
Installation

Contents

Deployment Requirements . 3

Documentation . 4

Create Project Structure . 4

Configure Environment . 4

Configure Operator Templates . 5

Storage . 5

Operator Security . 5

Create Security Resources . 6

Deploy the Operator . 6

pgo CLI Installation . 6

Verify the Installation . 7

Helm Chart . 7

Quickstart Script . 7

conf Directory . 8

conf/postgres-operator/pgo.yaml . 8

conf/postgres-operator Directory . 8

conf/postgres-operator/cluster . 8

Security . 8

pgo.yaml Configuration 8

Storage . 9

Storage Configuration Examples . 9

HostPath Example . 10

NFS Example . 10

Storage Class Example . 10

Container Resources . 10

Miscellaneous (Pgo) . 10

Storage Configuration Details . 11

Container Resources Details . 11

Overriding Storage Configuration Defaults . 12

Using Storage Configurations for Disaster Recovery . 12

Syntax . 12

Operations . 12

Common Operations . 13

Cluster Operations . 13

Label Operations . 14

1

Policy Operations . 14

Operator Status . 14

Backup and Restore . 14

Fail-over Operations . 15

Add-On Operations . 16

Scheduled Tasks . 16

Complex Deployments . 17

pgo Global Flags . 17

Provisioning . 18

Custom Resource Definitions . 19

Event Listeners . 19

REST API . 19

Command Line Interface . 19

Node Affinity . 19

Fail-over . 20

pgbackrest Integration . 20

pgbackrest Restore . 21

PGO Scheduler . 22

Schedule Expression Format . 22

pgBackRest Schedules . 22

pgBaseBackup Schedules . 22

Policy Schedules . 22

Custom Resource Definitions . 22

Developing 23

Create Kubernetes Cluster . 23

Create a Local Development Host . 23

Perform Manual Install . 24

Build Locally . 24

Get Build Dependencies . 24

Compile . 24

Release . 24

Deploy . 24

Debug . 25

Kubernetes RBAC . 25

Operator RBAC . 26

Making Security Changes . 27

API Security . 27

Upgrading the Operator . 27

Upgrading to Version 3.5.0 From Previous Versions . 27

itle: “Crunchy Data Postgres Operator”
ate:
raft: false

2

Latest Release: 3.5.1

The postgres-operator is a controller that runs within a Kubernetes cluster that provides a means to deploy and manage PostgreSQL
clusters.

Use the postgres-operator to:

• deploy PostgreSQL containers including streaming replication clusters
• scale up PostgreSQL clusters with extra replicas
• add pgpool, pgbouncer, and metrics sidecars to PostgreSQL clusters
• apply SQL policies to PostgreSQL clusters
• assign metadata tags to PostgreSQL clusters
• maintain PostgreSQL users and passwords
• perform minor upgrades to PostgreSQL clusters
• load simple CSV and JSON files into PostgreSQL clusters
• perform database backups

Deployment Requirements

The Operator deploys on Kubernetes and OpenShift clusters. Some form of storage is required, NFS, HostPath, and Storage Classes are
currently supported.

The Operator includes various components that get deployed to your Kubernetes cluster as shown in the following diagram and detailed
in the Design.

Figure 1: Architecture

The Operator is developed and tested on CentOS and RHEL Linux platforms but is known to run on other Linux variants.

3

Documentation

The following documentation is provided:

• pgo CLI Syntax and Examples
• Installation
• Configuration
• pgo.yaml Configuration
• Security
• Design Overview
• Developing
• Upgrading the Operator
• Contributing

A full installation of the Operator includes the following steps:

• create a project structure
• configure your environment variables
• configure Operator templates
• create security resources
• deploy the operator
• install pgo CLI (end user command tool)

Operator end-users are only required to install the pgo CLI client on their host and can skip the server-side installation steps. pgo CLI
clients are provided on the Github Releases page for Linux, Mac, and Windows clients.
The Operator can also be deployed with a sample Helm chart and also a quickstart script. Those installation methods don’t provide the
same level of customization that the installation provides but are alternatives. Crunchy also provides an Ansible playbook for Crunchy
customers.
See below for details on the Helm and quickstart installation methods.

Create Project Structure

The Operator follows a golang project structure, you can create a structure as follows on your local Linux host:
mkdir -p $HOME/odev/src/github.com/crunchydata $HOME/odev/bin $HOME/odev/pkg
cd $HOME/odev/src/github.com/crunchydata
git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres -operator
git checkout 3.5.1

This creates a directory structure under your HOME directory name odev and clones the current Operator version to that structure.

Configure Environment

Environment variables control aspects of the Operator installation. You can copy a sample set of Operator environment variables and
aliases to your .bashrc file to work with.
cat $HOME/odev/src/github.com/crunchydata/postgres-operator/examples/envs.sh >> $HOME/.bashrc
source $HOME/.bashrc

For various scripts used by the Operator, the expenv utility is required, download this utility from the Github Releases page, and place
it into your PATH (e.g. $HOME/odev/bin). {{% notice tip %}}There is also a Makefile target that includes is expenv and several other
dependencies that are only needed if you plan on building from source:
make setup

{{% /notice %}}
In this example set of environment variables, the CO_NAMESPACE environment variable is set to demo as an example namespace in
which the Operator will be deployed. See the Design section of documentation on the Operator namespace requirements.
Adjust the namespace value to suit your needs. There is a Makefile target you can run to create the demo namespace if you want:
make setupnamespace

Note, that command sets your Kubernetes context to be demo as well, so use with caution if you are using your system’s main kubeconfig
file.

4

Configure Operator Templates

Within the Operator conf directory are several configuration files and templates used by the Operator to determine the various resources
that it deploys on your Kubernetes cluster, specifically the PostgreSQL clusters it deploys.
When you install the Operator you must make choices as to what kind of storage the Operator has to work with for example. Storage
varies with each installation. As an installer, you would modify these configuration templates used by the Operator to customize its
behavior.
Note: when you want to make changes to these Operator templates and configuration files after your initial installation, you will need to
re-deploy the Operator in order for it to pick up any future configuration changes.
Here are some common examples of configuration changes most installers would make:

Storage

Inside conf/postgresql-operator/pgo.yaml there are various storage configurations defined.
PrimaryStorage: nfsstorage
ArchiveStorage: nfsstorage
BackupStorage: nfsstorage
ReplicaStorage: nfsstorage
Storage:

hostpathstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create

nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
SupplementalGroups: 65534

storageos:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: fast
Fsgroup: 26

