
Crunchy PostgreSQL Operator

Contents

Crunchy PostgreSQL Operator 7

Run your own production-grade PostgreSQL-as-a-Service on Kubernetes! . 7

How it Works 8

Supported Platforms 9

Storage . 9

PostgreSQL Operator Quickstart 9

Ansible 9

Step 1: Prerequisites . 9

Kubernetes / OpenShift . 9

Your Environment . 10

Step 2: Configuration . 10

Get the PostgreSQL Operator Ansible Installation Playbook . 10

Configure your Installation . 10

Step 3: Installation . 11

Step 4: Verification . 12

Step 5: Have Some Fun - Create a PostgreSQL Cluster . 12

Marketplaces 13

Google Cloud Platform Marketplace . 13

Step 1: Prerequisites . 13

Step 2: Install the PostgreSQL Operator User Keys . 13

Step 3: Setup PostgreSQL Operator User . 14

Step 4: Setup Environment variables . 14

Step 5: Install the PostgreSQL Operator Client pgo . 14

Step 6: Connect to the PostgreSQL Operator . 14

Step 7: Create a Namespace . 15

Step 8: Have Some Fun - Create a PostgreSQL Cluster . 15

Crunchy PostgreSQL Operator Architecture 15

Kuberentes Deployments: The Crunchy PostgreSQL Operator Deployment Model . 17

1

Additional Architecture Information 18

Horizontal Scaling . 19

Deprovisioning . 20

Backups . 21

Restores . 21

Scheduling Backups . 22

Setting Backup Retention Policies . 22

Schedule Expression Format . 24

Using S3 . 24

The Crunchy PostgreSQL Operator High-Availability Algorithm . 26

How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity . 27

Synchronous Replication: Guarding Against Transactions Loss . 27

Node Affinity . 28

Operator Namespaces . 28

Namespace Watching . 28

OwnNamespace Example . 28

SingleNamespace Example . 28

MultiNamespace Example . 28

RBAC . 30

pgo Clients and Namespaces . 30

Operator Eventing . 31

Event Watching . 31

Event Topics . 31

Event Types . 31

Event Testing . 32

Event Deployment . 32

PostgreSQL Operator Containers Overview . 32

PostgreSQL Server and Extensions . 32

Backup and Restore . 32

Administration Tools . 33

Metrics and Monitoring . 33

Connection Pooling . 33

Storage and the PostgreSQL Operator . 33

User Roles in the PostgreSQL Operator . 33

Platform Administrator . 34

Platform User . 34

PostgreSQL User . 34

Container Dependencies . 34

Operating Systems . 36

Kubernetes Distributions . 36

Storage . 36

Releases . 36

conf Directory . 36

conf/postgres-operator/pgo.yaml . 36

2

conf/postgres-operator Directory . 37

Operator API Server . 37

Security . 37

Local pgo CLI Configuration . 37

pgo.yaml Configuration 38

Storage . 38

Storage Configuration Examples . 39

HostPath Example . 39

NFS Example . 39

Storage Class Example . 39

Container Resources . 39

Miscellaneous (Pgo) . 40

Storage Configuration Details . 40

Container Resources Details . 41

Overriding Storage Configuration Defaults . 41

Using Storage Configurations for Disaster Recovery . 41

TLS Configuration . 41

Server Settings . 41

TLS Trust . 42

Connection Settings . 42

Client Settings . 42

Default Installation - Create Project Structure . 44

Default Installation - Configure Environment . 44

Default Installation - Namespace Creation . 45

Default Installation - Configure Operator Templates . 45

Storage . 46

Operator Security . 46

Default Installation - Create Kubernetes RBAC Controls . 47

Default Installation - Deploy the Operator . 47

Default Installation - Completely Cleaning Up . 47

pgo CLI Installation . 47

Verify the Installation . 48

Prerequisites 48

Environment Variables . 48

Other requirements . 49

Building 49

Dependencies . 49

Compile . 49

Release . 50

Deployment 50

Troubleshooting 50

3

Prerequisites 50

Container Ports . 50

Service Ports . 51

Application Ports . 51

Crunchy Data PostgreSQL Operator Playbooks 51

Features . 51

Resources . 51

Prerequisites 51

Kubernetes Installs . 52

OpenShift Installs . 52

Installing from a Windows Host . 52

Environment . 52

Permissions . 52

Obtaining Operator Ansible Role . 52

GitHub Installation . 52

RPM Installation using Yum . 53

Configuring the Inventory File . 53

Requirements . 53

Configuration Parameters . 54

Storage . 56

Examples . 56

Considerations for Multi-Zone Cloud Environments . 57

Resource Configuration . 57

Understanding pgo_operator_namespace & namespace . 58

Single Namespace . 58

Multiple Namespaces . 58

Deploying Multiple Operators . 58

Deploying Grafana and Prometheus . 58

Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem . 59

Install Google Cloud SDK (Optional) . 59

Installing 59

Installing on Linux . 59

Installing on MacOS . 59

Installing on Windows Ubuntu Subsystem . 59

Verifying the Installation . 59

Configure Environment Variables . 60

Verify pgo Connection . 60

4

Installing 60

Prerequisites . 60

Installing on Linux . 61

Installing on MacOS . 61

Installing on Windows . 61

Verifying the Installation . 61

Verify Grafana . 62

Verify Prometheus . 62

Updating 62

Updating on Linux . 63

Updating on MacOS . 63

Updating on Windows Ubuntu Subsystem . 63

Verifying the Update . 63

Configure Environment Variables . 63

Verify pgo Connection . 64

Uninstalling PostgreSQL Operator 64

Deleting pgo Client . 64

Uninstalling the Metrics Stack 64

Install the Postgres Operator (pgo) Client 64

Prerequisites . 65

Linux and MacOS . 65

Installing the Client . 65

PGO-Client Container . 66

Installing the PGO-Client Container . 66

Using the PGO-Client Deployment . 66

Windows . 66

Installing the Client . 66

Verify the Client Installation . 68

Syntax . 68

Command Overview . 69

Global Flags . 70

Global Environment Variables . 70

Additional Information . 70

General Notes . 70

JSON Output . 71

PostgreSQL Operator System Basics . 71

Checking Connectivity to the PostgreSQL Operator . 71

Inspecting the PostgreSQL Operator Configuration . 71

Viewing PostgreSQL Operator Key Metrics . 73

Viewing PostgreSQL Operator Managed Namespaces . 73

Provisioning: Create, View, Destroy . 74

5

Creating a PostgreSQL Cluster . 74

View PostgreSQL Cluster Details . 74

Deleting a Cluster . 75

Testing PostgreSQL Cluster Availability . 75

Disaster Recovery: Backups & Restores . 76

Creating a Backup . 76

Creating Backups in S3 . 76

Displaying Backup Information . 76

Setting Backup Retention . 76

Scheduling Backups . 77

Restore a Cluster . 77

Logical Backups (pg_dump / pg_dumpall) . 77

High-Availability: Scaling Up & Down . 78

Creating a New Replica . 78

Viewing Available Replicas . 78

Manual Failover . 78

Clone a PostgreSQL Cluster . 79

Monitoring . 79

View Disk Utilization . 79

Labels . 79

Add a Label to a PostgreSQL Cluster . 79

Add a Label to Multiple PostgreSQL Clusters . 79

Policy Management . 79

Create a Policy . 79

Apply a Policy . 80

Advanced Operations . 80

Connection Pooling via pgBouncer . 80

Create a Cluster using Specific Storage . 80

Create a Cluster with LoadBalancer ServiceType . 80

Namespace Operations . 81

PostgreSQL Operator User Operations . 81

PostgreSQL Cluster User Operations . 81

Configuring Encryption of PostgreSQL Operator API Connection . 82

PostreSQL Operator RBAC . 82

Making Security Changes . 84

Installation of PostgreSQL Operator RBAC . 84

Custom Postgres Configurations . 85

Custom PostgreSQL SSL Configurations . 86

Direct API Calls . 87

Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud Environments . 88

Upgrading the Operator . 90

Upgrading A Postgres Cluster . 90

Minor Upgrade Example . 90

Upgrading Postgres Operator 3.5 Minor Versions . 90

6

Postgres Operator Container Upgrade Procedure . 92

Upgrading a Cluster from Version 3.5.x to PGO 4.2.1 . 93

Upgrading Postgres Operator from 4.1.0 to a patch release . 94

Postgres Operator Container Upgrade Procedure . 95

Postgres Operator Ansible Upgrade Procedure from 4.X to 4.2.1 . 96

Postgres Operator Bash Upgrade Procedure from 4.X to 4.2.1 . 97

Upgrading to Version 3.5.0 From Previous Versions . 100

Documentation . 100

Hosting Hugo Locally (Optional) . 100

Contributing to the Documentation . 101

Crunchy PostgreSQL Operator

Run your own production-grade PostgreSQL-as-a-Service on Kubernetes!

Latest Release: 4.2.1

The Crunchy PostgreSQL Operator automates and simplifies deploying and managing open source PostgreSQL clusters on Kubernetes
and other Kubernetes-enabled Platforms by providing the essential features you need to keep your PostgreSQL clusters up and running,
including:

PostgreSQL Cluster Provisioning Create, Scale, & Delete PostgreSQL clusters with ease, while fully customizing your Pods and
PostgreSQL configuration!

High-Availability Safe, automated failover backed by a distributed consensus based high-availability solution. Uses Pod Anti-Affinity
to help resiliency; you can configure how aggressive this can be! Failed primaries automatically heal, allowing for faster recovery time.

Disaster Recovery Backups and restores leverage the open source pgBackRest utility and includes support for full, incremental, and
differential backups as well as efficient delta restores. Set how long you want your backups retained for. Works great with very large
databases!

Monitoring Track the health of your PostgreSQL clusters using the open source pgMonitor library.

PostgreSQL User Management Quickly add and remove users from your PostgreSQL clusters with powerful commands. Manage
password expiration policies or use your preferred PostgreSQL authentication scheme.

Upgrade Management Safely apply PostgreSQL updates with minimal availability impact to your PostgreSQL clusters.

Advanced Replication Support Choose between asynchronous replication and synchronous replication for workloads that are sensitive
to losing transactions.

Clone Create new clusters from your existing clusters with a simple pgo clone command.

Connection Pooling Use pgBouncer for connection pooling

Node Affinity Have your PostgreSQL clusters deployed to Kubernetes Nodes of your preference

Scheduled Backups Choose the type of backup (full, incremental, differential) and how frequently you want it to occur on each
PostgreSQL cluster.

Backup to S3 Store your backups in Amazon S3 or any object storage system that supports the S3 protocol. The PostgreSQL Operator
can backup, restore, and create new clusters from these backups.

7

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://www.pgbackrest.org
https://github.com/CrunchyData/pgmonitor
https://access.crunchydata.com/documentation/pgbouncer/
https://kubernetes.io/docs/concepts/architecture/nodes/

Multi-Namespace Support You can control how the PostgreSQL Operator leverages Kubernetes Namespaces with several different
deployment models:

• Deploy the PostgreSQL Operator and all PostgreSQL clusters to the same namespace
• Deploy the PostgreSQL Operator to one namespaces, and all PostgreSQL clusters to a different namespace
• Deploy the PostgreSQL Operator to one namespace, and have your PostgreSQL clusters managed acrossed multiple namespaces
• Dynamically add and remove namespaces managed by the PostgreSQL Operator using the pgo create namespace and pgo delete

namespace commands

Full Customizability The Crunchy PostgreSQL Operator makes it easy to get your own PostgreSQL-as-a-Service up and running on
Kubernetes-enabled platforms, but we know that there are further customizations that you can make. As such, the Crunchy PostgreSQL
Operator allows you to further customize your deployments, including:

• Selecting different storage classes for your primary, replica, and backup storage
• Select your own container resources class for each PostgreSQL cluster deployment; differentiate between resources applied for primary

and replica clusters!
• Use your own container image repository, including support imagePullSecrets and private repositories
• Bring your own trusted certificate authority (CA) for use with the Operator API server
• Override your PostgreSQL configuration for each cluster

How it Works

Figure 1: Architecture

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

8

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Supported Platforms

The Crunchy PostgreSQL Operator is tested on the following Platforms:

• Kubernetes 1.13 - 1.15 (See note about 1.16 and beyond)
• OpenShift 3.11+
• Google Kubernetes Engine (GKE), including Anthos
• VMware Enterprise PKS 1.3+

NOTE: At present, while the Crunchy PostgreSQL Operator has compatibility for Kubernetes 1.16 and beyond, it has not been verified
for the v4.2.1 release.

Storage

The Crunchy PostgreSQL Operator is tested with a variety of different types of Kuberentes storage and Storage Classes, including:

• Google Compute Engine persistent volumes
• HostPath
• NFS
• Rook
• StorageOS

and more.

We know there are a variety of different types of Storage Classes available for Kubernetes and we do our best to test each one, but due to
the breadth of this area we are unable to verify PostgreSQL Operator functionality in each one. With that said, the PostgreSQL Operator
is designed to be storage class agnostic and has been demonstrated to work with additional Storage Classes.

PostgreSQL Operator Quickstart

Can’t wait to try out the PostgreSQL Operator? Let us show you the quickest possible path to getting up and running.

There are two paths to quickly get you up and running with the PostgreSQL Operator:

• Installation via Ansible
• Installation via a Marketplace
• Installation via Google Cloud Platform Marketplace

Marketplaces can help you get more quickly started in your environment as they provide a mostly automated process, but there are a few
steps you will need to take to ensure you can fully utilize your PostgreSQL Operator environment.

Ansible

Below will guide you through the steps for installing and using the PostgreSQL Operator using an installer that works with Ansible.

Step 1: Prerequisites

Kubernetes / OpenShift

• A Kubernetes or OpenShift environment where you have enough privileges to install an application, i.e. you can add a ClusterRole.
If you’re a Cluster Admin, you’re all set.

• Your Kubernetes version should be 1.13+. NOTE: For v4.2.1, while we have updated the PostgreSQL Operator for compatibility
with 1.16+, we have not fully tested it.

• For OpenShift, the PostgreSQL Operator will work in 3.11+
• PersistentVolumes that are available

9

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Your Environment

• kubectl or oc. Ensure you can access your Kubernetes or OpenShift cluster (this is outside the scope of this document)
• ansible 2.5+. Learn how to download ansible
• git
• If you are installing to Google Kubernetes Engine, you will need the gcloud utility

Step 2: Configuration

Get the PostgreSQL Operator Ansible Installation Playbook

You can download the playbook by cloning the PostgreSQL Operator git repository and running the following commands:

git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres -operator
git checkout v4.2.1 # you can substitute this for the version that you want to install
cd ansible

Configure your Installation

Within the ansible folder, there exists a file called inventory. When you open up this file, you can see several options that are used to
install the PostgreSQL Operator. Most of these contain some sensible defaults for getting up and running quickly, but some you will need
to fill out yourself.

Lines that start with a # are commented out. To activate that configuration setting, you will have to delete the #.

Set up your inventory file based on one of the environments that you are deploying to:

Kubernetes You will have to uncomment and set the kubernetes_context variable. This can be determined based on the output of
the kubectl config current-context e.g.:

kubectl config current-context
kubernetes -admin@kubernetes

Note that the output will vary based on the Kubernetes cluster you are using.

Using the above example, set the value of kubernetes_context to the output of the kubectl config current-context command, e.g.

kubernetes_context="kubernetes -admin@kubernetes"

Find the location of the pgo_admin_password configuration variable. Set this to a password of your choosing, e.g.

pgo_admin_password="hippo-elephant"

Finally, you will need to set the storage default storage classes that you would like the Operator to use. For example, if your Kubernetes
environment is using NFS storage, you would set this variables to the following:

backrest_storage='nfsstorage'
backup_storage='nfsstorage'
primary_storage='nfsstorage'
replica_storage='nfsstorage'

For a full list of available storage types that can be used with this installation method, see: $URL

OpenShift For an OpenShfit deployment, you will at a minimum have to to uncomment and set the openshift_host variable. This is
the location of where your OpenShift environment is, and can be obtained from your administrator. For example:

openshift_host="https://openshift.example.com:6443"

Based on how your OpenShift environment is configured, you may need to set the following variables:

• openshift_user
• openshift_password
• openshift_token

10

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.okd.io/download.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://cloud.google.com/sdk/install
https://github.com/CrunchyData/postgres-operator

An optional openshift_skip_tls_verify=true variable is available if your OpenShift environment allows you to skip TLS verification.

Next, find the location of the pgo_admin_password configuration variable. Set this to a password of your choosing, e.g.

pgo_admin_password="hippo-elephant"

Finally, you will need to set the storage default storage classes that you would like the Operator to use. For example, if your OpenShift
environment is using Rook storage, you would set this variables to the following:

backrest_storage='rook'
backup_storage='rook'
primary_storage='rook'
replica_storage='rook'

For a full list of available storage types that can be used with this installation method, see: $URL

Google Kubernetes Engine (GKE) For deploying the PostgreSQL Operator to GKE, you will need to set up your cluster similar to
the Kubernetes set up. First, you will need to get the value for the kubernetes_context variable. Using the gcloud utility, ensure you
are logged into the GCP Project that you are installing the PostgreSQL Operator into:

gcloud config set project [PROJECT_ID]

You can read about how you can get the value of [PROJECT_ID]

From here, you can get the value that needs to be set into the kubernetes_context.

You will have to uncomment and set the kubernetes_context variable. This can be determined based on the output of the kubectl
config current-context e.g.:

kubectl config current-context
gke_some -name_some -zone-some_project

Note that the output will vary based on your GKE project.

Using the above example, set the value of kubernetes_context to the output of the kubectl config current-context command, e.g.

kubernetes_context="gke_some -name_some -zone-some_project"

Next, find the location of the pgo_admin_password configuration variable. Set this to a password of your choosing, e.g.

pgo_admin_password="hippo-elephant"

Finally, you will need to set the storage default storage classes that you would like the Operator to use. For deploying to GKE it is
recommended to use the gce storag class:

backrest_storage='gce'
backup_storage='gce'
primary_storage='gce'
replica_storage='gce'

Step 3: Installation

Ensure you are still in the ansible directory and run the following command to install the PostgreSQL Operator:

ansible-playbook -i inventory --tags=install main.yml

This can take a few minutes to complete depending on your Kubernetes cluster.

While the PostgreSQL Operator is installing, for ease of using the pgo command line interface, you will need to set up some environmental
variables. You can do so with the following command:

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'

If you wish to permanently add these variables to your environment, you can run the following:

11

https://cloud.google.com/resource-manager/docs/creating-managing-projects?visit_id=637125463737632776-3096453244&rd=1#identifying_projects

cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Step 4: Verification

Below are a few steps to check if the PostgreSQL Operator is up and running.

By default, the PostgreSQL Operator installs into a namespace called pgo. First, see that the the Kubernetes Deployment of the Operator
exists and is healthy:

kubectl -n pgo get deployments

If successful, you should see output similar to this:

NAME READY UP-TO-DATE AVAILABLE AGE
postgres -operator 1/1 1 1 16h

Next, see if the Pods that run the PostgreSQL Operator are up and running:

kubectl -n pgo get pods

If successful, you should see output similar to this:

NAME READY STATUS RESTARTS AGE
postgres -operator -56d6ccb97-tmz7m 4/4 Running 0 2m

Finally, let’s see if we can connect to the PostgreSQL Operator from the pgo command-line client. The Ansible installer installs the pgo
command line client into your environment, along with the username/password file that allows you to access the PostgreSQL Operator. In
order to communicate with the PostgreSQL Operator API server, you will first need to set up a port forward to your local environment.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:

pgo version

If successful, you should see output similar to this:

pgo client version 4.2.1
pgo-apiserver version 4.2.1

Step 5: Have Some Fun - Create a PostgreSQL Cluster

The quickstart installation method creates two namespaces that you can deploy your PostgreSQL clusters into called pgouser1 and
pgouser2. Let’s create a new PostgreSQL cluster in pgouser1:

pgo create cluster -n pgouser1 hippo

If successful, you should see output similar to this:

created Pgcluster hippo
workflow id 1cd0d225 -7cd4-4044-b269-aa7bedae219b

This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status
of this cluster using the pgo test command:

pgo test -n pgouser1 hippo

12

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

When everything is up and running, you should seet output similar to this:
cluster : hippo

Services
primary (10.97.140.113:5432): UP

Instances
primary (hippo -7b64747476 -6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n pgouser1 hippo.

Marketplaces

Below is the list of the marketplaces where you can find the Crunchy PostgreSQL Operator:

• Google Cloud Platform Marketplace: Crunchy PostgreSQL for GKE

Follow the instructions below for the marketplace that you want to use to deploy the Crunchy PostgreSQL Operator.

Google Cloud Platform Marketplace

The PostgreSQL Operator is installed as part of the Crunchy PostgreSQL for GKE project that is available in the Google Cloud Platform
Marketplace (GCP Marketplace). Please follow the steps deploy to get the PostgreSQL Operator deployed!

Step 1: Prerequisites

Install Kubectl and gcloud SDK

• kubectl is required to execute kube commands with in GKE.
• gcloudsdk essential command line tools for google cloud

Verification Below are a few steps to check if the PostgreSQL Operator is up and running.

For this example we are deploying the operator into a namespace called pgo. First, see that the the Kubernetes Deployment of the
Operator exists and is healthy:
kubectl -n pgo get deployments

If successful, you should see output similar to this:
NAME READY UP-TO-DATE AVAILABLE AGE
postgres -operator 1/1 1 1 16h

Next, see if the Pods that run the PostgreSQL Operator are up and running:
kubectl -n pgo get pods

If successful, you should see output similar to this:
NAME READY STATUS RESTARTS AGE
postgres -operator -56d6ccb97-tmz7m 4/4 Running 0 2m

Step 2: Install the PostgreSQL Operator User Keys

After your operator is deployed via GCP Marketplace you will need to get keys used to secure the Operator REST API. For these
instructions we will assume the operator is deployed in a namespace named “pgo” if this in not the case for your operator change the
namespace to coencide with where your operator is deployed. Using the gcloud utility, ensure you are logged into the GKE cluster that
you installed the PostgreSQL Operator into, run the following commands to retrieve the cert and key:
kubectl get secret pgo.tls -n pgo -o jsonpath='{.data.tls\.key}' | base64 --decode >

/tmp/client.key
kubectl get secret pgo.tls -n pgo -o jsonpath='{.data.tls\.crt}' | base64 --decode >

/tmp/client.crt

13

https://console.cloud.google.com/marketplace/details/crunchydata/crunchy-postgresql-operator
https://console.cloud.google.com/marketplace/details/crunchydata/crunchy-postgresql-operator
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://cloud.google.com/sdk/install

Step 3: Setup PostgreSQL Operator User

The PostgreSQL Operator implements its own role-based access control (RBAC) system for authenticating and authorization PostgreSQL
Operator users access to its REST API. A default PostgreSQL Operator user (aka a “pgouser”) is created as part of the marketplace
installation (these credentials are set during the marketplace deployment workflow).
Create the pgouser file in ${HOME?}/.pgo/<operatornamespace>/pgouser and insert the user and password you created on deployment
of the PostgreSQL Operator via GCP Marketplace. For example, if you set up a user with the username of username and a password of
hippo:
username:hippo

Step 4: Setup Environment variables

The PostgreSQL Operator Client uses several environmental variables to make it easier for interfacing with the PostgreSQL Operator.
Set the environmental variables to use the key / certificate pair that you pulled in Step 2 was deployed via the marketplace. Using the
previous examples, You can set up environment variables with the following command:
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="/tmp/client.crt"
export PGO_CLIENT_CERT="/tmp/client.crt"
export PGO_CLIENT_KEY="/tmp/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'

If you wish to permanently add these variables to your environment, you can run the following command:
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="/tmp/client.crt"
export PGO_CLIENT_CERT="/tmp/client.crt"
export PGO_CLIENT_KEY="/tmp/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Step 5: Install the PostgreSQL Operator Client pgo

The pgo client provides a helpful command-line interface to perform key operations on a PostgreSQL Operator, such as creating a
PostgreSQL cluster.
The pgo client can be downloaded from GitHub Releases (subscribers can download it from the Crunchy Data Customer Portal).
Note that the pgo client’s version must match the version of the PostgreSQL Operator that you have deployed. For example, if you have
deployed version 4.2.1 of the PostgreSQL Operator, you must use the pgo for 4.2.1.
Once you have download the pgo client, change the permissions on the file to be executable if need be as shown below:
chmod +x pgo

Step 6: Connect to the PostgreSQL Operator

Finally, let’s see if we can connect to the PostgreSQL Operator from the pgo client. In order to communicate with the PostgreSQL
Operator API server, you will first need to set up a port forward to your local environment.
In a new console window, run the following command to set up a port forward:
kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:
pgo version

If successful, you should see output similar to this:
pgo client version 4.2.1
pgo-apiserver version 4.2.1

14

https://github.com/crunchydata/postgres-operator/releases
https://access.crunchydata.com
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Step 7: Create a Namespace

We are almost there! You can optionally add a namespace that can be managed by the PostgreSQL Operator to watch and to deploy a
PostgreSQL cluster into.

pgo create namespace wateringhole

verify the operator has access to the newly added namespace

pgo show namespace --all

you should see out put similar to this:

pgo username: admin
namespace useraccess installaccess
application -system accessible no access
default accessible no access
kube-public accessible no access
kube-system accessible no access
pgo accessible no access
wateringhole accessible accessible

Step 8: Have Some Fun - Create a PostgreSQL Cluster

You are now ready to create a new cluster in the wateringhole namespace, try the command below:

pgo create cluster -n wateringhole hippo

If successful, you should see output similar to this:

created Pgcluster hippo
workflow id 1cd0d225 -7cd4-4044-b269-aa7bedae219b

This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status
of this cluster using the pgo test command:

pgo test -n wateringhole hippo

When everything is up and running, you should see output similar to this:

cluster : hippo
Services

primary (10.97.140.113:5432): UP
Instances

primary (hippo -7b64747476 -6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n wateringhole hippo.

The goal of the Crunchy PostgreSQL Operator is to provide a means to quickly get your applications up and running on PostgreSQL for
both development and production environments. To understand how the PostgreSQL Operator does this, we want to give you a tour of
its architecture, with explains both the architecture of the PostgreSQL Operator itself as well as recommended deployment models for
PostgreSQL in production!

Crunchy PostgreSQL Operator Architecture

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

The Custom Resource Definitions include:

• pgclusters.crunchydata.com: Stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to maintain a high-
availability cluster, etc.

• pgreplicas.crunchydata.com: Stores information required to manage the replicas within a PostgreSQL cluster. This includes
things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.

15

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Figure 2: Operator Architecture with CRDs

• pgtasks.crunchydata.com: A general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. create
a cluster, take a backup, perform a clone) and tracks the state of said task throw its workflow.

• pgpolicies.crunchydata.com: Stores a reference to a SQL file that can be executed against a PostgreSQL cluster. In the past,
this was used to manage RLS policies on PostgreSQL clusters.

There are also a few legacy Custom Resource Definitions that the PostgreSQL Operator comes with that will be removed in a future
release.

The PostgreSQL Operator runs as a deployment in a namespace and is composed of up to four Pods, including:

• operator (image: postgres-operator) - This is the heart of the PostgreSQL Operator. It contains a series of Kubernetes controllers
that place watch events on a series of native Kubernetes resources (Jobs, Pods) as well as the Custom Resources that come with the
PostgreSQL Operator (Pgcluster, Pgtask)

• apiserver (image: pgo-apiserver) - This provides an API that a PostgreSQL Operator User (pgouser) can interface with via the
pgo command-line interface (CLI) or directly via HTTP requests. The API server can also control what resources a user can access
via a series of RBAC rules that can be defined as part of a pgorole.

• scheduler (image: pgo-scheduler) - A container that runs cron and allows a user to schedule repeatable tasks, such as backups
(because it is important to schedule backups in a production environment!)

