
 PGO, the Postgres Operator from Crunchy Data

 PGO, the Postgres Operator from Crunchy Data

 	

 PGO, the Postgres Operator from Crunchy Data

 	

 Production Postgres Made Easy

 	

 Supported Platforms

 	

 Prerequisites

 	

 Installation

 	

 Step 1: Download the Examples

 	

 Step 2: Install PGO, the Postgres Operator

 	

 Create a Postgres Cluster

 	

 Connect to the Postgres cluster

 	

 Connect via psql in the Terminal

 	

 Connect an Application

 	

 Next Steps

 	

 Adding a Connection Pooler

 	

 Connecting to a Connection Pooler

 	

 TLS

 	

 Customizing

 	

 Configuration

 	

 Replicas

 	

 Resources

 	

 Annotations / Labels

 	

 Pod Anti-Affinity / Pod Affinity / Node Affinity

 	

 Tolerations

 	

 Pod Spread Constraints

 	

 Next Steps

 	

 HA Postgres: Adding Replicas to your Postgres Cluster

 	

 Testing Your HA Cluster

 	

 Test #1: Remove a Service

 	

 Test #2: Remove the Primary StatefulSet

 	

 Synchronous Replication

 	

 Affinity

 	

 Understanding Pod Labels

 	

 Pod Anti-affinity

 	

 Node Affinity

 	

 Pod Topology Spread Constraints

 	

 API Field Configuration

 	

 Example Spread Constraints

 	

 Next Steps

 	

 HA Postgres: Adding Replicas to your Postgres Cluster

 	

 Testing Your HA Cluster

 	

 Test #1: Remove a Service

 	

 Test #2: Remove the Primary StatefulSet

 	

 Synchronous Replication

 	

 Affinity

 	

 Understanding Pod Labels

 	

 Pod Anti-affinity

 	

 Node Affinity

 	

 Pod Topology Spread Constraints

 	

 API Field Configuration

 	

 Example Spread Constraints

 	

 Next Steps

 	

 Create a Postgres Cluster

 	

 What Just Happened?

 	

 Troubleshooting

 	

 PostgreSQL / pgBackRest Pods Stuck in Pending Phase

 	

 Next Steps

 	

 Background: Services, Secrets, and TLS

 	

 Modifying Service Type

 	

 Connect an Application

 	

 Next Steps

 	

 HA Postgres: Adding Replicas to your Postgres Cluster

 	

 Testing Your HA Cluster

 	

 Test #1: Remove a Service

 	

 Test #2: Remove the Primary StatefulSet

 	

 Synchronous Replication

 	

 Affinity

 	

 Understanding Pod Labels

 	

 Pod Anti-affinity

 	

 Node Affinity

 	

 Pod Topology Spread Constraints

 	

 API Field Configuration

 	

 Example Spread Constraints

 	

 Next Steps

 	

 Resize Memory and CPU

 	

 Resize PVC

 	

 Resize PVCs With StorageClass That Does Not Allow Expansion

 	

 Troubleshooting

 	

 Postgres Pod Can't Be Scheduled

 	

 PVCs Do Not Resize

 	

 Next Steps

 	

 Custom Postgres Configuration

 	

 Customize TLS

 	

 How to Customize TLS

 	

 Labels

 	

 Annotations

 	

 Pod Priority Classes

 	

 Separate WAL PVCs

 	

 Database Initialization SQL

 	

 Initialization SQL ConfigMap

 	

 PSQL Usage

 	

 Troubleshooting

 	

 Changes Not Applied

 	

 Next Steps

 	

 Creating a New User

 	

 Adjusting Privileges

 	

 Managing the postgres User

 	

 Deleting a User

 	

 Deleting a Database

 	

 Next Steps

 	

 Applying Minor Postgres Updates

 	

 Rolling Back Minor Postgres Updates

 	

 Applying Other Component Updates

 	

 Next Steps

 	

 Understanding Backup Configuration and Basic Operations

 	

 Setting Up a Backup Repository

 	

 Using Kubernetes Volumes

 	

 Using S3

 	

 Using S3 Credentials

 	

 Using an AWS-integrated identity provider and role

 	

 Using Google Cloud Storage (GCS)

 	

 Using Azure Blob Storage

 	

 Set Up Multiple Backup Repositories

 	

 Additional Notes

 	

 Encryption

 	

 Limitations

 	

 Custom Backup Configuration

 	

 Next Steps

 	

 Managing Scheduled Backups

 	

 Managing Backup Retention

 	

 Taking a One-Off Backup

 	

 Next Steps

 	

 Restore Properties

 	

 Clone a Postgres Cluster

 	

 Perform a Point-in-time-Recovery (PITR)

 	

 Perform an In-Place Point-in-time-Recovery (PITR)

 	

 Restore Individual Databases

 	

 Standby Cluster

 	

 Clone From Backups Stored in S3 / GCS / Azure Blob Storage

 	

 Next Steps

 	

 Adding the Exporter Sidecar

 	

 Accessing the Metrics

 	

 Next Steps

 	

 Adding a Connection Pooler

 	

 Connecting to a Connection Pooler

 	

 TLS

 	

 Customizing

 	

 Configuration

 	

 Replicas

 	

 Resources

 	

 Annotations / Labels

 	

 Pod Anti-Affinity / Pod Affinity / Node Affinity

 	

 Tolerations

 	

 Pod Spread Constraints

 	

 Next Steps

 	

 Manually Restarting PostgreSQL

 	

 Shutdown

 	

 Rotating TLS Certificates

 	

 Changing the Primary

 	

 Next Steps

 	

 Installing PGO

 	

 Installing PGO Monitoring

 	

 Installing PGO Using Kustomize

 	

 Prerequisites

 	

 Configuration

 	

 Installation Mode

 	

 Install

 	

 Automated Upgrade Checks

 	

 Uninstall

 	

 Installing PGO Using Helm

 	

 Prerequisites

 	

 Configuration

 	

 Logging

 	

 Installation Mode

 	

 Install

 	

 Automated Upgrade Checks

 	

 Upgrade and Uninstall

 	

 Overview

 	

 Upgrading from PGO v5.0.0 Using Kustomize

 	

 Upgrading from PGO v5.0.2 and Below

 	

 Upgrading from PGO v5.0 to v5.1

 	

 Once there values have been properly verified, you may deploy PGO 5.1.

 	

 Installing PGO Monitoring Using Kustomize

 	

 Prerequisites

 	

 Configuration

 	

 Install

 	

 Uninstall

 	

 Prerequisites

 	

 Upgrade Method #1: Data Volumes

 	

 Step 1: Prepare the PGO v4 Cluster for Migration

 	

 Step 2: Migrate to PGO v5

 	

 Upgrade Method #2: Backups

 	

 Step 1: Prepare the PGO v4 Cluster for Migration

 	

 Step 2: Migrate to PGO v5

 	

 Upgrade Method #3: Standby Cluster

 	

 Step 1: Migrate to PGO v5

 	

 Additional Considerations

 	

 Configure your PostgresCluster CRD

 	

 Considerations

 	

 Putting it all together

 	

 Modify Persistent Volume Retention

 	

 Delete Postgres Cluster, Retain Volume

 	

 Create Postgres Cluster With Retained Volume

 	

 Additional Notes on Storage Retention

 	

 Set Up Logical Replication

 	

 pgnodemx

 	

 pgnodemx Configuration

 	

 Automating pgnodemx Creation

 	

 Create an Image Pull Secret

 	

 Install PGO from a Private Registry

 	

 Deploy a Postgres cluster from a Private Registry

 	

 PGO Architecture

 	

 Kubernetes StatefulSets: The PGO Deployment Model

 	

 Additional Architecture Information

 	

 The Crunchy Postgres Operator High Availability Algorithm

 	

 How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity

 	

 Synchronous Replication: Guarding Against Transactions Loss

 	

 Node Affinity

 	

 Tolerations

 	

 Pod Topology Spread Constraints

 	

 Rolling Updates

 	

 Pod Disruption Budgets

 	

 Backups

 	

 Scheduling Backups

 	

 Restores

 	

 Deleting a Backup

 	

 High Availability By Default

 	

 Customization

 	

 Understanding Default User Management

 	

 Custom Users and Databases

 	

 Generated Passwords

 	

 Custom Passwords

 	

 Example

 	

 Getting Started

 	

 Components

 	

 pgnodemx and the DownwardAPI

 	

 Visualizations

 	

 Overview

 	

 PostgreSQL Details

 	

 Pod Details

 	

 Backups

 	

 PostgreSQL Service Health Overview

 	

 Query Runtime

 	

 Alerts

 	

 Standby Cluster Overview

 	

 Creating a Standby PostgreSQL Cluster

 	

 Promoting a Standby Cluster

 	

 Deploying pgAdmin 4

 	

 User Synchronization

 	

 Custom Configuration

 	

 Kerberos Configuration

 	

 LDAP Configuration

 	

 Deleting pgAdmin 4

 	

 Kubernetes Compatibility

 	

 Components Compatibility

 	

 Container Tags

 	

 Extensions Compatibility

 	

 Geospatial Extensions

 	

 Major Features

 	

 pgAdmin 4 Integration

 	

 Removal of SSH Requirement for Local Backups

 	

 Features

 	

 Changes

 	

 Fixes

 	

 Features

 	

 Fixes

 	

 Features

 	

 Changes

 	

 Fixes

 	

 Features

 	

 Changes

 	

 Fixes

 	

 Features

 	

 Changes

 	

 Fixes

 	

 Changes

 	

 Features

 	

 Project FAQ

 	

 What is The PGO Project?

 	

 What’s the difference between PGO and Crunchy PostgreSQL for Kubernetes?

 	

 Where can I find support for PGO?

 	

 Under which open source license is PGO source code available?

 	

 Where are the release tags for PGO v5?

 	

 How can I get involved with the PGO Project?

 	

 Where do I report a PGO bug?

 	

 How often is PGO released?

PGO, the Postgres Operator from Crunchy Data
[image: PGO: The Postgres Operator from Crunchy Data]
Latest Release: {{< param operatorVersion >}}

Production Postgres Made Easy
PGO, the Postgres Operator from Crunchy Data, gives you a declarative Postgres solution that automatically manages your PostgreSQL clusters.
Designed for your GitOps workflows, it is [easy to get started]({{< relref "quickstart/_index.md" >}}) with Postgres on Kubernetes with PGO. Within a few moments, you can have a production grade Postgres cluster complete with high availability, disaster recovery, and monitoring, all over secure TLS communications.Even better, PGO lets you easily customize your Postgres cluster to tailor it to your workload!
With conveniences like cloning Postgres clusters to using rolling updates to roll out disruptive changes with minimal downtime, PGO is ready to support your Postgres data at every stage of your release pipeline. Built for resiliency and uptime, PGO will keep your desired Postgres in a desired state so you do not need to worry about it.
PGO is developed with many years of production experience in automating Postgres management on Kubernetes, providing a seamless cloud native Postgres solution to keep your data always available.
Supported Platforms
PGO, the Postgres Operator from Crunchy Data, is tested on the following platforms:
	Kubernetes 1.20+
	OpenShift 4.6+
	Rancher
	Google Kubernetes Engine (GKE), including Anthos
	Amazon EKS
	Microsoft AKS
	VMware Tanzu

This list only includes the platforms that the Postgres Operator is specifically tested on as part of the release process: PGO works on other Kubernetes distributions as well, such as Rancher.
The PGO Postgres Operator project source code is available subject to the Apache 2.0 license with the PGO logo and branding assets covered by our trademark guidelines.
Can't wait to try out the PGO, the Postgres Operator from Crunchy Data? Let us show you the quickest possible path to getting up and running.

Prerequisites
Please be sure you have the following utilities installed on your host machine:
	kubectl
	git

Installation
Step 1: Download the Examples
First, go to GitHub and fork the Postgres Operator examples repository:
https://github.com/CrunchyData/postgres-operator-examples/fork
Once you have forked this repo, you can download it to your working environment with a command similar to this:
YOUR_GITHUB_UN="<your GitHub username>"
git clone --depth 1 "git@github.com:${YOUR_GITHUB_UN}/postgres-operator-examples.git"
cd postgres-operator-examples

Step 2: Install PGO, the Postgres Operator
You can install PGO, the Postgres Operator from Crunchy Data, using the command below:
kubectl apply -k kustomize/install/namespace
kubectl apply --server-side -k kustomize/install/default
This will create a namespace called postgres-operator and create all of the objects required to deploy PGO.
To check on the status of your installation, you can run the following command:
kubectl -n postgres-operator get pods \
 --selector=postgres-operator.crunchydata.com/control-plane=postgres-operator \
 --field-selector=status.phase=Running
If the PGO Pod is healthy, you should see output similar to:
NAME READY STATUS RESTARTS AGE
postgres-operator-9dd545d64-t4h8d 1/1 Running 0 3s

Create a Postgres Cluster
Let's create a simple Postgres cluster. You can do this by executing the following command:
kubectl apply -k kustomize/postgres
This will create a Postgres cluster named hippo in the postgres-operator namespace. You can track the progress of your cluster using the following command:
kubectl -n postgres-operator describe postgresclusters.postgres-operator.crunchydata.com hippo

Connect to the Postgres cluster
As part of creating a Postgres cluster, the Postgres Operator creates a PostgreSQL user account. The credentials for this account are stored in a Secret that has the name <clusterName>-pguser-<userName>.
Within this Secret are attributes that provide information to let you log into the PostgreSQL cluster. These include:
	user: The name of the user account.
	password: The password for the user account.
	dbname: The name of the database that the user has access to by default.
	host: The name of the host of the database. This references the Service of the primary Postgres instance.
	port: The port that the database is listening on.
	uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database.
	jdbc-uri: A PostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database via the JDBC driver.

If you deploy your Postgres cluster with the PgBouncer connection pooler, there are additional values that are populated in the user Secret, including:
	pgbouncer-host: The name of the host of the PgBouncer connection pooler. This references the Service of the PgBouncer connection pooler.
	pgbouncer-port: The port that the PgBouncer connection pooler is listening on.
	pgbouncer-uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database via the PgBouncer connection pooler.
	pgbouncer-jdbc-uri: A PostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database via the PgBouncer connection pooler using the JDBC driver.

Note that all connections use TLS. PGO sets up a PKI for your Postgres clusters. You can also choose to bring your own PKI / certificate authority; this is covered later in the documentation.
Connect via psql in the Terminal
Connect Directly
If you are on the same network as your PostgreSQL cluster, you can connect directly to it using the following command:
psql $(kubectl -n postgres-operator get secrets hippo-pguser-hippo -o go-template='{{.data.uri | base64decode}}')

Connect Using a Port-Forward
In a new terminal, create a port forward:
PG_CLUSTER_PRIMARY_POD=$(kubectl get pod -n postgres-operator -o name \
 -l postgres-operator.crunchydata.com/cluster=hippo,postgres-operator.crunchydata.com/role=master)
kubectl -n postgres-operator port-forward "${PG_CLUSTER_PRIMARY_POD}" 5432:5432
Establish a connection to the PostgreSQL cluster.
PG_CLUSTER_USER_SECRET_NAME=hippo-pguser-hippo

PGPASSWORD=$(kubectl get secrets -n postgres-operator "${PG_CLUSTER_USER_SECRET_NAME}" -o go-template='{{.data.password | base64decode}}') \
PGUSER=$(kubectl get secrets -n postgres-operator "${PG_CLUSTER_USER_SECRET_NAME}" -o go-template='{{.data.user | base64decode}}') \
PGDATABASE=$(kubectl get secrets -n postgres-operator "${PG_CLUSTER_USER_SECRET_NAME}" -o go-template='{{.data.dbname | base64decode}}') \
psql -h localhost

Connect an Application
The information provided in the user Secret will allow you to connect an application directly to your PostgreSQL database.
For example, let's connect Keycloak. Keycloak is a popular open source identity management tool that is backed by a PostgreSQL database. Using the hippo cluster we created, we can deploy the following manifest file:
cat <<EOF >> keycloak.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: keycloak
 namespace: postgres-operator
 labels:
 app.kubernetes.io/name: keycloak
spec:
 selector:
 matchLabels:
 app.kubernetes.io/name: keycloak
 template:
 metadata:
 labels:
 app.kubernetes.io/name: keycloak
 spec:
 containers:
 - image: quay.io/keycloak/keycloak:latest
 name: keycloak
 env:
 - name: DB_VENDOR
 value: "postgres"
 - name: DB_ADDR
 valueFrom: { secretKeyRef: { name: hippo-pguser-hippo, key: host } }
 - name: DB_PORT
 valueFrom: { secretKeyRef: { name: hippo-pguser-hippo, key: port } }
 - name: DB_DATABASE
 valueFrom: { secretKeyRef: { name: hippo-pguser-hippo, key: dbname } }
 - name: DB_USER
 valueFrom: { secretKeyRef: { name: hippo-pguser-hippo, key: user } }
 - name: DB_PASSWORD
 valueFrom: { secretKeyRef: { name: hippo-pguser-hippo, key: password } }
 - name: KEYCLOAK_USER
 value: "admin"
 - name: KEYCLOAK_PASSWORD
 value: "admin"
 - name: PROXY_ADDRESS_FORWARDING
 value: "true"
 ports:
 - name: http
 containerPort: 8080
 - name: https
 containerPort: 8443
 readinessProbe:
 httpGet:
 path: /auth/realms/master
 port: 8080
 restartPolicy: Always

EOF

kubectl apply -f keycloak.yaml
There is a full example for how to deploy Keycloak with the Postgres Operator in the kustomize/keycloak folder.

Next Steps
Congratulations, you've got your Postgres cluster up and running, perhaps with an application connected to it! 👏 👏 👏
You can find out more about the [postgresclusters custom resource definition]({{< relref "references/crd.md" >}}) through the [documentation]({{< relref "references/crd.md" >}}) and through kubectl explain, i.e.:
kubectl explain postgresclusters
Let's work through a tutorial together to better understand the various components of PGO, the Postgres Operator, and how you can fine tune your settings to tailor your Postgres cluster to your application.
Ready to get started with PGO, the Postgres Operator from Crunchy Data? Us too!
This tutorial covers several concepts around day-to-day life managing a Postgres cluster with PGO. While going through and looking at various "HOWTOs" with PGO, we will also cover concepts and features that will help you have a successful cloud native Postgres journey!
In this tutorial, you will learn:
	How to create a Postgres cluster
	How to connect to a Postgres cluster
	How to scale and create a high availability (HA) Postgres cluster
	How to resize your cluster
	How to set up proper disaster recovery and manage backups and restores
	How to apply software updates to Postgres and other components
	How to set up connection pooling
	How to delete your cluster

and more.
You will also see:
	How PGO helps your Postgres cluster achieve high availability
	How PGO can heal your Postgres cluster and ensure all objects are present and available
	How PGO sets up disaster recovery
	How to manage working with PGO in a single namespace or in a cluster-wide installation of PGO.

[Let's get started]({{< relref "./getting-started.md" >}})!
Connection pooling can be helpful for scaling and maintaining overall availability between your application and the database. PGO helps facilitate this by supporting the PgBouncer connection pooler and state manager.
Let's look at how we can a connection pooler and connect it to our application!

Adding a Connection Pooler
Let's look at how we can add a connection pooler using the kustomize/keycloak example in the Postgres Operator examples repository.
Connection poolers are added using the spec.proxy section of the custom resource. Currently, the only connection pooler supported is PgBouncer.
The only required attribute for adding a PgBouncer connection pooler is to set the spec.proxy.pgBouncer.image attribute. In the kustomize/keycloak/postgres.yaml file, add the following YAML to the spec:
proxy:
 pgBouncer:
 image: {{< param imageCrunchyPGBouncer >}}
(You can also find an example of this in the kustomize/examples/high-availability example).
Save your changes and run:
kubectl apply -k kustomize/keycloak
PGO will detect the change and create a new PgBouncer Deployment!
That was fairly easy to set up, so now let's look at how we can connect our application to the connection pooler.

Connecting to a Connection Pooler
When a connection pooler is deployed to the cluster, PGO adds additional information to the user Secrets to allow for applications to connect directly to the connection pooler. Recall that in this example, our user Secret is called keycloakdb-pguser-keycloakdb. Describe the user Secret:
kubectl -n postgres-operator describe secrets keycloakdb-pguser-keycloakdb
You should see that there are several new attributes included in this Secret that allow for you to connect to your Postgres instance via the connection pooler:
	pgbouncer-host: The name of the host of the PgBouncer connection pooler. This references the Service of the PgBouncer connection pooler.
	pgbouncer-port: The port that the PgBouncer connection pooler is listening on.
	pgbouncer-uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database via the PgBouncer connection pooler.
	pgbouncer-jdbc-uri: A PostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database via the PgBouncer connection pooler using the JDBC driver. Note that by default, the connection string disable JDBC managing prepared transactions for optimal use with PgBouncer.

