
Contents
Functions 1

Set-returning functions 3

Installing PL/Java 6

Logging in PL/Java 6

Mapping an SQL type to a Java class 7

Packaging tips 10

Parallel query and PL/Java 10

PL/Java in parallel query or background worker 11

Tuning PL/Java performance 12

Prebuilt PL/Java distributions 20

Welcome to PL/Java 22

Returning complex types 24

Running PL/Java sample tests 24

Savepoints 25

SQLJ deployment descriptors 27

Functions in the sqlj schema 28

Thoughts on logging 35

Exception handling 260

Functions
A Java function is declared with the name of a class and a public static method
on that class. The class will be resolved using the classpath that has been
defined for the schema where the function is declared. If no classpath has been
defined for that schema, the public schema is used. Please note that the system
classloader will take precedence always. There is no way to override classes
loaded with that loader.

1

The following function can be declared to access the static method getProperty
on the java.lang.System class:

CREATE FUNCTION getsysprop (VARCHAR)
RETURNS VARCHAR
AS ’ java . lang . System . getProperty ’
LANGUAGE java ;

SELECT getsysprop (’ java . v e r s i on ’) ;

Both the parameters and the return value can be explicitly stated so the above
example could also have been written:

CREATE FUNCTION getsysprop (VARCHAR)
RETURNS VARCHAR
AS ’ java . lang . S t r ing=java . lang . System . getProperty (java . lang . S t r ing) ’
LANGUAGE java ;

This way of declaring the function is useful when the default mapping is inad-
equate. PL/Java will use a standard PostgreSQL explicit cast when the SQL
type of the parameter or return value does not correspond to the Java type
defined in the mapping.

Note: the “explicit cast” here referred to is not accomplished by creating an
actual SQL CAST expression, but by (mostly) equivalent means. At the time of
this writing, two special cases are not yet implemented.

SQL generation
The simplest way to write the SQL function declaration that corresponds to
your Java code is to have the Java compiler do it for you:

public class Hel lo {
@Function
public stat ic St r ing h e l l o (S t r ing toWhom) {

return ”Hel lo , ␣” + toWhom + ” ! ” ;
}

}

When this function is compiled, a “deployment descriptor” containing the right
SQL function declaration is also produced. When it is included in a jar file
with the compiled code, PL/Java’s sqlj . install_jar function will create the
SQL function declaration at the same time it loads the jar. See the full hello
world example for more.

2

https://tada.github.io/pljava/use/hello.html
https://tada.github.io/pljava/use/hello.html

Set-returning functions
Returning sets is tricky. You don’t want to first build a set and then return it,
since large sets would eat excessive resources. It’s better to produce one row
at a time. Incidentally, that’s exactly what the PostgreSQL backend expects a
function that RETURNS SETOF <type> to do. The <type> can be a scalar
type such as an int, float or varchar, it can be a complex type, or a RECORD.

Returning a SETOF <scalar type>

In order to return a set of a scalar type, you need create a Java method that
returns an implementation the java. util . Iterator interface.
CREATE FUNCTION java t e s t . getNames ()

RETURNS SETOF varchar
AS ’ f oo . f e e . Bar . getNames ’
IMMUTABLE LANGUAGE java ;

The corresponding Java class:
package f oo . f e e ;
import java . u t i l . I t e r a t o r ;

import org . p o s t g r e s q l . p l j ava . annotat ion . Function ;
import stat ic org . p o s t g r e s q l . p l j ava . annotat ion . Function . E f f e c t s .IMMUTABLE;

public class Bar
{

@Function (schema=” j a v a t e s t ” , e f f e c t s=IMMUTABLE)
public stat ic I t e r a t o r <Str ing> getNames ()
{

ArrayList<Str ing> names = new ArrayList <>();
names . add (” Li sa ”) ;
names . add (”Bob”) ;
names . add (” B i l l ”) ;
names . add (” Sa l l y ”) ;
return names . i t e r a t o r () ;

}
}

Returning a SETOF <complex type>

A method returning a SETOF <complex type> must use either the interface
org.postgresql . pljava .ResultSetProvider or org.postgresql . pljava .ResultSetHandle.
The reason for having two interfaces is that they cater for optimal handling
of two distinct use cases. The former is great when you want to dynamically
create each row that is to be returned from the SETOF function. The latter
makes sense when you want to return the result of an executed query.

3

Using the ResultSetProvider interface

This interface has two methods. The boolean assignRowValues(java.sql.ResultSet tupleBuilder, int rowNumber)
and the void close () method. The PostgreSQL query evaluator will call the
assignRowValues() repeatedly until it returns false or until the evaluator
decides that it does not need any more rows. It will then call close ().

You can use this interface the following way:

CREATE FUNCTION java t e s t . l i s tComplexTests (int , int)
RETURNS SETOF complexTest
AS ’ f oo . f e e .Fum. l i s tComplexTest ’
IMMUTABLE LANGUAGE java ;

The function maps to a static java method that returns an instance that imple-
ments the ResultSetProvider interface.

public class Fum implements Resu l tSetProv ider
{

private f ina l int m_base ;
private f ina l int m_increment ;
public Fum(int base , int increment)
{

m_base = base ;
m_increment = increment ;

}
public boolean assignRowValues (Resu l tSet r e c e i v e r , int currentRow)
throws SQLException
{

// Stop when we reach 12 rows .
//
i f (currentRow >= 12)

return fa l se ;
r e c e i v e r . updateInt (1 , m_base) ;
r e c e i v e r . updateInt (2 , m_base + m_increment ∗ currentRow) ;
r e c e i v e r . updateTimestamp (3 , new Timestamp (System . cur rentT imeMi l l i s ())) ;
return true ;

}
public void c l o s e ()
{

// Nothing needed in t h i s example
}
@Function (e f f e c t s=IMMUTABLE, schema=” j a v a t e s t ” , type=” complexTest ”)
public stat ic Resu l tSetProv ider l i s tComplexTests (int base , int increment)
throws SQLException
{

return new Fum(base , increment) ;
}

4

}

The listComplexTests(int base, int increment) method is called once. It may
return null if no results are available, or an instance of the ResultSetProvider.
Here the Fum class implements this interface so it returns an instance of itself.
The method assignRowValues(ResultSet receiver, int currentRow) will then be
called repeatedly until it returns false . At that time, close () will be called.

The currentRow parameter can be a convenience in some cases, and unnecessary
in others. It will be passed as zero on the first call, and incremented by one on
each subsequent call. If the ResultSetProvider is returning results from some
source (like an Iterator) that remembers its own position, it can simply ignore
currentRow.

Using the ResultSetHandle interface

This interface is similar to the ResultSetProvider interface in that it has a
close () method that will be called at the end. But instead of having the evalua-
tor call a method that builds one row at a time, this method has a method that
returns a ResultSet. The query evaluator will iterate over this set and deliver
its contents, one tuple at a time, to the caller until a call to next() returns false
or the evaluator decides that no more rows are needed.

Here is an example that executes a query using a statement that it obtained
using the default connection. The SQL looks like this:

CREATE FUNCTION java t e s t . l i s t S u p e r s ()
RETURNS SETOF pg_user
AS ’ org . p o s t g r e s q l . p l j ava . example . Users . l i s t S u p e r s ’
LANGUAGE java ;

CREATE FUNCTION java t e s t . l i s tNonSupers ()
RETURNS SETOF pg_user
AS ’ org . p o s t g r e s q l . p l j ava . example . Users . l i s tNonSuper s ’
LANGUAGE java ;

And here is the Java code:

public class Users implements ResultSetHandle
{

private f ina l St r ing m_f i l t e r ;
private Statement m_statement ;

public Users (S t r ing f i l t e r)
{

m_f i l t e r = f i l t e r ;
}

5

public Resu l tSet ge tResu l tSe t ()
throws SQLException
{

m_statement = DriverManager . getConnect ion (” jdbc : d e f au l t : connect ion ”)
. createStatement () ;

return m_statement . executeQuery (”SELECT␣∗␣FROM␣pg_user␣WHERE␣” + m_f i l t e r) ;
}

public void c l o s e ()
throws SQLException
{

m_statement . c l o s e () ;
}

@Function (schema=” j a v a t e s t ” , type=”pg_user ”)
public stat ic ResultSetHandle l i s t S u p e r s ()
{

return new Users (” usesuper ␣=␣ true ”) ;
}

@Function (schema=” j a v a t e s t ” , type=”pg_user ”)
public stat ic ResultSetHandle l i s tNonSupers ()
{

return new Users (” usesuper ␣=␣ f a l s e ”) ;
}

}

Installing PL/Java
For the most current information on installing PL/Java, see the installation
guide on the project information site.

Logging in PL/Java
PL/Java uses the standard java.util.logging.Logger Hence, you can write things
like:

Logger . getAnonymousLogger () . i n f o (
”Time␣ i s ␣” + new Date (System . cur rentT imeMi l l i s ())) ;

At present, the logger is hardwired to a handler that maps the state of the
PostgreSQL configuration setting log_min_messages to a valid Logger level
and that outputs all messages using the backend function ereport().

Importantly, Java’s Logger methods can quickly discard any message logged at

6

https://tada.github.io/pljava/install/install.html
https://tada.github.io/pljava/install/install.html
https://tada.github.io/pljava/

a finer level than the one that was mapped from PostgreSQL’s setting at the
time PL/Java was first used in the current session. Such messages never even
get as far as ereport(), even if the PostgreSQL setting is changed later.

So, if expected messages from Java code are not showing up, be sure that the
setting in PostgreSQL, at the time of PL/Java’s first use in the session, is fine
enough that Java will not throw the messages away. Once PL/Java has started,
the settings can be changed as desired and will control, in the usual way, what
ereport does with the messages PL/Java delivers to it.

Through PL/Java 1.5.0, only the log_min_messages setting is used to set that
Java cutoff level. Starting with 1.5.1, the cutoff level in Java is set (still
only once at PL/Java startup) based on the finer of log_min_messages and
client_min_messages.

The following mapping applies between the Logger levels and the PostgreSQL
backend levels:

java.util.logging.Level

PostgreSQL level

SEVERE

ERROR

WARNING

WARNING

INFO

INFO

FINE

DEBUG1

FINER

DEBUG2

FINEST

DEBUG3

See [Thoughts on logging] for likely future directions in this area.

Mapping an SQL type to a Java class
Using PL/Java, you can install a mapping between an arbitrary type and a Java
class. There are two prerequisites for doing this:

• You must know the storage layout of the SQL type that you are mapping.

7

• The Java class that you map to must implement the interface
java. sql .SQLData.

Mapping an existing SQL data type to a java class
Here is an example of how to map the PostgreSQL geometric point type to a
Java class. We know that the point is stored as two float8’s, the x and the y
coordinate.

You can consult the postgresql source code when the exact layout of
a basic type is unknown. I peeked at the point_recv function in file
src/backend/utils/adt/geo_ops.c to determine the exact layout of the point
type.

Once the layout is known, you can create the java. sql .SQLData imple-
mentation that uses the class java. sql .SQLInput to read and the class
java. sql .SQLOutput to write data:

package org . p o s t g r e s q l . p l j ava . example ;

import java . s q l . SQLData ;
import java . s q l . SQLException ;
import java . s q l . SQLInput ;
import java . s q l . SQLOutput ;

public class Point implements SQLData {
private double m_x;
private double m_y;
private St r ing m_typeName ;

public St r ing getSQLTypeName () {
return m_typeName ;

}

public void readSQL(SQLInput stream , St r ing typeName) throws SQLException {
m_x = stream . readDouble () ;
m_y = stream . readDouble () ;
m_typeName = typeName ;

}

public void writeSQL (SQLOutput stream) throws SQLException {
stream . writeDouble (m_x) ;
stream . writeDouble (m_y) ;

}

/∗ Meaningful code t ha t a c t u a l l y does something wi th t h i s type was
∗ i n t e n t i o n a l l y l e f t out .

8

∗/
}

Finally, you install the type mapping using the add_type_mapping command:

SELECT s q l j . add_type_mapping (’ po int ’ , ’ org . p o s t g r e s q l . p l j ava . example . Point ’) ;

You should now be able to use your new class. PL/Java will henceforth map
any point parameter to the org.postgresql.pljava.example.Point class.

Creating a composite UDT and mapping it to a java class
Here is an example of a complex type created as a composite UDT.

CREATE TYPE java t e s t . complextuple AS (x f l o a t 8 , y f l o a t 8) ;

SELECT s q l j . add_type_mapping (’ j a v a t e s t . complextuple ’ ,
’ org . p o s t g r e s q l . p l j ava . example . ComplexTuple ’) ;

package org . p o s t g r e s q l . p l j ava . example ;

import java . s q l . SQLData ;
import java . s q l . SQLException ;
import java . s q l . SQLInput ;
import java . s q l . SQLOutput ;

public class ComplexTuple implements SQLData {
private double m_x;
private double m_y;
private St r ing m_typeName ;

public St r ing getSQLTypeName ()
{

return m_typeName ;
}

public void readSQL(SQLInput stream , St r ing typeName) throws SQLException
{

m_typeName = typeName ;
m_x = stream . readDouble () ;
m_y = stream . readDouble () ;

}

public void writeSQL (SQLOutput stream) throws SQLException
{

stream . writeDouble (m_x) ;
stream . writeDouble (m_y) ;

9

}

/∗ Meaningful code t ha t a c t u a l l y does something wi th t h i s type was
∗ i n t e n t i o n a l l y l e f t out .
∗/

}

Generating SQL automatically
The SQL shown above for this example will be written for you by the Java
compiler, if the ComplexTuple class is simply annotated as a “mapped user-
defined type” with the desired SQL name and structure:

@MappedUDT(schema=” j a v a t e s t ” , name=” complextuple ” ,
s t r u c tu r e={”x␣ f l o a t 8 ” , ”y␣ f l o a t 8 ” })

public class ComplexTuple implements SQLData {
. . .

Generating the SQL reduces the burden of keeping the definitions in sync in
two places. See the hello world example for more.

Packaging tips
This wiki page can be used to gather issues and tips that pertain to building
PL/Java packages for downstream distributions or repositories, in between up-
dates to the packaging section in the versioned documentation.

Anyone producing a prebuilt PL/Java package is encouraged to announce its
availability on the [[Prebuilt packages]] wiki page.

Parallel query and PL/Java
PL/Java 1.5.1 adds support for PostgreSQL 9.6, and with that comes the possi-
bility of using PL/Java functions in parallel queries. Simple testing shows that
this actually works; PL/Java functions can even be declared PARALLEL SAFE
if they meet the requirements, and executed in the parallelized parts of queries.

However, this is a substantial change to conditions in which PL/Java was devel-
oped, so this wiki page is here to collect the notes that are likely to come with
experience using this new capability. Such experience might include empirically-
determined, good values for parallel_setup_cost, nonobvious cases where a func-
tion should not be declared RESTRICTED or SAFE, and so on.

10

https://tada.github.io/pljava/use/hello.html
http://tada.github.io/pljava/build/package.html

Notes go here

Preview of new documentation
Until PL/Java 1.5.1 is released, here is a preview of the new section of the user’s
guide.

PL/Java in parallel query or background worker
With some restrictions, PL/Java can be used in parallel queries, from Post-
greSQL 9.6, and in some background worker processes (as introduced in Post-
greSQL 9.3, though 9.5 or later is needed for support in PL/Java).

Background worker processes
Because PL/Java requires access to a database containing the sqlj schema,
PL/Java is only usable in a worker process that initializes a database connection,
which must happen before the first use of any function that depends on PL/Java.

Parallel queries
Like any user-defined function, a PL/Java function can be annotated with a
level of “parallel safety”, UNSAFE by default.

When a function labeled UNSAFE is used in a query, the query cannot be
parallelized at all. If a query contains a function labeled RESTRICTED, parts
of the query may execute in parallel, but the part that calls the RESTRICTED
function will be executed only in the lead process. A function labeled SAFE
may be executed in every process participating in the query.

Parallel setup cost

PostgreSQL parallel query processing uses multiple operating-system processes,
and these processes are new for each parallel query. If a PL/Java function is
labeled PARALLEL SAFE and is pushed by the query planner to run in the
parallel worker processes, each new process will start a Java virtual machine.
The cost of doing so will reduce the expected advantage of parallel execution.

To inform the query planner of this trade-off, the value of the PostgreSQL con-
figuration variable parallel_setup_cost should be increased. The startup cost
can be minimized with attention to the PL/Java VM option recommendations,
including class data sharing.

11

https://www.postgresql.org/docs/current/static/parallel-query.html
https://www.postgresql.org/docs/current/static/bgworker.html
http://tada.github.io/pljava/pljava-api/apidocs/index.html?org/postgresql/pljava/annotation/Function.html#parallel()
https://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-PARALLEL-SETUP-COST
http://tada.github.io/pljava/install/vmoptions.html

Limits on RESTRICTED/SAFE function behavior

There are stringent limits on what a function labeled RESTRICTED may do,
and even more stringent limits on what may be done in a function labeled SAFE.
The PostgreSQL manual describes the limits in the section Parallel Labeling for
Functions and Aggregates.

While PostgreSQL does check for some inappropriate operations from a
PARALLEL SAFE or RESTRICTED function, for the most part it relies on
functions being labeled correctly. When in doubt, the conservative approach
is to label a function UNSAFE, which can’t go wrong. A function mistakenly
labeled RESTRICTED or SAFE could produce unpredictable results.

Internal workings of PL/Java While a given PL/Java function itself may
clearly qualify as RESTRICTED or SAFE by inspection, there may still be cases
where a forbidden operation results from the internal workings of PL/Java itself.
This has not been seen in testing (simple parallel queries with RESTRICTED
or SAFE PL/Java functions work fine), but to rule out the possibility would
require a careful audit of PL/Java’s code. Until then, it would be prudent for
any application involving parallel query with RESTRICTED or SAFE PL/Java
functions to be first tested in a non-production environment.

Further reading

README.parallel in the PostgreSQL source, for more detail on why parallel
query works the way it does.

Tuning PL/Java performance
As of 2018, there is a strong selection of Java runtimes that can be used to back
PL/Java, including at least:

• Oracle’s Java (and Hotspot JVM)
• OpenJDK (with Hotspot JVM)
• OpenJDK (with Eclipse OpenJ9 JVM)

These JVMs offer a wide variety of configurable options affecting both memory
footprint and time performance of applications using PL/Java. The options
include initial and limit sizes for different memory regions, aggressiveness of just-
in-time and ahead-of-time compilation, choice of garbage-collection algorithm,
and various forms of shared-memory caching of precompiled classes.

The formal PL/Java documentation contains a fairly extensive treatment of
useful Hotspot settings, including a section on plausible minimum settings for
memory footprint achievable with different class-sharing and garbage-collector
settings. The documentation there of the comparable options and limits for
OpenJ9 is more sparse at present.

12

https://www.postgresql.org/docs/current/static/parallel-safety.html#PARALLEL-LABELING
https://www.postgresql.org/docs/current/static/parallel-safety.html#PARALLEL-LABELING
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/README.parallel
http://tada.github.io/pljava/install/vmoptions.html
http://tada.github.io/pljava/install/vmoptions.html

This wiki page is intended as a clearinghouse for tuning tips and performance
measurements for various PL/Java workloads and the available Java runtimes,
that can be updated more actively between releases of the formal documenta-
tion.

