
 Crunchy Data Postgres Operator

 Crunchy Data Postgres Operator

 	

 Crunchy Data Postgres Operator

 	

 Deployment Requirements

 	

 Documentation

 	

 Provisioning

 	

 Custom Resource Definitions

 	

 Event Listeners

 	

 REST API

 	

 Command Line Interface

 	

 Node Affinity

 	

 Fail-over

 	

 pgbackrest Integration

 	

 pgbackrest Restore

 	

 pgbackrest AWS S3 Support

 	

 PGO Scheduler

 	

 Schedule Expression Format

 	

 pgBackRest Schedules

 	

 pgBaseBackup Schedules

 	

 Policy Schedules

 	

 Custom Resource Definitions

 	

 Considerations for Multi-zone Cloud Environments

 	

 Custom Postgres Configurations

 	

 Custom Postgres SSL Configurations

 	

 Operator Namespaces

 	

 Namespace Watching

 	

 OwnNamespace Example

 	

 SingleNamespace Example

 	

 MultiNamespace Example

 	

 AllNamespaces Example

 	

 RBAC

 	

 pgo Clients and Namespaces

 	

 Operator Lifecycle Management

 	

 Operator Hub

 	

 Prerequisites

 	

 Default Installation - Create Project Structure

 	

 Default Installation - Configure Environment

 	

 Default Installation - Namespace Creation

 	

 Default Installation - Configure Operator Templates

 	

 Storage

 	

 Operator Security

 	

 Default Installation - Create Kube RBAC Controls

 	

 Default Installation - Deploy the Operator

 	

 Default Installation - Completely Cleaning Up

 	

 pgo CLI Installation

 	

 Verify the Installation

 	

 Developing

 	

 Create Kubernetes Cluster

 	

 Create a Local Development Host

 	

 Perform Manual Install

 	

 Build Locally

 	

 Get Build Dependencies

 	

 Compile

 	

 Release

 	

 Deploy

 	

 Debug

 	

 Install the Postgres Operator (pgo) Client

 	

 Prerequisites

 	

 Linux and MacOS

 	

 Installing the Client

 	

 Windows

 	

 Installing the Client

 	

 Verify the Client Installation

 	

 Crunchy Data PostgreSQL Operator Playbooks

 	

 Features

 	

 Resources

 	

 Prerequisites

 	

 Kubernetes Installs

 	

 OpenShift Installs

 	

 Installing from a Windows Host

 	

 Permissions

 	

 Obtaining Operator Ansible Role

 	

 GitHub Installation

 	

 Configuring the Inventory File

 	

 Minimal Variable Requirements

 	

 Storage

 	

 Considerations for Multi-Zone Cloud Environments

 	

 Examples

 	

 Understanding pgo_operator_namespace & namespace

 	

 Single Namespace

 	

 Multiple Namespaces

 	

 Deploying Multiple Operators

 	

 Deploying Grafana and Prometheus

 	

 Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem

 	

 Install Google Cloud SDK (Optional)

 	

 Installing

 	

 Installing on Linux

 	

 Installing on MacOS

 	

 Installing on Windows Ubuntu Subsystem

 	

 Verifying the Installation

 	

 Configure Environment Variables

 	

 Verify pgo Connection

 	

 Installing

 	

 Prerequisites

 	

 Installing on Linux

 	

 Installing on MacOS

 	

 Installing on Windows

 	

 Verifying the Installation

 	

 Verify Grafana

 	

 Verify Prometheus

 	

 Updating

 	

 Updating on Linux

 	

 Updating on MacOS

 	

 Updating on Windows Ubuntu Subsystem

 	

 Verifying the Update

 	

 Configure Environment Variables

 	

 Verify pgo Connection

 	

 Uninstalling PostgreSQL Operator

 	

 Deleting pgo Client

 	

 Uninstalling the Metrics Stack

 	

 Container Dependencies

 	

 Operating Systems

 	

 Kubernetes Distributions

 	

 Storage

 	

 Releases

 	

 conf Directory

 	

 conf/postgres-operator/pgo.yaml

 	

 conf/postgres-operator Directory

 	

 Security

 	

 Local pgo CLI Configuration

 	

 Namespace Configuration

 	

 pgo.yaml Configuration

 	

 Storage

 	

 Storage Configuration Examples

 	

 HostPath Example

 	

 NFS Example

 	

 Storage Class Example

 	

 Container Resources

 	

 Miscellaneous (Pgo)

 	

 Storage Configuration Details

 	

 Container Resources Details

 	

 Overriding Storage Configuration Defaults

 	

 Using Storage Configurations for Disaster Recovery

 	

 Syntax

 	

 Operations

 	

 Common Operations

 	

 Cluster Operations

 	

 Label Operations

 	

 Policy Operations

 	

 Operator Status

 	

 Fail-over Operations

 	

 Add-On Operations

 	

 Scheduled Tasks

 	

 Benchmark Clusters

 	

 Complex Deployments

 	

 pgo Global Flags

 	

 pgo Global Environment Variables

 	

 pgo clidoc

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo status

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo update cluster

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo version

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete upgrade

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show workflow

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo update

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo user

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show upgrade

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo

 	

 Synopsis

 	

 Options

 	

 SEE ALSO

 	

 pgo apply

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo backup

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo benchmark

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo cat

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create pgbouncer

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create pgpool

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create policy

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create schedule

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create user

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete backup

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete benchmark

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete cluster

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete label

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete pgbouncer

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete pgpool

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete policy

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete schedule

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo delete user

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo df

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo failover

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo label

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo load

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo ls

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo reload

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo restore

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo scale

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo scaledown

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show backup

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show benchmark

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show cluster

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show config

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show namespace

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show policy

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show pvc

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show schedule

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo show user

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo test

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo upgrade

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 pgo create cluster

 	

 Synopsis

 	

 Options

 	

 Options inherited from parent commands

 	

 SEE ALSO

 	

 Kubernetes RBAC

 	

 Operator RBAC

 	

 Making Security Changes

 	

 API Security

 	

 Upgrading the Operator

 	

 Upgrading to Version 3.5.0 From Previous Versions

 	

 Upgrading a Cluster from Version 3.5.x to 4.0

 	

 Documentation

 	

 Hosting Hugo Locally (Optional)

 	

 Contributing to the Documentation

Crunchy Data Postgres Operator

Latest Release: 4.0.1
The postgres-operator is a controller that runs within a Kubernetes cluster that provides a means to deploy and manage PostgreSQL clusters.
Use the postgres-operator to:
	deploy PostgreSQL containers including streaming replication clusters
	scale up PostgreSQL clusters with extra replicas
	add pgpool, pgbouncer, and metrics sidecars to PostgreSQL clusters
	apply SQL policies to PostgreSQL clusters
	assign metadata tags to PostgreSQL clusters
	maintain PostgreSQL users and passwords
	perform minor upgrades to PostgreSQL clusters
	load simple CSV and JSON files into PostgreSQL clusters
	perform database backups

Deployment Requirements
The Operator is validated for deployment on Kubernetes, OpenShift, and VMware Enterprise PKS clusters. Some form of storage is required, NFS, HostPath, and Storage Classes are currently supported.
The Operator includes various components that get deployed to your Kubernetes cluster as shown in the following diagram and detailed in the Design.
[image: Architecture]Architecture

The Operator is developed and tested on CentOS and RHEL Linux platforms but is known to run on other Linux variants.

Documentation
The following documentation is provided:
	pgo CLI Syntax and Examples
	Installation
	Configuration
	pgo.yaml Configuration
	Security
	Design Overview
	Developing
	Upgrading the Operator
	Contributing

If you are new to the Crunchy PostgreSQL Operator and interested in installing the Crunchy PostgreSQL Operator in your environment, please start here: - Installation via Bash - Installation via Ansible
If you have the Crunchy PostgreSQL Operator installed in your environment, and are interested in installation of the client interface, please start here: - PGO Client Install
If you have the Crunchy PostgreSQL and Client Interface installed in your environment and are interested in guidance on the use of the Crunchy PostgreSQL Operator, please start here: - PGO CLI Overview --- title: "Design" date: draft: false weight: 4 ---

Provisioning
So, what does the Postgres Operator actually deploy when you create a cluster?
[image: Reference]Reference

On this diagram, objects with dashed lines are components that are optionally deployed as part of a PostgreSQL Cluster by the operator. Objects with solid lines are the fundamental and required components.
For example, within the Primary Deployment, the metrics container is completely optional. That component can be deployed using either the operator configuration or command line arguments if you want to cause metrics to be collected from the Postgres container.
Replica deployments are similar to the primary deployment but are optional. A replica is not required to be created unless the capability for one is necessary. As you scale up the Postgres cluster, the standard set of components gets deployed and replication to the primary is started.
Notice that each cluster deployment gets its own unique Persistent Volumes. Each volume can use different storage configurations which provides fined grained placement of the database data files.
There is a Service created for the primary Postgres deployment and a Service created for any replica Postgres deployments within a given Postgres cluster. Primary services match Postgres deployments using a label service-name of the following format:
service-name=mycluster
service-name=mycluster-replica

Custom Resource Definitions
Kubernetes Custom Resource Definitions are used in the design of the PostgreSQL Operator to define the following:
	Cluster - pgclusters
	Backup - pgbackups
	Policy - pgpolicies
	Tasks - pgtasks

Metadata about the Postgres cluster deployments are stored within these CRD resources which act as the source of truth for the Operator.
The postgres-operator design incorporates the following concepts:

Event Listeners
Kubernetes events are created for the Operator CRD resources when new resources are made, deleted, or updated. These events are processed by the Operator to perform asynchronous actions.
As events are captured, controller logic is executed within the Operator to perform the bulk of operator logic.

REST API
A feature of the Operator is to provide a REST API upon which users or custom applications can inspect and cause actions within the Operator such as provisioning resources or viewing status of resources.
This API is secured by a RBAC (role based access control) security model whereby each API call has a permission assigned to it. API roles are defined to provide granular authorization to Operator services.

Command Line Interface
One of the unique features of the Operator is the pgo command line interface (CLI). This tool is used by a normal end-user to create databases or clusters, or make changes to existing databases.
The CLI interacts with the REST API deployed within the postgres-operator deployment.

Node Affinity
You can have the Operator add a node affinity section to a new Cluster Deployment if you want to cause Kubernetes to attempt to schedule a primary cluster to a specific Kubernetes node.
You can see the nodes on your Kube cluster by running the following:
kubectl get nodes
You can then specify one of those names (e.g. kubeadm-node2) when creating a cluster;
pgo create cluster thatcluster --node-label=kubeadm-node2
The affinity rule inserted in the Deployment uses a preferred strategy so that if the node were down or not available, Kubernetes will go ahead and schedule the Pod on another node.
When you scale up a Cluster and add a replica, the scaling will take into account the use of --node-label. If it sees that a cluster was created with a specific node name, then the replica Deployment will add an affinity rule to attempt to schedule

Fail-over
Manual and automated fail-over are supported in the Operator within a single Kubernetes cluster.
Manual failover is performed by API actions involving a query and then a target being specified to pick the fail-over replica target.
Automatic fail-over is performed by the Operator by evaluating the readiness of a primary. Automated fail-over can be globally specified for all clusters or specific clusters.
Users can configure the Operator to replace a failed primary with a new replica if they want that behavior.
The fail-over logic includes:
	deletion of the failed primary Deployment
	pick the best replica to become the new primary
	label change of the targeted Replica to match the primary Service
	execute the PostgreSQL promote command on the targeted replica

pgbackrest Integration
The Operator integrates various features of the pgbackrest backup and restore project. A key component added to the Operator is the pgo-backrest-repo container, this container acts as a pgBackRest remote repository for the Postgres cluster to use for storing archive files and backups.
The following diagrams depicts some of the integration features:
[image: alt text]alt text

In this diagram, starting from left to right we see the following:
	a user when they enter pgo backup mycluster --backup-type=pgbackrest will cause a pgo-backrest container to be run as a Job, that container will execute a pgbackrest backup command in the pgBackRest repository container to perform the backup function.

	a user when they enter pgo show backup mycluster --backup-type=pgbackrest will cause a pgbackrest info command to be executed on the pgBackRest repository container, the info output is sent directly back to the user to view

	the Postgres container itself will use an archive command, pgbackrest archive-push to send archives to the pgBackRest repository container

	the user entering pgo create cluster mycluster --pgbackrest will cause a pgBackRest repository container deployment to be created, that repository is exclusively used for this Postgres cluster

	lastly, a user entering pgo restore mycluster will cause a pgo-backrest-restore container to be created as a Job, that container executes the pgbackrest restore command

pgbackrest Restore
The pgbackrest restore command is implemented as the pgo restore command. This command is destructive in the sense that it is meant to restore a PG cluster meaning it will revert the PG cluster to a restore point that is kept in the pgbackrest repository. The prior primary data is not deleted but left in a PVC to be manually cleaned up by a DBA. The restored PG cluster will work against a new PVC created from the restore workflow.
When doing a pgo restore, here is the workflow the Operator executes:
	turn off autofail if it is enabled for this PG cluster
	allocate a new PVC to hold the restored PG data
	delete the the current primary database deployment
	update the pgbackrest repo for this PG cluster with a new data path of the new PVC
	create a pgo-backrest-restore job, this job executes the pgbackrest restore command from the pgo-backrest-restore container, this Job mounts the newly created PVC
	once the restore job completes, a new primary Deployment is created which mounts the restored PVC volume

At this point the PG database is back in a working state. DBAs are still responsible to re-enable autofail using pgo update cluster and also perform a pgBackRest backup after the new primary is ready. This version of the Operator also does not handle any errors in the PG replicas after a restore, that is left for the DBA to handle.
Other things to take into account before you do a restore:
	if a schedule has been created for this PG cluster, delete that schedule prior to performing a restore
	If your database has been paused after the target restore was completed, then you would need to run the psql command select pg_wal_replay_resume() to complete the recovery, on PG 9.6⁄9.5 systems, the command you will use is select pg_xlog_replay_resume(). You can confirm the status of your database by using the built in postgres admin functions found [here:] (https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-RECOVERY-CONTROL-TABLE)
	a pgBackRest restore is destructive in the sense that it deletes the existing primary deployment for the cluster prior to creating a new deployment containing the restored primary database. However, in the event that the pgBackRest restore job fails, the pgo restore command be can be run again, and instead of first deleting the primary deployment (since one no longer exists), a new primary will simply be created according to any options specified. Additionally, even though the original primary deployment will be deleted, the original primary PVC will remain.
	there is currently no Operator validation of user entered pgBackRest command options, you will need to make sure to enter these correctly, if not the pgBackRest restore command can fail.
	the restore workflow does not perform a backup after the restore nor does it verify that any replicas are in a working status after the restore, it is possible you might have to take actions on the replica to get them back to replicating with the new restored primary.
	pgbackrest.org suggests running a pgbackrest backup after a restore, this needs to be done by the DBA as part of a restore
	when performing a pgBackRest restore, the node-label flag can be utilized to target a specific node for both the pgBackRest restore job and the new (i.e. restored) primary deployment that is then created for the cluster. If a node label is not specified, the restore job will not target any specific node, and the restored primary deployment will inherit any node labels defined for the original primary deployment.

pgbackrest AWS S3 Support
The Operator supports the use AWS S3 storage buckets for the pgbackrest repository in any pgbackrest-enabled cluster. When S3 support is enabled for a cluster, all archives will automatically be pushed to a pre-configured S3 storage bucket, and that same bucket can then be utilized for the creation of any backups as well as when performing restores. Please note that once a storage type has been selected for a cluster during cluster creation (specifically local, s3, or both, as described in detail below), it cannot be changed.
The Operator allows for the configuration of a single storage bucket, which can then be utilized across multiple clusters. Once S3 support has been enabled for a cluster, pgbackrest will create a backrestrepo directory in the root of the configured S3 storage bucket (if it does not already exist), and subdirectories will then be created under the backrestrepo directory for each cluster created with S3 storage enabled.
S3 Configuration
In order to enable S3 storage, you must provide the required AWS S3 configuration information prior to deploying the Operator. First, you will need to add the proper S3 bucket name, AWS S3 endpoint and AWS S3 region to the Cluster section of the pgo.yaml configuration file (additional information regarding the configuration of the pgo.yaml file can be found here) :
Cluster:
 BackrestS3Bucket: containers-dev-pgbackrest
 BackrestS3Endpoint: s3.amazonaws.com
 BackrestS3Region: us-east-1
You will then need to specify the proper credentials for authenticating into the S3 bucket specified by adding a key and key secret to the $PGOROOT/pgo-backrest-repo/aws-s3-credentials.yaml configuration file:

aws-s3-key: ABCDEFGHIJKLMNOPQRST
aws-s3-key-secret: ABCDEFG/HIJKLMNOPQSTU/VWXYZABCDEFGHIJKLM
Once the above configuration details have been provided, you can deploy the Operator per the PGO installation instructions.

