the node. BIGINT • \(0\) when node = start_vid. • \(depth-1\) is the depth of pred
start_vid	BIGINT Identifier of the root vertex.
pred	Predecessor of node. BIGINT • When node = start_vid then has the value node.
node	BIGINT Identifier of node reached using edge.
edge	Identifier of the edge used to arrive from pred to BIGINT ^{node.} • \(-1\) when node = start_vid.
cost	FLOAT Cost to traverse edge.
agg_cost	FLOAT Aggregate cost from start_vid to node.

Additional Examples

Example:

From vertices $(\{11, 16\})$ for a distance of (3.0) on an undirected graph $(1, 16)$

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	3		0	5			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	3	11	8	9	14	1	3
	14	0	16	16	16	-1	0	0
16 1 16 16 15 16 1 17 1 16 16 17 15 1 1 18 2 16 11 7 8 1 2	15	1	16	16	11	9	1	1
17 1 16 16 17 15 1 18 2 16 11 7 8 1 2	16	1	16	16	15	16	1	1
18 2 16 11 7 8 1 2	17	1	16	16	17	15	1	1
	18	2	16	11	7	8	1	2

See Also

- pgr_alphaShape Alpha shape computation
- Sample Data network.
- Indices and tables

Index

• Search Page

pgr_KSP

pgr_KSP — Yen's algorithm for K shortest paths using Dijkstra.

Boost Graph Inside

Availability

Version 3.6.0

• Result columns standarized to: (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

- pgr_ksp (One to One)
 - · Added start_vid and end_vid result columns.
- · New overload functions:
 - pgr_ksp (One to Many)
 - pgr_ksp (Many to One)
 - pgr_ksp (Many to Many)
 - pgr_ksp (Combinations)

Version 2.1.0

Signature change

Old signature no longer supported

Version 2.0.0

Official function

Description

The K shortest path routing algorithm based on Yen's algorithm. "K" is the number of shortest paths desired.

Signatures

Summary

pgr_KSP(Edges SQL, start vid, end vid, K, [options]) pgr_KSP(Edges SQL, start vid, end vids, K, [options]) pgr_KSP(Edges SQL, start vids, end vids, K, [options]) pgr_KSP(Edges SQL, combinations SQL, K, [options]) pgtions: [directed, heap_paths] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_KSP(Edges SQL, start vid, end vid, K, [options]) options: [directed, heap_paths]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Get 2 paths from \(6\) to \(17\) on a directed graph.

SELECT * FROM pgr_KSP('SELECT id, source, target, cost, reverse_cost FROM edges',

6, 17, 2); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

		1 1 1 1 1 1 1 1 1					1		 -99
+	+	++		+	+	+	+	+	
1	1	1	6	17	6	4	1	0	
21	- 1 i	21	e i	17 İ	τi	101	1.1	1	

2	1	2	6	17 7 10 1	1
3	1	3	6	17 8 12 1	2
4	1	4	6	17 12 13 1	3
5	1	5	6	17 17 -1 0	4
6	2	1	6	17 6 4 1	0
7	2	2	6	17 7 8 1	1
8	2	3	6	17 11 9 1	2
9	2	4	6	17 16 15 1	3
10	2	5	6	17 17 -1 0	4
(10 rov	vs)				

One to Many

pgr_KSP(Edges SQL, start vid, end vids, K, [options])

options: [directed, heap_paths] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Get 2 paths from vertex $\(6\)$ to vertices $((\10, 17\))$ on a directed graph.

SELECT * FROM pgr_K	SP(
'select id, source, targe	t, cos	st, r	everse	 ost fror	n eo	dge	es',		
6, ARRAY[10, 17], 2);									

seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

	+			+++++++
1	1	1	6	10 6 4 1 0
2	1	2	6	10 7 8 1 1
3	1	3	6	10 11 9 1 2
4	1	4	6	10 16 16 1 3
5	1	5	6	10 15 3 1 4
6	1	6	6	10 10 -1 0 5
7	2	1	6	10 6 4 1 0
8	2	2	6	10 7 10 1 1
9	2	3	6	10 8 12 1 2
10	2	4	6	10 12 13 1 3
11	2	5	6	10 17 15 1 4
12	2	6	6	10 16 16 1 5
13	2	7	6	10 15 3 1 6
14	2	8	6	10 10 -1 0 7
15	3	1	6	17 6 4 1 0
16	3	2	6	17 7 10 1 1
17	3	3	6	17 8 12 1 2
18	3	4	6	17 12 13 1 3
19	3	5	6	17 17 -1 0 4
20	4	1	6	17 6 4 1 0
21	4	2	6	17 7 8 1 1
22	4	3	6	17 11 9 1 2
23	4	4	6	17 16 15 1 3
24	4	5	6	17 17 -1 0 4
(24 rov	vs)			

Many to One

pgr_KSP(Edges SQL, start vids, end vid, K, [options]) options: [directed, heap_paths] Returns set of [seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Get 2 paths from vertices $(\ 0, 1))$ to vertex (17) on a directed graph.

SELECT * FROM pgr_KSP('select id, source, target, cost, reverse_cost from edges', ARRAY(6, 11, 17, 2); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

Many to Many

pgr_KSP(<u>Edges SQL</u>, start vids, end vids, K, [options]) options: [directed, heap_paths] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Get 2 paths vertices $\langle \{6, 1\} \rangle$ to vertices $\langle \{10, 17\} \rangle$ on a directed graph.

SELECT * FROM pgr_KSP('select id, source, target, cost, reverse_cost from edges', ARRAY[6, 1], ARRAY[10, 17], 2);

74111	, i [0, i]	,	1110, 1	'], <i>L</i> /,							
seq	path_id	path_s	seq sta	urt_vid	end	_vid	node	edge	cost	agg_cos	st

			+	+	+++++
11	1	11	1	10	1 6 1 0
2	11	2	1	10	3 7 1 1
3	- 1 j	3	1 j	10	7 8 1 2
4	1	4	1	10	11 9 1 3
5	1	5	1	10	16 16 1 4
6	1	6	1	10	15 3 1 5
7	1	7	1	10	10 -1 0 6
8	2	1	1	10	1 6 1 0
9	2	2	1	10	3 7 1 1
10	2	3	1	10	7 10 1 2
11	2	4	1	10	8 12 1 3
12	2	5	1	10	12 13 1 4
13	2	6	1	10	17 15 1 5
14	2	7	1	10	16 16 1 6
15	2	8	1	10	15 3 1 7
16	2	9	1	10	10 -1 0 8
17	3	1	1	17	1 6 1 0
18	3	2	1	17	3 7 1 1
19	3	3	1	17	7 10 1 2
20	3	4	1	17	8 12 1 3
21	3	5	1	17	12 13 1 4
22	3	6	1	17	17 -1 0 5
23	4	1	1	17	1 6 1 0
24	4	2	1	17	3 7 1 1
25	4	3	1	17	7 8 1 2
26	4	4	1	17	11 9 1 3
27	4	5	1	17	16 15 1 4
28	4	6	1	17	17 -1 0 5
29	5	1	6	10	6 4 1 0
30	5	2	6	10	7 8 1 1
31	5	3	6	10	11 9 1 2
32	5	4	6	10	16 16 1 3
33	5	5	6	10	15 3 1 4
34	5	6	6	10	10 -1 0 5
35	6	11	6	10	6 4 1 0
36	6	2	6	10	/ 10 1 1
37	6	3	6	10	8 12 1 2
38	6	4	6	10	12 13 1 3

39	6	5	6	10 17 15 1	4
40	6	6	6	10 16 16 1	5
41	6	7	6	10 15 3 1	6
42	6	8	6	10 10 -1 0	7
43	7	1	6	17 6 4 1	0
44	7	2	6	17 7 10 1	1
45	7	3	6	17 8 12 1	2
46	7	4	6	17 12 13 1	3
47	7	5	6	17 17 -1 0	4
48	8	1	6	17 6 4 1	0
49	8	2	6	17 7 8 1	1
50	8	3	6	17 11 9 1	2
51	8	4	6	17 16 15 1	3
52	8	5	6	17 17 -1 0	4
(52 row	s)				

Combinations

pgr_KSP(Edges SQL, Combinations SQL, K, [options]) options: [directed, heap_paths] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an directed graph

The combinations table:

SELECT source, target FROM combinations; source | target

+	
5	6
5	10
6	5
6	15
6	14
(5 rows)	

The query:

SELECT * FROM pgr_KSP(
'SELECT id, source, target, cost, reverse_cost FROM edges',
'SELECT source, target FROM combinations', 2);
seq path_id path_seq start_vid end_vid node edge cost agg_cost
++++++

			+	++++++++
1	1	1	5	6 5 1 1 0
2	1	2	5	6 6 -1 0 1
3	2	1	5	10 5 1 1 0
4	2	2	5	10 6 4 1 1
5	2	3	5	10 7 8 1 2
6	2	4	5	10 11 9 1 3
7	2	5	5	10 16 16 1 4
8	2	6	5	10 15 3 1 5
9	2	7	5	10 10 -1 0 6
10	3	1	5	10 5 1 1 0
11	3	2	5	10 6 4 1 1
12	3	3	5	10 7 10 1 2
13	3	4	5	10 8 12 1 3
14	3	5	5	10 12 13 1 4
15	3	6	5	10 17 15 1 5
16	3	7	5	10 16 16 1 6
17	3	8	5	10 15 3 1 7
18	3	9	5	10 10 -1 0 8
19	4	1	6	5 6 1 1 0
20	4	2	6	5 5 -1 0 1
21	5	1	6	15 6 4 1 0
22	5	2	6	15 7 8 1 1
23	5	3	6	15 11 9 1 2
24	5	4	6	15 16 16 1 3
25	5	5	6	15 15 -1 0 4
26	6	1	6	15 6 4 1 0
27	6	2	6	15 7 10 1 1
28	6	3	6	15 8 12 1 2
29	6	4	6	15 12 13 1 3
30	6	5	6	15 17 15 1 4
31	6	6	6	15 16 16 1 5
32	6	7	6	15 15 -1 0 6
(32 r	ows)			

Parameters 1

Column	Туре	Description			
Edges SQL	TEXT	SQL query as described.			
start vid	ANY-INTEGER	Identifier of the departure vertex.			
end vid	ANY-INTEGER	Identifier of the destination vertex.			
к	ANY-INTEGER	Number of required paths.			
Where:					
ANY-INTEGER:					

SMALLINT, INTEGER, BIGINT

Optional parameters

Column	Туре	Default	Description
			• When true the graph is considered Directed

directed BOOLEAN true · When false the graph is considered as Undirected.

Column Type Default

heap_paths BOOLEAN false

Description

 When false Returns at mo 	st K paths.
--	-------------

When true all the calculated paths while processing are returned.

• Roughly, when the shortest path has N edges, the heap will contain about than N * K paths for small value of K and K >

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

 $Returns \ set \ of (seq, \ path_id, \ path_seq, \ start_vid, \ end_vid, \ node, \ edge, \ cost, \ agg_cost)$

Colum	Туре	Description
seq	INTEGER Sequential value starting from 1.	

Path identifier.

Has value 1 for the first of a path fromstart_vid to end_vid

 ${\tt path_seq} \ {\tt INTEGER} \ {\sf Relative} \ {\tt position} \ in \ the \ {\tt path}. \ {\sf Has} \ {\tt value1} \ for \ the \ {\tt beginning} \ of \ a \ {\tt path}.$

node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid
------	--------	---

edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.

 $\begin{array}{c} \mbox{Cost to traverse from node using edge to the next node in the path sequence.} \\ \mbox{cost} & \mbox{FLOAT} \end{array}$

\(0\) for the last node of the path.

agg_cost FLOAT Aggregate cost from start vid to node.

Additional Examples

Example:

Get 2 paths from $\(6\)$ to $\(17\)$ on an undirected graph

Also get the paths in the heap.

SELECT * FROM pgr_KSP('SELECT id, source, target, cost, reverse_cost FROM edges', 6, 17, 2,

directed => false, heap_paths => true

); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	6	17 6 4 1 0
2	1	2	6	17 7 10 1 1
3	1	3	6	17 8 12 1 2
4	1	4	6	17 12 13 1 3
5	1	5	6	17 17 -1 0 4
6	2	1	6	17 6 4 1 0
7	2	2	6	17 7 8 1 1
8	2	3	6	17 11 11 1 2
9	2	4	6	17 12 13 1 3
10	2	5	6	17 17 -1 0 4
11	3	1	6	17 6 4 1 0
12	3	2	6	17 7 8 1 1
13	3	3	6	17 11 9 1 2
14	3	4	6	17 16 15 1 3
15	3	5	6	17 17 -1 0 4
16	4	1	6	17 6 2 1 0
17	4	2	6	17 10 5 1 1
18	4	3	6	17 11 9 1 2
19	4	4	6	17 16 15 1 3
20	4	5	6	17 17 -1 0 4
(20 row	s)			

Example:

Get 2 paths using combinations table on an undirected graph

Also get the paths in the heap.

SELECT * FROM pgr_KSP("SELECT id, source, target, cost, reverse_cost FROM edges, "SELECT source, target FROM combinations", 2, directed => false, heap_paths => true); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 1 2 2 3 3 3 4 5 5 6	1 2 1 2 3 1 2 3 4 5 2 1 2 3 1 2 3 1 2	5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
6	3	1	5	10 5 1 1 0
7	3	2	5	10 6 4 1 1
8	3	3	5	10 7 8 1 2
9	3	4	5	10 11 5 1 3
10	3	5	5	10 10 -1 0 4
11	4	1	6	5 6 1 1 0
12	4	2	6	5 5 -1 0 1
13	5	1	6	15 6 2 1 0
14	5	2	6	15 10 3 1 1
15	5	3	6	15 15 -1 0 2
16	6	1 j	6	15 6 4 1 0
17 j	6	2	6	15 7 8 1 1
18	6	3 j	6	15 11 9 1 2
19	6	4	6	15 16 16 1 3
20 j	6	5	6	15 15 -1 0 4
21	7	1 j	6	15 6 2 1 0
22 j	7	2	6	15 10 5 1 1
23 İ	71	зi	6	15 11 9 1 2
24	71	4	6	15 16 16 1 3
25	7	5	6	15 15 1 0 4
(25 rov	vs)		21	

Example:

Get 2 paths from vertices $(\ 0, 1))$ to vertex (17) on a undirected graph.

SELECT * FROM pgr_KSP(

Select i, source, target, cost, reverse_cost from edges', ARRAY(6, 1), 17, 2, directed => false); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			- I I I I I
1	1	11	1/ 1 6 1 0
1	2	1	17 3 7 1 1
1	3	1	17 7 10 1 2
1	4	1	17 8 12 1 3
1	5	1	17 12 13 1 4
1	6	1	17 17 -1 0 5
2	1	1	17 1 6 1 0
2	2	1	17 3 7 1 1
2	3	1	17 7 8 1 2
2	4	1	17 11 9 1 3
2	5	1	17 16 15 1 4
2	6	1	17 17 -1 0 5
3	1	6	17 6 4 1 0
3	2	6	17 7 10 1 1
3	3	6	17 8 12 1 2
3	4	6	17 12 13 1 3
3	5	6	17 17 -1 0 4
4	1	6	17 6 4 1 0
4	2	6	17 7 8 1 1
4	3	6	17 11 11 1 2
4	4	6	17 12 13 1 3
4	5	6	17 17 -1 0 4
rows)			
	1 1 1 1 1 1 1 1 1 2 2	I I 1 1 1 2 1 3 1 4 1 5 2 3 2 1 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 4 1 4 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4	I I I I 1 2 1 1 1 2 1 1 1 3 1 1 1 4 1 1 1 6 1 1 2 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 3 1 2 2 4 1 1 1 1 2 3 1 6 1 1 1 1 3 3 2 6 1 1 1 1 3 3 3 6 1 1 6 1 4 4 3 6 1 4 4

Example:

Get 2 paths vertices $(({6, 1}))$ to vertices $(({10, 17}))$ on a directed graph.

Also get the paths in the heap.

SELECT * FROM pgr_KSP('select id, source, target, cost, reverse_cost from edges', ARRAY[6, 1], ARRAY[10, 17], 2, heap_paths => true); seq |path_id | path_seq |star_vid | end_vid | node | edge | cost | agg_cost

1	1	1	1	10	1	6 1	0
2	1	2	1	10	3	7 1	1
3	1	3	1	10	7	8 1	2
4	1	4	1	10	11	9 1	3
5	1	5	1	10	16	16 1	4
6	1	6	1	10	15	3 1	5
7	1	7	1	10	10	-1 0	6
8	2	1	1	10	1	6 1	0
9	2	2	1	10	3	7 1	1
10	2	3	1	10	7	10 1	2
11	2	4	1	10	8	12 1	3
12	2	5	1	10	12	13 1	4
13	2	6	1	10	17	15 1	5
14	2	7	1	10	16	16 1	6
15	2	8	1	10	15	3 1	7
16	2	9	1	10	10	-1 0	8
17	3	1	1	10	1	6 1	0
18	3	2	1	10	3	7 1	1

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	3 3 3 3 3 3 4 4 4 4 4 5 5	3 5 7 8 9 2 4 5 5 2 2	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
42 43	6	5 6	1	17 16 15 1 4 17 17 -1 0 5
44	7	1	6	10 6 4 1 0
45	7	2	6	10 7 8 1 1 1
47	7	4	6	10 16 16 1 3
48	7	5	6	10 15 3 1 4
49	7	6	6	
51	8	2	6	
52	8	3	6	10 8 12 1 2
53	8	4	6	10 12 13 1 3
54	8	5	6	10 1/ 15 1 4
56	8	71	6	10 15 3 1 6
57	8	8	6	10 10 -1 0 7
58	9	1	6	10 6 4 1 0
59 60	9	2	6	
61	9	4	6	10 12 13 1 3
62	9	5	6	10 17 15 1 4
63	9	6	6	10 16 16 1 5
65	9	81	6	
66	10	1	6	17 6 4 1 0
67	10	2	6	17 7 10 1 1
68	10	3	6	17 8 12 1 2
70	10	5	6	17 17 -1 0 4
71	11	- 1 j	6	17 6 4 1 0
72	11	2	6	
74	11	4	61	17 12 13 1 3
75	11	5	6	17 17 -1 0 4
76	12	1	6	17 6 4 1 0
78	12	2	6 6	17 7 8 1 1
79	12	4	6	17 16 15 1 3
80	12	5	6	17 17 -1 0 4
(80 r	OWS)			

See Also

- K shortest paths Category
- <u>Sample Data</u>
- <u>https://en.wikipedia.org/wiki/K_shortest_path_routing</u>

Indices and tables

- Index
- Search Page

pgr_dijkstraVia - Proposed

 $\ensuremath{\mathsf{pgr}_dijkstraVia}\xspace \longrightarrow \ensuremath{\mathsf{Pgr}_dijkstraVia}\xspace ### Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

Boost Graph Inside

Availability

Version 2.2.0

• New proposed function

Description

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between(vertex_i) and \(vertex_{i+1})) for all \(i < size_of(via\,vertices)).

Route:

is a sequence of paths.

Path:

is a section of the route.

Signatures

One Via

pgr_dijkstraVia(<u>Edges SQL</u>, via vertices, [options]) options: [directed, strict, U_turn_on_edge] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost) OR EMPTY SET

Example:

Find the route that visits the vertices $({5, 1, 8})$ in that order on an directed graph.

SELECT * FROM pgr_dijkstraVia('SELECT id, source, target, cost, reverse_cost FROM edges order by id', ARRAY[5, 1, 8]);

sec	path_id	; 0]); d path_	seq sta	art_vid er	nd_vid noo	de edge	cost agg_	_cost route_agg_o	cost
	++		+	+	++	++	+		
1	1	1	5	1 5	1 1	0	0		
2	1	2	5	1 6	4 1	1	1		
3	1	3	5	1 7	7 1	2	2		
4	1	4	5	1 3	6 1	3	3		
5	1	5	5	1 1	-1 0	4	4		
6	2	1	1	8 1	6 1	0	4		
7	2	2	1	8 3	7 1	1	5		
8	2	3	1	8 7	10 1	2	6		
9	2	4	1	8 8	-2 0	3	7		
(9 rc	ows)								

Parameters

Parameter	Ту	pe Defau	lt	Description
Edges SQL	TEXT		SQL query	as described.
via vertices	ARRAY [ANY-IN	TEGER]	Array of ord visited.	lered vertices identifiers that are going to be
Where:				
ANY-INTEGER:				
SMALLINT,	INTEGER, BIGINT			
Optional parameters				
Column Type	Default	Description		
	When	n true the graph is consid	lered Directed	
directed BOOLEAN	• When Undir	n false the graph is consi rected.	dered as	
Via optional parameters	1			
Parameter	Type Default		Desc	ription
		 When true if a path 	is missing sto	os and returns EMPTY SET
strict	BOOLEAN false	When false ignores	missing paths	returning all paths found
U_turn_on_edge	BOOLEAN true	• When true departir	g from a visite	d vertex will not try to avoid
Inner Queries				
Edges SQL¶				
Colum	n	Туре	Default	Description
id	ANY-INT	EGER	Ide	ntifier of the edge.
source	ANY-INT	EGER	Ide	ntifier of the first end point vertex of the edge.
target	ANY-INT	EGER	Ide	ntifier of the second end point vertex of the edge.
cost	ANY-NU	MERICAL	We	ight of the edge (source, target)
			We	ight of the edge (target, source)
reverse_cost	AN Y-NU	MERICAL -1		 When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Identifier of a path. Has value1 for the first path.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex of the path.
end_vid	BIGINT	Identifier of the ending vertex of the path.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
		Identifier of the edge used to go fromnode to the next node in the path sequence.
edge	BIGINT	-1 for the last node of the path.
		-2 for the last node of the route.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.
route_agg_cost	FLOAT	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Additional Examples

<u>The main query</u>

- Aggregate cost of the third path.
- Route's aggregate cost of the route at the end of the third path.
- Nodes visited in the route.
- The aggregate costs of the route when the visited vertices are reached.
- Status of "passes in front" or "visits" of the nodes.

 $\label{eq:linear} \mbox{All this examples are about the route that visits the vertices} (\label{eq:linear} (\label{eq:linear} \{5, 7, 1, 8, 15\})) \mbox{ in that order on a directed graph.}$

The main query¶

Aggregate cost of the third path.

SELECT agg_cost FROM pgr_dijkstraVia(SELECT id, source, target, cost, reverse_cost FROM edges order by id', ARRAY(5, 7, 1, 8, 15)) WHERE part id = 3 AND edge <0; agg_cost

3 (1 row)

Route's aggregate cost of the route at the end of the third path

7

(1 row)

Nodes visited in the route.

SELECT row_number() over () as node_seq, node FROM pgr_dijkstraVia('SELECT id, source, target, cost, reverse_cost FROM edges order by id', ARRAY[5, 7, 1, 8, 15]) WHERE edge $\diamond -1$ ORDER BY seq; node_seq | node

The aggregate costs of the route when the visited vertices are reached.

SELECT path_id, route_agg_cost FROM pgr_dijkstraVia(SELECT id, source, target, cost, reverse_cost FROM edges order by id', ARRAY[5, 7, 1, 8, 15]) WHERE edge < 0; path_id | route_agg_cost

1 | 2 2 | 4 3 | 7 4 | 11 (4 rows)

Status of "passes in front" or "visits" of the nodes.

SELECT seq, route_agg_cost, node, agg_cost, CASE WHEN edge = -1 THEN visits' ELSE 'passes in front' END as status FROM pgr_dijkstraVia(SELECT id, source, target, cost, reverse_cost FROM edges order by id', ARRAY(5, 7, 1, 8, 15)) WHERE agg_cost <> 0 or seq = 1; seq |route_agg_cost | node | agg_cost | status

1	0 5	0 passes in front
2	1 6	1 passes in front
3	2 7	2 visits
5	3 3	1 passes in front
6	4 1	2 visits
8	5 3	1 passes in front
9	6 7	2 passes in front
10	7 8	3 visits
12	8 12	1 passes in front
13	9 17	2 passes in front
14	10 16	3 passes in front
15	11 15	4 passes in from
(12 rows)		

See Also

- Via Category.
- Dijkstra Family of functions
- Sample Data network.

<u>https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm</u>

- Indices and tables
- Index
- Search Page

pgr_dijkstraNear - Proposed

pgr_dijkstraNear — Using Dijkstra's algorithm, finds the route that leads to the nearest vertex.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Boost Graph Inside

Availability

- Version 3.3.0
 - Promoted to proposed function
- Version 3.2.0
 - · New experimental function

Description

Given a graph, a starting vertex and a set of ending vertices, this function finds the shortest path from the starting vertex to the nearest ending vertex.

Characteristics

- · Uses Dijkstra algorithm.
- · Works for directed and undirected graphs.

- When there are more than one path to the same vertex with same cost:
 - · The algorithm will return just one path
- · Optionally allows to find more than one path.
 - · When more than one path is to be returned:
 - · Results are sorted in increasing order of:
 - aggregate cost
 - Within the same value of aggregate costs:

results are sorted by (source, target)

- Running time: Dijkstra running time: $\langle drt = O((|E| + |V|)\log|V|) \rangle$
 - One to Many; \(drt\)
 - Many to One: \(drt\)
 - Many to Many: \(drt * |Starting vids|\)
 - Combinations: \(drt * |Starting vids|\)

Signatures

Summary

pgr_dijkstraNear(<u>Edges SQL</u>, start vid, end vids, [options A]) pgr_dijkstraNear(<u>Edges SQL</u>, start vids, end vid, [options A]) pgr_dijkstraNear(<u>Edges SQL</u>, start vids, end vids, [options B]) pgr_dijkstraNear(<u>Edges SQL</u>, <u>Combinations SQL</u>, [options B]) options A: [directed, cap] options B: [directed, cap, global] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

One to Many

pgr_dijkstraNear(Edges SQL, start vid, end vids, [options])

options: [directed, cap] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Departing on car from vertex \(6\) find the nearest subway station.

- Using a directed graph for car routing.
- The subway stations are on the following vertices $(\1, 10, 11\))$
- · The defaults used
 - directed => true

cap => 1

1SELECT * FROM pgr_dijkstraNear(2 'SELECT id, source, target, cost, reverse_cost FROM edges', 3 6, ARRAV[10, 11, 1]); 4 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

5-	+	+		+	+	+	+	+-
6	1	1	6	11	6	4	1	0
7	2	2	6	11 j	7	8	1	1
8	3	3	6	11 j	11	-1	0	2
9(3 rows)							

The result shows that station at vertex \(11\) is the nearest.

Many to One

pgr_dijkstraNear(Edges SQL, start vids, end vid, [options]) options: [directed, cap] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

Example:

Departing on a car from a subway station find the nearesttwo stations to vertex \(2\)

- Using a directed graph for car routing.
- The subway stations are on the following vertices \(\{1, 10, 11\}\)
- On line 4: using the positional parameter: directed set to true
- In line 5: using named parameter cap => 2

1SELECT * FROM pgr_dijkstraNear(2 'SELECT id, source, target, cost, reverse_cost FROM edges', 3 ARRAY[10, 11, 1], 6,

4 true, 5 cap => 2); 6 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1-	+	+-			+	+	+	+	
8	1	1	10	6	10	2	1	0	
0	0.1	0.1	101	C	C 1	4.1	0 1		

9	2	2	10	6	6 -1	0	1
10	3	1	11	6	11 8	1	0
11	4	2	11	6	7 4	1	1
12	5	3	11	6	6 -1	0	2
13(5 row	s)					
14							

The result shows that station at vertex (10) is the nearest and the next best is (11).

Many to Many

pgr_dijkstraNear(Edges SQL, start vids, end vids, [options]) options: [directed, cap, global] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Find the best pedestrian connection between two lines of buses

- · Unsing an undirected graph for pedestrian routing
- The first subway line stations are at \(\{15, 16\}\)
- The second subway line stations stops are at ((1, 10, 11))
- On line 4: using the named parameter: directed => false
- · The defaults used:
 - cap => 1
 - global => true

1SELECT * FROM pgr_dijkstraNear(2 'SELECT id, source, target, cost, reverse_cost FROM edges', 3 ARRAY[15, 16], ARRAY[10, 11, 1], 4 directed = stalse); 5 seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost 6 15| 10| 15| 3| 1| 15| 10| 10| -1| 0| 7 1| 8 2| 0 1 1| 2| 9(2 rows) 10

For a pedestrian the best connection is to get on/off is at vertex\(15\) of the first subway line and at vertex\(10\) of the second subway line.

Only one route is returned because global is true and cap is 1

Combinations

pgr_dijkstraNear(Edges SQL, Combinations SQL, [options]) options: [directed, cap, global] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Find the best car connection between all the stations of two subway lines

- Using a directed graph for car routing.
- The first subway line stations stops are at/(\{1, 10, 11\}\)
- The second subway line stations are at ((15, 16))

The combinations contents:

SELECT unnest(ARRAY[10, 11, 1]) as source, target FROM (SELECT unnest(ARRAY[15, 16]) AS target) a UNION

SELECT unnest(ARRAY[15, 16]), target FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b ORDER BY source, target;

source	target
+	
1	15
1	16
10	15
10	16
11	15
11	16
15	1
15	10
15	11
16	1
16	10
16	11
(12 rows)

The query:

- lines 3~4 sets the start vertices to be from the first subway line and the ending vertices to be from the second subway line
- lines 6~7 sets the start vertices to be from the first subway line and the ending vertices to be from the first subway line
- On line 8: using the named parameter is global => false
- · The defaults used:
 - directed => true

cap => 1

1SELECT * FROM pgr_dijkstraNear(2 'SELECT id, source, target, cost, reverse_cost FROM edges', 3 'SELECT unnest(ARRAY[10, 11, 1]) as source, target 4 FROM (SELECT unnest(ARRAY[15, 16]) AS target) a 3

5 UNION

5 UNION 6 SELECT unnest(ARRAY[15, 16]), target 7 FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b', 8 global => false); 9 seq |path_seq |start_vid | end_vid | node | edge | cost | agg_cost 10 unstrument

10+			+++++++++	
11 1	1	11	16 11 9 1 0	
12 2	2	11	16 16 -1 0 1	
13 3	1	15	10 15 3 1 0	
14 4	2	15	10 10 -1 0 1	
15 5	1	16	11 16 9 1 0	
16 6	2	16	11 11 -1 0 1	
17 7	1	10	16 10 5 1 0	
18 8	2	10	16 11 9 1 1	
19 9	3	10	16 16 -1 0 2	
20 10	1	1	16 1 6 1 0	
21 11	2	1	16 3 7 1 1	
22 12	3	1	16 7 8 1 2	
23 13	4	1	16 11 9 1 3	
24 14	5	1	16 16 -1 0 4	
25(14 row	rs)			
26				

From the results:

- making a connection from the first subway line ((1, 10, 11)) to the second ((15, 16)):
 - The best connections from all the stations from the first line are:\({(1 \rightarrow 16) (10 \rightarrow 16) (11 \rightarrow 16))\)
 - The best one is \((11 \rightarrow 16)\) with a cost of \(1\) (lines: 11 and 12)
- making a connection from the second subway line ((15, 16)) to the first ((1, 10, 11)):

- The best connections from all the stations from the second line are:\({(15 \rightarrow 10) (16 \rightarrow 11)}\)
- Both are equaly good as they have the same cost. (lines: 13 and 14 and lines: 15 and 16)

Description

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.
Dijkstra optional param	eters	

		• When true the graph is considered Directed
directed	BOOLEAN true	• When false the graph is considered as Undirected.

Near optional parameters

Column Type Default

Parameters

Parameter	Туре	Default	Description
сар	BIGINT	1	Find at most cap number of nearest shortest paths
global	BOOLEAN	true	 When true: only cap limit results will be returned When false: cap limit per Start vid will be returned

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description

source ANY-INTEGER Identifier of the departure vertex.

target ANY-INTEGER Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex of the current path.
end_vid	BIGINT	Identifier of the ending vertex of the current path.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

See Also

- Dijkstra Family of functions
- pgr_dijkstraNearCost Proposed
- Sample Data network.
- boost: https://www.boost.org/libs/graph/doc/table_of_contents.html

Wikipedia: <u>https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm</u>

Indices and tables

- Index
- Search Page

pgr_dijkstraNearCost - Proposed

pgr_dijkstraNearCost - Using dijkstra algorithm, finds the route that leads to the nearest vertex.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

Boost Graph Inside

Availability

- Version 3.3.0
 - Promoted to proposed function
- Version 3.2.0
 - New experimental function

Description

Given a graph, a starting vertex and a set of ending vertices, this function finds the shortest path from the starting vertex to the nearest ending vertex.

Characteristics

- Uses Dijkstra algorithm.
- Works for directed and undirected graphs.
- When there are more than one path to the same vertex with same cost:
 - The algorithm will return just one path
- · Optionally allows to find more than one path.
 - When more than one path is to be returned:
 - Results are sorted in increasing order of:
 - aggregate cost
 - Within the same value of aggregate costs:
 - results are sorted by (source, target)

- Running time: Dijkstra running time: \(drt = O((|E| + |V|)log|V|)\)
 - One to Many; \(drt\)
 - Many to One: \(drt\)
 - Many to Many: \(drt * |Starting vids|\)
 - Combinations: \(drt * |Starting vids|\)

Signatures

Summary

pgr_dijkstraNearCost(<u>Edges SQL</u>, start vid, end vids, [options A]) pgr_dijkstraNearCost(<u>Edges SQL</u>, start vids, end vid, [options A]) pgr_dijkstraNearCost(<u>Edges SQL</u>, start vids, end vids, [options B]) pgr_dijkstraNearCost(Edges SQL, Combinations SQL, [options B]) options A: [directed, cap] options B: [directed, cap, global] Returns set of (start_vid, end_vid, agg_cost)

OR EMPTY SET

One to Many

pgr_dijkstraNearCost(<u>Edges SQL</u>, start vid, end vids, [options]) options: [directed, cap] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Departing on car from vertex \(6\) find the nearest subway station.

- · Using a directed graph for car routing.
- The subway stations are on the following vertices $\langle \{1, 10, 11\} \rangle$
- · The defaults used
 - directed => true

cap => 1

1SELECT * FROM pgr_dijkstraNearCost(2 'SELECT i source, target, cost, reverse_cost FROM edges', 3 6, ARRAY[10, 11, 1]); 4 start_vid | end_vid | agg_cost 11 | 2 6 6 7(1 row) 6|

The result shows that station at vertex (11) is the nearest.

Many to One

pgr_dijkstraNearCost(Edges SQL, start vids, end vid, [options]) options: [directed, cap] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example

Departing on a car from a subway station find the nearesttwo stations to vertex \(6\)

· Using a directed graph for car routing.

- The subway stations are on the following vertices $(\1, 10, 11))$
- On line 4: using the positional parameter: directed set to true
- In line 5: using named parameter cap => 2

1SELECT * FROM pgr_dijkstraNearCost(2 'SELECT id, source, target, cost, reverse_cost FROM edges', 3 ARRAY[10, 11, 1], 6,

```
3 ARRAY[10, 11, 1], 6,
4 true,
5 cap => 2) ORDER BY agg_cost;
6 start_vid | end_vid | agg_cost
```

7 8 10 6 | 6 | 1 9 111

10(2 rows 11

The result shows that station at vertex (10) is the nearest and the next best is ((11)).

Many to Many

pgr_dijkstraNearCost(Edges_SQL, start vids, end vids, [options]) options: [directed, cap, global] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example

Find the best pedestrian connection between two lines of buses

- · Unsing an undirected graph for pedestrian routing
- The first subway line stations are at\(\{15, 16\}\)
- The second subway line stations stops are at\(\{1, 10, 11\}\)
- On line 4: using the named parameter: directed => false
- · The defaults used:
 - cap => 1
 - global => true

1SELECT * FROM pgr_dijkstraNearCost(2 'SELECT id, source, target, cost, reverse 3 ARRAY[15, 16], ARRAY[10, 11, 1], 4 directed => false); se cost FROM edges'

5 start_vid | end_vid | agg_cost

7 15 | 10 | 1 8(1 row) 9

For a pedestrian the best connection is to get on/off is at vertex\(15\) of the first subway line and at vertex\(10\) of the second subway line.

Only one route is returned because global is true and cap is 1

Combinations

pgr_dijkstraNearCost(Edges SQL, Combinations SQL, [options]) options: [directed, cap, global] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Example:

Find the best car connection between all the stations of two subway lines

- Using a directed graph for car routing.
- The first subway line stations stops are at\(\{1, 10, 11\}\)
- The second subway line stations are at $(\15, 16))$

The combinations contents:

SELECT unnest(ARRAY[10, 11, 1]) as source, target FROM (SELECT unnest(ARRAY[15, 16]) AS target) a UNION

UNION SELECT unnest(ARRAY[15, 16]), target FROM (SELECT unnest(ARRAY[10, 11, 1]) AS target) b ORDER BY source, target; source | target

	1
+-	
1	15
1	16
10	15
10	16
11	15
11	16
15	1
15	10
15	11
16	1
16	10
16	11
(12 rows	;)

The query:

• lines 3~4 sets the start vertices to be from the fisrt subway line and the ending vertices to be from the second subway line

• lines 6~7 sets the start vertices to be from the first subway line and the ending vertices to be from the first subway line

- On line 8: using the named parameter is global => false
- · The defaults used:
 - directed => true
 - cap => 1

1SELECT * FROM pgr_dijkstraNearCost(2 'SELECT id, source, target, cost, reverse_cost FROM edges', 3 'SELECT unnest(ARRAY[10, 11, 1]) as source, target 4 FROM (SELECT unnest(ARRAY[15, 16]) AS target) a

From the results:

- making a connection from the first subway line \(\{1, 10, 11\}\) to the second \(\{15, 16\}\):
 - The best connections from all the stations from the first line are:\/{(1 \rightarrow 16) (10 \rightarrow 16) (11 \rightarrow 16))}
 - $\,\circ\,$ The best one is \((11 \rightarrow 16)\) with a cost of ((1)) (lines: 1)
- making a connection from the second subway line $({15, 16})$ to the first $(({1, 10, 11}))$:
 - The best connections from all the stations from the second line are:\({(15 \rightarrow 10) (16 \rightarrow 11)}\)
 - Both are equaly good as they have the same cost. (lines: 12 and 13)

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.

Column Type Description

end vids ARRAY[BIGINT] Array of identifiers of ending vertices.

Dijkstra optional parameters

Column	Туре	Default	Description
directed	BOOLEAN	true	 When true the graph is considered <i>Directed</i> When take the graph is considered as <i>Undirected</i>.

Near optional parameters

Parameter	Туре	Default	Description
сар	BIGINT	1	Find at most cap number of nearest shortest paths
debal		1 true	When true: only cap limit results will be returned
giobai	BOOLEAN true		When false: cap limit per Start vid will be returned

Inner Queries

```
Edges SQL
```

	Column	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)
reverse	e_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where	ə:			

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.

-

target ANY-INTEGER Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
--------	------	-------------

start_vid BIGINT Identifier of the starting vertex.

end_vid BIGINT Identifier of the ending vertex.

 $\label{eq:stage_cost_float} agg_cost_float float_vid to end_vid.$

See Also

Dijkstra - Family of functions

pgr_dijkstraNear - Proposed

- Sample Data network.
- boost: https://www.boost.org/libs/graph/doc/table_of_contents.html
- Wikipedia: <u>https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm</u>
- Indices and tables
- Index
- Search Page

Introduction

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

The main characteristics are:

- Process is done only on edges with positive costs.
- A negative value on a cost column is interpreted as the edge does not exist.
- · Values are returned when there is a path.
- · When there is no path:
 - $\,\circ\,$ When the starting vertex and ending vertex are the same.
 - The aggregate cost of the non included values \((v, v)\) is \(0\)
 - When the starting vertex and ending vertex are the different and there is no path:
 - The aggregate cost the non included values \((u, v)\) is \(\infty\)
- For optimization purposes, any duplicated value in the starting vertices or on the ending vertices are ignored.
- Running time: $(O(| \text{ start} \vee ids | * (V \log V + E))))$

The Dijkstra family functions are based on the Dijkstra algorithm.

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Column Type Defa	ult Description
directed BOOLEAN true	 When true the graph is considered <i>Directed</i> When false the graph is considered as <i>Undirected</i>.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре	Description

the departure vertex.

target	ANY- INTEGER	Identifier of the arrival vertex.
--------	-----------------	-----------------------------------

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Advanced documentation

The problem definition (Advanced documentation)

Given the following query:

$pgr_dijkstra(\(sql, start_{vid}, end_{vid}, directed\))$

where $(sql = \{(id_i, source_i, target_i, cost_i, reverse (cost_i)\})$

and

- \(source = \bigcup source_i\),
- \(target = \bigcup target_i\),
- The graphs are defined as follows:

Directed graph

The weighted directed graph, $(G_d(V,E))$, is definied by:

- the set of vertices $\backslash (V \backslash)$
 - \(V = source \cup target \cup {start_{vid}} \cup {end_{vid}}\)
- the set of edges \(E\)
 - \(E = \begin{cases} \text{ \ (source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{if } reverse_cost = \varnothing \\ \text{ } \& \quad \text{} \ \\ (source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{is } \\ (cost_i) \text{ when } cost_i)
Undirected graph

The weighted undirected graph, $(G_u(V,E))$, is definied by:

- the set of vertices \(V\)
 - \(V = source \cup target \cup {start_v{vid}} \cup {end_{vid}}\)
- the set of edges \(E\)
 - \(E = \begin{cases} \text{ } \(source_i, target_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ } \\ \cup \(target_i, source_i, cost_i) \text{ when } cost >=0 \} & \quad \text{ if } reverse_cost = \varnothing \\ \text{ } \\ \cup \(target_i, source_i, cost_i) \text{ when } cost >=0 \} & \text{ if } reverse_cost_i >=0 \} & \text{ if } reverse_cost_i >=0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0 \} & \text{ when } cost = 0

The problem

Given:

- \(start_{vid} \in V\) a starting vertex
- $(end_{vid} \in V)$ an ending vertex

Then:

• \(\boldsymbol{\pi} = \{(path_seq_i, node_i, edge_i, cost_i, agg_cost_i)\}\)

where:

- \(path\ seg i = i\)
- \(path_seq_{| \pi |} = | \pi |\)
- \(node_i \in V\)
- \(node 1 = start {vid}\)
- \(node_{| \pi |} = end_{vid}))
- \(\forall i \neq | \pi |, \quad (node_i, node_{i+1}, cost_i) \in E\)
- \(edge_i = \begin{cases} id_{(node_i, node_(i+1).cost_i)} &\quad \text{when } i \neq | \pi | \\ -1 &\quad \text{when } i = | \pi | \\ end{cases}\)
- $(cost_i = cost_{(node_i, node_{i+1})})$
- \(agg_cost_i = \begin{cases} 0 &\quad \text{when } i = 1 \\\\displaystyle\sum_{k=1}^{i} cost_{(node_k-1], node_k)} &\quad \text{when } i \neq 1 \\\\end{cases}\)
- In other words: The algorithm returns a the shortest path between\(start_{vid})) and \(end_{vid})), if it exists, in terms of a sequence of nodes and of edges,
 - \(path_seq\) indicates the relative position in the path of the\(node\) or \(edge\).
 - \(cost\) is the cost of the edge to be used to go to the next node.
 - \(agg_cost\) is the cost from the \(start_{vid}\) up to the node.

If there is no path, the resulting set is empty.

See Also

Indices and tables

- Index
- Search Page

Flow - Family of functions

- pgr_maxFlow Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Push and relabel algorithm with details of flow on edges.
- Applications
 - pgr_edgeDisjointPaths Calculates edge disjoint paths between two groups of vertices.
 - pgr_maxCardinalityMatch Calculates a maximum cardinality matching in a graph.

Experimental

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - $\circ~$ Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting
- pgr_maxFlowMinCost Experimental Details of flow and cost on edges.
- pgr_maxFlowMinCost_Cost Experimental Only the Min Cost calculation.

pgr_maxFlow

pgr_maxFiow — Calculates the maximum flow in a directed graph from the source(s) to the targets(s) using the Push Relabel algorithm.

Boost Graph Inside

Availabilitv

- Version 3.2.0
 - New proposed signature
 - pgr_maxFlow (Combinations)
- Version 3.0.0
 - Official function
- Version 2.4.0
 - New Proposed function

Description

The main characteristics are:

- The graph is directed.
- · Calculates the maximum flow from the sources to the targets.
 - When the maximum flow is 0 then there is no flow and 0 is returned.
 - There is no flow when source has the same vaule as target.
- Any duplicated values in source or target are ignored.
- Uses the pgr_pushRelabel algorithm.
- Running time: \(O(V ^ 3)\)

Signatures

Summary

pgr_maxFlow(Edges SQL, start vid, end vid) pgr_maxFlow(Edges SQL, start vid, end vids) pgr_maxFlow(Edges SQL, start vids, end vid) pgr_maxFlow(Edges SQL, start vids, end vids) pgr_maxFlow(Edges SQL, Combinations SQL) RETURNS BIGINT

One to One

pgr_maxFlow(<u>Edges SQL</u>, start vid, end vid) RETURNS BIGINT

Example:

From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_maxFlow('SELECT id, source, larget, capacity, reverse_capacity FROM edges', 11, 12; pgr_maxflow

230 (1 row)

One to Many

pgr_maxFlow(<u>Edges SQL</u>, start vid, end vids) RETURNS BIGINT

Example:

From vertex (11) to vertices $({5, 10, 12})$

SELECT * FROM pgr_maxFlow('SELECT id, source, target, capacity, reverse_capacity FROM edges', 11, ARRAY(5, 10, 12)); pgr_maxflow 340 (1 row)

Many to One

pgr_maxFlow(<u>Edges SQL</u>, start vids, end vid) RETURNS BIGINT

Example:

From vertices ((11, 3, 17)) to vertex (12)

SELECT * FROM pgr_maxFlow('SELECT id source target capacity reverse capacity
FROM edges',
ARRAY[11, 3, 17], 12);
pgr_maxflow
230
(1 row)

Many to Many

pgr_maxFlow(<u>Edges SQL</u>, start vids, end vids) RETURNS BIGINT

Example:

From vertices ((11, 3, 17)) to vertices ((5, 10, 12))

```
SELECT * FROM pgr_maxFlow(

'SELECT id, source, target, capacity, reverse_capacity

FROM edges',

ARRAY[11, 3, 17], ARRAY[5, 10, 12]);

pgr_maxflow
360
(1 row)
```

Combinations

pgr_maxFlow(Edges SQL, Combinations SQL) RETURNS BIGINT

Example:

 $Using a combinations table, equivalent to calculating result from vertices ((\{5, 6\})) to vertices ((\{10, 15, 14\})).$

The combinations table:

SELECT source, target FROM combinations WHERE target NOT IN (5, 6); source | target

5 | 6 | 6 | (3 rows) 10 15 14

The query:

SELECT * FROM pgr_maxFlow('SELECT id, source, target, capacity, reverse_capacity FROM edges', 'SELECT * FROM combinations WHERE target NOT IN (5, 6)'); pgr_maxflow 80 (1 row)

Parameters

Column	Туре	Description

Edges SQL TEXT Edges SQL as described below

Column	۲ I	Гуре		Descrip	tion
Combinations	TEXT		Combinations SQL	as described	below
start vid	BIGINT		Identifier of the starting vertex of the path.		
start vids	ARRAY[E	BIGINT]	Array of identifiers	of starting ver	tices.
end vid	BIGINT		Identifier of the end	ding vertex of	the path.
end vids	ARRAY[E	BIGINT]	Array of identifiers	of ending vert	ices.
Inner Queries					
Edges SQL					
Col	umn		Туре	Default	Description
id		ANY-INT	EGER		Identifier of the edge.
source		ANY-INT	EGER		Identifier of the first end point vertex of the edge.
target		ANY-INT	EGER		Identifier of the second end point vertex of the edge.
capacity		ANY-INT	EGER		Weight of the edge (source, target)
reverse_capacity	,	ANY-INT	EGER	-1	Weight of the edge (larget, source)When negative: edge (larget, source) does not exist, therefore it's not part of the graph.
Where:					
ANY-INTEGE	R:				
SMALLIN	T, INTEGER, BI	GINT			
SMALLIN	T, INTEGER, BI	GINT, REAL,	FLOAT		
Combinations SQL	1	, ,			
Parameter	Туре			Description	
source	ANY- INTEGER	Identifie	r of the departure v	ertex.	
target	ANY- INTEGER	Identifie	r of the arrival verte	x.	
Where:					
ANY-INTEGE	R:				
SMALLIN	T, INTEGER, BIO	GINT			
Result columns					
Туре		Descript	ion		
BIGINT Maxim target(BIGINT Maximum flow possible from the source(s) to the target(s)				
Additional Example	es <mark>.</mark>				
Example:					
Manuall	y assigned ve	ertex combi	nations.		
SELECT * FROM 'SELECT id, sou FROM edges'	I pgr_maxFlow(urce, target, capa	acity, reverse_	_capacity		
'SELECT * FRC pgr_maxflow	'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)'); pgr_maxflow				
 80 (1 row)					
. /					

See Also

- Flow Family of functions
 - pgr_pushRelabel
- https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html
- https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

- Index
- Search Page

pgr_boykovKolmogorov¶

pgr_boykovKolmogorov - Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Boykov Kolmogorov algorithm.

Boost Graph Inside

Availability

- Version 3.2.0
 - New proposed signature

pgr_boykovKolmogorov (<u>Combinations</u>)

- Version 3.0.0
 - Official function
- Version 2.5.0
 - Renamed from pgr_maxFlowBoykovKolmogorov
 - Proposed function
- Version 2.3.0
 - New Experimental function

Description

The main characteristics are:

- · The graph is directed.
- · Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and EMPTY SET is returned.
 - There is no flow when source has the same vaule as target.
- · Any duplicated values in source or target are ignored.
- · Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates
 - · a super source and edges from it to all the sources,
 - a super target and edges from it to all the targetss.
- The maximum flow through the graph is guaranteed to be the value returned bypgr_maxFlow when executed with the same parameters and can be calculated:
 - · By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- · Running time: Polynomial

Signatures

Summary

pgr_boykovKolmogorov(<u>Edges SQL</u>, start vid, end vid) pgr_boykovKolmogorov(<u>Edges SQL</u>, start vid, end vids) pgr_boykovKolmogorov(<u>Edges SQL</u>, start vids, end vid) pgr_boykovKolmogorov(<u>Edges SQL</u>, start vids, end vid) pgr_boykovKolmogorov(<u>Edges SQL</u>, <u>Combinations SQL</u>) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

One to One

pgr_boykovKolmogorov(<u>Edges SQL</u>, start vid, end vid) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_boykovKolmogorov(
'SELECT id, source, target, capacity, reverse_capacity
FROM edges',
11, 12);

···, ·=/,		
seq edge start_v	vid end_vid flow	residual_capacity

++			
1 10	7	8 100	30
2 12	8	12 100	0
3 8	11	7 100	30
4 11	11	12 130	(
(4 rows)			

One to Many

pgr_boykovKolmogorov(<u>Edges_SQL</u>, start vid, end vids) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_boykovKolmogorov("SELECT id, source, target, capacity, reverse_capacity FROM edges', 11, ARRAY[5, 10, 12]); seq | edge | start_vid | end_vid | flow | residual_capacity

1 1	6	5 50	80
2 4	7	6 50	0
3 10	7	8 80	50
4 12	8	12 80	20
5 8	11	7 130	0
6 11	11	12 130	0
7 9	11	16 80	50
8 3	15	10 80	50
9 16	16	15 80	0
(9 rows)			

Many to One

pgr_boykovKolmogorov(<u>Edges SQL</u>, start vids, end vid) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertices \(\{11, 3, 17\}\) to vertex \(12\)

1	/	3	7 50	0
2 1	10	7	8 100	30
3 1	12	8	12 100	0
4	8	11	7 50	80
5 1	11	11	12 130	0
(5 rows	5)			

Many to Many

pgr_boykovKolmogorov(<u>Edges SQL</u>, start vids, end vids) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertices ((5, 10, 12))

SELECT * 'SELECT FROM ed ARRAY[1 seq edge	FROM p id, source ges', 1, 3, 17], start_v	gr_boykovKo e, target, cap ARRAY[5, 1 id end_vid	Imogorov(acity, reverse_capacity 0, 12]); flow residual_capacity	y
1 7 2 1	3	7 50 5 50	0 80	
3 4	7	6 50	0	

3 4	7	6 50	0
4 10	7	8 100	30
5 12	8	12 100	0
6 8	11	7 100	30
7 11	11	12 130	0
8 9	11	16 80	50
9 3	15	10 80	50
10 16	16	15 80	0
(10 rows)			

Combinations

pgr_boykovKolmogorov(<u>Edges SQL</u>, <u>Combinations SQL</u>) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations WHERE target NOT IN (5, 6);

source | target

5| 6| 6| 10 15 14 (3 rows)

The query:

SELECT * FROM pgr_boykovKolmogorov('SELECT id, source, target, capacity, reverse_capacity SELECT FROM edges', "SELECT FROM combinations WHERE target NOT IN (5, 6)"); seq | edge | start_vid | end_vid | flow | residual_capacity -+-

6 7 80 7 11 80 11 16 80 16 15 80 1 | 4| 2 | 8| 3 | 9| 4 | 16| (4 rows) 20 20 50 0

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
Column	Туре	Description
---------------	---------------	--
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.
Inner Queries		

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target)
reverse_capacity	ANY-INTEGER	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.
Where:		
ANY-INTEGE	R:	

SMALLINT, INTEGER, BIGINT

Result columns

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGIN	Identifier of the edge in the original query (edges_sql).
start_vid	BIGIN	Identifier of the first end point vertex of the edge.
end_vid	BIGIN	Identifier of the second end point vertex of the edge.
flow	BIGIN	T Flow through the edge in the direction (start_vid, end_vid).

residual_capacity BIGINT Residual capacity of the edge in the direction <code>{start_vid, end_vid}</code>.

Additional Examples

Example:

Manually assigned vertex combinations.

SELECT * FROM pgr_boykovKolmogorov('SELECT id, source, target, capacity, reverse_capacity FROM edges; 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)); seq | edge | start_vid | end_vid | flow | residual_capacity

1	4	6	7 80	20
2	8	7	11 80	20
3	9	11	16 80	50
4	16	16	15 80	0
(4 rov	vs)			

- Flow Family of functions
 - pgr_edmondsKarp
 - pgr_pushRelabel

<u>https://www.boost.org/libs/graph/doc/boykov_kolmogorov_max_flow.html</u>

- Indices and tables
 - Index
 - Search Page

pgr_edmondsKarp

pgr_edmondsKarp — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Edmonds Karp Algorithm.

Boost Graph Inside

.

Availability

- Version 3.2.0
 - New proposed signature
 - pgr_edmondsKarp (<u>Combinations</u>)
- Version 3.0.0
 - Official function
- Version 2.5.0
 - Renamed from pgr_maxFlowEdmondsKarp
 - Proposed function
- Version 2.3.0
 - · New Experimental function

Description

The main characteristics are:

• The graph is directed.

- · Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and EMPTY SET is returned.
 - There is no flow when source has the same vaule as target.
- Any duplicated values in source or target are ignored.
- · Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates
 - $\circ~$ a $\ensuremath{\text{super source}}$ and edges from it to all the sources,
 - a super target and edges from it to all the targetss.
- The maximum flow through the graph is guaranteed to be the value returned bypgr_maxFlow when executed with the same parameters and can be calculated:
 - · By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets
- Running time: \(O(V * E ^ 2)\)

Signatures

Summary

pgr_edmondsKarp(Edges SQL, start vid, end vid) pgr_edmondsKarp(Edges SQL, start vid, end vids) pgr_edmondsKarp(Edges SQL, start vids, end vid) pgr_edmondsKarp(Edges SQL, start vids, end vids) pgr_edmondsKarp(Edges SQL, <u>Combinations SQL</u>) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

One to One

pgr_edmondsKarp(<u>Edges SQL</u>, start vid, end vid) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertex \(11\) to vertex \(12\)

1 10	1	0 100 1	00
2 12	8	12 100	0
3 8	11	7 100	30
4 11	11	12 130	0
(4 rows)			

One to Many

pgr_edmondsKarp(Edges SQL, start vid, end vids)

Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertex (11) to vertices $(({5, 10, 12}))$

SELECT * FROM pgr edmondsKarp(

OLLLO!	1 1 COM P	gi_oumonao	(up)			
'SELECT	'SELECT id, source, target, capacity, reverse capacity					
FROM ec	FROM edges',					
11, ARRA	Y[5, 10,	12]);				
seq edge start_vid end_vid flow residual_capacity						
++		++	-+			
1 1	6	5 50	80			
2 4	7	6 50	0			

3 10) 7	8 80	50
4 12	2 8	12 80	20
5 8	11	7 130	0
6 1	1 11	12 130	0
7 9	11	16 80	50
8 3	15	10 80	50
9 16	6 16	15 80	0
(9 rows)			

Many to One

pgr_edmondsKarp(<u>Edges SQL</u>, start vids, end vid) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertices $({11, 3, 17})$ to vertex (12)

SELECT * FROM pgr_edmondsKarp('SELECT id, source, target, capacity, reverse_capacity FROM edges', ARRAY[11, 3, 17], 12); seq | edge | start_vid | end_vid | flow | residual_capacity

+	+	+	+
1 7	3	7 50	0
2 10	7	8 100	30
3 12	8	12 100	0
4 8	11	7 50	80
5 11	11	12 130	0
(5 rows)			

Many to Many

pgr_edmondsKarp(<u>Edges SQL</u>, start vids, end vids) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertices ((5, 10, 12))

SELECT * FROM pgr_edmondsKarp('SELECT id, source, target, capacity, reverse_capacity FROM edges', ARRAY[11, 3, 17], ARRAY[5, 10, 12]); seq | edge | start_vid | end_vid | flow | residual_capacity

т.	т.	T 1	- T T	
1	7	3	7 50	0
2	1	6	5 50	80
3	4	7	6 50	0
4	10	7	8 100	30
5	12	8	12 100	0
6	8	11	7 100	30
7	11	11	12 130	0
8	9	11	16 80	50
9	3	15	10 80	50
10	16	16	15 80	0
(10 ro	ws)			

Combinations

pgr_edmondsKarp(<u>Edges SQL, Combinations SQL</u>) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations WHERE target NOT IN (5, 6); source | target

5| 6| 6| 10 15 14 (3 rows)

The query:

SELECT * FROM pgr_edmondsKarp('SELECT id, source, target, capacity, reverse_capacity FROM edges; 'SELECT * FROM combinations WHERE target NOT IN (5, 6)); seq |edge | start_vid | end_vid | flow | residual_capacity

Туре

1 4	6	7 80	20
2 8	7	11 80	20
3 9	11	16 80	50
4 16	16	15 80	0
(4 rows)			

Parameters

Column

Description

Column	Туре	Descrip	tion		
Edges SQL	TEXT	Edges SQL as described below			
Combinations SQL	TEXT	Combinations SQL as described	i below		
start vid	BIGINT	Identifier of the starting vertex of	f the path.		
start vids	ARRAY[BIGINT]	Array of identifiers of starting ve	rtices.		
end vid	BIGINT	Identifier of the ending vertex of	the path.		
end vids	ARRAY[BIGINT]	Array of identifiers of ending ver	tices.		
Inner Queries1					
Colum	n	Type Default	Description		
id	ANY-IN	TEGER	Identifier of the edge.		
source	ANY-IN	TEGER	Identifier of the first end point vertex of the edge.		
target	ANY-IN	TEGER	Identifier of the second end point vertex of the edge.		
capacity	ANY-IN	TEGER	Weight of the edge (source, target)		
reverse_capacity	ANY-IN	TEGER -1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph. 		
Where: ANY-INTEGER: SMALLINT, IN ANY-NUMERICA SMALLINT, IN Combinations SQL	TEGER, BIGINT L: TEGER, BIGINT, REAL	, FLOAT			
Parameter	Туре	Description			
source INT	Y- Identifi EGER	er of the departure vertex.			
target INT	Y- EGER Identifi	er of the arrival vertex.			
Where: ANY-INTEGER: SMALLINT, IN Result columns	TEGER, BIGINT				
Column	Туре	Description			
seq	INT Sequential	I value starting from 1.			
edge	dge BIGINT Identifier of the edge in the original query (edges_sql).				
start_vid	BIGINT Identifier o	f the first end point vertex of the ed	dge.		
end_vid	BIGINT Identifier o	f the second end point vertex of th	e edge.		
flow	BIGINT Flow throu	gh the edge in the direction \$tart_vi	d, end_vid).		
residual_capaci	t y BIGINT Residual c end_vid).	apacity of the edge in the direction	0 ¢tart_vid,		
Additional Examples					
Example:					

Manually assigned vertex combinations.

SELECT * FROM pgr_edmondsKarp('SELECT id, source, target, capacity, reverse_capacity FROM edges', $\label{eq:select} \begin{array}{l} {}^{\mathsf{SELECT}} * \mathsf{FROM} \ (\mathsf{VALUES} \ (\mathsf{5}, \ 10), \ (\mathsf{6}, \ 15), \ (\mathsf{6}, \ 14)) \ \mathsf{AS} \ (\mathsf{source}, \ \mathsf{target})'); \\ \mathsf{seq} \ | \ \mathsf{edge} \ | \ \mathsf{start_vid} \ | \ \mathsf{end_vid} \ | \ \mathsf{flow} \ | \ \mathsf{residual_capacity} \end{array}$

See Also

- Flow Family of functions
 - pgr_boykovKolmogorov
 - pgr_pushRelabel
- https://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html
- https://en.wikipedia.org/wiki/Edmonds%E2%80%93Karp_algorithm

Indices and tables

- Index
- Search Page

pgr_pushRelabel

pgr_pushRelabel — Calculates the flow on the graph edges that maximizes the flow from the sources to the targets using Push Relabel Algorithm.

Boost Graph Inside

Availability

- Version 3.2.0
 - New proposed signature
 - pgr_pushRelabel (<u>Combinations</u>)
- Version 3.0.0
- Official function
- Version 2.5.0
 - Renamed from pgr_maxFlowPushRelabel
 - Proposed function
- Version 2.3.0
 - · New Experimental function

Description

The main characteristics are:

- The graph is directed
- · Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and EMPTY SET is returned.
 - There is no flow when source has the same vaule as target.
- Any duplicated values in source or target are ignored.
- · Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates
 - $\circ~$ a super source and edges from it to all the sources,
 - a super target and edges from it to all the targetss.
- The maximum flow through the graph is guaranteed to be the value returned bypgr_maxFlow when executed with the same parameters and can be calculated:
 - $\circ~$ By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets

Running time: \(O(V ^ 3)\)

Signatures

Summary

pgr_pushRelabel(Edges_SQL, start vid, end vid) pgr_pushRelabel(Edges_SQL, start vid, end vids) pgr_pushRelabel(Edges_SQL, start vids, end vids) pgr_pushRelabel(Edges_SQL, start vids, end vids) pgr_pushRelabel(Edges_SQL, Combinations_SQL) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

One to One

pgr_pushRelabel(<u>Edges SQL</u>, start vid, end vid) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_pushRelabel('SELECT id, source, target, capacity, reverse_capacity FROM edges',

1 10	7	8 100	30
2 12	8	12 100	0
3 8	11	7 100	30
4 11	11	12 130	0
(4 rows)			

One to Many

pgr_pushRelabel(<u>Edges SQL</u>, **start vid**, **end vids**) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertex (11) to vertices ((<math>5, 10, 12))

SELECT * FROM pgr_pushRelabel('SELECT id, source, target, capacity, reverse_capacity FROM edges', 11, ARRAY[5, 10, 12]); seq | edge | start_vid | end_vid | flow | residual_capacity

1 6	1	3 50	0
2 6	3	1 50	50
3 7	3	7 50	0
4 1	6	5 30	100
5 7	7	3 50	80
6 4	7	6 30	20
7 10	7	8 100	30
8 12	8	12 100	0
9 8	11	7 130	0
10 11	11	12 130	0
11 9	11	16 80	50
12 3	15	10 80	50
13 16	16	15 80	0
(13 rows)			

Many to One

pgr_pushRelabel(<u>Edges SQL</u>, start vids, end vid) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertex (12)

SELECT * FROM pgr_pushRelabel(
'SELECT id, source, target, capacity, reverse_capacity
FROM edges',
ARRAY[11, 3, 17], 12);
seq edge start_vid end_vid flow residual_capacity
++++++
1 10 7 0 100 00

1 10	1	8 100	30
2 12	8	12 100	0
3 8	11	7 100	30
4 11	11	12 130	0
(4 rows)			

Many to Many

pgr_pushRelabel(<u>Edges SQL</u>, start vids, end vids) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertices ((5, 10, 12))

SELECT * FROM pgr_pushRelabel('SELECT id, source, target, capacity, reverse_capacity FROM edges', ARRAY(11, 3, 17], ARRAY[5, 10, 12]); seq | edge | start_vid | end_vid | flow | residual_capacity

1 7 2 1	3 6	7 20 5 50	30 80
3 4	7	6 50	0
4 10	7	8 100	30
5 12	8	12 100	0
6 8	11	7 130	0
7 11	11	12 130	0
8 9	11	16 80	50
9 3	15	10 80	50
10 16	16	15 80	0
(10 rows)			

Combinations

pgr_pushRelabel(<u>Edges SQL</u>, <u>Combinations SQL</u>) Returns set of (seq, edge, start_vid, end_vid, flow, residual_capacity) OR EMPTY SET

Example:

 $\label{eq:using a combinations table, equivalent to calculating result from vertices ((\{5, 6\})) to vertices ((\{10, 15, 14\})).$

The combinations table:

SELECT source, target FROM combinations WHERE target NOT IN (5, 6); source | target

10 15 14 5 | 6 | 6 (3 rows)

The query:

SELECT * FROM pgr_pushRelabel('SELECT id, source, target, capacity, reverse_capacity FROM edges', 'SELECT * FROM combinations WHERE target NOT IN (5, 6)'); seq | edge | start_vid | end_vid | flow | residual_capacity

1 4	6	7 80	20
2 8	7	11 80	20
3 11	11	12 50	80
4 9	11	16 30	100
5 13	12	17 50	50
6 16	16	15 80	0
7 15	17	16 50	0
(7 rows)			

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Inner Queries

Edges SQL

	Column	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	у	ANY-INTEGER		Weight of the edge (source, target)
reverse	e_capacity	ANY-INTEGER -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	D	escription

source ANY-INTEGER Identifier of the departure vertex.

target ANY-INTEGER Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Column	Туре	Description
seq	INT	Sequential value starting from 1.
edge	BIGIN	T Identifier of the edge in the original query (edges_sql).
start_vid	BIGIN	${\ensuremath{T}}$ Identifier of the first end point vertex of the edge.
end_vid	BIGIN	${\ensuremath{T}}$ Identifier of the second end point vertex of the edge.
flow	BIGIN	T Flow through the edge in the direction (start_vid, end_vid).

Column Туре Description

 $\label{eq:residual_capacity BIGINT} \begin{array}{c} Residual \ capacity \ of \ the \ edge \ in \ the \ direction \ (tart_vid, end_vid). \end{array}$

Additional Examples

Example:

Manually assigned vertex combinations.

SELECT * FROM pgr_pushRelabel('SELECT id, source, target, capacity, reverse_capacity FROM edges', 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)'); seq | edge | start_vid | end_vid | flow | residual_capacity

1 4	6	7 80	20
2 8	7	11 80	20
3 11	11	12 50	80
4 9	11	16 30	100
5 13	12	17 50	50
6 16	16	15 80	0
7 15	17	16 50	0
(7 rows)			

See Also

- Flow Family of functions
 - pgr_boykovKolmogorov
 - pgr_edmondsKarp
- <u>https://www.boost.org/libs/graph/doc/push_relabel_max_flow.html</u>

https://en.wikipedia.org/wiki/Push%E2%80%93relabel_maximum_flow_algorithm

Indices and tables

- Index
- Search Page

pgr_edgeDisjointPaths

pgr_edgeDisjointPaths - Calculates edge disjoint paths between two groups of vertices.

Boost Graph Inside

Availability

- Version 3.2.0
 - New proposed function:
 - pgr_edgeDisjointPaths(Combinations)
- Version 3.0.0
 - Official function
- Version 2.5.0
 - Proposed function
- Version 2.3.0
 - New Experimental function

Description

Calculates the edge disjoint paths between two groups of vertices. Utilizes underlying maximum flow algorithms to calculate the paths.

The main characterics are:

- Calculates the edge disjoint paths between any two groups of vertices.
- Returns EMPTY SET when source and destination are the same, or cannot be reached.
- · The graph can be directed or undirected.
- Uses pgr_boykovKolmogorov to calculate the paths.

Signatures

Summary

pgr_edgeDisjointPaths(<u>Edges SQL</u>, **start vid**, end vid, [directed]) pgr_edgeDisjointPaths(<u>Edges SQL</u>, **start vid**, end vids, [directed]) pgr_edgeDisjointPaths(<u>Edges SQL</u>, **start vids**, end vids, [directed]) pgr_edgeDisjointPaths(<u>Edges SQL</u>, **start vids**, end vids, [directed]) pgr_edgeDisjointPaths(<u>Edges SQL</u>, <u>combinations SQL</u>, [directed]) Returns set of (seq. path_id, path_seq. [start_vid.] [end_vid.] node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_edgeDisjointPaths(<u>Edges SQL</u>, start vid, end vid, [directed]) Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_edgeDisjointPaths('SELECT id, source, target, cost, reverse_cost

FROM edges', 11, 12); seq | path_id | path_seq | node | edge | cost | agg_cost

1	1	1	11	8	1	0
2	1	2	7	10	1	1
3	1	3	8	12	1	2
4	1	4	12	-1	0	3
5	2	1	11	11	1	0
6	2	2	12	-1	0	1
(6 row:	s)					

One to Manv

pgr_edgeDisjointPaths(<u>Edges SQL</u>, start vid, end vids, [directed]) Returns set of (seq, path_id, path_seq, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex (11) to vertices ((5, 10, 12))

SELECT * FROM pgr_edgeDisjointPaths('SELECT id, source, target, cost, reverse_cost FROM edges', 11, ARRAY[5, 10, 12]); seq | path_id | path_seq | end_vid | node | edge | cost | agg_cost

1	1	1	5 11 8 1	0
2	1	2	5 7 4 1	1
3	1	3	5 6 1 1	2
4	1	4	5 5 -1 0	3
5	2	1	10 11 9 1	0
6	2	2	10 16 16 1	1
7	2	3	10 15 3 1	2
8	2	4	10 10 -1 0	3
9	3	1	12 11 8 1	0
10	3	2	12 7 10 1	1
11	3	3	12 8 12 1	2
12	3	4	12 12 -1 0	3
13	4	1	12 11 11 1	0
14	4	2	12 12 -1 0	1
(14 rov	vs)			

Many to One

pgr_edgeDisjointPaths(<u>Edges SQL</u>, **start vids**, **end vid**, [directed]) Returns set of (seq, path_id, path_seq, start_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\11, 3, 17)) to vertex (12)$

SELECT * FROM pgr_edgeDisjointPaths('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY(11, 3, 17), 12); seq | path_id | path_seq | start_vid | node | edge | cost | agg_cost

1	1	1	3 3 7 1 0
2	1	2	3 7 8 1 1
3	1	3	3 11 11 1 2
4	1	4	3 12 -1 0 3
5	2	1	11 11 8 1 0
6	2	2	11 7 10 1 1
7	2	3	11 8 12 1 2
8	2	4	11 12 -1 0 3
9	3	1	11 11 11 1 0
10	3	2	11 12 -1 0 1
11	4	1	17 17 15 1 0
12	4	2	17 16 9 1 1
13	4	3	17 11 11 1 2
14	4	4	17 12 -1 0 3
(14 row	/s)		

Many to Many

pgr_edgeDisjointPaths(<u>Edges SQL</u>, **start vids**, **end vids**, [directed]) Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertices <math display="inline">((5, 10, 12))

SELECT * FROM pgr_edgeDisjointPaths('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[11, 3, 17], ARRAY[5, 10, 12]); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

		+		
1	1	1]	. 3	5 3 7 1 0
2	1	2	3	5 7 4 1 1
3	1	3	3	5 6 1 1 2
4	1	4	3	5 5 -1 0 3
5	2	1	3	10 3 7 1 0
6	2	2	3	10 7 8 1 1
7	2	3	3	10 11 9 1 2
8	2	4	3	10 16 16 1 3
9	2	5	3	10 15 3 1 4
10	2	6	3	10 10 -1 0 5
11	3	1	3	12 3 7 1 0
12	3	2	3	12 7 8 1 1
13	3	3	3	12 11 11 1 2
14	3	4	3	12 12 -1 0 3
15	4	1	11	5 11 8 1 0
16	4	2	11	5 7 4 1 1
17	4	3	11	5 6 1 1 2
18	4	4	11	5 5 -1 0 3
19	5	1	11	10 11 9 1 0
20	5	2	11	10 16 16 1 1
21	5	3	11	10 15 3 1 2
22	5	4	11	10 10 -1 0 3
23	6	1	11	12 11 8 1 0
24	6	2	11	12 7 10 1 1
25	6	3	11	12 8 12 1 2
26	6	4	11	12 12 -1 0 3
27	7	1	11	12 11 11 1 0
28	7	2	11	12 12 -1 0 1
29	8	1	17	5 17 15 1 0
30	8	2	17	5 16 16 1 1

31	8	3	17	5 15 3 1	2
32	8	4	17	5 10 2 1	3
33	8	5	17	5 6 1 1	4
34	8	6	17	5 5 -1 0	5
35	9	1	17	10 17 15 1	0
36	9	2	17	10 16 16 1	1
37	9	3	17	10 15 3 1	2
38	9	4	17	10 10 -1 0	3
39	10	1	17	12 17 15 1	0
40	10	2	17	12 16 9 1	1
41	10	3	17	12 11 11 1	2
42	10	4	17	12 12 -1 0	3
(42 row	rs)				

Combinations

pgr_edgeDisjointPaths(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

 $Using \ a \ combinations \ table, \ equivalent \ to \ calculating \ result \ from \ vertices \ (\ (\ 5, \ 6\)) \ to \ vertices \ (\ 10, \ 15, \ 14\)) \ on \ an \ undirected \ graph.$

The combinations table:

SELECT source, target FROM combinations WHERE target NOT IN (5, 6); source | target

5| 10 6| 15 6| 14 (3 rows)

The query:

SELEC 'SELE FROM 'SELE direct seq p	CT * FF CT id, A edge CT * F ed => 1 path_id	ROM pgr source, s', ROM co false); path_s	_edgeE target, ombinat seq sta	DisjointPaths(cost, reverse_co ions WHERE tarr art_vid end_vid	st get NOT IN (node edge	5, 6)', e cost agg_cost
1	1	1	5	10 5 1	1 0	
2	1	2	5	10 6 2	-1 1	
3	1	3	5	10 10 -1	0 0	
4	2	1	6	15 6 4	1 0	
5	2	2	6	15 7 8	1 1	
6	2	3	6	15 11 9	1 2	
7	2	4	6	15 16 16	1 3	
8	2	5	6	15 15 -1	0 4	
9	3	1	6	15 6 2	-1 0	
10	3	2	6	15 10 3	-1 -1	
11 j	3	3	6	15 15 -1	0 -2	
(11 rov	vs)				•	

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Column	Туре	Default	Description
			• When true the graph is considered Directed
directed	BOOLEAN	N true	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

	Column	Туре	Default		Description
id		ANY-INTEGER		Identifier of the edge.	
source		ANY-INTEGER		Identifier of the first end point vertex of	of the edge.
target		ANY-INTEGER		Identifier of the second end point vert	ex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)	

Column	Туре	Default	Description
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Whore:			

Where:

ANY-INTEGER: SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.

Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

 $Set \ of \ (seq, \ path_id, \ path_seq \ [, \ start_vid] \ [, \ end_vid], \ node, \ edge, \ cost, \ agg_cost)$

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Path identifier. Has value 1 for the first of a path fromstart_vid to end_vid.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. <u>Many to One</u> <u>Many to Many</u> <u>Combinations</u>
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. <u>One to Many</u> <u>Many to Many</u> <u>Combinations</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example:

Manually assigned vertex combinations on an undirected graph.

1	1	1	5	10 5 1 1	0
2	1	2	5	10 6 2 -1	1
3	1	3	5	10 10 -1 0	0
4	2	1	6	15 6 4 1	0
5	2	2	6	15 7 8 1	1
6	2	3	6	15 11 9 1	2
7	2	4	6	15 16 16 1	3
8	2	5	6	15 15 -1 0	4
9	3	1	6	15 6 2 -1	0
10	3	2	6	15 10 3 -1	-1
11	3	3	6	15 15 -1 0	-2
(11 row	/s)				

See Also

Flow - Family of functions

Indices and tables

- Index
- Search Page

pgr_maxCardinalityMatch

pgr_maxCardinalityMatch — Calculates a maximum cardinality matching in a graph.

Boost Graph Inside

Availability

- Version 3.4.0
 - Use cost and reverse_cost on the inner query
 - Results are ordered
 - Works for undirected graphs.
 - New signature
 - pgr_maxCardinalityMatch(text) returns only edge column.
 - Deprecated signature
 - pgr maxCardinalityMatch(text,boolean)
 - directed => false when used.
- Version 3.0.0
 - Official function
- Version 2.5.0
 - Renamed from pgr_maximumCardinalityMatching
 - Proposed function
- Version 2.3.0
 - New Experimental function

Description

The main characteristics are:

- Works for undirected graphs.
- A matching or independent edge set in a graph is a set of edges without common vertices.
- A maximum matching is a matching that contains the largest possible number of edges.
 - There may be many maximum matchings.
 - Calculates one possible maximum cardinality matching in a graph.
- Running time: \(O(E*V * \alpha(E,V))\)
 - \(\alpha(E,V)\) is the inverse of the Ackermann function.

Signatures

```
pgr_maxCardinalityMatch(<u>Edges SQL</u>)
Returns set of (edge)
OR EMPTY SET
```

Example:

Using all edges.

SELECT * FROM pgr_maxCardinalityMatch('SELECT id, source, target, cost, reverse_cost FROM edges'); edge

Parameters 1

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

SQL query, which should return a set of rows with the following columns:

Default

Description

Column Type

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		A positive value represents the existence of the edge $\ensuremath{\not\mbox{fource}}, \ensuremath{\mbox{target}}).$
reverse cost	ANY-NUMERICAL	-1	A positive value represents the existence of the edge (arget,

. source)

reverse_cost

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Type

Result columns

Column Type Description

BIGINT Identifier of the edge in the original query. edge

See Also

- Flow Family of functions
- <u>Migration guide</u>
- https://www.boost.org/libs/graph/doc/maximum_matching.html
- https://en.wikipedia.org/wiki/Matching_%28graph_theory%29
- <u>https://en.wikipedia.org/wiki/Ackermann_function</u>

Indices and tables

- Index
- Search Page

pgr_maxFlowMinCost - Experimental

 ${\tt pgr_maxFlowMinCost} - {\tt Calculates} \ {\tt the} \ {\tt edges} \ {\tt that} \ {\tt minimizes} \ {\tt the} \ {\tt total} \ {\tt cost} \ {\tt of} \ {\tt the} \ {\tt maximum} \ {\tt flow} \ {\tt on} \ {\tt a} \ {\tt graph}$

Boost Graph Inside

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

Version 3.2.0

- · New experimental function:
 - pgr_maxFlowMinCost (Combinations)
- Version 3.0.0

· New experimental function

Description

The main characteristics are:

- · The graph is directed
- · Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and EMPTY SET is returned.
 - · There is no flow when source has the same vaule as target.
- Any duplicated values in source or target are ignored.
- · Calculates the flow/residual capacity for each edge. In the output
- · Edges with zero flow are omitted.
- Creates
 - · a super source and edges from it to all the sources,
 - a super target and edges from it to all the targetss.
- The maximum flow through the graph is guaranteed to be the value returned bypgr maxFlow when executed with the same parameters and can be calculated:
 - · By aggregation of the outgoing flow from the sources
 - · By aggregation of the incoming flow to the targets
- TODO check which statement is true:
 - · The cost value of all input edges must be nonnegative.
 - · Process is done when the cost value of all input edges is nonnegative.
 - Process is done on edges with nonnegative cost

Running time: \(O(U * (E + V * logV))\)

- $\circ~$ where $\backslash (U \backslash)$ is the value of the max flow.
- \(U\) is upper bound on number of iterations. In many real world cases number of iterations is much smaller than(U\).

Signatures

Summary

pgr_maxFlowMinCost(<u>Edges SQL</u>, start vid, end vid) pgr_maxFlowMinCost(<u>Edges SQL</u>, start vid, end vids) pgr_maxFlowMinCost(<u>Edges SQL</u>, start vids, end vid) pgr_maxFlowMinCost(<u>Edges SQL</u>, start vids, end vids) pgr_maxFlowMinCost[cdges SQL, Combinations SQL) Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost) OR EMPTY SET

One to One

pgr_maxFlowMinCost(<u>Edges SQL</u>, start vid, end vid) Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_maxFlowMinCost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', 11, 12); seq | edge | source | target | flow | residual_capacity | cost | agg_cost

1	10	7	8 100	30 100	100	
2	12	8	12 100	0 100	200	
3	8	11	7 100	30 100	300	
4	11	11	12 130	0 130	430	
(4 row	/s)					

One to Many

pgr_maxFlowMinCost(<u>Edges SQL</u>, start vid, end vids) Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost) OR EMPTY SET

Example:

From vertex (11) to vertices $({5, 10, 12})$

SELECT * FROM pgr_maxFlowMinCost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', 11, ARRAY[5, 10, 12]); seq | edge | source | target | flow | residual_capacity | cost | agg_cost

1	1	6	5 30	100 30	30
2	4	7	6 30	20 30	60
3	10	7	8 100	30 100	160
4	12	8	12 100	0 100	260
5	8	11	7 130	0 130	390
6	11	11	12 130	0 130	520
7	9	11	16 80	50 80	600
8	3	15	10 80	50 80	680
9	16	16	15 80	0 80	760
(9 rov	vs)				

Many to One

pgr_maxFlowMinCost(<u>Edges SQL</u>, start vids, end vid) Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertex (12)

SELECT * FROM pgr_maxFlowMinCost("SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges, ARRAY[11, 3, 17], 12); cost

seq edge	e sour	ce target flo	w residual_capacity cost agg_
++		+	++
1 /	3	7 50	0 50 50
2 10	7	8 100	30 100 150
3 12	8	12 100	0 100 250
4 8	11	7 50	80 50 300
5 11	11	12 130	0 130 430
(5 rows)			

Many to Many

pgr_maxFlowMinCost(<u>Edges SQL</u>, **start vids**, **end vids**) Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost) OR EMPTY SET

Example:

From vertices ((11, 3, 17)) to vertices ((5, 10, 12))

1 7	3	7 50	0 50 50
2 1	6	5 50	80 50 100
3 4	7	6 50	0 50 150
4 10	7	8 100	30 100 250
5 12	8	12 100	0 100 350
6 8	11	7 100	30 100 450
7 11	11	12 130	0 130 580
8 9	11	16 30	100 30 610
9 3	15	10 80	50 80 690
10 16	16	15 80	0 80 770
11 15	17	16 50	0 50 820
(11 rows)			

Combinations

pgr_maxFlowMinCost(<u>Edges SQL</u>, <u>Combinations SQL</u>) Returns set of (seq, edge, source, target, flow, residual_capacity, cost, agg_cost) OR EMPTY SET

Example:

 $Using \ a \ combinations \ table, \ equivalent \ to \ calculating \ result \ from \ vertices \ (\ 5, \ 6\)) \ to \ vertices \ (\ 10, \ 15, \ 14\)).$

The combinations table:

SELECT WHERE	source, target FROM combinations target NOT IN (5, 6);
source	target
+	
5	10
61	15

6 | 15 6 | 14 (3 rows)

The query:

seq edge	source target flow	residual_capa	city cost agg_cost
1 4 2 8 3 9 4 16 (4 rows)	6 7 80 7 11 80 11 16 80 16 15 80	20 80 20 80 50 80 0 80 0 80	80 160 240 320

Parameters

source

Column	Туре		Descriptio	on	
Edges SQL	TEXT	Edges SQL as descr	ribed below		
Combinations SQL	TEXT	Combinations SQL as described below			
start vid	BIGINT	Identifier of the starting vertex of the path.			
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.			
end vid	BIGINT	Identifier of the ending vertex of the path.			
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.			
Inner Queries					
Edges SQL					
Columr	ı	Туре	Default		Description
id	ANY-INTEGE		I	dentifier of the edge.	

ANY-INTEGER

Identifier of the first end point vertex of the edge.