Tip for quickly comparing runtime configurations
Once the PL/Java extension is installed in a database, in any newly-created
session, the Java virtual machine is started on the first use of a PL/Java function.
The JVM that is started, and how, are determined by the settings of pljava .∗
configuration variables in effect at that moment, most importantly:

• pljava .libjvm_location selects which Java runtime will be used
• pljava .vmoptions supplies the options to be passed to it

Therefore, all without exiting psql, a new Java runtime or combination of options
can be tested by switching to a new connection with \c, setting those options
differently, and again calling the PL/Java function of interest.

It can be convenient to include the settings on the psql \c line. For example, to
time functionOfInterest() on two different Java runtimes:

\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/path/ to / o r a c l e / . . . / l ib jvm . so ’ ”
EXPLAIN ANALYZE SELECT func t i onO f I n t e r e s t () ;
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/path/ to / openj9 / . . . / l ib jvm . so ’ ”
EXPLAIN ANALYZE SELECT func t i onO f I n t e r e s t () ;

For obvious reasons, the pljava .libjvm_location and pljava .vmoptions variables
require privilege to set, so the connection needs to be made with superuser
credentials.

Sample workload: Java XML manipulation
We will create a table containing a single XML document:

CREATE TABLE catalog_as_xml AS
SELECT schema_to_xml (’ pg_catalog ’ , true , false , ’ ’) AS x ;

In PostgreSQL 11beta3, the resulting document has the following size (after
PL/Java and the example code have been loaded):

SELECT octet_length (xml_send (x)) AS uncompressed , pg_column_size (x) AS toas ted
FROM catalog_as_xml ;

uncompressed toasted
14049808 1130828

13

A test query will return the string value of every element whose string value is
exactly six characters (a query that may be artificial and contrived, but can be
expressed nearly identically in XML Query (the standard-mandated language
for SQL XMLTABLE) and in the PostgreSQL native XMLTABLE syntax, which
is limited to XPath 1.0).

The baseline will be the query expressed in XPath 1.0 using the PostgreSQL
XMLTABLE function:

EXPLAIN ANALYZE SELECT
xmltable . ∗

FROM
catalog_as_xml ,
XMLTABLE(’ //∗ [s t r i ng−length (.) ␣=␣ 6] ’

PASSING x
COLUMNS s text PATH ’ s t r i n g (.) ’
) ;

It will be compared to the equivalent query expressed in XQuery 1.0 and the
”xmltable” function defined in the not-built-by-default org.postgresql . pljava .example.saxon.S9
example, relying on the Saxon-HE library:

EXPLAIN ANALYZE SELECT
xmltable . ∗

FROM
catalog_as_xml ,
LATERAL (SELECT x AS ” . ”) AS p ,
” xmltable ” (’ //∗ [s t r i ng−length (.) ␣eq␣ 6] ’ ,

PASSING => p ,
COLUMNS => array [’ s t r i n g (.) ’]
) AS (s t ex t) ;

The Java query will be run in both Oracle Java 8 (on the Hotspot JVM) and
OpenJDK 8 (with the OpenJ9 JVM), with different choices of class-sharing
options:

tag description
pg Baseline, PostgreSQL XMLTABLE
hs Hotspot, no sharing

hs−cds Hotspot, class data sharing (Java runtime classes only)
hs−appcds Hotspot, AppCDS (commercial feature), Java runtime,

PL/Java, Saxon
j9 OpenJ9, no −Xquickstart, no sharing
j9q OpenJ9, −Xquickstart, no sharing
j9s OpenJ9, no −Xquickstart, sharing (Java runtime,

PL/Java, Saxon)
j9qs OpenJ9, −Xquickstart, sharing (as above)

14

http://tada.github.io/pljava/examples/saxon.html
http://www.saxonica.com/products/products.xml

EXPLAIN ANALYZE reported timings in milliseconds:

iteration pg hs hs−cds hs−appcds j9 j9q j9s j9qs
1st 908.231 1888.859 1837.186 1539.781 3250.965 3095.733 2443.649 2644.991
2nd 879.483 772.545 838.082 826.558 1229.200 1855.513 1073.335 1932.083
4th 881.302 664.422 688.487 673.037 1011.018 1708.208 987.191 1912.010
8th 880.766 640.940 643.535 632.260 962.517 1660.867 952.857 1870.506
16th 880.622 654.674 682.772 627.037 967.805 1656.651 943.923 1941.888

Discussion

• The baseline native XMLTABLE implementation in PostgreSQL delivers
consistent times over successive runs. Java timings improve over successive
early runs, as the VM identifies and reoptimizes hot areas.

• For all of the Java results, the first-iteration result includes the time to
launch the Java virtual machine. For Hotspot, this gives a time to first
result from 67% (best) to 108% (worst) longer than the native baseline.

• All tested Hotspot configurations are outperforming the native implemen-
tation as soon as the next iteration, and eventually by 22% to 28%.

• For this workload, Hotspot seems to have a striking performance advan-
tage relative to OpenJ9. Possible explanations:

– Saxon is a mature and carefully-optimized library; are its optimiza-
tions extremely specific to Hotspot?

– PL/Java makes heavy use of JNI; could this pattern be less well
handled in OpenJ9?

• OpenJ9’s −Xquickstart is a poor fit for this workload, as it suppresses
JIT optimization so drastically that performance improves very little on
successive runs.

• The combination of −Xquickstart and −Xshareclasses for this workload
is especially disappointing, probably because the two features, when com-
bined, force the ahead-of-time compilation of all methods. That sounds
promising, but not if the AOT code significantly underperforms what the
optimizing JIT would generate.

• Memory footprint was not compared. PL/Java’s documentation already
has a section on plausible memory settings for Hotspot, but not for
OpenJ9, which has a good reputation for memory frugality. Exploration
would be worthwhile.

• There could be other workloads in which the Hotspot and OpenJ9 relative
timings could be closer, or even reversed.

• The procedure to set up class sharing for OpenJ9 is considerably simpler
than to set up AppCDS for Hotspot, enough to make OpenJ9 an attractive
choice for workloads where the performance is more comparable.

15

http://tada.github.io/pljava/install/vmoptions.html

Variation by processor count

The results above were obtained with 6 available processor cores (12 hyper-
threads). Here, the best Hotspot (h−) and OpenJ9 (j−) configurations from
above (hs−appcds and j9s, respectively) are repeated for different numbers of
cores and threads available to the backend process.

iteration h−4c8t h−4c4t h−2c4t h−2c2t h−1c2t h−1c1t
1st 1798.020 2140.068 1871.740 2760.872 2564.169 4306.058
2nd 780.182 827.379 825.943 1054.749 1064.300 1704.112
4th 661.740 672.415 662.259 786.407 734.421 756.054
8th 619.978 653.686 641.784 659.112 678.855 722.792
16th 619.824 647.092 664.287 671.862 639.365 651.502

iteration j−4c8t j−4c4t j−2c4t j−2c2t j−1c2t j−1c1t
1st 2413.365 2419.176 2411.006 2470.092 2457.868 3673.986
2nd 1108.991 1093.504 1050.731 1142.424 1072.635 2599.973
4th 969.465 1003.736 988.883 983.431 941.495 1032.896
8th 967.447 900.644 963.011 926.342 920.390 1032.316
16th 1113.963 932.503 1496.240 925.137 939.179 990.072

Discussion Hotspot’s initial startup uses parallelism to good advantage, so
the startup time suffers when cores are limited, and especially when limited
to one hardware thread. Interestingly, comparing sets with the same number
of threads, in one case independent on an equal number of cores, and in the
other case hyperthreads on half as many cores, the data above seem to favor
the hyperthreaded case. More runs might reveal whether that apparent pattern
persists.

Even with only one hardware thread available, Hotspot can still produce code
that outperforms the native libxml2 no later than the fourth iteration.

OpenJ9, while not achieving the ultimate speeds of Hotspot on this workload,
shows a first-run time that suffers less when limited to few CPUs. However, that
advantage diminishes when taking the times of the first two runs into account.

Not shown in these tables, but as expected, the baseline PostgreSQL native
XMLTABLE posted timings of 893 ms first run, 877 ms second run, consistently
with the earlier values, even when limited to one core, one thread.

Notes on methodology

Platform Intel Xeon X5650 2.67 GHz, 6 cores (12 hyperthreads), 24 GB RAM,
Linux.

16

PostgreSQL installation, Java runtimes, database, and PL/Java and Saxon li-
braries and jars installed in an in-memory (tmpfs) filesystem.

Connection strings used for each test configuration Note: the con-
nection strings below for the Hotspot runs with AppCDS contain the option
−XX:+UnlockCommercialFeatures because the runs were done on Oracle Java
8 where AppCDS is a commercial feature, and its use in production will need
a license from Oracle. The same feature appears in OpenJDK with Hotspot
starting in Java 10, where it is not a commercial feature, and does not require
that −XX:+UnlockCommercialFeatures option; it is otherwise configured in the
same way.

\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/nohome/ j r e / l i b /amd64/ s e r v e r / l ib jvm . so −c p l j ava . vmoptions=−Djava . home=/var /tmp/nohome/ j r e \\\ −XX:+UseSerialGC\\\ −XX:+DisableAttachMechanism\\\ −Xshare : o f f −c p l j ava . c l a s spa th=/var /tmp/nohome/pg11/ share / po s t g r e s q l / p l j ava / pl java −1.5.1−SNAPSHOT. j a r : / var /tmp/nohome/ j r e / l i b /Saxon−HE−9.8.0 −14. jar ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/nohome/ j r e / l i b /amd64/ s e r v e r / l ib jvm . so −c p l j ava . vmoptions=−Djava . home=/var /tmp/nohome/ j r e \\\ −XX:+UseSerialGC\\\ −XX:+DisableAttachMechanism\\\ −Xshare : on −c p l j ava . c l a s spa th=/var /tmp/nohome/pg11/ share / po s t g r e s q l / p l j ava / pl java −1.5.1−SNAPSHOT. j a r : / var /tmp/nohome/ j r e / l i b /Saxon−HE−9.8.0 −14. jar ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/nohome/ j r e / l i b /amd64/ s e r v e r / l ib jvm . so −c p l j ava . vmoptions=−Djava . home=/var /tmp/nohome/ j r e \\\ −XX:+UseSerialGC\\\ −XX:+DisableAttachMechanism\\\ −Xshare : on\\\ −XX:+UnlockCommercialFeatures \\\ −XX:+UseAppCDS\\\ −XX: SharedArch iveFi l e=/var /tmp/nohome/ p l j ava . j s a −c p l j ava . c l a s spa th=/var /tmp/nohome/pg11/ share / po s t g r e s q l / p l j ava / pl java −1.5.1−SNAPSHOT. j a r : / var /tmp/nohome/ j r e / l i b /Saxon−HE−9.8.0 −14. jar ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/ jdk8u162−b12_openj9 −0.8.0/ j r e / l i b /amd64/j9vm/ l ib jvm . so ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/ jdk8u162−b12_openj9 −0.8.0/ j r e / l i b /amd64/j9vm/ l ib jvm . so −c p l j ava . vmoptions=−Xquickstart ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/ jdk8u162−b12_openj9 −0.8.0/ j r e / l i b /amd64/j9vm/ l ib jvm . so −c p l j ava . vmoptions=−Xshar e c l a s s e s : cacheDir=/var /tmp/ p l j ava j9cache ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/ jdk8u162−b12_openj9 −0.8.0/ j r e / l i b /amd64/j9vm/ l ib jvm . so −c p l j ava . vmoptions=−Xshar e c l a s s e s : cacheDir=/var /tmp/ p l j ava j 9 ca che \\\ −Xquickstart ’ ”

Jars loaded into PL/Java The PL/Java sqlj . install_jar function was used
to install the PL/Java examples jar (giving it the name ex), with deploy => true
to create the function declarations, and also the Saxon−HE−9.8.0−14.jar, nam-
ing it saxon.

The PL/Java application classpath (set with sqlj .set_classpath on the public
schema), was ex during the Hotspot runs, and ex:saxon during the OpenJ9
runs. (For the Hotspot runs, the Saxon jar was placed on the system classpath
by adding it to pljava .classpath instead, as explained below.)

Setup for Hotspot

• The existing Hotspot installation on disk was copied to the tmpfs.
• That invalidates the paths in the supplied classes . jsa shared archive that

was generated when Java was installed to its location on disk, so the
lib/amd64/server/classes.jsa file was removed from the copy and regener-
ated with java −Xshare:dump to contain the correct paths. That shared
archive contains only classes of the Java runtime itself.

• The shared archive for AppCDS, to include PL/Java implementation
classes and the Saxon library as well as the Java runtime’s classes, was
generated in two steps:
1. A connection string with −XX:DumpLoadedClassList=filename was

issued and the test query was executed, to populate the class list with
the needed classes.

2. A new connection string with −Xshare:dump and −XX:SharedClassListFile
naming the classlist file generated in the first step was issued, and

17

then SELECT sqlj.get_classpath(’public’); to trigger PL/Java
loading. Java reads the class list and generates the shared archive,
and the backend exits.

• Because Hotspot AppCDS will share only classes from the sys-
tem classpath, the pljava .classpath setting was altered to include
Saxon−HE−9.8.0−14.jar as well as the PL/Java jar.

• Because PL/Java’s security manager disallows jar loading from arbitrary
filesystem locations, the Saxon−HE−9.8.0−14.jar was placed in Java’s
jre/lib directory and the pljava .classpath referred to it there.

• AppCDS will not share classes contained in a signed jar, and the
distributed Saxon−HE−9.8.0−14.jar is signed, so the copy placed in
jre/lib was “de-signed” by deleting its TE−050AC.SF entry and all
Name:/Digest: sections from its MANIFEST.MF entry.

Setup for OpenJ9

• The OpenJDK with OpenJ9 download was unzipped in the /var/tmp
tmpfs.

• Because PL/Java under OpenJ9 is able to share classes from the PL/-
Java application classpath (the one managed by sqlj .set_classpath) and
not just the system classpath, there was no need to add the Saxon jar
to pljava .classpath as there was for Hotspot. It was simply loaded with
sqlj . install_jar under the name saxon, and put on the application class-
path with SELECT sqlj.set_classpath(’public’, ’ex:saxon’);.

• Each set of runs with sharing (j9s, j9qs) was prepared by starting a fresh
session with the same connection string to be used for that set, and the
shareDir named in that connection string empty. Sixteen runs were made
without timing, to populate the shared cache.

• Then the same connection string was used again to start a fresh session,
and the full set of 16 runs repeated and timed.

Connection strings generating AppCDS shared archive See the earlier
note concerning the −XX:+UnlockCommercialFeatures option, which is needed
(with legal implications) to use the AppCDS feature in Oracle Java. The same
feature appears in OpenJDK as of Java 10, without the need for that option or
a commercial license.

\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/nohome/ j r e / l i b /amd64/ s e r v e r / l ib jvm . so −c p l j ava . vmoptions=−Djava . home=/var /tmp/nohome/ j r e \\\ −XX:+UseSerialGC\\\ −XX:+DisableAttachMechanism\\\ −Xshare : o f f \\\ −XX: DumpLoadedClassList=/var /tmp/nohome/ p l j ava . c l a s s l i s t \\\ −XX:+UnlockCommercialFeatures \\\ −XX:+UseAppCDS −c p l j ava . c l a s spa th=/var /tmp/nohome/pg11/ share / po s t g r e s q l / p l j ava / pl java −1.5.1−SNAPSHOT. j a r : / var /tmp/nohome/ j r e / l i b /Saxon−HE−9.8.0 −14. jar ’ ”
\c ”dbname=pos tg r e s opt ions=’−c p l j ava . l ib jvm_locat ion=/var /tmp/nohome/ j r e / l i b /amd64/ s e r v e r / l ib jvm . so −c p l j ava . vmoptions=−Djava . home=/var /tmp/nohome/ j r e \\\ −XX:+UseSerialGC\\\ −XX:+DisableAttachMechanism\\\ −Xshare : dump\\\ −XX: Sha r edC la s sL i s tF i l e=/var /tmp/nohome/ p l j ava . c l a s s l i s t \\\ −XX:+UnlockCommercialFeatures \\\ −XX:+UseAppCDS\\\ −XX: SharedArchiveFi l e=/var /tmp/nohome/ p l j ava . j s a −c p l j ava . c l a s spa th=/var /tmp/nohome/pg11/ share / po s t g r e s q l / p l j ava / pl java −1.5.1−SNAPSHOT. j a r : / var /tmp/nohome/ j r e / l i b /Saxon−HE−9.8.0 −14. jar ’ ”

“De-signing” the Saxon jar Hotspot’s AppCDS will not share classes from
a signed jar, so the signatures were removed from the Saxon jar with this pro-
cedure:

z ip −d Saxon−HE−9.8.0 −14. j a r META−INF/TE−050AC. SF
unzip Saxon−HE−9.8.0 −14. j a r META−INF/MANIFEST.MF

18

ed META−INF/MANIFEST.MF <<END−COMMANDS
/ ^ [[: space :]] /+1 , $d
wq
END−COMMANDS
z ip −u Saxon−HE−9.8.0 −14. j a r META−INF/MANIFEST.MF

Stripping the signatures does not impair the operation of the open-source Saxon-
HE. It is conceivable that the commercial Saxon-PE or Saxon-EE would object
to such treatment.

Setup for processor-count variation Several Linux control groups were
created as follows:

mkdir / sys / f s / cgroup/ cpuset /{1 c1t , 1 c2t , 2 c2t , 2 c4t , 4 c4t , 4 c8t }
for i in / sys / f s / cgroup/ cpuset /? c ? t
do

echo 0 >$ i / cpuset .mems
done
echo 0 >/sys / f s / cgroup/ cpuset /1 c1t / cpuset . cpus
echo 0 ,1 >/sys / f s / cgroup/ cpuset /1 c2t / cpuset . cpus
echo 0 ,2 >/sys / f s / cgroup/ cpuset /2 c2t / cpuset . cpus
echo 0−3 >/sys / f s / cgroup/ cpuset /2 c4t / cpuset . cpus
echo 0 ,2 ,4 ,6 >/sys / f s / cgroup/ cpuset /4 c4t / cpuset . cpus
echo 0−7 >/sys / f s / cgroup/ cpuset /4 c8t / cpuset . cpus

After each new backend was established with the appropriate \c line, its
process ID was obtained with SELECT pg_backend_pid(); and echoed into
cgroup.procs in the appropriate cpuset subdirectory.

The OpenJ9 class share was initially populated with one set of 16 runs before
any timing was done. Timings were then done in the order shown, from 4c8t to
1c1t, and the −Xshareclasses option did not have readonly added for the timed
sets. Because OpenJ9 can continue adding JIT hints to a class share during
operation, it is possible that the later sets benefit from JIT hints added during
the earlier ones.

Copyright © 2004 - 2015 Tada AB - Täby Sweden All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

19

• Neither the name Tada AB nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Prebuilt PL/Java distributions
At present, the PL/Java project is reliant on downstream packagers to produce
prebuilt, installable PL/Java packages for various platforms. The official PL/-
Java releases are offered in source form and take only a few minutes to build
with Apache Maven as described in the build instructions.

This wiki page will be updated to list known prebuilt PL/Java packages and
the platforms they are built for. As with any prebuilt distribution, you should
be acquainted with the policies and reputation of any supplier of a prebuilt
package. The PL/Java project has not directly built or verified any package
listed here.