Enabling S3 Storage in a Cluster
With S3 storage properly configured within your PGO installation, you can now select either local storage, S3 storage, or both when creating a new cluster. The type of storage selected upon creation of the cluster will determine the type of storage that can subsequently be used when performing pgbackrest backups and restores. A storage type is specified using the --pgbackrest-storage-type flag, and can be one of the following values:
	local - pgbackrest will use volumes local to the container (e.g. Persistent Volumes) for storing archives, creating backups and locating backups for restores. This is the default value for the --pgbackrest-storage-type flag.
	s3 - pgbackrest will use the pre-configured AWS S3 storage bucket for storing archives, creating backups and locating backups for restores
	local,s3 (both) - pgbackrest will use both volumes local to the container (e.g. persistent volumes), as well as the pre-configured AWS S3 storage bucket, for storing archives. Also allows the use of local and/or S3 storage when performing backups and restores.

For instance, the following command enables both local and s3 storage in a new cluster:
pgo create cluster mycluster --pgbackrest --pgbackrest-storage-type=local,s3 -n pgouser1
As described above, this will result in pgbackrest pushing archives to both local and S3 storage, while also allowing both local and S3 storage to be utilized for backups and restores. However, you could also enable S3 storage only when creating the cluster:
pgo create cluster mycluster --pgbackrest --pgbackrest-storage-type=s3 -n pgouser1
Now all archives for the cluster will be pushed to S3 storage only, and local storage will not be utilized for storing archives (nor can local storage be utilized for backups and restores).

Using S3 to Backup & Restore
As described above, once S3 storage has been enabled for a cluster, it can also be used when backing up or restoring a cluster. Here a both local and S3 storage is selected when performing a backup:
pgo backup mycluster --backup-type=pgbackrest --pgbackrest-storage-type=local,s3 -n pgouser1
This results in pgbackrest creating a backup in a local volume (e.g. a persistent volume), while also creating an additional backup in the configured S3 storage bucket. However, a backup can be created using S3 storage only:
pgo backup mycluster --backup-type=pgbackrest --pgbackrest-storage-type=s3 -n pgouser1
Now pgbackrest will only create a backup in the S3 storage bucket only.
When performing a restore, either local or s3 must be selected (selecting both for a restore will result in an error). For instance, the following command specifies S3 storage for the restore:
pgo restore mycluster --pgbackrest-storage-type=s3 -n pgouser1
This will result in a full restore utilizing the backups and archives stored in the configured S3 storage bucket.
Please note that because local is the default storage type for the backup and restore commands, s3 must be explicitly set using the --pgbackrest-storage-type flag when performing backups and restores on clusters where only S3 storage is enabled.

AWS Certificate Authority
The Operator installation includes a default certificate bundle that is utilized by default to establish trust between pgbackrest and the AWS S3 endpoint used for S3 storage. Please modify or replace this certificate bundle as needed prior to deploying the Operator if another certificate authority is needed to properly establish trust between pgbackrest and your S3 endpoint.
The certificate bundle can be found here: $PGOROOT/pgo-backrest-repo/aws-s3-ca.crt.
When modifying or replacing the certificate bundle, please be sure to maintain the same path and filename.

PGO Scheduler
The Operator includes a cronlike scheduler application called pgo-scheduler. Its purpose is to run automated tasks such as PostgreSQL backups or SQL policies against PostgreSQL clusters created by the Operator.
PGO Scheduler watches Kubernetes for configmaps with the label crunchy-scheduler=true in the same namespace the Operator is deployed. The configmaps are json objects that describe the schedule such as:
	Cron like schedule such as: * * * * *
	Type of task: pgbackrest, pgbasebackup or policy

Schedules are removed automatically when the configmaps are deleted.
PGO Scheduler uses the UTC timezone for all schedules.
Schedule Expression Format
Schedules are expressed using the following rules:
Field name	Mandatory?	Allowed values	Allowed special characters
Seconds | Yes | 0-59 | * / , -
Minutes | Yes | 0-59 | * / , -
Hours | Yes | 0-23 | * / , -
Day of month | Yes | 1-31 | * / , - ?
Month | Yes | 1-12 or JAN-DEC | * / , -
Day of week | Yes | 0-6 or SUN-SAT | * / , - ?

pgBackRest Schedules
pgBackRest schedules require pgBackRest enabled on the cluster to backup. The scheduler will not do this on its own.

pgBaseBackup Schedules
pgBaseBackup schedules require a backup PVC to already be created. The operator will make this PVC using the backup commands:
pgo backup mycluster

Policy Schedules
Policy schedules require a SQL policy already created using the Operator. Additionally users can supply both the database in which the policy should run and a secret that contains the username and password of the PostgreSQL role that will run the SQL. If no user is specified the scheduler will default to the replication user provided during cluster creation.

Custom Resource Definitions
The Operator makes use of custom resource definitions to maintain state and resource definitions as offered by the Operator.
[image: Reference]Reference

In this above diagram, the CRDs heavily used by the Operator include:
	pgcluster - defines the Postgres cluster definition, new cluster requests are captured in a unique pgcluster resource for that Postgres cluster
	pgtask - workflow and other related administration tasks are captured within a set of pgtasks for a given pgcluster
	pgbackup - when you run a pgbasebackup, a pgbackup is created to hold the workflow and status of the last backup job, this CRD will eventually be deprecated in favor of a more general pgtask resource
	pgreplica - when you create a Postgres replica, a pgreplica CRD is created to define that replica

Considerations for Multi-zone Cloud Environments
Overview
When using the Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consideration must be taken to ensure all pods and the volumes they require are scheduled and provisioned within the same zone. Specifically, being that a pod is unable mount a volume that is located in another zone, any volumes that are dynamically provisioned must be provisioned in a topology-aware manner according to the specific scheduling requirements for the pod. For instance, this means ensuring that the volume containing the database files for the primary DB in a new PG cluster is provisioned in the same zone as the node containing the PG primary pod that will be using it.

Default Behavior
By default, the Kubernetes scheduler will ensure any pods created that claim a specific volume via a PVC are scheduled on a node in the same zone as that volume. This is part of the multi-zone support that is included in Kubernetes by default. However, when using dynamic provisioning, volumes are not provisioned in a topology-aware manner by default, which means a volume will not be provisioned according to the same scheduling requirements that will be placed on the pod that will be using it (e.g. it will not consider node selectors, resource requirements, pod affinity/anti-affinity, and various other scheduling requirements). Rather, PVCs are immediately bound as soon as they are requested, which means volumes are provisioned without knowledge of these scheduling requirements. This behavior is the result of the volumeBindingMode defined on the Storage Class being utilized to dynamically provision the volume, which is set to Immediate by default. This can be seen in the following Storage Class definition, which defines a Storage Class for a Google Cloud Engine Persistent Disk (GCE PD) that uses the default value of Immediate for its volumeBindingMode:
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
volumeBindingMode: Immediate
Unfortunately, using Immediate for the volumeBindingMode in a multi-zone cluster can result in undesired behavior when using the Operator, being that the scheduler will ignore any requested (but not mandatory) scheduling requirements if necessary to ensure the pod can be scheduled. Specifically, the scheduler will ultimately schedule the pod on a node in the same zone as the volume, even if another node was requested for scheduling that pod. For instance, a node label might be specified using the --node-label option when creating a cluster using the pgo create cluster command in order target a specific node (or nodes) for the deployment of that cluster. Within the Operator, a node label is implemented as a preferredDuringSchedulingIgnoredDuringExecution node affinity rule, which is an affinity rule that Kubernetes will attempt to adhere to when scheduling any pods for the cluster, but will not guarantee (more information on node affinity rules can be found here). Therefore, if the volume ends up in a zone other than the zone containing the node (or nodes) defined by the node label, the node label will be ignored, and the pod will be scheduled according to the zone containing the volume.

Topology Aware Volumes
In order to overcome the behavior described above in a multi-zone cluster, volumes must be made topology aware. This is accomplished by setting the volumeBindingMode for the storage class to WaitForFirstConsumer, which delays the dynamic provisioning of a volume until a pod using it is created. In other words, the PVC is no longer bound as soon as it is requested, but rather waits for a pod utilizing it to be creating prior to binding. This change ensures that volume can take into account the scheduling requirements for the pod, which in the case of a multi-zone cluster means ensuring the volume is provisioned in the same zone containing the node where the pod has be scheduled. This also means the scheduler should no longer ignore a node label in order to follow a volume to another zone when scheduling a pod, since the volume will now follow the pod according to the pods specificscheduling requirements. The following is an example of the the same Storage Class defined above, only with volumeBindingMode now set to WaitForFirstConsumer:
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
volumeBindingMode: WaitForFirstConsumer

Additional Solutions
If you are using a version of Kubernetes that does not support WaitForFirstConsumer, an alternate (and now deprecated) solution exists in the form of parameters that can be defined on the Storage Class definition to ensure volumes are provisioned in a specific zone (or zones). For instance, when defining a Storage Class for a GCE PD for use in Google Kubernetes Engine (GKE) cluster, the zone parameter can be used to ensure any volumes dynamically provisioned using that Storage Class are located in that specific zone. The following is an example of a Storage Class for a GKE cluster that will provision volumes in the us-east1 zone:
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 replication-type: none
 zone: us-east1
Once storage classes have been defined for one or more zones, they can then be defined as one or more storage configurations within the pgo.yaml configuration file (as described in the PGO YAML configuration guide). From there those storage configurations can then be selected when creating a new cluster, as shown in the following example:
pgo create cluster mycluster --storage-config=example-sc
With this approach, the pod will once again be scheduled according to the zone in which the volume was provisioned. However, the zone parameters defined on the Storage Class bring consistency to scheduling by guaranteeing that the volume, and therefore also the pod using that volume, are scheduled in a specific zone as defined by the user, bringing consistency and predictability to volume provisioning and pod scheduling in multi-zone clusters.
For more information regarding the specific parameters available for the Storage Classes being utilizing in your cloud environment, please see the Kubernetes documentation for Storage Classes.
Lastly, while the above applies to the dynamic provisioning of volumes, it should be noted that volumes can also be manually provisioned in desired zones in order to achieve the desired topology requirements for any pods and their volumes.

Custom Postgres Configurations
Users and administrators can specify a custom set of Postgres configuration files be used when creating a new Postgres cluster. The configuration files you can change include -
	postgresql.conf
	pg_hba.conf
	setup.sql

Different configurations for PostgreSQL might be defined for the following -
	OLTP types of databases
	OLAP types of databases
	High Memory
	Minimal Configuration for Development
	Project Specific configurations
	Special Security Requirements

Global ConfigMap
If you create a configMap called pgo-custom-pg-config with any of the above files within it, new clusters will use those configuration files when setting up a new database instance. You do NOT have to specify all of the configuration files. It is entirely up to your use case to determine which to use.
An example set of configuration files and a script to create the global configMap is found at
$PGOROOT/examples/custom-config
If you run the create.sh script there, it will create the configMap that will include the PostgreSQL configuration files within that directory.

Config Files Purpose
The postgresql.conf file is the main Postgresql configuration file that allows the definition of a wide variety of tuning parameters and features.
The pg_hba.conf file is the way Postgresql secures client access.
The setup.sql file is a Crunchy Container Suite configuration file used to initially populate the database after the initial initdb is run when the database is first created. Changes would be made to this if you wanted to define which database objects are created by default.

Granular Config Maps
Granular config maps can be defined if it is necessary to use a different set of configuration files for different clusters rather than having a single configuration (e.g. Global Config Map). A specific set of ConfigMaps with their own set of PostgreSQL configuration files can be created. When creating new clusters, a --custom-config flag can be passed along with the name of the ConfigMap which will be used for that specific cluster or set of clusters.

Defaults
If there is no reason to change the default PostgreSQL configuration files that ship with the Crunchy Postgres container, there is no requirement to. In this event, continue using the Operator as usual and avoid defining a global configMap.

Custom Postgres SSL Configurations
The Crunchy Data Postgres Operator can create clusters that use SSL authentication by utilizing custom configmaps.
Configuration Files for SSL Authentication
Users and administrators can specify a custom set of Postgres configuration files to be used when creating a new Postgres cluster. This example uses the files below-
	postgresql.conf
	pg_hba.conf
	pg_ident.conf

along with generated security certificates, to setup a custom SSL configuration.

Config Files Purpose
The postgresql.conf file is the main Postgresql configuration file that allows the definition of a wide variety of tuning parameters and features.
The pg_hba.conf file is the way Postgresql secures client access.
The pg_ident.conf is the ident map file and defines user name maps.

ConfigMap Creation
This example shows how you can configure PostgreSQL to use SSL for client authentication.
The example requires SSL certificates and keys to be created. Included in the examples directory is the script called by create.sh to create self-signed certificates (server and client) for the example:
$PGOROOT/examples/ssl-creator.sh.
Additionally, this script requires the certstrap utility to be installed. An install script is provided to install the correct version for the example if not already installed.
The relevant configuration files are located in the configs directory and will configure the clsuter to use SSL client authentication. These, along with the client certificate for the user 'testuser' and a server certificate for 'pgo-custom-ssl-container', will make up the necessary configuration items to be stored in the 'pgo-custom-ssl-config' configmap.

Example Steps
Run the script as follow:
cd $PGOROOT/examples/custom-config-ssl
./create.sh
This will generate a configmap named 'pgo-custom-ssl-config'.
Once this configmap is created, run
pgo create cluster customsslcluster --custom-config pgo-custom-ssl-config -n ${PGO_NAMESPACE}
A required step to make this example work is to define in your /etc/hosts file an entry that maps 'pgo-custom-ssl-container' to the service cluster IP address for the container created above.
For instance, if your service has an address as follows:
${PGO_CMD} get service -n ${PGO_NAMESPACE}
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
customsslcluster 172.30.211.108 <none> 5432/TCP
Then your /etc/hosts file needs an entry like this:
172.30.211.108 pgo-custom-ssl-container
For production Kubernetes and OpenShift installations, it will likely be preferred for DNS names to resolve to the PostgreSQL service name and generate server certificates using the DNS names instead of the example name pgo-custom-ssl-container.
If as a client it’s required to confirm the identity of the server, verify-full can be specified for ssl-mode in the connection string. This will check if the server and the server certificate have the same name. Additionally, the proper connection parameters must be specified in the connection string for the certificate information required to trust and verify the identity of the server (sslrootcert and sslcrl), and to authenticate the client using a certificate (sslcert and sslkey):
psql "postgresql://testuser@pgo-custom-ssl-container:5432/userdb?sslmode=verify-full&sslrootcert=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crt&sslcrl=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crl&sslcert=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/client.crt&sslkey=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/client.key"
To connect via IP, sslmode can be changed to require. This will verify the server by checking the certificate chain up to the trusted certificate authority, but will not verify that the hostname matches the certificate, as occurs with verify-full. The same connection parameters as above can be then provided for the client and server certificate information. i
psql "postgresql://testuser@IP_OF_PGSQL:5432/userdb?sslmode=require&sslrootcert=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crt&sslcrl=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crl&sslcert=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/client.crt&sslkey=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/client.key"
You should see a connection that looks like the following:
psql (11.4)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: off)
Type "help" for help.

userdb=>

Important Notes
Because SSL will be required for connections, certain features of the Operator will not function as expected. These include the following:
pgo test
pgo load
pgo apply

Operator Namespaces
The Operator itself knows which namespace it is running within by referencing the PGO_OPERATOR_NAMESPACE environment variable at startup time from within its Deployment definition.
The PGO_OPERATOR_NAMESPACE environment variable a user sets in their .bashrc file is used to determine what namespace the Operator is deployed into. The PGO_OPERATOR_NAMESPACE variable is referenced by the Operator during deployment.
The .bashrc NAMESPACE environment variable a user sets determines which namespaces the Operator will watch.

