

UNTITLED
	Functions
	Set-returning functions
	Installing PL/Java
	Logging in PL/Java
	Mapping an SQL type to a Java class
	Packaging tips
	Parallel query and PL/Java
	PL/Java in parallel query or background worker
	Tuning PL/Java performance
	Prebuilt PL/Java distributions
	Welcome to PL/Java
	Returning complex types
	Running PL/Java sample tests
	Savepoints
	SQLJ deployment descriptors
	Functions in the sqlj schema
	Thoughts on logging
	Exception handling

 	
 Title Page

 	
 Table of Contents

Functions

A Java function is declared with the name of a class and a public static method on that class. The class will be resolved using the classpath that has been defined for the schema where the function is declared. If no classpath has been defined for that schema, the public schema is used. Please note that the system classloader will take precedence always. There is no way to override classes loaded with that loader.

The following function can be declared to access the static method getProperty on the java.lang.System class:

CREATE FUNCTION getsysprop(VARCHAR)
 RETURNS VARCHAR
 AS 'java.lang.System.getProperty'
 LANGUAGE java;

SELECT getsysprop('java.version');

Both the parameters and the return value can be explicitly stated so the above example could also have been written:

CREATE FUNCTION getsysprop(VARCHAR)
 RETURNS VARCHAR
 AS 'java.lang.String=java.lang.System.getProperty(java.lang.String)'
 LANGUAGE java;

This way of declaring the function is useful when the default mapping is inadequate. PL/Java will use a standard PostgreSQL explicit cast when the SQL type of the parameter or return value does not correspond to the Java type defined in the mapping.

Note: the “explicit cast” here referred to is not accomplished by creating an actual SQL CAST expression, but by (mostly) equivalent means. At the time of this writing, two special cases are not yet implemented.

SQL generation

The simplest way to write the SQL function declaration that corresponds to your Java code is to have the Java compiler do it for you:

public class Hello {
 @Function
 public static String hello(String toWhom) {
 return "Hello, " + toWhom + "!";
 }
}

When this function is compiled, a “deployment descriptor” containing the right SQL function declaration is also produced. When it is included in a jar file with the compiled code, PL/Java’s sqlj.install_jar function will create the SQL function declaration at the same time it loads the jar. See the full hello world example for more.

Set-returning functions

Returning sets is tricky. You don’t want to first build a set and then return it, since large sets would eat excessive resources. It’s better to produce one row at a time. Incidentally, that’s exactly what the PostgreSQL backend expects a function that RETURNS SETOF <type> to do. The <type> can be a scalar type such as an int, float or varchar, it can be a complex type, or a RECORD.

Returning a SETOF <scalar type>

In order to return a set of a scalar type, you need create a Java method that returns an implementation the java.util.Iterator interface.

CREATE FUNCTION javatest.getNames()
 RETURNS SETOF varchar
 AS 'foo.fee.Bar.getNames'
 IMMUTABLE LANGUAGE java;

The corresponding Java class:

package foo.fee;
import java.util.Iterator;

import org.postgresql.pljava.annotation.Function;
import static org.postgresql.pljava.annotation.Function.Effects.IMMUTABLE;

public class Bar
{
 @Function(schema="javatest", effects=IMMUTABLE)
 public static Iterator<String> getNames()
 {
 ArrayList<String> names = new ArrayList<>();
 names.add("Lisa");
 names.add("Bob");
 names.add("Bill");
 names.add("Sally");
 return names.iterator();
 }
}

Returning a SETOF <complex type>

A method returning a SETOF <complex type> must use either the interface org.postgresql.pljava.ResultSetProvider or org.postgresql.pljava.ResultSetHandle. The reason for having two interfaces is that they cater for optimal handling of two distinct use cases. The former is great when you want to dynamically create each row that is to be returned from the SETOF function. The latter makes sense when you want to return the result of an executed query.

Using the ResultSetProvider interface

This interface has two methods. The boolean assignRowValues(java.sql.ResultSet tupleBuilder, int rowNumber) and the void close() method. The PostgreSQL query evaluator will call the assignRowValues() repeatedly until it returns false or until the evaluator decides that it does not need any more rows. It will then call close().

You can use this interface the following way:

CREATE FUNCTION javatest.listComplexTests(int, int)
 RETURNS SETOF complexTest
 AS 'foo.fee.Fum.listComplexTest'
 IMMUTABLE LANGUAGE java;

The function maps to a static java method that returns an instance that implements the ResultSetProvider interface.

public class Fum implements ResultSetProvider
{
 private final int m_base;
 private final int m_increment;
 public Fum(int base, int increment)
 {
 m_base = base;
 m_increment = increment;
 }
 public boolean assignRowValues(ResultSet receiver, int currentRow)
 throws SQLException
 {
 // Stop when we reach 12 rows.
 //
 if(currentRow >= 12)
 return false;
 receiver.updateInt(1, m_base);
 receiver.updateInt(2, m_base + m_increment * currentRow);
 receiver.updateTimestamp(3, new Timestamp(System.currentTimeMillis()));
 return true;
 }
 public void close()
 {
 // Nothing needed in this example
 }
 @Function(effects=IMMUTABLE, schema="javatest", type="complexTest")
 public static ResultSetProvider listComplexTests(int base, int increment)
 throws SQLException
 {
 return new Fum(base, increment);
 }
}

The listComplexTests(int base, int increment) method is called once. It may return null if no results are available, or an instance of the ResultSetProvider. Here the Fum class implements this interface so it returns an instance of itself. The method assignRowValues(ResultSet receiver, int currentRow) will then be called repeatedly until it returns false. At that time, close() will be called.

The currentRow parameter can be a convenience in some cases, and unnecessary in others. It will be passed as zero on the first call, and incremented by one on each subsequent call. If the ResultSetProvider is returning results from some source (like an Iterator) that remembers its own position, it can simply ignore currentRow.

Using the ResultSetHandle interface

This interface is similar to the ResultSetProvider interface in that it has a close() method that will be called at the end. But instead of having the evaluator call a method that builds one row at a time, this method has a method that returns a ResultSet. The query evaluator will iterate over this set and deliver its contents, one tuple at a time, to the caller until a call to next() returns false or the evaluator decides that no more rows are needed.

Here is an example that executes a query using a statement that it obtained using the default connection. The SQL looks like this:

CREATE FUNCTION javatest.listSupers()
 RETURNS SETOF pg_user
 AS 'org.postgresql.pljava.example.Users.listSupers'
 LANGUAGE java;

CREATE FUNCTION javatest.listNonSupers()
 RETURNS SETOF pg_user
 AS 'org.postgresql.pljava.example.Users.listNonSupers'
 LANGUAGE java;

And here is the Java code:

public class Users implements ResultSetHandle
{
 private final String m_filter;
 private Statement m_statement;

 public Users(String filter)
 {
 m_filter = filter;
 }

 public ResultSet getResultSet()
 throws SQLException
 {
 m_statement = DriverManager.getConnection("jdbc:default:connection")
 .createStatement();
 return m_statement.executeQuery("SELECT * FROM pg_user WHERE " + m_filter);
 }

 public void close()
 throws SQLException
 {
 m_statement.close();
 }

 @Function(schema="javatest", type="pg_user")
 public static ResultSetHandle listSupers()
 {
 return new Users("usesuper = true");
 }

 @Function(schema="javatest", type="pg_user")
 public static ResultSetHandle listNonSupers()
 {
 return new Users("usesuper = false");
 }
}

Installing PL/Java

For the most current information on installing PL/Java, see the installation guide on the project information site.

Logging in PL/Java

PL/Java uses the standard java.util.logging.Logger Hence, you can write things like:

Logger.getAnonymousLogger().info(
 "Time is " + new Date(System.currentTimeMillis()));

At present, the logger is hardwired to a handler that maps the state of the PostgreSQL configuration setting log_min_messages to a valid Logger level and that outputs all messages using the backend function ereport().

Importantly, Java’s Logger methods can quickly discard any message logged at a finer level than the one that was mapped from PostgreSQL’s setting at the time PL/Java was first used in the current session. Such messages never even get as far as ereport(), even if the PostgreSQL setting is changed later.

So, if expected messages from Java code are not showing up, be sure that the setting in PostgreSQL, at the time of PL/Java’s first use in the session, is fine enough that Java will not throw the messages away. Once PL/Java has started, the settings can be changed as desired and will control, in the usual way, what ereport does with the messages PL/Java delivers to it.

Through PL/Java 1.5.0, only the log_min_messages setting is used to set that Java cutoff level. Starting with 1.5.1, the cutoff level in Java is set (still only once at PL/Java startup) based on the finer of log_min_messages and client_min_messages.

The following mapping applies between the Logger levels and the PostgreSQL backend levels:

	
java.util.logging.Level

	
PostgreSQL level

	
SEVERE

	
ERROR

	
WARNING

	
WARNING

	
INFO

	
INFO

	
FINE

	
DEBUG1

	
FINER

	
DEBUG2

	
FINEST

	
DEBUG3

See [Thoughts on logging] for likely future directions in this area.

Mapping an SQL type to a Java class

Using PL/Java, you can install a mapping between an arbitrary type and a Java class. There are two prerequisites for doing this:

	You must know the storage layout of the SQL type that you are mapping.

	The Java class that you map to must implement the interface java.sql.SQLData.

Mapping an existing SQL data type to a java class

Here is an example of how to map the PostgreSQL geometric point type to a Java class. We know that the point is stored as two float8’s, the x and the y coordinate.

You can consult the postgresql source code when the exact layout of a basic type is unknown. I peeked at the point_recv function in file src/backend/utils/adt/geo_ops.c to determine the exact layout of the point type.

Once the layout is known, you can create the java.sql.SQLData implementation that uses the class java.sql.SQLInput to read and the class java.sql.SQLOutput to write data:

package org.postgresql.pljava.example;

import java.sql.SQLData;
import java.sql.SQLException;
import java.sql.SQLInput;
import java.sql.SQLOutput;

public class Point implements SQLData {
 private double m_x;
 private double m_y;
 private String m_typeName;

 public String getSQLTypeName() {
 return m_typeName;
 }

 public void readSQL(SQLInput stream, String typeName) throws SQLException {
 m_x = stream.readDouble();
 m_y = stream.readDouble();
 m_typeName = typeName;
 }

 public void writeSQL(SQLOutput stream) throws SQLException {
 stream.writeDouble(m_x);
 stream.writeDouble(m_y);
 }

 /* Meaningful code that actually does something with this type was
 * intentionally left out.
 */
}

Finally, you install the type mapping using the add_type_mapping command:

SELECT sqlj.add_type_mapping('point', 'org.postgresql.pljava.example.Point');

You should now be able to use your new class. PL/Java will henceforth map any point parameter to the org.postgresql.pljava.example.Point class.

Creating a composite UDT and mapping it to a java class

Here is an example of a complex type created as a composite UDT.

CREATE TYPE javatest.complextuple AS (x float8, y float8);

SELECT sqlj.add_type_mapping('javatest.complextuple',
 'org.postgresql.pljava.example.ComplexTuple');

package org.postgresql.pljava.example;

import java.sql.SQLData;
import java.sql.SQLException;
import java.sql.SQLInput;
import java.sql.SQLOutput;

public class ComplexTuple implements SQLData {
 private double m_x;
 private double m_y;
 private String m_typeName;

 public String getSQLTypeName()
 {
 return m_typeName;
 }

 public void readSQL(SQLInput stream, String typeName) throws SQLException
 {
 m_typeName = typeName;
 m_x = stream.readDouble();
 m_y = stream.readDouble();
 }

 public void writeSQL(SQLOutput stream) throws SQLException
 {
 stream.writeDouble(m_x);
 stream.writeDouble(m_y);
 }

 /* Meaningful code that actually does something with this type was
 * intentionally left out.
 */
}

Generating SQL automatically

The SQL shown above for this example will be written for you by the Java compiler, if the ComplexTuple class is simply annotated as a “mapped user-defined type” with the desired SQL name and structure:

@MappedUDT(schema="javatest", name="complextuple",
 structure={"x float8", "y float8"})
public class ComplexTuple implements SQLData {
 ...