Col	umn	Туре	Default	Description	
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.	
capacity		ANY-INTEGER		Capacity of the edge (source, target)	
				graph.	
			1	Capacity of the edge (target, source)	
reverse_capacity	1		-1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph. 	
cost		ANY-NUMERICAL		Weight of the edge (source, target) if it exist	
reverse_cost		ANY-NUMERICAL	\(-1\)	Weight of the edge (target, source) if it exist	
Where:					
ANY-INTEGE	R:				
SMALLIN	T, INTEGER, BI	GINT			
ANY-NUMER	ICAL:				
SMALLIN	T, INTEGER, BI	GINT, REAL, FLOAT			
Combinations SQL	1				
Parameter	Туре		Description		
source	ANY- INTEGER	Identifier of the departure	e vertex.		
target	ANY- INTEGER	Identifier of the arrival ve	ertex.		
Where:					
ANY-INTEGE	R:				
SMALLIN	T, INTEGER, BI	GINT			
Result columns					
Column	Туре		Descriptior	1	
seq	INT	Sequential value starting from	m 1 .		
edge	BIGINT	Identifier of the edge in the c	original query (ec	lges_sql).	
source	BIGINT	Identifier of the first end poin	nt vertex of the e	dge.	
target	BIGINT	Identifier of the second end	point vertex of th	ie edge.	
flow	BIGINT	Flow through the edge in the	e direction (sourc	ce, target).	
residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).					
cost	FLOAT	The cost of sending this flow target).	r through the edg	ge in the direction (source,	
agg_cost	FLOAT	The aggregate cost.			
Additional Example	es				
Example:					
Manually	y assigned ve	ertex combinations.			
SELECT * FROM 'SELECT id, sou FROM edges', 'SELECT * FRO	M pgr_maxFlowN urce, target, capa M (VALUES (5,	AinCost(acity, reverse_capacity, cost, rever 10), (6, 15), (6, 14)) AS t(source, to	rse_cost arget)');		
seq edge source target flow residual_capacity cost agg_cost					

See Also

- Flow Family of functions
- https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html

Indices and tables

- Index
- Search Page

pgr_maxFlowMinCost_Cost - Experimental

pgr_maxFlowMinCost_Cost - Calculates the minimum total cost of the maximum flow on a graph

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - New experimental function:
 - pgr_maxFlowMinCost_Cost (Combinations)
- Version 3.0.0
 - New experimental function

Description

The main characteristics are:

- The graph is directed
- · Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and EMPTY SET is returned.
 - There is no flow when source has the same vaule as target.
- · Any duplicated values in source or target are ignored.
- · Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates
 - a super source and edges from it to all the sources,
 - a super target and edges from it to all the targetss.
- The maximum flow through the graph is guaranteed to be the value returned bypgr_maxFlow when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets

The main characteristics are:

- The graph is directed.
- The cost value of all input edges must be nonnegative.
- When the maximum flow is 0 then there is no flow and 0 is returned.
 - · There is no flow when source has the same vaule as target.
- · Any duplicated values in source or target are ignored.
- Uses pgr_maxFlowMinCost Experimental.
- Running time: (O(U * (E + V * logV))))
 - where \(U\) is the value of the max flow.
 - \(U\) is upper bound on number of iterations. In many real world cases number of iterations is much smaller than(U).

Signatures

pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vid, end vid) pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vid, end vids) pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vids, end vid) pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vids, end vids) pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, Combinations SQL) RETURNS FLOAT

One to One

pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vid, end vid) RETURNS FLOAT

Example:

From vertex \(11\) to vertex \(12\)

SELECT * FROM pgr_maxFlowMinCost_Cost("SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', 11, 12;

pgr_maxflowmincost_cost 430

(1 row)

One to Many

pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vid, end vids) RETURNS FLOAT

Example:

From vertex \(11\) to vertices \(\{5, 10, 12\}\)

SELECT * FROM pgr_maxFlowMinCost_Cost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', ARRAY[11, 3, 17], 12); pgr_maxflowmincost_cost

430 (1 row)

Many to One

pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vids, end vid) RETURNS FLOAT

Example:

From vertices ((11, 3, 17)) to vertex (12)

SELECT * FROM pgr_maxFlowMinCost_Cost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', 11, ARRAY[5, 10, 12]); pgr_maxI0wmincost_cost

760 (1 row)

Many to Many

pgr_maxFlowMinCost_Cost(<u>Edges SQL</u>, start vids, end vids) RETURNS FLOAT

Example:

From vertices $(\1, 3, 17)) to vertices <math display="inline">(\5, 10, 12))$

SELECT * FROM pgr_maxFlowMinCost_Cost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', ARRAY[11, 3, 17], ARRAY[5, 10, 12]); pgr_maxflowmincost_cost

820 (1 row)

Combinations

pgr_maxFlowMinCost_Cost(Edges SQL, Combinations SQL) RETURNS FLOAT

Example:

Using a combinations table, equivalent to calculating result from vertices \(\{5, 6\}\) to vertices \(\{10, 15, 14\}\).

The combinations table:

SELECT source, target FROM combinations WHERE target NOT IN (5, 6); source | target

The query:

SELECT * FROM pgr_maxFlowMinCost_Cost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', 'SELECT * FROM combinations WHERE target NOT IN (5, 6)'); pgr_maxflowmincost_cost

320 (1 row)

Parameters

Column	Ту	ype		Descrip	otion
Edges SQL	TEXT		Edges SQL as de	scribed below	
Combinations SQL	TEXT		Combinations SQ	<u>L</u> as describec	l below
start vid	BIGINT		Identifier of the st	arting vertex of	f the path.
start vids	ARRAY[BI	GINT]	Array of identifiers	s of starting ve	rtices.
end vid	BIGINT		Identifier of the er	nding vertex of	the path.
end vids	ARRAY[BI	GINT]	Array of identifiers	s of ending ver	tices.
Inner Queries					
Edges SQL¶					
Colu	mn		Туре	Default	Description
id		ANY-IN	TEGER		Identifier of the edge.
source		ANY-IN	TEGER		Identifier of the first end point vertex of the edge.
target		ANY-IN	TEGER		Identifier of the second end point vertex of the edge.
capacity		ANY-IN	TEGER		Capacity of the edge (source, target) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
reverse_capacity		ANY-IN	TEGER	-1	Capacity of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
cost		ANY-NU	JMERICAL		Weight of the edge (source, target) if it exist
reverse_cost		ANY-NU	JMERICAL	\(-1\)	Weight of the edge (target, source) if it exist
Where:					
ANY-INTEGER		INIT			
ANY-NUMERIC	AL:				
SMALLINT,	INTEGER, BIGI	INT, REAL	, FLOAT		
Combinations SQL					
Parameter	Туре			Description	
source II	NY- NTEGER	Identifi	er of the departure v	vertex.	
target II	NY- NTEGER	Identifi	er of the arrival vert	ex.	
Where:					
ANY-INTEGER		INIT			
Return columns					
Туре		l	Description		
FLOAT Minimum target(s)	n Cost Maxim	um Flow	possible from the s	ource(s) to the	

Additional Examples

Example:

Manually assigned vertex combinations.

SELECT * FROM pgr_maxFlowMinCost_Cost('SELECT id, source, target, capacity, reverse_capacity, cost, reverse_cost FROM edges', 'SELECT * FROM (VALUES (5, 10), (6, 15), (6, 14)) AS t(source, target)); pgr_maxflowmince_cost

320 (1 row)

See Also

- Flow Family of functions
- https://www.boost.org/libs/graph/doc/successive_shortest_path_nonnegative_weights.html

Indices and tables

- Index
- Search Page
- Flow Functions General Information

The main characteristics are:

- The graph is directed.
- Process is done only on edges with positive capacities.
- When the maximum flow is 0 then there is no flow and EMPTY SET is returned.
 - There is no flow when source has the same vaule as target.
- Any duplicated values in source or target are ignored.
- · Calculates the flow/residual capacity for each edge. In the output
 - Edges with zero flow are omitted.
- Creates
 - $\circ~$ a $\ensuremath{\text{super source}}$ and edges from it to all the sources,
 - a super target and edges from it to all the targetss.
- The maximum flow through the graph is guaranteed to be the value returned bypgr_maxFlow when executed with the same parameters and can be calculated:
 - By aggregation of the outgoing flow from the sources
 - By aggregation of the incoming flow to the targets

pgr_maxFlow is the maximum Flow and that maximum is guaranteed to be the same on the functionspgr_pushRelabel, pgr_edmondsKarp, pgr_boykovKolmogorov, but the actual flow through each edge may vary.

Inner Queries

Edges SQL

Capacity edges

- pgr_pushRelabel
- pgr_edmondsKarp
- pgr_boykovKolmogorov

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Weight of the edge (source, target)
reverse_capacity	ANY-INTEGER -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Capacity-Cost edges

• pgr_maxFlowMinCost - Experimental

• pgr_maxFlowMinCost_Cost - Experimental

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
capacity	ANY-INTEGER		Capacity of the edge (source, target) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Arriter Arriter Graphical examples and any ex	Colun	nn	Туре	Default	Description
ardMYMERIAWight endergroups wight	reverse_capacity		ANY-INTEGER	-1	Capacity of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
ANY-NUMERICA (n) Magna and and and and and and and and and a	cost		ANY-NUMERICAL		Weight of the edge (source, target) if it exist
	reverse_cost		ANY-NUMERICAL	\(-1\)	Weight of the edge (target, source) if it exist
NN-NTEOE Ball Status <td>Where:</td> <td></td> <td></td> <td></td> <td></td>	Where:				
SHULP. VIECE, USE IN LATION IN LATI	ANY-INTEGER:				
NINIME WILE Subjects	SMALLINT, I	NTEGER, BIG	AINT		
sou Later of the control of the con	ANY-NUMERIC	AL:			
Calibitation Type Default Description second ANY-NTEEGR destilier of the depain treated point vertex of the depa. second ANY-NTEEGR destilier of the depaint vertex of the depa. second ANY-NTEEGR destilier of the depaint vertex of the depa. second ANY-NTEEGR destilier of the depaint vertex of the depa. second ANY-NTEEGR destilier of the depaint vertex of the depa. second ANY-NTEEGR destilier of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex of the depaint vertex. second MY Note Transmitter of the depaint vertex. second MY Restriction of the depaint vertex. second MY Restriction of the depaint vertex. second MY Restriction of the depaint vertex. second MY Restriction of the depaint vertex. second MY Restriction of the depaint vertex. second MY Restriction of the depaint vertex. second MY Restriction of the depaint vertex. second	SMALLINT, I	NTEGER, BIG	BINT, REAL, FLOAT		
i y curve de la curve de	Cost edges				
i iyp for Bedra ars AIVATEGER addital descale d	 pgr_edgeD 	bisjointPaths	3		
u NM-INTEGER indifier of the edge. uous NM-INTEGER indifier of the edge. uous NM-INTEGER Weight of the edge. uous NM-INTEGER Weight of the edge. uous NM-INTEGER Weight of the edge. uous NM-INTERCAL No uous No No uous	Colun	nn	Туре	Default	Description
answer ANY-NTEGER deviler of the edge dance, target arget ANY-NTEGER deviler of the edge dance, target ANY-NTEGER arget deviler of the edge dance, target Statument of the edge dance, target arget deviler of the edge dance, target Statument of the edge dance, target arget deviler of the edge dance, target Statument of the edge dance, target deviler of the edge dance, target arget Statument of the edge dance, target deviler of the edge dance, target deviler of the edge dance, target Statument of the edge dance, target deviler of the edge dance, target deviler of the edge dance, target Statument of the edge dance dance dance dance dance dance, target deviler of the edge dance, target deviler of the edge dance, target Statument of the edge dance	id		ANY-INTEGER		Identifier of the edge.
Any Any Eq. (a) Any Any Eq. (c) Verify of the degree source) degree	source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
and Any August Augu	target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
Inversion Weight of the dage (separe, source) Inversion • One negative: edge (separe, source) does not exist, therefore if s not part of the dage. With the targe (separe, source) does not exist, therefore if s not part of the dage. • One negative: edge (separe, source) does not exist, therefore if s not part of the dage. With the targe (separe, source) does not exist, therefore if s not part of the dage. • One negative: edge (separe, source) does not exist, therefore if s not part of the dage. With the targe if the dage and the dage and the dage. • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage and the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage. Note: • One negative: vert of the dage.	cost		ANY-NUMERICAL		Weight of the edge (source, target)
Reverse.cod ANY-NUMERICAL 1 When negative: edge (unput, source) does not exist, therefore it's not part of the graph. Where: When negative: edge (unput, source) does not exist, therefore it's not part of the graph. Where: SMALINT, INTEGER, BIGINT, REAL, FLOAT Contractions BGL Parameter Type Description Source ANY- INTEGER: Wher: NATHEGER: Identifier of the departure vertex. Wher: SMALINT, INTEGER, BIGINT Identifier of the departure vertex. SMALINT, INTEGER, BIGINT SMALINT, INTEGER:					Weight of the edge (target source)
Where:: SMALLNT, NITEOER, BIONT SMALLNT, NITEOER, BIONT, REAL, FLOAT SMALLNT, NITEOER, BIONT, REAL, FLOAT SMALLNT, NITEOER, BIONT, REAL, FLOAT Source NY Source NY Identifier of the departure vertex. MITEOER Identifier of the departure vertex. MITEOER Identifier of the arrival vertex. Where: Identifier of the arrival vertex. MITEOER Identifier of the arrival vertex. Where: Identifier of the arrival vertex. SMALLNT, NITEOER, BIONT Identifier of the arrival vertex. Vorte: Identifier of the arrival vertex. SMALLNT, NITEOER, BIONT Identifier of the arrival vertex. SMALLNT, NITEOER, BIONT Identifier of the arrival vertex. Vorte: Identifier of the arrival vertex. SMALLNT, NITEOER, BIONT Identifier of the arrival vertex. SMALLNT, INTEOER, BIONT Identifier of the arrival vertex. Identifier of the arrival vertex. Identifier of the arrival vertex. SMALLNT, INTEOER, BIONT Identifier of the arrival vertex. Identifier of the arrival vertex. Identifier of the arrival vertex. Identifier of the arri	reverse_cost		ANY-NUMERICAL	-1	When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Parameter Type Description source MY: Experimental experimentexperimental ex	ANY-NUMERIC/ SMALLINT, I Combinations SQL	AL: NTEGER, BIG	SINT, REAL, FLOAT		
soure ANY- on the departure vertex. target ANY- on the departure vertex. target ANY- on the departure vertex. target ANY- on the departure vertex. there: t	Parameter	Туре		Description	
target ANV- INTEGER dentifier of the arrival vertex. Where:: ANV-INTEGER: same ANV-INTEGER: same SMALLINT, INTEGER, BIGINT same Result columns] same Used in - • par_pushBelabel - • par_edmondsKarp. - • par_boykovtKolmogorov - Column Type Description seq NT<	source IN	NY- ITEGER	Identifier of the departure	e vertex.	
Integer Integer Control of the second of the dama of the dama Where:: ANY-INTEGER: SMALLINT, INTEGER, BIGINT Result columns] Used in • pgr_publikelabel • pgr_demondsKarp • pgr_boykovKolmogorov Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge.	target Al	NY-	Identifier of the arrival ve	rtex	
Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT <pre> Result columns1 Used in <pre></pre></pre>	IN	ITEGER			
ANY-INTEGER: SMALLINT, INTEGER, BIGINT Product columns Used in pgr_pushRelabel pgr_domondsKarp pgr_boykovtkolmogorov Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the second end point vertex of the edge. for a BIGINT Identifier of the second end point vertex of the edge.	Where:				
SMALLINT, INTEGER, BIGINT Result columns Used in • pgr_pushRelabel • pgr_domontsKarp • pgr_boykovt/olmogorov Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge.	ANY-INTEGER:				
Result columns Used in • pgr_pushRelabe! • pgr_edmondsKarp • pgr_boykovKolmogorov Column Type Description seq NT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge.	SMALLINT, I	NTEGER, BIG	INT		
Used in • pgr_pushRelabel • pgr_edmondsKarp. • pgr_boykovKolmogorov. Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge.	Result columns				
 pgr_pushRelabel pgr_edmondsKarp pgr_boykovKolmogorox column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge. 	Used in				
 pgr_edmondsKarp pgr_boykovKolmogorox Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge. 	• pgr_pushR	lelabel			
• pgr_boykovKolmogorov Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first ent point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge.	 pgr_edmor 	ndsKarp			
Column Type Description seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge.	 pgr_boyko 	vKolmogoro	<u>v</u>		
seq INT Sequential value starting from 1. edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge. flow BIGINT Elew through the edge in the direction function function function function function	Column	Type	Des	cription	
edge BIGINT Identifier of the edge in the original query (edges_sql). start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge. flow BIGINT Identifier of the original query (edges_sql).	sea	INT S	equential value starting from	n 1 .	
start_vid BIGINT Identifier of the first end point vertex of the edge. end_vid BIGINT Identifier of the second end point vertex of the edge. flow BIGINT Identifier of the odge in the direction for the edge.	edge	BIGINT IC	lentifier of the edge in the o	riginal querv (ed	lges_sql).
end_vid BIGINT Identifier of the second end point vertex of the edge.	start_vid	BIGINT IC	dentifier of the first end point	t vertex of the ed	dge.
flow PIONT Flow through the edge in the direction first side and side	end_vid	BIGINT IC	lentifier of the second end r	point vertex of th	e edge.
	flow		low through the edge in the	direction from w	- d and vid)

 $\label{eq:residual_capacity BIGINT} \begin{array}{c} Residual \ capacity \ of the edge \ in the direction \ (tart_vid, end_vid). \end{array}$

For pgr_maxFlowMinCost - Experimental

Column	Туре	Description
seq	INT Sequential value starting from 1	l.
edge	BIGINT Identifier of the edge in the orig	inal query (edges_sql).
source	BIGINT Identifier of the first end point v	ertex of the edge.
target	BIGINT Identifier of the second end poi	nt vertex of the edge.
flow	BIGINT Flow through the edge in the di	rection (source, target).

residual_capacity BIGINT Residual capacity of the edge in the direction (source, target).

agg_cost FLOAT The aggregate cost.

Advanced Documentation

A flow network is a directed graph where each edge has a capacity and a flow. The flow through an edge must not exceed the capacity of the edge. Additionally, the incoming and outgoing flow of a node must be equal except for source which only has outgoing flow, and the destination(sink) which only has incoming flow.

Maximum flow algorithms calculate the maximum flow through the graph and the flow of each edge.

The maximum flow through the graph is guaranteed to be the same with all implementations, but the actual flow through each edge may vary.

Given the following query:

pgr_maxFlow \((edges_sql, source_vertex, sink_vertex)\)

where $(edges_sql = ((id_i, source_i, target_i, capacity_i, reverse_capacity_i))))))$

Graph definition

The weighted directed graph, (G(V,E)), is defined as:

- the set of vertices \(V\)
 - \(source_vertex \cup sink_vertex \bigcup source_i \bigcup target_i\)
- the set of edges \(E\)
 - \(E = \begin{cases} \text{ } \((source_i, target_i, capacity_i) \text{ when } capacity > 0 \} & \quad \text{ if } reverse_capacity = \varnothing \\ \text{ } \\ \(source_i, target_i, capacity_i) \text{ when } capacity_i) \text{ when } capacity > 0 \} & \text{ } \\ \cup \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity_i \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity_i \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity_i \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ when } reverse_capacity_i > 0 \)} & \quad \text{ if } reverse_capacity_i \\ \equiv \(target_i, source_i, reverse_capacity_i) \text{ source_i, reverse_capacity_i = 0 \)} & \quad \text{ if } reverse_capacity_i \\ \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, reverse_capacity_i = 0 \} & \quad \text{ source_i, re

Maximum flow problem

Given:

• \(G(V,E)\)

- \(source_vertex \in V\) the source vertex
- + $(sink_vertex in V)$ the sink vertex

Then:

- \(pgr_maxFlow(edges_sql, source, sink) = \boldsymbol{\Phi}\)

Where:

\(boldsymbol{\Phi})) is a subset of the original edges with their residual capacity and flow. The maximum flow through the graph can be obtained by aggregating on the source or sink and summing the flow from/to it. In particular:

- \(id_i = i\)
- \(edge_id = id_i\) in edges_sql
- \(residual_capacity_i = capacity_i flow_i\)

See Also

https://en.wikipedia.org/wiki/Maximum_flow_problem

Indices and tables

- Index
- Search Page

Kruskal - Family of functions

- pgr_kruskal
- pgr_kruskalBFS
- pgr_kruskalDD
- pgr_kruskalDFS

Boost Graph Inside

pgr_kruskal

pgr_kruskal — Minimum spanning tree of a graph using Kruskal's algorithm.

Boost Graph Inside

Availability

• Version 3.0.0

• New Official function

Description

This algorithm finds the minimum spanning forest in a possibly disconnected graph using Kruskal's algorithm.

The main Characteristics are:

- It's implementation is only on undirected graph.
- · Process is done only on edges with positive costs.
- When the graph is connected
 - The resulting edges make up a tree
- · When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- The total weight of all the edges in the tree or forest is minimized.
- Kruskal's running time: \(O(E * log E)\)
- EMPTY SET is returned when there are no edges in the graph.

Signatures

Summary

pgr_kruskal(<u>Edges SQL</u>) Returns set of (edge, cost) OR EMPTY SET

Example:

Minimum spanning forest

SELECT * FROM pgr_kruskal('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id') ORDER BY edge; edge | cost 1 | 1 2 | 1 3 | 1 6 | 1 7 | 1 10 | 1 11 | 1 12 | 1 13 | 1 14 | 1 15 | 1 16 | 1 17 | 1 18 | 1 (14 rows)

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (edge, cost)

Column Type Description

BIGINT Identifier of the edge. edge

FLOAT Cost to traverse the edge. cost

See Also

- Spanning Tree Category
- Kruskal Family of functions
- The queries use the Sample Data network.
- Boost: Kruskal's algorithm
- Wikipedia: Kruskal's algorithm

Indices and tables

- Index
- Search Page

pgr_kruskalBFS

pgr_kruskalBFS — Kruskal's algorithm for Minimum Spanning Tree with breadth First Search ordering.

Boost Graph Inside

Availability

Version 3.7.0:

Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Added pred result columns.

Version 3.0.0:

New Official function

Description

Visits and extracts the nodes information in Breath First Search ordering of the Minimum Spanning Tree created using Kruskal's algorithm.

The main Characteristics are:

- It's implementation is only on undirected graph.
- · Process is done only on edges with positive costs.
- When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- The total weight of all the edges in the tree or forest is minimized.
- Kruskal's running time: \(O(E * log E)\)
- Returned tree nodes from a root vertex are on Breath First Search order
- Breath First Search Running time: \(O(E + V)\)

Signatures

pgr_kruskalBFS(<u>Edges SQL</u>, **root vid**, [max_depth]) pgr_kruskalBFS(<u>Edges SQL</u>, **root vids**, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalBFS(<u>Edges SQL</u>, root vid, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_kruskalBFS('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6);

-,,								
seq	depth	start	vid	pred	node	e edg	ge cos	agg_cost
+	+		-+	+	+	+	+	
1	0	6	6	6	-1	0	0	
2	1	6	6	5	1	1	1	
3	1	6	6	10	2	1	1	
4	2	6	10	15	3	1	2	
5	3	6	15	16	16	1	3	
6	4	6	16	17	15	1	4	
7	5	6	17	12	13	1	5	
8	6	6	12	11	11	1	6	
9	6	6	12	8	12	1	6	

Multiple vertices

pgr_kruskalBFS(<u>Edges SQL</u>, root vids, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertices $(\ 0, 6)) with (depth \ 0 3)$

SELECT * FROM pgr_kruskalBFS(SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[9, 6], max_depth => 3); seq | depth | start_vid | pred | node | edge | cost | agg_cost

1	0	6	6 6 -	1 0	0
2	1	6	6 5	1 1	1
3	1	6	6 10	2 1	1
4	2	6	10 15	3 1	2
5	3	6	15 16	16 1	3
6	0	9	9 9 -	1 0	0
7	1	9	9 8 1	4 1	1
8	2	9	8 7 1	0 1	2
9	2	9	8 12	12 1	2
10	3	9	7 3	7 1	3
11	3	9	12 11	11 1	3
12	3	9	12 17	13 1	3
(12 ro	ws)				

Parameters[¶]

Parameter	Туре	Description
Edges SQL	TEXT	Edges SQL as described below.
Root vid	BIGINT	Identifier of the root vertex of the tree.
Root vids	ARRAY[ANY-INTEGER]	 Array of identifiers of the root vertices. \(0\) values are ignored For optimization purposes, any duplicated value is ignored.
distance	FLOAT	Upper limit for the inclusion of a node in the result.

Where:

ANY-NUMERIC:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

BFS optional parameters

Paramete	r Туре	Default	Description
		I	Jpper limit of the depth of the tree.
max_depth	BIGINT \(922337	72036854775807\)	 When negative throws an error.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (larget, source)When negative: edge (larget, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Parameter	Туре	Description		
seq	BIGINT	Sequential value starting from \(1\).		
depth	I	 Depth of the node. \(0\) when node = start_vid. \(depth-1\) is the depth of pred 		
start_vid	BIGINT I	dentifier of the root vertex.		
pred	I BIGINT	 Predecessor of node. When node = start_vid then has the value node. 		
node	BIGINT I	dentifier of node reached using edge.		
edge	I BIGINT ^I	dentifier of the edge used to arrive from pred to node. \(-1\) when node = start_vid.		
cost	FLOAT (Cost to traverse edge.		
agg_cost	FLOAT /	Aggregate cost from start_vid to node.		
See Also				
 Spann 	ning Tre	e - Category		
Krusk	al - Fan	nily of functions		
<u>Sample Data</u>				
Boost: Kruskal's algorithm				
<u>Wikipedia: Kruskal's algorithm</u>				
Indices and tables				

• Index

• Search Page

pgr_kruskalDD

pgr_kruskalDD — Catchament nodes using Kruskal's algorithm.

Boost Graph Inside

Availability

Version 3.7.0:

- Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - Added pred result columns.

Version 3.0.0:

New Official function

Description

Using Kruskal's algorithm, extracts the nodes that have aggregate costs less than or equal to adistance from a root vertex (or vertices) within the calculated minimum spanning tree.

The main Characteristics are:

- It's implementation is only on undirected graph.
- Process is done only on edges with positive costs.
- · When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
- Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- The total weight of all the edges in the tree or forest is minimized.
- Kruskal's running time: $(O(E * \log E)))$
- Extracts all the nodes that have costs less than or equal to the value distance.
- The edges extracted will conform to the corresponding spanning tree.
- Edge ((u, v)) will not be included when:
 - $\circ~$ The distance from the ${\color{black} root}$ to $\backslash (u \backslash) >$ limit distance.
 - The distance from the root to $\(v\) >$ limit distance.
 - No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.
- Returned tree nodes from a root vertex are on Depth First Search order.
- Depth First Search running time: (O(E + V))

Signatures

pgr_kruskalDD[<u>Edges SQL</u>, root vid, distance) pgr_kruskalDD[<u>Edges SQL</u>, root vids, distance) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalDD(<u>Edges SQL</u>, **root vid**, **distance**) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertex $\(6\)$ with $\(distance \ \ 3.5\)$

SELECT * FROM pgr_kruskalDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',

Multiple vertices

pgr_kruskalDD(<u>Edges SQL</u>, root vids, distance) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertices ((9, 6)) with (distance | leq 3.5)

SELECT * FROM pgr_kruskalDD(
'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
ARRAY[9, 6], 3.5);
seq depth start_vid pred node edge cost agg_cost
++++++

Туре

1	0	6	6	6 -1	0	0
2	1	6	6	5 1	1	1
3	1	6	6	10 2	1	1
4	2	6	10	15 3	1	2
5	3	6	15	16 16	5 1	3
6	0	9	9	9 -1	0	0
7	1	9	9	8 14	1	1
8	2	9	8	7 10	1	2
9	3	9	7	3 7	1	3
10	2	9	8	12 12	1	2
11	3	9	12	11 1	1 1	3
12	3	9	12	17 13	3 1	3
(12 rov	vs)					

Parameters

Parameter

Edges SQL TEXT Edges SQL as described below. Root vid BIGINT Identifier of the root vertex of the tree. Array of identifiers of the root vertices. • \(0\) values are ignored Root vids ARRAY[ANY-INTEGER] · For optimization purposes, any duplicated value is ignored. Upper limit for the inclusion of a node in the result. distance FL OAT Where: ANY-NUMERIC: SMALLINT, INTEGER, BIGINT, REAL, FLOAT Inner Queries Edges SQL Column Туре Default Description ANY-INTEGER Identifier of the edge. id ANY-INTEGER Identifier of the first end point vertex of the edge. source ANY-INTEGER target Identifier of the second end point vertex of the edge. ANY-NUMERICAL Weight of the edge (source, target) cost Weight of the edge (target, source) ANY-NUMERICAL -1 reverse_cost • When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Description

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Parameter	Туре	Description
seq	BIGINT	Sequential value starting from \(1\).
depth	BIGINT	 Depth of the node. \(0\) when node = start_vid. \(depth-1\) is the depth of pred
start_vid	BIGINT	Identifier of the root vertex.
pred	BIGINT	Predecessor of node.When node = start_vid then has the value node.
node	BIGINT	Identifier of node reached using edge.
edge	BIGINT	Identifier of the edge used to arrive from pred to node. • \(-1\) when node = start_vid.
cost	FLOAT	Cost to traverse edge.

agg_cost FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category

- Kruskal Family of functions
- Sample Data
- Boost: Kruskal's algorithm
- Wikipedia: Kruskal's algorithm

Indices and tables

- Index
- Search Page

pgr_kruskalDFS

pgr_kruskalDFS — Kruskal's algorithm for Minimum Spanning Tree with Depth First Search ordering.

Boost Graph Inside

Availability

Version 3.7.0:

• Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Added pred result columns.

Version 3.0.0:

New Official function

Description

Visits and extracts the nodes information in Depth First Search ordering of the Minimum Spanning Tree created using Kruskal's algorithm.

The main Characteristics are:

- It's implementation is only on **undirected** graph.
- Process is done only on edges with positive costs.
- When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- The total weight of all the edges in the tree or forest is minimized.
- Kruskal's running time: \(O(E * log E)\)
- Returned tree nodes from a root vertex are on Depth First Search order
- Depth First Search Running time: \(O(E + V)\)

pgr_kruskalDFS(<u>Edges SQL</u>, **root vid**, [max_depth]) pgr_kruskalDFS(<u>Edges SQL</u>, **root vids**, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex

pgr_kruskalDFS(<u>Edges SQL</u>, root vid, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree having as root vertex $\(6\)$

SELECT * FROM pgr_kruskalDFS("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6); seq | depth | start_vid | pred | node | edge | cost | agg_cost

1 2 3 4 5 6 7 8 9 10	0 1 2 3 4 5 6 6 7	6 6 6 6 6 6 6 10 6 15 6 16 6 17 6 12 6 8	6 -1 5 1 10 2 15 3 16 16 17 15 12 13 11 11 8 12 7 10	0 1 1 1 1 1 1 1 1 1	0 1 1 2 3 4 5 6 6 7
11	8	6 7	3 7	1	8
12 13	9 7	6 3 6 8	1 6 9 14	1 1	9 7
(13 rov	vs)				

Multiple vertices

pgr_kruskalDFS(<u>Edges SQL</u>, root vids, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertices ((9, 6)) with (depth | leq 3)

SELECT * FROM pgr_kruskalDFS("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[9, 6], max_depth => 3); seq | depth | start_vid | pred | node | edge | cost | agg_cost

1 2 3 4	0 1 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6	0	9 9 9 9 -1 0 0
7	1	9 9 8 14 1 1
8	2	9 8 7 10 1 2
9	3	9 7 3 7 1 3
10	2	9 8 12 12 1 2
11	3	9 12 11 11 1 3
12	3	9 12 17 13 1 3
(12 rov	NS)	

Parameters

Parameter	Туре	Description
Edges SQL	TEXT	Edges SQL as described below.
Root vid	BIGINT	Identifier of the root vertex of the tree.
Root vids	ARRAY[ANY-INTEGER]	 Array of identifiers of the root vertices. \(0\) values are ignored For optimization purposes, any duplicated value is ignored.
distance	FLOAT	Upper limit for the inclusion of a node in the result.
Where:		
ANY-NUMERIC:		
SMALLINT, INT	EGER, BIGINT, REAL, FLOAT	

DFS optional parameters

Parameter	Туре	Default	D	escription		
max_depth	BIGINT \(922337	2036854775807\)	Upper limit of • When ne error.	the depth of egative throv	the tree. vs an	
Inner Queries						
Edges SQL						
C	olumn	Туре	e	Default		Description
id		ANY-INTEGER			Identifier of the edge.	
source		ANY-INTEGER			Identifier of the first end point vertex o	f the edge.

	Column	Туре	Default	Description
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cos	t	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where: ANY-INTE SMAL	GER: LINT, INTEGER, BIC	SINT		
ANY-NUM SMAL	ERICAL: LINT, INTEGER, BIO	GINT, REAL, FLOAT		
Result column	ns <mark>1</mark>			
Returns se	et Of (seq, depth, star	rt_vid, pred, node, edge, cost, agg_co	st)	
Paramete	r Type	Description		
seq	BIGINT Sequenti	al value starting from \(1\).		
depth	Depth of BIGINT • \(0\ • \(de	the node.) when node = start_vid. epth-1\) is the depth of pred		
start_vid	BIGINT Identifier	of the root vertex.		
pred	Predeces BIGINT • Wh	ssor of node. en node = start_vid then has the v	value node.	
node	BIGINT Identifier	of node reached using edge.		
edge	Identifier BIGINT ^{node.} • \(-1	of the edge used to arrive from p	ored to	
cost	FLOAT Cost to tr	averse edge.		
agg_cost	FLOAT Aggregat	te cost from start_vid to node.		
See Also				
• Spar	nning Tree - Cate	gory		
• Krus	kal - Family of fur	nctions		
• <u>Sam</u>	<u>ple Data</u>			
• <u>Boos</u>	t: Kruskal's algor	<u>ithm</u>		
• <u>Wiki</u> p	<u>pedia: Kruskal's a</u>	<u>llgorithm</u>		
Indices and	d tables			
Sear	≏ ch Paœ			
Description				
Kruskal's r	algorithm is a grou	edv minimum snanning tree alo	orithm that in	a each cycle finds and adds the edge of the least possible weight that connects any two trees in the forest
The main	Characteristics	are:	onunn unat ll	. cash eyele and and and and eage of the loast possible weight that connects any two nees in the folest.
• It's in	nplementation is	only on undirected graph.		

- Process is done only on edges with positive costs.
- When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
 - Finds a minimum spanning tree for each connected component.

Туре

- The resulting edges make up a forest.
- The total weight of all the edges in the tree or forest is minimized.
- Kruskal's running time: \(O(E * log E)\)

Inner Queries

Column

Default

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	I	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where: ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also

- Spanning Tree Category
- Boost: Kruskal's algorithm
- Wikipedia: Kruskal's algorithm

Indices and tables

- Index
- Search Page

Prim - Family of functions

- pgr_prim
- pgr_primBFS
- pgr_primDD
- pgr_primDFS

Boost Graph Inside

pgr_prim

pgr_prim — Minimum spanning forest of a graph using Prim's algorithm.

Boost Graph Inside

Availability

- Version 3.0.0
 - New Official function

Description

This algorithm finds the minimum spanning forest in a possibly disconnected graph using Prim's algorithm.

The main characteristics are:

- It's implementation is only on undirected graph.
- Process is done only on edges with positive costs.
- When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
 - Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- Prim's running time: (O(E * log V))
- EMPTY SET is returned when there are no edges in the graph.

Signatures

Summary

pgr_prim(Edges SQL) Returns set of (edge, cost) OR EMPTY SET

Example:

Minimum spanning forest of a subgraph

SELECT edge, cost FROM pgr_prim('SELECT id, source, target, cost, reverse_cost

eage	cost
+-	
1	1
2	1
3	1
4	1
6	1
7	1
8	1
9	1
10	1
12	1
13	1
(11 rov	vs)

Parameters 1

Parameter Type De	scription
-------------------	-----------

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

- - -

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (edge, cost)

Column Type Description

edge BIGINT Identifier of the edge.

cost FLOAT Cost to traverse the edge.

See Also

- Spanning Tree Category
- Prim Family of functions
- The queries use the Sample Data network.
- Boost: Prim's algorithm documentation
- Wikipedia: Prim's algorithm
- Indices and tables
 - Index
 - Search Page

pgr_primBFS

pgr_primBFS — Prim's algorithm for Minimum Spanning Tree with Depth First Search ordering.

Boost Graph Inside

Availability

Version 3.7.0:

- Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - Added pred result columns.

Version 3.0.0:

· New Official function

Description

Visits and extracts the nodes information in Breath First Search ordering of the Minimum Spanning Tree created using Prims's algorithm.

The main Characteristics are:

- It's implementation is only on undirected graph.
- Process is done only on edges with positive costs.
- · When the graph is connected
 - · The resulting edges make up a tree
- · When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- Prim's running time: \(O(E * log V)\)
- Returned tree nodes from a root vertex are on Breath First Search order
- Breath First Search Running time: \(O(E + V)\)

Signatures

pgr_primBFS(<u>Edges SQL</u>, **root vid**, [max_depth]) pgr_primBFS(<u>Edges SQL</u>, **root vids**, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex

pgr_primBFS(<u>Edges SQL</u>, root vid, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_primBFS("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6);

seq | depth | start_vid | pred | node | edge | cost | agg_cost

			+	++		
1	0	6	6	6 -1	0	o
2	1	6	6	5 1	1	1
3	1	6	6	10 2	1	1
4	1	6	6	7 4	1	1
5	2	6	10	15 3	1	2
6	2	6	10	11 5	1	2
7	2	6	7	3 7	1	2
8	2	6	7	8 10	1	2
9	3	6	11	16 9	1	3
10	3	6	11	12 11	1	3
11	3	6	3	1 6	1	3
12	3	6	8	9 14	1	3
13	4	6	12	17 13	1	4
(13 rov	NS)					

Multiple vertices

pgr_primBFS(<u>Edges SQL</u>, root vids, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertices $(\ 9, 6)) with (depth <math display="inline">\ 0 \ 3)$

SELECT * FROM pgr_primBFS("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[9, 6], max_depth => 3); seq | depth | start_vid | pred | node | edge | cost | agg_cost

		++++++	
1	0	6 6 6 -1 0	0
2	1	6 6 5 1 1	1
3	1	6 6 10 2 1	1
4	1	6 6 7 4 1	1
5	2	6 10 15 3 1	2
6	2	6 10 11 5 1	2
7	2	6 7 3 7 1	2
8	2	6 7 8 10 1	2
9	3	6 11 16 9 1	3
10	3	6 11 12 11 1	3
11	3	6 3 1 6 1	3
12	3	6 8 9 14 1	3
13	0	9 9 9 -1 0	0
14	1	9 9 8 14 1	1
15	2	9 8 7 10 1	2
16	3	9 7 6 4 1	3
17	3	9 7 3 7 1	3
(17 rov	ws)		

Parameters

Description

Parameter	Туре	Description
Edges SQL	TEXT	Edges SQL as described below.
Root vid	BIGINT	Identifier of the root vertex of the tree.
		Array of identifiers of the root vertices.
Root vids	ARRAY[ANY-INTEGER]	 \(0\) values are ignored
		For optimization purposes, any duplicated value is

ignored.

Parameter

Description

distance FLOAT Upper limit for the inclusion of a node in the result.

Where:

ANY-NUMERIC:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Туре

BFS optional parameters

Parameter	Туре	Default	Description		
max_depth	BIGINT \(922337	Uppe 72036854775807\)	er limit of the depth of When negative throw error.	the tree. ws an	
Inner Queries					
Edges SQL <mark>¶</mark>					
	Solumn	Tuno	Default	Description	
, c	Joiumin	Туре	Delault	Description	
id		ANY-INTEGER		Identifier of the edge.	
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.	
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.	
cost		ANY-NUMERICAL		Weight of the edge (source, target)	
				Weight of the edge (target, source)	
reverse_cost		ANY-NUMERICAL	-1	When negative: edge (target, source) does not exist, therefore it's not part of the graph.	
Where:					
ANY-INTEC	GER:				
SMALL	INT, INTEGER, BI	GINT			
ANY-NUME	ERICAL:				
SMALL	INT, INTEGER, BI	GINT, REAL, FLOAT			
Result columns	1				
Returns set	t Of (seq, depth, sta	rt_vid, pred, node, edge, cos	st, agg_cost)		
Parameter	Туре	Description			
seq	BIGINT Sequent	ial value starting from \(1\).		
	Depth of	the node.			
depth	BIGINT • \(0)) when node = start_vid.			
	• \(d	epth-1\) is the depth of	pred		
start_vid	start_vid BIGINT Identifier of the root vertex.				
	Predece	ssor of node.			
pred	BIGINT • Wh	nen node = start_vid then I	nas the value node.		
node	de BIGINT Identifier of node reached using edge.				
	Identifier	of the edge used to arriv	ve from pred to		
edge	BIGINT node.				
	• \(-1	 when node = start_vid. 			
cost	FLOAT Cost to t	raverse edge.			
agg_cost	FLOAT Aggrega	te cost from start_vid to n	ode.		
See Also					
• <u>Span</u>	ning Tree - Cate	gory			
• <u>Prim</u> -	- Family of funct	ions			
Sample Data					

- Boost: Prim's algorithm documentation
- Wikipedia: Prim's algorithm

Indices and tables

- Index
- Search Page

par primDD

pgr_primDD — Catchament nodes using Prim's algorithm.

Boost Graph Inside

Availability

Version 3.7.0

- · Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - Added pred result columns.

Version 3.0.0

· New Official function

Description

Using Prim's algorithm, extracts the nodes that have aggregate costs less than or equal to a distance from a root vertex (or vertices) within the calculated minimum spanning tree.

The main Characteristics are:

- It's implementation is only on undirected graph.
- · Process is done only on edges with positive costs.
- When the graph is connected
 - · The resulting edges make up a tree
- · When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- Prim's running time: \(O(E * log V)\)
- Extracts all the nodes that have costs less than or equal to the value distance.
- The edges extracted will conform to the corresponding spanning tree.
- Edge \((u, v)\) will not be included when:
 - The distance from the **root** to $\langle (u \rangle) >$ limit distance.
 - The distance from the **root** to \(v\) > limit distance.
 - No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.
- Returned tree nodes from a root vertex are on Depth First Search order.
- Depth First Search running time: \(O(E + V)\)

Signatures

pgr_primDD(<u>Edges SQL</u>, **root vid**, **distance**) pgr_primDD(<u>Edges SQL</u>, **root vids**, **distance**) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex

pgr_primDD(Edges SQL, root vid, distance) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertex \(6\) with \(distance \leg 3.5\)

SELECT * FROM pgr_primDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6, 3.5); seq | depth | start_vid | pred | node | edge | cost | agg_cost

01 6 6 6 6 1 0

1	0	6 6	6 -1 0	0
2	1	6 6	5 1 1	1
3	1	6 6	10 2 1	1
4	2	6 10	15 3 1	2
5	2	6 10	11 5 1	2
6	3	6 11	16 9 1	3
7	3	6 11	12 11 1	3
8	1	6 6	7 4 1	1
9	2	6 7	3 7 1	2
10	3	6 3	1 6 1	3
11	2	6 7	8 10 1	2
12	3	6 8	9 14 1	3
(12 rov	NS)			

Multiple vertices

pgr_primDD(<u>Edges_SQL</u>, root vids, distance) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertices ((9, 6)) with (distance | leq 3.5)

4	2	6 10	15 3 1	2
5	2	6 10	11 5 1	2
6	3	6 11	16 9 1	3
7	3	6 11	12 11 1	3
8	1	6 6	7 4 1	1
9	2	6 7	3 7 1	2
10	3	6 3	1 6 1	3
11	2	6 7	8 10 1	2
12	3	6 8	9 14 1	3
13	0	9 9	9 -1 0	0
14	1	9 9	8 14 1	1
15	2	9 8	7 10 1	2
16	3	9 7	6 4 1	3
17	3	9 7	3 7 1	3
(17 rov	ws)			

Parameters 1

Parameter	Туре	Description
Edges SQL	TEXT	Edges SQL as described below.
Root vid	BIGINT	Identifier of the root vertex of the tree.
Root vids	ARRAY[ANY-INTEGER]	 Array of identifiers of the root vertices. \(0\) values are ignored For optimization purposes, any duplicated value is ignored.
distance	FLOAT	Upper limit for the inclusion of a node in the result.

Where:

ANY-NUMERIC:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Inner Queries

Edges SQL

	Column	Туре	Default	Description	
id		ANY-INTEGER		Identifier of the edge.	
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.	
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.	
cost		ANY-NUMERICAL		Weight of the edge (source, target)	
reverse_cos	st	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph. 	
Where:					
ANY-INTE	GER:				
SMAL	LLINT, INTEGER, BIO	GINT			
ANY-NUM	IERICAL:				
SMAL	LLINT, INTEGER, BIO	GINT, REAL, FLOAT			
Result colum	ns <mark>1</mark>				
Returns se	et of (seq, depth, sta	rt_vid, pred, node, edge, cost, agg_co	ost)		
Paramete	er Type	Description			
seq	seq BIGINT Sequential value starting from \(1\).				
	Depth of	the node.			
depth	BIGINT • \(0)) when node = start_vid.			
	• \(de	epth-1\) is the depth of pred			
start_vid BIGINT Identifier of the root vertex.					
Predecessor of node.					
pred	BIGINT • Wh	nen node = start_vid then has the	value node.		
node	BIGINT Identifier of node reached using edge.				
edge	Identifier of the edge used to arrive from pred to edge BIGINT node.				
 \(-1\) when node = start_vid. 					
Parameter Type

Description

FLOAT Cost to traverse edge. cost

FLOAT Aggregate cost from start_vid to node. agg_cost

See Also

Spanning Tree - Category

- Prim Family of functions
- Sample Data
- Boost: Prim's algorithm documentation
- Wikipedia: Prim's algorithm

Indices and tables

- Index
- Search Page

pgr_primDFS

pgr_primDFS - Prim algorithm for Minimum Spanning Tree with Depth First Search ordering

Boost Graph Inside

Availability

Version 3.7.0:

- Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
- Added pred result columns.

Version 3.0.0:

New Official function

Description

Visits and extracts the nodes information in Depth First Search ordering of the Minimum Spanning Tree created using Prims's algorithm.

The main Characteristics are:

- It's implementation is only on undirected graph.
- Process is done only on edges with positive costs.
- · When the graph is connected
 - The resulting edges make up a tree
- · When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- Prim's running time: \(O(E * log V)\)
- Returned tree nodes from a root vertex are on Depth First Search order
- Depth First Search Running time: \(O(E + V)\)

Signatures

pgr_primDFS(<u>Edges SQL</u>, root vid, [max_depth]) pgr_primDFS(<u>Edges SQL</u>, root vids, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Single vertex

pgr_primDFS(<u>Edges SQL</u>, root vid, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree having as root vertex \(6\)

SELECT * FROM pgr_primDFS(SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6);

seq | depth | start_vid | pred | node | edge | cost | agg_cost

		I I	- 1 1 1	_
1 2 3 4 5 6 7 8 9 10	0 1 2 2 3 3 4 1 2 2 3 4 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
E İ	2	6 10 11	E 1 0	
5	21		J I Z	
6	3	6 11 16	9 1 3	
7	3	6 11 12	11 1 3	
8	4	6 12 17	13 1 4	
9	1	6 6 7 4	1 1	
10	2	6 7 3	7 1 2	
11	3	6 3 1	6 1 3	
12	2	6 7 8 1	0 1 2	
13	3	6 8 9 1	4 1 3	
(13 rov	NS)			

Multiple vertices

pgr_primDFS(<u>Edges SQL</u>, root vids, [max_depth]) Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Example:

The Minimum Spanning Tree starting on vertices ((9, 6)) with (depth leq 3)

SELECT * FROM pgr_primDFS('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[9, 6], max_depth => 3);

seq depth	start_vid pred node edg	e cost agg_cost
seq depth 0 2 1 3 1 4 2 5 2 6 3 7 3 8 1 9 2 10 3 11 2 10 3 11 2 12 3 13 0 14 1 15 2 16 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 17 3 18 1 19 2 10 3 11 4 2 10 3 11 4 2 10 3 11 4 2 10 3 11 4 2 10 3 11 2 12 3 13 0 14 1 15 2 16 3 17 3 17 3 18 1 18 1 19 2 10 3 11 4 2 10 3 11 2 11 2 12 3 13 0 14 1 15 2 16 3 17 3 17 3 16 3 17 3 17 3 18 1 19 2 10 12 11 2 12 3 14 1 15 2 16 3 17 3 17 3 16 3 17 3 17 3 16 3 17 3 17 3 17 3 18 10 19 2 10	star_vid pred node edg	le cost agg_cost →
(

Parameters

Parameter	Туре	Description
Edges SQL	TEXT	Edges SQL as described below.
Root vid	BIGINT	Identifier of the root vertex of the tree.
Root vids	ARRAY[ANY-INTEGER]	 Array of identifiers of the root vertices. \(0\) values are ignored For optimization purposes, any duplicated value is ignored.
distance	FLOAT	Upper limit for the inclusion of a node in the result.
Where:		
ANY-NUMERIC:		
SMALLINT, INT	EGER, BIGINT, REAL, FLOAT	
DFS optional parameters	1	
Parameter Type	Default	Description
max_depth BIGINT	U \(9223372036854775807\)	Ipper limit of the depth of the tree.When negative throws an error.
Inner Queries		

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	I	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Parameter Type

Description

Parameter	Type Description
seq	BIGINT Sequential value starting from \(1\).
depth	Depth of the node. BIGINT • \(0\) when node = start_vid. • \(depth-1\) is the depth of pred
start_vid	BIGINT Identifier of the root vertex.
pred	Predecessor of node. BIGINT • When node = start_vid then has the value node.
node	BIGINT Identifier of node reached using edge.
edge	Identifier of the edge used to arrive from pred to BIGINT ^{node.} • \(-1\) when node = start_vid.
cost	FLOAT Cost to traverse edge.
agg_cost	FLOAT Aggregate cost from start_vid to node.

See Also

Spanning Tree - Category

- Prim Family of functions
- Sample Data
- Boost: Prim's algorithm documentation
- Wikipedia: Prim's algorithm
- Indices and tables

Index

• Search Page

Description

The prim algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník. It is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.

This algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim's algorithm only finds minimum spanning trees in connected graphs. However, running Prim's algorithm separately for each connected component of the graph, then it is called minimum spanning forest.

The main characteristics are:

- It's implementation is only on undirected graph.
- · Process is done only on edges with positive costs.
- · When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
 - $\circ\;$ Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.
- Prim's running time: \(O(E * log V)\)

Note

From boost Graph: "The algorithm as implemented in Boost.Graph does not produce correct results on graphs with parallel edges."

Inner Queries

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also

- Spanning Tree Category
- Boost: Prim's algorithm
- Wikipedia: Prim's algorithm

Indices and tables

- Index
- Search Page

Reference

- pgr_version
- pgr_full_version

pgr_version

pgr_version — Query for pgRouting version information. Availability

• Version 3.0.0

- · Breaking change on result columns
- Support for old signature ends

• Version 2.0.0

· Official function

Description

Returns pgRouting version information.

Signature

pgr_version() RETURNS TEXT

Example:

pgRouting Version for this documentation

SELECT pgr_version(); pgr_version 3.7.1 (1 row)

Result columns

Type Description

TEXT pgRouting version

See Also

- <u>Reference</u>
- pgr_full_version

Indices and tables

- Index
- Search Page

pgr_full_version

pgr_full_version — Get the details of pgRouting version information.

Availability

Version 3.0.0

New official function

Description

Get complete details of pgRouting version information

Signatures

pgr_full_version() RETURNS (version, build_type, compile_date, library, system, PostgreSQL, compiler, boost, hash)

Example:

Information about when this documentation was built

SELECT version, library FROM pgr_full_version(); version | library

Result columns

Column Type Description

version TEXT pgRouting version

build_type TEXT The Build type

compile_date TEXT Compilation date

library TEXT Library name and version

system TEXT Operative system

postgreSQL TEXT pgsql used

compiler TEXT Compiler and version

boost TEXT Boost version

hash TEXT Git hash of pgRouting build

See Also

- <u>Reference</u>
- pgr_version

Indices and tables

- Index
- Search Page

See Also

Indices and tables

- Index
- Search Page

Topology - Family of Functions

The pgRouting's topology of a network represented with a graph in form of two tables: and edge table and a vertex table.

Attributes associated to the tables help to indicate if the graph is directed or undirected, if an edge is one way on a directed graph, and depending on the final application needs, suitable topology(s) need to be created.

pgRouting suplies some functions to create a routing topology and to analyze the topology.

Additional functions to create a graph:

<u>Contraction - Family of functions</u>

Additional functions to analyze a graph:

<u>Components - Family of functions</u>

The following functions modify the database directly therefore the user must have special permissions given by the administrators to use them.

- pgr_createTopology create a topology based on the geometry.
- pgr_createVerticesTable reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneWay to analyze directionality of the edges.
- pgr_nodeNetwork to create nodes to a not noded edge table.

Proposed

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more
 - · Documentation might need refinement.
- These proposed functions do not modify the database.

• pgr_degree - Proposed - Returns a set of vertices and corresponding count of incidet edges to the vertex.

• pgr_extractVertices - Proposed - Extracts vertex information based on the edge table information.

pgr_createTopology

pgr_createTopology - Builds a network topology based on the geometry information.

Availability

Version 2.0.0

- Renamed from version 1.x
- · Official function

Description

The function returns:

- OK after the network topology has been built and the vertices table created.
- FAIL when the network topology was not built due to an error.

Signatures

pgr_createTopology(edge_table, tolerance, [options]) options: [the_geom, id, source, target, rows_where, clean] RETURNS VARCHAR

Parameters

The topology creation function accepts the following parameters:

edge table:

text Network table name. (may contain the schema name as well)

tolerance:

float8 Snapping tolerance of disconnected edges. (in projection unit)

the_geom:

text Geometry column name of the network table. Default value isthe_geom.

id:

text Primary key column name of the network table. Default value isid.

source:

text Source column name of the network table. Default value issource.

target:

text Target column name of the network table. Default value istarget.

rows_where:

text Condition to SELECT a subset or rows. Default value istrue to indicate all rows that where source or target have a null value, otherwise the condition is used.

clean:

boolean Clean any previous topology. Default value is false.

Warning

The edge_table will be affected

- The source column values will change
- The target column values will change.
 - An index will be created, if it doesn't exists, to speed up the process to the following columns:
 - ∎ id
 - the_geom
 - source
 - target

The function returns:

- OK after the network topology has been built.
 - Creates a vertices table: <edge_table>_vertices_pgr.
 - Fills id and the_geom columns of the vertices table.
 - Fills the source and target columns of the edge table referencing theid of the vertices table.
- FAIL when the network topology was not built due to an error:
 - $\circ~$ A required column of the Network table is not found or is not of the appropriate type.
 - The condition is not well formed.
 - The names of source , target or id are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneWay functions.

The structure of the vertices table is:

id:

bigint Identifier of the vertex.

cnt:

chk

integer Indicator that the vertex might have a problem. Seepgr_analyzeGraph.

ein:

integer Number of vertices in the edge_table that reference this vertex AS incoming. Seepgr_analyzeOneWay.

eout:

integer Number of vertices in the edge_table that reference this vertex AS outgoing. Seepgr_analyzeOneWay.

the geom:

geometry Point geometry of the vertex.

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_createTopology is:

SELECT pgr_createTopology('edges', 0.001, 'geom'); NOTICE: PROCESSING:

pgr_createtopology

OK (1 row)

When the arguments are given in the order described in the parameters:

We get the same result as the simplest way to use the function.

SELECT pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target'); NOTICE: PROCESSING:

pgr_createtopology

OK (1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the columnd of the table ege table is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the id column.

SELECT pgr_createTopology('edges', 0.001, 'id', 'geom'); NOTICE: PROCESSING: NOTICE: PROCESSING: NOTICE: pag: createTopology('edges', 0.001, 'id', 'geom', 'source', 'target', rows_where := 'true', clean := f) NOTICE: ---> PGR ERROR in pgr_createTopology: Wrong type of Column id:geom HINT: ---> Expected type of geom is integer,smallint or bigint but USER-DEFINED was found NOTICE: Unexpected error raise_exception pgr_createtopology

FAIL (1 row)

When using the named notation

Parameters defined with a default value can be omitted, as long as the value matches the default And The order of the parameters would not matter.

SELECT pgr_createTopology('edges', 0.001, the_geom:='geom', id:='id', source:='source', target:='target'); pgr_createtopology

ок (1 row)

SELECT pgr_createTopology('edges', 0.001, source:='source', id:='id', target:='target', the_geom:='geom'); pgr_createtopology

OK (1 row)

SELECT pgr_createTopology('edges', 0.001, 'geom', source:='source'); pgr_createtopology

OK (1 row)

Selecting rows using rows_where parameter

Selecting rows based on the id.

SELECT pgr_createTopology('edges', 0.001, 'geom', rows_where:='id < 10'); pgr_createtopology

OK (1 row)

Selecting the rows where the geometry is near the geometry of row withid = 5.

SELECT pgr_createTopology('edges', 0.001, 'geom', rows_where:='geom && (SELECT st_buffer(geom, 0.05) FROM edges WHERE id=5)'); pgr_createtopology

OK (1 row)

Selecting the rows where the geometry is near the geometry of the row withgid =100 of the table othertable.

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5, 2.5) AS other_geom); SELECT 1

SELECT pgr_createTopology('edges', 0.001, 'geom', rows_where:='geom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)'); pgr_createtopology

OK

(1 row)

Usage when the edge table's columns DO NOT MATCH the default value

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, geom AS mygeom, source AS src , target AS tgt FROM edges) ; SELECT 18

Using positional notation:

The arguments need to be given in the order described in the parameters

Note that this example uses clean flag. So it recreates the whole vertices table

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', clean := TRUE);

pgr_createtopology

OK (1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the columngid of the table mytable is passed to the function AS the geometry column, and the geometry column mygeom is passed to the function AS the id column.

SELECT pgr_createTopology(mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt'); NOTICE: PROCESSING: NOTICE: pgr_createTopology('mytable', 0.001, 'gid', 'mygeom', 'src', 'tgt', rows_where := 'true', clean := f) NOTICE: Performing checks, please wait NOTICE: ---> PGR ERROR in pgr_createTopology: Wrong type of Column id:mygeom HINT: ---> Expected type of mygeom is integer, smallint or bigint but USER-DEFINED was found NOTICE: Unexpected error raise_exception pgr_createTopology

FAIL (1 row)

When using the named notation

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table. The order of the parameters do not matter:

SELECT pgr_createTopology('mytable', 0.001, the_geom:='mygeom', id:='gid', source:='src', target:='tgt');

pgr_createtopology

OK (1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom'); pgr_createIopology

OK (1 row)

Selecting rows using rows_where parameter

Based on id:

SELECT pgr_oreateTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='gid < 10'); pgr_oreatetopology

OK

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom', rows_where:='gid < 10'); pgr_createtopology

OK (1 row)

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)'); pgr_createtopology

ОК

(1 row)

SELECT pgr_createTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom', rows_where:='mygeom && (SELECT st_buffer(mygeom, 1) FROM mytable WHERE gid=5)'); pgr_createtopology

OK (1 row)

Selecting the rows where the geometry is near the geometry of the row withgid =100 of the table othertable

SELECT pgr_createTopology('mytable', 0.001, 'mygeom', 'gid', 'src', 'tgt', rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)'); pgr_createtopology

OK (1 row)

SELECT pgr_oreateTopology('mytable', 0.001, source:='src', id:='gid', target:='tgt', the_geom:='mygeom' rows_where:='mygeom && (SELECT st_buffer(other_geom, 1) FROM otherTable WHERE gid=100)'); pgr_createtopology

OK (1 row)

Additional Examples

Create a routing topology

- · Make sure the database does not have the vertices table
- · Clean up the columns of the routing topology to be created
- Create the vertices table
- Inspect the vertices table
- Create the routing topology on the edge table

Inspect the routing topology

With full output

Create a routing topology

An alternate method to create a routing topology usepgr_extractVertices - Proposed

Make sure the database does not have the vertices table

DROP TABLE IF EXISTS vertices_table; NOTICE: table "vertices_table" does not exist, skipping DROP TABLE

Clean up the columns of the routing topology to be created

UPDATE edges SET source = NULL, target = NULL, x1 = NULL, y1 = NULL, x2 = NULL, y2 = NULL; UPDATE 18

Create the vertices table¶

• When the LINESTRING has a SRID then use geom::geometry(POINT, <SRID>)

- For big edge tables that are been prepared,
 - · Create it as UNLOGGED and
 - After the table is created ALTER TABLE .. SET LOGGED

SELECT * INTO vertices_table FROM pgr_extractVertices('SELECT id, geom FROM edges ORDER BY id'); SELECT 17

Inspect the vertices table¶

SELECT *

FROM vertices_table;			
id in_edges out_edges	. x y	/ geom	
++++++	++	+	
1 {6}	0 2 01010	000000000000000000000000000000000000000	0000000040
2 {17}	0.5 3.5 010	10000000000000000000000000000000000000	00000000C40
3 {6} {7}	1 2 0101	10000000000000000000000000000000000000	0000000040
4 {17} 1.9999	999999999 3.	.5 01010000068EEFFFFFFFFF	3F000000000000C40
5 {1}	2 0 01010	000000000000000000000000000000000000000	000000000
6 {1} {2,4}	2 1 010	100000000000000000000000000000000000000	0000000F03F
7 {4,7} {8,10}	2 2 010	010000000000000000000000000000000000000	000000000040
8 {10} {12,14}	2 3 01	010000000000000000000000000000000000000	000000000840
9 {14}	2 4 0101	000000000000000000000000000000000000000	0000001040
10 {2} {3,5}	3 1 010	010000000000000000008400000	00000000F03F
11 {5,8} {9,11}	3 2 01	101000000000000000000840000	000000000040
12 {11,12} {13}	3 3 0	10100000000000000000840000	0000000000840
13 {18}	3.5 2.3 010	0100000000000000000C406666	6666666660240
14 {18}	3.5 4 010	10000000000000000000000000000000000000	00000001040
15 {3} {16}	4 1 010	010000000000000000010400000	00000000F03F
16 {9,16} {15}	4 2 01	101000000000000000001040000	000000000040
17 {13,15}	4 3 010	010000000000000000010400000	00000000840
(17 rows)			

Create the routing topology on the edge table

Updating the source information

WITH

VIII out_going AS (SELECT id AS vid, unnest(out_edges) AS eid, x, y FROM vertices_table

) UPDATE edges SET source = vid, x1 = x, y1 = y FROM out_going WHERE id = eid; UPDATE 18

Updating the target information

WITH in_coming AS (SELECT id AS vid, unnest(in_edges) AS eid, x, y FROM vertices_table

) UPDATE edges SET target = vid, x2 = x, y2 = y FROM in_coming WHERE id = eid; UPDATE 18

Inspect the routing topology

SELE FROM id s	CT id, / edge ource	source, target, x1, y so ORDER BY id; target x1 y1	y1, x2, y2 x2 y2
11	51	6 2 0	2 1
2	6	10 2 1	2 1
21	10	15 2 1	41.1
3	101		4 1
4	6	7 2 1	2 2
5	10	11 3 1	3 2
6	1	3 0 2	1 2
7	3	7 1 2	2 2
8	7	11 2 2	3 2
9 İ	11	16 3 2	4 2
10	71	8 2 2	2 3
111	11	12 3 2	3 3
12	81	12 2 3	3 3
13	12	17 3 3	4 3
14	0	0 0 0	214
14	10	9 2 3	2 4
15	161	17 4 2	4 3
16	15	16 4 1	4 2
17	2	4 0.5 3.5 1.99	99999999999 3.5
18	13	14 3.5 2.3	3.5 4
(18 ro	ws)		

Generated topology

With full output

This example start a clean topology, with 5 edges, and then its incremented to the rest of the edges.

SELECT pgr_createTopology('edges', 0.001, 'geom', rows_where:='id < 6', clean := true); NOTICE: PROCESSING: NOTICE: Performing checks, please wait.... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Vertices table public deges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr NOTICE: More table public.edges is: public.edges_vertices_pgr pgr_createtopology

OK (1 row)

SELECT pgr_createTopology('edges', 0.001, 'geom'); NOTICE: PROCESSING: NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f) NOTICE: Performing checks, please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Werking Topology, Please wait... NOTICE: Werking Topology, Please wait... NOTICE: Verking Topology, Please wait... NOTICE: Verking Topology, Please wait... NOTICE: Werking Topology, Please wait... NOTICE: Nows with NULL geometry or NULL id: 0 NOTICE: Verking topology, Please wait... par createtopology

pgr_createtopology

OK (1 row)

The example uses the Sample Data network.

See Also

- Topology Family of Functions
- pgr_createVerticesTable

• pgr_analyzeGraph

Indices and tables

- Index
- Search Page

pgr_createVerticesTable

 ${\tt pgr_createVerticesTable} - {\tt Reconstructs} \ {\tt the} \ {\tt vertices} \ {\tt table} \ {\tt based} \ {\tt on} \ {\tt the} \ {\tt source} \ {\tt and} \ {\tt target} \ {\tt information}.$

Availability

• Version 2.0.0

- Renamed from version 1.x
- Official function

Description

The function returns:

• OK after the vertices table has been reconstructed.

FAIL when the vertices table was not reconstructed due to an error.

Signatures

pgr_createVerticesTable(edge_table, [the_geom, source, target, rows_where]) RETURNS VARCHAR

Parameters

The reconstruction of the vertices table function accepts the following parameters:

edge table:

text Network table name. (may contain the schema name as well)

the geom:

text Geometry column name of the network table. Default value isthe_geom.

source:

text Source column name of the network table. Default value issource.

target:

text Target column name of the network table. Default value istarget.

rows_where:

text Condition to SELECT a subset or rows. Default value istrue to indicate all rows.

Warning

The edge_table will be affected

• An index will be created, if it doesn't exists, to speed up the process to the following columns:

- the_geom
- source
- target

The function returns:

• OK after the vertices table has been reconstructed.

- Creates a vertices table: <edge_table>_vertices_pgr.
- Fills id and the_geom columns of the vertices table based on the source and target columns of the edge table.
- FAIL when the vertices table was not reconstructed due to an error.
 - A required column of the Network table is not found or is not of the appropriate type.
 - · The condition is not well formed.
 - The names of source, target are the same.
 - The SRID of the geometry could not be determined.

The Vertices Table

The vertices table is a requirement of the pgr_analyzeGraph and the pgr_analyzeOneWay functions.

The structure of the vertices table is:

id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge_table that reference this vertex. Seepgr_analyzeGraph.

chk:

integer Indicator that the vertex might have a problem. Seepgr_analyzeGraph.

ein:

integer Number of vertices in the edge_table that reference this vertex as incoming. Seepgr analyzeOneWay.

eout:

integer Number of vertices in the edge_table that reference this vertex as outgoing. Seepgr_analyzeOneWay.

the_geom:

geometry Point geometry of the vertex.

Example 1:

The simplest way to use pgr_createVerticesTable

SELECT p	gr_createVerticesTable('edges', 'geom');
NOTICE: F	PROCESSING:
NOTICE: p	pgr_createVerticesTable('edges', 'geom', 'source', 'target', 'true')
NOTICE: F	Performing checks, please wait
NOTICE: F	Populating public.edges_vertices_pgr, please wait
NOTICE:	> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE:	FOR 18 EDGES
NOTICE:	Edges with NULL geometry, source or target: 0
NOTICE:	Edges processed: 18
NOTICE: \	/ertices table for table public.edges is: public.edges_vertices_pgr
110 210 2	

NOTICE: ----pgr_createverticestable

OK (1 row)

Additional Examples

Example 2:

When the arguments are given in the order described in the parameters:

SELECT pgr_createVerticesTable('edges', 'geom', 'source', 'target');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges','geom','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait
NOTICE:> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry, source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pg
NOTICE:
pgr_createverticestable

OK (1 row)

We get the same result as the simplest way to use the function.

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the column source columnsource of the table mytable is passed to the function as the geometry column, and the geometry column the_geom is passed to the function as the source column.

NOTICE: PROCESSING: NOTICE: pgr_createVerticesTable('edges','source','geom','target','true') NOTICE: Performing checks, please wait NOTICE: ---> PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: geom HINT: ---> Expected type of geom is integer, smallint or bigint but USER-DEFINED was found NOTICE: Unexpected error raise_exception pgr_createverticestable FAIL

(1 row)

When using the named notation

Example 3:

The order of the parameters do not matter:

pgr_createverticestable

ОК (1 row)

Example 4:

Using a different ordering

SELECT pgr_createVerticesTable('edges', source:='source', target:='target', the_geom:='geom');
NOTICE: PROCESSING:
NOTICE: pgr_createVerticesTable('edges', 'geom', 'source', 'target', 'true')
NOTICE: Performing checks, please wait
NOTICE: Populating public.edges_vertices_pgr, please wait
NOTICE:> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
NOTICE: Edges with NULL geometry, source or target: 0
NOTICE: Edges processed: 18
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE:
pgr_createverticestable

OK (1 row)

Example 5:

Parameters defined with a default value can be omitted, as long as the value matches the default:

NOTICE: pgr_createverticestable

OK (1 row)

Selecting rows using rows_where parameter

Example 6:

Selecting rows based on the id.

SELECT	pgr_createVerticesTable('edges', 'geom', rows_where:='id < 10');
NOTICE:	PROCESSING:
NOTICE:	pgr_createVerticesTable('edges','geom','source','target','id < 10')
NOTICE:	Performing checks, please wait
NOTICE:	Populating public.edges_vertices_pgr, please wait
NOTICE:	> VERTICES TABLE CREATED WITH 9 VERTICES
NOTICE:	FOR 10 EDGES
NOTICE:	Edges with NULL geometry, source or target: 0
NOTICE:	Edges processed: 10
NOTICE:	Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE:	
pgr_crea	teverticestable

OK (1 row)

Example 7:

Selecting the rows where the geometry is near the geometry of row withid =5 .

SELECT pgr_oreateVerticesTable('edges', 'geom', rows_where:='geom && (select st_buffer(geom,0.5) FROM edges WHERE id=5)'); NOTICE: PROCESSING: NOTICE: performing checks, please wait.... NOTICE: Performing checks, please wait.... NOTICE: Performing checks, please wait.... NOTICE: Performing checks, please wait.... NOTICE: Performing checks, please wait.... NOTICE: Performing checks, please wait... NOTICE: Performing checks, please wait... NOTICE: Performing checks, please wait... NOTICE: For 9 EDGES NOTICE: FOR 9 EDGES NOTICE: For 9 EDGES NOTICE: Edges processed: 9 NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr NOTICE pgr_createverticestable

OK (1 row)

Example 8:

Selecting the rows where the geometry is near the geometry of the row withgid =100 of the table othertable

DROP TABLE IF EXISTS otherTable; NOTICE: table "othertable" does not exist, skipping

DROP TABLE DROP TABLE CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ; SELECT 19r_createVerticesTable('edges', 'geom', rows_where:='geom && (select st_buffer(other_geom,0.5) FROM otherTable WHERE gid=100)'); NOTICE: PROCESSING:

NOTICE: PHOCESSING: NOTICE: prog_createVerticesTable('edges','geom','source', 'target','geom && (select st_buffer(other_geom,0.5) FROM otherTable WHERE gid=100)') NOTICE: Performing checks, please wait.... NOTICE: Populating public.edges, vertices_pgr, please wait... NOTICE: ----> VERTICES TABLE CREATED WITH 10 VERTICES NOTICE: FOR 12 EDGES NOTICE: Edges with NULL geometry,source or target: 0 NOTICE: Edges with NULL geometry,source or target: 0

NOTICE: Edges processed: 12 NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr

NOTICE:

pgr_createverticestable

ОК (1 row)

Usage when the edge table's columns DO NOT MATCH the default values:

Using the following table

DROP TABLE IF EXISTS mytable; NOTICE: table "mytable" does not exist, skipping DROP TABLE CREATE TABLE mytable AS (SELECT id AS gid, geom AS mygeom, source AS src ,target AS tgt FROM edges) ; SELECT 18

Using positional notation:

Example 9:

The arguments need to be given in the order described in the parameters:

SELECT p	gr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt');	
NOTICE: F	PROCESSING:	
NOTICE: p	pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt', 'true')	
NOTICE: F	Performing checks, please wait	
NOTICE: F	Populating public.mytable_vertices_pgr, please wait	
NOTICE:	> VERTICES TABLE CREATED WITH 17 VERTICES	
NOTICE:	FOR 18 EDGES	
NOTICE:	Edges with NULL geometry, source or target: 0	
NOTICE:	Edges processed: 18	
NOTICE: \	/ertices table for table public.mytable is: public.mytable_vertices_pgr	
NOTICE: -		
pgr_createverticestable		

OK (1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the columnsrc of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the source column

SELECT pgr_createVerticesTable('mytable', 'src', 'mygeom', 'tgt'): NOTICE: PROCESSING: NOTICE: pr/OCESSING: NOTICE: gr_createVerticesTable('mytable','src','mygeom','tgt','true') NOTICE: Performing checks, please wait NOTICE: ---> PGR ERROR in pgr_createVerticesTable: Wrong type of Column source: mygeom HINT: ---> Expected type of mygeom is integer, smallint or bigint but USER-DEFINED was found NOTICE: Unexpected error raise_exception pgr_createverticestable FAIL (1 row)

When using the named notation

Example 10:

The order of the parameters do not matter:

SELECT pgr_createVerticesTable('mytable',the_geom:='mygeom',source:='src',target:='tgt') IOTICE: PROCESSING:
VOTICE: pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt', 'true')
NOTICE: Performing checks, please wait
VOTICE: Populating public.mytable_vertices_pgr, please wait
NOTICE:> VERTICES TABLE CREATED WITH 17 VERTICES
NOTICE: FOR 18 EDGES
IOTICE: Edges with NULL geometry, source or target: 0
IOTICE: Edges processed: 18
IOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr
NOTICE:
pgr_createverticestable

OK (1 row)

Example 11:

Using a different ordering

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table.

SELECT pgr_createVerticesTable('mytable', source:='src', target:='tgt', the_geom:='mygeom'); NOTICE: PROCESSING:

 NOTICE: PROCESSING:

 NOTICE: pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgr', 'true')

 NOTICE: Performing checks, please wait

 NOTICE: Performing checks, please wait

 NOTICE: Populating public.mytable vertices_pgr, please wait....

 NOTICE: Populating public.mytable vertices_Dgr, please wait....

 NOTICE: -------> VERTICES TABLE CREATED WITH 17 VERTICES

 NOTICE: For 18 EDGES

 NOTICE: Edges with NULL geometry.source or target: 0

 NOTICE: Edges the for table public.mytable is: public.mytable_vertices_pgr

 NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr

 NOTICE: pgr_createverticestable OK (1 row)

Selecting rows using rows_where parameter

Example 12:

Selecting rows based on the gid. (positional notation)

SELECT por createVerticesTable(

'mytable', 'mygeom', 'src', 'tgt', rows_where:='gid < 10'); NOTICE: PROCESSING: NOTICE: FroUcessind: NOTICE: pg_createVerticesTable(mytable',mygeom',src','tgt',gid < 10) NOTICE: Performing checks, please wait NOTICE: Populating oblicits.mytable_vertices_pgr, please wait... NOTICE: -----> VERTICES TABLE CREATED WITH 9 VERTICES NOTICE: ----> NOTICE: ----> VERTICES IABLE CREATED WITH 9 VERTICES NOTICE: FOR 10 EDGES NOTICE: Edges with NULL geometry.source or target: 0 NOTICE: Edges processed: 10 NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr NOTICE:

pgr_createverticestable ОК

(1 row)

Example 13:

Selecting rows based on the gid. (named notation)

SELECT pgr_oreateVerticesTable('mytable', source="src', target:="tgt', the_geom:='mygeom', rows_where="gid < 10); NOTICE: PROCESSING: NOTICE: pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt', 'gid < 10') NOTICE: Performing checks, please wait NOTICE: Performing Orlecks, prease wait... NOTICE: Populating publics.mytable_vertices_pgr, please wait... NOTICE: ----> VERTICES TABLE CREATED WITH 9 VERTICES NOTICE: FOR 10 EDGES NOTICE: Edges with NULL geometry.source or target: 0 NOTICE: Edges processed: 10 NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr NOTICE: Vertices table for table public.mytable is: public.mytable_vertices_pgr NOTICE:

pgr_createverticestable

OK (1 row)

Example 14:

Selecting the rows where the geometry is near the geometry of row withgid = 5.

SELECT pgr_oreateVerticesTable('mytable', 'mygeom,' src', 'tgr', rows_where = the geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)'); NOTICE: PROCESSING:

NOTICE: procreate/verticesTable('mytable','mygeom','src','tgt','the_geom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE gid=5)') NOTICE: Performing checks, please wait

- NOTICE: Celoutinity Greeks, prease wat here in the NOTICE: Celoutinity Greeks, prease wat here in the NOTICE is called the geom' does not exist NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition NOTICE: select * from public.mytable WHERE true AND (the geom && (SELECT st_buffer(mygeom, 0.5) FROM mytable WHERE gid=5)) limit 1
- pgr_createverticestab

FAIL (1 row)

Example 15:

TBD

SELECT pgr_createVerticesTable(

- 'mytable', source:='src', target:='tgt', the_geom:='mygeom', rows_where:='mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)'); NOTICE: PROCESSING:

- NOTICE: PROCESSING: NOTICE: pgr_createVerticesTable('mytable', 'mygeom','src','tgt', 'mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)') NOTICE: Performing checks, please wait NOTICE: Cat column 'fd' does not exist NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition NOTICE: select.* from public.mytable WHERE true AND (mygeom && (SELECT st_buffer(mygeom,0.5) FROM mytable WHERE id=5)) limit 1
- pgr_createverticestable

FAIL

(1 row)

Example 16:

Selecting the rows where the geometry is near the geometry of the row withgid =100 of the table othertable.

DROP TABLE IF EXISTS otherTable:

DROP TABLE CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2.5,2.5) AS other_geom) ;

SELECT

SELECT pgr_createVerticesTable('mytable', 'mygeom', 'src', 'tgt', rows_where="the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100/'); NOTICE: PROCESSING:

NOTICE: procreateVerticesTable('mytable', 'mygeom', 'src', 'tgt', 'the_geom && (SELECT st_buffer(othergeom, 0.5) FROM otherTable WHERE gid=100)') NOTICE: Performing checks, please wait

NOTICE: Goldown "the_geom" does not exist NOTICE: ERROR: Condition is not correct, please execute the following query to test your condition NOTICE: etect * from public.mytable WHERE true AND (the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)) limit 1 pgr_createverticestable

FAIL

(1 row)

Example 17:

TBD

SELECT pgr_createVerticesTable(

"inytable'source:='src',target:='tgt',the_geom:='mygeom', rows_where:='the_geom && (SELECT st_buffer(othergeom,0.5) FROM otherTable WHERE gid=100)'); NOTICE: FROCESSING:

NOTICE: PROCESSING: NOTICE: processive review of the second secon

- pgr_createverticestable

FAII (1 row)

The example uses the Sample Data network.

See Also

• Topology - Family of Functions for an overview of a topology for routing algorithms.

- pgr_createTopology <pgr_create_topology>` to create a topology based on the geometry.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneWay to analyze directionality of the edges.

Indices and tables

- Index
- Search Page
- <u>ocuron rugo</u>

pgr_analyzeGraph

pgr_analyzeGraph - Analyzes the network topology.

Availability

- Version 2.0.0
 - Official function

Description

The function returns:

- · OK after the analysis has finished.
- · FAIL when the analysis was not completed due to an error.

${\tt pgr_analyzeGraph}({\tt edge_table}, {\tt tolerance}, {\tt [options]})$

options: [the_geom, id, source, target, rows_where] RETURNS VARCHAR

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

• Use pgr_createVerticesTable to create the vertices table.

• Use pgr_createTopology to create the topology and the vertices table.

Parameters

The analyze graph function accepts the following parameters:

edge_table:

text Network table name. (may contain the schema name as well)

tolerance:

float8 Snapping tolerance of disconnected edges. (in projection unit)

the_geom:

text Geometry column name of the network table. Default value isthe_geom.

id:

text Primary key column name of the network table. Default value isid.

source

text Source column name of the network table. Default value issource.

target:

text Target column name of the network table. Default value istarget.

rows_where:

text Condition to select a subset or rows. Default value istrue to indicate all rows.

The function returns:

• OK after the analysis has finished.

- Uses the vertices table: <edge_table>_vertices_pgr.
- · Fills completely the cnt and chk columns of the vertices table
- · Returns the analysis of the section of the network defined byrows where
- · FAIL when the analysis was not completed due to an error.

The vertices table is not found.

- A required column of the Network table is not found or is not of the appropriate type.
- · The condition is not well formed.
- The names of source , target or id are the same.
- · The SRID of the geometry could not be determined.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge_table that reference this vertex.

chk:

integer Indicator that the vertex might have a problem.

ein:

integer Number of vertices in the edge_table that reference this vertex as incoming. Seepgr_analyzeOneWay.

eout:

integer Number of vertices in the edge_table that reference this vertex as outgoing. Seepgr_analyzeOneWay.

the_geom:

geometry Point geometry of the vertex.

Usage when the edge table's columns MATCH the default values:

The simplest way to use pgr_analyzeGraph is:

SELECT pgr_createTopology('edges',0.001, 'geom', clean := true); NOTICE: PROCESSING:
NOTICE: pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := t) NOTICE: Performing checks, please wait
NOTICE: Creating Topology, Please wait
NOTICE: Rows with NULL geometry or NULL id: 0
NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr
NOTICE:
ОК
(1 row)
SELECT pgr_analyzeGraph('edges',0.001,'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001, 'geom', 'id', 'source', 'target', 'true')
NOTICE: Porforming chocks, plagge wait

OK (1 row)

Arguments are given in the order described in the parameters:

SELECT pgr_analyzeGraph('edges',0.001,'geom','id','source','target');

NOTICE:	PROCESSING:
NOTICE:	pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE:	Performing checks, please wait
NOTICE:	Analyzing for dead ends. Please wait
NOTICE:	Analyzing for gaps. Please wait
NOTICE:	Analyzing for isolated edges. Please wait
NOTICE:	Analyzing for ring geometries. Please wait
NOTICE:	Analyzing for intersections. Please wait
NOTICE:	ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:	Isolated segments: 2
NOTICE:	Dead ends: 7
NOTICE:	Potential gaps found near dead ends: 1
NOTICE:	Intersections detected: 1
NOTICE:	Ring geometries: 0
pgr_analy	zegraph

OK (1 row)

We get the same result as the simplest way to use the function.

Warning

An error would occur when

the arguments are not given in the appropriate order:

In this example, the columnid of the table mytable is passed to the function as the geometry column, and the geometry columnine_geom is passed to the function as the id column.

SELECT pgr_analyzeGraph('edges',0.001,'id','geom','source','target'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'id','geom','source','target','true') NOTICE: Performing checks, please wait ... NOTICE: Got function st_srid(bigint) does not exist NOTICE: ERROR: something went wrong when checking for SRID of id in table public.edges nor analyzersch pgr_analyzegraph FAIL (1 row)

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('edges',0.001,the_geom:='geom',id:='id',source:='source',target:='target');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Analyzing for dead ends. Please wait
NOTICE: Analyzing for gaps. Please wait
NOTICE: Analyzing for isolated edges. Please wait
NOTICE: Analyzing for ring geometries. Please wait
NOTICE: Analyzing for intersections. Please wait
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 2
NOTICE: Dead ends: 7
NOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
pgr_analyzegraph
OK
(1 row)

SELECT pgr_analyzeGraph('edges',0.001,source:='source',id:='id',target:='target',the_geom:='geom'; NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'geom',id','source','target','true') NOTICE: Performing checks, please wait ... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait...

NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 2 Dead ends: 7 NOTICE NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0 pgr_analyzegraph OK

Parameters defined with a default value can be omitted, as long as the value matches the default:

SELECT pgr_analyzeGraph('edges',0.001, 'geom', source:='source'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true') NOTICE: Performing checks, please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for isolated edges. Please wait. NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Isolated segments: 2 NOTICE: Dead ends: 7 NOTICE: Dead ends: 7 NOTICE: Isolated agas found near dead ends: 1 Intersections detected: 1 Ring geometries: 0 NOTICE: NOTICE pgr_analyzegraph

OK (1 row)

(1 row)

Selecting rows using rows where parameter

Selecting rows based on the id. Displays the analysis a the section of the network

SELECT pgr_analyzeGraph('edges',0.001, 'geom', rows_where:='id < 10'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id < 10') NOTICE: Performing checks, please walt ... NUTICE: Performing checks, please wait ... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: AnalyZing for intersections. Please wait... NOTICE: ANALYZING FOR SELECTED EDGES: NOTICE: Isolated segments: 0 NOTICE: Dead endre 4 Isolated segments: 0 Dead ends: 4 NOTICE: NOTICE: Potential gaps found near dead ends: 0 Intersections detected: 0 Ring geometries: 0 NOTICE: NOTICE pgr_analyzegraph

OK (1 row)

Selecting the rows where the geometry is near the geometry of row withid = 5

SELECT pgr_analyzeGraph('edges', 0.001, 'geom', rows_where:='geom && (SELECT st_buffer(geom, 0.05) FROM edge_table WHERE id=5)'); NOTICE: PROCESSING:

NOTICE: proCESSING: NOTICE: gr_analyzeGraph('edges'.0.001,'geom','id','source', 'target','geom && (SELECT st_buffer(geom,0.05) FROM edge_table WHERE id=5)') NOTICE: Performing checks, please wait ... NOTICE: Got relation 'edge_table' does not exist NOTICE: ERROR: Condition is not correct. Please execute the following query to test your condition NOTICE: select count(') from public.edges WHERE true AND (geom && (SELECT st_buffer(geom,0.05) FROM edge_table WHERE id=5))

- pgr_analyzegraph

FAIL (1 row)

Selecting the rows where the geometry is near the geometry of the row without =100 of the table othertable

CREATE TABLE otherTable AS (SELECT 100 AS gid, st_point(2:5,2:5) AS other_geom) ; SELECT 1 SELECT pgr_analyzeGraph('edges',0.001, 'geom', rows_where:='geom && (SELECT st_buffer(geom,1) FROM otherTable WHERE gid=100)'); NOTICE: pgr_analyzeGraph('edges',0.001, 'geom', 'id', 'source', 'target', 'geom && (SELECT st_buffer(geom,1) FROM otherTable WHERE gid=100)'); NOTICE: pgr_analyzeGraph('edges',0.001, 'geom', 'id', 'source', 'target', 'geom && (SELECT st_buffer(geom,1) FROM otherTable WHERE gid=100)'); NOTICE: pgr_analyzeGraph('edges',0.001, 'geom', 'id', 'source', 'target', 'geom && (SELECT st_buffer(geom,1) FROM otherTable WHERE gid=100)'); NOTICE: Analyzing tor dead ends. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 2 NOTICE Isolated segments: 2 Dead ends: 7 NOTICE NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0 pgr_analyzegraph

OK (1 row)

Usage when the edge table's columns DO NOT MATCH the default values

For the following table

CREATE TABLE mytable AS (SELECT id AS gid, source AS src ,target AS tgt , geom AS mygeom FROM edges);

pgr_createtopology

OK (1 row)

Using positional notation:

The arguments need to be given in the order described in the parameters:

- SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt',true') NOTICE: Performing checks, please wai ... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for ing seconterise. Please wait... NOTICE: Analyzing for ing decometries. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 2
- NOTICE Isolated segments: 2 Dead ends: 7 NOTICE
- NOTICE: Dead errors. / NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0
- pgr_analyzegraph

OK (1 row)

Warning

An error would occur when the arguments are not given in the appropriate order: In this example, the columngid of the table mytable is passed to the function as the geometry column, and the geometry column mygeom is passed to the function as the id column.