Listed above are the pgo.yaml sections related to storage choices. PrimaryStorage specifies the name of the storage configuration used
for PostgreSQL primary database volumes to be provisioned. In the example above, a NFS storage configuration is picked. That same
storage configuration is selected for the other volumes that the Operator will create.
This sort of configuration allows for a PostgreSQL primary and replica to use different storage if you want. Other storage settings like
AccessMode, Size, StorageType, StorageClass, and Fsgroup further define the storage configuration. Currently, NFS, HostPath, and Storage
Classes are supported in the configuration.
As part of the Operator installation, you will need to adjust these storage settings to suit your deployment requirements.
For NFS Storage, it is assumed that there are sufficient Persistent Volumes (PV) created for the Operator to use when it creates Persistent
Volume Claims (PVC). The creation of PV’s is something a Kubernetes cluster-admin user would typically provide before installing the
Operator. There is an example script which can be used to create NFS Persistent Volumes located here:
./pv/create-nfs-pv.sh

A similar script is provided for HostPath persistent volume creation if you wanted to use HostPath for testing:
./pv/create-pv.sh

Adjust the above PV creation scripts to suit your local requirements, the purpose of these scripts are solely to produce a test set of Volume
to test the Operator.
Other settings in pgo.yaml are described in the pgo.yaml Configuration section of the documentation.

Operator Security

The Operator implements its own RBAC (Role Based Access Controls) for authenticating Operator users access to the Operator’s REST
API.
There is a default set of Roles and Users defined respectively in the following files:

5

./conf/postgres -operator/pgouser

./conf/postgres -operator/pgorole

Adjust these settings to meet your local requirements.

Create Security Resources

The Operator installation requires Kubernetes administrators to create Resources required by the Operator. These resources are only
allowed to be created by a cluster-admin user.

Specifically, Custom Resource Definitions for the Operator, and Service Accounts used by the Operator are created which require cluster
permissions.

As part of the installation, download the expenv utility from the Releases page, add that to your path and as cluster admin, run the
following Operator Makefile target:

make installrbac

That target will create the RBAC Resources required by the Operator. This set of Resources is created a single time unless a new Operator
release requires these Resources to be recreated. Note that when you run make installrbac the set of keys used by the Operator REST API
and also the pgbackrest ssh keys are generated. These keys are stored in the ConfigMap used by the Operator for securing connections.

Verify the Operator Custom Resource Definitions are created as follows:

kubectl get crd

You should see the pgclusters CRD among the listed CRD resource types.

Deploy the Operator

At this point, you as a normal Kubernetes user should be able to deploy the Operator. To do this, run the following Makefile target:

make deployoperator

This will cause any existing Operator to be removed first, then the configuration to be bundled into a ConfigMap, then the Operator
Deployment to be created.

This will create a postgres-operator Deployment along with a crunchy-scheduler Deployment, and a postgres-operator Service. So, Operator
administrators needing to make changes to the Operator configuration would run this make target to pick up any changes to pgo.yaml or
the Operator templates.

pgo CLI Installation

Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the Operator
(https://github.com/crunchydata/postgres-operator/releases).

The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation
to work with a remote Operator. Prior to using pgo, users testing the Operator on a single host can specify the postgres-operator URL as
follows:

$ kubectl get service postgres-operator
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres -operator 10.104.47.110 <none> 8443/TCP 7m
$ export CO_APISERVER_URL=https://10.104.47.110:8443
pgo version

That URL address needs to be reachable from your local pgo client host. Your Kubernetes administrator will likely need to create a
network route, ingress, or LoadBalancer service to expose the Operator’s REST API to applications outside of the Kubernetes cluster.
Your Kubernetes administrator might also allow you to run the Kubernetes port-forward command, contact your adminstrator for details.

Next, the pgo client needs to reference the keys used to secure the Operator REST API:

export PGO_CA_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$COROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$COROOT/conf/postgres-operator/server.key

You can also specify these keys on the command line as follows:

6

pgo version --pgo-ca-cert=$COROOT/conf/postgres-operator/server.crt
--pgo-client-cert=$COROOT/conf/postgres -operator/server.crt
--pgo-client-key=$COROOT/conf/postgres -operator/server.key

Lastly, create a .pgouser file in your home directory with a credential known by the Operator (see your administrator for Operator
credentials to use):
username:password

You can create this file as follows:
echo "username:password" > $HOME/.pgouser

Note, you can also store the pgouser file in alternate locations, see the Security documentation for details.

At this point, you can test connectivity between your laptop or workstation and the Postgres Operator deployed on a Kubernetes cluster
as follows:
pgo version

You should get back a valid response showing the client and server version numbers.

Verify the Installation

Now that you have deployed the Operator, you can verify that it is running correctly.

You should see a pod running that contains the Operator:
kubectl get pod --selector=name=postgres-operator

That pod should show 2 of 2 containers in running state.

The sample environment script, env.sh, if used creates some bash alias commands that you can use to view the Operator logs. This is
useful in case you find one of the Operator containers not in a running status.

Using the pgo CLI, you can verify the versions of the client and server match as follows:
pgo version

This also tests connectivity between your pgo client host and the Operator server.

Helm Chart

The Operator Helm chart is located in the following location: ./postgres-operator/chart

Modify the Helm templates to suit your requirements. The Operator templates in the conf directory are essentially the same as found in
the Helm chart folder. Adjust as mentioned above to customize the installation.

Also, a pre-installation step is currently required prior to installing the Operator Helm chart. Specifically, the following script must be
executed prior to installing the chart:
./postgres -operator/chart/gen-pgo-keys.sh

This script will generate any keys and certificates required to deploy the Operator, and will then place them in the proper directory within
the Helm chart.

Quickstart Script

There is a quickstart script found in the following GitHub repository location which seeks to automate a simple Operator deployment onto
an existing Kubernetes installation:
./examples/quickstart.sh

This script is a bash script and is intended to run on Linux hosts. The script will ask you questions related to your configuration and the
proceed to execute commands to cause the Operator to be deployed. The quickstart script is meant for very simple deployments and to
test the Operator and would not be typically used to maintain an Operator deployment.

Get a copy of the script as follows:
wget https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/examples/quickstart.sh
chmod +x ./quickstart.sh

7

There are some prerequisites for running this script:

• a running Kubernetes system
• access to a Kube user account that has cluster-admin priviledges, this is required to install the Operator RBAC rules
• a namespace created to hold the Operator
• a Storage Class used for dynamic storage provisioning
• a Mac, Ubuntu, or Centos host to install from, this host and your terminal session should be configured to access your Kube cluster

The operator is template-driven; this makes it simple to configure both the client and the operator.

conf Directory

The Operator is configured with a collection of files found in the conf directory. These configuration files are deployed to your Kubernetes
cluster when the Operator is deployed. Changes made to any of these configuration files currently require a redeployment of the Operator
on the Kubernetes cluster.