Open up the file in kustomize/keycloak/keycloak.yaml. Update the DB_ADDR and DB_PORT values to be the following:
- name: DB_ADDR
 valueFrom: { secretKeyRef: { name: keycloakdb-pguser-keycloakdb, key: pgbouncer-host } }
- name: DB_PORT
 valueFrom: { secretKeyRef: { name: keycloakdb-pguser-keycloakdb, key: pgbouncer-port } }
This changes Keycloak's configuration so that it will now connect through the connection pooler.
Apply the changes:
kubectl apply -k kustomize/keycloak
Kubernetes will detect the changes and begin to deploy a new Keycloak Pod. When it is completed, Keycloak will now be connected to Postgres via the PgBouncer connection pooler!

TLS
PGO deploys every cluster and component over TLS. This includes the PgBouncer connection pooler. If you are using your own [custom TLS setup]({{< relref "./customize-cluster.md" >}}#customize-tls), you will need to provide a Secret reference for a TLS key / certificate pair for PgBouncer in spec.proxy.pgBouncer.customTLSSecret.
Your TLS certificate for PgBouncer should have a Common Name (CN) setting that matches the PgBouncer Service name. This is the name of the cluster suffixed with -pgbouncer. For example, for our hippo cluster this would be hippo-pgbouncer. For the keycloakdb example, it would be keycloakdb-pgbouncer.
To customize the TLS for PgBouncer, you will need to create a Secret in the Namespace of your Postgres cluster that contains the TLS key (tls.key), TLS certificate (tls.crt) and the CA certificate (ca.crt) to use. The Secret should contain the following values:
data:
 ca.crt: <value>
 tls.crt: <value>
 tls.key: <value>
For example, if you have files named ca.crt, keycloakdb-pgbouncer.key, and keycloakdb-pgbouncer.crt stored on your local machine, you could run the following command:
kubectl create secret generic -n postgres-operator keycloakdb-pgbouncer.tls \
 --from-file=ca.crt=ca.crt \
 --from-file=tls.key=keycloakdb-pgbouncer.key \
 --from-file=tls.crt=keycloakdb-pgbouncer.crt
You can specify the custom TLS Secret in the spec.proxy.pgBouncer.customTLSSecret.name field in your postgrescluster.postgres-operator.crunchydata.com custom resource, e.g.:
spec:
 proxy:
 pgBouncer:
 customTLSSecret:
 name: keycloakdb-pgbouncer.tls

Customizing
The PgBouncer connection pooler is highly customizable, both from a configuration and Kubernetes deployment standpoint. Let's explore some of the customizations that you can do!
Configuration
PgBouncer configuration can be customized through spec.proxy.pgBouncer.config. After making configuration changes, PGO will roll them out to any PgBouncer instance and automatically issue a "reload".
There are several ways you can customize the configuration:
	spec.proxy.pgBouncer.config.global: Accepts key-value pairs that apply changes globally to PgBouncer.
	spec.proxy.pgBouncer.config.databases: Accepts key-value pairs that represent PgBouncer database definitions.
	spec.proxy.pgBouncer.config.users: Accepts key-value pairs that represent connection settings applied to specific users.
	spec.proxy.pgBouncer.config.files: Accepts a list of files that are mounted in the /etc/pgbouncer directory and loaded before any other options are considered using PgBouncer's include directive.

For example, to set the connection pool mode to transaction, you would set the following configuration:
spec:
 proxy:
 pgBouncer:
 config:
 global:
 pool_mode: transaction
For a reference on PgBouncer configuration please see:
https://www.pgbouncer.org/config.html

Replicas
PGO deploys one PgBouncer instance by default. You may want to run multiple PgBouncer instances to have some level of redundancy, though you still want to be mindful of how many connections are going to your Postgres database!
You can manage the number of PgBouncer instances that are deployed through the spec.proxy.pgBouncer.replicas attribute.

Resources
You can manage the CPU and memory resources given to a PgBouncer instance through the spec.proxy.pgBouncer.resources attribute. The layout of spec.proxy.pgBouncer.resources should be familiar: it follows the same pattern as the standard Kubernetes structure for setting container resources.
For example, let's say we want to set some CPU and memory limits on our PgBouncer instances. We could add the following configuration:
spec:
 proxy:
 pgBouncer:
 resources:
 limits:
 cpu: 200m
 memory: 128Mi
As PGO deploys the PgBouncer instances using a Deployment these changes are rolled out using a rolling update to minimize disruption between your application and Postgres instances!

Annotations / Labels
You can apply custom annotations and labels to your PgBouncer instances through the spec.proxy.pgBouncer.metadata.annotations and spec.proxy.pgBouncer.metadata.labels attributes respectively. Note that any changes to either of these two attributes take precedence over any other custom labels you have added.

Pod Anti-Affinity / Pod Affinity / Node Affinity
You can control the pod anti-affinity, pod affinity, and node affinity through the spec.proxy.pgBouncer.affinity attribute, specifically:
	spec.proxy.pgBouncer.affinity.nodeAffinity: controls node affinity for the PgBouncer instances.
	spec.proxy.pgBouncer.affinity.podAffinity: controls Pod affinity for the PgBouncer instances.
	spec.proxy.pgBouncer.affinity.podAntiAffinity: controls Pod anti-affinity for the PgBouncer instances.

Each of the above follows the standard Kubernetes specification for setting affinity.
For example, to set a preferred Pod anti-affinity rule for the kustomize/keycloak example, you would want to add the following to your configuration:
spec:
 proxy:
 pgBouncer:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 podAffinityTerm:
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/cluster: keycloakdb
 postgres-operator.crunchydata.com/role: pgbouncer
 topologyKey: kubernetes.io/hostname

Tolerations
You can deploy PgBouncer instances to Nodes with Taints by setting Tolerations through spec.proxy.pgBouncer.tolerations. This attribute follows the Kubernetes standard tolerations layout.
For example, if there were a set of Nodes with a Taint of role=connection-poolers:NoSchedule that you want to schedule your PgBouncer instances to, you could apply the following configuration:
spec:
 proxy:
 pgBouncer:
 tolerations:
 - effect: NoSchedule
 key: role
 operator: Equal
 value: connection-poolers
Note that setting a toleration does not necessarily mean that the PgBouncer instances will be assigned to Nodes with those taints. Tolerations act as a key: they allow for you to access Nodes. If you want to ensure that your PgBouncer instances are deployed to specific nodes, you need to combine setting tolerations with node affinity.

Pod Spread Constraints
Besides using affinity, anti-affinity and tolerations, you can also set Topology Spread Constraints through spec.proxy.pgBouncer.topologySpreadConstraints. This attribute follows the Kubernetes standard topology spread contraint layout.
For example, since each of of our pgBouncer Pods will have the standard postgres-operator.crunchydata.com/role: pgbouncer Label set, we can use this Label when determining the maxSkew. In the example below, since we have 3 nodes with a maxSkew of 1 and we've set whenUnsatisfiable to ScheduleAnyway, we should ideally see 1 Pod on each of the nodes, but our Pods can be distributed less evenly if other constraints keep this from happening.
 proxy:
 pgBouncer:
 replicas: 3
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: my-node-label
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/role: pgbouncer
If you want to ensure that your PgBouncer instances are deployed more evenly (or not deployed at all), you need to update whenUnsatisfiable to DoNotSchedule.

Next Steps
Now that we can enable connection pooling in a cluster, let’s explore some [administrative tasks]({{< relref "administrative-tasks.md" >}}) such as manually restarting PostgreSQL using PGO. How do we do that?
Postgres is known for its reliability: it is very stable and typically "just works." However, there are many things that can happen in a distributed environment like Kubernetes that can affect Postgres uptime, including:
	The database storage disk fails or some other hardware failure occurs
	The network on which the database resides becomes unreachable
	The host operating system becomes unstable and crashes
	A key database file becomes corrupted
	A data center is lost
	A Kubernetes component (e.g. a Service) is accidentally deleted

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching of operating system, hardware upgrade, or other maintenance.
The good news: PGO is prepared for this, and your Postgres cluster is protected from many of these scenarios. However, to maximize your high availability (HA), let's first scale up your Postgres cluster.

HA Postgres: Adding Replicas to your Postgres Cluster
PGO provides several ways to add replicas to make a HA cluster:
	Increase the spec.instances.replicas value
	Add an additional entry in spec.instances

For the purposes of this tutorial, we will go with the first method and set spec.instances.replicas to 2. Your manifest should look similar to:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - name: instance1
 replicas: 2
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
Apply these updates to your Postgres cluster with the following command:
kubectl apply -k kustomize/postgres
Within moment, you should see a new Postgres instance initializing! You can see all of your Postgres Pods for the hippo cluster by running the following command:
kubectl -n postgres-operator get pods \
 --selector=postgres-operator.crunchydata.com/cluster=hippo,postgres-operator.crunchydata.com/instance-set
Let's test our high availability set up.

Testing Your HA Cluster
An important part of building a resilient Postgres environment is testing its resiliency, so let's run a few tests to see how PGO performs under pressure!
Test #1: Remove a Service
Let's try removing the primary Service that our application is connected to. This test does not actually require a HA Postgres cluster, but it will demonstrate PGO's ability to react to environmental changes and heal things to ensure your applications can stay up.
Recall in the [connecting a Postgres cluster]({{< relref "./connect-cluster.md" >}}) that we observed the Services that PGO creates, e.g.:
kubectl -n postgres-operator get svc \
 --selector=postgres-operator.crunchydata.com/cluster=hippo
yields something similar to:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hippo-ha ClusterIP 10.103.73.92 <none> 5432/TCP 4h8m
hippo-ha-config ClusterIP None <none> <none> 4h8m
hippo-pods ClusterIP None <none> <none> 4h8m
hippo-primary ClusterIP None <none> 5432/TCP 4h8m
hippo-replicas ClusterIP 10.98.110.215 <none> 5432/TCP 4h8m
We also mentioned that the application is connected to the hippo-primary Service. What happens if we were to delete this Service?
kubectl -n postgres-operator delete svc hippo-primary
This would seem like it could create a downtime scenario, but run the above selector again:
kubectl -n postgres-operator get svc \
 --selector=postgres-operator.crunchydata.com/cluster=hippo
You should see something similar to:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hippo-ha ClusterIP 10.103.73.92 <none> 5432/TCP 4h8m
hippo-ha-config ClusterIP None <none> <none> 4h8m
hippo-pods ClusterIP None <none> <none> 4h8m
hippo-primary ClusterIP None <none> 5432/TCP 3s
hippo-replicas ClusterIP 10.98.110.215 <none> 5432/TCP 4h8m
Wow -- PGO detected that the primary Service was deleted and it recreated it! Based on how your application connects to Postgres, it may not have even noticed that this event took place!
Now let's try a more extreme downtime event.

Test #2: Remove the Primary StatefulSet
StatefulSets are a Kubernetes object that provide helpful mechanisms for managing Pods that interface with stateful applications, such as databases. They provide a stable mechanism for managing Pods to help ensure data is retrievable in a predictable way.
What happens if we remove the StatefulSet that is pointed to the Pod that represents the Postgres primary? First, let's determine which Pod is the primary. We'll store it in an environmental variable for convenience.
PRIMARY_POD=$(kubectl -n postgres-operator get pods \
 --selector=postgres-operator.crunchydata.com/role=master \
 -o jsonpath='{.items[*].metadata.labels.postgres-operator\.crunchydata\.com/instance}')
Inspect the environmental variable to see which Pod is the current primary:
echo $PRIMARY_POD
should yield something similar to:
hippo-instance1-zj5s
We can use the value above to delete the StatefulSet associated with the current Postgres primary instance:
kubectl delete sts -n postgres-operator "${PRIMARY_POD}"
Let's see what happens. Try getting all of the StatefulSets for the Postgres instances in the hippo cluster:
kubectl get sts -n postgres-operator \
 --selector=postgres-operator.crunchydata.com/cluster=hippo,postgres-operator.crunchydata.com/instance
You should see something similar to:
NAME READY AGE
hippo-instance1-6kbw 1/1 15m
hippo-instance1-zj5s 0/1 1s
PGO recreated the StatefulSet that was deleted! After this "catastrophic" event, PGO proceeds to heal the Postgres instance so it can rejoin the cluster. We cover the high availability process in greater depth later in the documentation.
What about the other instance? We can see that it became the new primary though the following command:
kubectl -n postgres-operator get pods \
 --selector=postgres-operator.crunchydata.com/role=master \
 -o jsonpath='{.items[*].metadata.labels.postgres-operator\.crunchydata\.com/instance}'
which should yield something similar to:
hippo-instance1-6kbw
You can test that the failover successfully occurred in a few ways. You can connect to the example Keycloak application that we [deployed in the previous section]({{< relref "./connect-cluster.md" >}}). Based on Keycloak's connection retry logic, you may need to wait a moment for it to reconnect, but you will see it connected and resume being able to read and write data. You can also connect to the Postgres instance directly and execute the following command:
SELECT NOT pg_catalog.pg_is_in_recovery() is_primary;
If it returns true (or t), then the Postgres instance is a primary!
What if PGO was down during the downtime event? Failover would still occur: the Postgres HA system works independently of PGO and can maintain its own uptime. PGO will still need to assist with some of the healing aspects, but your application will still maintain read/write connectivity to your Postgres cluster!

Synchronous Replication
PostgreSQL supports synchronous replication, which is a replication mode designed to limit the risk of transaction loss. Synchronous replication waits for a transaction to be written to at least one additional server before it considers the transaction to be committed. For more information on synchronous replication, please read about PGO's [high availability architecture]({{

 Installing PGO Using Kustomize

Installing PGO Using Kustomize
This section provides instructions for installing and configuring PGO using Kustomize.
If you are deploying using the installer from the Crunchy Data Customer Portal, please refer to the guide there for alternative setup information.
Prerequisites
First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Kustomize installer.
https://github.com/CrunchyData/postgres-operator-examples/fork
Once you have forked this repo, you can download it to your working environment with a command similar to this:
YOUR_GITHUB_UN="<your GitHub username>"
git clone --depth 1 "git@github.com:${YOUR_GITHUB_UN}/postgres-operator-examples.git"
cd postgres-operator-examples
The PGO installation project is located in the kustomize/install directory.

Configuration
While the default Kustomize install should work in most Kubernetes environments, it may be necessary to further customize the Kustomize project(s) according to your specific needs.
For instance, to customize the image tags utilized for the PGO Deployment, the images setting in the kustomize/install/default/kustomization.yaml file can be modified:
images:
- name: postgres-operator
 newName: {{< param operatorRepository >}}
 newTag: {{< param postgresOperatorTag >}}
If you are deploying using the images from the Crunchy Data Customer Portal, please refer to the [private registries]({{< relref "guides/private-registries.md" >}}) guide for additional setup information.
Please note that the Kustomize install project will also create a namespace for PGO by default (though it is possible to install without creating the namespace, as shown below). To modify the name of namespace created by the installer, the kustomize/install/namespace/namespace.yaml should be modified:
apiVersion: v1
kind: Namespace
metadata:
 name: custom-namespace
The namespace setting in kustomize/install/default/kustomization.yaml should be modified accordingly.
namespace: custom-namespace
By default, PGO deploys with debug logging turned on. If you wish to disable this, you need to set the CRUNCHY_DEBUG environmental variable to "false" that is found in the kustomize/install/manager/manager.yaml file. Alternatively, you can add the following to your kustomize/install/manager/kustomization.yaml to disable debug logging:
patchesStrategicMerge:
- |-
 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: pgo
 spec:
 template:
 spec:
 containers:
 - name: operator
 env:
 - name: CRUNCHY_DEBUG
 value: "false"
You can also create additional Kustomize overlays to further patch and customize the installation according to your specific needs.
Installation Mode
When PGO is installed, it can be configured to manage PostgreSQL clusters in all namespaces within the Kubernetes cluster, or just those within a single namespace. When managing PostgreSQL clusters in all namespaces, a ClusterRole and ClusterRoleBinding is created to ensure PGO has the permissions it requires to properly manage PostgreSQL clusters across all namespaces. However, when PGO is configured to manage PostgreSQL clusters within a single namespace only, a Role and RoleBinding is created instead.
The installation of the necessary resources for a cluster-wide or a namespace-limited operator is done automatically by Kustomize, as described below in the Install section. The only potential change you may need to make is to the Namespace resource and the namespace field if using a namespace other than the default postgres-operator.

Install
Once the Kustomize project has been modified according to your specific needs, PGO can then be installed using kubectl and Kustomize. To create the target namespace, run the following:
kubectl apply -k kustomize/install/namespace
This will create the default postgres-operator namespace, unless you have edited the kustomize/install/namespace/namespace.yaml resource. That Namespace resource should have the same value as the namespace field in the kustomization.yaml file (located either at kustomize/install/default or kustomize/install/singlenamespace, depending on whether you are deploying the operator with cluster-wide or namespace-limited permissions).
To install PGO itself in cluster-wide mode, apply the kustomization file in the default folder:
kubectl apply --server-side -k kustomize/install/default
To install PGO itself in namespace-limited mode, apply the kustomization file in the singlenamespace folder:
kubectl apply --server-side -k kustomize/install/singlenamespace
The kustomization.yaml files in those folders take care of applying the appropriate permissions.
Automated Upgrade Checks
By default, PGO will automatically check for updates to itself and software components by making a request to a URL. If PGO detects there are updates available, it will print them in the logs. As part of the check, PGO will send aggregated, anonymized information about the current deployment to the endpoint. An upcoming release will allow for PGO to opt-in to receive and apply updates to software components automatically.
PGO will check for updates upon startup and once every 24 hours. Any errors in checking will have no impact on PGO's operation. To disable the upgrade check, you can set the CHECK_FOR_UPGRADES environmental variable on the pgo Deployment to "false".

Uninstall
Once PGO has been installed, it can also be uninstalled using kubectl and Kustomize. To uninstall PGO (assuming it was installed in cluster-wide mode), the following command can be utilized:
kubectl delete -k kustomize/install/default
To uninstall PGO installed with only namespace permissions, use:
kubectl delete -k kustomize/install/singlenamespace
The namespace created with this installation can likewise be cleaned up with:
kubectl delete -k kustomize/install/namespace

 Installing PGO Using Helm

Installing PGO Using Helm
This section provides instructions for installing and configuring PGO using Helm.
Prerequisites
First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Helm installer.
https://github.com/CrunchyData/postgres-operator-examples/fork
Once you have forked this repo, you can download it to your working environment with a command similar to this:
YOUR_GITHUB_UN="<your GitHub username>"
git clone --depth 1 "git@github.com:${YOUR_GITHUB_UN}/postgres-operator-examples.git"
cd postgres-operator-examples
The PGO Helm chart is located in the helm/install directory of this repository.

Configuration
The values.yaml file for the Helm chart contains all of the available configuration settings for PGO. The default values.yaml settings should work in most Kubernetes environments, but it may require some customization depending on your specific environment and needs.
For instance, it might be necessary to customize the image tags that are utilized using the controllerImages setting:
controllerImages:
 cluster: {{< param operatorRepository >}}:{{< param postgresOperatorTag >}}
Please note that the values.yaml file is located in helm/install.
Logging
By default, PGO deploys with debug logging turned on. If you wish to disable this, you need to set the debug attribute in the values.yaml to false, e.g.:
debug: false

Installation Mode
When PGO is installed, it can be configured to manage PostgreSQL clusters in all namespaces within the Kubernetes cluster, or just those within a single namespace. When managing PostgreSQL clusters in all namespaces, a ClusterRole and ClusterRoleBinding is created to ensure PGO has the permissions it requires to properly manage PostgreSQL clusters across all namespaces. However, when PGO is configured to manage PostgreSQL clusters within a single namespace only, a Role and RoleBinding is created instead.
In order to select between these two modes when installing PGO using Helm, the singleNamespace setting in the values.yaml file can be utilized:
singleNamespace: false
Specifically, if this setting is set to false (which is the default), then a ClusterRole and ClusterRoleBinding will be created, and PGO will manage PostgreSQL clusters in all namespaces. However, if this setting is set to true, then a Role and RoleBinding will be created instead, allowing PGO to only manage PostgreSQL clusters in the same namespace utilized when installing the PGO Helm chart.

Install
Once you have configured the Helm chart according to your specific needs, it can then be installed using helm:
helm install <name> -n <namespace> helm/install
Automated Upgrade Checks
By default, PGO will automatically check for updates to itself and software components by making a request to a URL. If PGO detects there are updates available, it will print them in the logs. As part of the check, PGO will send aggregated, anonymized information about the current deployment to the endpoint. An upcoming release will allow for PGO to opt-in to receive and apply updates to software components automatically.
PGO will check for updates upon startup and once every 24 hours. Any errors in checking will have no impact on PGO's operation. To disable the upgrade check, you can set the disable_check_for_upgrades value in the Helm chart to true.