Known prebuilt packages available
Debian/Ubuntu packages on apt.postgresql.org

{ 1 . 5 . 2 , ” 1 1 . 1 (Debian 11.1 −1. pgdg+1)” ,11 .0 . 1 , Linux , amd64} ‘

PL/Java 1.5.2 packages available for PostgreSQL 11 back to 9.3 for
Debian unstable/buster/stretch and Ubuntu cosmic/bionic/xenial, for
amd64/i386/ppc64el. Dbgsym packages available. Includes pljava−examples
jar with the optional Saxon examples already built (download Saxon-HE
9.8.0.14 jar separately to use them).

Added 14 November 2018

20

https://github.com/tada/pljava/releases
https://github.com/tada/pljava/releases
http://tada.github.io/pljava/build/build.html
http://apt.postgresql.org/pub/repos/apt/pool/main/p/postgresql-pljava/
http://tada.github.io/pljava/examples/saxon.html

Docker images

Martin Bednar has prepared images of 64-bit PostgreSQL (9.5 and 9.4) with
PL/Java 1.5.0 and Oracle Java 8 for use with Docker.
{ 1 . 5 . 0 , 9 . 5 . 1 , 1 . 8 . 0 _74 , Linux , amd64}
{ 1 . 5 . 0 , 9 . 4 . 6 , 1 . 8 . 0 _74 , Linux , amd64}

added 12 April 2016

Complete PostgreSQL distributions from BigSQL

BigSQL provides native installers for Centos 6 and 7, Ubuntu 12.04 and 14.04,
OS X 10.9+, Windows 7+, and Windows Server 2008 and 2012. These distri-
butions of PostgreSQL 9.5, 9.4, 9.3, and 9.2 include PL/Java 1.5.0.

added 12 April 2016

To list a prebuilt package here
Please announce the availability of your package on the pljava-dev mailing list,
along with the output of the third query below:

Note: as of mid-May 2016, the pljava−dev mailing list is working
again, and should be used to announce packages. In case the mailing
list does not seem to work, then please open an issue.

SELECT sqlj.install_jar(fileurl-to-built-pljava-examples-*.jar , ’ex ’, true);
SELECT sqlj.set_classpath(’javatest’, ’ex ’);
SELECT array_agg (java_getsystemproperty (p)) FROM (va lue s
(’ org . p o s t g r e s q l . p l j ava . ver s ion ’) ,
(’ org . p o s t g r e s q l . ver s ion ’) ,
(’ java . ver s ion ’) ,
(’ os . name ’) ,
(’ os . arch ’)
) AS props (p) ;

2017/06 Breaking news: workaround crash with Stack
Guard-hardened kernels
As of late June 2017, Linux kernel vendors are shipping updates that harden
the kernel against certain so-called stack-smash attacks. The hardened kernels
change the mapping of memory just below the stack, and cause Java to crash
with a SIGBUS error (as reported elsewhere, not only in PL/Java). If you
experience this, add −Xss2M (or larger than 2M, if a larger stack size is needed
by your application) to pljava .vmoptions.

For more information, see PL/Java issue #129 and (for Red Hat subscribers)
this Red Hat solutions document.

21

https://hub.docker.com/r/xxbedy/postgres-pljava/tags/
https://www.docker.com/
http://www.bigsql.org/se/
http://www.bigsql.org/se/docs/proclang/proclang.jsp#pljava
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
https://github.com/tada/pljava/issues
https://github.com/tada/pljava/issues/129
https://access.redhat.com/solutions/3091371

Figure 1: PL/Java

Welcome to PL/Java
If you have comments or ideas regarding this wiki, please convey them on the
Mailing List. A great deal of information can also be found at the project
information site.

Overview
PL/Java is a free add-on module that brings Java™ Stored Procedures, Triggers,
and Functions to the PostgreSQL™ backend. The development started late 2003
and the first release of PL/Java arrived in January 2005. The project is released
under the [[PLJava License]] license.

Features
• Ability to write functions, triggers, user-defined types, … using recent Java

versions. (To see the currently-targeted versions, please see the versions
page.)

• Standardized utilities (modeled after the SQL 2003 proposal) to install
and maintain Java code in the database.

• Standardized mappings of parameters and result. Supports scalar and
composite user-defined types (UDTs), pseudo types, arrays, and sets.

• An embedded, high performance JDBC driver utilizing the internal Post-
greSQL SPI routines.

• Metadata support for the JDBC driver. Both DatabaseMetaData and
ResultSetMetaData are included.

• Integration with PostgreSQL savepoints and exception handling.
• Ability to use IN, INOUT, and OUT parameters
• Two language handlers, javau (functions not restricted in behavior, only

superusers can create them) and java (functions run under a security man-

22

http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
https://tada.github.io/pljava/
https://tada.github.io/pljava/
http://www.postgresql.org/
https://tada.github.io/pljava/build/versions.html
https://tada.github.io/pljava/build/versions.html

ager blocking filesystem access, users who can create them configurable
with GRANT/REVOKE)

• Transaction and Savepoint listeners enabling code execution when a trans-
action or savepoint is commited or rolled back.

PL/Java earlier supported GCJ, but targets conventional Java virtual machines
for current development.

Documentation
The first stop for up-to-date documentation should be the project information
site.

You may also find useful information via the wiki links below. Information here
will be migrating to the project information site as it is brought up to date.

[[Installation Guide]]
[[User Guide]]
[[Contribution Guide]]

Resources
Note: To be sure of running a current PL/Java, please check the releases page
to see what is current. You may check for any [[prebuilt packages]] available for
your platform. If prebuilt packages are not available for your platform, or if
they are behind the current version, please consider Building PL/Java using the
source here on GitHub.

The “no longer supported” downloads linked below are quite old and of chiefly
historical interest.

Source downloads
[[Prebuilt packages]]
No longer supported downloads
Mailing List
Questions tagged pljava on Stack Overflow (Atom feed)
Feed for changes to this wiki itself
Bug Tracking
Older bug tracker at PgFoundry
Even older bug tracker at GBorg

Technology
[[Technology in Brief]]
[[The choice of JNI]]

23

https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/build/build.html
http://pgfoundry.org/frs/?group_id=1000038
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
https://stackoverflow.com/questions/tagged/?tagnames=pljava&sort=newest
https://stackoverflow.com/feeds/tag?tagnames=pljava&sort=newest
/tada/pljava/wiki.atom
http://pgfoundry.org/tracker/?group_id=1000038
http://web.archive.org/web/20071104170322/http://gborg.postgresql.org:80/project/pljava/bugs/buglist.php

Returning complex types
The SQL-2003 draft suggest that a complex return value is handled as an IN-
/OUT parameter and PL/Java implements it that way. If you declare a function
that returns a complex type, you will need to use a Java method with boolean
return type with a last parameter of type java. sql .ResultSet added after all of
the method’s visible parameters. The output parameter will be initialized to an
updatable ResultSet that contains exactly one row.

CREATE FUNCTION createComplexTest (int , int)
RETURNS complexTest
AS ’ f oo . f e e .Fum. createComplexTest ’
IMMUTABLE LANGUAGE java ;

The PL/Java method resolver will now find the following method in class
foo.fee.Fum:

public stat ic boolean complexReturn (int base , int increment , Resu l tSet r e c e i v e r)
throws SQLException
{

r e c e i v e r . updateInt (1 , base) ;
r e c e i v e r . updateInt (2 , base + increment) ;
r e c e i v e r . updateTimestamp (3 , new Timestamp (System . cur rentT imeMi l l i s ())) ;
return true ;

}

The return value denotes if the receiver should be considered as a valid tuple
(true) or NULL (false).

Running PL/Java sample tests
The PL/Java Source distribution contains a couple of rudimentary tests. The
tests are divided into two jar files. One is the client part found in the test.jar.
It contains some methods that executes SQL statements and prints the output
(all contained there can of course also be executed from psql or any other client).
The other is the examples.jar which contains the sample code that runs in the
backend. The latter must be installed in the database in order to function. An
easy way to do this is to use psql and issue the command:

SELECT s q l j . i n s t a l l _ j a r (’ f i l e : /// some/ d i r e c t o r y / examples . j a r ’ , ’ samples ’ ,
true) ;

Please note that the deployment descriptor stored in examples.jar will attempt
to create the schema javatest so the user that executes the sqlj.install_jar com-
mand must have permission to do that. A number of tests now run from the
deployment descriptor itself, so by the time install_jar finishes, PL/Java will
have completed those tests.

24

Once loaded, you must also set the classpath used by the PL/Java runtime.
This classpath is set per schema (namespace). A schema that lacks a classpath
will default to the classpath that has been set for the public schema. The tests
will use the schema javatest. To define the classpath for this schema, simply use
psql and issue the command:

SELECT s q l j . s e t_c la s spath (’ j a v a t e s t ’ , ’ samples ’) ;

The first argument is the name of the schema, the second is a colon separated
list of jar names. The names must reflect jars that are installed in the system.

NOTE: If you don’t use schemas, you must still issue the set_classpath com-
mand to assign a correct classpath to the ‘public’ schema. This can only be
done by a super user.

Now, you should be able to run the client test application:

java −cp <path in c l ud ing the jdbc d r i v e r and test . j a r> org . p o s t g r e s q l . p l j ava . test . Tester

Savepoints
PostgreSQL savepoints are exposed using the standard setSavepoint() and
releaseSavepoint() methods on the java. sql .Connection interface. Two
restrictions apply:

• A savepoint must be rolled back or released in the function where it was
set.

• A savepoint must not outlive the function where it was set.

“Function” here refers to the PL/Java function that is called from SQL. The
restrictions do not prevent the Java code from being organized into several
methods, but the savepoint cannot survive the eventual return from Java to the
SQL caller.

Installation
Only a PostgreSQL super user can install PL/Java. The PL/Java utility func-
tions are installed as “security definer” so that they execute with the access
permissions that were granted to the creator of the functions.

Trusted vs. untrusted language
PL/Java can declare two language entries in SQL: java and javau. Following the
conventions of other PostgreSQL PLs, the ‘untrusted’ language (javau) places
no restrictions on what the Java code can do, while the ‘trusted’ language (java)
installs a security manager that restricts access to the filesystem.

25

GRANT/REVOKE USAGE ON LANGUAGE java can be used to regulate
which users are able to create functions in the java language. For the javau
language, regardless of permissions, only superusers can create functions.

Execution of the deployment descriptor
The install_jar, replace-jar, and remove_jar utility functions optionally execute
commands found in a [[SQL deployment descriptor]]. Such commands are ex-
ecuted with the permissions of the caller. In other words, although the utility
function is declared with “security definer”, it switches back to the identity of
the invoker during execution of the deployment descriptor commands.

Classpath manipulation
The utility function set_classpath requires that the caller of the function has
been granted CREATE permission on the affected schema, unless it is the public
schema, in which case the caller must be a superuser.

##Linux threads cause sporadic hanging##

It seems Java doesn’t play nice with LinuxThreads. I rebuilt glibc to use the
Native POSIX Thread Library (NPTL) and restarted PostgreSQL. Everything
seems to be working so far. Here’s how you can check what you have:

$ getconf GNU_LIBPTHREAD_VERSION
linuxthreads-0.10

If you see linuxthreads, you need to upgrade. This is what you want to see:

$ getconf GNU_LIBPTHREAD_VERSION
NPTL 2.3.6

(version might be higher) You can also get this information (and more) by
running /libc.so.6:

$ /lib/libc.so.6
…
linuxthreads-0.10 by Xavier Leroy
…

or:

$ /lib/libc.so.6
…
Native POSIX Threads Library by Ulrich Drepper et al
…

If you can’t switch to NPTL for some reason, it might be possible to use
LD_ASSUME_KERNEL to get things working on LinuxThreads.

26

###References### http://docs.oracle.com/cd/E13924_01/coh.340/cohfaq/faq16702.htm
http://en.wikipedia.org/wiki/NPTL http://gentoo-wiki.com/NPTL#Switching_to_NPTL
http://people.redhat.com/drepper/assumekernel.html http://developer.novell.com/wiki/index.php/LD_ASSUME_KERNEL

SQLJ deployment descriptors
The install_jar, replace_jar, and remove_jar functions can act on a deploy-
ment descriptor allowing SQL commands to be executed after the jar has been
installed or prior to removal.

The descriptor is added as a normal text file to your jar file. In the Manifest of
the jar there must be an entry that appoints the file as the SQLJ deployment
descriptor.

Name : deployment/ examples . ddr
SQLJDeploymentDescriptor : TRUE

Such a file can be written by hand according to the format below, but the usual
method is to add specific Java annotations in the source code, as described
under function mapping - SQL generation. The Java compiler then generates
the deployment descriptor file at the same time it compiles the Java sources,
and the compiled classes and .ddr file can all be placed in the jar together.

The format of the deployment descriptor is stipulated by ISO/IEC 9075-13:2003.

<de s c r i p t o r f i l e > : :=
SQLActions < l e f t bracket> <r ightbracke t> <equal s ign>
{ [<double quote> <act i on group> <double quote>

[<comma> <double quote> <act i on group> <double quote>]] }

<act i on group> : :=
<i n s t a l l ac t i ons>

| <remove act ions>

<i n s t a l l ac t i ons> : :=
BEGIN INSTALL [<command> <semicolon>] . . . END INSTALL

<remove act ions> : :=
BEGIN REMOVE [<command> <semicolon>] . . . END REMOVE

<command> : :=
<SQL statement>

| <implementor block>

<SQL statement> : := <SQL token > . . .

<implementor block> : :=

27

BEGIN <implementor name> <SQL token > . . . END <implementor name>

<implementor name> : := <i d e n t i f i e r >

<SQL token> : := ! an SQL l e x i c a l un i t s p e c i f i e d by the term ”<token>”
in Sub c l au s e 5 . 2 , ”<token> and <separator >”, in ISO/IEC 9075−2.

If implementor blocks are used, PL/Java will consider only those with implemen-
tor name PostgreSQL (case insensitive) by default. Here is a sample deployment
descriptor:

SQLActions [] = {
”BEGIN␣INSTALL

␣␣␣␣CREATE␣FUNCTION␣ j ava t e s t . java_getTimestamp ()
␣␣␣␣␣␣RETURNS␣timestamp
␣␣␣␣␣␣AS␣ ’ org . p o s t g r e s q l . p l j ava . example . Parameters . getTimestamp ’
␣␣␣␣␣␣LANGUAGE␣ java ;
␣␣␣␣␣␣END␣INSTALL” ,

”BEGIN␣REMOVE
␣␣␣␣DROP␣FUNCTION␣ j ava t e s t . java_getTimestamp () ;
␣␣END␣REMOVE”
}

Configurable implementor-block recognition
Although, by default, only the implementor name PostgreSQL is recognized,
the implementor name(s) to be recognized can be set as a list in the variable
pljava .implementors. It is consulted after every command while executing a
deployment descriptor, which gives code in the descriptor a rudimentary form
of conditional execution control, by changing which implementor blocks will be
executed based on discovered conditions.

Functions in the sqlj schema
install_jar

The install_jar command loads a jarfile from a location appointed by an URL
into the SQLJ jar repository. It is an error if a jar with the given name already
exists in the repository. #### Usage

SELECT sqlj.install_jar(<jar_url>, <jar_name>, <deploy>);

Parameter

Description

jar_url

28

The URL that denotes the location of the jar that should be loaded

jar_name

This is the name by which this jar can be referenced once it has been loaded

deploy

True if the jar should be deployed according to a deployment descriptor, false
otherwise

replace_jar

The replace_jar command will replace a loaded jar with another jar. Use it to
update already loaded files. It’s an error if the jar is not found.

Usage SELECT sqlj.replace_jar(<jar_url>, <jar_name>, <redeploy>);

Parameter

Description

jar_url

The URL that denotes the location of the jar that should be loaded.

jar_name

The name of the jar to be replaced.

redeploy

True if the jar should be undeployed according to the deployment descriptor of
the old jar and deployed according to the deployment descriptor of the new jar,
false otherwise.

remove_jar

The remove_jar command will drop the jar from the jar repository. Any class-
path that references this jar will be updated accordingly. It’s an error if the jar
is not found.

Usage SELECT sqlj.remove_jar(<jar_name>, <undeploy>);

Parameter

Description

jar_name

The name of the jar to be removed.

undeploy

True if the jar should be undeployed according to a deployment descriptor, false
otherwise.

29

get_classpath

The get_classpath command will return the classpath that has been defined for
the given schema. NULL is returned if the schema has no classpath. It’s an
error if the given schema does not exist.

Usage SELECT sqlj.get_classpath(<schema>);

Parameter

Description

schema

The name of the schema

set_classpath

The set_classpath command will define a classpath for the given schema. A
classpath consists of a colon separated list of jar names. It’s an error if the
given schema does not exist or if one or more jar names references nonexistent
jars.

Usage SELECT sqlj.set_classpath(<schema>, <classpath>);

Parameter

Description

schema

The name of the schema.

classpath

The colon separated list of jar names.

add_type_mapping

The add_type_mapping command installs a mapping between a SQL type and
a Java class. Once the mapping is in place, parameters and return values will
be mapped accordingly. Please read [Mapping an SQL type to a Java class] for
detailed information.

Usage SELECT sqlj.add_type_mapping(<sql type>, <java class>);

Parameter

Description

sql type

The name of the SQL type. The name can be qualified with a schema (names-
pace). If the schema is omitted, it will be resolved according to the current
setting of the search_path.

30

java class

The name of the class. The class must be found in the classpath in effect for
the current schema

drop_type_mapping

The drop_type_mapping command removes a mapping between a SQL type
and a Java class.

Usage SELECT sqlj.drop_type_mapping(<sql type>);

Parameter

Description

sql type

The name of the SQL type. The name can be qualified with a schema (names-
pace). If the schema is omitted, it will be resolved according to the current
setting of the search_path.

Note on jar URLs

The install_jar and replace_jar commands accept a URL (that must be reach-
able from the server) to a jar file. It is even possible, using the rules for jar URLs,
to construct one that refers to a jar file within another jar file. For example:

j a r : f i l e : outer . j a r ! / inner . j a r

However, Java’s caching of the “outer” jar may frustrate attempts to replace or
reload a newer version within the same session.

A function or trigger in SQL resolves to a static method in a Java class. In
order for the function to execute, the appointed class must be installed in the
database. PL/Java adds a set of functions that helps installing and maintaining
the java classes. Classes are loaded into the database from normal Java archives
(AKA jars). A Jar may optionally contain a deployment descriptor that in turn
contains SQL commands to be executed when the jar is deployed/undeployed.
The functions are modeled after the standards proposed for SQL 2003.

PL/Java implements a standardized way of passing parameters and return val-
ues. Complex types and sets are passed using the standard JDBC ResultSet
class. Great care has been taken not to introduce any proprietary interfaces
unless absolutely necessary so that Java code written using PL/Java becomes
as database agnostic as possible.

A JDBC driver is included in PL/Java. This driver is written directly on top
of the PostgreSQL internal SPI routines. This driver is essential since it’s very
common for functions and triggers to reuse the database. When they do, they
must use the same transactional boundaries that where used by the caller.

31

PL/Java is optimized for performance. The Java virtual machine executes
within the same process as the backend itself. This vouches for a very low
call overhead. PL/Java is designed with the objective to enable the power of
Java to the database itself so that database intensive business logic can execute
as close to the actual data as possible.

The standard Java Native Interface (JNI) is used when bridging calls from the
backend into the Java VM and vice versa. Please read the rationale behind
[[The choice of JNI]] and a more in-depth discussion about some implementation
details.

The versions of PostgreSQL and Java targeted by current PL/Java development
can be reviewed on the versions page.