Generating the SQL reduces the burden of keeping the definitions in sync in two places. See the hello world example for more.

Packaging tips

This wiki page can be used to gather issues and tips that pertain to building PL/Java packages for downstream distributions or repositories, in between updates to the packaging section in the versioned documentation.

Anyone producing a prebuilt PL/Java package is encouraged to announce its availability on the [[Prebuilt packages]] wiki page.

Parallel query and PL/Java

PL/Java 1.5.1 adds support for PostgreSQL 9.6, and with that comes the possibility of using PL/Java functions in parallel queries. Simple testing shows that this actually works; PL/Java functions can even be declared PARALLEL SAFE if they meet the requirements, and executed in the parallelized parts of queries.

However, this is a substantial change to conditions in which PL/Java was developed, so this wiki page is here to collect the notes that are likely to come with experience using this new capability. Such experience might include empirically-determined, good values for parallel_setup_cost, nonobvious cases where a function should not be declared RESTRICTED or SAFE, and so on.

Notes go here

Preview of new documentation

Until PL/Java 1.5.1 is released, here is a preview of the new section of the user’s guide.

PL/Java in parallel query or background worker

With some restrictions, PL/Java can be used in parallel queries, from PostgreSQL 9.6, and in some background worker processes (as introduced in PostgreSQL 9.3, though 9.5 or later is needed for support in PL/Java).

Background worker processes

Because PL/Java requires access to a database containing the sqlj schema, PL/Java is only usable in a worker process that initializes a database connection, which must happen before the first use of any function that depends on PL/Java.

Parallel queries

Like any user-defined function, a PL/Java function can be annotated with a level of “parallel safety”, UNSAFE by default.

When a function labeled UNSAFE is used in a query, the query cannot be parallelized at all. If a query contains a function labeled RESTRICTED, parts of the query may execute in parallel, but the part that calls the RESTRICTED function will be executed only in the lead process. A function labeled SAFE may be executed in every process participating in the query.

Parallel setup cost

PostgreSQL parallel query processing uses multiple operating-system processes, and these processes are new for each parallel query. If a PL/Java function is labeled PARALLEL SAFE and is pushed by the query planner to run in the parallel worker processes, each new process will start a Java virtual machine. The cost of doing so will reduce the expected advantage of parallel execution.

To inform the query planner of this trade-off, the value of the PostgreSQL configuration variable parallel_setup_cost should be increased. The startup cost can be minimized with attention to the PL/Java VM option recommendations, including class data sharing.

Limits on RESTRICTED/SAFE function behavior

There are stringent limits on what a function labeled RESTRICTED may do, and even more stringent limits on what may be done in a function labeled SAFE. The PostgreSQL manual describes the limits in the section Parallel Labeling for Functions and Aggregates.

While PostgreSQL does check for some inappropriate operations from a PARALLEL SAFE or RESTRICTED function, for the most part it relies on functions being labeled correctly. When in doubt, the conservative approach is to label a function UNSAFE, which can’t go wrong. A function mistakenly labeled RESTRICTED or SAFE could produce unpredictable results.

Internal workings of PL/Java

While a given PL/Java function itself may clearly qualify as RESTRICTED or SAFE by inspection, there may still be cases where a forbidden operation results from the internal workings of PL/Java itself. This has not been seen in testing (simple parallel queries with RESTRICTED or SAFE PL/Java functions work fine), but to rule out the possibility would require a careful audit of PL/Java’s code. Until then, it would be prudent for any application involving parallel query with RESTRICTED or SAFE PL/Java functions to be first tested in a non-production environment.

Further reading

README.parallel in the PostgreSQL source, for more detail on why parallel query works the way it does.

Tuning PL/Java performance

As of 2018, there is a strong selection of Java runtimes that can be used to back PL/Java, including at least:

	Oracle’s Java (and Hotspot JVM)

	OpenJDK (with Hotspot JVM)

	OpenJDK (with Eclipse OpenJ9 JVM)

These JVMs offer a wide variety of configurable options affecting both memory footprint and time performance of applications using PL/Java. The options include initial and limit sizes for different memory regions, aggressiveness of just-in-time and ahead-of-time compilation, choice of garbage-collection algorithm, and various forms of shared-memory caching of precompiled classes.

The formal PL/Java documentation contains a fairly extensive treatment of useful Hotspot settings, including a section on plausible minimum settings for memory footprint achievable with different class-sharing and garbage-collector settings. The documentation there of the comparable options and limits for OpenJ9 is more sparse at present.

This wiki page is intended as a clearinghouse for tuning tips and performance measurements for various PL/Java workloads and the available Java runtimes, that can be updated more actively between releases of the formal documentation.

Tip for quickly comparing runtime configurations

Once the PL/Java extension is installed in a database, in any newly-created session, the Java virtual machine is started on the first use of a PL/Java function. The JVM that is started, and how, are determined by the settings of pljava.* configuration variables in effect at that moment, most importantly:

	pljava.libjvm_location selects which Java runtime will be used

	pljava.vmoptions supplies the options to be passed to it

Therefore, all without exiting psql, a new Java runtime or combination of options can be tested by switching to a new connection with \c, setting those options differently, and again calling the PL/Java function of interest.

It can be convenient to include the settings on the psql \c line. For example, to time functionOfInterest() on two different Java runtimes:

\c "dbname=postgres options='-c pljava.libjvm_location=/path/to/oracle/.../libjvm.so'"
EXPLAIN ANALYZE SELECT functionOfInterest();
\c "dbname=postgres options='-c pljava.libjvm_location=/path/to/openj9/.../libjvm.so'"
EXPLAIN ANALYZE SELECT functionOfInterest();

For obvious reasons, the pljava.libjvm_location and pljava.vmoptions variables require privilege to set, so the connection needs to be made with superuser credentials.

Sample workload: Java XML manipulation

We will create a table containing a single XML document:

CREATE TABLE catalog_as_xml AS
SELECT schema_to_xml('pg_catalog', true, false, '') AS x;

In PostgreSQL 11beta3, the resulting document has the following size (after PL/Java and the example code have been loaded):

SELECT octet_length(xml_send(x)) AS uncompressed, pg_column_size(x) AS toasted
FROM catalog_as_xml;

	uncompressed
	toasted

	14049808
	1130828

A test query will return the string value of every element whose string value is exactly six characters (a query that may be artificial and contrived, but can be expressed nearly identically in XML Query (the standard-mandated language for SQL XMLTABLE) and in the PostgreSQL native XMLTABLE syntax, which is limited to XPath 1.0).

The baseline will be the query expressed in XPath 1.0 using the PostgreSQL XMLTABLE function:

EXPLAIN ANALYZE SELECT
 xmltable.*
FROM
 catalog_as_xml,
 XMLTABLE('//*[string-length(.) = 6]'
 PASSING x
 COLUMNS s text PATH 'string(.)'
);

It will be compared to the equivalent query expressed in XQuery 1.0 and the "xmltable" function defined in the not-built-by-default org.postgresql.pljava.example.saxon.S9 example, relying on the Saxon-HE library:

EXPLAIN ANALYZE SELECT
 xmltable.*
FROM
 catalog_as_xml,
 LATERAL (SELECT x AS ".") AS p,
 "xmltable"('//*[string-length(.) eq 6]',
 PASSING => p,
 COLUMNS => array['string(.)']
) AS (s text);

The Java query will be run in both Oracle Java 8 (on the Hotspot JVM) and OpenJDK 8 (with the OpenJ9 JVM), with different choices of class-sharing options:

	tag
	description

	pg
	Baseline, PostgreSQL XMLTABLE

	hs
	Hotspot, no sharing

	hs-cds
	Hotspot, class data sharing (Java runtime classes only)

	hs-appcds
	Hotspot, AppCDS (commercial feature), Java runtime, PL/Java, Saxon

	j9
	OpenJ9, no -Xquickstart, no sharing

	j9q
	OpenJ9, -Xquickstart, no sharing

	j9s
	OpenJ9, no -Xquickstart, sharing (Java runtime, PL/Java, Saxon)

	j9qs
	OpenJ9, -Xquickstart, sharing (as above)

EXPLAIN ANALYZE reported timings in milliseconds:

	iteration
	pg
	hs
	hs-cds
	hs-appcds
	j9
	j9q
	j9s
	j9qs

	1st
	908.231
	1888.859
	1837.186
	1539.781
	3250.965
	3095.733
	2443.649
	2644.991

	2nd
	879.483
	772.545
	838.082
	826.558
	1229.200
	1855.513
	1073.335
	1932.083

	4th
	881.302
	664.422
	688.487
	673.037
	1011.018
	1708.208
	987.191
	1912.010

	8th
	880.766
	640.940
	643.535
	632.260
	962.517
	1660.867
	952.857
	1870.506

	16th
	880.622
	654.674
	682.772
	627.037
	967.805
	1656.651
	943.923
	1941.888

Discussion

	The baseline native XMLTABLE implementation in PostgreSQL delivers consistent times over successive runs. Java timings improve over successive early runs, as the VM identifies and reoptimizes hot areas.

	For all of the Java results, the first-iteration result includes the time to launch the Java virtual machine. For Hotspot, this gives a time to first result from 67% (best) to 108% (worst) longer than the native baseline.

	All tested Hotspot configurations are outperforming the native implementation as soon as the next iteration, and eventually by 22% to 28%.

	For this workload, Hotspot seems to have a striking performance advantage relative to OpenJ9. Possible explanations:

	Saxon is a mature and carefully-optimized library; are its optimizations extremely specific to Hotspot?

	PL/Java makes heavy use of JNI; could this pattern be less well handled in OpenJ9?

	OpenJ9’s -Xquickstart is a poor fit for this workload, as it suppresses JIT optimization so drastically that performance improves very little on successive runs.

	The combination of -Xquickstart and -Xshareclasses for this workload is especially disappointing, probably because the two features, when combined, force the ahead-of-time compilation of all methods. That sounds promising, but not if the AOT code significantly underperforms what the optimizing JIT would generate.

	Memory footprint was not compared. PL/Java’s documentation already has a section on plausible memory settings for Hotspot, but not for OpenJ9, which has a good reputation for memory frugality. Exploration would be worthwhile.

	There could be other workloads in which the Hotspot and OpenJ9 relative timings could be closer, or even reversed.

	The procedure to set up class sharing for OpenJ9 is considerably simpler than to set up AppCDS for Hotspot, enough to make OpenJ9 an attractive choice for workloads where the performance is more comparable.

Variation by processor count

The results above were obtained with 6 available processor cores (12 hyperthreads). Here, the best Hotspot (h-) and OpenJ9 (j-) configurations from above (hs-appcds and j9s, respectively) are repeated for different numbers of cores and threads available to the backend process.

	iteration
	h-4c8t
	h-4c4t
	h-2c4t
	h-2c2t
	h-1c2t
	h-1c1t

	1st
	1798.020
	2140.068
	1871.740
	2760.872
	2564.169
	4306.058

	2nd
	780.182
	827.379
	825.943
	1054.749
	1064.300
	1704.112

	4th
	661.740
	672.415
	662.259
	786.407
	734.421
	756.054

	8th
	619.978
	653.686
	641.784
	659.112
	678.855
	722.792

	16th
	619.824
	647.092
	664.287
	671.862
	639.365
	651.502

	iteration
	j-4c8t
	j-4c4t
	j-2c4t
	j-2c2t
	j-1c2t
	j-1c1t

	1st
	2413.365
	2419.176
	2411.006
	2470.092
	2457.868
	3673.986

	2nd
	1108.991
	1093.504
	1050.731
	1142.424
	1072.635
	2599.973

	4th
	969.465
	1003.736
	988.883
	983.431
	941.495
	1032.896

	8th
	967.447
	900.644
	963.011
	926.342
	920.390
	1032.316

	16th
	1113.963
	932.503
	1496.240
	925.137
	939.179
	990.072

Discussion

Hotspot’s initial startup uses parallelism to good advantage, so the startup time suffers when cores are limited, and especially when limited to one hardware thread. Interestingly, comparing sets with the same number of threads, in one case independent on an equal number of cores, and in the other case hyperthreads on half as many cores, the data above seem to favor the hyperthreaded case. More runs might reveal whether that apparent pattern persists.