Upgrade and Uninstall
Once PGO has been installed, it can then be upgraded using the helm upgrade command. However, before running the upgrade command, any CustomResourceDefinitions (CRDs) must first be manually updated (this is specifically due to a design decision in Helm v3, in which any CRDs in the Helm chart are only applied when using the helm install command).
If you would like, before upgrading the CRDs, you can review the changes with kubectl diff. They can be verbose, so a pager like less may be useful:
kubectl diff -f helm/install/crds | less
Use the following command to update the CRDs using server-side apply before running helm upgrade. The --force-conflicts flag tells Kubernetes that you recognize Helm created the CRDs during helm install.
kubectl apply --server-side --force-conflicts -f helm/install/crds
Then, perform the upgrade using Helm:
helm upgrade <name> -n <namespace> helm/install
To uninstall PGO, remove all your PostgresCluster objects, then use the helm uninstall command:
helm uninstall <name> -n <namespace>
Helm leaves the CRDs in place. You can remove them with kubectl delete:
kubectl delete -f helm/install/crds

 Overview

Overview
Upgrading to a new version of PGO is typically as simple as following the various installation guides defined within the PGO documentation:
	[PGO Kustomize Install]({{< relref "./kustomize.md" >}})
	[PGO Helm Install]({{< relref "./helm.md" >}})

However, when upgrading to or from certain versions of PGO, extra steps may be required in order to ensure a clean and successful upgrade. This page will therefore document any additional steps that must be completed when upgrading PGO.
Upgrading from PGO v5.0.0 Using Kustomize
Starting with PGO v5.0.1, both the Deployment and ServiceAccount created when installing PGO via the installers in the Postgres Operator examples repository have been renamed from postgres-operator to pgo. As a result of this change, if using Kustomize to install PGO and upgrading from PGO v5.0.0, the following step must be completed prior to upgrading. This will ensure multiple versions of PGO are not installed and running concurrently within your Kubernetes environment.
Prior to upgrading PGO, first manually delete the PGO v5.0.0 postgres-operator Deployment and ServiceAccount:
kubectl -n postgres-operator delete deployment,serviceaccount postgres-operator
Then, once both the Deployment and ServiceAccount have been deleted, proceed with upgrading PGO by applying the new version of the Kustomize installer:
kubectl apply --server-side -k kustomize/install/default

Upgrading from PGO v5.0.2 and Below
As a result of changes to pgBackRest dedicated repository host deployments in PGO v5.0.3 (please see the [PGO v5.0.3 release notes]({{< relref "../releases/5.0.3.md" >}}) for more details), reconciliation of a pgBackRest dedicated repository host might become stuck with the following error (as shown in the PGO logs) following an upgrade from PGO versions v5.0.0 through v5.0.2:
StatefulSet.apps \"hippo-repo-host\" is invalid: spec: Forbidden: updates to statefulset spec for fields other than 'replicas', 'template', 'updateStrategy' and 'minReadySeconds' are forbidden
If this is the case, proceed with deleting the pgBackRest dedicated repository host StatefulSet, and PGO will then proceed with recreating and reconciling the dedicated repository host normally:
kubectl delete sts hippo-repo-host
Additionally, please be sure to update and apply all PostgresCluster custom resources in accordance with any applicable spec changes described in the [PGO v5.0.3 release notes]({{< relref "../releases/5.0.3.md" >}}).

Upgrading from PGO v5.0 to v5.1
Starting in PGO v5.1, new pgBackRest features available in version 2.38 are used that impact both the crunchy-postgres and crunchy-pgbackrest images. For any existing clusters, you will need to update these image values BEFORE upgrading to PGO 5.1. These changes will need to be made in one of two places, depending on your desired configuration.
If you are setting the image values on your PostgresCluster manifest, you would update the images value as shown (updating the image values as appropriate for your environment):
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
...
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
...
After updating these values, you will apply these changes to your PostgresCluster custom resources. After these changes are completed and the new images are in place, you may update PGO to 5.1.
Relatedly, if you are instead using the RELATED_IMAGE environment variables to set the image values, you would instead check and update these as needed before redeploying PGO.
For Kustomize installations, these can be found in the manager directory and manager.yaml file. Here you will note various key/value pairs, these will need to be updated before deploying PGO 5.1. Besides updating the RELATED_IMAGE_PGBACKREST value, you will also need to update the relevant Postgres image for your environment. For example, if you are using PostgreSQL 14, you would update the value for RELATED_IMAGE_POSTGRES_14. If instead you are using the PostGIS 3.1 enabled PostgreSQL 13 image, you would update the value for RELATED_IMAGE_POSTGRES_13_GIS_3.1.
For Helm deployments, you would instead need to similarly update your values.yaml file, found in the install directory. There you will note a relatedImages section, followed by similar values as mentioned above. Again, be sure to update pgbackrest as well as the appropriate postgres value for your clusters.

Once there values have been properly verified, you may deploy PGO 5.1.
title: "PGO Monitoring" date: draft: false weight: 100 ---
The PGO Monitoring stack is a fully integrated solution for monitoring and visualizing metrics captured from PostgreSQL clusters created using PGO. By leveraging pgMonitor to configure and integrate the various tools, components and metrics needed to effectively monitor PostgreSQL clusters, PGO Monitoring provides an powerful and easy-to-use solution to effectively monitor and visualize pertinent PostgreSQL database and container metrics. Included in the monitoring infrastructure are the following components:
	pgMonitor - Provides the configuration needed to enable the effective capture and visualization of PostgreSQL database metrics using the various tools comprising the PostgreSQL Operator Monitoring infrastructure
	Grafana - Enables visual dashboard capabilities for monitoring PostgreSQL clusters, specifically using Crunchy PostgreSQL Exporter data stored within Prometheus
	Prometheus - A multi-dimensional data model with time series data, which is used in collaboration with the Crunchy PostgreSQL Exporter to provide and store metrics
	Alertmanager - Handles alerts sent by Prometheus by deduplicating, grouping, and routing them to receiver integrations.

By leveraging the installation method described in this section, PGO Monitoring can be deployed alongside PGO.

 Installing PGO Monitoring Using Kustomize

Installing PGO Monitoring Using Kustomize
This section provides instructions for installing and configuring PGO Monitoring using Kustomize.
Prerequisites
First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Monitoring Kustomize installer.
https://github.com/CrunchyData/postgres-operator-examples/fork
Once you have forked this repo, you can download it to your working environment with a command similar to this:
YOUR_GITHUB_UN="<your GitHub username>"
git clone --depth 1 "git@github.com:${YOUR_GITHUB_UN}/postgres-operator-examples.git"
cd postgres-operator-examples
The PGO Monitoring project is located in the kustomize/monitoring directory.

Configuration
While the default Kustomize install should work in most Kubernetes environments, it may be necessary to further customize the project according to your specific needs.
For instance, by default fsGroup is set to 26 for the securityContext defined for the various Deployments comprising the PGO Monitoring stack:
securityContext:
 fsGroup: 26
In most Kubernetes environments this setting is needed to ensure processes within the container have the permissions needed to write to any volumes mounted to each of the Pods comprising the PGO Monitoring stack. However, when installing in an OpenShift environment (and more specifically when using the restricted Security Context Constraint), the fsGroup setting should be removed since OpenShift will automatically handle setting the proper fsGroup within the Pod's securityContext.
Additionally, within this same section it may also be necessary to modify the supplmentalGroups setting according to your specific storage configuration:
securityContext:
 supplementalGroups : 65534
Therefore, the following files (located under kustomize/monitoring) should be modified and/or patched (e.g. using additional overlays) as needed to ensure the securityContext is properly defined for your Kubernetes environment:
	deploy-alertmanager.yaml
	deploy-grafana.yaml
	deploy-prometheus.yaml

And to modify the configuration for the various storage resources (i.e. PersistentVolumeClaims) created by the PGO Monitoring installer, the kustomize/monitoring/pvcs.yaml file can also be modified.
Additionally, it is also possible to further customize the configuration for the various components comprising the PGO Monitoring stack (Grafana, Prometheus and/or AlertManager) by modifying the following configuration resources:
	alertmanager-config.yaml
	alertmanager-rules-config.yaml
	grafana-datasources.yaml
	prometheus-config.yaml

Finally, please note that the default username and password for Grafana can be updated by modifying the Grafana Secret in file kustomize/monitoring/grafana-secret.yaml.

Install
Once the Kustomize project has been modified according to your specific needs, PGO Monitoring can then be installed using kubectl and Kustomize:
kubectl apply -k kustomize/monitoring

Uninstall
And similarly, once PGO Monitoring has been installed, it can uninstalled using kubectl and Kustomize:
kubectl delete -k kustomize/monitoring
This section contains guides on handling various scenarios when managing Postgres clusters using PGO, the Postgres Operator. These include step-by-step instructions for situations such as migrating data to a PGO managed Postgres cluster or upgrading from an older version of PGO.
These guides are in no particular order: choose the guide that is most applicable to your situation.
If you are looking for how to manage most day-to-day Postgres scenarios, we recommend first going through the [Tutorial]({{< relref "tutorial/_index.md" >}}).
You can upgrade from PGO v4 to PGO v5 through a variety of methods by following this guide. There are several methods that can be used to upgrade: we present these methods based upon a variety of factors, including:
	Redundancy / ability to roll back
	Available resources
	Downtime preferences

and others.
These methods include:
	Migrating Using Data Volumes. This allows you to migrate from v4 to v5 using the existing data volumes that you created in v4. This is the simplest method for upgrade and is the most resource efficient, but you will have a greater potential for downtime using this method.
	Migrate From Backups. This allows you to create a Postgres cluster with v5 from the backups taken with v4. This provides a way for you to create a preview of your Postgres cluster through v5, but you would need to take your applications offline to ensure all the data is migrated.
	Migrate Using a Standby Cluster. This allows you to run a v4 and a v5 Postgres cluster in parallel, with data replicating from the v4 cluster to the v5 cluster. This method minimizes downtime and lets you preview your v5 environment, but is the most resource intensive.

You should choose the method that makes the most sense for your environment. Each method is described in detail below.

Prerequisites
There are several prerequisites for using any of these upgrade methods.
	PGO v4 is currently installed within the Kubernetes cluster, and is actively managing any existing v4 PostgreSQL clusters.
	Any PGO v4 clusters being upgraded have been properly initialized using PGO v4, which means the v4 pgcluster custom resource should be in a pgcluster Initialized status:

$ kubectl get pgcluster hippo -o jsonpath='{ .status }'
{"message":"Cluster has been initialized","state":"pgcluster Initialized"}
	The PGO v4 pgo client is properly configured and available for use.
	PGO v5 is currently [installed]({{< relref "installation/_index.md" >}}) within the Kubernetes cluster.

For these examples, we will use a Postgres cluster named hippo.

Upgrade Method #1: Data Volumes
This upgrade method allows you to migrate from PGO v4 to PGO v5 using the existing data volumes that were created in PGO v4. Note that this is an "in place" migration method: this will immediately move your Postgres clusters from being managed by PGO v4 and PGO v5. If you wish to have some failsafes in place, please use one of the other migration methods. Please also note that you will need to perform the cluster upgrade in the same namespace as the original cluster in order for your v5 cluster to access the existing PVCs.
Step 1: Prepare the PGO v4 Cluster for Migration
You will need to set up your PGO v4 Postgres cluster so that it can be migrated to a PGO v5 cluster. The following describes how to set up a PGO v4 cluster for using this migration method.
	Scale down any existing replicas within the cluster. This will ensure that the primary PVC does not change again prior to the upgrade.

You can get a list of replicas using the pgo scaledown --query command, e.g.:
pgo scaledown hippo --query
If there are any replicas, you will see something similar to:
Cluster: hippo
REPLICA STATUS NODE ...
hippo running node01 ...
Scaledown any replicas that are running in this cluser, e.g.:
pgo scaledown hippo --target=hippo
2. Once all replicas are removed and only the primary remains, proceed with deleting the cluster while retaining the data and backups. You can do this --keep-data and --keep-backups flags:
You MUST run this command with the --keep-data and --keep-backups flag otherwise you risk deleting ALL of your data.
pgo delete cluster hippo --keep-data --keep-backups
3. The PVC for the primary Postgres instance and the pgBackRest repository should still remain. You can verify this with the command below:
kubectl get pvc --selector=pg-cluster=hippo
This should yield something similar to:
NAME STATUS VOLUME ...
hippo-jgut Bound pvc-a0b89bdb- ...
hippo-pgbr-repo Bound pvc-25501671- …
A third PVC used to store write-ahead logs (WAL) may also be present if external WAL volumes were enabled for the cluster.

Step 2: Migrate to PGO v5
With the PGO v4 cluster's volumes prepared for the move to PGO v5, you can now create a [PostgresCluster]({{< relref "references/crd.md" >}}) custom resource using these volumes. This migration method does not carry over any specific configurations or customizations from PGO v4: you will need to create the specific PostgresCluster configuration that you need.
Additional steps are required to set proper file permissions when using certain storage options, such as NFS and HostPath storage, due to a known issue with how fsGroups are applied. When migrating from PGO v4, this will require the user to manually set the group value of the pgBackRest repo directory, and all subdirectories, to 26 to match the postgres group used in PGO v5. Please see here for more information.
To complete the upgrade process, your PostgresCluster custom resource MUST include the following:
1. A volumes data source that points to the PostgreSQL data, PostgreSQL WAL (if applicable) and pgBackRest repository PVCs identified in the spec.dataSource.volumes section.
For example, using the hippo cluster:
spec:
 dataSource:
 volumes:
 pgDataVolume:
 pvcName: hippo-jgut
 directory: "hippo-jgut"
 pgBackRestVolume:
 pvcName: hippo-pgbr-repo
 directory: "hippo-backrest-shared-repo"
 # Only specify external WAL PVC if enabled in PGO v4 cluster. If enabled
 # in v4, a WAL volume must be defined for the v5 cluster as well.
 # pgWALVolume:
 # pvcName: hippo-jgut-wal
Please see the [Data Migration]({{< relref "guides/data-migration.md" >}}) section of the [tutorial]({{< relref "tutorial/_index.md" >}}) for more details on how to properly populate this section of the spec when migrating from a PGO v4 cluster.
2. If you customized Postgres parameters, you will need to ensure they match in the PGO v5 cluster. For more information, please review the tutorial on [customizing a Postgres cluster]({{< relref "tutorial/customize-cluster.md" >}}).
3. Once the PostgresCluster spec is populated according to these guidelines, you can create the PostgresCluster custom resource. For example, if the PostgresCluster you're creating is a modified version of the postgres example in the PGO examples repo, you can run the following command:
kubectl apply -k examples/postgrescluster
Your upgrade is now complete! You should now remove the spec.dataSource.volumes section from your PostgresCluster. For more information on how to use PGO v5, we recommend reading through the [PGO v5 tutorial]({{< relref "tutorial/_index.md" >}}).

Upgrade Method #2: Backups
This upgrade method allows you to migrate from PGO v4 to PGO v5 by creating a new PGO v5 Postgres cluster using a backup from a PGO v4 cluster. This method allows you to preserve the data in your PGO v4 cluster while you transition to PGO v5. To fully move the data over, you will need to incur downtime and shut down your PGO v4 cluster.
Step 1: Prepare the PGO v4 Cluster for Migration
1. Ensure you have a recent backup of your cluster. You can do so with the pgo backup command, e.g.:
pgo backup hippo
Please ensure that the backup completes. You will see the latest backup appear using the pgo show backup command.
2. Next, delete the cluster while keeping backups (using the --keep-backups flag):
pgo delete cluster hippo --keep-backups
Additional steps are required to set proper file permissions when using certain storage options, such as NFS and HostPath storage, due to a known issue with how fsGroups are applied. When migrating from PGO v4, this will require the user to manually set the group value of the pgBackRest repo directory, and all subdirectories, to 26 to match the postgres group used in PGO v5. Please see here for more information.

Step 2: Migrate to PGO v5
With the PGO v4 Postgres cluster's backup repository prepared, you can now create a [PostgresCluster]({{< relref "references/crd.md" >}}) custom resource. This migration method does not carry over any specific configurations or customizations from PGO v4: you will need to create the specific PostgresCluster configuration that you need.
To complete the upgrade process, your PostgresCluster custom resource MUST include the following:
1. You will need to configure your pgBackRest repository based upon whether you are using a PVC to store your backups, or an object storage system such as S3/GCS. Please follow the directions based upon the repository type you are using as part of the migration.
PVC-based Backup Repository
When migrating from a PVC-based backup repository, you will need to configure a pgBackRest repo of a spec.backups.pgbackrest.repos.volume under the spec.backups.pgbackrest.repos.name of repo1. The volumeClaimSpec should match the attributes of the pgBackRest repo PVC being used as part of the migration, i.e. it must have the same storageClassName, accessModes, resources, etc. Please note that you will need to perform the cluster upgrade in the same namespace as the original cluster in order for your v5 cluster to access the existing PVCs. For example:
spec:
 backups:
 pgbackrest:
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 storageClassName: standard-wffc
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi

S3 / GCS Backup Repository
When migrating from a S3 or GCS based backup repository, you will need to configure your spec.backups.pgbackrest.repos.volume to point to the backup storage system. For instance, if AWS S3 storage is being utilized, the repo would be defined similar to the following:
spec:
 backups:
 pgbackrest:
 repos:
 - name: repo1
 s3:
 bucket: hippo
 endpoint: s3.amazonaws.com
 region: us-east-1
Any required secrets or desired custom pgBackRest configuration should be created and configured as described in the [backup tutorial]({{< relref "tutorial/backups.md" >}}).
You will also need to ensure that the “pgbackrest-repo-path” configured for the repository matches the path used by the PGO v4 cluster. The default repository path follows the pattern /backrestrepo/<clusterName>-backrest-shared-repo. Note that the path name here is different than migrating from a PVC-based repository.
Using the hippo Postgres cluster as an example, you would set the following in the spec.backups.pgbackrest.global section:
spec:
 backups:
 pgbackrest:
 global:
 repo1-path: /backrestrepo/hippo-backrest-shared-repo
2. Set the spec.dataSource section to restore from the backups used for this migration. For example:
spec:
 dataSource:
 postgresCluster:
 repoName: repo1
You can also provide other pgBackRest restore options, e.g. if you wish to restore to a specific point-in-time (PITR).
3. If you are using a PVC-based pgBackRest repository, then you will also need to specify a pgBackRestVolume data source that references the PGO v4 pgBackRest repository PVC:
spec:
 dataSource:
 volumes:
 pgBackRestVolume:
 pvcName: hippo-pgbr-repo
 directory: "hippo-backrest-shared-repo"
 postgresCluster:
 repoName: repo1
4. If you customized other Postgres parameters, you will need to ensure they match in the PGO v5 cluster. For more information, please review the tutorial on [customizing a Postgres cluster]({{< relref "tutorial/customize-cluster.md" >}}).
5. Once the PostgresCluster spec is populated according to these guidelines, you can create the PostgresCluster custom resource. For example, if the PostgresCluster you're creating is a modified version of the postgres example in the PGO examples repo, you can run the following command:
kubectl apply -k examples/postgrescluster
WARNING: Once the PostgresCluster custom resource is created, it will become the owner of the PVC. This means that if the PostgresCluster is then deleted (e.g. if attempting to revert back to a PGO v4 cluster), then the PVC will be deleted as well.
If you wish to protect against this, first remove the reference to the pgBackRest PVC in the PostgresCluster spec:
kubectl patch postgrescluster hippo-pgbr-repo --type='json' -p='[{"op": "remove", "path": "/spec/dataSource/volumes"}]'
Then relabel the PVC prior to deleting the PostgresCluster custom resource. Below uses the hippo Postgres cluster as an example:
kubectl label pvc hippo-pgbr-repo \
 postgres-operator.crunchydata.com/cluster- \
 postgres-operator.crunchydata.com/pgbackrest-repo- \
 postgres-operator.crunchydata.com/pgbackrest-volume- \
 postgres-operator.crunchydata.com/pgbackrest-
You will also need to remove all ownership references from the PVC:
kubectl patch pvc hippo-pgbr-repo --type='json' -p='[{"op": "remove", "path": "/metadata/ownerReferences"}]'
It is recommended to set the reclaim policy for any PV’s bound to existing PVC’s to Retain to ensure data is retained in the event a PVC is accidentally deleted during the upgrade.
Your upgrade is now complete! For more information on how to use PGO v5, we recommend reading through the [PGO v5 tutorial]({{< relref "tutorial/_index.md" >}}).