The server components of the Operator include Role Based Access Control resources which need to be created a single time by a Kubernetes
cluster-admin user. See the Installation section for details on installing a Postgres Operator server.

conf/postgres-operator/pgo.yaml

The pgo.yaml file sets many different Operator configuration settings and is described in the [pgo.yaml configuration]({{< ref “pgo-yaml-
configuration.md” >}}) documentation section.

The pgo.yaml file is deployed along with the other Operator configuration files when you run:

make deployoperator

conf/postgres-operator Directory

Files within the conf/postgres-operator directory contain various templates that are used by the Operator when creating Kubernetes
resources. In an advanced Operator deployment, administrators can modify these templates to add their own custom meta-data or make
other changes to influence the Resources that get created on your Kubernetes cluster by the Operator.

conf/postgres-operator/cluster

Files within this directory are used specifically when creating PostgreSQL Cluster resources. Sidecar components such as pgBouncer and
pgPool II templates are also located within this directory.

As with the other Operator templates, administrators can make custom changes to this set of templates to add custom features or metadata
into the Resources created by the Operator.

Security

Security configuration is described in the Security section of this documentation.

pgo.yaml Configuration

The pgo.yaml file contains many different configuration settings as described in this section of the documentation.

The pgo.yaml file is broken into major sections as described below: ## Cluster

Setting Definition

BasicAuth if set to true will enable Basic Authentication
PrimaryNodeLabel newly created primary deployments will specify this node label if specified, unless you override it using the –node-label command line flag, if not set, no node label is specifed
ReplicaNodeLabel newly created replica deployments will specify this node label if specified, unless you override it using the –node-label command line flag, if not set, no node label is specifed
CCPImagePrefix newly created containers will be based on this image prefix (e.g. crunchydata), update this if you require a custom image prefix
CCPImageTag newly created containers will be based on this image version (e.g. centos7-11.1-2.3.0), unless you override it using the –ccp-image-tag command line flag

8

Setting Definition

Port the PostgreSQL port to use for new containers (e.g. 5432)
LogStatement postgresql.conf log_statement value (required field)
LogMinDurationStatement postgresql.conf log_min_duration_statement value (required field)
User the PostgreSQL normal user name
Strategy sets the deployment strategy to be used for deploying a cluster, currently there is only strategy 1
Replicas the number of cluster replicas to create for newly created clusters, typically users will scale up replicas on the pgo CLI command line but this global value can be set as well
PgmonitorPassword the password to use for pgmonitor metrics collection if you specify –metrics when creating a PG cluster
Metrics boolean, if set to true will cause each new cluster to include crunchy-collect as a sidecar container for metrics collection, if set to false (default), users can still add metrics on a cluster-by-cluster basis using the pgo command flag –metrics
Badger boolean, if set to true will cause each new cluster to include crunchy-pgbadger as a sidecar container for static log analysis, if set to false (default), users can still add pgbadger on a cluster-by-cluster basis using the pgo create cluster command flag –pgbadger
Policies optional, list of policies to apply to a newly created cluster, comma separated, must be valid policies in the catalog
PasswordAgeDays optional, if set, will set the VALID UNTIL date on passwords to this many days in the future when creating users or setting passwords, defaults to 60 days
PasswordLength optional, if set, will determine the password length used when creating passwords, defaults to 8
ArchiveMode optional, if set to true will enable archive logging for all clusters created, default is false.
ArchiveTimeout optional, if set, will determine the archive timeout setting used when ArchiveMode is true, defaults to 60 seconds
ServiceType optional, if set, will determine the service type used when creating primary or replica services, defaults to ClusterIP if not set, can be overridden by the user on the command line as well
Backrest optional, if set, will cause clusters to have the pgbackrest volume PVC provisioned during cluster creation
BackrestPort currently required to be port 2022
Autofail optional, if set, will cause clusters to be checked for auto failover in the event of a non-Ready status
AutofailReplaceReplica optional, default is false, if set, will determine whether a replica is created as part of a failover to replace the promoted replica, the AutofailReplaceReplica setting in pgo.yaml is overrode with this command line flag if specified by a user.

Storage

Setting Definition

PrimaryStorage required, the value of the storage configuration to use for the primary PostgreSQL deployment
XlogStorage optional, the value of the storage configuration to use for the pgwal (archive) volume for the Postgres container /pgwal volume, if not set, the PrimaryStorage setting is used
BackupStorage required, the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes
ReplicaStorage required, the value of the storage configuration to use for the replica PostgreSQL deployments
ReplicaStorage required, the value of the storage configuration to use for the replica PostgreSQL deployments
BackrestStorage required, the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster
StorageClass for a dynamic storage type, you can specify the storage class used for storage provisioning(e.g. standard, gold, fast)
AccessMode the access mode for new PVCs (e.g. ReadWriteMany, ReadWriteOnce, ReadOnlyMany). See below for descriptions of these.
Size the size to use when creating new PVCs (e.g. 100M, 1Gi)
Storage.storage1.StorageType supported values are either dynamic, create, if not supplied, create is used
Fsgroup optional, if set, will cause a SecurityContext and fsGroup attributes to be added to generated Pod and Deployment definitions
SupplementalGroups optional, if set, will cause a SecurityContext to be added to generated Pod and Deployment definitions
MatchLabels optional, if set, will cause the PVC to add a matchlabels selector in order to match a PV, only useful when the StorageType is create, when specified a label of key=value is added to the PVC as a match criteria

Storage Configuration Examples

In pgo.yaml, you will need to configure your storage configurations depending on which storage you are wanting to use for Operator
provisioning of Persistent Volume Claims. The examples below are provided as a sample. In all the examples you are free to change the
Size to meet your requirements of Persistent Volume Claim size.