Rationale behind using JNI as opposed to threads in a re-
mote JVM process.
Reasons to use a high level language like Java™ in the backend

A large part of the reason why JNI was chosen in favor of an RPC based, single
JVM solution was due to the expected use-cases. Enterprise systems today
are almost always 3-tier or n-tier. Database functions, triggers, and stored
procedures are mechanisms that extend the functionality of the backend tier.
They typically rely on a tight integration with the database due to a very high
rate of interactions and execute inside of the database largely to limit the number
of interactions between the middle tier and the backend tier. Some typical use-
cases:

• Referential integrity enforcement. Using Java, referential integrity can be
implemented that goes beyond what can be done using the standard SQL
semantics. It may involve checking XML documents, enforcing some meta-
driven rule system, or other complex tasks that put high demands on the
implementation language.

• Advanced pattern recognition. Soundex, image comparison, etc.
• XML support functions. Java comes with a lot of XML support. Parsers

etc. are readily available.
• Support functions for O/R mappers. A variety of support can be imple-

mented depending on design. One example is an O/R mapper that allows
methods on persistent objects. A lot can be gained if such methods are
pushed down and executed within the database. Consider the following
(OQL):

SELECT AVG(x . s a l a r y − x . computeTax ()) FROM Employee x WHERE x . s a l a r y > 120000;

Pushing the computeTax logic down to the database instead of computing it in
the middle tier (where much or the O/R logic resides) is a huge gain from a
performance standpoint. The statement could be transformed into SQL as:

SELECT AVG(x . s a l a r y − computeTax (x . s a l a r y)) FROM Employee x WHERE x . s a l a r y > 120000;

32

https://tada.github.io/pljava/build/versions.html

As a result, very few interactions (typically only one) need to be made between
the middle and the backend tier.

• Views and indexes making use of computed values. In the above example
and index could be created on computeTax(x.salary) and a view could
express that as net_income.

• Message queue management. Delivering or fetching things using message
queues or other delivery mechanisms. As with most interactions with
other processes, this requires transaction coordination of some kind.

One might argue that since a JVM often is present running an app-server in
the middle tier, would it not be more efficient if that JVM also executed the
database functions and triggers? In my opinion, this would be very bad. One
major reason for moving execution down to the database is performance (by
minimizing the number of roundtrips between the app-server and the database)
another is separation of concern. Referential data integrity and other ways to
extend the functionality of the database should not be the app-servers concern,
it belongs in the backend tier. Other aspects like database versus app-server
administration, replication of code and permission changes for functions, and
running different tiers on different servers, makes it even worse.

Resource consumption

Having one JVM per connection instead of one thread per connection running
in the same JVM will undoubtedly consume more resources. There are however
a couple of facts that must be remembered:

• The overhead of multiple processes is already present due to the fact that
each connection is a process in a PostgreSQL system.

• In order to keep connections separated in case they run in the same JVM,
some kind of “compartments” must be created. Either you create them
using parallel class loader chains (similar to how EAR files are managed
in an EJB server) or you use a less protective model similar to a servlet
engine. In order to get a separation that is comparable to what you get
using separate JVM’s, you must chose the former. That consumes some
resources.

• The JVM has undergone a series of improvements in order to reduce foot-
print and startup time. Some significant improvements where made in
Java 1.4 and Java 1.5 introduces Java Heap Self Tuning, Class Data Shar-
ing, and Garbage Collector Ergonomics (read more here), technologies
that will minimize the startup time and make the JVM adopt its resource
consumption in a much improved way.

• PL/Java can make use of the GCJ. Using this technology, all core
classes will be compiled into binaries and optionally pre-loaded by the
postmaster. It also means that all modules that are loaded using the
install_jar/replace_jar can be compiled into real shared objects. Finally,
it means that the footprint for each “JVM” will be significantly decreased.

33

Note: GCJ is no longer targeted by current PL/Java development.

Connection pooling

In the Java community you are very likely to use a connection pool. The pool
will ensure that the number of connections stays as low as possible and that
connections are reused (instead of closed and reestablished). New JVMs are
started rarely.

Connection isolation

Separate JVMs gives you a much higher degree of isolation. This brings a
number of advantages:

• There’s no problem attaching a debugger to one connection (one JVM)
while the others run unaffected.

• There’s no chance that one connection manages to accidentally (or mali-
ciously) exchange dirty data with another connection.

• A process that performs tasks that consume a lot of CPU under a long
period of time can be scheduled with a lower priority using a simple OS
command.

• The JVMs can be brought down and restarted individually.
• Security policies are much easier to enforce.

Transaction visibility

In order to maintain the correct visibility, the transaction must somehow be
propagated to the Java layer. I can see two solutions for this using RPC. Either
an XA aware JDBC-driver is used (requires XA support from PostgreSQL) or a
JDBC driver is written so that it calls back to the SPI functions in the invoking
process. Both choices results in an increased number of RPC calls and a negative
performance impact.

The PL/Java approach is to use the underlying SPI interfaces directly through
JNI by providing a “pseudo connection” that implements the JDBC interfaces.
The mapping is thus very direct. Data need never be serialized nor duplicated.

RPC performance

Remote procedure calls are extremely expensive compared to in-process calls.
Relying on an RPC mechanism for Java calls will cripple the usefulness of such
an implementation a great deal. Here are two examples:

• In order for an update trigger to function using RPC, you can choose one
of two approaches. Either you limit the number of RPC calls and send
two full Tuples (old and new) and a Tuple Descriptor to the remote JVM,
and then pass a third Tuple (the modified new) back to the original, or
you pass those structures by reference (as CORBA remote objects) and

34

perform one RPC call each time you access them. You have a tradeoff
between on one hand, limited functionality and poor performance, and on
the other, good functionality and really bad performance.

• When one or several Java functions are used in the projection or filter of
a SELECT statement on a query processing several thousand rows, each
row will cause at least one call to Java. In case of RPC, this implies that
the OS needs to do at least two context switches (back and forth) for each
row in the query.

Using JNI to directly access structures like TriggerData, Relation, TupleDesc,
and HeapTuple minimizes the amount of data that needs to be copied. Param-
eters and return values that are primitives need not even become Java objects.
A 32-bit int4 Datum can be directly passed as a Java int (jint in JNI).

Simplicity

I’ve have some experience of work involving CORBA and other RPCs. They
add a fair amount of complexity to the process. JNI however, is invisible to the
user.

Thoughts on logging

35

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Note:
this
page
does
not
de-
scribe
how
PL/-
Java
cur-
rently
works,
ex-
cept
in
the
“Back-
ground”
part.
It is
a
pro-
posal
for
fur-
ther
de-
vel-
op-
ment.

36

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Also,
to
any-
one
read-
ing
this
for
re-
view
or
com-
ment,
a lot
of
this
ma-
te-
rial
may
be
more
fa-
mil-
iar
than
it is
to
me.
If I
seem
to
de-
scribe
it in
ex-
ces-
sive
de-
tail,
please
re-
gard
that
as
my
ef-
fort
to
have
it
straight
in
my
own
head.

37

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Also
also,
to
some
it
may
seem
strange
that
I use
phrases
like
“log
event”
with-
out
in-
sist-
ing
on
any
es-
sen-
tial
dif-
fer-
ence
be-
tween
thrown
ex-
cep-
tions
and
calls
on
log-
gers.
It’s
true,
I’m
not
mark-
ing
any
such
es-
sen-
tial
dif-
fer-
ence,
and
I
hope,
be-
fore
this
is
done,
that
won’t
seem
so
strange.

38

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
So,
here
goes.
…
log-
ging
isn’t
par-
ticu-
larly
mag-
ical.
—
Dave
Cramer

39

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
…
it’s
what
you
do
with
it.
—
variously
at-
tributed
##
Back-
ground

40

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Post-
greSQL
has
supremely
good
log
mes-
sages.

41

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
It
even
has
a
[style
guide][stygd]
for
writ-
ing
them,
and
it
pays
off
in
the
well-
known
qual-
ity
and
help-
ful-
ness
of
Post-
greSQL
mes-
sages.

42

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[stygd]:
http://www.postgresql.org/docs/current/static/error-
style-
guide.html

43

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Part
of
the
ex-
cel-
lence
of
Post-
greSQL’s
mes-
sages
can
be
traced
to
their
rich
struc-
ture.
A
mes-
sage
is
not
a
blob
of
text
with
what-
ever
de-
tails
seemed
use-
ful
while
writ-
ing
the
code.
It is
a
struc-
tured
record
with
in-
for-
ma-
tion
serv-
ing
sev-
eral
spe-
cific
pur-
poses
and
at
sev-
eral
dis-
tinct
lev-
els
of
de-
tail:

44

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
item
|pq|PL/pgSQL
|pgjdbc
(+
-ng
Notice)|pgjdbc-
ng
Exc
|PL/-
Java
——
——
—-
|—
|—
——
——
—–
|—
——
——
——
|—
——
—–
|—
——
——–
elevel
|S |
|get-
Sever-
ity |
|getEr-
ror-
Level
sql-
state
|C
|RE-
TURNED_SQLSTATE
|get-
SQL-
State
get-
Code
|get-
SQL-
State
|get-
Sql-
State
mes-
sage
|M
|MES-
SAGE_TEXT
|getMes-
sage
|getMes-
sage
|getMes-
sage
de-
tail
|D
|PG_EXCEPTION_DETAIL
|get-
De-
tail |
|get-
De-
tail
hint
|H
|PG_EXCEPTION_HINT
|getH-
int |
|getH-
int
con-
text
|W
|PG_EXCEPTION_CONTEXT|getWhere
|
|get-
Con-
textMes-
sage
schema_name
|s
|SCHEMA_NAME
|getSchema
|getSchema
| ta-
ble_name
|t
|TA-
BLE_NAME
|get-
Table
|get-
Table
| col-
umn_name
|c
|COL-
UMN_NAME
|get-
Col-
umn
|get-
Col-
umn
|
datatype_name
|d
|PG_DATATYPE_NAME
|get-
Datatype
|get-
Datatype
|
con-
straint_name
|n
|CON-
STRAINT_NAME
|get-
Con-
straint
|get-
Con-
straint
|
cur-
sor-
pos
|P |
|get-
Posi-
tion
|
|getCur-
sor-
Pos
in-
ter-
nal-
pos
|p |
|get-
Inter-
nal-
Posi-
tion
|
|get-
Inter-
nal-
Pos
in-
ter-
nal-
query
|q |
|get-
Inter-
nal-
Query
|
|get-
Inter-
nal-
Query
file-
name
|F |
|get-
File
|
|get-
File-
name
lineno
|L |
|get-
Line
|
|get-
Li-
neno
func-
name
|R |
|getRou-
tine
|
|get-
Func-
name
out-
put_to_server|
| | |
|isOut-
put-
ToServer
out-
put_to_client|
| | |
|isOut-
put-
To-
Client
show_funcname
| | | |
|is-
Show-
Func-
name
saved_errno
| | | |
|get-
Saved-
Er-
rno
hide_stmt
| | | |
|
hide_ctx
| | | |
| do-
main
| | | |
|
con-
text_domain
| | | |
|

45

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
libpq
on-
the-
wire
pro-
to-
col
pre-
serves
this
struc-
ture,
send-
ing
these
com-
po-
nents
(the
ones
with
pq
codes)
dis-
tinctly
and
in-
tact
to
the
front
end.
This
gives
client
code
enor-
mous
flexi-
bil-
ity
to
catch
and
han-
dle
con-
di-
tions
ap-
pro-
pri-
ately.
If
the
con-
di-
tion
has
to
be
logged
or
re-
ported
to a
user,
it
can
be
shown
at
any
ap-
pro-
pri-
ate
level
of
de-
tail,
or
even
with
a
user
in-
ter-
face
that
per-
mits
drilling
down
from
gen-
erali-
ties
to
specifics.

46

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
How
awe-
some
is
that?
Con-
sider
this:
I
have
seen,
with
my
own
eyes,
non-
technical
users
en-
ter-
ing
stuff
into
a
Post-
greSQL
database
(us-
ing
some-
thing
as
generic
as
Li-
bre-
Of-
fice
Base
as
the
front
end)
have
an
er-
ror
dia-
log
pop
up,
read
it,
un-
der-
stand
what
had
to
be
cor-
rected
in
the
en-
try,
and
re-
cover
on
their
own.

47

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
I
chal-
lenge
any-
one
who
has
had
sup-
port
ex-
peri-
ence
to
tell
me
that
ain’t
magic.

48

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
By
and
large,
mes-
sages
in
Post-
greSQL
re-
ally
are
that
good.

49

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Orig-
inal
log
event
life
cy-
cle

50

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
A
mes-
sage
that
orig-
i-
nates
in
the
Post-
greSQL
back-
end
proper
be-
gins
as a
call
to
ereport
or
elog
in
[elog.c][elogc].
The
rules
there
are
just
a bit
spe-
cial:

51

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
0. If
the
mes-
sage
has
any
sever-
ity
be-
low
ERROR
(so,
DEBUG5,
DEBUG4,
DEBUG3,
DEBUG2,
DEBUG1,
LOG,
COMMERROR,
INFO,
NOTICE,
or
WARNING)
or
above
ERROR
(so,
FATAL,
PANIC),
it
gets
writ-
ten
im-
me-
di-
ately
to
logs
/ re-
ported
to
the
front
end
(ac-
cord-
ing
to
the
log_min_messages
and
client_min_messages
set-
tings),
and
then
con-
trol
re-
turns
to
the
call
site
if it
was
be-
low
ERROR,
and
does
not
re-
turn
if it
was
above.

52

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
0. If
the
sever-
ity
is
ex-
actly
ERROR,
it
gets
thrown
PostgreSQL-
style,
and
can
be
caught
in
PG_TRY/PG_CATCH
con-
structs.
The
[elog][elogc]
code
does
not
send
it to
the
server
log
or
the
front
end
at
all
at
that
point,
but
only
when
(if
ever)
it
bub-
bles
up
to
PostgresMain
with-
out
hav-
ing
been
han-
dled.
If it
gets
caught
and
han-
dled,
then
any
log-
ging
be-
comes
the
re-
spon-
sibil-
ity
of
what-
ever
code
caught
it.

53

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[elogc]:
http://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/error/elog.c
###
Han-
dling
logged
events
in
front-
end
code

54

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Events
from
the
server
that
ar-
rive
at
the
front
end
show
up
in a
form
the
front-
end
code
can
in-
spect
and
choose
how
to
han-
dle,
ei-
ther
by
polling
for
them
(libpq
PQresultErrorField,
JDBC
getWarnings
if
less
se-
vere
than
ERROR),
or
catch-
ing
an
ex-
cep-
tion
(JDBC
if
sever-
ity is
ERROR).

55

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
This
code
in
turn
might
want
to
log
an
event
(whether
one
re-
ceived
from
the
back-
end
as
just
de-
scribed,
or
one
orig-
inat-
ing
in
the
front-
end
code
it-
self).
To
do
that,
it
will
prob-
ably
use
some
con-
ve-
nient
li-
brary
avail-
able
to it,
such
as
java. util . logging
in
Java.

56

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
For
code
that
is re-
ally
run-
ning
in a
front
end,
that’s
the
end
of
the
story,
but
for
code
run-
ning
in a
back-
end
PL,
the
story
has
only
be-
gun.

57

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Han-
dling
logged
events
in a
back-
end
PL

58

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
first
re-
quire-
ments
for
server-
side
code
are
the
same
as
for
the
front
end:
it
should
be
able
to
in-
ter-
cept,
ex-
am-
ine,
and
han-
dle
or
not
han-
dle
as
ap-
pro-
pri-
ate,
events
that
orig-
i-
nate
dur-
ing
its
calls
into
the
back-
end.
PL/pgSQL
makes
a
good
ex-
am-
ple,
with
the
[trap-
ping
of er-
rors][plpgscatch]
built
into
the
lan-
guage,
and
[in-
spec-
tion
of
(most)
ele-
ments][plpgsdiag]
of
the
struc-
ture.
Nat-
u-
rally,
what-
ever
isn’t
caught
in
PL/pgSQL
code
should
con-
tinue
prop-
agat-
ing
out-
ward
with
all
its
struc-
tured
in-
for-
ma-
tion
in-
tact.

59

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
In
PL/pgSQL,
all
of
that
ap-
plies
to
events
with
the
ex-
act
sever-
ity
ERROR:
warn-
ings/no-
tices/etc.
are
in-
visi-
ble
to
PL/pgSQL
code,
as
the
[elog][elogc]
logic
sends
those
right
out
from
un-
der
the
PL
and
straight
to
the
front-
end
client
(con-
di-
tioned
only
on
the
client_min_messages
set-
ting).
That
might
not
be
al-
ways
ideal:
there
can
be a
ten-
sion
be-
tween
ease
of
de-
vel-
op-
men-
t/trou-
bleshoot-
ing,
fa-
vor-
ing
lots
of
log-
ging,
and
con-
fi-
den-
tial-
ity
de-
mands,
which
could
re-
quire
that
some
mes-
sages
be
edited
or
sup-
pressed,
which
the
PL
code
can’t
do if
they
zip
right
past
it.

60

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[plpgscatch]:
http://www.postgresql.org/docs/current/static/plpgsql-
control-
structures.html#PLPGSQL-
ERROR-
TRAPPING
[plpgs-
diag]:
http://www.postgresql.org/docs/current/static/plpgsql-
control-
structures.html#PLPGSQL-
EXCEPTION-
DIAGNOSTICS
####
As
for
PL/-
Java

61

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/Java
is at
par-
ity
with
PL/pgSQL
as
far
as
the
abil-
ity
to
catch
er-
ror
events
from
the
back-
end
(as
Java
SQLExceptions),
or
to
prop-
a-
gate
them
up
the
stack
with-
out
in-
for-
ma-
tion
loss
if
they
are
not
caught,
or
are
caught
and
rethrown
with-
out
change.

62

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Internally,
it
has
good
pro-
vi-
sions
for
ex-
am-
in-
ing
indi-
vid-
ual
prop-
er-
ties
of
the
event
(cur-
rently
not
in-
clud-
ing
the
schema,
ta-
ble,
col-
umn,
datatype,
and
con-
straint
names
that
[ap-
peared
in
9.3][fnames]).
How-
ever,
these
pro-
vi-
sions
aren’t
quite
ex-
posed
yet
to
ordi-
nary
de-
vel-
op-
ers
writ-
ing
PL/-
Java
code.
Al-
though
[[doc-
u-
mented|Exception
han-
dling]]
in
the
wiki,
they
aren’t
ac-
ces-
sible
to
PL/-
Java
code
com-
piled
nor-
mally
against
pljava−api.jar;
it
would
have
to
be
com-
piled
against
the
full
pljava . jar
and
refer
ex-
plic-
itly
to
[ServerException][servx]
and
[ErrorData][edata]
in
the
org.postgresql . pljava . internal
pack-
age.

63

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[fnames]:
http://git.postgresql.org/gitweb/?p=postgresql.git;a=blobdiff;f=src/include/utils/elog.h;h=d5fec89a4801481d0494c34cd38e72653d3da99a;hp=5e937fb10c3211b2c12d0ec2d7ee71fe506cb7f8;hb=991f3e5ab3f8196d18d5b313c81a5f744f3baaea;hpb=89d00cbe01447fd36edbc3bed659f869b18172d1
[servx]:
http://tada.github.io/pljava/pljava/apidocs/index.html?org/postgresql/pljava/internal/ServerException.html
[edata]:
http://tada.github.io/pljava/pljava/apidocs/index.html?org/postgresql/pljava/internal/ErrorData.html

64

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
(In
pass-
ing,
the
cur-
rent
de-
sign
where
the
magic
only
hap-
pens
for a
sin-
gle
ServerException
sub-
class
of
SQLException
stands
in
the
way
of
im-
ple-
ment-
ing
the
[cat-
ego-
rized
ex-
cep-
tions][catex]
for
JDBC
4.0.)