SELECT pgr_analyzeGraph('mytable',0.0001,'gid','mygeom','src','tgt'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('mytable',0.0001,'gid','mygeom','src','tgt','true') NOTICE: Performing checks, please wait ... NOTICE: Got function st_srid(bigint) does not exist NOTICE: ERROR: something went wrong when checking for SRID of gid in table public.mytable pgr_analyzegraph FAII (1 row)

When using the named notation

The order of the parameters do not matter:

SELECT pgr_analyzeGraph('mytable',0.001,the_geom:='mygeom',id:='gid',source:='src',target:='tgt'); IOTICE: PROCESSING: IOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','true') IOTICE: Performing checks, please wait
VOTICE: Analyzing for dead ends. Please wait
NOTICE: Analyzing for isolated edges. Please wait
NOTICE: Analyzing for ring geometries. Please wait
NOTICE: Analyzing for intersections. Please wait
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
VOTICE: Isolated segments: 2
VOTICE: Dead ends: 7
VOTICE: Potential gaps found near dead ends: 1
NOTICE: Intersections detected: 1
NOTICE: Ring geometries: 0
pgr_analyzegraph
OK

(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom'); NOTICE: PROCESSING: NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('mytable',0.001, 'mygeom','gid','sro','tgt','true') NOTICE: Performing checks, please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 2 NOTICE: Dead ends: 7 NOTICE: Dead ends: 7 NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0 pgr_analyzegraph

OK (1 row)

In this scenario omitting a parameter would create an error because the default values for the column names do not match the column names of the table

Selecting rows using rows_where parameter

Selecting rows based on the id

SELECT pgr_analyzeGraph(mytable',0.001,'mygeom','gid','src','tgt',rows_where:='gid < 10'); NOTICE: PROCESSING: NOTICE: PROCESSING: NOTICE: Performing checks, please wait... NOTICE: Aralyzing for dead ends. Please wait... NOTICE: Analyzing for pass. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for insolated edges. Please wait... NOTICE: Analyzing for insolated edges. Please wait... NOTICE: ANAlyzing for inservences Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 0 NOTICE: ANALYSIS RESULTS FOR SEL NOTICE: Isolated segments: 0 NOTICE: Dead ends: 4 NOTICE: Potential gaps found near dead ends: 0 NOTICE: Intersections detected: 0 NOTICE: Ring geometries: 0 pgr_analyzegraph

OK (1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom',rows_where:='gid < 10'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt','gid < 10') NOTICE: Parforming checks, please wait ... NOTICE: Analyzing for chead ends, Please wait... NOTICE: Analyzing for gasp. Please wait... NOTICE: Analyzing for gasp. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 0 NOTICE: Dead ends: 4 NOTICE: Potential gasp. found near dead ends: 0 NOTICE: Dead ends: 4 NOTICE: Potential gaps found near dead ends: 0 NOTICE: Intersections detected: 0 NOTICE Ring geometries: 0

pgr_analyzegraph

Selecting the rows WHERE the geometry is near the geometry of row withid =5 .

SELECT pgr_analyzeGraph('mytable',0.001, 'mygeom','gid','src','tgt', rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)'); NOTICE: PROCESSING:

le'.0.001.'mva om','gid','src','tgt','mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)')

	pgi_analy20 and pin(in) table , 0.00 i, in) gooin , gia , 0.0 ; tg
NOTICE:	Performing checks, please wait
NOTICE:	Analyzing for dead ends. Please wait
NOTICE:	Analyzing for gaps. Please wait
NOTICE:	Analyzing for isolated edges. Please wait
NOTICE:	Analyzing for ring geometries. Please wait
NOTICE:	Analyzing for intersections. Please wait
NOTICE:	ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE:	Isolated segments: 1
NOTICE:	Dead ends: 5
NOTICE	Potential gaps found poor dood ondo: 0

al gaps found near dead Intersections detected: 1 Ring geometries: 0 NOTICE NOTICE pgr_analyzegraph

ОК

(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom', rows_where:='mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)'); NOTICE: PROCESSING:

- NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph("mytable',0.001,"mygeom','gid','src','tgt','mygeom && (SELECT st_buffer(mygeom,1) FROM mytable WHERE gid=5)') NOTICE: Performing checks, please wait ... NOTICE: Analyzing for dead ends. Please wait...

- NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Isolated segments: 1 NOTICE: Dead ends: 5 NOTICE: Potential gaps found near dead ends: 0

NOTICE: Potential gaps found near dead ends: 0 NOTICE: Intersections detected: 1 Ring geometries: 0

NOTICE

pgr_analyzegraph

OK (1 row)

Selecting the rows WHERE the geometry is near the place='myhouse' of the tableothertable. (note the use of quote_literal)

DROP TABLE IF EXISTS otherTable; DROP TABLE

CREATE TABLE otherTable AS (SELECT 'myhouse'::text AS place, st_point(2.5,2.5) AS other_geom) ;

SELECT 1

SELECT pgr_analyzeGraph('mytable',0.001,'mygeom','gid','src','tgt', rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||'')'; NOTICE: PROCESSING:

NOTICE: PROCESSING: NOTICE: pg_analyzeGraph('mytable',0.001, 'mygeom','gid','src','igt', 'mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='myhouse')) NOTICE: Performing checks, please wait ... NOTICE: Analyzing for dead ends. Please wait...

NOTICE: Analyzing for geace ends. Please wait... NOTICE: Analyzing for gas. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 2 Dead ends: 10 NOTICE NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0 NOTICE: pgr_analyzegraph OK

(1 row)

SELECT pgr_analyzeGraph('mytable',0.001,source:='src',id:='gid',target:='tgt',the_geom:='mygeom', rows_where:='mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='||quote_literal('myhouse')||')); NOTICE: PROCESSING:

 NOTICE: PROCESSING:

 NOTICE: PROCESSING:

 NOTICE: prg_analyzeGraph(mytabel,0.001,mygeom',igid',isrc',itgt',mygeom && (SELECT st_buffer(other_geom,1) FROM otherTable WHERE place='myhouse')')

 NOTICE: Aralyzing for dead ends. Please wait...

 NOTICE: Analyzing for isolated edges. Please wait...

 NOTICE: Analyzing for isolated edges. Please wait...

 NOTICE: Analyzing for insolated edges. Please wait...

 NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:

 NOTICE: Isolated segments: 2

 NOTICE: Isolated segments: 1

 NOTICE: Intersections elected: 1

Ring geometries: 0

- NOTICE Intersections detected: 1
- NOTICE
- pgr_analyzegraph

OK (1 row)

Additional Examples

SELECT pgr_createTopology('edges',0.001, 'geom', clean := true); NOTICE: PROCESSING: NOTICE

pgr_createtopology

OK (1 row)

- SELECT pgr_analyzeGraph('edges', 0.001, 'geom'); NOTICE: PROCESSING: NOTICE: PROCESSING: NOTICE: gg_analyzeGraph('edges',0.001,'geom','id','source','target','true') NOTICE: Performing checks, please wait... NOTICE: Analyzing for gade ends, Please wait... NOTICE: Analyzing for gas. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE ANALYSIS RESULTS FOR SELECTED EDGES NOTICE: ANALYSIS RESULTS FOR SEL NOTICE: Isolated segments: 2 NOTICE: Dead ends: 7 NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0

OK (1 row)

SELECT pgr_analyzeGraph(edges,0.001, geom, rows_where:=id < 10);
NOTICE: pgr. analyzeGraph/'edges' 0.001 'geom' 'id' 'source' 'target' 'id < 10')
NOTICE: Performing checks, please wait
NOTICE: Analyzing for dead ends. Please wait
NOTICE: Analyzing for gaps. Please wait
NOTICE: Analyzing for isolated edges. Please wait
NOTICE: Analyzing for ring geometries. Please wait
NOTICE: Analyzing for intersections. Please wait
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 4
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0

pgr_analyzegraph OK

(1 row)

 SELECT
 pgr_analyzeGraph('edges',0.001,'geom', rows_where:='id >= 10');

 NOTICE:
 PROCESSING:

 NOTICE:
 pgr_analyzeGraph('edges',0.001,'geom', id','source', 'target', id >= 10')

 NOTICE:
 Parforming checks, please wait...

 NOTICE:
 Analyzing for deade ends. Please wait...

 NOTICE:
 Analyzing for risolated edges. Please wait...

 NOTICE:
 Analyzing for isolated edges. Please wait...

 NOTICE:
 Analyzing for ing geometries. Please wait...

 NOTICE:
 Analyzing for ing geometries. Please wait...

 NOTICE:
 Analyzing for ing geometries. Please wait...

 NOTICE:
 Analyzing for ing geometries. Please wait...

 NOTICE:
 Analyzing for ing geometries. Please wait...

 NOTICE:
 Analyzing for ing geometries. Please wait...

 NOTICE:
 Isolated segments: 2

 NOTICE:
 Dead ends: 8

 NOTICE:
 Dead ends: 8

 NOTICE:
 Dead ends: 8

 NOTICE:
 Dead ends: 1

 NOTICE: Dead ends: o NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1

Ring geometries: 0

pgr_analyzegraph

OK (1 row)

SELECT pgr_analyzeGraph('edges',0.001,'geom', rows_where:='id < 17'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','id < 17') NOTICE: Performing checks, please wait... NOTICE: Analyzing tor dead ends. Please wait... NOTICE: Analyzing tor gaps. Please wait... NOTICE: Analyzing tor gaps. Please wait... NOTICE: Analyzing tor ing geometries. Please wait... NOTICE: Analyzing tor ing geometries. Please wait... NOTICE: Analyzing tor ing geometries. Please wait... ANALYSIS RESULTS FOR SELI NOTICE: Isolated segments: 0 NOTICE: Dead ends: 3 NOTICE: Potential gaps found near dead ends: 0 NOTICE: Intersections detected: 0 NOTICE: Ring geometries: 0 pgr_analyzegraph NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:

OK

(1 row)

SELECT pgr_createTopology('edges', 0.001,'geom', rows_where:='id <17', clean := true); NOTICE: Pgr_createTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'id <17', clean := t) NOTICE: Proforming checks, please wait NOTICE: Creating Topology, Please wait.... NOTICE: Creating Topology, Please wait... NOTICE: Creating Topology, Please wait... NOTICE: Work of the plant of th

OK

(1 row)

SELECT pgr_analyzeGraph('edges', 0.001, 'geom'); NOTICE: PgOCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'geom','d','source','target','true') NOTICE: Performing checks, please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for igaps. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 0 NOTICE: Dead ends: 3 NOTICE: Detential gaps found near dead ends: 0 NOTICE: Intersections detected: 0 NOTICE: Ring geometries: 0 nor, analyzegraph pgr_analyzegraph

OK (1 row)

The examples use the Sample Data network.

See Also

- Topology Family of Functions
- pgr_analyzeOneWay
- pgr_createVerticesTable
- pgr_nodeNetwork to create nodes to a not noded edge table.

Indices and tables

- Index
- Search Page

pgr_analyzeOneWay

This function analyzes oneway streets in a graph and identifies any flipped segments.

Availability

Version 2.0.0

• Official function

Description

The analyses of one way segments is pretty simple but can be a powerful tools to identifying some the potential problems created by setting the direction of a segment the wrong way. A node is a *source* if it has edges the exit from that node and no edges enter that node. Conversely, a node is *asink* if all edges enter the node but none exit that node. For *asource* type node it is logically impossible to exist because no vehicle can exit the node if no vehicle and enter the node. Likewise, if you had a *sink* node you would have an infinite number of vehicle piling up on this node because you can enter it but not leave it.

So why do we care if the are not feasible? Well if the direction of an edge was reversed by mistake we could generate exactly these conditions. Think about a divided highway and on the north bound lane one segment got entered wrong or maybe a sequence of multiple segments got entered wrong or maybe this happened on a round-about. The result would be potentially a *source* and/or a *sink* node.

So by counting the number of edges entering and exiting each node we can identify bothsource and sink nodes so that you can look at those areas of your network to make repairs and/or report the problem back to your data vendor.

Prerequisites

The edge table to be analyzed must contain a source column and a target column filled with id's of the vertices of the segments and the corresponding vertices table <edge_table>_vertices_pgr that stores the vertices information.

- Use <u>pgr_createVerticesTable</u> to create the vertices table.
- Use pgr_createTopology to create the topology and the vertices table.

Signatures

pgr_analyzeOneWay(geom_table, s_in_rules, s_out_rules, t_in_rules, t_out_rules, [options]) options: [oneway, source, target, two_way_it_null] RETURNS TEXT

Parameters 9

edge_table:

text Network table name. (may contain the schema name as well)

s_in_rules:

text[] source node in rules

s_out_rules:

text[] source node out rules

t_in_rules:

textíl target node in rules

t_out_rules:

text[] target node out rules

oneway:

text oneway column name name of the network table. Default value isoneway.

source:

text Source column name of the network table. Default value issource.

target:

text Target column name of the network table. Default value istarget.

two_way_if_null:

boolean flag to treat oneway NULL values as bi-directional. Default value istrue.

Note

It is strongly recommended to use the named notation. Seepgr createVerticesTable or pgr createTopology for examples.

The function returns:

• OK after the analysis has finished.

- · Uses the vertices table: <edge_table>_vertices_pgr.
- · Fills completely the ein and eout columns of the vertices table.
- · FAIL when the analysis was not completed due to an error.
 - The vertices table is not found.
 - A required column of the Network table is not found or is not of the appropriate type.
 - The names of source , target or oneway are the same.

The rules are defined as an array of text strings that if match theoneway value would be counted as true for the source or target in or out condition.

The Vertices Table

The vertices table can be created with pgr_createVerticesTable or pgr_createTopology

The structure of the vertices table is:

id:

bigint Identifier of the vertex.

cnt:

integer Number of vertices in the edge_table that reference this vertex. Seepgr_analyzeGgraph.

chk:

integer Indicator that the vertex might have a problem. Seepgr_analyzeGraph.

ein

integer Number of vertices in the edge_table that reference this vertex as incoming.

eout:

integer Number of vertices in the edge_table that reference this vertex as outgoing.

the geom:

geometry Point geometry of the vertex.

Additional Examples1 ALTER TABLE edges ADD COLUMN dir TEXT; ALTER TABLE SELECT pgr_createTopology('edges', 0.001, 'geom'; 'd', 'source', 'target', rows_where := 'true', clean := f) NOTICE: PROCESSING: NOTICE: Performing checks, please wait..... NOTICE: Creating Topology('edges', 0.001, 'geom', 'd', 'source', 'target', rows_where := 'true', clean := f) NOTICE: Creating Topology('edges', 0.001, 'geom', 'd', 'source', 'target', rows_where := 'true', clean := f) NOTICE: Creating Topology('edges', 0.001, 'geom', 'd', 'source', 'target', rows_where := 'true', clean := f) NOTICE: Creating Topology, Please wait.... NOTICE: Creating Topology (Please wait.... NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr NOTICE: CostS O AND reverse_costS O) THEN 'B' /' both ways '/ WHEN (costS O AND reverse_costS O) THEN 'B' /' both ways '/ WHEN (costS O AND reverse_costS O) THEN 'TF' /' reverse direction of the LINESTRING '/ ELSE 'E ND; UPDATE 18 /' unknown '/ SELECT pgr_analyzeOneWay('edges', {''',B,TF}', '(''',B,FT)', '(''',B,TF)', 'dir', 'source', 'target',t) NOTICE: Pgr_CanalyzeOneWay('edges', {''',B,TF}', '{''',B,FT}', '(''',B,TF}', 'dir', 'source', 'target',t) NOTICE: Pgr_analyzeOneway('edges', ''',B,TF)', '(''',B,FT)', '(''',B,TF)', 'dir, 'source', 'target',t) NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Analysis 50% complete ... NOTICE: Canalysis 50% complete ...

OK

(1 row)

See Also

Topology - Family of Functions

- pgr_analyzeGraph
- pgr_createVerticesTable
- Sample Data

Indices and tables

- Index
- <u>Search Page</u>

pgr_nodeNetwork

pgr_nodeNetwork - Nodes an network edge table.

Nicolas Ribot

Copyright:

Author

Nicolas Ribot, The source code is released under the MIT-X license.

The function reads edges from a not "noded" network table and writes the "noded" edges into a new table.

| pgr_nodenetwork(edge_table, tolerance, [options]) | options: [id, text the_geom, table_ending, rows_where, outall]

| RETURNS TEXT

Availability

- Version 2.0.0
 - Official function

Description

The main characteristics are:

A common problem associated with bringing GIS data into pgRouting is the fact that the data is often not "noded" correctly. This will create invalid topologies, which will result in routes that are incorrect.

What we mean by "noded" is that at every intersection in the road network all the edges will be broken into separate road segments. There are cases like an over-pass and under-pass intersection where you can not traverse from the over-pass to the under-pass, but this function does not have the ability to detect and accommodate those situations.

This function reads the edge_table table, that has a primary key columnid and geometry column named the_geom and intersect all the segments in it against all the other segments and then creates a table edge_table_noded. It uses the tolerance for deciding that multiple nodes within the tolerance are considered the same node.

Parameters

edge_table:

text Network table name. (may contain the schema name as well)

tolerance:

float8 tolerance for coincident points (in projection unit)dd

text Primary key column name of the network table. Default value isid.

the_geom:

text Geometry column name of the network table. Default value isthe_geom.

table_ending:

text Suffix for the new table's Default value is noted

The output table will have for edge_table_noded

id:

bigint Unique identifier for the table

old_id:

bigint Identifier of the edge in original table

sub id:

integer Segment number of the original edge

source

integer Empty source column to be used with pgr_createTopology function

target:

integer Empty target column to be used with pgr_createTopology function

the geom:

geometry Geometry column of the noded network

Examples

Let's create the topology for the data in Sample Data

- SELECT pgr_createTopology('edges', 0.001, 'geom', clean := TRUE); NOTICE: PROCESSING:

- NOTICE:
- pgr_createtopology

OK (1 row)

Now we can analyze the network.

SELECT pgr_analyzegraph('edges', 0.001, 'geom'); NOTICE: PROCESSING: NOTICE: prg_analyzeGraph('edges', 0.001, 'geom', 'id', 'source', 'target', 'true') NOTICE: Performing checks, please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for solated edges. Please wait... NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for ring geometries. Please wait... NOTICE: Analyzing for ring seconteries. Please wait... NOTICE: Analyzing for ring seconteries. Please wait... NOTICE: Analyzing for ring edges wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: Isolated segments: 2 NOTICE: Isolated segments: 2 NOTICE: Dead ends: 7 NOTICE: Dead ends: 7 NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0 end endbracement pgr_analyzegraph

OK (1 row)

The analysis tell us that the network has a gap and an intersection. We try to fix the problem using:

SELECT pgr_nodeNetwork('edges', 0.001, the_geom => 'geom'); NOTICE: PROCESSING: NOTICE: id: id NOTICE: the_geom: geom NOTICE: table_ending: noded NOTICE: rows_where: NOTICE: over, where:

pgr_nodenetwork

OK (1 row)

Inspecting the generated table, we can see that edges 13,14 and 18 has been segmented

SELECT old_id, sub_id FROM edges_noded ORDER BY old_id, sub_id; old_id | sub_id

1 1 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 1

We can create the topology of the new network

OK (1 row)

Now let's analyze the new topology

SELECT par analyzegraph/jedges poded' 0.001 'geom');
NOTICE: PROCESSING:
NOTICE: pgr_analyzeGraph('edges_noded',0.001,'geom','id','source','target','true')
NOTICE: Performing checks, please wait
NOTICE: Analyzing for dead ends. Please wait
NOTICE: Analyzing for gaps. Please wait
NOTICE: Analyzing for isolated edges. Please wait
NOTICE: Analyzing for ring geometries. Please wait
NOTICE: Analyzing for intersections. Please wait
NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES:
NOTICE: Isolated segments: 0
NOTICE: Dead ends: 6
NOTICE: Potential gaps found near dead ends: 0
NOTICE: Intersections detected: 0
NOTICE: Ring geometries: 0
pgr_anaiyzegraph

OK (1 row)

Images

Before Image

Defense interne		
Before Image		

After Image

After image

Comparing the results

Comparing with the Analysis in the original edge_table, we see that.

Before

Table name edge_table

Fields All original fields edge_table_noded

Has only basic fields to do a topology analysis

After

• Edges with 1 dead end: 1,6,24

Dead ends	Edges with 2 dead ends: 17,18	Edges with 1 dead end: 1-1 ,6-1,14-2, 18-1 17-1 18-2
	Edge 17's right node is a dead end because there is no other edge sharing that same node. $(\mbox{cnt=1})$	
		No Isolated segments
Isolated segments	two isolated segments: 17 and 18 both they have 2 dead ends	Edge 17 now shares a node with edges 14-1 and 14-2
		Edges 18-1 and 18-2 share a node with edges 13-1 and 13-2
Gaps	There is a gap between edge 17 and 14 because edge 14 is near to the right node of edge 17	Edge 14 was segmented Now edges: 14-1 14-2 17 share the same node The tolerance value was taken in account
Intersections	Edges 13 and 18 were intersecting	Edges were segmented, So, now in the interection's point there is a node and the following edges share it: 13-1 13-2 18-1 18-2

Now, we are going to include the segments 13-1, 13-2 14-1, 14-2, 18-1 and 18-2 into our edge-table, copying the data for dir, cost, and reverse cost with tho following steps:

· Add a column old_id into edge_table, this column is going to keep track the id of the original edge

• Insert only the segmented edges, that is, the ones whose max(sub_id) >1

alter table edges drop column if exists old id; NOTICE: column "old_id" of relation "edges" does not exist, skipping ALTER TABLE

alter table edges add column old_id integer; ALTER TABLE

insert into edges (old_id, cost, reverse_cost, geom) (with

segmented as (select old_id,count(*) as i from edges_noded group by old_id)

select segments old_id, cost, reverse_cost, segments.geom from edges as edges join edges_noded as segments on (edges.id = segments.old_id) where edges id is (select old_id from segmented where i>1)); INSERT 06

We recreate the topology:

SELECT pgr_oreateTopology('edges', 0.001, 'geom'); NOTICE: PROCESSING: NOTICE: pgr_oreateTopology('edges', 0.001, 'geom', 'id', 'source', 'target', rows_where := 'true', clean := f) NOTICE: Performing checks, please wait..... NOTICE: Creating Topology, Please wait.... NOTICE: Derive the With the comparison will be to the comparison of the procession of the comparison of the procession of the procession of the comparison of the processi

NOTICE: Rows with NULL geometry or NULL id: 0 NOTICE: Vertices table for table public.edges is: public.edges_vertices_pgr NOTICE: -------

pgr_createtopology

ОК

(1 row)

To get the same analysis results as the topology of edge_table_noded, we do the following query:

SELECT pgr_analyzegraph('edges', 0.001, 'geom', rows_where:="id not in (select old_id from edges where old_id is not null)'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges', 0.001, 'geom', 'id', 'source', 'target', 'id not in (select old_id from edges where old_id is not null)') NOTICE: Parforming checks, please wait ... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing tor intersections. Please wait... NOTICE: Analyzing tor intersections. Please wait... NOTICE: Analyzing tor intersections. Please wait... NOTICE: Analyzing tor intersections. Please wait... NOTICE: Dead ends: 6 NOTICE: Determination of the state NOTICE: Dead ends: 6 NOTICE: Potential gaps found near dead ends: 0 Intersections detected: 0 Ring geometries: 0 NOTICE: NOTICE pgr_analyzegraph

OK (1 row)

To get the same analysis results as the original edge_table, we do the following query:

SELECT pgr_analyzegraph('edges', 0.001, 'geom', rows_where:='old_id is null'); NOTICE: PROCESSING: NOTICE: PHOCESSING: NOTICE: pg__analyzeGraph('edges',0.001,'geom','id','source', 'target','old_id is null') NOTICE: Performing checks, please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for gaps. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: ANALYSIS RESULTS FOR SELECTED EDGES: NOTICE: ANALYSIS RESULTS FOR SEL NOTICE: Isolated segments: 2 NOTICE: Dead ends: 7 NOTICE: Potential gaps found near dead ends: 1 NOTICE: Intersections detected: 1 NOTICE: Ring geometries: 0 pgr_analyzegraph

OK (1 row)

Or we can analyze everything because, maybe edge 18 is an overpass, edge 14 is an under pass and there is also a street level juction, and the same happens with edges 17 and 13.

SELECT pgr_analyzegraph('edges', 0.001, 'geom'); NOTICE: PROCESSING: NOTICE: pgr_analyzeGraph('edges',0.001,'geom','id','source','target','true') NOTICE: Performing checks, please wait ... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for dead ends. Please wait... NOTICE: Analyzing for isolated edges. Please wait... NOTICE: Analyzing for ing geometries. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE: Analyzing for intersections. Please wait... NOTICE Isolated segments: 0 Dead ends: 3 NOTICE:
 NOTICE:
 Dead ends: 3

 NOTICE:
 Potential gaps found near dead ends: 0

 NOTICE:
 Intersections detected: 5

 NOTICE:
 Ring geometries: 0

OK (1 row)

See Also

Topology - Family of Functions for an overview of a topology for routing algorithms.pgr_analyzeOneWay to analyze directionality of the edges.pgr_createTopology to create a topology based on the geometry. pgr_analyzeGraph to analyze the edges and vertices of the edge table.

Indices and tables

- Index
- Search Page

pgr_extractVertices - Proposed

pgr_extractVertices - Extracts the vertices information

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Availability

Version 3.3.0

- Classified as proposed function
- Version 3.0.0
 - New experimental function

Description

This is an auxiliary function for extracting the vertex information of the set of edges of a graph.

• When the edge identifier is given, then it will also calculate the in and out edges

Signatures

Summary

pgr_extractVertices(<u>Edges SQL</u>, [dryrun]) RETURNS SETOF (id, in_edges, out_edges, x, y, geom) OR EMTPY SET

Example:

Extracting the vertex information

SELECT * FROM pgr_extractVertices('SELECT id, geom FROM edges');

id in_edges out_edges	x y	geom	
id in_edges] out_edges ++++++++++++++++++++++++++++++++++++	x y 0 2 0110000 0.5135 0.5135 0101000 99999999 3.510 12 2 0101000 99999999 3.510 2 10101000 2 2 0101000 2 2 0101000 3 010100 3 2 0101000 3 2 010100 3 3 010100 3 3 2 01010 3 3 010100 3 3 01010 3 3 01010 3.51 4 0101000	geom 00000000000000000000000 00000000000	000000000000000000000000000000000
15 {3} {16} 16 {9,16} {15} 17 {13,15}	4 1 0101000 4 2 010100 4 3 010100	000000000000000010400 00000000000000000	00000000000F03F 000000000000040 0000000000
(17 rows)			

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below

Optional parameters

Parameter Type Default

Description

dryrun BOOLEAN false • When true do not process and get in a NOTICE the resulting query.

Edges SQL

- When line geometry is known
- When vertex geometry is known
- When identifiers of vertices are known

Edges SQL¶

When line geometry is known

Column	Туре	Description
--------	------	-------------

id BIGINT (Optional) identifier of the edge.

geom LINESTRING Geometry of the edge.

This inner query takes precedence over the next two inner query, therefore other columns are ignored whengeom column appears.

- Ignored columns:
 - startpoint
 - endpoint
 - source
 - target

When vertex geometry is known

To use this inner query the column geom should not be part of the set of columns.

Column	Туре	Description
--------	------	-------------

id BIGINT (Optional) identifier of the edge.

startpoint POINT POINT geometry of the starting vertex.

endpoint POINT POINT geometry of the ending vertex.

This inner query takes precedence over the next inner query, therefore other columns are ignored whenstartpoint and endpoint columns appears.

- Ignored columns:
 - source
 - target

When identifiers of vertices are known

To use this inner query the columns geom, startpoint and endpoint should not be part of the set of columns.

Column	Тур	Description
id	BIGINT	(Optional) identifier of the edge.
source	ANY-INT	EGER Identifier of the first end point vertex of the edge.
target	ANY-INT	Identifier of the second end point vertex of the EGER edge.
Result colur	nns <mark>1</mark>	
Column	Туре	Description
id	BIGINT	Vertex identifier
in_edges	BIGINT[]	Array of identifiers of the edges that have the vertexid as <i>first end point</i> . NULL When the id is not part of the inner query
out_edges	BIGINT[]	Array of identifiers of the edges that have the vertexid as <i>second end point</i> . NULL When the id is not part of the inner query
x	FLOAT	X value of the point geometry NULL When no geometry is provided
у	FLOAT	X value of the point geometry

NULL When no geometry is provided

Geometry of the point POINT

geom

NULL When no geometry is provided

Additional Examples

- Dry run execution
- <u>Create a routing topology</u>
 - Make sure the database does not have the vertices table
 - <u>Clean up the columns of the routing topology to be created</u>
 - Create the vertices table
 - Inspect the vertices table
 - Create the routing topology on the edge table
 - Inspect the routing topology
- <u>Crossing edges</u>
 - Adding split edges
 - Adding new vertices
 - Updating edges topology
 - Removing the surplus edges
 - <u>Updating vertices topology</u>
 - Checking for crossing edges
- Graphs without geometries
 - Insert the data
 - Find the shortest path
 - Vertex information

Dry run execution

To get the query generated used to get the vertex information, usedryrun := true.

The results can be used as base code to make a refinement based on the backend development needs.

SELECT * FROM pgr_extractVertices('SELECT id, geom FROM edges', dryrun => true); NOTICE: WITH main_sql AS (SELECT id, geom FROM edges), the_out AS (SELECT id::BIGINT AS out_edge, ST_StartPoint(geom) AS geom FROM main_sql agg_out AS (SELECT array_agg(out_edge ORDER BY out_edge) AS out_edges, ST_x(geom) AS x, ST_Y(geom) AS y, geom FROM the_out GROUP BY geom). the in AS (SELECT id::BIGINT AS in_edge, ST_EndPoint(geom) AS geom FROM main_sql). agg_in AS (SELECT array_agg(in_edge ORDER BY in_edge) AS in_edges, ST_x(geom) AS x, ST_Y(geom) AS y, geom FROM the in GROUP BY geom), the_points AS (SELECT in_edges, out_edges, coalesce(agg_out.geom, agg_in.geom) AS geom FROM agg_out FULL OUTER JOIN agg_in USING (x, y) SELECT row_number() over(ORDER BY ST_X(geom), ST_Y(geom)) AS id, in_edges, out_edges, ST_X(geom), ST_Y(geom), geom FROM the_points; id | in_edges | out_edges | x | y | geom . (0 rows) Create a routing topology

Make sure the database does not have the vertices table

DROP TABLE IF EXISTS vertices_table; NOTICE: table "vertices_table" does not exist, skipping DROP TABLE

Clean up the columns of the routing topology to be created

UPDATE edges SET source = NULL, target = NULL, x1 = NULL, y1 = NULL, x2 = NULL, y2 = NULL; UPDATE 18

Create the vertices table

- When the LINESTRING has a SRID then use $\ensuremath{\mathsf{geometry}}(\ensuremath{\mathsf{POINT}}, \ensuremath{\mathsf{<SRID}}\xspace)$
- For big edge tables that are been prepared,
 - Create it as UNLOGGED and
- After the table is created ALTER TABLE .. SET LOGGED
- SELECT * INTO vertices_table FROM pgr_extractVertices('SELECT id, geom FROM edges ORDER BY id'); SELECT 17

SELECT * FROM vertices_table;

id in_edges out_edges	x	y	geom	
id in-edges jout edges ++++++++++++++++++++++++++++++++++++	x 0 2 01 0.5 3.5 0 1 2 01 99999999 2 0 01 2 1 0 2 2 2 3 3 5 2.3 3.5 2.3 3.5 2.3 4 2 4 2	y 100000000000 101000000000 10100000000	geom	0 C40 40 0000000C40 10 33F 1040 0840 40 03F 0040 0240 040 0240 040 03F
(17 rows)	41 01	0101000000000		1040

Create the routing topology on the edge table

Updating the source information

WITH out_going AS (SELECT id AS vid, unnest(out_edges) AS eid, x, y FROM vertices_table

) UPDATE edges SET source = vid, x1 = x, y1 = y FROM out_going WHERE id = eid; UPDATE 18

Updating the target information

WITH in_coming AS (SELECT id AS vid, unnest(in_edges) AS eid, x, y FROM vertices_table

PDATE edges SET target = vid, x2 = x, y2 = yFROM in_coming WHERE id = eid; UPDATE 18

Inspect the routing topology

SELE FROM id so	CT id, 1 edge ource	source, target, x1, y s ORDER BY id; target x1 y1	y1, x2, y2 x2 y2
11	51	6 2 0	2 1
2	6	10 2 1	3 1
3	10	15 3 1	4 1
4	6	7 2 1	2 2
5	10	11 3 1	3 2
6	1	3 0 2	1 2
7	3	7 1 2	2 2
8	7	11 2 2	3 2
9	11	16 3 2	4 2
10	7	8 2 2	2 3
11	11	12 3 2	3 3
12	8	12 2 3	3 3
13	12	17 3 3	4 3
14	8	9 2 3	2 4
15	16	17 4 2	4 3
16	15	16 4 1	4 2
17	2	4 0.5 3.5 1.99	99999999999 3.5
18	13	14 3.5 2.3	3.5 4
(18 ro	ws)		

_images/Fig1-originalData.png

Generated topology

Crossing edges

To get the crossing edges:

SELECT a.id, b.id FROM edges AS a, edges AS b WHERE a.id < b.id AND st_crosses(a.geom, b.geom); id | id 13 | 18 (1 row)

That information is correct, for example, when in terms of vehicles, is it a tunnel or bridge crossing over another road.

It might be incorrect, for example:

1. When it is actually an intersection of roads, where vehicles can make turns.

2. When in terms of electrical lines, the electrical line is able to switch roads even on a tunnel or bridge

When it is incorrect, it needs fixing:

1. For vehicles and pedestrians

- If the data comes from OSM and was imported to the database usingosm2pgrouting, the fix needs to be done in the OSM portal and the data imported again
- In general when the data comes from a supplier that has the data prepared for routing vehicles, and there is a problem, the data is to be fixed from the supplier

2. For very specific applications

- · The data is correct when from the point of view of routing vehicles or pedestrians.
- The data needs a local fix for the specific application.

Once analyzed one by one the crossings, for the ones that need a local fix, the edges need to besplit.

SELECT ST_AsText!((ST_Dump(ST_Split(a.geom, b.geom))).geom) FROM edges AS a, edges AS b WHERE a.id = 13 AND b.id = 18 UNION SELECT ST_ASText!((ST_Dump(ST_Split(b.geom, a.geom))).geom) FROM edges AS a, edges AS b WHERE a.id = 13 AND b.id = 18 st_astext LINESTRING(3.5 2.3,3.5 3) LINESTRING(3 3,3.5 3) LINESTRING(3.5 3,4 3) LINESTRING(3.5 3,3.5 4) (4 rows)

The new edges need to be added to the edges table, the rest of the attributes need to be updated in the new edges, the old edges need to be removed and the routing topology needs to be updated.

Adding split edges¶

For each pair of crossing edges a process similar to this one must be performed.

The columns inserted and the way are calculated are based on the application. For example, if the edges have a trainame, then that column is to be copied

For pgRouting calculations

- factor based on the position of the intersection of the edges can be used to adjust theost and reverse_cost columns.
- Capacity information, used in the Flow Family of functions functions does not need to change when splitting edges

WITH

If its_edge AS (SELECT (ST_Dump(ST_Split(a.geom, b.geom))).path[1], (ST_Dump(ST_Split(a.geom, b.geom))).geom, ST_LineLocatePoint(a.geom, ST_Intersection(a.geom,b.geom)) AS factor FROM edges AS a, edges AS b WHERE a.id = 13 AND b.id = 18), first_segments AS (SELECT path, first_edge.geom, tirst_segments AS (SELECT path, first_edge.geom, capacity, reverse_capacity, CASE WHEN path=1 THEN factor * cost ELSE (1 - factor) * cost END AS cost, CASE WHEN path=1 THEN factor * reverse_cost ELSE (1 - factor) * reverse_cost END AS reverse_cost FROM first_edge, edges WHERE id = 13), second_edge AS (SELECT (ST_Dump(ST_Split(b.geom, a.geom))).path[1], (ST_Dump(ST_Split(b.geom, a.geom))).path[1], (ST_Dump(ST_Split(b.geom, a.geom))).path[1], (ST_Dump(ST_Split(b.geom, a.geom)).path[1], (ST_SSE WHEN path=1 THEN factor * cost ELSE(T + factor) * reverse_cost END AS reverse_cost FROM second_edge , edges WHERE id = 18), all_segments AS (SELECT * FROM first_segments UNION UNION SELECT * FROM second_segments) INSERT INTO edges (capacity, reverse_capacity, cost, reverse_cost, x1, y1, x2, y2, geom) (SELECT capacity, reverse_capacity, cost, reverse_cost, ST_X(ST_StartPoint(geom)), ST_Y(ST_StartPoint(geom)), ST_X(ST_EndPoint(geom)), ST_Y(ST_EndPoint(geom)), geom FROM all_segm INSERT 0 4 ents);

Adding new vertices¶

After adding all the split edges required by the application, the newly created vertices need to be added to the vertices table

INSERT INTO vertices (in_edges, out_edges, x, y, geom) (SELECT nv.in_edges, nv.out_edges, nv.x, nv.y, nv.geom FROM gr_extractVertices/SELECT id, geom FROM edges') AS nv LEFT JOIN vertices AS v USING(geom) WHERE v.geom IS NULL); INSERT 0 1

Updating edges topology

/* -- set the source information */ UPDATE edges AS e SET source = v.id FROM vertices AS v WHERE source IS NULL AND ST StartPoint(e.geom) = v.geom: UPDATE 4 -- set the target information */ /* -- set the target information */ UPDATE edges AS e SET target = v.id FROM vertices AS v WHERE target IS NULL AND ST_EndPoint(e.geom) = v.geom; UPDATE 4

ving the surplus edges Re

Once all significant information needed by the application has been transported to the new edges, then the crossing edges can be deleted.

DELETE FROM edges WHERE id IN (13, 18); DELETE 2

There are other options to do this task, like creating a view, or a materialized view.

Updating vertices topology

To keep the graph consistent, the vertices topology needs to be updated

UPDATE vertices AS v SET in_edges = nv.in_edges, out_edges = nv.out_edges FROM (SELECT * FROM pgr_extractVertices('SELECT id, geom FROM edges')) AS nv WHERE v.geom = nv.geom; UPDATE 18

Checking for crossing edges

There are no crossing edges on the graph.

SELECT a.id, b.id FROM edges AS a, edges AS b WHERE a.id < b.id AND st_crosses(a.geom, b.geom); id | id . (0 rows)

Graphs without geometries

Using this table design for this example:

CREATE TABLE wiki (id SERIAL, source INTEGER, target INTEGER, cost INTEGER); CREATE TABLE

Insert the data

INSERT INTO wiki (source, target, cost) VALUES (1, 2, 7), (1, 3, 9), (1, 6, 14), (2, 3, 10), (2, 4, 15), (3, 6, 2), (3, 4, 11), (4, 5, 6), (5, 6, 9); INSERT 0 9

Find the shortest path

To solve this example pgr_dijkstra is used:

SELECT * FROM pgr_dijkstra('SELECT id, source, target, cost FROM wiki', 1, 5, talse); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	5	1	2	9	0
2	2	1	5	3	6	2	9
3	3	1	5	6	9	9	11
4	4	1	5	5	-1	0	20
(4 rows	5)						

To go from (1) to (5) the path goes thru the following vertices: $(1 \operatorname{rightarrow 3 \operatorname{rightarrow 6 \operatorname{rightarrow 5}})$

Vertex information

To obtain the vertices information, use pgr_extractVertices - Proposed

SELECT id, in_edges, out_edges FROM pgr_extractVertices('SELECT id, source, target FROM wiki'); id | in_edges | out_edges

 $\begin{array}{c} & + & + \\ 3 \mid \{2,4\} \quad \mid \{6,7\} \\ 5 \mid \{8\} \quad \mid \{9\} \\ 4 \mid \{5,7\} \quad \mid \{8\} \\ 2 \mid \{1\} \quad \mid \{4,5\} \\ 1 \mid \quad \mid \{1,2,3\} \\ 6 \mid \{3,6,9\} \mid \end{array}$ (6 rows)

See Also

- Topology Family of Functions
- pgr_createVerticesTable

Indices and tables

• Index

Search Page

pgr_degree – Proposed

pgr_degree - For each vertex in an undirected graph, return the count of edges incident to the vertex.

Warning

Proposed functions for next mayor release

- They are not officially in the current release.
- · They will likely officially be part of the next mayor releases
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - Functionality might not change. (But still can)

- pgTap tests have being done. But might need more.
- · Documentation might need refinement.

Availability

- Version 3.4.0
 - New proposed function

Description

Calculates the degree of the vertices of anundirected graph

Signatures

pgr_degree(<u>Edges SQL</u>, <u>Vertex SQL</u>, [dryrun]) RETURNS SETOF (node, degree) OR EMTPY SET

Example:

Extracting the vertex information

pgr_degree can utilize output from pgr_extractVertices or can have pgr_extractVertices embedded in the call. For decent size networks, it is best to prep your vertices table before hand and use that vertices table for pgr_degree calls.

Parameters 1

Parameter Type	Description
----------------	-------------

Edges SQL TEXT Edges SQL as described below

Vertex SQL TEXT Vertex SQL as described below

Optional parameters

Parameter Type Default Description

dryrun BOOLEAN false

 When true do not process and get in a NOTICE the resulting guery.

Inner Queries

- Edges SQL
- Vertex SQL

Edges SQL¶

Column Type Description

id BIGINT Identifier of the edge.

Vertex SQL¶

Column Type Description

id BIGINT Identifier of the first end point vertex of the edge.

Array of identifiers of the edges that have the vertexid as first end point.

When missing, out_edges must exist.

Column Type

Description

Array of identifiers of the edges that have the vertexid as second end out_edges BIGINT[] point.

• When missing, in_edges must exist.

Result columns

Column Type Description

BIGINT Vertex identifier node

BIGINT Number of edges that are incident to the vertex degree id

Additional Examples

- Degree of a sub graph
- Dry run execution
- Degree from an existing table
 - Dead ends
 - Linear edges

Degree of a sub graph¶

SELECT * FROM pgr_degree(\$\$SELECT id FROM edges WHERE id < 17\$\$, \$\$SELECT id, in_edges, out_edges FROM pgr_extractVertices('SELECT id, geom FROM edges')\$\$); node | degree

Dry run execution

To get the query generated used to get the vertex information, usedryrun => true.

The results can be used as base code to make a refinement based on the backend development needs.

SELECT * FROM pgr_degree(\$\$SELECT id FROM edges WHERE id < 17\$\$, \$\$SELECT id, in_edges, out_edges FROM pgr_extractVertices('SELECT id, geom FROM edges')\$\$, dryrun => true); NOTICE: WITH -- a sub set of edges of the graph goes here g_edges AS (SELECT id FROM edges WHERE id < 17), -- sub set of vertices of the graph goes here Select of the graph goes here all_vertices AS (SELECT id, in_edges, out_edges FROM pgr_extractVertices('SELECT id, geom FROM edges')), g_vertices AS (SELECT id, unnest(coalesce(in_edges::BIGINT[], '{}'::BIGINT[]) coalesce(out_edges::BIGINT[], '{]'::BIGINT[])) AS eid FROM all_vertices). totals AS (SELECT v.id, count(*) FROM g_vertices AS v JOIN g_edges AS e ON (e.id = eid) GROUP BY v.id) SELECT id::BIGINT, coalesce(count, 0)::BIGINT FROM all vertices LEFT JOIN totals USING (id) node | degree (0 rows)

Degree from an existing table

If you have a vertices table already built using pgr_extractVertices and want the degree of the whole graph rather than a subset, you can forgo using pgr_degree and work with then_edges and out_edges columns directly.

Dead ends¶

To get the dead ends:

1	
5	
0	
3	
13	
14	
2	
4	
(7 r	ows

That information is correct, for example, when the dead end is on the limit of the imported graph.

Visually node \(4\) looks to be as start/ending of 3 edges, but it is not.

Is that correct?

- · Is there such a small curb:
 - That does not allow a vehicle to use that visual intersection?
 - · Is the application for pedestrians and therefore the pedestrian can easily walk on the small curb?
 - Is the application for the electricity and the electrical lines than can easily be extended on top of the small curb?
- Is there a big cliff and from eagles view look like the dead end is close to the segment?

When there are many dead ends, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

Linear edges¶

To get the linear edges:

SELECT id FROM vertices WHERE array_length(in_edges || out_edges, 1) = 2; id

3 15 17

(3 rows)

This information is correct, for example, when the application is taking into account speed bumps, stop signals.

When there are many linear edges, to speed up, the Contraction - Family of functions functions can be used to divide the problem.

See Also

- Topology Family of Functions
- pgr_extractVertices Proposed
- Indices and tables

Index

Search Page

See Also

Indices and tables

- Index
- Search Page

Traveling Sales Person - Family of functions

- pgr_TSP When input is given as matrix cell information.
- pgr_TSPeuclidean When input are coordinates.

pgr_TSP

• pgr_TSP - Aproximation using metric algorithm.

Boost Graph Inside

Availability:

- Version 3.2.1
 - Metric Algorithm from <u>Boost library</u>
 - Simulated Annealing Algorithm no longer supported
 - The Simulated Annealing Algorithm related parameters are ignored: max_processing_time, tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes, initial_temperature, final_temperature, cooling_factor, randomize
- Version 2.3.0
 - Signature change
 - Old signature no longer supported
- Version 2.0.0
 - Official function

Description

Problem Definition

The travelling salesperson problem (TSP) asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?

- · This problem is an NP-hard optimization problem.
- · Metric Algorithm is used
- Implementation generates solutions that are twice as long as the optimal tour in the worst casewhen:
 - Graph is undirected
 - · Graph is fully connected
 - · Graph where traveling costs on edges obey the triangle inequality
- · On an undirected graph:
 - · The traveling costs are symmetric:
 - $\circ~$ Traveling costs from u to v are just as much as traveling from v to u
- Can be Used with Cost Matrix Category functions preferably with directed => false.
 - With directed => false
 - Will generate a graph that:
 - is undirected
 - is fully connected (As long as the graph has one component)
 - all traveling costs on edges obey the triangle inequality.
 - When start_vid = 0 OR end_vid = 0
 - The solutions generated is garanteed to be twice as long as the optimal tour in the worst case
 - When start_vid != 0 AND end_vid != 0 AND start_vid != end_vid
 - It is not garanteed that the solution will be, in the worse case, twice as long as the optimal tour, due to the fact that nd_vid is forced to be in a fixed position.
 - With directed => true
 - It is not garanteed that the solution will be, in the worse case, twice as long as the optimal tour
 - Will generate a graph that:
 - is directed
 - is fully connected (As long as the graph has one component)
 - some (or all) traveling costs on edges might not obey the triangle inequality.
 - As an undirected graph is required, the directed graph is transformed as follows:
 - edges (u, v) and (v, u) is considered to be the same edge (denoted (u, v)
 - if agg_cost differs between one or more instances of edge (u, v)
 - The minimum value of the agg_cost all instances of edge (u, v) is going to be considered as the agg_cost of edge (u, v)
 - · Some (or all) traveling costs on edges will still might not obey the triangle inequality.
- When the data is incomplete, but it is a connected graph:
 - · the missing values will be calculated with dijkstra algorithm.

Signatures

Summary

pgr_TSP(<u>Matrix SQL</u>, [start_id, end_id]) Returns set of (seq, node, cost, agg_cost) OR EMTPY SET

Example

Using pgr_dijkstraCostMatrix to generate the matrix information

• Line 4 Vertices \(\{2, 4, 13, 14\}\) are not included because they are not connected.

Parameters

Parameter Type Description

Matrix SQL TEXT Matrix SQL as described below

TSP optional parameters

Column

Default

Туре

	Column	Туре	Default	Description
start_id		ANY-INTEGER	0	The first visiting vertex When 0 any vertex can become the first visiting vertex.
end_id		ANY-INTEGER	0	 Last visiting vertex before returning to start_vid. When 0 any vertex can become the last visiting vertex before returning to start_id. When NOT 0 and start_id = 0 then it is the first and last vertex
Inner Quer	ies <mark>1</mark>			
Matrix SQL	-1			

Column	Туре	Description
start_vid	ANY-INTEGER	Identifier of the starting vertex.

end_vid ANY-INTEGER Identifier of the ending vertex.

agg_cost ANY-NUMERICAL Cost for going from start_vid to end_vid

Result columns

Returns SET OF (seq, node, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	R Row sequence.
node	BIGINT	Identifier of the node/coordinate/point.

Cost to traverse from the current node to the next node in the path FLOAT sequence. cost

•	0 fo	r the	last	row	in	the	tour	seque	nce.

	Aggregate cost from the node at seg = 1 to the current node
add cost FLOAT	

•	0 for	the	first	row	in	the	tour	sequence	

Additional Examples

• Start from vertex \(1\)

Using points of interest to generate an asymetric matrix.

Connected incomplete data

Start from vertex (1)

• Line 6 start_vid => 1

12 4	6	1	3	
13 5	5	1 j -	4	
14 6	10	2	6	
15 7	11	1	7	
16 8	12	1	8	
17 9	16	2	10	
18 10	15	1	11	
19 11	17	2	13	
20 12	9	3	16	
21 13	8	1	17	
22 14	1	3	20	
23(14 rc	ws)			
24				

Using points of interest to generate an asymetric matrix.

To generate an asymmetric matrix:

- Line 4 The side information of pointsOfInterset is ignored by not including it in the query
- Line 6 Generating an asymetric matrix with directed => true
 - $\circ \ (min(agg_cost(u, v), agg_cost(v, u)))) is going to be considered as the agg_cost$
 - The solution that can be larger than twice as long as the optimal tourbecause:
 - Triangle inequality might not be satisfied.
 - start_id != 0 AND end_id != 0

1SELECT * FROM pgr_TSP(2 \$\$SELECT * FROM pgr_withPointsCostMatrix(3 'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 4 'SELECT pid, edge_id, fraction from pointsOfInterest',
5 array[-1, 10, 7, 11, -6], 6 directed => true) \$\$, 7 start_id => 7, 8 end_id => 11); 9 seq node cost agg_cost					
10-	4.1	71	0 I	0	
	11	1	0	0	
12	2	-6	0.3	0.3	
13	3	-1	1.3	1.6	
14	4	10	1.6	3.2	
15	5	11 j	1	4.2	
16	6	7	1	5.2	
17(6 rows)					
18					

cted incomplete data Con

Using selected edges $(({2, 4, 5, 8, 9, 15}))$ the matrix is not complete.

1SELECT * FROM pgr_dlijkstraCostMatrix(2 \$q1\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (2, 4, 5, 8, 9, 15)\$q1\$, 3 (SELECT ARRAY[6, 7, 10, 11, 16, 17]),

cost

4	directed	=> true);	
5	start_vid	end_vic	l agg_
6-	+	++-	
7	6	7	1
8	6	11	2
9	6	16	3
10	6	17	4
11	7	6	1
12	7	11	1
13	7	16	2
14	7	17	3
15	10	6	1
16	10	7	2
17	10	11	1
18	10	16	2
19	10	17	3
20	11	6	2
21	11	7	1
22	11	16	1
23	11	17	2
24	16	6	3
25	16	7	2
26	16	11	1
27	16	17	1
28	17	6	4
29	17	7	3
30	17	11	2
31	17	16	1
32	(25 rows)		
33			

Cost value for \(17 \rightarrow 10\) do not exist on the matrix, but the value used is taken from\(10 \rightarrow 17\).

1SELECT * FROM pgr_TSP(2 \$\$SELECT * FROM pgr_dijkstraCostMatrix(3 \$q1\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (2, 4, 5, 8, 9, 15)\$q1\$, 4 (SELECT ARRAY[6, 7, 10, 11, 16, 17]), 5 directed => true)\$\$; 6 seq | node | cost | agg_cost 7----+----+-----+------

See Also

- <u>Traveling Sales Person Family of functions</u>
- Sample Data
- Boost's metric appro's metric approximation

<u>Wikipedia: Traveling Salesman Problem</u>

- Indices and tables
 - Index
 - Search Page

pgr_TSPeuclidean

• pgr_TSPeuclidean - Aproximation using metric algorithm.

Boost Graph Inside

Availability:

• Version 3.2.1

- Metric Algorithm from Boost library
- · Simulated Annealing Algorithm no longer supported
 - The Simulated Annealing Algorithm related parameters are ignored: max_processing_time, tries_per_temperature, max_changes_per_temperature, max_consecutive_non_changes, initial_temperature, final_temperature, cooling_factor, randomize

Version 3.0.0

- Name change from pgr_eucledianTSP
- Version 2.3.0
 - New Official function

Description

Problem Definition

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?

Characteristics 1

- This problem is an NP-hard optimization problem.
- Metric Algorithm is used
- Implementation generates solutions that are twice as long as the optimal tour in the worst casewhen:
 - · Graph is undirected
 - · Graph is fully connected
 - Graph where traveling costs on edges obey the triangle inequality.
- · On an undirected graph:
 - The traveling costs are symmetric:
 - $\circ~$ Traveling costs from u to v are just as much as traveling from v to u
- Any duplicated identifier will be ignored. The coordinates that will be kept

is arbitrarly.

• The coordinates are quite similar for the same identifier, for example

1, 3.5, 1 1, 3.499999999999 0.9999999

• The coordinates are quite different for the same identifier, for example

2, 3.5, 1.0 2, 3.6, 1.1

Signatures

Summary

pgr_TSPeuclidean(<u>Coordinates SQL</u>, [start_id, end_id]) Returns set of (seq, node, cost, agg_cost) OR EMTPY SET

Example:

With default values

SELECT * FROM pgr_TSPeuclidean(

\$\$ SELECT id, st_X(geom) AS x, st_Y(geom)AS y FROM vertices \$\$);

Parameters

Parameter Type Description

Coordinates SQL TEXT Coordinates SQL as described below

TSP optional parameters

Co	lumn	Туре	Default	Description
start_id		ANY-INTEGER	0	The first visiting vertex When 0 any vertex can become the first visiting vertex.
end_id		ANY-INTEGER	0	 Last visiting vertex before returning to start_vid. When 0 any vertex can become the last visiting vertex before returning to start_id. When NOT 0 and start_id = 0 then it is the first and last vertex
Inner Queries				
Coordinates SQL	1			
Column	Туре	Description		

id ANY-INTEGER Identifier of the starting vertex.

Column Type Description

ANY-NUMERICAL X value of the coordinate.

ANY-NUMERICAL Y value of the coordinate. у

Result columns

Returns SET OF (seq, node, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Row sequence.
node	BIGINT	Identifier of the node/coordinate/point.
cost	FLOAT	Cost to traverse from the current node to the next node in the path sequence. o for the last row in the tour sequence.
agg_cost	FLOAT	Aggregate cost from the node at seq = 1 to the current node. • 0 for the first row in the tour sequence.

Additional Examples

• Test 29 cities of Western Sahara

• Creating a table for the data and storing the data

- Adding a geometry (for visual purposes)
- Total tour cost
- Getting a geometry of the tour
- Visual results

Test 29 cities of Western Sahara

This example shows how to make performance tests using University of Waterloo'sexample data using the 29 cities of Western Sahara dataset

Creating a table for the data and storing the data

CREATE TABLE vi29 (id BIGINT, x FLOAT, y FLOAT, geom geometry); INSERT INTO vi29 (id, x, y) VALUES

OTEATE TABLE WIES (IG DIGINA
INSERT INTO wi29 (id, x, y) VAL
(1,20833.3333,17100.0000),
(2,20900.0000,17066.6667),
(3,21300.0000,13016.6667),
(4,21600.0000,14150.0000),
(5,21600.0000,14966.6667),
(6,21600.0000,16500.0000),
(7,22183.3333,13133.3333),
(8,22583.3333,14300.0000),
(9,22683.3333,12716.6667),
(10,23616.6667,15866.6667),
(11,23700.0000,15933.3333),
(12,23883.3333,14533.3333),
(13,24166.6667,13250.0000),
(14,25149.1667,12365.8333),
(15,26133.3333,14500.0000),
(16,26150.0000,10550.0000),
(17,26283.3333,12766.6667),
(18,26433.3333,13433.3333),
(19,26550.0000,13850.0000),
(20,26733.3333,11683.3333),
(21,27026.1111,13051.9444),
(22,27096.1111,13415.8333),
(23,27153.6111,13203.3333),
(24,27166.6667,9833.3333),
(25,27233.3333,10450.0000),
(26,27233.3333,11783.3333),
(27,27266.6667,10383.3333),
(28,27433.3333,12400.0000),
(29,27462.5000,12992.2222);

Adding a geometry (for visual purposes)

UPDATE wi29 SET geom = ST_makePoint(x,y);

Total tour cost

Getting a total cost of the tour, compare the value with the length of an optimal tour is 27603, given on the dataset

SELECT * FROM pgr_TSPeuclidean(\$\$SELECT * FROM wi29\$\$) WHERE seq = 30; seq | node | cost | agg_cost 30 | 1 | 2266.91173136 | 28777.4854127 (1 row)

Getting a geometry of the tour

WITH

WITH tsp_results AS (SELECT seq, geom FROM pgr_TSPeuclidean(\$\$SELECT * FROM wi29\$\$) JOIN wi29 ON (node = id)) SELECT ST_MakeLine(ARRAY(SELECT geom FROM tsp_results ORDER BY seq));

01020000001E000000F085C9545558D440000000000B3D040000000069D440107A36ABAAAAD0400000000018D540000000001DD040107A36AB2A10D7401FF46C5655FDCE4000000000025D740E10B93A9AA1ECF40F085C954D5 (1 row)

Visual results

Visualy, The first image is the optimal solution and the second image is the solution obtained withpgr_TSPeuclidean.

_images/wi29Solution.png

See Also

<u>Traveling Sales Person - Family of functions</u>

- Sample Data network.
- Boost's metric appro's metric approximation
- <u>University of Waterloo TSP</u>

• Wikipedia: Traveling Salesman Problem

Indices and tables

- Index
- Search Page

Table of Contents

General Information

- Problem Definition
- Origin
- Characteristics
- TSP optional parameters
- See Also

General Information

Problem Definition¶

The travelling salesperson problem (TSP) asks the following question:

Given a list of cities and the distances between each pair of cities, which is the shortest possible route that visits each city exactly once and returns to the origin city?

Origin

The traveling sales person problem was studied in the 18th century by mathematiciansSir William Rowam Hamilton and Thomas Penyngton Kirkman.

A discussion about the work of Hamilton & Kirkman can be found in the bookGraph Theory (Biggs et al. 1976).

- ISBN-13: 978-0198539162
- ISBN-10: 0198539169

It is believed that the general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed description about the connection between Menger & Whitney, and the development of the TSP can be found in On the history of combinatorial optimization (till 1960

To calculate the number of different tours through (n) cities:

- Given a starting city.
- There are \(n-1\) choices for the second city,
- And \(n-2\) choices for the third city, etc.
- Multiplying these together we get $((n-1)! = (n-1) (n-2) \dots 1)$.
- Now since the travel costs do not depend on the direction taken around the tour:
 - this number by 2
 - ∘ \((n-1)!/2\).

Characteristics¶

- This problem is an NP-hard optimization problem.
- · Metric Algorithm is used
- Implementation generates solutions that are twice as long as the optimal tour in the worst casewhen:
 - Graph is undirected
 - · Graph is fully connected
 - · Graph where traveling costs on edges obey the triangle inequality.
- · On an undirected graph:
 - The traveling costs are symmetric:
 - $\circ~$ Traveling costs from u to v are just as much as traveling from v to u

TSP optional parameters

Column	Туре
--------	------

Default

Description

	Column	Туре	Default	Description
start_id		ANY-INTEGER	0	The first visiting vertex When 0 any vertex can become the first visiting vertex.
end_id		ANY-INTEGER	0	 Last visiting vertex before returning to start_vid. When 0 any vertex can become the last visiting vertex before returning to start_id. When NOT 0 and start_id = 0 then it is the first and last vertex
See Also	L			

References

Boost's metric appro's metric approximation

- <u>University of Waterloo TSP</u>
- Wikipedia: Traveling Salesman Problem

Indices and tables

- Index
- Search Page

BFS - Category

pgr_kruskalBFS

• pgr_primBFS

Traversal using breadth first search.

- It's implementation is only on undirected graph.
- Process is done only on edges with positive costs.
- When the graph is connected
 - The resulting edges make up a tree
- When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.

Parameters 1

Parameter	Туре	Description			
Edges SQL	TEXT	Edges SQL as described below.			
root vid	BIGINT	 Identifier of the root vertex of the tree. When value is \(0\) then gets the spanning forest starting in aleatory nodes for each tree in th forest. 			
root vids	ARRAY [ANY-INTEGER]	 Array of identifiers of the root vertices. (0\) values are ignored For optimization purposes, any duplicated value is ignored. 			
Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERIC: SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC					
Parameter Type	Default	Description			
Upper limit of the depth of the tree. max_depth BIGINT \(9223372036854775807\) • When negative throws an error.					
Inner Queries					
Edges SQL					
Column	Туре	Default Description			
id	ANY-INTEGER	Identifier of the edge.			
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.			

Co	olumn	Туре	Default	Description				
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.				
cost		ANY-NUMERICAL		Weight of the edge (source, target)				
reverse_cost		ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph. 				
Where:								
ANY-INTEGI	ER:							
SMALLI	NT, INTEGER, BIG	INT						
ANY-NUMER	RICAL:							
SMALLIN	NT, INTEGER, BIG	INT, REAL, FLOAT						
Result columns								
Returns set o	Of (seq, depth, start	_vid, node, edge, cost, agg_cost)						
Parameter	Туре	Description						
seq E	BIGINT Sequentia	al value starting from \(1\).						
depth E	Depth of t BIGINT	the node. when node = start_vid.						
start_vid E	BIGINT Identifier	of the root vertex.						
node E	BIGINT Identifier (of node reached using edge.						
edge E	Identifier of BIGINT	of the edge used to arrive to						
	 \(-1\) when node = start_vid. 							
cost F	FLOAT Cost to tra	averse edge.						
agg_cost F	FLOAT Aggregate	e cost from start_vid to node.						
Where:								
ANY-INTEGI	ER:							
		, BIGINT						
SMALL	LINT, INTEGER	, BIGINT, REAL, FLOAT, NU	MERIC					
See Also								
<u>Boost:</u>	Prim's algorithm	<u>1</u>						
Boost:	Kruskal's algorit	<u>thm</u>						
<u>Wikiper</u>	dia: Prim's algor	<u>rithm</u>						
<u>Wikiper</u>	dia: Kruskal's al	<u>gorithm</u>						
Indices and t	tables							
• Index	• Index							
<u>Search</u>	<u>i Page</u>							
Cost - Category								
• pgr_aS	• pgr_aStarCost							
• pgr_bd	• pgr_bdAstarCost							
 pgr_diji 	kstraCost							
 pgr_bd 	• pgr_bdDijkstraCost							

pgr_dijkstraNearCost - Proposed

Proposed

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)

- · Functionality might not change. (But still can)
- pgTap tests have being done. But might need more.
- · Documentation might need refinement.

• pgr_withPointsCost - Proposed

General Information

Characteristics 1

Each function works as part of the family it belongs to.

The main Characteristics are:

- · It does not return a path.
- · Returns the sum of the costs of the shortest path of each pair combination of nodes requested.
- Let be the case the values returned are stored in a table, so the unique index would be the pair(start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The aggregate cost of \((u, v)\) is the same as for \((v, u)\).
- Any duplicated value in the start or end vertex identifiers are ignored.
- The returned values are ordered:
 - start_vid ascending
 - · end_vid ascending

See Also

Indices and tables

- Index
- Search Page

Cost Matrix - Category

- pgr_aStarCostMatrix
- pgr_dijkstraCostMatrix
- pgr_bdAstarCostMatrix
- pgr_bdDijkstraCostMatrix

proposed

Warning

Proposed functions for next mayor release.

- · They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.
- pgr_withPointsCostMatrix proposed

General Information

Synopsis

Traveling Sales Person - Family of functions needs as input a symmetric cost matrix and no edge (u, v) must value \(\infty).

This collection of functions will return a cost matrix in form of a table.

Characteristics

The main Characteristics are:

- Can be used as input to pgr_TSP.
 - Use directly when the resulting matrix is symmetric and there is no\(\infty\) value.
 - It will be the users responsibility to make the matrix symmetric.
 - By using geometric or harmonic average of the non symmetric values.
 - By using max or min the non symmetric values.
 - By setting the upper triangle to be the mirror image of the lower triangle.
 - By setting the lower triangle to be the mirror image of the upper triangle
 - It is also the users responsibility to fix an\(\infty\) value.
- Each function works as part of the family it belongs to.
- It does not return a path.
- · Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- · Process is done only on edges with positive costs.
- Values are returned when there is a path.

- When the starting vertex and ending vertex are the same, there is no path.
 - The aggregate cost in the non included values (v, v) is 0.
- When the starting vertex and ending vertex are the different and there is no path.
 - The aggregate cost in the non included values (u, v) is \(\infty\).
- Let be the case the values returned are stored in a table:
 - The unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The aggregate cost of (u, v) is the same as for (v, u).
- Any duplicated value in the start vids are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending

Parameters

Used in:

- pgr_aStarCostMatrix
- pgr_dijkstraCostMatrix

Column	Туре	Description
--------	------	-------------

		ببيوامط لممتغا أسمو
EUges SQL TEXT	Euges SQL as	described below

start vids ARRAY[BIGINT] Array of identifiers of starting vertices.

Used in:

pgr_withPointsCostMatrix - proposed

Column	Туре	Description
Edges SQL T	EXT	Edges SQL as described below
Points SQL T	EXT	Points SQL as described below

start vids ARRAY[BIGINT] Array of identifiers of starting vertices.

Optional parameters

Column Type Default	Description
directed BOOLEAN true	When true the graph is considered <i>Directed</i> When take the graph is considered as

Inner Queries

Edges SQL<mark>¶</mark>

Used in:

- pgr_withPointsCostMatrix proposed
- pgr_dijkstraCostMatrix

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	l	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Points SQL

Parameter	Туре	Default	Description
pid	ANY-INTEGER	value	 Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically.
edge_id	ANY-INTEGER		Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	b	 Value in [b, r, I, NULL] indicating if the point is: In the right r, In the left1, In both sides b, NULL
Where: ANY-INTEGER: SMALLINT, INTEG ANY-NUMERICAL: SMALLINT, INTEG	GER, BIGINT GER, BIGINT, REAL, FLOAT		
Result columns	id agg cost)		
Column Type	Description		
start_vid BIGINT I	Identifier of the starting vertex.		
end_vid BIGINT I	end_vid BIGINT Identifier of the ending vertex.		
agg_cost FLOAT	agg_cost FLOAT Aggregate cost from start_vid to end_vid.		
See Also 1 Traveling Sales 	s Person - Family of functions		
Indices and tables			

- Index
- Search Page

DFS - Category

Traversal using Depth First Search.

- pgr_kruskalDFS
- pgr_primDFS

Proposed

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

• pgr_depthFirstSearch - Proposed - Depth first search traversal of the graph.

In general:

- It's implementation is only on $\ensuremath{\textbf{undirected}}$ graph.
- Process is done only on edges with positive costs.
- · When the graph is connected
 - The resulting edges make up a tree

- When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.

See Also

- Boost: Prim's algorithm
- Boost: Kruskal's algorithm
- <u>Wikipedia: Prim's algorithm</u>
- Wikipedia: Kruskal's algorithm

Indices and tables

- Index
- Search Page

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on Dijkstra's algorithm
- pgr_primDD Driving Distance based on Prim's algorithm
- pgr_kruskalDD Driving Distance based on Kruskal's algorithm
- · Post pocessing
 - <u>pgr_alphaShape</u> Alpha shape computation

Proposed

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.
- pgr_withPointsDD Proposed Driving Distance based on pgr_withPoints

pgr_alphaShape

pgr_alphaShape — Polygon part of an alpha shape. Availability

• Version 3.0.0

- Breaking change on signature
- Old signature no longer supported
- Boost 1.54 & Boost 1.55 are supported
- Boost 1.56+ is preferable
 - Boost Geometry is stable on Boost 1.56
- Version 2.1.0
 - · Added alpha argument with default 0 (use optimal value)
 - Support to return multiple outer/inner ring
- Version 2.0.0
 - Official function
 - Renamed from version 1.x

Support

Description

Returns the polygon part of an alpha shape.

Characteristics

- Input is a geometry and returns a geometry
- Uses PostGis ST_DelaunyTriangles
- Instead of using CGAL's definition of alpha it use the spoon_radius
 - o \(spoon_radius = \sqrt alpha\)
- A Triangle area is considered part of the alpha shape when\(circumcenter\ radius < spoon_radius\)
- The alpha parameter is the **spoon radius**
- · When the total number of points is less than 3, returns an EMPTY geometry

Summary

pgr_alphaShape(**geometry**, [alpha]) RETURNS geometry

Example:

passing a geometry collection with spoon radius (1.5) using the return variable geom

SELECT ST_Area(pgr_alphaShape((SELECT ST_Collect(geom) FROM vertices), 1.5));

st_area
9.75
(1 row)

Parameters 1

Parameter Type Defau	It Description
geometry geometry	Geometry with at least \(3\) points

alpha	FLOAT	0	The radius of the spoon.

Return Value

Kind of geometry	Description
GEOMETRY	A Geometry collection of
COLLECTION	Polygons

See Also

- pgr_drivingDistance
- Sample Data network.
- <u>ST_ConcaveHull</u>

Indices and tables

• Index

Search Page

- Calculate nodes that are within a distance.
 - Extracts all the nodes that have costs less than or equal to the value distance.
 - The edges extracted will conform to the corresponding spanning tree.
 - Edge ((u, v)) will not be included when:
 - The distance from the **root** to $\langle u \rangle$ > limit distance.
 - $\circ~$ The distance from the root to $\(v\) >$ limit distance.
 - No new nodes are created on the graph, so when is within the limit and is not within the limit, the edge is not included.

Parameters

Parameter	Туре	Description	
Edges SQL	TEXT	Edges SQL as described below.	
Root vid	BIGINT	Identifier of the root vertex of the tree.	
Root vids	ARRAY[ANY-INTEGER]	 Array of identifiers of the root vertices. \(0\) values are ignored For optimization purposes, any duplicated value is ignored. 	
distance	FLOAT	Upper limit for the inclusion of a node in the result.	
Where:			
ANY-NUMERIC:			
SMALLINT, INT	EGER, BIGINT, REAL, FLOAT		
Inner Queries			
Edges SQL			
Column	Туре	Default	Description

		-
id	ANY-INTEGER	Identifier of the edge.
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.
target	ANY-INTEGER	Identifier of the second end point vertex of the edge.

	Column	Туре	Default	Description				
cost		ANY-NUMERICAL		Weight of the edge (source, target)				
reverse_cos	st	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph. 				
Where:								
ANY-INTE	GER:							
SMAL	LINT, INTEGER, BI	GINT						
ANY-NUM	IERICAL:							
SMAL	LINT, INTEGER, BI	GINT, REAL, FLOAT						
Result colum	ns <mark>1</mark>							
Returns se	et of (seq, depth, sta	art_vid, pred, node, edge, cost, agg_c	ost)					
Paramete	er Type	Description						
seq	BIGINT Sequent	tial value starting from (1) .						
	Depth of	f the node.						
depth	BIGINT • \(0) when node = start_vid.						
	• \(d	lepth-1\) is the depth of pred						
start_vid	BIGINT Identifie	r of the root vertex.						
	Predece	essor of node.						
pred	• W	When node = start_vid then has the value node.						
node	BIGINT Identifie	r of node reached using edge.						
edae	Identifier BIGINT ^{node.}	r of the edge used to arrive from	pred to					
0090	• \(-'	1\) when node = start_vid.						
cost	FLOAT Cost to t	traverse edge.						
agg_cost	agg_cost FLOAT Aggregate cost from start_vid to node.							
See Also								
Indices an	d tables							
• Inde	x							
• Search Page								
K shortest p	oaths - Category¶							
pgr_KSP - Yen's algorithm based on pgr_dijkstra								
Proposed								
Warning								
Proposed functions for next mayor release.								
They will likely officially be part of the part mayor release:								
The functions make use of ANV-INTEGER and ANV-INIMERICAL								
0								
•	 Signature might not change. (But still can) 							
٥	 Functionality might not change. (But still can) 							
	•	/						

- $\circ~$ pgTap tests have being done. But might need more.
- Documentation might need refinement.
- pgr_withPointsKSP Proposed Yen's algorithm based on pgr_withPoints

Indices and tables

- Index
- Search Page

Spanning Tree - Category

- Kruskal Family of functions
- Prim Family of functions

A spanning tree of an undirected graph is a tree that includes all the vertices of G with the minimum possible number of edges.

For a disconnected graph, there there is no single tree, but a spanning forest, consisting of a spanning tree of each connected component.

Characteristics:

- It's implementation is only on undirected graph.
- · Process is done only on edges with positive costs.
- · When the graph is connected
 - · The resulting edges make up a tree
- · When the graph is not connected,
 - · Finds a minimum spanning tree for each connected component.
 - The resulting edges make up a forest.

See Also

- Boost: Prim's algorithm
- Boost: Kruskal's algorithm
- · Wikipedia: Prim's algorithm
- Wikipedia: Kruskal's algorithm

Indices and tables

- Index
- Search Page

Via - Category

proposed

Warning

Proposed functions for next mayor release.

· They are not officially in the current release.

- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - · pgTap tests have being done. But might need more
 - · Documentation might need refinement.
- pgr_dijkstraVia Proposed
- pgr_withPointsVia Proposed
- pgr trspVia Proposed
- pgr_trspVia_withPoints Proposed

General Information

This category intends to solve the general problem:

Given a graph and a list of vertices, find the shortest path between\(vertex i\) and \(vertex {i+1}\) for all vertices

In other words, find a continuos route that visits all the vertices in the order given.

path:

represents a section of a route.

route:

is a sequence of paths

Parameters

Used in:

Edges SQL

- pgr_dijkstraVia Proposed
- pgr_trspVia Proposed

Parameter

Туре Default

visited.

TEXT

SQL query as described.

Array of ordered vertices identifiers that are going to be

Description

ARRAY [ANY-INTEGER] via vertices

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Used in:

• pgr_withPointsVia - Proposed

• pgr_trspVia_withPoints - Proposed

Parameter	Туре	Default	Description
Edges SQL	TEXT		SQL query as described.
Points SQL	TEXT		SQL query as described.
			Array of ordered vertices identifiers that are going to be visited.
via vertices	ARRAY [ANY-INTEGER]		When positive it is considered a vertex identifier

• When negative it is considered a point identifier

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Besides the compulsory parameters each function has, there are optional parameters that exist due to the kind of function.

Via optional parameters

Used in all Via functions

Parameter	Type Default	Description
strict	BOOLEAN false	 When true if a path is missing stops and returns EMPTY SET When false ignores missing paths returning all paths found
U_turn_on_edge	BOOLEAN true	When true departing from a visited vertex will not try to avoid
Inner Querica		

Inner Queries

Depending on the function one or more inner queries are needed.

Edges SQL

Used in all Via functions

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

ANT NOMENIOAE.

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL

Used in

• pgr_trspVia - Proposed

Column	Туре	Description
path	ARRAY [ANY-INTEGER]	Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays onull arrays are ignored Arrays that have a NULL element will raise an exception.
Cost	ANY-NUMERICAL	Cost of taking the forbidden path.
Where:		
ANY-INTEGER:		
SMALLINT, INTE	GER, BIGINT	
ANY-NUMERICAL:		

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL

Used in

• pgr_withPointsVia - Proposed

Parameter	Туре	Default	Description
pid	ANY-INTEGER	value	 Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically.
edge_id	ANY-INTEGER		Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	CHAR	b	 Value in [b, r, I, NULL] indicating if the point is: In the right r, In the left I, In both sides b, NULL

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Identifier of a path. Has value1 for the first path.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex of the path.
end_vid	BIGINT	Identifier of the ending vertex of the path.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
		Identifier of the edge used to go fromnode to the next node in the path sequence.
edge	BIGINT	-1 for the last node of the path.
		-2 for the last node of the route.
cost	FLOAT	Cost to traverse from ${\scriptstyle node}$ using ${\scriptstyle edge}$ to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.
route_agg_cost	FLOAT	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Note

When ${\tt start_vid}, {\tt end_vid}$ and node columns have negative values, the identifier is for a Point.

See Also

- pgr_dijkstraVia Proposed
- pgr_trspVia Proposed
- pgr_withPointsVia Proposed

Indices and tables

- Index
- Search Page

Vehicle Routing Functions - Category

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

• They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting
- Pickup and delivery problem
 - pgr_pickDeliver Experimental Pickup & Delivery using a Cost Matrix
 - pgr_pickDeliverEuclidean Experimental Pickup & Delivery with Euclidean distances
- Distribution problem
 - pgr_vrpOneDepot Experimental From a single depot, distributes orders

Contents

- Vehicle Routing Functions Category
 - Introduction
 - <u>Characteristics</u>
 - Pick & Delivery
 - Parameters
 - Pick & deliver
 - <u>Pick-Deliver optional parameters</u>
 - Inner Queries
 - Orders SQL
 - Vehicles SQL
 - Matrix SQL
 - Result columns
 - Summary Row
 - Handling Parameters
 - <u>Capacity and Demand Units Handling</u>
 - Locations
 - <u>Time Handling</u>
 - Factor handling
 - See Also

pgr_pickDeliver - Experimental

pgr_pickDeliver - Pickup and delivery Vehicle Routing Problem

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.

- · Might need a lot of feedback from the comunity.
- · Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0

New experimental function

Synopsis

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

- · Optimization problem is NP-hard.
- · pickup and Delivery with time windows.
- · All vehicles are equal.
 - · Same Starting location.
 - Same Ending location which is the same as Starting location.
 - All vehicles travel at the same speed.
- A customer is for doing a pickup or doing a deliver.
 - has an open time.
 - has a closing time.
 - has a service time.
 - has an (x, y) location.
- There is a customer where to deliver a pickup.
 - · travel time between customers is distance / speed
 - pickup and delivery pair is done with the same vehicle.
 - A pickup is done before the delivery.

Characteristics

- All trucks depart at time 0.
- · No multiple time windows for a location.
- Less vehicle used is considered better.
- · Less total duration is better.
- · Less wait time is better.
- · the algorithm will raise an exception when
 - If there is a pickup-deliver pair than violates time window
 - The speed, max_cycles, ma_capacity have illegal values
- Six different initial will be optimized the best solution found will be result

Signature

pgr_pickDeliver(<u>Orders SQL</u>, <u>Vehicles SQL</u>, <u>Matrix SQL</u>, [options])

options: [factor, max_cycles, initial_sol] Returns set of (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo, travel_time, arrival_time, wait_time, service_time, departure_time)

Example:

Solve the following problem

Given the vehicles:

SELECT id, capacity, start_node_id, start_open, start_close FROM vehicles; id | capacity | start_node_id | start_open | start_close

1 50 111 0 50

and the orders

FR(_ECT id p_node d_node OM orde deman	, demand e_id, p_op e_id, d_op ers; d p_nod	l, ben, p_ ben, d_ e_id	_close, p _close, d p_open	_service, _service p_close	p_ser	vice	d_node	e_id	d_open d_close d_service
1 2 3 (3 n	10 20 30 ows)	10 16 7	2 4 2	+ 10 15 10	3 2 3	+ 3 15 12	6 6 3	15 20 20	3 3 3	3
The	e quer	y:								
SEL \$\$ F \$\$	ECT * I SELEC p_node d_node ROM of SELEC	FROM pg T id, dem e_id, p_op e_id, d_op rders\$\$, T id, capa	r_pick[and, ben, p_ ben, d_ acity, st	Deliver(_close, p_ _close, d_ tart_node	_service, _service e_id, start	_open,	star	t_close		
\$\$	SELEC	T * from p	, ogr_dij⊦	straCost	tMatrix(
(5	SELECT	FROM	edges gg(id) F	r, FROM (S	SELECT p	_node	_id A	S id FR	OM c	rders
	SELEC	N CT d_nod N	e_id Fl	ROM ord	lers					
¢¢	SELE	CT start_r	node_i	d FROM	vehicles)	a))				
φφ sec	n, q∣vehic	le_seq v	ehicle	_id stop	_seq ste	op_type	e sto	op_id a	rder_	id cargo travel_time arrival_time wait_time service_time departure_time

Parameters 1

The parameters are:

Column	Туре	Description
Orders SQL	TEXT	Orders SQL as described below.
Vehicles SQL	TEXT	Vehicles SQL as described below.

Matrix SQL TEXT Matrix SQL as described below.

Pick-Deliver optional parameters

Column	Туре	Default	Description
factor	NUMERIC	1	Travel time multiplier. See Factor handling
max_cycles	INTEGER	10	Maximum number of cycles to perform on the optimization.
initial_sol	INTEGER	4	Initial solution to be used. 1 One order per truck 2 Push front order. 3 Push back order. 4 Optimize insert. 5 Push back order that allows more orders to be inserted at the back 6 Push front order that allows more orders to be inserted at the
Orders SQL	T stateme	ent that re	front eturns the following columns:
id, deman p_node_id d_node_id	d d, p_open d, d_open	, p_close , d_close	e, [p_service,] e, [d_service,]
where:			
Column	Ту	pe	Description
id	ANY-INT	EGER	Identifier of the pick-delivery order pair.
demand	ANY-NUI	MERICA	L Number of units in the order
p_open	ANY-NUI	MERICA	L The time, relative to 0, when the pickup location opens.
p_close	ANY-NUI	MERICA	L The time, relative to 0, when the pickup location closes.

The duration of the loading at the pickup location. [p_service] ANY-NUMERICAL • When missing: 0 time units are used

- ANY-NUMERICAL The time, relative to 0, when the delivery location $\underset{opens.}{\mbox{ opens.}}$ d_open
- ANY-NUMERICAL The time, relative to 0, when the delivery location closes. d_close
- The duration of the unloading at the delivery location. [d_service] ANY-NUMERICAL • When missing: 0 time units are used

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Column Туре

Description

p_node_id ANY-INTEGER The node identifier of the pickup, must match a vertex identifier in the Matrix SQL.

d_node_id ANY-INTEGER The node identifier of the delivery, must match a vertex identifier in the Matrix SQL.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Vehicles SQL

A SELECT statement that returns the following columns:

id, capacity start_node_id, start_open, start_close [, start_service,] [end_node_id, end_open, end_close, end_service] where:

Description Column Type ANY-NUMERICAL Identifier of the vehicle. id ANY-NUMERICAL Maiximum capacity units capacity ANY-NUMERICAL The time, relative to 0, when the starting location opens. start_open ANY-NUMERICAL The time, relative to 0, when the starting location closes. start_close The duration of the loading at the starting location. [start_service] ANY-NUMERICAL • When missing: A duration of \(0\) time units is used The time, relative to 0, when the ending location opens. [end_open] ANY-NUMERICAL • When missing: The value of start_open is used The time, relative to 0, when the ending location closes. [end_close] ANY-NUMERICAL When missing: The value of start_close is used The duration of the loading at the ending location. [end_service] ANY-NUMERICAL · When missing: A duration in start_service is used. Column Type Description start_node_id ANY-INTEGER The node identifier of the start location, must match a vertex identifier in the Matrix SQL. The node identifier of the end location, must match a vertex identifier in the Matrix [end_node_id] ANY-INTEGER SQL

• When missing: end_node_id is used.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Matrix SQL

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, vehicle_seq, vehicle_id, stop_seq, stop_type, travel_time, arrival_time, wait_time, service_time, departure_time) UNION (summary row)

Column Туре

vehicle_seq INTEGER

Description

INTEGER Sequential value starting from 1. sea

Sequential value starting from 1 for current vehicles. The (n_{th}) vehicle in the solution.

Column Type

Description

		Current vehicle identifier.
vehicle_id	BIGINT	Sumary row has the total capacity violations.
		A capacity violation happens when overloading or underloading a vehicle.
		Sequential value starting from 1 for the stops made by the current vehicle. The (m_{th}) stop of the current vehicle.
stop_seq	INTEGEF	Sumary row has the total time windows violations.
		 A time window violation happens when arriving after the location has closed.
		Kind of stop location the vehicle is at
		 √(-1\): at the solution summary row
		• \(1\): Starting location
stop_type	INTEGER	• \(2\): Pickup location
		• \(3\): Delivery location
		 \(6\): Ending location and indicates the vehicle's summary row
		Pickup-Delivery order pair identifier
order_id	BIGINT	Value \(-1\): When no order is involved on the current stop location.
cargo	FLOAT	Cargo units of the vehicle when leaving the stop.
		Value \(-1\) on solution summary row.
		Travel time from previousstop_seq to current stop_seq.
travel_time	FLOAT	Summary has the total traveling time:
		• The sum of all the travel_time.
		Time spent waiting for current location to open.
arrival_time	FLOAT	• \(-1\): at the solution summary row.
		• \(0\): at the starting location.
		Time spent waiting for current location to open.
wait_time	FLOAT	Summary row has the total waiting time:
		• The sum of all the wait_time.
		Service duration at current location.
service_time	FLOAT	Summary row has the total service time:
		• The sum of all the service_time.
		• The time at which the vehicle denarts from the ston
		 (arrival) time + waith time + service) time()
departure time	FLOAT	The ending location has the total time used by the current vehicle.
		Summary row has the total solution time:
		 \(total\ traveling\ time + total\ waiting\ time + total\ service\ time\)

See Also

• Vehicle Routing Functions - Category

<u>Sample Data</u>

Indices and tables

- Index
- Search Page

pgr_pickDeliverEuclidean - Experimental

pgr_pickDeliverEuclidean - Pickup and delivery Vehicle Routing Problem

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.