Upgrade Method #3: Standby Cluster
This upgrade method allows you to migrate from PGO v4 to PGO v5 by creating a new PGO v5 Postgres cluster in a "standby" mode, allowing it to mirror the PGO v4 cluster and continue to receive data updates in real time. This has the advantage of being able to fully inspect your PGO v5 Postgres cluster while leaving your PGO v4 cluster up and running, thus minimizing downtime when you cut over. The tradeoff is that you will temporarily use more resources while this migration is occurring.
This method only works if your PGO v4 cluster uses S3 or an S3-compatible storage system, or GCS. For more information on standby clusters, please refer to the [tutorial]({{< relref "tutorial/disaster-recovery.md" >}}#standby-cluster).
Step 1: Migrate to PGO v5
Create a [PostgresCluster]({{< relref "references/crd.md" >}}) custom resource. This migration method does not carry over any specific configurations or customizations from PGO v4: you will need to create the specific PostgresCluster configuration that you need.
To complete the upgrade process, your PostgresCluster custom resource MUST include the following:
1. Configure your pgBackRest to use an object storage system such as S3/GCS. You will need to configure your spec.backups.pgbackrest.repos.volume to point to the backup storage system. For instance, if AWS S3 storage is being utilized, the repo would be defined similar to the following:
spec:
 backups:
 pgbackrest:
 repos:
 - name: repo1
 s3:
 bucket: hippo
 endpoint: s3.amazonaws.com
 region: us-east-1
Any required secrets or desired custom pgBackRest configuration should be created and configured as described in the [backup tutorial]({{< relref "tutorial/backups.md" >}}).
You will also need to ensure that the “pgbackrest-repo-path” configured for the repository matches the path used by the PGO v4 cluster. The default repository path follows the pattern /backrestrepo/<clusterName>-backrest-shared-repo. Note that the path name here is different than migrating from a PVC-based repository.
Using the hippo Postgres cluster as an example, you would set the following in the spec.backups.pgbackrest.global section:
spec:
 backups:
 pgbackrest:
 global:
 repo1-path: /backrestrepo/hippo-backrest-shared-repo
2. A spec.standby cluster configuration within the spec that is populated according to the name of pgBackRest repo configured in the spec. For example:
spec:
 standby:
 enabled: true
 repoName: repo1
3. If you customized other Postgres parameters, you will need to ensure they match in the PGO v5 cluster. For more information, please review the tutorial on [customizing a Postgres cluster]({{< relref "tutorial/customize-cluster.md" >}}).
4. Once the PostgresCluster spec is populated according to these guidelines, you can create the PostgresCluster custom resource. For example, if the PostgresCluster you're creating is a modified version of the postgres example in the PGO examples repo, you can run the following command:
kubectl apply -k examples/postgrescluster
5. Once the standby cluster is up and running and you are satisfied with your set up, you can promote it.
First, you will need to shut down your PGO v4 cluster. You can do so with the following command, e.g.:
pgo update cluster hippo --shutdown
You can then update your PGO v5 cluster spec to promote your standby cluster:
spec:
 standby:
 enabled: false
Note: When the v5 cluster is running in non-standby mode, you will not be able to restart the v4 cluster, as that data is now being managed by the v5 cluster.
Once the v5 cluster is up and running, you will need to run the following SQL commands as a PostgreSQL superuser. For example, you can login as the postgres user, or exec into the Pod and use psql:
-- add the managed replication user
CREATE ROLE _crunchyrepl WITH LOGIN REPLICATION;

-- allow for the replication user to execute the functions required as part of "rewinding"
GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO _crunchyrepl;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean) TO _crunchyrepl;
The above step will be automated in an upcoming release.
Your upgrade is now complete! Once you verify that the PGO v5 cluster is running and you have recorded the user credentials from the v4 cluster, you can remove the old cluster:
pgo delete cluster hippo
For more information on how to use PGO v5, we recommend reading through the [PGO v5 tutorial]({{< relref "tutorial/_index.md" >}}).

Additional Considerations
Upgrading to PGO v5 may result in a base image upgrade from EL-7 (UBI / CentOS) to EL-8 (UBI). Based on the contents of your Postgres database, you may need to perform additional steps.
Due to changes in the GNU C library glibc in EL-8, you may need to reindex certain indexes in your Postgres cluster. For more information, please read the PostgreSQL Wiki on Locale Data Changes, how you can determine if your indexes are affected, and how to fix them.
There are certain cases where you may want to migrate existing volumes to a new cluster. If so, read on for an in depth look at the steps required.

Configure your PostgresCluster CRD
In order to use existing pgData, pg_wal or pgBackRest repo volumes in a new PostgresCluster, you will need to configure the spec.dataSource.volumes section of your PostgresCluster CRD. As shown below, there are three possible volumes you may configure, pgDataVolume, pgWALVolume and pgBackRestVolume. Under each, you must define the PVC name to use in the new cluster. A directory may also be defined, as needed, for cases where the existing directory name does not match the v5 directory.
To help explain how these fields are used, we will consider a pgcluster from PGO v4, oldhippo. We will assume that the pgcluster has been deleted and only the PVCs have been left in place.
Please note that any differences in configuration or other datasources will alter this procedure significantly and that certain storage options require additional steps (see Considerations below)!
In a standard PGO v4.7 cluster, a primary database pod with a separate pg_wal PVC will mount its pgData PVC, named "oldhippo", at /pgdata and its pg_wal PVC, named "oldhippo-wal", at /pgwal within the pod's file system. In this pod, the standard pgData directory will be /pgdata/oldhippo and the standard pg_wal directory will be /pgwal/oldhippo-wal. The pgBackRest repo pod will mount its PVC at /backrestrepo and the repo directory will be /backrestrepo/oldhippo-backrest-shared-repo.
With the above in mind, we need to reference the three PVCs we wish to migrate in the dataSource.volumes portion of the PostgresCluster spec. Additionally, to accommodate the PGO v5 file structure, we must also reference the pgData and pgBackRest repo directories. Note that the pg_wal directory does not need to be moved when migrating from v4 to v5!
Now, we just need to populate our CRD with the information described above:
spec:
 dataSource:
 volumes:
 pgDataVolume:
 pvcName: oldhippo
 directory: oldhippo
 pgWALVolume:
 pvcName: oldhippo-wal
 pgBackRestVolume:
 pvcName: oldhippo-pgbr-repo
 directory: oldhippo-backrest-shared-repo
Lastly, it is very important that the PostgreSQL version and storage configuration in your PostgresCluster match exactly the existing volumes being used.
If the volumes were used with PostgreSQL 13, the spec.postgresVersion value should be 13 and the associated spec.image value should refer to a PostgreSQL 13 image.
Similarly, the configured data volume definitions in your PostgresCluster spec should match your existing volumes. For example, if the existing pgData PVC has a RWO access mode and is 1 Gigabyte, the relevant dataVolumeClaimSpec should be configured as
dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1G
With the above configuration in place, your existing PVC will be used when creating your PostgresCluster. They will be given appropriate Labels and ownership references, and the necessary directory updates will be made so that your cluster is able to find the existing directories.

Considerations
	Additional steps are required to set proper file permissions when using certain storage options, such as NFS and HostPath storage due to a known issue with how fsGroups are applied. When migrating from PGO v4, this will require the user to manually set the group value of the pgBackRest repo directory, and all subdirectories, to 26 to match the postgres group used in PGO v5. Please see here for more information.
	An existing pg_wal volume is not required when the pg_wal directory is located on the same PVC as the pgData directory.
	When using existing pg_wal volumes, an existing pgData volume must also be defined to ensure consistent naming and proper bootstrapping.
	When migrating from PGO v4 volumes, it is recommended to use the most recently available version of PGO v4.
	As there are many factors that may impact this procedure, it is strongly recommended that a test run be completed beforehand to ensure successful operation.

Putting it all together
Now that we've identified all of our volumes and required directories, we're ready to create our new cluster!
Below is a complete PostgresCluster that includes everything we've talked about. After your PostgresCluster is created, you should remove the spec.dataSource.volumes section.
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: oldhippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 dataSource:
 volumes:
 pgDataVolume:
 pvcName: oldhippo
 directory: oldhippo
 pgWALVolume:
 pvcName: oldhippo-wal
 pgBackRestVolume:
 pvcName: oldhippo-pgbr-repo
 directory: oldhippo-backrest-shared-repo
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1G
 walVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1G
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1G
PGO uses persistent volumes to store Postgres data and, based on your configuration, data for backups, archives, etc. There are cases where you may want to retain your volumes for [later use]({{< relref "./data-migration.md" >}}).
The below guide shows how to configure your persistent volumes (PVs) to remain after a Postgres cluster managed by PGO is deleted and to deploy the retained PVs to a new Postgres cluster.
For the purposes of this exercise, we will use a Postgres cluster named hippo.

Modify Persistent Volume Retention
Retention of persistent volumes is set using a reclaim policy. By default, more persistent volumes have a policy of Delete, which removes any data on a persistent volume once there are no more persistent volume claims (PVCs) associated with it.
To retain a persistent volume you will need to set the reclaim policy to Retain. Note that persistent volumes are cluster-wide objects, so you will need to appropriate permissions to be able to modify a persistent volume.
To retain the persistent volume associated with your Postgres database, you must first determine which persistent volume is associated with the persistent volume claim for your database. First, local the persistent volume claim. For example, with the hippo cluster, you can do so with the following command:
kubectl get pvc -n postgres-operator --selector=postgres-operator.crunchydata.com/cluster=hippo,postgres-operator.crunchydata.com/data=postgres
This will yield something similar to the below, which are the PVCs associated with any Postgres instance:
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
hippo-instance1-x9vq-pgdata Bound pvc-aef7ee64-4495-4813-b896-8a67edc53e58 1Gi RWO standard 6m53s
The VOLUME column contains the name of the persistent volume. You can inspect it using kubectl get pv, e.g.:
kubectl get pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58
which should yield:
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-aef7ee64-4495-4813-b896-8a67edc53e58 1Gi RWO Delete Bound postgres-operator/hippo-instance1-x9vq-pgdata standard 8m10s
To modify the reclaim policy set it to Retain, you can run a command similar to this:
kubectl patch pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58 -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'
Verify that the change occurred:
kubectl get pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58
should show that Retain is set in the RECLAIM POLICY column:
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-aef7ee64-4495-4813-b896-8a67edc53e58 1Gi RWO Retain Bound postgres-operator/hippo-instance1-x9vq-pgdata standard 9m53s

Delete Postgres Cluster, Retain Volume
This is a potentially destructive action. Please be sure that your volume retention is set correctly and/or you have backups in place to restore your data.
[Delete your Postgres cluster]({{< relref "tutorial/delete-cluster.md" >}}). You can delete it using the manifest or with a command similar to:
kubectl -n postgres-operator delete postgrescluster hippo
Wait for the Postgres cluster to finish deleting. You should then verify that the persistent volume is still there:
kubectl get pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58
should yield:
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-aef7ee64-4495-4813-b896-8a67edc53e58 1Gi RWO Retain Released postgres-operator/hippo-instance1-x9vq-pgdata standard 21m

Create Postgres Cluster With Retained Volume
You can now create a new Postgres cluster with the retained volume. First, to aid the process, you will want to provide a label that is unique for your persistent volumes so we can identify it in the manifest. For example:
kubectl label pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58 pgo-postgres-cluster=postgres-operator-hippo
(This label uses the format <namespace>-<clusterName>).
Next, you will need to reference this persistent volume in your Postgres cluster manifest. For example:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 selector:
 matchLabels:
 pgo-postgres-cluster: postgres-operator-hippo
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
Wait for the Pods to come up. You may see the Postgres Pod is in a Pending state. You will need to go in and clear the claim on the persistent volume that you want to use for this Postgres cluster, e.g.:
kubectl patch pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58 -p '{"spec":{"claimRef": null}}'
After that, your Postgres cluster will come up and will be using the previously used persistent volume!
If you ultimately want the volume to be deleted, you will need to revert the reclaim policy to Delete, e.g.:
kubectl patch pv pvc-aef7ee64-4495-4813-b896-8a67edc53e58 -p '{"spec":{"persistentVolumeReclaimPolicy":"Delete"}}'
After doing that, the next time you delete your Postgres cluster, the volume and your data will be deleted.
Additional Notes on Storage Retention
Systems using "hostpath" storage or a storage class that does not support label selectors may not be able to use the label selector method for using a retained volume volume. You would have to specify the volumeName directly, e.g.:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 volumeName: "pvc-aef7ee64-4495-4813-b896-8a67edc53e58"
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
Additionally, to add additional replicas to your Postgres cluster, you will have to make changes to your spec. You can do one of the following:
	Remove the volume-specific configuration from the volume claim spec (e.g. delete spec.instances.selector or spec.instances.volumeName)

	Add a new instance set specifically for your replicas, e.g.:

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 selector:
 matchLabels:
 pgo-postgres-cluster: postgres-operator-hippo
 - name: instance2
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
Logical replication is a Postgres feature that provides a convenient way for moving data between databases, particularly Postgres clusters that are in an active state.
You can set up your PGO managed Postgres clusters to use logical replication. This guide provides an example for how to do so.

Set Up Logical Replication
This example creates two separate Postgres clusters named hippo and rhino. We will logically replicate data from rhino to hippo. We can create these two Postgres clusters using the manifests below:

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: rhino
spec:
 image: {{< param imageCrunchyPostgres >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrest >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 users:
 - name: logic
 databases:
 - zoo
 options: "REPLICATION"
The key difference between the two Postgres clusters is this section in the rhino manifest:
users:
 - name: logic
 databases:
 - zoo
 options: "REPLICATION"
This creates a database called zoo and a user named logic with REPLICATION privileges. This will allow for replicating data logically to the hippo Postgres cluster.
Create these two Postgres clusters. When the rhino cluster is ready, [log into the zoo database]({{< relref "tutorial/connect-cluster.md" >}}). For convenience, you can use the kubectl exec method of logging in:
kubectl exec -it -n postgres-operator -c database \
 $(kubectl get pods -n postgres-operator --selector='postgres-operator.crunchydata.com/cluster=rhino,postgres-operator.crunchydata.com/role=master' -o name) -- psql zoo
Let's create a simple table called abc that contains just integer data. We will also populate this table:
CREATE TABLE abc (id int PRIMARY KEY);
INSERT INTO abc SELECT * FROM generate_series(1,10);
We need to grant SELECT privileges to the logic user in order for it to perform an initial data synchronization during logical replication. You can do so with the following command:
GRANT SELECT ON abc TO logic;
Finally, create a publication that allows for the replication of data from abc:
CREATE PUBLICATION zoo FOR ALL TABLES;
Quit out of the rhino Postgres cluster.
For the next step, you will need to get the connection information for how to connection as the logic user to the rhino Postgres database. You can get the key information from the following commands, which return the hostname, username, and password:
kubectl -n postgres-operator get secrets rhino-pguser-logic -o jsonpath={.data.host} | base64 -d
kubectl -n postgres-operator get secrets rhino-pguser-logic -o jsonpath={.data.user} | base64 -d
kubectl -n postgres-operator get secrets rhino-pguser-logic -o jsonpath={.data.password} | base64 -d
The host will be something like rhino-primary.postgres-operator.svc and the user will be logic. Further down, the guide references the password as <LOGIC-PASSWORD>. You can substitute the actual password there.
Log into the hippo Postgres cluster. Note that we are logging into the postgres database within the hippo cluster:
kubectl exec -it -n postgres-operator -c database \
 $(kubectl get pods -n postgres-operator --selector='postgres-operator.crunchydata.com/cluster=hippo,postgres-operator.crunchydata.com/role=master' -o name) -- psql
Create a table called abc that is identical to the table in the rhino database:
CREATE TABLE abc (id int PRIMARY KEY);
Finally, create a subscription that will manage the data replication from rhino into hippo:
CREATE SUBSCRIPTION zoo
 CONNECTION 'host=rhino-primary.postgres-operator.svc user=logic dbname=zoo password=<LOGIC-PASSWORD>'
 PUBLICATION zoo;
In a few moments, you should see the data replicated into your table:
TABLE abc;
which yields:
 id

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
(10 rows)
You can further test that logical replication is working by modifying the data on rhino in the abc table, and the verifying that it is replicated into hippo.
Extensions combine functions, data types, casts, etc. -- everything you need to add some new feature to PostgreSQL in an easy to install package. How easy to install? For many extensions, like the fuzzystrmatch extension, it's as easy as connecting to the database and running a command like this:
CREATE EXTENSION fuzzystrmatch;
However, in other cases, an extension might require additional configuration management. PGO lets you add those configurations to the PostgresCluster spec easily.
PGO also allows you to add a custom databse initialization script in case you would like to automate how and where the extension is installed.
This guide will walk through adding custom configuration for an extension and automating installation, using the example of Crunchy Data's own pgnodemx extension.
	pgnodemx

pgnodemx
pgnodemx is a PostgreSQL extension that is able to pull container-specific metrics (e.g. CPU utilization, memory consumption) from the container itself via SQL queries.
In order to do this, pgnodemx requires information from the Kubernetes DownwardAPI to be mounted on the PostgreSQL pods. Please see the pgnodemx and the DownwardAPI section of the [backup architecture]({{< relref "architecture/backups.md" >}}) page for more information on where and how the DownwardAPI is mounted.
pgnodemx Configuration
To enable the pdnodemx extension, we need to set certain configurations. Luckily, this can all be done directly through the spec:
spec:
 patroni:
 dynamicConfiguration:
 postgresql:
 parameters:
 shared_preload_libraries: pgnodemx
 pgnodemx.kdapi_enabled: on
 pgnodemx.kdapi_path: /etc/database-containerinfo
Those three settings will
	load pgnodemx at start;
	enable the kdapi functions (which are specific to the capture of Kubernetes DownwardAPI information);
	tell pgnodemx where those DownwardAPI files are mounted (at the /etc/dabatase-containerinfo path).

If you create a PostgresCluster with those configurations, you will be able to connect, create the extension in a database, and run the functions installed by that extension:
CREATE EXTENSION pgnodemx;
SELECT * FROM proc_diskstats();

Automating pgnodemx Creation
Now that you know how to configure pgnodemx, let's say you want to automate the creation of the extension in a particular database, or in all databases. We can do that through a custom database initialization.
First, we have to create a ConfigMap with the initialization SQL. Let's start with the case where we want pgnodemx created for us in the hippo database. Our initialization SQL file might be named init.sql and look like this:
\c hippo\\
CREATE EXTENSION pgnodemx;
Now we create the ConfigMap from that file in the same namespace as our PostgresCluster will be created:
kubectl create configmap hippo-init-sql -n postgres-operator --from-file=init.sql=path/to/init.sql
You can check that the ConfigMap was created and has the right information:
kubectl get configmap -n postgres-operator hippo-init-sql -o yaml

apiVersion: v1
data:
 init.sql: |-
 \c hippo\\
 CREATE EXTENSION pgnodemx;
kind: ConfigMap
metadata:
 name: hippo-init-sql
 namespace: postgres-operator
Now, in addition to the spec changes we made above to allow pgnodemx to run, we add that ConfigMap's information to the PostgresCluster spec: the name of the ConfigMap (hippo-init-sql) and the key for the data (init.sql):
spec:
 databaseInitSQL:
 key: init.sql
 name: hippo-init-sql
Apply that spec to a new or existing PostgresCluster, and the pods should spin up with pgnodemx already installed in the hippo database.
PGO, the open source Postgres Operator, can use containers that are stored in private registries. There are a variety of techniques that are used to load containers from private registries, including image pull secrets. This guide will demonstrate how to install PGO and deploy a Postgres cluster using the Crunchy Data Customer Portal registry as an example.

Create an Image Pull Secret
The Kubernetes documentation provides several methods for creating image pull secrets. You can choose the method that is most appropriate for your installation. You will need to create image pull secrets in the namespace that PGO is deployed and in each namespace where you plan to deploy Postgres clusters.
For example, to create an image pull secret for accessing the Crunchy Data Customer Portal image registry in the postgres-operator namespace, you can execute the following commands:
kubectl create ns postgres-operator

kubectl create secret docker-registry crunchy-regcred -n postgres-operator \
 --docker-server=registry.crunchydata.com \
 --docker-username=<YOUR USERNAME> \
 --docker-email=<YOUR EMAIL> \
 --docker-password=<YOUR PASSWORD>
This creates an image pull secret named crunchy-regcred in the postgres-operator namespace.

Install PGO from a Private Registry
To [install PGO]({{< relref "installation/_index.md" >}}) from a private registry, you will need to set an image pull secret on the installation manifest.
For example, to set up an image pull secret using the [Kustomize install method]({{< relref "installation/_index.md" >}}) to install PGO from the Crunchy Data Customer Portal, you can set the following in the kustomize/install/default/kustomization.yaml manifest:
images:
- name: postgres-operator
 newName: {{< param operatorRepositoryPrivate >}}
 newTag: {{< param postgresOperatorTag >}}

patchesJson6902:
 - target:
 group: apps
 version: v1
 kind: Deployment
 name: pgo
 patch: |-
 - op: remove
 path: /spec/selector/matchLabels/app.kubernetes.io~1name
 - op: remove
 path: /spec/selector/matchLabels/app.kubernetes.io~1version
 - op: add
 path: /spec/template/spec/imagePullSecrets
 value:
 - name: crunchy-regcred
If you are using a version of kubectl prior to v1.21.0, you will have to create an explicit patch file named install-ops.yaml:
- op: remove
 path: /spec/selector/matchLabels/app.kubernetes.io~1name
- op: remove
 path: /spec/selector/matchLabels/app.kubernetes.io~1version
- op: add
 path: /spec/template/spec/imagePullSecrets
 value:
 - name: crunchy-regcred
and modify the manifest to be the following:
images:
- name: postgres-operator
 newName: {{< param operatorRepositoryPrivate >}}
 newTag: {{< param postgresOperatorTag >}}

patchesJson6902:
 - target:
 group: apps
 version: v1
 kind: Deployment
 name: pgo
 path: install-ops.yaml
You can then install PGO from the private registry using the standard installation procedure, e.g.:
kubectl apply --server-side -k kustomize/install/default

Deploy a Postgres cluster from a Private Registry
To deploy a Postgres cluster using images from a private registry, you will need to set the value of spec.imagePullSecrets on a PostgresCluster custom resource.
For example, to deploy a Postgres cluster using images from the Crunchy Data Customer Portal with an image pull secret in the postgres-operator namespace, you can use the following manifest:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 imagePullSecrets:
 - name: crunchy-regcred
 image: {{< param imageCrunchyPostgresPrivate >}}
 postgresVersion: {{< param postgresVersion >}}
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: {{< param imageCrunchyPGBackrestPrivate >}}
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
The goal of PGO, the Postgres Operator from Crunchy Data is to provide a means to quickly get your applications up and running on Postgres for both development and production environments. To understand how PGO does this, we want to give you a tour of its architecture, with explains both the architecture of the PostgreSQL Operator itself as well as recommended deployment models for PostgreSQL in production!