65

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[catex]:
http://www.javaspecialists.eu/archive/Issue138.html

66

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
This
is
one
area
where
a
good
API
should
be
worked
out
and
pub-
lished.
PL/-
Java
pro-
vides
a
JDBC
in-
ter-
face
to
the
back-
end,
be-
cause
that
is
how
the
SQL/JRT
stan-
dard
is
writ-
ten,
which
PL/-
Java
is
meant
to
im-
ple-
ment.
As
far
as
JDBC
is
con-
cerned,
ac-
cess
to
these
implementation-
specific
er-
ror
de-
tails
would
be
an
ex-
ten-
sion,
such
as
might
be
ac-
cessed
by
[unwrap][unwrap]
on a
stan-
dard
JDBC
ob-
ject.
Be-
ing
com-
mit-
ted
to a
JDBC
in-
ter-
face
to
Post-
greSQL,
it
would
be
ideal
to
agree
on
the
de-
tails
with
the
other,
front-
end
JDBC
in-
ter-
faces
to
Post-
greSQL,
as
front-
ends
also
re-
ceive
finely
struc-
tured
Post-
greSQL
er-
ror
de-
tails
that
client
code
may
want
to
ex-
am-
ine.

67

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
(Again
in
pass-
ing,
the
fact
that
PL/-
Java
presents
a
JDBC
in-
ter-
face
could
raise
hopes
that
PL/-
Java
func-
tions
are
also
able
to
ex-
am-
ine
warn-
ings
us-
ing
the
stan-
dard
[JDBC
mech-
a-
nism][jdbcw].
At
the
mo-
ment,
they
aren’t,
and
the
PG_TRY/PG_CATCH
con-
structs
aren’t
enough
to
fix
that,
be-
cause
only
sever-
ity
level
ERROR
is
han-
dled
that
way.
PL/-
Java
would
have
to
also
use
the
emit_log_hook
in
or-
der
to
present
a be-
hav-
ior
anal-
o-
gous
to
JDBC
on
the
front
end.
It
would
then
pull
ahead
of
PL/pgSQL
on
that
di-
men-
sion.)

68

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[unwrap]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Wrapper.html#unwrap(java.lang.Class)
[jd-
bcw]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/ResultSet.html#getWarnings()

69

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
####
How
do
the
other
Post-
greSQL
JD-
BCs
give
ac-
cess
to
er-
ror
de-
tails?

70

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
#####
pgjdbc

71

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
If
you
have
an
SQLException
and
it
can
be
cast
to
[org.postgresql . util .PSQLException][psqle],
then
you
can
call
getServerErrorMessage()
on
it,
and
get a
[ServerErrorMessage][sem].
Same
deal
if
you
have
an
SQLWarning
that
is
castable
to
[org.postgresql . util .PSQLWarning][psqlw].
(None
of
this
is ex-
actly
trum-
peted
in
the
[docs][pgjdbcdocs],
and
as
you
can
see,
the
PSQLException
and
PSQLWarning
links
above
are
to
privateapi
pages,
though
the
classes
are
public
and
ac-
ces-
si-
ble.)

72

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Just
as in
PL/-
Java,
the
de-
sign
here
with
a
sin-
gle
PSQLException
class
is an
ob-
sta-
cle
to
mov-
ing
for-
ward
with
the
cate-
go-
rized
ex-
cep-
tions
in
JDBC
4.0.

73

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[psqle]:
https://jdbc.postgresql.org/development/privateapi/index.html?org/postgresql/util/PSQLException.html
[psqlw]:
https://jdbc.postgresql.org/development/privateapi/index.html?org/postgresql/util/PSQLWarning.html
[sem]:
https://jdbc.postgresql.org/documentation/publicapi/index.html?org/postgresql/util/ServerErrorMessage.html
[pgjd-
bc-
docs]:
https://jdbc.postgresql.org/documentation/head/index.html
#####
pgjdbc-
ng

74

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
In
pgjdbc−ng,
cate-
go-
rized
ex-
cep-
tions
are
par-
tially
im-
ple-
mented:
at
least
there
is
one
[PGSQLIntegrityConstraintViolationException][pgsicve],
and
one
[PGSQLSimpleException][pgsse]
for
ev-
ery-
thing
else.
To
al-
low
for
mul-
tiple
cate-
gories,
these
share
a
com-
mon
in-
ter-
face,
[PGSQLExceptionInfo][pgsei].
Call-
ing
code
does
not
need
to
test
for a
bunch
of
implementation-
specific
class
names,
but
can
sim-
ply
catch
JDBC
ex-
cep-
tions
by
their
stan-
dard
java. sql
names,
and
test
for
casta-
bil-
ity
to a
sin-
gle
in-
ter-
face.

75

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Interestingly,
the
in-
ter-
face
gives
ac-
cess
only
to
the
col-
umn,
con-
straint,
datatype,
schema,
and
ta-
ble
names
avail-
able
from
Post-
greSQL
9.3
on-
ward
(ex-
actly
the
five
things
PL/-
Java
cur-
rently
doesn’t
ex-
pose!)
and
none
of
the
much
more
an-
ciently
sup-
ported
de-
tail,
hint,
con-
text,
etc.
And
pgjdbc−ng
doesn’t
sup-
ply
any
SQLWarning
sub-
class
that
im-
ple-
ments
it.

76

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
All
of
the
ele-
ments
the
pro-
to-
col
can
for-
ward
are
avail-
able
on a
dif-
fer-
ent
ob-
ject,
[com.impossibl.postgres.protocol.Notice][notice],
but
I am
not
sure
user
code
has
any
way
to
get
one.
The
classes
that
use
it
seem
fairly
in-
ter-
nal.

77

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Unlike
both
PL/-
Java’s
[ErrorData][edata]
and
pgjdbc’s
[ServerErrorMessage][sem],
in
pgjdbc−ng
both
the
[PGSQLExceptionInfo][pgsei]
and
the
[Notice][notice]
are
mu-
ta-
ble,
pro-
vid-
ing
set-
ter
meth-
ods
as
well
as
get-
ters
…
lead-
ing
nat-
u-
rally
into
the
next
sec-
tion.

78

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[pgsicve]:
http://impossibl.github.io/pgjdbc-
ng/apidocs/0.6/index.html?com/impossibl/postgres/jdbc/PGSQLIntegrityConstraintViolationException.html
[pgsse]:
http://impossibl.github.io/pgjdbc-
ng/apidocs/0.6/index.html?com/impossibl/postgres/jdbc/PGSQLSimpleException.html
[pg-
sei]:
http://impossibl.github.io/pgjdbc-
ng/apidocs/0.6/index.html?com/impossibl/postgres/api/jdbc/PGSQLExceptionInfo.html#method_summary
[no-
tice]:
http://impossibl.github.io/pgjdbc-
ng/apidocs/0.6/index.html?com/impossibl/postgres/protocol/Notice.html#method_summary

79

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Orig-
inat-
ing
log-
gable
events

80

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Whether
run-
ning
client-
side
or in
a
server-
side
PL,
it’s
of-
ten
help-
ful
to
look
at
the
de-
tails
of
events
from
be-
low,
as
the
last
sec-
tion
ex-
plored.
But
for a
server-
side
PL,
it
doesn’t
stop
there,
be-
cause
server-
side
code
is
usu-
ally
im-
ple-
ment-
ing
logic
that
may
have
its
own
events
to
re-
port,
and
as
far
as
the
client-
side
is
con-
cerned,
those
are
just
more
events
from
the
back-
end.
Ide-
ally,
a PL
func-
tion
would
be a
“full
citi-
zen”
and
able
to
orig-
i-
nate
events
(or
rethrow
caught
ones
wrapped
in
higher-
level
de-
scrip-
tions)
with
the
same
struc-
ture
and
qual-
ity
one
ex-
pects
to
see
from
Post-
greSQL
it-
self.

81

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Here
again,
PL/pgSQL
makes
a
good
ex-
am-
ple.
Us-
ing
[RAISE][],
code
can
gen-
er-
ate
an
event
with
di-
rect
con-
trol
of
eleven
of
its
most
in-
ter-
est-
ing
at-
tributes.
(The
ones
not
set-
table
from
PL/pgSQL,
cur-
sor
posi-
tions,
line
num-
bers,
and
such,
are
at a
level
of
de-
tail
few
PL/pgSQL
func-
tions
would
want
to
work
at
any-
way.)

82

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[RAISE]:
http://www.postgresql.org/docs/current/static/plpgsql-
errors-
and-
messages.html

83

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/pgSQL
has
hit a
kind
of
sweet
spot
with
syn-
tax
that
is so
easy
and
clear
it in-
vites
writ-
ing
good
mes-
sages
that
an
ulti-
mate
user
could
find
help-
ful.
A
state-
ment
like:

84

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
RAISE
in-
valid_text_representation
US-
ING
MES-
SAGE
=
‘Un-
rec-
og-
nized
pre-
fix
in
tele-
phone
num-
ber’
||
tno,
DE-
TAIL
=
‘The
dig-
its
at
the
start
of
the
num-
ber
do
not
match
any
known’
‘in-
ter-
na-
tional
num-
ber
pre-
fix.
Are
you
sure
it is
right?’,
HINT
= ‘If
you
are
sure
it’‘s
right,
ask
the
IT
peo-
ple
if’
‘there
is a
more
re-
cent
“ITU-
T
bul-
letin
994”
they
can
load.’
‘Mean-
while,
you
can
en-
ter
the
num-
ber
with
a !
in
front,’
‘but
it
may
be
flagged
on
data
qual-
ity
re-
ports
until
fixed.’;

85

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
is
about
as
clear
as
can
be
in
the
code,
as
well
as
giv-
ing
any-
one
who
re-
ceives
it a
fight-
ing
chance
at
un-
der-
stand-
ing
what
has
hap-
pened.

86

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
####
As
for
PL/-
Java

87

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/Java
is
not
yet
at
par-
ity
with
PL/pgSQL
on
this
di-
men-
sion.
If
PL/-
Java
code
catches
any
ex-
cep-
tion
that
be-
gan
as a
Post-
greSQL
[ereport][elogc],
that
Java
ex-
cep-
tion
will
wrap
an
[ErrorData][edata]
ob-
ject;
if
that
same
ex-
cep-
tion
is
rethrown,
it is
trans-
par-
ently
turned
back
into
a
Post-
greSQL
event
and
con-
tin-
ues
on
its
way
with-
out
in-
for-
ma-
tion
loss.
But
there
is no
way
for
PL/-
Java
code
to
cre-
ate
an
ex-
cep-
tion
with
those
prop-
er-
ties.
At
best,
it
can
cre-
ate
an
ordi-
nary
SQLException,
which
will
turn
into
a
Post-
greSQL
log
event
us-
ing
its
SQLState
and
with
its
class
name
and
mes-
sage
used
as
the
message.

88

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
For
any
other
kind
of
ex-
cep-
tion,
only
message
is
set
(from
the
ex-
cep-
tion
class
name
and
mes-
sage),
and
SQLState
of
XX000
for
“in-
ter-
nal
er-
ror”.
When
the
ori-
gin
is a
Java
ex-
cep-
tion,
the
sever-
ity
will
al-
ways
be
ERROR.

89

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
other
way
for
PL/-
Java
code
to
orig-
i-
nate
a
log
event
is to
use
the
log-
ging
API.
PL/-
Java
presents
mostly
Java
stan-
dard
APIs
for
code
to
use,
so in
this
case
the
API
is
[java. util . logging][jlog],
and
PL/-
Java
has
wired
it so
log
events
cre-
ated
that
way
are
handed
off
to
the
Post-
greSQL
log-
ging
sys-
tem.
(As
a
side
ef-
fect
of
the
way
that
sys-
tem
works,
‘log-
ging’
any
event
with
a
sever-
ity
that
maps
to
Post-
greSQL
ERROR
turns
out
to
have
the
same
ef-
fect
as
throw-
ing
it,
while
at
any
other
sever-
ity
it
sim-
ply
gets
logged.)

90

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
When
passed
on
to
Post-
greSQL,
the
de-
tails
in-
clude
the
times-
tamp,
class
name
or
log-
ger
name,
the
mes-
sage,
and
the
stack
trace
of
any
asso-
ci-
ated
Java
throwable—
but
at
present,
all
of
that
ends
up
strung
to-
gether
in
the
message
at-
tribute
of
the
Post-
greSQL
event,
us-
ing a
sever-
ity
mapped
from
the
[java. util . logging.Level][jlvl].
There
are
some
other
low-
hanging-
fruit
map-
pings
that
could
be
made
au-
to-
mat-
i-
cally,
like
the
Java
[SourceClassName][scn]
and
[SourceMethodName][smn]
to
Post-
greSQL
filename
and
funcname,
but
for
the
present
they
are
not,
and
no
other
pro-
gram-
matic
con-
trol
over
the
cre-
ated
log
event
is
yet
avail-
able
to
PL/-
Java
code.

91

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[jlog]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/package-
summary.html
[jlvl]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/Level.html
[scn]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html#getSourceClassName()
[smn]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html#getSourceMethodName()
#####
Map-
ping
of
sever-
ity
lev-
els

92

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Because
there
are
only
seven
pre-
de-
fined
[java. util . logging.Level][jlvl]s
and
some
of
their
names
are
dif-
fer-
ent
from
Post-
greSQL’s,
PL/-
Java
maps
them
as
fol-
lows:

93

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
| |
|FINEST|FINER|FINE|
|
|INFO|
|WARN-
ING|SEVERE|
| |
|—
|—
|—
|—
|—
|—
|—
|—
|—
|—
|—
|—
|—|
|DE-
BUG5|DEBUG4|DEBUG3|DEBUG2|DEBUG1|LOG|COMMERROR|INFO|NOTICE|WARNING|ERROR|FATAL|PANIC|
94

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
Java
level
CONFIG
isn’t
ex-
plic-
itly
mapped,
and
any-
thing
that
isn’t
ex-
plicit
will
map
to
the
Post-
greSQL
level
LOG.
For
com-
plete-
ness,
I’ve
shown
the
Post-
greSQL
lev-
els
FATAL
and
PANIC,
though
a
good
case
could
be
made
that
no
PL
code
should
ever
be
al-
lowed
to
use
them.)

95

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
####
How
can
JDBC
front-
end
code
orig-
i-
nate
events?

96

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
While
the
front-
end
situ-
a-
tion
may
be
sim-
pler
(there
is no
need
to
make
log-
ging
in-
ter-
oper-
ate
with
server
code
in
both
di-
rec-
tions,
as
PL/-
Java
must),
some
of
the
same
con-
sid-
era-
tions
can
be
car-
ried
over.
Even
on
the
client
end,
JDBC
is
not
the
client,
it’s
still
part
of
the
stack.
It
may
orig-
i-
nate
its
own
log
mes-
sages
or
throw
its
own
SQLExceptions
for
rea-
sons
other
than
events
it
for-
wards
from
the
back-
end.
Lay-
ers
above
it
see
a
clean,
con-
sis-
tent
pic-
ture
of
“the
database
stack”
when
those
events
are
of
simi-
lar
form,
no
mat-
ter
the
level
they
come
from.

97

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
These
days,
there
could
even
be
an-
other
so-
phis-
ti-
cated
layer
or
three
sit-
ting
on
top
of
JDBC
and
be-
neath
the
ap-
pli-
ca-
tion
code,
and
it
might
want
to
have
the
same
facil-
ities
avail-
able
to
it.

98

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
A
day
that
I
would
like
to
see—
and
I
think
it
can
be
reached—
is
the
day
when
a
Post-
greSQL
er-
ror
can
be
raised
by
the
back-
end,
caught
by
PL/-
Java,
ex-
am-
ined
in
all
its
struc-
tured
de-
tail
by
Java
code
us-
ing
some
ex-
ten-
sion
of
the
JDBC
API,
rethrown,
piped
to
the
fron-
tend
JDBC
and
thrown
again
to
the
client
code,
caught
there,
and
ex-
am-
ined
again
in
the
same
struc-
tured
de-
tail
us-
ing
the
same
ex-
tended
API.

99

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
This
be-
comes
even
more
ap-
peal-
ing,
and
maybe
even
more
achiev-
able,
if
PL/-
Java
and
a
front-
end
JDBC
work
to-
ward
shar-
ing
more
code.

100

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
#####
when
throw-
ing

101

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Being
JDBC
in-
ter-
faces,
both
pgjdbc
and
pgjdbc−ng
throw
the
stan-
dard
JDBC
SQLException
(or,
more
pre-
cisely,
sub-
classes
of
it),
and
cre-
ate
in-
stances
of
the
stan-
dard
SQLWarning,
which
are
col-
lected
and
polled
for,
rather
than
thrown.

102

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
JDBC
cate-
go-
rized
ex-
cep-
tions
are
not
yet
sup-
ported
by
pgjdbc,
and
are
partly
sup-
ported
by
pgjdbc−ng.103

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
pgjdbc−ng
ex-
cep-
tions
that
im-
ple-
ment
[PGSQLExceptionInfo][pgsei]
can
be
in-
stan-
ti-
ated
from
scratch,
and
can
have
the
col-
umn,
con-
straint,
datatype,
schema,
and
ta-
ble
names
set,
as
well
as
the
JDBC
stan-
dard
SQLException
at-
tributes.

104

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
pgjdbc
[PSQLException][psqle]
and
[PSQLWarning][psqlw]
throw-
ables
can
be
in-
stan-
ti-
ated
from
scratch,
and
can
be
con-
structed
from
a
[ServerErrorMessage][sem]
that
can
also
be
built
from
scratch,
al-
low-
ing
con-
trol
over
all
of
the
same
log
event
at-
tributes
that
would
be
sent
to
the
front-
end
for a
back-
end
event.
How-
ever,
the
only
way
at
present
to
con-
struct
that
ServerErrorMessage
is to
sup-
ply
a
String
in
the
ex-
act
for-
mat
of
the
v3
pro-
to-
col
mes-
sage
that
would
come
from
the
back-
end
to
rep-
re-
sent
the
event.
The
con-
structed
ex-
cep-
tion’s
message
then
is
set
to
the
en-
tire
re-
sult
of
toString
on
the
ServerErrorMessage.

105

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
#####
when
log-
ging

106

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Logging
in
pgjdbc,
which
is
older
than
java. util . logging,
is
done
with
the
project-
specific
org.postgresql .core.Logger.
This
sim-
ple
class
iden-
tifies
mes-
sages
with
a
con-
nec-
tion
ID
pre-
fix,
fil-
ters
them
by
sever-
ity,
times-
tamps
them,
and
writes
them
to
the
Driver-
Man-
ager’s
Log-
Writer.
Un-
like
java. util . logging,
it
doesn’t
do
mes-
sage
for-
mat-
ting
or
in-
ter-
na-
tion-
al-
iza-
tion,
but
a
sepa-
rate
class
[org.postgresql . util .GT][gt]
(also
ex-
cluded
from
the
pub-
lic
API)
does
both
when
used
in
calls
to
the
log-
ger.
It
gets
trans-
la-
tions
from
[ResourceBundle][rb]s,
the
same
form
java. util . logging
uses.