Even with only one hardware thread available, Hotspot can still produce code that outperforms the native libxml2 no later than the fourth iteration.

OpenJ9, while not achieving the ultimate speeds of Hotspot on this workload, shows a first-run time that suffers less when limited to few CPUs. However, that advantage diminishes when taking the times of the first two runs into account.

Not shown in these tables, but as expected, the baseline PostgreSQL native XMLTABLE posted timings of 893 ms first run, 877 ms second run, consistently with the earlier values, even when limited to one core, one thread.

Notes on methodology

Platform

Intel Xeon X5650 2.67 GHz, 6 cores (12 hyperthreads), 24 GB RAM, Linux.

PostgreSQL installation, Java runtimes, database, and PL/Java and Saxon libraries and jars installed in an in-memory (tmpfs) filesystem.

Connection strings used for each test configuration

Note: the connection strings below for the Hotspot runs with AppCDS contain the option -XX:+UnlockCommercialFeatures because the runs were done on Oracle Java 8 where AppCDS is a commercial feature, and its use in production will need a license from Oracle. The same feature appears in OpenJDK with Hotspot starting in Java 10, where it is not a commercial feature, and does not require that -XX:+UnlockCommercialFeatures option; it is otherwise configured in the same way.

\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/nohome/jre/lib/amd64/server/libjvm.so -c pljava.vmoptions=-Djava.home=/var/tmp/nohome/jre\\\ -XX:+UseSerialGC\\\ -XX:+DisableAttachMechanism\\\ -Xshare:off -c pljava.classpath=/var/tmp/nohome/pg11/share/postgresql/pljava/pljava-1.5.1-SNAPSHOT.jar:/var/tmp/nohome/jre/lib/Saxon-HE-9.8.0-14.jar'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/nohome/jre/lib/amd64/server/libjvm.so -c pljava.vmoptions=-Djava.home=/var/tmp/nohome/jre\\\ -XX:+UseSerialGC\\\ -XX:+DisableAttachMechanism\\\ -Xshare:on -c pljava.classpath=/var/tmp/nohome/pg11/share/postgresql/pljava/pljava-1.5.1-SNAPSHOT.jar:/var/tmp/nohome/jre/lib/Saxon-HE-9.8.0-14.jar'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/nohome/jre/lib/amd64/server/libjvm.so -c pljava.vmoptions=-Djava.home=/var/tmp/nohome/jre\\\ -XX:+UseSerialGC\\\ -XX:+DisableAttachMechanism\\\ -Xshare:on\\\ -XX:+UnlockCommercialFeatures\\\ -XX:+UseAppCDS\\\ -XX:SharedArchiveFile=/var/tmp/nohome/pljava.jsa -c pljava.classpath=/var/tmp/nohome/pg11/share/postgresql/pljava/pljava-1.5.1-SNAPSHOT.jar:/var/tmp/nohome/jre/lib/Saxon-HE-9.8.0-14.jar'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/jdk8u162-b12_openj9-0.8.0/jre/lib/amd64/j9vm/libjvm.so'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/jdk8u162-b12_openj9-0.8.0/jre/lib/amd64/j9vm/libjvm.so -c pljava.vmoptions=-Xquickstart'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/jdk8u162-b12_openj9-0.8.0/jre/lib/amd64/j9vm/libjvm.so -c pljava.vmoptions=-Xshareclasses:cacheDir=/var/tmp/pljavaj9cache'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/jdk8u162-b12_openj9-0.8.0/jre/lib/amd64/j9vm/libjvm.so -c pljava.vmoptions=-Xshareclasses:cacheDir=/var/tmp/pljavaj9cache\\\ -Xquickstart'"

Jars loaded into PL/Java

The PL/Java sqlj.install_jar function was used to install the PL/Java examples jar (giving it the name ex), with deploy => true to create the function declarations, and also the Saxon-HE-9.8.0-14.jar, naming it saxon.

The PL/Java application classpath (set with sqlj.set_classpath on the public schema), was ex during the Hotspot runs, and ex:saxon during the OpenJ9 runs. (For the Hotspot runs, the Saxon jar was placed on the system classpath by adding it to pljava.classpath instead, as explained below.)

Setup for Hotspot

	The existing Hotspot installation on disk was copied to the tmpfs.

	That invalidates the paths in the supplied classes.jsa shared archive that was generated when Java was installed to its location on disk, so the lib/amd64/server/classes.jsa file was removed from the copy and regenerated with java -Xshare:dump to contain the correct paths. That shared archive contains only classes of the Java runtime itself.

	The shared archive for AppCDS, to include PL/Java implementation classes and the Saxon library as well as the Java runtime’s classes, was generated in two steps:

	A connection string with -XX:DumpLoadedClassList=filename was issued and the test query was executed, to populate the class list with the needed classes.

	A new connection string with -Xshare:dump and -XX:SharedClassListFile naming the classlist file generated in the first step was issued, and then SELECT sqlj.get_classpath('public'); to trigger PL/Java loading. Java reads the class list and generates the shared archive, and the backend exits.

	Because Hotspot AppCDS will share only classes from the system classpath, the pljava.classpath setting was altered to include Saxon-HE-9.8.0-14.jar as well as the PL/Java jar.

	Because PL/Java’s security manager disallows jar loading from arbitrary filesystem locations, the Saxon-HE-9.8.0-14.jar was placed in Java’s jre/lib directory and the pljava.classpath referred to it there.

	AppCDS will not share classes contained in a signed jar, and the distributed Saxon-HE-9.8.0-14.jar is signed, so the copy placed in jre/lib was “de-signed” by deleting its TE-050AC.SF entry and all Name:/Digest: sections from its MANIFEST.MF entry.

Setup for OpenJ9

	The OpenJDK with OpenJ9 download was unzipped in the /var/tmp tmpfs.

	Because PL/Java under OpenJ9 is able to share classes from the PL/Java application classpath (the one managed by sqlj.set_classpath) and not just the system classpath, there was no need to add the Saxon jar to pljava.classpath as there was for Hotspot. It was simply loaded with sqlj.install_jar under the name saxon, and put on the application classpath with SELECT sqlj.set_classpath('public', 'ex:saxon');.

	Each set of runs with sharing (j9s, j9qs) was prepared by starting a fresh session with the same connection string to be used for that set, and the shareDir named in that connection string empty. Sixteen runs were made without timing, to populate the shared cache.

	Then the same connection string was used again to start a fresh session, and the full set of 16 runs repeated and timed.

Connection strings generating AppCDS shared archive

See the earlier note concerning the -XX:+UnlockCommercialFeatures option, which is needed (with legal implications) to use the AppCDS feature in Oracle Java. The same feature appears in OpenJDK as of Java 10, without the need for that option or a commercial license.

\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/nohome/jre/lib/amd64/server/libjvm.so -c pljava.vmoptions=-Djava.home=/var/tmp/nohome/jre\\\ -XX:+UseSerialGC\\\ -XX:+DisableAttachMechanism\\\ -Xshare:off\\\ -XX:DumpLoadedClassList=/var/tmp/nohome/pljava.classlist\\\ -XX:+UnlockCommercialFeatures\\\ -XX:+UseAppCDS -c pljava.classpath=/var/tmp/nohome/pg11/share/postgresql/pljava/pljava-1.5.1-SNAPSHOT.jar:/var/tmp/nohome/jre/lib/Saxon-HE-9.8.0-14.jar'"
\c "dbname=postgres options='-c pljava.libjvm_location=/var/tmp/nohome/jre/lib/amd64/server/libjvm.so -c pljava.vmoptions=-Djava.home=/var/tmp/nohome/jre\\\ -XX:+UseSerialGC\\\ -XX:+DisableAttachMechanism\\\ -Xshare:dump\\\ -XX:SharedClassListFile=/var/tmp/nohome/pljava.classlist\\\ -XX:+UnlockCommercialFeatures\\\ -XX:+UseAppCDS\\\ -XX:SharedArchiveFile=/var/tmp/nohome/pljava.jsa -c pljava.classpath=/var/tmp/nohome/pg11/share/postgresql/pljava/pljava-1.5.1-SNAPSHOT.jar:/var/tmp/nohome/jre/lib/Saxon-HE-9.8.0-14.jar'"

“De-signing” the Saxon jar

Hotspot’s AppCDS will not share classes from a signed jar, so the signatures were removed from the Saxon jar with this procedure:

zip -d Saxon-HE-9.8.0-14.jar META-INF/TE-050AC.SF
unzip Saxon-HE-9.8.0-14.jar META-INF/MANIFEST.MF
ed META-INF/MANIFEST.MF <<END-COMMANDS
/^[[:space:]]/+1,$d
wq
END-COMMANDS
zip -u Saxon-HE-9.8.0-14.jar META-INF/MANIFEST.MF

Stripping the signatures does not impair the operation of the open-source Saxon-HE. It is conceivable that the commercial Saxon-PE or Saxon-EE would object to such treatment.

Setup for processor-count variation

Several Linux control groups were created as follows:

mkdir /sys/fs/cgroup/cpuset/{1c1t,1c2t,2c2t,2c4t,4c4t,4c8t}
for i in /sys/fs/cgroup/cpuset/?c?t
do
 echo 0 >$i/cpuset.mems
done
echo 0 >/sys/fs/cgroup/cpuset/1c1t/cpuset.cpus
echo 0,1 >/sys/fs/cgroup/cpuset/1c2t/cpuset.cpus
echo 0,2 >/sys/fs/cgroup/cpuset/2c2t/cpuset.cpus
echo 0-3 >/sys/fs/cgroup/cpuset/2c4t/cpuset.cpus
echo 0,2,4,6 >/sys/fs/cgroup/cpuset/4c4t/cpuset.cpus
echo 0-7 >/sys/fs/cgroup/cpuset/4c8t/cpuset.cpus

After each new backend was established with the appropriate \c line, its process ID was obtained with SELECT pg_backend_pid(); and echoed into cgroup.procs in the appropriate cpuset subdirectory.

The OpenJ9 class share was initially populated with one set of 16 runs before any timing was done. Timings were then done in the order shown, from 4c8t to 1c1t, and the -Xshareclasses option did not have readonly added for the timed sets. Because OpenJ9 can continue adding JIT hints to a class share during operation, it is possible that the later sets benefit from JIT hints added during the earlier ones.

Copyright © 2004 - 2015 Tada AB - Täby Sweden All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name Tada AB nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Prebuilt PL/Java distributions

At present, the PL/Java project is reliant on downstream packagers to produce prebuilt, installable PL/Java packages for various platforms. The official PL/Java releases are offered in source form and take only a few minutes to build with Apache Maven as described in the build instructions.

This wiki page will be updated to list known prebuilt PL/Java packages and the platforms they are built for. As with any prebuilt distribution, you should be acquainted with the policies and reputation of any supplier of a prebuilt package. The PL/Java project has not directly built or verified any package listed here.

Known prebuilt packages available

Debian/Ubuntu packages on apt.postgresql.org

{1.5.2,"11.1 (Debian 11.1-1.pgdg+1)",11.0.1,Linux,amd64}`

PL/Java 1.5.2 packages available for PostgreSQL 11 back to 9.3 for Debian unstable/buster/stretch and Ubuntu cosmic/bionic/xenial, for amd64/i386/ppc64el. Dbgsym packages available. Includes pljava-examples jar with the optional Saxon examples already built (download Saxon-HE 9.8.0.14 jar separately to use them).