9

HostPath Example

HostPath is provided for simple testing and use cases where you only intend to run on a single Linux host for your Kubernetes cluster.

hostpathstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create

NFS Example

In the following NFS example, notice that the SupplementalGroups setting is set, this can be whatever GID you have your NFS mount set
to, typically we set this nfsnobody as below. NFS file systems offer a ReadWriteMany access mode.

nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
SupplementalGroups: 65534

Storage Class Example

In the following example, the important attribute to set for a typical Storage Class is the Fsgroup setting. This value is almost always set to
26 which represents the Postgres user ID that the Crunchy Postgres container runs as. Most Storage Class providers offer ReadWriteOnce
access modes, but refer to your provider documentation for other access modes it might support.

storageos:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: fast
Fsgroup: 26

Container Resources

Setting Definition

DefaultContainerResource optional, the value of the container resources configuration to use for all database containers, if not set, no resource limits or requests are added on the database container
DefaultLoadResource optional, the value of the container resources configuration to use for pgo-load containers, if not set, no resource limits or requests are added on the database container
DefaultLspvcResource optional, the value of the container resources configuration to use for pgo-lspvc containers, if not set, no resource limits or requests are added on the database container
DefaultRmdataResource optional, the value of the container resources configuration to use for pgo-rmdata containers, if not set, no resource limits or requests are added on the database container
DefaultBackupResource optional, the value of the container resources configuration to use for crunchy-backup containers, if not set, no resource limits or requests are added on the database container
DefaultPgbouncerResource optional, the value of the container resources configuration to use for crunchy-pgbouncer containers, if not set, no resource limits or requests are added on the database container
DefaultPgpoolResource optional, the value of the container resources configuration to use for crunchy-pgpool containers, if not set, no resource limits or requests are added on the database container
RequestsMemory request size of memory in bytes
RequestsCPU request size of CPU cores
LimitsMemory request size of memory in bytes
LimitsCPU request size of CPU cores

Miscellaneous (Pgo)

Setting Definition

PreferredFailoverNode optional, a label selector (e.g. hosttype=offsite) that if set, will be used to pick the failover target which is running on a host that matches this label if multiple targets are equal in replication status
LSPVCTemplate the PVC lspvc template file that lists PVC contents
LoadTemplate the load template file used for load jobs

10

Setting Definition

COImagePrefix image tag prefix to use for the Operator containers
COImageTag image tag to use for the Operator containers
Audit boolean, if set to true will cause each apiserver call to be logged with an audit marking

Storage Configuration Details

You can define n-number of Storage configurations within the pgo.yaml file. Those Storage configurations follow these conventions -

• they must have lowercase name (e.g. storage1)
• they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and PrimaryStorage configuration values. However,
there are command line options in the pgo client that will let a user override these default global values to offer you the user a way to
specify very targeted storage configurations when needed (e.g. disaster recovery storage for certain backups).

You can set the storage AccessMode values to the following:

• ReadWriteMany - mounts the volume as read-write by many nodes
• ReadWriteOnce - mounts the PVC as read-write by a single node
• ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration is found, the apiserver will abort.
These Storage values are only read at apiserver start time.

The following StorageType values are possible -

• dynamic - this will allow for dynamic provisioning of storage using a StorageClass.
• create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using a naming convention of clustername.

When set, the Size, AccessMode settings are used in constructing the new PVC.

The operator will create new PVCs using this naming convention: dbname where dbname is the database name you have specified. For
example, if you run:

pgo create cluster example1

It will result in a PVC being created named example1 and in the case of a backup job, the pvc is named example1-backup

Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels, when set, this will cause a selector of
key=value to be added into the PVC, this will let you target specific PV(s) to be matched for this cluster. Note, if a PV does not match
the claim request, then the cluster will not start. Users that want to use this feature have to place labels on their PV resources as part of
PG cluster creation before creating the PG cluster. For example, users would add a label like this to their PV before they create the PG
cluster:

kubectl label pv somepv myzone=somezone

If you do not specify MatchLabels in the storage configuration, then no match filter is added and any available PV will be used to satisfy
the PVC request. This option does not apply to dynamic storage types.

Example PV creation scripts are provided that add labels to a set of PVs and can be used for testing: $COROOT/pv/create-pv-nfs-labels.sh
in that example, a label of crunchyzone=red is set on a set of PVs to test with.

The pgo.yaml includes a storage config named nfsstoragered that when used will demonstrate the label matching. This feature allows
you to support n-number of NFS storage configurations and supports spreading a PG cluster across different NFS storage configurations.

Container Resources Details

In the pgo.yaml configuration file you have the option to configure a default container resources configuration that when set will add CPU
and memory resource limits and requests values into each database container when the container is created.

You can also override the default value using the --resources-config command flag when creating a new cluster:

pgo create cluster testcluster --resources -config=large

11

Note, if you try to allocate more resources than your host or Kube cluster has available then you will see your pods wait in a Pending
status. The output from a kubectl describe pod command will show output like this in this event: Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 49s (x8 over 1m) default-scheduler No nodes are available that

match all of the predicates: Insufficient memory (1).

Overriding Storage Configuration Defaults

pgo create cluster testcluster --storage-config=bigdisk

That example will create a cluster and specify a storage configuration of bigdisk to be used for the primary database storage. The replica
storage will default to the value of ReplicaStorage as specified in pgo.yaml.

pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk

That example will create a cluster and specify a storage configuration of fastdisk to be used for the primary database storage, while the
replica storage will use the storage configuration slowdisk.

pgo backup testcluster --storage-config=offsitestorage

That example will create a backup and use the offsitestorage storage configuration for persisting the backup.

Using Storage Configurations for Disaster Recovery

A simple mechanism for partial disaster recovery can be obtained by leveraging network storage, Kubernetes storage classes, and the
storage configuration options within the Operator.

For example, if you define a Kubernetes storage class that refers to a storage backend that is running within your disaster recovery site,
and then use that storage class as a storage configuration for your backups, you essentially have moved your backup files automatically to
your disaster recovery site thanks to network storage.

The command line tool, pgo, is used to interact with the Postgres Operator.

Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the Operator
(https://github.com/crunchydata/postgres-operator/releases).

The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation
to work with a remote Operator.

Syntax

Use the following syntax to run pgo commands from your terminal window:

pgo [command] ([TYPE] [NAME]) [flags]

Where command is a verb like: - show - get - create - delete

And type is a resource type like: - cluster - policy - user

And name is the name of the resource type like: - mycluster - somesqlpolicy - john

To get detailed help information and command flag descriptions on each pgo command, enter:

pgo [command] -h

Operations

The following table shows the pgo operations currently implemented:

Operation Syntax Description

apply pgo apply mypolicy –selector=name=mycluster Apply a SQL policy on a Postgres cluster(s)
backup pgo backup mycluster Perform a backup on a Postgres cluster(s)
create pgo create cluster mycluster Create an Operator resource type (e.g. cluster, policy, schedule, user)
delete pgo delete cluster mycluster Delete an Operator resource type (e.g. cluster, policy, user, schedule)

12

Operation Syntax Description

df pgo df mycluster Display the disk status/capacity of a Postgres cluster.
failover pgo failover mycluster Perform a manual failover of a Postgres cluster.
help pgo help Display general pgo help information.
label pgo label mycluster –label=environment=prod Create a metadata label for a Postgres cluster(s).
load pgo load –load-config=load.json –selector=name=mycluster Perform a data load into a Postgres cluster(s).
reload pgo reload mycluster Perform a pg_ctl reload command on a Postgres cluster(s).
restore pgo restore mycluster Perform a pgbackrest or pgdump restore on a Postgres cluster.
scale pgo scale mycluster Create a Postgres replica(s) for a given Postgres cluster.
scaledown pgo scaledown mycluster –query Delete a replica from a Postgres cluster.
show pgo show cluster mycluster Display Operator resource information (e.g. cluster, user, policy, schedule).
status pgo status Display Operator status.
test pgo test mycluster Perform a SQL test on a Postgres cluster(s).
update pgo update cluster –label=autofail=false Update a Postgres cluster(s).
upgrade pgo upgrade mycluster Perform a minor upgrade to a Postgres cluster(s).
user pgo user –selector=name=mycluster –update-passwords Perform Postgres user maintenance on a Postgres cluster(s).
version pgo version Display Operator version information.