- · Signature might change.
- · Functionality might change.
- pgTap tests might be missing.
- Might need c/c++ coding.
- May lack documentation.
- Documentation if any might need to be rewritten.
- · Documentation examples might need to be automatically generated.
- · Might need a lot of feedback from the comunity.
- Might depend on a proposed function of pgRouting
- · Might depend on a deprecated function of pgRouting

Availability

- Version 3.0.0
 - · Replaces pgr gsoc vrppdtw
 - New experimental function

Synopsis

Problem: Distribute and optimize the pickup-delivery pairs into a fleet of vehicles.

- Optimization problem is NP-hard.
- Pickup and Delivery:
 - capacitated
 - with time windows.
- · The vehicles
 - have (x, y) start and ending locations.
 - have a start and ending service times.
 - have opening and closing times for the start and ending locations.
- · An order is for doing a pickup and a a deliver.
 - has (x, y) pickup and delivery locations.
 - has opening and closing times for the pickup and delivery locations.
 - has a pickup and deliver service times.
- There is a customer where to deliver a pickup.
 - travel time between customers is distance / speed
 - pickup and delivery pair is done with the same vehicle.
 - A pickup is done before the delivery.

Characteristics

- · No multiple time windows for a location.
- · Less vehicle used is considered better.
- · Less total duration is better.
- · Less wait time is better.
- · Six different optional different initial solutions
 - the best solution found will be result

Signature

pgr_pickDeliverEuclidean(<u>Orders SQL</u>, <u>Vehicles SQL</u>, [options]) options: [factor, max_cycles, initial_sol] Returns set of (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo, travel_time, arrival_time, wait_time, service_time, departure_time)

Heturns set of (seq, vehicle_number, vehicle_id, stop, order_id, stop_type, cargo, travel_time, arrival_time, wait_time, service_time, departure_time Example:

•

Solve the following problem

Given the vehicles:

SELECT id, capacity, start_x, start_y, start_open, start_close FROM vehicles; id | capacity | start_x | start_y | start_open | start_close

	+-		+	+	+	
1	50	3	2	. 0	. 50	
2	50	3	2	0	50	
(2 row	/s)					

and the orders:

The query:

SELECT * FROM pgr_pickDeliverEuclidean(\$\$SELECT id, demand, p_x, p_y, p_open, p_close, p_service, d_x, d_y, d_open, d_close, d_service FROM orders\$\$, \$\$SELECT id, capacity, start_x, start_open, start_close
FROM vehicles\$\$);
seq | vehicle_seq | vehicle_id | stop_seq | stop_type | order_id | cargo | travel_time | arrival_time | wait_time | service_time | departure_time

+	+-		+	+	+	+	+	+		+	+	
1	1	1	1	1	-1	0	0	0	0	0	0	
2	1	1	2	2	3	30	1	1	1	3	5	
3	1	1	3	3	3	0 1.41	42135623	7 6.414	21356237	0	3 9.41421356237	
4	1	1	4	2	2	20 1.4	142135623	37 10.82	8427124	7 0	2 12.8284271247	
5	1	1	5	3	2	0	1 13.8	32842712	47	0	3 16.8284271247	
6	1	1	6	6	-1	0 1.41	42135623	7 18.24	26406871	0	0 18.2426406871	
7	2	2	1	1	-1	0	0	0	0	0	0	
8	2	2	2	2	1	10	1	1	1	3	5	
9	2	2	3	3	1	0 2.23	360679775	5 7.236	0679775	0	3 10.2360679775	
10	2	2	4	6	-1	0	2 12.	2360679	775	0	0 12.2360679775	
11	-2	0	0	-1	-1	-1 11.	47870866	46	-1	2	17 30.4787086646	
(11 rows))											

Parameters

Ceders SQL TEXT Variables SQL as described below. Variables SQL TEXT Variables SQL as described Poteward Poteward Description Interval NUMERIC I Tore dime multiplier. See Eactor handling max_vard NUMERIC I Tore dime multiplier. See Eactor handling max_vard NUMERIC I Maximum number of cycles to perform on the optimization. Minum . 1 One order per truck . 1 One order per truck . 1 One order per truck . 2 Push front order. . 2 Push back order. . 3 Push back order hat allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the ford . 4 Optimize Insert. . 5 Push back order that allows more orders to be inserted at the forder <th>Column</th> <th>Туре</th> <th>Desc</th> <th>ription</th>	Column	Туре	Desc	ription					
Yothicles SQL as backeribles Pointers Yother province Yother province Yother Provin	Orders SQL	TEXT	<u>Orders SQL</u> as	described below.					
Processes Description NUMERIC Total time multiplier. See Eactor handling max NUMERIC max NUMERIC max Maximum number of cycles to perform on the optimization. $Max Number of cycles to perform on the optimization. Max Number of cycles to perform on the optimization. Max - 0 fon order per truck A = 0 to the optimization of the used. - 0 fon order that allows more orders to be inserted at the face. A = 0 to the optimization of the used. - 0 fon order that allows more orders to be inserted at the face. A = 0 to the optimization of the used. - 0 font order that allows more orders to be inserted at the face. A = 0 to the optimization of the used. - 0 font order that allows more orders to be inserted at the face. A = 0 to the optimization of the used. - 0 font order that allows more orders to be inserted at the face. A = 0 to the used. - 0 font order that allows more orders to be inserted at the face. A = 0 to the used. - 0 font order that allows more orders to be inserted at the face. A = 0 to the used. - 0 font order that allows more orders to be inserted at the face. A = 0 to the used. - 0 font order that allows more orders. A = 0 to the used.$	Vehicles SQI	TEXT	<u>Vehicles SQL</u> a below.	s described					
NUMERIC 1 Total time multiplier: See Factor handling Interret Maximum number of cycles to perform on the optimization. Image: NUMERIC 1 Maximum number of cycles to perform on the optimization. Image: NUMERIC 1 Interret or cycles to perform on the optimization. Image: NUMERIC 1 Interret or cycles to perform other. Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 Image: NUMERIC 1 <td>Pick-Deliver option</td> <td>nal paran</td> <td>eters<mark>1</mark></td> <th></th>	Pick-Deliver option	nal paran	eters <mark>1</mark>						
NUMERIC 1 Travel time multiplier. See Eactor handling max_cycles INTEGER 10 Maximum number of cycles to perform on the optimization. hitial solution to be used. - 1 One order per truck - 1 One order per truck - 2 Push front order. - 2 Push back order. - 4 Optimize insert. - 4 Optimize insert. - 5 Push back order that allows more orders to be inserted at the front State Statement that set set set set set set set set set se	Column T	уре	Default	Description					
max_cycles INTEGER 10 Maximum number of cycles to perform on the optimization. hitial solution to be used. - 1 One order per truck - 2 Push front order. - 3 Push back order. - 3 Push back order. - 4 Optimize insert. - 3 Push back order that allows more orders to be inserted at the back - 8 Push front order that allows more orders to be inserted at the back Correstat S Push front order that allows more orders to be inserted at the back A SELEC Tratement that returns the following columns: - 8 Push front order that allows more orders to be inserted at the back Maximum Market A (c) Service] - 8 Push front order that allows more orders to be inserted at the back A SELEC Tratement that returns the following columns: - 8 Push front order that allows more orders to be inserted at the back Maximum Market A (c) Service] - 8 Push front order that allows more orders to be inserted at the back Maximum Market A (c) Service] - 8 Push front order the plok-delivery order pair. Market A NY-NUMERICAL Number of units in the order - 9 Push (c) NUMERICAL The time, relative to 0, when the pickup location copens. Pushee - NY-NUMERICAL The time, relative to 0, when the pickup location Queen ANY-NUMERICAL Queen ANY-NUMERICAL Auvenumerice - When missing: 0 time units are	factor NU	MERIC	1 Travel ti	me multiplier. See Factor handling					
Initial solution to be used. • 1 One order per truck • 2 Push front order. • 3 Push back order. • 4 Optimize insert. • 4 Optimize insert. • 5 Push back order that allows more orders to be inserted at the back • 5 Push back order that allows more orders to be inserted at the back • 7 Push back order that allows more orders to be inserted at the back • 7 Push back order that allows more orders to be inserted at the back • 8 Push front order that allows more orders to be inserted at the back • 8 Push Push Push Push Push Push Push Push	max_cycles INT	EGER	10 Maximu	m number of cycles to perform on the optimization.					
Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 Integer 4 Initial sol Integer 4 Integer 4 I			Initial sc	lution to be used.					
Initial work with the second secon			• 10	Dne order per truck					
Initial_sol INTEGER 4 A Push back order. A Optimize insert. A Optimize insert. S Push back order that allows more orders to be inserted at the back B Push back order that allows more orders to be inserted at the front Coders SOLT A SELECT statement that returns the following columns: Id, demand ANY-NOPEN, P. Close, [p_service.] A, d. y, d_open, d_close, [p_service.] Verre: Column Type Description Id ANY-INTEGER Identifier of the pick-delivery order pair. demand ANY-NUMERICAL Number of units in the order p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_okee ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service) ANY-NUMERICAL The duration of the loading at the pickup location. (g_service) ANY-NUMERICAL The time, relative to 0, when the delivery location. (g_service) ANY-NUMERICAL The duration of the unloading at the delivery location. (g_service) ANY-NUMERICAL The duration of the unloading at the delivery location. (g_service) ANY-NUMERICAL The duration			• 2	Push front order.					
Initial_Sol INIECEH 4 4 Optimize insert. 5 Push back order that allows more orders to be inserted at the back 6 Push front order that allows more orders to be inserted at the front Orders SQL[A SELECT statement that returns the following columns: id, demand p.x, p.y, p.open, p. close, [p_service.] (x, d.y, d_open, d_close, [d_service] Where: Column Type Description id ANY-INTEGER Identifier of the pick-delivery order pair. demand ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p.open ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service] ANY-NUMERICAL The duration of the loading at the pickup location. When missing: 0 time units are used d_open ANY-NUMERICAL The time, relative to 0, when the delivery location. (d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service] ANY-NUMERICAL The duration of the unloading at the del			• 3 F	Push back order.					
 s Push back order that allows more orders to be inserted at the back s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front s Push front order that allows more orders to be inserted at the front d ANY - NUMERICAL [p_service] ANY - NUMERICAL Number of the pick-delivery order pair. demand ANY - NUMERICAL The time, relative to 0, when the pickup location opens. p_otes ANY - NUMERICAL The time, relative to 0, when the pickup location closes. (p_service] ANY - NUMERICAL The time, relative to 0, when the pickup location. When missing: 0 time units are used d_open ANY - NUMERICAL The time, relative to 0, when the delivery location. When missing: 0 time units are used d_opens. (d_service] ANY - NUMERICAL The time, relative to 0, when the delivery location. When missing: 0 time units are used 	initiai_soi INI	EGER	• 4 (Optimize insert.					
			• 5 F ba	Push back order that allows more orders to be inserted at the ck					
Orders SQL 1 A SELECT statement that returns the following columns: id, demand P.X, P.Y, P.Open, p.close, [p.service.] (X, d.Y, d.open, d.close, [d.service.] (Manual Martine Martine Martine Martine Martine Martine Martine Martine Martine Martine (X, d.Y, NUMERICAL The time, relative to 0, when the pickup location closes. (g.service) ANY-NUMERICAL (d.open) ANY-NUMERICAL The duration of the loading at the pickup location. (d.open ANY-NUMERICAL (d.see, ANY-NUMERICAL The duration of the unloading at the delivery location. (d.see, ANY-NUMERICAL The duration of the unloading at the delivery location. (d.see, ANY-NUMERICAL The duration of the unloading at the delivery location.<			• 6 F frc	6 Push front order that allows more orders to be inserted at the front					
A SELECT statement that returns the following columns: id, demand p_X, p_Y, p_open, p_close, [p_service,] d_X, d_Y, d_open, d_close, [c_service] Where: Column Type Description id ANY-INTEGER Identifier of the pick-delivery order pair. demand ANY-NUMERICAL Number of units in the order p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_slose ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service] ANY-NUMERICAL The duration of the loading at the pickup location. (g.geen ANY-NUMERICAL The time, relative to 0, when the delivery location (d_open ANY-NUMERICAL The time, relative to 0, when the delivery location (g.service] ANY-NUMERICAL The time, relative to 0, when the delivery location (g.service] ANY-NUMERICAL The duration of the unloading at the delivery location. (g.service] ANY-NUMERICAL The duration of the unloading at the delivery location. (g.service] ANY-NUMERICAL The duration of the unloading at the delivery location. (g.service] ANY-NUMERICAL The duration of the unloading at the delivery location.	Orders SQL								
id, demand p.X, p.Y, p. open, p. close, [p_service,] d_X, d_Y, d_open, d_close, [d_service] Where: Column Type Description id ANY-INTEGER Identifier of the pick-delivery order pair. demand ANY-NUMERICAL Number of units in the order p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes. [p_service] ANY-NUMERICAL The time, relative to 0, when the pickup location. . When missing: 0 time units are used d_open ANY-NUMERICAL The time, relative to 0, when the delivery location . When missing: 0 time units are used d_states ANY-NUMERICAL The time, relative to 0, when the delivery location . When missing: 0 time units are used d_states ANY-NUMERICAL The time, relative to 0, when the delivery location . When missing: 0 time units are used .	A SELECT st	ateme	nt that returns th	e following columns:					
Where: tolum Type Description Id ANY-INTEGER ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_open ANY-NUMERICAL The time, relative to 0, when the pickup location. p_obene ANY-NUMERICAL The time, relative to 0, when the pickup location. (p_service) ANY-NUMERICAL The duration of the loading at the pickup location. (genem) ANY-NUMERICAL The time, relative to 0, when the delivery location (genem) ANY-NUMERICAL The duration of the unloading at the delivery location. (genem) ANY-NUMERICAL The duration of the unloading at the delivery location. (genem) ANY-NUMERICAL The duration of the unloading at the delivery location. (genem) (hurp: (genem) (hurp:	id, demand p_x, p_y, p_o d_x, d_y, d_o	pen, p pen, d	_close, [p_servio _close, [d_servio	ce.] ce]					
Column Type Description id ANY-INTEGER Identifier of the pick-delivery order pair. idenand ANY-NUMERICAL Number of units in the order p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_close ANY-NUMERICAL The time, relative to 0, when the pickup location. p_service ANY-NUMERICAL The duration of the loading at the pickup location. of_open ANY-NUMERICAL The time, relative to 0, when the delivery location of_open ANY-NUMERICAL The time, relative to 0, when the delivery location of_open ANY-NUMERICAL The duration of the unloading at the delivery location. of_open ANY-NUMERICAL The duration of the unloading at the delivery location. of_oreror ANY-NUMERICAL The duration of the unloading at the delivery location. of_oreror ANY-NUMERICAL The duration of the unloading at the delivery location. of_oreror ANY-NUMERICAL The duration of the unloading at the delivery location. of_oreror ANY-NUMERICAL The duration of the unloading at the delivery location. of_oreror ANY-NUMERICAL The duration of the unloading at the delivery location. of_oreror ANY-NUMERICAL Any here is a second	Where:								
id ANY-INTEGER Identifier of the pick-delivery order pair. idemand ANY-NUMERICAL Number of units in the order p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service) ANY-NUMERICAL The duration of the loading at the pickup location. o_open ANY-NUMERICAL ANY-NUMERICAL The time, relative to 0, when the delivery location o_opens. ANY-NUMERICAL d_opens. ANY-NUMERICAL f_leservice ANY-NUMERICAL The duration of the unloading at the delivery location (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. . When missing: 0 time units are used Where: ANY-NITEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	Column	Ту	e	Description					
demand ANY-NUMERICAL Number of units in the order p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service) ANY-NUMERICAL The duration of the loading at the pickup location. • When missing: 0 time units are used d_open ANY-NUMERICAL The time, relative to 0, when the delivery location d_close ANY-NUMERICAL The time, relative to 0, when the delivery location (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. • When missing: 0 time units are used Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	id AN	Y-INTE	GER Identifi	er of the pick-delivery order pair.					
p_open ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service) ANY-NUMERICAL The duration of the loading at the pickup location. • When missing: 0 time units are used d_open ANY-NUMERICAL The time, relative to 0, when the delivery location d_close ANY-NUMERICAL The time, relative to 0, when the delivery location (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. • When missing: 0 time units are used Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	demand AN	Y-NUN	IERICAL Numbe	er of units in the order					
p_close ANY-NUMERICAL The time, relative to 0, when the pickup location closes. (p_service) ANY-NUMERICAL The duration of the loading at the pickup location. • When missing: 0 time units are used d_open ANY-NUMERICAL The time, relative to 0, when the delivery location d_close ANY-NUMERICAL The time, relative to 0, when the delivery location (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service) ANY-NUMERICAL The duration of the unloading at the delivery location. • When missing: 0 time units are used Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	p_open AN	Y-NUN	IERICAL The tin	ne, relative to 0, when the pickup location opens.					
[p_service] ANY-NUMERICAL The duration of the loading at the pickup location. d_open ANY-NUMERICAL The time, relative to 0, when the delivery location opens. d_close ANY-NUMERICAL The time, relative to 0, when the delivery location closes. d_close ANY-NUMERICAL The time, relative to 0, when the delivery location closes. [d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. [d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (Mhere: When missing: 0 time units are used SMALLINT, INTEGER. SMALLINT, INTEGER, BIGINT ANY-NUMERICAL: High and the delivery location.	p_close AN	Y-NUN	IERICAL The tin	ne, relative to 0, when the pickup location closes.					
d_open ANY-NUMERICAL The time, relative to 0, when the delivery location opens. d_close ANY-NUMERICAL The time, relative to 0, when the delivery location closes. [d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. [d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service] ANY-NUMERICAL When missing: 0 time units are used Where: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL: ANY-NUMERICAL:	[p_service] AN	Y-NUN	The du IERICAL • V	ration of the loading at the pickup location. When missing: 0 time units are used					
d_close ANY-NUMERICAL The time, relative to 0, when the delivery location [d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. (d_service] ANY-NUMERICAL When missing: 0 time units are used Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	d_open AN	Y-NUN	IERICAL The tin opens.	ne, relative to 0, when the delivery location					
[d_service] ANY-NUMERICAL The duration of the unloading at the delivery location. [d_service] ANY-NUMERICAL • When missing: 0 time units are used Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	d_close AN	Y-NUN	IERICAL The tin closes	ne, relative to 0, when the delivery location					
Where: ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	[d_service] AN	Y-NUN	The du IERICAL • V	ration of the unloading at the delivery location. Vhen missing: 0 time units are used					
ANY-INTEGER: SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:	Where:								
SMALLINT, INTEGER, BIGINT ANY-NUMERICAL:		:R·							
ANY-NUMERICAL:	SMALLIN	 T INTE	GER BIGINT						
		,⊑	, Diana1						
SMALLINT, INTEGER, BIGINT, REAL, FLOAT	ANY-NUMER								

Column	Туре	Description
p_x	ANY-NUMERICAL	- \(x\) value of the pick up location
р_у /	ANY-NUMERICAL	- \(y\) value of the pick up location
d_x /	ANY-NUMERICAL	\(x\) value of the delivery location
d_y /	ANY-NUMERICAL	\(y\) value of the delivery location
Where:		
ANY-NUM	IERICAL:	
SMAI	LINT, INTEGER, BIG	SINT, REAL, FLOAT
Vehicles SQL	1	
A SELEC	T statement that re	eturns the following columns:
d, capacit start_x, sta c end_x, e where:	y art_y, start_open, s nd_y, end_open, e	start_close [, start_service,] end_close, end_service]
Column	Туре	Description
id	ANY-NUMERIC	CAL Identifier of the vehicle.
capacity	ANY-NUMERIC	CAL Maiximum capacity units
start_open	ANY-NUMERIC	CAL The time, relative to 0, when the starting location opens.
start_close	ANY-NUMERIC	CAL The time, relative to 0, when the starting location closes.
		The duration of the loading at the starting location.
[start_servic	e] ANY-NUMERIC	 When missing: A duration of \(0\) time units is used.
[end_open]	ANY-NUMERIC	The time, relative to 0, when the ending location opens. CAL • When missing: The value of start_open is used
[end_close]	ANY-NUMERIC	The time, relative to 0, when the ending location closes. CAL • When missing: The value of start_close is used
fend servic	■1 ANY-NUMEBIC	The duration of the loading at the ending location.
[end_service		When missing: A duration in start_service is used.
Column	Туре	Description
start_x /	ANY-NUMERICAL	. \(x\) value of the starting location
start_y /	ANY-NUMERICAL	. \(y\) value of the starting location
		\(x\) value of the ending location
[end_x] /	ANY-NUMERICAL	 When missing: start_x is used.
[end_y] /	ANY-NUMERICAL	\(y\) value of the ending location
, ,		 When missing: start_y is used.
Nhere:		
ANY-NUM	IERICAL:	
ANY-NUN SMAI	IERICAL: LLINT, INTEGER, BIG	SINT, REAL, FLOAT
ANY-NUN SMAI Result column Returns set (seq, vehicl travel_tim UNION (supprocess)	IERICAL: LLINT, INTEGER, BIG of e_seq, vehicle_id, stop ne, arrival_time, wait_ti	SINT, REAL, FLOAT p_seq, slop_type, time, service_time, departure_time)
ANY-NUM SMAI Result column Returns set (seq, vehicl travel_tim UNION (summary re	IERICAL: LINT, INTEGER, BIG of e_seq, vehicle_id, stop e_arrival_time, wait_ti ow)	SINT, REAL, FLOAT :p_seq, stop_type, time, service_time, departure_time)

Column	Туре	Description
		Sequential value starting from 1 for current vehicles. The \(n {th}\) vehicle in the solution.
vehicle_seq	INTEGER	 Value \(-2\) indicates it is the summary row.
		Current vehicle identifier.
vehicle_id	BIGINT	Sumary row has the total capacity violations.
		 A capacity violation happens when overloading or underloading a vehicle.
		Sequential value starting from 1 for the stops made by the current vehicle. The\(m_{th}) stop of the current vehicle.
stop_seq	INTEGER	Sumary row has the total time windows violations.
		 A time window violation happens when arriving after the location has closed.
		Kind of stop location the vehicle is at
		• (-1)): at the solution summary row
stop_type	INTEGER	• ((1)): Starting location
		• ((2)): Pickup location
		• \(3\): Delivery location
		 (6): Ending location and indicates the vehicle's summary row
	DIOINT	Pickup-Delivery order pair identifier.
order_id	BIGINT	• Value \(-1\): When no order is involved on the current stop location.
	FLOAT	Cargo units of the vehicle when leaving the stop.
cargo		• Value \(-1\) on solution summary row.
		Travel time from previous stop_seq to current stop_seq.
travel_time	FLOAT	Summary has the total traveling time:
		• The sum of all the travel_time.
		Time spent waiting for current location to open.
arrival_time	FLOAT	• \(-1\): at the solution summary row.
		• \(0\): at the starting location.
		Time spent waiting for current location to open.
wait_time	FLOAT	Summary row has the total waiting time:
		• The sum of all the wait_time.
		Service duration at current location.
service_time	FLOAT	Summary row has the total service time:
		• The sum of all the service_time.
		The time at which the vehicle departs from the stop.
		 \(arrival_time + wait_time + service_time\).
departure_time	e FLOAT	• The ending location has the total time used by the current vehicle.
		Summary row has the total solution time:
		 \(total\ traveling\ time + total\ waiting\ time + total\ service\ time\)
Example		
<u>The ve</u>	hicles	
The or	iginal order	S
The or	ders	
 The au 	Jery	

This data example lc101 is from data published at https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

The vehicles¶

There are 25 vehciles in the problem all with the same characteristics.

CREATE TABLE v_lc101(id BIGINT NOT NULL primary key, capacity BIGINT DEFAULT 200, start_x FLOAT DEFAULT 200, start_y FLOAT DEFAULT 50, start_orpen INTEGER DEFAULT 1236); CREATE TABLE /* create 25 vehciles */ INSERT INTO v_lc101 (d) (SELECT * FROM generate_series(1, 25)); INSERT 0 25 The data comes in different rows for the pickup and the delivery of the same order.

CREATE table lc101 c CREATE table to10_c(id BIGINT not null primary key, > DOUBLE PRECISION, y DOUBLE PRECISION, demand INTEGER, open INTEGER, close INTEGER, service INTEGER, pindex BIGINT, dindex BIGINT

); CREATE TABLE /* the original data */ INSERT INTO lc101_c(

 INSERT INTO b:101 c(

 i.x.
 y. qemand. open. close. service. pindex. dindex) VALUES

 (1.4.5, 68, -10, 227, 780, 90, 6, 0),

 (3.42, 66, 10, 257, 780, 90, 6, 0),

 (5.44, 62, 68, 10, 727, 782, 90, 9, 0),

 (6.40, 69, 20, 621, 702, 225, 90, 5, 0),

 (7.40, 66, -10, 177, 225, 90, 5, 0),

 (8.38, 66, 20, 357, 410, 90, 8, 0),

 (11, 35, 68, 10, 448, 505, 90, 0, 10),

 (13, 22, 75, 30, 30, 92, 90, 0, 17),

 (14, 22, 85, 20, 652, 71, 90, 18, 0),

 (15, 20, 86, -10, 394, 428, 90, 19, 10,

 (15, 20, 86, -10, 394, 428, 90, 19, 10,

 (15, 21, 86, 20, 30, 144, 10, 30, 18, 10,

 (15, 21, 86, 20, 20, 142, 883, 90, 28, 0),

 (14, 22, 28, 52, -20, 112, 883, 90, 28, 0),

 (21, 30, 55, 10, 732, 77, 7, 0, 103),

 (24, 25, 50, 10, 338, 449, 90, 0, 27),

 (28, 22, 40, 163, 144, 90, 29, 0),

 (21, 30, 55, 10, 732, 77, 7, 0, 103),

 (24, 25, 50, 10, 338, 444, 90, 0, 39),

 (24, 25, 50, 10, 338, 444, 90, 0, 39),

 (24, 26, 50, 10, 338, 444, 90, 0, 39),

 (28, 20, 10, 1358, 444, 90, 0, 39),

 (28, 20, 10, 1358, 444, 90, 0, 39),

 (28, 20, 10, 1358, 444, 90, 0, 39),

 (28, 20, 10, 1358, 444, 90, 0, 39),

The orders¶

WITH deliveries AS (SELECT * FROM lc101_c WHERE dindex = 0) SELECT row_number() over() AS id, p.demand, pid as p_node_id, px AS p_x, py AS p_y, p.open AS p_open, p.close as p_close, p.service as p_service, did as d_node_id, dx AS d_x, dy AS d_y, d.open AS d_open, d.close as d_close, d.service as d_service INTO_clo10 FROM deliveries as d_JOIN lc101_c as p ON (d.pindex = p.id); SELECT 53 SELECT * FROM c_lo101 LIMIT 1; id | demand | p_node_id | p_x | p_y | p_open | p_close | p_service | d_node_id | d_x | d_y | d_open | d_close | d_service 1 | 10| 3 | 42 | 66 | 65 | 146 | 90 | 75 | 45 | 65 | 997 | 1068 | 90

The query¶

Showing only the relevant information to compare with the best solution information published orhttps://www.sintef.no/projectweb/top/pdptw/100-customers/

• The best solution found for Ic101 is a travel time: 828.94

• This implementation's travel time: 854.54

See Also

- Vehicle Routing Functions Category
- The queries use the Sample Data network.

Indices and tables

- Index
- Search Page

pgr_vrpOneDepot - Experimental

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

No documentation available

Availability

- Version 2.1.0
 - · New experimental function

TBD

- Description
- TBD
- Signatures
- TBD
- Parameters
- TBD
- Inner Queries
- TBD
- Result columns
 - TBD

BEGIN; BEGIN

SET client_min_messages TO NOTICE;

SET

SET SELECT * FROM pgr_vrpOneDepot('SELECT * FROM solomon_100_RC_101', 'SELECT * FROM vrp_vehicles', 'SELECT * FROM vrp_distance', *\.

1); oid | opos | vid | tarrival | tdepart

ROLLBACK ROLLBACK

Data

DROP TABLE IF EXISTS solomon_100_RC_101 cascade; CREATE TABLE solomon_100_RC_101 (id integer NOT NULL PRIMARY KEY, order_unit integer, open_time integer,

close time integer

service_time integer.

x float8 y float8

);

INSERT INTO solomon_100_RC_101 (id, x, y, order_unit, open_time, close_time, service_time) VALUES (1, 40.000000, 50.000000, 0, 0, 240, 0), (2, 25.000000, 85.000000, 20, 145, 175, 10), (3, 22.000000, 75.000000, 30, 50, 80, 10), (4, 22.000000, 85.000000, 10, 109, 139, 10), (5, 22.000000, 80.000000, 40, 141, 171, 10), (6, 20.000000, 80.000000, 40, 141, 171, 10), (6, 20.000000, 80.000000, 40, 141, 171, 10), (6, 20.000000, 80.000000, 20, 341, 171, 10), (8, 15.000000, 75.000000, 20, 57, 125, 10), (8, 15.000000, 75.000000, 20, 97, 125, 10), (9, 15.000000, 75.000000, 20, 97, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.00000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 20, 91, 121, 10), (10, 10.000000, 35.000000, 20, 91, 121, 10), (10, 10.000000, 20, 91, 121, 10), (10, 10.000000, 20, 91, 121, 10), (10, 10.00000000, 20, 91, 121, 10), (10, 10.0000000000, 20, 91, 121, 10), (10, 10.000000000000000

(10, 10.000000, 35.000000, 20, 91, 121, 10), (11, 10.000000, 40.000000, 30, 119, 149, 10);

DROP TABLE IF EXISTS vrp_vehicles cascade; CREATE TABLE vrp_vehicles (vehicle_id integer not null primary key,

capacity integer, case_no integer

);

INSERT INTO vrp_vehicles (vehicle_id, capacity, case_no) VALUES (1, 200, 5), (2, 200, 5); (3, 200, 5);

DROP TABLE IF EXISTS vrp_distance cascade; WITH the_matrix_info AS (SELECT A.id AS src_id, B.id AS dest_id, sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)) AS cost FROM solomon_100_rc_101 AS A, solomon_100_rc_101 AS B WHERE A.id != B.id

SELECT src_id, dest_id, cost, cost AS distance, cost AS traveltime INTO vrp_distance FROM the_matrix_info;

See Also

<u>https://en.wikipedia.org/wiki/Vehicle_routing_problem</u>

- Indices and tables
 - Index
 - Search Page

Introduction

Vehicle Routing Problems VRP are NP-hard optimization problem, it generalises the travelling salesman problem (TSP).

• The objective of the VRP is to minimize the total route cost.

· There are several variants of the VRP problem,

pgRouting does not try to implement all variants.

Characteristics

- Capacitated Vehicle Routing Problem CVRP where The vehicles have limited carrying capacity of the goods.
- Vehicle Routing Problem with Time Windows VRPTW where the locations have time windows within which the vehicle's visits must be made.
- Vehicle Routing Problem with Pickup and Delivery VRPPD where a number of goods need to be moved from certain pickup locations to other delivery locations.

- No multiple time windows for a location.
- · Less vehicle used is considered better.
- · Less total duration is better.
- · Less wait time is better.

Pick & Delivery¶

Problem: CVRPPDTW Capacitated Pick and Delivery Vehicle Routing problem with Time Windows

- Times are relative to 0
- The vehicles
 - have start and ending service duration times.
 - $\circ\;$ have opening and closing times for the start and ending locations.
 - have a capacity.
- · The orders
 - Have pick up and delivery locations.
 - · Have opening and closing times for the pickup and delivery locations.
 - $\circ~$ Have pickup and delivery duration service times.
 - have a demand request for moving goods from the pickup location to the delivery location.
- Time based calculations:
 - Travel time between customers is \(distance / speed\)
 - Pickup and delivery order pair is done by the same vehicle.
 - A pickup is done before the delivery.

Parameters¶

Pick & deliver

Used in pgr_pickDeliverEuclidean - Experimental

Column Type Description

Orders SQL TEXT Orders SQL as described below.

<u>Vehicles SQL</u> TEXT <u>Vehicles SQL</u> as described below.

Used in pgr_pickDeliver - Experimental

Column	Type	Description
oolullill	iype	Description

Orders SQL TEXT Orders SQL as described below.

- Vehicles SQL TEXT Vehicles SQL as described below.
- Matrix SQL TEXT Matrix SQL as described below.

Pick-Deliver optional parameters¶

Column	Туре	Default	Description
factor	NUMERIC	1	Travel time multiplier. See Factor handling
max_cycles	INTEGER	10	Maximum number of cycles to perform on the optimization.
			Initial solution to be used.
	INTEGER	NTEGER 4	1 One order per truck
			2 Push front order.
initial_sol			3 Push back order.
			4 Optimize insert.
			 5 Push back order that allows more orders to be inserted at the back
			6 Push front order that allows more orders to be inserted at the front
Inner Queries	1		

Orders SQL

Common columns for the orders SQL in both implementations:

Column	Туре	Description

id ANY-INTEGER Identifier of the pick-delivery order pair.

Description Column Туре

ANY-NUMERICAL Number of units in the order demand

ANY-NUMERICAL The time, relative to 0, when the pickup location opens. p_open

ANY-NUMERICAL The time, relative to 0, when the pickup location closes. p_close

The duration of the loading at the pickup location. $\ensuremath{\left[p_service \right]}\xspace ANY-NUMERICAL$ • When missing: 0 time units are used

The time, relative to 0, when the delivery location ANY-NUMERICAL opens. d_open

ANY-NUMERICAL The time, relative to 0, when the delivery location closes. d_close

The duration of the unloading at the delivery location. [d_service] ANY-NUMERICAL

• When missing: 0 time units are used

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

For pgr_pickDeliver - Experimental the pickup and delivery identifiers of the locations are needed:

Column Туре

Description

p_node_id ANY-INTEGER The node identifier of the pickup, must match a vertex identifier in the Matrix SQL.

d_node_id ANY-INTEGER The node identifier of the delivery, must match a vertex identifier in the Matrix SQL.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

For $pgr_pickDeliverEuclidean - Experimental the \((x, y)\) values of the locations are needed:$

Column	Туре	Description
p_x	ANY-NUMERICAL	\(x\) value of the pick up location
р_у	ANY-NUMERICAL	\(y\) value of the pick up location
d_x	ANY-NUMERICAL	\(x\) value of the delivery location
d_y	ANY-NUMERICAL	\(y\) value of the delivery location
Where:		
ANY-NUI	MERICAL:	
SMA	ALLINT, INTEGER, BIG	INT, REAL, FLOAT
Vehicles SQ	LI .	
Common	columns for the ve	hicles SQL in both implementations:
Colum	n Type	Description
id	ANY-NUMERIC	AL Identifier of the vehicle.
capacity	ANY-NUMERIC	AL Maiximum capacity units
start_open	ANY-NUMERIC	AL The time, relative to 0, when the starting location opens.
start_close	ANY-NUMERIC	AL The time, relative to 0, when the starting location closes.
		The duration of the loading at the starting location.
[start_serv	ice] ANY-NUMERIC	 When missing: A duration of \(0\) time units is used.

Column	Тур	e	Description
[end_open]	ANY-NUM	The time, relative to IERICAL • When missing:	0, when the ending location opens. The value of start_open is used
[end_close]	ANY-NUM	The time, relative to IERICAL • When missing:), when the ending location closes. The value of start_close is used
[end_service]	ANY-NUN	The duration of the lo IERICAL • When missing:	pading at the ending location. A duration in start_service is used.
For pgr_pic	kDeliver - E	xperimental the starting and e	nding identifiers of the locations are needed:
Column	Туре	1	Description
start_node_id	ANY-INTE	GER The node identifier of th	e start location, must match a vertex identifier in the <u>Matrix</u>
[end_node_id	i] ANY-INTE	The node identifier of th :GER ^{SQL} . • When missing: end	e end location, must match a vertex identifier in the <u>Matrix</u>
Where:			
ANY-INTEC	GER:		
SMALL	INT, INTEGE	R, BIGINT	v))) values of the locations are needed.
Column	Type	Description	
Column	туре	Description	
start_x Al	NY-NUMER	ICAL \(x\) value of the starting	location
start_y Al	NY-NUMER	(ICAL \(y\) value of the starting	location
[end_x] AI	NY-NUMEF	\(x\) value of the ending IICAL • When missing: star used.	location t_x is
		\(y\) value of the ending	location
[end_y] Al	NY-NUMER	 When missing: statused. 	t_y is
Where:			
ANY-NUME	ERICAL:		
SMALL	INT, INTEGE	R, BIGINT, REAL, FLOAT	
Set of (start_	_vid, end_vid, a	agg_cost)	
Column	Type	Description	
	our la		
start_vid Bl	gint ide	ntifier of the starting vertex.	
end_vid Bl	GINT Ide	ntifier of the ending vertex.	
agg_cost FL	.OAT Ag	gregate cost from start_vid to en	d_vid.
Returns set of (seq, vehicle_ travel_time UNION (summary row	seq, vehicle_ seq, vehicle_ a, arrival_time, w)	id, stop_seq, stop_type, wait_time, service_time, departure_	time)
Column	Туре		Description
seq	INTEGER	Sequential value starting from	n 1 .
vehicle_seq	INTEGER	Sequential value starting from	n 1 for current vehicles. The (n_{th}) vehicle in the solution.
		 value \(-2\) Indicates it 	is the sulfillery low.
vehicle id	BIGINT	Current vehicle identifier.Sumary row has the to:	tal capacity violations.

• A capacity violation happens when overloading or underloading a vehicle.

Column Type

Description

		 \(-1\): at the solution summary row \(1\): Starting leasting
ston type	INTEGER	• \(1\): Starting location
		 \(2\): Pickup location
		• \(3\): Delivery location
		$\circ \ \mbox{(6)}: Ending location and indicates the vehicle's summary row$
andan id	DICINIT	Pickup-Delivery order pair identifier.
order_id	BIGINT	- Value $\(-1\):$ When no order is involved on the current stop location.
		Cargo units of the vehicle when leaving the stop.
cargo	FLOAT	Value \(-1\) on solution summary row.
		Travel time from previous stop_seq to current stop_seq.
travel_time	FLOAT	Summary has the total traveling time:
		• The sum of all the travel_time.
		Time spent waiting for current location to open.
arrival_time	FLOAT	• \(-1\): at the solution summary row.
		• \(0\): at the starting location.
		Time spent waiting for current location to open.
wait_time	FLOAT	Summary row has the total waiting time:
		• The sum of all the wait_time.
		Service duration at current location.
service_time	FLOAT	Summary row has the total service time:
		• The sum of all the service_time.
		The time at which the vehicle departs from the stop.
		 \(arrival_time + wait_time + service_time\).
departure_tim	e FLOAT	• The ending location has the total time used by the current vehicle.
		Summary row has the total solution time:
		 \(total\ traveling\ time + total\ waiting\ time + total\ service\ time\)
Summary Row		
Column	Type	Description
Column	Type	Description
seq	INTEGER	Continues the sequence
vehicle_seq	INTEGER	Value \(-2\) indicates it is the summary row.
		total capacity violations:
vehicle_id	BIGINI	A capacity violation happens when overloading or underloading a vehicle.

 stop_seq
 INTEGER
 total time windows violations:

 A time window violation happens when arriving after the location has closed.

 stop_type
 INTEGER
 \(-1\)

 order_id
 BIGINT
 \(-1\)

 cargo
 FLOAT
 \(-1\)

 travel_time
 FLOAT
 \(-1\)

 ravel_time
 FLOAT
 \(-1\)

arrival_time FLOAT (-1)

Column Type

service time FLOAT

wait time

Description

total waiting time:

• The sum of all the wait_time.

total service time:

• The sum of all the service_time.

Summary row has the total solution time: departure time FLOAT

\(total\ traveling\ time + total\ waiting\ time + total\ service\ time\)

Handling Parameters

To define a problem, several considerations have to be done, to get consistent results. This section gives an insight of how parameters are to be considered.

- <u>Capacity and Demand Units Handling</u>
- Locations
- Time Handling
- Factor Handling

Capacity and Demand Units Handling

The capacity of a vehicle, can be measured in:

- Volume units like (m^3) .
- Area units like (m^2) (when no stacking is allowed).
- Weight units like \(kg\).
- Number of boxes that fit in the vehicle.
- Number of seats in the vehicle

The demand request of the pickup-deliver orders must use the same units as the units used in the vehicle'scapacity.

To handle problems like: 10 (equal dimension) boxes of apples and 5 kg of feathers that are to be transported (not packed in boxes).

• If the vehicle's capacity is measured in boxes, a conversion of kg of feathers to number of boxes is needed.

• If the vehicle's capacity is measured in kg, a conversion of box of apples to kg is needed.

Showing how the 2 possible conversions can be done

 $Let: - \ (f_boxes\): number of boxes needed for 1 kg of feathers. - \ (a_weight\): weight of 1 box of apples.$

Capacity Units	s apples	feathers
boxes	10	\(5 * f_boxes\)
kg	\(10 * a_weight\)	5

Locations¶

- When using pgr_pickDeliverEuclidean Experimental:
 - The vehicles have \((x, y)\) pairs for start and ending locations.
 - $\,\circ\,$ The orders Have $\backslash\!((x,\,y)\!\backslash)$ pairs for pickup and delivery locations.
- When using pgr_pickDeliver Experimental:
 - The vehicles have identifiers for the start and ending locations.
 - The orders have identifiers for the pickup and delivery locations.
 - All the identifiers are indices to the given matrix.

Time Handling

The times are relative to 0. All time units have to be converted to a0 reference and the same time units.

Suppose that a vehicle's driver starts the shift at 9:00 am and ends the shift at 4:30 pm and the service time duration is 10 minutes with 30 seconds.

Meaning of 0	time units	9:00 am	4:30 pm	10 min 30 secs
0:00 am	hours	9	16.5	\(10.5 / 60 = 0.175\)
0:00 am	minutes	\(9*60 = 54\)	\(16.5*60 = 990\)	10.5
9:00 am	hours	0	7.5	\(10.5 / 60 = 0.175\)
9:00 am	minutes	0	\(7.5*60 = 540\)	10.5

factor acts as a multiplier to convert from distance values to time units the matrix values or the euclidean values.

- · When the values are already in the desired time units
 - factor should be 1
 - When factor > 1 the travel times are faster
 - When factor < 1 the travel times are slower

For the pgr pickDeliverEuclidean - Experimental:

Working with time units in seconds, and x/y in lat/lon: Factor: would depend on the location of the points and on the average velocity say 25m/s is the velocity.

Latitude	Conversion	Factor
45	1 longitude degree is (78846.81m)/(25m/s)	3153 s
0	1 longitude degree is (111319.46	4452 s

0 1 longitude degree is (111319.46 4452 s m)/(25m/s) 4452 s

For the pgr_pickDeliver - Experimental:

Given \(v = d / t\) therefore \(t = d / v\) And the factor becomes \(1 / v\)

- Where: v:
- Velocity d: Distance
- t:

Time

For the following equivalences \(10m/s \approx 600m/min \approx 36 km/hr\)

Working with time units in seconds and the matrix been in meters: For a 1000m lenght value on the matrix:

Units	velocity	Conversion	Factor	Result
seconds	\(10 m/s\)	\(\frac{1}{10m/s}\)	\(0.1s/m\)	\(1000m * 0.1s/m = 100s\)
minutes	\(600 m/min\)	\(\frac{1}{600m/min}\)	\(0.0016min/m\)	\(1000m * 0.0016min/m = 1.6min\)

See Also¶

- https://en.wikipedia.org/wiki/Vehicle_routing_problem
- The queries use the <u>Sample Data</u> network.

Indices and tables

- Index
- Search Page

withPoints - Category

When points are added to the graph.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.
- with Points Family of functions Functions based on Dijkstra algorithm.
- From the TRSP Family of functions:
 - pgr_trsp_withPoints Proposed Vertex/Point routing with restrictions.
 - pgr_trspVia_withPoints Proposed Via Vertex/point routing with restrictions.

Introduction

The with points category modifies the graph on the fly by adding points on edges as required by the Points SQL query.

The functions within this category give the ability to process between arbitrary points located outside the original graph.

This category of functions was thought for routing vehicles, but might as well work for some other application not involving vehicles.

When given a point identifier pid that its being mapped to an edge with an identifieredge, id, with a fraction from the source to the target along the edgeraction and some additional information about which side of the edge the point is on side, then processing from arbitrary points can be done on fixed networks.

All this functions consider as many traits from the "real world" as possible:

- Kind of graph:
 - directed graph
 - undirected graph
- Arriving at the point:
 - Compulsory arrival on the side of the segment where the point is located.
 - On either side of the segment.
- · Countries with:
 - Right side driving
 - Left side driving
- · Some points are:
 - $\circ~$ Permanent: for example the set of points of clients stored in a table in the data base.
 - The graph has been modified to permanently have those points as vertices.
 - There is a table on the database that describes the points
 - Temporal: for example points given through a web application
 - Use pgr_findCloseEdges in the Points SQL.
- The numbering of the points are handled with negative sign.
 - $\circ\;$ This sign change is to avoid confusion when there is a vertex with the same identifier as the point identifier.
 - Original point identifiers are to be positive.
 - Transformation to negative is done internally.
 - Interpretation of the sign on the node information of the output
 - positive sign is a vertex of the original graph
 - negative sign is a point of the Points SQL

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Points SQL	TEXT	Points SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path. Negative value is for point's identifier.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices. Negative values are for point's identifiers.
end vid	BIGINT	Identifier of the ending vertex of the path. Negative value is for point's identifier.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices. Negative values are for point's identifiers.

Optional parameters

Parameter	Туре	Default	Description
driving_side	CHAR	r	 Value in [r, I] indicating if the driving side is: r for right driving side I for left driving side Any other value will be considered asr
details	BOOLEAN	V false	When true the results will include the points that are in the path.When false the results will not include the points that are in the path.
Inner Queries			

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER	Identifier of the edge.	
source	ANY-INTEGER	Identifier of the first er	nd point vertex of the edge.
target	ANY-INTEGER	Identifier of the secon	d end point vertex of the edge.

Co	lumn	Туре	De	efault Description			
cost		ANY-NUMERICAL		Weight of the edge (source, target)			
0031		ANT NOMENIOAE		Toight of the edge (source, target)			
			1	Weight of the edge (target, source)			
reverse_cost		ANT-NOMERICAL	-1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph. 			
	D.						
SMALLIN	IT INTEGER BI	GINT					
ANY-NUMER	RICAL:						
SMALLIN	IT, INTEGER, BI	GINT, REAL, FLOAT					
Points SQL	, ,						
Param	eter	Туре	Default	Description			
				Identifier of the point.			
				 Use with positive value, as internally will be converted to negative value 			
pid	AN	IY-INTEGER	value	If column is present, it can not be NULL.			
				• If column is not present, a sequential negative value will be given			
				automatically.			
edge_id	AN	IY-INTEGER		Identifier of the "closest" edge to the point.			
				Value in 10.1, that indicates the relative position from the first and point of the			
fraction	AN	IY-NUMERICAL		edge.			
				Value in [b, r NUU] indication if the point is:			
				In the right r			
side	CH	AR	b	• In the left .			
				In both sides b, NULL			
Where:	-D.						
SMALLIN	IT INTEGER BI	CINT					
ANY-NUMER							
SMALLIN	IT. INTEGER. BI	GINT. REAL. FLOAT					
Combinations SQ	L¶						
	-						
Parameter	Туре		Desc	ription			
	ANY-	Identifier of the den	arturo vortov				
source	INTEGER		arture vertex.				
target	ANY-	Identifier of the arriv	al vertex				
	INTEGER						
Where:							
ANY-INTEGE	ANY-INTEGER:						
SMALLINT, INTEGER, BIGINT							
Advanced documentation1							
Contents							
About points							
Driving side							
Right driving side							
Left driving side							
Driving side does not matter							
Creating temporary vertices							
<u>Un a right hand side driving network</u>							
• <u>U</u>	Un a lett hand side driving network						
• <u>•</u>		as accontinuited					

About points¶

For this section the following city (see <u>Sample Data</u>) some interesing points such as restaurant, supermarket, post office, etc. will be used as example.

_images/Fig1-originalData.png					

• The graph is directed

- Red arrows show the (source, target) of the edge on the edge table
- Blue arrows show the (target, source) of the edge on the edge table
- Each point location shows where it is located with relation of the edge(source, target)
 - On the right for points 2 and 4.
 - $\circ~$ On the left for points 1, 3 and 5.
 - On both sides for point 6.

The representation on the data base follows the $\underline{\mbox{Points SQL}}$ description, and for this example:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest; pid | edge_id | fraction | side

 1
 1
 0.4
 1

 2
 15
 0.4
 r

 3
 12
 0.6
 1

 4
 6
 0.3
 r

 5
 5
 0.8
 1

 6
 4
 0.7
 b

 (6 rows)
 0
 0
 0
 0

Driving side¶

In the the folowwing images:

- The squared vertices are the temporary vertices,
- The temporary vertices are added according to the driving side,
- visually showing the differences on how depending on the driving side the data is interpreted.

Right driving side¶

_images/rightDrivingSide.png

- Point 1 located on edge (6, 5)
- Point 2 located on edge (16, 17)
- Point 3 located on edge (8, 12)
- Point 4 located on edge (1, 3)
- Point 5 located on edge (10, 11)
- Point 6 located on edges (6, 7) and (7, 6)

Left driving side¶
- Point 1 located on edge (5, 6)
- Point 2 located on edge (17, 16)
- Point 3 located on edge (8, 12)
- Point 4 located on edge (3, 1)
- Point 5 located on edge (10, 11)
- Point 6 located on edges (6, 7) and (7, 6)

Driving side does not matter

- · Like having all points to be considered in both sidesb
- Prefered usage on undirected graphs
- On the <u>TRSP Family of functions</u> this option is not valid

_images/noMatterDrivingSide.png

- Point 1 located on edge (5, 6) and (6, 5)
- Point 2 located on edge (17, 16)``and ``16, 17
- Point 3 located on edge (8, 12)
- Point 4 located on edge (3, 1) and (1, 3)
- Point 5 located on edge (10, 11)
- Point 6 located on edges (6, 7) and (7, 6)

Creating temporary vertices

This section will demonstrate how a temporary vertex is created internally on the graph.

Problem

For edge:

insert point:

On a right hand side driving network

Right driving side

- Arrival to point -2 can be achived only via vertex 16.
- Does not affects edge (17, 16), therefore the edge is kept.
- It only affects the edge (16, 17), therefore the edge is removed.
- Create two new edges:
 - Edge (16, -2) with cost 0.4 (original cost * fraction == \(1 * 0.4 \))
 - Edge (-2, 17) with cost 0.6 (the remaing cost)
- The total cost of the additional edges is equal to the original cost.
- If more points are on the same edge, the process is repeated recursevly.

On a left hand side driving network

Left driving side

_images/leftDrivingSide.png

- Arrival to point -2 can be achived only via vertex 17.
- Does not affects edge (16, 17), therefore the edge is kept.
- It only affects the edge (17, 16), therefore the edge is removed.
- Create two new edges:
 - $\circ~$ Work with the original edge (16, 17) as the fraction is a fraction of the original:
 - Edge (16, -2) with cost 0.4 (original cost * fraction ==\(1 * 0.4\))
 - Edge (-2, 17) with cost 0.6 (the remaing cost)
 - If more points are on the same edge, the process is repeated recursevly.
 - Flip the Edges and add them to the graph:
 - Edge (17, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.
 - Edge (-2, 16) becomes (17, -2) with cost 0.6 and is added to the graph.
- The total cost of the additional edges is equal to the original cost.

When driving side does not matter ¶

- Arrival to point -2 can be achived via vertices 16 or 17.
- · Affects the edges (16, 17) and (17, 16), therefore the edges are removed.

Create four new edges:

- $\circ~$ Work with the original edge (16, 17) as the fraction is a fraction of the original:
 - Edge (16, -2) with cost 0.4 (original cost * fraction ==\(1 * 0.4\))
 - Edge (-2, 17) with cost 0.6 (the remaing cost)
 - If more points are on the same edge, the process is repeated recursevly.
- Flip the Edges and add all the edges to the graph:
 - Edge (16, -2) is added to the graph.
 - Edge (-2, 17) is added to the graph.
 - Edge (16, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.
 - Edge (-2, 17) becomes (17, -2) with cost 0.6 and is added to the graph.

See Also

• withPoints - Family of functions

Indices and tables

- Index
- Search Page

See Also

Indices and tables

- Index
- Search Page

All Pairs - Family of Functions

- pgr_floydWarshall Floyd-Warshall's algorithm.
- pgr_johnson Johnson's algorithm

A* - Family of functions

- pgr_aStar A* algorithm for the shortest path.
- pgr_aStarCost Get the aggregate cost of the shortest paths.
- pgr_aStarCostMatrix Get the cost matrix of the shortest paths.

Bidirectional A* - Family of functions

- pgr_bdAstar Bidirectional A* algorithm for obtaining paths.
- pgr_bdAstarCost Bidirectional A* algorithm to calculate the cost of the paths.
- pgr_bdAstarCostMatrix Bidirectional A* algorithm to calculate a cost matrix of paths.

Bidirectional Dijkstra - Family of functions

- pgr_bdDijkstra Bidirectional Dijkstra algorithm for the shortest paths.
- pgr_bdDijkstraCost Bidirectional Dijkstra to calculate the cost of the shortest paths
- pgr_bdDijkstraCostMatrix Bidirectional Dijkstra algorithm to create a matrix of costs of the shortest paths.

Components - Family of functions

- pgr_connectedComponents Connected components of an undirected graph.
- pgr_strongComponents Strongly connected components of a directed graph.
- pgr_biconnectedComponents Biconnected components of an undirected graph.
- pgr_articulationPoints Articulation points of an undirected graph.
- pgr_bridges Bridges of an undirected graph.

Contraction - Family of functions

pgr_contraction

Dijkstra - Family of functions

• pgr_dijkstra - Dijkstra's algorithm for the shortest paths.

- pgr_dijkstraCost Get the aggregate cost of the shortest paths.
- pgr_dijkstraCostMatrix Use pgr_dijkstra to create a costs matrix.
- pgr_drivingDistance Use pgr_dijkstra to calculate catchament information.
- pgr_KSP Use Yen algorithm with pgr_dijkstra to get the K shortest paths.

Flow - Family of functions

- pgr_maxFlow Only the Max flow calculation using Push and Relabel algorithm.
- pgr_boykovKolmogorov Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Push and relabel algorithm with details of flow on edges.
- Applications
 - pgr_edgeDisjointPaths Calculates edge disjoint paths between two groups of vertices.

• pgr_maxCardinalityMatch - Calculates a maximum cardinality matching in a graph.

Kruskal - Family of functions

- pgr_kruskal
- pgr_kruskalBFS
- pgr_kruskalDD
- pgr_kruskalDFS

Prim - Family of functions

- pgr_prim
- pgr_primBFS
- pgr_primDD
- pgr_primDFS

Reference

- pgr_version
- pgr full version

Topology - Family of Functions

The following functions modify the database directly therefore the user must have special permissions given by the administrators to use them.

- pgr_createTopology create a topology based on the geometry.
- pgr_createVerticesTable reconstruct the vertices table based on the source and target information.
- pgr_analyzeGraph to analyze the edges and vertices of the edge table.
- pgr_analyzeOneWay to analyze directionality of the edges.
- pgr_nodeNetwork to create nodes to a not noded edge table.

Traveling Sales Person - Family of functions

- pgr_TSP When input is given as matrix cell information.
- pgr_TSPeuclidean When input are coordinates.
- pgr_trsp Proposed Turn Restriction Shortest Path (TRSP)

Functions by categories

Cost - Category

- pgr_aStarCost
- pgr bdAstarCost
- pgr dijkstraCost
- pgr_bdDijkstraCost
- pgr_dijkstraNearCost Proposed

Cost Matrix - Category

- pgr_aStarCostMatrix
- pgr_dijkstraCostMatrix
- pgr_bdAstarCostMatrix
- pgr_bdDijkstraCostMatrix

Driving Distance - Category

- pgr_drivingDistance Driving Distance based on Dijkstra's algorithm
- pgr_primDD Driving Distance based on Prim's algorithm
- pgr_kruskalDD Driving Distance based on Kruskal's algorithm
- Post pocessing
- pgr_alphaShape Alpha shape computation

K shortest paths - Category

• pgr_KSP - Yen's algorithm based on pgr_dijkstra

Spanning Tree - Category

- Kruskal Family of functions
- · Prim Family of functions

BFS - Category

- pgr_kruskalBFS
- pgr_primBFS

DFS - Category

- pgr_kruskalDFS
- pgr_primDFS

Available Functions but not official pgRouting functions

- Proposed Functions
- Experimental Functions

Proposed Functions

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Families

Dijkstra - Family of functions

- pgr_dijkstraVia Proposed Get a route of a seuence of vertices.
- pgr_dijkstraNear Proposed Get the route to the nearest vertex
- pgr dijkstraNearCost Proposed Get the cost to the nearest vertex.

withPoints - Family of functions

- pgr_withPoints Proposed Route from/to points anywhere on the graph.
- pgr_withPointsCost Proposed Costs of the shortest paths.
- pgr_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr_withPointsKSP Proposed K shortest paths.
- pgr_withPointsDD Proposed Driving distance.
- pgr_withPointsVia Proposed Via routing

TRSP - Family of functions

- pgr_trsp Proposed Vertex Vertex routing with restrictions.
- pgr trspVia Proposed Via Vertices routing with restrictions.
- pgr trsp withPoints Proposed Vertex/Point routing with restrictions.
- pgr_trspVia_withPoints Proposed Via Vertex/point routing with restrictions.

TRSP - Family of functions

When points are also given as input:

Proposed

Warning

Proposed functions for next mayor release.

• They are not officially in the current release.

- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.
- pgr_trsp Proposed Vertex Vertex routing with restrictions.
- pgr_trspVia Proposed Via Vertices routing with restrictions.
- pgr_trsp_withPoints Proposed Vertex/Point routing with restrictions.
- pgr_trspVia_withPoints Proposed Via Vertex/point routing with restrictions.

Warning

Read the Migration guide about how to migrate from the deprecated TRSP functionality to the new signatures or replacement functions.

Experimental

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting
- pgr_turnRestrictedPath Experimental Routing with restrictions.

pgr_trsp - Proposed¶

pgr_trsp - routing vertices with restrictions.

Boost Graph Inside

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Availability

- Version 3.4.0
 - New proposed signatures
 - pgr_trsp (<u>One to One</u>)
 - pgr_trsp (One to Many)
 - pgr_trsp (Many to One)
 - pgr_trsp (<u>Many to Many</u>)
 - pgr_trsp (Combinations)
 - · Deprecated signatures
 - pgr_trsp(text,integer,integer,boolean,boolean,text)
 - pgr_trsp(text,integer,float,integer,float,boolean,boolean,text)
 - pgr_trspViaVertices(text,anyarray,boolean,boolean,text)
 - pgr_trspviaedges(text,integer[],double precision[],boolean,boolean,text)
- Version 2.1.0
- New prototypes
 - pgr_trspViaVertices
 - pgr_trspViaEdges

• Version 2.0.0

Official function

Description

Turn restricted shortest path (TRSP) is an algorithm that receives turn restrictions in form of a query like those found in real world navigable road networks.

The main characteristics are:

It does no guarantee the shortest path as it might contain restriction paths.

- Execute a Dijkstra.
- · If the solution passes thru a restriction then.
 - Execute the TRSP algorithm with restrictions.

Signatures¶ Proposed

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vid, [directed])
pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vids, [directed])
pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vid, [directed])
pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vids, [directed])
pgr_trsp(Edges SQL, Restrictions SQL, Combinations SQL, [directed])
Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
OB EMPTY SET

One to One

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vid, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on an undirected graph.

				- 1				
21	21	61	101	10	-11	01	1	
41	- 1	01	101	101		01		
(2 rows	s)							
(= .0	,							

One to Many

pgr_trsp(Edges SQL, Restrictions SQL, start vid, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{10, 1\}\) on an undirected graph.

SELEC	JI T FRU	JIVI pgr_	_trsp(
\$\$SE	LECT id	, source	e, targ	et, co	ost FF	IOM e	dges\$\$,
\$\$SE	LECT *	FROM I	restric	tions	\$\$,			
6, ARRAY[10, 1],								
false)	;							
seq p	oath_sec	start_	_vid	end_	vid n	ode	edge c	ost agg_cost
+	+-		+	+	+	+-	+	
1	1	6	1	6	4	1	0	
2	2	6	- 1 j	7	10	1	1	
3	3	6	- 1 j	8	12	1 j	2	
		<u> </u>		401			~	

91	0	0	1 0 12 1	~
4	4	6	1 12 11 1	3
5	5	6	1 11 8 1	4
6	6	6	1 7 7 1	5
7	7	6	1 3 6 1	6
8	8	6	1 1 -1 0	7
9	1	6	10 6 4 1	0
10	2	6	10 7 8 1	1
11	3	6	10 11 5 1	2
12	4	6	10 10 -1 0	3
(12 row	rs)			

Many to One

pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vid, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\ 0, 1))$ to vertex (8) on a directed graph.

SELECT * FROM pgr_trsp(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY(6, 1), 8); seq [path_seq] start_vid | end_vid | node | edge | cost | agg_cost

00416		4 0101.1						
+	+-		+	+	+-	+	+	
1	1	1	8	1	6	1	0	
2	2	1	8	3	7	1	1	
3	3	1	8	7	10	101	2	
4	4	1	8	8	-1	0	103	
5	1	6	8	6	4	1	0	
6	2	6	8	7	10	1	1	
7	3	6	8	8	-1	0	2	
(7 rows	5)							

Many to Many

pgr_trsp(Edges SQL, Restrictions SQL, start vids, end vids, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 1\}))$ to vertices $((\{10, 8\}))$ on an undirected graph.

SELECT * FROM pgr_trsp(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY[6, 1], ARRAY[10, 8], false);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

```
        1|
        1|
        1|
        8|
        1|
        6|
        1|
        0

        2|
        2|
        1|
        8|
        3|
        7|
        1|
        1
```

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	3 4 5 6 7 8 1 2 3 4 5 1 2 3	1 1 1 1 1 1 1 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 3 4 5 6 7 0 1 2 3 4 0 1 2 1
17 18 (18 row	1 2 s)	6 6	10 6 2 1 10 10 -1 0	0 1

Combinations

pgr_trsp(Edges SQL, Restrictions SQL, Combinations SQL, [directed])

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an undirected graph.

+	+-		+++++++
1	1	1	8 1 6 1 0
2	2	1	8 3 7 1 1
3	3	1	8 7 10 101 2
4	4	1	8 8 -1 0 103
5	1	6	1 6 4 1 0
6	2	6	1 7 10 1 1
7	3	6	1 8 12 1 2
8	4	6	1 12 13 1 3
9	5	6	1 17 15 1 4
10	6	6	1 16 9 1 5
11	7	6	1 11 8 1 6
12	8	6	1 7 7 1 7
13	9	6	1 3 6 1 8
14	10	6	1 1 -1 0 9
15	1	6	8 6 4 1 0
16	2	6	8 7 10 1 1
17	3	6	8 8 -1 0 2
18	1	6	10 6 4 1 0
19	2	6	10 7 10 1 1
20	3	6	10 8 12 1 2
21	4	6	10 12 13 1 3
22	5	6	10 17 15 1 4
23	6	6	10 16 16 1 5
24	7	6	10 15 3 1 6
25	8	6	10 10 -1 0 7
(25 rov	vs)		

Parameters 1

Column	Туре	Descrip	tion
Edges SQL	TEXT	SQL query as described.	
Restrictions SQL	TEXT	SQL query as described.	
Combinations SQL	TEXT	Combinations SQL as des	cribed below
start vid	ANY-INTEGER	Identifier of the departure v	vertex.
start vids	ARRAY [ANY-INTEGER]	Array of identifiers of destin	nation vertices.
end vid	ANY-INTEGER	Identifier of the departure v	vertex.
end vids	ARRAY [ANY-INTEGER]	Array of identifiers of destin	nation vertices.
Where:			
ANY-INTEGER:			
SMALLINT, INTI	EGER, BIGINT		
Optional parameters			
Column Type	Default	Description	
	When true the	ne graph is considered Direc	cted
directed BOOLEAN	• When false t Undirected.	he graph is considered as	
Inner Queries			
Edges SQL			
Column	Τ	no Dofault	
Column	l yr	Derault	
id	ANY-INTEGEF	1	Identifier of the edge.

Description

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL	-	Weight of the edge (source, target)
			Weight of the edge (target, source)
reverse_cost	ANY-NUMERICAL	1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INT	EGER, BIGINT		
ANY-NUMERICAL	:		
SMALLINT, INT	EGER, BIGINT, REAL, FLOAT		
Restrictions SQL			
Column	Тур	e	Description
path	ARRAY [ANY-INTEGER]		Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays that have a NULL element will raise an exception.
Cost	ANY-NUMERICAL		Cost of taking the forbidden path.
Where:			
ANY-INTEGER:			
SMALLINT, INT	EGER, BIGINT		
ANY-NUMERICAL	.:		
SMALLINT, INT	EGER, BIGINT, REAL, FLOAT		
Combinations SQL			
Parameter	Туре	Description	
source ANY	Identifier of the de	eparture vertex.	
target INT	/- Identifier of the ar	rival vertex.	
Where:			
ANY-INTEGER:			
SMALLINT, INT	EGER, BIGINT		
Result columns			
Returns set of (seq,	path_id, path_seq, start_vid, end_v	id, node, edge, cost, agg_co	st)
Column	Туре		Description
seq	INTEGER	Sequential value start	ing from 1.
	INTEGED	Path identifier.	
patn_id	INTEGER	Has value 1 for t	the first of a path fromstart_vid to end_vid.
path_seq	INTEGER	Relative position in the	e path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the startin	g vertex.
end_vid	BIGINT	Identifier of the ending	g vertex.
node	BIGINT	Identifier of the node i	in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge up ath.	used to go fromnode to the next node in the path sequence1 for the last node of the
cost	FLOAT	Cost to traverse from	node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from s	tart_vid to node.
See Also			

TRSP - Family of functions

- Deprecated documentation
- Migration guide
- <u>Sample Data</u>

Indices and tables

- Index
- Search Page
- <u>ocuron rug</u>

pgr_trspVia - Proposed

pgr_trspVia Route that goes through a list of vertices with restrictions.

Boost Graph Inside

Warning

Proposed functions for next mayor release.

- · They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Availability

• Version 3.4.0

- New proposed function:
 - pgr_trspVia (<u>One Via</u>)

Description

Given a list of vertices and a graph, this function is equivalent to finding the shortest path between(vertex_i) and \(vertex_{i+1}\) for all \(i < size_of(via\;vertices)\) trying not to use restricted paths. The paths represents the sections of the route.

The general algorithm is as follows:

- Execute a pgr_dijkstraVia Proposed.
- · For the set of sub paths of the solution that pass through a restriction then
 - Execute the TRSP algorithm with restrictions for the paths.
 - $\circ~$ NOTE when this is done, U_turn_on_edge flag is ignored.

Signatures

One Via

pgr_trspVia(<u>Edges SQL, Restrictions SQL</u>, via vertices, [options]) options: [directed, strict, U_turn_on_edge]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost) OR EMPTY SET

Example:

Find the route that visits the vertices \(\{5, 1, 8\}\) in that order on an directed graph.

SELECT * FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$,

\$\$SE ARR/ seq p	AY[5, 1	path, cos , 8]); path_s	st FROI seq sta	M restriction	ns\$\$, d_vid node	edge	cost agg_cos	t route_agg_cost
1	1	1	5	1 5	1 1	0	0	
2	1	2	5	1 6	4 1	1	1	
3	1	3	5	1 7	10 1	2	2	
4	1	4	5	1 8	12 1	3	3	
5	1	5	5	1 12	13 1	4	4	
6	1	6	5	1 17	15 1	5	5	
7	1 İ	7	5	1 i 16 i	9 11	61	6	
							-	

Parameters 9

Parameter	Туре	Description
Edges SQL	TEXT	Edges SQL query as described.
Restrictions SQL	TEXT	Restrictions SQL query as described.
via vertices	ARRAY[ANY-INTEGER]	Array of ordered vertices identifiers that are going to be visited.

Description

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Optional parameters

Columr	туре	Default	Description
			• When true the graph is considered Directed
directed BOOLEAN true		N true	When false the graph is considered as Undirected.

Via optional parameters

Parameter	Type Default	Description
strict	BOOLEAN false	 When true if a path is missing stops and returns EMPTY SET When false ignores missing paths returning all paths found
U_turn_on_edge	BOOLEAN true	When true departing from a visited vertex will not try to avoid
Inner Queries		
Edges SQL		

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGER, BIG	INT		
ANY-NUMERICAL:			
SMALLINT, INTEGER, BIG	INT, REAL, FLOAT		
Restrictions SQL			
Column	Туре		Description
path ARRAY	[ANY-INTEGER]		Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays that have a NULL element will raise an exception.

Cost of taking the forbidden path.

Cost ANY-NUMERICAL

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Identifier of a path. Has value1 for the first path.

Column	Туре	Description
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex of the path.
end_vid	BIGINT	Identifier of the ending vertex of the path.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
		Identifier of the edge used to go fromnode to the next node in the path sequence.
edge	BIGINT	 -1 for the last node of the path.
		-2 for the last node of the route.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.
route_agg_cost	FLOAT	Total cost from start_vid of seq = 1 to end_vid of the current seq.

Additional Examples

• The main query

- Aggregate cost of the third path.
- Route's aggregate cost of the route at the end of the third path.
- Nodes visited in the route.
- The aggregate costs of the route when the visited vertices are reached.
- Status of "passes in front" or "visits" of the nodes.
- Simulation of how algorithm works.

All this examples are about the route that visits the vertices $({5, 7, 1, 8, 15})$ in that order on a directed graph.

The main query¶

SELECT * FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY(5, 7, 1, 8, 15)); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

	+-	+		+++++++	- + +
1	1	1	5	7 5 1 1 0	1 0
2	1	2	5	7 6 4 1 1	1
3	1	3	5	7 7 -1 0 2	2
4	2	1	7	1 7 7 1 0	2
5	2	2	7	1 3 6 1 1	3
6	2	3	7	1 1 -1 0 2	4
7	3	1	1	8 1 6 1 0	4
8	3	2	1	8 3 7 1 1	5
9	3	3	1	8 7 10 101	2 6
10	3	4	1	8 8 -1 0 10	03 107
11	4	1	8	15 8 12 1	0 107
12	4	2	8	15 12 13 1	1 108
13	4	3	8	15 17 15 1	2 109
14	4	4	8	15 16 16 1	3 110
15	4	5	8	15 15 -2 0	4 111
(15 rov	vs)				

Aggregate cost of the third path.

SELECT agg_cost FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY[5, 7, 1, 8, 15]) WHERE path_id = 3 AND edge < 0; agg_cost 103 (1 row)

Route's aggregate cost of the route at the end of the third paths

Nodes visited in the route.

The aggregate costs of the route when the visited vertices are reached.

SELECT path_id, route_agg_cost FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY[5, 7, 1, 8, 15]) WHERE edge < 0; path_id | route_agg_cost

1 2 4 2 3 | 107 111 (4 rows)

Status of "passes in front" or "visits" of the nodes.

SELECT seq, route_agg_cost, node, agg_cost , CASE WHEN edge = -1 THEN \$\$visits\$\$ ELSE \$\$passes in front\$\$ END as status END as status FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY(5, 7, 1, 8, 15) WHERE agg_cost <> 0 or seq = 1;

seq | route_agg_cost | node | agg_cost | status

1	0 5	0 passes in front
2	1 6	1 passes in front
3	2 7	2 visits
5	3 3	1 passes in front
6	4 1	2 visits
8	5 3	1 passes in front
9	6 7	2 passes in front
10	107 8	103 visits
12	108 12	1 passes in front
13	109 17	2 passes in front
14	110 16	3 passes in front
15	111 15	4 passes in front
(12 rows)		

Simulation of how algorithm works.

The algorithm performs a pgr_dijkstraVia - Proposed

SELECT * FROM pgr_dijkstraVia(

		11=						
1	1	1	6	3	6 4	1	0	0
2	1	2	6	3	7 7	1	1	1
3	1	3	6	3	3 -1	0	2	2
4	2	1	3	6	3 7	1	0	2
5	2	2	3	6	7 4	1	1	3
6	2	3	3	6	6 -2	0	2	4
(6 row:	5)							

Detects which of the sub paths pass through a restriction in this case is for thepath_id = 5 from 6 to 3 because the path (15 \rightarrow 1) is restricted.

Executes the pgr trsp - Proposed algorithm for the conflicting paths.

SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, 6, 3); path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 = 1 1	····				
1	1	6	3	6 4 1 0	
1	2	6	3	7 10 1 1	
1	3	6	3	8 12 1 2	
1	4	6	3	12 13 1 3	
1	5	6	3	17 15 1 4	
1	6	6	3	16 9 1 5	
1	7	6	3	11 8 1 6	
1	8	6	3	7 7 1 7	
1	9	6	3	3 -1 0 8	
(9 rows)					

From the pgr_dijkstraVia - Proposed result it removes the conflicting paths and builds the solution with the results of the pgr_trsp - Proposed algorithm:

WITH

WITH Solutions AS (SELECT path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_dijkstraVia(\$\$\$ELECT id, source, target, cost, reverse_cost FROM edges\$\$, ARRAY[6, 3, 6]) WHERE path_id = 1

LINION

UNION SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$,

6, 3)),

6, 3)), with_seq AS (SELECT row_number() over(ORDER BY path_id, path_seq) AS seq, * FROM solutions), aggregation AS (SELECT seq, SUM(cost) OVER(ORDER BY seq) AS route_agg_cost FROM with_seq) SELECT with_seq.*_COALESCE(route_agg_cost, 0) AS route_agg_cost FROM with_seq LEFT JOIN aggregation ON (with_seq.seq = aggregation.seq + 1); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 1 1 1 1 2 2	1 2 3 4 5 6 7 8 9 1	6 6 6 6 6 6 6 3		0 1 2 3 4 5 6 7 8 0	0 1 2 3 4 5 6 7 8 8
11	2	2	3	6 7 4 1	1	9
12	2	3	3	6 6 -2 0	2	10
(12 row	/s)					

Getting the same result as pgr_trspVia:

SELECT * FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, ARRAY[6, 3, 6]);

seq p	bath_id	path_s	seq sta	art_vid en	d_vid	node	e edge	cost agg_c	ost route_agg_cost
1	1	1	6	3 6	4	1	0	0	
2	1	2	6	3 7	10	1	1	1	
3	1	3	6	3 8	12	1	2	2	
4	1	4	6	3 12	13	1	3	3	
5 j	1 j	5	6	3 17	15	- 1 j	4 j	4	
6	1 j	6	6	3 16	91	1	5	5	

7	1	7	6	3 11 8 1 6	6
8	1	8	6	3 7 7 1 7	7
9	1	9	6	3 3 -1 0 8	8
10	2	1	3	6 3 7 1 0	8
11	2	2	3	6 7 4 1 1	9
12	2	3	3	6 6 -2 0 2	10
(12 row	/s)				

Example 8:

Sometimes U_turn_on_edge flag is ignored when is set tofalse.

The first step, doing a pgr_dijkstraVia - Proposed does consider not making a U turn on the same edge. But the path\(16 \rightarrow 13\) (Rows 4 and 5) is restricted and the result is using it.

SELECT * EBOM por diikstraVia(
\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$,
ARRAY[6, 7, 6], U_turn_on_edge => false);
seq path_id path_seq start_vid end_vid node edge cost agg_cost route_agg_cost
and the second sec

				++++++++	
1 2	1 1	1 2	6 6	7 6 4 1 0 7 7 -1 0 1	0
3	2	1	7	6 7 8 1 0	1
4	2	2	7	6 11 9 1 1	2
5	2	3	7	6 16 16 1 2	3
6	2	4	7	6 15 3 1 3	4
7	2	5	7	6 10 2 1 4	5
8	2	6	7	6 6 -2 0 5	6
(8 rows	5)				

When executing the pgr_trsp - Proposed algorithm for the conflicting path, there is noU_turn_on_edge flag.

SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, 7, 6); path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

7 | 6 | 7 | 4 | 1 | 0 7 | 6 | 6 | -1 | 0 | 1 1| 1| 1| 21 (2 rows)

Therefore the result ignores theU_turn_on_edge flag when set to false.

SELECT * FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path.cost FROM restrictions\$\$.

φφοιείοι μαι	ι, συσει ποινι τεσιποιιοποφφ,	
ARRAY[6, 7, 6]	, U_turn_on_edge => false);	

seq	path_id	path_s	seq sta	art_vid	end_	vid noo	le edge	cost agg_	cost route_agg_cost
+	+	4		+	+	+	++	+	
1	1	1	6	7	6 4	4 1	0	0	
2	1	2	6	7	7 -	1 0	1	1	
3	2	1	7	6	7 4	4 1	0	1	
4	2	2	7	6	6 -	2 0	1	2	
(4 row	s)								

See Also

<u>Via - Category</u>

• Sample Data network.

Indices and tables

- Index
- Search Page

pgr_trsp_withPoints - Proposed

pgr_trsp_withPoints Routing Vertex/Point with restrictions.

Boost Graph Inside

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

Availability

- Version 3.4.0
 - New proposed signatures:
 - pgr_trsp_withPoints (One to One)

- pgr_trsp_withPoints (One to Many)
- pgr_trsp_withPoints (Many to One)
- pgr_trsp_withPoints (Many to Many)
- pgr_trsp_withPoints (<u>Combinations</u>)

Description

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path Characteristics:

- · Vertices of the graph are:
 - positive when it belongs to the Edges SQL
 - negative when it belongs to the Points SQL
- Driving side can not be b
- Values are returned when there is a path.
 - · When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is 0
 - · When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is ∞
- · For optimization purposes, any duplicated value in the start vids or end vids are ignored.
- The returned values are ordered: start_vid ascending end_vid ascending
- Running time: \(O(|start\ vids|\times(V \log V + E))\)

Signatures Summary

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vid, [options]) pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vids, [options]) pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vids, [options]) pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vids, [options]) pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vids, [options]) pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Combinations SQL, Points SQL, Start vids, end vids, [options]) options: [directed, driving_side, details] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vid, [options]) options: [directed, driving_side, details] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From point \(1\) to vertex \(10\) with details on a left driving side configuration on a directed graph with details.

SELECT * FROM pgr_trsp_withPoints(SELECT i - FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT id, path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, fraction, side FROM pointsOfInterest\$\$, -1, 10, details => true) seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost 0.4 2 2 -1 3 | 4 | 3 | 4 | 1.4 -1 -1 2.1 -1| -1| -1| -1| -1| -1| -1| -1| -1| 5| 6| 7| 8| 9| 10| 11| 12| 5| 6| 7| 8| 9| 10| 2.4 2.4 3.4 4.4 5.4 6.4 11 7.4

ws One to Many

(12 rc

12

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vid, end vids, [options]) options: [directed, driving_side, details]

8.4

Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, aqq cost) OR EMPTY SET

Example:

From point (1) to point (3) and vertex (7).

SELECT * FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$ \$\$SELECT id, path, cost FROM restrictions\$\$, \$\$SELECT joit, edge_id, fraction, side FROM pointsOfInterest\$\$, -1, ARRAY[-3, 7]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	-1	-3 -1	1 1.4	0
2	2	-1	-3 6	4 1	1.4
3	3	-1	-3 7	10 1	2.4
4	4	-1	-3 8	12 0.6	3.4
5	5	-1	-3 -3	-1 0	4
6	1	-1	7 -1	1 1.4	0
7	2	-1	7 6	4 1	1.4
8	3	-1	7 7	-1 0	2.4
(8 rows	;)				

Many to One

pgr_trsp_withPoints(Edges SQL, Restrictions SQL, Points SQL, start vids, end vid, [options]) options: [directed, driving_side, details] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

OR EMPTY SET

Example:

From point (1) and vertex (6) to point (3).

 SELECT * FROM pgr_trsp_withPoints(

 \$\$\$ELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$,

 \$\$\$ELECT id, apth, cost FROM restrictions\$\$,

 \$\$\$ELECT pid, edge_id, fraction, side FROM pointsOfInterest\$\$,

 ARRAY[-1, 6], -3;

 \$\$eq | path_seq | star_vid | end_vid | node | edge | cost | agg_cost

 1
 1

 2
 2

 -1
 -3

 3
 -1

 3
 -1

 3
 -1

 3
 -1

 3
 -1

 3
 -1

 3
 3

 -1
 -3

 3
 1

 3
 3

 -1
 -3

 3
 3

 3
 3

 -1
 -3

 3
 1

 3
 3

 -1
 -3

 3
 1

 4
 4

 4
 -1

 4
 -1

 4
 -1

 5
 12

4	4	-1	-3	8	12 0.0	3.4
5	5	-1	-3	-3	-1 0	4
6	1	6	-3	6	4 1	0
7	2	6	-3	7	10 1	1
8	3	6	-3	8	12 0.6	2
9	4	6	-3	-3	-1 0	2.6

(9 rows)

Many to Many

pgr_trsp_withPoints(<u>Edges SQL</u>, <u>Restrictions SQL</u>, <u>Points SQL</u>, <u>start vids</u>, <u>end vids</u>, [options]) options: [directed, driving_side, details] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From point (1) and vertex (6) to point (3) and vertex (1).

SELECT * FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT id, path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, fraction, side FROM pointsOfInterest\$\$, ARRAY[-1, 6], ARRAY[-3, 1]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	-1	-3 -1 1 1.4 0
2	2	-1	-3 6 4 1 1.4
3	3	-1	-3 7 10 1 2.4
4	4	-1	-3 8 12 0.6 3.4
5	5	-1	-3 -3 -1 0 4
6	1	-1	1 -1 1 1.4 0
7	2	-1	1 6 4 1 1.4
8	3	-1	1 7 10 1 2.4
9	4	-1	1 8 12 1 3.4
10	5	-1	1 12 13 1 4.4
11	6	-1	1 17 15 1 5.4
12	7	-1	1 16 9 1 6.4
13	8	-1	1 11 8 1 7.4
14	9	-1	1 7 7 1 8.4
15	10	-1	1 3 6 1 9.4
16	11	-1 j	1 1 -1 0 10.4
17	1	6	-3 6 4 1 0
18	2	6	-3 7 10 1 1
19	3	6	-3 8 12 0.6 2
20	4	6	-3 -3 -1 0 2.6
21	1	6	1 6 4 1 0
22	2	6	1 7 10 1 1
23	3	6	1 8 12 1 2
24	4	6	1 12 13 1 3
25	5	6	1 17 15 1 4
26	6	6	1 16 9 1 5
27	7	6	1 11 8 1 6
28	8	6	1 7 7 1 7
29	9	6	1 3 6 1 8
30	10	6	1 1 -1 0 9
(30 rov	vs)		

Combinations

pgr_trsp_withPoints(<u>Edges SQL, Restrictions SQL, Combinations SQL, Points SQL</u>, [options]) options: [directed, driving_side, details] Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From point (1) to vertex (10) and from vertex (6) to point (3) with right side driving configuration.

SELECT * FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT id, path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, fraction, side FROM pointsOfInterest\$\$, \$\$SELECT rid, source, target, \$\$, \$\$SELECT * FROM (VALUES (-1, 10), (6, -3)) AS ((source, target)\$\$, driving_side => 'r', details => true); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

Туре

			*
1	1	-1	10 -1 1 0.4 0
2	2	-1	10 5 1 1 0.4
3	3	-1	10 6 4 0.7 1.4
4	4	-1	10 -6 4 0.3 2.1
5	5	-1	10 7 10 1 2.4
6	6	-1	10 8 12 0.6 3.4
7	7	-1	10 -3 12 0.4 4
8	8	-1	10 12 13 1 4.4
9	9	-1	10 17 15 1 5.4
10	10	-1	10 16 16 1 6.4
11	11	-1	10 15 3 1 7.4
12	12	-1	10 10 -1 0 8.4
13	1	6	-3 6 4 0.7 0
14	2	6	-3 -6 4 0.3 0.7
15	3	6	-3 7 10 1 1
16	4	6	-3 8 12 0.6 2
17	5	6	-3 -3 -1 0 2.6
(17 row	s)		

TEXT

Parameters

Column

Description

Edges SQL

SQL query as described.

Column		Туре	Description
Restrictions SQL	TEXT		SQL query as described.
Combinations SQL	TEXT		Combinations SQL as described below
start vid	ANY-IN	FEGER	Identifier of the departure vertex.
start vids	ARRAY [A	NY-INTEGER]	Array of identifiers of destination vertices.
end vid	ANY-IN	TEGER	Identifier of the departure vertex.
end vids	ARRAY [A	ANY-INTEGER]	Array of identifiers of destination vertices.
Where: ANY-INTEGER: SMALLINT, INTI Optional parameters	EGER, BIG	INT	
Column Type	Default		Description
directed BOOLEAN	true	 When true th When false t Undirected. 	he graph is considered <i>Directed</i> the graph is considered as
with points optional parar	neters		
Parameter	Туре	Default	Description
driving_side	CHAR	Value • r • I • <i>I</i>	in [r, I] indicating if the driving side is: for right driving side for left driving side Any other value will be considered asr
details	BOOLEAN	• \ false • \	When true the results will include the points that are in the path. When false the results will not include the points that are in the path.
Inner Queries			
Edges SQL			
Column		Тур	De Default D
id		ANY-INTEGER	Identifier of the edge

id	ANY-INTEGER	Identifier of the edge.
source	ANY-INTEGER	Identifier of the first end point vertex of the edge.
target	ANY-INTEGER	Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL	Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL

Column	Туре	Description
path	ARRAY [ANY-INTEGER]	Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays that have a NULL element will raise an exception.
Cost	ANY-NUMERICAL	Cost of taking the forbidden path.
Where:		

Description

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Points SQL

Param	eter	Туре	Default	Description
pid	AI	NY-INTEGER	value	 Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically.
edge_id	AI	NY-INTEGER		Identifier of the "closest" edge to the point.
fraction	AI	NY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
side	Cŀ	HAR	b	 Value in [b, r, I, NULL] indicating if the point is: In the right r, In the left I, In both sides b, NULL
Where:				
ANY-INTEGE	ER:			
SMALLIN	IT, INTEGER, B	BIGINT		
ANY-NUMEF	RICAL:			
SMALLIN	IT, INTEGER, B	BIGINT, REAL, FLOAT		
Combinations SQ	4			
Parameter	Туре		Desci	ription
source	ANY- INTEGER	Identifier of the depa	arture vertex.	
target	ANY- INTEGER	Identifier of the arriv	al vertex.	
Where:				
ANY-INTEGE	ER:			
SMALLIN	IT, INTEGER, B	BIGINT		
Result columns				
Returns set o	f (seq, path_id,	path_seq, start_vid, end_vid,	node, edge, cost	t, agg_cost)
Colur	nn	Туре		Description

Column	туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Path identifier.Has value 1 for the first of a path fromstart_vid to end_vid.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Use pgr_findCloseEdges for points on the fly

- Pass in front or visits.
- Show details on undirected graph.