Added 14 November 2018

Docker images

Martin Bednar has prepared images of 64-bit PostgreSQL (9.5 and 9.4) with PL/Java 1.5.0 and Oracle Java 8 for use with Docker.

{1.5.0,9.5.1,1.8.0_74,Linux,amd64}
{1.5.0,9.4.6,1.8.0_74,Linux,amd64}

added 12 April 2016

Complete PostgreSQL distributions from BigSQL

BigSQL provides native installers for Centos 6 and 7, Ubuntu 12.04 and 14.04, OS X 10.9+, Windows 7+, and Windows Server 2008 and 2012. These distributions of PostgreSQL 9.5, 9.4, 9.3, and 9.2 include PL/Java 1.5.0.

added 12 April 2016

To list a prebuilt package here

Please announce the availability of your package on the pljava-dev mailing list, along with the output of the third query below:

Note: as of mid-May 2016, the pljava-dev mailing list is working again, and should be used to announce packages. In case the mailing list does not seem to work, then please open an issue.

SELECT sqlj.install_jar(fileurl-to-built-pljava-examples-*.jar , 'ex', true);

SELECT sqlj.set_classpath('javatest', 'ex');

SELECT array_agg(java_getsystemproperty(p)) FROM (values
('org.postgresql.pljava.version'),
('org.postgresql.version'),
('java.version'),
('os.name'),
('os.arch')
) AS props(p);

[image: PL/Java]PL/Java

2017/06 Breaking news: workaround crash with Stack Guard-hardened kernels

As of late June 2017, Linux kernel vendors are shipping updates that harden the kernel against certain so-called stack-smash attacks. The hardened kernels change the mapping of memory just below the stack, and cause Java to crash with a SIGBUS error (as reported elsewhere, not only in PL/Java). If you experience this, add -Xss2M (or larger than 2M, if a larger stack size is needed by your application) to pljava.vmoptions.

For more information, see PL/Java issue #129 and (for Red Hat subscribers) this Red Hat solutions document.

Welcome to PL/Java

If you have comments or ideas regarding this wiki, please convey them on the Mailing List. A great deal of information can also be found at the project information site.

Overview

PL/Java is a free add-on module that brings Java™ Stored Procedures, Triggers, and Functions to the PostgreSQL™ backend. The development started late 2003 and the first release of PL/Java arrived in January 2005. The project is released under the [[PLJava License]] license.

Features

	Ability to write functions, triggers, user-defined types, … using recent Java versions. (To see the currently-targeted versions, please see the versions page.)

	Standardized utilities (modeled after the SQL 2003 proposal) to install and maintain Java code in the database.

	Standardized mappings of parameters and result. Supports scalar and composite user-defined types (UDTs), pseudo types, arrays, and sets.

	An embedded, high performance JDBC driver utilizing the internal PostgreSQL SPI routines.

	Metadata support for the JDBC driver. Both DatabaseMetaData and ResultSetMetaData are included.

	Integration with PostgreSQL savepoints and exception handling.

	Ability to use IN, INOUT, and OUT parameters

	Two language handlers, javau (functions not restricted in behavior, only superusers can create them) and java (functions run under a security manager blocking filesystem access, users who can create them configurable with GRANT/REVOKE)

	Transaction and Savepoint listeners enabling code execution when a transaction or savepoint is commited or rolled back.

PL/Java earlier supported GCJ, but targets conventional Java virtual machines for current development.

Documentation

The first stop for up-to-date documentation should be the project information site.

You may also find useful information via the wiki links below. Information here will be migrating to the project information site as it is brought up to date.

[[Installation Guide]]

[[User Guide]]

[[Contribution Guide]]

Resources

Note: To be sure of running a current PL/Java, please check the releases page to see what is current. You may check for any [[prebuilt packages]] available for your platform. If prebuilt packages are not available for your platform, or if they are behind the current version, please consider Building PL/Java using the source here on GitHub.

The “no longer supported” downloads linked below are quite old and of chiefly historical interest.

Source downloads

[[Prebuilt packages]]

No longer supported downloads

Mailing List

Questions tagged pljava on Stack Overflow (Atom feed)

Feed for changes to this wiki itself

Bug Tracking

Older bug tracker at PgFoundry

Even older bug tracker at GBorg

Technology

[[Technology in Brief]]

[[The choice of JNI]]

Returning complex types

The SQL-2003 draft suggest that a complex return value is handled as an IN/OUT parameter and PL/Java implements it that way. If you declare a function that returns a complex type, you will need to use a Java method with boolean return type with a last parameter of type java.sql.ResultSet added after all of the method’s visible parameters. The output parameter will be initialized to an updatable ResultSet that contains exactly one row.

CREATE FUNCTION createComplexTest(int, int)
 RETURNS complexTest
 AS 'foo.fee.Fum.createComplexTest'
 IMMUTABLE LANGUAGE java;

The PL/Java method resolver will now find the following method in class foo.fee.Fum:

public static boolean complexReturn(int base, int increment, ResultSet receiver)
throws SQLException
{
 receiver.updateInt(1, base);
 receiver.updateInt(2, base + increment);
 receiver.updateTimestamp(3, new Timestamp(System.currentTimeMillis()));
 return true;
}

The return value denotes if the receiver should be considered as a valid tuple (true) or NULL (false).

Running PL/Java sample tests

The PL/Java Source distribution contains a couple of rudimentary tests. The tests are divided into two jar files. One is the client part found in the test.jar. It contains some methods that executes SQL statements and prints the output (all contained there can of course also be executed from psql or any other client). The other is the examples.jar which contains the sample code that runs in the backend. The latter must be installed in the database in order to function. An easy way to do this is to use psql and issue the command:

SELECT sqlj.install_jar('file:///some/directory/examples.jar', 'samples', true);

Please note that the deployment descriptor stored in examples.jar will attempt to create the schema javatest so the user that executes the sqlj.install_jar command must have permission to do that. A number of tests now run from the deployment descriptor itself, so by the time install_jar finishes, PL/Java will have completed those tests.

Once loaded, you must also set the classpath used by the PL/Java runtime. This classpath is set per schema (namespace). A schema that lacks a classpath will default to the classpath that has been set for the public schema. The tests will use the schema javatest. To define the classpath for this schema, simply use psql and issue the command:

SELECT sqlj.set_classpath('javatest', 'samples');

The first argument is the name of the schema, the second is a colon separated list of jar names. The names must reflect jars that are installed in the system.

NOTE: If you don’t use schemas, you must still issue the set_classpath command to assign a correct classpath to the ‘public’ schema. This can only be done by a super user.

Now, you should be able to run the client test application:

java -cp <path including the jdbc driver and test.jar> org.postgresql.pljava.test.Tester

Savepoints

PostgreSQL savepoints are exposed using the standard setSavepoint() and releaseSavepoint() methods on the java.sql.Connection interface. Two restrictions apply:

	A savepoint must be rolled back or released in the function where it was set.

	A savepoint must not outlive the function where it was set.

“Function” here refers to the PL/Java function that is called from SQL. The restrictions do not prevent the Java code from being organized into several methods, but the savepoint cannot survive the eventual return from Java to the SQL caller.

Installation

Only a PostgreSQL super user can install PL/Java. The PL/Java utility functions are installed as “security definer” so that they execute with the access permissions that were granted to the creator of the functions.

Trusted vs. untrusted language

PL/Java can declare two language entries in SQL: java and javau. Following the conventions of other PostgreSQL PLs, the ‘untrusted’ language (javau) places no restrictions on what the Java code can do, while the ‘trusted’ language (java) installs a security manager that restricts access to the filesystem.

GRANT/REVOKE USAGE ON LANGUAGE java can be used to regulate which users are able to create functions in the java language. For the javau language, regardless of permissions, only superusers can create functions.

Execution of the deployment descriptor

The install_jar, replace-jar, and remove_jar utility functions optionally execute commands found in a [[SQL deployment descriptor]]. Such commands are executed with the permissions of the caller. In other words, although the utility function is declared with “security definer”, it switches back to the identity of the invoker during execution of the deployment descriptor commands.

Classpath manipulation

The utility function set_classpath requires that the caller of the function has been granted CREATE permission on the affected schema, unless it is the public schema, in which case the caller must be a superuser.

##Linux threads cause sporadic hanging##

It seems Java doesn’t play nice with LinuxThreads. I rebuilt glibc to use the Native POSIX Thread Library (NPTL) and restarted PostgreSQL. Everything seems to be working so far. Here’s how you can check what you have:

$ getconf GNU_LIBPTHREAD_VERSION

linuxthreads-0.10

If you see linuxthreads, you need to upgrade. This is what you want to see:

$ getconf GNU_LIBPTHREAD_VERSION

NPTL 2.3.6

(version might be higher) You can also get this information (and more) by running /libc.so.6:

$ /lib/libc.so.6

…

linuxthreads-0.10 by Xavier Leroy

…

or:

$ /lib/libc.so.6

…

Native POSIX Threads Library by Ulrich Drepper et al

…

If you can’t switch to NPTL for some reason, it might be possible to use LD_ASSUME_KERNEL to get things working on LinuxThreads.

###References### http://docs.oracle.com/cd/E13924_01/coh.340/cohfaq/faq16702.htm
 http://en.wikipedia.org/wiki/NPTL
 http://gentoo-wiki.com/NPTL#Switching_to_NPTL
 http://people.redhat.com/drepper/assumekernel.html
 http://developer.novell.com/wiki/index.php/LD_ASSUME_KERNEL

SQLJ deployment descriptors

The install_jar, replace_jar, and remove_jar functions can act on a deployment descriptor allowing SQL commands to be executed after the jar has been installed or prior to removal.

The descriptor is added as a normal text file to your jar file. In the Manifest of the jar there must be an entry that appoints the file as the SQLJ deployment descriptor.

Name: deployment/examples.ddr
SQLJDeploymentDescriptor: TRUE

Such a file can be written by hand according to the format below, but the usual method is to add specific Java annotations in the source code, as described under function mapping - SQL generation. The Java compiler then generates the deployment descriptor file at the same time it compiles the Java sources, and the compiled classes and .ddr file can all be placed in the jar together.

The format of the deployment descriptor is stipulated by ISO/IEC 9075-13:2003.

<descriptor file> ::=
 SQLActions <left bracket> <rightbracket> <equal sign>
 { [<double quote> <action group> <double quote>
 [<comma> <double quote> <action group> <double quote>]] }

<action group> ::=
 <install actions>
 | <remove actions>

<install actions> ::=
 BEGIN INSTALL [<command> <semicolon>]... END INSTALL

<remove actions> ::=
 BEGIN REMOVE [<command> <semicolon>]... END REMOVE

<command> ::=
 <SQL statement>
 | <implementor block>

<SQL statement> ::= <SQL token>...

<implementor block> ::=
 BEGIN <implementor name> <SQL token>... END <implementor name>

<implementor name> ::= <identifier>

<SQL token> ::= ! an SQL lexical unit specified by the term "<token>"
 in Sub clause 5.2, "<token> and <separator>", in ISO/IEC 9075-2.

If implementor blocks are used, PL/Java will consider only those with implementor name PostgreSQL (case insensitive) by default. Here is a sample deployment descriptor:

SQLActions[] = {
 "BEGIN INSTALL
 CREATE FUNCTION javatest.java_getTimestamp()
 RETURNS timestamp
 AS 'org.postgresql.pljava.example.Parameters.getTimestamp'
 LANGUAGE java;
 END INSTALL",
 "BEGIN REMOVE
 DROP FUNCTION javatest.java_getTimestamp();
 END REMOVE"
}

Configurable implementor-block recognition

Although, by default, only the implementor name PostgreSQL is recognized, the implementor name(s) to be recognized can be set as a list in the variable pljava.implementors. It is consulted after every command while executing a deployment descriptor, which gives code in the descriptor a rudimentary form of conditional execution control, by changing which implementor blocks will be executed based on discovered conditions.