Common Operations

Cluster Operations

pgo create cluster mycluster

Create a cluster using the Crunchy Postgres + PostGIS container image:
pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis

pgo create cluster mycluster --replica-count=1

pgo scale cluster mycluster

pgo create cluster mycluster --pgbackrest

pgo scaledown cluster mycluster --query
pgo scaledown cluster mycluster --target=sometarget

pgo delete cluster mycluster

pgo delete cluster mycluster --delete-data

13

pgo test mycluster

pgo df mycluster

Label Operations

pgo label mycluster --label=environment=prod

pgo label --selector=clustertypes=research --label=environment=prod

pgo show cluster --selector=environment=prod

Policy Operations

pgo create policy mypolicy --in-file=mypolicy.sql

pgo show policy all

pgo apply mypolicy --selector=environment=prod
pgo apply mypolicy --selector=name=mycluster

Operator Status

pgo version

pgo status

pgo show config

Backup and Restore

14

pgo backup mycluster

pgo backup mycluster --backup-type=pgbackrest
pgo backup mycluster --backup-type=pgbackrest --backup-opts="--type=diff"

The last example passes in pgbackrest flags to the backup command. See pgbackrest.org for command flag descriptions.

pgo backup mycluster --backup-type=pgdump
pgo backup mycluster --backup-type=pgdump --backup-opts="--dump-all --verbose"
pgo backup mycluster --backup-type=pgdump --backup-opts="--schema=myschema"

Note: To run pgdump_all instead of pgdump, pass ‘–dump-all’ flag in –backup-opts as shown above. All –backup-opts should be space
delimited.

pgo restore mycluster

Or perform a restore based on a point in time:

pgo restore mycluster --pitr-target="2019-01-14 00:02:14.921404+00" --backup-opts="--type=time"

You can also target specific nodes when performing a restore:

pgo restore mycluster --node-label=failure-domain.beta.kubernetes.io/zone=us-central1-a

Here are some steps to test PITR:

• pgo create cluster mycluster –pgbackrest
• create a table on the new cluster called beforebackup
• pgo backup mycluster –backup-type=pgbackrest
• create a table on the cluster called afterbackup
• execute select now() on the database to get the time, use this timestamp minus a couple of minutes when you perform the restore
• pgo restore mycluster –pitr-target=“2019-01-14 00:02:14.921404+00” –backup-opts=“–type=time –log-level-console=info”
• wait for the database to be restored
• execute *̣ in the database and you should see the database state prior to where the afterbackup* table was created

See the Design section of the Operator documentation for things to consider before you do a restore.

pgo create cluster restoredcluster --backup-path=/somebackup/path --backup-pvc=somebackuppvc
--secret-from=mycluster

pgo restore mycluster --backup-type=pgdump --backup-pvc=mycluster -pgdump-pvc
--pitr-target="2019-01-15 00:03:25"

To restore the most recent pgdump at the default path, leave off a timestamp:

pgo restore mycluster --backup-type=pgdump --backup-pvc=mycluster -pgdump-pvc

Fail-over Operations

15

pgo failover mycluster --query
pgo failover mycluster --target=sometarget

pgo create cluster mycluster --autofail

Add-On Operations

pgo create cluster mycluster --pgbouncer

pgo create cluster mycluster --pgpool

pgo create pgbouncer mycluster

Note, the pgbouncer configuration defaults to specifying only a single entry for the primary database. If you want it to have an entry for
the replica service, add the following configuration to pgbouncer.ini:
{{.PG_REPLICA_SERVICE_NAME}} = host={{.PG_REPLICA_SERVICE_NAME}} port=5432

auth_user={{.PG_USERNAME}} dbname=userdb

pgo create pgpool mycluster

pgo delete pgbouncer mycluster

pgo delete pgpool mycluster

pgo create cluster mycluster --pgbadger

pgo create cluster mycluster --metrics

Note: backend metric storage such as Prometheus and front end visualization software such as Grafana are not created automatically by
the PostgreSQL Operator. For instructions on installing Grafana and Prometheus in your environment, see the Crunchy Container Suite
documentation.

Scheduled Tasks

pgo create schedule mycluster --schedule="0 1 * * SUN" \
--schedule -type=pgbackrest --pgbackrest -backup-type=full

16

https://access.crunchydata.com/documentation/crunchy-containers/2.3.0/examples/metrics/metrics/
https://access.crunchydata.com/documentation/crunchy-containers/2.3.0/examples/metrics/metrics/

pgo create schedule mycluster --schedule="0 1 * * MON-SAT" \
--schedule -type=pgbackrest --pgbackrest -backup-type=diff

Automated pgBaseBackup backups every day at 1 am In order to have a backup PVC created, users should run the pgo backup
command against the target cluster prior to creating this schedule.

pgo create schedule mycluster --schedule="0 1 * * *" \
--schedule -type=pgbasebackup --pvc-name=mycluster -backup

pgo create schedule --selector=pg-cluster=mycluster --schedule="0 1 * * *" \
--schedule -type=policy --policy=mypolicy --database=userdb \
--secret=mycluster -testuser -secret

Complex Deployments

pgo create cluster mycluster --storage-config=somestorageconfig

pgo create cluster mycluster --node-label=speed=superfast

pgo scale mycluster --storage-config=someslowerstorage

pgo scale mycluster --node-label=speed=slowerthannormal

pgo create cluster mycluster --service-type=LoadBalancer

pgo Global Flags

pgo global command flags include:

Flag Description

apiserver-url URL of the Operator REST API service, override with CO_APISERVER_URL environment variable
debug enable debug messages
pgo-ca-cert The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver. Override with PGO_CA_CERT environment variable
pgo-client-cert The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver. Override with PGO_CLIENT_CERT environment variable
pgo-client-key The Client Key file path for authenticating to the PostgreSQL Operator apiserver. Override with PGO_CLIENT_KEY environment variable

17

Provisioning

So, what does the Postgres Operator actually deploy when you create a cluster?