 PGO Architecture

PGO Architecture
The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as "Custom Resources” to create several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.
The main custom resource definition is [postgresclusters.postgres-operator.crunchydata.com]({{< relref "references/crd.md" >}}). This allows you to control all the information about a Postgres cluster, including:
	General information
	Resource allocation
	High availability
	Backup management
	Where and how it is deployed (affinity, tolerations, topology spread constraints)
	Disaster Recovery / standby clusters
	Monitoring

and more.
PGO itself runs as a Deployment and is composed of a single container.
	operator (image: postgres-operator) - This is the heart of the PostgreSQL Operator. It contains a series of Kubernetes controllers that place watch events on a series of native Kubernetes resources (Jobs, Pods) as well as the Custom Resources that come with the PostgreSQL Operator (Pgcluster, Pgtask)

The main purpose of PGO is to create and update information around the structure of a Postgres Cluster, and to relay information about the overall status and health of a PostgreSQL cluster. The goal is to also simplify this process as much as possible for users. For example, let's say we want to create a high-availability PostgreSQL cluster that has a single replica, supports having backups in both a local storage area and Amazon S3 and has built-in metrics and connection pooling, similar to:
[image: PostgreSQL HA Cluster]PostgreSQL HA Cluster

This can be accomplished with a relatively simple manifest. Please refer to the [tutorial]({{< relref "tutorial/_index.md" >}}) for how to accomplish this, or see the Postgres Operator examples repo.
The Postgres Operator handles setting up all of the various StatefulSets, Deployments, Services and other Kubernetes objects.
You will also notice that high-availability is enabled by default if you deploy at least one Postgres replica. The Crunchy PostgreSQL Operator uses a distributed-consensus method for PostgreSQL cluster high-availability, and as such delegates the management of each cluster's availability to the clusters themselves. This removes the PostgreSQL Operator from being a single-point-of-failure, and has benefits such as faster recovery times for each PostgreSQL cluster. For a detailed discussion on high-availability, please see the [High-Availability]({{< relref "architecture/high-availability.md" >}}) section.
Kubernetes StatefulSets: The PGO Deployment Model
PGO, the Postgres Operator from Crunchy Data, uses Kubernetes StatefulSets for running Postgres instances, and will use Deployments for more ephemeral services.
PGO deploys Kubernetes Statefulsets in a way to allow for creating both different Postgres instance groups and be able to support advanced operations such as rolling updates that minimize or eliminate Postgres downtime. Additional components in our PostgreSQL cluster, such as the pgBackRest repository or an optional PgBouncer, are deployed with Kubernetes Deployments.
With the PGO architecture, we can also leverage Statefulsets to apply affinity and toleration rules across every Postgres instance or individual ones. For instance, we may want to force one or more of our PostgreSQL replicas to run on Nodes in a different region than our primary PostgreSQL instances.
What's great about this is that PGO manages this for you so you don't have to worry! Being aware of this model can help you understand how the Postgres Operator gives you maximum flexibility for your PostgreSQL clusters while giving you the tools to troubleshoot issues in production.
The last piece of this model is the use of Kubernetes Services for accessing your PostgreSQL clusters and their various components. The PostgreSQL Operator puts services in front of each Deployment to ensure you have a known, consistent means of accessing your PostgreSQL components.
Note that in some production environments, there can be delays in accessing Services during transition events. The PostgreSQL Operator attempts to mitigate delays during critical operations (e.g. failover, restore, etc.) by directly accessing the Kubernetes Pods to perform given actions.

 Additional Architecture Information

Additional Architecture Information
There is certainly a lot to unpack in the overall architecture of PGO. Understanding the architecture will help you to plan the deployment model that is best for your environment. For more information on the architectures of various components of the PostgreSQL Operator, please read onward!
One of the great things about PostgreSQL is its reliability: it is very stable and typically "just works." However, there are certain things that can happen in the environment that PostgreSQL is deployed in that can affect its uptime, including:
	The database storage disk fails or some other hardware failure occurs
	The network on which the database resides becomes unreachable
	The host operating system becomes unstable and crashes
	A key database file becomes corrupted
	A data center is lost

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching of operating system, hardware upgrade, or other maintenance.
Fortunately, PGO, the Postgres Operator from Crunchy Data, is prepared for this.
[image: PostgreSQL Operator high availability Overview]PostgreSQL Operator high availability Overview

The Crunchy PostgreSQL Operator supports a distributed-consensus based high availability (HA) system that keeps its managed PostgreSQL clusters up and running, even if the PostgreSQL Operator disappears. Additionally, it leverages Kubernetes specific features such as Pod Anti-Affinity to limit the surface area that could lead to a PostgreSQL cluster becoming unavailable. The PostgreSQL Operator also supports automatic healing of failed primaries and leverages the efficient pgBackRest "delta restore" method, which eliminates the need to fully reprovision a failed cluster!
The Crunchy PostgreSQL Operator also maintains high availability during a routine task such as a PostgreSQL minor version upgrade.
For workloads that are sensitive to transaction loss, PGO supports PostgreSQL synchronous replication.
The high availability backing for your PostgreSQL cluster is only as good as your high availability backing for Kubernetes. To learn more about creating a high availability Kubernetes cluster, please review the Kubernetes documentation or consult your systems administrator.
The Crunchy Postgres Operator High Availability Algorithm
A critical aspect of any production-grade PostgreSQL deployment is a reliable and effective high availability (HA) solution. Organizations want to know that their PostgreSQL deployments can remain available despite various issues that have the potential to disrupt operations, including hardware failures, network outages, software errors, or even human mistakes.
The key portion of high availability that the PostgreSQL Operator provides is that it delegates the management of HA to the PostgreSQL clusters themselves. This ensures that the PostgreSQL Operator is not a single-point of failure for the availability of any of the PostgreSQL clusters that it manages, as the PostgreSQL Operator is only maintaining the definitions of what should be in the cluster (e.g. how many instances in the cluster, etc.).
Each HA PostgreSQL cluster maintains its availability using concepts that come from the Raft algorithm to achieve distributed consensus. The Raft algorithm ("Reliable, Replicated, Redundant, Fault-Tolerant") was developed for systems that have one "leader" (i.e. a primary) and one-to-many followers (i.e. replicas) to provide the same fault tolerance and safety as the PAXOS algorithm while being easier to implement.
For the PostgreSQL cluster group to achieve distributed consensus on who the primary (or leader) is, each PostgreSQL cluster leverages the distributed etcd key-value store that is bundled with Kubernetes. After it is elected as the leader, a primary will place a lock in the distributed etcd cluster to indicate that it is the leader. The "lock" serves as the method for the primary to provide a heartbeat: the primary will periodically update the lock with the latest time it was able to access the lock. As long as each replica sees that the lock was updated within the allowable automated failover time, the replicas will continue to follow the leader.
The "log replication" portion that is defined in the Raft algorithm is handled by PostgreSQL in two ways. First, the primary instance will replicate changes to each replica based on the rules set up in the provisioning process. For PostgreSQL clusters that leverage "synchronous replication," a transaction is not considered complete until all changes from those transactions have been sent to all replicas that are subscribed to the primary.
In the above section, note the key word that the transaction are sent to each replica: the replicas will acknowledge receipt of the transaction, but they may not be immediately replayed. We will address how we handle this further down in this section.
During this process, each replica keeps track of how far along in the recovery process it is using a "log sequence number" (LSN), a built-in PostgreSQL serial representation of how many logs have been replayed on each replica. For the purposes of HA, there are two LSNs that need to be considered: the LSN for the last log received by the replica, and the LSN for the changes replayed for the replica. The LSN for the latest changes received can be compared amongst the replicas to determine which one has replayed the most changes, and an important part of the automated failover process.
The replicas periodically check in on the lock to see if it has been updated by the primary within the allowable automated failover timeout. Each replica checks in at a randomly set interval, which is a key part of Raft algorithm that helps to ensure consensus during an election process. If a replica believes that the primary is unavailable, it becomes a candidate and initiates an election and votes for itself as the new primary. A candidate must receive a majority of votes in a cluster in order to be elected as the new primary.
There are several cases for how the election can occur. If a replica believes that a primary is down and starts an election, but the primary is actually not down, the replica will not receive enough votes to become a new primary and will go back to following and replaying the changes from the primary.
In the case where the primary is down, the first replica to notice this starts an election. Per the Raft algorithm, each available replica compares which one has the latest changes available, based upon the LSN of the latest logs received. The replica with the latest LSN wins and receives the vote of the other replica. The replica with the majority of the votes wins. In the event that two replicas' logs have the same LSN, the tie goes to the replica that initiated the voting request.
Once an election is decided, the winning replica is immediately promoted to be a primary and takes a new lock in the distributed etcd cluster. If the new primary has not finished replaying all of its transactions logs, it must do so in order to reach the desired state based on the LSN. Once the logs are finished being replayed, the primary is able to accept new queries.
At this point, any existing replicas are updated to follow the new primary.
When the old primary tries to become available again, it realizes that it has been deposed as the leader and must be healed. The old primary determines what kind of replica it should be based upon the CRD, which allows it to set itself up with appropriate attributes. It is then restored from the pgBackRest backup archive using the "delta restore" feature, which heals the instance and makes it ready to follow the new primary, which is known as "auto healing."

How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity
Kubernetes has two types of Pod anti-affinity:
	Preferred: With preferred (preferredDuringSchedulingIgnoredDuringExecution) Pod anti-affinity, Kubernetes will make a best effort to schedule Pods matching the anti-affinity rules to different Nodes. However, if it is not possible to do so, then Kubernetes may schedule one or more Pods to the same Node.
	Required: With required (requiredDuringSchedulingIgnoredDuringExecution) Pod anti-affinity, Kubernetes mandates that each Pod matching the anti-affinity rules must be scheduled to different Nodes. However, a Pod may not be scheduled if Kubernetes cannot find a Node that does not contain a Pod matching the rules.

There is a tradeoff with these two types of pod anti-affinity: while "required" anti-affinity will ensure that all the matching Pods are scheduled on different Nodes, if Kubernetes cannot find an available Node, your Postgres instance may not be scheduled. Likewise, while "preferred" anti-affinity will make a best effort to scheduled your Pods on different Nodes, Kubernetes may compromise and schedule more than one Postgres instance of the same cluster on the same Node.
By understanding these tradeoffs, the makeup of your Kubernetes cluster, and your requirements, you can choose the method that makes the most sense for your Postgres deployment. We'll show examples of both methods below!
For an example for how pod anti-affinity works with PGO, please see the [high availability tutorial]({{< relref "tutorial/high-availability.md" >}}#pod-anti-affinity).

Synchronous Replication: Guarding Against Transactions Loss
Clusters managed by the Crunchy PostgreSQL Operator can be deployed with synchronous replication, which is useful for workloads that are sensitive to losing transactions, as PostgreSQL will not consider a transaction to be committed until it is committed to all synchronous replicas connected to a primary. This provides a higher guarantee of data consistency and, when a healthy synchronous replica is present, a guarantee of the most up-to-date data during a failover event.
This comes at a cost of performance: PostgreSQL has to wait for a transaction to be committed on all synchronous replicas, and a connected client will have to wait longer than if the transaction only had to be committed on the primary (which is how asynchronous replication works). Additionally, there is a potential impact to availability: if a synchronous replica crashes, any writes to the primary will be blocked until a replica is promoted to become a new synchronous replica of the primary.

Node Affinity
Kubernetes Node Affinity can be used to scheduled Pods to specific Nodes within a Kubernetes cluster. This can be useful when you want your PostgreSQL instances to take advantage of specific hardware (e.g. for geospatial applications) or if you want to have a replica instance deployed to a specific region within your Kubernetes cluster for high availability purposes.
For an example for how node affinity works with PGO, please see the [high availability tutorial]({{< relref "tutorial/high-availability.md" >}}##node-affinity).

Tolerations
Kubernetes Tolerations can help with the scheduling of Pods to appropriate nodes. There are many reasons that a Kubernetes administrator may want to use tolerations, such as restricting the types of Pods that can be assigned to particular Nodes. Reasoning and strategy for using taints and tolerations is outside the scope of this documentation.
You can configure the tolerations for your Postgres instances on the postgresclusters custom resource.

Pod Topology Spread Constraints
Kubernetes Pod Topology Spread Constraints can also help you efficiently schedule your workloads by ensuring your Pods are not scheduled in only one portion of your Kubernetes cluster. By spreading your Pods across your Kubernetes cluster among your various failure-domains, such as regions, zones, nodes, and other user-defined topology domains, you can achieve high availability as well as efficient resource utilization.
For an example of how pod topology spread constraints work with PGO, please see the [high availability tutorial]({{< relref "tutorial/high-availability.md" >}}#pod-topology-spread-constraints).

Rolling Updates
During the lifecycle of a PostgreSQL cluster, there are certain events that may require a planned restart, such as an update to a "restart required" PostgreSQL configuration setting (e.g. shared_buffers) or a change to a Kubernetes Pod template (e.g. [changing the memory request]({{< relref "tutorial/resize-cluster.md">}}#customize-cpu-memory)). Restarts can be disruptive in a high availability deployment, which is why many setups employ a "rolling update" strategy (aka a "rolling restart") to minimize or eliminate downtime during a planned restart.
Because PostgreSQL is a stateful application, a simple rolling restart strategy will not work: PostgreSQL needs to ensure that there is a primary available that can accept reads and writes. This requires following a method that will minimize the amount of downtime when the primary is taken offline for a restart.
The PostgreSQL Operator uses the following algorithm to perform the rolling restart to minimize any potential interruptions:
	Each replica is updated in sequential order. This follows the following process:

	The replica is explicitly shut down to ensure any outstanding changes are flushed to disk.

	If requested, the PostgreSQL Operator will apply any changes to the Pod.

	The replica is brought back online. The PostgreSQL Operator waits for the replica to become available before it proceeds to the next replica.

	The above steps are repeated until all of the replicas are restarted.

	A controlled switchover is performed. The PostgreSQL Operator determines which replica is the best candidate to become the new primary. It then demotes the primary to become a replica and promotes the best candidate to become the new primary.

	The former primary follows a process similar to what is described in step 1.

The downtime is thus constrained to the amount of time the switchover takes.
PGO will automatically detect when to apply a rolling update.

Pod Disruption Budgets
Pods in a Kubernetes cluster can experience voluntary disruptions as a result of actions initiated by the application owner or a Cluster Administrator. During these voluntary disruptions Pod Disruption Budgets (PDBs) can be used to ensure that a minimum number of Pods will be running. The operator allows you to define a minimum number of Pods that should be available for instance sets and PgBouncer deployments in your postgrescluster. This minimum is configured in the postgrescluster spec and will be used to create PDBs associated to a resource defined in the spec. For example, the following spec will create two PDBs, one for instance1 and one for the PgBouncer deployment:
spec:
 instances:
 - name: instance1
 replicas: 3
 minAvailable: 1
 proxy:
 pgBouncer:
 replicas: 3
 minAvailable: 1
The minAvailable field accepts number (3) or string percentage (50%) values. For more information see Specifying a PodDisruptionBudget.
If minAvailable is set to 0, we will not reconcile a PDB for the resource and any existing PDBs will be removed. This will effectively disable Pod Disruption Budgets for the resource.
If minAvailable is not provided for an object, a default value will be defined based on the number of replicas defined for that object. If there is one replica, a PDB will not be created. If there is more than one replica defined, a minimum of one Pod will be used.
When using the PostgreSQL Operator, the answer to the question "do you take backups of your database" is automatically "yes!"
The PostgreSQL Operator uses the open source pgBackRest backup and restore utility that is designed for working with databases that are many terabytes in size. As described in the [tutorial]({{< relref "/tutorial/backups.md" >}}), pgBackRest is enabled by default as it permits the PostgreSQL Operator to automate some advanced as well as convenient behaviors, including:
	Efficient provisioning of new replicas that are added to the PostgreSQL cluster
	Preventing replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
	Allowing failed primaries to automatically and efficiently heal using the "delta restore" feature
	Serving as the basis for the cluster cloning feature
	...and of course, allowing for one to take full, differential, and incremental backups and perform full and point-in-time restores

Below is one example of how PGO manages backups with both a local storage and a Amazon S3 configuration.
[image: PostgreSQL Operator pgBackRest Integration]PostgreSQL Operator pgBackRest Integration

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster. When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository.
You can store your pgBackRest backups in up to four different locations and using four different storage types:
	Any Kubernetes supported storage class
	Amazon S3 (or S3 equivalents like MinIO)
	Google Cloud Storage (GCS)
	Azure Blob Storage

PostgreSQL is automatically configured to use the pgbackrest archive-push command to archive the write-ahead log (WAL) in all repositories.

Backups
PGO supports three types of pgBackRest backups:
	Full: A full backup of all the contents of the PostgreSQL cluster
	Differential: A backup of only the files that have changed since the last full backup
	Incremental: A backup of only the files that have changed since the last full, differential, or incremental backup

Scheduling Backups
Any effective disaster recovery strategy includes having regularly scheduled backups. PGO enables this by managing a series of Kubernetes CronJobs to ensure that backups are executed at scheduled times.
Note that pgBackRest presently only supports taking one backup at a time. This may change in a future release, but for the time being we suggest that you stagger your backup times.
Please see the [backup management tutorial]({{< relref "/tutorial/backup-management.md" >}}) for how to set up backup schedules and configure retention policies.

Restores
The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery. There are two types of ways to restore a cluster:
	Restore to a new cluster
	Restore in-place

For examples of this, please see the [disaster recovery tutorial]({{< relref "/tutorial/disaster-recovery.md" >}})

Deleting a Backup
If you delete a backup that is not set to expire, you may be unable to meet your retention requirements. If you are deleting backups to free space, it is recommended to delete your oldest backups first.
A backup can be deleted by running the pgbackrest expire command directly on the pgBackRest repository Pod or a Postgres instance.
Deploying to your Kubernetes cluster may allow for greater reliability than other environments, but that's only the case when it's configured correctly. Fortunately, PGO, the Postgres Operator from Crunchy Data, is ready to help with helpful default settings to ensure you make the most out of your Kubernetes environment!

High Availability By Default
As shown in the [high availability tutorial]({{< relref "tutorial/high-availability.md" >}}#pod-topology-spread-constraints), PGO supports the use of Pod Topology Spread Constraints to customize your Pod deployment strategy, but useful defaults are already in place for you without any additional configuration required!
PGO's default scheduling constraints for HA is implemented for the various Pods comprising a PostgreSQL cluster, specifically to ensure the Operator always deploys a High-Availability cluster architecture by default.
Using Pod Topology Spread Constraints, the general scheduling guidelines are as follows:
	Pods are only considered from the same cluster.
	PgBouncer pods are only considered amongst other PgBouncer pods.
	Postgres pods are considered amongst all Postgres pods and pgBackRest repo host Pods.
	pgBackRest repo host Pods are considered amongst all Postgres pods and pgBackRest repo hosts Pods.
	Pods are scheduled across the different kubernetes.io/hostname and topology.kubernetes.io/zone failure domains.
	Pods are scheduled when there are fewer nodes than pods, e.g. single node.

With the above configuration, your data is distributed as widely as possible throughout your Kubernetes cluster to maximize safety.

Customization
While the default scheduling settings are designed to meet the widest variety of environments, they can be customized or removed as needed. Assuming a PostgresCluster named 'hippo', the default Pod Topology Spread Constraints applied on Postgres Instance and pgBackRest Repo Host Pods are as follows:
topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: kubernetes.io/hostname
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/cluster: hippo
 matchExpressions:
 - key: postgres-operator.crunchydata.com/data
 operator: In
 values:
 - postgres
 - pgbackrest
 - maxSkew: 1
 topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/cluster: hippo
 matchExpressions:
 - key: postgres-operator.crunchydata.com/data
 operator: In
 values:
 - postgres
 - pgbackrest
Similarly, for PgBouncer Pods they will be:
topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: kubernetes.io/hostname
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/cluster: hippo
 postgres-operator.crunchydata.com/role: pgbouncer
 - maxSkew: 1
 topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 postgres-operator.crunchydata.com/cluster: hippo
 postgres-operator.crunchydata.com/role: pgbouncer
Which, as described in the API documentation, means that there should be a maximum of one Pod difference within the kubernetes.io/hostname and topology.kubernetes.io/zone failure domains when considering either data Pods, i.e. Postgres Instance or pgBackRest repo host Pods from a single PostgresCluster or when considering PgBouncer Pods from a single PostgresCluster.
Any other scheduling configuration settings, such as Affinity, Anti-affinity, Taints, Tolerations, or other Pod Topology Spread Constraints will be added in addition to these defaults. Care should be taken to ensure the combined effect of these settings are appropriate for your Kubernetes cluster.
In cases where these defaults are not desired, PGO does provide a method to disable the default Pod scheduling by setting the spec.disableDefaultPodScheduling to 'true'.
PGO manages PostgreSQL users that you define in [PostgresCluster.spec.users]({{< relref "/references/crd#postgresclusterspecusersindex" >}}). There, you can list their role attributes and which databases they can access.
Below is some information on how the user and database management systems work. To try out some examples, please see the [user and database management]({{< relref "tutorial/user-management.md" >}}) section of the [tutorial]({{< relref "tutorial/_index.md" >}}).