107

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
When
log-
ging
a
PSQLException
in-
stance
that
car-
ries
a
ServerErrorMessage,
the
re-
sult
looks
much
like
a
mes-
sage
logged
by
the
back-
end,
be-
cause
ServerErrorMessage.toString
pro-
duces
that
form
(and
it
was
en-
tirely
stuffed
into
the
message
at-
tribute
of
the
ex-
cep-
tion).

108

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[gt]:
https://jdbc.postgresql.org/development/privateapi/index.html?org/postgresql/util/GT.html
[rb]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ResourceBundle.html

109

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Logging
in
pgjdbc−ng
is
done
us-
ing
java. util . logging,
as in
PL/-
Java,
and
in
keep-
ing
with
the
ap-
pear-
ance
of
java. util . logging-
related
API
in
JDBC
it-
self
[start-
ing
in
4.1][gpl].
In
the
ex-
ist-
ing
ex-
am-
ples
in
the
code
where
a
NoticeException
or
SQLException
are
passed
di-
rectly
to
the
log-
ger,
most
of
the
avail-
able
[Notice][notice]
or
[PGSQLExceptionInfo][pgsei]
will
not
be
seen,
as
far
as I
can
see,
as
toString
has
not
been
over-
rid-
den.
[ErrorUtils][erut]
will
cre-
ate
the
SQLException
sub-
classes
us-
ing
only
the
message
and
sql-
state
from
the
orig-
inal
Notice.
A
[NoticeException][nex]
holds
a
ref-
er-
ence
to
the
Notice
it
was
con-
structed
from,
and
has
a
method
to
re-
trieve
it,
but
the
ex-
cep-
tion’s
mes-
sage
is
set
us-
ing
only
the
addi-
tional
String
passed
to
its
con-
struc-
tor.

110

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[gpl]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Driver.html#getParentLogger()
[nex]:
http://impossibl.github.io/pgjdbc-
ng/apidocs/0.6/index.html?com/impossibl/postgres/system/NoticeException.html
[erut]:
http://impossibl.github.io/pgjdbc-
ng/apidocs/0.6/index.html?com/impossibl/postgres/jdbc/ErrorUtils.html
##
What
would
a
nice
API
look
like?

111

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
By
this
point
it
should
be
clear
why
I’ve
been
writ-
ing
about
“log
events”
as
one
con-
cept,
when
I
might
be
ex-
pected
to
talk
of
log
mes-
sages
and
ex-
cep-
tions
as
sepa-
rate
things.
In
Post-
greSQL
and
in
JDBC,
both
are
forms
the
same
in-
for-
ma-
tion
may
take
as it
trav-
els
be-
tween
A
and
B. It
may
be
passed
along
as a
mes-
sage
on a
log
chan-
nel,
re-
ceived,
and
thrown
as
an
ex-
cep-
tion;
some-
thing
thrown
as
an
ex-
cep-
tion
can
be
caught
and
stuffed
onto
a
log
chan-
nel,
where
“log
chan-
nel”
might
mean
the
ereport
con-
veyor
in
the
server
code,
the
net-
work
pro-
to-
col
to
the
front
end,
the
SQL
warn-
ings
chain
in
JDBC,
….

112

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
This
shapeshift-
ing
is
not
only
pos-
sible
but
down-
right
com-
mon
in
Post-
greSQL
and
JDBC,
and
espe-
cially
in
PL/-
Java,
where
the
same
event
may
be
bat-
ted
about
be-
tween
those
two
forms
re-
peat-
edly
(how
deep
can
the
call
stack
get
with
PL/-
Java
func-
tions
mak-
ing
SQL
queries
that
call
other
func-
tions
also
made
in
PL/-
Java?).
And
all
of
that
is
just
fine
as
long
as
the
con-
ver-
sion
at
each
step
is
information-
preserving
and
re-
versible.

113

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
An
ab-
stract
LogRecord
class
(not
de-
rived
from
Exception)

114

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
We’ve
seen
that
all
three
of
(pgjdbc,
pgjdbc−ng,
PL/Java)
in-
clude
a
class
of
some
sort
([ServerErrorMessage][sem],
[Notice][notice],
and
[ErrorData][edata],
re-
spec-
tively)
that
is
meant
to
carry
all
the
in-
for-
ma-
tion
about
a
Post-
greSQL
log
event
in
its
in-
tact
struc-
tured
form,
and
can
be
car-
ried
over
a
log
chan-
nel
or
wrapped
in
an
ex-
cep-
tion,
and
re-
cov-
ered
at
the
end
of a
jour-
ney
ei-
ther
way.

115

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
So,
my
pro-
posal
starts
here:
there
should
be
such
a
class,
and
it
should
be
doc-
u-
mented
and
avail-
able
as
Post-
greSQL
ex-
tended
JDBC
API.
For
this
dis-
cus-
sion,
I’ll
call
it
LogRecord.
(There
will
be
time
for
pol-
ish-
ing
name
choices.
There
is an
ex-
ist-
ing
Java
class
LogRecord
but
of
course
the
pack-
age
is
dif-
fer-
ent.)

116

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
An
in-
ter-
face
for
ex-
cep-
tions
that
carry
LogRecords

117

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
To
al-
low
mov-
ing
for-
ward
with
the
[cat-
ego-
rized
ex-
cep-
tions][catex]
in
JDBC
4.0,
there
needs
to
be
an
in-
ter-
face
rather
than
a
com-
mon
par-
ent
class,
and
sim-
ply
has
a
set-
ter
and
get-
ter
for
at-
tach-
ing a
LogRecord
to
the
ex-
cep-
tion.
These
would
ordi-
nar-
ily
not
be
used
di-
rectly,
but
rather
through
meth-
ods
of
LogRecord.

118

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Dif-
fer-
ent
con-
crete
sub-
classes
of
LogRecord

119

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/Java
would
sup-
ply
its
spe-
cial
con-
crete
im-
ple-
men-
ta-
tion
that
wraps
a na-
tive
error-
data
block;
a
front-
end
JDBC
would
sup-
ply
one
(or
two)
that
are
ini-
tial-
ized
from
the
on-
the-
wire
pro-
to-
col.
In
all
cases,
there
would
be a
plain
pure-
Java
one
that
can
be
filled
in
from
scratch.

120

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
An
ereport-
like
API
for
cre-
at-
ing a
LogRecord
from
scratch

121

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
…
start-
ing
with
a
static
method
on
LogRecord
and
with
method
chain-
ing:
import static org.postgresql .something.LogRecord.ereport; ... logrec = ereport(Level.ERROR).errcode(ERRCODE_DIVISION_BY_ZERO) .errmsg(”You’’ve tried to divide {0} by zero”, dividend) // .log() OR // .throwAs(SQLException.class)

122

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Meth-
ods
for
the
con-
ver-
sions
in-
to/out
of
log
sys-
tem
or
ex-
cep-
tion

123

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Examples
log()
and
throwAs()
were
seen
above,
with
throwAs
a
con-
ve-
nience
built
on
asException (...) .
If
the
LogRecord
has
been
freshly
con-
structed,
asException
cre-
ates
the
cor-
rect
JDBC
4
cate-
go-
rized
ex-
cep-
tion
with
a
ref-
er-
ence
to
the
log
record
and
vice
versa.
If
that
has
hap-
pened
al-
ready,
it
just
re-
turns
the
al-
ready
cre-
ated
ex-
cep-
tion
ob-
ject.

124

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
static
fromException()
method
does
the
re-
verse:
if
the
ex-
cep-
tion
was
cre-
ated
from
a
LogRecord
orig-
i-
nally
(so,
it
im-
ple-
ments
the
in-
ter-
face
and
its
log
record
ref-
er-
ence
isn’t
null),
just
re-
turns
that
orig-
inal
LogRecord.
If
not,
cre-
ates
a
new
LogRecord
ini-
tial-
ized
as
in-
for-
ma-
tively
as
pos-
sible
with
what-
ever
can
be
gleaned
from
the
ex-
cep-
tion.

125

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Those
meth-
ods
are
what
make
pos-
sible
the
re-
peated
bat-
ting
around
that
an
event
might
live
through
on
its
way
from
a
deep
call
stack
in
PL/-
Java
all
the
way
out
to a
han-
dler
on
the
front
end,
with-
out
hav-
ing
seri-
ous
iden-
tity
crises.
(It
will
be
trick-
ier
in-
side
PL/-
Java
than
I
need
to
spend
time
on
here,
but
should
not
be
pro-
hibitively
so.)

126

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
In
con-
cert
with
ex-
ist-
ing
stan-
dard
API

127

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
I
pro-
pose
to
con-
verge
on
[java. util . logging][jlog],
and
for
this
ex-
tended
LogRecord
class
to
be
de-
rived
from
the
stan-
dard
[LogRecord][logrec].

128

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
(Soon
be-
low
I
will
touch
on
how
to
“con-
verge
on
java. util . logging”
with-
out
seri-
ous
dis-
rup-
tion
of
pgjdbc,
which
cur-
rently
uses
the
home-
grown
log-
ging
class.)

129

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
spe-
cial-
ized
class
will
have
sev-
eral
ex-
tra
meth-
ods,
and
some
over-
rid-
den
ones
just
to
give
it a
rea-
son-
able
de-
fault
be-
hav-
ior
when
treated
as
an
ordi-
nary
java. util . logging.LogRecord.
For
ex-
am-
ple
its
over-
rid-
den
[getMessage][gmsg]
method
may
do
some
for-
mat-
ting
by
de-
fault
and
re-
turn
more
in-
for-
ma-
tion
than
just
the
message
field,
while
dif-
fer-
ent
meth-
ods
would
be
pro-
vided
for a
caller
in
the
know
to
ex-
am-
ine
spe-
cific
indi-
vid-
ual
fields.

130

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
None
of
those
dif-
fer-
ences
stop
it
from
be-
ing
a
valid
in-
stance
of
java. util . logging.LogRecord,
and
it
can
be
passed
into
the
log-
ging
sys-
tem
by
call-
ing
[log][logr]
just
like
any
other
record.
So
can
other,
non-
extended
LogRecords
and
nor-
mal
calls
on
the
con-
ve-
nience
meth-
ods
of
[Logger][lgr],
all
at
the
same
time.
Code
ported
from
other
envi-
ron-
ments,
know-
ing
noth-
ing
of
the
ex-
ten-
sions
and
us-
ing
the
stan-
dard
log-
ger
API
will
work
fine,
and
can
be
mixed
with
code
us-
ing
the
ex-
tended
fea-
tures.

131

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Call
sites
that
aren’t
try-
ing
to
make
good
user-
visible
mes-
sages
(all
the
usual
logger . finest (”sent an M, got two dollar signs and a comma”)
kind
of
thing)
don’t
have
any
need
to
change.

132

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[gmsg]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html#getMessage()
[lo-
grec]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html
[lgr]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html
[logr]:
http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html#log(java.util.logging.LogRecord)
###
Us-
ing
fa-
mil-
iar
level
names

133

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
cur-
rent
im-
ple-
men-
ta-
tion
in
PL/-
Java
maps
Post-
greSQL
sever-
ity
lev-
els
onto
the
(smaller
set
of)
stan-
dard
[Level][jlvl]s.
This
adds
an-
other
bit
of
cog-
ni-
tive
load
in
the
de-
vel-
op-
ment
pro-
cess:
I
have
to
re-
mem-
ber,
for
ex-
am-
ple,

134

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
SET log_min_messages TO DEBUG2; SELECT javatest.logmessage(’FINER’, ’Hello world’);

135

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
are
talk-
ing
about
the
same
sever-
ity
level,
and
it’s
an
er-
ror
to
for-
get
and
use
the
other
name
ei-
ther
place,
and
the
map-
ping
loses
information—
it’s
not
in-
vert-
ible.

136

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
A
fea-
ture
of
the
de-
sign
of
[Level][jlvl]
is it
can
be
sub-
classed,
and
addi-
tional
lev-
els
can
be
de-
fined;
the
nu-
meric
val-
ues
of
the
stan-
dard
ones
are
spaced
widely
apart
to
al-
low
new
ones
be-
tween
them,
and
the
parser
even
learns
the
names
of
new
lev-
els
so
they
“just
work”.
I
pro-
pose
defin-
ing
the
Post-
greSQL
lev-
els
whose
names
do
not
al-
ready
match
[Level][jlvl]
names,
with
a
pos-
sible
rela-
tion-
ship
like
this:

137

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
|PostgreSQL|Java|
|—
—–
:|—
—-| |
|ALL|
|
|FINEST?|
|DE-
BUG5
|| |
|FINEST?|
|DE-
BUG4
||
|DE-
BUG3
|| |
|FINER|
|DE-
BUG2
|| |
|FINE|
|DE-
BUG1
|| |
|CON-
FIG|
|LOG
||
|COM-
MER-
ROR||
|INFO
|INFO|
|NO-
TICE
||
|WARN-
ING
|WARN-
ING|
|
|SE-
VERE?|
|ER-
ROR
|| |
|SE-
VERE?|
|FA-
TAL
||
|PANIC
|| |
|OFF|

138

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
As
you
can
see,
I’m
still
con-
sid-
er-
ing
ar-
gu-
ments
about
where
FINEST
and
SEVERE
should
go.
139

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
ef-
fect,
again,
is
that
code
from
else-
where
that
only
ex-
pects
the
usual
names
from
the
stan-
dard
li-
brary
will
work
fine,
code
with
more
Post-
greSQLy
ori-
gins
can
use
those
fa-
mil-
iar
names,
and
a de-
vel-
oper
or
ad-
min
can
set
the
log-
ging
level
us-
ing
any
of
them,
whichever
seems
more
nat-
ural
at
the
time.

140

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Could
pgjdbc
move
to
java. util . logging
with-
out
dis-
rup-
tion?

141

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
I
think
so.
The
class
org.postgresql .core.Logger
could
be
kept,
and
sim-
ply
dele-
gate
to
other
classes;
the
changes
at
points
where
log
events
are
read
off
the
wire
and
ex-
cep-
tions
are
cre-
ated
should
be
fairly
in-
ter-
nal
and
lo-
cal-
ized.
I’d
like
to
give
it a
shot.

142

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
I
think
the
cate-
go-
rized
ex-
cep-
tions
in
JDBC
4 are
worth
mov-
ing
to,
and
offer
a
much
nicer
way
for
client
code
to
dis-
tin-
guish
what
kind
of
thing
went
wrong,
but
chang-
ing
that
might
actu-
ally
turn
out
to
be
what
needs
the
most
coor-
dina-
tion
with
client
code.
I
would
like
to
hope
there
isn’t
much
client
code
out
there
that
has
linked
to
PSQLException
by
name
(when
it is
only
shown
on
“pri-
vateapi”
javadocs),
but
I
can
only
imag-
ine
there
is
some.

143

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
A
place
to
pause

144

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
I
have
not
man-
aged
to
squeeze
in
ev-
ery
rele-
vant
thought
here,
but
this
is al-
ready
long
and
enough
to
elicit
some
dis-
cus-
sion
and
ques-
tions,
and
if I
keep
writ-
ing I
will
prob-
ably
just
be
an-
swer-
ing
the
wrong
ones,
so
this
seems
a
good
place
to
stop
and
lis-
ten.

145

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
#
Tips
for
re-
solv-
ing
build
prob-
lems

146

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Some
typi-
cal
is-
sues
en-
coun-
tered
when
build-
ing
PL/-
Java
can
be
listed
here,
along
with
tips
for
re-
solv-
ing
them.

147

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
The
tips
that
al-
ways
ap-
ply

148

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Please
do
care-
fully
read
the
build
in-
struc-
tions,
espe-
cially
the
“soft-
ware
pre-
req-
ui-
sites”
sec-
tion,
and
the
“spe-
cial
top-
ics”
sec-
tion
for
any
that
ap-
ply
to
the
plat-
form
where
you
are
build-
ing.

149

http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
bld:
https://tada.github.io/pljava/build/build.html

150

http://tada.github.io/pljava/build/build.html

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Also
be
sure
to
re-
view
the
“trou-
bleshoot-
ing
the
build”
sec-
tion
at
the
end
of
the
build
in-
struc-
tions
page.

151

http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html
http://tada.github.io/pljava/build/build.html

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
If
you
re-
view
[the
mail-
ing
list
archive][pljdva]
and
the
[is-
sues
list][issues],
you
may
find
a re-
port
of a
situ-
a-
tion
like
your
own.
(On
the
is-
sues
list,
it is
pos-
sible
some-
one
re-
ported
an
is-
sue,
a
solu-
tion
was
found,
and
the
issue
was
closed,
so
look
at
re-
cent
closed
is-
sues
too.)

152

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[pljdva]:
http://lists.pgfoundry.org/pipermail/pljava-
dev/
[is-
sues]:
https://github.com/tada/pljava/issues
##
Fail-
ure
shown
for
pljava−so

153

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Miss-
ing
−devel
pre-
req-
ui-
site
pack-
ages

154

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
most
com-
mon
cause
of re-
ported
fail-
ures
build-
ing
pljava−so
is a
miss-
ing
re-
quired
file.
Some-
times
your
dis-
tri-
bu-
tion’s
pack-
ag-
ing
sys-
tem
will
have
cho-
sen
to
orga-
nize
a
pre-
req-
ui-
site
piece
of
soft-
ware
into
more
than
one
pack-
age,
for
ex-
am-
ple,
one
that
con-
tains
only
li-
brary
files,
and
an-
other
with
a
name
end-
ing
in
−dev
or
−devel
that
con-
tains
the
nec-
es-
sary
.h
files.
Some
dis-
tri-
bu-
tions
take
this
fur-
ther
than
oth-
ers;
see
the
“spe-
cial
top-
ics”
sec-
tion
for
Ubuntu
for
an
ex-
am-
ple
where
even
li-
braries
built
as
part
of
Post-
greSQL
it-
self
are
split
up
into
mul-
tiple
sepa-
rate
pack-
ages.

155

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
solu-
tion
is
sim-
ple:
look
over
the
er-
ror
mes-
sages
from
the
pljava−so
sec-
tion
of
the
build
out-
put
to
find
any
that
refer
to a
file
that
could
not
be
found.
Usu-
ally
it
will
be a
.h
file
or a
li-
brary
(.so,
. dll ,
.dylib,
etc.).

156

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Find
out
the
name
of
the
pack-
age,
ac-
cord-
ing
to
the
OS
or
pack-
age
dis-
tri-
bu-
tion
you
are
us-
ing,
that
con-
tains
the
miss-
ing
file,
in-
stall
that
pack-
age,
and
you
have
prob-
ably
solved
the
whole
prob-
lem.

157

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Further
tip:
Find-
ing
the
er-
ror
mes-
sage
that
re-
ally
mat-
tered
is
eas-
ier if
you
fol-
low
the
“trou-
bleshoot-
ing
the
build”
tip
about
the
−Pwnosign
op-
tion,
to
cut
down
the
num-
ber
of
other
mes-
sages
that
do
not
mat-
ter,
if
that
op-
tion
works
on
your
plat-
form.

158

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Still
stuck?
Please
de-
scribe
the
issue
you
are
fac-
ing
on
the
mail-
ing
list.

159

http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
pljdv:
http://lists.pgfoundry.org/mailman/listinfo/pljava-
dev
#
Trig-
gers

160

http://lists.pgfoundry.org/mailman/listinfo/pljava-dev

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
method
sig-
na-
ture
of a
trig-
ger
is
pre-
de-
fined.
A
trig-
ger
method
must
al-
ways
re-
turn
void
and
have
a
org.postgresql.pljava.TriggerData
pa-
ram-
eter.
No
more,
no
less.
The
Trig-
ger-
Data
in-
ter-
face
pro-
vides
ac-
cess
to
two
java.sql.ResultSet
in-
stances;
one
rep-
re-
sent-
ing
the
old
row
and
one
rep-
re-
sent-
ing
the
new.
The
old
row
is
read-
only
and
the
new
row
is
up-
date-
able.