Figure 2: Reference

On this diagram, objects with dashed lines are components that are optionally deployed as part of a PostgreSQL Cluster by the operator.
Objects with solid lines are the fundamental and required components.

For example, within the Primary Deployment, the metrics container is completely optional. That component can be deployed using either
the operator configuration or command line arguments if you want to cause metrics to be collected from the Postgres container.

Replica deployments are similar to the primary deployment but are optional. A replica is not required to be created unless the capability
for one is necessary. As you scale up the Postgres cluster, the standard set of components gets deployed and replication to the primary is
started.

Notice that each cluster deployment gets its own unique Persistent Volumes. Each volume can use different storage configurations which
provides fined grained placement of the database data files.

18

Custom Resource Definitions

Kubernetes Custom Resource Definitions are used in the design of the PostgreSQL Operator to define the following:

• Cluster - pgclusters
• Backup - pgbackups
• Upgrade - pgupgrades
• Policy - pgpolicies
• Tasks - pgtasks

Metadata about the Postgres cluster deployments are stored within these CRD resources which act as the source of truth for the Operator.

The postgres-operator design incorporates the following concepts:

Event Listeners

Kubernetes events are created for the Operator’s CRD resources when new resources are made, deleted, or updated. These events are
processed by the Operator to perform asynchronous actions.

As events are captured, controller logic is executed within the Operator to perform the bulk of operator logic.

REST API

A feature of the Operator is to provide a REST API upon which users or custom applications can inspect and cause actions within the
Operator such as provisioning resources or viewing status of resources.

This API is secured by a RBAC (role based access control) security model whereby each API call has a permission assigned to it. API
roles are defined to provide granular authorization to Operator services.

Command Line Interface

One of the unique features of the Operator is the pgo command line interface (CLI). This tool is used by a normal end-user to create
databases or clusters, or make changes to existing databases.

The CLI interacts with the REST API deployed within the postgres-operator deployment.

Node Affinity

You can have the Operator add a node affinity section to a new Cluster Deployment if you want to cause Kubernetes to attempt to
schedule a primary cluster to a specific Kubernetes node.

You can see the nodes on your Kube cluster by running the following:

kubectl get nodes

You can then specify one of those names (e.g. kubeadm-node2) when creating a cluster;

pgo create cluster thatcluster --node-name=kubeadm-node2

The affinity rule inserted in the Deployment use a preferred strategy so that if the node were down or not available, Kubernetes will go
ahead and schedule the Pod on another node.

When you scale up a Cluster and add a replica, the scaling will take into account the use of --node-name. If it sees that a cluster was
created with a specific node name, then the replica Deployment will add an affinity rule to attempt to schedule

19

Fail-over

Manual and automated fail-over are supported in the Operator within a single Kubernetes cluster.

Manual failover is performed by API actions involving a query and then a target being specified to pick the fail-over replica target.

Automatic fail-over is performed by the Operator by evaluating the readiness of a primary. Automated fail-over can be globally specified
for all clusters or specific clusters.

Users can configure the Operator to replace a failed primary with a new replica if they want that behavior.

The fail-over logic includes:

• deletion of the failed primary Deployment
• pick the best replica to become the new primary
• label change of the targeted Replica to match the primary Service
• execute the PostgreSQL promote command on the targeted replica

pgbackrest Integration

The Operator integrates various features of the pgbackrest backup and restore project. A key component added to the Operator is the
pgo-backrest-repo container, this container acts as a pgBackRest remote repository for the Postgres cluster to use for storing archive files
and backups.

The following diagrams depicts some of the integration features:

Figure 3: alt text

In this diagram, starting from left to right we see the following:

20

https://pgbackrest.org

• a user when they enter pgo backup mycluster –backup-type=pgbackrest will cause a pgo-backrest container to be run as a Job, that
container will execute a pgbackrest backup command in the pgBackRest repository container to perform the backup function.

• a user when they enter pgo show backup mycluster –backup-type=pgbackrest will cause a pgbackrest info command to be executed on
the pgBackRest repository container, the info output is sent directly back to the user to view

• the Postgres container itself will use an archive command, pgbackrest archive-push to send archives to the pgBackRest repository
container

• the user entering pgo create cluster mycluster –pgbackrest will cause a pgBackRest repository container deployment to be created,
that repository is exclusively used for this Postgres cluster

• lastly, a user entering pgo restore mycluster will cause a pgo-backrest-restore container to be created as a Job, that container executes
the pgbackrest restore command

pgbackrest Restore

The pgbackrest restore command is implemented as the pgo restore command. This command is destructive in the sense that it is meant
to restore a PG cluster meaning it will revert the PG cluster to a restore point that is kept in the pgbackrest repository. The prior primary
data is not deleted but left in a PVC to be manually cleaned up by a DBA. The restored PG cluster will work against a new PVC created
from the restore workflow.

When doing a pgo restore, here is the workflow the Operator executes:

• turn off autofail if it is enabled for this PG cluster
• allocate a new PVC to hold the restored PG data
• delete the the current primary database deployment
• update the pgbackrest repo for this PG cluster with a new data path of the new PVC
• create a pgo-backrest-restore job, this job executes the pgbackrest restore command from the pgo-backrest-restore container, this Job

mounts the newly created PVC
• once the restore job completes, a new primary Deployment is created which mounts the restored PVC volume

At this point the PG database is back in a working state. DBAs are still responsible to re-enable autofail using pgo update cluster and
also perform a pgBackRest backup after the new primary is ready. This version of the Operator also does not handle any errors in the
PG replicas after a restore, that is left for the DBA to handle.

Other things to take into account before you do a restore:

• if a schedule has been created for this PG cluster, delete that schedule prior to performing a restore
• after a restore, exec into the PG primary and make sure the database has fully recovered by looking at the database logs, if not

recovered, you might have to run psql command select pg_wal_replay_resume() to complete the recovery, on PG 9.6/9.5 systems,
the command you will use is select pg_xlog_replay_resume().

• a pgBackRest restore is destructive in the sense that it deletes the existing primary deployment for the cluster prior to creating a new
deployment containing the restored primary database. However, in the event that the pgBackRest restore job fails, the pgo restore
command be can be run again, and instead of first deleting the primary deployment (since one no longer exists), a new primary will
simply be created according to any options specified. Additionally, even though the original primary deployment will be deleted, the
original primary PVC will remain.

• there is currently no Operator validation of user entered pgBackRest command options, you will need to make sure to enter these
correctly, if not the pgBackRest restore command can fail.

• the restore workflow does not perform a backup after the restore nor does it verify that any replicas are in a working status after the
restore, it is possible you might have to take actions on the replica to get them back to replicating with the new restored primary.

