
pgvector
Open-source vector similarity search for Postgres

Supports

• exact and approximate nearest neighbor search
• L2 distance, inner product, and cosine distance
• any language with a Postgres client

Plus ACID compliance, point-in-time recovery, JOINs, and all of the other great
features of Postgres

Installation
Compile and install the extension (supports Postgres 11+)

cd /tmp
git clone --branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
make
make install # may need sudo

See the installation notes if you run into issues

You can also install it with Docker, Homebrew, PGXN, APT, Yum, or conda-
forge, and it comes preinstalled with Postgres.app and many hosted providers

Getting Started
Enable the extension (do this once in each database where you want to use it)

CREATE EXTENSION vector;

Create a vector column with 3 dimensions

CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

Insert vectors

INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

Get the nearest neighbors by L2 distance

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

Also supports inner product (<#>) and cosine distance (<=>)

Note: <#> returns the negative inner product since Postgres only supports ASC
order index scans on operators

1

https://en.wikipedia.org/wiki/ACID
https://www.postgresql.org/about/
https://www.postgresql.org/about/

Storing
Create a new table with a vector column

CREATE TABLE items (id bigserial PRIMARY KEY, embedding vector(3));

Or add a vector column to an existing table

ALTER TABLE items ADD COLUMN embedding vector(3);

Insert vectors

INSERT INTO items (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');

Upsert vectors

INSERT INTO items (id, embedding) VALUES (1, '[1,2,3]'), (2, '[4,5,6]')
ON CONFLICT (id) DO UPDATE SET embedding = EXCLUDED.embedding;

Update vectors

UPDATE items SET embedding = '[1,2,3]' WHERE id = 1;

Delete vectors

DELETE FROM items WHERE id = 1;

Querying
Get the nearest neighbors to a vector

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

Get the nearest neighbors to a row

SELECT * FROM items WHERE id != 1 ORDER BY embedding <-> (SELECT embedding FROM items WHERE id = 1) LIMIT 5;

Get rows within a certain distance

SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with ORDER BY and LIMIT to use an index

Distances Get the distance

SELECT embedding <-> '[3,1,2]' AS distance FROM items;

For inner product, multiply by -1 (since <#> returns the negative inner product)

SELECT (embedding <#> ’[3,1,2]’) * -1 AS inner_product FROM items;

For cosine similarity, use 1 - cosine distance

SELECT 1 - (embedding <=> '[3,1,2]') AS cosine_similarity FROM items;

2

Aggregates Average vectors

SELECT AVG(embedding) FROM items;

Average groups of vectors

SELECT category_id, AVG(embedding) FROM items GROUP BY category_id;

Indexing
By default, pgvector performs exact nearest neighbor search, which provides
perfect recall.

You can add an index to use approximate nearest neighbor search, which trades
some recall for performance. Unlike typical indexes, you will see different results
for queries after adding an approximate index.

Three keys to achieving good recall are:

1. Create the index after the table has some data
2. Choose an appropriate number of lists - a good place to start is rows /

1000 for up to 1M rows and sqrt(rows) for over 1M rows
3. When querying, specify an appropriate number of probes (higher is better

for recall, lower is better for speed) - a good place to start is sqrt(lists)

Add an index for each distance function you want to use.

L2 distance

CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100);

Inner product

CREATE INDEX ON items USING ivfflat (embedding vector_ip_ops) WITH (lists = 100);

Cosine distance

CREATE INDEX ON items USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);

Vectors with up to 2,000 dimensions can be indexed.

Query Options

Specify the number of probes (1 by default)

SET ivfflat.probes = 10;

A higher value provides better recall at the cost of speed, and it can be set to
the number of lists for exact nearest neighbor search (at which point the planner
won’t use the index)

Use SET LOCAL inside a transaction to set it for a single query

3

BEGIN;
SET LOCAL ivfflat.probes = 10;
SELECT ...
COMMIT;

Indexing Progress

Check indexing progress with Postgres 12+

SELECT phase, tuples_done, tuples_total FROM pg_stat_progress_create_index;

The phases are:

1. initializing
2. performing k-means
3. sorting tuples
4. loading tuples

Note: tuples_done and tuples_total are only populated during the loading
tuples phase

Filtering

There are a few ways to index nearest neighbor queries with a WHERE clause

SELECT * FROM items WHERE category_id = 123 ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

Create an index on one or more of the WHERE columns for exact search

CREATE INDEX ON items (category_id);

Or a partial index on the vector column for approximate search

CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)
WHERE (category_id = 123);

Use partitioning for approximate search on many different values of the WHERE
columns

CREATE TABLE items (embedding vector(3), category_id int) PARTITION BY LIST(category_id);

Hybrid Search
Use together with Postgres full-text search for hybrid search (Python example).

SELECT id, content FROM items, to_tsquery('hello & search') query
WHERE textsearch @@ query ORDER BY ts_rank_cd(textsearch, query) DESC LIMIT 5;

Performance
Use EXPLAIN ANALYZE to debug performance.

