---
title: "ST_QuantizeCoordinates"
draft: false
hidden: true
---
ST_QuantizeCoordinates — Sets least significant bits of coordinates to zero
geometry
ST_QuantizeCoordinates
(
geometry
g
,
int
prec_x
,
int
prec_y
,
int
prec_z
,
int
prec_m
)
;
ST_QuantizeCoordinates
determines the number of bits
(
N
) required to represent a coordinate value with a
specified number of digits after the decimal point, and then sets
all but the
N
most significant bits to zero. The
resulting coordinate value will still round to the original value,
but will have improved compressiblity. This can result in a
significant disk usage reduction provided that the geometry column
is using a
compressible storage type
. The function allows
specification of a different number of digits after the decimal
point in each dimension; unspecified dimensions are assumed to have
the precision of the
x
dimension. Negative digits are
interpreted to refer digits to the left of the decimal point, (i.e.,
prec_x=-2
will preserve coordinate values to the
nearest 100.
The coordinates produced by
ST_QuantizeCoordinates
are
independent of the geometry that contains those coordinates and the
relative position of those coordinates within the geometry. As a result,
existing topological relationships between geometries are unaffected
by use of this function. The function may produce invalid geometry
when it is called with a number of digits lower than the intrinsic
precision of the geometry.
Availability: 2.5.0
PostGIS stores all coordinate values as double-precision floating point integers, which can reliably represent 15 significant digits. However, PostGIS may be used to manage data that intrinsically has fewer than 15 significant digits. An example is TIGER data, which is provided as geographic coordinates with six digits of precision after the decimal point (thus requiring only nine significant digits of longitude and eight significant digits of latitude.)
When 15 significant digits are available, there are many possible
representations of a number with 9 significant digits. A double
precision floating point number uses 52 explicit bits to represent
the significand (mantissa) of the coordinate. Only 30 bits are needed
to represent a mantissa with 9 significant digits, leaving 22
insignificant bits; we can set their value to anything we like and
still end up with a number that rounds to our input value. For
example, the value 100.123456 can be represented by the floating
point numbers closest to 100.123456000000, 100.123456000001, and
100.123456432199. All are equally valid, in that
ST_AsText(geom, 6)
will return the same result with
any of these inputs. As we can set these bits to any value,
ST_QuantizeCoordinates
sets the 22 insignificant
bits to zero. For a long coordinate sequence this creates a
pattern of blocks of consecutive zeros that is compressed
by PostgreSQL more efficiently.
Only the on-disk size of the geometry is potentially affected by
|
SELECT ST_AsText(ST_QuantizeCoordinates('POINT (100.123456 0)'::geometry, 4)); st_astext ------------------------- POINT(100.123455047607 0)
WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456)'::geometry AS geom) SELECT digits, encode(ST_QuantizeCoordinates(geom, digits), 'hex'), ST_AsText(ST_QuantizeCoordinates(geom, digits)) FROM test, generate_series(15, -15, -1) AS digits; digits | encode | st_astext --------+--------------------------------------------+------------------------------------------ 15 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 14 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 13 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 12 | 01010000005c9a72083cdd5e405c9a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 11 | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT(123.456789123456 123.456789123456) 10 | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT(123.456789123455 123.456789123455) 9 | 0101000000009072083cdd5e40009072083cdd5e40 | POINT(123.456789123418 123.456789123418) 8 | 0101000000008072083cdd5e40008072083cdd5e40 | POINT(123.45678912336 123.45678912336) 7 | 0101000000000070083cdd5e40000070083cdd5e40 | POINT(123.456789121032 123.456789121032) 6 | 0101000000000040083cdd5e40000040083cdd5e40 | POINT(123.456789076328 123.456789076328) 5 | 0101000000000000083cdd5e40000000083cdd5e40 | POINT(123.456789016724 123.456789016724) 4 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375) 3 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT(123.456787109375 123.456787109375) 2 | 01010000000000000038dd5e400000000038dd5e40 | POINT(123.45654296875 123.45654296875) 1 | 01010000000000000000dd5e400000000000dd5e40 | POINT(123.453125 123.453125) 0 | 01010000000000000000dc5e400000000000dc5e40 | POINT(123.4375 123.4375) -1 | 01010000000000000000c05e400000000000c05e40 | POINT(123 123) -2 | 01010000000000000000005e400000000000005e40 | POINT(120 120) -3 | 010100000000000000000058400000000000005840 | POINT(96 96) -4 | 010100000000000000000058400000000000005840 | POINT(96 96) -5 | 010100000000000000000058400000000000005840 | POINT(96 96) -6 | 010100000000000000000058400000000000005840 | POINT(96 96) -7 | 010100000000000000000058400000000000005840 | POINT(96 96) -8 | 010100000000000000000058400000000000005840 | POINT(96 96) -9 | 010100000000000000000058400000000000005840 | POINT(96 96) -10 | 010100000000000000000058400000000000005840 | POINT(96 96) -11 | 010100000000000000000058400000000000005840 | POINT(96 96) -12 | 010100000000000000000058400000000000005840 | POINT(96 96) -13 | 010100000000000000000058400000000000005840 | POINT(96 96) -14 | 010100000000000000000058400000000000005840 | POINT(96 96) -15 | 010100000000000000000058400000000000005840 | POINT(96 96)