Namespace Watching
The Operator at startup time determines which namespaces it will service based on what it finds in the NAMESPACE environment variable that is passed into the Operator containers within the deployment.json file.
The NAMESPACE variable can hold different values which determine the namespaces which will be watched by the Operator.
The format of the NAMESPACE value is modeled after the following document:
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/Documentation/design/operatorgroups.md
OwnNamespace Example
Prior to version 4.0, the Operator was deployed into a single namespace and Postgres Clusters created by it were created in that same namespace.
To achieve that same deployment model you would use variable settings as follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=pgo
[image: Reference]Reference

SingleNamespace Example
To have the Operator deployed into its own namespace but create Postgres Clusters into a different namespace the variables would be as follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=pgouser1
[image: Reference]Reference

MultiNamespace Example
To have the Operator deployed into its own namespace but create Postgres Clusters into more than one namespace the variables would be as follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=pgouser1,pgouser2
[image: Reference]Reference

AllNamespaces Example
To have the Operator deployed into its own namespace but create Postgres Clusters into any target namespace the variables would be as follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=
Here the empty string value represents all namespaces.
[image: Reference]Reference

RBAC
To support multiple namespace watching, the Operator deployment process changes somewhat from 3.X releases.
Each namespace to be watched requires its own copy of the the following resources for working with the Operator:
serviceaccount/pgo-backrest
secret/pgo-backrest-repo-config
role/pgo-role
rolebinding/pgo-role-binding
role/pgo-backrest-role
rolebinding/pgo-backrest-role-binding
When you run the install-rbac.sh script, it iterates through the list of namespaces to be watched and creates these resources into each of those namespaces.
If you need to add a new namespace that the Operator will watch after an initial execution of install-rbac.sh, you will need to run the following for each new namespace:
create-target-rbac.sh YOURNEWNAMESPACE $PGO_OPERATOR_NAMESPACE
The example deployment creates the following RBAC structure on your Kube system after running the install scripts:
[image: Reference]Reference

pgo Clients and Namespaces
The pgo CLI now is required to identify which namespace it wants to use when issuing commands to the Operator.
Users of pgo can either create a PGO_NAMESPACE environment variable to set the namespace in a persistent manner or they can specify it on the pgo command line using the --namespace flag.
If a pgo request doe not contain a valid namespace the request will be rejected.

Operator Lifecycle Management
The Postgres Operator supports Redhats OLM (operator lifecycle manager) to a degree starting with pgo 4.0.
The Postgres Operator supports the different deployment models as documented here:
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/Documentation/design/operatorgroups.md

Operator Hub
The Operator shows up on the Redhat Operator Hub at the following location:
https://www.operatorhub.io/operator/postgres-operator.v3.5.0

Prerequisites
The following is required prior to installing PostgreSQL Operator:
	Kubernetes v1.13+
	Red Hat OpenShift v3.11+
	VMWare Enterprise PKS 1.3+
	kubectl or oc configured to communicate with Kubernetes

A full installation of the Operator includes the following steps:
	create a project structure
	configure your environment variables
	configure Operator templates
	create security resources
	deploy the operator
	install pgo CLI (end user command tool)

Operator end-users are only required to install the pgo CLI client on their host and can skip the server-side installation steps. pgo CLI clients are provided for Linux, Mac, and Windows clients.
The Operator can be deployed by multiple methods including:
	default installation
	Ansible playbook installation
	Openshift Console installation using OLM

Default Installation - Create Project Structure
The Operator follows a golang project structure, you can create a structure as follows on your local Linux host:
mkdir -p $HOME/odev/src/github.com/crunchydata $HOME/odev/bin $HOME/odev/pkg
cd $HOME/odev/src/github.com/crunchydata
git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres-operator
git checkout 4.0.1
This creates a directory structure under your HOME directory name odev and clones the current Operator version to that structure.

Default Installation - Configure Environment
Environment variables control aspects of the Operator installation. You can copy a sample set of Operator environment variables and aliases to your .bashrc file to work with.
cat $HOME/odev/src/github.com/crunchydata/postgres-operator/examples/envs.sh >> $HOME/.bashrc
source $HOME/.bashrc
For various scripts used by the Operator, the expenv utility is required, download this utility from the Github Releases page, and place it into your PATH (e.g. $HOME/odev/bin). {{% notice tip %}}There is also a Makefile target that includes is expenv and several other dependencies that are only needed if you plan on building from source:
make setup
{{% /notice %}}

Default Installation - Namespace Creation
The default installation will create 3 namespaces to use for deploying the Operator into and for holding Postgres clusters created by the Operator.
Creating Kube namespaces is typically something that only a priviledged Kube user can perform so log into your Kube cluster as a user that has the necessary priviledges.
On Openshift if you do not want to install the Operator as the system administrator, you can grant cluster-admin priviledges to a user as follows:
oc adm policy add-cluster-role-to-user cluster-admin pgoinstaller
In the above command, you are granting cluster-admin priviledges to a user named pgoinstaller.
The NAMESPACE environment variable is a comma separated list of namespaces that specify where the Operator will be provisioing PG clusters into, specifically, the namespaces the Operator is watching for Kube events. This value is set as follows:
export NAMESPACE=pgouser1,pgouser2
This means namespaces called pgouser1 and pgouser2 will be created as part of the default installation.
The PGO_OPERATOR_NAMESPACE environment variable is a comma separated list of namespace values that the Operator itself will be deployed into. For the installation example, this value is set as follows:
export PGO_OPERATOR_NAMESPACE=pgo
This means a pgo namespace will be created and the Operator will be deployed into that namespace.
Create the Operator namespaces using the Makefile target:
make setupnamespaces
The Design section of this documentation talks further about the use of namespaces within the Operator.

Default Installation - Configure Operator Templates
Within the Operator conf directory are several configuration files and templates used by the Operator to determine the various resources that it deploys on your Kubernetes cluster, specifically the PostgreSQL clusters it deploys.
When you install the Operator you must make choices as to what kind of storage the Operator has to work with for example. Storage varies with each installation. As an installer, you would modify these configuration templates used by the Operator to customize its behavior.
Note: when you want to make changes to these Operator templates and configuration files after your initial installation, you will need to re-deploy the Operator in order for it to pick up any future configuration changes.
Here are some common examples of configuration changes most installers would make:
Storage
Inside conf/postgresql-operator/pgo.yaml there are various storage configurations defined.
PrimaryStorage: gce
XlogStorage: gce
ArchiveStorage: gce
BackupStorage: gce
ReplicaStorage: gce
 gce:
 AccessMode: ReadWriteOnce
 Size: 1G
 StorageType: dynamic
 StorageClass: standard
 Fsgroup: 26
Listed above are the pgo.yaml sections related to storage choices. PrimaryStorage specifies the name of the storage configuration used for PostgreSQL primary database volumes to be provisioned. In the example above, a NFS storage configuration is picked. That same storage configuration is selected for the other volumes that the Operator will create.
This sort of configuration allows for a PostgreSQL primary and replica to use different storage if you want. Other storage settings like AccessMode, Size, StorageType, StorageClass, and Fsgroup further define the storage configuration. Currently, NFS, HostPath, and Storage Classes are supported in the configuration.
As part of the Operator installation, you will need to adjust these storage settings to suit your deployment requirements. For users wanting to try out the Operator on Google Kubernetes Engine you would make the following change to the storage configuration in pgo.yaml:
For NFS Storage, it is assumed that there are sufficient Persistent Volumes (PV) created for the Operator to use when it creates Persistent Volume Claims (PVC). The creation of Persistent Volumes is something a Kubernetes cluster-admin user would typically provide before installing the Operator. There is an example script which can be used to create NFS Persistent Volumes located here:
./pv/create-nfs-pv.sh
That script looks for the IP address of an NFS server using the environment variable PGO_NFS_IP you would set in your .bashrc environment.
A similar script is provided for HostPath persistent volume creation if you wanted to use HostPath for testing:
./pv/create-pv.sh
Adjust the above PV creation scripts to suit your local requirements, the purpose of these scripts are solely to produce a test set of Volume to test the Operator.
Other settings in pgo.yaml are described in the pgo.yaml Configuration section of the documentation.

Operator Security
The Operator implements its own RBAC (Role Based Access Controls) for authenticating Operator users access to the Operator REST API.
There is a default set of Roles and Users defined respectively in the following files and can be copied into your home directory as such:
./conf/postgres-operator/pgouser
./conf/postgres-operator/pgorole

cp ./conf/postgres-operator/pgouser $HOME/.pgouser
cp ./conf/postgres-operator/pgorole $HOME/.pgorole
Or create a .pgouser file in your home directory with a credential known by the Operator (see your administrator for Operator credentials to use):
 username:password
or
 pgouser1:password
or
 pgouser2:password
or
 pgouser3:password
or
 readonlyuser:password
Each example above has different priviledges in the Operator. You can create this file as follows:
echo "pgouser3:password" > $HOME/.pgouser
Note, you can also store the pgouser file in alternate locations, see the Security documentation for details.
Operator security is discussed in the Security section Security of the documentation.
Adjust these settings to meet your local requirements.

Default Installation - Create Kube RBAC Controls
The Operator installation requires Kubernetes administrators to create Resources required by the Operator. These resources are only allowed to be created by a cluster-admin user. To install on Google Cloud, you will need a user account with cluster-admin priviledges. If you own the GKE cluster you are installing on, you can add cluster-admin role to your account as follows:
kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value account)
Specifically, Custom Resource Definitions for the Operator, and Service Accounts used by the Operator are created which require cluster permissions.
Tor create the Kube RBAC used by the Operator, run the following as a cluster-admin Kube user:
make installrbac
This set of Resources is created a single time unless a new Operator release requires these Resources to be recreated. Note that when you run make installrbac the set of keys used by the Operator REST API and also the pgbackrest ssh keys are generated.
Verify the Operator Custom Resource Definitions are created as follows:
kubectl get crd
You should see the pgclusters CRD among the listed CRD resource types.
See the Security documentation for a description of the various RBAC resources created and used by the Operator.

Default Installation - Deploy the Operator
At this point, you as a normal Kubernetes user should be able to deploy the Operator. To do this, run the following Makefile target:
make deployoperator
This will cause any existing Operator to be removed first, then the configuration to be bundled into a ConfigMap, then the Operator Deployment to be created.
This will create a postgres-operator Deployment and a postgres-operator Service.Operator administrators needing to make changes to the Operator configuration would run this make target to pick up any changes to pgo.yaml, pgo users/roles, or the Operator templates.

Default Installation - Completely Cleaning Up
You can completely remove all the namespaces you have previously created using the default installation by running the following:
make cleannamespaces
This will permanently delete each namespace the Operator installation created previously.

pgo CLI Installation
Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the Operator (https://github.com/crunchydata/postgres-operator/releases). Crunchy Enterprise Customer can download the pgo binaries from https://access.crunchydata.com/ on the downloads page.
The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation to work with a remote Operator.
Prior to using pgo, users testing the Operator on a single host can specify the postgres-operator URL as follows:
 $ kubectl get service postgres-operator -n pgo
 NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
 postgres-operator 10.104.47.110 <none> 8443/TCP 7m
 $ export PGO_APISERVER_URL=https://10.104.47.110:8443
 pgo version
That URL address needs to be reachable from your local pgo client host. Your Kubernetes administrator will likely need to create a network route, ingress, or LoadBalancer service to expose the Operator REST API to applications outside of the Kubernetes cluster. Your Kubernetes administrator might also allow you to run the Kubernetes port-forward command, contact your adminstrator for details.
Next, the pgo client needs to reference the keys used to secure the Operator REST API:
 export PGO_CA_CERT=$PGOROOT/conf/postgres-operator/server.crt
 export PGO_CLIENT_CERT=$PGOROOT/conf/postgres-operator/server.crt
 export PGO_CLIENT_KEY=$PGOROOT/conf/postgres-operator/server.key
You can also specify these keys on the command line as follows:
pgo version --pgo-ca-cert=$PGOROOT/conf/postgres-operator/server.crt --pgo-client-cert=$PGOROOT/conf/postgres-operator/server.crt --pgo-client-key=$PGOROOT/conf/postgres-operator/server.key
{{% notice tip %}} if you are running the Operator on Google Cloud, you would open up another terminal and run kubectl port-forward ... to forward the Operator pod port 8443 to your localhost where you can access the Operator API from your local workstation. {{% /notice %}}
At this point, you can test connectivity between your laptop or workstation and the Postgres Operator deployed on a Kubernetes cluster as follows:
pgo version
You should get back a valid response showing the client and server version numbers.

Verify the Installation
Now that you have deployed the Operator, you can verify that it is running correctly.
You should see a pod running that contains the Operator:
kubectl get pod --selector=name=postgres-operator -n pgo
NAME READY STATUS RESTARTS AGE
postgres-operator-79bf94c658-zczf6 3/3 Running 0 47s
That pod should show 3 of 3 containers in running state and that the operator is installed into the pgo namespace.
The sample environment script, examples/env.sh, if used creates some bash functions that you can use to view the Operator logs. This is useful in case you find one of the Operator containers not in a running status.
Using the pgo CLI, you can verify the versions of the client and server match as follows:
pgo version
This also tests connectivity between your pgo client host and the Operator server.

Developing
The Postgres-Operator is an open source project hosted on GitHub.
Developers that wish to build the Operator from source or contribute to the project via pull requests would set up a development environment through the following steps.
Create Kubernetes Cluster
We use either OpenShift Container Platform or kubeadm to install development clusters.

Create a Local Development Host
We currently build on CentOS 7 and RHEL 7 hosts. Others operating systems are possible, however we do not support building or running the Operator on other operating systems at this time.

Perform Manual Install
You can follow the manual installation method described in this documentation to make sure you can deploy from your local development host to your Kubernetes cluster.

Build Locally
You can now build the Operator from source on local on your development host. Here are some steps to follow:
Get Build Dependencies
Run the following target to install a golang compiler, and any other build dependencies:
make setup

Compile
You will build all the Operator binaries and Docker images by running:
make all
This assumes you have Docker installed and running on your development host.
The project uses the golang dep package manager to vendor all the golang source dependencies into the vendor directory. You typically do not need to run any dep commands unless you are adding new golang package dependencies into the project outside of what is within the project for a given release.
After a full compile, you will have a pgo binary in $HOME/odev/bin and the Operator images in your local Docker registry.

Release
You can perform a release build by running:
make release
This will compile the Mac and Windows versions of pgo.

Deploy
Now that you have built the Operator images, you can push them to your Kubernetes cluster if that cluster is remote to your development host.
You would then run:
make deployoperator
To deploy the Operator on your Kubernetes cluster. If your Kubernetes cluster is not local to your development host, you will need to specify a config file that will connect you to your Kubernetes cluster. See the Kubernetes documentation for details.

Debug
Debug level logging in turned on by default when deploying the Operator.
Sample bash functions are supplied in examples/envs.sh to view the Operator logs.
You can view the Operator REST API logs with the alog bash function.
You can view the Operator core logic logs with the olog bash function.
You can view the Scheduler logs with the slog bash function.
You can enable the pgo CLI debugging with the following flag:
pgo version --debug
You can set the REST API URL as follows after a deployment if you are developing on your local host by executing the setip bash function.

Install the Postgres Operator (pgo) Client
The following will install and configure the pgo client on all systems. For the purpose of these instructions it's assumed that the Crunchy PostgreSQL Operator is already deployed.
Prerequisites
	For Kubernetes deployments: kubectl configured to communicate with Kubernetes
	For OpenShift deployments: oc configured to communicate with OpenShift

The Crunchy Postgres Operator als requires the following in order to authenticate with the apiserver:
	Client CA Certificate
	Client TLS Certificate
	Client Key
	pgouser file containing <username>:<password>

All of the requirements above should be obtained from an administrator who installed the Crunchy PostgreSQL Operator.

Linux and MacOS
The following will setup the pgo client to be used on a Windows system.
Installing the Client
First, download the pgo.exe client from the GitHub official releases. Crunchy Enterprise Customers can download the pgo binaries from https://access.crunchydata.com/ on the downloads page.
Next, install pgo in /usr/local/bin by running the following:
sudo mv /PATH/TO/pgo /usr/local/bin/pgo
sudo chmod +x /usr/local/bin/pgo
Verify the pgo.exe client is accessible by running the following in the terminal:
pgo --help
Configuring Client TLS
With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files by running the following command:
mkdir ${HOME?}/.pgo
chmod 700 ${HOME?}/.pgo
Next, copy the certificates to this new directory:
cp /PATH/TO/client.crt ${HOME?}/.pgo/client.crt && chmod 600 ${HOME?}/.pgo/client.crt
cp /PATH/TO/client.pem ${HOME?}/.pgo/client.pem && chmod 400 ${HOME?}/.pgo/client.pem
Finally, set the following environment variables to point to the client TLS files:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_CA_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/client.pem"
EOF
Apply those changes to the current session by running:
source ~/.bashrc

Configuring pgouser
The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL Operator.
To setup the pgouser file, run the following:
echo "<USERNAME_HERE>:<PASSWORD_HERE>" > ${HOME?}/.pgo/pgouser
cat <<EOF >> ${HOME?}/.bashrc
export PGOUSER="${HOME?}/.pgo/pgouser"
EOF
Apply those changes to the current session by running:
source ${HOME?}/.bashrc

Configuring the API Server URL
If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it's required to setup a port-forward tunnel using the kubectl or oc binary.
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443
Note: the port-forward will be required for the duration of pgo usage.
Next, set the following environment variable to configure the API server address:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://<IP_OF_OPERATOR_API>:8443"
EOF
Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1
Apply those changes to the current session by running:
source ${HOME?}/.bashrc

Windows
The following will setup the pgo client to be used on a Windows system.
Installing the Client
First, download the pgo.exe client from the GitHub official releases.
Next, create a directory for pgo using the following:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: mkdir "%ProgramFiles%\postgres-operator"

Within the same terminal copy the pgo.exe binary to the directory created above using the following command:
copy %HOMEPATH%\Downloads\pgo.exe "%ProgramFiles%\postgres-operator"
Finally, add pgo.exe to the system path by running the following command in the terminal:
setx path "%path%;C:\Program Files\postgres-operator"
Verify the pgo.exe client is accessible by running the following in the terminal:
pgo --help
Configuring Client TLS
With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files using the following:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: mkdir "%HOMEPATH%\pgo"

Next, copy the certificates to this new directory:
copy \PATH\TO\client.crt "%HOMEPATH%\pgo"
copy \PATH\TO\client.pem "%HOMEPATH%\pgo"
Finally, set the following environment variables to point to the client TLS files:
setx PGO_CA_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_KEY "%HOMEPATH%\pgo\client.pem"

Configuring pgouser
The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL Operator.
To setup the pgouser file, run the following:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: echo USERNAME_HERE:PASSWORD_HERE > %HOMEPATH%\pgo\pgouser

Finally, set the following environment variable to point to the pgouser file:
setx PGOUSER "%HOMEPATH%\pgo\pgouser"

Configuring the API Server URL
If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it's required to setup a port-forward tunnel using the kubectl or oc binary.
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443
Note: the port-forward will be required for the duration of pgo usage.
Next, set the following environment variable to configure the API server address:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: setx PGO_APISERVER_URL "https://<IP_OF_OPERATOR_API>:8443"
	Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1

Verify the Client Installation
After completing all of the steps above we can verify pgo is configured properly by simply running the following:
pgo version
If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator client has been installed successfully.