• event (image: pgo-event, optional) - A container that provides an interface to the nsq message queue and transmits information
about lifecycle events that occur within the PostgreSQL Operator (e.g. a cluster is created, a backup is taken, a clone fails to create)

The main purpose of the PostgreSQL Operator is to create and update information around the structure of a PostgreSQL Cluster, and
to relay information about the overall status and health of a PostgreSQL cluster. The goal is to also simplify this process as much as
possible for users. For example, let’s say we want to create a high-availability PostgreSQL cluster that has a single replica, supports having
backups in both a local storage area and Amazon S3 and has built-in metrics and connection pooling, similar to:

We can accomplish that with a single command:

pgo create cluster hacluster --replica-count=1 --metrics --pgbackrest -storage-type="local,s3"
--pgbouncer --pgbadger

The PostgreSQL Operator handles setting up all of the various Deployments and sidecars to be able to accomplish this task, and puts in
the various constructs to maximize resiliency of the PostgreSQL cluster.

16

https://kubernetes.io/docs/concepts/architecture/controller/

Figure 3: PostgreSQL HA Cluster

You will also notice that high-availability is enabled by default. The Crunchy PostgreSQL Operator uses a distributed-consensus
method for PostgreSQL cluster high-availability, and as such delegates the management of each cluster’s availability to the clusters
themselves. This removes the PostgreSQL Operator from being a single-point-of-failure, and has benefits such as faster recovery times for
each PostgreSQL cluster. For a detailed discussion on high-availability, please see the High-Availability section.

Every single Kubernetes object (Deployment, Service, Pod, Secret, Namespace, etc.) that is deployed or managed by the PostgreSQL
Operator has a Label associated with the name of vendor and a value of crunchydata. You can use Kubernetes selectors to easily find out
which objects are being watched by the PostgreSQL Operator. For example, to get all of the managed Secrets in the default namespace
the PostgreSQL Operator is deployed into (pgo):

kubectl get secrets -n pgo --selector=vendor=crunchydata

Kuberentes Deployments: The Crunchy PostgreSQL Operator Deployment Model

The Crunchy PostgreSQL Operator uses Kubernetes Deployments for running PostgreSQL clusters instead of StatefulSets or other objects.
This is by design: Kubernetes Deployments allow for more flexibility in how you deploy your PostgreSQL clusters.

For example, let’s look at a specific PostgreSQL cluster where we want to have one primary instance and one replica instance. We want
to ensure that our primary instance is using our fastest disks and has more compute resources available to it. We are fine with our replica
having slower disks and less compute resources. We can create this envirionment with a command similar to below:

pgo create cluster mixed --replica-count=1 \
--storage-config=fast --resources -config=large \
--replica-storage-config=standard --resources -config=medium

Now let’s say we want to have one replica available to run read-only queries against, but we want its hardware profile to mirror that of
the primary instance. We can run the following command:

pgo scale mixed --replica-count=1 \
--storage-config=fast --resources -config=large

Kuberentes Deployments allow us to create heterogeneous clusters with ease and let us scale them up and down as we please. Addi-
tional components in our PostgreSQL cluster, such as the pgBackRest repository or an optional pgBouncer, are deployed as Kubernetes
Deployments as well.

We can also leverage Kubernees Deployments to apply Node Affinity rules to individual PostgreSQL instances. For instance, we may want
to force one or more of our PostgreSQL replicas to run on Nodes in a different region than our primary PostgreSQL instances.

17

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity

Using Kubernetes Deployments does create additional management complexity, but the good news is: the PostgreSQL Operator manages
it for you! Being aware of this model can help you understand how the PostgreSQL Operator gives you maximum flexibility in for your
PostgreSQL clusters while giving you the tools to troubleshoot issues in production.

The last piece of this model is the use of Kubernetes Services for accessing your PostgreSQL clusters and their various components.
The PostgreSQL Operator puts services in front of each Deployment to ensure you have a known, consistent means of accessing your
PostgreSQL components.

Note that in some production environments, there can be delays in accessing Services during transition events. The PostgreSQL Operator
attempts to mitigate delays during critical operations (e.g. failover, restore, etc.) by directly accessing the Kubernetes Pods to perform
given actions.

For a detailed analysis, please see Using Kubernetes Deployments for Running PostgreSQL.

Additional Architecture Information

There is certainly a lot to unpack in the overall architecture of the Crunchy PostgreSQL Operator. Understanding the architecture will
help you to plan the deployment model that is best for your environment. For more information on the architectures of various components
of the PostgreSQL Operator, please read onward!

What happens when the Crunchy PostgreSQL Operator creates a PostgreSQL cluster?

Figure 4: PostgreSQL HA Cluster

First, an entry needs to be added to the Pgcluster CRD that provides the essential attributes for maintaining the definition of a
PostgreSQL cluster. These attributes include:

• Cluster name
• The storage and resource definitions to use
• References to any secrets required, e.g. ones to the pgBackRest repository
• High-availability rules
• Which sidecars and ancillary services are enabled, e.g. pgBouncer, pgMonitor

After the Pgcluster CRD entry is set up, the PostgreSQL Operator handles various tasks to ensure that a healthy PostgreSQL cluster can
be deployed. These include:

• Allocating the PersistentVolumeClaims that are used to store the PostgreSQL data as well as the pgBackRest repository
• Setting up the Secrets specific to this PostgreSQL cluster

18

https://kubernetes.io/docs/concepts/services-networking/service/
https://info.crunchydata.com/blog/using-kubernetes-deployments-for-running-postgresql
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

• Setting up the ConfigMap entries specific for this PostgreSQL cluster, including entries that may contain custom configurations as
well as ones that are used for the PostgreSQL cluster to manage its high-availability

• Creating Deployments for the PostgreSQL primary instance and the pgBackRest repository

You will notice the presence of a pgBackRest repository. As of version 4.2, this is a mandatory feature for clusters that are deployed by
the PostgreSQL Operator. In addition to providing an archive for the PostgreSQL write-ahead logs (WAL), the pgBackRest repository
serves several critical functions, including:

• Used to efficiently provision new replicas that are added to the PostgreSQL cluster
• Prevent replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
• Allow failed primaries to automatically and efficiently heal using the “delta restore” feature
• Serves as the basis for the cluster cloning feature
• …and of course, allow for one to take full, differential, and incremental backpus and perform full and point-in-time restores

The pgBackRest repository can be configured to use storage that resides within the Kubernetes cluster (the local option), Amazon S3 or
a storage system that uses the S3 protocol (the s3 option), or both (local,s3).

Once the PostgreSQL primary instance is ready, there are two follow up actions that the PostgreSQL Operator takes to properly leverage
the pgBackRest repository:

• A new pgBackRest stanza is created
• An initial backup is taken to facilitate the creation of any new replica

At this point, if new replicas were requested as part of the pgo create command, they are provisioned from the pgBackRest repository.

There is a Kubernetes Service created for the Deployment of the primary PostgreSQL instance, one for the pgBackRest repository, and
one that encompasses all of the replicas. Additionally, if the connection pooler pgBouncer is deployed with this cluster, it will also have a
service as well.

An optional monitoring sidecar can be deployed as well. The sidecar, called collect, uses the crunchy-collect container that is a part
of pgMonitor and scrapes key health metrics into a Prometheus instance. See Monitoring for more information on how this works.

Horizontal Scaling

There are many reasons why you may want to horizontally scale your PostgreSQL cluster:

• Add more redundancy by having additional replicas
• Leveraging load balancing for your read only queries
• Add in a new replica that has more storage or a different container resource profile, and then failover to that as the new primary

and more.

The PostgreSQL Operator enables the ability to scale up and down via the pgo scale and pgo scaledown commands respectively. When
you run pgo scale, the PostgreSQL Operator takes the following steps:

• The PostgreSQL Operator creates a new Kubernetes Deployment with the information specified from the pgo scale command
combined with the information already stored as part of the managing the existing PostgreSQL cluster

• During the provisioning of the replica, a pgBackRest restore takes place in order to bring it up to the point of the last backup. If
data already exists as part of this replica, then a “delta restore” is performed. (NOTE: If you have not taken a backup in awhile
and your database is large, consider taking a backup before performing scaling up.)

• The new replica boots up in recovery mode and recovers to the latest point in time. This allows it to catch up to the current primary.
• Once the replica has recovered, it joins the primary as a streaming replica!

If pgMonitor is enabled, a collect sidecar is also added to the replica Deployment.

Scaling down works in the opposite way:

• The PostgreSQL instance on the scaled down replica is stopped. By default, the data is explicitly wiped out unless the --keep-data
flag on pgo scaledown is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted

• The Kubernetes Deployment associated with the replica is removed, as well as any other Kubernetes objects that are specifically
associated with this replcia

19

Deprovisioning

There may become a point where you need to completely deprovision, or delete, a PostgreSQL cluster. You can delete a cluster managed by
the PostgreSQL Operator using the pgo delete command. By default, all data and backups are removed when you delete a PostgreSQL
cluster, but there are some options that allow you to retain data, including:

• --keep-backups - this retains the pgBackRest repository. This can be used to restore the data to a new PostgreSQL cluster.
• --keep-data - this retains the PostgreSQL data directory (aka PGDATA) from the primary PostgreSQL instance in the cluster. This

can be used to recreate the PostgreSQL cluster of the same name.

When the PostgreSQL cluster is deleted, the following takes place:

• All PostgreSQL instances are stopped. By default, the data is explicitly wiped out unless the --keep-data flag on pgo scaledown
is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted

• Any Services, ConfigMaps, Secrets, etc. Kubernetes objects are all deleted
• The Kubernetes Deployments associated with the PostgreSQL instances are removed, as well as the Kubernetes Deployments

associated with pgBackRest repository and, if deployed, the pgBouncer connection pooler

When using the PostgreSQL Operator, the answer to the question “do you take backups of your database” is automatically “yes!”

The PostgreSQL Operator uses the open source pgBackRest backup and restore utility that is designed for working with databases that
are many terabytes in size. As described in the Provisioning section, pgBackRest is enabled by default as it permits the PostgreSQL
Operator to automate some advanced as well as convenient behaviors, including:

• Efficient provisioning of new replicas that are added to the PostgreSQL cluster
• Preventing replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
• Allowing failed primaries to automatically and efficiently heal using the “delta restore” feature
• Serving as the basis for the cluster cloning feature
• …and of course, allowing for one to take full, differential, and incremental backpus and perform full and point-in-time restores

Figure 5: PostgreSQL Operator pgBackRest Integration

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster.
When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository as described in the Provisioning section.

At PostgreSQL cluster creation time, you can specify a specific Storage Class for the pgBackRest repository. Additionally, you can also
specify the type of pgBackRest repository that can be used, including:

• local: Uses the storage that is provided by the Kubenetes cluster’s Storage Class that you select
• s3: Use Amazon S3 or an object storage system that uses the S3 protocol

20

https://pgbackrest.org

• local,s3: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select AND Amazon S3 (or
equivalent object storage system that uses the S3 protocol)

The pgBackRest repository consists of the following Kubernetes objects:

• A Deployment
• A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g. SSH keys, AWS S3 keys,

etc.)
• A Service

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-ahead log (WAL) archives
to the correct repository.

Backups

Backups can be taken with the pgo backup command

The PostgreSQL Operator supports three types of pgBackRest backups:

• Full (full): A full backup of all the contents of the PostgreSQL cluster
• Differential (diff): A backup of only the files that have changed since the last full backup
• Incremental (incr): A backup of only the files that have changed since the last full or differential backup

By default, pgo backup will attempt to take an incremental (incr) backup unless otherwise specified.

For example, to specify a full backup:
pgo backup hacluster --backup-opts="--type=full"

The PostgreSQL Operator also supports setting pgBackRest retention policies as well for backups. For example, to take a full backup and
to specify to only keep the last 7 backups:
pgo backup hacluster --backup-opts="--type=full --repo1-retention -full=7"

Restores

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery
using the pgo restore command. Note that both of these options are destructive to the existing PostgreSQL cluster; to “restore” the
PostgreSQL cluster to a new deployment, please see the Clone section.

The pgo restore command lets you specify the point at which you want to restore your database using the --pitr-target flag with the
pgo restore command.

NOTE: Ensure you are backing up your PostgreSQL cluster regularly, as this will help expedite your restore times. The next section will
cover scheduling regular backups.

When the PostgreSQL Operator issues a restore, the following actions are taken on the cluster:

• The PostgreSQL Operator disables the “autofail” mechanism so that no failovers will occur during the restore.
• Any replicas that may be associated with the PostgreSQL cluster are destroyed
• A new Persistent Volume Claim (PVC) is allocated using the specifications provided for the primary instance. This may have been

set with the --storage-class flag when the cluster was originally created
• A Kubernetes Job is created that will perform a pgBackRest restore operation to the newly allocated PVC. This is facilitated by

the pgo-backrest-restore container image.

• When restore Job successfully completes, a new Deployment for the PostgreSQL cluster primary instance is created. A recovery is
then issued to the specified point-in-time, or if it is a full recovery, up to the point of the latest WAL archive in the repository.

• Once the PostgreSQL primary instance is available, the PostgreSQL Operator will take a new, full backup of the cluster.

At this point, the PostgreSQL cluster has been restored. However, you will need to re-enable autofail if you would like your PostgreSQL
cluster to be highly-available. You can re-enable autofail with this command:
pgo update cluster hacluster --autofail=true

21

Figure 6: PostgreSQL Operator Restore Step 1

Scheduling Backups

Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its
scheduling sidecar that is deployed alongside the Operator.

The PostgreSQL Operator Scheduler is essentially a cron server that will run jobs that it is specified. Schedule commands use the cron
syntax to set up scheduled tasks.

For example, to schedule a full backup once a day at 1am, the following command can be used:

pgo create schedule hacluster --schedule="0 1 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=full

To schedule an incremental backup once every 3 hours:

pgo create schedule hacluster --schedule="0 */3 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=incr

Setting Backup Retention Policies

Unless specified, pgBackRest will keep an unlimited number of backups. As part of your regularly scheduled backups, it is encouraged for
you to set a retention policy. This can be accomplished using the --repo1-retention-full for full backups and --repo1-retention-diff
for differential backups via the --schedule-opts parameter.

For example, using the above example of taking a nightly full backup, you can specify a policy of retaining 21 backups using the following
command:

pgo create schedule hacluster --schedule="0 1 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=full \
--schedule-opts="--repo1-retention -full=21"

22

https://en.wikipedia.org/wiki/Cron

Figure 7: PostgreSQL Operator Restore Step 2

Figure 8: PostgreSQL Operator Schedule Backups

23

Schedule Expression Format

Schedules are expressed using the following rules, which should be familiar to users of cron:

Field name	Mandatory?	Allowed values	Allowed special characters
Seconds | Yes | 0-59 | * / , -
Minutes | Yes | 0-59 | * / , -
Hours | Yes | 0-23 | * / , -
Day of month | Yes | 1-31 | * / , - ?
Month | Yes | 1-12 or JAN-DEC | * / , -
Day of week | Yes | 0-6 or SUN-SAT | * / , - ?

Using S3

The PostgreSQL Operator integration with pgBackRest allows it to use the AWS S3 object storage system, as well as other object storage
systems that implement the S3 protocol.

In order to enable S3 storage, it is helpful to provide some of the S3 information prior to deploying the PostgreSQL Operator, or updating
the pgo-config ConfigMap and restarting the PostgreSQL Operator pod.

First, you will need to add the proper S3 bucket name, AWS S3 endpoint and the AWS S3 region to the Cluster section of the pgo.yaml
configuration file:

Cluster:
BackrestS3Bucket: my-postgresql -backups-example
BackrestS3Endpoint: s3.amazonaws.com
BackrestS3Region: us-east-1

These values can also be set on a per-cluster basis with the pgo create cluster command, i.e.:

• --pgbackrest-s3-bucket - specifics the AWS S3 bucket that should be utilized
• --pgbackrest-s3-endpoint specifies the S3 endpoint that should be utilized
• --pgbackrest-s3-key - specifies the AWS S3 key that should be utilized
• --pgbackrest-s3-key-secret- specifies the AWS S3 key secret that should be utilized
• --pgbackrest-s3-region - specifies the AWS S3 region that should be utilized

Sensitive information, such as the values of the AWS S3 keys and secrets, are stored in Kubernetes Secrets and are securely mounted to
the PostgreSQL clusters.

To enable a PostgreSQL cluster to use S3, the --pgbackrest-storage-type on the pgo create cluster command needs to be set to s3
or local,s3.

Once configured, the pgo backup and pgo restore commands will work with S3 similarly to the above!

One of the great things about PostgreSQL is its reliability: it is very stable and typically “just works.” However, there are certain things
that can happen in the environment that PostgreSQL is deployed in that can affect its uptime, including:

• The database storage disk fails or some other hardware failure occurs
• The network on which the database resides becomes unreachable
• The host operating system becomes unstable and crashes
• A key database file becomes corrupted
• A data center is lost

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching
of operating system, hardware upgrade, or other maintenance.

Fortunately, the Crunchy PostgreSQL Operator is prepared for this.

The Crunchy PostgreSQL Operator supports a distributed-consensus based high-availability (HA) system that keeps its managed Post-
greSQL clusters up and running, even if the PostgreSQL Operator disappears. Additionally, it leverages Kubernetes specific features such
as Pod Anti-Affinity to limit the surface area that could lead to a PostgreSQL cluster becoming unavailable. The PostgreSQL Operator
also supports automatic healing of failed primaries and leverages the efficient pgBackRest “delta restore” method, which eliminates the
need to fully reprovision a failed cluster!

The Crunchy PostgreSQL Operator also maintains high-availability during a routine task such as a PostgreSQL minor version upgrade.

24

Figure 9: PostgreSQL Operator High-Availability Overview

25

For workloads that are sensitive to transaction loss, the Crunchy PostgreSQL Operator supports PostgreSQL synchronous replication,
which can be specified with the --sync-replication when using the pgo create cluster command.

(HA is enabled by default in any newly created PostgreSQL cluster. You can update this setting by either using the --disable-autofail
flag when using pgo create cluster, or modify the pgo-config ConfigMap [or the pgo.yaml file] to set DisableAutofail to "true".
These can also be set when a PostgreSQL cluster is running using the pgo update cluster command).

One can also choose to manually failover using the pgo failover command as well.

The high-availability backing for your PostgreSQL cluster is only as good as your high-availability backing for Kubernetes. To learn more
about creating a high-availability Kubernetes cluster, please review the Kubernetes documentation or consult your systems administrator.

The Crunchy PostgreSQL Operator High-Availability Algorithm

A critical aspect of any production-grade PostgreSQL deployment is a reliable and effective high-availability (HA) solution. Organizations
want to know that their PostgreSQL deployments can remain available despite various issues that have the potential to disrupt operations,
including hardware failures, network outages, software errors, or even human mistakes.

The key portion of high-availability that the PostgreSQL Operator provides is that it delegates the management of HA to the PostgreSQL
clusters themselves. This ensures that the PostgreSQL Operator is not a single-point of failure for the availability of any of the PostgreSQL
clusters that it manages, as the PostgreSQL Operator is only maintaining the definitions of what should be in the cluster (e.g. how many
instances in the cluster, etc.).

Each HA PostgreSQL cluster maintains its availability using concepts that come from the Raft algorithm to achieve distributed consensus.
The Raft algorithm (“Reliable, Replicated, Redundant, Fault-Tolerant”) was developed for systems that have one “leader” (i.e. a primary)
and one-to-many followers (i.e. replicas) to provide the same fault tolerance and safety as the PAXOS algorithm while being easier to
implement.

For the PostgreSQL cluster group to achieve distributed consensus on who the primary (or leader) is, each PostgreSQL cluster leverages
the distributed etcd key-value store that is bundled with Kubernetes. After it is elected as the leader, a primary will place a lock in the
distributed etcd cluster to indicate that it is the leader. The “lock” serves as the method for the primary to provide a heartbeat: the
primary will periodically update the lock with the latest time it was able to access the lock. As long as each replica sees that the lock was
updated within the allowable automated failover time, the replicas will continue to follow the leader.

The “log replication” portion that is defined in the Raft algorithm is handled by PostgreSQL in two ways. First, the primary instance will
replicate changes to each replica based on the rules set up in the provisioning process. For PostgreSQL clusters that leverage “synchronous
replication,” a transaction is not considered complete until all changes from those transactions have been sent to all replicas that are
subscribed to the primary.

In the above section, note the key word that the transaction are sent to each replica: the replicas will acknowledge receipt of the transaction,
but they may not be immediately replayed. We will address how we handle this further down in this section.

During this process, each replica keeps track of how far along in the recovery process it is using a “log sequence number” (LSN), a built-in
PostgreSQL serial representation of how many logs have been replayed on each replica. For the purposes of HA, there are two LSNs
that need to be considered: the LSN for the last log received by the replica, and the LSN for the changes replayed for the replica. The
LSN for the latest changes received can be compared amongst the replicas to determine which one has replayed the most changes, and an
important part of the automated failover process.

The replicas periodically check in on the lock to see if it has been updated by the primary within the allowable automated failover timeout.
Each replica checks in at a randomly set interval, which is a key part of Raft algorithm that helps to ensure consensus during an election
process. If a replica believes that the primary is unavailable, it becomes a candidate and initiates an election and votes for itself as the
new primary. A candidate must receive a majority of votes in a cluster in order to be elected as the new primary.

There are several cases for how the election can occur. If a replica believes that a primary is down and starts an election, but the primary
is actually not down, the replica will not receive enough votes to become a new primary and will go back to following and replaying the
changes from the primary.

In the case where the primary is down, the first replica to notice this starts an election. Per the Raft algorithm, each available replica
compares which one has the latest changes available, based upon the LSN of the latest logs received. The replica with the latest LSN wins
and receives the vote of the other replica. The replica with the majority of the votes wins. In the event that two replicas’ logs have the
same LSN, the tie goes to the replica that initiated the voting request.

Once an election is decided, the winning replica is immediately promoted to be a primary and takes a new lock in the distributed etcd
cluster. If the new primary has not finished replaying all of its transactions logs, it must do so in order to reach the desired state based
on the LSN. Once the logs are finished being replayed, the primary is able to accept new queries.

At this point, any existing replicas are updated to follow the new primary.

When the old primary tries to become available again, it realizes that it has been deposed as the leader and must be healed. The old
primary determines what kind of replica it should be based upon the CRD, which allows it to set itself up with appropriate attributes.
It is then restored from the pgBackRest backup archive using the “delta restore” feature, which heals the instance and makes it ready to
follow the new primary, which is known as “auto healing.”

26

https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://raft.github.io/

How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity

By default, when a new PostgreSQL cluster is created using the PostgreSQL Operator, pod anti-affinity rules will be applied to any
deployments comprising the full PG cluster (please note that default pod anti-affinity does not apply to any Kubernetes jobs created by
the PostgreSQL Operator). This includes:

• The primary PG deployment
• The deployments for each PG replica
• The pgBackrest dedicated repostiory deployment
• The pgBouncer deployment (if enabled for the cluster)

There are three types of Pod Anti-Affinity rules that the Crunchy PostgreSQL Operator supports:

• preferred: Kubernetes will try to schedule any pods within a PostgreSQL cluster to different nodes, but in the event it must
schedule two pods on the same Node, it will. As described above, this is the default option.

• required: Kubernetes will schedule pods within a PostgreSQL cluster to different Nodes, but in the event it cannot schedule a pod
to a different Node, it will not schedule the pod until a different node is available. While this guarantees that no pod will share
the same node, it can also lead to downtime events as well. This uses the requiredDuringSchedulingIgnoredDuringExecution
affinity rule.

• disabled: Pod Anti-Affinity is not used.

With the default preferred Pod Anti-Affinity rule enabled, Kubernetes will attempt to schedule pods created by each of the separate
deployments above on a unique node, but will not guarantee that this will occur. This ensures that the pods comprising the PostgreSQL
cluster can always be scheduled, though perhaps not always on the desired node. This is specifically done using the following:

• The preferredDuringSchedulingIgnoredDuringExecution affinity type, which defines an anti-affinity rule that Kubernetes will
attempt to adhere to, but will not guarantee will occur during Pod scheduling

• A combination of labels that uniquely identify the pods created by the various Deployments listed above
• A topology key of kubernetes.io/hostname, which instructs Kubernetes to schedule a pod on specific Node only if there is not

already another pod in the PostgreSQL cluster scheduled on that same Node

If you want to explicitly create a PostgreSQL cluster with the preferred Pod Anti-Affinity rule, you can execute the pgo create command
using the --pod-anti-affinity flag similar to this:
pgo create cluster hacluster --replica-count=2 --pod-anti-affinity=preferred

or it can also be explicitly enabled globally for all clusters by setting PodAntiAffinity to preferred in the pgo.yaml configuration file.
If you want to create a PostgreSQL cluster with the required Pod Anti-Affinity rule, you can execute a command similar to this:
pgo create cluster hacluster --replica-count=2 --pod-anti-affinity=required

or set the required option globally for all clusters by setting PodAntiAffinity to required in the pgo.yaml configuration file.
When required is utilized for the default pod anti-affinity, a separate node is required for each deployment listed above comprising the PG
cluster. This ensures that the cluster remains highly-available by ensuring that node failures do not impact any other deployments in the
cluster. However, this does mean that the PostgreSQL primary, each PostgreSQL replica, the pgBackRest repository and, if deployed, the
pgBouncer Pods will each require a unique node, meaning the minimum number of Nodes required for the Kubernetes cluster will increase
as more Pods are added to the PostgreSQL cluster. Further, if an insufficient number of nodes are available to support this configuration,
certain deployments will fail, since it will not be possible for Kubernetes to successfully schedule the pods for each deployment.

Synchronous Replication: Guarding Against Transactions Loss

Clusters managed by the Crunchy PostgreSQL Operator can be deployed with synchronous replication, which is useful for workloads that
are sensitive to losing transactions, as PostgreSQL will not consider a transaction to be committed until it is committed to all synchronous
replicas connected to a primary. This provides a higher guarantee of data consistency and, when a healthy synchronous replica is present,
a guarantee of the most up-to-date data during a failover event.
This comes at a cost of performance as PostgreSQL: as PostgreSQL has to wait for a transaction to be committed on all synchronous
replicas, a connected client will have to wait longer than if the transaction only had to be committed on the primary (which is how
asynchronous replication works). Additionally, there is a potential impact to availability: if a synchronous replica crashes, any writes to
the primary will be blocked until a replica is promoted to become a new synchronous replica of the primary.
You can enable synchronous replication by using the --sync-replication flag with the pgo create command, e.g.:
pgo create cluster hacluster --replica-count=2 --sync-replication

27

Node Affinity

Kubernetes Node Affinity can be used to scheduled Pods to specific Nodes within a Kubernetes cluster. This can be useful when you
want your PostgreSQL instances to take advantage of specific hardware (e.g. for geospatial applications) or if you want to have a replica
instance deployed to a specific region within your Kubernetes cluster for high-availability purposes.

The PostgreSQL Operator provides users with the ability to apply Node Affinity rules using the --node-label flag on the pgo create
and the pgo scale commands. Node Affinity directs Kubernetes to attempt to schedule these PostgreSQL instances to the specified Node
label.

To get a list of available Node labels:
kubectl get nodes --show-labels

You can then specify one of those Kubernetes node names (e.g. region=us-east-1) when creating a PostgreSQL cluster;
pgo create cluster thatcluster --node-label=region=us-east-1

The Node Affinity only uses the preferred scheduling strategy (similar to what is described in the Pod Anti-Affinity section above), so
if a Pod cannot be scheduled to a particular Node matching the label, it will be scheduled to a different Node.

Operator Namespaces

The Operator itself knows which namespace it is running within by referencing the PGO_OPERATOR_NAMESPACE environment
variable at startup time from within its Deployment definition.

The PGO_OPERATOR_NAMESPACE environment variable a user sets in their .bashrc file is used to determine what namespace the
Operator is deployed into. The PGO_OPERATOR_NAMESPACE variable is referenced by the Operator during deployment.

The .bashrc NAMESPACE environment variable a user sets determines which namespaces the Operator will watch.

Namespace Watching

The Operator at startup time determines which namespaces it will service based on what it finds in the NAMESPACE environment
variable that is passed into the Operator containers within the deployment.json file.

The NAMESPACE variable can hold different values which determine the namespaces which will be watched by the Operator.