EXPLAIN ANALYZE SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

4

https://www.postgresql.org/docs/current/progress-reporting.html#CREATE-INDEX-PROGRESS-REPORTING
https://www.postgresql.org/docs/current/indexes-multicolumn.html
https://www.postgresql.org/docs/current/indexes-partial.html
https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.postgresql.org/docs/current/textsearch-intro.html
https://github.com/pgvector/pgvector-python/blob/master/examples/hybrid_search.py

Exact Search

To speed up queries without an index, increase max_parallel_workers_per_gather.

SET max_parallel_workers_per_gather = 4;

If vectors are normalized to length 1 (like OpenAI embeddings), use inner product
for best performance.

SELECT * FROM items ORDER BY embedding <#> ’[3,1,2]’ LIMIT 5;

Approximate Search

To speed up queries with an index, increase the number of inverted lists (at the
expense of recall).

CREATE INDEX ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 1000);

Languages
Use pgvector from any language with a Postgres client. You can even generate
and store vectors in one language and query them in another.

Language Libraries / Examples
C++ pgvector-cpp
C# pgvector-dotnet
Crystal pgvector-crystal
Elixir pgvector-elixir
Go pgvector-go
Haskell pgvector-haskell
Java, Scala pgvector-java
Julia pgvector-julia
Lua pgvector-lua
Node.js pgvector-node
Perl pgvector-perl
PHP pgvector-php
Python pgvector-python
R pgvector-r
Ruby pgvector-ruby, Neighbor
Rust pgvector-rust
Swift pgvector-swift

Frequently Asked Questions
How many vectors can be stored in a single table? A non-partitioned
table has a limit of 32 TB by default in Postgres. A partitioned table can have
thousands of partitions of that size.

5

https://platform.openai.com/docs/guides/embeddings/which-distance-function-should-i-use
https://github.com/pgvector/pgvector-cpp
https://github.com/pgvector/pgvector-dotnet
https://github.com/pgvector/pgvector-crystal
https://github.com/pgvector/pgvector-elixir
https://github.com/pgvector/pgvector-go
https://github.com/pgvector/pgvector-haskell
https://github.com/pgvector/pgvector-java
https://github.com/pgvector/pgvector-julia
https://github.com/pgvector/pgvector-lua
https://github.com/pgvector/pgvector-node
https://github.com/pgvector/pgvector-perl
https://github.com/pgvector/pgvector-php
https://github.com/pgvector/pgvector-python
https://github.com/pgvector/pgvector-r
https://github.com/pgvector/pgvector-ruby
https://github.com/ankane/neighbor
https://github.com/pgvector/pgvector-rust
https://github.com/pgvector/pgvector-swift

Is replication supported? Yes, pgvector uses the write-ahead log (WAL),
which allows for replication and point-in-time recovery.

What if I want to index vectors with more than 2,000 dimensions?
You’ll need to use dimensionality reduction at the moment.

Why am I seeing less results after adding an index? The index was
likely created with too little data for the number of lists. Drop the index until
the table has more data.

Reference
Vector Type

Each vector takes 4 * dimensions + 8 bytes of storage. Each element is a
single precision floating-point number (like the real type in Postgres), and all
elements must be finite (no NaN, Infinity or -Infinity). Vectors can have up
to 16,000 dimensions.

Vector Operators

Operator Description
+ element-wise addition
- element-wise subtraction
<-> Euclidean distance
<#> negative inner product
<=> cosine distance

Vector Functions

Function Description
cosine_distance(vector, vector) → double precision cosine distance
inner_product(vector, vector) → double precision inner product
l2_distance(vector, vector) → double precision Euclidean distance
vector_dims(vector) → integer number of dimensions
vector_norm(vector) → double precision Euclidean norm

Aggregate Functions

Function Description
avg(vector) → vector arithmetic mean

6

https://en.wikipedia.org/wiki/Dimensionality_reduction

Installation Notes
Postgres Location

If your machine has multiple Postgres installations, specify the path to pg_config
with:

export PG_CONFIG=/Applications/Postgres.app/Contents/Versions/latest/bin/pg_config

Then re-run the installation instructions (run make clean before make if needed).
If sudo is needed for make install, use:

sudo --preserve-env=PG_CONFIG make install

Missing Header

If compilation fails with fatal error: postgres.h: No such file or
directory, make sure Postgres development files are installed on the server.

For Ubuntu and Debian, use:

sudo apt install postgresql-server-dev-15

Note: Replace 15 with your Postgres server version

Windows

Support for Windows is currently experimental. Use nmake to build:

set "PGROOT=C:\Program Files\PostgreSQL\15"
git clone --branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install

Additional Installation Methods
Docker

Get the Docker image with:

docker pull ankane/pgvector

This adds pgvector to the Postgres image (run it the same way).

You can also build the image manually:

git clone --branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
docker build --build-arg PG_MAJOR=15 -t myuser/pgvector .