Crunchy Data PostgreSQL Operator Playbooks
The Crunchy Data PostgreSQL Operator Playbooks contain Ansible roles for installing and managing the Crunchy Data PostgreSQL Operator.
Features
The playbooks provided allow users to:
	install PostgreSQL Operator on Kubernetes and OpenShift
	install PostgreSQL Operator from a Linux, Mac or Windows(Ubuntu subsystem)host
	generate TLS certificates required by the PostgreSQL Operator
	configure PostgreSQL Operator settings from a single inventory file
	support a variety of deployment models

Resources
	Ansible
	Crunchy Data
	Crunchy Data PostgreSQL Operator Documentation
	Crunchy Data PostgreSQL Operator Project

Prerequisites
The following is required prior to installing Crunchy PostgreSQL Operator using Ansible:
	postgres-operator playbooks source code for the target version
	Ansible 2.4.6+

Kubernetes Installs
	Kubernetes v1.11+
	Cluster admin privileges in Kubernetes
	kubectl configured to communicate with Kubernetes

OpenShift Installs
	OpenShift v3.09+
	Cluster admin privileges in OpenShift
	oc configured to communicate with OpenShift

Installing from a Windows Host
If the Crunchy PostgreSQL Operator is being installed from a Windows host the following are required:
	Windows Subsystem for Linux (WSL)
	Ubuntu for Windows

Permissions
The installation of the Crunchy PostgreSQL Operator requires elevated privileges.
It is required that the playbooks are run as a cluster-admin to ensure the playbooks can install:
	Custom Resource Definitions
	Cluster RBAC
	Create required namespaces

Obtaining Operator Ansible Role
The Crunchy PostgreSQL Operator Roles are available here:
	Clone the postgres-operator project

GitHub Installation
All necessary files (inventory, main playbook and roles) can be found in the ansible directory in the postgres-operator project.

Configuring the Inventory File
The inventory file included with the PostgreSQL Operator Playbooks allows installers to configure how the operator will function when deployed into Kubernetes. This file should contain all configurable variables the playbooks offer.
The following are the variables available for configuration:
	Name	Default	Description
	archive_mode	true	Set to true enable archive logging on all newly created clusters.
	archive_timeout	60	Set to a value in seconds to configure the timeout threshold for archiving.
	auto_failover_replace_replica	false	Set to true to replace promoted replicas during failovers with a new replica on all newly created clusters.
	auto_failover_sleep_secs	9	Set to a value in seconds to configure the sleep time before initiating a failover on all newly created clusters.
	auto_failover	false	Set to true enable auto failover capabilities on all newly created cluster requests. This can be disabled by the client.
	backrest	false	Set to true enable pgBackRest capabilities on all newly created cluster request. This can be disabled by the client.
	backrest_aws_s3_key		Set to configure the key used by pgBackRest to authenticate with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_secret		Set to configure the secret used by pgBackRest to authenticate with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_bucket		Set to configure the bucket used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_endpoint		Set to configure the endpoint used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_region		Set to configure the region used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_storage	storage1	Set to configure which storage definition to use when creating volumes used by pgBackRest on all newly created clusters.
	badger	false	Set to true enable pgBadger capabilities on all newly created clusters. This can be disabled by the client.
	ccp_image_prefix	crunchydata	Configures the image prefix used when creating containers from Crunchy Container Suite.
	ccp_image_tag		Configures the image tag (version) used when creating containers from Crunchy Container Suite.
	cleanup	false	Set to configure the playbooks to delete all objects when deprovisioning Operator. Note: this will delete all objects related to the Operator (including clusters provisioned).
	crunchy_debug	false	Set to configure Operator to use debugging mode. Note: this can cause sensitive data such as passwords to appear in Operator logs.
	db_name	userdb	Set to a value to configure the default database name on all newly created clusters.
	db_password_age_days	60	Set to a value in days to configure the expiration age on PostgreSQL role passwords on all newly created clusters.
	db_password_length	20	Set to configure the size of passwords generated by the operator on all newly created roles.
	db_port	5432	Set to configure the default port used on all newly created clusters.
	db_replicas	1	Set to configure the amount of replicas provisioned on all newly created clusters.
	db_user	testuser	Set to configure the username of the dedicated user account on all newly created clusters.
	grafana_admin_username	admin	Set to configure the login username for the Grafana administrator.
	grafana_admin_password		Set to configure the login password for the Grafana administrator.
	grafana_install	true	Set to true to install Crunchy Grafana to visualize metrics.
	grafana_storage_access_mode		Set to the access mode used by the configured storage class for Grafana persistent volumes.
	grafana_storage_class_name		Set to the name of the storage class used when creating Grafana persistent volumes.
	grafana_volume_size		Set to the size of persistent volume to create for Grafana.
	kubernetes_context		When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
	log_statement	none	Set to none, ddl, mod, or all to configure the statements that will be logged in PostgreSQL's logs on all newly created clusters.
	metrics	false	Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
	metrics_namespace	metrics	Configures the target namespace when deploying Grafana and/or Prometheus
	namespace		Set to a comma delimited string of all the namespaces Operator will manage.
	openshift_host		When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
	openshift_password		When deploying to OpenShift, set to configure the password used for login.
	openshift_skip_tls_verify		When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
	openshift_token		When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
	openshift_user		When deploying to OpenShift, set to configure the username used for login.
	pgo_admin_username	admin	Configures the pgo administrator username.
	pgo_admin_password		Configures the pgo administrator password.
	pgo_client_install	true	Configures the playbooks to install the pgo client if set to true.
	pgo_client_version		Configures which version of pgo the playbooks should install.
	pgo_image_prefix	crunchydata	Configures the image prefix used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc).
	pgo_image_tag		Configures the image tag used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc)
	pgo_operator_namespace		Set to configure the namespace where Operator will be deployed.
	pgo_tls_no_verify		Set to configure Operator to verify TLS certificates.
	primary_storage	storage2	Set to configure which storage definition to use when creating volumes used by PostgreSQL primaries on all newly created clusters.
	prometheus_install	true	Set to true to install Crunchy Prometheus timeseries database.
	prometheus_storage_access_mode		Set to the access mode used by the configured storage class for Prometheus persistent volumes.
	prometheus_storage_class_name		Set to the name of the storage class used when creating Prometheus persistent volumes.
	replica_storage	storage3	Set to configure which storage definition to use when creating volumes used by PostgreSQL replicas on all newly created clusters.
	scheduler_timeout	3600	Set to a value in seconds to configure the pgo-scheduler timeout threshold when waiting for schedules to complete.
	service_type	ClusterIP	Set to configure the type of Kubernetes service provisioned on all newly created clusters.
	storage<ID>_access_mode		Set to configure the access mode of the volumes created when using this storage definition.
	storage<ID>_class		Set to configure the storage class name used when creating dynamic volumes.
	storage<ID>_fs_group		Set to configure any filesystem groups that should be added to security contexts on newly created clusters.
	storage<ID>_size		Set to configure the size of the volumes created when using this storage definition.
	storage<ID>_supplemental_groups		Set to configure any supplemental groups that should be added to security contexts on newly created clusters.
	storage<ID>_type		Set to either create or dynamic to configure the operator to create persistent volumes or have them created dynamically by a storage class.

{{% notice tip %}} To retrieve the kubernetes_context value for Kubernetes installs, run the following command:
kubectl config current-context
{{% /notice %}}
Minimal Variable Requirements
The following variables should be configured at a minimum to deploy the Crunchy PostgreSQL Operator:
	backrest_storage
	ccp_image_prefix
	ccp_image_tag
	kubernetes_context
	namespace
	openshift_host
	openshift_password
	openshift_skip_tls_verify
	openshift_token
	openshift_user
	pgo_admin_username
	pgo_admin_password
	pgo_client_install
	pgo_image_prefix
	pgo_image_tag
	pgo_operator_namespace
	pgo_tls_no_verify
	primary_storage
	replica_storage
	storage<ID>_access_mode
	storage<ID>_class
	storage<ID>_fs_group
	storage<ID>_size
	storage<ID>_supplemental_groups
	storage<ID>_type

{{% notice tip %}} Users should remove or comment out the kubernetes or openshift variables if they're not being used from the inventory file. Both sets of variables cannot be used at the same time. {{% /notice %}}

Storage
Kubernetes and OpenShift offer support for a variety of storage types. The Crunchy PostgreSQL Operator must be configured to utilize the storage options available by configuring the storage options included in the inventory file.
{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes.
For more information on storage classes see the official Kubernetes documentation. {{% /notice %}}
Considerations for Multi-Zone Cloud Environments
When using the Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consideration must betaken to ensure all pods and the volumes they require are scheduled and provisioned within the same zone. Specifically, being that a pod is unable mount a volume that is located in another zone, any volumes that are dynamically provisioned must be provisioned in a topology-aware manner according to the specific scheduling requirements for the pod. For instance, this means ensuring that the volume containing the database files for the primary database in a new PostgreSQL cluster is provisioned in the same zone as the node containing the PostgreSQL primary pod that will be using it.
For instructions on setting up storage classes for multi-zone environments, see the PostgreSQL Operator Documentation.

Examples
The following are examples on configuring the storage variables for different types of storage classes.
Generic Storage Class
To setup storage1 to use the storage class fast
storage1_access_mode='ReadWriteOnce'
storage1_size='10G'
storage1_type='dynamic'
storage1_class='fast'
To assign this storage definition to all primary pods created by the Operator, we can configure the primary_storage=storage1 variable in the inventory file.

GKE
The storage class provided by Google Kubernetes Environment (GKE) can be configured to be used by the Operator by setting the following variables in the inventory file:
storage1_access_mode='ReadWriteOnce'
storage1_size='10G'
storage1_type='dynamic'
storage1_class='standard'
storage1_fs_group=26
To assign this storage definition to all primary pods created by the Operator, we can configure the primary_storage=storage1 variable in the inventory file.
{{% notice tip %}} To utitlize mutli-zone deployments, see Considerations for Multi-Zone Cloud Environments above. {{% /notice %}}

Understanding pgo_operator_namespace & namespace
The Crunchy PostgreSQL Operator can be configured to be deployed and manage a single namespace or manage several namespaces. The following are examples of different types of deployment models configurable in the inventory file.
Single Namespace
To deploy the Crunchy PostgreSQL Operator to work with a single namespace (in this example our namespace is named pgo), configure the following inventory settings:
pgo_operator_namespace='pgo'
namespace='pgo'

Multiple Namespaces
To deploy the Crunchy PostgreSQL Operator to work with multiple namespaces (in this example our namespaces are named pgo, pgouser1 and pgouser2), configure the following inventory settings:
pgo_operator_namespace='pgo'
namespace='pgouser1,pgouser2'

Deploying Multiple Operators
The 4.0 release of the Crunchy PostgreSQL Operator allows for multiple operator deployments in the same cluster.
To install the Crunchy PostgreSQL Operator to multiple namespaces, it's recommended to have an inventory file for each deployment of the operator.
For each operator deployment the following inventory variables should be configured uniquely for each install.
For example, operator could be deployed twice by changing the pgo_operator_namespace and namespace for those deployments:
Inventory A would deploy operator to the pgo namespace and it would manage the pgo target namespace.
Inventory A
pgo_operator_namespace='pgo'
namespace='pgo'
...
Inventory B would deploy operator to the pgo2 namespace and it would manage the pgo2 and pgo3 target namespaces.
Inventory B
pgo_operator_namespace='pgo2'
namespace='pgo2,pgo3'
...
Each install of the operator will create a corresponding directory in $HOME/.pgo/<PGO NAMESPACE> which will contain the TLS and pgouser client credentials.

Deploying Grafana and Prometheus
PostgreSQL clusters created by the operator can be configured to create additional containers for collecting metrics.
These metrics are very useful for understanding the overall health and performance of PostgreSQL database deployments over time. The collectors included by the operator are:
	Node Exporter - Host metrics where the PostgreSQL containers are running
	PostgreSQL Exporter - PostgreSQL metrics

The operator, however, does not install the necessary timeseries database (Prometheus) for storing the collected metrics or the front end visualization (Grafana) of those metrics.
Included in these playbooks are roles for deploying Granfana and/or Prometheus. See the inventory file for options to install the metrics stack.
{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. {{% /notice %}}

Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem
To install Ansible on Linux or MacOS, see the official documentation provided by Ansible.

Install Google Cloud SDK (Optional)
If Crunchy PostgreSQL Operator is going to be installed in a Google Kubernetes Environment the Google Cloud SDK is required.
To install the Google Cloud SDK on Linux or MacOS, see the official Google Cloud documentation.
When installing the Google Cloud SDK on the Windows Ubuntu Subsystem, run the following commands to install:
wget https://sdk.cloud.google.com --output-document=/tmp/install-gsdk.sh
Review the /tmp/install-gsdk.sh prior to running
chmod +x /tmp/install-gsdk.sh
/tmp/install-gsdk.sh

Installing
The following assumes the proper prerequisites are satisfied we can now install the PostgreSQL Operator.
The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.
Installing on Linux
On a Linux host with Ansible installed we can run the following command to install the PostgreSQL Operator:
ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml
If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass \
 /usr/share/ansible/postgres-operator/playbooks/main.yml

Installing on MacOS
On a MacOS host with Ansible installed we can run the following command to install the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

Installing on Windows Ubuntu Subsystem
On a Windows host with an Ubuntu subsystem we can run the following commands to install the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

Verifying the Installation
This may take a few minutes to deploy. To check the status of the deployment run the following:
Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Configure Environment Variables
After the Crunchy PostgreSQL Operator has successfully been installed we will need to configure local environment variables before using the pgo client.
To configure the environment variables used by pgo run the following command:
Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to.
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE>/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE>/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF
Apply those changes to the current session by running:
source ~/.bashrc

Verify pgo Connection
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443
On a separate terminal verify the pgo can communicate with the Crunchy PostgreSQL Operator:
pgo version
If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been installed successfully.

Installing
PostgreSQL clusters created by the Crunchy PostgreSQL Operator can optionally be configured to serve performance metrics via Prometheus Exporters. The metric exporters included in the database pod serve realtime metrics for the database container. In order to store and view this data, Grafana and Prometheus are required. The Crunchy PostgreSQL Operator does not create this infrastructure, however, they can be installed using the provided Ansible roles.
Prerequisites
The following assumes the proper prerequisites are satisfied we can now install the PostgreSQL Operator.
At a minimum, the following inventory variables should be configured to install the metrics infrastructure:
	Name	Default	Description
	ccp_image_prefix	crunchydata	Configures the image prefix used when creating containers from Crunchy Container Suite.
	ccp_image_tag		Configures the image tag (version) used when creating containers from Crunchy Container Suite.
	grafana_admin_username	admin	Set to configure the login username for the Grafana administrator.
	grafana_admin_password		Set to configure the login password for the Grafana administrator.
	grafana_install	true	Set to true to install Crunchy Grafana to visualize metrics.
	grafana_storage_access_mode		Set to the access mode used by the configured storage class for Grafana persistent volumes.
	grafana_storage_class_name		Set to the name of the storage class used when creating Grafana persistent volumes.
	grafana_volume_size		Set to the size of persistent volume to create for Grafana.
	kubernetes_context		When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
	metrics	false	Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
	metrics_namespace	metrics	Configures the target namespace when deploying Grafana and/or Prometheus
	openshift_host		When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
	openshift_password		When deploying to OpenShift, set to configure the password used for login.
	openshift_skip_tls_verify		When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
	openshift_token		When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
	openshift_user		When deploying to OpenShift, set to configure the username used for login.
	prometheus_install	true	Set to true to install Crunchy Prometheus timeseries database.
	prometheus_storage_access_mode		Set to the access mode used by the configured storage class for Prometheus persistent volumes.
	prometheus_storage_class_name		Set to the name of the storage class used when creating Prometheus persistent volumes.