Functions in the sqlj schema

 ## install_jar

The install_jar command loads a jarfile from a location appointed by an URL into the SQLJ jar repository. It is an error if a jar with the given name already exists in the repository. #### Usage

SELECT sqlj.install_jar(<jar_url>, <jar_name>, <deploy>);

	
Parameter

	
Description

	
jar_url

	
The URL that denotes the location of the jar that should be loaded

	
jar_name

	
This is the name by which this jar can be referenced once it has been loaded

	
deploy

	
True if the jar should be deployed according to a deployment descriptor, false otherwise

 ch017.xhtml

Thoughts on logging

	Update: This turns out to be more timely than I realized—PL/Pythonu is also [developing a patch][plpu] (starting last month) to the same end.

	Note: this page does not describe how PL/Java currently works, except in the “Background” part. It is a proposal for further development.

	Also, to anyone reading this for review or comment, a lot of this material may be more familiar than it is to me. If I seem to describe it in excessive detail, please regard that as my effort to have it straight in my own head.

	Also also, to some it may seem strange that I use phrases like “log event” without insisting on any essential difference between thrown exceptions and calls on loggers. It’s true, I’m not marking any such essential difference, and I hope, before this is done, that won’t seem so strange.

	So, here goes.

	… logging isn’t particularly magical. —Dave Cramer

	… it’s what you do with it. —variously attributed

	## Background

	### PostgreSQL has supremely good log messages.

	It even has a [style guide][stygd] for writing them, and it pays off in the well-known quality and helpfulness of PostgreSQL messages.

	[stygd]: http://www.postgresql.org/docs/current/static/error-style-guide.html

	Part of the excellence of PostgreSQL’s messages can be traced to their rich structure. A message is not a blob of text with whatever details seemed useful while writing the code. It is a structured record with information serving several specific purposes and at several distinct levels of detail:

	item |pq|PL/pgSQL |pgjdbc (+ -ng Notice)|pgjdbc-ng Exc |PL/Java —————-|—|——————–|———————|————–|—————– elevel |S | |getSeverity | |getErrorLevel sqlstate |C |RETURNED_SQLSTATE |getSQLState getCode |getSQLState |getSqlState message |M |MESSAGE_TEXT |getMessage |getMessage |getMessage detail |D |PG_EXCEPTION_DETAIL |getDetail | |getDetail hint |H |PG_EXCEPTION_HINT |getHint | |getHint context |W |PG_EXCEPTION_CONTEXT|getWhere | |getContextMessage schema_name |s |SCHEMA_NAME |getSchema |getSchema | table_name |t |TABLE_NAME |getTable |getTable | column_name |c |COLUMN_NAME |getColumn |getColumn | datatype_name |d |PG_DATATYPE_NAME |getDatatype |getDatatype | constraint_name |n |CONSTRAINT_NAME |getConstraint |getConstraint | cursorpos |P | |getPosition | |getCursorPos internalpos |p | |getInternalPosition | |getInternalPos internalquery |q | |getInternalQuery | |getInternalQuery filename |F | |getFile | |getFilename lineno |L | |getLine | |getLineno funcname |R | |getRoutine | |getFuncname output_to_server| | | | |isOutputToServer output_to_client| | | | |isOutputToClient show_funcname | | | | |isShowFuncname saved_errno | | | | |getSavedErrno hide_stmt | | | | | hide_ctx | | | | | domain | | | | | context_domain | | | | |

	The libpq on-the-wire protocol preserves this structure, sending these components (the ones with pq codes) distinctly and intact to the front end. This gives client code enormous flexibility to catch and handle conditions appropriately. If the condition has to be logged or reported to a user, it can be shown at any appropriate level of detail, or even with a user interface that permits drilling down from generalities to specifics.

	How awesome is that? Consider this: I have seen, with my own eyes, non-technical users entering stuff into a PostgreSQL database (using something as generic as LibreOffice Base as the front end) have an error dialog pop up, read it, understand what had to be corrected in the entry, and recover on their own.

	I challenge anyone who has had support experience to tell me that ain’t magic.

	By and large, messages in PostgreSQL really are that good.

	### Original log event life cycle

	A message that originates in the PostgreSQL backend proper begins as a call to ereport or elog in [elog.c][elogc]. The rules there are just a bit special:

	0. If the message has any severity below ERROR (so, DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, LOG, COMMERROR, INFO, NOTICE, or WARNING) or above ERROR (so, FATAL, PANIC), it gets written immediately to logs / reported to the front end (according to the log_min_messages and client_min_messages settings), and then control returns to the call site if it was below ERROR, and does not return if it was above.

	0. If the severity is exactly ERROR, it gets thrown PostgreSQL-style, and can be caught in PG_TRY/PG_CATCH constructs. The [elog][elogc] code does not send it to the server log or the front end at all at that point, but only when (if ever) it bubbles up to PostgresMain without having been handled. If it gets caught and handled, then any logging becomes the responsibility of whatever code caught it.

	[elogc]: http://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/utils/error/elog.c

	### Handling logged events in front-end code

	Events from the server that arrive at the front end show up in a form the front-end code can inspect and choose how to handle, either by polling for them (libpq PQresultErrorField, JDBC getWarnings if less severe than ERROR), or catching an exception (JDBC if severity is ERROR).

	This code in turn might want to log an event (whether one received from the backend as just described, or one originating in the front-end code itself). To do that, it will probably use some convenient library available to it, such as java.util.logging in Java.

	For code that is really running in a front end, that’s the end of the story, but for code running in a backend PL, the story has only begun.

	### Handling logged events in a back-end PL

	The first requirements for server-side code are the same as for the front end: it should be able to intercept, examine, and handle or not handle as appropriate, events that originate during its calls into the backend. PL/pgSQL makes a good example, with the [trapping of errors][plpgscatch] built into the language, and [inspection of (most) elements][plpgsdiag] of the structure. Naturally, whatever isn’t caught in PL/pgSQL code should continue propagating outward with all its structured information intact.

	In PL/pgSQL, all of that applies to events with the exact severity ERROR: warnings/notices/etc. are invisible to PL/pgSQL code, as the [elog][elogc] logic sends those right out from under the PL and straight to the front-end client (conditioned only on the client_min_messages setting). That might not be always ideal: there can be a tension between ease of development/troubleshooting, favoring lots of logging, and confidentiality demands, which could require that some messages be edited or suppressed, which the PL code can’t do if they zip right past it.

	[plpgscatch]: http://www.postgresql.org/docs/current/static/plpgsql-control-structures.html#PLPGSQL-ERROR-TRAPPING [plpgsdiag]: http://www.postgresql.org/docs/current/static/plpgsql-control-structures.html#PLPGSQL-EXCEPTION-DIAGNOSTICS

	#### As for PL/Java

	PL/Java is at parity with PL/pgSQL as far as the ability to catch error events from the backend (as Java SQLExceptions), or to propagate them up the stack without information loss if they are not caught, or are caught and rethrown without change.

	Internally, it has good provisions for examining individual properties of the event (currently not including the schema, table, column, datatype, and constraint names that [appeared in 9.3][fnames]). However, these provisions aren’t quite exposed yet to ordinary developers writing PL/Java code. Although [[documented|Exception handling]] in the wiki, they aren’t accessible to PL/Java code compiled normally against pljava-api.jar; it would have to be compiled against the full pljava.jar and refer explicitly to [ServerException][servx] and [ErrorData][edata] in the org.postgresql.pljava.internal package.

	[fnames]: http://git.postgresql.org/gitweb/?p=postgresql.git;a=blobdiff;f=src/include/utils/elog.h;h=d5fec89a4801481d0494c34cd38e72653d3da99a;hp=5e937fb10c3211b2c12d0ec2d7ee71fe506cb7f8;hb=991f3e5ab3f8196d18d5b313c81a5f744f3baaea;hpb=89d00cbe01447fd36edbc3bed659f869b18172d1 [servx]: http://tada.github.io/pljava/pljava/apidocs/index.html?org/postgresql/pljava/internal/ServerException.html [edata]: http://tada.github.io/pljava/pljava/apidocs/index.html?org/postgresql/pljava/internal/ErrorData.html

	(In passing, the current design where the magic only happens for a single ServerException subclass of SQLException stands in the way of implementing the [categorized exceptions][catex] for JDBC 4.0.)

	[catex]: http://www.javaspecialists.eu/archive/Issue138.html

	This is one area where a good API should be worked out and published. PL/Java provides a JDBC interface to the backend, because that is how the SQL/JRT standard is written, which PL/Java is meant to implement. As far as JDBC is concerned, access to these implementation-specific error details would be an extension, such as might be accessed by [unwrap][unwrap] on a standard JDBC object. Being committed to a JDBC interface to PostgreSQL, it would be ideal to agree on the details with the other, front-end JDBC interfaces to PostgreSQL, as front-ends also receive finely structured PostgreSQL error details that client code may want to examine.

	(Again in passing, the fact that PL/Java presents a JDBC interface could raise hopes that PL/Java functions are also able to examine warnings using the standard [JDBC mechanism][jdbcw]. At the moment, they aren’t, and the PG_TRY/PG_CATCH constructs aren’t enough to fix that, because only severity level ERROR is handled that way. PL/Java would have to also use the emit_log_hook in order to present a behavior analogous to JDBC on the front end. It would then pull ahead of PL/pgSQL on that dimension.)

	[unwrap]: http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Wrapper.html#unwrap(java.lang.Class) [jdbcw]: http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/ResultSet.html#getWarnings()

	#### How do the other PostgreSQL JDBCs give access to error details?

	##### pgjdbc

	If you have an SQLException and it can be cast to [org.postgresql.util.PSQLException][psqle], then you can call getServerErrorMessage() on it, and get a [ServerErrorMessage][sem]. Same deal if you have an SQLWarning that is castable to [org.postgresql.util.PSQLWarning][psqlw]. (None of this is exactly trumpeted in the [docs][pgjdbcdocs], and as you can see, the PSQLException and PSQLWarning links above are to privateapi pages, though the classes are public and accessible.)

	Just as in PL/Java, the design here with a single PSQLException class is an obstacle to moving forward with the categorized exceptions in JDBC 4.0.

	[psqle]: https://jdbc.postgresql.org/development/privateapi/index.html?org/postgresql/util/PSQLException.html [psqlw]: https://jdbc.postgresql.org/development/privateapi/index.html?org/postgresql/util/PSQLWarning.html [sem]: https://jdbc.postgresql.org/documentation/publicapi/index.html?org/postgresql/util/ServerErrorMessage.html [pgjdbcdocs]: https://jdbc.postgresql.org/documentation/head/index.html

	##### pgjdbc-ng

	In pgjdbc-ng, categorized exceptions are partially implemented: at least there is one [PGSQLIntegrityConstraintViolationException][pgsicve], and one [PGSQLSimpleException][pgsse] for everything else. To allow for multiple categories, these share a common interface, [PGSQLExceptionInfo][pgsei]. Calling code does not need to test for a bunch of implementation-specific class names, but can simply catch JDBC exceptions by their standard java.sql names, and test for castability to a single interface.

	Interestingly, the interface gives access only to the column, constraint, datatype, schema, and table names available from PostgreSQL 9.3 onward (exactly the five things PL/Java currently doesn’t expose!) and none of the much more anciently supported detail, hint, context, etc. And pgjdbc-ng doesn’t supply any SQLWarning subclass that implements it.

	All of the elements the protocol can forward are available on a different object, [com.impossibl.postgres.protocol.Notice][notice], but I am not sure user code has any way to get one. The classes that use it seem fairly internal.