The format of the NAMESPACE value is modeled after the following document:

https://github.com/operator-framework/operator-lifecycle-manager/blob/0.12.0/doc/design/operatorgroups.md

OwnNamespace Example

Prior to version 4.0, the Operator was deployed into a single namespace and Postgres Clusters created by it were created in that same
namespace.

To achieve that same deployment model you would use variable settings as follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=pgo

SingleNamespace Example

To have the Operator deployed into its own namespace but create Postgres Clusters into a different namespace the variables would be as
follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=pgouser1

MultiNamespace Example

To have the Operator deployed into its own namespace but create Postgres Clusters into more than one namespace the variables would
be as follows:
export PGO_OPERATOR_NAMESPACE=pgo
export NAMESPACE=pgouser1 ,pgouser2

28

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity

Figure 10: Reference

Figure 11: Reference

29

Figure 12: Reference

RBAC

To support multiple namespace watching, each namespace that the PostgreSQL Operator watches requires its own copy of the following
resources:

• role/pgo-backrest-role
• role/pgo-role
• rolebinding/pgo-backrest-role-binding
• rolebinding/pgo-role-binding
• secret/pgo-backrest-repo-config
• serviceaccount/pgo-backrest

When you run the install-rbac.sh script, it iterates through the list of namespaces to be watched and creates these resources into each of
those namespaces.

If you need to add a new namespace that the Operator will watch after an initial execution of install-rbac.sh, you will need to run the
following for each new namespace:

create-target-rbac.sh YOURNEWNAMESPACE $PGO_OPERATOR_NAMESPACE

The example deployment creates the following RBAC structure on your Kubernetes system after running the install scripts:

pgo Clients and Namespaces

The pgo CLI now is required to identify which namespace it wants to use when issuing commands to the Operator.

Users of pgo can either create a PGO_NAMESPACE environment variable to set the namespace in a persistent manner or they can specify
it on the pgo command line using the –namespace flag.

If a pgo request doe not contain a valid namespace the request will be rejected.

30

Figure 13: Reference

Operator Eventing

The Operator creates events from the various life-cycle events going on within the Operator logic and driven by pgo users as they interact
with the Operator and as Postgres clusters come and go or get updated.

Event Watching

There is a pgo CLI command:

pgo watch alltopic

This command connects to the event stream and listens on a topic for event real-time. The command will not complete until the pgo user
enters ctrl-C.

This command will connect to localhost:14150 (default) to reach the event stream. If you have the correct priviledges to connect to the
Operator pod, you can port forward as follows to form a connection to the event stream:

kubectl port-forward postgres -operator-XXXXXX 14150:4150 -n pgo

Event Topics

The following topics exist that hold the various Operator generated events:

alltopic
clustertopic
backuptopic
loadtopic
postgresusertopic
policytopic
pgbouncertopic
pgotopic
pgousertopic

Event Types

The various event types are found in the source code at https://github.com/CrunchyData/postgres-operator/blob/master/events/eventtype.go

31

Event Testing

To test the event logic, you can run the test case for events as follows:

create a connection locally to the event stream
kubectl port-forward postgres -operator-XXXXXX 14150:4150 -n pgo

specify the event address
export EVENT_ADDR=localhost:14150

run the test using foomatic as the name of the test cluster
and pgouser1 as the name of the namespace to test against
cd testing/events
go test -run TestEventCreate -v --kubeconfig=/home/<yourhomedir >/.kube/config

-clustername=foomatic -namespace=pgouser1

Event Deployment

The Operator events are published and subscribed via the NSQ project software (https://nsq.io/). NSQ is found in the pgo-event container
which is part of the postgres-operator deployment.

You can see the pgo-event logs by issuing the elog bash function found in the examples/envs.sh script.

NSQ looks for events currently at port 4150. The Operator sends events to the NSQ address as defined in the EVENT_ADDR environment
variable.

If you want to disable eventing when installing with Bash, set the following environment variable in the Operator Deployment: “name”:
“DISABLE_EVENTING” “value”: “true”

To disable eventing when installing with Ansible, add the following to your inventory file: pgo_disable_eventing=‘true’

PostgreSQL Operator Containers Overview

The PostgreSQL Operator orchestrates a series of PostgreSQL and PostgreSQL related containers containers that enable rapid deployment
of PostgreSQL, including administration and monitoring tools in a Kubernetes environment. The PostgreSQL Operator supports Post-
greSQL 9.5+ with multiple PostgreSQL cluster deployment strategies and a variety of PostgreSQL related extensions and tools enabling
enterprise grade PostgreSQL-as-a-Service. A full list of the containers supported by the PostgreSQL Operator is provided below.

PostgreSQL Server and Extensions

• PostgreSQL (crunchy-postgres-ha). PostgreSQL database server. The crunchy-postgres container image is unmodified, open source
PostgreSQL packaged and maintained by Crunchy Data.

• PostGIS (crunchy-postgres-ha-gis). PostgreSQL database server including the PostGIS extension. The crunchy-postgres-gis con-
tainer image is unmodified, open source PostgreSQL packaged and maintained by Crunchy Data. This image is identical to the
crunchy-postgres image except it includes the open source geospatial extension PostGIS for PostgreSQL in addition to the language
extension PL/R which allows for writing functions in the R statistical computing language.

Backup and Restore

• pgBackRest (crunchy-backrest-restore). pgBackRest is a high performance backup and restore utility for PostgreSQL. The crunchy-
backrest-restore container executes the pgBackRest utility, allowing FULL and DELTA restore capability.

• pgdump (crunchy-pgdump). The crunchy-pgdump container executes either a pg_dump or pg_dumpall database backup against
another PostgreSQL database.

• crunchy-pgrestore (restore). The restore image provides a means of performing a restore of a dump from pg_dump or pg_dumpall
via psql or pg_restore to a PostgreSQL container database.

32

Administration Tools

• pgAdmin4 (crunchy-pgadmin4). PGAdmin4 is a graphical user interface administration tool for PostgreSQL. The crunchy-pgadmin4
container executes the pgAdmin4 web application.

• pgbadger (crunchy-pgbadger). pgbadger is a PostgreSQL log analyzer with fully detailed reports and graphs. The crunchy-pgbadger
container executes the pgBadger utility, which generates a PostgreSQL log analysis report using a small HTTP server running on
the container.

• pg_upgrade (crunchy-upgrade). The crunchy-upgrade container contains 9.5, 9.6, 10, 11 and 12 PostgreSQL packages in order to
perform a pg_upgrade from 9.5 to 9.6, 9.6 to 10, 10 to 11, and 11 to 12 versions.

• scheduler (crunchy-scheduler). The crunchy-scheduler container provides a cron like microservice for automating pgBaseBackup
and pgBackRest backups within a single namespace.

Metrics and Monitoring

• Metrics Collection (crunchy-collect). The crunchy-collect container provides real time metrics about the PostgreSQL database via
an API. These metrics are scraped and stored by a Prometheus time-series database and are then graphed and visualized through
the open source data visualizer Grafana.

• Grafana (crunchy-grafana). Grafana is an open source Visual dashboards are created from the collected and stored data that
crunchy-collect and crunchy-prometheus provide for the crunchy-grafana container, which hosts an open source web-based graphing
dashboard called Grafana.

• Prometheus (crunchy-prometheus). Prometheus is a multi-dimensional time series data model with an elastic query language. It
is used in collaboration with Crunchy Collect and Grafana to provide metrics.

Connection Pooling

• pgbouncer (crunchy-pgbouncer). pgbouncer is a lightweight connection pooler for PostgreSQL. The crunchy-pgbouncer container
provides a pgbouncer image.

Storage and the PostgreSQL Operator

The PostgreSQL Operator allows for a variety of different configurations of persistent storage that can be leveraged by the PostgreSQL
instances or clusters it deploys.

The PostgreSQL Operator works with several different storage types, HostPath, Network File System(NFS), and Dynamic storage.

• Hostpath is the simplest storage and useful for single node testing.

• NFS provides the ability to do single and multi-node testing.

Hostpath and NFS both require you to configure persistent volumes so that you can make claims towards those volumes. You will need
to monitor the persistent volumes so that you do not run out of available volumes to make claims against.

Dynamic storage classes provide a means for users to request persistent volume claims and have the persistent volume dynamically created
for you. You will need to monitor disk space with dynamic storage to make sure there is enough space for users to request a volume.
There are multiple providers of dynamic storage classes to choose from. You will need to configure what works for your environment and
size the Physical Volumes, Persistent Volumes (PVs), appropriately.

Once you have determined the type of storage you will plan on using and setup PV’s you need to configure the Operator to know about
it. You will do this in the pgo.yaml file.

If you are deploying to a cloud environment with multiple zones, for instance Google Kubernetes Engine (GKE), you will want to review
topology aware storage class configurations.

User Roles in the PostgreSQL Operator

The PostgreSQL Operator, when used in conjunction with the associated PostgreSQL Containers and Kubernetes, provides you with the
ability to host your own open source, Kubernetes native PostgreSQL-as-a-Service infrastructure.

In installing, configuring and operating the PostgreSQL Operator as a PostgreSQL-as-a-Service capability, the following user roles will be
required:

33

Role Applicable Component Authorized Privileges and Functions Performed

Platform Admininistrator (Privileged User) PostgreSQL Operator The Platform Admininistrator is able to control all aspects of the PostgreSQL Operator functionality, including: provisioning and scaling clusters, adding PostgreSQL Administrators and PostgreSQL Users to clusters, setting PostgreSQL cluster security privileges, managing other PostgreSQL Operator users, and more. This user can have access to any database that is deployed and managed by the PostgreSQL Operator.
Platform User PostgreSQL Operator The Platform User has access to a limited subset of PostgreSQL Operator functionality that is defined by specific RBAC rules. A Platform Administrator manages the specific permissions for an Platform User specific permissions. A Platform User only receives a permission if its is explicitly granted to them.
PostgreSQL Administrator(Privileged Account) PostgreSQL Containers The PostgreSQL Administrator is the equivalent of a PostgreSQL superuser (e.g. the “postgres” user) and can perform all the actions that a PostgreSQL superuser is permitted to do, which includes adding additional PostgreSQL Users, creating databases within the cluster.
PostgreSQL User PostgreSQL Containers The PostgreSQL User has access to a PostgreSQL Instance or Cluster but must be granted explicit permissions to perform actions in PostgreSQL based upon their role membership.

As indicated in the above table, both the Operator Administrator and the PostgreSQL Administrators represent privilege users with
components within the PostgreSQL Operator.

Platform Administrator

For purposes of this User Guide, the “Platform Administrator” is a Kubernetes system user with PostgreSQL Administrator privileges and
has PostgreSQL Operator admin rights. While PostgreSQL Operator admin rights are not required, it is helpful to have admin rights to
be able to verify that the installation completed successfully. The Platform Administrator will be responsible for managing the installation
of the Crunchy PostgreSQL Operator service in Kubernetes. That installation can be on RedHat OpenShift 3.11+, Kubeadm, or even
Google’s Kubernetes Engine.

Platform User

For purposes of this User Guide, a “Platform User” is a Kubernetes system user and has PostgreSQL Operator admin rights. While admin
rights are not required for a typical user, testing out functiontionality will be easier, if you want to limit functionality to specific actions
section 2.4.5 covers roles. The Platform User is anyone that is interacting with the Crunchy PostgreSQL Operator service in Kubernetes
via the PGO CLI tool. Their rights to carry out operations using the PGO CLI tool is governed by PGO Roles(discussed in more detail
later) configured by the Platform Administrator. If this is you, please skip to section 2.3.1 where we cover configuring and installing PGO.

PostgreSQL User

In the context of the PostgreSQL Operator, the “PostgreSQL User” is any person interacting with the PostgreSQL database using database
specific connections, such as a language driver or a database management GUI.

The default PostgreSQL instance installation via the PostgreSQL Operator comes with the following users:

Role name Attributes

postgres Superuser, Create role, Create DB, Replication, Bypass RLS
primaryuser Replication
testuser

The postgres user will be the admin user for the database instance. The primary user is used for replication between primary and replicas.
The testuser is a normal user that has access to the database “userdb” that is created for testing purposes.

Container Dependencies

The Operator depends on the Crunchy Containers and there are version dependencies between the two projects. Below are the operator
releases and their dependent container release. For reference, the Postgres and PgBackrest versions for each container release are also
listed.

Operator Release Container Release Postgres PgBackrest Version

4.2.1 4.2.1 12.1 2.20
11.6 2.20
10.11 2.20
9.6.16 2.20
9.5.20 2.20

34

Operator Release Container Release Postgres PgBackrest Version

4.2.0 4.2.0 12.1 2.20
11.6 2.20
10.11 2.20
9.6.16 2.20
9.5.20 2.20

4.1.1 4.1.1 12.1 2.18
11.6 2.18
10.11 2.18
9.6.16 2.18
9.5.20 2.18

4.1.0 2.4.2 11.5 2.17
10.10 2.17
9.6.15 2.17
9.5.19 2.17

4.0.1 2.4.1 11.4 2.13
10.9 2.13
9.6.14 2.13
9.5.18 2.13

4.0.0 2.4.0 11.3 2.13
10.8 2.13
9.6.13 2.13
9.5.17 2.13

3.5.4 2.3.3 11.4 2.13
10.9 2.13
9.6.14 2.13
9.5.18 2.13

3.5.3 2.3.2 11.3 2.13
10.8 2.13
9.6.13 2.13
9.5.17 2.13

3.5.2 2.3.1 11.2 2.10
10.7 2.10
9.6.12 2.10
9.5.16 2.10

Features sometimes are added into the underlying Crunchy Containers to support upstream features in the Operator thus dictating a
dependency between the two projects at a specific version level.

35

Operating Systems

The Operator is developed on both Centos 7 and RHEL 7 operating systems. The underlying containers are designed to use either Centos
7 or RHEL 7 as the base container image.

Other Linux variants are possible but are not supported at this time.

Kubernetes Distributions

The Operator is designed and tested on Kubernetes and Openshift Container Platform.

Storage

The Operator is designed to support HostPath, NFS, and Storage Classes for persistence. The Operator does not currently include code
specific to a particular storage vendor.

Releases

The Operator is released on a quarterly basis often to coincide with Postgres releases.

There are pre-release and or minor bug fix releases created on an as-needed basis.

The operator is template-driven; this makes it simple to configure both the client and the operator.

conf Directory

The Operator is configured with a collection of files found in the conf directory. These configuration files are deployed to your Kubernetes
cluster when the Operator is deployed. Changes made to any of these configuration files currently require a redeployment of the Operator
on the Kubernetes cluster.

The server components of the Operator include Role Based Access Control resources which need to be created a single time by a Kubernetes
cluster-admin user. See the Installation section for details on installing a Postgres Operator server.

The configuration files used by the Operator are found in 2 places: * the pgo-config ConfigMap in the namespace the Operator is running
in * or, a copy of the configuration files are also included by default into the Operator container images themselves to support a very
simplistic deployment of the Operator

If the pgo-config ConfigMap is not found by the Operator, it will use the configuration files that are included in the Operator container
images.

The container included set of configuration files use the most basic setting values and the image versions of the Operator itself with the
latest Crunchy Container image versions. The storage configurations are determined by using the default storage class on the system you
are deploying the Operator into, the default storage class is one that is labeled as follows:

pgo-default-sc=true

If no storage class has that label, then the first storage class found on the system will be used. If no storage class is found on the system,
the containers will not run and produce an error in the log.

conf/postgres-operator/pgo.yaml

The pgo.yaml file sets many different Operator configuration settings and is described in the [pgo.yaml configuration]({{< ref “pgo-yaml-
configuration.md” >}}) documentation section.

The pgo.yaml file is deployed along with the other Operator configuration files when you run:

make deployoperator

36

conf/postgres-operator Directory

Files within the conf/postgres-operator directory contain various templates that are used by the Operator when creating Kubernetes
resources. In an advanced Operator deployment, administrators can modify these templates to add their own custom meta-data or make
other changes to influence the Resources that get created on your Kubernetes cluster by the Operator.

Files within this directory are used specifically when creating PostgreSQL Cluster resources. Sidecar components such as pgBouncer
templates are also located within this directory.

As with the other Operator templates, administrators can make custom changes to this set of templates to add custom features or metadata
into the Resources created by the Operator.

Operator API Server

The Operator’s API server can be configured to allow access to select URL routes without requiring TLS authentication from the client
and without the HTTP Basic authentication used for role-based-access.

This configuration is performed by defining the NOAUTH_ROUTES environment variable for the apiserver container within the Operator pod.

Typically, this configuration is made within the deploy/deployment.json file for bash-based installations and ansible/roles/pgo-operator/templates/deployment.json.j2
for ansible installations.

For example:

...
containers: [

{
"name": "apiserver"
"env": [

{
"name": "NOAUTH_ROUTES",
"value": "/health"

}
]
...

}
...

]
...

The NOAUTH_ROUTES variable must be set to a comma-separated list of URL routes. For example: /health,/version,/example3 would
opt to disable authentication for $APISERVER_URL/health, $APISERVER_URL/version, and $APISERVER_URL/example3 respectively.

Currently, only the following routes may have authentication disabled using this setting:

/health

The /healthz route is used by kubernetes probes and has its authentication disabed without requiring NOAUTH_ROUTES.

Security

Setting up pgo users and general security configuration is described in the Security section of this documentation.

Local pgo CLI Configuration

You can specify the default namespace you want to use by setting the PGO_NAMESPACE environment variable locally on the host the
pgo CLI command is running.

export PGO_NAMESPACE=pgouser1

When that variable is set, each command you issue with pgo will use that namespace unless you over-ride it using the –namespace command
line flag.

pgo show cluster foo --namespace=pgouser2

37

pgo.yaml Configuration

The pgo.yaml file contains many different configuration settings as described in this section of the documentation.

The pgo.yaml file is broken into major sections as described below: ## Cluster

Setting Definition

BasicAuth If set to "true" will enable Basic Authentication. If set to "false", will allow a valid Operator user to successfully authenticate regardless of the value of the password provided for Basic Authentication. Defaults to "true".

PrimaryNodeLabel newly created primary deployments will specify this node label if specified, unless you override it using the –node-label command line flag, if not set, no node label is specifed
ReplicaNodeLabel newly created replica deployments will specify this node label if specified, unless you override it using the –node-label command line flag, if not set, no node label is specifed
CCPImagePrefix newly created containers will be based on this image prefix (e.g. crunchydata), update this if you require a custom image prefix
CCPImageTag newly created containers will be based on this image version (e.g. centos7-12.1-4.2.1), unless you override it using the –ccp-image-tag command line flag
Port the PostgreSQL port to use for new containers (e.g. 5432)
PGBadgerPort the port used to connect to pgbadger (e.g. 10000)
ExporterPort the port used to connect to postgres exporter (e.g. 9187)
LogStatement postgresql.conf log_statement value (required field)
LogMinDurationStatement postgresql.conf log_min_duration_statement value (required field)
User the PostgreSQL normal user name
Database the PostgreSQL normal user database
Replicas the number of cluster replicas to create for newly created clusters, typically users will scale up replicas on the pgo CLI command line but this global value can be set as well
PgmonitorPassword the password to use for pgmonitor metrics collection if you specify –metrics when creating a PG cluster
Metrics boolean, if set to true will cause each new cluster to include crunchy-collect as a sidecar container for metrics collection, if set to false (default), users can still add metrics on a cluster-by-cluster basis using the pgo command flag –metrics
Badger boolean, if set to true will cause each new cluster to include crunchy-pgbadger as a sidecar container for static log analysis, if set to false (default), users can still add pgbadger on a cluster-by-cluster basis using the pgo create cluster command flag –pgbadger
Policies optional, list of policies to apply to a newly created cluster, comma separated, must be valid policies in the catalog
PasswordAgeDays optional, if set, will set the VALID UNTIL date on passwords to this many days in the future when creating users or setting passwords, defaults to 60 days
PasswordLength optional, if set, will determine the password length used when creating passwords, defaults to 8
ServiceType optional, if set, will determine the service type used when creating primary or replica services, defaults to ClusterIP if not set, can be overridden by the user on the command line as well
Backrest optional, if set, will cause clusters to have the pgbackrest volume PVC provisioned during cluster creation
BackrestPort currently required to be port 2022
DisableAutofail optional, if set, will disable autofail capabilities by default in any newly created cluster
DisableReplicaStartFailReinit if set to true will disable the detection of a “start failed” states in PG replicas, which results in the re-initialization of the replica in an attempt to bring it back online
PodAntiAffinity either preferred, required or disabled to either specify the type of affinity that should be utilized for the default pod anti-affinity applied to PG clusters, or to disable default pod anti-affinity all together (default preferred)
SyncReplication boolean, if set to true will automatically enable synchronous replication in new PostgreSQL clusters (default false)

Storage

Setting Definition

PrimaryStorage required, the value of the storage configuration to use for the primary PostgreSQL deployment
BackupStorage required, the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes
ReplicaStorage required, the value of the storage configuration to use for the replica PostgreSQL deployments
ReplicaStorage required, the value of the storage configuration to use for the replica PostgreSQL deployments
BackrestStorage required, the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster
StorageClass for a dynamic storage type, you can specify the storage class used for storage provisioning(e.g. standard, gold, fast)
AccessMode the access mode for new PVCs (e.g. ReadWriteMany, ReadWriteOnce, ReadOnlyMany). See below for descriptions of these.
Size the size to use when creating new PVCs (e.g. 100M, 1Gi)
Storage.storage1.StorageType supported values are either dynamic, create, if not supplied, create is used
Fsgroup optional, if set, will cause a SecurityContext and fsGroup attributes to be added to generated Pod and Deployment definitions

38

Setting Definition

SupplementalGroups optional, if set, will cause a SecurityContext to be added to generated Pod and Deployment definitions
MatchLabels optional, if set, will cause the PVC to add a matchlabels selector in order to match a PV, only useful when the StorageType is create, when specified a label of key=value is added to the PVC as a match criteria

Storage Configuration Examples

In pgo.yaml, you will need to configure your storage configurations depending on which storage you are wanting to use for Operator
provisioning of Persistent Volume Claims. The examples below are provided as a sample. In all the examples you are free to change the
Size to meet your requirements of Persistent Volume Claim size.

HostPath Example

HostPath is provided for simple testing and use cases where you only intend to run on a single Linux host for your Kubernetes cluster.

hostpathstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create

NFS Example

In the following NFS example, notice that the SupplementalGroups setting is set, this can be whatever GID you have your NFS mount set
to, typically we set this nfsnobody as below. NFS file systems offer a ReadWriteMany access mode.

nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
SupplementalGroups: 65534

Storage Class Example

In the following example, the important attribute to set for a typical Storage Class is the Fsgroup setting. This value is almost always set to
26 which represents the Postgres user ID that the Crunchy Postgres container runs as. Most Storage Class providers offer ReadWriteOnce
access modes, but refer to your provider documentation for other access modes it might support.

storageos:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: fast
Fsgroup: 26

Container Resources

Setting Definition

DefaultContainerResource optional, the value of the container resources configuration to use for all database containers, if not set, no resource limits or requests are added on the database container
DefaultLoadResource optional, the value of the container resources configuration to use for pgo-load containers, if not set, no resource limits or requests are added on the database container
DefaultRmdataResource optional, the value of the container resources configuration to use for pgo-rmdata containers, if not set, no resource limits or requests are added on the database container
DefaultBackupResource optional, the value of the container resources configuration to use for crunchy-backup containers, if not set, no resource limits or requests are added on the database container
DefaultPgbouncerResource optional, the value of the container resources configuration to use for crunchy-pgbouncer containers, if not set, no resource limits or requests are added on the database container
RequestsMemory request size of memory in bytes
RequestsCPU request size of CPU cores
LimitsMemory request size of memory in bytes
LimitsCPU request size of CPU cores

39

Miscellaneous (Pgo)

Setting Definition

PreferredFailoverNode optional, a label selector (e.g. hosttype=offsite) that if set, will be used to pick the failover target which is running on a host that matches this label if multiple targets are equal in replication status
COImagePrefix image tag prefix to use for the Operator containers
COImageTag image tag to use for the Operator containers
Audit boolean, if set to true will cause each apiserver call to be logged with an audit marking

Storage Configuration Details

You can define n-number of Storage configurations within the pgo.yaml file. Those Storage configurations follow these conventions -

• they must have lowercase name (e.g. storage1)
• they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and PrimaryStorage configuration values. However,
there are command line options in the pgo client that will let a user override these default global values to offer you the user a way to
specify very targeted storage configurations when needed (e.g. disaster recovery storage for certain backups).

You can set the storage AccessMode values to the following:

• ReadWriteMany - mounts the volume as read-write by many nodes
• ReadWriteOnce - mounts the PVC as read-write by a single node
• ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration is found, the apiserver will abort.
These Storage values are only read at apiserver start time.

The following StorageType values are possible -

• dynamic - this will allow for dynamic provisioning of storage using a StorageClass.
• create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using a naming convention of clustername.

When set, the Size, AccessMode settings are used in constructing the new PVC.

The operator will create new PVCs using this naming convention: dbname where dbname is the database name you have specified. For
example, if you run:

pgo create cluster example1 -n pgouser1

It will result in a PVC being created named example1 and in the case of a backup job, the pvc is named example1-backup

Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels, when set, this will cause a selector of
key=value to be added into the PVC, this will let you target specific PV(s) to be matched for this cluster. Note, if a PV does not match
the claim request, then the cluster will not start. Users that want to use this feature have to place labels on their PV resources as part of
PG cluster creation before creating the PG cluster. For example, users would add a label like this to their PV before they create the PG
cluster:

kubectl label pv somepv myzone=somezone -n pgouser1

If you do not specify MatchLabels in the storage configuration, then no match filter is added and any available PV will be used to satisfy
the PVC request. This option does not apply to dynamic storage types.

Example PV creation scripts are provided that add labels to a set of PVs and can be used for testing: $COROOT/pv/create-pv-nfs-labels.sh
in that example, a label of crunchyzone=red is set on a set of PVs to test with.

The pgo.yaml includes a storage config named nfsstoragered that when used will demonstrate the label matching. This feature allows
you to support n-number of NFS storage configurations and supports spreading a PG cluster across different NFS storage configurations.

40

Container Resources Details

In the pgo.yaml configuration file you have the option to configure a default container resources configuration that when set will add CPU
and memory resource limits and requests values into each database container when the container is created.

You can also override the default value using the --resources-config command flag when creating a new cluster:
pgo create cluster testcluster --resources -config=large -n pgouser1

Note, if you try to allocate more resources than your host or Kubernetes cluster has available then you will see your pods wait in a Pending
status. The output from a kubectl describe pod command will show output like this in this event: Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedScheduling 49s (x8 over 1m) default-scheduler No nodes are available that

match all of the predicates: Insufficient memory (1).

Overriding Storage Configuration Defaults

pgo create cluster testcluster --storage-config=bigdisk -n pgouser1

That example will create a cluster and specify a storage configuration of bigdisk to be used for the primary database storage. The replica
storage will default to the value of ReplicaStorage as specified in pgo.yaml.
pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk -n

pgouser1

That example will create a cluster and specify a storage configuration of fastdisk to be used for the primary database storage, while the
replica storage will use the storage configuration slowdisk.
pgo backup testcluster --storage-config=offsitestorage -n pgouser1

That example will create a backup and use the offsitestorage storage configuration for persisting the backup.

Using Storage Configurations for Disaster Recovery

A simple mechanism for partial disaster recovery can be obtained by leveraging network storage, Kubernetes storage classes, and the
storage configuration options within the Operator.

For example, if you define a Kubernetes storage class that refers to a storage backend that is running within your disaster recovery site,
and then use that storage class as a storage configuration for your backups, you essentially have moved your backup files automatically to
your disaster recovery site thanks to network storage.

TLS Configuration

Should you desire to alter the default TLS settings for the Postgres Operator, you can set the following variables as described below.