{{% notice tip %}} Administrators can choose to install Grafana, Prometheus or both by configuring the grafana_install and prometheus_install variables in the inventory files. {{% /notice %}}
The following commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks are located. See the ansible directory in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.
{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. For more information on storage classes see the official Kubernetes documentation. {{% /notice %}}

Installing on Linux
On a Linux host with Ansible installed we can run the following command to install the Metrics stack:
ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml
If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=install-metrics --ask-become-pass \
 /usr/share/ansible/postgres-operator/playbooks/main.yml

Installing on MacOS
On a MacOS host with Ansible installed we can run the following command to install the Metrics stack:
ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

Installing on Windows
On a Windows host with the Ubuntu subsystem we can run the following commands to install the Metrics stack:
ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

Verifying the Installation
This may take a few minutes to deploy. To check the status of the deployment run the following:
Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Verify Grafana
In a separate terminal we need to setup a port forward to the Crunchy Grafana deployment to ensure connection can be made outside of the cluster:
If deployed to Kubernetes
kubectl port-forward <GRAFANA_POD_NAME> -n <METRICS_NAMESPACE> 3000:3000

If deployed to OpenShift
oc port-forward <GRAFANA_POD_NAME> -n <METRICS_NAMESPACE> 3000:3000
In a browser navigate to https://127.0.0.1:3000 to access the Grafana dashboard.
{{% notice tip %}} No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the following command:
pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>
{{% /notice %}}

Verify Prometheus
In a separate terminal we need to setup a port forward to the Crunchy Prometheus deployment to ensure connection can be made outside of the cluster:
If deployed to Kubernetes
kubectl port-forward <PROMETHEUS_POD_NAME> -n <METRICS_NAMESPACE> 9090:9090

If deployed to OpenShift
oc port-forward <PROMETHEUS_POD_NAME> -n <METRICS_NAMESPACE> 9090:9090
In a browser navigate to https://127.0.0.1:9090 to access the Prometheus dashboard.
{{% notice tip %}} No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the following command:
pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>
{{% /notice %}}

Updating
Updating the Crunchy PostgreSQL Operator is essential to the lifecycle management of the service. Using the update flag will:
	Update and redeploy the operator deployment
	Recreate configuration maps used by operator
	Remove any deprecated objects
	Allow administrators to change settings configured in the inventory
	Reinstall the pgo client if a new version is specified

The following assumes the proper prerequisites are satisfied we can now update the PostgreSQL Operator.
The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.
Updating on Linux
On a Linux host with Ansible installed we can run the following command to update
the PostgreSQL Operator:
ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml
If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass \
 /usr/share/ansible/postgres-operator/playbooks/main.yml

Updating on MacOS
On a MacOS host with Ansible installed we can run the following command to update
the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

Updating on Windows Ubuntu Subsystem
On a Windows host with an Ubuntu subsystem we can run the following commands to update
the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

Verifying the Update
This may take a few minutes to deploy. To check the status of the deployment run the following:
Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Configure Environment Variables
After the Crunchy PostgreSQL Operator has successfully been updated we will need to configure local environment variables before using the pgo client.
To configure the environment variables used by pgo run the following command:
Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to.
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE>/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE>/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF
Apply those changes to the current session by running:
source ~/.bashrc

Verify pgo Connection
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME> -n <OPERATOR_NAMESPACE> 8443:8443
On a separate terminal verify the pgo can communicate with the Crunchy PostgreSQL Operator:
pgo version
If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been updated successfully.

Uninstalling PostgreSQL Operator
The following assumes the proper prerequisites are satisfied we can now deprovision the PostgreSQL Operator.
First, it is recommended to use the playbooks tagged with the same version of the PostgreSQL Operator currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:
ansible-playbook -i /path/to/inventory --tags=deprovision --ask-become-pass main.yml
If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=deprovision --ask-become-pass \
 /usr/share/ansible/postgres-operator/playbooks/main.yml
Deleting pgo Client
If variable pgo_client_install is set to true in the inventory file, the pgo client will also be uninstalled when deprovisioning.
Otherwise, the pgo client can be manually uninstalled by running the following command:
rm /usr/local/bin/pgo

Uninstalling the Metrics Stack
The following assumes the proper prerequisites are satisfied we can now deprovision the PostgreSQL Operator Metrics Infrastructure.
First, it is recommended to use the playbooks tagged with the same version of the Metrics stack currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:
ansible-playbook -i /path/to/inventory --tags=deprovision-metrics main.yml
If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=deprovision-metrics \
 /usr/share/ansible/postgres-operator/playbooks/main.yml
Container Dependencies
The Operator depends on the Crunchy Containers and there are version dependencies between the two projects.
	Operator Release	Container Release
	4.0.1	2.4.1
	3.5.2	2.3.1

Features sometimes are added into the underlying Crunchy Containers to support upstream features in the Operator thus dictating a dependency between the two projects at a specific version level.

Operating Systems
The Operator is developed on both Centos 7 and RHEL 7 operating systems. The underlying containers are designed to use either Centos 7 or RHEL 7 as the base container image.
Other Linux variants are possible but are not supported at this time.

Kubernetes Distributions
The Operator is designed and tested on Kubernetes and Openshift Container Platform.

Storage
The Operator is designed to support HostPath, NFS, and Storage Classes for persistence. The Operator does not currently include code specific to a particular storage vendor.

Releases
The Operator is released on a quarterly basis often to coincide with Postgres releases.
There are pre-release and or minor bug fix releases created on an as-needed basis.
The operator is template-driven; this makes it simple to configure both the client and the operator.

conf Directory
The Operator is configured with a collection of files found in the conf directory. These configuration files are deployed to your Kubernetes cluster when the Operator is deployed. Changes made to any of these configuration files currently require a redeployment of the Operator on the Kubernetes cluster.
The server components of the Operator include Role Based Access Control resources which need to be created a single time by a Kubernetes cluster-admin user. See the Installation section for details on installing a Postgres Operator server.
The configuration files used by the Operator are found in 2 places: * the pgo-config ConfigMap in the namespace the Operator is running in * or, a copy of the configuration files are also included by default into the Operator container images themselves to support a very simplistic deployment of the Operator
If the pgo-config ConfigMap is not found by the Operator, it will use the configuration files that are included in the Operator container images.
The container included set of configuration files use the most basic setting values and the image versions of the Operator itself with the latest Crunchy Container image versions. The storage configurations are determined by using the default storage class on the system you are deploying the Operator into, the default storage class is one that is labeled as follows:
pgo-default-sc=true
If no storage class has that label, then the first storage class found on the system will be used. If no storage class is found on the system, the containers will not run and produce an error in the log.

conf/postgres-operator/pgo.yaml
The pgo.yaml file sets many different Operator configuration settings and is described in the [pgo.yaml configuration]({{< ref "pgo-yaml-configuration.md" >}}) documentation section.
The pgo.yaml file is deployed along with the other Operator configuration files when you run:
make deployoperator

conf/postgres-operator Directory
Files within the conf/postgres-operator directory contain various templates that are used by the Operator when creating Kubernetes resources. In an advanced Operator deployment, administrators can modify these templates to add their own custom meta-data or make other changes to influence the Resources that get created on your Kubernetes cluster by the Operator.
Files within this directory are used specifically when creating PostgreSQL Cluster resources. Sidecar components such as pgBouncer and pgPool II templates are also located within this directory.
As with the other Operator templates, administrators can make custom changes to this set of templates to add custom features or metadata into the Resources created by the Operator.

Security
Setting up pgo users and general security configuration is described in the Security section of this documentation.

Local pgo CLI Configuration
You can specify the default namespace you want to use by setting the PGO_NAMESPACE environment variable locally on the host the pgo CLI command is running.
export PGO_NAMESPACE=pgouser1
When that variable is set, each command you issue with pgo will use that namespace unless you over-ride it using the --namespace command line flag.
pgo show cluster foo --namespace=pgouser2

Namespace Configuration
The Design Design section of this documentation talks further about the use of namespaces within the Operator and configuring different deployment models of the Operator.

pgo.yaml Configuration
The pgo.yaml file contains many different configuration settings as described in this section of the documentation.
The pgo.yaml file is broken into major sections as described below: ## Cluster
	Setting	Definition
	BasicAuth	if set to true will enable Basic Authentication
	PrimaryNodeLabel	newly created primary deployments will specify this node label if specified, unless you override it using the --node-label command line flag, if not set, no node label is specifed
	ReplicaNodeLabel	newly created replica deployments will specify this node label if specified, unless you override it using the --node-label command line flag, if not set, no node label is specifed
	CCPImagePrefix	newly created containers will be based on this image prefix (e.g. crunchydata), update this if you require a custom image prefix
	CCPImageTag	newly created containers will be based on this image version (e.g. centos7-11.4-2.4.1), unless you override it using the --ccp-image-tag command line flag
	Port	the PostgreSQL port to use for new containers (e.g. 5432)
	LogStatement	postgresql.conf log_statement value (required field)
	LogMinDurationStatement	postgresql.conf log_min_duration_statement value (required field)
	User	the PostgreSQL normal user name
	Database	the PostgreSQL normal user database
	Replicas	the number of cluster replicas to create for newly created clusters, typically users will scale up replicas on the pgo CLI command line but this global value can be set as well
	PgmonitorPassword	the password to use for pgmonitor metrics collection if you specify --metrics when creating a PG cluster
	Metrics	boolean, if set to true will cause each new cluster to include crunchy-collect as a sidecar container for metrics collection, if set to false (default), users can still add metrics on a cluster-by-cluster basis using the pgo command flag --metrics
	Badger	boolean, if set to true will cause each new cluster to include crunchy-pgbadger as a sidecar container for static log analysis, if set to false (default), users can still add pgbadger on a cluster-by-cluster basis using the pgo create cluster command flag --pgbadger
	Policies	optional, list of policies to apply to a newly created cluster, comma separated, must be valid policies in the catalog
	PasswordAgeDays	optional, if set, will set the VALID UNTIL date on passwords to this many days in the future when creating users or setting passwords, defaults to 60 days
	PasswordLength	optional, if set, will determine the password length used when creating passwords, defaults to 8
	ServiceType	optional, if set, will determine the service type used when creating primary or replica services, defaults to ClusterIP if not set, can be overridden by the user on the command line as well
	Backrest	optional, if set, will cause clusters to have the pgbackrest volume PVC provisioned during cluster creation
	BackrestPort	currently required to be port 2022
	Autofail	optional, if set, will cause clusters to be checked for auto failover in the event of a non-Ready status
	AutofailReplaceReplica	optional, default is false, if set, will determine whether a replica is created as part of a failover to replace the promoted replica, the AutofailReplaceReplica setting in pgo.yaml is overrode with this command line flag if specified by a user.

Storage
	Setting	Definition
	PrimaryStorage	required, the value of the storage configuration to use for the primary PostgreSQL deployment
	BackupStorage	required, the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes
	ReplicaStorage	required, the value of the storage configuration to use for the replica PostgreSQL deployments
	ReplicaStorage	required, the value of the storage configuration to use for the replica PostgreSQL deployments
	BackrestStorage	required, the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster
	StorageClass	for a dynamic storage type, you can specify the storage class used for storage provisioning(e.g. standard, gold, fast)
	AccessMode	the access mode for new PVCs (e.g. ReadWriteMany, ReadWriteOnce, ReadOnlyMany). See below for descriptions of these.
	Size	the size to use when creating new PVCs (e.g. 100M, 1Gi)
	Storage.storage1.StorageType	supported values are either dynamic, create, if not supplied, create is used
	Fsgroup	optional, if set, will cause a SecurityContext and fsGroup attributes to be added to generated Pod and Deployment definitions
	SupplementalGroups	optional, if set, will cause a SecurityContext to be added to generated Pod and Deployment definitions
	MatchLabels	optional, if set, will cause the PVC to add a matchlabels selector in order to match a PV, only useful when the StorageType is create, when specified a label of key=value is added to the PVC as a match criteria

Storage Configuration Examples
In pgo.yaml, you will need to configure your storage configurations depending on which storage you are wanting to use for Operator provisioning of Persistent Volume Claims. The examples below are provided as a sample. In all the examples you are free to change the Size to meet your requirements of Persistent Volume Claim size.
HostPath Example
HostPath is provided for simple testing and use cases where you only intend to run on a single Linux host for your Kubernetes cluster.
 hostpathstorage:
 AccessMode: ReadWriteMany
 Size: 1G
 StorageType: create

NFS Example
In the following NFS example, notice that the SupplementalGroups setting is set, this can be whatever GID you have your NFS mount set to, typically we set this nfsnobody as below. NFS file systems offer a ReadWriteMany access mode.
 nfsstorage:
 AccessMode: ReadWriteMany
 Size: 1G
 StorageType: create
 SupplementalGroups: 65534

Storage Class Example
In the following example, the important attribute to set for a typical Storage Class is the Fsgroup setting. This value is almost always set to 26 which represents the Postgres user ID that the Crunchy Postgres container runs as. Most Storage Class providers offer ReadWriteOnce access modes, but refer to your provider documentation for other access modes it might support.
 storageos:
 AccessMode: ReadWriteOnce
 Size: 1G
 StorageType: dynamic
 StorageClass: fast
 Fsgroup: 26

Container Resources
	Setting	Definition
	DefaultContainerResource	optional, the value of the container resources configuration to use for all database containers, if not set, no resource limits or requests are added on the database container
	DefaultLoadResource	optional, the value of the container resources configuration to use for pgo-load containers, if not set, no resource limits or requests are added on the database container
	DefaultLspvcResource	optional, the value of the container resources configuration to use for pgo-lspvc containers, if not set, no resource limits or requests are added on the database container
	DefaultRmdataResource	optional, the value of the container resources configuration to use for pgo-rmdata containers, if not set, no resource limits or requests are added on the database container
	DefaultBackupResource	optional, the value of the container resources configuration to use for crunchy-backup containers, if not set, no resource limits or requests are added on the database container
	DefaultPgbouncerResource	optional, the value of the container resources configuration to use for crunchy-pgbouncer containers, if not set, no resource limits or requests are added on the database container
	DefaultPgpoolResource	optional, the value of the container resources configuration to use for crunchy-pgpool containers, if not set, no resource limits or requests are added on the database container
	RequestsMemory	request size of memory in bytes
	RequestsCPU	request size of CPU cores
	LimitsMemory	request size of memory in bytes
	LimitsCPU	request size of CPU cores

Miscellaneous (Pgo)
	Setting	Definition
	PreferredFailoverNode	optional, a label selector (e.g. hosttype=offsite) that if set, will be used to pick the failover target which is running on a host that matches this label if multiple targets are equal in replication status
	COImagePrefix	image tag prefix to use for the Operator containers
	COImageTag	image tag to use for the Operator containers
	Audit	boolean, if set to true will cause each apiserver call to be logged with an audit marking

Storage Configuration Details
You can define n-number of Storage configurations within the pgo.yaml file. Those Storage configurations follow these conventions -
	they must have lowercase name (e.g. storage1)
	they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and PrimaryStorage configuration values. However, there are command line options in the pgo client that will let a user override these default global values to offer you the user a way to specify very targeted storage configurations when needed (e.g. disaster recovery storage for certain backups).
You can set the storage AccessMode values to the following:
	ReadWriteMany - mounts the volume as read-write by many nodes
	ReadWriteOnce - mounts the PVC as read-write by a single node
	ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration is found, the apiserver will abort. These Storage values are only read at apiserver start time.
The following StorageType values are possible -
	dynamic - this will allow for dynamic provisioning of storage using a StorageClass.
	create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using a naming convention of clustername. When set, the Size, AccessMode settings are used in constructing the new PVC.