Understanding Default User Management
When you create a Postgres cluster with PGO and do not specify any additional users or databases, PGO will do the following:
	Create a database that matches the name of the Postgres cluster.
	Create an unprivileged Postgres user with the name of the cluster. This user has access to the database created in the previous step.
	Create a Secret with the login credentials and connection details for the Postgres user in relation to the database. This is stored in a Secret named <clusterName>-pguser-<clusterName>. These credentials include:
	user: The name of the user account.
	password: The password for the user account.
	dbname: The name of the database that the user has access to by default.
	host: The name of the host of the database. This references the Service of the primary Postgres instance.
	port: The port that the database is listening on.
	uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database.
	jdbc-uri: A PostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database via the JDBC driver.

You can see this default behavior in the [connect to a cluster]({{< relref "tutorial/connect-cluster.md" >}}) portion of the tutorial.
As an example, using our hippo Postgres cluster, we would see the following created:
	A database named hippo.
	A Postgres user named hippo.
	A Secret named hippo-pguser-hippo that contains the user credentials and connection information.

While the above defaults may work for your application, there are certain cases where you may need to customize your user and databases:
	You may require access to the postgres superuser.
	You may need to define privileges for your users.
	You may need multiple databases in your cluster, e.g. in a multi-tenant application.
	Certain users may only be able to access certain databases.

Custom Users and Databases
Users and databases can be customized in the spec.users section of the custom resource. These can be adding during cluster creation and adjusted over time, but it's important to note the following:
	If spec.users is set during cluster creation, PGO will not create any default users or databases except for postgres. If you want additional databases, you will need to specify them.
	For any users added in spec.users, PGO will created a Secret of the format <clusterName>-pguser-<userName>. This will contain the user credentials.
	If no databases are specified, dbname and uri will not be present in the Secret.
	If at least one spec.users.databases is specified, the first database in the list will be populated into the connection credentials.
	To prevent accidental data loss, PGO does not automatically drop users. We will see how to drop a user below.
	Similarly, to prevent accidental data loss PGO does not automatically drop databases. We will see how to drop a database below.
	Role attributes are not automatically dropped if you remove them. You will have to set the inverse attribute to drop them (e.g. NOSUPERUSER).
	The special postgres user can be added as one of the custom users; however, the privileges of the users cannot be adjusted.

For specific examples for how to manage users, please see the [user and database management]({{< relref "tutorial/user-management.md" >}}) section of the [tutorial]({{< relref "tutorial/_index.md" >}}).

Generated Passwords
PGO generates a random password for each Postgres user it creates. Postgres allows almost any character in its passwords, but your application may have stricter requirements. To have PGO generate a password without special characters, set the spec.users.password.type field for that user to AlphaNumeric. For complete control over a user's password, see the custom passwords section.
To have PGO generate a new password, remove the existing password field from the user Secret. For example, on a Postgres cluster named hippo in the postgres-operator namespace with a Postgres user named hippo, use the following kubectl patch command:
kubectl patch secret -n postgres-operator hippo-pguser-hippo -p '{"data":{"password":""}}'

Custom Passwords
There are cases where you may want to explicitly provide your own password for a Postgres user. PGO determines the password from an attribute in the user Secret called verifier. This contains a hashed copy of your password. When verifier changes, PGO will load the contents of the verifier into your Postgres cluster. This method allows for the secure transmission of the password into the Postgres database.
Postgres provides two methods for hashing passwords: SCRAM-SHA-256 and MD5. PGO uses the preferred (and as of PostgreSQL 14, default) method, SCRAM-SHA-256.
There are two ways you can set a custom password for a user. You can provide a plaintext password in the password field and remove the verifier. When PGO detects a password without a verifier it will generate the SCRAM verifier for you. Optionally, you can generate your own password and verifier. When both values are found in the user secret PGO will not generate anything. Once the password and verifier are found PGO will ensure the provided credential is properly set in postgres.
Example
For example, let's say we have a Postgres cluster named hippo and a Postgres user named hippo. The Secret then would be called hippo-pguser-hippo. We want to set the password for hippo to be datalake and we can achieve this with a simple kubectl patch command. The below assumes that the Secret is stored in the postgres-operator namespace:
kubectl patch secret -n postgres-operator hippo-pguser-hippo -p \
 '{"stringData":{"password":"datalake","verifier":""}}'
We can take advantage of the Kubernetes Secret stringData field to specify non-binary secret data in string form.
PGO generates the SCRAM verifier and applies the updated password to Postgres, and you will be able to log in with the password datalake.
[image: PostgreSQL Operator Monitoring]PostgreSQL Operator Monitoring

While having [high availability]({{< relref "architecture/high-availability.md" >}}), [backups]({{< relref "architecture/backups.md" >}}), and disaster recovery systems in place helps in the event of something going wrong with your PostgreSQL cluster, monitoring helps you anticipate problems before they happen. Additionally, monitoring can help you diagnose and resolve additional issues that may not result in downtime, but cause degraded performance.
There are many different ways to monitor systems within Kubernetes, including tools that come with Kubernetes itself. This is by no means to be a comprehensive on how to monitor everything in Kubernetes, but rather what the PostgreSQL Operator provides to give you an [out-of-the-box monitoring solution]({{< relref "installation/monitoring/_index.md" >}}).

Getting Started
If you want to install the metrics stack, please visit the [installation]({{< relref "installation/monitoring/index.md" >}}) instructions for the [PostgreSQL Operator Monitoring]({{< relref "installation/monitoring/index.md" >}}) stack.

Components
The [PostgreSQL Operator Monitoring]({{< relref "installation/monitoring/_index.md" >}}) stack is made up of several open source components:
	pgMonitor, which provides the core of the monitoring infrastructure including the following components:
	postgres_exporter, which provides queries used to collect metrics information about a PostgreSQL instance.
	Prometheus, a time-series database that scrapes and stores the collected metrics so they can be consumed by other services.
	Grafana, a visualization tool that provides charting and other capabilities for viewing the collected monitoring data.
	Alertmanager, a tool that can send alerts when metrics hit a certain threshold that require someone to intervene.
	pgnodemx, a PostgreSQL extension that is able to pull container-specific metrics (e.g. CPU utilization, memory consumption) from the container itself via SQL queries.

pgnodemx and the DownwardAPI
pgnodemx is able to pull and format container-specific metrics by accessing several Kubernetes fields that are mounted from the pod to the database container's filesystem. By default, these fields include the pod's labels and annotations, as well as the database pod's CPU and memory. These fields are mounted at the /etc/database-containerinfo path.

Visualizations
Below is a brief description of all the visualizations provided by the [PostgreSQL Operator Monitoring]({{< relref "installation/monitoring/_index.md" >}}) stack. Some of the descriptions may include some directional guidance on how to interpret the charts, though this is only to provide a starting point: actual causes and effects of issues can vary between systems.
Many of the visualizations can be broken down based on the following groupings:
	Cluster: which PostgreSQL cluster should be viewed
	Pod: the specific Pod or PostgreSQL instance

Overview
[image: PostgreSQL Operator Monitoring - Overview]PostgreSQL Operator Monitoring - Overview

The overview provides an overview of all of the PostgreSQL clusters that are being monitoring by the PostgreSQL Operator Monitoring stack. This includes the following information:
	The name of the PostgreSQL cluster and the namespace that it is in
	The type of PostgreSQL cluster (HA [high availability] or standalone)
	The status of the cluster, as indicate by color. Green indicates the cluster is available, red indicates that it is not.

Each entry is clickable to provide additional cluster details.

PostgreSQL Details
[image: PostgreSQL Operator Monitoring - Cluster Cluster Details]PostgreSQL Operator Monitoring - Cluster Cluster Details

The PostgreSQL Details view provides more information about a specific PostgreSQL cluster that is being managed and monitored by the PostgreSQL Operator. These include many key PostgreSQL-specific metrics that help make decisions around managing a PostgreSQL cluster. These include:
	Backup Status: The last time a backup was taken of the cluster. Green is good. Orange means that a backup has not been taken in more than a day and may warrant investigation.
	Active Connections: How many clients are connected to the database. Too many clients connected could impact performance and, for values approaching 100%, can lead to clients being unable to connect.
	Idle in Transaction: How many clients have a connection state of "idle in transaction". Too many clients in this state can cause performance issues and, in certain cases, maintenance issues.
	Idle: How many clients are connected but are in an "idle" state.
	TPS: The number of "transactions per second" that are occurring. Usually needs to be combined with another metric to help with analysis. "Higher is better" when performing benchmarking.
	Connections: An aggregated view of active, idle, and idle in transaction connections.
	Database Size: How large databases are within a PostgreSQL cluster. Typically combined with another metric for analysis. Helps keep track of overall disk usage and if any triage steps need to occur around PVC size.
	WAL Size: How much space write-ahead logs (WAL) are taking up on disk. This can contribute to extra space being used on your data disk, or can give you an indication of how much space is being utilized on a separate WAL PVC. If you are using replication slots, this can help indicate if a slot is not being acknowledged if the numbers are much larger than the max_wal_size setting (the PostgreSQL Operator does not use slots by default).
	Row Activity: The number of rows that are selected, inserted, updated, and deleted. This can help you determine what percentage of your workload is read vs. write, and help make database tuning decisions based on that, in conjunction with other metrics.
	Replication Status: Provides guidance information on how much replication lag there is between primary and replica PostgreSQL instances, both in bytes and time. This can provide an indication of how much data could be lost in the event of a failover.

[image: PostgreSQL Operator Monitoring - Cluster Cluster Details 2]PostgreSQL Operator Monitoring - Cluster Cluster Details 2

	Conflicts / Deadlocks: These occur when PostgreSQL is unable to complete operations, which can result in transaction loss. The goal is for these numbers to be 0. If these are occurring, check your data access and writing patterns.
	Cache Hit Ratio: A measure of how much of the "working data", e.g. data that is being accessed and manipulated, resides in memory. This is used to understand how much PostgreSQL is having to utilize the disk. The target number of this should be as high as possible. How to achieve this is the subject of books, but certain takes efforts on your applications use PostgreSQL.
	Buffers: The buffer usage of various parts of the PostgreSQL system. This can be used to help understand the overall throughput between various parts of the system.
	Commit & Rollback: How many transactions are committed and rolled back.
	Locks: The number of locks that are present on a given system.

Pod Details
[image: PostgreSQL Operator Monitoring - Pod Details]PostgreSQL Operator Monitoring - Pod Details

Pod details provide information about a given Pod or Pods that are being used by a PostgreSQL cluster. These are similar to "operating system" or "node" metrics, with the differences that these are looking at resource utilization by a container, not the entire node.
It may be helpful to view these metrics on a "pod" basis, by using the Pod filter at the top of the dashboard.
	Disk Usage: How much space is being consumed by a volume.
	Disk Activity: How many reads and writes are occurring on a volume.
	Memory: Various information about memory utilization, including the request and limit as well as actually utilization.
	CPU: The amount of CPU being utilized by a Pod
	Network Traffic: The amount of networking traffic passing through each network device.
	Container Resources: The CPU and memory limits and requests.

Backups
[image: PostgreSQL Operator - Monitoring - Backup Health]PostgreSQL Operator - Monitoring - Backup Health

There are a variety of reasons why you need to monitoring your backups, starting from answering the fundamental question of "do I have backups available?" Backups can be used for a variety of situations, from cloning new clusters to restoring clusters after a disaster. Additionally, Postgres can run into issues if your backup repository is not healthy, e.g. if it cannot push WAL archives. If your backups are set up properly and healthy, you will be set up to mitigate the risk of data loss!
The backup, or pgBackRest panel, will provide information about the overall state of your backups. This includes:
	Recovery Window: This is an indicator of how far back you are able to restore your data from. This represents all of the backups and archives available in your backup repository. Typically, your recovery window should be close to your overall data retention specifications.
	Time Since Last Backup: this indicates how long it has been since your last backup. This is broken down into pgBackRest backup type (full, incremental, differential) as well as time since the last WAL archive was pushed.
	Backup Runtimes: How long the last backup of a given type (full, incremental differential) took to execute. If your backups are slow, consider providing more resources to the backup jobs and tweaking pgBackRest's performance tuning settings.
	Backup Size: How large the backups of a given type (full, incremental, differential).
	WAL Stats: Shows the metrics around WAL archive pushes. If you have failing pushes, you should to see if there is a transient or permanent error that is preventing WAL archives from being pushed. If left untreated, this could end up causing issues for your Postgres cluster.

PostgreSQL Service Health Overview
[image: PostgreSQL Operator Monitoring - Service Health Overview]PostgreSQL Operator Monitoring - Service Health Overview

The Service Health Overview provides information about the Kubernetes Services that sit in front of the PostgreSQL Pods. This provides information about the status of the network.
	Saturation: How much of the available network to the Service is being consumed. High saturation may cause degraded performance to clients or create an inability to connect to the PostgreSQL cluster.
	Traffic: Displays the number of transactions per minute that the Service is handling.
	Errors: Displays the total number of errors occurring at a particular Service.
	Latency: What the overall network latency is when interfacing with the Service.

Query Runtime
[image: PostgreSQL Operator Monitoring - Query Performance]PostgreSQL Operator Monitoring - Query Performance

Looking at the overall performance of queries can help optimize a Postgres deployment, both from [providing resources]({{< relref "tutorial/customize-cluster.md" >}}) to query tuning in the application itself.
You can get a sense of the overall activity of a PostgreSQL cluster from the chart that is visualized above:
	Queries Executed: The total number of queries executed on a system during the period.
	Query runtime: The aggregate runtime of all the queries combined across the system that were executed in the period.
	Query mean runtime: The average query time across all queries executed on the system in the given period.
	Rows retrieved or affected: The total number of rows in a database that were either retrieved or had modifications made to them.

PostgreSQL Operator Monitoring also further breaks down the queries so you can identify queries that are being executed too frequently or are taking up too much time.
[image: PostgreSQL Operator Monitoring - Query Analysis]PostgreSQL Operator Monitoring - Query Analysis

	Query Mean Runtime (Top N): This highlights the N number of slowest queries by average runtime on the system. This might indicate you are missing an index somewhere, or perhaps the query could be rewritten to be more efficient.
	Query Max Runtime (Top N): This highlights the N number of slowest queries by absolute runtime. This could indicate that a specific query or the system as a whole may need more resources.
	Query Total Runtime (Top N): This highlights the N of slowest queries by aggregate runtime. This could indicate that a ORM is looping over a single query and executing it many times that could possibly be rewritten as a single, faster query.

Alerts
[image: PostgreSQL Operator Monitoring - Alerts]PostgreSQL Operator Monitoring - Alerts

Alerting lets one view and receive alerts about actions that require intervention, for example, a HA cluster that cannot self-heal. The alerting system is powered by Alertmanager.
The alerts that come installed by default include:
	PGExporterScrapeError: The Crunchy PostgreSQL Exporter is having issues scraping statistics used as part of the monitoring stack.
	PGIsUp: A PostgreSQL instance is down.
	PGIdleTxn: There are too many connections that are in the "idle in transaction" state.
	PGQueryTime: A single PostgreSQL query is taking too long to run. Issues a warning at 12 hours and goes critical after 24.
	PGConnPerc: Indicates that there are too many connection slots being used. Issues a warning at 75% and goes critical above 90%.
	PGDiskSize: Indicates that a PostgreSQL database is too large and could be in danger of running out of disk space. Issues a warning at 75% and goes critical at 90%.
	PGReplicationByteLag: Indicates that a replica is too far behind a primary instance, which could risk data loss in a failover scenario. Issues a warning at 50MB an goes critical at 100MB.
	PGReplicationSlotsInactive: Indicates that a replication slot is inactive. Not attending to this can lead to out-of-disk errors.
	PGXIDWraparound: Indicates that a PostgreSQL instance is nearing transaction ID wraparound. Issues a warning at 50% and goes critical at 75%. It's important that you vacuum your database to prevent this.
	PGEmergencyVacuum: Indicates that autovacuum is not running or cannot keep up with ongoing changes, i.e. it's past its "freeze" age. Issues a warning at 110% and goes critical at 125%.
	PGArchiveCommandStatus: Indicates that the archive command, which is used to ship WAL archives to pgBackRest, is failing.
	PGSequenceExhaustion: Indicates that a sequence is over 75% used.
	PGSettingsPendingRestart: Indicates that there are settings changed on a PostgreSQL instance that requires a restart.

Optional alerts that can be enabled:
	PGMinimumVersion: Indicates if PostgreSQL is below a desired version.
	PGRecoveryStatusSwitch_Replica: Indicates that a replica has been promoted to a primary.
	PGConnectionAbsent_Prod: Indicates that metrics collection is absent from a PostgresQL instance.
	PGSettingsChecksum: Indicates that PostgreSQL settings have changed from a previous state.
	PGDataChecksum: Indicates that there are data checksum failures on a PostgreSQL instance. This could be a sign of data corruption.

You can modify these alerts as you see fit, and add your own alerts as well! Please see the [installation instructions]({{< relref "installation/monitoring/_index.md" >}}) for general setup of the PostgreSQL Operator Monitoring stack.
[image: PostgreSQL Operator High-Availability Overview]PostgreSQL Operator High-Availability Overview

Advanced [high-availability]({{< relref "architecture/high-availability.md" >}}) and [backup management]({{< relref "architecture/backups.md" >}}) strategies involve spreading your database clusters across multiple data centers to help maximize uptime. In Kubernetes, this technique is known as "federation". Federated Kubernetes clusters are able to communicate with each other, coordinate changes, and provide resiliency for applications that have high uptime requirements.
As of this writing, federation in Kubernetes is still in ongoing development and is something we monitor with intense interest. As Kubernetes federation continues to mature, we wanted to provide a way to deploy PostgreSQL clusters managed by the PostgreSQL Operator that can span multiple Kubernetes clusters. This can be accomplished with a few environmental setups:
	Two Kubernetes clusters
	An external storage system, using one of the following:
	S3, or an external storage system that uses the S3 protocol
	GCS
	Azure Blob Storage
	A Kubernetes storage system that can span multiple clusters

At a high-level, the PostgreSQL Operator follows the "active-standby" data center deployment model for managing the PostgreSQL clusters across Kubernetes clusters. In one Kubernetes cluster, the PostgreSQL Operator deploy PostgreSQL as an "active" PostgreSQL cluster, which means it has one primary and one-or-more replicas. In another Kubernetes cluster, the PostgreSQL cluster is deployed as a "standby" cluster: every PostgreSQL instance is a replica.
A side-effect of this is that in each of the Kubernetes clusters, the PostgreSQL Operator can be used to deploy both active and standby PostgreSQL clusters, allowing you to mix and match! While the mixing and matching may not ideal for how you deploy your PostgreSQL clusters, it does allow you to perform online moves of your PostgreSQL data to different Kubernetes clusters as well as manual online upgrades.
Lastly, while this feature does extend high-availability, promoting a standby cluster to an active cluster is not automatic. While the PostgreSQL clusters within a Kubernetes cluster do support self-managed high-availability, a cross-cluster deployment requires someone to specifically promote the cluster from standby to active.

Standby Cluster Overview
Standby PostgreSQL clusters are managed just like any other PostgreSQL cluster that is managed by the PostgreSQL Operator. For example, adding replicas to a standby cluster is identical as adding them to a primary cluster.
As the architecture diagram above shows, the main difference is that there is no primary instance: one PostgreSQL instance is reading in the database changes from the backup repository, while the other replicas are replicas of that instance. This is known as cascading replication. replicas are cascading replicas, i.e. replicas replicating from a database server that itself is replicating from another database server.
Because standby clusters are effectively read-only, certain functionality that involves making changes to a database, e.g. PostgreSQL user changes, is blocked while a cluster is in standby mode. Additionally, backups and restores are blocked as well. While pgBackRest does support backups from standbys, this requires direct access to the primary database, which cannot be done until the PostgreSQL Operator supports Kubernetes federation.