Server Settings

To disable TLS and make an unsecured connection on port 8080 instead of connecting securely over the default port, 8443, set:

Bash environment variables
export DISABLE_TLS=true
export PGO_APISERVER_PORT=8080

Or inventory variables if using Ansible
pgo_disable_tls='true'
pgo_apiserver_port=8080

To disable TLS verifcation, set the follwing as a Bash environment variable
export TLS_NO_VERIFY=false

Or the following in the inventory file if using Ansible
pgo_tls_no_verify='false'

41

TLS Trust

Custom Trust Additions To configure the server to allow connections from any client presenting a certificate issued by CAs within a
custom, PEM-encoded certificate list, set the following as a Bash environment variable

export TLS_CA_TRUST="/path/to/trust/file"

Or the following in the inventory file if using Ansible

pgo_tls_ca_store='/path/to/trust/file'

System Default Trust To configure the server to allow connections from any client presenting a certificate issued by CAs within the
operating system’s default trust store, set the following as a Bash environment variable

export ADD_OS_TRUSTSTORE=true

Or the following in the inventory file if using Ansible

pgo_add_os_ca_store='true'

Connection Settings

If TLS authentication has been disabled, or if the Operator’s apiserver port is changed, be sure to update the PGO_APISERVER_URL
accordingly.

For example with an Ansible installation,

export PGO_APISERVER_URL='https://<apiserver IP>:8443'

would become

export PGO_APISERVER_URL='http://<apiserver IP>:8080'

With a Bash installation,

setip()
{

export PGO_APISERVER_URL=https://`$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service
postgres -operator -o=jsonpath="{.spec.clusterIP}"`:8443

}

would become

setip()
{

export PGO_APISERVER_URL=http://`$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service
postgres -operator -o=jsonpath="{.spec.clusterIP}"`:8080

}

Client Settings

By default, the pgo client will trust certificates issued by one of the Certificate Authorities listed in the operating system’s default CA
trust store, if any. To exclude them, either use the environment variable

EXCLUDE_OS_TRUST=true

or use the –exclude-os-trust flag

pgo version --exclude-os-trust

Finally, if TLS has been disabled for the Operator’s apiserver, the PGO client connection must be set to match the given settings.

Two options are available, either the Bash environment variable

DISABLE_TLS=true

must be configured, or the –disable-tls flag must be included when using the client, i.e.

pgo version --disable-tls

42

For various scripts used by the Operator, the expenv utility is required as are certain environment variables.

Download the expenv utility from its Github Releases page, and place it into your PATH (e.g. $HOME/odev/bin).

The following environment variables are heavily used in the Bash installation procedures and may be used in Operator helper scripts.

43

https://github.com/blang/expenv/releases

Variable Ansible Inventory Example Description

DISABLE_EVENTING pgo_disable_eventing false Disable Operator eventing subsystem
DISABLE_TLS pgo_disable_tls false Disable TLS for Operator
GOPATH HOME/odev|Golangprojectdirectory‘GOBIN ‘||GOPATH/bin Golang binary target directory
NAMESPACE namespace pgouser1 Namespaces monitored by Operator
PGOROOT GOPATH/src/github.com/crunchydata/postgres − operator|Operatorrepositorylocation‘PGOAPISERV ERP ORT ‘|pgoapiserverport|8443|HTTP (S)portforOperatorAPIserver‘PGOBASEOS‘||centos7|BaseOSforcontainerimages‘PGOCACERT ‘||PGOROOT/conf/postgres-operator/server.crt Server certificate and CA trust
PGO_CMD kubectl Cluster management tool executable
PGO_CLIENT_CERT PGOROOT/conf/postgres − operator/server.crt|TLSClientcertificate‘PGOCLIENTKEY ‘||PGOROOT/conf/postgres-operator/server.crt TLS Client certificate private key
PGO_IMAGE_PREFIX pgo_image_prefix crunchydata Container image prefix
PGO_IMAGE_TAG pgo_image_tag PGOBASEOS−PGO_VERSION OS/Version tagging info for images
PGO_INSTALLATION_NAME pgo_installation_name devtest Unique name given to Operator installation
PGO_OPERATOR_NAMESPACE pgo_operator_namespace pgo Kubernetes namespace for the operator
PGO_VERSION 4.2.1 Operator version
TLS_NO_VERIFY pgo_tls_no_verify false Disable certificate verification (e.g. strict hostname checking)
TLS_CA_TRUST pgo_tls_ca_store /var/pki/my_cas.crt PEM-encoded list of trusted CA certificates
ADD_OS_TRUSTSTORE pgo_add_os_ca_store false Adds OS root trust collection to apiserver
NOAUTH_ROUTES pgo_noauth_routes “/health” Disable mTLS and HTTP BasicAuth for listed routes
EXCLUDE_OS_TRUST false* Excludes OS root trust from pgo client (defaults to true for windows clients)

{{% notice tip %}} examples/envs.sh contains the above variable definitions as well {{% /notice %}}

A full installation of the Operator includes the following steps:

• create a project structure
• configure your environment variables
• configure Operator templates
• create security resources
• deploy the operator
• install pgo CLI (end user command tool)

Operator end-users are only required to install the pgo CLI client on their host and can skip the server-side installation steps. pgo CLI
clients are provided for Linux, Mac, and Windows clients.

The Operator can be deployed by multiple methods including:

• default installation
• Ansible playbook installation
• Openshift Console installation using OLM

Default Installation - Create Project Structure

The Operator follows a golang project structure, you can create a structure as follows on your local Linux host:
mkdir -p $HOME/odev/src/github.com/crunchydata $HOME/odev/bin $HOME/odev/pkg
cd $HOME/odev/src/github.com/crunchydata
git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres -operator
git checkout v4.2.1

This creates a directory structure under your HOME directory name odev and clones the current Operator version to that structure.

Default Installation - Configure Environment

Environment variables control aspects of the Operator installation. You can copy a sample set of Operator environment variables and
aliases to your .bashrc file to work with.

44

cat $HOME/odev/src/github.com/crunchydata/postgres-operator/examples/envs.sh >> $HOME/.bashrc
source $HOME/.bashrc

To manually configure the environment variables, refer to the [environment documentation]({{< relref “common-env.md” >}}).
For various scripts used by the Operator, the expenv utility is required, download this utility from the Github Releases page, and place
it into your PATH (e.g. $HOME/odev/bin). {{% notice tip %}}There is also a Makefile target that includes is expenv and several other
dependencies that are only needed if you plan on building from source:
make setup

{{% /notice %}}

Default Installation - Namespace Creation

The default installation will create 3 namespaces to use for deploying the Operator into and for holding Postgres clusters created by the
Operator.
Creating Kubernetes namespaces is typically something that only a priviledged Kubernetes user can perform so log into your Kubernetes
cluster as a user that has the necessary priviledges.
On Openshift if you do not want to install the Operator as the system administrator, you can grant cluster-admin priviledges to a user as
follows:
oc adm policy add-cluster-role-to-user cluster-admin pgoinstaller

In the above command, you are granting cluster-admin priviledges to a user named pgoinstaller.
The NAMESPACE environment variable is a comma separated list of namespaces that specify where the Operator will be provisioing PG
clusters into, specifically, the namespaces the Operator is watching for Kubernetes events. This value is set as follows:
export NAMESPACE=pgouser1 ,pgouser2

This means namespaces called pgouser1 and pgouser2 will be created as part of the default installation.
{{% notice warning %}}In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an
extra step during installation for the operator to function properly with watched namespaces. This limitation does not exist when using
Kubernetes 1.12+. When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh
script handles the limitation properly in both the bash and ansible installation.
However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace
to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin
privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution
whose version is below 1.12. In Kubernetes version 1.12+ the pgo create namespace command works as expected.
{{% /notice %}}
The PGO_OPERATOR_NAMESPACE environment variable is the name of the namespace that the Operator will be installed into. For
the installation example, this value is set as follows:
export PGO_OPERATOR_NAMESPACE=pgo

This means a pgo namespace will be created and the Operator will be deployed into that namespace.
Create the Operator namespaces using the Makefile target:
make setupnamespaces

Note: The setupnamespaces target only creates the namespace(s) specified in PGO_OPERATOR_NAMESPACE environment variable
The Design section of this documentation talks further about the use of namespaces within the Operator.

Default Installation - Configure Operator Templates

Within the Operator conf directory are several configuration files and templates used by the Operator to determine the various resources
that it deploys on your Kubernetes cluster, specifically the PostgreSQL clusters it deploys.
When you install the Operator you must make choices as to what kind of storage the Operator has to work with for example. Storage
varies with each installation. As an installer, you would modify these configuration templates used by the Operator to customize its
behavior.
Note: when you want to make changes to these Operator templates and configuration files after your initial installation, you will need to
re-deploy the Operator in order for it to pick up any future configuration changes.
Here are some common examples of configuration changes most installers would make:

45

Storage

Inside conf/postgres-operator/pgo.yaml there are various storage configurations defined.

PrimaryStorage: gce
XlogStorage: gce
ArchiveStorage: gce
BackupStorage: gce
ReplicaStorage: gce

gce:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: standard
Fsgroup: 26

Listed above are the pgo.yaml sections related to storage choices. PrimaryStorage specifies the name of the storage configuration used
for PostgreSQL primary database volumes to be provisioned. In the example above, a NFS storage configuration is picked. That same
storage configuration is selected for the other volumes that the Operator will create.

This sort of configuration allows for a PostgreSQL primary and replica to use different storage if you want. Other storage settings like
AccessMode, Size, StorageType, StorageClass, and Fsgroup further define the storage configuration. Currently, NFS, HostPath, and Storage
Classes are supported in the configuration.

As part of the Operator installation, you will need to adjust these storage settings to suit your deployment requirements. For users wanting
to try out the Operator on Google Kubernetes Engine you would make the following change to the storage configuration in pgo.yaml:

For NFS Storage, it is assumed that there are sufficient Persistent Volumes (PV) created for the Operator to use when it creates Persistent
Volume Claims (PVC). The creation of Persistent Volumes is something a Kubernetes cluster-admin user would typically provide before
installing the Operator. There is an example script which can be used to create NFS Persistent Volumes located here:

./pv/create-nfs-pv.sh

That script looks for the IP address of an NFS server using the environment variable PGO_NFS_IP you would set in your .bashrc
environment.

A similar script is provided for HostPath persistent volume creation if you wanted to use HostPath for testing:

./pv/create-pv.sh

Adjust the above PV creation scripts to suit your local requirements, the purpose of these scripts are solely to produce a test set of Volume
to test the Operator.

Other settings in pgo.yaml are described in the pgo.yaml Configuration section of the documentation.

Operator Security

The Operator implements its own RBAC (Role Based Access Controls) for authenticating Operator users access to the Operator REST
API.

A default admin user is created when the operator is deployed. Create a .pgouser in your home directory and insert the text from below:

pgoadmin:examplepassword

The format of the .pgouser client file is:

<username >:<password >

To create a unique administrator user on deployment of the operator edit this file and update the .pgouser file accordingly:

$PGOROOT/deploy/install-bootstrap -creds.sh

After installation users can create optional Operator users as follows:

pgo create pgouser someuser --pgouser-namespaces="pgouser1,pgouser2"
--pgouser-password=somepassword --pgouser-roles="somerole ,someotherrole"

Note, you can also store the pgouser file in alternate locations, see the Security documentation for details.

Operator security is discussed in the Security section Security of the documentation.

Adjust these settings to meet your local requirements.

46

Default Installation - Create Kubernetes RBAC Controls

The Operator installation requires Kubernetes administrators to create Resources required by the Operator. These resources are only
allowed to be created by a cluster-admin user. To install on Google Cloud, you will need a user account with cluster-admin priviledges. If
you own the GKE cluster you are installing on, you can add cluster-admin role to your account as follows:

kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user
$(gcloud config get-value account)

Specifically, Custom Resource Definitions for the Operator, and Service Accounts used by the Operator are created which require cluster
permissions.

Tor create the Kubernetes RBAC used by the Operator, run the following as a cluster-admin Kubernetes user:

make installrbac

This set of Resources is created a single time unless a new Operator release requires these Resources to be recreated. Note that when you
run make installrbac the set of keys used by the Operator REST API and also the pgbackrest ssh keys are generated.

Verify the Operator Custom Resource Definitions are created as follows:

kubectl get crd

You should see the pgclusters CRD among the listed CRD resource types.

See the Security documentation for a description of the various RBAC resources created and used by the Operator.

Default Installation - Deploy the Operator

At this point, you as a normal Kubernetes user should be able to deploy the Operator. To do this, run the following Makefile target:

make deployoperator

This will cause any existing Operator to be removed first, then the configuration to be bundled into a ConfigMap, then the Operator
Deployment to be created.

This will create a postgres-operator Deployment and a postgres-operator Service.Operator administrators needing to make changes to the
Operator configuration would run this make target to pick up any changes to pgo.yaml, pgo users/roles, or the Operator templates.

Default Installation - Completely Cleaning Up

You can completely remove all the namespaces you have previously created using the default installation by running the following:

make cleannamespaces

This will permanently delete each namespace the Operator installation created previously.

pgo CLI Installation

Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the
Operator (https://github.com/crunchydata/postgres-operator/releases). Crunchy Enterprise Customer can download the pgo binaries
from https://access.crunchydata.com/ on the downloads page.

The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation
to work with a remote Operator.

{{% notice info %}}

If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref “Configuration/tls.md” >}})
for additional configuration information.

{{% / notice %}}

Prior to using pgo, users testing the Operator on a single host can specify the postgres-operator URL as follows:

$ kubectl get service postgres-operator -n pgo
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres -operator 10.104.47.110 <none> 8443/TCP 7m
$ export PGO_APISERVER_URL=https://10.104.47.110:8443
pgo version

47

That URL address needs to be reachable from your local pgo client host. Your Kubernetes administrator will likely need to create a
network route, ingress, or LoadBalancer service to expose the Operator REST API to applications outside of the Kubernetes cluster. Your
Kubernetes administrator might also allow you to run the Kubernetes port-forward command, contact your adminstrator for details.

Next, the pgo client needs to reference the keys used to secure the Operator REST API:

export PGO_CA_CERT=$PGOROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$PGOROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$PGOROOT/conf/postgres-operator/server.key

You can also specify these keys on the command line as follows:

pgo version --pgo-ca-cert=$PGOROOT/conf/postgres-operator/server.crt
--pgo-client-cert=$PGOROOT/conf/postgres -operator/server.crt
--pgo-client-key=$PGOROOT/conf/postgres -operator/server.key

{{% notice tip %}} if you are running the Operator on Google Cloud, you would open up another terminal and run kubectl port-forward
… to forward the Operator pod port 8443 to your localhost where you can access the Operator API from your local workstation. {{%
/notice %}}

At this point, you can test connectivity between your laptop or workstation and the Postgres Operator deployed on a Kubernetes cluster
as follows:

pgo version

You should get back a valid response showing the client and server version numbers.

Verify the Installation

Now that you have deployed the Operator, you can verify that it is running correctly.

You should see a pod running that contains the Operator:

kubectl get pod --selector=name=postgres-operator -n pgo
NAME READY STATUS RESTARTS AGE
postgres -operator -79bf94c658-zczf6 3/3 Running 0 47s

That pod should show 3 of 3 containers in running state and that the operator is installed into the pgo namespace.

The sample environment script, examples/env.sh, if used creates some bash functions that you can use to view the Operator logs. This is
useful in case you find one of the Operator containers not in a running status.

Using the pgo CLI, you can verify the versions of the client and server match as follows:

pgo version

This also tests connectivity between your pgo client host and the Operator server.

The Postgres-Operator is an open source project hosted on GitHub.

This guide is intended for those wanting to build the Operator from source or contribute via pull requests.

Prerequisites

The target development host for these instructions is a CentOS 7 or RHEL 7 host. Others operating systems are possible, however we do
not support building or running the Operator on others at this time.

Environment Variables

The following environment variables are expected by the steps in this guide:

Variable Example Description

GOPATH HOME/odev|Golangprojectdirectory‘PGOROOT ‘|GOPATH/src/github.com/crunchydata/postgres-operator Operator repository location
PGO_BASEOS centos7 Base OS for container images
PGO_CMD kubectl Cluster management tool executable
PGO_IMAGE_PREFIX crunchydata Container image prefix

48

https://github.com/crunchydata/postgres-operator

Variable Example Description

PGO_OPERATOR_NAMESPACE pgo Kubernetes namespace for the operator
PGO_VERSION 4.2.1 Operator version

{{% notice tip %}} examples/envs.sh contains the above variable definitions as well as others used by postgres-operator tools {{% /notice
%}}

Other requirements

• The development host has been created, has access to yum updates, and has a regular user account with sudo rights to run yum.
• GOPATH points to a directory containing src,pkg, and bin directories.
• The development host has $GOPATH/bin added to its PATH environment variable. Development tools will be installed to this path.

Defining a GOBIN environment variable other than $GOPATH/bin may yield unexpected results.
• The development host has git installed and has cloned the postgres-operator repository to $GOPATH/src/github.com/crunchydata/postgres-operator.

Makefile targets below are run from the repository directory.
• Deploying the Operator will require deployment access to a Kubernetes cluster. Clusters built on OpenShift Container Platform

(OCP) or built using kubeadm are the validation targets for Pull Requests and thus recommended for devleopment. Instructions for
setting up these clusters are outside the scope of this guide.

Building

Dependencies

Configuring build dependencies is automated via the setup target in the project Makefile:

make setup

The setup target ensures the presence of:

• GOPATH and PATH as described in the prerequisites
• EPEL yum repository
• golang compiler
• dep dependency manager
• NSQ messaging binaries
• docker container tool
• buildah OCI image building tool
• expenv config tool

By default, docker is not configured to run its daemon. Refer to the docker post-installation instructions to configure it to run once or at
system startup. This is not done automatically.

Compile

You will build all the Operator binaries and Docker images by running:

make all

This assumes you have Docker installed and running on your development host.

By default, the Makefile will use buildah to build the container images, to override this default to use docker to build the images, set the
IMGBUILDER variable to docker

The project uses the golang dep package manager to vendor all the golang source dependencies into the vendor directory. You typically
do not need to run any dep commands unless you are adding new golang package dependencies into the project outside of what is within
the project for a given release.

After a full compile, you will have a pgo binary in $HOME/odev/bin and the Operator images in your local Docker registry.

49

https://docs.docker.com/install/linux/linux-postinstall/

Release

You can perform a release build by running:

make release

This will compile the Mac and Windows versions of pgo.

Deployment

Now that you have built the Operator images, you can push them to your Kubernetes cluster if that cluster is remote to your development
host.

You would then run:

make deployoperator

To deploy the Operator on your Kubernetes cluster. If your Kubernetes cluster is not local to your development host, you will need to
specify a config file that will connect you to your Kubernetes cluster. See the Kubernetes documentation for details.

Troubleshooting

Debug level logging in turned on by default when deploying the Operator.

Sample bash functions are supplied in examples/envs.sh to view the Operator logs.

You can view the Operator REST API logs with the alog bash function.

You can view the Operator core logic logs with the olog bash function.

You can view the Scheduler logs with the slog bash function.

These logs contain the following details:

Timestamp
Logging Level
Message Content
Function Information
File Information
PGO version

Additionally, you can view the Operator deployment Event logs with the elog bash function.

You can enable the pgo CLI debugging with the following flag:

pgo version --debug

You can set the REST API URL as follows after a deployment if you are developing on your local host by executing the setip bash
function.

Prerequisites

The following is required prior to installing PostgreSQL Operator:

• Kubernetes v1.13+
• Red Hat OpenShift v3.11+
• VMWare Enterprise PKS 1.3+
• kubectl or oc configured to communicate with Kubernetes

Container Ports

The API server port is required to connect to the API server with the pgo cli. The nsqd and nsqadmin ports are required to connect to
the event stream and listen for real-time events.

50

Container Port

API Server 8443
nsqadmin 4151
nsqd 4150

Service Ports

This is a list of service ports that are used in the PostgreSQL Operator. Verify that the ports are open and can be used.

Service Port

PostgreSQL 5432
pgbouncer 5432
pgbackrest 2022
postgres-exporter 9187

Application Ports

This is a list of ports used by application containers that connect to the PostgreSQL Operator. If you are using one of these apps, verify
that the service port for that app is open and can be used.

App Port

pgbadger 10000
Grafana 3000
Prometheus 9090

Crunchy Data PostgreSQL Operator Playbooks

The Crunchy Data PostgreSQL Operator Playbooks contain Ansible roles for installing and managing the Crunchy Data PostgreSQL
Operator.

Features

The playbooks provided allow users to:

• install PostgreSQL Operator on Kubernetes and OpenShift
• install PostgreSQL Operator from a Linux, Mac or Windows(Ubuntu subsystem)host
• generate TLS certificates required by the PostgreSQL Operator
• configure PostgreSQL Operator settings from a single inventory file
• support a variety of deployment models

Resources

• Ansible
• Crunchy Data
• Crunchy Data PostgreSQL Operator Documentation
• Crunchy Data PostgreSQL Operator Project

Prerequisites

The following is required prior to installing Crunchy PostgreSQL Operator using Ansible:

51

https://www.ansible.com/
https://access.crunchydata.com/documentation/postgres-operator/4.2.1/installation/install-with-ansible/
https://access.crunchydata.com/documentation/postgres-operator/4.2.1/installation/install-with-ansible/
https://www.ansible.com/
https://www.crunchydata.com/
https://crunchydata.github.io/postgres-operator/stable/
https://github.com/CrunchyData/postgres-operator

• postgres-operator playbooks source code for the target version
• Ansible 2.5+

Kubernetes Installs

• Kubernetes v1.11+
• Cluster admin privileges in Kubernetes
• kubectl configured to communicate with Kubernetes

OpenShift Installs

• OpenShift v3.09+
• Cluster admin privileges in OpenShift
• oc configured to communicate with OpenShift

Installing from a Windows Host

If the Crunchy PostgreSQL Operator is being installed from a Windows host the following are required:

• Windows Subsystem for Linux (WSL)
• Ubuntu for Windows

Environment

Ensure the appropriate [environment variables]({{< relref “common-env.md” >}}) are set.

Permissions

The installation of the Crunchy PostgreSQL Operator requires elevated privileges.
It is required that the playbooks are run as a cluster-admin to ensure the playbooks can install:

• Custom Resource Definitions
• Cluster RBAC
• Create required namespaces

{{% notice warning %}}In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an
extra step during installation for the operator to function properly with watched namespaces. This limitation does not exist when using
Kubernetes 1.12+. When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh
script handles the limitation properly in both the bash and ansible installation.

However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace
to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin
privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution
whose version is below 1.12. In Kubernetes version 1.12+ the pgo create namespace command works as expected.

{{% /notice %}}

Obtaining Operator Ansible Role

There are two ways to obtain the Crunchy PostgreSQL Operator Roles:

• Clone the postgres-operator project

• postgres-operator-playbooks RPM provided for Crunchy customers via the Crunchy Access Portal.

GitHub Installation

All necessary files (inventory, main playbook and roles) can be found in the ansible directory in the postgres-operator project.

52

https://github.com/CrunchyData/postgres-operator/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6
https://github.com/CrunchyData/postgres-operator
https://access.crunchydata.com/
https://github.com/CrunchyData/postgres-operator

RPM Installation using Yum

Available to Crunchy customers is an RPM containing all the necessary Ansible roles and files required for installation using Ansible. The
RPM can be found in Crunchy’s yum repository. For information on setting up yum to use the Crunchy repoistory, see the Crunchy Access
Portal.

To install the Crunchy PostgreSQL Operator Ansible roles using yum, run the following command on a RHEL or CentOS host:

sudo yum install postgres -operator-playbooks

• Ansible roles can be found in: /usr/share/ansible/roles/crunchydata
• Ansible playbooks/inventory files can be found in: /usr/share/ansible/postgres-operator/playbooks

Once installed users should take a copy of the inventory file included in the installation using the following command:

cp /usr/share/ansible/postgres-operator/playbooks/inventory ${HOME?}

Configuring the Inventory File

The inventory file included with the PostgreSQL Operator Playbooks allows installers to configure how the operator will function when
deployed into Kubernetes. This file should contain all configurable variables the playbooks offer.

Requirements

The following configuration parameters must be set in order to deploy the Crunchy PostgreSQL Operator.

Additionally, storage variables will need to be defined to provide the Crunchy PostgreSQL Operator with any required storage configu-
ration. Guidance for defining storage variables can be found further in this documentation.

{{% notice tip %}} You should remove or comment out variables either either the kubernetes or openshift variables if you are not being
using them for your environment. Both sets of variables cannot be used at the same time. {{% /notice %}}

• archive_mode
• archive_timeout
• auto_failover
• auto_failover_sleep_secs
• auto_failover_replace_replica
• backup_storage
• backrest
• backrest_storage
• badger
• ccp_image_prefix
• ccp_image_tag
• create_rbac
• db_name
• db_password_age_days
• db_password_length
• db_port
• db_replicas
• db_user
• exporterport
• kubernetes_context (Comment out if deploying to am OpenShift environment)
• metrics
• openshift_host (Comment out if deploying to a Kubernetes environment)
• openshift_password (Comment out if deploying to a Kubernetes environment)
• openshift_skip_tls_verify (Comment out if deploying to a Kubernetes environment)
• openshift_token (Comment out if deploying to a Kubernetes environment)
• openshift_user (Comment out if deploying to a Kubernetes environment)
• pgbadgerport
• pgo_admin_password
• pgo_admin_perms
• pgo_admin_role_name

53

https://access.crunchydata.com/
https://access.crunchydata.com/

• pgo_admin_username
• pgo_client_version
• pgo_image_prefix
• pgo_image_tag
• pgo_installation_name
• pgo_operator_namespace
• primary_storage
• replica_storage
• scheduler_timeout

Configuration Parameters

Name Default Required Description

archive_mode true Required Set to true enable archive logging on all newly created clusters.
archive_timeout 60 Required Set to a value in seconds to configure the timeout threshold for archiving.
auto_failover false Required Set to true enable auto failover capabilities on all newly created cluster requests. This can be disabled by the client.
auto_failover_replace_replica false Required Set to true to replace promoted replicas during failovers with a new replica on all newly created clusters.
auto_failover_sleep_secs 9 Required Set to a value in seconds to configure the sleep time before initiating a failover on all newly created clusters.
backrest false Required Set to true enable pgBackRest capabilities on all newly created cluster request. This can be disabled by the client.
backrest_aws_s3_bucket Set to configure the bucket used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_endpoint Set to configure the endpoint used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_key Set to configure the key used by pgBackRest to authenticate with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_region Set to configure the region used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_secret Set to configure the secret used by pgBackRest to authenticate with Amazon Web Service S3 for backups and restoration in S3.
backrest_storage storageos Required Set to configure which storage definition to use when creating volumes used by pgBackRest on all newly created clusters.
backup_storage storageos Required Set to configure which storage definition to use when creating volumes used for storing logical backups created by pg_dump.
badger false Required Set to true enable pgBadger capabilities on all newly created clusters. This can be disabled by the client.
ccp_image_prefix crunchydata Required Configures the image prefix used when creating containers from Crunchy Container Suite.
ccp_image_tag Required Configures the image tag (version) used when creating containers from Crunchy Container Suite.
cleanup false Set to configure the playbooks to delete all objects when uninstalling the Operator. Note: this will delete all objects related to the Operator (including clusters provisioned).
create_rbac true Required Set to true if the installer should create the RBAC resources required to run the PostgreSQL Operator.
crunchy_debug false Set to configure Operator to use debugging mode. Note: this can cause sensitive data such as passwords to appear in Operator logs.
delete_metrics_namespace false Set to configure whether or not the metrics namespace (defined using variable metrics_namespace) is deleted when uninstalling the metrics infrastructure
delete_operator_namespace false Set to configure whether or not the PGO operator namespace (defined using variable pgo_operator_namespace) is deleted when uninstalling the PGO.
delete_watched_namespaces false Set to configure whether or not the PGO watched namespaces (defined using variable namespace) are deleted when uninstalling the PGO.
db_name userdb Required Set to a value to configure the default database name on all newly created clusters.
db_password_age_days 60 Required Set to a value in days to configure the expiration age on PostgreSQL role passwords on all newly created clusters.
db_password_length 20 Required Set to configure the size of passwords generated by the operator on all newly created roles.
db_port 5432 Required Set to configure the default port used on all newly created clusters.
db_replicas 1 Required Set to configure the amount of replicas provisioned on all newly created clusters.
db_user testuser Required Set to configure the username of the dedicated user account on all newly created clusters.
exporterport 9187 Required Set to configure the default port used to connect to postgres exporter.
grafana_admin_password Set to configure the login password for the Grafana administrator.
grafana_admin_username admin Set to configure the login username for the Grafana administrator.
grafana_install true Set to true to install Crunchy Grafana to visualize metrics.
grafana_storage_access_mode Set to the access mode used by the configured storage class for Grafana persistent volumes.
grafana_storage_class_name Set to the name of the storage class used when creating Grafana persistent volumes.
grafana_volume_size Set to the size of persistent volume to create for Grafana.