The operator will create new PVCs using this naming convention: dbname where dbname is the database name you have specified. For example, if you run:
pgo create cluster example1 -n pgouser1
It will result in a PVC being created named example1 and in the case of a backup job, the pvc is named example1-backup
Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels, when set, this will cause a selector of key=value to be added into the PVC, this will let you target specific PV(s) to be matched for this cluster. Note, if a PV does not match the claim request, then the cluster will not start. Users that want to use this feature have to place labels on their PV resources as part of PG cluster creation before creating the PG cluster. For example, users would add a label like this to their PV before they create the PG cluster:
kubectl label pv somepv myzone=somezone -n pgouser1
If you do not specify MatchLabels in the storage configuration, then no match filter is added and any available PV will be used to satisfy the PVC request. This option does not apply to dynamic storage types.
Example PV creation scripts are provided that add labels to a set of PVs and can be used for testing: $COROOT/pv/create-pv-nfs-labels.sh in that example, a label of crunchyzone=red is set on a set of PVs to test with.
The pgo.yaml includes a storage config named nfsstoragered that when used will demonstrate the label matching. This feature allows you to support n-number of NFS storage configurations and supports spreading a PG cluster across different NFS storage configurations.

Container Resources Details
In the pgo.yaml configuration file you have the option to configure a default container resources configuration that when set will add CPU and memory resource limits and requests values into each database container when the container is created.
You can also override the default value using the --resources-config command flag when creating a new cluster:
pgo create cluster testcluster --resources-config=large -n pgouser1
Note, if you try to allocate more resources than your host or Kube cluster has available then you will see your pods wait in a Pending status. The output from a kubectl describe pod command will show output like this in this event: Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 49s (x8 over 1m) default-scheduler No nodes are available that match all of the predicates: Insufficient memory (1).

Overriding Storage Configuration Defaults
pgo create cluster testcluster --storage-config=bigdisk -n pgouser1
That example will create a cluster and specify a storage configuration of bigdisk to be used for the primary database storage. The replica storage will default to the value of ReplicaStorage as specified in pgo.yaml.
pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk -n pgouser1
That example will create a cluster and specify a storage configuration of fastdisk to be used for the primary database storage, while the replica storage will use the storage configuration slowdisk.
pgo backup testcluster --storage-config=offsitestorage -n pgouser1
That example will create a backup and use the offsitestorage storage configuration for persisting the backup.

Using Storage Configurations for Disaster Recovery
A simple mechanism for partial disaster recovery can be obtained by leveraging network storage, Kubernetes storage classes, and the storage configuration options within the Operator.
For example, if you define a Kubernetes storage class that refers to a storage backend that is running within your disaster recovery site, and then use that storage class as a storage configuration for your backups, you essentially have moved your backup files automatically to your disaster recovery site thanks to network storage.
The command line tool, pgo, is used to interact with the Postgres Operator.
Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the Operator (https://github.com/crunchydata/postgres-operator/releases).
The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation to work with a remote Operator.

Syntax
Use the following syntax to run pgo commands from your terminal window:
pgo [command] ([TYPE] [NAME]) [flags]
Where command is a verb like:
	show
	create
	delete

And type is a resource type like:
	cluster
	policy
	user

And name is the name of the resource type like:
	mycluster
	somesqlpolicy
	john

To get detailed help information and command flag descriptions on each pgo command, enter:
pgo [command] -h

Operations
The following table shows the pgo operations currently implemented:
	Operation	Syntax	Description
	apply	pgo apply mypolicy --selector=name=mycluster	Apply a SQL policy on a Postgres cluster(s) that have a label matching service-name=mycluster
	backup	pgo backup mycluster	Perform a backup on a Postgres cluster(s)
	create	pgo create cluster mycluster	Create an Operator resource type (e.g. cluster, policy, schedule, user)
	delete	pgo delete cluster mycluster	Delete an Operator resource type (e.g. cluster, policy, user, schedule)
	ls	pgo ls mycluster	Perform a Linux ls command on the cluster.
	cat	pgo cat mycluster	Perform a Linux ls command on the cluster.
	df	pgo df mycluster	Display the disk status/capacity of a Postgres cluster.
	failover	pgo failover mycluster	Perform a manual failover of a Postgres cluster.
	help	pgo help	Display general pgo help information.
	label	pgo label mycluster --label=environment=prod	Create a metadata label for a Postgres cluster(s).
	load	pgo load --load-config=load.json --selector=name=mycluster	Perform a data load into a Postgres cluster(s).
	reload	pgo reload mycluster	Perform a pg_ctl reload command on a Postgres cluster(s).
	restore	pgo restore mycluster	Perform a pgbackrest or pgdump restore on a Postgres cluster.
	scale	pgo scale mycluster	Create a Postgres replica(s) for a given Postgres cluster.
	scaledown	pgo scaledown mycluster --query	Delete a replica from a Postgres cluster.
	show	pgo show cluster mycluster	Display Operator resource information (e.g. cluster, user, policy, schedule).
	status	pgo status	Display Operator status.
	test	pgo test mycluster	Perform a SQL test on a Postgres cluster(s).
	update	pgo update cluster --label=autofail=false	Update a Postgres cluster(s).
	upgrade	pgo upgrade mycluster	Perform a minor upgrade to a Postgres cluster(s).
	user	pgo user --selector=name=mycluster --update-passwords	Perform Postgres user maintenance on a Postgres cluster(s).
	version	pgo version	Display Operator version information.

Common Operations
In all the examples below, the user is specifying the pgouser1 namespace as the target of the operator. Replace this value with your own namespace value. You can specify a default namespace to be used by setting the PGO_NAMESPACE environment variable on the pgo client environment.
Cluster Operations
A user will typically start using the Operator by creating a Postgres cluster as follows:
pgo create cluster mycluster -n pgouser1
This command creates a Postgres cluster in the pgouser1 namespace that has a single Postgres primary container.
You can see the Postgres cluster using the following:
pgo show cluster mycluster -n pgouser1
You can test the Postgres cluster by entering:
pgo test mycluster -n pgouser1
You can optionally add a Postgres replica to your Postgres cluster as follows:
pgo scale mycluster -n pgouser1
You can create a Postgres cluster initially with a Postgres replica as follows:
pgo create cluster mycluster --replica-count=1 -n pgouser1
To view the Postgres logs, you can enter commands such as:
pgo ls mycluster -n pgouser1 /pgdata/mycluster/pg_log
pgo cat mycluster -n pgouser1 /pgdata/mycluster/pg_log/postgresql-Mon.log | tail -3
Backups
By default the Operator deploys pgbackrest for a Postgres cluster to hold database backup data.
You can create a pgbackrest backup job as follows:
pgo backup mycluster -n pgouser1
You can perform a pgbasebackup job as follows:
pgo backup mycluster --backup-type=pgbasebackup -n pgouser1
You can optionally pass pgbackrest command options into the backup command as follows:
pgo backup mycluster --backup-type=pgbackrest --backup-opts="--type=diff" -n pgouser1
See pgbackrest.org for command flag descriptions.
You can create a Postgres cluster that does not include pgbackrest if you specify the following:
pgo create cluster mycluster --pgbackrest=false -n pgouser1

Scaledown a Cluster
You can remove a Postgres replica using the following:
pgo scaledown mycluster --query -n pgouser1
pgo scaledown mycluster --target=sometarget -n pgouser1

Delete a Cluster
You can remove a Postgres cluster by entering:
pgo delete cluster mycluster -n pgouser1

Delete a Cluster and Its Persistent Volume Claims
You can remove the persistent volumes when removing a Postgres cluster by specifying the following command flag:
pgo delete cluster mycluster --delete-data -n pgouser1

View Disk Utilization
You can see a comparison of Postgres data size versus the Persistent volume claim size by entering the following:
pgo df mycluster -n pgouser1

Label Operations
Apply a Label to a Cluster
You can apply a Kubernetes label to a Postgres cluster as follows:
pgo label mycluster --label=environment=prod -n pgouser1
In this example, the label key is environment and the label value is prod.
You can apply labels across a category of Postgres clusters by using the --selector command flag as follows:
pgo label --selector=clustertypes=research --label=environment=prod -n pgouser1
In this example, any Postgres cluster with the label of clustertypes=research will have the label environment=prod set.
In the following command, you can also view Postgres clusters by using the --selector command flag which specifies a label key value to search with:
pgo show cluster --selector=environment=prod -n pgouser1

Policy Operations
Create a Policy
To create a SQL policy, enter the following:
pgo create policy mypolicy --in-file=mypolicy.sql -n pgouser1
This examples creates a policy named mypolicy using the contents of the file mypolicy.sql which is assumed to be in the current directory.
You can view policies as following:
pgo show policy --all -n pgouser1

Apply a Policy
pgo apply mypolicy --selector=environment=prod
pgo apply mypolicy --selector=name=mycluster

Operator Status
Show Operator Version
To see what version of the Operator client and server you are using, enter:
pgo version
To see the Operator server status, enter:
pgo status -n pgouser1
To see the Operator server configuration, enter:
pgo show config -n pgouser1
To see what namespaces exist and if you have access to them, enter:
pgo show namespace -n pgouser1

Perform a pgdump backup
pgo backup mycluster --backup-type=pgdump -n pgouser1
pgo backup mycluster --backup-type=pgdump --backup-opts="--dump-all --verbose" -n pgouser1
pgo backup mycluster --backup-type=pgdump --backup-opts="--schema=myschema" -n pgouser1
Note: To run pgdump_all instead of pgdump, pass '--dump-all' flag in --backup-opts as shown above. All --backup-opts should be space delimited.

Perform a pgbackrest restore
pgo restore mycluster -n pgouser1
Or perform a restore based on a point in time:
pgo restore mycluster --pitr-target="2019-01-14 00:02:14.921404+00" --backup-opts="--type=time" -n pgouser1
You can also set the any of the pgbackrest restore options :
pgo restore mycluster --pitr-target="2019-01-14 00:02:14.921404+00" --backup-opts=" see pgbackrest options " -n pgouser1
You can also target specific nodes when performing a restore:
pgo restore mycluster --node-label=failure-domain.beta.kubernetes.io/zone=us-central1-a -n pgouser1
Here are some steps to test PITR:
	pgo create cluster mycluster
	create a table on the new cluster called beforebackup
	pgo backup mycluster -n pgouser1
	create a table on the cluster called afterbackup
	execute select now() on the database to get the time, use this timestamp minus a couple of minutes when you perform the restore
	pgo restore mycluster --pitr-target="2019-01-14 00:02:14.921404+00" --backup-opts="--type=time --log-level-console=info" -n pgouser1
	wait for the database to be restored
	execute in the database and you should see the database state prior to where the afterbackup* table was created

See the Design section of the Operator documentation for things to consider before you do a restore.

Restore from pgbasebackup
You can find available pgbasebackup backups to use for a pgbasebackup restore using the pgo show backup command:
$ pgo show backup mycluster --backup-type=pgbasebackup -n pgouser1 | grep "Backup Path"
 Backup Path: mycluster-backups/2019-05-21-09-53-20
 Backup Path: mycluster-backups/2019-05-21-06-58-50
 Backup Path: mycluster-backups/2019-05-21-09-52-52
You can then perform a restore using any available backup path:
pgo restore mycluster --backup-type=pgbasebackup --backup-path=mycluster/2019-05-21-06-58-50 --backup-pvc=mycluster-backup -n pgouser1
When performing the restore, both the backup path and backup PVC can be omitted, and the Operator will use the last pgbasebackup backup created, along with the PVC utilized for that backup:
pgo restore mycluster --backup-type=pgbasebackup -n pgouser1
Once the pgbasebackup restore is complete, a new PVC will be available with a randomly generated ID that contains the restored database, e.g. PVC mycluster-ieqe in the output below:
$ pgo show pvc --all
All Operator Labeled PVCs
 mycluster
 mycluster-backup
 mycluster-ieqe
A new cluster can then be created with the same name as the new PVC, as well with the secrets from the original cluster, in order to deploy a new cluster using the restored database:
pgo create cluster mycluster-ieqe --secret-from=mycluster
If you would like to control the name of the PVC created when performing a pgbasebackup restore, use the --restore-to-pvc flag:
pgo restore mycluster --backup-type=pgbasebackup --restore-to-pvc=mycluster-restored -n pgouser1

Restore from pgdump backup
pgo restore mycluster --backup-type=pgdump --backup-pvc=mycluster-pgdump-pvc --pitr-target="2019-01-15-00-03-25" -n pgouser1
To restore the most recent pgdump at the default path, leave off a timestamp:
pgo restore mycluster --backup-type=pgdump --backup-pvc=mycluster-pgdump-pvc -n pgouser1

Fail-over Operations
To perform a manual failover, enter the following:
pgo failover mycluster --query -n pgouser1
That example queries to find the available Postgres replicas that could be promoted to the primary.
pgo failover mycluster --target=sometarget -n pgouser1
That command chooses a specific target, and starts the failover workflow.
Create a Cluster with Auto-fail Enabled
To support an automated failover, you can specify the --autofail flag on a Postgres cluster when you create it as follows:
pgo create cluster mycluster --autofail --replica-count=1 -n pgouser1
You can set the auto-fail flag on a Postgres cluster after it is created by the following command:
pgo update cluster --label=autofail=false -n pgouser1
pgo update cluster --label=autofail=true -n pgouser1
Note that if you do a pgbackrest restore, you will need to reset the autofail flag to true after the restore is completed.

Add-On Operations
To add a pgbouncer Deployment to your Postgres cluster, enter:
pgo create cluster mycluster --pgbouncer -n pgouser1
You can add pgbouncer after a Postgres cluster is created as follows:
pgo create pgbouncer mycluster
pgo create pgbouncer --selector=name=mycluster
You can also specify a pgbouncer password as follows:
pgo create cluster mycluster --pgbouncer --pgbouncer-pass=somepass -n pgouser1
Note, the pgbouncer configuration defaults to specifying only a single entry for the primary database. If you want it to have an entry for the replica service, add the following configuration to pgbouncer.ini:
{{.PG_REPLICA_SERVICE_NAME}} = host={{.PG_REPLICA_SERVICE_NAME}} port={{.PG_PORT}} auth_user={{.PG_USERNAME}} dbname={{.PG_DATABASE}}
To add a pgpool Deployment to your Postgres cluster, enter:
pgo create cluster mycluster --pgpool -n pgouser1
You can also add a pgpool to a cluster after initial creation as follows:
pgo create pgpool mycluster -n pgouser1
You can remove a pgbouncer or pgpool from a cluster as follows:
pgo delete pgbouncer mycluster -n pgouser1
pgo delete pgpool mycluster -n pgouser1
You can create a pgbadger sidecar container in your Postgres cluster pod as follows:
pgo create cluster mycluster --pgbadger -n pgouser1
Likewise, you can add the Crunchy Collect Metrics sidecar container into your Postgres cluster pod as follows:
pgo create cluster mycluster --metrics -n pgouser1
Note: backend metric storage such as Prometheus and front end visualization software such as Grafana are not created automatically by the PostgreSQL Operator. For instructions on installing Grafana and Prometheus in your environment, see the Crunchy Container Suite documentation.

Scheduled Tasks
There is a cron based scheduler included into the Operator Deployment by default.
You can create automated full pgBackRest backups every Sunday at 1 am as follows:
pgo create schedule mycluster --schedule="0 1 * * SUN" \
 --schedule-type=pgbackrest --pgbackrest-backup-type=full -n pgouser1
You can create automated diff pgBackRest backups every Monday-Saturday at 1 am as follows:
pgo create schedule mycluster --schedule="0 1 * * MON-SAT" \
 --schedule-type=pgbackrest --pgbackrest-backup-type=diff -n pgouser1
You can create automated pgBaseBackup backups every day at 1 am as follows:
In order to have a backup PVC created, users should run the pgo backup command against the target cluster prior to creating this schedule.
pgo create schedule mycluster --schedule="0 1 * * *" \
 --schedule-type=pgbasebackup --pvc-name=mycluster-backup -n pgouser1
You can create automated Policy every day at 1 am as follows:
pgo create schedule --selector=pg-cluster=mycluster --schedule="0 1 * * *" \
 --schedule-type=policy --policy=mypolicy --database=userdb \
 --secret=mycluster-testuser-secret -n pgouser1

Benchmark Clusters
The pgbench utility containerized and made available to Operator users.
To create a Benchmark via Cluster Name you enter:
pgo benchmark mycluster -n pgouser1
To create a Benchmark via Selector, enter:
pgo benchmark --selector=pg-cluster=mycluster -n pgouser1
To create a Benchmark with a custom transactions, enter:
pgo create policy --in-file=/tmp/transactions.sql mytransactions -n pgouser1
pgo benchmark mycluster --policy=mytransactions -n pgouser1
To create a Benchmark with custom parameters, enter:
pgo benchmark mycluster --clients=10 --jobs=2 --scale=10 --transactions=100 -n pgouser1
You can view benchmarks by entering:
pgo show benchmark -n pgouser1

Complex Deployments
Create a Cluster using Specific Storage
pgo create cluster mycluster --storage-config=somestorageconfig -n pgouser1
Likewise, you can specify a storage configuration when creating a replica:
pgo scale mycluster --storage-config=someslowerstorage -n pgouser1
This example specifies the somestorageconfig storage configuration to be used by the Postgres cluster. This lets you specify a storage configuration that is defined in the pgo.yaml file specifically for a given Postgres cluster.
You can create a Cluster using a Preferred Node as follows:
pgo create cluster mycluster --node-label=speed=superfast -n pgouser1
That command will cause a node affinity rule to be added to the Postgres pod which will influence the node upon which Kubernetes will schedule the Pod.
Likewise, you can create a Replica using a Preferred Node as follows:
pgo scale mycluster --node-label=speed=slowerthannormal -n pgouser1

Create a Cluster with LoadBalancer ServiceType
pgo create cluster mycluster --service-type=LoadBalancer -n pgouser1
This command will cause the Postgres Service to be of a specific type instead of the default ClusterIP service type.