Creating a Standby PostgreSQL Cluster
For creating a standby Postgres cluster with PGO, please see the [disaster recovery tutorial]({{< relref "tutorial/disaster-recovery.md" >}}#standby-cluster)

Promoting a Standby Cluster
There comes a time where a standby cluster needs to be promoted to an active cluster. Promoting a standby cluster means that a PostgreSQL instance within it will become a primary and start accepting both reads and writes. This has the net effect of pushing WAL (transaction archives) to the pgBackRest repository, so we need to take a few steps first to ensure we don't accidentally create a split-brain scenario.
First, if this is not a disaster scenario, you will want to "shutdown" the active PostgreSQL cluster. This can be done by setting:
spec:
 shutdown: true
The effect of this is that all the Kubernetes Statefulsets and Deployments for this cluster are scaled to 0.
We can then promote the standby cluster using the following:
spec:
 standby:
 enabled: false
This command essentially removes the standby configuration from the Kubernetes cluster’s DCS, which triggers the promotion of the current standby leader to a primary PostgreSQL instance. You can view this promotion in the PostgreSQL standby leader's (soon to be active leader's) logs:
With the standby cluster now promoted, the cluster with the original active PostgreSQL cluster can now be turned into a standby PostgreSQL cluster. This is done by deleting and recreating all PVCs for the cluster and re-initializing it as a standby using the backup repository. Being that this is a destructive action (i.e. data will only be retained if any Storage Classes and/or Persistent Volumes have the appropriate reclaim policy configured) a warning is shown when attempting to enable standby.
The cluster will reinitialize from scratch as a standby, just like the original standby that was created above. Therefore any transactions written to the original standby, should now replicate back to this cluster.
[image: pgAdmin 4 Query]pgAdmin 4 Query

pgAdmin 4 is a popular graphical user interface that makes it easy to work with PostgreSQL databases from a web-based client. With its ability to manage and orchestrate changes for PostgreSQL users, the PostgreSQL Operator is a natural partner to keep a pgAdmin 4 environment synchronized with a PostgreSQL environment.
The PostgreSQL Operator lets you deploy a pgAdmin 4 environment alongside a PostgreSQL cluster and keeps users' database credentials synchronized. You can simply log into pgAdmin 4 with your PostgreSQL username and password and immediately have access to your databases.

Deploying pgAdmin 4
If you've done the [quickstart]({{< relref "quickstart/_index.md" >}}), add the following fields to the spec and reapply; if you don't have any Postgres clusters running, add the fields to a spec, and apply.
 userInterface:
 pgAdmin:
 image: {{< param imageCrunchyPGAdmin >}}
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information. To access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:
kubectl port-forward svc/hippo-pgadmin 5050:5050
Point your browser at http://localhost:5050 and use your database username and password to log in. Access your username and password by getting the values from your user secret. In our case, the secret will be hippo-pguser-hippo:
PG_CLUSTER_USER_SECRET_NAME=hippo-pguser-hippo

PGPASSWORD=$(kubectl get secrets -n postgres-operator "${PG_CLUSTER_USER_SECRET_NAME}" -o go-template='{{.data.password | base64decode}}')
PGUSER=$(kubectl get secrets -n postgres-operator "${PG_CLUSTER_USER_SECRET_NAME}" -o go-template='{{.data.user | base64decode}}')
Though the prompt says "email address", using your PostgreSQL username will work.
[image: pgAdmin 4 Login Page]pgAdmin 4 Login Page

If your password does not appear to work, you can retry setting up the user by rotating the user password. Do this by deleting the password data field from the user secret (e.g. hippo-pguser-hippo).
Optionally, you can also set a [custom password]({{< relref "architecture/user-management.md" >}}).

User Synchronization
The operator will synchronize users defined in the spec (e.g., in spec.users) with the pgAdmin 4 deployment. Any user created in the database without being defined in the spec will not be synchronized.

Custom Configuration
You can adjust some pgAdmin settings through the [userInterface.pgAdmin.config]({{< relref "/references/crd#postgresclusterspecuserinterfacepgadminconfig" >}}) field. For example, set SHOW_GRAVATAR_IMAGE to False to disable automatic profile pictures:
 userInterface:
 pgAdmin:
 config:
 settings:
 SHOW_GRAVATAR_IMAGE: False
You can also mount files to /etc/pgadmin/conf.d inside the pgAdmin container using projected volumes. The following mounts useful.txt of Secret mysecret to /etc/pgadmin/conf.d/useful.txt:
 userInterface:
 pgAdmin:
 config:
 files:
 - secret:
 name: mysecret
 items:
 - key: useful.txt
 - configMap:
 name: myconfigmap
 optional: false
Kerberos Configuration
You can configure pgAdmin to authenticate its users using Kerberos SPNEGO. In addition to setting AUTHENTICATION_SOURCES and KRB_APP_HOST_NAME, you need to enable KERBEROS_AUTO_CREATE_USER and mount a krb5.conf and a keytab file:
 userInterface:
 pgAdmin:
 config:
 settings:
 AUTHENTICATION_SOURCES: ['kerberos']
 KERBEROS_AUTO_CREATE_USER: True
 KRB_APP_HOST_NAME: my.service.principal.name.local # without HTTP class
 KRB_KTNAME: /etc/pgadmin/conf.d/krb5.keytab
 files:
 - secret:
 name: mysecret
 items:
 - key: krb5.conf
 - key: krb5.keytab

LDAP Configuration
You can configure pgAdmin to authenticate its users using LDAP passwords. In addition to setting AUTHENTICATION_SOURCES and LDAP_SERVER_URI, you need to enable LDAP_AUTO_CREATE_USER:
 userInterface:
 pgAdmin:
 config:
 settings:
 AUTHENTICATION_SOURCES: ['ldap']
 LDAP_AUTO_CREATE_USER: True
 LDAP_SERVER_URI: ldaps://my.ds.example.com
When using a dedicated user to bind, you can store the LDAP_BIND_PASSWORD setting in a Secret and reference it through the [ldapBindPassword]({{< relref "/references/crd#postgresclusterspecuserinterfacepgadminconfigldapbindpassword" >}}) field:
 userInterface:
 pgAdmin:
 config:
 ldapBindPassword:
 name: ldappass
 key: mypw

Deleting pgAdmin 4
You can remove the pgAdmin 4 deployment by removing the userInterface field from the spec.
Packages:
	postgres-operator.crunchydata.com/v1beta1

postgres-operator.crunchydata.com/v1beta1

Resource Types:
	PostgresCluster

PostgresCluster

PostgresCluster is the Schema for the postgresclusters API

 	Name
 	Type
 	Description
 	Required

 	apiVersion
 	string
 	postgres-operator.crunchydata.com/v1beta1
 	true

 	kind
 	string
 	PostgresCluster
 	true

 	metadata
 	object
 	Refer to the Kubernetes API documentation for the fields of the metadata field.
 	true

 	spec
 	object
 	PostgresClusterSpec defines the desired state of PostgresCluster
 	false

 	status
 	object
 	PostgresClusterStatus defines the observed state of PostgresCluster
 	false

 PostgresCluster.spec ↩ Parent

PostgresClusterSpec defines the desired state of PostgresCluster

 	Name
 	Type
 	Description
 	Required

 	backups
 	object
 	PostgreSQL backup configuration
 	true

 	instances
 	[]object
 	Specifies one or more sets of PostgreSQL pods that replicate data for this cluster.
 	true

 	postgresVersion
 	integer
 	The major version of PostgreSQL installed in the PostgreSQL image
 	true

 	config
 	object
 	
 	false

 	customReplicationTLSSecret
 	object
 	The secret containing the replication client certificates and keys for secure connections to the PostgreSQL server. It will need to contain the client TLS certificate, TLS key and the Certificate Authority certificate with the data keys set to tls.crt, tls.key and ca.crt, respectively. NOTE: If CustomReplicationClientTLSSecret is provided, CustomTLSSecret MUST be provided and the ca.crt provided must be the same.
 	false

 	customTLSSecret
 	object
 	The secret containing the Certificates and Keys to encrypt PostgreSQL traffic will need to contain the server TLS certificate, TLS key and the Certificate Authority certificate with the data keys set to tls.crt, tls.key and ca.crt, respectively. It will then be mounted as a volume projection to the '/pgconf/tls' directory. For more information on Kubernetes secret projections, please see https://k8s.io/docs/concepts/configuration/secret/#projection-of-secret-keys-to-specific-paths NOTE: If CustomTLSSecret is provided, CustomReplicationClientTLSSecret MUST be provided and the ca.crt provided must be the same.
 	false

 	dataSource
 	object
 	Specifies a data source for bootstrapping the PostgreSQL cluster.
 	false

 	databaseInitSQL
 	object
 	DatabaseInitSQL defines a ConfigMap containing custom SQL that will be run after the cluster is initialized. This ConfigMap must be in the same namespace as the cluster.
 	false

 	disableDefaultPodScheduling
 	boolean
 	Whether or not the PostgreSQL cluster should use the defined default scheduling constraints. If the field is unset or false, the default scheduling constraints will be used in addition to any custom constraints provided.
 	false

 	image
 	string
 	The image name to use for PostgreSQL containers. When omitted, the value comes from an operator environment variable. For standard PostgreSQL images, the format is RELATED_IMAGE_POSTGRES_{postgresVersion}, e.g. RELATED_IMAGE_POSTGRES_13. For PostGIS enabled PostgreSQL images, the format is RELATED_IMAGE_POSTGRES_{postgresVersion}GIS{postGISVersion}, e.g. RELATED_IMAGE_POSTGRES_13_GIS_3.1.
 	false

 	imagePullPolicy
 	enum
 	ImagePullPolicy is used to determine when Kubernetes will attempt to pull (download) container images. More info: https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
 	false

 	imagePullSecrets
 	[]object
 	The image pull secrets used to pull from a private registry Changing this value causes all running pods to restart. https://k8s.io/docs/tasks/configure-pod-container/pull-image-private-registry/
 	false

 	metadata
 	object
 	Metadata contains metadata for PostgresCluster resources
 	false

 	monitoring
 	object
 	The specification of monitoring tools that connect to PostgreSQL
 	false

 	openshift
 	boolean
 	Whether or not the PostgreSQL cluster is being deployed to an OpenShift environment. If the field is unset, the operator will automatically detect the environment.
 	false

 	patroni
 	object
 	
 	false

 	port
 	integer
 	The port on which PostgreSQL should listen.
 	false

 	postGISVersion
 	string
 	The PostGIS extension version installed in the PostgreSQL image. When image is not set, indicates a PostGIS enabled image will be used.
 	false

 	proxy
 	object
 	The specification of a proxy that connects to PostgreSQL.
 	false

 	service
 	object
 	Specification of the service that exposes the PostgreSQL primary instance.
 	false

 	shutdown
 	boolean
 	Whether or not the PostgreSQL cluster should be stopped. When this is true, workloads are scaled to zero and CronJobs are suspended. Other resources, such as Services and Volumes, remain in place.
 	false

 	standby
 	object
 	Run this cluster as a read-only copy of an existing cluster or archive.
 	false

 	supplementalGroups
 	[]integer
 	A list of group IDs applied to the process of a container. These can be useful when accessing shared file systems with constrained permissions. More info: https://kubernetes.io/docs/reference/kubernetes-api/workload-resources/pod-v1/#security-context
 	false

 	userInterface
 	object
 	The specification of a user interface that connects to PostgreSQL.
 	false

 	users
 	[]object
 	Users to create inside PostgreSQL and the databases they should access. The default creates one user that can access one database matching the PostgresCluster name. An empty list creates no users. Removing a user from this list does NOT drop the user nor revoke their access.
 	false

 PostgresCluster.spec.backups ↩ Parent

PostgreSQL backup configuration

 	Name
 	Type
 	Description
 	Required

 	pgbackrest
 	object
 	pgBackRest archive configuration
 	true

 PostgresCluster.spec.backups.pgbackrest ↩ Parent

pgBackRest archive configuration

 	Name
 	Type
 	Description
 	Required

 	repos
 	[]object
 	Defines a pgBackRest repository
 	true

 	configuration
 	[]object
 	Projected volumes containing custom pgBackRest configuration. These files are mounted under "/etc/pgbackrest/conf.d" alongside any pgBackRest configuration generated by the PostgreSQL Operator: https://pgbackrest.org/configuration.html
 	false

 	global
 	map[string]string
 	Global pgBackRest configuration settings. These settings are included in the "global" section of the pgBackRest configuration generated by the PostgreSQL Operator, and then mounted under "/etc/pgbackrest/conf.d": https://pgbackrest.org/configuration.html
 	false

 	image
 	string
 	The image name to use for pgBackRest containers. Utilized to run pgBackRest repository hosts and backups. The image may also be set using the RELATED_IMAGE_PGBACKREST environment variable
 	false

 	jobs
 	object
 	Jobs field allows configuration for all backup jobs
 	false

 	manual
 	object
 	Defines details for manual pgBackRest backup Jobs
 	false

 	metadata
 	object
 	Metadata contains metadata for PostgresCluster resources
 	false

 	repoHost
 	object
 	Defines configuration for a pgBackRest dedicated repository host. This section is only applicable if at least one "volume" (i.e. PVC-based) repository is defined in the "repos" section, therefore enabling a dedicated repository host Deployment.
 	false

 	restore
 	object
 	Defines details for performing an in-place restore using pgBackRest
 	false

 	sidecars
 	object
 	Configuration for pgBackRest sidecar containers
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index] ↩ Parent

PGBackRestRepo represents a pgBackRest repository. Only one of its members may be specified.

 	Name
 	Type
 	Description
 	Required

 	name
 	string
 	The name of the the repository
 	true

 	azure
 	object
 	Represents a pgBackRest repository that is created using Azure storage
 	false

 	gcs
 	object
 	Represents a pgBackRest repository that is created using Google Cloud Storage
 	false

 	s3
 	object
 	RepoS3 represents a pgBackRest repository that is created using AWS S3 (or S3-compatible) storage
 	false

 	schedules
 	object
 	Defines the schedules for the pgBackRest backups Full, Differential and Incremental backup types are supported: https://pgbackrest.org/user-guide.html#concept/backup
 	false

 	volume
 	object
 	Represents a pgBackRest repository that is created using a PersistentVolumeClaim
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index].azure ↩ Parent

Represents a pgBackRest repository that is created using Azure storage

 	Name
 	Type
 	Description
 	Required

 	container
 	string
 	The Azure container utilized for the repository
 	true

 PostgresCluster.spec.backups.pgbackrest.repos[index].gcs ↩ Parent

Represents a pgBackRest repository that is created using Google Cloud Storage

 	Name
 	Type
 	Description
 	Required

 	bucket
 	string
 	The GCS bucket utilized for the repository
 	true

 PostgresCluster.spec.backups.pgbackrest.repos[index].s3 ↩ Parent

RepoS3 represents a pgBackRest repository that is created using AWS S3 (or S3-compatible) storage

 	Name
 	Type
 	Description
 	Required

 	bucket
 	string
 	The S3 bucket utilized for the repository
 	true

 	endpoint
 	string
 	A valid endpoint corresponding to the specified region
 	true

 	region
 	string
 	The region corresponding to the S3 bucket
 	true

 PostgresCluster.spec.backups.pgbackrest.repos[index].schedules ↩ Parent

Defines the schedules for the pgBackRest backups Full, Differential and Incremental backup types are supported: https://pgbackrest.org/user-guide.html#concept/backup

 	Name
 	Type
 	Description
 	Required

 	differential
 	string
 	Defines the Cron schedule for a differential pgBackRest backup. Follows the standard Cron schedule syntax: https://k8s.io/docs/concepts/workloads/controllers/cron-jobs/#cron-schedule-syntax
 	false

 	full
 	string
 	Defines the Cron schedule for a full pgBackRest backup. Follows the standard Cron schedule syntax: https://k8s.io/docs/concepts/workloads/controllers/cron-jobs/#cron-schedule-syntax
 	false

 	incremental
 	string
 	Defines the Cron schedule for an incremental pgBackRest backup. Follows the standard Cron schedule syntax: https://k8s.io/docs/concepts/workloads/controllers/cron-jobs/#cron-schedule-syntax
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index].volume ↩ Parent

Represents a pgBackRest repository that is created using a PersistentVolumeClaim

 	Name
 	Type
 	Description
 	Required

 	volumeClaimSpec
 	object
 	Defines a PersistentVolumeClaim spec used to create and/or bind a volume
 	true

 PostgresCluster.spec.backups.pgbackrest.repos[index].volume.volumeClaimSpec ↩ Parent

Defines a PersistentVolumeClaim spec used to create and/or bind a volume

 	Name
 	Type
 	Description
 	Required

 	accessModes
 	[]string
 	AccessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1
 	true

 	resources
 	object
 	Resources represents the minimum resources the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources
 	true

 	dataSource
 	object
 	This field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) * An existing custom resource that implements data population (Alpha) In order to use custom resource types that implement data population, the AnyVolumeDataSource feature gate must be enabled. If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source.
 	false

 	selector
 	object
 	A label query over volumes to consider for binding.
 	false

 	storageClassName
 	string
 	Name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1
 	false

 	volumeMode
 	string
 	volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec.
 	false

 	volumeName
 	string
 	VolumeName is the binding reference to the PersistentVolume backing this claim.
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index].volume.volumeClaimSpec.resources ↩ Parent

Resources represents the minimum resources the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#resources

 	Name
 	Type
 	Description
 	Required

 	requests
 	map[string]int or string
 	Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
 	true

 	limits
 	map[string]int or string
 	Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index].volume.volumeClaimSpec.dataSource ↩ Parent

This field can be used to specify either: * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot) * An existing PVC (PersistentVolumeClaim) * An existing custom resource that implements data population (Alpha) In order to use custom resource types that implement data population, the AnyVolumeDataSource feature gate must be enabled. If the provisioner or an external controller can support the specified data source, it will create a new volume based on the contents of the specified data source.

 	Name
 	Type
 	Description
 	Required

 	kind
 	string
 	Kind is the type of resource being referenced
 	true

 	name
 	string
 	Name is the name of resource being referenced
 	true

 	apiGroup
 	string
 	APIGroup is the group for the resource being referenced. If APIGroup is not specified, the specified Kind must be in the core API group. For any other third-party types, APIGroup is required.
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index].volume.volumeClaimSpec.selector ↩ Parent

A label query over volumes to consider for binding.

 	Name
 	Type
 	Description
 	Required

 	matchExpressions
 	[]object
 	matchExpressions is a list of label selector requirements. The requirements are ANDed.
 	false

 	matchLabels
 	map[string]string
 	matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
 	false

 PostgresCluster.spec.backups.pgbackrest.repos[index].volume.volumeClaimSpec.selector.matchExpressions[index] ↩ Parent

A label selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	key is the label key that the selector applies to.
 	true

 	operator
 	string
 	operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
 	true

 	values
 	[]string
 	values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index] ↩ Parent

Projection that may be projected along with other supported volume types

 	Name
 	Type
 	Description
 	Required

 	configMap
 	object
 	information about the configMap data to project
 	false

 	downwardAPI
 	object
 	information about the downwardAPI data to project
 	false

 	secret
 	object
 	information about the secret data to project
 	false

 	serviceAccountToken
 	object
 	information about the serviceAccountToken data to project
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].configMap ↩ Parent

information about the configMap data to project

 	Name
 	Type
 	Description
 	Required

 	items
 	[]object
 	If unspecified, each key-value pair in the Data field of the referenced ConfigMap will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the ConfigMap, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
 	false

 	name
 	string
 	Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
 	false

 	optional
 	boolean
 	Specify whether the ConfigMap or its keys must be defined
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].configMap.items[index] ↩ Parent

Maps a string key to a path within a volume.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	The key to project.
 	true

 	path
 	string
 	The relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
 	true

 	mode
 	integer
 	Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].downwardAPI ↩ Parent

information about the downwardAPI data to project

 	Name
 	Type
 	Description
 	Required

 	items
 	[]object
 	Items is a list of DownwardAPIVolume file
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].downwardAPI.items[index] ↩ Parent

DownwardAPIVolumeFile represents information to create the file containing the pod field

 	Name
 	Type
 	Description
 	Required

 	path
 	string
 	Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
 	true

 	fieldRef
 	object
 	Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.
 	false

 	mode
 	integer
 	Optional: mode bits used to set permissions on this file, must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
 	false

 	resourceFieldRef
 	object
 	Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].downwardAPI.items[index].fieldRef ↩ Parent

Required: Selects a field of the pod: only annotations, labels, name and namespace are supported.

 	Name
 	Type
 	Description
 	Required

 	fieldPath
 	string
 	Path of the field to select in the specified API version.
 	true

 	apiVersion
 	string
 	Version of the schema the FieldPath is written in terms of, defaults to "v1".
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].downwardAPI.items[index].resourceFieldRef ↩ Parent

Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.