54

Name Default Required Description

kubernetes_context Required, if deploying to Kubernetes When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
log_statement none Set to none, ddl, mod, or all to configure the statements that will be logged in PostgreSQL’s logs on all newly created clusters.
metrics false Required Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
metrics_namespace metrics Configures the target namespace when deploying Grafana and/or Prometheus
namespace Set to a comma delimited string of all the namespaces Operator will manage.
openshift_host Required, if deploying to OpenShift When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
openshift_password Required, if deploying to OpenShift When deploying to OpenShift, set to configure the password used for login.
openshift_skip_tls_verify Required, if deploying to OpenShift When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
openshift_token Required, if deploying to OpenShift When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
openshift_user Required, if deploying to OpenShift When deploying to OpenShift, set to configure the username used for login.
pgbadgerport 10000 Required Set to configure the default port used to connect to pgbadger.
pgo_add_os_ca_store false When true, includes system default certificate authorities
pgo_admin_username admin Required Configures the pgo administrator username.
pgo_admin_password Required Configures the pgo administrator password.
pgo_admin_perms * Required Sets the access control rules provided by the PostgreSQL Operator RBAC resources for the PostgreSQL Operator administrative account that is created by this installer. Defaults to allowing all of the permissions, which is represented with the *
pgo_admin_role_name pgoadmin Required Sets the name of the PostgreSQL Operator role that is utilized for administrative operations performed by the PostgreSQL Operator.
pgo_apiserver_port 8443 Set to configure the port used by the Crunchy PostgreSQL Operator apiserver.
pgo_client_install true Configures the playbooks to install the pgo client if set to true.
pgo_client_version Required Configures which version of pgo the playbooks should install.
pgo_disable_eventing false Set to configure whether or not eventing should be enabled for the Crunchy PostgreSQL Operator installation.
pgo_disable_tls false Set to configure whether or not TLS should be enabled for the Crunchy PostgreSQL Operator apiserver.
pgo_image_prefix crunchydata Required Configures the image prefix used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc).
pgo_image_tag Required Configures the image tag used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc)
pgo_installation_name Required The name of the PGO installation.
pgo_noauth_routes Configures URL routes with mTLS and HTTP BasicAuth disabled.
pgo_operator_namespace Required Set to configure the namespace where Operator will be deployed.
pgo_tls_ca_store Set to add additional Certificate Authorities for Operator to trust (PEM-encoded file).
pgo_tls_no_verify false Set to configure Operator to verify TLS certificates.
pgo_client_container_install false Installs the pgo-client deployment along with ansible isnstall
pgo_apiserver_url https://postgres-operator Sets the pgo_apiserver_url in the pgo-client deployment
pgo_client_cert_secret pgo.tls Sets the secret that the pgo-client will use when connecting to the operator. Secret should hold the TLS certs
primary_storage storageos Required Set to configure which storage definition to use when creating volumes used by PostgreSQL primaries on all newly created clusters.
prometheus_install true Set to true to install Crunchy Prometheus timeseries database.
prometheus_storage_access_mode Set to the access mode used by the configured storage class for Prometheus persistent volumes.
prometheus_storage_class_name Set to the name of the storage class used when creating Prometheus persistent volumes.
replica_storage storageos Required Set to configure which storage definition to use when creating volumes used by PostgreSQL replicas on all newly created clusters.
scheduler_timeout 3600 Required Set to a value in seconds to configure the pgo-scheduler timeout threshold when waiting for schedules to complete.
service_type ClusterIP Set to configure the type of Kubernetes service provisioned on all newly created clusters.
pgo_cluster_admin false Determines whether or not the cluster-admin role is assigned to the PGO service account. Must be true to enable PGO namespace & role creation when installing in OpenShift.

{{% notice tip %}} To retrieve the kubernetes_context value for Kubernetes installs, run the following command:

kubectl config current-context

{{% /notice %}}

55

Storage

Kubernetes and OpenShift offer support for a wide variety of different storage types, and by default, the inventory is pre-populated with
storage configurations for some of these storage types. However, the storage types defined in the inventory can be modified or removed
as needed, while additional storage configurations can also be added to meet the specific storage requirements for your PG clusters.

The following storage variables are utilized to add or modify operator storage configurations in the inventory:

Name Required Description

storage<ID>_name Yes Set to specify a name for the storage configuration.
storage<ID>_access_mode Yes Set to configure the access mode of the volumes created when using this storage definition.
storage<ID>_size Yes Set to configure the size of the volumes created when using this storage definition.
storage<ID>_class Required when using the dynamic storage type Set to configure the storage class name used when creating dynamic volumes.
storage<ID>_fs_group Required when using a storage class Set to configure any filesystem groups that should be added to security contexts on newly created clusters.
storage<ID>_supplemental_groups Required when using NFS storage Set to configure any supplemental groups that should be added to security contexts on newly created clusters.
storage<ID>_type Yes Set to either create or dynamic to configure the operator to create persistent volumes or have them created dynamically by a storage class.

The ID portion of storage prefix for each variable name above should be an integer that is used to group the various storage variables
into a single storage configuration. For instance, the following shows a single storage configuration for NFS storage:

storage3_name='nfsstorage '
storage3_access_mode='ReadWriteMany '
storage3_size='1G'
storage3_type='create'
storage3_supplemental_groups=65534

As this example storage configuration shows, integer 3 is used as the ID for each of the storage variables, which together form a single
storage configuration called nfsstorage. This approach allows different storage configurations to be created by defining the proper
storage variables with a unique ID for each required storage configuration.

Additionally, once all storage configurations have been defined in the inventory, they can then be used to specify the default storage
configuration that should be utilized for the various PG pods created by the operator. This is done using the following variables, which
are also defined in the inventory:

backrest_storage='nfsstorage '
backup_storage='nfsstorage '
primary_storage='nfsstorage '
replica_storage='nfsstorage '

With the configuration shown above, the nfsstorage storage configuration would be used by default for the various containers created
for a PG cluster (i.e. containers for the primary DB, replica DB’s, backups and/or pgBackRest).

Examples

The following are additional examples of storage configurations for various storage types.

Generic Storage Class The following example defines a storageTo setup storage1 to use the storage class fast

storage5_name='storageos '
storage5_access_mode='ReadWriteOnce '
storage5_size='300M'
storage5_type='dynamic'
storage5_class='fast'
storage5_fs_group=26

To assign this storage definition to all primary pods created by the Operator, we can configure the primary_storage=storageos variable
in the inventory file.

56

GKE The storage class provided by Google Kubernetes Environment (GKE) can be configured to be used by the Operator by setting
the following variables in the inventory file:

storage8_name='gce'
storage8_access_mode='ReadWriteOnce '
storage8_size='300M'
storage8_type='dynamic'
storage8_class='standard '
storage8_fs_group=26

To assign this storage definition to all primary pods created by the Operator, we can configure the primary_storage=gce variable in the
inventory file.

Considerations for Multi-Zone Cloud Environments

When using the Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consideration must betaken to
ensure all pods and the volumes they require are scheduled and provisioned within the same zone. Specifically, being that a pod is unable
mount a volume that is located in another zone, any volumes that are dynamically provisioned must be provisioned in a topology-aware
manner according to the specific scheduling requirements for the pod. For instance, this means ensuring that the volume containing the
database files for the primary database in a new PostgreSQL cluster is provisioned in the same zone as the node containing the PostgreSQL
primary pod that will be using it.

Resource Configuration

Kubernetes and OpenShift allow specific resource requirements to be specified for the various containers deployed inside of a pod. This
includes defining the required resources for each container, i.e. how much memory and CPU each container will need, while also allowing
resource limits to be defined, i.e. the maximum amount of memory and CPU a container will be allowed to consume. In support of this
capability, the Crunchy PGO allows any required resource configurations to be defined in the inventory, which can the be utilized by
the operator to set any desired resource requirements/limits for the various containers that will be deployed by the Crunchy PGO when
creating and managing PG clusters.

The following resource variables are utilized to add or modify operator resource configurations in the inventory:

Name Required Description

resource<ID>_requests_memory Yes The amount of memory required by the container.
resource<ID>_requests_cpu Yes The amount of CPU required by the container.
resource<ID>_limits_memory Yes The maximum amount of memory that can be consumed by the container.
resource<ID>_limits_cpu Yes The maximum amount of CPU that can be consumed by the container.

The ID portion of resource prefix for each variable name above should be an integer that is used to group the various resource variables
into a single resource configuration. For instance, the following shows a single resource configuration called small:

resource1_name='small'
resource1_requests_memory='512Mi'
resource1_requests_cpu=0.1
resource1_limits_memory='512Mi'
resource1_limits_cpu=0.1

As this example resource configuration shows, integer 1 is used as the ID for each of the resource variables, which together form a single
resource configuration called small. This approach allows different resource configurations to be created by defining the proper resource
variables with a unique ID for each required resource configuration.

Additionally, once all resource configurations have been defined in the inventory, they can then be used to specify the default resource
configurations that should be utilized for the various PG containers created by the operator. This is done using the following variables,
which are also defined in the inventory:

default_container_resources='large'
default_load_resources='small'
default_rmdata_resources='small'
default_backup_resources='small'
default_pgbouncer_resources='small'

57

With the configuration shown above, the large resource configuration would be used by default for all database containers, while the
small resource configuration would then be utilized by default for the various other containers created for a PG cluster.

Understanding pgo_operator_namespace & namespace

The Crunchy PostgreSQL Operator can be configured to be deployed and manage a single namespace or manage several namespaces. The
following are examples of different types of deployment models configurable in the inventory file.

Single Namespace

To deploy the Crunchy PostgreSQL Operator to work with a single namespace (in this example our namespace is named pgo), configure
the following inventory settings:
pgo_operator_namespace='pgo'
namespace='pgo'

Multiple Namespaces

To deploy the Crunchy PostgreSQL Operator to work with multiple namespaces (in this example our namespaces are named pgo, pgouser1
and pgouser2), configure the following inventory settings:
pgo_operator_namespace='pgo'
namespace='pgouser1 ,pgouser2 '

Deploying Multiple Operators

The 4.0 release of the Crunchy PostgreSQL Operator allows for multiple operator deployments in the same cluster.
To install the Crunchy PostgreSQL Operator to multiple namespaces, it’s recommended to have an inventory file for each deployment of
the operator.
For each operator deployment the following inventory variables should be configured uniquely for each install.
For example, operator could be deployed twice by changing the pgo_operator_namespace and namespace for those deployments:
Inventory A would deploy operator to the pgo namespace and it would manage the pgo target namespace.
Inventory A
pgo_operator_namespace='pgo'
namespace='pgo'
...

Inventory B would deploy operator to the pgo2 namespace and it would manage the pgo2 and pgo3 target namespaces.
Inventory B
pgo_operator_namespace='pgo2'
namespace='pgo2,pgo3'
...

Each install of the operator will create a corresponding directory in $HOME/.pgo/<PGO NAMESPACE> which will contain the TLS and
pgouser client credentials.

Deploying Grafana and Prometheus

PostgreSQL clusters created by the operator can be configured to create additional containers for collecting metrics.
These metrics are very useful for understanding the overall health and performance of PostgreSQL database deployments over time. The
collectors included by the operator are:

• PostgreSQL Exporter - PostgreSQL metrics

The operator, however, does not install the necessary timeseries database (Prometheus) for storing the collected metrics or the front end
visualization (Grafana) of those metrics.
Included in these playbooks are roles for deploying Granfana and/or Prometheus. See the inventory file for options to install the metrics
stack.
{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. {{% /notice %}}

58

Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem

To install Ansible on Linux or MacOS, see the official documentation provided by Ansible.

Install Google Cloud SDK (Optional)

If Crunchy PostgreSQL Operator is going to be installed in a Google Kubernetes Environment the Google Cloud SDK is required.

To install the Google Cloud SDK on Linux or MacOS, see the official Google Cloud documentation.

When installing the Google Cloud SDK on the Windows Ubuntu Subsystem, run the following commands to install:

wget https://sdk.cloud.google.com --output-document=/tmp/install-gsdk.sh
Review the /tmp/install -gsdk.sh prior to running
chmod +x /tmp/install-gsdk.sh
/tmp/install-gsdk.sh

Installing

The following assumes the proper prerequisites are satisfied we can now install the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory
in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.

Installing on Linux

On a Linux host with Ansible installed we can run the following command to install the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Installing on MacOS

On a MacOS host with Ansible installed we can run the following command to install the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

Installing on Windows Ubuntu Subsystem

On a Windows host with an Ubuntu subsystem we can run the following commands to install the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

Verifying the Installation

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME >
kubectl get pods -n <NAMESPACE_NAME >

OpenShift
oc get deployments -n <NAMESPACE_NAME >
oc get pods -n <NAMESPACE_NAME >

59

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#intro-installation-guide
https://cloud.google.com/sdk/install

Configure Environment Variables

After the Crunchy PostgreSQL Operator has successfully been installed we will need to configure local environment variables before using
the pgo client.

{{% notice info %}}

If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref “Configuration/tls.md” >}})
for additional configuration information.

{{% / notice %}}

To configure the environment variables used by pgo run the following command:

Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to.

cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE >/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE >/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF

Apply those changes to the current session by running:

source ~/.bashrc

Verify pgo Connection

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

On a separate terminal verify the pgo can communicate with the Crunchy PostgreSQL Operator:

pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been installed successfully.

Installing

PostgreSQL clusters created by the Crunchy PostgreSQL Operator can optionally be configured to serve performance metrics via
Prometheus Exporters. The metric exporters included in the database pod serve realtime metrics for the database container. In order to
store and view this data, Grafana and Prometheus are required. The Crunchy PostgreSQL Operator does not create this infrastructure,
however, they can be installed using the provided Ansible roles.

Prerequisites

The following assumes the proper prerequisites are satisfied we can now install the PostgreSQL Operator.

At a minimum, the following inventory variables should be configured to install the metrics infrastructure:

Name Default Description

ccp_image_prefix crunchydata Configures the image prefix used when creating containers from Crunchy Container Suite.
ccp_image_tag Configures the image tag (version) used when creating containers from Crunchy Container Suite.
grafana_admin_username admin Set to configure the login username for the Grafana administrator.
grafana_admin_password Set to configure the login password for the Grafana administrator.
grafana_install true Set to true to install Crunchy Grafana to visualize metrics.

60

Name Default Description

grafana_storage_access_mode Set to the access mode used by the configured storage class for Grafana persistent volumes.
grafana_storage_class_name Set to the name of the storage class used when creating Grafana persistent volumes.
grafana_volume_size Set to the size of persistent volume to create for Grafana.
kubernetes_context When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
metrics false Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
metrics_namespace metrics Configures the target namespace when deploying Grafana and/or Prometheus
openshift_host When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
openshift_password When deploying to OpenShift, set to configure the password used for login.
openshift_skip_tls_verify When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
openshift_token When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
openshift_user When deploying to OpenShift, set to configure the username used for login.
prometheus_install true Set to true to install Crunchy Prometheus timeseries database.
prometheus_storage_access_mode Set to the access mode used by the configured storage class for Prometheus persistent volumes.
prometheus_storage_class_name Set to the name of the storage class used when creating Prometheus persistent volumes.

{{% notice tip %}} Administrators can choose to install Grafana, Prometheus or both by configuring the grafana_install and
prometheus_install variables in the inventory files. {{% /notice %}}

The following commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks are located. See the ansible
directory in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.

{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. For more information on
storage classes see the official Kubernetes documentation. {{% /notice %}}

Installing on Linux

On a Linux host with Ansible installed we can run the following command to install the Metrics stack:

ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=install-metrics --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Installing on MacOS

On a MacOS host with Ansible installed we can run the following command to install the Metrics stack:

ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

Installing on Windows

On a Windows host with the Ubuntu subsystem we can run the following commands to install the Metrics stack:

ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

Verifying the Installation

This may take a few minutes to deploy. To check the status of the deployment run the following:

61

https://kubernetes.io/docs/concepts/storage/storage-classes/

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME >
kubectl get pods -n <NAMESPACE_NAME >

OpenShift
oc get deployments -n <NAMESPACE_NAME >
oc get pods -n <NAMESPACE_NAME >

Verify Grafana

In a separate terminal we need to setup a port forward to the Crunchy Grafana deployment to ensure connection can be made outside of
the cluster:

If deployed to Kubernetes
kubectl port-forward <GRAFANA_POD_NAME > -n <METRICS_NAMESPACE > 3000:3000

If deployed to OpenShift
oc port-forward <GRAFANA_POD_NAME > -n <METRICS_NAMESPACE > 3000:3000

In a browser navigate to http://127.0.0.1:3000 to access the Grafana dashboard.

{{% notice tip %}} No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the
following command:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE >

{{% /notice %}}

Verify Prometheus

In a separate terminal we need to setup a port forward to the Crunchy Prometheus deployment to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward <PROMETHEUS_POD_NAME > -n <METRICS_NAMESPACE > 9090:9090

If deployed to OpenShift
oc port-forward <PROMETHEUS_POD_NAME > -n <METRICS_NAMESPACE > 9090:9090

In a browser navigate to http://127.0.0.1:9090 to access the Prometheus dashboard.

{{% notice tip %}} No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the
following command:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE >

{{% /notice %}}

Updating

Updating the Crunchy PostgreSQL Operator is essential to the lifecycle management of the service. Using the update flag will:

• Update and redeploy the operator deployment
• Recreate configuration maps used by operator
• Remove any deprecated objects
• Allow administrators to change settings configured in the inventory
• Reinstall the pgo client if a new version is specified

The following assumes the proper prerequisites are satisfied we can now update the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory
in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.

62

Updating on Linux

On a Linux host with Ansible installed we can run the following command to update
the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Updating on MacOS

On a MacOS host with Ansible installed we can run the following command to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

Updating on Windows Ubuntu Subsystem

On a Windows host with an Ubuntu subsystem we can run the following commands to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

Verifying the Update

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME >
kubectl get pods -n <NAMESPACE_NAME >

OpenShift
oc get deployments -n <NAMESPACE_NAME >
oc get pods -n <NAMESPACE_NAME >

Configure Environment Variables

After the Crunchy PostgreSQL Operator has successfully been updated we will need to configure local environment variables before using
the pgo client.

To configure the environment variables used by pgo run the following command:

Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to. Also, if TLS was
disabled, or if the port was changed, update PGO_APISERVER_URL accordingly.

cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE >/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE >/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF

Apply those changes to the current session by running:

source ~/.bashrc

63

Verify pgo Connection

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

Note: If a port other than 8443 was configured, update the above command accordingly.

On a separate terminal verify the pgo can communicate with the Crunchy PostgreSQL Operator:

pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been updated successfully.

Uninstalling PostgreSQL Operator

The following assumes the proper prerequisites are satisfied we can now uninstall the PostgreSQL Operator.

First, it is recommended to use the playbooks tagged with the same version of the PostgreSQL Operator currently deployed.

With the correct playbooks acquired and prerequisites satisfied, simply run the following command:

ansible-playbook -i /path/to/inventory --tags=uninstall --ask-become-pass main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=uninstall --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Deleting pgo Client

If variable pgo_client_install is set to true in the inventory file, the pgo client will also be removed when uninstalling.

Otherwise, the pgo client can be manually uninstalled by running the following command:

rm /usr/local/bin/pgo

Uninstalling the Metrics Stack

The following assumes the proper prerequisites are satisfied we can now uninstall the PostgreSQL Operator Metrics Infrastructure.

First, it is recommended to use the playbooks tagged with the same version of the Metrics stack currently deployed.

With the correct playbooks acquired and prerequisites satisfied, simply run the following command:

ansible-playbook -i /path/to/inventory --tags=uninstall -metrics main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=uninstall -metrics \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Install the Postgres Operator (pgo) Client

The following will install and configure the pgo client on all systems. For the purpose of these instructions it’s assumed that the Crunchy
PostgreSQL Operator is already deployed.

64

Prerequisites

• For Kubernetes deployments: kubectl configured to communicate with Kubernetes
• For OpenShift deployments: oc configured to communicate with OpenShift

The Crunchy Postgres Operator als requires the following in order to authenticate with the apiserver:

• Client CA Certificate
• Client TLS Certificate
• Client Key
• pgouser file containing <username>:<password>

All of the requirements above should be obtained from an administrator who installed the Crunchy PostgreSQL Operator.

Linux and MacOS

The following will setup the pgo client to be used on a Linux or MacOS system.

Installing the Client

First, download the pgo client from the GitHub official releases. Crunchy Enterprise Customers can download the pgo binaries from
https://access.crunchydata.com/ on the downloads page.
Next, install pgo in /usr/local/bin by running the following:
sudo mv /PATH/TO/pgo /usr/local/bin/pgo
sudo chmod +x /usr/local/bin/pgo

Verify the pgo client is accessible by running the following in the terminal:
pgo --help

Configuring Client TLS With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files by running the following command:
mkdir ${HOME?}/.pgo
chmod 700 ${HOME?}/.pgo

Next, copy the certificates to this new directory:
cp /PATH/TO/client.crt ${HOME?}/.pgo/client.crt && chmod 600 ${HOME?}/.pgo/client.crt
cp /PATH/TO/client.pem ${HOME?}/.pgo/client.pem && chmod 400 ${HOME?}/.pgo/client.pem

Finally, set the following environment variables to point to the client TLS files:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_CA_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/client.pem"
EOF

Apply those changes to the current session by running:
source ~/.bashrc

Configuring pgouser The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL
Operator.
To setup the pgouser file, run the following:
echo "<USERNAME_HERE >:<PASSWORD_HERE >" > ${HOME?}/.pgo/pgouser

cat <<EOF >> ${HOME?}/.bashrc
export PGOUSER="${HOME?}/.pgo/pgouser"
EOF

Apply those changes to the current session by running:
source ${HOME?}/.bashrc

65

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://github.com/CrunchyData/postgres-operator/releases

Configuring the API Server URL If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it’s required to setup
a port-forward tunnel using the kubectl or oc binary.

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

Note: the port-forward will be required for the duration of pgo usage.

Next, set the following environment variable to configure the API server address:

cat <<EOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://<IP_OF_OPERATOR_API >:8443"
EOF

Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1

Apply those changes to the current session by running:

source ${HOME?}/.bashrc

PGO-Client Container

The following will setup the pgo client image in a Kubernetes or Openshift environment. The image must be installed using the Ansible
installer.

Installing the PGO-Client Container

The pgo-client container can be installed with the Ansible installer by updating the pgo_client_container_install variable in the
inventory file. Set this variable to true in the inventory file and run the ansible-playbook. As part of the install the pgo.tls and
pgouser-<username> secrets are used to configure the pgo client.

Using the PGO-Client Deployment

Once the container has been installed you can access it by exec’ing into the pod. You can run single commands with the kubectl or oc
command line tools or multiple commands by exec’ing into the pod with bash.

kubectl exec -it -n pgo <pgo-client-deployment -name> -c "pgo version"

or

kubectl exec -it -n pgo <pgo-client-deployment -name> bash

The deployment does not require any configuration to connect to the operator.

Windows

The following will setup the pgo client to be used on a Windows system.

Installing the Client

First, download the pgo.exe client from the GitHub official releases.

Next, create a directory for pgo using the following:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: mkdir "%ProgramFiles%\postgres-operator"

66

https://github.com/CrunchyData/postgres-operator/releases

Within the same terminal copy the pgo.exe binary to the directory created above using the following command:
copy %HOMEPATH%\Downloads\pgo.exe "%ProgramFiles%\postgres-operator"

Finally, add pgo.exe to the system path by running the following command in the terminal:
setx path "%path%;C:\Program Files\postgres-operator"

Verify the pgo.exe client is accessible by running the following in the terminal:
pgo --help

Configuring Client TLS With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files using the following:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: mkdir "%HOMEPATH%\pgo"

Next, copy the certificates to this new directory:
copy \PATH\TO\client.crt "%HOMEPATH%\pgo"
copy \PATH\TO\client.pem "%HOMEPATH%\pgo"

Finally, set the following environment variables to point to the client TLS files:
setx PGO_CA_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_KEY "%HOMEPATH%\pgo\client.pem"

Configuring pgouser The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL
Operator.
To setup the pgouser file, run the following:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: echo USERNAME_HERE:PASSWORD_HERE > %HOMEPATH%\pgo\pgouser

Finally, set the following environment variable to point to the pgouser file:
setx PGOUSER "%HOMEPATH%\pgo\pgouser"

Configuring the API Server URL If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it’s required to setup
a port-forward tunnel using the kubectl or oc binary.
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:
If deployed to Kubernetes
kubectl port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

If deployed to OpenShift
oc port-forward <OPERATOR_POD_NAME > -n <OPERATOR_NAMESPACE > 8443:8443

Note: the port-forward will be required for the duration of pgo usage.
Next, set the following environment variable to configure the API server address:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: setx PGO_APISERVER_URL "https://<IP_OF_OPERATOR_API>:8443"
• Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1

67

Verify the Client Installation

After completing all of the steps above we can verify pgo is configured properly by simply running the following:
pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator client has been installed
successfully.
The PostgreSQL Operator Client, aka pgo, is the most convenient way to interact with the PostgreSQL Operator. pgo provides many
convenience methods for creating, managing, and deleting PostgreSQL clusters through a series of simple commands. The pgo client
interfaces with the API that is provided by the PostgreSQL Operator and can leverage the RBAC and TLS systems that are provided by
the PostgreSQL Operator

Figure 14: Architecture

The pgo client is available for Linux, macOS, and Windows, as well as a pgo-client container that can be deployed alongside the
PostgreSQL Operator.
You can download pgo from the releases page, or have it installed in your preferred binary format or as a container in your Kubernetes
cluster using the Ansible Installer.

Syntax

The syntax for pgo is similar to what you would expect from using the kubectl or oc binaries. This is by design: one of the goals of the
PostgreSQL Operator project is to allow for seamless management of PostgreSQL clusters in Kubernetes-enabled environments, and by
following the command patterns that users are familiar with, the learning curve is that much easier!
To get an overview of everything that is available at the top-level of pgo, execute:
pgo

The syntax for the commands that pgo executes typicall follow this format:
pgo [command] ([TYPE] [NAME]) [flags]

Where command is a verb like:

68

https://github.com/crunchydata/postgres-operator/releases

• create
• show
• delete

And type is a resource type like:

• cluster
• backup
• user

And name is the name of the resource type like:

• hacluster
• gisdba

There are several global flags that are available to every pgo command as well as flags that are specific to particular commands. To get
a list of all the options and flags available to a command, you can use the --help flag. For example, to see all of the options available to
the pgo create cluster command, you can run the following:

pgo create cluster --help

Command Overview

The following table provides an overview of the commands that the pgo client provides:

Operation Syntax Description

apply pgo apply mypolicy --selector=name=mycluster Apply a SQL policy on a Postgres cluster(s) that have a label matching service-name=mycluster

backup pgo backup mycluster Perform a backup on a Postgres cluster(s)
cat pgo cat mycluster filepath Perform a Linux cat command on the cluster.
clone pgo clone oldcluster newcluster Copies the primary database of an existing cluster to a new cluster
create pgo create cluster mycluster Create an Operator resource type (e.g. cluster, policy, schedule, user, namespace, pgouser, pgorole)
delete pgo delete cluster mycluster Delete an Operator resource type (e.g. cluster, policy, user, schedule, namespace, pgouser, pgorole)
ls pgo ls mycluster filepath Perform a Linux ls command on the cluster.
df pgo df mycluster Display the disk status/capacity of a Postgres cluster.
failover pgo failover mycluster Perform a manual failover of a Postgres cluster.
help pgo help Display general pgo help information.
label pgo label mycluster --label=environment=prod Create a metadata label for a Postgres cluster(s).
load pgo load --load-config=load.json --selector=name=mycluster Perform a data load into a Postgres cluster(s).
reload pgo reload mycluster Perform a pg_ctl reload command on a Postgres cluster(s).
restore pgo restore mycluster Perform a pgbackrest, pgbasebackup or pgdump restore on a Postgres cluster.
scale pgo scale mycluster Create a Postgres replica(s) for a given Postgres cluster.
scaledown pgo scaledown mycluster --query Delete a replica from a Postgres cluster.
show pgo show cluster mycluster Display Operator resource information (e.g. cluster, user, policy, schedule, namespace, pgouser, pgorole).
status pgo status Display Operator status.
test pgo test mycluster Perform a SQL test on a Postgres cluster(s).
update pgo update cluster mycluster --disable-autofail Update a Postgres cluster(s), pgouser, pgorole, user, or namespace.
upgrade pgo upgrade mycluster Perform a minor upgrade to a Postgres cluster(s).
version pgo version Display Operator version information.