Miscellaneous
Create a cluster using the Crunchy Postgres + PostGIS container image:
pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis -n pgouser1
Create a cluster with a Custom ConfigMap:
pgo create cluster mycustomcluster --custom-config myconfigmap -n pgouser1

pgo Global Flags
pgo global command flags include:
	Flag	Description
	n	namespace targeted for the command
	apiserver-url	URL of the Operator REST API service, override with CO_APISERVER_URL environment variable
	debug	enable debug messages
	pgo-ca-cert	The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver. Override with PGO_CA_CERT environment variable
	pgo-client-cert	The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver. Override with PGO_CLIENT_CERT environment variable
	pgo-client-key	The Client Key file path for authenticating to the PostgreSQL Operator apiserver. Override with PGO_CLIENT_KEY environment variable

pgo Global Environment Variables
pgo will pick up these settings if set in your environment:
| Name | Description | NOTES | |PGOUSERNAME |The username (role) used for auth on the operator apiserver. | Requires that PGOUSERPASS be set. | |PGOUSERPASS |The password for used for auth on the operator apiserver. | Requires that PGOUSERNAME be set. | |PGOUSER |The path the the pgorole file. | Will be ignored if either PGOUSERNAME or PGOUSERPASS are set. |

pgo clidoc
Generate Markdown of CLI commandes
Synopsis
The clidoc command allows you to generate markdown files for all CLI commands:
pgo clidoc
pgo clidoc [flags]

Options
 -h, --help help for clidoc

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 21-Feb-2019

pgo status
Display PostgreSQL cluster status
Synopsis
Display namespace wide information for PostgreSQL clusters. For example:
pgo status
pgo status [flags]

Options
 -h, --help help for status
 -o, --output string The output format. Currently, json is the only supported value.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo update cluster
Update a PostgreSQL cluster
Synopsis
Update a PostgreSQL cluster. For example:
pgo update cluster all --autofail=false
pgo update cluster mycluster --autofail=true
pgo update cluster [flags]

Options
 --autofail string If set, will cause the autofail label on the pgcluster CRD for this cluster to be updated to either true or false, valid values are true or false.
 -h, --help help for cluster
 --no-prompt No command line confirmation.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo update - Update a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo version
Print version information for the PostgreSQL Operator
Synopsis
VERSION allows you to print version information for the postgres-operator. For example:
pgo version
pgo version [flags]

Options
 -h, --help help for version

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete upgrade
Delete an upgrade
Synopsis
Delete an upgrade. For example:
pgo delete upgrade mydatabase
pgo delete upgrade [flags]

Options
 -h, --help help for upgrade

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, upgrade, or user

Auto generated by spf13/cobra on 27-Mar-2019

pgo show workflow
Show workflow information
Synopsis
Show workflow information for a given workflow. For example:
pgo show workflow 25927091-b343-4017-be4b-71575f0b3eb5
pgo show workflow [flags]

Options
 -h, --help help for workflow

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo update
Update a cluster
Synopsis
The update command allows you to update a cluster. For example:
pgo update cluster mycluster --autofail=false
pgo update cluster mycluster --autofail=true
pgo update [flags]

Options
 -h, --help help for update

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.
	pgo update cluster - Update a PostgreSQL cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo user
Manage PostgreSQL users
Synopsis
USER allows you to manage users and passwords across a set of clusters. For example:
pgo user --selector=name=mycluster --update-passwords
pgo user --change-password=bob --expired=300 --selector=name=mycluster --password=newpass
pgo user [flags]

Options
 --change-password string Updates the password for a user on selective clusters.
 --db string Grants the user access to a database.
 --expired string required flag when updating passwords that will expire in X days using --update-passwords flag.
 -h, --help help for user
 --password string Specifies the user password when updating a user password or creating a new user.
 --password-length int If no password is supplied, this is the length of the auto generated password (default 12)
 -s, --selector string The selector to use for cluster filtering.
 --update-passwords Performs password updating on expired passwords.
 --valid-days int Sets passwords for new users to X days. (default 30)

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo show upgrade
Show upgrade information
Synopsis
Show upgrade information. For example:
pgo show upgrade mycluster
pgo show upgrade [flags]

Options
 -h, --help help for upgrade

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 27-Mar-2019

pgo
The pgo command line interface.
Synopsis
The pgo command line interface lets you create and manage PostgreSQL clusters.

Options
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -h, --help help for pgo
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo apply - Apply a policy
	pgo backup - Perform a Backup
	pgo benchmark - Perform a pgBench benchmark against clusters
	pgo cat - Perform a cat command on a cluster
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user
	pgo df - Display disk space for clusters
	pgo failover - Performs a manual failover
	pgo label - Label a set of clusters
	pgo load - Perform a data load
	pgo ls - Perform a ls command on a cluster
	pgo reload - Perform a cluster reload
	pgo restore - Perform a restore from previous backup
	pgo scale - Scale a PostgreSQL cluster
	pgo scaledown - Scale down a PostgreSQL cluster
	pgo show - Show the description of a cluster
	pgo status - Display PostgreSQL cluster status
	pgo test - Test cluster connectivity
	pgo update - Update a cluster
	pgo upgrade - Perform an upgrade
	pgo user - Manage PostgreSQL users
	pgo version - Print version information for the PostgreSQL Operator

Auto generated by spf13/cobra on 3-Jun-2019

pgo apply
Apply a policy
Synopsis
APPLY allows you to apply a Policy to a set of clusters. For example:
pgo apply mypolicy1 --selector=name=mycluster
pgo apply mypolicy1 --selector=someotherpolicy
pgo apply mypolicy1 --selector=someotherpolicy --dry-run
pgo apply [flags]

Options
 --dry-run Shows the clusters that the label would be applied to, without labelling them.
 -h, --help help for apply
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo backup
Perform a Backup
Synopsis
BACKUP performs a Backup, for example:
pgo backup mycluster
pgo backup [flags]

Options
 --backup-opts string The pgbackup options to pass into pgbasebackup or pgbackrest.
 --backup-type string The backup type to perform. Default is pgbasebackup. Valid backup types are pgbasebackup, pgbackrest and pgdump. (default "pgbackrest")
 -h, --help help for backup
 --pgbackrest-storage-type string The type of storage to use when scheduling pgBackRest backups. Either "local", "s3" or both, comma separated. (default "local")
 --pvc-name string The PVC name to use for the backup instead of the default.
 -s, --selector string The selector to use for cluster filtering.
 --storage-config string The name of a Storage config in pgo.yaml to use for the cluster storage. Only applies to pgbasebackup backups.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo benchmark
Perform a pgBench benchmark against clusters
Synopsis
Benchmark run pgBench against PostgreSQL clusters, for example:
pgo benchmark mycluster
pgo benchmark [flags]

Options
 -b, --benchmark-opts string The extra flags passed to pgBench during the benchmark.
 -c, --clients int The number of clients to be used in the benchmark. (default 1)
 -d, --database string The database where the benchmark should be run. (default "postgres")
 -h, --help help for benchmark
 -i, --init-opts string The extra flags passed to pgBench during the initialization of the benchmark.
 -j, --jobs int The number of worker threads to use for the benchmark. (default 1)
 -p, --policy string The name of the policy specifying custom transaction SQL for advanced benchmarking.
 --scale int The number to scale the amount of rows generated for the benchmark. (default 1)
 -s, --selector string The selector to use for cluster filtering.
 -t, --transactions int The number of transaction each client should run in the benchmark. (default 1)

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo cat
Perform a cat command on a cluster
Synopsis
CAT performs a Linux cat command on a cluster file. For example:
pgo cat mycluster /pgdata/mycluster/postgresql.conf
pgo cat [flags]

Options
 -h, --help help for cat

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo create
Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User
Synopsis
CREATE allows you to create a new Cluster, PGBouncer, PGPool, Policy, Schedule or User. For example:
pgo create cluster
pgo create pgbouncer
pgo create pgpool
pgo create policy
pgo create user
pgo create [flags]

Options
 -h, --help help for create

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.
	pgo create cluster - Create a PostgreSQL cluster
	pgo create pgbouncer - Create a pgbouncer
	pgo create pgpool - Create a pgpool
	pgo create policy - Create a SQL policy
	pgo create schedule - Create a cron-like scheduled task
	pgo create user - Create a PostgreSQL user

Auto generated by spf13/cobra on 3-Jun-2019

pgo create pgbouncer
Create a pgbouncer
Synopsis
Create a pgbouncer. For example:
pgo create pgbouncer mycluster
pgo create pgbouncer [flags]

Options
 -h, --help help for pgbouncer
 --pgbouncer-pass string Password for the pgbouncer user of the crunchy-pgboucer deployment.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User

Auto generated by spf13/cobra on 3-Jun-2019

pgo create pgpool
Create a pgpool
Synopsis
Create a pgpool. For example:
pgo create pgpool mycluster
pgo create pgpool [flags]

Options
 -h, --help help for pgpool
 --pgpool-secret string The name of a pgpool secret to use for the pgpool configuration.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User

Auto generated by spf13/cobra on 3-Jun-2019

pgo create policy
Create a SQL policy
Synopsis
Create a policy. For example:
pgo create policy mypolicy --in-file=/tmp/mypolicy.sql
pgo create policy [flags]

Options
 -h, --help help for policy
 -i, --in-file string The policy file path to use for adding a policy.
 -u, --url string The url to use for adding a policy.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User

Auto generated by spf13/cobra on 3-Jun-2019

pgo create schedule
Create a cron-like scheduled task
Synopsis
Schedule creates a cron-like scheduled task. For example:
pgo create schedule --schedule="* * * * *" --schedule-type=pgbackrest --pgbackrest-backup-type=full mycluster
pgo create schedule [flags]

Options
 -c, --ccp-image-tag string The CCPImageTag to use for cluster creation. If specified, overrides the pgo.yaml setting.
 --database string The database to run the SQL policy against.
 -h, --help help for schedule
 --pgbackrest-backup-type string The type of pgBackRest backup to schedule (full or diff).
 --pgbackrest-storage-type string The type of storage to use when scheduling pgBackRest backups. Either "local", "s3" or both, comma separated. (default "local")
 --policy string The policy to use for SQL schedules.
 --pvc-name string The name of the backup PVC to use (only used in pgbasebackup schedules).
 --schedule string The schedule assigned to the cron task.
 --schedule-opts string The custom options passed to the create schedule API.
 --schedule-type string The type of schedule to be created (pgbackrest, pgbasebackup or policy).
 --secret string The secret name for the username and password of the PostgreSQL role for SQL schedules.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User

Auto generated by spf13/cobra on 3-Jun-2019

pgo create user
Create a PostgreSQL user
Synopsis
Create a postgres user. For example:
pgo create user manageduser --managed --selector=name=mycluster
pgo create user user1 --selector=name=mycluster
pgo create user [flags]

Options
 --db string Grants the user access to a database.
 -h, --help help for user
 --managed Creates a user with secrets that can be managed by the Operator.
 --password string The password to use for creating a new user which overrides a generated password.
 --password-length int If no password is supplied, this is the length of the auto generated password (default 12)
 -s, --selector string The selector to use for cluster filtering.
 --valid-days int Sets passwords for new users to X days. (default 30)

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete
Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user
Synopsis
The delete command allows you to delete a backup, benchmark, cluster, label, pgbouncer, pgpool, policy, or user. For example:
pgo delete backup mycluster
pgo delete benchmark mycluster
pgo delete cluster mycluster
pgo delete cluster mycluster --delete-data
pgo delete cluster mycluster --delete-data --delete-backups
pgo delete label mycluster --label=env=research
pgo delete pgbouncer mycluster
pgo delete pgpool mycluster
pgo delete policy mypolicy
pgo delete schedule --schedule-name=mycluster-pgbackrest-full
pgo delete schedule --selector=name=mycluster
pgo delete schedule mycluster
pgo delete user testuser --selector=name=mycluster
pgo delete [flags]

Options
 -h, --help help for delete

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.
	pgo delete backup - Delete a backup
	pgo delete benchmark - Delete benchmarks for a cluster
	pgo delete cluster - Delete a PostgreSQL cluster
	pgo delete label - Delete a label from clusters
	pgo delete pgbouncer - Delete a pgbouncer from a cluster
	pgo delete pgpool - Delete a pgpool from a cluster
	pgo delete policy - Delete a SQL policy
	pgo delete schedule - Delete a schedule
	pgo delete user - Delete a user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete backup
Delete a backup
Synopsis
Delete a backup. For example:
pgo delete backup mydatabase
pgo delete backup [flags]

Options
 -h, --help help for backup

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete benchmark
Delete benchmarks for a cluster
Synopsis
Delete benchmarks for a cluster. For example:
pgo delete benchmark mycluster
pgo delete benchmark --selector=env=test
pgo delete benchmark [flags]

Options
 -h, --help help for benchmark
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete cluster
Delete a PostgreSQL cluster
Synopsis
Delete a PostgreSQL cluster. For example:
pgo delete cluster --all
pgo delete cluster mycluster
pgo delete cluster [flags]

Options
 --all all resources.
 -b, --delete-backups Causes the backups for this cluster to be removed permanently.
 -d, --delete-data Causes the data for this cluster to be removed permanently.
 -h, --help help for cluster
 --no-prompt No command line confirmation.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete label
Delete a label from clusters
Synopsis
Delete a label from clusters. For example:
pgo delete label mycluster --label=env=research
pgo delete label all --label=env=research
pgo delete label --selector=group=southwest --label=env=research
pgo delete label [flags]

Options
 -h, --help help for label
 --label string The label to delete for any selected or specified clusters.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete pgbouncer
Delete a pgbouncer from a cluster
Synopsis
Delete a pgbouncer from a cluster. For example:
pgo delete pgbouncer mycluster
pgo delete pgbouncer [flags]

Options
 -h, --help help for pgbouncer
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete pgpool
Delete a pgpool from a cluster
Synopsis
Delete a pgpool from a cluster. For example:
pgo delete pgpool mycluster
pgo delete pgpool [flags]

Options
 -h, --help help for pgpool
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete policy
Delete a SQL policy
Synopsis
Delete a policy. For example:
pgo delete policy mypolicy
pgo delete policy [flags]

Options
 --all all resources.
 -h, --help help for policy
 --no-prompt No command line confirmation.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete schedule
Delete a schedule
Synopsis
Delete a cron-like schedule. For example:
pgo delete schedule mycluster
pgo delete schedule --selector=env=test
pgo delete schedule --schedule-name=mycluster-pgbackrest-full
pgo delete schedule [flags]

Options
 -h, --help help for schedule
 --no-prompt No command line confirmation.
 --schedule-name string The name of the schedule to delete.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo delete user
Delete a user
Synopsis
Delete a user. For example:
pgo delete user someuser --selector=name=mycluster
pgo delete user [flags]

Options
 -h, --help help for user
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo delete - Delete a backup, benchmark, cluster, pgbouncer, pgpool, label, policy, or user

Auto generated by spf13/cobra on 3-Jun-2019

pgo df
Display disk space for clusters
Synopsis
Displays the disk status for PostgreSQL clusters. For example:
pgo df mycluster
pgo df all
pgo df --selector=env=research
pgo df [flags]

Options
 -h, --help help for df
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo failover
Performs a manual failover
Synopsis
Performs a manual failover. For example:
pgo failover mycluster
pgo failover [flags]

Options
 --autofail-replace-replica string If 'true', causes a replica to be created to replace the promoted replica. If 'false', causes a replica to not be created, if not set, the pgo.yaml AutofailReplaceReplica setting is used.
 -h, --help help for failover
 --no-prompt No command line confirmation.
 --query Prints the list of failover candidates.
 --target string The replica target which the failover will occur on.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo label
Label a set of clusters
Synopsis
LABEL allows you to add or remove a label on a set of clusters. For example:
pgo label mycluster yourcluster --label=environment=prod
pgo label all --label=environment=prod
pgo label --label=environment=prod --selector=name=mycluster
pgo label --label=environment=prod --selector=status=final --dry-run
pgo label [flags]