	Unlike both PL/Java’s [ErrorData][edata] and pgjdbc’s [ServerErrorMessage][sem], in pgjdbc-ng both the [PGSQLExceptionInfo][pgsei] and the [Notice][notice] are mutable, providing setter methods as well as getters … leading naturally into the next section.

	[pgsicve]: http://impossibl.github.io/pgjdbc-ng/apidocs/0.6/index.html?com/impossibl/postgres/jdbc/PGSQLIntegrityConstraintViolationException.html [pgsse]: http://impossibl.github.io/pgjdbc-ng/apidocs/0.6/index.html?com/impossibl/postgres/jdbc/PGSQLSimpleException.html [pgsei]: http://impossibl.github.io/pgjdbc-ng/apidocs/0.6/index.html?com/impossibl/postgres/api/jdbc/PGSQLExceptionInfo.html#method_summary [notice]: http://impossibl.github.io/pgjdbc-ng/apidocs/0.6/index.html?com/impossibl/postgres/protocol/Notice.html#method_summary

	### Originating loggable events

	Whether running client-side or in a server-side PL, it’s often helpful to look at the details of events from below, as the last section explored. But for a server-side PL, it doesn’t stop there, because server-side code is usually implementing logic that may have its own events to report, and as far as the client-side is concerned, those are just more events from the backend. Ideally, a PL function would be a “full citizen” and able to originate events (or rethrow caught ones wrapped in higher-level descriptions) with the same structure and quality one expects to see from PostgreSQL itself.

	Here again, PL/pgSQL makes a good example. Using [RAISE][], code can generate an event with direct control of eleven of its most interesting attributes. (The ones not settable from PL/pgSQL, cursor positions, line numbers, and such, are at a level of detail few PL/pgSQL functions would want to work at anyway.)

	[RAISE]: http://www.postgresql.org/docs/current/static/plpgsql-errors-and-messages.html

	PL/pgSQL has hit a kind of sweet spot with syntax that is so easy and clear it invites writing good messages that an ultimate user could find helpful. A statement like:

	RAISE invalid_text_representation USING MESSAGE = ‘Unrecognized prefix in telephone number’ || tno, DETAIL = ‘The digits at the start of the number do not match any known’ ‘international number prefix. Are you sure it is right?’, HINT = ‘If you are sure it’‘s right, ask the IT people if’ ‘there is a more recent “ITU-T bulletin 994” they can load.’ ‘Meanwhile, you can enter the number with a ! in front,’ ‘but it may be flagged on data quality reports until fixed.’;

	is about as clear as can be in the code, as well as giving anyone who receives it a fighting chance at understanding what has happened.

	#### As for PL/Java

	PL/Java is not yet at parity with PL/pgSQL on this dimension. If PL/Java code catches any exception that began as a PostgreSQL [ereport][elogc], that Java exception will wrap an [ErrorData][edata] object; if that same exception is rethrown, it is transparently turned back into a PostgreSQL event and continues on its way without information loss. But there is no way for PL/Java code to create an exception with those properties. At best, it can create an ordinary SQLException, which will turn into a PostgreSQL log event using its SQLState and with its class name and message used as the message.

	For any other kind of exception, only message is set (from the exception class name and message), and SQLState of XX000 for “internal error”. When the origin is a Java exception, the severity will always be ERROR.

	The other way for PL/Java code to originate a log event is to use the logging API. PL/Java presents mostly Java standard APIs for code to use, so in this case the API is [java.util.logging][jlog], and PL/Java has wired it so log events created that way are handed off to the PostgreSQL logging system. (As a side effect of the way that system works, ‘logging’ any event with a severity that maps to PostgreSQL ERROR turns out to have the same effect as throwing it, while at any other severity it simply gets logged.)

	When passed on to PostgreSQL, the details include the timestamp, class name or logger name, the message, and the stack trace of any associated Java throwable—but at present, all of that ends up strung together in the message attribute of the PostgreSQL event, using a severity mapped from the [java.util.logging.Level][jlvl]. There are some other low-hanging-fruit mappings that could be made automatically, like the Java [SourceClassName][scn] and [SourceMethodName][smn] to PostgreSQL filename and funcname, but for the present they are not, and no other programmatic control over the created log event is yet available to PL/Java code.

	[jlog]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/package-summary.html [jlvl]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/Level.html [scn]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html#getSourceClassName() [smn]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html#getSourceMethodName()

	##### Mapping of severity levels

	Because there are only seven predefined [java.util.logging.Level][jlvl]s and some of their names are different from PostgreSQL’s, PL/Java maps them as follows:

	| | |FINEST|FINER|FINE| | |INFO| |WARNING|SEVERE| | | |—|—|—|—|—|—|—|—|—|—|—|—|—| |DEBUG5|DEBUG4|DEBUG3|DEBUG2|DEBUG1|LOG|COMMERROR|INFO|NOTICE|WARNING|ERROR|FATAL|PANIC|

	The Java level CONFIG isn’t explicitly mapped, and anything that isn’t explicit will map to the PostgreSQL level LOG. For completeness, I’ve shown the PostgreSQL levels FATAL and PANIC, though a good case could be made that no PL code should ever be allowed to use them.)

	#### How can JDBC front-end code originate events?

	While the front-end situation may be simpler (there is no need to make logging interoperate with server code in both directions, as PL/Java must), some of the same considerations can be carried over. Even on the client end, JDBC is not the client, it’s still part of the stack. It may originate its own log messages or throw its own SQLExceptions for reasons other than events it forwards from the backend. Layers above it see a clean, consistent picture of “the database stack” when those events are of similar form, no matter the level they come from.

	These days, there could even be another sophisticated layer or three sitting on top of JDBC and beneath the application code, and it might want to have the same facilities available to it.

	A day that I would like to see—and I think it can be reached—is the day when a PostgreSQL error can be raised by the backend, caught by PL/Java, examined in all its structured detail by Java code using some extension of the JDBC API, rethrown, piped to the frontend JDBC and thrown again to the client code, caught there, and examined again in the same structured detail using the same extended API.

	This becomes even more appealing, and maybe even more achievable, if PL/Java and a front-end JDBC work toward sharing more code.

	##### when throwing

	Being JDBC interfaces, both pgjdbc and pgjdbc-ng throw the standard JDBC SQLException (or, more precisely, subclasses of it), and create instances of the standard SQLWarning, which are collected and polled for, rather than thrown.

	JDBC categorized exceptions are not yet supported by pgjdbc, and are partly supported by pgjdbc-ng.

	The pgjdbc-ng exceptions that implement [PGSQLExceptionInfo][pgsei] can be instantiated from scratch, and can have the column, constraint, datatype, schema, and table names set, as well as the JDBC standard SQLException attributes.

	The pgjdbc [PSQLException][psqle] and [PSQLWarning][psqlw] throwables can be instantiated from scratch, and can be constructed from a [ServerErrorMessage][sem] that can also be built from scratch, allowing control over all of the same log event attributes that would be sent to the front-end for a backend event. However, the only way at present to construct that ServerErrorMessage is to supply a String in the exact format of the v3 protocol message that would come from the backend to represent the event. The constructed exception’s message then is set to the entire result of toString on the ServerErrorMessage.

	##### when logging

	Logging in pgjdbc, which is older than java.util.logging, is done with the project-specific org.postgresql.core.Logger. This simple class identifies messages with a connection ID prefix, filters them by severity, timestamps them, and writes them to the DriverManager’s LogWriter. Unlike java.util.logging, it doesn’t do message formatting or internationalization, but a separate class [org.postgresql.util.GT][gt] (also excluded from the public API) does both when used in calls to the logger. It gets translations from [ResourceBundle][rb]s, the same form java.util.logging uses.

	When logging a PSQLException instance that carries a ServerErrorMessage, the result looks much like a message logged by the backend, because ServerErrorMessage.toString produces that form (and it was entirely stuffed into the message attribute of the exception).

	[gt]: https://jdbc.postgresql.org/development/privateapi/index.html?org/postgresql/util/GT.html [rb]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/ResourceBundle.html

	Logging in pgjdbc-ng is done using java.util.logging, as in PL/Java, and in keeping with the appearance of java.util.logging-related API in JDBC itself [starting in 4.1][gpl]. In the existing examples in the code where a NoticeException or SQLException are passed directly to the logger, most of the available [Notice][notice] or [PGSQLExceptionInfo][pgsei] will not be seen, as far as I can see, as toString has not been overridden. [ErrorUtils][erut] will create the SQLException subclasses using only the message and sqlstate from the original Notice. A [NoticeException][nex] holds a reference to the Notice it was constructed from, and has a method to retrieve it, but the exception’s message is set using only the additional String passed to its constructor.

	[gpl]: http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Driver.html#getParentLogger() [nex]: http://impossibl.github.io/pgjdbc-ng/apidocs/0.6/index.html?com/impossibl/postgres/system/NoticeException.html [erut]: http://impossibl.github.io/pgjdbc-ng/apidocs/0.6/index.html?com/impossibl/postgres/jdbc/ErrorUtils.html

	## What would a nice API look like?

	By this point it should be clear why I’ve been writing about “log events” as one concept, when I might be expected to talk of log messages and exceptions as separate things. In PostgreSQL and in JDBC, both are forms the same information may take as it travels between A and B. It may be passed along as a message on a log channel, received, and thrown as an exception; something thrown as an exception can be caught and stuffed onto a log channel, where “log channel” might mean the ereport conveyor in the server code, the network protocol to the front end, the SQL warnings chain in JDBC, ….

	This shapeshifting is not only possible but downright common in PostgreSQL and JDBC, and especially in PL/Java, where the same event may be batted about between those two forms repeatedly (how deep can the call stack get with PL/Java functions making SQL queries that call other functions also made in PL/Java?). And all of that is just fine as long as the conversion at each step is information-preserving and reversible.

	### An abstract LogRecord class (not derived from Exception)

	We’ve seen that all three of (pgjdbc, pgjdbc-ng, PL/Java) include a class of some sort ([ServerErrorMessage][sem], [Notice][notice], and [ErrorData][edata], respectively) that is meant to carry all the information about a PostgreSQL log event in its intact structured form, and can be carried over a log channel or wrapped in an exception, and recovered at the end of a journey either way.

	So, my proposal starts here: there should be such a class, and it should be documented and available as PostgreSQL extended JDBC API. For this discussion, I’ll call it LogRecord. (There will be time for polishing name choices. There is an existing Java class LogRecord but of course the package is different.)

	### An interface for exceptions that carry LogRecords

	To allow moving forward with the [categorized exceptions][catex] in JDBC 4.0, there needs to be an interface rather than a common parent class, and simply has a setter and getter for attaching a LogRecord to the exception. These would ordinarily not be used directly, but rather through methods of LogRecord.

	### Different concrete subclasses of LogRecord

	PL/Java would supply its special concrete implementation that wraps a native error-data block; a front-end JDBC would supply one (or two) that are initialized from the on-the-wire protocol. In all cases, there would be a plain pure-Java one that can be filled in from scratch.

	### An ereport-like API for creating a LogRecord from scratch

	… starting with a static method on LogRecord and with method chaining:

	import static org.postgresql.something.LogRecord.ereport; ... logrec = ereport(Level.ERROR).errcode(ERRCODE_DIVISION_BY_ZERO) .errmsg("You''ve tried to divide {0} by zero", dividend) // .log() OR // .throwAs(SQLException.class)

	### Methods for the conversions into/out of log system or exception

	Examples log() and throwAs() were seen above, with throwAs a convenience built on asException(...). If the LogRecord has been freshly constructed, asException creates the correct JDBC 4 categorized exception with a reference to the log record and vice versa. If that has happened already, it just returns the already created exception object.

	The static fromException() method does the reverse: if the exception was created from a LogRecord originally (so, it implements the interface and its log record reference isn’t null), just returns that original LogRecord. If not, creates a new LogRecord initialized as informatively as possible with whatever can be gleaned from the exception.