161

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
Re-
sult-
Sets
are
only
avail-
able
for
trig-
gers
that
are
fired
ON
EACH
ROW.
Delete
trig-
gers
have
no
new
row,
and
in-
sert
trig-
gers
have
no
old
row.
Only
up-
date
trig-
gers
have
both.

162

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
In
addi-
tion
to
the
sets,
sev-
eral
boolean
meth-
ods
ex-
ists
to
gain
more
in-
for-
ma-
tion
about
the
trig-
ger.
“‘sql
CRE-
ATE
TA-
BLE
mdt
(id
int4,
idesc
text,
mod-
date
times-
tamp
DE-
FAULT
CUR-
RENT_TIMESTAMP
NOT
NULL);

163

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
CREATE
FUNC-
TION
mod-
date-
time()
RE-
TURNS
trig-
ger
AS
‘org.postgresql.pljava.example.Triggers.moddatetime’
LAN-
GUAGE
java;

164

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
CREATE
TRIG-
GER
mdt_moddatetime
BE-
FORE
UP-
DATE
ON
mdt
FOR
EACH
ROW
EX-
E-
CUTE
PRO-
CE-
DURE
mod-
date-
time
(mod-
date);
“‘
And
here
is
the
cor-
re-
spond-
ing
Java
code:

165

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
“‘java
/** *
Up-
date
a
mod-
ifica-
tion
time
when
the
row
is
up-
dated.
*/
static
void
mod-
date-
time(TriggerData
td)
throws
SQLEx-
cep-
tion
{
if(td.isFiredForStatement())
throw
new
Trig-
gerEx-
cep-
tion(td,
“can’t
pro-
cess
STATE-
MENT
events”);

166

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
if(td.isFiredAfter())
throw
new
Trig-
gerEx-
cep-
tion(td,
“must
be
fired
be-
fore
event”);

167

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
if(!td.isFiredByUpdate())
throw
new
Trig-
gerEx-
cep-
tion(td,
“can
only
pro-
cess
UP-
DATE
events”);

168

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
ResultSet
_new
=
td.getNew();
String[]
args
=
td.getArguments();
if(args.length
!= 1)
throw
new
Trig-
gerEx-
cep-
tion(td,
“one
ar-
gu-
ment
was
ex-
pected”);

169

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
_new.updateTimestamp(args[0],
new
Times-
tamp(System.currentTimeMillis()));
} “‘
#
User
guide
(wiki
ver-
sion)

170

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
first
ref-
er-
ence
should
be
the
[user
guide
at
the
main
project
site][ug].

171

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Here
at
this
wiki
ver-
sion,
you
may
still
find
use-
ful
in-
for-
ma-
tion
that
is
not
yet
mi-
grated
to
the
project
site.
Some
of
the
in-
for-
ma-
tion
here
may
be
out-
dated.
Wiki
con-
tent
is
slowly
mi-
grat-
ing
to
the
main
site
as it
is
checked
and
brought
up
to
date.

172

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[ug]:
https://tada.github.io/pljava/use/use.html
##
Util-
ities

173

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
*
The
[PL/-
Java
De-
ployer][dplr]
is a
Java
client
pro-
gram
that
helps
you
de-
ploy
PL/-
Java
in
the
database.
It is
now
obso-
les-
cent;
for
cur-
rent
in-
struc-
tions
on
in-
stalling
PL/-
Java,
see
the
in-
stal-
la-
tion
guide
at
the
main
project
site.
*
[[SQL
func-
tions]]
that
can
be
exe-
cuted
from
SQL

174

https://tada.github.io/pljava/install/install.html
https://tada.github.io/pljava/install/install.html
https://tada.github.io/pljava/install/install.html
https://tada.github.io/pljava/install/install.html
https://tada.github.io/pljava/install/install.html

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
igd:
https://tada.github.io/pljava/install/install.html
[dplr]:
https://tada.github.io/pljava/pljava-
deploy/apidocs/index.html?org/postgresql/pljava/deploy/Deployer.html
##
Au-
thor-
ing

175

https://tada.github.io/pljava/install/install.html

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
*
[[Writ-
ing
Java
func-
tions,
trig-
gers,
and
types]]
* Us-
ing a
[[SQL
de-
ploy-
ment
de-
scrip-
tor]]
*
[[Se-
cu-
rity]]

176

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
De-
bug-
ging
*
[[De-
bug-
ging
your
Java
code]]
*
[[De-
bug-
ging
in
C]]

177

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Trou-
bleshoot-
ing
*
[[Spo-
radic
hang-
ing]]
#
Us-
ing
JDBC

178

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/Java
con-
tains
a
JDBC
driver
that
maps
to
the
Post-
greSQL
SPI
func-
tions.
A
con-
nec-
tion
that
maps
to
the
cur-
rent
trans-
ac-
tion
can
be
ob-
tained
us-
ing
the
fol-
low-
ing
state-
ment:

179

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
*
The
trans-
ac-
tion
can-
not
be
man-
aged
in
any
way.
Thus,
you
can-
not
use
meth-
ods
on
the
con-
nec-
tion
such
as: *
com-
mit()
*
roll-
back()
* se-
tAu-
to-
Com-
mit()
* set-
Trans-
ac-
tion-
Iso-
la-
tion()
* A
save-
point
can-
not
out-
live
the
func-
tion
in
which
it
was
set
and
it
must
also
be
rolled
back
or
re-
leased
by
that
same
func-
tion.
*
ResultSets
re-
turned
from
executeQuery()
are
al-
ways
FETCH_FORWARD
and
CONCUR_READ_ONLY.
*
Meta-
data
be-
came
avail-
able
in
PL/-
Java
1.1.
*
CallableStatement
(for
stored
pro-
ce-
dures)
is
not
yet
im-
ple-
mented.
*
Clob/Blob
types
need
more
work.
byte[]
and
String
works
fine
for
bytea/-
text
re-
spec-
tively.
A
more
effi-
cient
map-
ping
is
planned
where
the
ac-
tual
ar-
ray
is
not
copied.

180

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
*
[[Func-
tion
map-
ping]]
*
[[Trig-
gers]]
*
[[De-
fault
Type
Map-
ping]]
*
[Map-
ping
an
SQL
type
to a
Java
class]
*
[[Cre-
at-
ing a
Scalar
UDT
in
Java]]
*
[Re-
turn-
ing
com-
plex
types]
*
[[Func-
tions
re-
turn-
ing
sets]]
*
[[Us-
ing
JDBC]]
*
[Ex-
cep-
tion
han-
dling]
*
[Save-
points]
*
[[Log-
ging]]

181

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
In
or-
der
to
com-
pletely
unin-
stall
PL/-
Java
you
need
to
have
su-
per
user
priv-
i-
leges
on
the
database.
Here’s
how
you
do
it.

182

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
0.
Get
rid
of
the
sqlj
schema
and
all
ob-
jects
de-
pend-
ing
on
it.

183

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
* If
you
in-
stalled
PL/-
Java
with
CREATE EXTENSION pljava
then
drop
it
with
DROP EXTENSION pljava CASCADE
* If
you
in-
stalled
PL/-
Java
with
a
LOAD
com-
mand,
then
drop
it
with
DROP SCHEMA sqlj CASCADE

184

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Caution:
Ei-
ther
com-
mand
will
drop
the
PL/-
Java
schema
and
lan-
guage
dec-
lara-
tions,
all
jars
you
may
have
loaded,
all
func-
tions
and
types
they
pro-
vided,
and
ev-
ery-
thing
else
in
your
database
that
de-
pends
on
any
of
those
things.

185

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
You
can
try
ei-
ther
com-
mand
with-
out
CASCADE
first,
to
see
a
list
of
what
would
be
dropped.
186

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
0.
Re-
move
any
set-
tings
of
PL/-
Java
vari-
ables
(con-
figu-
ra-
tion
vari-
ables
with
names
start-
ing
with
pljava .)
that
you
may
have
changed
from
their
de-
faults.

187

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
* If
you
had
set a
vari-
able
var
for a
par-
ticu-
lar
database
us-
ing
ALTER DATABASE dbname SET var ...
then
reset
it
us-
ing
ALTER DATABASE dbname RESET var.188

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
* If
you
had
set
it
for
the
whole
clus-
ter
us-
ing
ALTER SYSTEM SET var ...
then
reset
it
us-
ing
ALTER SYSTEM RESET var
and,
when
you
have
reset
all,
use
SELECT pg_reload_conf().

189

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
* If
you
had
set
PL/-
Java
vari-
ables
by
edit-
ing
the
con-
figu-
ra-
tion
file
(par-
ticu-
larly
on
Post-
greSQL
be-
fore
9.2,
where
this
is
the
only
avail-
able
method),
re-
move
the
set-
tings
from
the
file,
then
use
SELECT pg_reload_conf()
in
SQL.

190

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
*
The
vari-
able
dynamic_library_path
is
not
spe-
cific
to
PL/-
Java,
but
if
you
added
a di-
rec-
tory
to it
for
the
sake
of
PL/-
Java,
undo
that.

191

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
0.
Re-
move
the
PL/-
Java
files
from
the
file
sys-
tem.

192

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
* If
you
in-
stalled
PL/-
Java
with
a
pack-
age
man-
ager,
unin-
stall
it
the
same
way.
*
Oth-
er-
wise,
re-
move
the
in-
stalled
files
from
wher-
ever
you
in-
stalled
them.

193

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/Java
is an
open
source
project
and
con-
tri-
bu-
tions
are
vital
for
its
suc-
cess.
In
fact,
all
de-
vel-
op-
ment
of
the
project
is
done
us-
ing
con-
tri-
bu-
tions.
Here
are
a
few
guide
lines
that
will
help
you
sub-
mit
a
con-
tri-
bu-
tion.

194

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Get-
ting
started
*
Make
sure
you
have
a
GitHub
ac-
count.
*
Cre-
ate
a
fork
of
the
PL/-
Java
repos-
i-
tory.
*
Take
a
look
at
the
Git
Best
Prac-
tices
doc-
u-
ment.

195

http://sethrobertson.github.com/GitBestPractices/
http://sethrobertson.github.com/GitBestPractices/
http://sethrobertson.github.com/GitBestPractices/
http://sethrobertson.github.com/GitBestPractices/

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Let
peo-
ple
know
what
you’re
plan-
ning
You
should
let
the
com-
mu-
nity
know
what
you’re
plan-
ning
to
do
by
dis-
cussing
it on
the
PL/-
Java
Mail-
ing
List.
In
many
cases
it
might
also
be a
good
idea
to
first
cre-
ate
an
issue
where
the
de-
tails
of
what
needs
to
be
done
can
be
dis-
cussed
(the
ac-
tual
pull-
request
is an
issue
in it-
self
so in
case
you
al-
ready
have
some-
thing,
that
issue
is
prob-
ably
suffi-
cient).

196

http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev
http://lists.pgfoundry.org/mailman/listinfo/pljava-dev

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Mak-
ing
Changes
*
Cre-
ate
a
local
clone
of
your
fork.
*
Cre-
ate a
topic
branch
for
your
work.
You
should
branch
off
the
mas-
ter
branch.
Name
your
branch
by
the
type
of
con-
tri-
bu-
tion,
source
branch,
and
na-
ture
of
the
con-
tri-
bu-
tion,
e.g.,
bug/-
mas-
ter/my_contribution.
Gen-
er-
ally,
the
type
is
bug,
or
fea-
ture,
but
you
can
use
some-
thing
else
if
they
don’t
fit.
To
cre-
ate a
topic
branch
based
on
mas-
ter:
git
check-
out
mas-
ter
&&
git
pull
&&
git
check-
out
-b
bug/-
mas-
ter/my_contribution
*
Don’t
work
di-
rectly
on
the
mas-
ter
branch,
or
any
other
core
branch.
Your
pull
re-
quest
will
be
re-
jected
un-
less
it is
on a
topic
branch.
*
Keep
your
com-
mits
dis-
tinct.
A
com-
mit
should
do
one
thing,
and
only
one
thing.
*
Make
sure
your
com-
mit
mes-
sages
are
in
the
proper
for-
mat.
* If
your
com-
mit
fixes
an
is-
sue,
close
it
with
your
com-
mit
mes-
sage
(by
ap-
pend-
ing,
e.g.,
fixes
#1234,
to
the
sum-
mary).

197

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Sub-
mit-
ting
Changes
*
Push
your
changes
to a
topic
branch
in
your
fork
of
the
repos-
i-
tory.
*
Sub-
mit
a
pull
re-
quest
to
the
tada/-
pl-
java
repos-
i-
tory.

198

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Com-
mit
Mes-
sage
For-
mat
What
should
be
in-
cluded
in a
com-
mit
mes-
sage?
The
three
ba-
sic
things
to
in-
clude
are:
*
Sum-
mary
or
title.
* De-
tailed
de-
scrip-
tion
* Is-
sue
num-
ber
(op-
tional).

199

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Here
is a
sam-
ple
com-
mit
mes-
sage
with
all
that
in-
for-
ma-
tion:

200

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Some
POM’s
did
not
have
the
source
en-
cod-
ing
spec-
ified.
This
caused
un-
nec-
es-
sary
warn-
ing
print-
outs
dur-
ing
build.
This
com-
mit
en-
sures
that
all
POM’s
in-
cludes
the
cor-
rect
dec-
lara-
tion
for
UTF-
8.

201

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Closes
#1234

202

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
issue
num-
ber
is
op-
tional
and
should
only
be
in-
cluded
when
the
com-
mit
re-
ally
closes
an
is-
sue.
The
close
will
then
oc-
cur
when
the
pull
re-
quest
is
merged.

203

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
#
Cre-
at-
ing a
scalar
(or,
base)
user-
defined
type

204

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
This
text
as-
sumes
that
you
have
some
fa-
mil-
iar-
ity
with
how
scalar
types
are
cre-
ated
and
added
to
the
Post-
greSQL
type
sys-
tem.
For
more
info
on
that
topic,
please
read
[this
chap-
ter
in
the
Post-
greSQL
docs][xtypes].

205

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[xtypes]:
http://www.postgresql.org/docs/8.4/static/xtypes.html

206

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Creating
new
scalar
type
us-
ing
Java
func-
tions
is
very
simi-
lar
to
how
they
are
cre-
ated
us-
ing
C
func-
tions
from
an
SQL
per-
spec-
tive
but
of
course
very
dif-
fer-
ent
when
look-
ing
at
the
ac-
tual
im-
ple-
men-
ta-
tion.
Java
stip-
u-
lates
that
the
map-
ping
be-
tween
a
Java
class
and
a
cor-
re-
spond-
ing
SQL
type
should
be
done
us-
ing
the
in-
ter-
faces
java. sql .SQLData,
java. sql .SQLInput,
and
java. sql .SQLOutput
and
that
is
what
PL/-
Java
is
us-
ing.
In
addi-
tion,
the
Post-
greSQL
type
sys-
tem
stip-
u-
lates
that
each
type
must
have
a
tex-
tual
rep-
re-
sen-
ta-
tion.

207

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Let
us
cre-
ate
a
type
called
javatest .complex
(sim-
ilar
to
the
com-
plex
type
used
in
the
Post-
greSQL
doc-
u-
men-
ta-
tion).
The
name
of
the
cor-
re-
spond-
ing
Java
class
will
be
org.postgresql . pljava .example.ComplexScalar.

208

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
The
Java
code
for
the
scalar
type

209

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Pre-
req-
ui-
sites
for
the
Java
im-
ple-
men-
ta-
tion

210

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
java
class
for a
scalar
UDT
must
im-
ple-
ment
the
java. sql .SQLData
in-
ter-
face.
In
addi-
tion,
it
must
also
im-
ple-
ment
a
method
static T parse(String stringRepresentation, String typeName)
where
T
will
be
the
name
of
the
class–
that
is,
parse
will
cre-
ate
and
re-
turn
an
in-
stance
of
the
class–
and
the
java.lang.String toString()
method.
The
toString()
method
must
re-
turn
some-
thing
that
the
parse()
method
can
parse.

211

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
“‘java
pack-
age
org.postgresql.pljava.example;

212

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
import
java.io.IOException;
im-
port
java.io.StreamTokenizer;
im-
port
java.io.StringReader;
im-
port
java.sql.SQLData;
im-
port
java.sql.SQLException;
im-
port
java.sql.SQLInput;
im-
port
java.sql.SQLOutput;
im-
port
java.util.logging.Logger;

213

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
import
org.postgresql.pljava.annotation.Function;
im-
port
org.postgresql.pljava.annotation.SQLType;
im-
port
org.postgresql.pljava.annotation.BaseUDT;
import
static
org.postgresql.pljava.annotation.Function.Effects.IMMUTABLE;
im-
port
static
org.postgresql.pljava.annotation.Function.OnNullInput.RETURNS_NULL;

214

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
@BaseUDT(schema=“javatest”,
name=“complex”,
in-
ter-
nal-
Length=16,
align-
ment=BaseUDT.Alignment.DOUBLE)
pub-
lic
class
Com-
plexS-
calar
im-
ple-
ments
SQL-
Data
{ pri-
vate
dou-
ble
m_x;
pri-
vate
dou-
ble
m_y;
pri-
vate
String
m_typeName;

215

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
@Function(effects=IMMUTABLE,
on-
NullInput=RETURNS_NULL)
pub-
lic
static
Com-
plexS-
calar
parse(String
in-
put,
String
type-
Name)
throws
SQLEx-
cep-
tion
{ try
{
Stream-
Tok-
enizer
tz =
new
Stream-
Tok-
enizer(new
StringReader(input));
if(tz.nextToken()
==
‘(’
&&
tz.nextToken()
==
Stream-
Tok-
enizer.TT_NUMBER)
{
dou-
ble
x =
tz.nval;
if(tz.nextToken()
==
‘,’
&&
tz.nextToken()
==
Stream-
Tok-
enizer.TT_NUMBER)
{
dou-
ble
y =
tz.nval;
if(tz.nextToken()
==
‘)’) {
re-
turn
new
Com-
plexS-
calar(x,
y,
type-
Name);
} } }
throw
new
SQLEx-
cep-
tion(“Unable
to
parse
com-
plex
from
string
”” +
in-
put
+
‘“’);
}
catch(IOException
e) {
throw
new
SQLEx-
cep-
tion(e.getMessage());
} }

216

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
public
Com-
plexS-
calar()
{ }

217

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
public
Com-
plexS-
calar(double
x,
dou-
ble
y,
String
type-
Name)
{
m_x
= x;
m_y
= y;
m_typeName
=
type-
Name;
}218

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
@Override
pub-
lic
String
get-
SQL-
Type-
Name()
{ re-
turn
m_typeName;
}

219

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
@Function(effects=IMMUTABLE,
on-
NullInput=RETURNS_NULL)
@Over-
ride
pub-
lic
void
read-
SQL(SQLInput
stream,
String
type-
Name)
throws
SQLEx-
cep-
tion
{
m_x
=
stream.readDouble();
m_y
=
stream.readDouble();
m_typeName
=
type-
Name;
}

220

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
@Function(effects=IMMUTABLE,
on-
NullInput=RETURNS_NULL)
@Over-
ride
pub-
lic
void
writeSQL(SQLOutput
stream)
throws
SQLEx-
cep-
tion
{
stream.writeDouble(m_x);
stream.writeDouble(m_y);
}

221

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
@Function(effects=IMMUTABLE,
on-
NullInput=RETURNS_NULL)
@Over-
ride
pub-
lic
String
toString()
{
s_logger.info(m_typeName
+ ”
toString”);
String-
Buffer
sb =
new
String-
Buffer();
sb.append(‘(’);
sb.append(m_x);
sb.append(‘,’);
sb.append(m_y);
sb.append(‘)’);
re-
turn
sb.toString();
}

222

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
/*
Mean-
ing-
ful
code
that
actu-
ally
does
some-
thing
with
this
type
was
* in-
ten-
tion-
ally
left
out.
*/ }
“‘

223

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
class
it-
self
is
an-
no-
tated
with
@BaseUDT,
giv-
ing
its
SQL
schema
and
name,
and
the
length
and
align-
ment
needed
for
its
in-
ter-
nal,
stored
form.