Use pgr findCloseEdges for points on the fly¶

Using pgr_findCloseEdges

Find the routes from vertex \(1\) to the two closest locations on the graph of point(2.9, 1.8).

SELECT * FROM pgr_trsp_withPoints(\$e\$ SELECT * FROM edges \$e\$, \$f\$ SELECT id, path, cost FROM restrictions \$r\$, \$p\$ SELECT edge_id, round(fraction::numeric, 2) AS fraction, side FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT ST, POINT(2.9, 1.8)), 0.5 cm => 2) 0.5, cap => 2)

0.5, cap => 2) \$p\$. 1, ARRAY[-1, -2], driving_side => 'r); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			++++++++
11	11	11	-2 1 6 1 0
2	2	- 1 İ	-2 3 7 1 1
3	3	1 j	-2 7 8 0.9 2
4	4	1	-2 -2 -1 0 2.9
5	1	1	-1 1 6 1 0
6	2	1	-1 3 7 1 1
7	3	1	-1 7 8 2 2
8	4	1	-1 7 10 1 4
9	5	1	-1 8 12 1 5
10	6	1	-1 12 13 1 6
11	7	1	-1 17 15 1 7
12	8	1	-1 16 16 1 8
13	9	1	-1 15 3 1 9
14	10	1	-1 10 5 0.8 10
15	11	1	-1 -1 -1 0 10.8
(15 row	s)		

• Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

• Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

Pass in front or visits.

Which path (if any) passes in front of point\(6\) or vertex \(11\) with right side driving topology.

SELECT ('(|| start_vid || '=>' || end_vid ||') at ' || path_seq || 'th step:')::TEXT AS path_at, CASE WHEN edge = -1 THEN ' visits' ELSE ' passes in front of' END as status, CASE WHEN node < 0 THEN 'Point' ELSE 'Vertex' $\begin{array}{c} , \ s_{-} = \mid \text{Id} \\ \hline \\ (-1 => -6) \text{ at } 4\text{th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (-1 => -0) \text{ at } 4\text{th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (-1 => -10) \text{ at } 4\text{th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (-1 => -11) \text{ at } 4\text{th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (-1 => -11) \text{ at } 4\text{th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (5 => -5) \text{ at } 3\text{ th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (5 => -31) \text{ at } 3\text{ th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (5 => -11) \text{ at } 3\text{ th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (5 => -11) \text{ at } 3\text{ th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (5 => -11) \text{ at } 3\text{ th step:} \mid \text{passes in front of } \mid \text{Point } \mid 6 \\ (5 => -11) \text{ at } 3\text{ th step:} \mid \text{visits } \mid \text{Vertex } \mid 11 \\ (10 \text{ rows}) \end{array}$

Show details on undirected graph.

From point (1) and vertex (6) to point (3) to vertex (1) on an undirected graph, with details.

SELECT * FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT id, path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, fraction, side FROM pointsOfInterest\$\$, ARRAY[-1, 6], ARRAY[-3, 1], directed => false, details => true); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			+		
1	11	-11	.31.1		Ó
2	2	ai l	3 6		06
2	2		-0 0	4 0.7	1.0
3	3	-11	-3 -0	4 0.3	1.3
4	4	-1	-3 /	10 1	1.6
5	5	-1	-3 8	12 0.6	2.6
6	6	-1	-3 -3	-1 0	3.2
7	1	-1	1 -1	1 0.6	0
8	2	-1	1 6	4 0.7	0.6
9	3	-1	1 -6	4 0.3	1.3
10	4	-1	1 7	7 7 1	1.6
11	5	-1	1 3	8 6 0.7	2.6
12	6	-1	1 -4	4 6 0.3	3.3
13	7	-1	1 1	-1 0	3.6
14	1	6	-3 6	6 4 0.7	0
15	2	6	-3 -6	6 4 0.3	0.7
16	3	6	-3 7	7 10 1	1
17	4	6	-3 8	3 12 0.6	2
18	5	6	-3 -3	3 -1 0	2.6
19	1 j	6	1 6	6 4 0.7	0
20 İ	2 İ	6 İ	1i-6	6 4 0.3	0.7
21	зi	6	1 7	7 1	1
22	4	6	1 i 3	6 0.7	2
23	5	6	1 -4	6 0.3	2.7
24	6	6	1 İ 1	i -1 i 0 i	3
(24 row	s)	1			

See Also

• TRSP - Family of functions

• withPoints - Category

Sample Data

- Index
- Search Page

pgr_trspVia_withPoints - Proposed

pgr_trspVia_withPoints - Route that goes through a list of vertices and/or points with restrictions.

Boost Graph Inside

Warning

Proposed functions for next mayor release

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - · pgTap tests have being done. But might need more
 - · Documentation might need refinement.

Availability

• Version 3.4.0

· New proposed function:

pgr_trspVia_withPoints (One Via)

Description

Given a graph, a set of restriction on the graph edges, a set of points on the graphs edges and a list of vertices, this function is equivalent to finding the shortest path between(vertex_i)) and \ (vertex_[i+1]) (where \(vertex\) can be a vertex or a point on the graph) for all \(i < size_of(via\;vertices)\) trying not to use restricted paths.

is a sequence of paths

Path:

Route:

is a section of the route.

The general algorithm is as follows:

- · Build the Graph with the new points.
 - · The points identifiers will be converted to negative values.
 - · The vertices identifiers will remain positive.

• Execute a pgr_withPointsVia - Proposed.

- · For the set of paths of the solution that pass through a restriction then
 - Execute the TRSP algorithm with restrictions for the path.
 - NOTE when this is done, U_turn_on_edge flag is ignored.

Note

Do not use negative values on identifiers of the inner queries.

Signatures

One Via

pgr_trspVia_withPoints(Edges SQL, Restrictions SQL, Points SQL, via vertices, [options]) options: [directed, strict, U turn on edge] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost) OR EMPTY SET

Example:

Find the route that visits the vertices ((-6, 15, -5)) in that order on an directed graph.

SELECT * FROM pgr_trspVia_withPoints(SELECT * FROM pg_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[6, 15, -5]); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

30416	aun_iu	paul_	504 510		cuyc	cost agg_cost toutc_a
+	+-			-+++++++++	+	+
1	1	1	-6	15 -6 4 0.3	0	0
2	1	2	-6	15 7 10 1	0.3	0.3
3	1	3	-6	15 8 12 1	1.3	1.3
4	1	4	-6	15 12 13 1	2.3	2.3
5	1	5	-6	15 17 15 1	3.3	3.3
6	1	6	-6	15 16 16 1	4.3	4.3
7	1	7	-6	15 15 -1 0	5.3	5.3
8	2	1	15	-5 15 3 1	0	5.3
9	2	2	15	-5 10 5 0.8	1	6.3
101	21	31	15	-5 -5 -2 0	18	71

9| 10| 2|

Parameter

TEXT

Туре

Default

Description

Parameter		Тур	be Defaul	t	Description				
Points SQL	TEXT			SQL q	uery as described.				
via vertices	ARRA	Y [ANY-INT	FEGER]	Array o visited • V	of ordered vertices identifiers that are going to be Vhen positive it is considered a vertex identifier Vhen negative it is considered a point identifier				
Where:									
ANY-INTEGER:									
SMALLINT,	INTEGER	, BIGINT							
ANY-NUMERICAL	.:								
SMALLINT,	INTEGER	, BIGINT, R	REAL, FLOAT						
Optional parameters									
Column Type	Default		Description						
When true the graph is considered <i>Directed</i> When false the graph is considered as Undirected									
Via optional parameters	ı								
Parameter	Туре	Default		0	escription				
			When true if a path	is missing	stops and returns EMPTY SET				
strict	BOOLEAN	false	When false ignores	missing p	aths returning all paths found				
U_turn_on_edge	BOOLEAN	true	When true departing	g from a v	isited vertex will not try to avoid				
With points optional para	ameters								
Parameter	Туре	Default			lescription				
		V	alue in [r, I] indicating if	the drivin	g side is:				
driving side	CHAR	r	• r for right driving sid	le					
unving_side	Onizari		I for left driving side						
			Any other value will be considered asr						
details	BOOLEAN	false	When true the result When false the result	ts will inc	ude the points that are in the path.				
Inner Queries									
Edges SQL									
Colum	ı		Type D	efault	Description				
id		ANY-INTE	EGER		Identifier of the edge.				
source		ANY-INTE	EGER		Identifier of the first end point vertex of the edge.				
target		ANY-INTE	EGER		Identifier of the second end point vertex of the edge.				
cost		ANY-NUN	IERICAL		Weight of the edge (source, target)				
reverse_cost		ANY-NUN	IERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.				
Where:									

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Restrictions SQL

Column		Туре	Description						
path	ARRAY [ANY-I	NTEGER]	Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays that have a NULL element will raise an exception.						
Cost	ANY-NUMER	ICAL	Cost of taking the forbidden path.						
Where:									
ANY-INTEGER:									
SMALLINT,	INTEGER, BIGINT								
ANY-NUMERIC	AL:								
SMALLINT,	INTEGER, BIGINT, RE	AL, FLOAT							
Points SQL									
Paramete	er	Type Default	Description						
			Identifier of the point.						
			Use with positive value, as internally will be converted to negative value						
pid	ANY-INTE	GER value	If column is present, it can not be NULL.						
			 If column is not present, a sequential negative value will be given automatically. 						
edge_id	ANY-INTE	GER	Identifier of the "closest" edge to the point.						
fraction	ANY-NUM	ERICAL	Value in <0,1> that indicates the relative postition from the first end point of the edge.						
			Value in [b, r, I, NULL] indicating if the point is:						
			• In the right r,						
side	CHAR	b	In the left I,						
			In both sides b, NULL						
Where:									
ANY-INTEGER:									
SMALLINT,	INTEGER, BIGINT								
ANY-NUMERIC	AL:								
SMALLINT,	INTEGER, BIGINT, RE	AL, FLOAT							
Result columns									
Column	Туре		Description						
seq	INTEGER	Sequential value starting from	11.						
path_id	INTEGER	Identifier of a path. Has value	1 for the first path.						
path_seq	INTEGER	Relative position in the path.	Has value1 for the beginning of a path.						
start_vid	BIGINT	Identifier of the starting vertex	x of the path.						
end_vid	BIGINT	Identifier of the ending vertex	of the path.						
node	BIGINT	Identifier of the node in the pa	ath fromstart_vid to end_vid.						
		Identifier of the edge used to sequence.	go fromnode to the next node in the path						
edge	BIGINT	 1 for the last node of th 	ne nath						

- BIGINT-1 for the last node of the path.-2 for the last node of the route.
- cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.

agg_cost FLOAT Aggregate cost from start_vid to node.

route_agg_cost FLOAT Total cost from start_vid of seq = 1 to end_vid of the current seq.

Note

When ${\tt start_vid}, {\tt end_vid}$ and node columns have negative values, the identifier is for a Point.

Additional Examples

- Use pgr_findCloseEdges for points on the fly
- Usage variations

- · Aggregate cost of the third path.
- · Route's aggregate cost of the route at the end of the third path.
- · Nodes visited in the route.
- The aggregate costs of the route when the visited vertices are reached
- · Status of "passes in front" or "visits" of the nodes and points

· Simulation of how algorithm works.

Use pgr_findCloseEdges for points on the fly¶

Using pgr_findCloseEdges:

Visit from vertex \(1\) to the two locations on the graph of point(2.9, 1.8) in order of closeness to the graph.

SELECT * FROM pgr_trspVia_withPoints(\$e\$ SELECT * FROM edges \$e\$, \$r\$ SELECT path, cost FROM restrictions \$r\$, \$p\$ SELECT edge_id, round(fraction::numeric, 2) AS fraction, side FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$, (SELECT ST_POINT(2.9, 1.8)), 0.5, cap => 2) \$p\$.

0.5, cap => 2) \$p\$, ARRAY[1, -1, -2], details => true); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

				++++++++++	+	+
1	1	1	1	-1 1 6 1	0	0
2	1	2	1	-1 3 7 1	1	1
3	1	3	1	-1 7 8 0.9	2	2
4	1	4	1	-1 -2 8 0.1	2.9	2.9
5	1	5	1	-1 11 8 1	3	3
6	1	6	1	-1 7 10 1	4	4
7	1	7	1	-1 8 12 1	5	5
8	1	8	1	-1 12 13 1	6	6
9	1	9	1	-1 17 15 1	7	7
10	1	10	1	-1 16 16 1	8	8
11	1	11 j	1	-1 15 3 1	9	9
12	1	12	1	-1 10 5 0.8	10	10
13	1	13	1	-1 -1 -1 0	10.8	10.8
14	2	1	-1	-2 -1 5 0.2	0	10.8
15	2	2	-1	-2 11 8 1	0.2	11
16	2	3	-1	-2 7 8 0.9	1.2	12
17	2	4	-1	-2 -2 -2 0	2.1	12.9
(17 rov	ws)					

- Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).
- Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

• Point \(-2\) is visited on the route to from vertex \(1\) to Point \(-1\) (See row where \(seq = 4\)).

Usage variations

All this examples are about the route that visits the vertices (\{-6, 7, -4, 8, -2\}\)in that order on a directed graph.

SELECT * FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[-6, 7, -4, 8, -2]

seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

1	1	1	-6	7 -6 4 0.3 0	0
2	1	2	-6	7 7 -1 0 0.3	0.3
3	2	1	7	-4 7 7 1 0	0.3
4	2	2	7	-4 3 6 1.3 1	1.3
5	2	3	7	-4 -4 -1 0 2.3	2.6
6	3	1	-4	8 -4 6 0.7 0	2.6
7	3	2	-4	8 3 7 1 0.7	3.3
8	3	3	-4	8 7 4 0.6 1.7	4.3
9	3	4	-4	8 7 10 1 2.3	4.9
10	3	5	-4	8 8 -1 0 3.3	5.9
11	4	1	8	-2 8 10 1 0	5.9
12	4	2	8	-2 7 8 1 1	6.9
13	4	3	8	-2 11 9 1 2	7.9
14	4	4	8	-2 16 15 0.4 3	8.9
15	4	5	8	-2 -2 -2 0 3.4	9.3
(15 rov	vs)				

Aggregate cost of the third path.

SELECT agg_cost FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[-6, 7, -4, 8, -2]

) WHERE path_id = 3 AND edge <0; agg_cost

33

(1 row)

Route's aggregate cost of the route at the end of the third path.

SELECT route_agg_cost FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAYI-6, 7, -4, 8, -2]) WHERE path_id = 3 AND edge < 0; route_agg_cost 5.9 (1 row)

Nodes visited in the route.

SELECT row_number() over () as node_seq, node FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[-6, 7, -4, 8, -2]

, 11 16 -2

(12 rows)

The aggregate costs of the route when the visited vertices are reached.

SELECT path_id, route_agg_cost FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, id, fraction FROM pointsOfInterest\$\$, ARRAY[-6, 7, -4, 8, -2]

WHERE edge < 0: path_id | route_agg_cost

0.3 2.6 5.9 1 | 2 | 3 | 4 | 9.3 (4 rows)

Status of "passes in front" or "visits" of the nodes and points.

SELECT seq, route_agg_cost, node, agg_cost CASE WHEN edge = -1 THEN \$\$visits\$\$ ELSE \$\$passes in front\$\$ END as status END as status FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, ost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[-6, 7, -4, 8, -2]) WHERE agg_cost <> 0 or seq = 1; seq | route_agg_cost | node | agg_cost | status 1 0 | passes in front 0 | passes in front 0.3 | visits 1 | passes in front 2.3 | visits 0.7 | passes in front 1.7 | passes in front

0 | -6 | 0.3 | 7 | 1.3 | 3 | 2.6 | -4 | 3.3 | 3 | 4.3 | 7 | 4.9 | 7 | 5.9 | 8 | 6.9 | 7 | 7.9 | 11 | 8.9 | 16 | 9.3 | -2 | 2 | 4 | 5 | 7 | 8 | 9 | 10 | 12 | 13 | 14 | 15 | (12 rows) 2.3 | passes in front 3.3 | visits 1 | passes in front 2 | passes in front 3 | passes in front 3.4 | passes in front

Simulation of how algorithm works.

The algorithm performs a pgr_withPointsVia - Proposed

SELECT * FROM pgr_withPointsVia(

SELECT Priom pg__wiiirbuitsvia(\$\$\$ELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[6, 15, -5]); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost 4 | 0.3 | 8 | 1 | 9 | 1 | 16 | 1 | -1 | 0 | 3 | 1 | 5 | 0.8 | -2 | 0 | +----+ 15| -6| 15| 7| 15| 11| 15| 16| 15| 15| -5| 15| -5| 10| -5| -5| -6| -6| -6| -6| 15| 15| 0 0 | 0.3 | 1.3 | 2.3 | 2| 3| 4| 2 0.3 1.3 2.3 3 | 4 | 1 1 3.3 | 0 | 1 | 3.3 3.3 4.3 5.1 5 | 6 | 7 | 8 | 5| 1| 2| 3| 2| 2| 2| 1.8

Detects which of the paths pass through a restriction in this case is for thepath_id = 1 from -6 to 15 because the path \(9 \rightarrow 16\) is restricted.

Executes the TRSP algorithm for the conflicting paths.

SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, e. 15:

-6. 15):

path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	-6	15 -6 4	0.3	0
1	2	-6	15 7 10	(<u> </u> 1] -	0.3
1	3	-6	15 8 12	1	1.3
1	4	-6	15 12 13	3 1	2.3
1	5	-6	15 17 1	5 1	3.3
1	6	-6	15 16 1	ô 1	4.3
1	7	-6	15 15 -1	0	5.3
(

(7 rows)

(8 rows)

From the pgr_withPointsVia - Proposed result it removes the conflicting paths and builds the solution with the results of thepgr_trsp - Proposed algorithm:

WITH solutions AS (

SELECT path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost

- SELEC1 pan_g, and_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM ggr_withPointsVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[-6, 15, -5]) WHERE path_id I = 1 UNION SELECT 1 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost EDQM.ext.etm withPathatiseq.
- SELECT 1 AS path.jd, path_seq, start_vid, end_wd, node, edge, cost, FROM ggr.trsp_withPoints(\$\$\$ELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$\$ELECT path, cost FROM restrictions\$\$, \$\$ELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, -6, 15), with_seq AS (\$ELECT row_number() over(ORDER BY path_id, path_seq) AS seq, *

FROM solutions rHOM solutions), aggregation AS (SELECT seq, SUM(cost) OVER(ORDER BY seq) AS route_agg_cost FROM with_seq) SELECT with_seq.*, COALESCE(route_agg_cost, 0) AS route_agg_cost FROM with_seq LEFT JOIN aggregation ON (with_seq.seq = aggregation.seq + 1);

seq p	oath_id	path_s	seq sta	rt_vid	enc	_vid nod	e edge	cost agg_co	st route_agg_cost
+	+-	+		+	+-	++	+	+	
1	1	1	-6	15	-6	4 0.3	0	0	
2	1	2	-6	15	7	10 1	0.3	0.3	
3	1	3	-6	15	8	12 1	1.3	1.3	
4	1	4	-6	15	12	13 1	2.3	2.3	
5	1	5	-6	15	17	15 1	3.3	3.3	
6	1	6	-6	15	16	16 1	4.3	4.3	
7	1	7	-6	15	15	-1 0	5.3	5.3	
8	2	1	15	-5	15	3 1	0	5.3	
9	2	2	15	-5	10	5 0.8	1	6.3	
10	2	3	15	-5	-5	-2 0	1.8	7.1	
(10 rov	vs)								

Getting the same result as pgr_trspVia_withPoints:

SELECT * FROM pgr_trspVia_withPoints(

SELECT * FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT path, cost FROM restrictions\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[6, 15, -5]); seq [path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost 15| -6| 15| 7| 15| 8| 15| 12| 15| 17| 15| 16| 15| 15| -5| 15| -5| 10| -5| -5| 4 | 0.3 | 10 | 1 | 12 | 1 | -6 | -6 | -6 | -6 | -6 | -6 | 15 | 15 | 15 | 0 2 2 0.3 0.3 3| 4| 5| 6| 7| 8| 9| 10| 3 | 1.3 1.3 12 | 1| 13 | 1| 15 | 1| 16 | 1| -1 | 0| 3 | 1| 5 | 0.8 | -2 | 0| 2.3 | 3.3 | 4.3 | 5.3 | 0 | 1 | 1.8 | 2.3 1 | 1 | 1 | 1 | 5| 6| 7| 1| 2| 3| 3.3 4.3 5.3 5.3 6.3 7.1 2 | 2 | 2 |

Example 8:

(10 rows)

Sometimes U_turn_on_edge flag is ignored when is set tofalse.

The first step, doing a pgr_withPointsVia - Proposed does consider not making a U turn on the same edge. But the path(9 \rightarrow 16\) (Rows 4 and 5) is restricted and the result is using it.

SELECT * FROM pgr_withPointsVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, ARRAY[6, 7, 6], U_turn_on_edge => talse);

seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

+	+-			+++++++	-++
1	1	1	6	7 6 4 1 0	0
2	1	2	6	7 7 -1 0 1	1
3	2	1	7	6 7 8 1 0	1
4	2	2	7	6 11 9 1 1	2
5	2	3	7	6 16 16 1	2 3
6	2	4	7	6 15 3 1 3	3 4
7	2	5	7	6 10 2 1 4	1 5
8	2	6	7	6 6 -2 0 5	6
(8 rows	s)				

 $When executing the \underline{pgr_trsp_withPoints} - \underline{Proposed} algorithm for the conflicting path, there is no U_turn_on_edge flag.$

SELECT 5 AS path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost FROM pgr_trsp_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$. \$\$SELECT pid, edge_id, side, fraction FROM pointsOfInterest\$\$, 7, coil

7, 6)

path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

+			+			+		
5	1	7	6	7	4	1	0	
5	2	7	6	6	-1 j	0	1	
(2 rows)								

Therefore the result ignores the U_turm_on_edge flag when set to false. From the pgr_withPointsVia - Proposed result it removes the conflicting paths and builds the solution with the results of the pgr_trsp - Proposed algorithm. In this case a U turn is been done using the same edge.

SELECT * FROM pgr_trspVia_withPoints(

\$\$SEL	ECT id	. source	, target	, cost	, rev	erse	cost	FROM ed	ges ORD	ER BY id\$\$,	
\$\$SEL	ECT pa	ath, cost	FROM	, restr	ictior	ns\$\$,			•		
\$\$SEL	ECT pi	d, edge_	id, side	e, frac	ction	FRO	M po	intsOfInter	rest\$\$,		
ARRA	Y[6, 7, 1	6], U_tu	n_on_	edge	=> fa	llse);					
seq pa	ath_id	path_se	q star	t_vid	end	d_vid	nod	le edge	cost ago	_cost route_	agg_cost
+	+	+-		+	+	+		+	+		
1	1	1	6	7	6	4	1	0	0		

2	1	2	6	1	/ -1	0	1	1	
3	2	1	7	6	7 4	1	0	1	
4	2	2	7	6	6 -2	0	1	2	
(4 rows	;)								

See Also

- TRSP Family of functions
- Via Category
- withPoints Category
- Sample Data network.
- Indices and tables

Index

Search Page

pgr_turnRestrictedPath - Experimental¶

pgr turnRestrictedPath Using Yen's algorithm Vertex - Vertex routing with restrictions

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

· They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

• Version 3.0.0

New experimental function

Description

Using Yen's algorithm to obtain K shortest paths and analyze the paths to select the paths that do not use the restrictions

Signatures

pgr_turnRestrictedPath(Edges SQL, Restrictions SQL, start vid, end vid, K, [options])

options: [directed, heap_paths, stop_on_first, strict] Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(3\) to vertex \(8\) on a directed graph

SELECT * FROM pgr_turnRestrictedPath(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, 2, e, 0;

3, 8, 3); seq | path_id | path_seq | node | edge | cost | agg_cost

1	1	1	3	7	1 In	finity	
2	1	2	7	10	1	1	
3	1	3	8	-1	0	2	
(3 rows)							

Parameters

- Column Туре Description Edges SQL TEXT SQL query as described start vid ANY-INTEGER Identifier of the departure vertex.
- ANY-INTEGER Identifier of the destination vertex. end vid

к ANY-INTEGER Number of required paths.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Optional parameters

Column Type Default Description • When true the graph is considered Directed directed BOOLEAN true · When false the graph is considered as Undirected

KSP Optional parameters

Column Type Default

heap_paths BOOLEAN false

Description

- When false Returns at most K paths.
 - · When true all the calculated paths while processing are returned.
 - Roughly, when the shortest path has N edges, the heap will contain about than N * K paths for small value of K and K >

Column T	ype Default		Description	
stop_on_first BOC	OLEAN true	When true stops of restrictions When false returns	n first path found the	at dos not violate
		• When laise returns	at most in paths	
strict BOC	OLEAN false	When true returnsWhen false returns	only paths that do r the paths found	not violate restrictions
Edges SQL				
Colu	umn	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source	L.	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)
				Weight of the edge (target, source)
reverse_cost		ANY-NUMERICAL	-1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:				
ANY-INTEGER	٦:			
SMALLINT	, INTEGER, BIGIN	іт		
ANY-NUMERI	CAL:			
SMALLINT	, INTEGER, BIGIN	IT, REAL, FLOAT		
Restrictions SQL				
Column	1	Туре		Description
path	ARRAY [ANY-INTEGER]	st	Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays hat have a NULL element will raise an exception.
Cost	ANY-NU	IMERICAL	(Cost of taking the forbidden path.
Where:				
ANY-INTEGEF	٦:			
SMALLINT	, INTEGER, BIGIN	іт		
ANY-NUMERI	CAL:			
SMALLINT	, INTEGER, BIGIN	IT, REAL, FLOAT		
Result columns				
Returns set of	(seq, path_id, path	_seq, start_vid, end_vid, not	de, edge, cost, agg_cos	υ
Colum	n	Туре		Description
seq	INTEGE	R Sec	uential value startir	ng from 1.
path_id	INTEGE	Pat	h identifier.	
			 Has value 1 for the 	e first of a path fromstart_vid to end_vid.
path_seq	INTEGE	R Rel	ative position in the	path. Has value1 for the beginning of a path.
start_vid	BIGINT	Ide	ntifier of the starting	vertex.
end_vid	BIGINT	Ide	ntifier of the ending	vertex.
node	BIGINT	Ide	ntifier of the node in	the path fromstart_vid to end_vid.
edge	BIGINT	lder nati	ntifier of the edge us	sed to go fromnode to the next node in the path sequence1 for the last node of the

FLOAT Cost to traverse from node using edge to the next node in the path sequence. cost

FLOAT Aggregate cost from start_vid to node. agg_cost

Additional Examples

Example:

From vertex (3) to (8) with strict flag on.

No results because the only path available follows a restriction.

SELECT * FROM pgr_turnRestrictedPath(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, 3, 8, 3, strict => true); seq | path_id | path_seq | node | edge | cost | agg_cost

Example:

From vertex \(3\) to vertex \(8\) on an undirected graph

SELECT * FROM pgr_turnRestrictedPath(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$,

3, 8, 3, directed => false);

seq p	oath_id	path_seq	node ed	ge cost	agg_cost
+	+	+	++	+	
1	1	1 3	7 1	0	
2	1	2 7	4 1	1	
3	1	3 6	2 1	2	
4	1	4 10	5 1	3	
5	1	5 11	11 1	4	
6	1	6 12	12 1	5	
7	1	7 8	-1 0	6	
(7 rows	s)				

Example:

From vertex (3) to vertex (8) with more alternatives

SELECT * FROM pgr_turnRestrictedPath(\$\$\$ELECT id, source, target, cost, reverse_oost FROM edges\$\$, \$\$SELECT path, cost FROM restrictions\$\$, 3, 8, 3, directed => false, heap paths => true,

stop	on first	=> false):			
seq	bath id	path se	,, eq noc	le edd	e cost	agg cost
+	+	+-	+	+	+	
1	1	1 3	7	1	0	
2	1	2 7	4	1	1	
3	1	3 6	2	1	2	
4	1	4 10	5	1	3	
5	1	5 11	11	1	4	
6	1	6 12	12	1	5	
7	1	7 8	-1	0	6	
8	2	1 3	7	1	0	
9	2	2 7	8	1	1	
10	2	3 1	9	1	2	
11	2	4 10	6 15	1	3	
12	2	5 1	7 13	1	4	
13	2	6 13	2 12	1	5	
14	2	7 8	-1	0	6	
(14 rov	vs)					

See Also

- K shortest paths Category
- Sample Data
- Indices and tables
 - Index
 - Search Page

Introduction

Road restrictions are a sequence of road segments that can not be taken in a sequential manner. Some restrictions are implicit on a directed graph, for example, one way roads where the wrong way edge is not even inserted on the graph. But normally on turns like no left turn or no right turn, hence the name turn restrictions, there are sometimes restrictions.

TRSP algorithm

The internal TRSP algorithm performs a lookahead over the dijkstra algorithm in order to find out if the attempted path has a restriction. This allows the algorithm to pass twice on the same vertex.

arameters								
Parameter	Туре	Description						
Edges SQL	TEXT	Edges SQL query as described.						
Restrictions SQL	TEXT	Restrictions SQL query as described.						
via vertices	ARRAY[ANY-INTEGER]	Array of ordered vertices identifiers that are going to be visited.						

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Restrictions

On road networks, there are restrictions such as left or right turn restrictions, no U turn restrictions.

A restriction is a sequence of edges, called path and that path is to be avoided.

images/with restrictions and	
_inages/with_restrictions.phg	

Restrictions on the road network

These restrictions are represented on a table as follows:

Note

The table has an identifier, which maybe is needed for the administration of the restrictions, but the algorithms do not need that information. If given it will be ignored.

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where: ANY-INTEGER:			
SMALLINT, INTE	GER, BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTE	GER, BIGINT, REAL, FLOAT		
Column	Туре		Description
path	ARRAY [ANY-INTEGER]		Sequence of edge identifiers that form a path that is not allowed to be taken Empty arrays oNULL arrays are ignored Arrays that have a NULL element will raise an exception.
Cost	ANY-NUMERICAL		Cost of taking the forbidden path.
Where:			
ANY-INTEGER:			
SMALLINT, INTE	GER, BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTE	GER, BIGINT, REAL, FLOAT		
See Also			
Indices and tables			
• Index			
Search Page			
	f Eurotiona		

These proposed functions do not modify the database.

- pgr_degree Proposed Returns a set of vertices and corresponding count of incidet edges to the vertex.
- pgr_extractVertices Proposed Extracts vertex information based on the edge table information.

Transformation - Family of functions

• pgr_lineGraph - Proposed - Transformation algorithm for generating a Line Graph.

Coloring - Family of functions

• pgr_sequentialVertexColoring - Proposed - Vertex coloring algorithm using greedy approach.

Traversal - Family of functions

• pgr_depthFirstSearch - Proposed - Depth first search traversal of the graph.

Traversal - Family of functions

Proposed

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - · pgTap tests have being done. But might need more
 - Documentation might need refinement.
- pgr_depthFirstSearch Proposed Depth first search traversal of the graph.

Experimental

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting
- pgr_breadthFirstSearch Experimental Breath first search traversal of the graph.
- pgr_binaryBreadthFirstSearch Experimental Breath first search traversal of the graph.

Aditionaly there are 2 categories under this family

- BFS Category
- DFS Category

pgr_depthFirstSearch - Proposed¶

pgr_depthFirstSearch - Returns a depth first search traversal of the graph. The graph can be directed or undirected.

Boost Graph Inside

Doost Graph more

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)

- · Signature might not change. (But still can)
- · Functionality might not change. (But still can)
- · pgTap tests have being done. But might need more.
- · Documentation might need refinement.

Availability

Version 3.3.0

- · Promoted to proposed function
- Version 3.2.0
 - New experimental signatures:
 - pgr_depthFirstSearch (Single Vertex)
 - pgr_depthFirstSearch (<u>Multiple Vertices</u>)

Description

Depth First Search algorithm is a traversal algorithm which starts from a root vertex, goes as deep as possible, and backtracks once a vertex is reached with no adjacent vertices or with all visited adjacent vertices. The traversal continues until all the vertices reachable from the root vertex are visited.

The main Characteristics are:

- The implementation works for both directed and undirected graphs.
- · Provides the Depth First Search traversal order from a root vertex or from a set of root vertices.
- · An optional non-negative maximum depth parameter to limit the results up to a particular depth.
- For optimization purposes, any duplicated values in the Root vids are ignored.
- · It does not produce the shortest path from a root vertex to a target vertex
- The aggregate cost of traversal is not guaranteed to be minimal.
- The returned values are ordered in ascending order of start vid.
- Depth First Search Running time: \(O(E + V)\)

Signatures

Summary

pgr_depthFirstSearch(<u>Edges SQL</u>, root vid, [options]) pgr_depthFirstSearch(<u>Edges SQL</u>, root vids, [options])

options: [directed, max_depth] Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_depthFirstSearch(Edges SQL, root vid, [options]) options: [directed, max_depth]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:

From root vertex \(6\) on a directed graph with edges in ascending order ofid

SELECT * FROM pgr_depthFirstSearch('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',

seq | depth | start_vid | node | edge | cost | agg_cost

	+++++++	
1 0	6 6 -1 0	0
2 1	6 5 1 1	1
3 1	6 7 4 1	1
4 2	6 3 7 1	2
5 3	6 1 6 1	3
6 2	6 11 8 1	2
7 3	6 16 9 1	3
8 4	6 17 15 1	4
9 4	6 15 16 1	4
10 5	6 10 3 1	5
11 3	6 12 11 1	3
12 2	6 8 10 1	2
13 3	6 9 14 1	3
(13 rows)		

Multiple vertices

pgr_depthFirstSearch(Edges SQL, root vids, [options]) options: [directed, max_depth]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:

From root vertices \(\{12, 6\}\) on an undirected graph with depth \(<= 2\) and edges in ascending order ofid

SELECT * FROM pgr_depthFirstSearch('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[12, 6], directed => false, max_depth => 2);

seq	depth	start_vid	node	edge	cost	agg_cos
+-	+	+	+	+	+	
1	0	6 6	-1	0	0	

2	1	6 5 1 1	1
3	1	6 10 2 1	1
4	2	6 15 3 1	2
5	2	6 11 5 1	2
6	1	6 7 4 1	1
7	2	6 3 7 1	2
8	2	6 8 10 1	2
9	0	12 12 -1 0	0
10	1	12 11 11 1	1
11	2	12 10 5 1	2
12	2	12 7 8 1	2
13	2	12 16 9 1	2
14	1	12 8 12 1	1
15	2	12 9 14 1	2
16	1	12 17 13 1	1
(16 rov	NS)		

Parameters 1

Parameter	Туре		Description
Edges SQL	TEXT	Edges SQI	L as described below.
		Identifier of	f the root vertex of the tree.
root vid	BIGINT	When fores	n value is $\(0\)$ then gets the spanning forest starting in aleatory nodes for each tree in the t.
		Array of ide	entifiers of the root vertices.
root vids	ARRAY [ANY-INTEGER]	•	\(0\) values are ignored
		•	For optimization purposes, any duplicated value is ignored.
Where:			
ANY-INTEGER:			
	NTEGER, BIGINT		
SMALL INT	NTEGER BIGINT REAL FLOAT NU	MERIC	
	NTEGEN, DIGINT, HEAL, TEORT, NO	MEINO	
Column Type	Default Descript	ion	
	When the graph is of	anaidarad Dira	tad
directed BOOLEAN	• When true the graph is co	onsidered as	ciea
	Undirected.		
DFS optional parameters	1		
Parameter Type	Default	Description	
Turumeter Type	Denan	Description	
	Upper limit	of the depth of	f the tree.
max_depth BIGINT	(9223372036854775807() • When error.	negative throw	ws an
Inner Queries			
Edges SQL <mark>1</mark>			
Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
			Weight of the edge (target, source)
reverse_cost	ANY-NUMERICAL	-1	When negative: edge (target, source) does not exist, therefore it's not part of the graph
			graph.
Where:			
ANY-INTEGER:			
SMALLINT, INT	EGER, BIGINT		
ANY-NUMERICAL			
SMALLINI, IN	EGER, BIGINT, REAL, FLOAT		
Result columns			
Heturns set of (seq.	depth, start_vid, node, edge, cost, agg_cost)		
Parameter Type	Description		
seq BIGINT	Sequential value starting from \(1\).		
depth BIGINT	Depth of the node. \(0\) when node = start_vid.		
start_vid BIGINT	Identifier of the root vertex.		

Parameter Type Description

node BIGINT Identifier of node reached using edge.

Identifier of the edge used to arrive to

edge BIGINT node.

\(-1\) when node = start_vid.

cost FLOAT Cost to traverse edge.

agg_cost FLOAT Aggregate cost from start_vid to node.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERIC:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Additional Examples

Example:

Same as Single vertex but with edges in descending order ofid.

SELECT * FROM pg__depthFirstSearch('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id DESC', 6):

seq | depth | start_vid | node | edge | cost | agg_cost

1	0	6 6 -1 0	0
2	1	6 7 4 1	1
3	2	6 8 10 1	2
4	3	6 9 14 1	3
5	3	6 12 12 1	3
6	4	6 17 13 1	4
7	5	6 16 15 1	5
8	6	6 15 16 1	6
9	7	6 10 3 1	7
10	8	6 11 5 1	8
11	2	6 3 7 1	2
12	3	6 1 6 1	3
13	1	6 5 1 1	1
(13 rov	ws)		

The resulting traversal is different.

The left image shows the result with ascending order of ids and the right image shows with descending order of the edge identifiers.

ascending	descending
	ucounting

See Also

- DFS Category
- <u>Sample Data</u>
- Boost: Depth First Search algorithm documentation
- Boost: Undirected DFS algorithm documentation

• Wikipedia: Depth First Search algorithm

- Indices and tables
 - Index
 - Search Page

pgr_breadthFirstSearch - Experimental

pgr_breadthFirstSearch — Returns the traversal order(s) using Breadth First Search algorithm.

Boost Graph Inside

Warning

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.0.0
 - New experimental signature:
 - pgr_breadthFirstSearch (Single Vertex)
 - pgr_breadthFirstSearch (Multiple Vertices)

Description

Provides the Breadth First Search traversal order from a root vertex to a particular depth.

The main Characteristics are:

- The implementation will work on any type of graph.
- Provides the Breadth First Search traversal order from a source node to a target depth level.
- Running time: \(O(E + V)\)

Signatures

Summary

pgr_breadthFirstSearch(<u>Edges SQL</u>, root vid, [options]) pgr_breadthFirstSearch(<u>Edges SQL</u>, root vids, [options]) options: [max_depth, directed] Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Single vertex

pgr_breadthFirstSearch(<u>Edges SQL</u>, **root vid**, [options]) options: [max_depth, directed] Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:

From root vertex \(6\) on a directed graph with edges in ascending order ofid

SELECT * FROM pgr_breadthFirstSearch('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',

1110	w euge	5 011		DIIC	·,			
6);								
seq	depth	start_	vid	node	edg	e cos	t agg	_cost
+-	+							
11	01	61	61	-11	01	0		

2	1	6 5 1 1 1	
3	1	6 7 4 1 1	
4	2	6 3 7 1 2	
5	2	6 11 8 1 2	
6	2	6 8 10 1 2	
7	3	6 1 6 1 3	
8	3	6 16 9 1 3	
9	3	6 12 11 1 3	3
10	3	6 9 14 1 3	3
11	4	6 17 15 1	4
12	4	6 15 16 1	4
13	5	6 10 3 1 5	5
(13 rov	NS)		

Multiple vertices

pgr_breadthFirstSearch(Edges SQL, root vids, [options]) options: [max_depth, directed]

Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)

Example:

 $\label{eq:From root vertices (({12, 6})) on an undirected graph with depth (<= 2) and edges in ascending order of identified or (<= 2) and edges in ascending order of identified or (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<= 2) and (<=$

 SELECT * FROM pgr_breadthFirstSearch(

 'SELECT id, source, target, cost, reverse_cost

 FROM edges ORDER BY id',

 ARRAY[12, 6], directed ar-stalse, max_depth => 2);

 seq | depth | start_vid | node | edge | cost | agg_cost

 1
 0

1	0	6	6	-1	0	0
2	1	6	5	1	1	1
3	1	6	10	2	1	1
4	1	6	7	4	1	1
5	2	6	15	3	1	2
6	2	6	11	5	1	2

7 2	6	3 7	1	2
8 2	6	8 10	1	2
9 0	12	12 -1	0	0
10 1	12	11 11	1	1
11 1	12	8 12	1	1
12 1	12	17 13	1	1
13 2	12	10 5	1	2
14 2	12	7 8	1	2
15 2	12	16 9	1	2
16 2	12	9 14	1	2
(16 rows)				

Parameters 1

Parameter	Туре		Description		
Edges SQL	TEXT	Edges SQL as	s described below.		
		Identifier of the	e root vertex of the tree.		
root vid	BIGINT	When va forest.	alue is $\(0\)$ then gets the spanning forest starting in aleatory nodes for each tree in the		
		Array of identi	fiers of the root vertices.		
root vids	ARRAY [ANY-INTEGER]	• \(0	\) values are ignored		
		• Fo	r optimization purposes, any duplicated value is ignored.		
Whoro:					
ANY-INTEGER					
SMALLINT.	INTEGER, BIGINT				
ANY-NUMERIC:					
SMALLINT,	INTEGER, BIGINT, REAL, FLOAT, N	JMERIC			
Optional parameters					
Column Type	Default Descrip	tion			
	 When true the graph is of 	onsidered Directed	1		
directed BOOLEAN	When false the graph is	considered as			
	Undirected.				
DES ontional parameters	- F				
	•1				
Parameter Type	Default	Description			
	Lipper limi	of the depth of the			
max_depth BIGINT	· \(9223372036854775807\) • Whe	n negative throws	an		
	error				
Inner Queries					
Edges SQL					
Colum	n Type	Default	Description		
id	ANY-INTEGER	ld	entifier of the edge.		
source	ANY-INTEGER	ld	entifier of the first end point vertex of the edge.		
target	ANY-INTEGER	ld	entifier of the second end point vertex of the edge.		
cost	ANY-NUMERICAL	W	eight of the edge (source, target)		
		W	leight of the edge (target, source)		
reverse_cost	ANY-NUMERICAL	-1	When negative: edge (target, source) does not exist, therefore it's not part of the graph.		
Where:					
ANY-INTEGER:					
SMALLINT, IN	TEGER, BIGINT				
ANY-NUMERICAL:					
SMALLINT, INTEGER, BIGINT, REAL, FLOAT					
Result columns					
Returns set of (seq, depth, start_vid, node, edge, cost, agg_cost)					

Parameter Type

Description

Parameter Type Description seq BIGINT Sequential value starting from \(1\). depth Depth of the node. depth BIGINT start_vid BIGINT Identifier of the root vertex. node BIGINT Identifier of node reached using edge. Identifier of the edge used to arrive to edge BIGINT node.

• \(-1\) when node = start_vid.

cost FLOAT Cost to traverse edge.

agg_cost FLOAT Aggregate cost from start_vid to node.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERIC:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT, NUMERIC

Additional Examples

Example:

Same as Single vertex with edges in ascending order ofid.

SELECT * FROM pgr_breadthFirstSearch('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6);

seq | depth | start_vid | node | edge | cost | agg_cost

			+
1	0	6 6 -1 0	0
2	1	6 5 1 1	1
3	1	6 7 4 1	1
4	2	6 3 7 1	2
5	2	6 11 8 1	2
6	2	6 8 10 1	2
7	3	6 1 6 1	3
8	3	6 16 9 1	3
9	3	6 12 11 1	3
10	3	6 9 14 1	3
11	4	6 17 15 1	4
12	4	6 15 16 1	4
13	5	6 10 3 1	5
(13 rov	vs)		

Example:

Same as Single vertex with edges in descending order ofid.

SELECT * FROM pgr_breadthFirstSearch('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id DESC', 6);

seq	depth :	start_	vid noc	de edg	e cost	agg_cost
+	+		-++-	+	+	
1	0	6	6 -1	0	0	
2	1	6	7 4	1	1	
3	1	6	5 1	1	1	
4	2	6	8 10	1	2	
5	2	6	11 8	1	2	
6	2	6	3 7	1	2	
7	3	6	9 14	1	3	
8	3	6	12 12	2 1	3	
9	3	6	16 9	11	3	
10	3	6	1 6	í 1Í	3	

 11
 4
 6
 17
 13
 1
 4

 12
 4
 6
 15
 16
 1
 4

 13
 5
 6
 10
 3
 1
 5

 (13 rows)
 6
 10
 3
 1
 5

The resulting traversal is different.

The left image shows the result with ascending order of ids and the right image shows with descending order of the edge identifiers.

ascending	descending

See Also

- BFS Category
- Sample Data
- Boost: Breadth First Search algorithm documentation
• Wikipedia: Breadth First Search algorithm

Indices and tables

- Index
- Search Page

pgr_binaryBreadthFirstSearch - Experimental

por binaryBreadthFirstSearch — Returns the shortest path in a binary graph.

Any graph whose edge-weights belongs to the set {0,X}, where 'X' is any non-negative integer, is termed as a 'binary graph'.

Boost Graph Inside

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing
 - Might need c/c++ coding
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - · New experimental signature:
 - pgr binaryBreadthFirstSearch(Combinations)
- Version 3.0.0
 - · New experimental signatures:
 - pgr binaryBreadthFirstSearch(One to One)
 - pgr_binaryBreadthFirstSearch(One to Many)
 - pgr_binaryBreadthFirstSearch(Many to One)
 - pgr binaryBreadthFirstSearch(Many to Many)

cription

It is well-known that the shortest paths between a single source and all other vertices can be found using Breadth First Search in(O([E])) in an unweighted graph, i.e. the distance is the minimal number of edges that you need to traverse from the source to another vertex. We can interpret such a graph also as a weighted graph, where every edge has the weight \(1\). If not alledges in graph have the same weight, that we need a more general algorithm, like Dijkstra's Algorithm which runs in \(O(|E|log|V|)\) time.

However if the weights are more constrained, we can use a faster algorithm. This algorithm, termed as 'Binary Breadth First Search' as well as '0-1 BFS', is a variation of the standard Breadth First Search problem to solve the SSSP (single-source shortest path) problem in \(O(|E|)\), if the weights of each edge belongs to the set {0,X}, where 'X' is any non-negative real integer.

The main Characteristics are:

- Process is done only on 'binary graphs'. ('Binary Graph': Any graph whose edge-weights belongs to the set {0,X}, where 'X' is any non-negative real integer.)
- For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- · The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: \(O(| start_vids | * |E|)\)

Signatures

Summary

pgr_binaryBreadthFirstSearch(<u>Edges SQL</u>, start vid, end vid, [directed]) pgr_binaryBreadthFirstSearch(<u>Edges SQL</u>, start vid, end vids, [directed]) pgr_binaryBreadthFirstSearch(<u>Edges SQL</u>, start vids, end vid, [directed])

pgr_binaryBreadthFirstSearch(Edges SQL, start vids, end vids, [directed]) pgr_binaryBreadthFirstSearch(Edges SQL, Combinations SQL, [directed]) Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)

OR EMPTY SET

Note: Using the <u>Sample Data</u> Network as all weights are same (i.e $(1^{)})$

pgr_binaryBreadthFirstSearch(<u>Edges SOL</u>, start vid, end vid, [directed]) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex (6) to vertex (10) on a **directed** graph

SELECT * FROM pgr_binaryBreadthFirstSearch('SELECT id, source, target, cost, reverse_cost from edges', 6, 10, true); seq | path_seq | node | edge | cost | agg_cost

 1
 6
 4
 1
 0

 2
 7
 8
 1
 1

 3
 11
 9
 1
 2

 4
 16
 16
 1
 3

 5
 15
 3
 1
 4

 6
 10
 -1
 0
 5
 1 | 2 | 3 | 4 | 5 | 6 (6 rows)

One to Many

pgr_binaryBreadthFirstSearch(<u>Edges SQL</u>, **start vid**, **end vids**, [directed]) Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex (6) to vertices $({10, 17})$ on a directed graph

SELECT * FROM pgr_binaryBreadthFirstSearch(SELECT id, source, target, cost, reverse_cost from edges', 6, ARRAY[10, 17]): seq | path_seq | end_vid | node | edge | cost | agg_cost

T	т.	T	T	T	T
1	1	10 6	4	1	0
2	2	10 7	8	1	1
3	3	10 11	9	1	2
4	4	10 16	16	1	3
5	5	10 15	3	1	4
6	6	10 10	-1	0	5
7	1	17 6	4	1	0
8	2	17 7	8	1	1
9	3	17 11	11	1	2
10	4	17 12	13	1	3
11	5	17 17	-1	0	4
(11 row	s)				

Many to One

pgr_binaryBreadthFirstSearch(Edges SQL, start vids, end vid, [directed]) Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $((\{6, 1\}))$ to vertex (17) on a **directed** graph

SELECT * FROM pgr_binaryBreadthFirstSearch('SELECT id, source, target, cost, reverse_cost from edges', ARRAY[6, 1], 17); seq | path_seq | start_vid | node | edge | cost | agg_cost

1	1	1 1 6 1	0
2	2	1 3 7 1	1
3	3	1 7 8 1	2
4	4	1 11 11 1	3
5	5	1 12 13 1	4
6	6	1 17 -1 0	5
7	1	6 6 4 1	0
8	2	6 7 8 1	1
9	3	6 11 11 1	2
10	4	6 12 13 1	3
11	5	6 17 -1 0	4
14.4			

(11 rows)

Many to Many

pgr_binaryBreadthFirstSearch(<u>Edges SQL</u>, start vids, end vids, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(({6, 1}))$ to vertices $(({10, 17}))$ on an **undirected** graph

SELECT * FROM pgr_binaryBreadthFirstSearch('SELECT id, source, larget, cost, reverse_cost from edges', ARRAY(6, 1), ARRAY[10, 17], directed => false); directed => false); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

			+++++++	**
1	1	1	10 1 6 1 0)
2	2	1	10 3 7 1 1	
3	3	1	10 7 4 1 2	2
4	4	1	10 6 2 1 3	3
5	5	1	10 10 -1 0	4
6	1	1	17 1 6 1 0)
7	2	1	17 3 7 1 1	
8	3	1	17 7 8 1 2	2
9	4	1	17 11 11 1	3
10	5	1	17 12 13 1	4
11	6	1	17 17 -1 0	5
12	1	6	10 6 2 1	C
13	2	6	10 10 -1 0	1
14	1	6	17 6 4 1 0	J
15	2	6	17 7 8 1	1
16	3	6	17 11 11 1	2
17	4	6	17 12 13 1	3
18	5	6	17 17 -1 0	4
(18 row	s)			

Combinations

pgr_binaryBreadthFirstSearch(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an **undirected** graph

The combinations table:

SELECT source, target FROM combinations; source | target

5	6
5	10
6	5
6	15
6	14
(5 rows)	

The query:

1 | 2 2 | 2 3 | 4 4 | 2 6 | 7 7 | 2 8 | 7 9 | 2 10 | (10 rows)

Parameters 9

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Column	Туре	Default	Description
			• When true the graph is considered Directed
directed	BOOLEAN	V true	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parameter Туре

Parameter Туре

source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Set of (seq, path_id, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_id	INTEGER	Path identifier. • Has value 1 for the first of a path fromstart_vid to end_vid.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. • <u>Many to One</u> • <u>Many to Many</u> • <u>Combinations</u>
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. • <u>One to Many</u> • <u>Many to Many</u> • <u>Combinations</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.
Additional Examples		

Description

Example:

Manually assigned vertex combinations.

			++++++++
1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	6	10 6 4 1 0
4	2	6	10 7 8 1 1
5	3	6	10 11 9 1 2
6	4	6	10 16 16 1 3
7	5	6	10 15 3 1 4
8	6	6	10 10 -1 0 5
9	1	12	10 12 13 1 0
10	2	12	10 17 15 1 1
11	3	12	10 16 16 1 2
12	4	12	10 15 3 1 3
13	5	12	10 10 -1 0 4
(13 row	/s)		

See Also

- Sample Data
- https://cp-algorithms.com/graph/01_bfs.html
- https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#Specialized_variants

Indices and tables

- Index
- Search Page

See Also

Indices and tables

- Index
- Search Page

Coloring - Family of functions

Proposed

Warning

Proposed functions for next mayor release.

• They are not officially in the current release.

- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

• pgr_sequentialVertexColoring - Proposed - Vertex coloring algorithm using greedy approach.

Experimental

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting
- pgr_bipartite -Experimental Bipartite graph algorithm using a DFS-based coloring approach.
- pgr_edgeColoring Experimental Edge Coloring algorithm using Vizing's theorem.

pgr_sequentialVertexColoring - Proposed

pgr_sequentialVertexColoring - Returns the vertex coloring of an undirected graph, using greedy approach.

Boost Graph Inside

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - · Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

Availability

- Version 3.3.0
 - Promoted to proposed signature
- Version 3.2.0
 - New experimental signature

Description

Sequential vertex coloring algorithm is a graph coloring algorithm in which color identifiers are assigned to the vertices of a graph in a sequential manner, such that no edge connects two identically colored vertices.

The main Characteristics are:

- The implementation is applicable only for undirected graphs.
- Provides the color to be assigned to all the vertices present in the graph.
- Color identifiers values are in the Range\([1, |V|]\)
- The algorithm tries to assign the least possible color to every vertex.
- Efficient graph coloring is an NP-Hard problem, and therefore, this algorithm does not always produce optimal coloring. It follows a greedy strategy by iterating through all the vertices sequentially, and assigning the smallest possible color that is not used by its neighbors, to each vertex.
- · The returned rows are ordered in ascending order of the vertex value.
- Sequential Vertex Coloring Running Time: \(O(|V|*(d + k))\)
 - $\circ~$ where $\backslash (|V| \backslash)$ is the number of vertices,
 - $\circ \ \ (d\)$ is the maximum degree of the vertices in the graph,
 - \(k\) is the number of colors used.

Signatures

pgr_sequentialVertexColoring(<u>Edges SQL</u>) Returns set of (vertex_id, color_id) OR EMPTY SET

Example:

Graph coloring of pgRouting Sample Data

SELECT * FROM pgr_sequentialVertexColoring('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id'

);

Parameters

Parameter Type	Description
Parameter Type	Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (vertex_id, color_id)

Column Type

Description

vertex_id BIGINT Identifier of the vertex.

Column Type Description

Identifier of the color of the vertex.

color_id BIGINT • The minimum value of color is 1.

See Also

- The queries use the Sample Data network.
- Boost: Sequential Vertex Coloring algorithm documentation
- Wikipedia: Graph coloring
- Indices and tables
 - Index
 - Search Page

pgr_bipartite -Experimental

pgr_bipartite - Disjoint sets of vertices such that no two vertices within the same set are adjacent.

Boost Graph Inside

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - · Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - New experimental signature

De cription

A bipartite graph is a graph with two sets of vertices which are connected to each other, but not within themselves. A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color.

The main Characteristics are:

- The algorithm works in undirected graph only.
- The returned values are not ordered.
- The algorithm checks graph is bipartite or not. If it is bipartite then it returns the node along with two colors0 and 1 which represents two different sets.
- · If graph is not bipartite then algorithm returns empty set.
- Running time: \(O(V + E)\)

Signatures

pgr_bipartite(<u>Edges SQL</u>) Returns set of (vertex_id, color_id) OR EMPTY SET

Example:

When the graph is bipartite

SELECT * FROM pgr_bipartite(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$) ORDER BY vertex_id; vertex_id | color_id

Parameters 9

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (vertex_id, color_id)

Column Type Description

vertex_id BIGINT Identifier of the vertex.

Identifier of the color of the vertex.

1.

 ${}^{\rm color_id} {}^{\rm BIGINT}$ $\,$ \bullet The minimum value of color is

Additional Example

Example:

The odd length cyclic graph can not be bipartite.

 $The edge \ (5 \ rightarrow \ 1\) will make subgraph with \ vertices \ (\ 1, \ 3, \ 7, \ 6, \ 5\)) an odd \ length \ cyclic \ graph, \ as the cycle has \ 5 \ vertices.$

INSERT INTO edges (source, target, cost, reverse_cost) VALUES

(5, 1, 1, 1); INSERT 0 1

Edges in blue represent odd length cycle subgraph.

_images/bipartite.png

SELECT * FROM pgr_bipartite(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$

); vertex_id | color_id (0 rows)

See Also

- Boost: is bipartite
- Wikipedia: bipartite graph
- Sample Data network.
- Indices and tables

Index

- Search Page
- pgr_edgeColoring Experimental

pgr_edgeColoring - Returns the edge coloring of undirected and loop-free graphs

Boost Graph Inside

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

• Version 3.3.0

· New experimental signature

Description

Edge Coloring is an algorithm used for coloring of the edges for the vertices in the graph. It is an assignment of colors to the edges of the graph so that no two adjacent edges have the same color.

The main Characteristics are:

- The implementation is for undirected and loop-free graphs
 - loop free:
 - no self-loops and no parallel edges.
- · Provides the color to be assigned to all the edges present in the graph.
- At most \(\Delta + 1\) colors are used, where \(\Delta\) is the degree of the graph.
 - This is optimal for some graphs, and by Vizing's theorem it uses at most one color more than the optimal for all others.
 - · When the graph is bipartite
 - the chromatic number \(x'(G)\) (minimum number of colors needed for proper edge coloring of graph) is equal to the degrea(\Delta + 1\) of the graph, (\(x'(G) = \Delta\))
- The algorithm tries to assign the least possible color to every edge.
 - · Does not always produce optimal coloring.
- The returned rows are ordered in ascending order of the edge identifier.
- Efficient graph coloring is an NP-Hard problem, and therefore:
 - In this implelentation the running time: $(O(|E|^*|V|))$
 - where \(|E|\) is the number of edges in the graph,
 - \(|V|\) is the number of vertices in the graph.

Signatures

pgr_edgeColoring(Edges SQL) Returns set of (edge_id, color_id) OR EMPTY SET

Example:

Graph coloring of pgRouting Sample Data

SELECT * FROM pgr_edgeColoring('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id'

Parameters¶

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (edge_id, color_id)

Column Type Description

edge_id BIGINT Identifier of the edge.

Identifier of the color of the edge. color_id BIGINT • The minimum value of color is

1.

See Also

• The queries use the Sample Data network.

Boost: Edge Coloring Algorithm documentation

Wikipedia: Graph coloring

Indices and tables

- Index
- Search Page

Result columns

Returns set of (vertex_id, color_id)

Column Type

vertex_id BIGINT Identifier of the vertex.

Description

Column Type Description

Identifier of the color of the vertex.

color_id BIGINT • The minimum value of color is 1.

Returns set of (edge_id, color_id)

Column Type Description

edge_id BIGINT Identifier of the edge.

Identifier of the color of the edge

 $^{\rm color_id}$ $^{\rm BIGINT}$ $\,$ $\,$ $\,$ The minimum value of color is

See Also

- Boost: Sequential Vertex Coloring algorithm documentation
- <u>Wikipedia: Graph coloring</u>
- Boost: is_bipartite
- Wikipedia: bipartite graph
- Boost: Edge Coloring Algorithm documentation
- <u>Wikipedia: Graph coloring</u>

Indices and tables

• Index

Search Page

categories

Cost - Category

pgr_withPointsCost - Proposed

Cost Matrix - Category

pgr_withPointsCostMatrix - proposed

Driving Distance - Category

• pgr_withPointsDD - Proposed - Driving Distance based on pgr_withPoints

K shortest paths - Category

• pgr_withPointsKSP - Proposed - Yen's algorithm based on pgr_withPoints

Via - Category

- pgr_dijkstraVia Proposed
- pgr_withPointsVia Proposed
- pgr_trspVia Proposed
- pgr_trspVia_withPoints Proposed

withPoints - Category

- withPoints Family of functions Functions based on Dijkstra algorithm.
- From the TRSP Family of functions:
 - pgr_trsp_withPoints Proposed Vertex/Point routing with restrictions.
 - pgr trspVia withPoints Proposed Via Vertex/point routing with restrictions.

withPoints - Family of functions

When points are also given as input:

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.
- pgr_withPoints Proposed Route from/to points anywhere on the graph.
- pgr_withPointsCost Proposed Costs of the shortest paths.
- pgr_withPointsCostMatrix proposed Costs of the shortest paths.
- pgr_withPointsKSP Proposed K shortest paths.

- pgr_withPointsDD Proposed Driving distance.
- pgr_withPointsVia Proposed Via routing

pgr_withPoints - Proposed

pgr_withPoints - Returns the shortest path in a graph with additional temporary vertices.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might not change. (But still can)
 - Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - · pgTap tests have being done. But might need more
 - · Documentation might need refinement.

Boost Graph Inside

Availability

• Version 3.2.0

• New proposed function:

- pgr_withPoints(Combinations)
- Version 2.2.0
 - · New proposed function

Description

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, find the shortest path

The main characteristics are:

· Process is done only on edges with positive costs.

- · Vertices of the graph are:
 - positive when it belongs to the edges_sql
 - negative when it belongs to the points_sql
- · Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path. The agg_cost the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path: The agg_cost the non included values (u, v) is ∞
- · For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- The returned values are ordered: start_vid ascending end_vid ascending
- Running time: \(O(|start_vids|\times(V \log V + E))\)

Signatures

Summary

pgr_withPoints(<u>Edges SQL</u>, <u>Points SQL</u>, <u>start vid</u>, end vid, [options]) pgr_withPoints(<u>Edges SQL</u>, <u>Points SQL</u>, <u>start vid</u>, end vids, [options]) pgr_withPoints(<u>Edges SQL</u>, <u>Points SQL</u>, <u>start vids</u>, end vid, [options]) pgr_withPoints(Edges SQL, Points SQL, start vids, end vids, [options]) pgr_withPoints(Edges SQL, Points SQL, start vids, end vids, [options]) pgr_withPoints(Edges SQL, Points SQL, Combinations SQL, [options]) options: [directed, driving_side, details]) Returns set of (seq, path_seq, [start_pid], [end_pid], node, edge, cost, agg_cost)

OR EMTPY SET

One to One

pgr_withPoints(<u>Edges SQL</u>, Points SQL, start vid, end vid, [options]) options: [directed, driving_side, details]) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMTPY SET

Example:

From point (1) to vertex (10) with details

SELECT * FROM pgr_withPoints('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', -1 10

details => true); seq | path_seq | node | edge | cost | agg_cost

1	1	-1	1 ().6	0
2	2	6	4 0).7	0.6
3	3	-6	4 0).3	1.3
4	4	7	8	1	1.6
5	5	11	9	1	2.6
6	6	16	16	1	3.6
7	7	15	3	1	4.6
8	8	10	-1	0	5.6
(8 rows)					

One to Manv

options: [directed, driving_side, details]) Returns set of (seq, path_seq, end_pid, node, edge, cost, agg_cost) OR EMTPY SET

Example:

From point (1) to point (3) and vertex (7) on an undirected graph

SELECT * FROM pgr_withPoints('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', -1, ARRAY[-3, 7], directed => false); seq | path_seq | end_pid | node | edge | cost | agg_cost

1	1	-3	-1	1 0.6	0
2	2	-3	6	4 1	0.6
3	3	-3	7	10 1	1.6
4	4	-3	8	12 0.6	2.6
5	5	-3	-3	-1 0	3.2
6	1	7	-1	1 0.6	0
7	2	7	6	4 1	0.6
8	3	7	7	-1 0	1.6
(8 rows)					

Many to One

pgr_withPoints(Edges SQL, Points SQL, start vids, end vid, [options]) options: [directed, driving side, details]) Returns set of (seq, path_seq, start_pid, node, edge, cost, agg_cost) OR EMTPY SET

Example:

From point (1) and vertex (6) to point (3)

SELECT * FROM pgr_withPoints(

SELECI 1 * HOM pgr_withPoints("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', "SELECT id, edge_id, fraction, side from pointsOfInterest', ARRAY[-1, 6], -3); seq | path_seq | start_pid | node | edge | cost | agg_cost

1	1	-1	-1	1 0.6	0
2	2	-1	6	4 1	0.6
3	3	-1	7	10 1	1.6
4	4	-1	8	12 0.6	2.6
5	5	-1	-3	-1 0	3.2
6	1	6	6	4 1	0
7	2	6	7	10 1	1
8	3	6	8	12 0.6	2
9	4	6	-3	-1 0	2.6
(9 rows)				

Many to Many

pgr_withPoints(<u>Edges SQL</u>, <u>Points SQL</u>, <u>start vids</u>, <u>end vids</u>, [options]) options: [directed, driving_side, details]) Returns set of (seq, path_seq, start_pid, end_pid, node, edge, cost, agg_cost) OR EMTPY SET

Example:

From point (1) and vertex (6) to point (3) and vertex (1)

SELECT * FROM pgr_withPoints('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[-1, 6], ARRAY[-3, 1]); seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost

+	+		+	+	++-	+
1	1	-1	-3	-1	1 0.6	0
2	2	-1	-3	6	4 1	0.6
3	3	-1	-3	7	10 1	1.6
4	4	-1	-3	8	12 0.6	2.6
5	5	-1	-3	-3	-1 0	3.2
6	1	-1	1	-1	1 0.6	0
7	2	-1	1	6	4 1	0.6
8	3	-1	1	7	7 1	1.6
9	4	-1	1	3	6 1	2.6
10	5	-1	1	1	-1 0	3.6
11	1	6	-3	6	4 1	0
12	2	6	-3	7	10 1	1
13	3	6	-3	8	12 0.6	2
14	4	6	-3	-3	-1 0	2.6
15	1	6	1	6	4 1	0
16	2	6	1	7	7 1	1
17	3	6	1	3	6 1	2
18	4	6	1	1	-1 0	3
(18 row	rs)					

Combinations

pgr_withPoints(Edges SQL, Points SQL, Combinations SQL, [options]) options: [directed, driving_side, details]) Returns set of (seq, path_seq, start_pid, end_pid, node, edge, cost, agg_cost) OR EMTPY SET

Example:

Two combinations

From point (1) to vertex (10), and from vertex (6) to point (3) with **right** side driving.

SELECT * FROM pgr_withPoints(SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', "SELECT pid, edge_id, fraction, side from pointsOfInterest', "SELECT * FROM (VALUES (-1, 10), (6, -3)) AS combinations(source, target)', driving_side => 'r', details => true); seq | path_seq | start_pid | end_pid | node | edge | cost | agg_cost

1	1	-1	10	-1	1 0.4	0
2	2	-1	10	5	1 1	0.4
3	3	-1	10	6	4 0.7	1.4
4	4	-1	10	-6	4 0.3	2.1
5	5	-1	10	7	8 1	2.4
6	6	-1	10	11	9 1	3.4
7	7	-1	10	16	16 1	4.4
8	8	-1	10	15	3 1	5.4
9	9	-1	10	10	-1 0	6.4
10	1	6	-3	6	4 0.7	0
11	2	6	-3	-6	4 0.3	0.7

12 | 3 | 6 | -3 | 7 | 10 | 1 | 1 13 | 4 | 6 | -3 | 8 | 12 | 0.6 | 2 14 | 5 | 6 | -3 | -3 | -1 | 0 | 2.6 (14 rows)

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Points SQL	TEXT	Points SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path. Negative value is for point's identifier.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices. Negative values are for point's identifiers.
end vid	BIGINT	Identifier of the ending vertex of the path. Negative value is for point's identifier.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices. Negative values are for point's identifiers.

Optional parameters

Columr	п Туре	Default	Description
			• When true the graph is considered Directed
directed	d BOOLEAN true		When false the graph is considered as Undirected.

With points optional parameters

Parameter	Туре	Default	Description
driving_side	CHAR	b	 Value in [r, I, b] indicating if the driving side is: r for right driving side. I for left driving side. b for both.
details	BOOLEAN	l false	When true the results will include the points that are in the path.When false the results will not include the points that are in the path.

Inner Queries

Edges SQL

Column	Туре	Default	Description			
id	ANY-INTEGER		Identifier of the edge.			
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.			
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.			
cost	ANY-NUMERICAL		Weight of the edge (source, target)			
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph. 			
Where:						
ANY-INTEGER:						
SMALLINT, INTEGER, BIGINT						
ANY-NUMERICAL:						
SMALLINT, INTEGER, BIGINT, REAL, FLOAT						

Points SQL

Parameter

Туре

Param	eter	Туре	Default	Description				
				Identifies of the point				
				identifier of the point.				
pid		ANY-INTEGER	value	Use with positive value, as internally will be converted to negative value				
				If column is present, it can not be NULL.				
				 if column is not present, a sequential negative value will be given automatically. 				
edge_id	,	ANY-INTEGER		Identifier of the "closest" edge to the point.				
fraction	,	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.				
				Value in [b, r, I, NULL] indicating if the point is:				
-:	,		L	In the right r,				
side	(JAAR	D	In the left I,				
				In both sides b, NULL				
Where.								
ANY-INTEGE	:B·							
SMALLIN	T INTEGER	BIGINT						
ANY-NUMER	ICAL:							
SMALLIN	T, INTEGER,	BIGINT, REAL, FLOAT						
Combinations SQI	-1							
- .	-		_					
Parameter	Туре		Desc	ription				
source	ANY- INTEGER	Identifier of the de	eparture vertex.					
target	ANY- INTEGER	Identifier of the ar	rival vertex.					
Where:								
ANY-INTEGE	R:							
SMALLIN	T, INTEGER,	BIGINT						
Result columns¶								
Returns set o	f (seq, path_s	eq [, start_pid] [, end_pid], no	ode, edge, cost, agg	g_cost)				
Column	т	уре		Description				
seq	INTEGER	NTECED Sequential value starting from 1						
path_seq	INTEGER	Relative pos	he first row of th					
		• • • • •		e paul.				
		Identifier of a	a starting vertex	/point of the path.				
start nid	BIGINT	When	positive is the ic	lentifier of the starting vertex.				
Gr		When	When negative is the identifier of the starting point.					
		Return	Returned on <u>Many to One</u> and <u>Many to Many</u>					
		Identifier of a	an ending verte	x/point of the path.				
		When	positive is the ic	lentifier of the ending vertex.				
end_pid	BIGINT	When	When negative is the identifier of the ending point.					
		Return	Returned on <u>One to Many</u> and <u>Many to Many</u>					
		Identifier of 1	he node in the	path fromstart_pid to end_pid.				
node	BIGINT	When	positive is the ic	lentifier of the a vertex.				
		When	negative is the i	dentifier of the a point.				
- 4		Identifier of t sequence.	he edge used to	o go fromnode to the next node in the path				
eage	BIGINT	• -1 for t	he last row of th	le path.				
		A · · · ·						
cost	FLOAT	Cost to trave	erse from node us	sing edge to the next hode in the path sequence.				
		• U For t	ne first row of th	ie patri.				

Column	Туре	Description
--------	------	-------------

	FLOAT	Aggregate cost from start_vid to node.
agg_cost	FLOAT	• 0 For the first row of the path.

Additional Examples

- Use pgr_findCloseEdges in the Points SQL.
- Usage variations
- Passes in front or visits with right side driving.
 - Passes in front or visits with left side driving.

Use pgr_findCloseEdges in the Points SQL.¶

Find the routes from vertex (1) to the two closest locations on the graph of point (2.9, 1.8).

SELECT * FROM pgr_withPoints(\$e\$ SELECT * FROM edges \$e\$, \$p\$ SELECT edge_id, round(fraction::numeric, 2) AS fraction, side FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT ST_POINT(2.9, 1.8)), 0.5, cap => 2) \$p\$.			
I, ANNA I [-1, -2]),			
seq patin_seq end_pid node edge cost agg_cost			
2 2 -2 3 7 1 1			
3 3 -2 7 8 0.9 2			
4 4 -2 -2 -1 0 2.9			
5 1 -1 1 6 1 0			
6 2 -1 3 7 1 1			
7 3 -1 7 8 1 2			
8 4 -1 11 9 1 3			
9 5 -1 16 16 1 4			
10 6 -1 15 3 1 5			
11 7 -1 10 5 0.8 6			
12 8 -1 -1 -1 0 6.8			
(12 rows)			

- Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).
- Point \(-2\) corresponds to the next close edge from point(2.9, 1.8).

Usage variations

All the examples are about traveling from point/(1/) and vertex (5) to points ((2, 3, 6)) and vertices ((10, 11))

SELECT * FROM pgr_withPoints('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11], driving, side => 7, details => true); see | path_seq | start_pid | end_pid | node | edge | cost | agg_cost

		T	T C I		1 0 1	<u>,</u>
- 11		-11	-0	-1	1 0.4	0
2	2	-1	-6	5	1 1	0.4
31	31	-11	-6	61	4 0.7	1.4
4	4	-11	-61	-6	-1 0	21
- 21		- 11		1	1 0 1	2.1
5	11	-1	-3	-1	1 0.4	0
6	2	-1	-3	5	1 1	0.4
71	31	-1 i	-31	6	4 0 7 1	14
	4		2	61	41021	0.1
0	4	-11	-01	-0	4 0.3	2.1
9	5	-1	-3	7	10 1	2.4
10	6	I -1	-3	81	12 0.6	3.4
11	7	i	2	2	1 01	4
	1		1 -01	-01		-
12	1	-1	-2	-1	1 0.4	0
13	2	-1	-2	5	1 1	0.4
14	3	i -1	-21	61	4 0.7	1.4
10		1		6	41.0.21	0.1
15	4	-1	-4	-0	4 0.3	2.1
16	5	-1	-2	7	8 1	2.4
17	6	I -1	-2	111	9 1	3.4
19	7	i	2	16	15 0 4	11
10				101	13 0.4	4.4
19	8	-1	-2	-2	-1 0	4.8
20	1	-1	10	-1	1 0.4	0
21	i 2	i -1	i 10	i 5 i	11 11	04
	-		10		41071	4.4
22	3	-1	1 10	0	4 0.7	1.4
23	4	-1	10	-6	4 0.3	2.1
24	5	I -1	10	7	8 1	2.4
25	6	i	10	i 44'r	0 1	24
20			1 10		3 1	0.4
26	/	-1	10	16	16 1	4.4
27	8	-1	10	15	3 1	5.4
28	i g	i -1	i 10	i 10 i	-1 0 1	64
00					1 0 1	0.1
29		- 1			1 0.4	0
30	2	-1	11	5	1 1	0.4
31	3	i -1	i 11	6	4 07	14
00					4 0.0	0.1
32	4	- 1		-0	4 0.3	2.1
33	5	-1	11	7	8 1	2.4
34	6	-1	11	11	-1 0	3.4
25	1	5		51	11 11	0
00			-01	5		0
36	2	5	-6	6	4 0.7	1
37	3	5	-6	-6	-1 0	1.7
38	i 1	5		51	નાં નાં	0
00					41071	Ĩ.
39	2	၁	-3	0	4 0.7	
40	3	5	-3	-6	4 0.3	1.7
41	4	5	-31	71	10 1	2
12	5	5			12 06	-
42			-01	0	12 0.0	~ ~
43	6	5	-3	-3	-1 0	3.6
44	1	5	-2	5	1 1	0
45	2	5	-21	6	4 0 7 1	1
46		Ē		6	41021	17
40	3	5	-2	-01	+ 0.0	1.7
47	4	5	-2	7	8 1	2
48	5	5	-21	111	9 1	3
40	6	5	2	16	15 0 1	4
40	0		-2	10	13 0.4	+
50	7	5	-2	-2	-1 0	4.4
51	1	5	10	51	1 1	0
52	2	5	10	6	4 0 7	1
52			10		41.0.2	17
53	3	5	10	-0	4 0.3	1.7
54	4	5	10	7	8 1	2
55	5	5	10	L 11 L	9 1	3
56	6	5	10	16	16 1	-
00		5	10	10		4
57	7	5	10	15	3 1	5
58	8	5	10	10	-1 0	6
59	i 1	5	11	5	11 11	0
00					4 0 7	4
60	2	1 5	11	6	4 0.7	1

Passes in front or visits with right side driving.

For point \(6\) and vertex \(11\).

SELECT (start_pid || '-> ' || end_pid ||' at ' || path_seq || 'th step')::TEXT AS path_at, CASE WHEN edge = -1 THEN ' visits' ELSE ' passes in front of' END as status, CASE WHEN node < 0 THEN 'Point' ELSE 'Vertex' END as is_a, abs(node) as id EPCML or with Point(abs(node) as id FROM pg:_withPoints('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[5, -1], ARRAY[5, -2, 3, -6, 10, 11], driving_side => Y', details => true) WHERE node IN (-6, 11); nath_at | status | is_a | id path_at | status | is_a | id (16 rows)

Passes in front or visits with left side driving.

For point \(6\) and vertex \(11\).

SELECT (start_pid || '=>' || end_pid ||' at' || path_seq || 'th step')::TEXT AS path_at, CASE WHEN edge = -1 THEN 'visits' ELSE' passes in front of END as status, CASE WHEN node < 0 THEN 'Point' ELSE 'Vertex ELSE Vertex' END as is_a, abs(node) as id FROM pgr_withPoints('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11], driving_side => 1'', details => true) WHERE node IN (-6, 11); path_at | status | is_a | id

See Also

- withPoints Family of functions
- withPoints Category
- Sample Data

Indices and tables

- Index
- Search Page

pgr withPointsCost - Proposed

pgr_withPointsCost - Calculates the shortest path and returns only the aggregate cost of the shortest path found, for the combination of points given. Warning

Proposed functions for next mayor release

- · They are not officially in the current release.
- · They will likely officially be part of the next mayor release
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Boost Graph Inside

Availability

- Version 3.2.0
 - New proposed function:
 - pgr_withPointsCost(Combinations)
- Version 2.2.0
 - New proposed function

Description

Modify the graph to include points defined by points_sql. Using Dijkstra algorithm, return only the aggregate cost of the shortest path found.

The main characteristics are:

- It does not return a path.
- Returns the sum of the costs of the shortest path for pair combination of vertices in the modified graph.
- · Vertices of the graph are:
 - positive when it belongs to the edges_sql
 - $\circ~$ **negative** when it belongs to the points_sql
- Process is done only on edges with positive costs.
- Values are returned when there is a path.
 - The returned values are in the form of a set of (start_vid, end_vid, agg_cost).
 - When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost in the non included values (v, v) is 0
 - When the starting vertex and ending vertex are the different and there is no path.
 - The agg_cost in the non included values (u, v) is \(\infty\)
- If the values returned are stored in a table, the unique index would be the pair(start_vid, end_vid).
- For undirected graphs, the results are symmetric.
 - The agg_cost of (u, v) is the same as for (v, u).
- For optimization purposes, any duplicated value in the start_vids or end_vids is ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: \(O(|start_vids|\times(V \log V + E))\)

Signatures

Summary

pgr_withPointsCost(<u>Edges SQL</u> , 'Points SQL'_, start vid , end vid , [options]) pgr_withPointsCost(<u>Edges SQL</u> , 'Points SQL'_, start vid , end vids , [options]) pgr_withPointsCost(<u>Edges SQL</u> , 'Points SQL'_, start vids , end vid , [options]) pgr_withPointsCost(<u>Edges SQL</u> , 'Points SQL'_, start vids , end vids , [options]) pgr_withPointsCost(<u>Edges SQL</u> , 'Points SQL'_, combinations SQL', [options])
options: [directed, driving_side] Returns set of [start_pid, end_pid, agg_cost] OR EMPTY SET

Note

There is no details flag, unlike the other members of the withPoints family of functions.

One to One

pgr_withPointsCost(<u>Edges SQL</u>, 'Points SQL`_, **start vid**, **end vid**, [options]) options: [directed, driving_side] Returns set of (start_pid, end_pid, agg_cost) OR EMPTY SET

Example:

From point \(1\) to vertex \(10\) with defaults

SELECT * FROM pgr_withPointsCost(*SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', *SELECT pid, edge_id, fraction, side from pointsOfInterest', -1, 10; start_pid | end_pid | agg_cost -1 | 10 | 5.6 (1 row)

One to Many

pgr_withPointsCost(<u>Edges_SQL</u>, <u>Points_SQL</u>, <u>start vid</u>, <u>end vids</u>, [options]) options: [directed, driving_side] Returns set of (start_pid, end_pid, agg_cost) OR EMPTY SET

Example:

From point \(1\) to point \(3\) and vertex \(7\) on an undirected graph

SELECT * FROM pgr_withPointsCost('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', -1, ARRAY[-3, 7], directed => false);

Many to One

pgr_withPointsCost(Edges SQL, Points SQL, start vids, end vid, [options]) options: [directed, driving_side] Returns set of (start_pid, end_pid, agg_cost)

OR EMPTY SET

Example:

From point \(1\) and vertex \(6\) to point \(3\)

Many to Many

pgr_withPointsCost(Edges SQL, Points SQL, start vids, end vids, [options]) options: [directed, driving_side] Returns set of (start_pid, end_pid, agg_cost) OR EMPTY SET

Example:

From point (15) and vertex (6) to point (3) and vertex (1)

Combinations

pgr_withPointsCost(Edges SQL, Points SQL, Combinations SQL, [options]) options: [directed, driving_side] Returns set of (start_pid, end_pid, agg_cost) OR EMPTY SET

Example:

Two combinations

From point (1) to vertex (10), and from vertex (6) to point (3) with **right** side driving.

SELECT * FROM pgr_withPointsCost('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge, id, reaction, side from pointsOfInterest', 'SELECT * FROM (VALUES (-1, 10), (6, -3)) AS combinations(source, target), driving_side => 'r'); start_pid | end_pid | agg_cost -1 | 10 | 6.4 6 | -3 | 2.6

(2 rows)

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Points SQL	TEXT	Points SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path. Negative value is for point's identifier.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices. Negative values are for point's identifiers.
end vid	BIGINT	Identifier of the ending vertex of the path. Negative value is for point's identifier.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices. Negative values are for point's identifiers.
Optional parameters		

Column Type Default

Description

Column	Туре	Defaul	t De	escription	
					and Directed
directed BOOLEAN true		l true	When true the grap	on is consider	ered Directed
			 When false the gra Undirected. 	iph is conside	Jered as
With points o	ptional par	ameters <mark>1</mark>			
Devenuet		Defeult	Description	Non	
Paramete	er Type	Delault	Descrip	uon	
			Value in [r, I, b] indicating	if the driving	g side
			is:		
driving_side	CHAR	b	 r for right driving side 	de.	
			I for left driving side	Э.	
			 b for both. 		
Inner Queries	1				
Edges SQL					
	Colum	ו	Туре	De	Default Description
id			ANY-INTEGER		Identifier of the edge.
source			ANY-INTEGER		Identifier of the first end point vertex of the edge.
target			ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost			ANY-NUMERICAL		Weight of the edge (source, target)
					Weight of the edge (target, source)
reverse_cos	st		ANY-NUMERICAL	-1	When negative: edge (target, source) does not exist, therefore it's not part of the
					graph.
Where:					
ANY-INTE	EGER:				
SMA	LLINT, IN	TEGER, E	BIGINT		
ANY-NUM	IERICAL	_:			
SMA	LLINT, IN	TEGER, E	BIGINT, REAL, FLOAT		
Points SQL					
Par	ameter		Туре	Default	Description
					Identifier of the point.
					 Use with positive value, as internally will be converted to negative value
pid		Α	NY-INTEGER	value	If column is present, it can not be NULL.
					 If column is not present, a sequential negative value will be given
					automatically.
edge_id		А	NY-INTEGER		Identifier of the "closest" edge to the point.
fraction		Α	NY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
					Value in [b, r, I, NULL] indicating if the point is:
side		Cł	HAR	b	In the right r,
					In the left!,
					In both sides b, NULL
Where:					
ANY-INTE	EGER:				
SMA	LLINT, IN	TEGER, E	BIGINT		
ANY-NUMERICAL:					
SMALLINT, INTEGER, BIGINT, REAL, FLOAT					
Combination	s SQL <mark>¶</mark>				
		-		-	
Parame	ıer	гуре		Desci	cripuon
source	AN INT	Y- EGER	Identifier of the depa	arture vertex.	<i>.</i>

Parameter Туре

Description

ANY-Identifier of the arrival vertex. target INTEGER

Where.

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Column Type Description

Identifier of the starting vertex or point.

- · When positive: is a vertex's start_pid BIGINT identifier
 - When negative: is a point's identifier.

Identifier of the ending vertex or point.

- · When positive: is a vertex's end_pid BIGINT identifier.

 - When negative: is a point's identifier.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Additional Examples

- Use pgr_findCloseEdges in the Points SQL.
- Right side driving topology
- Left side driving topology
- Does not matter driving side driving topology

Use pgr_findCloseEdges in the Points SQL.1

Find the cost of the routes from vertex\(1\) to the two closest locations on the graph of point(2.9, 1.8).

- Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).
- Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).
- · Being close to the graph does not mean have a shorter route.

Right side driving topology

Traveling from point (1) and vertex (5) to points ((2, 3, 6)) and vertices ((10, 11))

SELECT * FROM pgr_withPointsCost('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[5, 1], ARRAY[-2, -3, -6, 10, 11], driving_side => 'r'); start_pid |end_pid | agg_cost -6 | -3 | -2 | 10 | 11 | -6 | -3 | -2 | 10 | 11 | 2.1 -1| -1| -1| -1| 5| 5| 5| 5| 4 4.8 4.8 6.4 3.4 1.7 3.6 4.4 6 3 (10 rows)

Left side driving topology

Traveling from point (1) and vertex (5) to points $(\{2, 3, 6\})$ and vertices $((\{10, 11\}))$

SELECT * FROM pgr_withPointsCost('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[5, -1], ARRAY[-2, -3, -6, 10, 11], driving_side => 1'); start_pid | end_pid | agg_cost

-1	-6	1.3
-1	-3	3.2
-1	-2	5.2
-1	10	5.6
-1	11	2.6
5	-6	1.7
5	-3	3.6
5	-2	5.6
5	10	6

Does not matter driving side driving to av¶

Traveling from point (1) and vertex (5) to points ((2, 3, 6)) and vertices ((10, 11))

SELECT * FROM pgr_withPointsCost('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[5, -1], ARRAY[2, -3, -6, 10, 11]); start_pid | end_pid | agg_cost

-6 | -3 | -2 | 10 | 11 | -6 | -3 | -2 | 10 | 11 | -1| -1| -1| -1| 5| 5| 5| 5| 1.3 3.2 4 5.6 2.6 1.7 3.6 4.4 6 3 (10 rows)

The queries use the Sample Data network.