	Those methods are what make possible the repeated batting around that an event might live through on its way from a deep call stack in PL/Java all the way out to a handler on the front end, without having serious identity crises. (It will be trickier inside PL/Java than I need to spend time on here, but should not be prohibitively so.)

	### In concert with existing standard API

	I propose to converge on [java.util.logging][jlog], and for this extended LogRecord class to be derived from the standard [LogRecord][logrec].

	(Soon below I will touch on how to “converge on java.util.logging” without serious disruption of pgjdbc, which currently uses the homegrown logging class.)

	The specialized class will have several extra methods, and some overridden ones just to give it a reasonable default behavior when treated as an ordinary java.util.logging.LogRecord. For example its overridden [getMessage][gmsg] method may do some formatting by default and return more information than just the message field, while different methods would be provided for a caller in the know to examine specific individual fields.

	None of those differences stop it from being a valid instance of java.util.logging.LogRecord, and it can be passed into the logging system by calling [log][logr] just like any other record. So can other, non-extended LogRecords and normal calls on the convenience methods of [Logger][lgr], all at the same time. Code ported from other environments, knowing nothing of the extensions and using the standard logger API will work fine, and can be mixed with code using the extended features.

	Call sites that aren’t trying to make good user-visible messages (all the usual logger.finest("sent an M, got two dollar signs and a comma") kind of thing) don’t have any need to change.

	[gmsg]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html#getMessage() [logrec]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/LogRecord.html [lgr]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html [logr]: http://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/Logger.html#log(java.util.logging.LogRecord)

	### Using familiar level names

	The current implementation in PL/Java maps PostgreSQL severity levels onto the (smaller set of) standard [Level][jlvl]s. This adds another bit of cognitive load in the development process: I have to remember, for example,

	SET log_min_messages TO DEBUG2; SELECT javatest.logmessage('FINER', 'Hello world');

	are talking about the same severity level, and it’s an error to forget and use the other name either place, and the mapping loses information—it’s not invertible.

	A feature of the design of [Level][jlvl] is it can be subclassed, and additional levels can be defined; the numeric values of the standard ones are spaced widely apart to allow new ones between them, and the parser even learns the names of new levels so they “just work”. I propose defining the PostgreSQL levels whose names do not already match [Level][jlvl] names, with a possible relationship like this:

	|PostgreSQL|Java| |——–:|——-| | |ALL| | |FINEST?| |DEBUG5 || | |FINEST?| |DEBUG4 || |DEBUG3 || | |FINER| |DEBUG2 || | |FINE| |DEBUG1 || | |CONFIG| |LOG || |COMMERROR|| |INFO |INFO| |NOTICE || |WARNING |WARNING| | |SEVERE?| |ERROR || | |SEVERE?| |FATAL || |PANIC || | |OFF|

	As you can see, I’m still considering arguments about where FINEST and SEVERE should go.

	The effect, again, is that code from elsewhere that only expects the usual names from the standard library will work fine, code with more PostgreSQLy origins can use those familiar names, and a developer or admin can set the logging level using any of them, whichever seems more natural at the time.

	### Could pgjdbc move to java.util.logging without disruption?

	I think so. The class org.postgresql.core.Logger could be kept, and simply delegate to other classes; the changes at points where log events are read off the wire and exceptions are created should be fairly internal and localized. I’d like to give it a shot.

	I think the categorized exceptions in JDBC 4 are worth moving to, and offer a much nicer way for client code to distinguish what kind of thing went wrong, but changing that might actually turn out to be what needs the most coordination with client code. I would like to hope there isn’t much client code out there that has linked to PSQLException by name (when it is only shown on “privateapi” javadocs), but I can only imagine there is some.

	## A place to pause

	I have not managed to squeeze in every relevant thought here, but this is already long and enough to elicit some discussion and questions, and if I keep writing I will probably just be answering the wrong ones, so this seems a good place to stop and listen.

	# Tips for resolving build problems

	Some typical issues encountered when building PL/Java can be listed here, along with tips for resolving them.

	## The tips that always apply

	Please do carefully read the build instructions, especially the “software prerequisites” section, and the “special topics” section for any that apply to the platform where you are building.

	bld: https://tada.github.io/pljava/build/build.html

	Also be sure to review the “troubleshooting the build” section at the end of the build instructions page.

	If you review [the mailing list archive][pljdva] and the [issues list][issues], you may find a report of a situation like your own. (On the issues list, it is possible someone reported an issue, a solution was found, and the issue was closed, so look at recent closed issues too.)

	[pljdva]: http://lists.pgfoundry.org/pipermail/pljava-dev/ [issues]: https://github.com/tada/pljava/issues

	## Failure shown for pljava-so

	### Missing -devel prerequisite packages

	The most common cause of reported failures building pljava-so is a missing required file. Sometimes your distribution’s packaging system will have chosen to organize a prerequisite piece of software into more than one package, for example, one that contains only library files, and another with a name ending in -dev or -devel that contains the necessary .h files. Some distributions take this further than others; see the “special topics” section for Ubuntu for an example where even libraries built as part of PostgreSQL itself are split up into multiple separate packages.

	The solution is simple: look over the error messages from the pljava-so section of the build output to find any that refer to a file that could not be found. Usually it will be a .h file or a library (.so, .dll, .dylib, etc.).

	Find out the name of the package, according to the OS or package distribution you are using, that contains the missing file, install that package, and you have probably solved the whole problem.

	Further tip: Finding the error message that really mattered is easier if you follow the “troubleshooting the build” tip about the -Pwnosign option, to cut down the number of other messages that do not matter, if that option works on your platform.

	## Still stuck?

	Please describe the issue you are facing on the mailing list.

	pljdv: http://lists.pgfoundry.org/mailman/listinfo/pljava-dev

	# Triggers

	The method signature of a trigger is predefined. A trigger method must always return void and have a org.postgresql.pljava.TriggerData parameter. No more, no less. The TriggerData interface provides access to two java.sql.ResultSet instances; one representing the old row and one representing the new. The old row is read-only and the new row is updateable.

	The ResultSets are only available for triggers that are fired ON EACH ROW. Delete triggers have no new row, and insert triggers have no old row. Only update triggers have both.

	In addition to the sets, several boolean methods exists to gain more information about the trigger. ```sql CREATE TABLE mdt (id int4, idesc text, moddate timestamp DEFAULT CURRENT_TIMESTAMP NOT NULL);

	CREATE FUNCTION moddatetime() RETURNS trigger AS ‘org.postgresql.pljava.example.Triggers.moddatetime’ LANGUAGE java;

	CREATE TRIGGER mdt_moddatetime BEFORE UPDATE ON mdt FOR EACH ROW EXECUTE PROCEDURE moddatetime (moddate); ``` And here is the corresponding Java code:


	```java /** * Update a modification time when the row is updated. */ static void moddatetime(TriggerData td) throws SQLException { if(td.isFiredForStatement()) throw new TriggerException(td, “can’t process STATEMENT events”);



	if(td.isFiredAfter()) throw new TriggerException(td, “must be fired before event”);



	if(!td.isFiredByUpdate()) throw new TriggerException(td, “can only process UPDATE events”);



	ResultSet _new = td.getNew(); String[] args = td.getArguments(); if(args.length != 1) throw new TriggerException(td, “one argument was expected”);



	_new.updateTimestamp(args[0], new Timestamp(System.currentTimeMillis())); } ```



	# User guide (wiki version)



	The first reference should be the [user guide at the main project site][ug].



	Here at this wiki version, you may still find useful information that is not yet migrated to the project site. Some of the information here may be outdated. Wiki content is slowly migrating to the main site as it is checked and brought up to date.



	[ug]: https://tada.github.io/pljava/use/use.html



	## Utilities



	* The [PL/Java Deployer][dplr] is a Java client program that helps you deploy PL/Java in the database. It is now obsolescent; for current instructions on installing PL/Java, see the installation guide at the main project site. * [[SQL functions]] that can be executed from SQL



	igd: https://tada.github.io/pljava/install/install.html [dplr]: https://tada.github.io/pljava/pljava-deploy/apidocs/index.html?org/postgresql/pljava/deploy/Deployer.html



	## Authoring



	* [[Writing Java functions, triggers, and types]] * Using a [[SQL deployment descriptor]] * [[Security]]



	## Debugging



	* [[Debugging your Java code]] * [[Debugging in C]]



	## Troubleshooting



	* [[Sporadic hanging]]



	# Using JDBC



	PL/Java contains a JDBC driver that maps to the PostgreSQL SPI functions. A connection that maps to the current transaction can be obtained using the following statement:



	* The transaction cannot be managed in any way. Thus, you cannot use methods on the connection such as: * commit() * rollback() * setAutoCommit() * setTransactionIsolation() * A savepoint cannot outlive the function in which it was set and it must also be rolled back or released by that same function. * ResultSets returned from executeQuery() are always FETCH_FORWARD and CONCUR_READ_ONLY. * Meta-data became available in PL/Java 1.1. * CallableStatement (for stored procedures) is not yet implemented. * Clob/Blob types need more work. byte[] and String works fine for bytea/text respectively. A more efficient mapping is planned where the actual array is not copied.



	* [[Function mapping]] * [[Triggers]] * [[Default Type Mapping]] * [Mapping an SQL type to a Java class] * [[Creating a Scalar UDT in Java]] * [Returning complex types] * [[Functions returning sets]] * [[Using JDBC]] * [Exception handling] * [Savepoints] * [[Logging]]



	In order to completely uninstall PL/Java you need to have super user privileges on the database. Here’s how you do it.



	0. Get rid of the sqlj schema and all objects depending on it.



	* If you installed PL/Java with CREATE EXTENSION pljava then drop it with DROP EXTENSION pljava CASCADE * If you installed PL/Java with a LOAD command, then drop it with DROP SCHEMA sqlj CASCADE



	Caution: Either command will drop the PL/Java schema and language declarations, all jars you may have loaded, all functions and types they provided, and everything else in your database that depends on any of those things.



	You can try either command without CASCADE first, to see a list of what would be dropped.



	0. Remove any settings of PL/Java variables (configuration variables with names starting with pljava.) that you may have changed from their defaults.



	* If you had set a variable var for a particular database using ALTER DATABASE dbname SET var ... then reset it using ALTER DATABASE dbname RESET var.



	* If you had set it for the whole cluster using ALTER SYSTEM SET var ... then reset it using ALTER SYSTEM RESET var and, when you have reset all, use SELECT pg_reload_conf().



	* If you had set PL/Java variables by editing the configuration file (particularly on PostgreSQL before 9.2, where this is the only available method), remove the settings from the file, then use SELECT pg_reload_conf() in SQL.



	* The variable dynamic_library_path is not specific to PL/Java, but if you added a directory to it for the sake of PL/Java, undo that.



	0. Remove the PL/Java files from the file system.



	* If you installed PL/Java with a package manager, uninstall it the same way. * Otherwise, remove the installed files from wherever you installed them.



	PL/Java is an open source project and contributions are vital for its success. In fact, all development of the project is done using contributions. Here are a few guide lines that will help you submit a contribution.



	## Getting started * Make sure you have a GitHub account. * Create a fork of the PL/Java repository. * Take a look at the Git Best Practices document.



	## Let people know what you’re planning You should let the community know what you’re planning to do by discussing it on the PL/Java Mailing List. In many cases it might also be a good idea to first create an issue where the details of what needs to be done can be discussed (the actual pull-request is an issue in itself so in case you already have something, that issue is probably sufficient).



	## Making Changes * Create a local clone of your fork. * Create a topic branch for your work. You should branch off the master branch. Name your branch by the type of contribution, source branch, and nature of the contribution, e.g., bug/master/my_contribution. Generally, the type is bug, or feature, but you can use something else if they don’t fit. To create a topic branch based on master: git checkout master && git pull && git checkout -b bug/master/my_contribution * Don’t work directly on the master branch, or any other core branch. Your pull request will be rejected unless it is on a topic branch. * Keep your commits distinct. A commit should do one thing, and only one thing. * Make sure your commit messages are in the proper format. * If your commit fixes an issue, close it with your commit message (by appending, e.g., fixes #1234, to the summary).



	## Submitting Changes * Push your changes to a topic branch in your fork of the repository. * Submit a pull request to the tada/pljava repository.



	 ## Commit Message Format What should be included in a commit message? The three basic things to include are: * Summary or title. * Detailed description * Issue number (optional).



	Here is a sample commit message with all that information:



	Some POM’s did not have the source encoding specified. This caused unnecessary warning printouts during build. This commit ensures that all POM’s includes the correct declaration for UTF-8.



	Closes #1234



	The issue number is optional and should only be included when the commit really closes an issue. The close will then occur when the pull request is merged.



	# Creating a scalar (or, base) user-defined type



	This text assumes that you have some familiarity with how scalar types are created and added to the PostgreSQL type system. For more info on that topic, please read [this chapter in the PostgreSQL docs][xtypes].



	[xtypes]: http://www.postgresql.org/docs/8.4/static/xtypes.html



	Creating new scalar type using Java functions is very similar to how they are created using C functions from an SQL perspective but of course very different when looking at the actual implementation. Java stipulates that the mapping between a Java class and a corresponding SQL type should be done using the interfaces java.sql.SQLData, java.sql.SQLInput, and java.sql.SQLOutput and that is what PL/Java is using. In addition, the PostgreSQL type system stipulates that each type must have a textual representation.



	Let us create a type called javatest.complex (similar to the complex type used in the PostgreSQL documentation). The name of the corresponding Java class will be org.postgresql.pljava.example.ComplexScalar.



	## The Java code for the scalar type



	### Prerequisites for the Java implementation



	The java class for a scalar UDT must implement the java.sql.SQLData interface. In addition, it must also implement a method static T parse(String stringRepresentation, String typeName) where T will be the name of the class–that is, parse will create and return an instance of the class–and the java.lang.String toString() method. The toString() method must return something that the parse() method can parse.