69

Global Flags

There are several global flags available to the pgo client.

NOTE: Flags take precedence over environmental variables.

Flag Description

--apiserver-url The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client.
--debug Enable additional output for debugging.
--disable-tls Disable TLS authentication to the Postgres Operator.
--exclude-os-trust Exclude CA certs from OS default trust store.
-h ,--help Print out help for a command command.
-n ,--namespace The namespace to execute the pgo command in. This is required for most pgo commands.
--pgo-ca-cert The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
--pgo-client-cert The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
--pgo-client-key The client key file path for authenticating to the PostgreSQL Operator apiserver.

Global Environment Variables

There are several environmental variables that can be used with the pgo client.

NOTE Flags take precedence over environmental variables.

Name Description

EXCLUDE_OS_TRUST Exclude CA certs from OS default trust store.
GENERATE_BASH_COMPLETION If set, will allow pgo to leverage “bash completion” to help complete commands as they are typed.
PGO_APISERVER_URL The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client.
PGO_CA_CERT The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
PGO_CLIENT_CERT The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
PGO_CLIENT_KEY The client key file path for authenticating to the PostgreSQL Operator apiserver.
PGO_NAMESPACE The namespace to execute the pgo command in. This is required for most pgo commands.
PGOUSER The path to the pgouser file. Will be ignored if either PGOUSERNAME or PGOUSERPASS are set.
PGOUSERNAME The username (role) used for auth on the operator apiserver. Requires that PGOUSERPASS be set.
PGOUSERPASS The password for used for auth on the operator apiserver. Requires that PGOUSERNAME be set.

Additional Information

How can you use the pgo client to manage your day-to-day PostgreSQL operations? The next section covers many of the common types
of tasks that one needs to perform when managing production PostgreSQL clusters. Beyond that is the full reference for all the available
commands and flags for the pgo client.

• Common pgo Client Tasks
• pgo Client Reference

While the full pgo client reference will tell you everything you need to know about how to use pgo, it may be helpful to see several examples
on how to conduct “day-in-the-life” tasks for administrating PostgreSQL cluster with the PostgreSQL Operator.
The below guide covers many of the common operations that are required when managing PostgreSQL clusters. The guide is broken up
by different administrative topics, such as provisioning, high-availability, etc.

General Notes

Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool
when managing PostgreSQL deployments across many Kubernetes namespaces, this can become onerous for the intents of this guide.

70

If you install the PostgreSQL Operator using the quickstart guide, you will have two namespaces installed: pgouser1 and pgouser2. We
can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global
pgo Client reference,

For convenience, we will use the pgouser1 namespace in the examples below. For even more convenience, we recommend setting pgouser1
to be the value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:

export PGO_NAMESPACE=shell

If you do not wish to set this environmental variable, or are in an environment where you are unable to use envirionmental variables, you
will have to use the --namespace (or -n) flag for most commands, e.g.

pgo version -n pgouser1

JSON Output

The default for the pgo client commands is to output their results in a readable format. However, there are times where it may be helpful
to you to have the format output in a machine parseable format like JSON.

Several commands support the -o/--output flags that delivers the results of the command in the specified output. Presently, the only
output that is supported is json.

As an example of using this feature, if you wanted to get the results of the pgo test command in JSON, you could run the following:

pgo test hacluster -o json

PostgreSQL Operator System Basics

To get started, it’s first important to understand the basics of working with the PostgreSQL Operator itself. You should know how to
test if the PostgreSQL Operator is working, check the overall status of the PostgreSQL Operator, view the current configuration that the
PostgreSQL Operator us using, and seeing which Kubernetes Namespaces the PostgreSQL Operator has access to.

While this may not be as fun as creating high-availability PostgreSQL clusters, these commands will help you to perform basic trou-
bleshooting tasks in your environment.

Checking Connectivity to the PostgreSQL Operator

A common task when working with the PostgreSQL Operator is to check connectivity to the PostgreSQL Operator. This can be accomplish
with the pgo version command:

pgo version

which, if working, will yield results similar to:

pgo client version 4.2.1
pgo-apiserver version 4.2.1

Inspecting the PostgreSQL Operator Configuration

The pgo show config command allows you to view the current configuration that the PostgreSQL Operator is using. This can be helpful
for troubleshooting issues such as which PostgreSQL images are being deployed by default, which storage classes are being used, etc.

You can run the pgo show config command by running:

pgo show config

which yields output similar to:

BasicAuth: ""
Cluster:

CCPImagePrefix: crunchydata
CCPImageTag: centos7 -12.1-4.2.1
PrimaryNodeLabel: ""
ReplicaNodeLabel: ""
Policies: ""
LogStatement: none
LogMinDurationStatement: "60000"

71

Metrics: false
Badger: false
Port: "5432"
PGBadgerPort: "10000"
ExporterPort: "9187"
User: testuser
ArchiveTimeout: "60"
Database: userdb
PasswordAgeDays: "60"
PasswordLength: "8"
Strategy: "1"
Replicas: "0"
ServiceType: ClusterIP
BackrestPort: 2022
Backrest: true
BackrestS3Bucket: ""
BackrestS3Endpoint: ""
BackrestS3Region: ""
DisableAutofail: false
AutofailReplaceReplica: false
PgmonitorPassword: ""
EnableCrunchyadm: false
DisableReplicaStartFailReinit: false
PodAntiAffinity: preferred
SyncReplication: false

Pgo:
PreferredFailoverNode: ""
Audit: false
PGOImagePrefix: crunchydata
PGOImageTag: centos7 -4.2.1

ContainerResources:
large:

RequestsMemory: 2Gi
RequestsCPU: "2.0"
LimitsMemory: 2Gi
LimitsCPU: "4.0"

small:
RequestsMemory: 256Mi
RequestsCPU: "0.1"
LimitsMemory: 256Mi
LimitsCPU: "0.1"

PrimaryStorage: nfsstorage
BackupStorage: nfsstorage
ReplicaStorage: nfsstorage
BackrestStorage: nfsstorage
Storage:

nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
StorageClass: ""
Fsgroup: ""
SupplementalGroups: "65534"
MatchLabels: ""

DefaultContainerResources: ""
DefaultLoadResources: ""
DefaultRmdataResources: ""
DefaultBackupResources: ""
DefaultBadgerResources: ""
DefaultPgbouncerResources: ""

72

Viewing PostgreSQL Operator Key Metrics

The pgo status command provides a generalized statistical view of the overall resource consumption of the PostgreSQL Operator. These
stats include:

• The total number of PostgreSQL instances
• The total number of Persistent Volume Claims (PVC) that are allocated, along with the total amount of disk the claims specify
• The types of container images that are deployed, along with how many are deployed
• The nodes that are used by the PostgreSQL Operator

and more

You can use the pgo status command by running:

pgo status

which yields output similar to:

Operator Start: 2019-12-26 17:53:45 +0000 UTC
Databases: 8
Claims: 8
Total Volume Size: 8Gi

Database Images:
4 crunchydata/crunchy-postgres-ha:centos7 -12.1-4.2.1
4 crunchydata/pgo-backrest-repo:centos7 -4.2.1
8 crunchydata/pgo-backrest:centos7 -4.2.1

Databases Not Ready:

Nodes:
master

Status:Ready
Labels:

beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
kubernetes.io/arch=amd64
kubernetes.io/hostname=master
kubernetes.io/os=linux
node-role.kubernetes.io/master=

node01
Status:Ready
Labels:

beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
kubernetes.io/arch=amd64
kubernetes.io/hostname=node01
kubernetes.io/os=linux

Labels (count > 1): [count] [label]
[8] [vendor=crunchydata]
[4] [pgo-backrest -repo=true]
[4] [pgouser=pgoadmin]
[4] [pgo-pg-database=true]
[4] [crunchy_collect=false]
[4] [pg-pod-anti-affinity=]
[4] [pgo-version=4.2.1]
[4] [archive-timeout=60]
[2] [pg-cluster=hacluster]

Viewing PostgreSQL Operator Managed Namespaces

The PostgreSQL Operator has the ability to manage PostgreSQL clusters across Kubernetes Namespaces. During the course of Operations,
it can be helpful to know which namespaces the PostgreSQL Operator can use for deploying PostgreSQL clusters.

73

You can view which namespaces the PostgreSQL Operator can utilize by using the pgo show namespace command. To list out the
namespaces that the PostgreSQL Operator has access to, you can run the following command:

pgo show namespace --all

which yields output similar to:

pgo username: pgoadmin
namespace useraccess installaccess
default accessible no access
kube-node-lease accessible no access
kube-public accessible no access
kube-system accessible no access
pgo accessible no access
pgouser1 accessible accessible
pgouser2 accessible accessible
somethingelse no access no access

NOTE: Based on your deployment, your Kuberentes administrator may restrict access to the multi-namespace feature of the PostgreSQL
Operator. In this case, you do not need to worry about managing your namespaces and as such do not need to use this command, but we
recommend setting the PGO_NAMESPACE variable as described in the general notes on this page.

Provisioning: Create, View, Destroy

Creating a PostgreSQL Cluster

You can create a cluster using the pgo create cluster command:

pgo create cluster hacluster

which if successfully, will yield output similar to this:

created Pgcluster hacluster
workflow id ae714d12 -f5d0-4fa9-910f-21944b41dec8

Create a PostgreSQL Cluster with PostGIS To create a PostgreSQL cluster that uses the geospatial extension PostGIS, you can
execute the following command:

pgo create cluster hagiscluster --ccp-image=crunchy-postgres-gis-ha

Tracking a Newly Provisioned Cluster A new PostgreSQL cluster can take a few moments to provision. You may have noticed that
the pgo create cluster command returns something called a “workflow id”. This workflow ID allows you to track the progress of your
new PostgreSQL cluster while it is being provisioned using the pgo show workflow command:

pgo show workflow ae714d12 -f5d0-4fa9-910f-21944b41dec8

which can yield output similar to:

parameter value
--------- -----
pg-cluster hacluster
task completed 2019-12-27T02:10:14Z
task submitted 2019-12-27T02:09:46Z
workflowid ae714d12-f5d0-4fa9-910f-21944b41dec8

View PostgreSQL Cluster Details

To see details about your PostgreSQL cluster, you can use the pgo show cluster command. These details include elements such as:

• The version of PostgreSQL that the cluster is using
• The PostgreSQL instances that comprise the cluster
• The Pods assigned to the cluster for all of the associated components, including the nodes that the pods are assigned to
• The Persistent Volume Claims (PVC) that are being consumed by the cluster
• The Kubernetes Deployments associated with the cluster

74

• The Kubernetes Services associated with the cluster
• The Kubernetes Labels that are assigned to the PostgreSQL instances

and more.
You can view the details of the cluster by executing the following command:
pgo show cluster hacluster

which will yield output similar to:
cluster : hacluster (crunchy-postgres-ha:centos7 -12.1-4.2.1)

pod : hacluster -6dc6cfcfb9 -f9knq (Running) on node01 (1/1) (primary)
pvc : hacluster
resources : CPU Limit= Memory Limit=, CPU Request= Memory Request=
storage : Primary=200M Replica=200M
deployment : hacluster
deployment : hacluster -backrest-shared-repo
service : hacluster - ClusterIP (10.102.20.42)
labels : pg-pod-anti-affinity= archive-timeout=60 crunchy-pgbadger=false crunchy_collect=false

deployment -name=hacluster pg-cluster=hacluster crunchy-pgha-scope=hacluster autofail=true
pgo-backrest=true pgo-version=4.2.1 current-primary=hacluster name=hacluster
pgouser=pgoadmin workflowid=ae714d12 -f5d0-4fa9-910f-21944b41dec8

Deleting a Cluster

You can delete a PostgreSQL cluster that is managed by the PostgreSQL Operator by executing the following command:
pgo delete cluster hacluster

This will remove the cluster from being managed by the PostgreSQL Operator, as well as delete the root data Persistent Volume Claim
(PVC) and backup PVCs associated with the cluster.
If you wish to keep your PostgreSQL data PVC, you can delete the cluster with the following command:
pgo delete cluster hacluster --keep-data

You can then recreate the PostgreSQL cluster with the same data by using the pgo create cluster command with a cluster of the same
name:
pgo create cluster hacluster

This technique is used when performing tasks such as upgrading the PostgreSQL Operator.
You can also keep the pgBackRest repository associated with the PostgreSQL cluster by using the --keep-backups flag with the pgo
delete cluster command:
pgo delete cluster hacluster --keep-backups

Testing PostgreSQL Cluster Availability

You can test the availability of your cluster by using the pgo test command. The pgo test command checks to see if the Kubernetes
Services and the Pods that comprise the PostgreSQL cluster are available to receive connections. This includes:

• Testing that the Kubernetes Endpoints are available and able to route requests to healthy Pods
• Testing that each PostgreSQL instance is available and ready to accept client connections by performing a connectivity check similar

to the one performed by pg_isready

To test the availability of a PostgreSQL cluster, you can run the following command:
pgo test hacluster

which will yield output similar to:
cluster : hacluster

Services
primary (10.102.20.42:5432): UP

Instances
primary (hacluster -6dc6cfcfb9 -f9knq): UP

75

Disaster Recovery: Backups & Restores

The PostgreSQL Operator supports sophisticated functionality for managing your backups and restores. For more information for how
this works, please see the disaster recovery guide.

Creating a Backup

The PostgreSQL Operator uses the open source pgBackRest backup and recovery utility for managing backups and PostgreSQL archives.
These backups are also used as part of managing the overall health and high-availability of PostgreSQL clusters managed by the PostgreSQL
Operator and used as part of the cloning process as well.
When a new PostgreSQL cluster is provisioned by the PostgreSQL Operator, a full pgBackRest backup is taken by default. This is required
in order to create new replicas (via pgo scale) for the PostgreSQL cluster as well as healing during a failover scenario.
To create a backup, you can run the following command:
pgo create backup hacluster

which by default, will create an incremental pgBackRest backup. The reason for this is that the PostgreSQL Operator initially creates a
pgBackRest full backup when the cluster is initial provisioned, and pgBackRest will take incremental backups for each subsequent backup
until a different backup type is specified.
Most pgBackRest options are supported and can be passed in by the PostgreSQL Operator via the --backup-opts flag. What follows are
some examples for how to utilize pgBackRest with the PostgreSQL Operator to help you create your optimal disaster recovery setup.

Creating a Full Backup You can create a full backup using the following command:
pgo create backup hacluster --backup-opts="--type=full"

Creating a Differential Backup You can create a differential backup using the following command:
pgo create backup hacluster --backup-opts="--type=diff"

Creating an Incremental Backup You can create a differential backup using the following command:
pgo create backup hacluster --backup-opts="--type=incr"

An incremental backup is created without specifying any options after a full or differential backup is taken.

Creating Backups in S3

The PostgreSQL Operator supports creating backups in S3 or any object storage system that uses the S3 protocol. For more information,
please read the section on PostgreSQL Operator Backups with S3 in the architecture section.

Displaying Backup Information

You can see information about the current state of backups in a PostgreSQL cluster managed by the PostgreSQL Operator by executing
the following command:
pgo show backup hacluster

Setting Backup Retention

By default, pgBackRest will allow you to keep on creating backups until you run out of disk space. As such, it may be helpful to manage
how many backups are retained.
pgBackRest comes with several flags for managing how backups can be retained:

• --repo1-retention-full: how many full backups to retain
• --repo1-retention-diff: how many differential backups to retain
• --repo1-retention-archive: how many sets of WAL archives to retain alongside the full and differential backups that are retained

For example, to create a full backup and retain the previous 7 full backups, you would execute the following command:
pgo create backup hacluster --backup-opts="--type=full --repo1-retention -full=7"

76

https://www.pgbackrest.org

Scheduling Backups

Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its
scheduling sidecar that is deployed alongside the Operator.

Creating a Scheduled Backup For example, to schedule a full backup once a day at midnight, you can execute the following command:

pgo create schedule hacluster --schedule="0 1 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=full

To schedule an incremental backup once every 3 hours, you can execute the following command:

pgo create schedule hacluster --schedule="0 */3 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=incr

You can also create regularly scheduled backups and combine it with a retention policy. For example, using the above example of taking
a nightly full backup, you can specify a policy of retaining 21 backups by executing the following command:

pgo create schedule hacluster --schedule="0 0 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=full \
--schedule-opts="--repo1-retention -full=21"

Restore a Cluster

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery
using the pgo restore command. Note that both of these options are destructive to the existing PostgreSQL cluster; to “restore” the
PostgreSQL cluster to a new deployment, please see the clone section.

After a restore, there are some cleanup steps you will need to perform. Please review the Post Restore Cleanup section.

Full Restore To perform a full restore of a PostgreSQL cluster, you can execute the following command:

pgo restore hacluster

If you want your PostgreSQL cluster to be restored to a specific node, you can execute the following command:

pgo restore hacluster --node-label=failure-domain.beta.kubernetes.io/zone=us-central1-a

There are very few reasons why you will want to execute a full restore. If you want to make a copy of your PostgreSQL cluster, please use
pgo clone.

Point-in-time-Recovery (PITR) The more likely scenario when performing a PostgreSQL cluster restore is to recover to a particular
point-in-time (e.g. before a key table was dropped). For example, to restore a cluster to December 23, 2019 at 8:00am:

pgo restore hacluster --pitr-target="2019-12-23 08:00:00.000000+00" \
--backup-opts="--type=time"

The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter.
For more information, please review the pgBackRest restore options

Post Restore Cleanup After a restore is complete, you will need to re-enable high-availability on a PostgreSQL cluster manually. You
can re-enable high-availability by executing the following command:

pgo update cluster hacluster --autofail=true

Logical Backups (pg_dump / pg_dumpall)

The PostgreSQL Operator supports taking logical backups with pg_dump and pg_dumpall. While they do not provide the same performance
and storage optimizations as the physical backups provided by pgBackRest, logical backups are helpful when one wants to upgrade between
major PostgreSQL versions, or provide only a subset of a database, such as a table.

77

https://pgbackrest.org/command.html#command-restore

Create a Logical Backup To create a logical backup of a full database, you can run the following command:
pgo backup hacluster --backup-type=pgdump

You can pass in specific options to --backup-opts, which can accept most of the options that the pg_dump command accepts. For example,
to only dump the data from a specific table called users:
pgo backup hacluster --backup-type=pgdump --backup-opts="-t users"

To use pg_dumpall to create a logical backup of all the data in a PostgreSQL cluster, you must pass the --dump-all flag in --backup-opts,
i.e.:
pgo backup hacluster --backup-type=pgdump --backup-opts="--dump-all"

Viewing Logical Backups To view an available list of logical backups, you can use the pgo show backup command:
pgo show backup --backup-type=pgdump

This provides information about the PVC that the logical backups are stored on as well as the timestamps required to perform a restore
from a logical backup.

Restore from a Logical Backup To restore from a logical backup, you need to reference the PVC that the logical backup is stored
to, as well as the timestamp that was created by the logical backup.
You can restore a logical backup using the following command:
pgo restore hacluster --backup-type=pgdump --backup-pvc=hacluster -pgdump-pvc \

--pitr-target="2019-01-15-00-03-25" -n pgouser1

High-Availability: Scaling Up & Down

The PostgreSQL Operator supports a robust high-availability set up to ensure that your PostgreSQL clusters can stay up and running.
For detailed information on how it works, please see the high-availability architecture section.

Creating a New Replica

To create a new replica, also known as “scaling up”, you can execute the following command:
pgo scale hacluster --replica-count=1

If you wanted to add two new replicas at the same time, you could execute the following command:
pgo scale hacluster --replica-count=2

Viewing Available Replicas

You can view the available replicas in a few ways. First, you can use pgo show cluster to see the overall information about the
PostgreSQL cluster:
pgo show cluster hacluster

You can also find specific replica names by using the --query flag on the pgo failover and pgo scaledown commands, e.g.:
pgo failover --query hacluster

Manual Failover

The PostgreSQL Operator is set up with an automated failover system based on distributed consensus, but there may be times where
you wish to have your cluster manually failover. If you wish to have your cluster manually failover, first, query your cluster to determine
which failover targets are available. The query command also provides information that may help your decision, such as replication lag:
pgo failover --query hacluster

Once you have selected the replica that is best for your to failover to, you can perform a failover with the following command:
pgo failover hacluster --target=hacluster -abcd

where hacluster-abcd is the name of the PostgreSQL instance that you want to promote to become the new primary

78

https://www.postgresql.org/docs/current/app-pgdump.html

Destroying a Replica To destroy a replica, first query the available replicas by using the --query flag on the pgo scaledown command,
i.e.:

pgo scaledown hacluster --query

Once you have picked the replica you want to remove, you can remove it by executing the following command:

pgo scaledown hacluster --target=hacluster -abcd

where hacluster-abcd is the name of the PostgreSQL replica that you want to destroy.

Clone a PostgreSQL Cluster

You can create a copy of an existing PostgreSQL cluster in a new PostgreSQL cluster by using the pgo clone command. To create a new
copy of a PostgreSQL cluster, you can execute the following command:

pgo clone hacluster newhacluster

Monitoring

View Disk Utilization

You can see a comparison of Postgres data size versus the Persistent volume claim size by entering the following:

pgo df hacluster -n pgouser1

Labels

Labels are a helpful way to organize PostgreSQL clusters, such as by application type or environment. The PostgreSQL Operator supports
managing Kubernetes Labels as a convenient way to group PostgreSQL clusters together.

You can view which labels are assigned to a PostgreSQL cluster using the pgo show cluster command. You are also able to see these
labels when using kubectl or oc.

Add a Label to a PostgreSQL Cluster

Labels can be added to PostgreSQL clusters using the pgo label command. For example, to add a label with a key/value pair of
env=production, you could execute the following command:

pgo label hacluster --label=env=production

Add a Label to Multiple PostgreSQL Clusters

You can add also add a label to multiple PostgreSQL clusters simultaneously using the --selector flag on the pgo label command. For
example, to add a label with a key/value pair of env=production to clusters that have a label key/value pair of app=payment, you could
execute the following command:

pgo label --selector=app=payment --label=env=production

Policy Management

Create a Policy

To create a SQL policy, enter the following:

pgo create policy mypolicy --in-file=mypolicy.sql -n pgouser1

This examples creates a policy named mypolicy using the contents of the file mypolicy.sql which is assumed to be in the current directory.

You can view policies as following:

pgo show policy --all -n pgouser1

79

Apply a Policy

pgo apply mypolicy --selector=environment=prod
pgo apply mypolicy --selector=name=hacluster

Advanced Operations

Connection Pooling via pgBouncer

To add a pgbouncer Deployment to your Postgres cluster, enter:

pgo create cluster hacluster --pgbouncer -n pgouser1

You can add pgbouncer after a Postgres cluster is created as follows:

pgo create pgbouncer hacluster
pgo create pgbouncer --selector=name=hacluster

You can also specify a pgbouncer password as follows:

pgo create cluster hacluster --pgbouncer --pgbouncer -pass=somepass -n pgouser1

Note, the pgbouncer configuration defaults to specifying only a single entry for the primary database. If you want it to have an entry for
the replica service, add the following configuration to pgbouncer.ini:

{{.PG_REPLICA_SERVICE_NAME}} = host={{.PG_REPLICA_SERVICE_NAME}} port={{.PG_PORT}}
auth_user={{.PG_USERNAME}} dbname={{.PG_DATABASE}}

You can remove a pgbouncer from a cluster as follows:

pgo delete pgbouncer hacluster -n pgouser1

You can create a pgbadger sidecar container in your Postgres cluster pod as follows:

pgo create cluster hacluster --pgbadger -n pgouser1

Likewise, you can add the Crunchy Collect Metrics sidecar container into your Postgres cluster pod as follows:

pgo create cluster hacluster --metrics -n pgouser1

Note: backend metric storage such as Prometheus and front end visualization software such as Grafana are not created automatically by
the PostgreSQL Operator. For instructions on installing Grafana and Prometheus in your environment, see the Crunchy Container Suite
documentation.

Create a Cluster using Specific Storage

pgo create cluster hacluster --storage-config=somestorageconfig -n pgouser1

Likewise, you can specify a storage configuration when creating a replica:

pgo scale hacluster --storage-config=someslowerstorage -n pgouser1

This example specifies the somestorageconfig storage configuration to be used by the Postgres cluster. This lets you specify a storage
configuration that is defined in the pgo.yaml file specifically for a given Postgres cluster.

You can create a Cluster using a Preferred Node as follows:

pgo create cluster hacluster --node-label=speed=superfast -n pgouser1

That command will cause a node affinity rule to be added to the Postgres pod which will influence the node upon which Kubernetes will
schedule the Pod.

Likewise, you can create a Replica using a Preferred Node as follows:

pgo scale hacluster --node-label=speed=slowerthannormal -n pgouser1

Create a Cluster with LoadBalancer ServiceType

pgo create cluster hacluster --service-type=LoadBalancer -n pgouser1

80

https://access.crunchydata.com/documentation/crunchy-containers/4.2.1/examples/metrics/metrics/
https://access.crunchydata.com/documentation/crunchy-containers/4.2.1/examples/metrics/metrics/

This command will cause the Postgres Service to be of a specific type instead of the default ClusterIP service type.
Namespace Operations

Create an Operator namespace where Postgres clusters can be created and managed by the Operator:
pgo create namespace mynamespace

Update a Namespace to be able to be used by the Operator:
pgo update namespace somenamespace

Delete a Namespace:
pgo delete namespace mynamespace

PostgreSQL Operator User Operations

PGO users are users defined for authenticating to the PGO REST API. You can manage those users with the following commands:
pgo create pgouser someuser --pgouser-namespaces="pgouser1,pgouser2"

--pgouser-password="somepassword" --pgouser-roles="pgoadmin"
pgo create pgouser otheruser --all-namespaces --pgouser-password="somepassword"

--pgouser-roles="pgoadmin"

Update a user:
pgo update pgouser someuser --pgouser-namespaces="pgouser1,pgouser2"

--pgouser-password="somepassword" --pgouser-roles="pgoadmin"
pgo update pgouser otheruser --all-namespaces --pgouser-password="somepassword"

--pgouser-roles="pgoadmin"

Delete a PGO user:
pgo delete pgouser someuser

PGO roles are also managed as follows:
pgo create pgorole somerole --permissions="Cat,Ls"

Delete a PGO role with:
pgo delete pgorole somerole

Update a PGO role with:
pgo update pgorole somerole --permissions="Cat,Ls"

PostgreSQL Cluster User Operations

Managed Postgres users can be viewed using the following command:
pgo show user hacluster

Postgres users can be created using the following command examples:
pgo create user hacluster --username=somepguser --password=somepassword --managed
pgo create user --selector=name=hacluster --username=somepguser --password=somepassword --managed

Those commands are identical in function, and create on the hacluster Postgres cluster, a user named somepguser, with a password of
somepassword, the account is managed meaning that these credentials are stored as a Secret on the Kubernetes cluster in the Operator
namespace.
Postgres users can be deleted using the following command:
pgo delete user hacluster --username=somepguser

That command deletes the user on the hacluster Postgres cluster.
Postgres users can be updated using the following command:
pgo update user hacluster --username=somepguser --password=frodo

That command changes the password for the user on the hacluster Postgres cluster.