• pgbackrest.org suggests running a pgbackrest backup after a restore, this needs to be done by the DBA as part of a restore
• when performing a pgBackRest restore, the node-label flag can be utilized to target a specific node for both the pgBackRest restore

job and the new (i.e. restored) primary deployment that is then created for the cluster. If a node label is not specified, the restore job
will not target any specific node, and the restored primary deployment will inherit any node label’s defined for the original primary
deployment.

21

PGO Scheduler

The Operator includes a cronlike scheduler application called pgo-scheduler. Its purpose is to run automated tasks such as PostgreSQL
backups or SQL policies against PostgreSQL clusters created by the Operator.

PGO Scheduler watches Kubernetes for configmaps with the label crunchy-scheduler=true in the same namespace the Operator is
deployed. The configmaps are json objects that describe the schedule such as:

• Cron like schedule such as: * * * * *
• Type of task: pgbackrest, pgbasebackup or policy

Schedules are removed automatically when the configmaps are deleted.

PGO Scheduler uses the UTC timezone for all schedules.

Schedule Expression Format

Schedules are expressed using the following rules:

Field name	Mandatory?	Allowed values	Allowed special characters
Seconds | Yes | 0-59 | * / , -
Minutes | Yes | 0-59 | * / , -
Hours | Yes | 0-23 | * / , -
Day of month | Yes | 1-31 | * / , - ?
Month | Yes | 1-12 or JAN-DEC | * / , -
Day of week | Yes | 0-6 or SUN-SAT | * / , - ?

pgBackRest Schedules

pgBackRest schedules require pgBackRest enabled on the cluster to backup. The scheduler will not do this on its own.

pgBaseBackup Schedules

pgBaseBackup schedules require a backup PVC to already be created. The operator will make this PVC using the backup commands:

pgo backup mycluster

Policy Schedules

Policy schedules require a SQL policy already created using the Operator. Additionally users can supply both the database in which
the policy should run and a secret that contains the username and password of the PostgreSQL role that will run the SQL. If no user is
specified the scheduler will default to the replication user provided during cluster creation.

Custom Resource Definitions

The Operator makes use of custom resource definitions to maintain state and resource definitions as offered by the Operator.

In this above diagram, the CRDs heavily used by the Operator include:

• pgcluster - defines the Postgres cluster definition, new cluster requests are captured in a unique pgcluster resource for that Postgres
cluster

22

Figure 4: Reference

• pgtask - workflow and other related administration tasks are captured within a set of pgtasks for a given pgcluster
• pgbackup - when you run a pgbasebackup, a pgbackup is created to hold the workflow and status of the last backup job, this CRD

will eventually be deprecated in favor of a more general pgtask resource
• pgreplica - when you create a Postgres replica, a pgreplica CRD is created to define that replica

Developing

The Postgres-Operator is an open source project hosted on GitHub.

Developers that wish to build the Operator from source or contribute to the project via pull requests would set up a development
environment through the following steps.

Create Kubernetes Cluster

We use either OpenShift Container Platform or kubeadm to install development clusters.

Create a Local Development Host

We currently build on CentOS and RHEL hosts. Others are possible, however we don’t support or test other Linux variants at this time.

23

https://github.com/crunchydata/postgres-operator

Perform Manual Install

You can follow the manual installation method described in this documentation to make sure you can deploy from your local development
host to your Kubernetes cluster.

Build Locally

You can now build the Operator from source on local on your development host. Here are some steps to follow:

Get Build Dependencies

Run the following target to install a golang compiler, and any other build dependencies:

make setup

Compile

You will build all the Operator binaries and Docker images by running:

make all

This assumes you have Docker installed and running on your development host.

The project uses the golang dep package manager to vendor all the golang source dependencies into the vendor directory. You typically
don’t need to run any dep commands unless you are adding new golang package dependencies into the project outside of what is within
the project for a given release.

After a full compile, you will have a pgo binary in $HOME/odev/bin and the Operator images in your local Docker registry.

Release

You can perform a release build by running:

make release

This will compile the Mac and Windows versions of pgo.

Deploy

Now that you have built the Operator images, you can push them to your Kubernetes cluster if that cluster is remote to your development
host.

You would then run:

make deployoperator

To deploy the Operator on your Kubernetes cluster. If your Kubernetes cluster is not local to your development host, you will need to
specify a config file that will connect you to your Kubernetes cluster. See the Kubernetes documentation for details.

24

Debug

Debug level logging in turned on by default when deploying the Operator.

You can view the REST API logs with the following alias:

alias alog='kubectl logs `kubectl get pod --selector=name=postgres-operator -o
jsonpath="{.items[0].metadata.name}"` -c apiserver '

You can view the Operator core logic logs with the following alias:

alias olog='kubectl logs `kubectl get pod --selector=name=postgres-operator -o
jsonpath="{.items[0].metadata.name}"` -c operator '

You can view the Scheduler logs with the following alias:

alias slog='kubectl logs `kubectl get pod --selector=name=postgres-operator -o
jsonpath="{.items[0].metadata.name}"` -c scheduler '

You can enable the pgo CLI debugging with the following flag:

pgo version --debug

You can set the REST API URL as follows after a deployment if you are developing on your local host:

alias setip='export CO_APISERVER_URL=https://`kubectl get service postgres-operator
-o=jsonpath="{.spec.clusterIP}"`:8443'

Kubernetes RBAC

Install the requisite Operator RBAC resources, as a Kubernetes cluster admin user, by running a Makefile target:

make installrbac

This script creates the following RBAC resources on your Kubernetes cluster:

Setting Definition

Custom Resource Definitions pgbackups
pgclusters
pgpolicies
pgreplicas
pgtasks
pgupgrades

Cluster Roles pgopclusterrole
pgopclusterrolecrd
scheduler-sa

Cluster Role Bindings pgopclusterbinding
pgopclusterbindingcrd
scheduler-sa

Service Account scheduler-sa
postgres-operator
pgo-backrest
scheduler-sa

Roles pgo-role
pgo-backrest-role

Role Bindings pgo-backrest-role-binding

25

Operator RBAC

The conf/postgresql-operator/pgorole file is read at start up time when the operator is deployed to the Kubernetes cluster. This file defines
the Operator roles whereby Operator API users can be authorized.

The conf/postgresql-operator/pgouser file is read at start up time also and contains username, password, and role information as follows:

username:password:pgoadmin
testuser:testpass:pgoadmin
readonlyuser:testpass:pgoreader

A user creates a .pgouser file in their $HOME directory to identify themselves to the Operator. An entry in .pgouser will need to match
entries in the conf/postgresql-operator/pgouser file. A sample .pgouser file contains the following:

username:password

The users pgouser file can also be located at: /etc/pgo/pgouser or it can be found at a path specified by the PGOUSER environment
variable.