224

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Because
the
com-
piler
knows
the
class
is a
BaseUDT,
it al-
ready
ex-
pects
the
parse,
toString,
readSQL,
and
writeSQL
meth-
ods
to
be
present,
and
will
gen-
er-
ate
the
cor-
rect
SQL
to
de-
clare
them
as
func-
tions
to
Post-
greSQL.
The
@Function
an-
no-
ta-
tions
are
only
there
to
de-
clare
the
im-
mutabil-
ity
and
on-
null-
input
be-
hav-
ior
for
those
meth-
ods,
be-
cause
those
val-
ues
are
not
the
de-
faults
when
declar-
ing
a
func-
tion.

225

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
#
De-
bug-
ging
PL/-
Java
C
code

226

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
En-
sure
the
na-
tive
code
is
com-
piled
for
de-
bug-
ging

227

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Debugging
is
much
more
pleas-
ant
when
the
C
code
has
been
com-
piled
with
de-
bug-
ging
in-
for-
ma-
tion
in-
cluded.
Edit
the
pljava−so/pom.xml
file,
find
the
<c>...</c>
sec-
tion,
and
add
‘true:

228

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
xml <configuration> ... <c> ... <debug>true</debug> <defines> ... </defines> ... </c> ... </configuration>
Save
the
pom.xml
file
and
re-
build
PL/-
Java
(or
just
the
pljava−so
sub-
pro-
ject,
to
save
time).
229

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
##
Start
PL/-
Java
and
at-
tach
a de-
bug-
ger

230

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Start
psql
and
set
the
PL/-
Java
de-
bug
flag,
and
issue
a
call
to
some
Java
func-
tion.

231

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
sql set pljava .debug to on; select sqlj .get_classpath();
You
will
see
a
mes-
sage
re-
sem-
bling
this:
INFO: Backend pid = 2830. Attach the debugger and set pljavaDebug to false to continue

232

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Use
an-
other
win-
dow
and
at-
tatch
gdb
or
an-
other
de-
bug-
ger.

233

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
sh gdb <full path to the postgres executable> <your Backend pid>
The
de-
bug-
ger
will
break
into
the
PL/-
Java
code
while
it is
in a
dummy
loop.
You
can
break
this
loop
by
set-
ting
the
global
vari-
able
pljavaDebug
to
false.
You
then
have
the
abil-
ity
to
set
break-
points
etc.
be-
fore
you
con-
tinue
exe-
cu-
tion.

234

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
gdb (gdb) set pljavaDebug=0 (gdb) <set breakpoints etc. here> (gdb) cont
That’s
it!
##
De-
bug-
ging
with
dbx

235

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Copied
from
[De-
bug-
ging
PL/-
Java
Ap-
pli-
ca-
tions
with
So-
laris
Stu-
dio
dbx][dpjdbx],
Jo-
hann
’Myrkraverk’s
blog
on
my.opera.

236

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
[dpjdbx]:
http://my.opera.com/myrkraverk/blog/2010/12/11/debugging-
pl-
java-
with-
dbx
###
Set-
ting
up
the
Server

237

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Debugging
PL/-
Java
code
re-
quires
de-
bug-
ging
of
the
server
pro-
cess
it-
self.
This
means
the
de-
bug-
ger
must
be
run
as
the
same
(or
more
priv-
i-
leged)
user
id as
the
server
it-
self.
That
may
not
be
pos-
sible
in a
pro-
duc-
tion
envi-
ron-
ment
for
ac-
cess
con-
trol/se-
cu-
rity
rea-
sons
so
for
the
re-
main-
der
of
this
text
we
as-
sume
the
de-
vel-
oper
is
run-
ning
his1
own
server
(un-
der
his
own
uid)
for
de-
bug-
ging.

238

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
As
per
the
dbx
man-
ual,
the
Java
vir-
tual
ma-
chine
must
be
started
with
the
op-
tions
−Xdebug −Xnoagent −Xrundbx_agent.
This
can
be
done
by
hav-
ing
the
fol-
low-
ing
line
in
post-
gresql.conf.
pljava .vmoptions = ’ −Xdebug −Xnoagent −Xrundbx_agent’

239

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
This
means
the
jvm
will
load
libdbx_agent.so
whose
loca-
tion
must
be
in
the
server’s
run-
time
load
path
(LD_LIBRARY_PATH).
The
So-
laris
Stu-
dio
12.2
man-
ual
gives
the
wrong
path-
name
for
the
So-
laris
amd64
bi-
nary.
It is
found
un-
der
<install dir>/solstudio12.2/lib/dbx/amd64/runtime
and
can
be
spec-
ified
as

240

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
properties LD_LIBRARY_PATH_64=/opt/solstudio12.2/lib/dbx/amd64/runtime
in
the
server’s
envi-
ron-
ment2
where
Stu-
dio
is in-
stalled
in
/opt.

241

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
Set-
ting
up
the
de-
bug-
ger
(dbx)

242

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
PL/Java
loads
classes
from
the
database
which
dbx
does
not
know
about
so it
must
be
told
where
the
jar
files
can
be
found.
This
is
done
with
the
CLASS-
PATHX
envi-
ron-
ment
vari-
able.
Note
the
ap-
pended
X.
In
our
case
it is

243

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
properties CLASSPATHX=/home/johann/src/Java/PLJava/Hello.jar

244

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
which
must
be
set
in
the
de-
bug-
ger’s
envi-
ron-
ment.
In
addi-
tion
it
must
also
be
told
where
to
find
the
Java
source
files.
For
this
we
use

245

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
To
de-
bug
PL/-
Java
it-
self
we
need
its
source
path
in
JAVAS-
RC-
PATH
too.

246

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
###
At-
tach-
ing
dbx
to
the
Server’s
Pro-
cess

247

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
Before
we
at-
tach
to
the
server
we
need
to
make
sure
that
PL/-
Java
has
been
loaded
and
that
the
vir-
tual
ma-
chine
has
been
cre-
ated.
Oth-
er-
wise
dbx
does
not
know
any-
thing
about
Java.
An
ex-
am-
ple:

248

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
properties (dbx) stop in com.myrkraverk.Hello.hello dbx: ”com” is not defined as a function or procedure in the scope ‘postgres‘be−secure.c‘secure_read‘

249

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
The
best
way
is to
run
some
sim-
ple
Java
func-
tion
be-
fore
we
at-
tach
the
de-
bug-
ger.
In a
psql
ses-
sion
one
way
is to
run
the
fol-
low-
ing
com-
mands.

250

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
sql CREATE FUNCTION getsysprop(VARCHAR) RETURNS VARCHAR AS ’java.lang.System.getProperty’ LANGUAGE java; SELECT getsysprop(’user.home’);
Now
it is
just
a
mat-
ter
of
get-
ting
the
server’s
pid

251

Update:
This
turns
out
to
be
more
timely
than
I
realized—
PL/Pythonu
is
also
[de-
vel-
op-
ing a
patch][plpu]
(start-
ing
last
month)
to
the
same
end.
“‘psql
jo-
hann=#
se-
lect
pg_backend_pid();
pg_backend_pid

10767

(1 row)

and attach dbx .

‘ ‘ ‘ sh
$ dbx − 10767
Reading po s tg r e s
Reading ld . so . 1

252

Reading l i b x s l t . so . 1
Output e l i d ed .
Reading l i b j a v a . so
Reading l i b z i p . so
Attached to proce s s 10767 with 10 LWPs
t@1 (l@1) stopped in __so_recv at 0 x f f f f f d 7 f f f 2 3 d 1 4 a
0 x f f f f f d 7 f f f 2 3 d 1 4 a : __so_recv+0x000a : j a e __so_recv+0x16 [0 x f f f f f d 7 f f f 2 3 d 1 5 6 , .+0xc]
Current func t i on i s secure_read

303 n = recv (port−>sock , ptr , len , 0) ;
(dbx)

Debugging our Java code

Our “hello world” is very simple.

package com . myrkraverk ;

class Hel lo
{

public stat ic int h e l l o ()
{

return 17 ;
}

}

Assuming we have already compiled (with -g) and jar archived our code3 we
can tell dbx to stop in our method whether we have run sqlj . install_jar () first
or not.

(dbx) stop in com . myrkraverk . He l lo . h e l l o
(2) java stop in com . myrkraverk . He l lo . h e l l o ()

And if not, we just detach dbx, re-compile/re-archive and place it where dbx
can find it before we attach again.

And of course we have to let the server continue running.

(dbx) cont

In our psql session, we can now4 load our class into the database,

johann=# s e l e c t s q l j . i n s t a l l _ j a r (’ f i l e : ///home/ johann/ s r c /Java/PLJava/He l lo . ja r ’ , ’ Hel lo ’ , f a l s e) ;
i n s t a l l _ j a r

−−−−−−−−−−−−−

(1 row)

set the classpath

253

johann=# s e l e c t s q l j . s e t_c la s spath (’ johann ’ , ’ Hel lo ’) ;
s e t_c la s spath

−−−−−−−−−−−−−−−

(1 row)

and create the sql function.
johann=# cr ea t e func t i on h e l l o () r e tu rn s in t4

as ’com . myrkraverk . He l lo . h e l l o ’ language java ;
CREATE FUNCTION

Now when we run it,
johann=# s e l e c t h e l l o () ;

dbx halts at the breakpoint.
stopped in com . myrkraverk . He l lo . h e l l o at l i n e 14 in f i l e ” He l lo . java ”

14 return 17 ;

Final Notes

It is outside the scope of this tutorial to teach debugging Java applications with
dbx. See the Solaris Studio manual for the details.

Download

Download the hello world source code from my.opera. Boost Licensed.

Footnotes

• 1 It’s been fashionable lately to use the pronoun “her” in these cases.
The author firmly believes the pronoun’s gender should be chosen as the
writer’s gender however.

• 2 This means the environment the postgres command is run in.
• 3 And that dbx can find it, as described above.
• 4 Or before, it doesn’t matter.

Debugging with jdb
PL/Java is debugged like any other Java application using JPDA. Here is an
example of how to set it up using the PostgreSQL psql utility and the bundled
command line debugger jdb (you will probably use your favourite IDE instead
but the setup will be similar).

Let’s assume we want to debug the SQL function javatest .testSavepointSanity()
and that the function is mapped to the java method org.postgresql . pljava .example.SPIActions.testSavepointSanity()
(the example is from the examples.jar found in the PL/Java source distribution).

254

http://files.myopera.com/myrkraverk/files/pljava/Hello.java
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

Fire up psql and issue the following commands:
SET p l j ava . vmoptions TO ’−agen t l i b : jdwp=transpor t=dt_socket , s e r v e r=y , address =8444 , suspend=y ’ ;
SELECT j a v a t e s t . t e s tSavepo in tSan i ty () ;

Now your application hangs. In the server log you should find a message similar
to:
L i s t en ing for t ranspor t dt_socket at address : 8444

Use another command window and attach your remote debugger:
jdb −connect com . sun . j d i . SocketAttach : port=8444 \

−sourcepath /home/workspaces / org . p o s t g r e s q l . p l j ava / s r c / java /examples
Set uncaught java . lang . Throwable
Set d e f e r r ed uncaught java . lang . Throwable
I n i t i a l i z i n g jdb . . .
> ;
VM Started : No frames on the cur rent c a l l s tack

main [1]

This means that the debugger has attached. Now you can set breakpoints etc.:
main [1] stop in org . p o s t g r e s q l . p l j ava . example . SPIActions . t e s tSavepo in tSan i ty
De f e r r ing breakpoint org . p o s t g r e s q l . p l j ava . example . SPIActions . t e s tSavepo in tSan i ty .
I t w i l l be set a f t e r the c l a s s i s loaded .
main [1] cont
> Set de f e r r ed breakpo int org . p o s t g r e s q l . p l j ava . example . SPIActions . t e s tSavepo in tSan i ty

Breakpoint h i t : ” thread=main” , org . p o s t g r e s q l . p l j ava . example . SPIActions . t e s tSavepo in tSan i ty () , l i n e=78 bc i=0
78 Connection conn = DriverManager . getConnect ion (” jdbc : d e f au l t : connect ion ”) ;

main [1]

Now it’s up to you…

Scalar types
Scalar types are mapped in a straight forward way. Here’s a table of the current
mappings (will be updated as more mappings are implemented).

PostgreSQL

Java

bool

boolean

“char”

255

byte

int2

short

int4

int

int8

long

float4

float

float8

double

char

java.lang.String

varchar

java.lang.String

text

java.lang.String

name

java.lang.String

bytea

byte[]

date

java.sql.Date

time

java.sql.Time (stored value treated as local time)

timetz

java.sql.Time

timestamp

java.sql.Timestamp (stored value treated as local time)

timestamptz

java.sql.Timestamp

256

Array scalar types
All scalar types can be represented as an array. Although PostgreSQL will
allow that you declare multi dimensional arrays with fixed sizes, PL/Java will
still treat all arrays as having one dimension (with the exception of the bytea[]
which maps to byte[][]). The reason for this is that the information about
dimensions and sizes is not stored anywhere and not enforced in any way. You
can read more about this in the PostgreSQL Documentation.

However, the current implementation does not enforce the array size limits —
the behavior is the same as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of
dimensions either. Arrays of a particular element type are all considered to
be of the same type, regardless of size or number of dimensions. So, declaring
number of dimensions or sizes in CREATE TABLE is simply documentation, it
does not affect run-time behavior.

PostgreSQL

Java

bool[]

boolean[]

“char”[]

byte[]

int2[]

short[]

int4[]

int[]

int8[]

long []

float4[]

float[]

float8[]

double[]

char[]

java.lang.String[]

varchar[]

java.lang.String[]

257

http://www.postgresql.org/docs/8.4/static/arrays.html

text[]

java.lang.String[]

name[]

java.lang.String[]

bytea[]

byte[][]

date[]

java.sql.Date[]

time[]

java.sql.Time[] (stored value treated as local time)

timetz[]

java.sql.Time[]

timestamp[]

java.sql.Timestamp[] (stored value treated as local time)

timestamptz[]

java.sql.Timestamp[]

Domain types
A domain type will be mapped in accordance with the type that it extends
unless you have installed a specific mapping to override that behavior.

Pseudo types
PostgreSQL

Java

“any”

java.lang.Object

anyelement

java.lang.Object

anyarray

java.lang.Object[]

cstring

java.lang.String

258

record

java.sql.ResultSet

trigger

org.postgresql.pljava.TriggerData (see [[Triggers]])

NULL handling of primitives
The scalar types that map to Java primitives can not be passed as null values.
To enable this, those types can have an alternative mapping. You enable this
mapping by explicitly denoting it in the method reference.

CREATE FUNCTION trueI fEvenOrNul l (integer)
RETURNS bool
AS ’ f oo . f e e .Fum. trueI fEvenOrNul l (java . lang . I n t eg e r) ’
LANGUAGE java ;

In java, you would have something like:

package f oo . f e e ;

public class Fum
{

stat ic boolean trueI fEvenOrNul l (I n t eg e r va lue)
{

return (va lue == null)
? true
: (va lue . intValue () % 1) == 0 ;

}
}

The following two statements should both yield true:

SELECT trueI fEvenOrNul l (NULL) ;
SELECT trueI fEvenOrNul l (4) ;

In order to return null values from a Java method, you simply use the object
type that corresponds to the primitive (i.e. you return java.lang.Integer instead
of int). The PL/Java resolver mechanism will find the method regardless. Since
Java cannot have different return types for methods with the same name, this
does not introduce any ambiguities.

Starting with PostgreSQL version 8.2 it will be possible to have NULL values
in arrays. PL/Java will handle that the same way as with normal primitives,
i.e. you can declare methods that use a java.lang.Integer[] parameter instead of
an int[] parameter.

259

Composite types
A composite type will be passed as a read-only java.sql.ResultSet with exactly
one row by default. The ResultSet will be positioned on its row so no call to
next() should be made. The values of the composite type are retrieved using
the standard getter methods of the ResultSet. Example:

CREATE TYPE compositeTest
AS(base integer , i ncbase integer , ct ime timestamptz) ;

CREATE FUNCTION useCompositeTest (compositeTest)
RETURNS VARCHAR
AS ’ f oo . f e e .Fum. useCompositeTest ’
IMMUTABLE LANGUAGE java ;

In class Fum we add the static following static method The foo.fee.Fum.useCompositeTest
method:

public stat ic St r ing useCompositeTest (Resu l tSet compositeTest)
throws SQLException
{

int base = compositeTest . g e t In t (1) ;
int i ncbase = compositeTest . g e t In t (2) ;
Timestamp ctime = compositeTest . getTimestamp (3) ;
return ”Base␣=␣\\””␣+␣base ␣+

␣␣␣␣”\\” , ␣ incbase ␣=␣\\””␣+␣ incbase ␣+
␣␣␣␣”\\” , ␣ ctime␣=␣\\””␣+␣ctime␣+␣”\\”” ;
}

Default mapping
Types that have no mapping are currently mapped to java.lang.String. The
standard PostgreSQL textin/textout routines registered for respective type will
be used when the values are converted.

Exception handling
You can catch and handle an exception in the PostgreSQL back-end just like
any other exception. The back-end ErrorData structure is exposed as a property
in a ServerException class derived from java. sql .SQLException, and the Java
try/catch mechanism is synchronized with the back-end mechanism.

Note: for several reasons (see [Thoughts on logging] for background), refer-
ring to ServerException and ErrorData from your code is not currently recom-
mended, and in the future may become impossible. An improved mechanism
is expected in a future release. Until then, using only the standard Java API

260

of java. sql .SQLException and its standard attributes (such as SQLState) is
recommended wherever possible.

PL/Java will always catch exceptions that you don’t. They will cause a Post-
greSQL error and the message is logged using the PostgreSQL logging utilities.
The stack trace of the exception will also be printed if the PostgreSQL configu-
ration parameter log_min_messages is set to DEBUG1 or lower.

Important Note:

You will not be able to continue executing back-end functions until your func-
tion has returned and the error has been propagated when the back-end has
generated an exception unless you have used a save-point. When a save-point
is rolled back, the exceptional condition is reset and execution can continue.

261

	Functions
	Set-returning functions
	Installing PL/Java
	Logging in PL/Java
	Mapping an SQL type to a Java class
	Packaging tips
	Parallel query and PL/Java
	PL/Java in parallel query or background worker
	Tuning PL/Java performance
	Prebuilt PL/Java distributions
	Welcome to PL/Java
	Returning complex types
	Running PL/Java sample tests
	Savepoints
	SQLJ deployment descriptors
	Functions in the sqlj schema
	Thoughts on logging
	Exception handling