81

Configuring Encryption of PostgreSQL Operator API Connection

The PostgreSQL Operator REST API connection is encrypted with keys stored in the pgo.tls Secret.

The pgo.tls Secret can be generated prior to starting the PostgreSQL Operator or you can let the PostgreSQL Operator generate the
Secret for you if the Secret does not exist.

Adjust the default keys to meet your security requirements using your own keys. The pgo.tls Secret is created when you run:

make deployoperator

The keys are generated when the RBAC script is executed by the cluster admin:

make installrbac

In some scenarios like an OLM deployment, it is preferable for the Operator to generate the Secret keys at runtime, if the pgo.tls Secret
does not exit when the Operator starts, a new TLS Secret will be generated.

In this scenario, you can extract the generated Secret TLS keys using:

kubectl cp <pgo-namespace >/<pgo-pod>:/tmp/server.key /tmp/server.key -c apiserver
kubectl cp <pgo-namespace >/<pgo-pod>:/tmp/server.crt /tmp/server.crt -c apiserver

example of the command below:

kubectl cp pgo/postgres -operator -585584f57d-ntwr5:tmp/server.key /tmp/server.key -c apiserver
kubectl cp pgo/postgres -operator -585584f57d-ntwr5:tmp/server.crt /tmp/server.crt -c apiserver

This server.key and server.crt can then be used to access the pgo-apiserver from the pgo CLI by setting the following variables in your
client environment:

export PGO_CA_CERT=/tmp/server.crt
export PGO_CLIENT_CERT=/tmp/server.crt
export PGO_CLIENT_KEY=/tmp/server.key

You can view the TLS secret using:

kubectl get secret pgo.tls -n pgo

or

oc get secret pgo.tls -n pgo

If you create the Secret outside of the Operator, for example using the default installation script, the key and cert that are generated by
the default installation are found here:

$PGOROOT/conf/postgres -operator/server.crt
$PGOROOT/conf/postgres -operator/server.key

The key and cert are generated using the deploy/gen-api-keys.sh script.

That script gets executed when running:

make installrbac

You can extract the server.key and server.crt from the Secret using the following:

oc get secret pgo.tls -n $PGO_OPERATOR_NAMESPACE -o jsonpath='{.data.tls\.key}' | base64 --decode
> /tmp/server.key

oc get secret pgo.tls -n $PGO_OPERATOR_NAMESPACE -o jsonpath='{.data.tls\.crt}' | base64 --decode
> /tmp/server.crt

This server.key and server.crt can then be used to access the pgo-apiserver REST API from the pgo CLI on your client host.

PostreSQL Operator RBAC

The conf/postgres-operator/pgorole file is read at start up time when the operator is deployed to the Kubernetes cluster. This file defines
the PostgreSQL Operator roles whereby PostgreSQL Operator API users can be authorized.

The conf/postgres-operator/pgouser file is read at start up time also and contains username, password, role, and namespace information
as follows:

82

username:password:pgoadmin:
pgouser1:password:pgoadmin:pgouser1
pgouser2:password:pgoadmin:pgouser2
pgouser3:password:pgoadmin:pgouser1,pgouser2
readonlyuser:password:pgoreader:

The format of the pgouser server file is:

<username >:<password >:<role>:<namespace ,namespace >

The namespace is a comma separated list of namespaces that user has access to. If you do not specify a namespace, then all namespaces
is assumed, meaning this user can access any namespace that the Operator is watching.

A user creates a .pgouser file in their $HOME directory to identify themselves to the Operator. An entry in .pgouser will need to match
entries in the conf/postgres-operator/pgouser file. A sample .pgouser file contains the following:

username:password

The format of the .pgouser client file is:

<username >:<password >

The users pgouser file can also be located at:

/etc/pgo/pgouser

or it can be found at a path specified by the PGOUSER environment variable.

If the user tries to access a namespace that they are not configured for within the server side pgouser file then they will get an error
message as follows:

Error: user [pgouser1] is not allowed access to namespace [pgouser2]

If you wish to add all avaiable permissions to a pgorole, you can specify it by using a single * in your configuration. Note that if you are
editing your YAML file directly, you will need to ensure to write it as "*" to ensure it is recognized as a string.

The following list shows the current complete list of possible pgo permissions that you can specify within the pgorole file when creating
roles:

Permission Description

ApplyPolicy allow pgo apply
Cat allow pgo cat
CreateBackup allow pgo backup
CreateBenchmark allow pgo create benchmark
CreateCluster allow pgo create cluster
CreateDump allow pgo create pgdump
CreateFailover allow pgo failover
CreatePgbouncer allow pgo create pgbouncer
CreatePolicy allow pgo create policy
CreateSchedule allow pgo create schedule
CreateUpgrade allow pgo upgrade
CreateUser allow pgo create user
DeleteBackup allow pgo delete backup
DeleteBenchmark allow pgo delete benchmark
DeleteCluster allow pgo delete cluster
DeletePgbouncer allow pgo delete pgbouncer
DeletePolicy allow pgo delete policy
DeleteSchedule allow pgo delete schedule
DeleteUpgrade allow pgo delete upgrade
DeleteUser allow pgo delete user
DfCluster allow pgo df

83

Permission Description

Label allow pgo label
Load allow pgo load
Ls allow pgo ls
Reload allow pgo reload
Restore allow pgo restore
RestoreDump allow pgo restore for pgdumps
ShowBackup allow pgo show backup
ShowBenchmark allow pgo show benchmark
ShowCluster allow pgo show cluster
ShowConfig allow pgo show config
ShowPolicy allow pgo show policy
ShowPVC allow pgo show pvc
ShowSchedule allow pgo show schedule
ShowNamespace allow pgo show namespace
ShowUpgrade allow pgo show upgrade
ShowWorkflow allow pgo show workflow
Status allow pgo status
TestCluster allow pgo test
UpdateCluster allow pgo update cluster
User allow pgo user
Version allow pgo version

If the user is unauthorized for a pgo command, the user will get back this response:

Error: Authentication Failed: 403

Making Security Changes

Importantly, it is necesssary to redeploy the PostgreSQL Operator prior to giving effect to the user security changes in the pgouser and
pgorole files:

make deployoperator

Performing this command will recreate the pgo-config ConfigMap that stores these files and is mounted by the Operator during its
initialization.

Installation of PostgreSQL Operator RBAC

Please note, installation of the PostgreSQL Operator RBAC requires Kubernetes Cluster-Admin.

The first step is to install the PostgreSQL Operator RBAC configuration. This can be accomplished by running:

make installrbac

This script will install the PostreSQL Operator Custom Resource Definitions, CRD’s and creates the following RBAC resources on your
Kubernetes cluster:

Setting Definition

Custom Resource Definitions (crd.yaml) pgbackups
pgclusters
pgpolicies

84

Setting Definition

pgreplicas
pgtasks
pgupgrades

Cluster Roles (cluster-roles.yaml) pgopclusterrole
pgopclusterrolecrd

Cluster Role Bindings (cluster-roles-bindings.yaml) pgopclusterbinding
pgopclusterbindingcrd

Service Account (service-accounts.yaml) postgres-operator
pgo-backrest

Roles (rbac.yaml) pgo-role
pgo-backrest-role

Role Bindings (rbac.yaml) pgo-backrest-role-binding
pgo-role-binding

Note that the cluster role bindings have a naming convention of pgopclusterbinding-PGOOPERATORN AMESPACEandpgopclusterbindingcrd−PGO_OPERATOR_NAMESPACE.

The PGO_OPERATOR_NAMESPACE environment variable is added to make each cluster role binding name unique and to support
more than a single PostgreSQL Operator being deployed on the same Kubernertes cluster.

Custom Postgres Configurations

Users and administrators can specify a custom set of Postgres configuration files be used when creating a new Postgres cluster. The
configuration files you can change include -

• postgresql.conf
• pg_hba.conf
• setup.sql

Different configurations for PostgreSQL might be defined for the following -

• OLTP types of databases
• OLAP types of databases
• High Memory
• Minimal Configuration for Development
• Project Specific configurations
• Special Security Requirements

Global ConfigMap If you create a configMap called pgo-custom-pg-config with any of the above files within it, new clusters will use
those configuration files when setting up a new database instance. You do NOT have to specify all of the configuration files. It is entirely
up to your use case to determine which to use.

An example set of configuration files and a script to create the global configMap is found at

$PGOROOT/examples/custom-config

If you run the create.sh script there, it will create the configMap that will include the PostgreSQL configuration files within that directory.

Config Files Purpose The postgresql.conf file is the main Postgresql configuration file that allows the definition of a wide variety of
tuning parameters and features.

The pg_hba.conf file is the way Postgresql secures client access.

The setup.sql file is a Crunchy Container Suite configuration file used to initially populate the database after the initial initdb is run when
the database is first created. Changes would be made to this if you wanted to define which database objects are created by default.

85

Granular Config Maps Granular config maps can be defined if it is necessary to use a different set of configuration files for different
clusters rather than having a single configuration (e.g. Global Config Map). A specific set of ConfigMaps with their own set of PostgreSQL
configuration files can be created. When creating new clusters, a --custom-config flag can be passed along with the name of the
ConfigMap which will be used for that specific cluster or set of clusters.

Defaults If there is no reason to change the default PostgreSQL configuration files that ship with the Crunchy Postgres container, there
is no requirement to. In this event, continue using the Operator as usual and avoid defining a global configMap.

Custom PostgreSQL SSL Configurations

The PostgreSQL Operator can create clusters that use SSL authentication by utilizing custom configmaps.

Configuration Files for SSL Authentication Users and administrators can specify a custom set of PostgreSQL configuration files
to be used when creating a new PostgreSQL cluster. This example uses the files below-

• postgresql.conf
• pg_hba.conf
• pg_ident.conf

along with generated security certificates, to setup a custom SSL configuration.

Config Files Purpose The postgresql.conf file is the main PostgreSQL configuration file that allows the definition of a wide variety of
tuning parameters and features.

The pg_hba.conf file is the way Postgresql secures client access.

The pg_ident.conf is the ident map file and defines user name maps.

ConfigMap Creation This example shows how you can configure PostgreSQL to use SSL for client authentication.

The example requires SSL certificates and keys to be created. Included in the examples directory is the script called by create.sh to create
self-signed certificates (server and client) for the example:

$PGOROOT/examples/ssl-creator.sh.

Additionally, this script requires the certstrap utility to be installed. An install script is provided to install the correct version for the
example if not already installed.

The relevant configuration files are located in the configs directory and will configure the clsuter to use SSL client authentication. These,
along with the client certificate for the user ‘testuser’ and a server certificate for ‘pgo-custom-ssl-container’, will make up the necessary
configuration items to be stored in the ‘pgo-custom-ssl-config’ configmap.

Example Steps Run the script as follow:

cd $PGOROOT/examples/custom-config-ssl
./create.sh

This will generate a configmap named ‘pgo-custom-ssl-config’.

Once this configmap is created, run

pgo create cluster customsslcluster --custom-config pgo-custom-ssl-config -n ${PGO_NAMESPACE}

A required step to make this example work is to define in your /etc/hosts file an entry that maps ‘pgo-custom-ssl-container’ to the service
cluster IP address for the container created above.

For instance, if your service has an address as follows:

${PGO_CMD} get service -n ${PGO_NAMESPACE}
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
customsslcluster 172.30.211.108 <none> 5432/TCP

Then your /etc/hosts file needs an entry like this:

172.30.211.108 pgo-custom-ssl-container

86

For production Kubernetes and OpenShift installations, it will likely be preferred for DNS names to resolve to the PostgreSQL service
name and generate server certificates using the DNS names instead of the example name pgo-custom-ssl-container.

If as a client it’s required to confirm the identity of the server, verify-full can be specified for ssl-mode in the connection string. This will
check if the server and the server certificate have the same name. Additionally, the proper connection parameters must be specified in
the connection string for the certificate information required to trust and verify the identity of the server (sslrootcert and sslcrl), and to
authenticate the client using a certificate (sslcert and sslkey):

psql
"postgresql://testuser@pgo -custom-ssl-container:5432/userdb?sslmode=verify-full&sslrootcert=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crt&sslcrl=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crl&sslcert=/home/pgo/odev/src/github.com/crunchydata/postgres -operator/examples/custom-config-ssl/certs/client.crt&sslkey=/home/pgo/odev/src/github.com/crunchydata/postgres -operator/examples/custom-config-ssl/certs/client.key"

To connect via IP, sslmode can be changed to require. This will verify the server by checking the certificate chain up to the trusted certificate
authority, but will not verify that the hostname matches the certificate, as occurs with verify-full. The same connection parameters as
above can be then provided for the client and server certificate information. i

psql
"postgresql://testuser@IP_OF_PGSQL:5432/userdb?sslmode=require&sslrootcert=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crt&sslcrl=/home/pgo/odev/src/github.com/crunchydata/postgres-operator/examples/custom-config-ssl/certs/ca.crl&sslcert=/home/pgo/odev/src/github.com/crunchydata/postgres -operator/examples/custom-config-ssl/certs/client.crt&sslkey=/home/pgo/odev/src/github.com/crunchydata/postgres -operator/examples/custom-config-ssl/certs/client.key"

You should see a connection that looks like the following:

psql (12.1)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:

off)
Type "help" for help.

userdb=>

Important Notes Because SSL will be required for connections, certain features of the Operator will not function as expected. These
include the following:

pgo test
pgo load
pgo apply

Direct API Calls

The API can also be accessed by interacting directly with the API server. This can be done by making curl calls to POST or GET
information from the server. In order to make these calls you will need to provide certificates along with your request using the --cacert,
--key, and --cert flags. Next you will need to provide the username and password for the RBAC along with a header that includes the
content type and the --insecure flag. These flags will be the same for all of your interactions with the API server and can be seen in the
following examples.

The most basic example of this interaction is getting the version of the API server. You can send a GET request to $PGO_APISERVER_URL/version
and this will send back a json response including the API server version. This is important because the server version and the client
version must match. If you are using pgo this means you must have the correct version of the client but with a direct call you can specify
the client version as part of the request.

The API server is setup to work with the pgo command line interface so the parameters that are passed to the server can be found by
looking at the related flags. For example, the series parameter used in the create example below is the same as the -e, --series flag
that is described in the pgo cli docs.

Get API Server Version

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X GET $PGO_APISERVER_URL/version

You can create a cluster by sending a POST request to $PGO_APISERVER_URL/clusters. In this example --data is being sent to the API
URL that includes the client version that was returned from the version call, the namespace where the cluster should be created, the name
of the new cluster and the series number. Series sets the number of clusters that will be created in the namespace.

Create Cluster

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X POST --data \

'{"ClientVersion":"4.2.1",
"Namespace":"pgouser1",

87

https://access.crunchydata.com/documentation/postgres-operator/4.2.1/pgo-client/reference/pgo_create_cluster/

"Name":"mycluster",
"Series":1}' \

$PGO_APISERVER_URL/clusters

The last two examples show you how to show and delete a cluster. Notice how instead of passing "Name":"mycluster" you pass
"Clustername":"mycluster"to reference a cluster that has already been created. For the show cluster example you can replace
"Clustername":"mycluster" with "AllFlag":true to show all of the clusters that are in the given namespace.

Show Cluster

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X POST --data \

'{"ClientVersion":"4.2.1",
"Namespace":"pgouser1",
"Clustername":"mycluster"}' \

$PGO_APISERVER_URL/showclusters

Delete Cluster

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X POST --data \

'{"ClientVersion":"4.2.1",
"Namespace":"pgouser1",
"Clustername":"mycluster"}' \

$PGO_APISERVER_URL/clustersdelete

Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud Environments

Overview When using the PostgreSQL Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consider-
ation must be taken to ensure all pods and the associated volumes re scheduled and provisioned within the same zone.

Given that a pod is unable mount a volume that is located in another zone, any volumes that are dynamically provisioned must be
provisioned in a topology-aware manner according to the specific scheduling requirements for the pod.

This means that when a new PostgreSQL cluster is created, it is necessary to ensure that the volume containing the database files for
the primary PostgreSQL database within the PostgreSQL clluster is provisioned in the same zone as the node containing the PostgreSQL
primary pod that will be accesing the applicable volume.

Dynamic Provisioning of Volumes: Default Behavoir By default, the Kubernetes scheduler will ensure any pods created that
claim a specific volume via a PVC are scheduled on a node in the same zone as that volume. This is part of the default Kubernetes
multi-zone support.

However, when using Kubernetes dynamic provisioning, volumes are not provisioned in a topology-aware manner.

More specifically, when using dynamnic provisioning, volumes wills not be provisioned according to the same scheduling requirements that
will be placed on the pod that will be using it (e.g. it will not consider node selectors, resource requirements, pod affinity/anti-affinity,
and various other scheduling requirements). Rather, PVCs are immediately bound as soon as they are requested, which means volumes
are provisioned without knowledge of these scheduling requirements.

This behavior defined using the volumeBindingMode configuration applicable to the Storage Class being utilized to dynamically provision
the volume. By default,volumeBindingMode is set to Immediate.

This default behavoir for dynamic provisioning can be seen in the Storage Class definition for a Google Cloud Engine Persistent Disk
(GCE PD):

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard
volumeBindingMode: Immediate

As indicated, volumeBindingMode indicates the default value of Immediate.

88

https://kubernetes.io/docs/setup/multiple-zones/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

Issues with Dynamic Provisioning of Volumes in PostgreSQL Operator Unfortunately, the default setting for dynamic provisi-
noing of volumes in mulit-zone Kubernetes cluster environments results in undesired behavoir when using the PostgreSQL Operator.

Within the PostgreSQL Operator, a node label is implemented as a preferredDuringSchedulingIgnoredDuringExecution node affinity
rule, which is an affinity rule that Kubernetes will attempt to adhere to when scheduling any pods for the cluster, but will not guarantee.
More information on node affinity rules can be found here).

By using Immediate for the volumeBindingMode in a multi-zone cluster environment, the scheduler will ignore any requested (but not
mandatory) scheduling requirements if necessary to ensure the pod can be scheduled. The scheduler will ultimately schedule the pod on
a node in the same zone as the volume, even if another node was requested for scheduling that pod.

As it relates to the PostgreSQL Operator specifically, a node label specified using the --node-label option when creating a cluster using
the pgo create cluster command in order target a specific node (or nodes) for the deployment of that cluster.

Therefore, if the volume ends up in a zone other than the zone containing the node (or nodes) defined by the node label, the node label
will be ignored, and the pod will be scheduled according to the zone containing the volume.

Configuring Volumes to be Topology Aware In order to overcome this default behavior, it is necessary to make the dynamically
provisioned volumes topology aware.

This is accomplished by setting the volumeBindingMode for the storage class to WaitForFirstConsumer, which delays the dynamic
provisioning of a volume until a pod using it is created.

In other words, the PVC is no longer bound as soon as it is requested, but rather waits for a pod utilizing it to be creating prior to binding.
This change ensures that volume can take into account the scheduling requirements for the pod, which in the case of a multi-zone cluster
means ensuring the volume is provisioned in the same zone containing the node where the pod has be scheduled. This also means the
scheduler should no longer ignore a node label in order to follow a volume to another zone when scheduling a pod, since the volume will
now follow the pod according to the pods specificscheduling requirements.

The following is an example of the the same Storage Class defined above, only with volumeBindingMode now set to WaitForFirstConsumer:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard
volumeBindingMode: WaitForFirstConsumer

Additional Solutions If you are using a version of Kubernetes that does not support WaitForFirstConsumer, an alternate (and now
deprecated) solution exists in the form of parameters that can be defined on the Storage Class definition to ensure volumes are provisioned
in a specific zone (or zones).

For instance, when defining a Storage Class for a GCE PD for use in Google Kubernetes Engine (GKE) cluster, the zone parameter can
be used to ensure any volumes dynamically provisioned using that Storage Class are located in that specific zone. The following is an
example of a Storage Class for a GKE cluster that will provision volumes in the us-east1 zone:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard
replication -type: none
zone: us-east1

Once storage classes have been defined for one or more zones, they can then be defined as one or more storage configurations within the
pgo.yaml configuration file (as described in the PGO YAML configuration guide).

From there those storage configurations can then be selected when creating a new cluster, as shown in the following example:

pgo create cluster mycluster --storage-config=example-sc

With this approach, the pod will once again be scheduled according to the zone in which the volume was provisioned.

However, the zone parameters defined on the Storage Class bring consistency to scheduling by guaranteeing that the volume, and therefore
also the pod using that volume, are scheduled in a specific zone as defined by the user, bringing consistency and predictability to volume
provisioning and pod scheduling in multi-zone clusters.

89

https://kubernetes.i/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

For more information regarding the specific parameters available for the Storage Classes being utilizing in your cloud environment, please
see the Kubernetes documentation for Storage Classes.

Lastly, while the above applies to the dynamic provisioning of volumes, it should be noted that volumes can also be manually provisioned
in desired zones in order to achieve the desired topology requirements for any pods and their volumes.

Upgrading the Operator

Various Operator releases will require action by the Operator administrator of your organization in order to upgrade to the next release
of the Operator. Some upgrade steps are automated within the Operator but not all are possible at this time.

This section of the documentation shows specific steps required to upgrade different versions of the Postgres Operator depending on your
current environment.

[Upgrade Postgres Operator to 3.5] ({{< relref “upgrade/upgradeto35.md” >}})

[Postgres Operator 3.5 Minor Version Upgrade] ({{< relref “upgrade/upgrade35.md” >}})

[Upgrade Postgres Operator from 3.5 to 4.1] ({{< relref “upgrade/upgrade35to4.md” >}})

[Upgrade Postgres Operator from 4.X to 4.2.1 (Bash)] ({{< relref “upgrade/upgrade4xto42_bash.md” >}})

[Upgrade Postgres Operator from 4.X to 4.2.1 (Ansible)] ({{< relref “upgrade/upgrade4xto42_ansible.md” >}})

[Upgrade Postgres Operator from 4.1.0 to a patch release] ({{< relref “upgrade/upgrade41.md” >}})

Upgrading A Postgres Cluster

Using the operator, it is possible to upgrade a postgres cluster in place. When a pgo upgrade command is issued, and a –CCPImageTag
is specified, the operator will upgrade each replica and the primary to the new CCPImageTag version. It is important to note that the
postgres version of the new container should be compatible with the current running version. There is currently no version check done to
ensure compatibility.

The upgrade is accomplished by updating the CCPImageTag version in the deployment, which causes the old pod to be terminated and
a new pod created with the updated deployment specification.

When the upgrade starts, and if autofail is enabled for the cluster, each replica is upgraded seqentially, waiting for the previous replica
to go ready before updating the next. After the replicas complete, the primary is then upgraded to the new image. Please note that the
upgrade process respects the autofail setting as currently definied for the cluster being upgraded. Therefore, if autofail is enabled when
the primary deployment is updated, the cluster behaves as though the primary had failed and begins the failover process. See Automatic
Failover in the Overview section for more details about the PostgreSQL Operator failover process and expected behavior.

When the cluster is not in autofail mode (i.e. autofail is disabled), the primary and all replicas are updated at the same time, after which
they will remain in an “unready” status. This is because when autofail is disabled, no attempt will be made to start the PostgreSQL
databases contained within the primary or replica pods once the containers have been started following the update. It is therefore necessary
to re-enable autofail following a minor upgrade during which autofail was disabled in order to fully bring the cluster back online.

At this time, the backrest-repo container is not upgraded during this upgrade as it is part of the postgres operator release and is updated
with the operator.

Minor Upgrade Example

In this example, we are upgrading a cluster from PostgreSQL 11.5 to 11.6 using the crunchy-postgres:centos7-11.6-4.2.1 container:

pgo upgrade mycluster --ccp-image-tag=centos7-11.6-4.2.1

For more information, please see the pgo upgrade documentation [here.] ({{< relref “pgo-client/reference/pgo_upgrade.md” >}})

Upgrading Postgres Operator 3.5 Minor Versions

This procedure will give instructions on how to upgrade Postgres Operator 3.5 minor releases.

{{% notice info %}}

As with any upgrade, please ensure you have taken recent backups of all relevant data!

{{% / notice %}}

90

https://kubernetes.io/docs/concepts/storage/storage-classes/

Prerequisites. You will need the following items to complete the upgrade:

• The latest 3.5.X code for the Postgres Operator available
• The latest 3.5.X PGO client binary
• Finally, these instructions assume you are executing from $COROOT in a terminal window and that you are using the same user

from your previous installation. This user must also still have admin privileges in your Kubernetes or Openshift environment.

Step 0 Run pgo show config and save this output to compare at the end to ensure you don’t miss any of your current configuration
changes.

Step 1 Update environment variables in the bashrc

export CO_VERSION=3.5.X

If you are pulling your images from the same registry as before this should be the only update to the 3.5.X environment variables.

source the updated bash file:

source ~/.bashrc

Check to make sure that the correct CO_IMAGE_TAG image tag is being used. With a centos7 base image and version 3.5.X of the
operator your image tag will be in the format of centos7-3.5.4. Verify this by running echo $CO_IMAGE_TAG.

Step 2 Update the pgo.yaml file in $COROOT/conf/postgres-operator/pgo.yaml. Use the config that you saved in Step 0. to make
sure that you have updated the settings to match the old config. Confirm that the yaml file includes the correct images for the version
that you are upgrading to:

For Example:

CCPImageTag: centos7 -10.9-2.3.3
COImageTag: centos7 -3.5.4

Step 3 Install the 3.5.X Operator:

make deployoperator

Verify the Operator is running:

kubectl get pod -n <operator namespace >

Step 4 Update the PGO client binary to 3.5.X by replacing the binary file with the new one. Run which pgo to ensure you are replacing
the current binary.

Step 5 Make sure that any and all configuration changes have been updated.
Run:

pgo show config

This will print out the current configuration that the operator is using. Ensure you made any configuration changes required, you can
compare this output with Step 0 to ensure no settings are missed. If you happened to miss a setting, update the pgo.yaml file and rerun
make deployoperator

Step 6 The Operator is now upgraded to 3.5.X. Verify this by running:

pgo version

91

Postgres Operator Container Upgrade Procedure

At this point, the Operator should be running the latest minor version of 3.5, and new clusters will be built using the appropriate
specifications defined in your pgo.yaml file. For the existing clusters, upgrades can be performed with the following steps.

{{% notice info %}}

Before beginning your upgrade procedure, be sure to consult the [Compatibility Requirements Page] ({{< relref “configuration/compati-
bility.md” >}}) for container dependency information.

{{% / notice %}}

First, update the deployment of each replica, one at a time, with the new image version:

kubectl edit deployment.apps/yourcluster

then edit the line containing the image value, which will be similar to the following

image: crunchydata/crunchy-postgres:centos7 -11.3-2.4.0

When this new deployment is written, it will kill the pod and recreate it with the new image. Do this for each replica, waiting for the
previous pod to upgrade completely before moving to next.

Once the replicas have been updated, update the deployment of primary by updating the image: line in the same fashion, waiting for it
to come back up.

Now, similar to the steps above, you will need to update the pgcluster ccpimagetag: to the new value:

kubectl edit pgcluster yourcluster

To check everything is now working as expected, execute

pgo test yourcluster

To validate the database connections and execute

pgo show cluster yourcluster

To check the various cluster elements are listed as expected.

There is a bug in the operator where the image version for the backrest repo deployment is not updated with a pgo upgrade. As a
workaround for this you need to redeploy the backrest shared repo deployment with the correct image version.