See Also

• withPoints - Family of functions

Indices and tables

- Index
- Search Page

pgr_withPointsCostMatrix - proposed¶

pgr_withPointsCostMatrix - Calculates a cost matrix usingpgr_withPoints - Proposed

Warning

Proposed functions for next mayor release.

- · They are not officially in the current release.
- · They will likely officially be part of the next mayor releases
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more
 - Documentation might need refinement.

Boost Graph Inside

Availability

- Version 2.2.0
 - New proposed function

Description

Using Dijkstra algorithm, calculate and return a cost matrix.

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956. It is a graph search algorithm that solves the shortest path problem for a graph with non-negative edge path costs, producing a shortest path from a starting vertex to an ending vertex. This implementation can be used with a directed graph and an undirected graph.

The main Characteristics are:

Can be used as input to pgr_TSP.

- Use directly when the resulting matrix is symmetric and there is no\(\infty\) value.
- · It will be the users responsibility to make the matrix symmetric.
 - By using geometric or harmonic average of the non symmetric values.
 - By using max or min the non symmetric values.
 - By setting the upper triangle to be the mirror image of the lower triangle.
 - By setting the lower triangle to be the mirror image of the upper triangle
- It is also the users responsibility to fix an\(\infty\) value
- · Each function works as part of the family it belongs to.
- · It does not return a path.
- · Returns the sum of the costs of the shortest path for pair combination of nodes in the graph.
- · Process is done only on edges with positive costs.
- · Values are returned when there is a path.
 - $\circ\;$ When the starting vertex and ending vertex are the same, there is no path.
 - The aggregate cost in the non included values (v, v) is 0.
 - · When the starting vertex and ending vertex are the different and there is no path.
 - The aggregate cost in the non included values (u, v) is \(\infty\).

- Let be the case the values returned are stored in a table:
 - The unique index would be the pair: (start_vid, end_vid).
- Depending on the function and its parameters, the results can be symmetric.
 - The aggregate cost of (u, v) is the same as for (v, u).
- Any duplicated value in the start vids are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending

Signatures

Summary

pgr_withPointsCostMatrix(<u>Edges SQL</u>, <u>Points SQL</u>, <u>start vids</u>, [options]) options: [directed, driving_side] Returns set of (start_vid, end_vid, agg_cost) OR EMPTY SET

Note

There is no **details** flag, unlike the other members of the withPoints family of functions.

Example:

Cost matrix for points ((1, 6)) and vertices ((10, 11)) on an **undirected** graph

- Returning a symmetrical cost matrix
- Using the default side value on the points_sql query
- Using the default driving_side value

SELECT * FROM pgr_withPointsCostMatrix('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction from pointsOfInterest', array[-1, 10, 11, -6], direded := false); start_vid | end_vid | agg_cost

-6	-1	1.3
-6	10	1.7
-6	11	1.3
-1	-6	1.3
-1	10	1.6
-1	11	2.6
10	-6	1.7
10	-1	1.6
10	11	1
11	-6	1.3
11	-1	2.6
11	10	1
(12 rows)		

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Points SQL	TEXT	Points SQL as described below
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.

Optional parameters

Column	Туре	Default		Description
			•	When true the graph is considered Directed

Undirected.

directed BOOLEAN true • When false the graph is considered as

With points optional parameters

Parameter Type Defau	It Description				
	Value in [r, I, b] indicating if the driving side is:				
driving_side CHAR b	r for right driving side.				
	I for left driving side.				
	• b for both.				
Inner Queries					
Edges SQL1					
Column	Type Default				

Description

Identifier of the edge.

Column	Туре	De	tault Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGE	R, BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTEGE	R, BIGINT, REAL, FLOAT		
Points SQL			
Parameter	Туре	Default	Description
			Identifier of the point.
		value	Use with positive value, as internally will be converted to negative value
pid	ANY-INTEGER		If column is present, it can not be NULL.
			 If column is not present, a sequential negative value will be given automatically.
edge_id	ANY-INTEGER		Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
			Value in [b, r, I, NULL] indicating if the point is:
-:	CUAR		In the right r,
side	CHAR	D	In the left,
			In both sides b, NULL
Where:			
ANY-INTEGER:			
SMALLINT, INTEGE	R, BIGINT		

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Set of (start_vid, end_vid, agg_cost)

Column	Туре	Description
start_vid	BIGINT	Identifier of the starting vertex.
end_vid	BIGINT	Identifier of the ending vertex.

agg_cost FLOAT Aggregate cost from start_vid to end_vid.

Note

When start_vid or end_vid columns have negative values, the identifier is for a Point.

Additional Examples

- Use pgr_findCloseEdges in the Points SQL.
- Use with pgr_TSP.

Use pgr_findCloseEdges in the Points SQL.¶

Find the matrix cost of the routes from vertex(1) and the two closest locations on the graph of point (2.9, 1.8).

 SELECT * FROM pgr_withPointsCostMatrix(

 \$e\$ SELECT * FROM edges \$e\$,

 \$p\$ SELECT edge_id, round(fraction:numeric, 2) AS fraction, side

 FROM pr_indCloseEdges(

 \$\$SSELECT id, geom FROM edges\$\$,

 (SELECT ST_POINT(2.9, 1.8)),

 0.5, cap => 2)

 \$\$p\$,

 ARRAY(5, 10, -1, -2));

 start_vid | end_vid | agg_cost

 -2| -1| 3.9

 -2| 5| 2.9

- Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).
- Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).

Use with pgr TSP.

SELECT * FROM pgr_TSP(

\$ SELECT is, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction from pointsOfInterest', array[-1, 10, 11, -6], directed := false); \$

); NOTICE: pgr_TSP no longer solving with simulated annaeling HINT: Ignoring annaeling parameters seq | node | cost | agg_cost

1 | -6 | 0 | 2 | -1 | 1.3 | 3 | 10 | 1.6 | 4 | 11 | 1 | 5 | -6 | 1.3 | (5 rows) 0 1.3 2.9 3.9 5.2

See Also

- withPoints Family of functions
- Cost Matrix Category
- Traveling Sales Person Family of functions
- Sample Data
- Indices and tables
 - Index
 - Search Page

pgr_withPointsKSP - Proposed

pgr_withPointsKSP — Yen's algorithm for K shortest paths using Dijkstra.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - · Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

Boost Graph Inside

Availability

Version 3.6.0

- · Standarizing output columns to (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
- pgr_withPointsKSP (One to One)
 - · Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.
 - Added start_vid and end_vid result columns.
- · New overload functions
 - pgr_withPointsKSP (One to Many)
 - pgr_withPointsKSP (Many to One)
 - pgr_withPointsKSP (Many to Many)
 - pgr_withPointsKSP (Combinations)
- · Deprecated signature
 - pgr_withpointsksp(text,text,bigint,bigint,integer,boolean,boolean,char,boolean)

Version 2.2.0

New proposed function

Description

Modifies the graph to include the points defined in the Points SQL and using Yen algorithm, finds the (K) shortest paths.

pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vid, K, driving_side, [options]) pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vid, K, driving_side, (options)) pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vids, K, driving_side, (options)) pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vids, K, driving_side, (options)) pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vids, K, driving_side, (options)) pgr_withPointsKSP(Edges SQL, Points SQL, Combinations SQL, K, driving_side, (options)) options: [directed, heap_paths, details] Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_withPointsKSP(<u>Edges SQL, Points SQL</u>, start vid, end vid, K, driving_side, [options]) options: [directed, heap_paths, details]

Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMTPY SET

Example:

Get 2 paths from Point (1) to point (2) on a directed graph with left side driving.

- · For a directed graph.
- No details are given about distance of other points of the query.

· No heap paths are returned.

SELECT * FROM pgr_withPointsKSP(ELECT I FROM pgr_withPointsKSP('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest',

-1. -2. 2. 1): seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

11	11	1	-1	-2 -1 1 0.6 0
2	1	2	-1	-2 6 4 1 0.6
3	1	3	-1	-2 7 8 1 1.6
4	1	4	-1	-2 11 11 1 2.6
5	1	5	-1	-2 12 13 1 3.6
6	1	6	-1	-2 17 15 0.6 4.6
7	1	7	-1	-2 -2 -1 0 5.2
8	2	1	-1	-2 -1 1 0.6 0
9	2	2	-1	-2 6 4 1 0.6
10	2	3	-1	-2 7 8 1 1 1.6
11 j	2	4	-1	-2 11 9 1 2.6
12	2	5	-1	-2 16 15 1.6 3.6
13	2	6	-1	-2 -2 -2 -1 0 5.2
(13 rov	/s)			

One to Manv

pgr_withPointsKSP(Edges SQL, Points SQL, start vid, end vids, K, driving_side, [options]) options: [directed, heap_paths, details] Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost) OR EMTPY SET

Example:

Get 2 paths from point (1) to point (3) and vertex (7) on an undirected graph

SELECT * FROM pgr_withPointsKSP('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', 1, ARRAY[3,7],2,7],2,'B', directed => false);

seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 2 3 4 5 6	1 1 1 1 1 1 2	1 2 3 4 5 1	-1 -1 -1 -1 -1 -1 -1	
7	2	2	-1	-3 6 4 1 0.6
8	2	3	-1	-3 7 8 1 1.6
9	2	4	-1	-3 11 11 1 2.6
10	2	5	-1	-3 12 12 0.4 3.6
11	2	6	-1	-3 -3 -1 0 4
12	3	1	-1	7 -1 1 0.6 0
13	3	2	-1	7 6 4 1 0.6
14	3	3	-1	7 7 -1 0 1.6
15	4	1	-1	7 -1 1 0.6 0
16	4	2	-1	7 6 2 1 0.6
17	4	3	-1	7 10 5 1 1 1.6
18	4	4	-1	7 11 8 1 2.6
19	4 j	5	-1	7 7 -1 0 3.6
(19 row	/s)			

Many to One

pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vid, K, driving_side, [options]) options: [directed, heap_paths, details] Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost) OR EMTPY SET

Example:

Get a path from point \(1\) and vertex \(6\) to point \(3\) on a directed graph with right side driving and details set to True

SELECT * FROM pgr_withPointsKSP('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[1, 6], -3, 1, '', details=> tue); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	-1	-3 -1 1 0.4 0
2	1	2	-1	-3 5 1 1 0.4
3	1	3	-1	-3 6 4 0.7 1.4
4	1	4	-1	-3 -6 4 0.3 2.1
5	1	5	-1	-3 7 10 1 2.4
6	1	6	-1	-3 8 12 0.6 3.4
7	1	7	-1	-3 -3 -1 0 4
8	2	1	6	-3 6 4 0.7 0
9	2	2	6	-3 -6 4 0.3 0.7
10	2	3	6	-3 7 10 1 1
11	2	4	6	-3 8 12 0.6 2
12	2	5	6	-3 -3 -1 0 2.6
(12 row	vs)			

Many to Many

pgr_withPointsKSP(Edges SQL, Points SQL, start vids, end vids, K, driving_side, [options])

options: [directed, heap_paths, details] Refurms set of (sea, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMTPY SET

Example:

Get a path from point \(1\) and vertex \(6\) to point \(3\) and vertex \(1\) on a directed graph with left side driving and heap_paths set to True

SELECT * FROM pgr_withPointsKSP("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', "SELECT pid, edge_id, raction, side from pointsOfInterest", ARRAY[-1, 6], ARRAY[-3, 1], 1, 1', heap_paths => true);

seq p	oath_id	path_	seq sta	art_vid en	d_vid nod	e edge	e cost agg_cost
1	1	1	-1	-3 -1	1 0.6	0	
2	1 j	2	-1	-3 6	4 1	0.6	
3	1	3	-1	-3 7	10 1	1.6	
4	1	4	-1 j	-3 8	12 0.6	2.6	
5	1	5	-1	-3 -3	-1 0	3.2	
6	2	1	-1	1 -1	1 0.6	0	
7	2	2	-1	1 6	4 1	0.6	
8	2	3	-1	1 7	7 1	1.6	
9	2	4	-1	1 3	6 1	2.6	
10	2	5	-1	1 1	-1 0	3.6	
11	3	1	6	-3 6	4 1	0	
12	3	2	6	-3 7	10 1	1	
13	3	3	6	-3 8	12 0.6	2	
14	3	4	6	-3 -3	-1 0	2.6	
15	4	1	6	1 6	4 1	0	
16	4	2	6	1 7	7 1	1	
17	4	3	6	1 3	6 1	2	
18	4	4	6	1 1	-1 0	3	
(18 rov	/s)						

Combinations

pgr_withPointsKSP(<u>Edges SQL, Points SQL, Combinations SQL</u>, **K**, **driving_side**, [**options**]) **options:** [directed, heap_paths, details] Returns set of (seq, path_id, path_seq, node, edge, cost, agg_cost) OR EMTPY SET

Example:

Using a combinations table on an directed graph

SELECT * FROM pgr_withPointsKSP('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', 'SELECT * FROM (VALUES (-1, 10), (6, -3)) AS combinations(source, target)', 2, 'r, details => true); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	-1	10 -1 1 0.4 0
2	1	2	-1	10 5 1 1 0.4
3	1	3	-1	10 6 4 0.7 1.4
4	1	4	-1	10 -6 4 0.3 2.1
5	1	5	-1	10 7 8 1 2.4
6	1	6	-1	10 11 9 1 3.4
7	1	7	-1	10 16 16 1 4.4
8	1	8	-1	10 15 3 1 5.4
9	1	9	-1	10 10 -1 0 6.4
10	2	1	-1	10 -1 1 0.4 0
11	2	2	-1	10 5 1 1 0.4
12	2	3	-1	10 6 4 0.7 1.4
13	2	4	-1	10 -6 4 0.3 2.1
14	2	5	-1	10 7 8 1 2.4
15	2	6	-1	10 11 11 1 3.4
16	2	7	-1	10 12 13 1 4.4
17	2	8	-1	10 17 15 1 5.4
18	2	9	-1	10 16 16 1 6.4
19	2	10	-1	10 15 3 1 7.4
20	2	11	-1	10 10 -1 0 8.4
21	3	1	6	-3 6 4 0.7 0
22	3	2	6	-3 -6 4 0.3 0.7
23	3	3	6	-3 7 10 1 1
24	3	4	6	-3 8 12 0.6 2
25	3	5	6	-3 -3 -1 0 2.6
(25 rov	vs)			

Parameters 9

Column	Туре	Description
Edges SQL	TEXT	Edges SQL query as described.
Points SQL	TEXT	Points SQL query as described.
start vid	ANY-INTEGER	Identifier of the departure vertex. Negative values represent a point
end vid	ANY-INTEGER	Identifier of the destination vertex. Negative values represent a point
к	ANY-INTEGER	Number of required paths
driving_side	CHAR	 Value in [r, R, I, L, b, B] indicating if the driving side is: [r, R] for right driving side (for directed graph only) [I, L] for left driving side (for directed graph only) [b, B] for both (only for undirected graph)

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Optional parameters

Column Type Default	Description
directed BOOLEAN true	 When true the graph is considered <i>Directed</i> When talse the graph is considered as <i>Undirected</i>.
KSP Optional parameters	
Column Type Default	

Description

• When false Returns at most K paths.

• When true all the calculated paths while processing are returned.

- Roughly, when the shortest path has N edges, the heap will contain about than N * K paths for small value of K and K >

withPointsKSP optional parameters

heap_paths BOOLEAN false

Parameter	Type Default	Description
details	BOOLEAN false	When true the results will include the points that are in the path.When false the results will not include the points that are in the path.
Inner Queries		
Edges SQL		

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

```
Points SQL
```

Parameter	Туре	Default	Description
pid	ANY-INTEGER	value	Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given
edge_id	ANY-INTEGER		automatically.
fraction	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
		b	Value in [b, r, I, NULL] indicating if the point is:
side	CHAR		In the right r,
			In the left I,
			In both sides b, NULL

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Parame	eter	Туре	Description				
source	AN IN	IY- TEGER	Identifier of the departure vertex.				
target	AN IN	IY- TEGER	Identifier of the arrival vertex.				
Where:							
ANY-INT	EGER:						
SMA	ALLINT, IN	TEGER, BIGI	ντ				
Result colun	nns¶						
Returns s	set of (se	q, path_id, path	<pre>u_seq, start_vid, end_vid, node, edge, cost, agg_cost)</pre>				
Column	Туре		Description				
seq	INTEGER	R Sequential	value starting from 1.				
path_id	Path identifier. INTEGER • Has value 1 for the first of a path fromstart_vid to end_vid						
path_seq	INTEGEF	Relative po	sition in the path. Has value1 for the beginning of a path.				
node	BIGINT	Identifier of	the node in the path fromstart_vid to end_vid				
edge	BIGINT	Identifier of path.	the edge used to go fromnode to the next node in the path sequence1 for the last node of the				
cost	FLOAT	Cost to trav	rerse from node using edge to the next node in the path sequence. or the last node of the path.				
agg_cost	FLOAT	Aggregate	cost from start vid to node.				

Additional Examples

- Use pgr_findCloseEdges in the Points SQL.
- Left driving side
- Right driving side

Use pgr_findCloseEdges in the Points SQL.¶

Get \(2\) paths using left side driving topology, from vertex\(1\) to the closest location on the graph of point(2.9, 1.8).

SELE \$e\$ \$p\$ F \$p\$ 1, - seq	ECT * FR SELECT SELECT ROM pgr \$\$SELEC (SELECT 0.5, cap 1, 2,'r'); path_id	OM pgr * FROI edge_i r_findClo CT id, ge ST_PC => 2)	_withPo M edges id, round oseEdge com FR DINT(2.9	ontsKSP(s \$e\$, d(fraction:: es(OM edges 9, 1.8)), art_vid en	numeric, \$\$, d_vid no	2) AS frac de edge	ction, side cost agg_cost
+	+-	+		-++	+	-++-	
1	1	1	1	-1 1	6 1	0	
2	1	2	1	-1 3	7 1	1	
3	1	3	1	-1 7	8 1	2	
4	1	4	1	-1 11	9 1	3	
5	1	5	1	-1 16	16 1	4	
6	1	6	1	-1 15	3 1	5	
7	1	7	1	-1 10	5 0.8	6	
8	1	8	1	-1 -1	-1 0	6.8	
9	2	1	1	-1 1	6 1	0	
10	2	2	1	-1 3	7 1	1	
11	2	3	1	-1 7	10 1	2	
12	2	4	1	-1 8	12 1	3	
13	2	5	1	-1 12	13 1	4	
14	2	6	1	-1 17	15 1	5	
15	2	7	1	-1 16	16 1	6	
16	2	8	1	-1 15	3 1	7	
17	2	9	1	-1 10	5 0.8	8	
18	2	10	1	-1 -1	-1 0	8.8	
(18 n	ows)						

• Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

Left driving side¶

Get (2) paths using left side driving topology, from point(1) to point (3) with details.

SELECT * FROM pgr_withPointsKSP('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', -1, -3, 2, 1', otetals => true); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

----+----+----+----+----+ 1| 1| 1| -1| -3| -1| 1|0.6| 0

Right driving side¶

Get \(2\) paths using right side driving topology from, point\(1\) to point \(2\) with heap paths and details.

SELECT * FROM par withPointsKSP(

'SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id',
'SELECT pid, edge_id, fraction, side from pointsOfInterest',

'SELECT pid, edge_id, fraction, side from pointsOfInterest',
-1, -2, 2, 'r',
heap_paths => true, details => true);
seq path_id path_seq start_vid end_vid node edge cost agg_cost

004	patri_ia	paul_			
11	1	11	-11	-21	-1 1 0.4 0
2	11	2		-21	5 1 1 1 04
3	11	3		-21	6 4 07 14
4		41		2	6 4 02 21
5		5		2	7 9 1 21
6		6		2	11 0 1 2.4
7		71	-11	-2	16 15 04 44
		<i>'</i>	-11	-2	
01		0		-2	-2 -1 0 4.0
10	2		-11	-2	-1 1 0.4 0
10	2	21	-11	-2	5 1 1 0.4
11	2	3	-1	-2	6 4 0.7 1.4
12	2	4	-1	-21	-6 4 0.3 2.1
13	2	5	-1	-2	7 8 1 2.4
14	2	6	-1	-2	11 11 1 3.4
15	2	7	-1	-2	12 13 1 4.4
16	2	8	-1	-2	17 15 1 5.4
17	2	9	-1	-2	16 15 0.4 6.4
18	2	10	-1	-2	-2 -1 0 6.8
19	3	1	-1	-2	-1 1 0.4 0
20	3	2	-1	-2	5 1 1 0.4
21	3	3	-1	-2	6 4 0.7 1.4
22	3	4	-1	-2	-6 4 0.3 2.1
23	3	5	-1	-2	7 10 1 2.4
24	3	6	-1	-2	8 12 0.6 3.4
25	3	7	-1	-2	-3 12 0.4 4
26	3	8	-1	-2	12 13 1 4.4
27	3	9	-1	-2	17 15 1 5.4
28	3	10	-1	-2	16 15 0.4 6.4
29	3	- 11 j	-1	-2	-2 -1 0 6.8
(20.	(0)11(0)				

(29 rows)

The queries use the Sample Data network.

See Also

- withPoints Family of functions
- K shortest paths Category
- Sample Data
- Indices and tables
 - Index
 - Search Page

pgr_withPointsDD - Proposed

pgr_withPointsDD - Returns the driving distance from a starting point.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.

· Documentation might need refinement.

Boost Graph Inside

Availability

Version 3.6.0

- Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.
 - pgr_withPointsDD (Single vertex)
 - pgr_withPointsDD (Multiple vertices)
- Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - pgr_withPointsDD (Single vertex)
 - Added depth, pred and start_vid column.
 - pgr_withPointsDD (Multiple vertices)
 - Added depth, pred columns.
- · When details is false:
 - · Only points that are visited are removed, that is, points reached within the distance are included

- · Deprecated signatures
 - pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean)
 - · pgr_withpointsdd(text,text,anyarray,double precision,boolean,character,boolean,boolean)

Version 2.2.0

New proposed function

Description

Modify the graph to include points and using Dijkstra algorithm, extracts all the nodes and points that have costs less than or equal to the valuerdistance** from the starting point. The edges extracted will conform the corresponding spanning tree.

Signatures

pgr_withPointsDD(<u>Edges SQL</u>, <u>Points SQL</u>, root vid, distance, driving side, [options A]) pgr_withPointsDD(<u>Edges SQL</u>, <u>Points SQL</u>, root vids, distance, driving side, [options B]) options A: [directed, details] options B: [directed, details, equicost] Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost) OR EMPTY SET

Single vertex

pgr_withPointsDD(Edges SQL, Points SQL, root vid, distance, driving side, [options]) options: [directed, details] Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Right side driving topology, from point(1) within a distance of (3.3) with details.

SELECT * FROM pgr_withPointsDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', -1, 3.3, i', details => true); seq | depth | start_vid | pred | node | edge | cost | agg_cost

seq	sed deptil stalt_vid pred node edge cost							
+-	+		-+	+	++	+		
1	0	-1	-1	-1	-1 0	0		
2	1	-1	-1	5	1 0.4	0.4		
3	2	-1	5	6	1 1	1.4		
4	3	-1	6	-6	4 0.7	2.1		
5	4	-1	-6	7	4 0.3	2.4		
(5 row	s)							

Multiple vertices

pgr_withPointsDD(Edges SQL, Points SQL, root vids, distance, driving side, [options])

options: [directed, details, equicost] Returns set of (seq, depth, start_vid, pred, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From point (1) and vertex (16) within a distance of (3.3) with equicost on a directed graph

SELECT * FROM pgr_withPointsDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[-1, 16], 3.3, 1', equicost => true); seq [depth] start_vid | pred | node | edge | cost | agg_cost 1 0 1| 2| 3| 3| 4| 4| 0| 1| 1| 1| 2| 2| 2 3 | 2 4 | 2 5 | 3 6 | 3 7 | 4 8 | 4 9 | 0 10 | 1 11 | 1 12 | 1 13 | 2 14 | 2 (14 rows) 1 1 2 2

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Points SQL	TEXT	Points SQL as described below
Root vid	BIGINT	Identifier of the root vertex of the tree. Negative values represent a point
Root vids	ARRAY [ANY-INTEGER]	 Array of identifiers of the root vertices. Negative values represent a point \(0\) values are ignored For optimization purposes, any duplicated value is ignored.
distance	FLOAT	Upper limit for the inclusion of a node in the result.

Column		Туре		Description
			• Value in [r. P. I. I	h. Bl indicating if the driving side is:
			• Value III [I, R, I, L	t driving side
				triving side,
driving side	CHAR		• h B for bot	h
unving side	UNAN		• Valid values diff	in a far directed and undirected grapher
			Valid Valdes diff	
			 In undirected 	graphs: r, H, I, LJ.
			 In undirect 	eu graphs: p, BJ.
Where:				
ANY-INTEGER:				
SMALLINT,	INTEGER	, BIGINT		
Optional parameters				
Column Type	Default	C	Description	
directed BOOLEAI	N true	When true the gra	aph is considered <i>Dire</i>	cted
		 When false the gr Undirected. 	aph is considered as	
With points optional participation of the second seco	rameters <mark>1</mark>			
	-	D ()	_	
Parameter	Гуре	Default	I	Jescription
		When	true the results will inc	lude the points that are in the path.
details	BOOLEAN	I false • When	false the results will no	ot include the points that are in the path.
Driving distance option	al parameters	1		
0	T	Default		Description
Column	туре	Default		Description
		•	When true the node wil	I only appear in the closeststart_vid list. Tie brakes are
equicost	BOOLEAN	true	arbitrary.	
		• '	When false which reser	mbles several calls using the single vertex signature.
Inner Queries				
Edges SQL¶				
Colum	n	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)
				Weight of the edge (target, source)
reverse_cost		ANY-NUMERICAL	-1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph
				graph
Where:				
ANY-INTEGER:				
SMALLINT, IN	ITEGER, BIO	GINT		
ANY-NUMERICA	L:			
SMALLINT, IN	ITEGER, BIO	GINT, REAL, FLOAT		
Points SQL				
Parameter		Туре	Default	Description
			Identif	fier of the point.
			•	Use with positive value, as internally will be converted to negative value
pid	AN	Y-INTEGER	value	If column is present, it can not be NULL.
			•	If column is not present, a sequential negative value will be given
				automatically.

Para	ameter Type	Default	Description
edge_id	ANY-INTEGER		Identifier of the "closest" edge to the point.
fraction	ANY-NUMERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.
			Value in [b, r, I, NULL] indicating if the point is:
sido	CHAR	b	• In the right r,
Side	CHAN	b	In the left i,
			In both sides b, NULL
Where:			
ANY-INTE	GER:		
SMAL	LINT, INTEGER, BIGINT		
ANY-NUM	ERICAL:		
SMAL	LINT, INTEGER, BIGINT, REAL, FLOAT		
Result columr	ns¶		
Returns se	et of (seq, depth, start_vid, pred, node, edge	cost, agg_cost)	
Paramete	r Type Descript	on	
seq	BIGINT Sequential value starting from	m\(1\).	
	Depth of the node.		
depth	BIGINT • (0) when node = start_v	d.	
	 \(depth-1\) is the depth 	Ofpred	
start_vid	BIGINT Identifier of the root vertex.		
	Predecessor of node.		
pred	When node = start_vid the	en has the value	node.
node	BIGINT Identifier of node reached usin	ng edge.	
	Identifier of the edge used to a	arrive from pred to	
edge	<pre>BIGINT "House.</pre>	vid.	
cost	FLOAT Cost to traverse edge.		
agg_cost	FLOAT Aggregate cost from start_vid	t0 node.	
Additional Exa	amples		
• Use	pgr_findCloseEdges in the Points SC	۱L.	
• <u>Drivi</u>	ng side does not matter		
Use pgr_findC	loseEdges in the Points SQL.		

Find the driving distance from the two closest locations on the graph of point(2.9, 1.8).

• Point \(-2\) corresponds to the next close edge from point\((2.9, 1.8)\).

Driving side does not matter¶

From point \(1\) within a distance of \(3.3\), does not matter driving side, with details.

SELECT * FROM pgr_withPointsDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', -1, -3, b', b', directed => false, details => true); seq [depth] start_vid | pred | node | edge | cost | agg_cost

+	+	+	++	+
1	0	-1 -1	-1 -1 0	0
2	1	-1 -1	5 1 0.4	0.4
3	1	-1 -1	6 1 0.6	0.6
4	2	-1 6	-6 4 0.7	1.3
5	2	-1 6	10 2 1	1.6
6	3	-1 -6	7 4 0.3	1.6
7	3	-1 10	-5 5 0.8	2.4
8	3	-1 10	15 3 1	2.6
9	4	-1 7	3 7 1	2.6
10	4	-1 7	8 10 1	2.6
11	4	-1 7	11 8 1	2.6
12	5	-1 8	-3 12 0.6	3.2
13	5	-1 3	-4 6 0.7	3.3
(13 rov	vs)			

See Also

- pgr_drivingDistance
- pgr alphaShape

Sample Data

Indices and tables

- Index
- Search Page

pgr_withPointsVia - Proposed

pgr_withPointsVia - Route that goes through a list of vertices and/or points.

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - · Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

Boost Graph Inside

Availability

Version 3.4.0

• New proposed function pgr_withPointsVia (One Via)

Description

Given a graph, a set of points on the graphs edges and a list of vertices, this function is equivalent to finding the shortest path between(vertex_i) and \(vertex_{i+1})\) (where \(vertex_) can be a vertex or a point on the graph) for all \(i < size\ of(via\;vertices)\).

Route:

is a sequence of paths.

Path:

is a section of the route.

The general algorithm is as follows:

- · Build the Graph with the new points.
 - · The points identifiers will be converted to negative values.
 - · The vertices identifiers will remain positive.
- Execute a pgr_dijkstraVia Proposed.

Signatures

One Via

pgr_withPointsVia(Edges SQL, Points SQL, via vertices, [options])

options: [directed, strict, U_turn_on_edge] Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost, route_agg_cost) OR EMPTY SET

Example:

Find the route that visits the vertices \(\{ -6, 15, -1\}\) in that order on a directed graph.

SELECT * FROM pgr_withPointsVia('SELECT id, source, target, cost, reverse_cost FROM edges order by id',

'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAYI-6, 15, -11);

seq	path_id	path_	seq sta	art_vid	enc	d_vid node	e edge	cost agg_cost route_ag	jg_cos
1	1	1	-6	15	-6	4 0.3	0	0	
2	1	2	-6	15	7	8 1	0.3	0.3	
3	1	3	-6	15	11	9 1	1.3	1.3	
4	1	4	-6	15	16	16 1	2.3	2.3	
5	1	5	-6	15	15	-1 0	3.3	3.3	
6	2	1	15	-1	15	3 1	0	3.3	
7	2	2	15	-1	10	2 1	1	4.3	
8	2	3	15	-1	6	1 0.6	2	5.3	
9	2	4	15	-1	-1	-2 0	2.6	5.9	
(9 row:	s)								

Parameters 1

Parameter	т	ype Default	Description	
Edges SQL	TEXT		SQL query as described.	
Points SQL	TEXT		SQL query as described.	
			Array of ordered vertices identifiers that are going to b visited.	e
via vertices	ARRAY [ANY-I	NTEGER]	When positive it is considered a vertex identifier	
			When negative it is considered a point identifier	
Where:				
ANY-INTEGER:				
SMALLINT,	INTEGER, BIGINT			
ANY-NUMERICA	L:			
SMALLINT,	INTEGER, BIGINT	REAL, FLOAT		
Optional parameters				
Column Type	Default	Description		
	• Whe	n true the graph is conside	red Directed	
directed BOOLEAI	• Whe Und	n false the graph is conside irected.	ared as	
Via ontional naramaters				
via optional parameters	1			
Parameter	Type Default		Description	
		When true if a path is	s missing stops and returns EMPTY SET	
strict	BOOLEAN false	When false ignores r	nissing paths returning all paths found	
U_turn_on_edge	BOOLEAN true	When true departing	from a visited vertex will not try to avoid	
With points optional par	rameters			
Parameter	Type Default		Description	
		Value in [r, I, b] indicating i	f the driving side is:	
		 r for right driving side 	e.	
driving_side	CHAR b	 I for left driving side. 		
		• b for both.		
		When true the result	s will include the points that are in the path.	
UETAIIS	BUULEAN faise	When false the result	ts will not include the points that are in the path.	
Inner Queries				
Edges SQL				
Colum	n	Type D	afault Descrir	nti

	Column	Туре	Default	Description
id		ANY-INTEGER		Identifier of the edge.
source		ANY-INTEGER		Identifier of the first end point vertex of the edge.
target		ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost		ANY-NUMERICAL		Weight of the edge (source, target)

Colu	ımn	Туре	De	Default Description			
				Weight of the edge (target, source)			
reverse_cost	AN	Y-NUMERICAL	-1	 When negative: edge (target, source) does not exist, therefore it's not part of the graph. 			
Where:							
ANY-INTEGEF	R:						
SMALLINT	, INTEGER, BIGINT						
ANY-NUMERIC	CAL:						
SMALLINT	, INTEGER, BIGINT, I	REAL, FLOAT					
Points SQL							
Paramet	ter	Туре	Default	Description			
				Identifier of the point.			
				Use with positive value, as internally will be converted to negative value			
pid	ANY-INT	TEGER	value	If column is present, it can not be NULL.			
				 If column is not present, a sequential negative value will be given automatically. 			
edge_id	ANY-INT	EGER		Identifier of the "closest" edge to the point.			
fraction	ANY-NU	MERICAL		Value in <0,1> that indicates the relative postition from the first end point of the edge.			
				Value in [b, r, I, NULL] indicating if the point is:			
.,	0114.5			In the right r,			
side	CHAR		D	In the left1,			
				In both sides b, NULL			
Where:							
ANY-INTEGEF	ł:						
SMALLINT, INTEGER, BIGINT							
ANY-NUMERIC	CAL:						
SMALLINT	, INTEGER, BIGINT, I	REAL, FLOAT					
Result columns							
Column	Туре			Description			
seq	INTEGER	Sequential value starting from 1.					
path_id	INTEGER	Identifier of a path. Has value1 for the first path.					
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.					
start_vid	BIGINT	Identifier of the starting vertex of the path.					
end_vid	BIGINT	Identifier of the ending vertex of the path.					
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.					
		Identifier of the sequence.	e edge used to	to go fromnode to the next node in the path			
edge	BIGINT	 -1 for the 	e last node of	the path.			
		 -2 for the 	e last node of	the route.			
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.					
agg_cost	FLOAT	Aggregate cost from start_vid to node.					
route_agg_cost	FLOAT Total cost from start_vid of seq = 1 to end_vid of the current seq.						
Note							
When start_vid, e	end_vid and node co	lumns have nega	ative values, th	the identifier is for a Point.			

Additional Examples

- Use pgr_findCloseEdges in the Points SQL
- Usage variations
 - Aggregate cost of the third path.
- · Route's aggregate cost of the route at the end of the third path.
- · Nodes visited in the route.
- The aggregate costs of the route when the visited vertices are reached.
- · Status of "passes in front" or "visits" of the nodes and points.

Use pgr findCloseEdges in the Points SQL¶

Visit from vertex \(1\) to the two locations on the graph of point(2.9, 1.8) in order of closeness to the graph.

SELECT * FROM pgr_withPointsVia(\$e\$ SELECT * FROM edges \$e\$, \$p\$ SELECT edge_id, round(fraction::numeric, 2) AS fraction, side FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT ST_POINT(2.9, 1.8)), 0.5 or p = 2 0.5, cap => 2)

 0.5, (ap = - 2)

 §p\$,

 ARRAY[1, -1, -2], details => true);

 seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

-	т.	- T		T T T T T
1	1	1	1	-1 1 6 1 0 0
2	1	2	1	-1 3 7 1 1 1
3	1	3	1	-1 7 8 0.9 2 2
4	1	4	1	-1 -2 8 0.1 2.9 2.9
5	1	5	1	-1 11 9 1 3 3
6	1	6	1	-1 16 16 1 4 4
7	1	7	1	-1 15 3 1 5 5
8	1	8	1	-1 10 5 0.8 6 6
9	1	9	1	-1 -1 -1 0 6.8 6.8
10	2	1	-1	-2 -1 5 0.2 0 6.8
11	2	2	-1	-2 11 8 0.1 0.2 7
12	2	3	-1	-2 -2 -2 0 0.3 7.1

(12 rows)

• Point \(-1\) corresponds to the closest edge from point (2.9, 1.8).

- Point \(-2\) corresponds to the next close edge from point (2.9, 1.8).
- Point (-2) is visited on the route to from vertex (1) to Point (-1) (See row where (seq = 4)).

Usage variations

All this examples are about the route that visits the vertices (\{-1, 7, -3, 16, 15\}\) in that order on a directed graph.

SELEC	SELECT * FROM pgr withPointsVia(
'SELECT id, source, target, cost, reverse cost FROM edges order by id',									
SELECT pid, edge id, fraction, side from pointsOfInterest.									
ARRA	ARRAY[-1, 7, -3, 16, 15]).								
seals	nath id	I nath a	, ioj), con l etc	art vid lend vid Inode		cost Lana c	ost i route and cost		
30411	Jain_ia	paul_	504 510		- cuyc	cost agg_c	ust touto_agg_cost		
1	1	1	-1	7 -1 1 0.6	0	0			
2	-1 j	2	-1	7 6 4 1	0.6	0.6			
3	1 j	3 j	-1	7 7 -1 0	1.6	1.6			
4	2	1	7	-3 7 10 1	0	1.6			
5	2	2	7	-3 8 12 0.6	1	2.6			
6	2	3	7	-3 -3 -1 0	1.6	3.2			
7	3	1	-3	16 -3 12 0.4	0	3.2			
8	3	2	-3	16 12 13 1	0.4	3.6			
9	3	3	-3	16 17 15 1	1.4	4.6			
10	3	4	-3	16 16 -1 0	2.4	5.6			
11	4	1 j	16	15 16 16 1	0	5.6			
12	4	2	16	15 15 -2 0	1	6.6			
(12 rov	vs)								

Aggregate cost of the third path.

SELECT agg_cost FROM pgr_withPointsVia("SELECT id, source, target, cost, reverse_cost FROM edges order by id', "SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[-1, 7, 3, 16, 15]) WHERE path_id = 3 AND edge < 0; con_cost agg_cost 24 (1 row)

Route's aggregate cost of the route at the end of the third paths

SELECT route_agg_cost FROM pgr_withPointsVia(SELEC1 is ource_agg_cost FHOM pgr_wttmPointsVia('SELEC1 is source, target, cost, reverse_cost FROM edges order by id', 'SELEC1 pid, edge_id, fraction, side from pointsOfInterest', ARRAY[-1, 7, -3, 16, 15]) WHERE path_id = 3 AND edge < 0; route_agg_cost

5.6 (1 row)

Nodes visited in the route.

SELECT row_number() over () as node_seq, node FROM pgr_withPointsVia('SELECT id, source, target, cost, reverse_cost FROM edges order by id', 'SELECT pid, edge_id, fraction, side from pointsOfInterest', ARRAY[-1, 7, 3, 16, 15]) WHERE edge ⇔ -1 ORDER BY seq; node_seq | node 1| -1

2 | 3 | 4 | 5 | 6 | 7 | 8 | 6 7 -3 12 17 16 15 9 (9 rows)

The aggregate costs of the route when the visited vertices are reached.

SELECT path_id, route_agg_cost FROM pgr_withPointsVia('SELECT id, source, target, cost, reverse_cost FROM edges order by id', 'SELECT pid, edge_id, reaction, side from pointsOfInterest', ARRAY[-1, 7, -3, 16, 15])

Status of "passes in front" or "visits" of the nodes and points.

See Also

withPoints - Family of functions

<u>Via - Category</u>

<u>Sample Data</u> network.

- Indices and tables
 - Index
 - Search Page

Introduction

This family of functions belongs to the with Points - Category and the functions that compose them are based one way or another on dijkstra algorithm.

Depending on the name:

- pgr_withPoints is pgr_dijkstra with points
- pgr_withPointsCost is pgr_dijkstraCost with points
- pgr_withPointsCostMatrix is pgr_dijkstraCostMatrix with points
- pgr_withPointsKSP is pgr_ksp with points
- pgr_withPointsDD is pgr_drivingDistance with points
- pgr_withPointsvia is pgr_dijkstraVia with points

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Points SQL	TEXT	Points SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path. Negative value is for point's identifier.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices. Negative values are for point's identifiers.
end vid	BIGINT	Identifier of the ending vertex of the path. Negative value is for point's identifier.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices. Negative values are for point's identifiers.

Optional parameters

 Column
 Type
 Default
 Description

 directed
 BOOLEAN true
 • When true the graph is considered as Undirected.

With points optional parameters

Paramete	er Type	Default		Description
			Voluo in [] indicating i	f the driving side is:
			value in [r, i, b] indicating i	r the anving side is:
driving_side	CHAR	b	r for right ariving side	e.
			 I for left driving side. 	
			 b for both. 	
			 When true the result 	s will include the points that are in the path.
details	BOOLEA	N false	When false the result	ts will not include the points that are in the path.
Inner Queries				
Edges SQL				
Co	lumn		Type De	efault Description
id		ANY-IN	IEGER	Identifier of the edge.
source		ANY-IN	TEGER	Identifier of the first end point vertex of the edge.
target		ANY-IN	TEGER	Identifier of the second end point vertex of the edge.
aaat				Weight of the edge (server target)
COSI		ANT-NO	MERICAL	weight of the edge (source, target)
				Weight of the edge (target, source)
reverse_cost		ANY-NU	IMERICAL -1	• When negative: edge (target, source) does not exist, therefore it's not part of the
				graph.
Where:				
ANY-INTEGE	B:			
SMALLIN				
	II, INTEGEN, D	GINT		
ANY-NUMER	ICAL:			
SMALLIN	IT, INTEGER, B	IGINT, REAL,	, FLOAT	
Points SQL				
Param	otor	Ти	ne Default	Description
Param	eter	Ту	pe Default	Description
Param	eter	Ту	pe Default	Description
Param	eter	Ту	pe Default	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value
Param	eter	Ty NY-INTEGE	pe Default :R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL.
Param	eter At	Ty NY-INTEGE	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given
Param	eter At	Ty _i NY-INTEGE	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically.
Param pid	eter AN	Ty _I NY-INTEGE	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically.
Param pid edge_id	eter Af	Ty _I NY-INTEGE NY-INTEGE	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically.
Param pid edge_id	eter Al	Ty _I IY-INTEGE	pe Default :R value :R	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative position from the first end point of the
Param pid edge_id fraction	eter Al Al	Ty _I NY-INTEGE NY-INTEGE	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge.
Param pid edge_id fraction	eter Al Al	Ty _I NY-INTEGE NY-INTEGE NY-NUMER	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge.
Param pid edge_id fraction	eter Af Af	Ty _I NY-INTEGE NY-INTEGE	pe Default R value	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in [b, r, I, NULL] indicating if the point is:
Param pid edge_id fraction	eter Al Al Al	Tyj NY-INTEGE NY-INTEGE NY-NUMER	pe Default SR value SR HCAL	Description Identifier of the point. • Use with positive value, as internally will be converted to negative value • If column is present, it can not be NULL. • If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in [b, r, I, NULL] indicating if the point is: • In the right r,
Param pid edge_id fraction	eter AN AN AN CH	Tyj NY-INTEGE NY-INTEGE NY-NUMER	pe Default SR value SR NCAL	Description Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in [b, r, I, NULL] indicating if the point is: In the right r, In the left I,
Param pid edge_id fraction	eter AN AN AN CH	Ty IY-INTEGE IY-INTEGE IY-NUMER	pe Default ER value	Description Identifier of the point. Use with positive value, as internally will be converted to negative value If column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in [b, r, I, NULL] indicating if the point is: In the right r, In the left I, In the left I, In both sides b, NULL
Param pid edge_id fraction side	eter An An CH	Ty _I NY-INTEGE NY-INTEGE NY-NUMER	pe Default ER value ER	Description Identifier of the point. Use with positive value, as internally will be converted to negative value I column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in {b, r, l, NULL] indicating if the point is: I n the right r, I n the leftl, I n both sides b, NULL
Param pid edge_id fraction side Where:	eter Al Al CH	Ty IY-INTEGE IY-INTEGE IY-NUMER	pe Default SR value SR	Description Identifier of the point. Use with positive value, as internally will be converted to negative value i f column is present, it can not be NULL. If column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in [b, r, I, NULL] indicating if the point is: I n the right r. I n both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE	eter Al Al CH	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR	pe Default SR value SR	Description Identifier of the point. I dentifier of the point. I column is present, it can not be NULL. I column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the edge. Value in [b, r, I, NULL] indicating if the point is: I n the right r, I n both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN	eter AN AN CH ER: IT, INTEGER, B	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR	pe Default SR value SR S	Description Identifier of the point. I dentifier of the point. I dolumn is present, it can not be NULL. I dolumn is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Identifier of the "closest" edge to the point is: Value in <0,1> that indicates the relative postition from the first end point of the edge. Identifier is the relative is the point is: I the right r, I the left l, I to both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER	eter AN AN AN CH ER: IT, INTEGER, B RICAL:	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR	pe Default	Description Identifier of the point. I dentifier of the point. I dolumn is present, it can not be NULL. I dolumn is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the dege. Value in {b, r, I, NULL] indicating if the point is: I n the right, I n the leftI, I n both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN	eter AN AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT	pe Default	Description Identifier of the point. I de with positive value, as internally will be converted to negative value I do lumn is present, it can not be NULL. I do lumn is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the dgg. Jule in {b, r, l, NULL] indicating if the point is: I n the right, I n the leftl, I n both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN COMBINATION SOL	eter AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT IGINT, REAL,	pe Default	Description Identifier of the point. 0. Service of the point is even the value, as internally will be converted to negative value. 0. It column is present, it can not be NULL. 0. To column is not present, a sequential negative value will be given automatically. Identifier of the "closest" edge to the point. Value in <0,1> that indicates the relative postition from the first end point of the forge. Value in <0,1> that indicates the relative postition from the first end point of the forge. Identifier of the "closest" edge to the point is: • In the right * • In the right * • In the right * • In both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN Combinations Sol	eter AN AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT IGINT, REAL,	pe Default	Description Addition of the point. a. Set with the positive value, as internally will be converted to negative value. a. Column is present, it can not be NULL. b. Column is not present, a sequential negative value will be given automatically. d. Column is not present edge to the point. Aduet in <0,1> that indicates the relative postition from the first end point of the degree. A use in <0,1> that indicates the relative postition from the first end point of the degree. A use in <0,1> that indicates in the point is: a. In the right ? b. In both sides b, NULL
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN Combinations SQU Parameter	eter AN AN AN CH ER: IT, INTEGER, B NICAL: IT, INTEGER, B LI Type	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT IGINT, REAL,	pe Default R value R b hCAL b	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN Combinations SQ	eter AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B LI Type ANY-	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT IGINT, REAL,	pe Default R value R b HCAL b Desc	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN Combinations SQU Parameter source	eter AN AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B L1 Type ANY- INTEGER	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT IGINT, REAL, Identifie	pe Default R value R b r CAL b cartor of the departure vertex.	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN Combinations SQU Parameter source	eter AN AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B LS Type ANY- INTEGER	Ty IY-INTEGE IY-INTEGE IY-NUMER IGINT IGINT, REAL, Identific	pe Default R value R b r,FLOAT per of the departure vertex.	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN Combinations SQL Parameter source target	eter AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B RICAL: IT, INTEGER, B LI Type ANY- INTEGER ANY- INTEGER	Ty IY-INTEGE IY-INTEGE IY-NUMER IGINT IGINT IGINT, REAL, Identifie Identifie	pe Default R value R b R b R b C c c c c c c c c c c c c c c c c c c	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>
Param pid edge_id fraction side Where: ANY-INTEGE SMALLIN ANY-NUMER SMALLIN Combinations SQL Parameter source target	eter AN AN AN CH ER: IT, INTEGER, B RICAL: IT, INTEGER, B LS Type ANY- INTEGER ANY- INTEGER ANY- INTEGER	Ty IY-INTEGE IY-INTEGE IY-NUMER IAR IGINT IGINT, REAL, Identific Identific	pe Default R value R b R b R b P b P b P b P b P b P b P b P b P	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Advanced Documentation

Contents

- About points
- Driving side
 - Right driving side
 - Left driving side
 - Driving side does not matter
- <u>Creating temporary vertices</u>
 - On a right hand side driving network
 - On a left hand side driving network
 - When driving side does not matter

About points¶

For this section the following city (see Sample Data) some interesing points such as restaurant, supermarket, post office, etc. will be used as example.

- The graph is directed
- Red arrows show the (source, target) of the edge on the edge table
- Blue arrows show the (target, source) of the edge on the edge table
- Each point location shows where it is located with relation of the edge(source, target)
 - On the right for points 2 and 4.
 - On the left for points 1, 3 and 5.
 - On both sides for point 6.

The representation on the data base follows the Points SQL description, and for this example:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest; pid | edge_id | fraction | side

1	1	0.4 1
2	15	0.4 r
3	12	0.6 1
4	6	0.3 r
5	5	0.8 1
6	4	0.7 b
(6 row	s)	

Driving side

In the the folowwing images:

- The squared vertices are the temporary vertices,
- The temporary vertices are added according to the driving side,
- · visually showing the differences on how depending on the driving side the data is interpreted.

Right driving side¶

- Point 1 located on edge (6, 5)
- Point 2 located on edge (16, 17)
- Point 3 located on edge (8, 12)
- Point 4 located on edge (1, 3)
- Point 5 located on edge (10, 11)
- Point 6 located on edges (6, 7) and (7, 6)

Left driving side¶

- Point 1 located on edge (5, 6)
- Point 2 located on edge (17, 16)
- Point 3 located on edge (8, 12)
- Point 4 located on edge (3, 1)
- Point 5 located on edge (10, 11)
- Point 6 located on edges (6, 7) and (7, 6)

Driving side does not matter¶

- Like having all points to be considered in both sidesb
- Prefered usage on undirected graphs
- On the <u>TRSP Family of functions</u> this option is not valid

_images/noMatterDrivingSide.png

- Point 1 located on edge (5, 6) and (6, 5)
- Point 2 located on edge (17, 16)``and ``16, 17
- Point 3 located on edge (8, 12)

- Point 4 located on edge (3, 1) and (1, 3)
- Point 5 located on edge (10, 11)
- Point 6 located on edges (6, 7) and (7, 6)

Creating temporary vertices ¶

This section will demonstrate how a temporary vertex is created internally on the graph.

Problem

For edge:

SELECT id, source, target, cost, reverse_cost FROM edges WHERE id = 15; id | source | target | cost | reverse_cost

15 | 16 | 17 | 1 | 1 (1 row)

insert point:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest WHERE pid = 2; pid | edge_id | fraction | side 2 | 15 | 0.4 | r (1 row)

On a right hand side driving network

Right driving side

- Arrival to point -2 can be achived only via vertex 16.
- Does not affects edge (17, 16), therefore the edge is kept.
- It only affects the edge (16, 17), therefore the edge is removed.
- Create two new edges:
 - Edge (16, -2) with cost 0.4 (original cost * fraction ==\(1 * 0.4\))
 - Edge (-2, 17) with cost 0.6 (the remaing cost)
- The total cost of the additional edges is equal to the original cost.
- If more points are on the same edge, the process is repeated recursevly.

On a left hand side driving network

Left driving side

_images/leftDrivingSide.png

- Arrival to point -2 can be achived only via vertex 17.
- Does not affects edge (16, 17), therefore the edge is kept.
- It only affects the edge (17, 16), therefore the edge is removed.
- Create two new edges:
 - $\circ~$ Work with the original edge (16, 17) as the fraction is a fraction of the original:
 - Edge (16, -2) with cost 0.4 (original cost * fraction ==\(1 * 0.4\))

- Edge (-2, 17) with cost 0.6 (the remaing cost)
- If more points are on the same edge, the process is repeated recursevly.
- Flip the Edges and add them to the graph:
 - Edge (17, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.
 - Edge (-2, 16) becomes (17, -2) with cost 0.6 and is added to the graph.
- The total cost of the additional edges is equal to the original cost.

When driving side does not matter

liu	nages/noMatterDrivingSide	e.png	

- Arrival to point -2 can be achived via vertices 16 or 17.
- Affects the edges (16, 17) and (17, 16), therefore the edges are removed.
- Create four new edges:
 - $\circ~$ Work with the original edge (16, 17) as the fraction is a fraction of the original:
 - Edge (16, -2) with cost 0.4 (original cost * fraction ==\(1 * 0.4\))
 - Edge (-2, 17) with cost 0.6 (the remaing cost)
 - If more points are on the same edge, the process is repeated recursevly.
 - Flip the Edges and add all the edges to the graph:
 - Edge (16, -2) is added to the graph.
 - Edge (-2, 17) is added to the graph.
 - Edge (16, -2) becomes (-2, 16) with cost 0.4 and is added to the graph.
 - Edge (-2, 17) becomes (17, -2) with cost 0.6 and is added to the graph.

See Also

withPoints - Category

- Indices and tables
 - Index
- Search Page
- Utilities Category

pgr_findCloseEdges

pgr_findCloseEdges

 $\ensuremath{\mathsf{pgr}_\mathsf{find}\mathsf{Close}\mathsf{Edges}}$ - Finds the close edges to a point geometry.

Boost Graph Inside

Availability

- Version 3.4.0
 - New proposed signatures:
 - pgr_findCloseEdges (<u>One point</u>)
 - pgr_findCloseEdges (Many points)

Description

 ${\tt pgr_findCloseEdges}$ - An utility function that finds the closest edge to a point geometry.

- The geometries must be in the same coordinate system (have the same SRID).
- The code to do the calculations can be obtained for further specific adjustments needed by the application.
- EMTPY SET is returned on dryrun executions

Signatures

Summary

pgr_findCloseEdges(<u>Edges SQL</u>, point, tolerance, [options]) pgr_findCloseEdges(<u>Edges SQL</u>, points, tolerance, [options]) options: [cap, partial, dryrun] Returns set of (edge_id, fraction, side, distance, geom, edge)

OR EMPTY SET

One points

pgr_findCloseEdges(Edges SQL, point, tolerance, [options]) options: [cap, partial, dryrun] Returns set of (edge_id, fraction, side, distance, geom, edge) OR EMPTY SET

Example:

With default values

- Default: cap => 1
 - · Maximum one row answer.
- Default: partial => true

With less calculations as possible.

• Default: dryrun => false

- Process query
- Returns
 - values on edge_id, fraction, side columns.
 - NULL ON distance, geom, edge columns.

SELECT * FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT geom FROM pointsOfInterest WHERE pid = 5), 0.5); edge_id | fraction | side | distance | geom | edge

5| 0.8 | 1 | 1 1 (1 row)

Many points

pgr_findCloseEdges(Edges SQL, points, tolerance, [options]) options: [cap, partial, dryrun] Returns set of (edge_id, fraction, side, distance, geom, edge) OR EMPTY SET

Example:

Find at most \(2\) edges close to all vertices on the points of interest table.

One answer per point, as small as possible.

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, ST_AsText(geom) AS original_point FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$, (SELECT array_agg(geom) FROM pointsOfInterest), 0.5); edge_id | fraction | side | original_point

T	-	T
1	0.40 1	POINT(1.8 0.4)
6	0.30 r	POINT(0.3 1.8)
12	0.60 1	POINT(2.6 3.2)
15	0.40 r	POINT(4.2 2.4)
5	0.80 1	POINT(2.9 1.8)
4	0.70 r	POINT(2.2 1.7)

(6 rows)

Columns edge_id, fraction, side and geom are returned with values.

geom contains the original point geometry to assist on deterpartialing to which point geometry the row belongs to.

Parameters

Parameter	Туре		Description		
Edges SQL	TEXT	Edges SC	as described below.		
point	POINT	The point	geometry		
points	POINT[]] An array	of point geometries		
tolerance	FLOAT	Max dista geometrie	ince between es		
Optional parame	ters				
Parameter	Туре	e Default	i -		Description
сар	INTEGE	R \(1\)	Limit output rows		
partial	BOOLE#	AN true	When true only coWhen false all col	umns needed for <u>withPoints -</u> umns are calculated	Category are calculated.
dryrun	BOOLEA	AN false	When false calcul	ations are performed.	ha quant ta da tha aalaula

• When true calculations are not performed and the query to do the calculations is exposed in a PostgreSQL NOTICE.

Inner Queries

Column	а Ту	pe Description						
id	ANY-INTEGER Identifier of the edge.							
geom	geometry The LINESTRING geometry of the edge.							
Result col	lumns¶							
Returns	set of (ed	ge_id, fraction, side, distance, geom, edge)						
Column	туре	Description						
	DICINIT	Identifier of the edge.						
eage_ia	BIGINT	• When \(cap = 1\), it is the closest edge.						
fraction	FLOAT	Value in <0,1> that indicates the relative postition from the first end-point of the edge.						
		Value in $[r, 1]$ indicating if the point is:						
side	CHAR	In the right r.						
		In the left.						
		• When the point is on the line it is considered to be on the right.						
diatanaa	FLOAT	Distance from point to edge.						
UISIANCE	FLOAT	NULL when cap = 1 on the <u>One point</u> signature						
		POINT geometry						
geom	geometry	 <u>One Point</u>: Contains the point on the edge that is fraction away from the starting point of the edge. 						
		Many Points: Contains the corresponding original point						
edge	geometry	LINESTRING geometry from the original point to the closest point of the edge with identifieredge_id						
One poir	nt results							
• Th	e green	nodes is the original point						
• Th	e geome	try geom is a point on the \(sp \rightarrow ep\) edge.						
• Th	e geome	try edge is a line that connects the original point with geom						

- Many point results
 - The green nodes are the original points
 - The geometry $_{\mbox{geom}},$ marked as $\mbox{g1}$ and $\mbox{g2}$ are the original points

• The geometry edge, marked as edge1 and edge2 is a line that connects the original point with the closest point on the \(sp \rightarrow ep\) edge.

Additional Examples

- One point examples
 - At most two answers
 - One answer, all columns
 - At most two answers with all columns
 - One point dry run execution
- Many points examples
 - At most two answers per point
 - One answer per point, all columns
 - Many points dry run execution
- Find at most two routes to a given point
- <u>A point of interest table</u>
 - Points of interest
 - Points of interest fillup
- <u>Connecting disconnected components</u>
 - Prepare storage for connection information
 - Save the vertices connection information
 - Save the edges connection information
 - Get the closest vertex
 - <u>Connecting components</u>
 - <u>Checking components</u>

At most two answers¶

• cap => 2

· Maximum two row answer.

- Default: partial => true
 - With less calculations as possible.
- Default: dryrun => false
 - Process query

Understanding the result

- NULL ON geom, edge
- edge_id identifier of the edge close to the original point
 - Two edges are withing (0.5) distance units from the original point: ((5, 8))
- For edge \(5\):
 - fraction: The closest point from the **original point** is at the (0.8) fraction of the edge (5).
 - side: The original point is located to the left side of edge\(5\).
 - distance: The original point is located \(0.1\) length units from edge \(5\).
- For edge \(8\):
 - fraction: The closest point from the original point is at the \(0.89..\) fraction of the edge \(8\).
 - side: The original point is located to the right side of edge\(8\).
 - distance: The original point is located \(0.19..\) length units from edge \(8\).

One answer, all columns

- Default: cap => 1
 - Maximum one row answer
- partial => false
 - Calculate all columns
- Default: dryrun => false
- Process query

Understanding the result

• edge_id identifier of the edge closest to the original point

- From all edges within \(0.5\) distance units from the original point: \({5}\) is the closest one.
- For edge \(5\):
 - fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).
 - side: The original point is located to the left side of edge\(5\).
 - distance: The original point is located \(0.1\) length units from edge \(5\).
 - geom: Contains the geometry of the closest point on edge\(5\) from the original point.
 - edge: Contains the LINESTRING geometry of the original point to the closest point on on edge \(5\) geom

At most two answers with all columns

• cap => 2

(2 rows)

- · Maximum two row answer
- partial => false
 - Calculate all columns
- Default: dryrun => false
 - Process query

Understanding the result:

· edge_id identifier of the edge close to the original point

- $\circ~$ Two edges are withing \(0.5\) distance units from the original point: \({5, 8}\)
- For edge \(5\):
 - fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).
 - side: The original point is located to the left side of edge\(5\).
 - distance: The original point is located \(0.1\) length units from edge \(5\).
 - geom: Contains the geometry of the closest point on edge\(5\) from the original point.
 - $\circ \ \ \, \text{edge: Contains the LINESTRING geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point to the closest point on on edge \ \ (5\) geometry of the original point \ \ (5\) geometry of the origin$

For edge \(8\):

- fraction: The closest point from the original point is at the \(0.89..\) fraction of the edge \(8\).
- side: The original point is located to the right side of edge (8).
- distance: The original point is located \(0.19..\) length units from edge \(8\).
- geom: Contains the geometry of the closest point on edge\(8\) from the original point.
- edge: Contains the LINESTRING geometry of the original point to the closest point on on edge \(8\) geom

One point dry run execution

- Returns EMPTY SET.
- · partial => true
 - Is ignored
 - · Because it is a dry run excecution, the code for all calculations are shown on the PostgreSQLNOTICE.
- dryrun => true
 - Do not process query
 - Generate a PostgreSQL NOTICE with the code used to calculate all columns
 - cap and original point are used in the code

SELECT *

SELECT FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT geom FROM pointsOfInterest WHERE pid = 5), 0.5, dryrun => true); NOTICE: WITH

edges_sql AS (SELECT id, geom FROM edges), point_sql AS (SELECT '010100000033333333330740CDCCCCCCCCCCCCFC3F'::geometry AS point)

SELECT id::BIGINT AS edge_id, id::BIGIN1 AS edge_id, ST_LineLocatePoint(geom, point) AS fraction, CASE WHEN ST_Intersects(ST_Buffer(geom, 0.5, 'side=right endcap=flat'), point) THEN 'r' ELSE 'l' END::CHAR AS side,

geom <-> point AS distance, ST_ClosestPoint(geom, point) AS new_point, ST_MakeLine(point, ST_ClosestPoint(geom, point)) AS new_line

FROM edges_sql, point_sql WHERE ST_DWithin(geom, point, 0.5) ORDER BY geom <-> point LIMIT 1

edge_id | fraction | side | distance | geom | edge . (0 rows)

Many points examples

At most two answers per point

- cap => 2
 - · Maximum two row answer.
- Default: partial => true
 - · With less calculations as possible.
- Default: dryrun => false

Process query

SELECT edge_id, round(fraction::numeric, 2) AS fraction, side, round(distance::numeric, 3) AS distance, ST_ASText(geom) AS geom_is_original, edge FROM pgr (indCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT array_gg(geom) FROM pointsOfInterest), 0.5, cap => 2); edge_id | fraction | side | distance | geom_is_original | edge

+-----+ 0.200 | POINT(1.8 0.4) 0.200 | POINT(0.3 1.8) 0.200 | POINT(2.6 3.2) 0.447 | POINT(2.6 3.2) 0.40 | 1 1 | 6 | 0.30 | r 12 0.60 | I 1.00 | I 11 | 15 | 9 | 5 |
 1.00 ||
 0.447 | POINT(2.6 3.2)

 0.40 |r
 0.200 | POINT(4.2 2.4)

 1.00 ||
 0.447 | POINT(4.2 2.4)

 0.80 ||
 0.100 | POINT(2.1 8.1)

 0.90 |r
 0.200 | POINT(2.9 1.8)

 0.70 |r
 0.200 | POINT(2.2 1.7)

 0.20 |r
 0.300 | POINT(2.2 1.7)

8| 8 (10 rows)

Understanding the result

NULL On edge

· edge id identifier of the edge close to aoriginal point (geom)

- Two edges at most withing \(0.5\) distance units from each of the original points:
 - For POINT(1.8 0.4) and POINT(0.3 1.8) only one edge was found.
 - · For the rest of the points two edges were found.
- For point POINT(2.9 1.8)
 - Edge \(5\) is before \(8\) therefore edge \(5\) has the shortest distance to POINT(2.9 1.8).
 - For edge \(5\);
 - fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).
 - side: The original point is located to the left side of edge\(5\).
 - distance: The original point is located \(0.1\) length units from edge \(5\).
 - For edge \(8\):
 - fraction: The closest point from the original point is at the \(0.89..\) fraction of the edge \(8\).
 - side: The original point is located to the right side of edge\(8\).
 - distance: The original point is located \(0.19..\) length units from edge \(8\).

One answer per point, all columns

Default: cap => 1

Maximum one row answer.

- partial => false
 - Calculate all columns
- Default: dryrun => false
 - Process query

 1
 0.40 |
 0.200 |
 POINT(1.8.0.4)
 LINESTRING(1.8.0.4,2.0.4)

 6
 0.30 |
 1
 0.200 |
 POINT(0.3.1.8)
 LINESTRING(0.3.1.8,0.3.2)

 12
 0.60 |
 1
 0.200 |
 POINT(2.6.3.2)
 LINESTRING(2.6.3.2,2.6.3)

 15
 0.40 |
 r
 0.200 |
 POINT(4.2.2.4)
 LINESTRING(4.2.2.4.2.4)
 5| 0.80 | I | 0.100 | POINT(2.9 1.8) | LINESTRING(2.9 1.8,3 1.8) 0.70 | r | 0.200 | POINT(2.2 1.7) | LINESTRING(2.2 1.7,2 1.7) (6 rc Understanding the result

· edge_id identifier of the edge closest to the original point

- From all edges within \(0.5\) distance units from the original point: \({5}\) is the closest one
- For the original point POINT(2.9 1.8)
 - Edge \(5\) is the closest edge to the original point
 - fraction: The closest point from the original point is at the \(0.8\) fraction of the edge \(5\).
 - side: The original point is located to the left side of edge\(5\).
 - distance: The original point is located \(0.1\) length units from edge \(5\).
 - · geom: Contains the geometry of the original point POINT(2.9 1.8)
 - · edge: Contains the LINESTRING geometry of the original point (geom) to the closest point on on edge.

Many points dry run execution

- Returns EMPTY SET.
- partial => true
 - Is ignored
 - Because it is a dry run excecution, the code for all calculations are shown on the PostgreSQLNOTICE.
- dryrun => true
 - Do not process query
 - Generate a PostgreSQL NOTICE with the code used to calculate all columns

- cap and original point are used in the code

SELECT * FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT array_agg(geom) FROM pointsOfInterest), 0.5, dryrun => true); NOTICE: WITH ST_LineLocatePoint(geom, point) AS fraction, CASE WHEN ST_Intersects(ST_Buffer(geom, 0.5, 'side=right endcap=flat'), point) THEN 'r I HEN 'r' ELSE 'l' END::CHAR AS side geom --> point AS distance, point, ST_MakeLine(point, ST_ClosestPoint(geom, point)) AS new_line FROM edges_sql, point_sql WHERE ST_DWithin(geom, point, 0.5) ORDER BY geom <> point), prepare_cap AS (SELECT ow number() OVER (PARTITION BY point ORDER BY point, distance) AS rn, * FROM results)

SELECT edge_id, fraction, side, distance, point, new_line FROM prepare_cap WHERE rn <= 1 $\,$

edge_id | fraction | side | distance | geom | edge (0 rows)

Find at most two routes to a given point¶

Using pgr_withPoints - Proposed

SELECT * FROM pgr_withPoints(\$e\$ SELECT * FROM edges \$e\$, \$p\$ SELECT dge_id, round(fraction::numeric, 2) AS fraction, side FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges\$\$, (SELECT geom FROM pointsOfInterest WHERE pid = 5), 0.5, cap => 2) \$s\$.

\$p\$, 1, ARRAY[-1, -2]);

sea p	ath se	alend	pid no	de I ed	ae cos	st agg_cost
+	+		+	+	+	
1	1	-2	1 6	1	0	
2	2	-2	3 7	1	1	
3	3	-2	7 8	0.9	2	
4	4	-2 -	2 -1	0	2.9	
5	1	-1	1 6	1	0	
6	2	-1	3 7	1	1	
7	3	-1	7 8	1	2	
8	4	-1 1	1 9	1	3	
9	5	-1 1	6 16	1	4	
10	6	-1	15 3	1	5	
11	7	-1	10 5	0.8	6	
12	8	-1	-1 -1	0	6.8	
(12 row	s)					

A point of interest table

Handling points outside the graph.

Points of interest

Some times the applications work "on the fly" starting from a location that is not a vertex in the graph. Those locations, in pgRrouting are called points of interest.

The information needed in the points of interest ispid, edge_id, side, fraction.

On this documentation there will be some 6 fixed points of interest and they will be stored on a table.

Column	Description
pid	A unique identifier.
edge_id	Identifier of the edge nearest edge that allows an arrival to the point.
side	Is it on the left, right or both sides of the segmenledge_id
fraction	Where in the segment is the point located.
geom	The geometry of the points.

newPoint The geometry of the points moved on top of the segment.

CREATE TABLE pointsOfInterest(pid BIGSERIAL PRIMARY KEY, edge_id BIGINT, side CHAR, fraction FLOAT, geom geometry); CREATE TABLE

Points of interest fillup¶

INSERT INTO pointsOfInterest (edge_id, side, fraction, geom) VALUES (1, 1', 0.4, ST_POINT(1.8, 0.4)), (15, 1', 0.4, ST_POINT(2.4, 2.4)), (12, 1', 0.6, ST_POINT(2.6, 3.2)), (6, 1', 0.3, ST_POINT(0.3, 1.8)), (5, 1', 0.8, ST_POINT(0.3, 1.8)), (4, 1'', 0.7, ST_POINT(2.9, 1.8)), (4, 1'', 0.7, ST_POINT(2.2, 1.7)); INSERT 0.6

Connecting disconnected components

To get the graph connectivity:

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges

OLLLO	i iu,	3001	cc, tai			
);						
seq coi	mpoi	nent	node			
+		+	-			
1	1	1				
2	1	3				
3	1	5				
4	1	6				
5	1	7				
6	1	8				
7	1	9				
8	1	10				
9	1 j	11				
10	1	12				
11	1	13				
12	1	14				
13	1	15				
14	1	16				
15	1	17				
16	1	18				
17	2	2				
18	2	4				
(18 rows)						

In this example, the component \(2\) consists of vertices \(\{2, 4\}\) and both vertices are also part of the dead end result set.

This graph needs to be connected.

Note

With the original graph of this documentation, there would be 3 components as the crossing edge in this graph is a different component.

Prepare storage for connection information

ALTER TABLE vertices ADD COLUMN component BIGINT; ALTER TABLE ALTER TABLE edges ADD COLUMN component BIGINT; ALTER TABLE

Save the vertices connection information¶

UPDATE vertices SET component = c.component FROM (SELECT * FROM pgr_connectedComponents("SELECT id, source, target, cost, reverse_cost FROM edges")) AS c WHERE id = node; UPDATE 18

Save the edges connection information

UPDATE edges SET component = v.component FROM (SELECT id, component FROM vertices) AS v WHERE source = v.id; UPDATE 20

Get the closest vertex

Using pgr_findCloseEdges the closest vertex to component\(1\) is vertex \(4\). And the closest edge to vertex \(4\) is edge \(14\).

edge_id | fraction | edge | closest vertex

14 0.5 | LINESTRING(1.999999999999 3.5,2 3.5) | (1 row)

The edge can be used to connect the components, using the fraction information about the edge \(14\) to split the connecting edge.

4

Connecting compo

There are three basic ways to connect the components

· From the vertex to the starting point of the edge

- · From the vertex to the ending point of the edge
- · From the vertex to the closest vertex on the edge
 - · This solution requires the edge to be split.

The following guery shows the three ways to connect the components:

WITH info AS SELECT edge_id, fraction, side, distance, ce geom, edge, vid AS closest, source, target, capacity, reverse_capacity, e.geom AS e_geom FROM pgr_findCloseEdges(\$\$SELECT id, geom FROM edges WHERE component = 1\$\$, (SELECT array_agg(geom) FROM vertices WHERE component = 2), 2, partial => false) AS ce JOIN vertices AS v USING (geom) JOIN edges AS e ON (edge_id = e.id) ORDER BY distance LIMIT 1), there entires AS (edge_id, fraction, side, distance, ce.geom, edge, v.id AS closest, three_options AS (SELECT SELECT closest AS source, target, 0 AS cost, 0 AS reverse_cost, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_EndPoint(e_geom)) AS x2, ST_Y(ST_EndPoint(e_geom)) AS y2, ST_MakeLine(geom, ST_EndPoint(e_geom)) AS geom FROM into FROM info UNION UNION SELECT dosest, source, 0, 0, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_StartPoint(e_geom)) AS x2, ST_Y(ST_StartPoint(e_geom)) AS y2, ST_MakeLine(info.geom, ST_StartPoint(e_geom)) FROM info UNION - This option requires splitting the edge SELECT closest, NULL, 0, 0, capacity, reverse_capacity, ST_X(geom) AS x1, ST_Y(geom) AS y1, ST_X(ST_EndPoint(edge)) AS x2, ST_Y(ST_EndPoint(edge)) AS y2, edge FROM info */ INSERT INTO edges (source, target, cost, reverse_cost capacity, reverse_capacity, x1, y1, x2, y2, geom) (SELECT Sclect arget, cost, reverse_cost, capacity, reverse_capacity, x1, y1, x2, y2, geom FROM three_options); INSERT 0 2

Checking components

Ignoring the edge that requires further work. The graph is now fully connected as there is only one component.

SELECT * FROM pgr_connectedComponents('SELECT id, source, target, cost, reverse_cost FROM edges')

seg | component | node 1

See Also

• withPoints - Category

<u>Sample Data</u>
Indices and tables

- Index
- Search Page

See Also

Experimental Functions

- Indices and tables
 - Index
 - Search Page

Experimental Functions

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Families

Flow - Family of functions

- pgr_maxFlowMinCost Experimental Details of flow and cost on edges.
- pgr_maxFlowMinCost_Cost Experimental Only the Min Cost calculation.
- Chinese Postman Problem Family of functions (Experimental)
 - pgr_chinesePostman Experimental
 - pgr_chinesePostmanCost Experimental
- Coloring Family of functions
 - pgr_bipartite Experimental Bipartite graph algorithm using a DFS-based coloring approach.
 - pgr_edgeColoring Experimental Edge Coloring algorithm using Vizing's theorem.
- Transformation Family of functions
- pgr_lineGraphFull Experimental Transformation algorithm for generating a Line Graph out of each vertex in the input graph.

Traversal - Family of functions

- pgr_breadthFirstSearch Experimental Breath first search traversal of the graph.
- pgr_binaryBreadthFirstSearch Experimental Breath first search traversal of the graph.

Components - Family of functions

• pgr_makeConnected - Experimental - Details of edges to make graph connected.

Ordering - Family of functions

- pgr_cuthillMckeeOrdering Experimental Return reverse Cuthill-McKee ordering of an undirected graph.
- pgr_topologicalSort Experimental Linear ordering of the vertices for directed acyclic graph.

Metrics - Family of functions

• pgr_betweennessCentrality - Calculates relative betweenness centrality using Brandes Algorithm

TRSP - Family of functions

• pgr_turnRestrictedPath - Experimental - Routing with restrictions.

Chinese Postman Problem - Family of functions (Experimental)

- pgr_chinesePostman Experimental
- pgr_chinesePostmanCost Experimental

· Supported versions

pgr_chinesePostman - Experimental

pgr_chinesePostman - Calculates the shortest circuit path which contains every edge in a directed graph and starts and ends on the same vertex.

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.0.0
- New experimental signature

Description

The main characteristics are:

- Process is done only on edges with positive costs.
- Running time: \(O(E * (E + V * logV))\)
- · Graph must be connected.
- Returns EMPTY SET on a disconnected graph

Signatures

pgr_chinesePostman(<u>Edges SQL</u>) Returns set of (seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

1	1	6	1	0
2	3	7	1 j –	1
3	7	4	1 j –	2
4	6	4	1 j –	3
5	7	8	1 j –	4
6	11	8	1	5
7	7	10	1 j	6
8	8	12	1 j	7
9	12	13	1	8
10	17	15	1	9
11 j	16	15	- 1 j	10
12	17	15	- 1 j	11
13	16	16	- 1 j	12
14	15	16	- 1 j	13
15	16	9	1	14
16	-11 j	11	1	15
17	12	13	- 1 j	16
18	17	15	- 1 j	17
19	16	16	- 1 j	18
20 j	15 j	3	1	19
21 j	10 j	5 j	1 j	20
22 j	-11 j	9	1 j	21
23 j	16	16	1	22
24	15 j	3	1	23
25 j	10 j	2	1 j	24
26	6	1	1	25
27	5	1	1j	26

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

An Edges SQL that represents a $\ensuremath{\text{directed}}$ graph with the following columns

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEG	ER, BIGINT		
ANY-NUMERICAL:			
SMALLINT, INTEG	ER, BIGINT, REAL, FLOAT		
Result columns			
Returns set of (seq, not	de, edge, cost, agg_cost)		
Column Type		Descr	iption
seq INT Sequ	ential value starting from 1		
node BIGINT Identi	fier of the node in the path fromstar	t_vid to end_vid.	
edge BIGINT Identifier of the edge used to go from node to the next node in the path sequence1 for the last node of the path.			
cost FLOAT Cost to traverse from node using edge to the next node in the path sequence.			
agg_cost FLOAT Aggregate cost from start_v to node.			
See Also¶			
<u>Chinese Postma</u>	an Problem - Family of functions (E	xperimental)	
 Sample Data 			

Indices and tables

- Index
- Search Page

pgr_chinesePostmanCost - Experimental

pgr_chinesePostmanCost — Calculates the minimum costs of a circuit path which contains every edge in a directed graph and starts and ends on the same vertex.

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:

- The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
- Name might change.
- Signature might change.
- Functionality might change.
- pgTap tests might be missing.
- Might need c/c++ coding.
- May lack documentation.
- Documentation if any might need to be rewritten.
- Documentation examples might need to be automatically generated.
- Might need a lot of feedback from the comunity.
- · Might depend on a proposed function of pgRouting
- Might depend on a deprecated function of pgRouting

Availability

- Version 3.0.0
 - New experimental signature

Description

The main characteristics are:

- Process is done only on edges with **positive** costs.
- Running time: \(O(E * (E + V * logV))\)
- · Graph must be connected.

• Return value when the graph if disconnected

Signatures

pgr_chinesePostmanCost(<u>Edges SQL</u>) RETURNS FLOAT

Example:

SELECT * FROM pgr_chinesePostmanCost(SELECT id, source, target, cost, reverse_cost FROM edges WHERE id < 17'); pgr_chinesepostmancost

34 (1 row)

Parameters

Parameter Type	Description
----------------	-------------

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

An Edges SQL that represents a directed graph with the following columns

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Column

Type Description

pgr_chinesepostmancost FLOAT Minimum costs of a circuit path.

See Also

- <u>Chinese Postman Problem Family of functions (Experimental)</u>
- Sample Data

Indices and tables

- Index
- Search Page
- Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Description

The main characteristics are:

- Process is done only on edges with **positive** costs.
- Running time: \(O(E * (E + V * logV))\)
- Graph must be connected.

Parameters 9

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

An Edges SQL that represents a directed graph with the following columns

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

See Also

Indices and tables

- Index
- Search Page

Transformation - Family of functions

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor release:
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - · pgTap tests have being done. But might need more.
 - · Documentation might need refinement.

• pgr_lineGraph - Proposed - Transformation algorithm for generating a Line Graph.

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting
- pgr_lineGraphFull Experimental Transformation algorithm for generating a Line Graph out of each vertex in the input graph.

pgr_lineGraph - Proposed

pgr_lineGraph — Transforms the given graph into its corresponding edge-based graph.

Boost Graph Inside

Warning

Proposed functions for next mayor release.

- They are not officially in the current release.
- They will likely officially be part of the next mayor releases
 - The functions make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might not change. (But still can)
 - Signature might not change. (But still can)
 - Functionality might not change. (But still can)
 - pgTap tests have being done. But might need more.
 - Documentation might need refinement.

Availability

- Version 3.7.0
 - · Promoted to proposed signature.
 - Works for directed and undirected graphs.
- Version 2.5.0
 - New Experimental function

Description

Given a graph (G), its line graph (L(G)) is a graph such that:

- Each vertex of \(L(G)\) represents an edge of \(G\).
- Two vertices of (L(G)) are adjacent if and only if their corresponding edges share a common endpoint in(G)

The main characteristics are:

• Works for directed and undirected graphs.

- The cost and reverse_cost columns of the result represent existence of the edge.
- When the graph is directed the result is directed.
 - To get the complete Line Graph use unique identifiers on the double way edges (SeeAdditional Examples).
- When the graph is undirected the result is undirected.

• The reverse_cost is always \(-1\).

Signatures

pgr_lineGraph(<u>Edges SQL</u>, [directed]) Returns set of (seq, source, target, cost, reverse_cost) OR EMPTY SET

Example:

For an undirected graph with edges :math:'{2,4,5,8}'

SELECT * FROM pgr_lineGraph('SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (2,4,5,8)', false); seq | source | target | cost | reverse_cost
 1
 2
 4
 1

 2
 2
 5
 1

 3
 4
 8
 1

 4
 5
 8
 1

 (4 rows)
 1
 1
 1
 -1 -1 -1 -1

Parameters 1			
Parameter Type	Description		
Edges SQL TEXT Edges S below.	QL as described		
Optional parameters			
Column Type Default	Desci	ription	
directed BOOLEAN true	 When true the graph is When false the graph in Undirected. 	s considered <i>Dire</i> is considered as	cted
Inner Queries			
Edges SQL			
Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGER, B	GINT		
ANY-NUMERICAL:			
SMALLINT, INTEGER, B	GINT, REAL, FLOAT		
Result columns			
Returns set of (seq, source, ta	arget, cost, reverse_cost)		
Column Type		Description	
Seque	ntial value starting from 1.		
sey INTEGER • (Gives a local identifier for the	e edge	
Identifi source BIGINT	er of the source vertex of th	e current edge.	

• When negative: the source is the reverse edge in the original graph.

Column Type

Description

target	BIGINT	Identifier of the target vertex of the current edge. When <i>negative</i>: the target is the reverse edge in the original graph.
cost	FLOAT	 Weight of the edge (source, target). When <i>negative</i>: edge (source, target) does not exist, therefore it's not part of the graph.
reverse_cos	t FLOAT	Weight of the edge (target, source).When <i>negative</i>: edge (target, source) does not exist, therefore it's not part of the graph.
Additional Exa	amples 1	n as directed with shared edge identifiers

· Line Graph of a directed graph represented with shared edges

Representation as directed with unique edge identifiers

• Line Graph of a directed graph represented with unique edges

Given the following directed graph

\(G(V,E) = G(\{1,2,3,4\},\{ 1 \rightarrow 2, 1 \rightarrow 4, 2 \rightarrow 3, 3 \rightarrow 1, 3 \rightarrow 2, 3 \rightarrow 4, 4 \rightarrow 3\})))

Representation as directed with shared edge identifiers

For the simplicity, the design of the edges table on the database, has the edge's identifiers are represented with 3 digits:

hundreds:

the source vertex

tens:

always 0, acts as a separator

units:

the target vertex

In this image.

- · Single or double head arrows represent one edge (row) on the edges table.
- The numbers in the yellow shadow are the edge identifiers.

Two pair of edges share the same identifier when thereverse_cost column is used.

- Edges \({2 \rightarrow 3, 3 \rightarrow 2}\)are represented with one edge row with\(id=203\).
- Edges \({3 \rightarrow 4, 4 \rightarrow 3}\) are represented with one edge row with \(id=304\).

The graph can be created as follows:

CREATE TABLE edges_shared (id BIGINT, source BIGINT, target BIGINT, cost FLOAT, reverse_cost FLOAT, geom geometry);

CREATE TABLE

CREATE TABLE INSERT INTO edges_shared (id, source, target, cost, reverse_cost, geom) VALUES (102, 1, 2, 1, -1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(2, 2))), (104, 1, 4, 1, -1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(0, 0))), (301, 3, 1, 1, -1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(0, 2))), (203, 2, 3, 1, 1, ST_MakeLine(ST_POINT(2, 2), ST_POINT(2, 0))), (304, 3, 4, 1, 1, ST_MakeLine(ST_POINT(0, 0), ST_POINT(2, 0)));

Line Graph of a directed graph represented with shared edges

SELECT seq, source, target, cost, reverse_cost FROM pgr_lineGraph('SELECT id, source, target, cost, reverse_cost FROM edges_shared',

true); seq | source | target | cost | reverse_cost

1	102	203	1	-1
2	104	304	1	-1
3	203	203	1	1
4	203	301	1	-1
5	203	304	1	1
6	301	102	1	-1
7	301	104	1	-1
8	304	301	1	-1
9	304	304	1	1
(9 rov	vs)			

• The result is a directed graph.

• For \(seq=4\) from \(203 \leftrightarrow 304\) represent two edges

• For all the other values of seq represent one edge.

• The cost and reverse_cost values represent the existence of the edge.

- · When positive: the edge exists.
- When negative: the edge does not exist.

resentation as directed with unique edge identifiers

For the simplicity, the design of the edges table on the database, has the edge's identifiers are represented with 3 digits:

hundreds:

the source vertex

tens:

always 0, acts as a separator

units:

the target vertex

In this image,

- · Single head arrows represent one edge (row) on the edges table.
- · There are no double head arrows
- · The numbers in the yellow shadow are the edge identifiers.

Two pair of edges share the same ending nodes and thereverse_cost column is not used.