	```java package org.postgresql.pljava.example;


	import java.io.IOException; import java.io.StreamTokenizer; import java.io.StringReader; import java.sql.SQLData; import java.sql.SQLException; import java.sql.SQLInput; import java.sql.SQLOutput; import java.util.logging.Logger;

	import org.postgresql.pljava.annotation.Function; import org.postgresql.pljava.annotation.SQLType; import org.postgresql.pljava.annotation.BaseUDT;

	import static org.postgresql.pljava.annotation.Function.Effects.IMMUTABLE; import static org.postgresql.pljava.annotation.Function.OnNullInput.RETURNS_NULL;

	@BaseUDT(schema=“javatest”, name=“complex”, internalLength=16, alignment=BaseUDT.Alignment.DOUBLE) public class ComplexScalar implements SQLData { private double m_x; private double m_y; private String m_typeName;

	@Function(effects=IMMUTABLE, onNullInput=RETURNS_NULL) public static ComplexScalar parse(String input, String typeName) throws SQLException { try { StreamTokenizer tz = new StreamTokenizer(new StringReader(input)); if(tz.nextToken() == ‘(’ && tz.nextToken() == StreamTokenizer.TT_NUMBER) { double x = tz.nval; if(tz.nextToken() == ‘,’ && tz.nextToken() == StreamTokenizer.TT_NUMBER) { double y = tz.nval; if(tz.nextToken() == ‘)’) { return new ComplexScalar(x, y, typeName); } } } throw new SQLException(“Unable to parse complex from string "” + input + ‘“’); } catch(IOException e) { throw new SQLException(e.getMessage()); } }

	public ComplexScalar() { }

	public ComplexScalar(double x, double y, String typeName) { m_x = x; m_y = y; m_typeName = typeName; }

	@Override public String getSQLTypeName() { return m_typeName; }

	@Function(effects=IMMUTABLE, onNullInput=RETURNS_NULL) @Override public void readSQL(SQLInput stream, String typeName) throws SQLException { m_x = stream.readDouble(); m_y = stream.readDouble(); m_typeName = typeName; }

	@Function(effects=IMMUTABLE, onNullInput=RETURNS_NULL) @Override public void writeSQL(SQLOutput stream) throws SQLException { stream.writeDouble(m_x); stream.writeDouble(m_y); }

	@Function(effects=IMMUTABLE, onNullInput=RETURNS_NULL) @Override public String toString() { s_logger.info(m_typeName + ” toString”); StringBuffer sb = new StringBuffer(); sb.append(‘(’); sb.append(m_x); sb.append(‘,’); sb.append(m_y); sb.append(‘)’); return sb.toString(); }

	/* Meaningful code that actually does something with this type was * intentionally left out. */ } ```

	The class itself is annotated with @BaseUDT, giving its SQL schema and name, and the length and alignment needed for its internal, stored form.

	Because the compiler knows the class is a BaseUDT, it already expects the parse, toString, readSQL, and writeSQL methods to be present, and will generate the correct SQL to declare them as functions to PostgreSQL. The @Function annotations are only there to declare the immutability and on-null-input behavior for those methods, because those values are not the defaults when declaring a function.

	# Debugging PL/Java C code

	## Ensure the native code is compiled for debugging

	Debugging is much more pleasant when the C code has been compiled with debugging information included. Edit the pljava-so/pom.xml file, find the <c>...</c> section, and add `true:

	xml <configuration> ... <c> ... <debug>true</debug> <defines> ... </defines> ... </c> ... </configuration> Save the pom.xml file and rebuild PL/Java (or just the pljava-so subproject, to save time).

	## Start PL/Java and attach a debugger

	Start psql and set the PL/Java debug flag, and issue a call to some Java function.

	sql set pljava.debug to on; select sqlj.get_classpath(); You will see a message resembling this:

	INFO: Backend pid = 2830. Attach the debugger and set pljavaDebug to false to continue

	Use another window and attatch gdb or another debugger.

	sh gdb <full path to the postgres executable> <your Backend pid> The debugger will break into the PL/Java code while it is in a dummy loop. You can break this loop by setting the global variable pljavaDebug to false. You then have the ability to set breakpoints etc. before you continue execution.

	gdb (gdb) set pljavaDebug=0 (gdb) <set breakpoints etc. here> (gdb) cont That’s it!

	## Debugging with dbx

	Copied from [Debugging PL/Java Applications with Solaris Studio dbx][dpjdbx], Johann ’Myrkraverk’s blog on my.opera.

	[dpjdbx]: http://my.opera.com/myrkraverk/blog/2010/12/11/debugging-pl-java-with-dbx

	### Setting up the Server

	Debugging PL/Java code requires debugging of the server process itself. This means the debugger must be run as the same (or more privileged) user id as the server itself. That may not be possible in a production environment for access control/security reasons so for the remainder of this text we assume the developer is running his1 own server (under his own uid) for debugging.

	As per the dbx manual, the Java virtual machine must be started with the options -Xdebug -Xnoagent -Xrundbx_agent. This can be done by having the following line in postgresql.conf. pljava.vmoptions = ' -Xdebug -Xnoagent -Xrundbx_agent'

	This means the jvm will load libdbx_agent.so whose location must be in the server’s runtime load path (LD_LIBRARY_PATH). The Solaris Studio 12.2 manual gives the wrong pathname for the Solaris amd64 binary. It is found under <install dir>/solstudio12.2/lib/dbx/amd64/runtime and can be specified as

	properties LD_LIBRARY_PATH_64=/opt/solstudio12.2/lib/dbx/amd64/runtime in the server’s environment2 where Studio is installed in /opt.

	### Setting up the debugger (dbx)

	PL/Java loads classes from the database which dbx does not know about so it must be told where the jar files can be found. This is done with the CLASSPATHX environment variable. Note the appended X. In our case it is

	properties CLASSPATHX=/home/johann/src/Java/PLJava/Hello.jar

	which must be set in the debugger’s environment. In addition it must also be told where to find the Java source files. For this we use

	To debug PL/Java itself we need its source path in JAVASRCPATH too.

	### Attaching dbx to the Server’s Process

	Before we attach to the server we need to make sure that PL/Java has been loaded and that the virtual machine has been created. Otherwise dbx does not know anything about Java. An example:

	properties (dbx) stop in com.myrkraverk.Hello.hello dbx: "com" is not defined as a function or procedure in the scope `postgres`be-secure.c`secure_read`

	The best way is to run some simple Java function before we attach the debugger. In a psql session one way is to run the following commands.

	sql CREATE FUNCTION getsysprop(VARCHAR) RETURNS VARCHAR AS 'java.lang.System.getProperty' LANGUAGE java; SELECT getsysprop('user.home'); Now it is just a matter of getting the server’s pid


	```psql johann=# select pg_backend_pid(); pg_backend_pid





       10767

(1 row)


and attach dbx.

```sh
 $ dbx - 10767
 Reading postgres
 Reading ld.so.1
 Reading libxslt.so.1
 Output elided.
 Reading libjava.so
 Reading libzip.so
 Attached to process 10767 with 10 LWPs
 t@1 (l@1) stopped in __so_recv at 0xfffffd7fff23d14a
 0xfffffd7fff23d14a: __so_recv+0x000a: jae __so_recv+0x16 [0xfffffd7fff23d156, .+0xc]
 Current function is secure_read
 303 n = recv(port->sock, ptr, len, 0);
 (dbx)

Debugging our Java code

Our “hello world” is very simple.

 package com.myrkraverk;

 class Hello
 {
 public static int hello()
 {
 return 17;
 }
 }

Assuming we have already compiled (with -g) and jar archived our code3 we can tell dbx to stop in our method whether we have run sqlj.install_jar() first or not.

 (dbx) stop in com.myrkraverk.Hello.hello
 (2) java stop in com.myrkraverk.Hello.hello()

And if not, we just detach dbx, re-compile/re-archive and place it where dbx can find it before we attach again.

And of course we have to let the server continue running.

 (dbx) cont

In our psql session, we can now4 load our class into the database,

 johann=# select sqlj.install_jar('file:///home/johann/src/Java/PLJava/Hello.jar','Hello',false);
 install_jar

 (1 row)

set the classpath

 johann=# select sqlj.set_classpath('johann', 'Hello');
 set_classpath

 (1 row)

and create the sql function.

 johann=# create function hello() returns int4
 as 'com.myrkraverk.Hello.hello' language java;
 CREATE FUNCTION

Now when we run it,

 johann=# select hello();

dbx halts at the breakpoint.

 stopped in com.myrkraverk.Hello.hello at line 14 in file "Hello.java"
 14 return 17;

Final Notes

It is outside the scope of this tutorial to teach debugging Java applications with dbx. See the Solaris Studio manual for the details.

Download

Download the hello world source code from my.opera. Boost Licensed.

Footnotes

	1 It’s been fashionable lately to use the pronoun “her” in these cases. The author firmly believes the pronoun’s gender should be chosen as the writer’s gender however.

	2 This means the environment the postgres command is run in.

	3 And that dbx can find it, as described above.

	4 Or before, it doesn’t matter.

Debugging with jdb

PL/Java is debugged like any other Java application using JPDA. Here is an example of how to set it up using the PostgreSQL psql utility and the bundled command line debugger jdb (you will probably use your favourite IDE instead but the setup will be similar).

Let’s assume we want to debug the SQL function javatest.testSavepointSanity() and that the function is mapped to the java method org.postgresql.pljava.example.SPIActions.testSavepointSanity() (the example is from the examples.jar found in the PL/Java source distribution).

Fire up psql and issue the following commands:

SET pljava.vmoptions TO '-agentlib:jdwp=transport=dt_socket,server=y,address=8444,suspend=y';
SELECT javatest.testSavepointSanity();

Now you