The following list shows the current complete list of possible pgo permissions:

Permission Description

ApplyPolicy allow pgo apply
CreateBackup allow pgo backup
CreateCluster allow pgo create cluster
CreateFailover allow pgo failover
CreatePgbouncer allow pgo create pgbouncer
CreatePgpool allow pgo create pgpool
CreatePolicy allow pgo create policy
CreateSchedule allow pgo create schedule
CreateUpgrade allow pgo upgrade
CreateUser allow pgo create user
DeleteBackup allow pgo delete backup
DeleteCluster allow pgo delete cluster
DeletePgbouncer allow pgo delete pgbouncer
DeletePgpool allow pgo delete pgpool
DeletePolicy allow pgo delete policy
DeleteSchedule allow pgo delete schedule
DeleteUpgrade allow pgo delete upgrade
DeleteUser allow pgo delete user
DfCluster allow pgo df
Label allow pgo label
Load allow pgo load
Reload allow pgo reload
Restore allow pgo restore
ShowBackup allow pgo show backup
ShowCluster allow pgo show cluster
ShowConfig allow pgo show config
ShowPolicy allow pgo show policy
ShowPVC allow pgo show pvc
ShowSchedule allow pgo show schedule

26

Permission Description

ShowUpgrade allow pgo show upgrade
ShowWorkflow allow pgo show workflow
Status allow pgo status
TestCluster allow pgo test
UpdateCluster allow pgo update cluster
User allow pgo user
Version allow pgo version

If the user is unauthorized for a pgo command, the user will get back this response:

FATA[0000] Authentication Failed: 40

Making Security Changes

The Operator today requires you to make Operator security changes in the pgouser and pgorole files, and for those changes to take effect
you are required to re-deploy the Operator:

make deployoperator

This will recreate the pgo-auth-secret Secret that stores these files and is mounted by the Operator during its initialization.

API Security

The Operator REST API is secured with keys stored in the pgo-auth-secret Secret. Adjust the default keys to meet your security
requirements using your own keys. The pgo-auth-secret Secret is created when you run:

make deployoperator

The keys are generated when the RBAC script is executed by the cluster admin:

make installrbac

Upgrading the Operator

Various Operator releases will require action by the Operator administrator of your organization in order to upgrade to the next release
of the Operator. Some upgrade steps are automated within the Operator but not all are possible at this time.

This section of the documentation shows specific steps required to the latest version from the previous version.

Upgrading to Version 3.5.0 From Previous Versions

• For clusters created in prior versions that used pgbackrest, you will be required to first create a pgbasebackup for those clusters, and
after upgrading to Operator 3.5, you will need to restore those clusters from the pgbasebackup into a new cluster with –pgbackrest
enabled, this is due to the new pgbackrest shared repository being implemented in 3.5. This is a breaking change for anyone that
used pgbackrest in Operator versions prior to 3.5.

• The pgingest CRD is removed. You will need to manually remove it from any deployments of the operator after upgrading to this
version. This includes removing ingest related permissions from the pgorole file. Additionally, the API server now removes the ingest
related API endpoints.

27

• Primary and replica labels are only applicable at cluster creation and are not updated after a cluster has executed a failover. A new
service-name label is applied to PG cluster components to indicate whether a deployment/pod is a primary or replica. service-name
is also the label now used by the cluster services to route with. This scheme allows for an almost immediate failover promotion and
avoids the pod having to be bounced as part of a failover. Any existing PostgreSQL clusters will need to be updated to specify
them as a primary or replica using the new service-name labeling scheme.

• The autofail label was moved from deployments and pods to just the pgcluster CRD to support autofail toggling.
• The storage configurations in pgo.yaml support the MatchLabels attribute for NFS storage. This will allow users to have more than

a single NFS backend,. When set, this label (key=value) will be used to match the labels on PVs when a PVC is created.
• The UpdateCluster permission was added to the sample pgorole file to support the new pgo update CLI command. It was also added

to the pgoperm file.
• The pgo.yaml adds the PreferredFailoverNode setting. This is a Kubernetes selector string (e.g. key=value). This value if set, will

cause fail-over targets to be preferred based on the node they run on if that node is in the set of preferred.
• The ability to select nodes based on a selector string was added. For this to feature to be used, multiple replicas have to be in a

ready state, and also at the same replication status. If those conditions are not met, the default fail-over target selection is used.
• The pgo.yaml file now includes a new storage configuration, XlogStorage, which when set will cause the xlog volume to be allocated

using this storage configuration. If not set, the PrimaryStorage configuration will be used.
• The pgo.yaml file now includes a new storage configuration, BackrestStorage, will cause the pgbackrest shared repository volume to

be allocated using this storage configuration.
• The pgo.yaml file now includes a setting, AutofailReplaceReplica, which will enable or disable whether a new replica is created as

part of a fail-over. This is turned off by default.

See the GitHub Release notes for the features and other notes about a specific release.

28

	Deployment Requirements
	Documentation
	Create Project Structure
	Configure Environment
	Configure Operator Templates
	Storage

	Operator Security
	Create Security Resources
	Deploy the Operator
	pgo CLI Installation
	Verify the Installation
	Helm Chart
	Quickstart Script
	conf Directory
	conf/postgres-operator/pgo.yaml
	conf/postgres-operator Directory
	conf/postgres-operator/cluster
	Security
	pgo.yaml Configuration
	Storage
	Storage Configuration Examples
	HostPath Example
	NFS Example
	Storage Class Example

	Container Resources
	Miscellaneous (Pgo)
	Storage Configuration Details
	Container Resources Details
	Overriding Storage Configuration Defaults
	Using Storage Configurations for Disaster Recovery
	Syntax
	Operations
	Common Operations
	Cluster Operations
	Label Operations
	Policy Operations
	Operator Status
	Backup and Restore
	Fail-over Operations
	Add-On Operations
	Scheduled Tasks
	Complex Deployments

	pgo Global Flags
	Provisioning
	Custom Resource Definitions
	Event Listeners
	REST API
	Command Line Interface
	Node Affinity
	Fail-over
	pgbackrest Integration
	pgbackrest Restore

	PGO Scheduler
	Schedule Expression Format
	pgBackRest Schedules
	pgBaseBackup Schedules
	Policy Schedules

	Custom Resource Definitions

	Developing
	Create Kubernetes Cluster
	Create a Local Development Host
	Perform Manual Install
	Build Locally
	Get Build Dependencies
	Compile
	Release
	Deploy
	Debug

	Kubernetes RBAC
	Operator RBAC
	Making Security Changes
	API Security
	Upgrading the Operator
	Upgrading to Version 3.5.0 From Previous Versions