- Edges \({2 \rightarrow 3, 3 \rightarrow 2}\) are represented with two edges \(id=203\) and \(id=302\) respectively.
- Edges \({3 \rightarrow 4, 4 \rightarrow 3}\) are represented with two edges \(id=304\) and \(id=403\) respectively.

The graph can be created as follows:

CREATE TABLE edges_unique (id BIGINT, source BIGINT, target BIGINT, cost FLOAT, geom geometry

CREATE TABLE

CREATE TABLE INSERT INTO edges_unique (id, source, target, cost, geom) VALUES (102, 1, 2, 1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(2, 2))), (104, 1, 4, 1, ST_MakeLine(ST_POINT(0, 2), ST_POINT(0, 2))), (203, 2, 3, 1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(0, 2))), (204, 2, 3, 1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(2, 0))), (304, 3, 4, 1, ST_MakeLine(ST_POINT(2, 0), ST_POINT(2, 2))), (403, 4, 3, 1, ST_MakeLine(ST_POINT(0, 0), ST_POINT(2, 2))); (403, 4, 3, 1, ST_MakeLine(ST_POINT(0, 0), ST_POINT(2, 0)));

Line Graph of a directed graph represented with unique edges

SELECT seq, source, target, cost, reverse_cost FROM pgr_lineGraph('SELECT id, source, target, cost FROM edges_unique',

true)

```
seq | source | target | cost | reverse_cost
```

+-	+-	+		
1	102	203	1	-1
2	104	403	1	-1
3	203	301	1	-1
4	203	304	1	-1
5	301	102	1	-1
6	301	104	1	-1
7	302	203	1	1
8	304	403	1	1
9	403	301	1	-1
10	403	302	1	-1
(10 ro	ws)			

· The result is a directed graph.

- For \(seq=7\) from \(203 \leftrightarrow 302\) represent two edges.
- For \(seq=8\) from \(304 \leftrightarrow 403\) represent two edges.
- · For all the other values of seq represent one edge.
- · The cost and reverse_cost values represent the existence of the edge.
 - · When positive: the edge exists.
 - When negative: the edge does not exist.

See Also

- wikipedia: Line Graph
- mathworld: Line Graph

Sample Data

Indices and tables

- Index
- Search Page

pgr_lineGraphFull - Experimental¶

pgr_lineGraphFull — Transforms a given graph into a new graph where all of the vertices from the original graph are converted to line graphs

Warning

Possible server crash

• These functions might create a server crash

Warning

Experimental functions

• They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - · The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

Version 2.6.0

· New Experimental function

Description

pgr_lineGraphFull, converts original directed graph to a directed line graph by converting each vertex to a complete graph and keeping all the original edges. The new connecting edges have a cost 0 and go between the adjacent original edges, respecting the directionality.

A possible application of the resulting graph is "routing with two edge restrictions":

Setting a cost of using the vertex when routing between edges on the connecting edge

· Forbid the routing between two edges by removing the connecting edge

This is possible because each of the intersections (vertices) in the original graph are now complete graphs that have a new edge for each possible turn across that intersection.

The main characteristics are:

- This function is for directed graphs.
- Results are undefined when a negative vertex id is used in the input graph.
- · Results are undefined when a duplicated edge id is used in the input graph.
- Running time: TBD

Signatures

Summary

pgr_lineGraphFull(<u>Edges SQL</u>) Returns set of (seq, source, target, cost, edge) OR EMPTY SET

Example:

Full line graph of subgraph of edges \(\{4, 7, 8, 10\}\)

SELECT * FROM pgr_lineGraphFull(\$\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (4, 7, 8, 10)\$\$); seq | source | target | cost | edge

11	-11	71	11	4
21	6	-11	oi	0
зi	-2	6	11	-4
4	-3	3	ii.	-7
5	-4	11	11	8
6	-5	81	11	10
7	71	-21	0	0
8	ż	-3	0 l	õ
9	ż	-4	0 l	õ
10	71	-51	0	ů.
11	-6	-21	01	ñ
12	-6	-3		ñ
13	-6	-4		ñ
14	6	5		0
15	-0	-01		0
16	-/	-2		0
17	-/	-0		0
10	-/	-4		0
10	-/	-5	01	0
19	-8	-2	01	0
20	-8	-3	0	0
21	-8	-4	0	0
22	-8	-5	0	0
23	-9	-6	1	7
24	3	-9	0	0
25	-10	-7	1	-8
26	11	-10	0	0
27	-11	-8	1	-10
28	8	-11	0	0
(28 ro)	NS)			

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description	
id	ANY-INTEGER		Identifier of the edge.	
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.	
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.	
cost	ANY-NUMERICAL		Weight of the edge (source, target)	
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph. 	
Where:				
ANY-INTEGER:				
SMALLINT, INT	EGER, BIGINT			
ANY-NUMERICAL	:			
SMALLINT, INT	EGER, BIGINT, REAL, FLOAT			
Result columns				
Returns set of (seq,	source, target, cost, edge)			
Column Type		Description		
seq INTEGE	Sequential value starting from 1. seq INTEGER • Gives a local identifier for the edge			
	Identifier of the course vertex of the			
source BIGINT	. When negative: the source of the	the reverse edge.	in the original graph	
	• When negative. the source is	the reverse edg	e in the original graph.	
	Identifier of the target vertex of the current edge.			
target BIGINT	• When <i>negative</i> : the target is the target	he reverse edge	in the original graph.	
	Weight of the edge (source, target).			
cost FLOAT	exact FLOAT • When negative: edge (source, target) does not exist, therefore it's not part of the graph.			
	Weight of the edge (target, source).			
reverse_cost FLOAT	• When <i>negative</i> : edge (target, so graph.	ource) does not e	exist, therefore it's not part of the	
Additional Examples				
<u>The data</u>				
<u>The transform</u>	nation			
<u>Creating tabl</u>	e that identifies transformed vertices			
∘ <u>Store e</u>	dge results			
• Create	the mapping table			
• Filling t	he mapping table			
Adding a sof	t restriction			
 Idenifyi 	ng the restriction			
Adding	a value to the restriction			
Simplifying le	eaf vertices			
• Using t	he vertex map give the leaf verices th	eir original valu	<u>e</u> .	
• Remov	Removing self loops on leaf nodes			

- <u>Complete routing graph</u>
 - Add edges from the original graph
 - Add the newly calculated edges
- Using the routing graph

The examples of this section are based on the Sample Data network. The examples include the subgraph including edges 4, 7, 8, and 10 with everse_cost.

The data¶

This example displays how this graph transformation works to create additional edges for each possible turn in a graph.

SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (4, 7, 8, 10); id | source | target | cost | reverse_cost

The transformation ¶

SELECT * FROM pgr_lineGraphFull(\$\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (4, 7, 8, 10)\$\$); seq i source | target | cost | edge

In the transformed graph, all of the edges from the original graph are still present (yellow), but we now have additional edges for every turn that could be made across vertex 7 (orange).

Creating table that identifies transformed vertices

The vertices in the transformed graph are each created by splitting up the vertices in the original graph. Unless a vertex in the original graph is a leaf vertex, it will generate more than one vertex in the transformed graph. One of the newly created vertices in the transformed graph will be given the same vertex identifier as the vertex that it was created from in the original graph, but the rest of the newly created vertices will have negative vertex ids.

Following is an example of how to generate a table that maps the ids of the newly created vertices with the original vertex that they were created from

Store edge results

The first step is to store the results of thepgr_lineGraphFull call into a table

SELECT seq AS id, source, target, cost, edge INTO lineGraph_edges FROM pgr_lineGraphFull(\$\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (4, 7, 8, 10)\$\$); SELECT 28

Create the mapping table

From the original graph's vertex information

SELECT id, NULL::BIGINT original_id INTO vertex_map FROM vertices; SELECT 17

Add the new vertices

INSERT INTO vertex_map (id) (SELECT id FROM pgr_extractVertices(\$\$\$ELECT id, source, target FROM lineGraph_edges\$\$) WHERE id < 0); INSERT 0 11

Filling the mapping table

The positive vertex identifiers are the original identifiers

UPDATE vertex_map SET original_id = id WHERE id > 0; UPDATE 17

Inspecting the vertices map

SELECT * FROM vertex_map ORDER BY id DESC;

id orig	ginal_id
17	17
16	16
15	15
14	14
13	13
12	12
11	11
10	10
91	9
8	8
7	7
6	6
5	5
4	4
3	3
2	2
1	1
-1	
-2	
-3	
-4	
-5	
-6	

-7 | -8 | -9 | -10 | -11 İ (28 rows)

The self loops happen when there is no cost traveling to the target and the source has an original value.

SELECT *, source AS targets_original_id FROM lineGraph_edges WHERE cost = 0 and source > 0; id | source | target | cost | edge | targets_original_id

2	6	-1	0	0	6
7	7	-2	0	0	7
8	7	-3	0	0	7
9	7	-4	0	0	7
10	7	-5	0	0	7
24	3	-9	0	0	3
26	11	-10	0	0	11
28	8	-11	0	0	8
(8 row	s)				

Updating values from self loops

WITH

WITH self_loops AS (SELECT DISTINCT source, target, source AS targets_original_id FROM lineGraph_edges WHERE cost = 0 and source > 0) UPDATE vertex_map SET original_id = targets_original_id FROM self_loops WHERE target = id; UPDATE 8

Inspecting the vertices table

SELECT * FROM vertex_map WHERE id < 0 ORDER BY id DESC; id | original_id

-1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -11 | 6 7 7 7 3 11 8 (11 rows)

Updating from inner self loops

WITH WITH assigned_vertices AS (SELECT id, original_id FROM vertex_map WHERE original_id IS NOT NULL), cross_edges AS (SELECT DISTINCT e.source, v.original_id AS source_original_id FROM lineGraph_edges AS e JOIN vertex_map AS v ON (e.target = v.id) WHERE source NOT IN (SELECT id FROM assigned_vertices)

) UPDATE vertex_map SET original_id = source_original_id FROM cross_edges WHERE source = id; UPDATE 3

Inspecting the vertices map

SELECT *

FROM vertex_map WHERE id < 0 ORDER BY id DESC; id | original_id

-1	6
-2	7
-3	7
-4	7
-5	7
-6	7
-7	7
-8	7
-9	3
-10	11
-11	8
(11 rows)	

Adding a soft restriction

A soft restriction going from vertex 6 to vertex 3 using edges 4 -> 7 is wanted.

Idenifying the restriction

Running a pgr_dijkstraNear - Proposed the edge with cost 0, edge 8, is where the cost will be increased

SELECT seq, path_seq, start_vid, end_vid, node, original_id, edge, cost, agg_cost FROM (SELECT * FROM togr_dijkstraNear(\$\$SELECT array_agg(id) FROM vertex_map where original_id = 6), (SELECT array_agg(id) FROM vertex_map where original_id = 3))) dn JOIN vertex_map AS v1 ON (node = v1:id); seq | path_seq | start_vid | end_vid | node | original_id | edge| cost | agg_cost

-	т.		+	T	T			т т
3	3	-1	3	-3	7	4	1	1
1	1	-1	3	-1	6	1	1	0
4	4	-1	3	3	3	-1	0	2
2	2	-1	3	7	7	8	0	1
(4 rows)								

The edge to be altered is WHERE cost = 0 AND seq != 1 AND edge != -1 from the previus query:

SELECT edge FROM pgr_dijkstraNear(\$SELECT * FROM lineGraph_edges\$\$, (SELECT array_agg(id) FROM vertex_map where original_id = 6), (SELECT array_agg(id) FROM vertex_map where original_id = 3)) WHERE cost = 0 AND seq != 1 AND edge != -1; edge

Adding a value to the restriction

Updating the cost to the edge:

UPDATE lineGraph_edges SET cost = 100 WHERE id IN (WHERE id IN (SELECT edge FROM pgr_dijkstraNear(\$SSELECT * FROM lineGraph_edges\$\$, (SELECT array_agg(id) FROM vertex_map where original_id = 6), (SELECT array_agg(id) FROM vertex_map where original_id = 3)) WHERE cost = 0 AND seq != 1 AND edge != -1); UPDATE 1

Example:

Routing from \(6\) to \(3\)

Now the route does not use edge 8 and does a U turn on a leaf vertex.

WITH

WITH results AS (SELECT * FROM pgr_dijkstraNear(\$SELECT * FROM lineGraph_edges\$, (SELECT array_agg(id) FROM vertex_map where original_id = 6), (SELECT array_agg(id) FROM vertex_map where original_id = 3))) SELECT sq. path.seq, start_vid, end_vid, node, original_id, edge, cost, agg_cost EROM results

EFUM results LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq; seq | path_seq | start_vid | end_vid | node | original_id | edge | cost | agg_cost

1	1	-1	3 -1	6 1 1	0
2	2	-1	3 7	7 10 0	1
3	3	-1	3 -5	7 6 1	1
4	4	-1	3 8	8 28 0	2
5	5	-1	3 -11	8 27 1	2
6	6	-1	3 -8	7 20 0	3
7	7	-1	3 -3	7 4 1	3
8	8	-1	3 3	3 -1 0	4
(8 rows)					

Simplifying leaf vertices

In this example, there is no additional cost for traversing a leaf vertex.

Using the vertex map give the leaf verices their original value.

On the source column

WITH WITH u_turns AS (SELECT e.id AS eid, v1.original_id FROM linegraph_edges as e JOIN vertex_map AS v1 ON (source = v1.id) AND v1.original_id IN (3, 6, 8, 11)) UPDATE lineGraph_edges SET source = original_id FROM u_turns WHERE id = eid; UPDATE 8

On the target column

WITH WITH u_turns AS (SELECT e.id AS eid, v1.original_id FROM linegraph_edges as e JOIN vertex_map AS v1 ON (target = v1.id) AND v1.original_id IN (3, 6, 8, 11)) UPDATE lineGraph_edges SET target = original_id FROM u_turns WHERE id = eid; UPDATE = eid; UPDATE 8

Removing self loops on leaf nodes

The self loops of the leaf nodes are

SELECT * FROM linegraph_edges WHERE source = target ORDER BY id; id | source | target | cost | edge
 10
 source
 raiger
 ross

 2
 6
 6
 0
 0

 24
 3
 3
 0
 0

 26
 11
 11
 0
 0

 28
 8
 8
 0
 0

 (4 rows)
 10
 10
 10
 0

Which can be removed

DELETE FROM linegraph_edges WHERE source = target; DELETE 4

Example:

Routing from \(6\) to \(3\)

Routing can be done now using the original vertices id usingpgr_dijkstra

WITH

selles AS (SELECT * FROM pgr_dijkstra(\$\$\$ELECT * FROM lineGraph_edges\$\$, 6, 3)) SELECT seq, path_seq, node, original_id, edge, cost, agg_cost FROM results LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq; seq | path_seq | node | original_id | edge | cost | agg_cost

1 | 6 | 2 | 7 | 3 | -4 | 4 | 11 | 5 | -7 | 6 | -3 | 7 | 3 | 1 2| 3| 4| 5| 6| 7|

Com ete routing graph¶

Add edges from the original graph¶

Add all the edges that are not involved in the line graph process to the new table

SELECT id, source, target, cost, reverse_cost INTO new_graph from edges WHERE id NOT IN (4, 7, 8, 10); SELECT 14

Some administrative tasks to get new identifiers for the edges

CREATE SEQUENCE new_graph_id_seq; CREATE SEQUENCE new_graph_id_seq; CREATE SEQUENCE ALTER TABLE new_graph ALTER COLUMN id SET DEFAULT nextval(new_graph_id_seq); ALTER TABLE ALTER TABLE new_graph ALTER COLUMN id SET NOT NULL; ALTER TABLE ALTER TABLE ALTER SEQUENCE new_graph_id_seq OWNED BY new_graph.id; ALTER SEQUENCE SELECT setval(new_graph_id_seq', (SELECT max(id) FROM new_graph)); cetval 18 (1 row)

Add the newly calculated edges

INSERT INTO new_graph (source, target, cost, reverse_cost) SELECT source, target, cost, -1 FROM lineGraph_edges; INSERT 0 24

Using the routing graph¶

When using this method for routing with soft restrictions there will be uturns

Example:

Routing from \(6\) to \(3\)

WITH

6| 35| 1| 0 7| 20| 0| 1 1 | 2 | 1| 6| 2| 7|

3	3 -4	7 41 1	1
4	4 11	11 37 1	2
5	5 -7	7 27 0	3
6	6 -3	7 40 1	3
7	7 3	3 -1 0	4
(7 rows)		

Example:

Routing from (5) to (1)

WITH results AS (SELECT * FROM pgr_dijkstra(\$\$SELECT * FROM new_graph\$\$, 5, 1)) SELECT seq, path_seq, node, original_id, edge, cost, agg_cost FROM results LEFT JOIN vertex_map AS v1 ON (node = v1.id) ORDER BY seq; seq | path_seq | node | original_id | edge | cost | agg_cost

1	1 5	5 1 1	0
2	2 6	6 35 1	1
3	3 7	7 20 0	2
4	4 -4	7 41 1	2
5	5 11	11 37 1	3
6	6 -7	7 27 0	4
7	7 -3	7 40 1	4
8	8 3	3 6 1	5
9	9 1	1 -1 0	6
(9 rows))		

See Also

- https://en.wikipedia.org/wiki/Line_graph
- https://en.wikipedia.org/wiki/Complete graph

Indices and tables

- Index
- Search Page

Introduction

This family of functions is used for transforming a given input graph (G(V,E)) into a new graph (G'(V',E')).

See Also

- Indices and tables
 - Index
 - Search Page

Ordering - Family of functions

Experimental

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - · Might need c/c++ coding.
 - · May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting
- pgr_cuthillMckeeOrdering Experimental Return reverse Cuthill-McKee ordering of an undirected graph.
- pgr_topologicalSort Experimental Linear ordering of the vertices for directed acyclic graph.

pgr_cuthillMckeeOrdering - Experimental

pgr_cuthillMckeeOrdering - Returns the reverse Cuthill-Mckee ordering of an undirected graphs

Boost Graph Inside

Warning

Possible server crash

· These functions might create a server crash

Warning

- Experimental functions
 - They are not officially of the current release.
 - They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Availability

Version 3.4.0

• New experimental function

Description

In numerical linear algebra, the Cuthill-McKee algorithm (CM), named after Elizabeth Cuthill and James McKee, is an algorithm to permute a sparse matrix that has a symmetric sparsity pattern into a band matrix form with a small bandwidth.

The vertices are basically assigned a breadth-first search order, except that at each step, the adjacent vertices are placed in the queue in order of increasing degree.

The main Characteristics are:

- The implementation is for **undirected** graphs.
- The bandwidth minimization problems are considered NP-complete problems.
- The running time complexity is: $(O(m \log(m)|V|))$
 - where \(|V|\) is the number of vertices.
 - \(m\) is the maximum degree of the vertices in the graph.

Signatures

OR EMPTY SET

Example:

Graph ordering of pgRouting Sample Data

SELECT * FROM pgr_cuthillMckeeOrdering("SELECT id, source, target, cost, reverse_cost FROM edges");

/,		
seq node		
1 13		
2 14		
3 2		
4 4		
5 1		
6 9		
7 3		
8 8		
9 5		
10 7		
11 12		
12 6		
13 11		
14 17		
15 10		
16 16		
17 15		
(17 rows)		

Parameters 9

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description	
id	ANY-INTEGER		Identifier of the edge.	
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.	
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.	
cost	ANY-NUMERICAL		Weight of the edge (source, target)	
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (larget, source) When negative: edge (larget, source) does not exist, therefore it's not part of the graph. 	
Where:				
ANY-INTEGER:				
SMALLINT, INTEGER, BIO	GINT			
ANY-NUMERICAL:				
SMALLINT, INTEGER, BIG	GINT, REAL, FLOAT			
Result columns				
Returns set of (seq, node)				
Column Type	Description			
seq BIGINT Sequence of 1.	of the order starting from			
node BIGINT New orderin	ng in reverse order.			
See Also				
The queries use the <u>Sample Data</u> network.				
Boost: Cuthill-McKee Ordering				
Wikipedia: Cuthill-McKee Ordering				
Indices and tables				
 Index 				

• Search Page

pgr_topologicalSort - Experimental

 ${\tt pgr_topologicalSort} - {\tt Linear\ ordering\ of\ the\ vertices\ for\ directed\ acyclic\ graphs\ (DAG)}.$

Boost Graph Inside

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

Version 3.0.0

· New experimental function

Description

The topological sort algorithm creates a linear ordering of the vertices such that if edge(((u,v))) appears in the graph, then\(v\) comes before \(u\) in the ordering.

The main characteristics are:

- Process is valid for directed acyclic graphs only. otherwise it will throw warnings.
- For optimization purposes, if there are more than one answer, the function
- will return one of them.
- The returned values are ordered in topological order:
- Running time: \(O(V + E)\)

Signatures

Summary

pgr_topologicalSort(<u>Edges SQL</u>) Returns set of (seq, sorted_v) OR EMPTY SET

Example:

Topologically sorting the graph

SELECT * FROM pgr_topologicalsort(\$\$SELECT is source, target, cost FROM edges WHERE cost >= 0 UNION SELECT id, target, source, reverse_cost FROM edges WHERE cost < 0\$\$); seq | sorted_v

Parameters 1

Parameter Type

er Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, sorted_v)

Column Type Description

seq INTEGER Sequential value starting from (1)

sorted_v BIGINT Linear topological ordering of the vertices

Additional examples

Example:

Topologically sorting the one way segments

	5	
2	2	
3	4	
4	13	
5	14	
6	1	
7	3	
8	15	
9	10	
10	6	
11	7	
12	8	
13	9	
14	11	
15	12	
16	16	
17	17	
(17 rov	vs)	

Example:

Graph is not a DAG

SELECT * FROM pgr_topologicalsort(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$); ERROR: Graph is not DAG HINT: CONTEXT: SQL function "pgr_topologicalsort" statement 1

See Also

Sample Data

https://en.wikipedia.org/wiki/Topological_sorting

Indices and tables

• Index

Search Page

See Also

Indices and tables

- Index
- Search Page

Metrics - Family of functions

Experimental

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

They are not officially of the current release.

- They likely will not be officially be part of the next release:
 - · The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting
- pgr_betweennessCentrality Calculates relative betweenness centrality using Brandes Algorithm

pgr_betweennessCentrality

pgr_betweennessCentrality - Calculates the relative betweeness centrality using Brandes Algorithm

Boost Graph Inside

Availability

• Version 3.7.0

- New experimental function:
 - pgr_betweennessCentrality

Description

The Brandes Algorithm takes advantage of the sparse graphs for evaluating the betweenness centrality score of all vertices.

Betweenness centrality measures the extent to which a vertex lies on the shortest paths between all other pairs of vertices. Vertices with a high betweenness centrality score may have considerable influence in a network by the virtue of their control over the shortest paths passing between them.

The removal of these vertices will affect the network by disrupting the it, as most of the shortest paths between vertices pass through them.

This implementation work for both directed and undirected graphs.

- Running time: \(\Theta(VE)\)
- Running space: \(\Theta(VE)\)
- · Throws when there are no edges in the graph

Signatures

Summary

pgr_betweennessCentrality(Edges SQL, [directed])

Returns set of (vid, centrality)

Example:

For a directed graph with edges (1, 2, 3, 4).

SELECT * FROM pgr_betweennessCentrality('SELECT id, source, target, cost, reverse_cost FROM edges where id < 5') ORDER BY vid; vid | centrality

5 | 0 6 | 0.5 7 | 0 10 | 0.25 15 | 0 (5 rows)

Explanation

- The betweenness centrality are between parenthesis.
- The leaf vertices have betweenness centrality \(0\).

- Betweenness centrality of vertex (6) is higher than of vertex (10).

- $\circ~$ Removing vertex $\(6\)$ will create three graph components.
- Removing vertex \(10\) will create two graph components.

Parameter Type Default Description

Optional parameters

Column	Туре	Default	Description
			• When true the graph is considered Directed
directed BOOLEAN true		l true	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Column	Туре	Description
	7 C	

vid BIGINT Identifier of the vertex.

See Also

Boost's <u>betweenness_centrality</u>

Queries use the <u>Sample Data</u> network.

- Indices and tables
 - Index
 - Search Page

See Also

- Indices and tables
 - Index
 - Search Page

categories

Vehicle Routing Functions - Category

- Pickup and delivery problem
 - pgr_pickDeliver Experimental Pickup & Delivery using a Cost Matrix
 - pgr_pickDeliverEuclidean Experimental Pickup & Delivery with Euclidean distances
- Distribution problem
 - pgr_vrpOneDepot Experimental From a single depot, distributes orders

Shortest Path Category

- pgr_bellmanFord Experimental
- pgr_dagShortestPath Experimental
- pgr_edwardMoore Experimental

pgr_bellmanFord - Experimental

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change
 - pgTap tests might be missing
 - Might need c/c++ coding.
 - May lack documentation.
 - Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - New experimental signature:
 - pgr_bellmanFord (<u>Combinations</u>)
- Version 3.0.0
 - · New experimental signatures:
 - pgr_bellmanFord (<u>One to One</u>)
 - pgr_bellmanFord (One to Many)
 - pgr bellmanFord (Many to One)
 - pgr_bellmanFord (Many to Many)

Description

Bellman-Ford's algorithm, is named after Richard Bellman and Lester Ford, who first published it in 1958 and 1956, respectively. It is a graph search algorithm that computes shortest paths from a starting vertex (start_vid) to an ending vertex (end_vid) in a graph where some of the edge weights may be negative. Though it is more versatile, it is slower than Dijkstra's algorithm. This implementation can be used with a directed graph and an undirected graph.

The main characteristics are:

- Process is valid for edges with both positive and negative edge weights.
- Values are returned when there is a path.
 - When the start vertex and the end vertex are the same, there is no path. The agg_cost would be\(0\).
 - When the start vertex and the end vertex are different, and there exists a path between them without having *anegative cycle*. The agg_cost would be some finite value denoting the shortest distance between them.
 - When the start vertex and the end vertex are different, and there exists a path between them, but it contains anegative cycle. In such case, agg_cost for those vertices keep on decreasing furthermore, Hence agg_cost can't be defined for them.
 - When the start vertex and the end vertex are different, and there is no path. The agg_cost is\(\infty\).
- For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: \(O(| start_vids | * (V * E))\)

Signatures

Summary

pgr_bellmanFord(Edges SQL, start vid, end vid, [directed]) pgr_bellmanFord(Edges SQL, start vid, end vids, [directed]) pgr_bellmanFord(Edges SQL, start vids, end vids, [directed]) pgr_bellmanFord(Edges SQL, start vids, end vids, [directed]) pgr_bellmanFord(Edges SQL, Combinations SQL, [directed]) Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_bellmanFord(<u>Edges SQL</u>, start vid, end vid, [directed]) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on a directed graph
SELECT * FROM pgr_bellmanFord('SELECT id, source, target, cost, reverse_cost FROM edges', 6, 10, true); seq | path_seq | node | edge | cost | agg_cost

seq pa	un_s	ed r	iode	eage	COSL
1	1	6	4	1	0
2	2	7	8	1	1
3	3	11	9	1	2
4	4	16	16	1	3
5	5	15	3	1	4
6	6	10	-1	0	5
(6 rows)					

One to Many

pgr_bellmanFord(<u>Edges SQL</u>, **start vid**, **end vids**, [directed]) Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex $\(6\)$ to vertices $(\ 10,\ 17\))$ on a directed graph

SELECT * FROM pgr_bellmanFord(

'SELE	CT id.	SOURCE	a tarc	iet. c	ost. rei	verse	cost FF	ROM ed	aes'.
6, AR	RAY[10), 17]);	,	,,.					g,
seq p	ath_se	q end	d_vid	noc	de ed	ge co	st ago	g_cost	
+	++		+	+	+	+			
1	1	10	6	4	1	0			
2	2	10	7	8	1	1			
3	3	10	11	9	1	2			
4	4	10	16	16	1	3			
5	5	10	15	3	1	4			
6	6	10	10	-1	0	5			
7	1	17	6	4	1	0			
8	2	17	7	8	1	1			
9	3	17	11	11	1	2			
10	4	17	12	13	1	3			
11	5	17	17	-1	0	4			
(11 row	/s)								

Many to One

pgr_bellmanFord(<u>Edges SQL</u>, **start vids**, **end vid**, [directed]) Returns set of (seq. path_seq, start_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices \(\{6, 1\}\) to vertex \(17\) on a **directed** graph

SELECT * FROM pgr_bellmanFord('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 1], 17); seq | path_seq | start_vid | node | edge | cost | agg_cost

	+	++++	+
1	1	1 1 6 1	0
2	2	1 3 7 1	1
3	3	1 7 8 1	2
4	4	1 11 11 1	3
5	5	1 12 13 1	4
6	6	1 17 -1 0	5
7	1	6 6 4 1	0
8	2	6 7 8 1	1
9	3	6 11 11 1	2
10	4	6 12 13 1	3
11	5	6 17 -1 0	4
(11 rov	/s)		

Many to Many

pgr_bellmanFord(<u>Edges SQL</u>, **start vids**, **end vids**, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\ 0, 1))$ to vertices $(\ 10, 17))$ on an **undirected** graph

SELECT * FROM pgr_bellmanFord('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 1], ARRAY[10, 17], directed => false); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

----+----+----+----+----+----+----+----+

2	2	1	10 3 7 1 1
3	3	1	10 7 4 1 2
4	4	1	10 6 2 1 3
5	5	1	10 10 -1 0 4
6	1	1	17 1 6 1 0
7	2	1	17 3 7 1 1
8	3	1	17 7 8 1 2
9	4	1	17 11 11 1 3
10	5	1)	17 12 13 1 4
11	6	1	17 17 -1 0 5
12	1	6	10 6 2 1 0
13	2	6	10 10 -1 0 1
14	1	6	17 6 4 1 0
15	2	6	17 7 8 1 1
16	3 j	6	17 11 11 1 2
17	4	6	17 12 13 1 3
18	5	6	17 17 -1 0 4
(18 row	's)		
	<i>'</i>		

Combinations

pgr_bellmanFord(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an undirected graph.

The combinations table:

SELECT source, target FROM combinations; source | target

The query:

SELECT * FROM pgr_bellmanFord(
'SELECT id, source, target, cost, reverse_cost FROM edges',
'SELECT source, target FROM combinations',
false);
seq path_seq start_vid end_vid node edge cost agg_cost

Parameters 1

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Colum	п Туре	Default	Description
			• When true the graph is considered Directed
directed	BOOLEAN	N true	When false the graph is considered as <i>Undirected</i>

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Туре Description Parameter

ANY-INTEGER Identifier of the departure vertex. source

Parameter Туре

Description

ier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. Many to One Many to Many
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. • <u>One to Many</u> • <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

the

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_bellmanFord('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1 2 3 4	1 2 3 4 5	7 7 7 7 7 7	+++++ 10 7 8 1 10 11 9 1 10 16 16 1 10 15 3 1 10 10 -1 0	0 1 2 3 4
6	11	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 3 1	0
18	2	15	7 10 2 1	1
19	3	15	7 6 4 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 row	/S)			

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_bellmanFord("SELECT id, source, target, cost, reverse_ost FROM edges", ARRAY[7, 10, 15], ARRAY[7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	7	++++ 10 7 8 1	0
2	2	7	10 11 9 1	1
3	3	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 3 1	0
18	2	15	7 10 2 1	1
19	3	15	7 6 4 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_bellmanFord('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

	+-		+++++++
1	1	6	7 6 4 1 0
2	2	6	7 7 -1 0 1
3	1	6	10 6 4 1 0
4	2	6	10 7 8 1 1
5	3	6	10 11 9 1 2
6	4	6	10 16 16 1 3
7	5	6	10 15 3 1 4
8	6	6	10 10 -1 0 5
9	1	12	10 12 13 1 0
10	2	12	10 17 15 1 1
11	3	12	10 16 16 1 2
12	4	12	10 15 3 1 3
13	5	12	10 10 -1 0 4
(13 row	s)		

See Also

- https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
- Sample Data

Indices and tables

- Index
- Search Page

pgr_dagShortestPath - Experimental

pgr_dagShortestPath — Returns the shortest path for weighted directed acyclic graphs(DAG). In particular, the DAG shortest paths algorithm implemented by Boost.Graph.

Boost Graph Inside

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - · New experimental function:
 - pgr_dagShortestPath(Combinations)
- Version 3.0.0
 - New experimental function

Description

Shortest Path for Directed Acyclic Graph(DAG) is a graph search algorithm that solves the shortest path problem for weighted directed acyclic graph, producing a shortest path from a starting vertex (start_vid) to an ending vertex (end_vid).

This implementation can only be used with adirected graph with no cycles i.e. directed acyclic graph.

The algorithm relies on topological sorting the dag to impose a linear ordering on the vertices, and thus is more efficient for DAG's than either the Dijkstra or Bellman-Ford algorithm.

The main characteristics are:

- Process is valid for weighted directed acyclic graphs only, otherwise it will throw warnings
- · Values are returned when there is a path.
 - When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is 0

- When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is \(\infty\)
- For optimization purposes, any duplicated value in the start_vids or end_vids are ignored.
- The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- Running time: \(O(| start_vids | * (V + E))\)

Signatures

Summarv

pgr_dagShortestPath(Edges SQL, start vid, end vid) pgr_dagShortestPath(Edges SQL, start vid, end vid) pgr_dagShortestPath(Edges SQL, start vids, end vids) pgr_dagShortestPath(Edges SQL, start vids, end vids) pgr_dagShortestPath(Edges SQL, start vids, end vids) pgr_dagShortestPath(Edges SQL, Combinations SQL) Returns set of (seq. path_seq. node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_dagShortestPath(<u>Edges SQL</u>, **start vid**, **end vid**) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(5\) to vertex \(11\) on a **directed** graph

SELECT * FROM pgr_dagShortestPath('SELECT id, source, target, cost FROM edges', 5, 11);

seq | path_seq | node | edge | cost | agg_cost

		+	+	-+	+
1	1	5	1	1	0
2	2	6	4	1	1
3	3	7	8	1	2
4	4	11	-1	0	3
(4 rows)					

One to Many

pgr_dagShortestPath(<u>Edges SQL</u>, start vid, end vids) Returns set of (seq. path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex (5) to vertices $({7, 11})$

SELECT * FROM pgr_dagShortestPath('SELECT id, source, target, cost FROM edges', 5, ARRAY[7, 11]); seq | path_seq | node | edge | cost | agg_cost

		.	+		+
1	1	5	1	1	0
2	2	6	4	1	1
3	3	7	-1	0	2
4	1	5	1	1	0
5	2	6	4	1	1
6	3	7	8	1	2
7	4	11	-1	0	3
(7 rows)					

Many to One

pgr_dagShortestPath(<u>Edges SQL</u>, start vids, end vid) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(({5, 10}))$ to vertex ((11))

SELECT * FROM pgr_dagShortestPath('SELECT id, source, target, cost FROM edges', ARRAY[5, 10], 11); seq | path_seq | node | edge | cost | agg_cost

1 | 5 | 1 | 1 | 0 11

2	2	6	4	1	1
3	3	7	8	1	2
4	4	11	-1	0	3
5	1	10	5	1	0
6	2	11	-1	0	1
(6 rows)					

Many to Many

pgr_dagShortestPath(<u>Edges SQL</u>, **start vids**, **end vids**) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\ 5, 15)) to vertices <math display="inline">(\ 11, 17)) to an undirected graph$

SELECT * FROM pgr_dagShortestPath('SELECT id, source, target, cost FROM edges', ARRAY[5, 15], ARRAY[11, 17]); seq | path_seq | node | edge | cost | agg_cost

T		T	T	T	T
1	1	5	1	1	0
2	2	6	4	1	1
3	3	7	8	1	2
4	4	11	-1	0	3
5	1	5	1	1	0
6	2	6	4	1	1
7	3	7	8	1	2

8	4	11	9	1	3
9	5	16	15	1	4
10	6	17	-1	0	5
11	1	15	16	1	0
12	2	16	15	1	1
13	3	17	-1	0	2
(13 row:	s)				

Combinations

pgr_dagShortestPath(<u>Edges SQL</u>, <u>Combinations SQL</u>) Returns set of (seq, path_seq, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an $\ensuremath{\textbf{undirected}}$ graph

The combinations table:

SELECT source, target FROM combinations; source | target

5 | 5 | 6 | 6 | 6 | (5 rows) 6 10 5 15 14

The query:

 SELECT * FROM pgr_dagShortestPath(

 'SELECT id, source, target, cost FROM edges',

 'SELECT source, target FROM combinations');

 seq | path_seq | node | edge | cost | agg_cost

 1
 1

 2|
 2|

 2|
 2|

 2|
 2|

 3
 2|

 4
 0|

 1
 0|

 2|
 2|

 3
 2|

 4
 0|

 1
 0|

Parameters

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Combinations SQL

Туре Parameter

Description

ANY-INTEGER source

Туре Parameter

Description

target INTEGER	Identifier of the arrival vertex.
----------------	-----------------------------------

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Return columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. Many to One Many to Many
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. • <u>One to Many</u> • <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_dagShortestPath('SELECT id, source, target, cost FROM edges', ARRAY[5, 10, 5, 10, 10, 5], ARRAY[11, 17, 17, 11]); seq [path_seq |node | edge | cost | agg_cost

		-			
1	1	5	1	1	0
2	2	6	4	1	1
3	3	7	8	1	2
4	4	11	-1	0	3
5	1j	5	1	1	0
6	2	6	4	1 j -	1
7	3	7	8	1 j -	2
8	4	11	9	1	3
9	5	16	15	1	4
10	6	17	-1	0	5
11	-1 j	10	5	1	0
12	2	-11 j	-1	0	1
13	-1 j	10	5	1	0
14	2	-11 j	9	1 j	1
15	3	16	15	1	2
16	4	17	-1	0	3
(16 rows)				

Example 2:

Making start_vids the same as end_vids

SELECT * FROM pgr_dagShortestPath(
'SELECT id, source, target, cost FROM edges',
ARRAY[5, 10, 11], ARRAY[5, 10, 11]);
seq path_seq node edge cost agg_cost

1	1	5	1	1	0
2	2	6	4	1	1
3	3	7	8	1	2
4	4	11	-1	0	3
5	1	10	5	1	0
6	2	11	-1	0	1
(6 rows)					

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_dagShortestPath('SELECT id, source, target, cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); seq [path_seq] node | edge | cost | agg_cost

See Also

Sample Data

- https://en.wikipedia.org/wiki/Topological_sorting
- Indices and tables
 - Index
 - Search Page

pgr edwardMoore - Experimental

pgr_edwardMoore - Returns the shortest path using Edward-Moore algorithm.

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- · They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated
 - · Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - New experimental signature:
 - pgr_edwardMoore (<u>Combinations</u>)
- Version 3.0.0
 - New experimental signatures:
 - pgr_edwardMoore (<u>One to One</u>)
 - pgr_edwardMoore (One to Many)
 - pgr edwardMoore (Many to One)
 - pgr_edwardMoore (Many to Many)

Description

Edward Moore's Algorithm is an improvement of the Bellman-Ford Algorithm. It can compute the shortest paths from a single source vertex to all other vertices in a weighted directed graph. The main difference between Edward Moore's Algorithm and Bellman Ford's Algorithm lies in the run time.

The worst-case running time of the algorithm is (O(|V|*|E|)) is initiar to the time complexity of Bellman-Ford algorithm. However, experiments suggest that this algorithm has an average running time complexity of (O(|E|)) for random graphs. This is significantly faster in terms of computation speed.

Thus, the algorithm is at-best, significantly faster than Bellman-Ford algorithm and is at-worst, as good as Bellman-Ford algorithm

The main characteristics are:

- Values are returned when there is a path.
 - · When the starting vertex and ending vertex are the same, there is no path.
 - The agg_cost the non included values (v, v) is \(0\)
 - · When the starting vertex and ending vertex are the different and there is no path:
 - The agg_cost the non included values (u, v) is \(\infty\)
- For optimization purposes, any duplicated value in the start vids or end vids are ignored.
- · The returned values are ordered:
 - start_vid ascending
 - end_vid ascending
- · Running time:
 - Worst case: \(O(| V | * | E |)\)
 - Average case: \(O(| E |)\)

Signatures

Summary

- pgr_edwardMoore(Edges SQL, start vid, end vid, [directed])
- pgr_edwardMoore(<u>Edges SQL</u>, start vid, end vids, [directed]) pgr_edwardMoore(<u>Edges SQL</u>, start vids, end vids, [directed]) pgr_edwardMoore(<u>Edges SQL</u>, start vids, end vids, [directed])

pgr_edwardMoore(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost) OR EMPTY SET

One to One

pgr_edwardMoore(<u>Edges SQL</u>, start vid, end vid, [directed]) Returns set of (seq. path_seq. node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertex \(10\) on a **directed** graph

SELECT * FROM pgr_edwardMoore('SELECT id, source, target, cost, reverse_cost FROM edges', 6, 10, true);

seq path_	_seq no	de edg	ge cost	agg_cost
+	++	+	+	

1	1	6	4	1	0
2	2	7	8	1	1
3	3	11	9	1	2
4	4	16	16	1	3
5	5	15	3	1	4
6	6	10	-1	0	5

(6 rows)

One to Manv

pgr_edwardMoore(<u>Edges SQL</u>, start vid, end vids, [directed]) Returns set of (seq, path_seq, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertex \(6\) to vertices \(\{ 10, 17\}\) on a directed graph

SELECT * FROM pgr_edwardMoore('SELECT id, source, target, cost, reverse_cost FROM edges', 6, ARRAY[10, 17]); seq | path_seq | end_vid | node | edge | cost | agg_cost

 10
 6
 4
 1

 10
 6
 4
 1

 10
 7
 8
 1

 10
 11
 9
 1

 10
 15
 3
 1

 10
 15
 3
 1

 10
 15
 3
 1

 17
 7
 8
 1

 17
 7
 8
 1

 17
 7
 8
 1

 17
 11
 1
 1

 17
 11
 1
 1

 17
 12
 13
 1

 17
 12
 13
 1

 17
 17
 11
 1
 1 11 0 2| 3| 4| 5| 6| 1| 2| 3| 4| 5| 2 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | (11 rows) 2 3 4 5 0 1 2 3 4

Many to One

pgr_edwardMoore(<u>Edges SQL</u>, start vids, end vid, [directed]) Returns set of (seq, path_seq, start_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(({6, 1}))$ to vertex (17) on a **directed** graph

SELECT * FROM pgr_edwardMoore(

'SELE	CT id, s	ource, targe	et, cost, rev	erse_cost FR	OM edges',
sealr	ath se	ılstart vid.	I node I edu	ne I cost I arr	n cost
+	+-	+	++	+	
1	1	1 1	6 1	0	
2	2	1 3	7 1	1	
3	3	1 7	8 1	2	
4	4	1 11	11 1	3	
5	5	1 12	13 1	4	
6	6	1 17	-1 0	5	
7	1	6 6	4 1	0	
8	2	6 7	8 1	1	
9	3	6 11	11 1	2	
10	4	6 12	13 1	3	
11	5	6 17	-1 0	4	
(11 row	rs)				

Many to Many

pgr_edwardMoore(<u>Edges SQL</u>, start vids, end vids, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

From vertices $(\ 0, 1))$ to vertices $(\ 10, 17))$ on an **undirected** graph

SELECT * FROM pgr_edwardMoore('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[6, 1], ARRAY[10, 17], directed => false); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

	+-		+++++++
1	1	1	10 1 6 1 0
2	2	1	10 3 7 1 1
3	3	1	10 7 4 1 2
4	4	1	10 6 2 1 3
5	5	1	10 10 -1 0 4
6	1	1	17 1 6 1 0
7	2	1	17 3 7 1 1
8	3	1	17 7 8 1 2
9	4	1	17 11 11 1 3
10	5	1	17 12 13 1 4
11	6	1	17 17 -1 0 5
12	1	6	10 6 2 1 0
13	2	6	10 10 -1 0 1
14	1	6	17 6 4 1 0
15	2	6	17 7 8 1 1
16	3	6	17 11 11 1 2
17	4	6	17 12 13 1 3
18	5	6	17 17 -1 0 4
(18 row	/s)		

Combinations

pgr_edwardMoore(<u>Edges SQL</u>, <u>Combinations SQL</u>, [directed]) Returns set of (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Using a combinations table on an **undirected** graph.

The combinations table:

SELECT source, target FROM combinations;

source	larget
+	
5	6
5	10
6	5
6	15
6	14
(5 rows)	

The query:

SELECT * FROM pgr_edwardMoore("SELECT id, source, target, cost, reverse_cost FROM edges', "SELECT source, target FROM combinations', false); seq [path_seq] start_vid | end_vid | node | edge | cost | agg_cost

1 2 3 4 5 6 7 8	1 2 1 2 3 1 2 1 2 1	5 5 5 5 6 6	6 5 1 1 6 6 -1 0 10 5 1 1 10 6 2 1 10 10 -1 0 5 6 1 1 5 5 -1 0 15 6 2 1	0 1 0 1 2 0 1 0
7	2	6	5 5 -1 0	1
8 9	1 2	6 6	15 6 2 1 15 10 3 1	0
10 (10 row	3 s)	6	15 15 -1 0	2

Parameters¶

Column	Туре	Description
Edges SQL	TEXT	Edges SQL as described below
Combinations SQL	TEXT	Combinations SQL as described below
start vid	BIGINT	Identifier of the starting vertex of the path.
start vids	ARRAY[BIGINT]	Array of identifiers of starting vertices.
end vid	BIGINT	Identifier of the ending vertex of the path.
end vids	ARRAY[BIGINT]	Array of identifiers of ending vertices.

Optional parameters

Column Type Default

Description

• When true the graph is considered Directed directed BOOLEAN true • When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Parameter	Туре	Description
source	ANY- INTEGER	Identifier of the departure vertex.
target	ANY- INTEGER	Identifier of the arrival vertex.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

Result columns

Returns set of (seq, path_seq [, start_vid] [, end_vid], node, edge, cost, agg_cost)

Column	Туре	Description
seq	INTEGER	Sequential value starting from 1.
path_seq	INTEGER	Relative position in the path. Has value1 for the beginning of a path.
start_vid	BIGINT	Identifier of the starting vertex. Returned when multiple starting vetrices are in the query. <u>Many to One</u> <u>Many to Many</u>
end_vid	BIGINT	Identifier of the ending vertex. Returned when multiple ending vertices are in the query. • <u>One to Many</u> • <u>Many to Many</u>
node	BIGINT	Identifier of the node in the path fromstart_vid to end_vid.
edge	BIGINT	Identifier of the edge used to go fromnode to the next node in the path sequence1 for the last node of the path.
cost	FLOAT	Cost to traverse from node using edge to the next node in the path sequence.
agg_cost	FLOAT	Aggregate cost from start_vid to node.

Additional Examples

Example 1:

Demonstration of repeated values are ignored, and result is sorted.

SELECT * FROM pgr_edwardMoore('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15, 10, 10, 15], ARRAY[10, 7, 10, 15]); seq [path_seq] start_vid | end_vid | node | edge | cost | agg_cost

	+-		+++++	
1	1	7	10 7 8 1	0
2	2	7	10 11 9 1	1
3	3	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1 j	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1
15	3	10	15 16 16 1	2
16	4	10	15 15 -1 0	3
17	1	15	7 15 16 1	0
18	2	15	7 16 9 1	1
19	3	15	7 11 8 1	2
20	4	15	7 7 -1 0	3
21	1	15	10 15 3 1	0
22	2	15	10 10 -1 0	1
(22 rov	vs)			

Example 2:

Making start vids the same as end vids.

SELECT * FROM pgr_edwardMoore('SELECT id, source, target, cost, reverse_cost FROM edges', ARRAY[7, 10, 15], ARRAY[7, 10, 15]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	7	10 7 8 1	0
2	2	7	10 11 9 1	1
3	3	7	10 16 16 1	2
4	4	7	10 15 3 1	3
5	5	7	10 10 -1 0	4
6	1	7	15 7 8 1	0
7	2	7	15 11 9 1	1
8	3	7	15 16 16 1	2
9	4	7	15 15 -1 0	3
10	1	10	7 10 5 1	0
11	2	10	7 11 8 1	1
12	3	10	7 7 -1 0	2
13	1	10	15 10 5 1	0
14	2	10	15 11 9 1	1

Example 3:

Manually assigned vertex combinations.

SELECT * FROM pgr_edwardMoore('SELECT id, source, target, cost, reverse_cost FROM edges', 'SELECT * FROM (VALUES (6, 10), (6, 7), (12, 10)) AS combinations (source, target)'); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

+	+-		++++	+
1	1	6	7 6 4 1	0
2	2	6	7 7 -1 0	1
3	1	6	10 6 4 1	0
4	2	6	10 7 8 1	1
5	3	6	10 11 9 1	2
6	4	6	10 16 16 1	3
7	5	6	10 15 3 1	4
8	6	6	10 10 -1 0	5
9	1	12	10 12 13 1	0
10	2	12	10 17 15 1	1
11	3	12	10 16 16 1	2
12	4	12	10 15 3 1	3
13	5	12	10 10 -1 0	4
(13 row:	s)			

See Also

Sample Data

<u>https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm</u>

Indices and tables

Index

Search Page

Planar Family

• pgr_isPlanar - Experimental

pgr_isPlanar - Experimental

pgr_isPlanar — Returns a boolean depending upon the planarity of the graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - · Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - · Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - New experimental function

Description

A graph is planar if it can be drawn in two-dimensional space with no two of its edges crossing. Such a drawing of a planar graph is called a plane drawing. Every planar graph also admits a straight-line drawing, which is a plane drawing where each edge is represented by a line segment. When a graph has \(K_5\) or \(K_{3,3}\) as subgraph then the graph is not planar.

The main characteristics are:

- This implementation use the Boyer-Myrvold Planarity Testing.
- It will return a boolean value depending upon the planarity of the graph.
- Applicable only for undirected graphs.
- · The algorithm does not considers traversal costs in the calculations.

Running time: \(O(|V|)\)

Signatures

Summary

pgr_isPlanar(*Edges SQL*) RETURNS BOOLEAN

SELECT * FROM pgr_isPlanar('SELECT id, source, target, cost, reverse_cost FROM edges'

); pgr_isplanar

t (1 row)

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGER, BIO	BINT		
ANY-NUMERICAL:			
SMALLINT, INTEGER, BIO	GINT, REAL, FLOAT		
Result columns			
Returns a boolean (pgr_isplar	nar)		
Column Type	Description		
• tr	<i>ue</i> when the graph is planar.		

Additional Examples

pgr_isplanar BOOLEAN

The following edges will make the subgraph with vertices {10, 15, 11, 16, 13} a (K_1) graph.

• false when the graph is not

INSERT INTO edges (source, target, cost, reverse_cost) VALUES (10, 16, 1, 1), (10, 13, 1, 1), (15, 11, 1, 1), (15, 13, 1, 1), (11, 13, 1, 1), (16, 13, 1, 1); INSERT 0 6

planar.

The new graph is not planar because it has a (K_5) subgraph. Edges in blue represent (K_5) subgraph.

SELECT * FROM pgr_isPlanar('SELECT id, source, target, cost, reverse_cost FROM edges'); pgr_isplanar (1 row)

See Also

Sample Data

https://www.boost.org/libs/graph/doc/boyer_myrvold.html

- Indices and tables
 - Index
 - Search Page

Miscellaneous Algoritms

- pgr_lengauerTarjanDominatorTree -Experimental
- pgr_stoerWagner Experimental
- pgr_transitiveClosure Experimental
- pgr_hawickCircuits Experimental

pgr_lengauerTarjanDominatorTree -Experimental

pgr_lengauerTarjanDominatorTree - Returns the immediate dominator of all vertices.

Boost Graph Inside

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

- Version 3.2.0
 - · New experimental function

Description

The algorithm calculates the immidiate dominator of each vertex called idom, once idom of each vertex is calculated then by making everyidom of each vertex as its parent, the dominator tree can be built

- The algorithm works in directed graph only.
- The returned values are not ordered.
- The algorithm returns idom of each vertex.
- If the root vertex not present in the graph then it returns empty set.
- Running time: $(O((V+E)\log(V+E)))$

Signatures

Summary

pgr_lengauerTarjanDominatorTree(<u>Edges SQL</u>, **root vertex**) Returns set of (seq, vertex_id, idom) OR EMPTY SET

Example:

The dominator tree with root vertex (5)

SELECT * FROM pgr_lengauertarjandominatortree(\$SELECT id,source,target,cost,reverse_cost FROM edges\$\$, 5) ORDER BY vertex_id; seq | vertex_id | idom

5) OR	DEK R	Y ver
seq v	ertex_i	d ido
+	4	
1	1	2
9	2	0
2	3	3
10	4	0
17	5	0
4	6	17
3	7	4
7	8	3
11	9	7
5	10	16
6	11	3
8	12	3
12	13	0
13	14	0
16	15	15
15	16	3
14	17	3
(17 row	s)	

Parameters 9

Column	Туре	Description
Edges SQL	TEXT	SQL query as described above.

root BIGINT Identifier of the starting vertex.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where:			
ANY-INTEGER:			
SMALLINT, INTEGER, BI	GINT		
ANY-NUMERICAL:			
SMALLINT, INTEGER, BI	GINT, REAL, FLOAT		
Result columns¶			
Returns set of (seq, vertex_id,	idom)		
Column Type	Description		
seq INTEGER Sequenti 1.	al value starting from		
vertex_id BIGINT Identifier	of vertex .		

idom BIGINT Immediate dominator of vertex.

Additional Examples

Example:

Dominator tree of another component.

SELECT * FROM pgr_lengauertarjandominatortree(\$\$SELECT id.source.target.cost,reverse_cost FROM edges\$\$, 13) ORDER BY vertex_id; seq | vertex_id | idom

- , -		
seq v	ertex_i	d id
1	1	0
		0
3	21	0
21	3	0
10	4	0
17	5	0
4	6	0
3	7	0
7	8	0
11	9	0
5	10	0
6	11	0
8	12	0
12	13	0
13	14	12
16	15	0
15	16	0
14	17	0
(17 row	s)	

See Also

- Sample Data
- Boost: Lengauer-Tarjan dominator tree algorithm
- Wikipedia: dominator tree

Indices and tables

- Index
- Search Page

pgr_stoerWagner - Experimental

pgr_stoerWagner — The min-cut of graph using stoerWagner algorithm.

Boost Graph Inside

Warning

Possible server crash

· These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - · May lack documentation.
 - · Documentation if any might need to be rewritten.
 - Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting

· Might depend on a deprecated function of pgRouting

Availability

- Version 3.0
 - New Experimental function

Description

In graph theory, the Stoer–Wagner algorithm is a recursive algorithm to solve the minimum cut problem in undirected weighted graphs with non-negative weights. The essential idea of this algorithm is to shrink the graph by merging the most intensive vertices, until the graph only contains two combined vertex sets. At each phase, the algorithm finds the minimum s-t cut for two vertices s and t chosen as its will. Then the algorithm shrinks the edge between s and t to search for non s-t cuts. The minimum cut found in all phases will be the minimum weighted cut of the graph.

A cut is a partition of the vertices of a graph into two disjoint subsets. A minimum cut is a cut for which the size or weight of the cut is not larger than the size of any other cut. For an unweighted graph, the minimum cut would simply be the cut with the least edges. For a weighted graph, the sum of all edges' weight on the cut determines whether it is a minimum cut.

The main characteristics are:

- · Process is done only on edges with positive costs.
- · It's implementation is only on undirected graph.
- · Sum of the weights of all edges between the two sets is mincut.
 - A mincut is a cut having the least weight.
- · Values are returned when graph is connected.
 - When there is no edge in graph then EMPTY SET is return.
 - · When the graph is unconnected then EMPTY SET is return.

- · Sometimes a graph has multiple min-cuts, but all have the same weight. The this function determines exactly one of the min-cuts as well as its weight.
- Running time: $(O(V^*E + V^2^*\log V)))$.

Signatures

pgr_stoerWagner(<u>Edges SQL</u>) Returns set of (seq, edge, cost, mincut) OR EMPTY SET

Example:

min cut of the main subgraph

Parameters¶

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1		Weight of the edge (target, source)When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, edge, cost, mincut)

Column Type Description

seq INT Sequential value starting from 1.

edge BIGINT Edges which divides the set of vertices into two.

cost FLOAT Cost to traverse of edge.

mincut FLOAT Min-cut weight of a undirected graph.

Additional Example:

Example:

min cut of an edge

Example:

Using pgr_connectedComponents

SELECT * FROM pgr_stoerWagner(\$\$ SELECT id, source, target, cost, reverse_cost FROM edges WHERE source IN (SELECT node FROM pgr_connectedComponents('SELECT node FROM pgr_cost, reverse_cost FROM edges ') WHERE component = 2)

\$\$); seq | edge | cost | mincut 1 | 17 | 1 | 1 (1 row)

See Also

- Sample Data
- <u>https://en.wikipedia.org/wiki/Stoer%E2%80%93Wagner_algorithm</u>
- Indices and tables
- Index
- Search Page

pgr_transitiveClosure - Experimental

pgr_transitiveClosure — Transitive closure graph of a directed graph.

Boost Graph Inside

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - · Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.
 - May lack documentation.
 - · Documentation if any might need to be rewritten.
 - · Documentation examples might need to be automatically generated.
 - Might need a lot of feedback from the comunity.
 - · Might depend on a proposed function of pgRouting
 - · Might depend on a deprecated function of pgRouting

Availability

• Version 3.0.0

• New experimental function

Description

Transforms the input directed graph into the transitive closure of the graph.

The main characteristics are:

- Process is valid for directed graphs.
 - The transitive closure of an undirected graph produces a cluster graph
 - Reachability between vertices on an undirected graph happens when they belong to the same connected component. (see grac connected Components)
- · The returned values are not ordered
- The returned graph is compresed
- Running time: \(O(|V||E|)\)

Signatures

Summary

The pgr_transitiveClosure function has the following signature:

pgr_transitiveClosure(Edges SQL) Returns set of (seq, vid, target_array)

Example:

Rechability of a subgraph

SELECT * FROM pgr_transitiveclosure('SELECT id, source, target, cost, reverse_cost FROM edges WHERE id IN (2, 3, 5, 11, 12, 13, 15)') ORDER BY vid; seq | vid | target_array

- 1 | 6 | {} 6 | 8 | {12,17,16} 6 | 8 | (12,17,16) 2 | 10 | {12,17,16,11,6} 4 | 11 | {12,17,16} 5 | 12 | {17,16} 3 | 15 | {12,17,16,10,11,6} 8 | 16 | {17,16} 7 | 17 | {17,16}

Parameters

Parameter Type Description

Edges SQL TEXT Edges SQL as described below.

Inner Queries

Edges SQL

Column	Туре	Default	Description
id	ANY-INTEGER		Identifier of the edge.
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL -1	1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.

Where:

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Returns set of (seq, vid, target_array)

Column	Туре	Description
seq	INTEGER Sequential value starting	g from \(1\)

vid BIGINT Identifier of the source of the edges

٧.

Identifiers of the targets of the edges

 ${}^{\rm target_array\,BIGINT}$ \bullet Identifiers of the vertices that are reachable from vertex

See Also

- Sample Data
- <u>https://en.wikipedia.org/wiki/Transitive_closure</u>

Indices and tables

- Index
- Search Page

pgr_hawickCircuits - Experimental

pgr_hawickCircuits — Returns the list of cirucits using hawick circuits algorithm.

Warning

Possible server crash

These functions might create a server crash

Warning

Experimental functions

- They are not officially of the current release.
- They likely will not be officially be part of the next release:
 - The functions might not make use of ANY-INTEGER and ANY-NUMERICAL
 - Name might change.
 - Signature might change.
 - Functionality might change.
 - pgTap tests might be missing.
 - Might need c/c++ coding.

- May lack documentation.
- · Documentation if any might need to be rewritten.
- · Documentation examples might need to be automatically generated.
- · Might need a lot of feedback from the comunity.
- · Might depend on a proposed function of pgRouting
- · Might depend on a deprecated function of pgRouting

Availability

- Version 3.4.0
 - New experimental signature:
 - pgr_hawickCircuits

Description

Hawick Circuit algorithm, is published in 2008 by Ken Hawick and Health A. James. This algorithm solves the problem of detecting and enumerating circuits in graphs. It is capable of circuit enumeration in graphs with directed-arcs, multiple-arcs and self-arcs with a memory efficient and high-performance im-plementation. It is an extension of Johnson's Algorithm of finding all the elementary circuits of a directed graph.

There are 2 variations defined in the Boost Graph Library. Here, we have implemented only 2nd as it serves the most suitable and practical usecase. In this variation we get the circuits after filtering out the circuits caused by parallel edges. Parallel edge circuits have more use cases when you want to count the no. of circuits.Maybe in future, we will also implemenent this variation.

The main Characteristics are:

- The algorithm implementation works only for directed graph
- It is a variation of Johnson's algorithm for circuit enumeration.
- The algorithm outputs the distinct circuits present in the graph.
- Time Complexity: \(O((V + E) (c + 1))\)
 - where \(|E|\) is the number of edges in the graph,
 - \(|V|\) is the number of vertices in the graph.
 - \(|c|\) is the number of circuts in the graph.

Signatures

Summary

pgr_hawickCircuits(<u>Edges SQL</u>) Returns set of (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost) OR EMPTY SET

Example:

Circuits present in the pgRoutingSample Data

SELECT * FROM pgr_hawickCircuits('SELECT id, source, target, cost, reverse_cost FROM edges'); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

				+	+	++-	+
11	11	01	11	11	1 6	11	0
	- 11	11	- 11	ii.	3 6	ii.	1
~ [- 11			11	5 0		
3		21	- ! !	11	11 -11	01	2
4	2	0	3	3	3 7	1	0
5	2	1	3	3	7 7	1	1
6 1	21	2	31	зi	3 -1	0	2
71	3	οi	71	71	7 4	11	0
	2	11	7	ż	6 1	ii.	1
	31		7		7 4		
91	3	2	<u></u>	4.	/	01	2
10	4	0	7	1	/ 8	1	0
11	4	1	7	7	11 8	1	1
12	4	2	7	7	7 -1	0	2
13	5	0	7	7	7 8	1	0
14	51	11	71	71	11 11	1 11	1
15	51	2	7 1	7 1	12 13	i ti	2
16	51	3	7	71	17 15	1 11	3
17		4			16 16		4
10	1 51	41	7		10 10		- -
18	5	5	<u> </u>	- 1	15 3		5
19	5	6	7	1	10 2	1	6
20	5	7	7	7	6 4	1	7
21	5	8	7	7	7 -1	0	8
22	6	0	7	7	7 8	1	0
23	i 6i	1 i	7 İ	7 İ	11 9	L 1 L	1
24	6	2	7 1	7 1	16 16	i ti	2
25		2	-	ż	15 2	i ii	2
20		4			10 0		3
20		4	<u>_</u>	4	10 2		4
27	6	5	7	1	6 4	11	5
28	6	6	7	7	7 -1	0	6
29	7	0	7	7	7 10	1	0
30	7	1	7	7	8 10	1	1
31	i 7 i	2	71	71	7 -1	01	2
32	่ 81	oi	7	7 1	7 10	11	0
22		1	-	ż	8 12		1
0.4					10 12		
34		2	<u>_</u>	4	12 13		2
35	8	3	7	1	17 15	1	3
36	8	4	7	7	16 9	1	4
37	8	5	7	7	11 8	1	5
38	8	6	7	7	7 -1	0	6
39	9	0	7	7	7 10	1	0
40	i 9i	11	71	71	8 12	i 1 i	1
41	9	2	7	71	12 13	i 1i -	2
42		3	7	71	17 15	1 11	3
12		4	71		16 16		4
40		-	2		15 0		5
44	9	5	<u>_</u>	4	10 3		5
45	9	0	<u> </u>	- 1	10 2		6
46	9	/	<u>_</u>	1	6 4	11	/
47	9	8	7	7	7 -1	0	8
48	10	0	7	7	7 10	1	0
49	10	1	7	7	8 12	1	1
50	10İ	21	7	7	12 13	3 1	2
51	10	3	71	7	17 19	5 1 1	3
52	10	4	7	7	16 16		4
52	10		7	, 7	151 2	1 11	5
55	10	0	71	4	101 3		5
04 55		0	<u>_</u>	_			0
55	10	1	7		11 8	1	/
56	10	8	7	7	7 -1	0	8
57	11	0	6	6	6 1	1	0
58	11	1	6	6	5 1	1	1
59	11 İ	2	6	6	6 -1	0	2
60	12	oʻ	10	10	0 10	5 1	0
61	12	1	10	10		11 1	1
62	101	2	10	10	1 12	12 1 1	2
02	2	4	10	1	121		2

63	12	3	10	10 17 15 1 3		
65	12	51	10			
66	12	6	10	10 10 -1 0 6		
67	13	0	10	10 10 5 1 0		
68	13	11	10	10 11 9 1 1		
69	13	2	10	10 16 16 1 2		
70	13	3	10	10 15 3 1 3		
71	13	4	10	10 10 -1 0 4		
72	14	oj	11	11 11 11 1 0		
73 j	14	1	11	11 12 13 1 1		
74	14	2	11 j	11 17 15 1 2		
75	14	3	11	11 16 9 1 3		
76	14	4	11	11 11 -1 0 4		
77	15	0	11	11 11 9 1 0		
78	15	1	11	11 16 9 1 1		
79	15	2	11	11 11 -1 0 2		
80	16	0	8	8 8 14 1 0		
81	16	1	8	8 9 14 1 1		
82	16	2	8	8 8 -1 0 2		
83	17	0	2	2 2 17 1 0		
84	17	1	2	2 4 17 1 1		
85	17	2	2	2 2 -1 0 2		
86	18	0	13	13 13 18 1 0		
87	18	1	13	13 14 18 1 1		
88	18	2	13	13 13 -1 0 2		
89	19	0	17	17 17 15 1 0		
90	19	1	17	17 16 15 1 1		
91	19	2	17	17 17 -1 0 2		
92	20	0	16	16 16 16 1 0		
93	20	1	16	16 15 16 1 1		
94	20	2	16	16 16 -1 0 2		
(94 rows)						

Parameters 1

Parameter Type Default Description

Edges SQL TEXT Edges SQL as described below.

Optional parameters

Colum	п Туре	Default	Description
directed			• When true the graph is considered Directed
	BOOLEAN	N true	When false the graph is considered as Undirected.

Inner Queries

Edges SQL

Column	Туре	Default	Description
source	ANY-INTEGER		Identifier of the first end point vertex of the edge.
target	ANY-INTEGER		Identifier of the second end point vertex of the edge.
cost	ANY-NUMERICAL		Weight of the edge (source, target)
reverse_cost	ANY-NUMERICAL	-1	 Weight of the edge (target, source) When negative: edge (target, source) does not exist, therefore it's not part of the graph.
Where.			

ANY-INTEGER:

SMALLINT, INTEGER, BIGINT

ANY-NUMERICAL:

SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result columns

Column	Туре	Description	
seq	INTEGER	Sequential value starting from 1	
path_id	INTEGER	Id of the circuit starting from 1	
path_seq	INTEGER	Relative postion in the path. Has value0 for beginning of the path	h
start_vid	BIGINT	Identifier of the starting vertex of the circuit.	
end_vid	BIGINT	Identifier of the ending vertex of the circuit.	
node	BIGINT	Identifier of the node in the path from a vid to next vid.	

Column Type

Description

Identifier of the edge used to go from node to the next node in the path sequence.-1 for the last node of the BIGINT edge nath

FLOAT Cost to traverse from node using edge to the next node in the path sequence. cost

agg_cost FLOAT Aggregate cost from start_v to node.

See Also

Sample Data

Boost: Hawick Circuit Algorithm

Indices and tables

- Index
- Search Page

See Also

Indices and tables

- Index
- Search Page

Release Notes¶

Current release

pgRouting 3.7.1 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.1

Bug fixes

- <u>#2680</u> fails to compile under mingw64 gcc 13.2
- #2689 When point is a vertex, the withPoints family do not return results.
- C/C++ code enhancemet
- TRSP family

pgRouting 3.7.0 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.0

Support

• #2656 Stop support of PostgreSQL12 on pgrouting v3.7

Stopping support of PostgreSQL 12

CI does not test for PostgreSQL 12

New experimental functions

Metrics

pgr_betweennessCentrality

Official functions changes

- <u>#2605</u> Standarize spanning tree functions output
 - Functions:
 - pgr_kruskalDD
 - pgr kruskalDFS
 - pgr_kruskalBFS

 - pgr_primDD
 - pgr_primDFS
 - pgr_primBFS
 - Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

• <u>#2635</u> pgr_LineGraph ignores directed flag and use negative values for identifiers.

Experimental promoted to proposed.

• <u>#2599</u> Driving distance cleanup • #2607 Read postgresql data on C++ • <u>#2614</u> Clang tidy does not work

pgr_lineGraph

~ Code enhancement

All releases

Added pred result columns.

 Promoted to proposed signature. · Works for directed and undirected graphs.

Release Notes

To see the full list of changes check the list of Git commits on Github.

Mayors

- pgRouting 3
- pgRouting 2
- pgRouting 1

pgRouting 3¶

Minors 3.x

- pgRouting 3.7
- pgRouting 3.6
- pgRouting 3.5
- pgRouting 3.4
- pgRouting 3.3
- pgRouting 3.2
- pgRouting 3.1
- pgRouting 3.0

pgRouting 3.7¶

Contents

- pgRouting 3.7.1 Release Notes
- pgRouting 3.7.0 Release Notes

pgRouting 3.7.1 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.1

Bug fixes

• <u>#2680</u> fails to compile under mingw64 gcc 13.2

• #2689 When point is a vertex, the withPoints family do not return results.

C/C++ code enhancemet

TRSP family

pgRouting 3.7.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.7.0

Support

- <u>#2656</u> Stop support of PostgreSQL12 on pgrouting v3.7
 - Stopping support of PostgreSQL 12
 - CI does not test for PostgreSQL 12

New experimental functions

- Metrics
 - pgr_betweennessCentrality

Official functions changes

- <u>#2605</u> Standarize spanning tree functions output
 - Functions:
 - pgr_kruskalDD
 - pgr_kruskalDFS
 - pgr_kruskalBFS
 - pgr_primDD
 - pgr_primDFS
 - pgr_primBFS
 - Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - Added pred result columns.
- Experimental promoted to proposed.
 - <u>#2635</u> pgr_LineGraph ignores directed flag and use negative values for identifiers.
 - pgr_lineGraph
 - Promoted to proposed signature.
 - · Works for directed and undirected graphs.

Code enhancement

- <u>#2599</u> Driving distance cleanup
- <u>#2607</u> Read postgresql data on C++
- <u>#2614</u> Clang tidy does not work

pgRouting 3.6¶

Contents

- pgRouting 3.6.3 Release Notes
- pgRouting 3.6.2 Release Notes
- pgRouting 3.6.1 Release Notes
- pgRouting 3.6.0 Release Notes

pgRouting 3.6.3 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.3

Build

• Explicit minimum requirements:

- postgres 11.0.0
- postgis 3.0.0
- g++ 13+ is supported

Code fixes

- · Fix warnings from cpplint.
- Fix warnings from clang 18.

CI tests

- Add a clang tidy test on changed files.
- Update test not done on versions: 3.0.1, 3.0.2, 3.0.3, 3.0.4, 3.1.0, 3.1.1, 3.1.2

Documentation

• Results of documentation gueries adujsted to boost 1.83.0 version:

- pgr_edgeDisjointPaths
- pgr_stoerWagner

pgtap tests

bug fixes

pgRouting 3.6.2 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.2

Upgrade fix

• The upgrade was failing for same minor

Code fixes

· Fix warnings from cpplint

Others

- · Adjust NEWS generator
 - Name change to NEWS.md for better visualization on GitHub

pgRouting 3.6.1 Release Notes

- To see all issues & pull requests closed by this release see the Git closed milestone for 3.6.1
 - #2588 pgrouting 3.6.0 fails to build on OSX

pgRouting 3.6.0 Release Notes

To see all issues & pull requests closed by this release see the <u>Git closed milestone for 3.6.0</u> Official functions changes

• #2516 Standarize output pgr_aStar

- Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_aStar (One to One) added start_vid and end_vid columns.
 - pgr_aStar (One to Many) added end_vid column.
 - pgr_aStar (Many to One) added start_vid column.
- <u>#2523</u> Standarize output pgr_bdAstar
 - Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_bdAstar (One to One) added start_vid and end_vid columns.
 - pgr_bdAstar (One to Many) added end_vid column.
 - pgr_bdAstar (Many to One) added start_vid column.
- <u>#2547</u> Standarize output and modifying signature pgr_KSP
 - · Result columns standarized to: (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_ksp (One to One)

Added start_vid and end_vid result columns.

- New overload functions:
 - pgr_ksp (One to Many)
 - pgr_ksp (Many to One)
 - pgr_ksp (Many to Many)
 - pgr_ksp (Combinations)

• <u>#2548</u> Standarize output pgr_drivingdistance

- · Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - pgr_drivingdistance (Single vertex)
 - Added depth and start_vid result columns.
 - pgr_drivingdistance (Multiple vertices)
 - Result column name change: from_v to start_vid.
 - Added depth and pred result columns.

Proposed functions changes

• <u>#2544</u> Standarize output and modifying signature pgr_withPointsDD

- Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.
 - pgr_withPointsDD (Single vertex)
 - par withPointsDD (Multiple vertices)
- · Standarizing output columns to (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
 - pgr_withPointsDD (Single vertex)
 - Added depth, pred and start_vid column.
 - pgr_withPointsDD (Multiple vertices)
 - Added depth, pred columns.
- · When details is false:
 - Only points that are visited are removed, that is, points reached within the distance are included
- · Deprecated signatures
 - pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean)
 - pgr_withpointsdd(text,text,anyarray,double precision,boolean,character,boolean,boolean)
- #2546 Standarize output and modifying signature pgr_withPointsKSP
 - · Standarizing output columns to (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_withPointsKSP (One to One)
 - Signature change: driving_side parameter changed from named optional to unnamed compulsory driving side.
 - Added start_vid and end_vid result columns.
 - New overload functions
 - pgr withPointsKSP (One to Many)
 - pgr_withPointsKSP (Many to One)
 - pgr_withPointsKSP (Many to Many)
 - pgr_withPointsKSP (Combinations)
 - · Deprecated signature
 - pgr_withpointsksp(text,text,bigint,bigint,integer,boolean,boolean,char,boolean)

C/C++ code enhancements

- <u>#2504</u> To C++ pg data get, fetch and check.
- Stopping support for compilation with MSVC.
- <u>#2505</u> Using namespace.
- #2512 [Dijkstra] Removing duplicate code on Dijkstra.
- <u>#2517</u> Astar code simplification.
- <u>#2521</u> Dijkstra code simplification.
- #2522 bdAstar code simplification.

Documentation

- #2490 Automatic page history links.
- ...rubric:: SQL standarization
- <u>#2555</u> standarize deprecated messages
- On new internal function: do not use named parameters and default parameters.

pgRouting 3.5¶

Contents

- pgRouting 3.5.1 Release Notes
- pgRouting 3.5.0 Release Notes

pgRouting 3.5.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.5.1

Documentation fixes

Changes on the documentation to the following:

- pgr_degree
- pgr_dijkstra
- pgr_ksp
- · Automatic page history links

using bootstrap_version 2 because 3+ does not do dropdowns

Issue fixes

- <u>#2565</u> pgr_lengauerTarjanDominatorTree triggers an assertion
- SQL enhancements
- <u>#2561</u> Not use wildcards on SQL

pgtap tests

• <u>#2559</u> pgtap test using sampledata

Build fixes

Fix winnie build

Code fixes

- Fix clang warnings
 - Grouping headers of postgres readers

pgRouting 3.5.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.5.0

Official functions changes

- Dijkstra
 - Standarizing output columns to (seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
 - pgr_dijkstra (One to One) added start_vid and end_vid columns.
 - pgr_dijkstra (One to Many) added end_vid column.
 - pgr_dijkstra (Many to One) added start_vid column.

pgRouting 3.4¶

Contents

- pgRouting 3.4.2 Release Notes
- pgRouting 3.4.1 Release Notes
- pgRouting 3.4.0 Release Notes

pgRouting 3.4.2 Release Notes

To see all issues & pull requests closed by this release see the <u>Git closed milestone for 3.4.2</u> Issue fixes

- <u>#2394</u>: pgr bdAstar accumulates heuristic cost in visited node cost.
- <u>#2427</u>: pgr_createVerticesTable & pgr_createTopology, variable should be of type Record.

pgRouting 3.4.1 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.4.1

Issue fixes

- <u>#2401</u>: pgRouting 3.4.0 do not build docs when sphinx is too low or missing
- <u>#2398</u>: v3.4.0 does not upgrade from 3.3.3

pgRouting 3.4.0 Release Notes¶

To see all issues & pull requests closed by this release see the <u>Git closed milestone for 3.4.0</u> Issue fixes

<u>#1891</u>: pgr_ksp doesn't give all correct shortest path

New proposed functions

With points

- pgr_withPointsVia (One Via)
- Turn Restrictions
 - · Via with turn restrictions
 - pgr_trspVia (One Via)
 - pgr_trspVia_withPoints (One Via)
 - pgr_trsp
 - pgr_trsp (One to One)
 - pgr_trsp (One to Many)
 - pgr_trsp (Many to One)
 - pgr_trsp (Many to Many)
 - pgr_trsp (Combinations)
 - pgr_trsp_withPoints
 - pgr_trsp_withPoints (One to One)
 - pgr_trsp_withPoints (One to Many)
 - pgr_trsp_withPoints (Many to One)
 - pgr_trsp_withPoints (Many to Many)
 - pgr_trsp_withPoints (Combinations)

- Topology
 - pgr_degree
- · Utilities
 - pgr_findCloseEdges (One point)
 - pgr_findCloseEdges (Many points)

New experimental functions

- Ordering
 - pgr_cuthillMckeeOrdering
- Unclassified

pgr_hawickCircuits

Official functions changes

- Flow functions
 - pgr_maxCardinalityMatch(text)
 - Deprecating pgr_maxCardinalityMatch(text,boolean)

Deprecated Functions

- Turn Restrictions
 - pgr_trsp(text,integer,integer,boolean,boolean,text)
 - pgr_trsp(text,integer,float8,integer,float8,boolean,boolean,text)
 - pgr_trspViaVertices(text,anyarray,boolean,boolean,text)
 - pgr_trspViaEdges(text,integer[],float[],boolean,boolean,text)

pgRouting 3.3¶

Contents

- pgRouting 3.3.5 Release Notes
- pgRouting 3.3.4 Release Notes
- pgRouting 3.3.3 Release Notes
- pgRouting 3.3.2 Release Notes
- pgRouting 3.3.1 Release Notes
- pgRouting 3.3.0 Release Notes

pgRouting 3.3.5 Release Notes¶

• <u>#2401</u>: pgRouting 3.4.0 do not build docs when sphinx is too low or missing

pgRouting 3.3.4 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.4

Issue fixes

• <u>#2400</u>: pgRouting 3.3.3 does not build in focal

pgRouting 3.3.3 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.3

Issue fixes

<u>#1891</u>: pgr_ksp doesn't give all correct shortest path

Official functions changes

Flow functions

- pgr_maxCardinalityMatch(text,boolean)
 - Ignoring optional boolean parameter, as the algorithm works only for undirected graphs.

pgRouting 3.3.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.2

- Revised documentation
 - · Simplifying table names and table columns, for example:
 - edges instead of edge_table
 - Removing unused columns category_id and reverse_category_id.
 - combinations instead of combinations_table
 - Using PostGIS standard for geometry column.
 - geom instead of the_geom
 - · Avoiding usage of functions that modify indexes, columns etc on tables.
 - Using pgr_extractVertices to create a routing topology
 - Restructure of the pgRouting concepts page.

Issue fixes

- <u>#2276</u>: edgeDisjointPaths issues with start_vid and combinations
- <u>#2312</u>: pgr_extractVertices error when target is not BIGINT
- <u>#2357</u>: Apply clang-tidy performance-*

pgRouting 3.3.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.1 on Github.

Issue fixes

- <u>#2216</u>: Warnings when using clang
- <u>#2266</u>: Error processing restrictions

pgRouting 3.3.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.3.0 on Github.

Issue fixes

- #2057: trspViaEdges columns in different order
- <u>#2087</u>: pgr_extractVertices to proposed
- <u>#2201</u>: pgr_depthFirstSearch to proposed
- <u>#2202</u>: pgr_sequentialVertexColoring to proposed
- <u>#2203</u>: pgr_dijkstraNear and pgr_dijkstraNearCost to proposed

New experimental functions

- Coloring
 - pgr_edgeColoring
- Experimental promoted to Proposed

Dijkstra

- pgr_dijkstraNear
 - pgr_dijkstraNear(Combinations)
 - pgr_dijkstraNear(Many to Many)
 - pgr_dijkstraNear(Many to One)
 - pgr_dijkstraNear(One to Many)
- pgr_dijkstraNearCost
 - pgr_dijkstraNearCost(Combinations)
 - pgr_dijkstraNearCost(Many to Many)
 - pgr_dijkstraNearCost(Many to One)
 - pgr_dijkstraNearCost(One to Many)
- Coloring
 - pgr_sequentialVertexColoring
- Topology
 - pgr_extractVertices
- Traversal
 - pgr_depthFirstSearch(Multiple vertices)
 - pgr_depthFirstSearch(Single vertex)

pgRouting 3.2¶

Contents

- pgRouting 3.2.2 Release Notes
- pgRouting 3.2.1 Release Notes
- pgRouting 3.2.0 Release Notes

pgRouting 3.2.2 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.2.2 on Github.

Issue fixes

- #2093: Compilation on Visual Studio
- <u>#2189</u>: Build error on RHEL 7

pgRouting 3.2.1 Release Notes¶

To see all issues & pull requests closed by this release see the <u>Git closed milestone for 3.2.1</u> on Github.

Issue fixes

- <u>#1883</u>: pgr_TSPEuclidean crashes connection on Windows
 - The solution is to use Boost::graph::metric_tsp_approx
 - To not break user's code the optional parameters related to the TSP Annaeling are ignored
 - The function with the annaeling optional parameters is deprecated

pgRouting 3.2.0 Release Notes¶

To see all issues & pull requests closed by this release see the <u>Git closed milestone for 3.2.0</u> on Github. Build

- <u>#1850</u>: Change Boost min version to 1.56
- Removing support for Boost v1.53, v1.54 & v1.55

New experimental functions

- pgr_bellmanFord(Combinations)
- pgr_binaryBreadthFirstSearch(Combinations)
- pgr_bipartite
- pgr_dagShortestPath(Combinations)
- pgr_depthFirstSearch
- Dijkstra Near
 - pgr_dijkstraNear
 - pgr_dijkstraNear(One to Many)
 - pgr_dijkstraNear(Many to One)
 - pgr_dijkstraNear(Many to Many)
 - pgr_dijkstraNear(Combinations)
 - pgr_dijkstraNearCost
 - pgr_dijkstraNearCost(One to Many)
 - pgr_dijkstraNearCost(Many to One)
 - pgr_dijkstraNearCost(Many to Many)
 - pgr_dijkstraNearCost(Combinations)
- pgr_edwardMoore(Combinations)
- pgr_isPlanar
- pgr_lengauerTarjanDominatorTree
- pgr_makeConnected
- Flow
 - pgr_maxFlowMinCost(Combinations)
 - pgr_maxFlowMinCost_Cost(Combinations)
- pgr_sequentialVertexColoring

New proposed functions

- Astar
 - pgr_aStar(Combinations)
 - pgr_aStarCost(Combinations)
- Bidirectional Astar
 - pgr_bdAstar(Combinations)
 - pgr_bdAstarCost(Combinations)
- Bidirectional Dijkstra
 - pgr_bdDijkstra(Combinations)
 - pgr_bdDijkstraCost(Combinations)
- Flow
 - pgr_boykovKolmogorov(Combinations)
 - pgr_edgeDisjointPaths(Combinations)
 - pgr_edmondsKarp(Combinations)
 - pgr_maxFlow(Combinations)
 - pgr pushRelabel(Combinations)
- pgr_withPoints(Combinations)
- pgr_withPointsCost(Combinations)

pgRouting 3.1¶

Contents

- pgRouting 3.1.4 Release Notes
- pgRouting 3.1.3 Release Notes
- pgRouting 3.1.2 Release Notes
- pgRouting 3.1.1 Release Notes
- pgRouting 3.1.0 Release Notes

pgRouting 3.1.4 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.4 on Github.

Issues fixes

• #2189: Build error on RHEL 7

pgRouting 3.1.3 Release Notes¶

To see all issues & pull requests closed by this release see the<u>Git closed milestone for 3.1.3</u> on Github. Issues fixes

- #1825: Boost versions are not honored
- #1849: Boost 1.75.0 geometry "point_xy.hpp" build error on macOS environment
- #1861: vrp functions crash server

pgRouting 3.1.2 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.2 on Github.

Issues fixes

- #1304: FreeBSD 12 64-bit crashes on pgr_vrOneDepot tests Experimental Function
- <u>#1356</u>: tools/testers/pg_prove_tests.sh fails when PostgreSQL port is not passed
- <u>#1725</u>: Server crash on pgr_pickDeliver and pgr_vrpOneDepot on openbsd
- #1760: TSP server crash on ubuntu 20.04 #1760
- #1770: Remove warnings when using clang compiler

pgRouting 3.1.1 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.1.1 on Github.

Issues fixes

- #1733: pgr_bdAstar fails when source or target vertex does not exist in the graph
- #1647: Linear Contraction contracts self loops
- #1640: pgr_withPoints fails when points_sql is empty
- #1616: Path evaluation on C++ not updated before the results go back to C
- <u>#1300</u>: pgr_chinesePostman crash on test data

pgRouting 3.1.0 Release Notes¶

To see all issues & pull requests closed by this release see the<u>Git closed milestone for 3.1.0</u> on Github. New proposed functions

- pgr_dijkstra(combinations)
- pgr_dijkstraCost(combinations)

Build changes

• Minimal requirement for Sphinx: version 1.8

pgRouting 3.0¶

Contents

- pgRouting 3.0.6 Release Notes
- pgRouting 3.0.5 Release Notes
- pgRouting 3.0.4 Release Notes
- pgRouting 3.0.3 Release Notes
- pgRouting 3.0.2 Release Notes
- pgRouting 3.0.1 Release Notes
- pgRouting 3.0.0 Release Notes

pgRouting 3.0.6 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.6 on Github.