 	Name
 	Type
 	Description
 	Required

 	resource
 	string
 	Required: resource to select
 	true

 	containerName
 	string
 	Container name: required for volumes, optional for env vars
 	false

 	divisor
 	int or string
 	Specifies the output format of the exposed resources, defaults to "1"
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].secret ↩ Parent

information about the secret data to project

 	Name
 	Type
 	Description
 	Required

 	items
 	[]object
 	If unspecified, each key-value pair in the Data field of the referenced Secret will be projected into the volume as a file whose name is the key and content is the value. If specified, the listed keys will be projected into the specified paths, and unlisted keys will not be present. If a key is specified which is not present in the Secret, the volume setup will error unless it is marked optional. Paths must be relative and may not contain the '..' path or start with '..'.
 	false

 	name
 	string
 	Name of the referent. More info: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
 	false

 	optional
 	boolean
 	Specify whether the Secret or its key must be defined
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].secret.items[index] ↩ Parent

Maps a string key to a path within a volume.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	The key to project.
 	true

 	path
 	string
 	The relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'.
 	true

 	mode
 	integer
 	Optional: mode bits used to set permissions on this file. Must be an octal value between 0000 and 0777 or a decimal value between 0 and 511. YAML accepts both octal and decimal values, JSON requires decimal values for mode bits. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set.
 	false

 PostgresCluster.spec.backups.pgbackrest.configuration[index].serviceAccountToken ↩ Parent

information about the serviceAccountToken data to project

 	Name
 	Type
 	Description
 	Required

 	path
 	string
 	Path is the path relative to the mount point of the file to project the token into.
 	true

 	audience
 	string
 	Audience is the intended audience of the token. A recipient of a token must identify itself with an identifier specified in the audience of the token, and otherwise should reject the token. The audience defaults to the identifier of the apiserver.
 	false

 	expirationSeconds
 	integer
 	ExpirationSeconds is the requested duration of validity of the service account token. As the token approaches expiration, the kubelet volume plugin will proactively rotate the service account token. The kubelet will start trying to rotate the token if the token is older than 80 percent of its time to live or if the token is older than 24 hours.Defaults to 1 hour and must be at least 10 minutes.
 	false

 PostgresCluster.spec.backups.pgbackrest.jobs ↩ Parent

Jobs field allows configuration for all backup jobs

 	Name
 	Type
 	Description
 	Required

 	priorityClassName
 	string
 	Priority class name for the pgBackRest backup Job pods. Changing this value causes PostgreSQL to restart. More info: https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
 	false

 	resources
 	object
 	Resource limits for backup jobs. Includes manual, scheduled and replica create backups
 	false

 PostgresCluster.spec.backups.pgbackrest.jobs.resources ↩ Parent

Resource limits for backup jobs. Includes manual, scheduled and replica create backups

 	Name
 	Type
 	Description
 	Required

 	limits
 	map[string]int or string
 	Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
 	false

 	requests
 	map[string]int or string
 	Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
 	false

 PostgresCluster.spec.backups.pgbackrest.manual ↩ Parent

Defines details for manual pgBackRest backup Jobs

 	Name
 	Type
 	Description
 	Required

 	repoName
 	string
 	The name of the pgBackRest repo to run the backup command against.
 	true

 	options
 	[]string
 	Command line options to include when running the pgBackRest backup command. https://pgbackrest.org/command.html#command-backup
 	false

 PostgresCluster.spec.backups.pgbackrest.metadata ↩ Parent

Metadata contains metadata for PostgresCluster resources

 	Name
 	Type
 	Description
 	Required

 	annotations
 	map[string]string
 	
 	false

 	labels
 	map[string]string
 	
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost ↩ Parent

Defines configuration for a pgBackRest dedicated repository host. This section is only applicable if at least one "volume" (i.e. PVC-based) repository is defined in the "repos" section, therefore enabling a dedicated repository host Deployment.

 	Name
 	Type
 	Description
 	Required

 	affinity
 	object
 	Scheduling constraints of the Dedicated repo host pod. Changing this value causes repo host to restart. More info: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
 	false

 	priorityClassName
 	string
 	Priority class name for the pgBackRest repo host pod. Changing this value causes PostgreSQL to restart. More info: https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
 	false

 	resources
 	object
 	Resource requirements for a pgBackRest repository host
 	false

 	sshConfigMap
 	object
 	ConfigMap containing custom SSH configuration. Deprecated: Repository hosts use mTLS for encryption, authentication, and authorization.
 	false

 	sshSecret
 	object
 	Secret containing custom SSH keys. Deprecated: Repository hosts use mTLS for encryption, authentication, and authorization.
 	false

 	tolerations
 	[]object
 	Tolerations of a PgBackRest repo host pod. Changing this value causes a restart. More info: https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration
 	false

 	topologySpreadConstraints
 	[]object
 	Topology spread constraints of a Dedicated repo host pod. Changing this value causes the repo host to restart. More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity ↩ Parent

Scheduling constraints of the Dedicated repo host pod. Changing this value causes repo host to restart. More info: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node

 	Name
 	Type
 	Description
 	Required

 	nodeAffinity
 	object
 	Describes node affinity scheduling rules for the pod.
 	false

 	podAffinity
 	object
 	Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
 	false

 	podAntiAffinity
 	object
 	Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity ↩ Parent

Describes node affinity scheduling rules for the pod.

 	Name
 	Type
 	Description
 	Required

 	preferredDuringSchedulingIgnoredDuringExecution
 	[]object
 	The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node matches the corresponding matchExpressions; the node(s) with the highest sum are the most preferred.
 	false

 	requiredDuringSchedulingIgnoredDuringExecution
 	object
 	If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution[index] ↩ Parent

An empty preferred scheduling term matches all objects with implicit weight 0 (i.e. it's a no-op). A null preferred scheduling term matches no objects (i.e. is also a no-op).

 	Name
 	Type
 	Description
 	Required

 	preference
 	object
 	A node selector term, associated with the corresponding weight.
 	true

 	weight
 	integer
 	Weight associated with matching the corresponding nodeSelectorTerm, in the range 1-100.
 	true

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution[index].preference ↩ Parent

A node selector term, associated with the corresponding weight.

 	Name
 	Type
 	Description
 	Required

 	matchExpressions
 	[]object
 	A list of node selector requirements by node's labels.
 	false

 	matchFields
 	[]object
 	A list of node selector requirements by node's fields.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution[index].preference.matchExpressions[index] ↩ Parent

A node selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	The label key that the selector applies to.
 	true

 	operator
 	string
 	Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
 	true

 	values
 	[]string
 	An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.preferredDuringSchedulingIgnoredDuringExecution[index].preference.matchFields[index] ↩ Parent

A node selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	The label key that the selector applies to.
 	true

 	operator
 	string
 	Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
 	true

 	values
 	[]string
 	An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution ↩ Parent

If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to an update), the system may or may not try to eventually evict the pod from its node.

 	Name
 	Type
 	Description
 	Required

 	nodeSelectorTerms
 	[]object
 	Required. A list of node selector terms. The terms are ORed.
 	true

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[index] ↩ Parent

A null or empty node selector term matches no objects. The requirements of them are ANDed. The TopologySelectorTerm type implements a subset of the NodeSelectorTerm.

 	Name
 	Type
 	Description
 	Required

 	matchExpressions
 	[]object
 	A list of node selector requirements by node's labels.
 	false

 	matchFields
 	[]object
 	A list of node selector requirements by node's fields.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[index].matchExpressions[index] ↩ Parent

A node selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	The label key that the selector applies to.
 	true

 	operator
 	string
 	Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
 	true

 	values
 	[]string
 	An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[index].matchFields[index] ↩ Parent

A node selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	The label key that the selector applies to.
 	true

 	operator
 	string
 	Represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
 	true

 	values
 	[]string
 	An array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. If the operator is Gt or Lt, the values array must have a single element, which will be interpreted as an integer. This array is replaced during a strategic merge patch.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.podAffinity ↩ Parent

Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).

 	Name
 	Type
 	Description
 	Required

 	preferredDuringSchedulingIgnoredDuringExecution
 	[]object
 	The scheduler will prefer to schedule pods to nodes that satisfy the affinity expressions specified by this field, but it may choose a node that violates one or more of the expressions. The node that is most preferred is the one with the greatest sum of weights, i.e. for each node that meets all of the scheduling requirements (resource request, requiredDuringScheduling affinity expressions, etc.), compute a sum by iterating through the elements of this field and adding "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the node(s) with the highest sum are the most preferred.
 	false

 	requiredDuringSchedulingIgnoredDuringExecution
 	[]object
 	If the affinity requirements specified by this field are not met at scheduling time, the pod will not be scheduled onto the node. If the affinity requirements specified by this field cease to be met at some point during pod execution (e.g. due to a pod label update), the system may or may not try to eventually evict the pod from its node. When there are multiple elements, the lists of nodes corresponding to each podAffinityTerm are intersected, i.e. all terms must be satisfied.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.podAffinity.preferredDuringSchedulingIgnoredDuringExecution[index] ↩ Parent

The weights of all of the matched WeightedPodAffinityTerm fields are added per-node to find the most preferred node(s)

 	Name
 	Type
 	Description
 	Required

 	podAffinityTerm
 	object
 	Required. A pod affinity term, associated with the corresponding weight.
 	true

 	weight
 	integer
 	weight associated with matching the corresponding podAffinityTerm, in the range 1-100.
 	true

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.podAffinity.preferredDuringSchedulingIgnoredDuringExecution[index].podAffinityTerm ↩ Parent

Required. A pod affinity term, associated with the corresponding weight.

 	Name
 	Type
 	Description
 	Required

 	topologyKey
 	string
 	This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching the labelSelector in the specified namespaces, where co-located is defined as running on a node whose value of the label with key topologyKey matches that of any node on which any of the selected pods is running. Empty topologyKey is not allowed.
 	true

 	labelSelector
 	object
 	A label query over a set of resources, in this case pods.
 	false

 	namespaces
 	[]string
 	namespaces specifies which namespaces the labelSelector applies to (matches against); null or empty list means "this pod's namespace"
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.podAffinity.preferredDuringSchedulingIgnoredDuringExecution[index].podAffinityTerm.labelSelector ↩ Parent

A label query over a set of resources, in this case pods.

 	Name
 	Type
 	Description
 	Required

 	matchExpressions
 	[]object
 	matchExpressions is a list of label selector requirements. The requirements are ANDed.
 	false

 	matchLabels
 	map[string]string
 	matchLabels is a map of {key,value} pairs. A single {key,value} in the matchLabels map is equivalent to an element of matchExpressions, whose key field is "key", the operator is "In", and the values array contains only "value". The requirements are ANDed.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.podAffinity.preferredDuringSchedulingIgnoredDuringExecution[index].podAffinityTerm.labelSelector.matchExpressions[index] ↩ Parent

A label selector requirement is a selector that contains values, a key, and an operator that relates the key and values.

 	Name
 	Type
 	Description
 	Required

 	key
 	string
 	key is the label key that the selector applies to.
 	true

 	operator
 	string
 	operator represents a key's relationship to a set of values. Valid operators are In, NotIn, Exists and DoesNotExist.
 	true

 	values
 	[]string
 	values is an array of string values. If the operator is In or NotIn, the values array must be non-empty. If the operator is Exists or DoesNotExist, the values array must be empty. This array is replaced during a strategic merge patch.
 	false

 PostgresCluster.spec.backups.pgbackrest.repoHost.affinity.podAffinity.requiredDuringSchedulingIgnoredDuringExecution[index] ↩ Parent

Defines a set of pods (namely those matching the labelSelector relative to the given namespace(s)) that this pod should be co-located (affinity) or not co-located (anti-affinity) with, where co-located is defined as running on a node whose value of the label with key matches that of any node on which a pod of the set of pods is runningimages/img10.png
2 Query Satistcs & ¢ @ (@ ousmas < @] Q sm.

Qury oan i (o9 4)

@rame oo qey ot
oo master copypabenchscouns fom st Jatciopo
oo master vacnm sz ppbenchsocouns Jotehopo
poses maser st oot o o .ol Jazhopo
oo maser sor e pbench.sccunts add rmry Jarciopn
poses maser CREATE ATABASE oo™ Jawiopn
poses master SELECT cuen daaboso) s o, Jarzhopn
Qery e i (o0)
e oo ey pachsir
posigres maste et ectot s o, p.catal. Hatzhopo
opo master Ve analzepabenh.ccouns Jatzhogo
g master copypabench.scouns fom tdn Jatzhogo
oo master atertabl obench.acoonts add prry Hatzhopo
posires master SELECT cuent deabase) a5 o, i Jatzhopo
posires master SELECTdatnameas dbna, o detabase. ! Hatzhopo
Quey Tt e (op)
aname ooy pachster
oo e UPDATEpbenc pcouns SET sl Jatzhopo
oo mester UPDATEpibanch.ranhes SET bbaanc - b Jatzhopo
oo mesar UPDATEpbench ol SET e = Jatzhopo
poses mester WITH alLbackups AS(SELECT cont e Jatzhopo
poses mester SELECT + FROMpo stat daabase Jatzhopo
posigres mester SELECT + FROM pg.sa deabase.onfcts satzhopo

images/img11.png
@ Prometheus Alerts - w e & OlastsSminutess v @ & 5m~

22 CRUD_Details 22 pgBackRest 28 POD Details 22 PostgreSQL Overview 22 PostgreSQL Service Health Overview 828 PostgreSQLDetails

Active Alerts

Time v alertname deployment exp_type instance ip kubernetes_namespace pg_cluster pod service severity severity_num

Alert History (1 week) ~ O Last 1 week

No data to show @

images/img14.png
pgAdmin 4

||‘E

Login

Forgotten yourpassword?

images/img12.png
-

pgBackRest pgBackRest

postgres-operator postgres-operator

Iy A
: :

crunchy-postgres crunchy-postgres
~

@ crunchy-postgres crunchy-postgres
replica primary 7~

standby replica

% crunchy-postgres crunchy-postgres %
o

replica

replica

Kubernetes
cluster #2

Kubernetes
cluster #1

images/img13.png
ZAdmin Flev Object~ Toosv Help~

Browse B % Osmows Puperes SO Swaisics Ompedences Oependens B hoponypogh. B b o x
+ Bicuechy sl tpetr (1) >lal-]m/[al~]@]]8a[av] v]v mr 5@ s w o[
- Grero I
P — S
> =vow Loverzotr qeryisas s e x
> Gataomaecpnies 758 o ceneaaTeD v ogrAuLT s ToDNTIT DAY KEY,
> B Tablrprs 3 e et
© Crented.at tinestansts NOT WULL DEPAULY CURRENT_TIXESTANS
sl

images/img4.png
88 PostgreSQL Overview - Y% @ #% [Olast5minutes v Q < 30s~

All ~

images/img3.png
28 PostgreSQLDetails -

cluster jkatz:hippov pod All~ Database All ~

@,
Active Connections Idle In Transaction
9 5.500¢
’ 3 /o . /o
o
database size - All-All
600 MB
400 MB
200 MB
0MB
16:46 16:47 16:48 16:49 16:50
= Row activity - All- All
2.0K
15K
1.0K
500

0

Idle

- 3.5%

Total : jkatz:hippo-.*

hippo (hippo-64b5665555-xj5q2)

hippo (hippo-krhx-94846986d-zdm8g)
postgres (hippo-64b5665555-xj5qz)
postgres (hippo-krhx-94846986d-zdm8g)

== Fetched
== Inserted
== Updated

== Deleted

il

16:46:00 16:46:30 16:47:00 16:47:30 16:48:00 16:48:30 16:49:00

16:50:00 16:50:30

22 CRUD_Details

(€

22 pgBackRest

22 POD Details

% @ #H [OlLlastSminutes> Q £ ~

22 PostgreSQL Overview 88 PostgreSQL Service Health Overview &8 Prometheus Alerts

TPS - All-All = Connections - All-All
500 - TPS - idle
== |dle in txn
400 i | |
== active
300
10
200 / /\/ |
s AN
100 —
0 0
16:46 16:46 16:48 16:50
WAL size MB - jkatz:hippo-All
700 MB ' ;
== hippo-64b5665555-xj5qz
AL — = — hippo-krhx-94846986d-zdm8g
500MB =
400 MB T
300 MB
16:46 16:47 16:48 16:49 16:50
Replication Status - jkatz:hippo
250 K
== Replica (10.44.0.9) lag bytes
200K & = Replica (10.44.0.9) lag time
» =3
% 150 K ,‘?1
= 100K =
& 3
= 3
50 K 3
K
0
16:46 16:47 16:48 16:49 16:50

images/img6.png
88 POD Details -

cluster jkatz:hippo ~ pod All ~

Disk Usage

100%
75%

50%

25%

0%

16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30

== /pgwal == /pgwal == /pgwal-Inodes == /pgwal - Inodes

Memory

4 GiB
3GiB
2GiB
954 MiB
0B

——
16:41:00

16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30

16:41:30 16:42:00

== Limit == Limit == Request == Request == Cached == Cached == Dirty == Dirty == shared mem == shared mem == RSS == RSS
Active anon == Inactive anon == Inactive anon == Active file == Active file

- Mapped file - Mapped file Active anon

== Inactive fila == Inactiva fila

Network Traffic

5MBs
4 MBs
3 MBs
2 MBs
1MBs

0Bs

16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30

== eth0 - rx bytes == lo-rx bytes == eth0-rx bytes == lo-rxbytes == ethO-txbytes == lo-txbytes == ethO-tx bytes == lo-tx bytes

22 CRUD_Details

% @ #H [OlLlastSminutes> Q £ ~

22 pgBackRest 22 PostgreSQL Overview 22 PostgreSQL Service Health Overview 28 PostgreSQLDetails 23 Prometheus Alerts

Disk Activity
1.5 MBs
1.0 MBs
500 kBs
0Bs
16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30
== /pgwal - Reads == /pgwal - Reads == /pgwal - Writes == /pgwal - Writes
CPU Stats ~
40
100%
30 v
3
8
50% 20 g
Q
10 2
=H
0% (0]
16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30
== % Used ==%Used == % Throttled == % Throttled == Process count == Process count
Container resources
4 GiB 25K
3GiB 20X @
> 15K &
S 2GiB E)
g 1.0K =
= g 8
954 MiB 500 S
<
0B (0]
16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30

== Memory limit == Memory limit == Memory request == Memory request == CPU request == CPUrequest == CPU limit == CPU limit

images/img5.png
Conflicts/DeadLocks - All - All

1.00 A
== Conflicts
0.75 == DeadlLocks
0.50
0.25
(0]
16:46 16:47 16:48 16:49 16:50
Buffers - All
250K
== Allocated
A == Backend
150K = FSync
100K == CheckPoint
50 K == Clean
0 T T I I
16:46 16:47 16:48 16:49 16:50
Locks - All - All
100 .
== accessexclusivelock
75 == exclusivelock
== rowexclusivelock
50
== sharerowexclusivelock
25 — shareupdateexclusivelock
0 == accesssharelock

16:46 16:47 16:48 16:49 16:50

Cache Hit Ratio - All-All

100% . A
== postgres - (hippo-64b5665555-xj5qz)
95% : : : : == postgres - (hippo-krhx-94846986d-zdm8g)
T == hippo - (hippo-64b5665555-xj5qz)
==_hippo - (hippo-krhx-94846986d-zdm8g)
85%
80%
16:46 16:47 16:48 16:49 16:50
Commit & Rollback ~
500 .
== Commit
e — Rollback
300
200
100
(0]

16:46:00 16:46:30 16:47.00 16:47:30 16:48:.00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30

2020-09-01 16:47:30

= Commit: 335
= Rollback: [1}

images/img8.png
88 PostgreSQL Service Health Overview -

w e

o

@ Last 5 minutes ~

cluster jkatz:hippo ~ role master v 22 CRUD_Details 22 pgBackRest 28 POD Details 828 PostgreSQL Overview 22 PostgreSQLDetails ¢
Saturation (pct used) Traffic
100% 500
75% 400
300
50%
200
25% 100
0% (0]
16:48:00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30 16:51:00 16:51:30 16:52:00 16:52:30 16:48:00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30 16:51:00 16:51:30 16:52:00 16:52:30
== connections == Mount:/pgwal == Transactions per minute == Active connections
; Errors Latency
500 1ms
400
300
200
100
a . _/\/\M
16:48:00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30 16:51:00 16:51:30 16:52:00 16:52:30 16:48:00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30 16:51:00 16:51:30 16:52:00 16:52:30

== Deadlock == Conflicts == scrape error == archive error

== Max

images/img7.png
B8 pgBackRest tr <3

& | B

@ Last 15 minutes v

Q & smv

cluster jkatz:hippo v B8 POD Details BB PostgreSQL Service Health B8 PostgreSQLDetails B35 Prometheus Alerts 55 Query Statistics
Recovery Window
Time Since Backup Runtimes
41.7 min 4.17 min
== |ncremental Backup == |ncremental
33.3 min ///4 == Differential Backup 3.33 min == Full
25 min — | = Full Backup 2.50 min
_\// == WAL Archive
16.7 min — 1.67 min
\ [—
8.33 min \/ — S0s
|_— | _——
0s R — N NI i 0s
11:48 11:50 11:52 11:54 11:56 11:58 12:00 11:48 11:50 11:52 11:54 11:56 11:58 12:00
Backup Size WAL Stats
119 MiB 5 .
== |ncremental == Failed count
95.4 MiB == Full == Archive count
71.5 MiB
47.7 MiB
23.8 MiB A T A ‘
0B
11:48 11:50 11:52 11:54 11:56 11:58 12:00 11:48 11:50 11:52 11:54 11:56 11:58 12:00

images/img9.png
B8 Query Statistics & <% @ O Olstismnues v Q@ O 16m

oo Bothopo | sevee | masr | dnane

P=re B Broooun g L1 L1

pemr— Qi Qery o Rmime Rows Retived o Afected

£ el _’ﬂ,/~ ﬂfﬂ//‘

QueyBrcuions:

o = @b ot

ax [Epu—
= oy o ooy
= o ponr
[—

images/img0.png
Incoming Application Requests Metrics Dashboard Log Analytics Dashboard

crunchy - pgbouncer
l l crunchy - grafana

replica DB service

crunchy - collect