Options
 --dry-run Shows the clusters that the label would be applied to, without labelling them.
 -h, --help help for label
 --label string The new label to apply for any selected or specified clusters.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo load
Perform a data load
Synopsis
LOAD performs a load. For example:
pgo load --load-config=./load.json --selector=project=xray
pgo load [flags]

Options
 -h, --help help for load
 --load-config string The load configuration to use that defines the load job.
 --policies string The policies to apply before loading a file, comma separated.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo ls
Perform a ls command on a cluster
Synopsis
LS performs a Linux ls command on a cluster directory. For example:
pgo ls mycluster /pgdata/mycluster/pg_log
pgo ls [flags]

Options
 -h, --help help for ls

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo reload
Perform a cluster reload
Synopsis
RELOAD performs a PostgreSQL reload on a cluster or set of clusters. For example:
pgo reload mycluster
pgo reload [flags]

Options
 -h, --help help for reload
 --no-prompt No command line confirmation.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo restore
Perform a restore from previous backup
Synopsis
RESTORE performs a restore to a new PostgreSQL cluster. This includes stopping the database and recreating a new primary with the restored data. Valid backup types to restore from are pgbackrest and pgdump. For example:
pgo restore mycluster
pgo restore [flags]

Options
 --backup-opts string The restore options for pgbackrest or pgdump.
 --backup-path string The path for the directory containing the pg_basebackup backup to be utilized for the restore. If omitted, defaults to the latest backup.
 --backup-pvc string The PVC containing the pgdump or pgbasebackup backup directory to restore from.
 --backup-type string The type of backup to restore from, default is pgbackrest. Valid types are pgbackrest, pgdump or pgbasebackup.
 -h, --help help for restore
 --no-prompt No command line confirmation.
 --node-label string The node label (key=value) to use when scheduling the restore job, and in the case of a pgBackRest restore, also the new (i.e. restored) primary deployment. If not set, any node is used.
 --pgbackrest-storage-type string The type of storage to use for a pgBackRest restore. Either "local", "s3". (default "local")
 --pitr-target string The PITR target, being a PostgreSQL timestamp such as '2018-08-13 11:25:42.582117-04'.
 --restore-to-pvc string The name of the PVC to restore into when restoring from a pgbasebackup backup.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo scale
Scale a PostgreSQL cluster
Synopsis
The scale command allows you to adjust a Cluster's replica configuration. For example:
pgo scale mycluster --replica-count=1
pgo scale [flags]

Options
 --ccp-image-tag string The CCPImageTag to use for cluster creation. If specified, overrides the .pgo.yaml setting.
 -h, --help help for scale
 --no-prompt No command line confirmation.
 --node-label string The node label (key) to use in placing the primary database. If not set, any node is used.
 --replica-count int The replica count to apply to the clusters. (default 1)
 --resources-config string The name of a container resource configuration in pgo.yaml that holds CPU and memory requests and limits.
 --service-type string The service type to use in the replica Service. If not set, the default in pgo.yaml will be used.
 --storage-config string The name of a Storage config in pgo.yaml to use for the replica storage.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo scaledown
Scale down a PostgreSQL cluster
Synopsis
The scale command allows you to scale down a Cluster's replica configuration. For example:
To list targetable replicas:
pgo scaledown mycluster --query

To scale down a specific replica:
pgo scaledown mycluster --target=mycluster-replica-xxxx
pgo scaledown [flags]

Options
 -d, --delete-data Causes the data for the scaled down replica to be removed permanently.
 -h, --help help for scaledown
 --no-prompt No command line confirmation.
 --query Prints the list of targetable replica candidates.
 --target string The replica to target for scaling down

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo show
Show the description of a cluster
Synopsis
Show allows you to show the details of a policy, backup, pvc, or cluster. For example:
pgo show backup mycluster
pgo show backup mycluster --backup-type=pgbackrest
pgo show benchmark mycluster
pgo show cluster mycluster
pgo show config
pgo show policy policy1
pgo show pvc mycluster
pgo show namespace
pgo show workflow 25927091-b343-4017-be4b-71575f0b3eb5
pgo show user mycluster
pgo show [flags]

Options
 -h, --help help for show

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.
	pgo show backup - Show backup information
	pgo show benchmark - Show benchmark information
	pgo show cluster - Show cluster information
	pgo show config - Show configuration information
	pgo show namespace - Show namespace information
	pgo show policy - Show policy information
	pgo show pvc - Show PVC information
	pgo show schedule - Show schedule information
	pgo show user - Show user information
	pgo show workflow - Show workflow information

Auto generated by spf13/cobra on 3-Jun-2019

pgo show backup
Show backup information
Synopsis
Show backup information. For example:
pgo show backup mycluser
pgo show backup [flags]

Options
 --backup-type string The backup type output to list. Valid choices are pgbasebackup or pgbackrest (default). (default "pgbackrest")
 -h, --help help for backup

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show benchmark
Show benchmark information
Synopsis
Show benchmark results for clusters. For example:
pgo show benchmark mycluster
pgo show benchmark --selector=pg-cluster=mycluster
pgo show benchmark [flags]

Options
 -h, --help help for benchmark
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show cluster
Show cluster information
Synopsis
Show a PostgreSQL cluster. For example:
pgo show cluster --all
pgo show cluster mycluster
pgo show cluster [flags]

Options
 --all show all resources.
 --ccp-image-tag string Filter the results based on the image tag of the cluster.
 -h, --help help for cluster
 -o, --output string The output format. Currently, json is the only supported value.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show config
Show configuration information
Synopsis
Show configuration information for the Operator. For example:
pgo show config
pgo show config [flags]

Options
 -h, --help help for config

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show namespace
Show namespace information
Synopsis
Show namespace information for the Operator. For example:
pgo show namespace
pgo show namespace [flags]

Options
 -h, --help help for namespace

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show policy
Show policy information
Synopsis
Show policy information. For example:
pgo show policy --all
pgo show policy policy1
pgo show policy [flags]

Options
 --all show all resources.
 -h, --help help for policy

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show pvc
Show PVC information
Synopsis
Show PVC information. For example:
pgo show pvc mycluster
pgo show pvc --all
pgo show pvc mycluster-backup
pgo show pvc mycluster-xlog
pgo show pvc a2-backup --pvc-root=a2-backups/2019-01-12-17-09-42
pgo show pvc [flags]

Options
 --all show all resources.
 -h, --help help for pvc
 --node-label string The node label (key=value) to use
 --pvc-root string The PVC directory to list.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show schedule
Show schedule information
Synopsis
Show cron-like schedules. For example:
pgo show schedule mycluster
pgo show schedule --selector=pg-cluster=mycluster
pgo show schedule --schedule-name=mycluster-pgbackrest-full
pgo show schedule [flags]

Options
 -h, --help help for schedule
 --no-prompt No command line confirmation.
 --schedule-name string The name of the schedule to show.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo show user
Show user information
Synopsis
Show users on a cluster. For example:
pgo show user mycluster
pgo show user [flags]

Options
 --expired string Shows passwords that will expire in X days.
 -h, --help help for user
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo show - Show the description of a cluster

Auto generated by spf13/cobra on 3-Jun-2019

pgo test
Test cluster connectivity
Synopsis
TEST allows you to test the connectivity for a cluster. For example:
pgo test mycluster
pgo test --selector=env=research
pgo test --all
pgo test [flags]

Options
 --all test all resources.
 -h, --help help for test
 -o, --output string The output format. Currently, json is the only supported value.
 -s, --selector string The selector to use for cluster filtering.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo upgrade
Perform an upgrade
Synopsis
UPGRADE performs an upgrade on a PostgreSQL cluster. For example:
pgo upgrade mycluster
pgo upgrade [flags]

Options
 --ccp-image-tag string The CCPImageTag to use for cluster creation. If specified, overrides the pgo.yaml setting.
 -h, --help help for upgrade

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo - The pgo command line interface.

Auto generated by spf13/cobra on 3-Jun-2019

pgo create cluster
Create a PostgreSQL cluster
Synopsis
Create a PostgreSQL cluster consisting of a primary and a number of replica backends. For example:
pgo create cluster mycluster
pgo create cluster [flags]

Options
 --autofail If set, will cause autofailover to be enabled on this cluster.
 --ccp-image string The CCPImage name to use for cluster creation. If specified, overrides the value crunchy-postgres.
 -c, --ccp-image-tag string The CCPImageTag to use for cluster creation. If specified, overrides the pgo.yaml setting.
 --custom-config string The name of a configMap that holds custom PostgreSQL configuration files used to override defaults.
 -h, --help help for cluster
 -l, --labels string The labels to apply to this cluster.
 --metrics Adds the crunchy-collect container to the database pod.
 --node-label string The node label (key=value) to use in placing the primary database. If not set, any node is used.
 -w, --password string The password to use for initial database users.
 --pgbackrest string Enables/disables a pgBackRest volume for the database pod when set to "true" or "false", respectively. This overrides the "default" setting specified in the pgo.yaml file.
 --pgbackrest-storage-type string The type of storage to use with pgBackRest. Either "local", "s3" or both, comma separated. (default "local")
 --pgbadger Adds the crunchy-pgbadger container to the database pod.
 --pgbouncer Adds a crunchy-pgbouncer deployment to the cluster.
 --pgbouncer-pass string Password for the pgbouncer user of the crunchy-pgboucer deployment.
 --pgpool Adds the crunchy-pgpool container to the database pod.
 --pgpool-secret string The name of a pgpool secret to use for the pgpool configuration.
 -z, --policies string The policies to apply when creating a cluster, comma separated.
 --replica-count int The number of replicas to create as part of the cluster.
 --replica-storage-config string The name of a Storage config in pgo.yaml to use for the cluster replica storage.
 -r, --resources-config string The name of a container resource configuration in pgo.yaml that holds CPU and memory requests and limits.
 -s, --secret-from string The cluster name to use when restoring secrets.
 -e, --series int The number of clusters to create in a series. (default 1)
 --service-type string The Service type to use for the PostgreSQL cluster. If not set, the pgo.yaml default will be used.
 --storage-config string The name of a Storage config in pgo.yaml to use for the cluster storage.

Options inherited from parent commands
 --apiserver-url string The URL for the PostgreSQL Operator apiserver.
 --debug Enable debugging when true.
 -n, --namespace string The namespace to use for pgo requests.
 --pgo-ca-cert string The CA Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-cert string The Client Certificate file path for authenticating to the PostgreSQL Operator apiserver.
 --pgo-client-key string The Client Key file path for authenticating to the PostgreSQL Operator apiserver.

SEE ALSO
	pgo create - Create a Cluster, PGBouncer, PGPool, Policy, Schedule, or User

Auto generated by spf13/cobra on 3-Jun-2019

Kubernetes RBAC
Install the requisite Operator RBAC resources, as a Kubernetes cluster admin user, by running a Makefile target:
make installrbac
This script creates the following RBAC resources on your Kubernetes cluster:
	Setting	Definition
	Custom Resource Definitions (crd.yaml)	pgbackups
		pgclusters
		pgpolicies
		pgreplicas
		pgtasks
		pgupgrades
	Cluster Roles (cluster-roles.yaml)	pgopclusterrole
		pgopclusterrolecrd
	Cluster Role Bindings (cluster-roles-bindings.yaml)	pgopclusterbinding
		pgopclusterbindingcrd
	Service Account (service-accounts.yaml)	postgres-operator
		pgo-backrest
	Roles (rbac.yaml)	pgo-role
		pgo-backrest-role
	Role Bindings (rbac.yaml)	pgo-backrest-role-binding
		pgo-role-binding

Note that the cluster role bindings have a naming convention of pgopclusterbinding-PGOOPERATORNAMESPACEandpgopclusterbindingcrd − PGO_OPERATOR_NAMESPACE. The PGO_OPERATOR_NAMESPACE environment variable is added to make each cluster role binding name unique and to support more than a single Operator being deployed on the same Kube cluster.

Operator RBAC
The conf/postgresql-operator/pgorole file is read at start up time when the operator is deployed to the Kubernetes cluster. This file defines the Operator roles whereby Operator API users can be authorized.
The conf/postgresql-operator/pgouser file is read at start up time also and contains username, password, role, and namespace information as follows:
username:password:pgoadmin:
pgouser1:password:pgoadmin:pgouser1
pgouser2:password:pgoadmin:pgouser2
pgouser3:password:pgoadmin:pgouser1,pgouser2
readonlyuser:password:pgoreader:
The format of the pgouser server file is:
<username>:<password>:<role>:<namespace,namespace>
The namespace is a comma separated list of namespaces that user has access to. If you do not specify a namespace, then all namespaces is assumed, meaning this user can access any namespace that the Operator is watching.
A user creates a .pgouser file in their $HOME directory to identify themselves to the Operator. An entry in .pgouser will need to match entries in the conf/postgresql-operator/pgouser file. A sample .pgouser file contains the following:
username:password
The format of the .pgouser client file is:
<username>:<password>
The users pgouser file can also be located at: /etc/pgo/pgouser or it can be found at a path specified by the PGOUSER environment variable.
If the user tries to access a namespace that they are not configured for within the server side pgouser file then they will get an error message as follows:
Error: user [pgouser1] is not allowed access to namespace [pgouser2]
The following list shows the current complete list of possible pgo permissions that you can specify within the pgorole file when creating roles:
	Permission	Description
	ApplyPolicy	allow pgo apply
	Cat	allow pgo cat
	CreateBackup	allow pgo backup
	CreateBenchmark	allow pgo create benchmark
	CreateCluster	allow pgo create cluster
	CreateDump	allow pgo create pgdump
	CreateFailover	allow pgo failover
	CreatePgbouncer	allow pgo create pgbouncer
	CreatePgpool	allow pgo create pgpool
	CreatePolicy	allow pgo create policy
	CreateSchedule	allow pgo create schedule
	CreateUpgrade	allow pgo upgrade
	CreateUser	allow pgo create user
	DeleteBackup	allow pgo delete backup
	DeleteBenchmark	allow pgo delete benchmark
	DeleteCluster	allow pgo delete cluster
	DeletePgbouncer	allow pgo delete pgbouncer
	DeletePgpool	allow pgo delete pgpool
	DeletePolicy	allow pgo delete policy
	DeleteSchedule	allow pgo delete schedule
	DeleteUpgrade	allow pgo delete upgrade
	DeleteUser	allow pgo delete user
	DfCluster	allow pgo df
	Label	allow pgo label
	Load	allow pgo load
	Ls	allow pgo ls
	Reload	allow pgo reload
	Restore	allow pgo restore
	RestoreDump	allow pgo restore for pgdumps
	ShowBackup	allow pgo show backup
	ShowBenchmark	allow pgo show benchmark
	ShowCluster	allow pgo show cluster
	ShowConfig	allow pgo show config
	ShowPolicy	allow pgo show policy
	ShowPVC	allow pgo show pvc
	ShowSchedule	allow pgo show schedule
	ShowNamespace	allow pgo show namespace
	ShowUpgrade	allow pgo show upgrade
	ShowWorkflow	allow pgo show workflow
	Status	allow pgo status
	TestCluster	allow pgo test
	UpdateCluster	allow pgo update cluster
	User	allow pgo user
	Version	allow pgo version

If the user is unauthorized for a pgo command, the user will get back this response:
Error: Authentication Failed: 401

Making Security Changes
The Operator today requires you to make Operator user security changes in the pgouser and pgorole files, and for those changes to take effect you are required to re-deploy the Operator:
make deployoperator
This will recreate the pgo-config ConfigMap that stores these files and is mounted by the Operator during its initialization.

API Security
The Operator REST API is encrypted with keys stored in the pgo.tls Secret.
The pgo.tls Secret can be generated prior to starting the Operator or you can let the Operator generate the Secret for you if the Secret does not exist.
Adjust the default keys to meet your security requirements using your own keys. The pgo.tls Secret is created when you run:
make deployoperator
The keys are generated when the RBAC script is executed by the cluster admin:
make installrbac
In some scenarios like an OLM deployment, it is preferable for the Operator to generate the Secret keys at runtime, if the pgo.tls Secret does not exit when the Operator starts, a new TLS Secret will be generated. In this scenario, you can extract the generated Secret TLS keys using:
kubectl cp <pgo-namespace>/<pgo-pod>:/tmp/server.key /tmp/server.key -c apiserver
kubectl cp <pgo-namespace>/<pgo-pod>:/tmp/server.crt /tmp/server.crt -c apiserver
example of the command below:
kubectl cp pgo/postgres-operator-585584f57d-ntwr5:tmp/server.key /tmp/server.key -c apiserver
kubectl cp pgo/postgres-operator-585584f57d-ntwr5:tmp/server.crt /tmp/server.crt -c apiserver
This server.key and server.crt