Issues fixes

• #2189: Build error on RHEL 7

pgRouting 3.0.5 Release Notes

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.5 on Github.

Backport issue fixes

- #1825: Boost versions are not honored
- #1849: Boost 1.75.0 geometry "point_xy.hpp" build error on macOS environment
- #1861: vrp functions crash server

pgRouting 3.0.4 Release Notes

To see all issues & pull requests closed by this release see the <u>Git closed milestone for 3.0.4</u> on Github.

Backport issue fixes

- #1304: FreeBSD 12 64-bit crashes on pgr_vrOneDepot tests Experimental Function
- <u>#1356</u>: tools/testers/pg_prove_tests.sh fails when PostgreSQL port is not passed
- <u>#1725</u>: Server crash on pgr_pickDeliver and pgr_vrpOneDepot on openbsd
- #1760: TSP server crash on ubuntu 20.04 #1760
- #1770: Remove warnings when using clang compiler

pgRouting 3.0.3 Release Notes¶

Backport issue fixes

- #1733: pgr_bdAstar fails when source or target vertex does not exist in the graph
- #1647: Linear Contraction contracts self loops
- <u>#1640</u>: pgr_withPoints fails when points_sql is empty
- #1616: Path evaluation on C++ not updated before the results go back to C
- #1300: pgr_chinesePostman crash on test data

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.2 on Github.

Issues fixes

• #1378: Visual Studio build failing

pgRouting 3.0.1 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.1 on Github.

Issues fixes

• #232: Honor client cancel requests in C /C++ code

pgRouting 3.0.0 Release Notes¶

To see all issues & pull requests closed by this release see the Git closed milestone for 3.0.0 on Github.

Fixed Issues

- <u>#1153</u>: Renamed pgr_eucledianTSP to pgr_TSPeuclidean
- <u>#1188</u>: Removed CGAL dependency
- #1002: Fixed contraction issues:
 - <u>#1004</u>: Contracts when forbidden vertices do not belong to graph
 - #1005: Intermideate results eliminated
 - <u>#1006</u>: No loss of information

New functions

- Kruskal family
 - pgr_kruskal
 - pgr_kruskalBFS
 - pgr_kruskalDD
 - o pgr_kruskalDFS
- Prim family
 - pgr_prim
 - pgr_primDD
 - pgr_primDFS
 - pgr_primBFS

Proposed moved to official on pgRouting

- aStar Family
 - pgr_aStar(one to many)
 - pgr_aStar(many to one)
 - pgr_aStar(many to many)
 - pgr_aStarCost(one to one)
 - pgr_aStarCost(one to many)
 - pgr_aStarCost(many to one)
 - pgr_aStarCost(many to many)
 - pgr_aStarCostMatrix(one to one)
 - pgr_aStarCostMatrix(one to many)
 - pgr_aStarCostMatrix(many to one)
 - pgr_aStarCostMatrix(many to many)
- bdAstar Family
 - pgr_bdAstar(one to many)
 - pgr_bdAstar(many to one)
 - pgr_bdAstar(many to many)
 - pgr_bdAstarCost(one to one)
 - pgr_bdAstarCost(one to many)
 - pgr_bdAstarCost(many to one)
 - pgr_bdAstarCost(many to many)
 - pgr_bdAstarCostMatrix(one to one)
 - pgr_bdAstarCostMatrix(one to many)

 - pgr_bdAstarCostMatrix(many to one)
 - pgr_bdAstarCostMatrix(many to many)
- bdDijkstra Family
 - pgr_bdDijkstra(one to many)
 - pgr_bdDijkstra(many to one)
 - pgr_bdDijkstra(many to many)
 - pgr_bdDijkstraCost(one to one)
 - pgr_bdDijkstraCost(one to many)
 - pgr_bdDijkstraCost(many to one)

- pgr_bdDijkstraCost(many to many)
- pgr_bdDijkstraCostMatrix(one to one)
- pgr_bdDijkstraCostMatrix(one to many)
- pgr_bdDijkstraCostMatrix(many to one)
- pgr_bdDijkstraCostMatrix(many to many)
- Flow Family
 - pgr_pushRelabel(one to one)
 - pgr_pushRelabel(one to many)
 - pgr_pushRelabel(many to one)
 - pgr_pushRelabel(many to many)

 - pgr_edmondsKarp(one to one)
 - pgr_edmondsKarp(one to many)
 - pgr_edmondsKarp(many to one)
 - pgr_edmondsKarp(many to many)
 - pgr_boykovKolmogorov (one to one)
 - pgr_boykovKolmogorov (one to many)
 - pgr_boykovKolmogorov (many to one)
 - pgr_boykovKolmogorov (many to many)
 - pgr_maxCardinalityMatching
 - pgr_maxFlow
 - pgr_edgeDisjointPaths(one to one)
 - pgr_edgeDisjointPaths(one to many)
 - pgr_edgeDisjointPaths(many to one)
 - pgr_edgeDisjointPaths(many to many)
- · Components family
 - pgr_connectedComponents
 - pgr_strongComponents
 - pgr_biconnectedComponents
 - pgr_articulationPoints
 - pgr_bridges
- Contraction:
 - Removed unnecessary column seq
 - Bug Fixes

New experimental functions

- pgr_maxFlowMinCost
- pgr_maxFlowMinCost_Cost
- pgr_extractVertices
- pgr_turnRestrictedPath
- pgr_stoerWagner
- pgr_dagShortestpath
- pgr_topologicalSort
- pgr_transitiveClosure
- VRP category
 - pgr_pickDeliverEuclidean
 - o pgr_pickDeliver
- Chinese Postman family
 - pgr_chinesePostman
 - pgr_chinesePostmanCost
- · Breadth First Search family
 - o pgr_breadthFirstSearch
 - pgr_binaryBreadthFirstSearch
- · Bellman Ford family
 - pgr_bellmanFord
 - pgr_edwardMoore

Moved to legacy

· Experimental functions

- pgr_labelGraph Use the components family of functions instead.
- Max flow functions were renamed on v2.5.0
 - pgr_maxFlowPushRelabel
 - pgr_maxFlowBoykovKolmogorov

- pgr_maxFlowEdmondsKarp
- pgr_maximumcardinalitymatching
- VRP

pgr_gsoc_vrppdtw

- TSP old signatures
- pgr_pointsAsPolygon
- pgr_alphaShape old signature

pgRouting 2¶

Minors 2.x

- pgRouting 2.6
- pgRouting 2.5
- pgRouting 2.4
- pgRouting 2.3
- pgRouting 2.2
- pgRouting 2.1
- pgRouting 2.0

pgRouting 2.6¶

Contents

- pgRouting 2.6.3 Release Notes
- pgRouting 2.6.2 Release Notes
- pgRouting 2.6.1 Release Notes
- pgRouting 2.6.0 Release Notes

pgRouting 2.6.3 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.6.3 on Github.

Bug fixes

- #1219 Implicit cast for via_path integer to text
- + $\underline{\#1193}$ Fixed pgr_pointsAsPolygon breaking when comparing strings in WHERE clause
- #1185 Improve FindPostgreSQL.cmake

pgRouting 2.6.2 Release Notes¶

To see the issues closed by this release see the <u>Git closed milestone for 2.6.2</u> on Github. Bug fixes

• $\frac{\#1152}{1}$ Fixes driving distance when vertex is not part of the graph

- <u>#1098</u> Fixes windows test
- <u>#1165</u> Fixes build for python3 and perl5

pgRouting 2.6.1 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.6.1 on Github.

- · Fixes server crash on several functions.
 - pgr_floydWarshall
 - pgr_johnson
 - pgr_astar
 - o pgr_bdAstar
 - pgr_bdDijstra
 - pgr_alphashape
 - pgr_dijkstraCostMatrix
 - pgr_dijkstra
 - pgr_dijkstraCost
 - pgr_drivingDistance
 - pgr_KSP
 - pgr_dijkstraVia (proposed)
 - pgr_boykovKolmogorov (proposed)
 - pgr_edgeDisjointPaths (proposed)
 - pgr_edmondsKarp (proposed)
 - pgr_maxCardinalityMatch (proposed)
 - pgr_maxFlow (proposed)
 - pgr_withPoints (proposed)
 - pgr_withPointsCost (proposed)
 - pgr_withPointsKSP (proposed)
 - pgr_withPointsDD (proposed)

- pgr_withPointsCostMatrix (proposed)
- pgr_contractGraph (experimental)
- pgr_pushRelabel (experimental)
- pgr_vrpOneDepot (experimental)
- pgr_gsoc_vrppdtw (experimental)
- · Fixes for deprecated functions where also applied but not tested
- Removed compilation warning for g++8
- · Fixed a fallthrugh on Astar and bdAstar.

pgRouting 2.6.0 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.6.0 on Github.

New experimental functions

pgr_lineGraphFull

Bug fixes

- Fix pgr_trsp(text,integer,double precision,integer,double precision,boolean,boolean[,text])
 - without restrictions
 - calls pgr_dijkstra when both end points have a fraction IN (0,1)
 - calls pgr_withPoints when at least one fraction NOT IN (0,1)
 - · with restrictions
 - calls original trsp code

Internal code

• Cleaned the internal code of trsp(text,integer,integer,boolean,boolean [, text])

- Removed the use of pointers
- Internal code can accept BIGINT
- · Cleaned the internal code of withPoints

pgRouting 2.5¶

Contents

- pgRouting 2.5.5 Release Notes
- pgRouting 2.5.4 Release Notes
- pgRouting 2.5.3 Release Notes
- pgRouting 2.5.2 Release Notes
- pgRouting 2.5.1 Release Notes
- pgRouting 2.5.0 Release Notes

pgRouting 2.5.5 Release Notes

To see the issues closed by this release see the Git closed milestone for 2.5.5 on Github.

Bug fixes

- · Fixes driving distance when vertex is not part of the graph
- · Fixes windows test
- Fixes build for python3 and perl5

pgRouting 2.5.4 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.5.4 on Github.

- Fixes server crash on several functions.
 - pgr_floydWarshall
 - pgr_johnson
 - pgr astar
 - o pgr_bdAstar
 - pgr_bdDijstra
 - pgr_alphashape
 - pgr_dijkstraCostMatrix
 - pgr_dijkstra
 - pgr_dijkstraCost
 - pgr_drivingDistance
 - pgr_KSP
 - pgr_dijkstraVia (proposed)
 - pgr_boykovKolmogorov (proposed)
 - pgr_edgeDisjointPaths (proposed)
 - pgr_edmondsKarp (proposed)
 - pgr_maxCardinalityMatch (proposed)
 - pgr_maxFlow (proposed)
 - pgr_withPoints (proposed)

- pgr_withPointsCost (proposed)
- pgr_withPointsKSP (proposed)
- pgr_withPointsDD (proposed)
- pgr_withPointsCostMatrix (proposed)
- pgr_contractGraph (experimental)
- pgr_pushRelabel (experimental)
- pgr_vrpOneDepot (experimental)
- pgr_gsoc_vrppdtw (experimental)
- · Fixes for deprecated functions where also applied but not tested
- Removed compilation warning for g++8
- Fixed a fallthrugh on Astar and bdAstar.

pgRouting 2.5.3 Release Notes

To see the issues closed by this release see the<u>Git closed milestone for 2.5.3</u> on Github. Bug fixes

· Fix for postgresql 11: Removed a compilation error when compiling with postgreSQL

pgRouting 2.5.2 Release Notes

To see the issues closed by this release see the<u>Git closed milestone for 2.5.2</u> on Github. Bug fixes

• Fix for postgresql 10.1: Removed a compiler condition

pgRouting 2.5.1 Release Notes

To see the issues closed by this release see the<u>Git closed milestone for 2.5.1</u> on Github. Bug fixes

· Fixed prerequisite minimum version of: cmake

pgRouting 2.5.0 Release Notes

To see the issues closed by this release see the<u>Git closed issues for 2.5.0</u> on Github. enhancement:

• pgr_version is now on SQL language

- Breaking change on:
 - pgr_edgeDisjointPaths:
 - · Added path_id, cost and agg_cost columns on the result
 - · Parameter names changed
 - The many version results are the union of the one to one version

New Signatures

• pgr_bdAstar(one to one)

New Proposed functions

- pgr_bdAstar(one to many)
- pgr_bdAstar(many to one)
- pgr_bdAstar(many to many)
- pgr_bdAstarCost(one to one)
- pgr_bdAstarCost(one to many)
- pgr_bdAstarCost(many to one)
- pgr_bdAstarCost(many to many)
- pgr_bdAstarCostMatrix
- pgr_bdDijkstra(one to many)
- pgr_bdDijkstra(many to one)
- pgr_bdDijkstra(many to many)
- pgr_bdDijkstraCost(one to one)
- pgr_bdDijkstraCost(one to many)
- pgr_bdDijkstraCost(many to one)
- pgr_bdDijkstraCost(many to many)
- pgr_bdDijkstraCostMatrix
- pgr_lineGraph
- pgr_lineGraphFull
- pgr_connectedComponents
- pgr_strongComponents
- pgr_biconnectedComponents
- pgr_articulationPoints
- pgr_bridges

• pgr_bdastar - use pgr_bdAstar instead

Renamed functions

- pgr_maxFlowPushRelabel use pgr_pushRelabel instead
- pgr_maxFlowEdmondsKarp -use pgr_edmondsKarp instead
- pgr_maxFlowBoykovKolmogorov use pgr_boykovKolmogorov instead
- pgr_maximumCardinalityMatching use pgr_maxCardinalityMatch instead

Deprecated Function

pgr_pointToEdgeNode

pgRouting 2.4¶

Contents

- pgRouting 2.4.2 Release Notes
- pgRouting 2.4.1 Release Notes
- pgRouting 2.4.0 Release Notes

pgRouting 2.4.2 Release Notes

To see the issues closed by this release see the <u>Git closed milestone for 2.4.2</u> on Github. Improvement

Works for postgreSQL 10

Bug fixes

- Fixed: Unexpected error column "cname"
- Replace __linux__ with __GLIBC__ for glibc-specific headers and functions

pgRouting 2.4.1 Release Notes¶

To see the issues closed by this release see the Git closed milestone for 2.4.1 on Github.

Bug fixes

- Fixed compiling error on macOS
- · Condition error on pgr_withPoints

pgRouting 2.4.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.4.0 on Github.

New Signatures

pgr bdDijkstra

New Proposed Signatures

- pgr_maxFlow
- pgr_astar(one to many)
- pgr_astar(many to one)
- pgr_astar(many to many)
- pgr_astarCost(one to one)
- pgr_astarCost(one to many)
- pgr_astarCost(many to one)
- pgr_astarCost(many to many)
- pgr_astarCostMatrix
- Deprecated signatures
 - pgr_bddijkstra use pgr_bdDijkstra instead

Deprecated Functions

pgr_pointsToVids

Bug fixes

- · Bug fixes on proposed functions
 - pgr_withPointsKSP: fixed ordering
- TRSP original code is used with no changes on the compilation warnings

pgRouting 2.3¶

pgRouting 2.3.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.2 on Github.

Bug Fixes

- · Fixed pgr_gsoc_vrppdtw crash when all orders fit on one truck.
- Fixed pgr_trsp:
 - · Alternate code is not executed when the point is in reality a vertex
 - Fixed ambiguity on seq

pgRouting 2.3.1 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.1 on Github.

Bug Fixes
- · Leaks on proposed max_flow functions
- Regression error on pgr_trsp
- Types discrepancy on pgr_createVerticesTable

pgRouting 2.3.0 Release Notes

To see the issues closed by this release see the Git closed issues for 2.3.0 on Github.

- New Signatures
 - pgr_TSP
 - pgr_aStar

New Functions

pgr_eucledianTSP

New Proposed functions

- pgr_dijkstraCostMatrix
- pgr_withPointsCostMatrix
- pgr_maxFlowPushRelabel(one to one)
- pgr_maxFlowPushRelabel(one to many)
- pgr_maxFlowPushRelabel(many to one)
- pgr_maxFlowPushRelabel(many to many)
- pgr_maxFlowEdmondsKarp(one to one)
- pgr_maxFlowEdmondsKarp(one to many)
- pgr maxFlowEdmondsKarp(many to one)
- pgr_maxFlowEdmondsKarp(many to many)
- pgr_maxFlowBoykovKolmogorov (one to one)
- pgr_maxFlowBoykovKolmogorov (one to many)
- pgr_maxFlowBoykovKolmogorov (many to one)
- pgr_maxFlowBoykovKolmogorov (many to many)
- pgr_maximumCardinalityMatching
- pgr_edgeDisjointPaths(one to one)
- pgr_edgeDisjointPaths(one to many)
- pgr_edgeDisjointPaths(many to one)
- pgr_edgeDisjointPaths(many to many)
- pgr_contractGraph

Deprecated signatures

- pgr_tsp use pgr_TSP or pgr_eucledianTSP instead
- pgr_astar use pgr_aStar instead

Deprecated Functions

- pgr_flip_edges
- pgr_vidsToDmatrix
- pgr_pointsToDMatrix
- pgr_textToPoints

pgRouting 2.2

Contents

- pgRouting 2.2.4 Release Notes
- pgRouting 2.2.3 Release Notes
- pgRouting 2.2.2 Release Notes
- pgRouting 2.2.1 Release Notes
- pgRouting 2.2.0 Release Notes

pgRouting 2.2.4 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.4 on Github.

Bug Fixes

- · Bogus uses of extern "C"
- Build error on Fedora 24 + GCC 6.0
- Regression error pgr_nodeNetwork

pgRouting 2.2.3 Release Notes

To see the issues closed by this release see the<u>Git closed issues for 2.2.3</u> on Github. Bug Fixes

Fixed compatibility issues with PostgreSQL 9.6.

pgRouting 2.2.2 Release Notes

To see the issues closed by this release see the Git closed issues for 2.2.2 on Github.

Bug Fixes

Fixed regression error on pgr_drivingDistance

pgRouting 2.2.1 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.1 on Github.

Bug Fixes

- Server crash fix on pgr_alphaShape
- Bug fix on With Points family of functions

pgRouting 2.2.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.2.0 on Github.

Improvements

pgr_nodeNetwork

- · Adding a row_where and outall optional parameters
- Signature fix

pgr_dijkstra – to match what is documented

New Functions

- pgr_floydWarshall
- pgr_Johnson
- pgr_dijkstraCost(one to one)
- pgr_dijkstraCost(one to many)
- pgr_dijkstraCost(many to one)
- pgr_dijkstraCost(many to many)

Proposed Functionality

- pgr_withPoints(one to one)
- pgr_withPoints(one to many)
- pgr_withPoints(many to one)
- pgr_withPoints(many to many)
- pgr_withPointsCost(one to one)
- pgr_withPointsCost(one to many)
- pgr_withPointsCost(many to one)
- pgr_withPointsCost(many to many)
- pgr_withPointsDD(single vertex)
- pgr_withPointsDD(multiple vertices)
- pgr_withPointsKSP
- pgr_dijkstraVia

Deprecated Functions

- pgr_apspWarshall use pgr_floydWarshall instead
- pgr_apspJohnson use pgr_Johnson instead
- pgr_kDijkstraCost use pgr_dijkstraCost instead
- pgr_kDijkstraPath use pgr_dijkstra instead

Renamed and Deprecated Function

pgr_makeDistanceMatrix renamed to _pgr_makeDistanceMatrix

pgRouting 2.1

Contents

• pgRouting 2.1.0 Release Notes

pgRouting 2.1.0 Release Notes

To see the issues closed by this release see the <u>Git closed issues for 2.1.0</u> on Github.

New Signatures

- pgr_dijkstra(one to many)
- pgr_dijkstra(many to one)
- pgr_dijkstra(many to many)
- pgr_drivingDistance(multiple vertices)

Refactored

- · pgr_dijkstra(one to one)
- pgr_ksp

• pgr_drivingDistance(single vertex)

Improvements

• pgr_alphaShape function now can generate better (multi)polygon with holes and alpha parameter.

Proposed Functionality

• Proposed functions from Steve Woodbridge, (Classified as Convenience by the author.)

- pgr_pointToEdgeNode convert a point geometry to a vertex_id based on closest edge.
- pgr_flipEdges flip the edges in an array of geometries so the connect end to end.
- pgr_textToPoints convert a string of x,y;x,y;... locations into point geometries.
- pgr_pointsToVids convert an array of point geometries into vertex ids.
- · pgr_pointsToDMatrix Create a distance matrix from an array of points.
- pgr_vidsToDMatrix Create a distance matrix from an array of vertix_id.
- pgr_vidsToDMatrix Create a distance matrix from an array of vertix_id.
- Added proposed functions from GSoc Projects:
 - pgr_vrppdtw
 - pgr vrponedepot

Deprecated Functions

- pgr_getColumnName
- pgr_getTableName
- pgr_isColumnCndexed
- pgr_isColumnInTable
- pgr_quote_ident
- · pgr versionless
- pgr_startPoint
- pgr_endPoint
- pgr_pointTold

No longer supported

· Removed the 1.x legacy functions

Bug Fixes

Some bug fixes in other functions

Refactoring Internal Code

- A C and C++ library for developer was created
 - encapsulates postgreSQL related functions
 - encapsulates Boost.Graph graphs
 - Directed Boost.Graph
 - Undirected Boost.graph.
 - allow any-integer in the id's
 - allow any-numerical on the cost/reverse_cost columns
- Instead of generating many libraries: All functions are encapsulated in one library The library has the prefix 2-1-0

pgRouting 2.0¶

Contents

- pgRouting 2.0.1 Release Notes
- pgRouting 2.0.0 Release Notes

pgRouting 2.0.1 Release Notes

Minor bug fixes.

Bug Fixes

• No track of the bug fixes were kept.

pgRouting 2.0.0 Release Notes¶

To see the issues closed by this release see the Git closed issues for 2.0.0 on Github.

With the release of pgRouting 2.0.0 the library has abandoned backwards compatibility topgRouting 1.0 releases. The main Goals for this release are:

- Major restructuring of pgRouting.
- · Standardization of the function naming
- Preparation of the project for future development.

As a result of this effort:

- · pgRouting has a simplified structure
- · Significant new functionality has being added
- Documentation has being integrated
- Testing has being integrated
- And made it easier for multiple developers to make contributions.

Important Changes

- · Graph Analytics tools for detecting and fixing connection some problems in a graph
- A collection of useful utility functions
- Two new All Pairs Short Path algorithms (pgr_apspJohnson, pgr_apspWarshall)
- Bi-directional Dijkstra and A-star search algorithms (pgr_bdAstar, pgr_bdDijkstra)
- One to many nodes search (pgr_kDijkstra)

- K alternate paths shortest path (pgr_ksp)
- New TSP solver that simplifies the code and the build process (pgr_tsp), dropped "Gaul Library" dependency
- Turn Restricted shortest path (pgr_trsp) that replaces Shooting Star
- Dropped support for Shooting Star
- · Built a test infrastructure that is run before major code changes are checked in
- Tested and fixed most all of the outstanding bugs reported against 1.x that existing in the 2.0-dev code base.
- · Improved build process for Windows
- · Automated testing on Linux and Windows platforms trigger by every commit
- Modular library design
- Compatibility with PostgreSQL 9.1 or newer
- · Compatibility with PostGIS 2.0 or newer
- Installs as PostgreSQL EXTENSION
- · Return types re factored and unified
- · Support for table SCHEMA in function parameters
- Support for st_PostGIS function prefix
- · Added pgr_ prefix to functions and types
- Better documentation: <u>https://docs.pgrouting.org</u>
- · shooting_star is discontinued

pgRouting 1¶

pgRouting 1.0

Contents

- <u>Changes for release 1.05</u>
- <u>Changes for release 1.03</u>
- Changes for release 1.02
- <u>Changes for release 1.01</u>
- <u>Changes for release 1.0</u>
- <u>Changes for release 1.0.0b</u>
- Changes for release 1.0.0a
- <u>Changes for release 0.9.9</u>
- Changes for release 0.9.8

To see the issues closed by this release see the Git closed issues for 1.x on Github. The following release notes have been copied from the previous RELEASE_NOTES file and are kept as a reference.

Changes for release 1.05

Bug fixes

Changes for release 1.03

- · Much faster topology creation
- Bug fixes

Changes for release 1.02

- · Shooting* bug fixes
- Compilation problems solved

Changes for release 1.01

Shooting* bug fixes

Changes for release 1.0

- · Core and extra functions are separated
- Cmake build process

Bug fixes

Changes for release 1.0.0b¶

- · Additional SQL file with more simple names for wrapper functions
- · Bug fixes

Changes for release 1.0.0a¶

- Shooting* shortest path algorithm for real road networks
- Several SQL bugs were fixed

Changes for release 0.9.9

- PostgreSQL 8.2 support
- · Shortest path functions return empty result if they could not find any path

Changes for release 0.9.8¶

- · Renumbering scheme was added to shortest path functions
- · Directed shortest path functions were added

· routing_postgis.sql was modified to use dijkstra in TSP search

Migration guide

Several functions are having changes on the signatures, and/or have been replaced by new functions.

Results can be different because of the changes.

Warning

All deprecated functions will be removed on next mayor version 4.0.0

Contents

Migration guide

- Migration of functions
 - Migration of pgr_aStar
 - Migration of pgr_bdAstar
 - <u>Migration of pgr_dijkstra</u>
 - <u>Migration of pgr_drivingdistance</u>
 - pgr_drivingdistance (Single vertex)
 - pgr_drivingdistance (Multiple vertices)
 - <u>Migration of pgr_kruskalDD / pgr_kruskalBFS / pgr_kruskalDFS</u>
 - Kruskal single vertex
 - Kruskal multiple vertices
 - Migration of pgr_KSP
 - pgr_KSP (One to One)
 - <u>Migration of pgr_maxCardinalityMatch</u>
 - <u>Migration of pgr_primDD / pgr_primBFS / pgr_primDFS</u>
 - Prim single vertex
 - Prim multiple vertices
 - Migration of pgr_withPointsDD
 - pgr_withPointsDD (Single vertex)
 - pgr_withPointsDD (Multiple vertices)
 - Migration of pgr_withPointsKSP
 - pgr_withPointsKSP (One to One)
 - Migration of turn restrictions
 - <u>Migration of restrictions</u>
 - Old restrictions structure
 - Old restrictions contents
 - <u>New restrictions structure</u>
 - <u>Restrictions data</u>
 - Migration
 - <u>Migration of pgr_trsp (Vertices)</u>
 - <u>Migrating pgr_trsp (Vertices) using pgr_dijkstra</u>
 - Migrating pgr_trsp (Vertices) using pgr_trsp
 - <u>Migration of pgr_trsp (Edges)</u>
 - Migrating pgr_trsp (Edges) using pgr_withPoints
 - Migrating pgr_trsp (Edges) using pgr_trsp_withPoints
 - <u>Migration of pgr_trspViaVertices</u>
 - <u>Migrating pgr_trspViaVertices using pgr_dijkstraVia</u>
 - Migrating pgr_trspViaVertices Using pgr_trspVia
 - Migration of pgr_trspViaEdges
 - Migrating pgr_trspViaEdges USing pgr_withPointsVia
 - Migrating pgr_trspViaEdges USing pgr_trspVia_withPoints
 - See Also

Migration of functions

Migrating functions

- <u>Migration of pgr_aStar</u>
- Migration of pgr_bdAstar
- Migration of pgr_dijkstra
- Migration of pgr_drivingdistance
 - pgr_drivingdistance (Single vertex)
 - pgr_drivingdistance (Multiple vertices)
- Migration of pgr_kruskalDD / pgr_kruskalBFS / pgr_kruskalDFS

- Kruskal single vertex
- Kruskal multiple vertices
- Migration of pgr KSP
 - pgr_KSP (One to One)
- <u>Migration of pgr_maxCardinalityMatch</u>
- Migration of pgr_primDD / pgr_primBFS / pgr_primDFS
 - Prim single vertex
 - Prim multiple vertices
- Migration of pgr_withPointsDD
 - pgr_withPointsDD (Single vertex)
 - pgr_withPointsDD (Multiple vertices)
- <u>Migration of pgr_withPointsKSP</u>
- pgr_withPointsKSP (One to One)

Migration of pgr_aStar

Starting from v3.6.0

Signatures to be migrated:

- pgr_aStar (One to One)
- pgr_aStar (One to Many)
- pgr_aStar (Many to One)

Before Migration:

- Output columns were (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)
 - Depending on the overload used, the columnsstart_vid and end_vid might be missing:
 - pgr_aStar (One to One) does not have start_vid and end_vid.
 - pgr_aStar (One to Many) does not have start_vid.
 - pgr_aStar (Many to One) does not have end_vid.

Migration:

- · Be aware of the existence of the additional columns.
- In pgr_aStar (One to One)
 - start_vid contains the start vid parameter value.
 - end_vid contains the end vid parameter value.

SELECT * FROM pgr_aStar(\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, 6, 10); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	10	6	4	1	0
2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
(6 rows)						

• In pgr_aStar (One to Many)

• start_vid contains the start vid parameter value.

SELECT * FROM pgr_aStar(\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, 6, ARRAY[3, 10]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	6	3 6 4 1 0
2	2	6	3 7 7 1 1
3	3	6	3 3 -1 0 2
4	1	6	10 6 4 1 0
5	2	6	10 7 8 1 1
6	3	6	10 11 9 1 2
7	4	6	10 16 16 1 3
8	5	6	10 15 3 1 4
9	6	6	10 10 -1 0 5
(9 rows	5)		

• In pgr_aStar (Many to One)

• end_vid contains the end vid parameter value.

SELECT * FROM pgr_aStar(\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, ARRAY[3, 6], 10); see | bath seq | start_vid | end_vid | node | edge | cost | agg_cost

Sedir	au1_sec	Start_		agelo	usi ayy_
+	++		++++	+	
1	1	3	10 3 7 1	0	
2	2	3	10 7 8 1	1	
3	3	3	10 11 9 1	2	
4	4	3	10 16 16 1	3	
5	5	3	10 15 3 1	4	
6	6	3	10 10 -1 0	5	
7	1	6	10 6 4 1	0	
8	2	6	10 7 8 1	1	
9	3	6	10 11 9 1	2	
10	4	6	10 16 16 1	3	
11	5	6	10 15 3 1	4	
12	6	6	10 10 -1 0	5	
(12 row	/s)				

If needed filter out the added columns, for example:

SELECT seq, path_seq, node, edge, cost, agg_cost FROM pgr_aStar(\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$,

seq pa	th_s	eq n	ode	edge	cost	agg_cost
+		+	+	-+	+	
1	1	6	4	1	0	
2	2	7	8	1	1	
3	3	11	9	1	2	
4	4	16	16	1	3	
5	5	15	3	1	4	
6	6	10	-1	0	5	
(6 rows)						

• If needed add the new columns, similar to the following example wherepgr_dijkstra is used, and the function had to be modified to be able to return the new columns:

- In v3.0 the function my_dijkstra uses pgr_dijkstra.
- Starting from <u>v3.5</u> the function my_dijkstra returns the new additional columns ofpgr_dijkstra.

Mi ation of pgr_bd/

Starting from v3.6.0

Signatures to be migrated:

• pgr_bdAstar (One to One)

- pgr_bdAstar (One to Many)
- pgr_bdAstar (Many to One)

Before Migration:

- Output columns were (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)
 - o Depending on the overload used, the columnsstart_vid and end_vid might be missing:
 - pgr_bdAstar (One to One) does not have start_vid and end_vid.
 - pgr_bdAstar (One to Many) does not have start_vid.
 - pgr bdAstar (Many to One) does not have end vid.

Migration:

- · Be aware of the existence of the additional columns.
- In pgr_bdAstar (One to One)
 - start_vid contains the start vid parameter value.
 - end_vid contains the end vid parameter value.

SELECT * FROM pgr_bdAstar(\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, \$\$CELEO 1 10, 505105, 6, 10); sea | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

JUGIN	sed batti_sed start_via end_via node edge								
+	+-		+	+	+	+	+		
1	1	6	10	6	4	1	0		
2	2	6	10	7	8	1	1		
3	3	6	10	11	9	1	2		
4	4	6	10	16	16	1	3		
5	5	6	10	15	3	1	4		
6	6	6	10	10	-1	0	5		
(6 rows	s)								

• In pgr_bdAstar (One to Many)

• start_vid contains the start vid parameter value.

SELECT * FROM pgr_bdAstar(

\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, 6, ARRAY[3, 10]); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

+	+		+	+	+	+	+	
1	1	6	3	6	4	1	0	
2	2	6	3	7	7	1	1	
3	3	6	3	3	-1	0	2	
4	1	6	10	6	4	1	0	
5	2	6	10	7	8	1	1	
6	3	6	10	11	9	1	2	
7	4	6	10	16	16	1	3	
8	5	6	10	15	3	1	4	
9	6	6	10	10	-1	0	5	
(9 rows))							

• In pgr_bdAstar (Many to One)

• end_vid contains the end vid parameter value.

SELECT * FROM pgr bdAstar(

SSELECT id, sourc_target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, ARRAY[3, 6], 10); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	3	10 3 7 1	0
2	2	3	10 7 8 1	1
3	3	3	10 11 9 1	2
4	4	3	10 16 16 1	3
5	5	3	10 15 3 1	4
6	6	3	10 10 -1 0	5
7	1	6	10 6 4 1	0
8	2	6	10 7 8 1	1
9	3	6	10 11 9 1	2
10	4	6	10 16 16 1	3
11	5	6	10 15 3 1	4
12	6	6	10 10 -1 0	5
(12 rov	vs)			

• If needed filter out the added columns, for example:

SELECT seq, path_seq, node, edge, cost, agg_cost FROM pgr_bdAstar(\$\$SELECT id, source, target, cost, reverse_cost, x1, y1, x2, y2 FROM edges\$\$, 6, 10); seq | path_seq | node | edge | cost | agg_cost

1 | 6 | 4 | 1 | 0 2 | 7 | 8 | 1 | 1 3 | 11 | 9 | 1 | 2 1 | 2 | 3 |

4 | 4 | 16 | 16 | 1 | 3 5 | 5 | 15 | 3 | 1 | 4 6 | 6 | 10 | -1 | 0 | 5 (6 rows)

• If needed add the new columns, similar to the following example wherepgr_dijkstra is used, and the function had to be modified to be able to return the new columns:

- In <u>v3.0</u> the function my_dijkstra uses pgr_dijkstra.
- Starting from <u>v3.5</u> the function my_dijkstra returns the new additional columns ofpgr_dijkstra.

Migration of pgr_dijkstra¶

Starting from <u>v3.5.0</u>

Signatures to be migrated:

- pgr_dijkstra (One to One)
- pgr_dijkstra (One to Many)
- pgr_dijkstra (Many to One)

Before Migration:

- Output columns were (seq, path_seq, [start_vid], [end_vid], node, edge, cost, agg_cost)
 - Depending on the overload used, the columnsstart_vid and end_vid might be missing:
 - pgr_dijkstra (One to One) does not have start_vid and end_vid.
 - pgr_dijkstra (One to Many) does not have start_vid.
 - pgr_dijkstra (Many to One) does not have end_vid.

Migration:

· Be aware of the existence of the additional columns.

- In pgr_dijkstra (One to One)
 - start_vid contains the start vid parameter value.
 - end_vid contains the end vid parameter value.

SELECT * FROM pgr_dijkstra(

\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, 6, 10); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

	+		+		+		
1	1	6	10	6	4	1	0
2	2	6	10	7	8	1	1
3	3	6	10	11	9	1	2
4	4	6	10	16	16	1	3
5	5	6	10	15	3	1	4
6	6	6	10	10	-1	0	5
(6 rows)						

• In pgr_dijkstra (One to Many)

• start_vid contains the start vid parameter value.

SELECT * FROM pgr_dijkstra(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$,

	-			-
6, ARRAY[3, 10]);				
seq path_seq start	_vid end_vi	d node (edge cost a	igg_cost

1	1	6	3	6	4	1	0
2	2	6	3	7	7	1	1
3	3	6	3	3	-1	0	2
4	1	6	10	6	4	1	0
5	2	6	10	7	8	1	1
6	3	6	10	11	9	1	2
7	4	6	10	16	16	1	3
8	5	6	10	15	3	1	4
9	6	6	10	10	-1	0	5
(9 rows)						

• In pgr_dijkstra (Many to One)

• end_vid contains the end vid parameter value.

SELECT * FROM pgr_dijkstra(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, ARRAY(3, 61, 10); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

ooq i p								
1 2	1 2	3 3	10 3 7 1 0 10 7 8 1 1					
3 4	3 4	3	10 11 9 1 2 10 16 16 1 3					
5 6 7	5 6	3	10 15 3 1 4 10 10 -1 0 5					
8	2	6						
10	4	6	10 16 16 1 3					
12 (12 row	6 s)	6	10 10 -1 0 5					

• If needed filter out the added columns, for example:

SELECT seq, path_seq, node, edge, cost, agg_cost FROM pgr_dijkstra(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, 6, 10);

seq pa	th_s	eq n	ode	edge	cost	agg_cost
1	1	6	4	1	0	
2	2	7	8	1	1	
3	3	11	9	1	2	
4	4	16	16	1	3	
5	5	15	3	1	4	
6	6	10	-1	0	5	
(6 rows)						

• If needed add the new columns, for example:

- In v3.0 the function my_dijkstra uses pgr_dijkstra.
- Starting from <u>v3.5</u> the function my_dijkstra returns the new additional columns ofpgr_dijkstra.

Migration of pgr drivingdistance

Starting from v3.6.0 pgr_drivingDistance result columns are being standardized.

from:

(seq, [from_v,] node, edge, cost, agg_cost)

to:

(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

Signatures to be migrated:

• pgr_drivingdistance (Single vertex)

• pgr_drivingdistance (Multiple vertices)

Before Migration:

Output columns were (seq, [from_v,] node, edge, cost, agg_cost)

• pgr_drivingdistance (Single vertex)

- Does not have start_vid and depth result columns.
- pgr_drivingdistance (Multiple vertices)
 - Has from_v instead of start_vid result column.
 - · does not have depth result column.

Migration:

• Be aware of the existence and name change of the result columns.

pgr_drivingdistance (Single vertex)¶

Using this example.

- start_vid contains the start vid parameter value.
- · depth contains the depth of the node.
- pred contains the predecessor of the node.

SELECT * FROM pgr_drivingDistance(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, 11, 3.0); seq |depth | start_vid | pred | node | edge | cost | agg_cost

1 2	0 1	11 11	11 11	11 -1 0 7 8 1	0 1
3	1j -	11	11 j	12 11 1	1
4	1	11	11 j	16 9 1	1
5	2	11	7	3 7 1	2
6	2	11	7	6 4 1	2
7	2	11	7	8 10 1	2
8	2	11	16	15 16 1	2
9	2	11	16	17 15 1	2
10	3	11	3	1 6 1	3
11	3	11	6	5 1 1	3
12	3	11	8	9 14 1	3
13	3	11	15	10 3 1	3
(13 ro)	ws)				

If needed filter out the added columns, for example, to return the original columns

SELECT seq, node, edge, cost, agg_cost FROM pgr_drivingDistance(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, 11, 3.0; seq | node | edge | cost | agg_cost

1 2 3 4 5 6 7 8 9 10 11 12 13	11 7 12 16 3 6 8 15 17 1 5 9 10	-1 8 11 9 7 4 10 16 15 6 1 14 3	0 1 1 1 1 1 1 1 1 1 1	0 1 1 2 2 2 2 2 3 3 3 3 3
13 rc	ws)			

ingdistance (Multiple vertices)¶ pgr_d

Using this example.

- The from_v result column name changes to start_vid.
- · depth contains the depth of the node.
- pred contains the predecessor of the node.

SELECT * FROM pgr_drivingDistance(\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, ARRAY[11, 16], 3.0, equicost => true); seq | depth | start_vid | pred | node | edge | cost | agg_cost

+		++++++
1	0	11 11 11 -1 0 0
2	1	11 11 7 8 1 1
3	1	11 11 12 11 1 1
4	2	11 7 3 7 1 2
5	2	11 7 6 4 1 2
6	2	11 7 8 10 1 2
7	3	11 3 1 6 1 3
8	3	11 6 5 1 1 3
9	3	11 8 9 14 1 3
10	0	16 16 16 -1 0 0
11	1	16 16 15 16 1 1
12	1	16 16 17 15 1 1

If needed filter out and rename columns, for example, to return the original columns:

SELECT seq, start_vid AS from_v, node, edge, cost, agg_cost FROM pgr_drivingDistance(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, ARRAY[11, h6], 3.0, equicost => true); seq | from_v | node | edge | cost | agg_cost

1	11	11	-1	0	0
2	11 j	7	8	1	1
3	11	12	11	1	1
4	11	3	7	1	2
5	11	6	4	1	2
6	11	8	10	1	2
7	11	1	6	1	3
8	11	5	1	1	3
9	11	9	14	1	3
10	16	16	-1	0	0
11	16	15	16	1	1
12	16	17	15	1	1
13	16	10	3	1	2
10	···- \				

(13 rows)

Migration of pgr_kruskalDD / pgr_kruskalBFS / pgr_kruskalDFS

Starting from v3.7.0 pgr_kruskalDD, pgr_kruskalBFS and pgr_kruskalDFS result columns are being standardized.

from:

(seq, depth, start_vid, node, edge, cost, agg_cost)

to:

- (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
- pgr_kruskalDD
 - Single vertex
 - · Multiple vertices
- pgr_kruskalDFS
 - Single vertex
 - Multiple vertices
- pgr_kruskalBFS
 - Single vertex
 - Multiple vertices

Before Migration:

Output columns were (seq, depth, start_vid, node, edge, cost, agg_cost)

• Single vertex and Multiple vertices

Do not have pred result column.

Migration:

- · Be aware of the existence of pred result columns.
- If needed filter out the added columns

Kruskal single vertex

Using pgr_KruskalDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of thenode.

SELECT * FROM pgr_kruskalDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6,3.5); seq |depth | start_vid | pred | node | edge | cost | agg_cost

			-				+
1	0	6	6	6	-1	0	o
2	1	6	6	5	1	1	1
3	1	6	6	10	2	1	1
4	2	6	10	15	3	1	2
5	3	6	15	16	16	1	3
(5 row	s)						

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost FROM pgr_kruskalDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6, 3.5); seq | depth | start_vid | node | edge | cost | agg_cost

+-				+	+		-
1	0	6	6	-1	0	0	
2	1	6	5	1	1	1	
3	1	6	10	2	1	1	
4	2	6	15	3	1	2	
5	3	6	16	16	1	3	
(5 rows)							

Kruskal multiple vertices

Using pgr_KruskalDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of thenode.

SELECT * FROM pgr_kruskalDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[9, 6], 3.5); seq | depth | start_vid | pred | node | edge | cost | agg_cost

1	0	6 6	6	6	-1	0	0
2	1	6 6	6	5	1	1	1
3	1	6 6	6 '	10	2	1	1
4	2	6 1	0	15	3	1	2
5	3	6 1	5	16	16	1	3
6	0	9 9	9	9	-1	0	0
7	1	9 9	9	8	14	1	1
8	2	9 8	3	7	10	1	2
9	3	9 7	7	3	7	1	3
10	2	9	8	12	12	1	2
11	3	9 .	12	11	11	1	3
12	3	9 .	12	17	13	j 1 j	3
(12 rov	NS)						

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost FROM pgr_kruskalDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[6, 6], 3.5); seq | depth | start_vid | node | edge | cost | agg_cost

1	0	6 6 -1 0	0
2	1	6 5 1 1	1
3	1	6 10 2 1	1
4	2	6 15 3 1	2
5	3	6 16 16 1	3
6	0	9 9 -1 0	0
7	1	9 8 14 1	1
8	2	9 7 10 1	2
9	3	9 3 7 1	3
10	2	9 12 12 1	2
11	3	9 11 11 1	3
12	3	9 17 13 1	3
(12 ro	ws)		

Migration of pgr KSP¶

Starting from v3.6.0 pgr_KSP result columns are being standardized.

from:

(seq, path_id, path_seq, node, edge, cost, agg_cost)

from:

(seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)

Signatures to be migrated:

• pgr_KSP (One to One)

Before Migration:

- Output columns were (seq, path_id, path_seq, node, edge, cost, agg_cost)
 - the columns start_vid and end_vid do not exist.
 - pgr_KSP (One to One) does not have start_vid and end_vid.

Migration:

· Be aware of the existence of the additional columns.

pgr KSP (One to One)

Using this example.

- start_vid contains the start vid parameter value.
- end_vid contains the end vid parameter value.

SELECT * FROM pgr_KSP(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, 6, 17, 2); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	6	17 6 4 1 0
2	1	2	6	17 7 10 1 1
3	1	3	6	17 8 12 1 2
4	1	4	6	17 12 13 1 3
5	1	5	6	17 17 -1 0 4
6	2	1	6	17 6 4 1 0
7	2	2	6	17 7 8 1 1
8	2	3	6	17 11 9 1 2
9	2	4	6	17 16 15 1 3
10	2	5	6	17 17 -1 0 4
(10 rov	vs)			

If needed filter out the added columns, for example, to return the original columns:

SELECT seq, path_id, path_seq, node, edge, cost, agg_cost FROM pgr_KSP(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, 6, 17, 2); st | agg_cost

seq p	seq path_id path_seq node edge cost						
+	+	+++-	+				
1	1	1 6 4 1	0				
2	1	2 7 10 1	1				
3	1	3 8 12 1	2				
4	1	4 12 13 1	3				
5	1	5 17 -1 0	4				
6	2	1 6 4 1	0				
7	2	2 7 8 1	1				
8	2	3 11 9 1	2				
9	2	4 16 15 1	3				
10	2	5 17 -1 0	4				
(10 rov	vs)						

Migration of pgr_ma

pgr_maxCardinalityMatch works only for undirected graphs, therefore the directed flag has been removed.

Starting from v3.4.0

Signature to be migrated:

pgr_maxCardinalityMatch(Edges SQL, [directed]) RETURNS SETOF (seq, edge, source, target)

Migration is needed, because:

- · Use cost and reverse_cost on the inner query
- · Results are ordered
- · Works for undirected graphs.
- New signature
 - pgr_maxCardinalityMatch(text) returns only edge column.
 - · The optional flag directed is removed.

Before migration:

SELECT * FROM pgr_maxCardinalityMatch(\$\$SELECT id, source, target, cost AS going, reverse_cost AS coming FROM edges\$\$, directed => true

); WARNING: pgr_maxCardinalityMatch(text,boolean) deprecated signature on v3.4.0 seq | edge | source | target

+	+	+	
1	1	5	6
2	5	10	11
3	6	1	3
4	13	12	17
5	14	8	9
6	16	15	16
7	17	2	4
8	18	13	14
(8 rov	vs)		

· Columns used are going and coming to represent the existence of an edge

- Flag directed was used to indicate if it was for adirected or undirected graph.
 - The flag directed is ignored.
 - Regardless of it's value it gives the result considering the graph asundirected.

Migration:

· Use the columns cost and reverse_cost to represent the existence of an edge.

- · Do not use the flag directed.
- In the query returns only edge column.

SELECT * FROM pgr_maxCardinalityMatch(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$); edge

(8 rows)

Migration of pgr_primDD / pgr_primBFS / pgr_primDFS

Starting from v3.7.0 pgr_primDD, pgr_primBFS and pgr_primDFS result columns are being standardized.

from

(seq, depth, start_vid, node, edge, cost, agg_cost)

to:

(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

- pgr_primDD
 - Single vertex
 - Multiple vertices
- pgr primDFS
 - Single vertex
 - Multiple vertices

pgr_primBFS

- Single vertex
- Multiple vertices

Before Migration:

Output columns were (seq, depth, start_vid, node, edge, cost, agg_cost)

- Single vertex and Multiple vertices
 - · Do not have pred result column.

Migration:

- · Be aware of the existence of pred result columns.
- · If needed filter out the added columns

Prim single vertex

Using pgr_primDD as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of thenode.

SELECT * FROM pgr_primDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6, 3.5); seq | depth | start_vid | pred | node | edge | cost | agg_cost

1	0	6 6	6 -1 0	0
2	1	6 6	5 1 1	1
3	1	6 6	10 2 1	1
4	2	6 10	15 3 1	2
5	2	6 10	11 5 1	2
6	3	6 11	16 9 1	3
7	3	6 11	12 11 1	3
8	1	6 6	7 4 1	1
9	2	6 7	3 7 1	2
10	3	6 3	1 6 1	3
11	2	6 7	8 10 1	2
12	3	6 8	9 14 1	3
(12 rov	NS)			

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost FROM pgr_primDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', 6, 3.5); seq | depth | start_vid | node | edge | cost | agg_cost

seq depth	start_vid node edge cost
see depin' 1 0 2 1 3 1 4 2 5 2 6 3 7 3 8 1 9 2 10 3 11 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
11 2 12 3 (12 rows)	6 8 10 1 2 6 9 14 1 3

Prim multiple vertices¶

Using $\ensuremath{\mathsf{pgr_primDD}}$ as example. Migration is similar to al the affected functions.

Comparing with this example.

Now column pred exists and contains the predecessor of the node.

SELECT * FROM pgr_primDD('SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[9, 6], 3.5); seq [depth] start_vid | pred | node | edge | cost | agg_cost

11	01	61	61	6	-1	0	0
				21	11		
2	1	6	6	5	1	1	1
3	1	6	6	10	2	1	1
4	2	6	10	15	3	1	2
5	2	6	10	11	5	1	2
6	3	6	11	16	9	1	3
7	3	6	11	12	11	1	3
8	1	6	6	7	4	1	1
9	2	6	7	3	7	1	2
10	3	6	3	1	6	1	3
11	2	6	7	8	10	1	2
12	3	6	8	9	14	1	3
13	0	9	9	9	-1	0	0
14	1	9	9	8	14	1	1
15	2	9	8	7	10	1	2
16	3	9	7	6	4	1	3
17	3	9	7	3	7	1	3
(17 rov	ws)						

If needed filter out the added columns, for example, to return the original columns

SELECT seq, depth, start_vid, node, edge, cost, agg_cost FROM pgr_primDD("SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id', ARRAY[6, 6], 3.5); seq | depth | start_vid | node | edge | cost | agg_cost

seq depin s	start_vid riode edge	e cos
1 0 2 1 3 1 4 2 5 2 6 3 7 3 8 1 9 2 10 3 11 2 13 0 14 1 15 2 13 0 14 1 15 2 16 3 17 3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 1 2 2 3 1 2 3 1 2 3 0 1 2 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 0 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 3
(17 10WS)		

Migration of pgr_withPointsDD

Starting from v3.6.0 pgr_withPointsDD - Proposed result columns are being standardized.

from:

to:

(seq, depth, start_vid, pred, node, edge, cost, agg_cost)

(seq, [start_vid], node, edge, cost, agg_cost)

And driving_side parameter changed from named optional to unnamed compulsory driving side and its validity differ for directed and undirected graphs.

Signatures to be migrated:

- pgr_withPointsDD (Single vertex)
- pgr_withPointsDD (Multiple vertices)
- Before Migration:
 - pgr_withPointsDD (Single vertex)
 - · Output columns were (seq, node, edge, cost, agg_cost)
 - Does not have start_vid, pred and depth result columns.

driving_side parameter was named optional now it is compulsory unnamed.

• pgr_withPointsDD (Multiple vertices)

- · Output columns were (seq, start_vid, node, edge, cost, agg_cost)
- · Does not have depth and pred result columns.
- · driving_side parameter was named optional now it is compulsory unnamed.

Driving side was optional

The default values on this query are:

directed.

true

driving_side:

'b'

details:

false

SELECT * FROM pgr_withPointsDD(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$, -1, 3.3); WARNING: pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean) deprecated signature on 3.6.0 seq | node | edge | cost | agg_cost wateremete

1 2 3	-1 5 6 7	-1 0 1 0.4 1 0.6 4 1	0 0.4 0.6 1.6
5	3	7 1	2.6
6	8	10 1	2.6
7	11	8 1	2.6
8	-3	12 0.6	3.2
9	-4	6 0.7	3.3
(9 ro)	NS)		

Driving side was named optional

The default values on this query are:

directed:

true

details:

false

SELECT * FROM pgr_withPointsDD(

On directed graph b could be used as driving side

The default values on this query are:

details:

false

SELECT * FROM pgr_withPointsDD(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$, -1, 3.3, directed => true, driving_side => 'b'); WARNING: pgr_withpointsdd(text,text,bigint,double precision,boolean,character,boolean) deprecated signature on 3.6.0 seq | node | edge | cost | agg_cost

1	-1	-1 0	0
2	5	1 0.4	0.4
3	6	1 0.6	0.6
4	7	4 1	1.6
5	3	7 1	2.6
6	8	10 1	2.6
7	11	8 1	2.6
8	-3	12 0.6	3.2
9	-4	6 0.7	3.3
(9 rov	vs)		

On undirected graph r could be used as driving side

Also I could be used as driving side

SELECT * FROM pgr_withPointsDD(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$, -1, 3.3, 'r, directed => true);

1, 0.0, 1, dirottod = x trao),
seq depth start_vid pred node edge cost agg_cost
<u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u>

1	0	-1	-1	-1	-1 0	0
2	1 j	-1 j	-1	5	1 0.4	0.4
3	2	-1	5	6	1 1	1.4
4	3	-1	-6	7	4 1	2.4
(4 row	/s)					

After Migration:

- · Be aware of the existence of the additional result Columns.
- New output columns are (seq, depth, start_vid, pred, node, edge, cost, agg_cost)

• driving side parameter is unnamed compulsory, and valid values differ for directed and undirected graphs.

Does not have a default value.

- In directed graph: valid values are [, R, I, L]
- In undirected graph: valid values are [b, B]
- · Using an invalid value throws an ERROR.

vithPointsDD (Single vertex)

Using this example.

- (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
- · start_vid contains the start vid parameter value.
- depth contains the depth from the start_vid vertex to the node.
- pred contains the predecessor of the node

To migrate, use an unnamed valid value for driving side after the distance parameter:

SELECT * FROM pgr_withPointsDD(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$,

-1, 3 seq	.3, 'r', di depth	rected start_	d => t vid	rue); pred	nod	e edg	ge cost	agg_cost
+-	+		-+	+	+	+	+	
1	0	-1	-1	-1	-1	0	0	
2	1	-1 j	-1	5	1	0.4	0.4	
3	2	-1	5	6	1	1	1.4	
4	3	-1	-6	7	4	1	2.4	
(4 row	rs)							

To get results from previous versions:

- filter out the additional columns, for example;
- When details => false to remove the points use WHERE node >= 0 OR cost = 0

SELECT seq, node, edge, cost, agg_cost FROM pgr_withPointsDD(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$, -1, 3.3, 'r, details => true);

seq | node | edge | cost | agg_cost

1	-1	-1	0	0
2	5	1	0.4	0.4
3	6	1	1	1.4
4	-6	4	0.7	2.1
5	7	4	0.3	2.4
(5 ro)	NS)			

pgr_withPointsDD (Multiple vertices)

Using this example.

- (seq, depth, start_vid, pred, node, edge, cost, agg_cost)
- · depth contains the depth from the start_vid vertex to the node.
- pred contains the predecessor of the node.

SELECT * FROM pgr_withPointsDD(\$\$SELECT * FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$, ARRAY[-1, 16], 3.3, "f equicost => true); seq i depth | start_vid | pred | node | edge | cost | agg_cost

1	0	-1 -1 -1 0 0
2	1	-1 -1 6 1 0.6 0.6
3	2	-1 6 7 4 1 1.6
4	2	-1 6 5 1 1 1 1.6
5	3	-1 7 3 7 1 2.6
6	3	-1 7 8 10 1 2.6
7	4	-1 8 -3 12 0.6 3.2
8	4	-1 3 -4 6 0.7 3.3
9	0	16 16 16 -1 0 0
10	1	16 16 11 9 1 1
11	1	16 16 15 16 1 1
12	1	16 16 17 15 1 1
13	2	16 15 10 3 1 2
14	2	16 11 12 11 1 2
(14 rov	NS)	

To get results from previous versions:

· Filter out the additional columns

• When details => false to remove the points use WHERE node >= 0 OR cost = 0

SELECT seq, start_vid, node, edge, cost, agg_cost FROM pgr_withPointsDD(\$\$SELECT id, source, target, cost, reverse_cost FROM edges ORDER BY id\$\$, \$\$SELECT pid, edge_id, traction, side from pointsOfInterest\$\$, ARRAY[-1, h], 3.3, "t, equicost => true) WHERE node >= 0 OR cost = 0; seq | start_vid | node | edge | cost | agg_cost

304 30		11100	c cu	9010	03110
+		+			+
1	-1	-1 -	1 ()	0
2	-1	6	1 0.	6	0.6
3	-1	7	4 1		1.6
4	-1	5	1 1		1.6
5	-1	3	7 1		2.6
6	-1	8 1	0	1	2.6
9	16	16	-1	0	0
10	16	11	9	1	1
11	16	15	16	1	1
12	16	17	15	1	1
13	16	10	3	1	2
14	16	12	11	1	2
(12 rows	5)				

Migration of pgr_withPointsKSP

Starting from v3.6.0 pgr_withPointsKSP - Proposed result columns are being standardized.

(seq, path_id, path_seq, node, edge, cost, agg_cost) from:

from:

And driving side parameter changed from named optional to unnamed compulsory driving side and its validity differ for directed and undirected graphs.

Signatures to be migrated

• pgr_withPointsKSP (One to One)

Before Migration:

- Output columns were (seq, path_seq, [start_pid], [end_pid], node, edge, cost, agg_cost)
- the columns start_vid and end_vid do not exist.

Migration:

- Be aware of the existence of the additional result Columns
- New output columns are (seq, path_id, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
- driving side parameter is unnamed compulsory, and valid values differ for directed and undirected graphs.
 - Does not have a default value.
 - In directed graph: valid values are [, R, I, L]
 - In undirected graph: valid values are [b, B]
 - Using an invalid value throws an ERROR.

pgr_withPointsKSP (One to One)

Using this example.

• start_vid contains the start vid parameter value.

• end_vid contains the end vid parameter value.

SELECT * FROM pgr_withPointsKSP(

SELECT PROM pg__wiiirbilitsNST(\$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$, -1, -2, 2, 7; seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

1	1	1	-1	-2 -1 1 0.6 0
2	1 j	2	-1	-2 6 4 1 0.6
3	1	3	-1	-2 7 8 1 1.6
4	1	4	-1	-2 11 11 1 2.6
5	1	5	-1	-2 12 13 1 3.6
6	1	6	-1	-2 17 15 0.6 4.6
7	1	7	-1	-2 -2 -1 0 5.2
8	2	1	-1	-2 -1 1 0.6 0
9	2	2	-1	-2 6 4 1 0.6
10	2	3	-1	-2 7 8 1 1 1.6
11	2	4	-1	-2 11 9 1 2.6
12	2	5	-1	-2 16 15 1.6 3.6
13	2	6	-1	-2 -2 -1 0 5.2
(13 row	/S)			

If needed filter out the additional columns, for example, to return the original columns:

SELECT seq, path_id, path_seq, node, edge, cost, agg_cost FROM pgr_withPointsKSP(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT pid, edge_id, fraction, side from pointsOfInterest\$\$,

www.ceco.	pia, oago_ia	, 114011011, 0140	nom pointe	011110100100	,
-1 -2 2 11					

seq path_id path_seq node edge cost agg_cost								
+	+	++++						
1	1	1 -1 1 0.6 0						
2	1	2 6 4 1 0.6						
3	1	3 7 8 1 1.6						
4	1	4 11 11 1 2.6						
5	1	5 12 13 1 3.6						
6	1	6 17 15 0.6 4.6						
7	1	7 -2 -1 0 5.2						
8	2	1 -1 1 0.6 0						
9	2	2 6 4 1 0.6						
10	2	3 7 8 1 1 1.6						
11	2	4 11 9 1 2.6						
12	2	5 16 15 1.6 3.6						
13	2	6 -2 -1 0 5.2						
(13 row	/s)							

Migration of turn restrictions

Contents

- Migration of restrictions
 - Old restrictions structure
 - Old restrictions contents
 - <u>New restrictions structure</u>
 - Restrictions data
 - Migration
- Migration of pgr_trsp (Vertices)
 - Migrating pgr_trsp (Vertices) using pgr_dijkstra
 - Migrating pgr_trsp (Vertices) using pgr_trsp
- Migration of pgr_trsp (Edges)
 - Migrating pgr_trsp (Edges) using pgr_withPoints
 - · Migrating pgr_trsp (Edges) using pgr_trsp_withPoints
- Migration of pgr_trspViaVertices
 - <u>Migrating pgr_trspViaVertices USing pgr_dijkstraVia</u>
 - · Migrating pgr trspViaVertices USINg pgr trspVia
- <u>Migration of pgr_trspViaEdges</u>
 - Migrating pgr_trspViaEdges Using pgr_withPointsVia
 - Migrating pgr_trspViaEdges Using pgr_trspVia_withPoints

See Also

Migration of restrictions¶

Starting from <u>v3.4.0</u>

The structure of the restrictions have changed:

Old restrictions structure¶

On the deprecated signatures:

- Column rid is ignored
- via_path
 - Must be in reverse order.
 - Is of type TEXT.
 - When more than one via edge must be separated with,.
- target_id
 - Is the last edge of the forbidden path.
 - Is of type INTEGER.
- to_cost
 - Is of type FLOAT.

Creation of the old restrictions table

CREATE TABLE old_restrictions (rid BIGINT NOT NULL, to_cost FLOAT, target_id BIGINT, via_path TEXT

); CREATE TABLE

Old restrictions fill up

INSERT INTO old_restrictions (rid, to_cost, target_id, via_path) VALUES (1, 100, 7, '4'), (1, 100, 0, 11, '8'), (2, 4, 9, '5, 3'), (2, 4, 9, '5, 3'), (3, 100, 9, '16'); INSERT 0 5

Old restrictions contents¶

SELECT * FROM old_restrictions; rid | to_cost | target_id | via_path

1	100 100 100	7 4 11 8					
2 3	4 100	9 5, 3 9 16					
(5 rows)							

The restriction with rid = 2 is representing $(3 \times 5 \times 5)$

- \(3\rightarrow5\)
 - · is on column via_path in reverse order
 - is of type TEXT
- \(9\)
 - is on column target_id
 - is of type INTEGER

New restrictions structure

- Column id is ignored
- Column path
 - Is of type ARRAY[ANY-INTEGER].
 - Contains all the edges involved on the restriction.
 - The array has the ordered edges of the restriction.
- Column cost
 - Is of type ANY-NUMERICAL

The creation of the restrictions table

CREATE TABLE restrictions (id SERIAL PRIMARY KEY, path BIGINT[], cost FLOAT

); CREATE TABLE

Adding the restrictions

INSERT INTO restrictions (path, cost) VALUES (ARRAY[4, 7], 100), (ARRAY[8, 11], 100), (ARRAY[7, 10], 100), (ARRAY[7, 10], 100), (ARRAY[9, 16], 100); INSERT 0 5

Restrictions data

The restriction with rid = 2 represents the path \(3 \rightarrow5 \rightarrow9\).

· By inspection the path is clear.

To transform the old restrictions table to the new restrictions structure.

- Create a new table with the new restrictions structure
 - · In this migration guide new_restrictions is been used.
- For this migration pgRouting supplies an auxiliary function for reversal of an array_pgr_array_reverse needed for the migration.
 - _pgr_array_reverse
 - · Was created temporally for this migration
 - Is not documented.
 - Will be removed on the next mayor version 4.0.0

SELECT rid AS id.

SELEC in IA SA with a set of the set of FROM old_restrictions; SELECT 5

The migrated table contents:

SELECT * FROM new_restrictions;

id | path | cost 1 | {4,7} | 100 1 | {8,11} | 100 1 | {7,10} | 100 2 | {3,5,9} | 4 3 | {16,9} | 100

(5 rows)

Migration of pgr_trsp (Vertices)

pgr trsp - Proposed signatures have changed and many issues have been fixed in the new signatures. This section will show how to migrate from the old signatures to the new replacement functions. This also affects the restrictions.

Starting from v3.4.0

Signature to be migrated:

pgr trsp(Edges SQL, source, target,

directed boolean, has_rcost boolean [,restrict_sql text]); RETURNS SETOF (seq, id1, id2, cost)

- The integral type of the Edges SQL can only be INTEGER.
- The floating point type of the Edges SQL can only be FLOAT.
- directed flag is compulsory.
 - Does not have a default value.
- Does not autodetect if reverse_cost column exist.
- · User must be careful to match the existence of the column with the value ofhas_rcost parameter.
- · The restrictions inner query is optional
- The output column names are meaningless

Migrate by using:

- pgr dijkstra when there are no restrictions.
- pgr_trsp Proposed (One to One) when there are restrictions.

Migrating pgr_trsp (Vertices) using pgr_dijkstra

The following query does not have restrictions.

SELECT * FROM pgr_trsp(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges WHERE id != 16\$\$, 15, 16, true, true); WARNING: pgr.trsp(text,integer,integer,boolean,boolean) deprecated signature on v3.4.0 seq | id1 | id2 | cost

0 | 15 | 3 | 1 1 | 10 | 5 | 1 2 | 11 | 9 | 1 3 | 16 | -1 | 0 (4 rows)

· A message about deprecation is shown

• Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_dijkstra instead.

SELECT * FROM pgr_dijkstra(\$\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id != 16\$\$,

15, 16) seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

· The types casting has been removed.

- pgr_dijkstra:
 - · Autodetects if reverse_cost column is in the edges SQL.
 - Accepts ANY-INTEGER on integral types
 - · Accepts ANY-NUMERICAL on floating point types
 - · directed flag has a default value of true.
 - Use the same value that on the original query
 - . In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost FROM pgr_dijkstra(\$\$SELECT id, source, target, cost, reverse_cost _FROM edges WHERE id != 16\$\$,

```
15, 16);
seq | id1 | id2 | cost
1 | 15 | 3 | 1
2 | 10 | 5 | 1
3 | 11 | 9 | 1
4 | 16 | -1 | 0
(4 rows)
```

- id1 is the node
- id2 is the edge

Migrating pgr_trsp (Vertices) using pgr_trsp

The following query has restrictions.

SELECT * FROM pgr_trsp(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges WHERE id != 16\$\$, 15, 16,

15, 1o, true, true, \$\$SELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions\$\$); WARNING: gp_trsp(text,integer,integer,boolean,boolean) deprecated signature on v3.4.0 seq |id1 |id2| cost

0|15|3|1 1|10|5|1 2 | 11 | 11 | 3 | 12 | 13 | 4 | 17 | 15 | 5 | 16 | -1 | (6 rows) 1 0

A message about deprecation is shown

- Deprecated functions will be removed on the next mayor version 4.0.0
- The restrictions are the last parameter of the function
 - Using the old structure of restrictions

Use pgr_trsp - Proposed (One to One) instead.

SELECT * FROM pgr_trsp(\$\$SELECT id, source, target, cost, reverse_cost FROM edges WHERE id != 16\$\$, \$\$SELECT * FROM new_restrictions\$\$,

15, 16);

seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost 15 | 16 | 15 | 3 | 1 | 4 1 11 -+-

		13	101	13	3		0
2	2	15	16	10	5	1	1
3	3	15	16	11	11	1	2
4	4	15	16	12	13	1	3
5	5	15	16	17	15	1	4
6	6	15	16	16	-1	0	5
(6 rows)							

• The new structure of restrictions is been used.

- · It is the second parameter.
- The types casting has been removed.

• par trsp - Proposed:

- · Autodetects if reverse_cost column is in the edges SQL.
- · Accepts ANY-INTEGER on integral types
- Accepts ANY-NUMERICAL on floating point types
- · directed flag has a default value of true.
 - Use the same value that on the original query
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost

15, 16); seq | id1 | id2 | cost

1 | 15 | 3 | 1 2 | 10 | 5 | 1 3 | 11 | 11 | 1

· id1 is the node

id2 is the edge

Migration of pgr trsp (Edg

Signature to be migrated:

pgr_trsp(sql text, source_edge integer, source_pos float8, target_edge integer, target_pos float8, directed boolean, has_roost boolean [,restrict_sql text]); RETURNS SETOF (seq, id1, id2, cost)

- The integral types of the sql can only be INTEGER.
- The floating point type of the sql can only be FLOAT.
- · directed flag is compulsory.
 - · Does not have a default value.
- Does not autodetect if reverse cost column exist.
- · User must be careful to match the existence of the column with the value ofhas_rcost parameter
- The restrictions inner query is optional.

For these migration guide the following points will be used:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest WHERE pid IN (3, 4); pid | edge_id | fraction | side

Migrate by using:

- pgr_withPoints Proposed when there are no restrictions,
- pgr_trsp_withPoints Proposed (One to One) when there are restrictions.

Migrating pgr_trsp (Edges) using pgr_withPoints¶

The following query does not have restrictions.

SELECT * FROM pgr_trsp(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges\$\$, 6, 0.3, 12, 0.6, true, true); WARNING: pg_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0 seq | id1 | id2 | cost

0 | -1 | 6 | 0.7 1 | 3 | 7 | 1 2 | 7 | 10 | 1 3 | 8 | 12 | 0.6 4 | -2 | -1 | 0 (5 rows)

· A message about deprecation is shown

• Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_withPoints - Proposed instead.

SELECT * FROM pgr_withPoints(SELECT FROM pgr_wtinPoints(\$\$EELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$ELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (4, 3)\$\$, -4, -3, details => false); seq | path_seq | node | edge | cost | agg_cost

-4| 6| 0.7| 3| 7| 1| 7| 10| 1| 8| 12| 0.6| -3| -1| 0| 1 1| 0 0.7 2 2 3| 4| 5| 1.7 2.7 3 4 | 5 | 3.3 (5 rows)

- The types casting has been removed.
- · Do not show details, as the deprecated function does not show details.
- pgr_withPoints Proposed:
 - · Autodetects if reverse_cost column is in the edges SQL.
 - · Accepts ANY-INTEGER on integral types
 - · Accepts ANY-NUMERICAL on floating point types
 - · directed flag has a default value of true
 - Use the same value that on the original query.
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.
 - On the points query do not include theside column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost SELECT 1 seq, noce:IN1EGEH AS 101, edge:IN1EGEH AS 102, cost FROM pg: withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT ' FROM (VALUES (1, 6, 0.3),(2, 12, 0.6)) AS t(pid, edge_id, fraction)\$\$, -1, -2, details => false); seq | id1 | id2 | cost

- id1 is the node
- id2 is the edge

Migrating pgr trsp (Edges) using pgr trsp withPoi nts¶

The following query has restrictions.

SELECT * FROM pgr_trsp(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges\$\$, 6, 0.3, 12, 0.6, true, true, \$\$SELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions\$\$); WARNING: ggr_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0 seq |id1|id2|cost

- A message about deprecation is shown
 - Deprecated functions will be removed on the next mayor version 4.0.0
- · The restrictions are the last parameter of the function
 - · Using the old structure of restrictions

Use pgr_trsp_withPoints - Proposed instead.

SELECT * FROM pgr_trsp_withPoints(

- SELECT * FROM pgr_trsp_withPoints(\$\$SELECT is source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT * FROM new_restrictions\$\$, \$\$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (4, 3)\$\$, -4, -3, details => false); seq | path_seq | start_vid | end_vid | node | edge | cost | agg_cost

	+		++	++	
1	1	-4	-3 -4	6 0.7	0
2	2	-4	-3 3	7 1	0.7
3	3	-4	-3 7	8 1	1.7
4	4	-4	-3 11	9 1	2.7
5	5	-4	-3 16	16 1	3.7
6	6	-4	-3 15	3 1	4.7
7	7	-4	-3 10	2 1	5.7
8	8	-4	-3 6	4 1	6.7
9	9	-4	-3 7	10 1	7.7
10	10	-4	-3 8	12 0.6	8.7
11	11	-4	-3 -3	-1 0	9.3
(11 row	/s)				

- The new structure of restrictions is been used
 - · It is the second parameter.
- · The types casting has been removed.
- Do not show details, as the deprecated function does not show details.
- pgr_trsp_withPoints Proposed:
 - · Autodetects if reverse_cost column is in the edges SQL.
 - Accepts ANY-INTEGER on integral types
 - · Accepts ANY-NUMERICAL on floating point types
 - · directed flag has a default value of true
 - Use the same value that on the original query.
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.
 - On the points query do not include theside column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT seq, node::INTEGER AS id1, edge::INTEGER AS id2, cost FROM pgr_trsp_withPoints(\$\$\$ELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$ELECT * FROM new_restrictions\$\$, \$\$ELECT * FROM (vALUES (1, 6, 0.3),(2, 12, 0.6)) AS t(pid, edge_id, fraction)\$\$, -1, -2, details => false) WHERE edge != -1: seq | id1 | id2 | cost 1 | -1 | 6 | 0.7 2 | 3 | 7 | 1 3 | 7 | 8 | 1 4 | 11 | 9 | 1 5 | 16 | 16 | 1 6 | 15 | 3 | 1 7 | 10 | 2 | 1 8 | 6 | 4 | 1 9 | 7 | 10 | 1 9 | 7 | 10 | 1 10 8 12 0.6 (10 rows)

- id1 is the node
- id2 is the edge

Signature to be migrated:

pgr_trspViaVertices(sql text, vids integer[], directed boolean, has_rcost boolean [, turn_restrict_sql text]); RETURNS SETOF (seq, id1, id2, id3, cost)

- The integral types of the Edges SQL can only be INTEGER.
- The floating point type of the Edges SQL can only be FLOAT.
- · directed flag is compulsory.
 - Does not have a default value.
- · Does not autodetect if reverse_cost column exist.
 - · User must be careful to match the existence of the column with the value ofhas_rcost parameter.
- · The restrictions inner query is optional.

Migrate by using:

- pgr_dijkstraVia Proposed when there are no restrictions,
- pgr_trspVia Proposed when there are restrictions.

ting pgr_trspViaVertices_USing pgr_dijks

The following query does not have restrictions.

SELECT * FROM pgr_trspViaVertices(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges\$\$, ARRAY[6, 3, 6],

WARNING: ggr_trspViaVertices(text,anyarray,boolean,boolean,text) deprecated function on v3.4.0 seq | id1 | id2 | id3 | cost

1	1	6	4	1			
2	1	7	7	1			
3	2	3	7	1			
4	2	7	4	1			
5	2	6	-1	0			
(5 rows)							

• A message about deprecation is shown

Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_dijkstraVia - Proposed instead.

SELECT * FROM pgr_dijkstraVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, ARRAY[6, 3, 6]);

seq p	ath_id	path_s	seq sta	art_vid	en	d_vid	noo	de edge	cost agg	_cost route_agg_cost
+	+			+	+			++	·····+····	
1	11	1	6	3	6	4	11	0	0	
2	1	2	6	3	7	7	1	1	1	
3	1	3	6	3	3	-1	0	2	2	
4	2	1	3	6	3	7	1	0	2	
5	2	2	3	6	7	4	1	1	3	
6	2	3	3	6	6	-2	0	2	4	
(6 rows	s)									

· The types casting has been removed.

• pgr_dijkstraVia - Proposed:

- · Autodetects if reverse_cost column is in the edges SQL.
- · Accepts ANY-INTEGER on integral types
- Accepts ANY-NUMERICAL on floating point types
- directed flag has a default value of true
 - Use the same value that on the original query
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used
- On the points query do not include theside column.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq, path_id::INTEGER AS id1, node::INTEGER AS id2, CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT FROM gg: dijkstraVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, ARRAY[6, 3, 6]) WHERE edge != -1; seq |id1 |id2 |id3| cost 1 | 1 | 6 | 4 | 1 2 | 1 | 7 | 7 | 1 3 | 2 | 3 | 7 | 1 4 | 2 | 7 | 4 | 1 5 | 2 | 6 | -1 | 0 (5 rows)

- · id1 is the path identifier
- id2 is the node
- id3 is the edge

Migrating pgr trspViaVertices using pgr trspVia

The following query has restrictions.

SELECT * FROM pgr_trspViaVertices(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges\$\$, ARRAY[6, 3, 6],

ARIHAT[0, 3, 0], true, true, \$\$\$ELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions\$\$); WARNING: pgr_trspViaVertices(text,anyarray,boolean,boolean,text) deprecated function on v3.4.0 seq | id1 | id2 | id3 | cost

- - A message about deprecation is shown
 - · Deprecated functions will be removed on the next mayor version 4.0.0
 - · The restrictions are the last parameter of the function
- · Using the old structure of restrictions

Use pgr_trspVia - Proposed instead.

SELECT * FROM pgr_trspVia(

\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT * FROM new restrictions\$\$, ARRAY[6, 3, 6]);

		· •]/,						
seq p	ath_id	path_s	eq sta	art_vid end_vid	node	edge	cost agg_co	ost route_agg_cost
+	+-	++		+++	+	+	+	
1	1	1	6	3 6 4	1	0	0	
2	1	2	6	3 7 8	1	1	1	
3	1	3	6	3 11 9	1	2	2	
4	1	4	6	3 16 16	1	3	3	
5	1	5	6	3 15 3	1	4	4	
6	1	6	6	3 10 5	1	5	5	
7	1	7	6	3 11 8	1	6	6	
8	1	8	6	3 7 7	1	7	7	
9	1	9	6	3 3 -1	0	8	8	
10	2	1	3	6 3 7	1	0	8	
11	2	2	3	6 7 4	1	1	9	
12	2	3	3	6 6 -2	0	2	10	
(12 rov	vs)							

• The new structure of restrictions is been used.

- · It is the second parameter.
- · The types casting has been removed.

• pgr_trspVia - Proposed:

- · Autodetects if reverse_cost column is in the edges SQL.
- · Accepts ANY-INTEGER on integral types
- · Accepts ANY-NUMERICAL on floating point types
- · directed flag has a default value of true
 - Use the same value that on the original query
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.
- On the points query do not include theside column.

When the need of using strictly the same (meaningless) names and types of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq, path_id::INTEGER AS id1, node::INTEGER AS id2, CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT FROM pgr_trspVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT 'FROM new_restrictions\$\$, ARRAY(6, 3, 6)] WHERE edge != -1; seq |id1 |id2 |id3 | cost
 1
 1
 6
 4
 1

 2
 1
 7
 8
 1

 3
 1
 11
 9
 1

 4
 1
 16
 16
 1

 5
 1
 15
 3
 1

 6
 1
 10
 5
 1
 15

 7
 1
 19
 2
 3
 7
 1

 9
 2
 3
 7
 1
 10
 2
 7
 4
 1

 11
 2
 6
 -1
 0
 (11 rows)
 0
 (11 rows)

id1 is the path identifier

- id2 is the node
- · id3 is the edge

Migration of pgr_trspViaEdges¶

Signature to be migrated:

pgr_trspViaEdges(sql text, eids integer[], pcts float8[], directed boolean, has_rcost boolean [, turn_restrict_sql text]); RETURNS SETOF (seq, id1, id2, id3, cost)

- The integral types of the Edges SQL can only be INTEGER.
- The floating point type of the Edges SQL can only be FLOAT.
- · directed flag is compulsory.
 - · Does not have a default value.
- Does not autodetect if reverse cost column exist.
- · User must be careful to match the existence of the column with the value ofhas_rcost parameter.
- The restrictions inner query is optional.

For these migration guide the following points will be used:

SELECT pid, edge_id, fraction, side FROM pointsOfInterest WHERE pid IN (3, 4, 6); pid | edge_id | fraction | side

3| 4| 6| 12 | 0.6 | I 6 | 0.3 | r 4 | 0.7 | b (3 rows)

And will travel thru the following Via points\(4\rightarrow3\rightarrow6\)

Migrate by using:

- · pgr withPointsVia Proposed when there are no restrictions,
- pgr_trspVia_withPoints Proposed when there are restrictions.

Migrating par trspViaEdges USINg par withPointsVia¶

The following query does not have restrictions.

SELECT * FROM pgr_trspViaEdges(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges\$\$, ARRAY[6, 12, 4], ARRAY[0.3, 0.6, 0.7], true, true); WARNING: pgr_trspViaEdges(text,integer[],float[],boolean,boolean,text) deprecated function on v3.4.0 seq |id1 | id2 | id3 | cost

· A message about deprecation is shown

• Deprecated functions will be removed on the next mayor version 4.0.0

Use pgr_withPointsVia - Proposed instead.

SELECT * FROM pgr_withPointsVia(

SELECT * FROM pgr_withPointsVia(\$\$SELECT id, source, targel, cost, reverse_cost FROM edges\$\$, \$\$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (3, 4, 6)\$\$, ARRAY[-4, -3, -6], details => false); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

	+	+		-++		
1	1	1	-4	-3 -4 6 0.7	0	0
2	1	2	-4	-3 3 7 1	0.7	0.7
3	1	3	-4	-3 7 10 1	1.7	1.7
4	1	4	-4	-3 8 12 0.6	2.7	2.7
5	1	5	-4	-3 -3 -1 0	3.3	3.3
6	2	1	-3	-6 -3 12 0.4	0	3.3
7	2	2	-3	-6 12 13 1	0.4	3.7
8	2	3	-3	-6 17 15 1	1.4	4.7
9	2	4	-3	-6 16 9 1	2.4	5.7
10	2	5	-3	-6 11 8 1	3.4	6.7
11	2	6	-3	-6 7 4 0.3	4.4	7.7
12	2	7	-3	-6 -6 -2 0	4.7	8
(12 rov	vs)					

The types casting has been removed.

• Do not show details, as the deprecated function does not show details.

• pgr_withPointsVia - Proposed:

- Autodetects if reverse_cost column is in the edges SQL.
- Accepts ANY-INTEGER on integral types
- · Accepts ANY-NUMERICAL on floating point types
- · directed flag has a default value of true.
 - Use the same value that on the original query.
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.
- On the points query do not include the side column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq, path_id::INTEGER AS id1, node::INTEGER AS id2, CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT FROM pg: withPointsVia(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT 'FROM (VALUES (1, 6, 0.3),(2, 12, 0.6),(3, 4, 0.7)) AS t(pid, edge_id, fraction)\$\$, ARRAY[-1, 2, -3], details=> false); set id41 id10 id10 id10 id10 seq | id1 | id2 | id3 | cost

(12 rows)

• id2 is the node

• id3 is the edge

Migrating pgr trspViaEdges USing pgr trspVia withPoints

The following query has restrictions.

SELECT * FROM pgr_trspViaEdges(\$\$SELECT id::INTEGER, source::INTEGER, target::INTEGER, cost, reverse_cost FROM edges\$\$, ARRAY[6, 12, 4], ARRAY[0.3, 0.6, 0.7],

true, true, \$\$SELECT to_cost, target_id::INTEGER, via_path FROM old_restrictions\$\$); WARNING: pgr_trspViaEdges(text,integer[],float[],boolean,boolean,text) deprecated function on v3.4.0 WARNING: pgr_trsp(text,integer,float,integer,float,boolean) deprecated signature on v3.4.0 WARNING: pgr_trsp(text,integer,float,integer,float,boolean,boolean) deprecated signature on v3.4.0 seq | id1 | id2 | id3 | cost

(15 rows)

• A message about deprecation is shown

· Deprecated functions will be removed on the next mayor version 4.0.0

· The restrictions are the last parameter of the function

· Using the old structure of restrictions

Use pgr_trspVia_withPoints - Proposed instead

SELECT * FROM pgr_trspVia_withPoints(

SELECT * FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT > FROM new_restrictions\$\$, \$\$SELECT pid, edge_id, fraction FROM pointsOfInterest WHERE pid IN (3, 4, 6)\$\$, ARRAY[-4, -3, -6], details => false); seq | path_id | path_seq | start_vid | end_vid | node | edge | cost | agg_cost | route_agg_cost

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
12 2 6 -3 -6 7 4 0.3 4.4 8.3 13 2 7 -3 -6 -6 -2 0 4.7 8.6	1 2 3 4 5 6 7 8 9 10	1 1 1 1 1 2 2 2 2 2	1 2 3 4 5 6 1 2 3 4 5	-4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3		0 0.7 1.7 2.3 3.3 3.9 0 0.4 1.4 2.4 3.4	0.7 1.7 2.3 3.9 3.9 4.3 5.3 6.3 7.3
11 2 6 -5 -6 7 4 0.3 4.4 8.3 13 2 7 -3 -6 -6 -2 0 4.7 8.6	9 10 11	2 2	3 4	-3 -3	-6 17 15 1 -6 16 9 1 6 11 8 1	1.4 2.4	5.3 6.3
	12	2	6 7	-3 -3	-6 7 4 0.3 -6 -6 -2 0	4.4 4.7	8.3 8.6

(13 rows)

· The new structure of restrictions is been used

It is the second parameter.

• The types casting has been removed.

- · Do not show details, as the deprecated function does not show details.
- pgr trspVia withPoints Proposed:
 - · Autodetects if reverse_cost column is in the edges SQL.
 - · Accepts ANY-INTEGER on integral types
 - · Accepts ANY-NUMERICAL on floating point types
 - · directed flag has a default value of true.
 - Use the same value that on the original query.
 - In this example it is true which is the default value.
 - The flag has been omitted and the default is been used.
 - · On the points query do not include theside column.

When the need of using strictly the same (meaningless) names and types, and node values of the function been migrated then:

SELECT row_number() over(ORDER BY seq) AS seq, path_id::INTEGER AS id1, node::INTEGER AS id2, CASE WHEN edge >= 0 THEN edge::INTEGER ELSE -1 END AS id3, cost::FLOAT FROM pgr_trspVia_withPoints(\$\$SELECT id, source, target, cost, reverse_cost FROM edges\$\$, \$\$SELECT * FROM new_restrictions\$\$, \$\$SELECT * FROM (VALUES (1, 6, 0.3),(2, 12, 0.6),(3, 4, 0.7)) AS t(pid, edge_id, fraction)\$\$, ARRAY(-1, 2, -3], details => false); seq [id1 | id2 | id3 | cost

```
(13 rows)
```

- id1 is the path identifier
- id2 is the node
- id3 is the edge

See Also¶

- TRSP Family of functions
- withPoints Category

Indices and tables

- Index
- Search Page
- Indices and tables
 - Index
 - Search Page

Contents

© Copyright pgRouting Contributors - Version v3.7.1. Last updated on Jan 10, 2025. Created using Sphinx 7.4.7.