7

https://www.postgresql.org/docs/current/app-pgconfig.html
https://hub.docker.com/r/ankane/pgvector
https://hub.docker.com/_/postgres

Homebrew

With Homebrew Postgres, you can use:

brew install pgvector

Note: This only adds it to the postgresql@14 formula

PGXN

Install from the PostgreSQL Extension Network with:

pgxn install vector

APT

Debian and Ubuntu packages are available from the PostgreSQL APT Repository.
Follow the setup instructions and run:

sudo apt install postgresql-15-pgvector

Note: Replace 15 with your Postgres server version

Yum

RPM packages are available from the PostgreSQL Yum Repository. Follow the
setup instructions for your distribution and run:

sudo yum install pgvector_15
or
sudo dnf install pgvector_15

Note: Replace 15 with your Postgres server version

conda-forge

With Conda Postgres, install from conda-forge with:

conda install -c conda-forge pgvector

This method is community-maintained by [@mmcauliffe](https://github.com/mmcauliffe)

Postgres.app

Download the latest release with Postgres 15+.

Hosted Postgres
pgvector is available on these providers.

To request a new extension on other providers:

• Google Cloud SQL - vote or comment on this page

8

https://pgxn.org/dist/vector
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt#Quickstart
https://yum.postgresql.org/
https://www.postgresql.org/download/linux/redhat/
https://anaconda.org/conda-forge/pgvector
https://github.com/conda-forge/pgvector-feedstock
https://postgresapp.com/downloads.html
https://github.com/pgvector/pgvector/issues/54
https://issuetracker.google.com/issues/265172065

• DigitalOcean Managed Databases - vote or comment on this page
• Heroku Postgres - vote or comment on this page

Upgrading
Install the latest version and run:

ALTER EXTENSION vector UPDATE;

Upgrade Notes
0.4.0

If upgrading with Postgres < 13, remove this line from sql/vector--0.3.2--0.4.0.sql:

ALTER TYPE vector SET (STORAGE = extended);

Then run make install and ALTER EXTENSION vector UPDATE;.

0.3.1

If upgrading from 0.2.7 or 0.3.0, recreate all ivfflat indexes after upgrading to
ensure all data is indexed.

-- Postgres 12+
REINDEX INDEX CONCURRENTLY index_name;

-- Postgres < 12
CREATE INDEX CONCURRENTLY temp_name ON table USING ivfflat (column opclass);
DROP INDEX CONCURRENTLY index_name;
ALTER INDEX temp_name RENAME TO index_name;

Thanks
Thanks to:

• PASE: PostgreSQL Ultra-High-Dimensional Approximate Nearest Neighbor
Search Extension

• Faiss: A Library for Efficient Similarity Search and Clustering of Dense
Vectors

• Using the Triangle Inequality to Accelerate k-means
• k-means++: The Advantage of Careful Seeding
• Concept Decompositions for Large Sparse Text Data using Clustering

History
View the changelog

9

https://ideas.digitalocean.com/managed-database/p/pgvector-extension-for-postgresql
https://github.com/heroku/roadmap/issues/156
https://dl.acm.org/doi/pdf/10.1145/3318464.3386131
https://dl.acm.org/doi/pdf/10.1145/3318464.3386131
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf
https://www.cs.utexas.edu/users/inderjit/public_papers/concept_mlj.pdf
https://github.com/pgvector/pgvector/blob/master/CHANGELOG.md

Contributing
Everyone is encouraged to help improve this project. Here are a few ways you
can help:

• Report bugs
• Fix bugs and submit pull requests
• Write, clarify, or fix documentation
• Suggest or add new features

To get started with development:

git clone https://github.com/pgvector/pgvector.git
cd pgvector
make
make install

To run all tests:

make installcheck # regression tests
make prove_installcheck # TAP tests

To run single tests:

make installcheck REGRESS=functions # regression test
make prove_installcheck PROVE_TESTS=test/t/001_wal.pl # TAP test

To enable benchmarking:

make clean && PG_CFLAGS=-DIVFFLAT_BENCH make && make install

Resources for contributors

• Extension Building Infrastructure
• Index Access Method Interface Definition
• Generic WAL Records

10

https://github.com/pgvector/pgvector/issues
https://github.com/pgvector/pgvector/pulls
https://www.postgresql.org/docs/current/extend-pgxs.html
https://www.postgresql.org/docs/current/indexam.html
https://www.postgresql.org/docs/13/generic-wal.html

	pgvector
	Installation
	Getting Started
	Storing
	Querying
	Indexing
	Query Options
	Indexing Progress
	Filtering

	Hybrid Search
	Performance
	Exact Search
	Approximate Search

	Languages
	Frequently Asked Questions
	Reference
	Vector Type
	Vector Operators
	Vector Functions
	Aggregate Functions

	Installation Notes
	Postgres Location
	Missing Header
	Windows

	Additional Installation Methods
	Docker
	Homebrew
	PGXN
	APT
	Yum
	conda-forge
	Postgres.app

	Hosted Postgres
	Upgrading
	Upgrade Notes
	0.4.0
	0.3.1

	Thanks
	History
	Contributing