First you will need to get a copy of the yaml file that defines the cluster:

kubectl get deployment <cluster-name>-backrest-shared-repo -o yaml >
<cluster-name>-backrest -repo.yaml

You can then edit the yaml file so that the deployment will use the correct image version: edit <cluster-name>-backrest-repo.yaml

set to the image, for example:

crunchydata/pgo-backrest -repo:centos7 -3.5.4

Next you will need to delete the current backrest repo deployment and recreate it with the updated yaml:

kubectl delete deployment <cluster-name>-backrest-shared-repo
kubectl create -f <cluster-name>-backrest-repo.yaml

Verify that the correct images are being used for the cluster. Run pgo show cluster <cluster-name> on your cluster and check the
version. Describe each of the pods in your cluster and verify that the image that is being used is correct.

pgo show cluster <cluster-name>
kubectl get pods
kubectl describe pod <cluster-name>-<id>
kubectl describe pod <cluster-name>-backrest-shared-repo-<id>

Finally, make sure that the correct version of pgbackrest is being used and verify backups are working. The versions of pgbackrest that
are returned in the primary and backrest pods should match:

kubectl get pods
kubectl exec -it <cluster-name>-<id> -- pgbackrest version
kubectl exec -it <cluster-name>-backrest-shared-repo-<id> -- pgbackrest version
pgo backup <cluster-name> --backup-type=pgbackrest

92

You’ve now completed the upgrade and are running Crunchy PostgreSQL Operator v3.5.X, you can confirm this by running pgo version
from the command line and running

pgo show cluster <cluster-name>

on each cluster. For this minor upgrade, most existing settings and related services (such as pgbouncer, backup schedules and existing
policies) are expected to work, but should be tested for functionality and adjusted or recreated as necessary.

Upgrading a Cluster from Version 3.5.x to PGO 4.2.1

This section will outline the procedure to upgrade a given cluster created using Postgres Operator 3.5.x to PGO version 4.2.1. This version
of the Postgres Operator has several fundamental changes to the existing PGCluster structure and deployment model. Most notably,
all PGClusters use the new Crunchy Postgres HA container in place of the previous Crunchy Postgres containers. The use of this new
container is a breaking change from previous versions of the Operator.

Crunchy Postgres High Availability Containers Using the PostgreSQL Operator 4.2.1 requires replacing your crunchy-postgres
and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containers respectively. The
underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the
new high-availability functionality.

A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is
deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario,
and to automatically heal after a failover event.

When creating your new clusters using version 4.2.1 of the Postgres Operator, the pgo create cluster command will automatically use
the new crunchy-postgres-ha image if the image is unspecified. If you are creating a PostGIS enabled cluster, please be sure to use the
updated image name, as with the command:

pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis-ha

{{% notice info %}}

As with any upgrade, please ensure you have taken recent backups of all relevant data!

{{% / notice %}}

Prerequisites. You will need the following items to complete the upgrade:

• The latest PGO 4.2.1 code for the Postgres Operator available
• The latest PGO 4.2.1 client binary

Step 0 Create a new Linux user with the same permissions are the existing user used to install the Crunchy Postgres Operator. This is
necessary to avoid any issues with environment variable differences between 3.5 and 4.2.1.

Step 1 For the cluster(s) you wish to upgrade, scale down any replicas, if necessary, then delete the cluster

pgo delete cluster <clustername >

{{% notice warning %}}

Please note the name of each cluster, the namespace used, and be sure not to delete the associated PVCs or CRDs!

{{% /notice %}}

Step 2 Delete the 3.5.x version of the operator by executing:

$COROOT/deploy/cleanup.sh
$COROOT/deploy/remove-crd.sh

Step 3 Log in as your new Linux user and install the 4.2.1 Postgres Operator.

[Bash Installation] ({{< relref “installation/operator-install.md” >}})

Be sure to add the existing namespace to the Operator’s list of watched namespaces (see the [Namespace] ({{< relref “architecture/-
namespace.md” >}}) section of this document for more information) and make sure to avoid overwriting any existing data storage.

93

Step 4 Once the Operator is installed and functional, create a new 4.2.1 cluster with the same name and using the same major PostgreSQL
version as was used previously. This will allow the new cluster to utilize the existing PVCs.

pgo create cluster <clustername > -n <namespace >

Step 5 Manually update the old leftover Secrets to use the new label as defined in 4.2.1:

kubectl label secret/<clustername >-postgres-secret pg-cluster=<clustername > -n <namespace >
kubectl label secret/<clustername >-primaryuser -secret pg-cluster=<clustername > -n <namespace >
kubectl label secret/<clustername >-testuser-secret pg-cluster=<clustername > -n <namespace >

Step 6 To verify cluster status, run

pgo test <clustername > -n <namespace >

Output should be similar to:

cluster : mycluster
Services

primary (10.106.70.238:5432): UP
Instances

primary (mycluster -7d49d98665 -7zxzd): UP

Step 7 Scale up to the required number of replicas, as needed.

It is also recommended to take full backups of each pgcluster once the upgrade is completed due to version differences between the old
and new clusters.

Upgrading Postgres Operator from 4.1.0 to a patch release

This procedure will give instructions on how to upgrade Postgres Operator 4.1 patch releases.

{{% notice info %}}

As with any upgrade, please ensure you have taken recent backups of all relevant data!

{{% / notice %}}

Prerequisites You will need the following items to complete the upgrade:

• The latest 4.1.X code for the Postgres Operator available
• The latest 4.1.X PGO client binary
• Finally, these instructions assume you are executing from $COROOT in a terminal window and that you are using the same user

from your previous installation. This user must also still have admin privileges in your Kubernetes or Openshift environment.

Step 1 Run pgo show config and save this output to compare at the end to ensure you do not miss any of your current configuration
changes.

Step 2 Update environment variables in the .bashrc file:

export CO_VERSION=4.1.X

If you are pulling your images from the same registry as before this should be the only update to the 4.1.X environment variables.

source the updated bash file:

source ~/.bashrc

Check to make sure that the correct CO_IMAGE_TAG image tag is being used. With a centos7 base image and version 4.1.X of the
operator your image tag will be in the format of centos7-4.1.1. Verify this by running echo $CO_IMAGE_TAG.

94

Step 3 Update the pgo.yaml file in $COROOT/conf/postgres-operator/pgo.yaml. Use the config that you saved in Step 1. to make
sure that you have updated the settings to match the old config. Confirm that the yaml file includes the correct images for the updated
version.

For example, to update to versions 4.1.1:

CCPImageTag: centos7 -11.6-4.1.1
COImageTag: centos7 -4.1.1

Step 4 Install the 4.1.X Operator:

make deployoperator

Verify the Operator is running:

kubectl get pod -n <operator namespace >

Step 5 Update the pgo client binary to 4.1.x by replacing the binary file with the new one.

Run which pgo to ensure you are replacing the current binary.

Step 6 Make sure that any and all configuration changes have been updated. Run:

pgo show config

This will print out the current configuration that the operator is using. Ensure you made any configuration changes required, you can
compare this output with Step 1 to ensure no settings are missed. If you happened to miss a setting, update the pgo.yaml file and rerun
make deployoperator.

Step 7 The Postgres Operator is now upgraded to 4.1.X.

Verify this by running:

pgo version

Postgres Operator Container Upgrade Procedure

At this point, the Operator should be running the latest minor version of 4.1, and new clusters will be built using the appropriate
specifications defined in your pgo.yaml file. For the existing clusters, upgrades can be performed with the following steps.

{{% notice info %}}

Before beginning your upgrade procedure, be sure to consult the [Compatibility Requirements Page]({{< relref “configuration/compati-
bility.md” >}}) for container dependency information.

{{% / notice %}}

You can upgrade each cluster using the following command:

pgo upgrade -n <clusternamespace > --ccp-image-tag=centos7 -11.6-4.1.1 <clustername >

This process takes a few momnets to complete.

To check everything is now working as expected, execute:

pgo test yourcluster

To check the various cluster elements are listed as expected:

pgo show cluster -n <clusternamespace > <clustername >

You’ve now completed the upgrade and are running Crunchy PostgreSQL Operator v4.1.X! For this minor upgrade, most existing settings
and related services (such as pgBouncer, backup schedules and existing policies) are expected to work, but should be tested for functionality
and adjusted or recreated as necessary.

95

Postgres Operator Ansible Upgrade Procedure from 4.X to 4.2.1

This procedure will give instructions on how to upgrade to version 4.2.1 of the Crunchy Postgres Operator using the Ansible installation
method. This version of the Postgres Operator has several fundamental changes to the existing PGCluster structure and deployment
model. Most notably, all PGClusters use the new Crunchy Postgres HA container in place of the previous Crunchy Postgres containers.
The use of this new container is a breaking change from previous versions of the Operator.

Crunchy Postgres High Availability Containers Using the PostgreSQL Operator 4.2.1 requires replacing your crunchy-postgres
and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containers respectively. The
underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the
new high-availability functionality.

A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is
deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario,
and to automatically heal after a failover event.

When creating your new clusters using version 4.2.1 of the Postgres Operator, the pgo create cluster command will automatically use
the new crunchy-postgres-ha image if the image is unspecified. If you are creating a PostGIS enabled cluster, please be sure to use the
updated image name, as with the command:

pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis-ha

{{% notice info %}}

As with any upgrade, please ensure you have taken recent backups of all relevant data!

{{% / notice %}}

Prerequisites. You will need the following items to complete the upgrade:

• The latest 4.2.1 code for the Postgres Operator available

These instructions assume you are executing in a terminal window and that your user has admin privileges in your Kubernetes or Openshift
environment.

Step 0 For the cluster(s) you wish to upgrade, scale down any replicas, if necessary (see pgo scaledown --help for more information
on command usage) page for more information), then delete the cluster

pgo delete cluster <clustername >

{{% notice warning %}}

Please note the name of each cluster, the namespace used, and be sure not to delete the associated PVCs or CRDs!

{{% /notice %}}

Step 1 Save a copy of your current inventory file with a new name (such as inventory.backup) and checkout the latest 4.2.1 tag of the
Postgres Operator.

Step 2 Update the new inventory file with the appropriate values for your new Operator installation, as described in the [Ansible Install
Prerequisites] ({{< relref “installation/install-with-ansible/prerequisites.md” >}}) and the [Compatibility Requirements Guide] ({{<
relref “configuration/compatibility.md” >}}).

Step 3 Now you can upgrade your Operator installation and configure your connection settings as described in the [Ansible Update
Page] ({{< relref “installation/install-with-ansible/updating-operator.md” >}}).

Step 4 Verify the Operator is running:

kubectl get pod -n <operator namespace >

And that it is upgraded to the appropriate version

pgo version

96

Step 5 Once the Operator is installed and functional, create a new 4.2.1 cluster with the same name and using the same major PostgreSQL
version as was used previously. This will allow the new clusters to utilize the existing PVCs.

pgo create cluster <clustername > -n <namespace >

Step 6 To verify cluster status, run

pgo test <clustername > -n <namespace >

Output should be similar to:

cluster : mycluster
Services

primary (10.106.70.238:5432): UP
Instances

primary (mycluster -7d49d98665 -7zxzd): UP

Step 7 Scale up to the required number of replicas, as needed.

It is also recommended to take full backups of each pgcluster once the upgrade is completed due to version differences between the old
and new clusters.

Postgres Operator Bash Upgrade Procedure from 4.X to 4.2.1

This procedure will give instructions on how to upgrade to version 4.2.1 of the Crunchy Postgres Operator using the Bash installation
method. This version of the Postgres Operator has several fundamental changes to the existing PGCluster structure and deployment
model. Most notably, all PGClusters use the new Crunchy Postgres HA container in place of the previous Crunchy Postgres containers.
The use of this new container is a breaking change from previous versions of the Operator.

Crunchy Postgres High Availability Containers Using the PostgreSQL Operator 4.2.1 requires replacing your crunchy-postgres
and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containers respectively. The
underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the
new high-availability functionality.

A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is
deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario,
and to automatically heal after a failover event.

When creating your new clusters using version 4.2.1 of the Postgres Operator, the pgo create cluster command will automatically use
the new crunchy-postgres-ha image if the image is unspecified. If you are creating a PostGIS enabled cluster, please be sure to use the
updated image name, as with the command:

pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis-ha

{{% notice info %}}

As with any upgrade, please ensure you have taken recent backups of all relevant data!

{{% / notice %}}

Prerequisites. You will need the following items to complete the upgrade:

• The latest 4.2.1 code for the Postgres Operator available
• The latest 4.2.1 PGO client binary

Finally, these instructions assume you are executing from $PGOROOT in a terminal window and that your user has admin privileges in
your Kubernetes or Openshift environment.

Step 0 You will most likely want to run:

pgo show config -n <any watched namespace >

Save this output to compare once the procedure has been completed to ensure none of the current configuration changes are missing.

97

Step 1 For the cluster(s) you wish to upgrade, scale down any replicas, if necessary (see pgo scaledown --help for more information
on command usage) page for more information), then delete the cluster

pgo delete cluster <clustername >

{{% notice warning %}}

Please note the name of each cluster, the namespace used, and be sure not to delete the associated PVCs or CRDs!

{{% /notice %}}

Step 2 Delete the 4.X version of the Operator by executing:

$PGOROOT/deploy/cleanup.sh
$PGOROOT/deploy/remove-crd.sh
$PGOROOT/deploy/cleanup-rbac.sh

Step 3 Update environment variables in the bashrc:

export PGO_VERSION=4.2.1

If you are pulling your images from the same registry as before this should be the only update to the existing 4.X environment variables.

Operator 4.0

If you are upgrading from Postgres Operator 4.0.1, you will need the following new environment variables:

PGO_INSTALLATION_NAME is the unique name given to this Operator install
this supports multi-deployments of the Operator on the same Kubernetes cluster
export PGO_INSTALLATION_NAME=devtest

for setting the pgo apiserver port, disabling TLS or not verifying TLS
if TLS is disabled, ensure setip() function port is updated and http is used in place of https
export PGO_APISERVER_PORT=8443 # Defaults: 8443 for TLS enabled, 8080 for TLS disabled
export DISABLE_TLS=false
export TLS_NO_VERIFY=false
export TLS_CA_TRUST=""
export ADD_OS_TRUSTSTORE=false
export NOAUTH_ROUTES=""

for disabling the Operator eventing
export DISABLE_EVENTING=false

There is a new eventing feature in 4.2.1, so if you want an alias to look at the eventing logs you can add the following:

elog () {
$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" logs `$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get pod

--selector=name=postgres -operator -o jsonpath="{.items[0].metadata.name}"` -c event
}

Operator 4.1

If you are upgrading from Postgres Operator 4.1.0 or 4.1.1, you will only need the following subset of the environment variables listed
above:

export TLS_CA_TRUST=""
export ADD_OS_TRUSTSTORE=false
export NOAUTH_ROUTES=""

Finally source the updated bash file:

source ~/.bashrc

Step 4 Ensure you have checked out the latest 4.2.1 version of the source code and update the pgo.yaml file in $PGOROOT/conf/postgres-operator/pgo.yaml

You will want to use the 4.2.1 pgo.yaml file and update custom settings such as image locations, storage, and resource configs.

98

Step 5 Create an initial Operator Admin user account. You will need to edit the $PGOROOT/deploy/install-bootstrap-creds.sh file
to configure the username and password that you want for the Admin account. The default values are:
export PGOADMIN_USERNAME=pgoadmin
export PGOADMIN_PASSWORD=examplepassword

You will need to update the $HOME/.pgouserfile to match the values you set in order to use the Operator. Additional accounts can
be created later following the steps described in the ‘Operator Security’ section of the main [Bash Installation Guide] ({{< relref
“installation/operator-install.md” >}}). Once these accounts are created, you can change this file to login in via the PGO CLI as that
user.

Step 6 Install the 4.2.1 Operator:
Setup the configured namespaces:
make setupnamespaces

Install the RBAC configurations:
make installrbac

Deploy the Postgres Operator:
make deployoperator

Verify the Operator is running:
kubectl get pod -n <operator namespace >

Step 7 Next, update the PGO client binary to 4.2.1 by replacing the existing 4.X binary with the latest 4.2.1 binary available.
You can run:
which pgo

to ensure you are replacing the current binary.

Step 8 You will want to make sure that any and all configuration changes have been updated. You can run:
pgo show config -n <any watched namespace >

This will print out the current configuration that the Operator will be using.
To ensure that you made any required configuration changes, you can compare with Step 0 to make sure you did not miss anything. If
you happened to miss a setting, update the pgo.yaml file and rerun:
make deployoperator

Step 9 The Operator is now upgraded to 4.2.1 and all users and roles have been recreated. Verify this by running:
pgo version

Step 10 Once the Operator is installed and functional, create a new 4.2.1 cluster with the same name and using the same major
PostgreSQL version as was used previously. This will allow the new cluster to utilize the existing PVCs.
pgo create cluster <clustername > -n <namespace >

Step 11 To verify cluster status, run
pgo test <clustername > -n <namespace >

Output should be similar to:
cluster : mycluster

Services
primary (10.106.70.238:5432): UP

Instances
primary (mycluster -7d49d98665 -7zxzd): UP

99

Step 12 Scale up to the required number of replicas, as needed.

It is also recommended to take full backups of each pgcluster once the upgrade is completed due to version differences between the old
and new clusters.

Upgrading to Version 3.5.0 From Previous Versions

This procedure will give instructions on how to upgrade to Postgres Operator 3.5

{{% notice info %}}

As with any upgrade, please ensure you have taken recent backups of all relevant data!

{{% / notice %}}

For clusters created in prior versions that used pgbackrest, you will be required to first create a pgbasebackup for those clusters.

After upgrading to Operator 3.5, you will need to restore those clusters from the pgbasebackup into a new cluster with --pgbackrest
enabled. This is due to the new pgbackrest shared repository being implemented in 3.5. This is a breaking change for anyone that used
pgbackrest in Operator versions prior to 3.5.

The pgingest CRD is removed in Operator 3.5. You will need to manually remove it from any deployments of the operator after upgrading
to this version. This includes removing ingest related permissions from the pgorole file. Additionally, the API server now removes the
ingest related API endpoints.

Primary and replica labels are only applicable at cluster creation and are not updated after a cluster has executed a failover. A new
service-name label is applied to PG cluster components to indicate whether a deployment/pod is a primary or replica. service-name is also
the label now used by the cluster services to route with. This scheme allows for an almost immediate failover promotion and avoids the
pod having to be bounced as part of a failover. Any existing PostgreSQL clusters will need to be updated to specify them as a primary
or replica using the new service-name labeling scheme.

The autofail label was moved from deployments and pods to just the pgcluster CRD to support autofail toggling.

The storage configurations in pgo.yaml support the MatchLabels attribute for NFS storage. This will allow users to have more than a
single NFS backend,. When set, this label (key=value) will be used to match the labels on PVs when a PVC is created.

The UpdateCluster permission was added to the sample pgorole file to support the new pgo update CLI command. It was also added to
the pgoperm file.

The pgo.yaml adds the PreferredFailoverNode setting. This is a Kubernetes selector string (e.g. key=value). This value if set, will cause
fail-over targets to be preferred based on the node they run on if that node is in the set of preferred.

The ability to select nodes based on a selector string was added. For this to feature to be used, multiple replicas have to be in a ready
state, and also at the same replication status. If those conditions are not met, the default fail-over target selection is used.

The pgo.yaml file now includes a new storage configuration, XlogStorage, which when set will cause the xlog volume to be allocated using
this storage configuration. If not set, the PrimaryStorage configuration will be used.

The pgo.yaml file now includes a new storage configuration, BackrestStorage, will cause the pgbackrest shared repository volume to be
allocated using this storage configuration.

The pgo.yaml file now includes a setting, AutofailReplaceReplica, which will enable or disable whether a new replica is created as part of
a fail-over. This is turned off by default.

See the GitHub Release notes for the features and other notes about a specific release.

Documentation

The documentation website is generated using Hugo.

Hosting Hugo Locally (Optional)

If you would like to build the documentation locally, view the official Installing Hugo guide to set up Hugo locally.

You can then start the server by running the following commands -

cd $PGOROOT/hugo/
hugo server

The local version of the Hugo server is accessible by default from localhost:1313. Once you’ve run hugo server, that will let you interactively
make changes to the documentation as desired and view the updates in real-time.

100

https://gohugo.io/
https://gohugo.io/getting-started/installing/

Contributing to the Documentation

All documentation is in Markdown format and uses Hugo weights for positioning of the pages.

The current production release documentation is updated for every tagged major release.

When you’re ready to commit a change, please verify that the documentation generates locally.

If you would like to submit an feature / issue for us to consider please submit an to the official GitHub Repository.

If you would like to work the issue, please add that information in the issue so that we can confirm we are not already working no need
to duplicate efforts.

If you have any question you can submit a Support - Question and Answer issue and we will work with you on how you can get more
involved.

So you decided to submit an issue and work it. Great! Let’s get it merged in to the codebase. The following will go a long way to helping
get the fix merged in quicker.

1. Create a pull request from your fork to the master branch.
2. Update the checklists in the Pull Request Description.
3. Reference which issues this Pull Request is resolving.

101

https://github.com/CrunchyData/postgres-operator/issues/new/choose

	Crunchy PostgreSQL Operator
	Run your own production-grade PostgreSQL-as-a-Service on Kubernetes!

	How it Works
	Supported Platforms
	Storage

	PostgreSQL Operator Quickstart
	Ansible
	Step 1: Prerequisites
	Kubernetes / OpenShift
	Your Environment

	Step 2: Configuration
	Get the PostgreSQL Operator Ansible Installation Playbook
	Configure your Installation

	Step 3: Installation
	Step 4: Verification
	Step 5: Have Some Fun - Create a PostgreSQL Cluster

	Marketplaces
	Google Cloud Platform Marketplace
	Step 1: Prerequisites
	Step 2: Install the PostgreSQL Operator User Keys
	Step 3: Setup PostgreSQL Operator User
	Step 4: Setup Environment variables
	Step 5: Install the PostgreSQL Operator Client !pgo!
	Step 6: Connect to the PostgreSQL Operator
	Step 7: Create a Namespace
	Step 8: Have Some Fun - Create a PostgreSQL Cluster

	Crunchy PostgreSQL Operator Architecture
	Kuberentes Deployments: The Crunchy PostgreSQL Operator Deployment Model

	Additional Architecture Information
	Horizontal Scaling
	Deprovisioning
	Backups
	Restores
	Scheduling Backups
	Setting Backup Retention Policies
	Schedule Expression Format

	Using S3
	The Crunchy PostgreSQL Operator High-Availability Algorithm
	How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity
	Synchronous Replication: Guarding Against Transactions Loss
	Node Affinity
	Operator Namespaces
	Namespace Watching
	OwnNamespace Example
	SingleNamespace Example
	MultiNamespace Example
	RBAC

	pgo Clients and Namespaces
	Operator Eventing
	Event Watching
	Event Topics
	Event Types
	Event Testing
	Event Deployment
	PostgreSQL Operator Containers Overview
	PostgreSQL Server and Extensions
	Backup and Restore
	Administration Tools
	Metrics and Monitoring
	Connection Pooling

	Storage and the PostgreSQL Operator
	User Roles in the PostgreSQL Operator
	Platform Administrator
	Platform User
	PostgreSQL User

	Container Dependencies
	Operating Systems
	Kubernetes Distributions
	Storage
	Releases
	conf Directory
	conf/postgres-operator/pgo.yaml
	conf/postgres-operator Directory
	Operator API Server
	Security
	Local pgo CLI Configuration

	pgo.yaml Configuration
	Storage
	Storage Configuration Examples
	HostPath Example
	NFS Example
	Storage Class Example

	Container Resources
	Miscellaneous (Pgo)
	Storage Configuration Details
	Container Resources Details
	Overriding Storage Configuration Defaults
	Using Storage Configurations for Disaster Recovery
	TLS Configuration
	Server Settings
	TLS Trust
	Connection Settings
	Client Settings

	Default Installation - Create Project Structure
	Default Installation - Configure Environment
	Default Installation - Namespace Creation
	Default Installation - Configure Operator Templates
	Storage

	Operator Security
	Default Installation - Create Kubernetes RBAC Controls
	Default Installation - Deploy the Operator
	Default Installation - Completely Cleaning Up
	pgo CLI Installation
	Verify the Installation

	Prerequisites
	Environment Variables
	Other requirements

	Building
	Dependencies
	Compile
	Release

	Deployment
	Troubleshooting
	Prerequisites
	Container Ports
	Service Ports
	Application Ports

	Crunchy Data PostgreSQL Operator Playbooks
	Features
	Resources

	Prerequisites
	Kubernetes Installs
	OpenShift Installs
	Installing from a Windows Host
	Environment
	Permissions
	Obtaining Operator Ansible Role
	GitHub Installation
	RPM Installation using Yum

	Configuring the Inventory File
	Requirements
	Configuration Parameters

	Storage
	Examples
	Considerations for Multi-Zone Cloud Environments

	Resource Configuration
	Understanding !pgooperatornamespace! & !namespace!
	Single Namespace
	Multiple Namespaces

	Deploying Multiple Operators
	Deploying Grafana and Prometheus
	Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem
	Install Google Cloud SDK (Optional)

	Installing
	Installing on Linux
	Installing on MacOS
	Installing on Windows Ubuntu Subsystem
	Verifying the Installation
	Configure Environment Variables
	Verify !pgo! Connection

	Installing
	Prerequisites
	Installing on Linux
	Installing on MacOS
	Installing on Windows
	Verifying the Installation
	Verify Grafana
	Verify Prometheus

	Updating
	Updating on Linux
	Updating on MacOS
	Updating on Windows Ubuntu Subsystem
	Verifying the Update
	Configure Environment Variables
	Verify !pgo! Connection

	Uninstalling PostgreSQL Operator
	Deleting !pgo! Client

	Uninstalling the Metrics Stack
	Install the Postgres Operator (!pgo!) Client
	Prerequisites
	Linux and MacOS
	Installing the Client

	PGO-Client Container
	Installing the PGO-Client Container
	Using the PGO-Client Deployment

	Windows
	Installing the Client

	Verify the Client Installation
	Syntax
	Command Overview
	Global Flags
	Global Environment Variables

	Additional Information
	General Notes
	JSON Output

	PostgreSQL Operator System Basics
	Checking Connectivity to the PostgreSQL Operator
	Inspecting the PostgreSQL Operator Configuration
	Viewing PostgreSQL Operator Key Metrics
	Viewing PostgreSQL Operator Managed Namespaces

	Provisioning: Create, View, Destroy
	Creating a PostgreSQL Cluster
	View PostgreSQL Cluster Details
	Deleting a Cluster

	Testing PostgreSQL Cluster Availability
	Disaster Recovery: Backups & Restores
	Creating a Backup
	Creating Backups in S3
	Displaying Backup Information
	Setting Backup Retention
	Scheduling Backups
	Restore a Cluster
	Logical Backups (!pgdump! / !pgdumpall!)

	High-Availability: Scaling Up & Down
	Creating a New Replica
	Viewing Available Replicas
	Manual Failover

	Clone a PostgreSQL Cluster
	Monitoring
	View Disk Utilization

	Labels
	Add a Label to a PostgreSQL Cluster
	Add a Label to Multiple PostgreSQL Clusters

	Policy Management
	Create a Policy
	Apply a Policy

	Advanced Operations
	Connection Pooling via pgBouncer
	Create a Cluster using Specific Storage
	Create a Cluster with LoadBalancer ServiceType
	Namespace Operations
	PostgreSQL Operator User Operations
	PostgreSQL Cluster User Operations

	Configuring Encryption of PostgreSQL Operator API Connection
	PostreSQL Operator RBAC
	Making Security Changes
	Installation of PostgreSQL Operator RBAC
	Custom Postgres Configurations
	Custom PostgreSQL SSL Configurations
	Direct API Calls
	Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud Environments
	Upgrading the Operator
	Upgrading A Postgres Cluster
	Minor Upgrade Example
	Upgrading Postgres Operator 3.5 Minor Versions
	Postgres Operator Container Upgrade Procedure
	Upgrading a Cluster from Version 3.5.x to PGO 4.2.1
	Upgrading Postgres Operator from 4.1.0 to a patch release
	Postgres Operator Container Upgrade Procedure
	Postgres Operator Ansible Upgrade Procedure from 4.X to 4.2.1
	Postgres Operator Bash Upgrade Procedure from 4.X to 4.2.1
	Upgrading to Version 3.5.0 From Previous Versions
	Documentation
	Hosting Hugo Locally (Optional)
	Contributing to the Documentation

