
Crunchy PostgreSQL Operator

Contents

Crunchy PostgreSQL Operator 10

Run your own production-grade PostgreSQL-as-a-Service on Kubernetes! . 10

How it Works 11

Supported Platforms 12

Storage . 12

PostgreSQL Operator Quickstart 12

PostgreSQL Operator Installer 12

The Very, VERY Quickstart . 12

Step 1: Configuration . 13

Get the PostgreSQL Operator Installer Manifest . 13

Configure the PostgreSQL Operator Installer . 13

Step 2: Installation . 13

Step 3: Verification . 14

Step 4: Have Some Fun - Create a PostgreSQL Cluster . 14

Marketplaces 15

Google Cloud Platform Marketplace . 15

Step 1: Prerequisites . 15

Step 2: Install the PostgreSQL Operator User Keys . 16

Step 3: Setup PostgreSQL Operator User . 16

Step 4: Setup Environment variables . 16

Step 5: Install the PostgreSQL Operator Client pgo . 16

Step 6: Connect to the PostgreSQL Operator . 17

Step 7: Create a Namespace . 17

Step 8: Have Some Fun - Create a PostgreSQL Cluster . 17

Crunchy PostgreSQL Operator Architecture 18

Kubernetes Deployments: The Crunchy PostgreSQL Operator Deployment Model . 19

Additional Architecture Information 20

Horizontal Scaling . 21

[Custom Configuration]({{< relref “/advanced/custom-configuration.md” >}}) . 22

Deprovisioning . 22

Backups . 23

1

Restores . 23

Scheduling Backups . 24

Setting Backup Retention Policies . 26

Schedule Expression Format . 26

Using S3 . 26

Kubernetes Namespaces and the PostgreSQL Operator 26

Namespace Operating Modes . 27

dynamic . 27

readonly . 28

disabled . 28

Namespace Deployment Patterns . 28

One Namespace: PostgreSQL Operator + PostgreSQL Clusters . 28

Single Tenant: PostgreSQL Operator Separate from PostgreSQL Clusters . 29

Multi Tenant: PostgreSQL Operator Managing PostgreSQL Clusters in Multiple Namespaces 29

[pgo client]({{< relref “/pgo-client/_index.md” >}}) and Namespaces . 29

Operator Eventing . 30

Event Watching . 30

Event Topics . 30

Event Types . 30

Event Deployment . 30

PostgreSQL Operator Containers Overview . 30

PostgreSQL Server and Extensions . 31

Backup and Restore . 31

Administration Tools . 31

Metrics and Monitoring . 31

Connection Pooling . 31

Storage and the PostgreSQL Operator . 31

User Roles in the PostgreSQL Operator . 32

Platform Administrator . 32

Platform User . 32

PostgreSQL User . 32

How Tablespaces Work in the PostgreSQL Operator . 33

Adding Tablespaces to a New Cluster . 33

Adding Tablespaces to Existing Clusters . 34

More Information . 34

Deploying pgAdmin 4 . 34

User Synchronization . 35

Deleting pgAdmin 4 . 35

The Crunchy PostgreSQL Operator High-Availability Algorithm . 37

How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity . 38

Synchronous Replication: Guarding Against Transactions Loss . 38

Node Affinity . 39

Standby Cluster Overview . 40

2

Key Commands . 40

Creating a Standby PostgreSQL Cluster . 41

Promoting a Standby Cluster . 42

Container Dependencies . 43

Operating Systems . 44

Kubernetes Distributions . 44

Storage . 44

Releases . 45

conf Directory . 45

conf/postgres-operator/pgo.yaml . 45

conf/postgres-operator Directory . 45

Operator API Server . 45

Security . 46

Local pgo CLI Configuration . 46

pgo.yaml Configuration 46

Storage . 47

Storage Configuration Examples . 47

HostPath Example . 47

NFS Example . 47

Storage Class Example . 48

Miscellaneous (Pgo) . 48

Storage Configuration Details . 48

Overriding Storage Configuration Defaults . 49

Using Storage Configurations for Disaster Recovery . 49

TLS Configuration . 49

Server Settings . 49

TLS Trust . 50

Connection Settings . 50

Client Settings . 50

Prerequisites 51

Environment . 51

Client Interfaces . 51

Ports . 51

Application Ports . 52

The PostgreSQL Operator Installer 52

Quickstart . 52

Overview . 52

Requirements . 52

RBAC . 52

Namespaces . 53

Configuration - postgres-operator.yml . 53

Image Pull Secrets . 53

3

Installation . 54

Install the [pgo Client]({{< relref “/installation/pgo-client” >}}) . 54

Verify the Installation . 55

Post-Installation . 55

Install the PostgreSQL Operator (pgo) Client 55

Prerequisites . 55

Linux and MacOS . 55

Installing the Client . 55

PGO-Client Container . 56

Installing the PGO-Client Container . 57

Using the PGO-Client Deployment . 57

Windows . 57

Installing the Client . 57

Verify the Client Installation . 58

PostgreSQL Operator Installer Configuration 58

General Configuration . 58

Storage Settings . 60

Storage Configuration Options . 60

Example Storage Configuration . 61

PostgreSQL Cluster Storage Defaults . 61

Storage Configuration Types . 61

Pod Anti-affinity Settings . 63

Default Installation - Create Project Structure . 64

Default Installation - Configure Environment . 64

Default Installation - Namespace Creation . 64

Default Installation - Configure Operator Templates . 65

Storage . 65

Operator Security . 66

Default Installation - Create Kubernetes RBAC Controls . 66

Default Installation - Deploy the Operator . 67

Default Installation - Completely Cleaning Up . 67

pgo CLI Installation . 67

Verify the Installation . 68

Crunchy Data PostgreSQL Operator Playbooks 68

Features . 68

Resources . 68

4

Prerequisites 68
Kubernetes Installs . 68
OpenShift Installs . 68
Installing from a Windows Host . 69
Permissions . 69
Obtaining Operator Ansible Role . 69

GitHub Installation . 69
RPM Installation using Yum . 69

Configuring the Inventory File . 69
Requirements . 70
Configuration Parameters . 70

Storage . 72
Examples . 73
Considerations for Multi-Zone Cloud Environments . 73

Resource Configuration . 74
Understanding pgo_operator_namespace & namespace . 74

Single Namespace . 74
Multiple Namespaces . 74

Deploying Multiple Operators . 74
Deploying Grafana and Prometheus . 75
Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem . 75
Install Google Cloud SDK (Optional) . 75

Installing 75
Installing on Linux . 76
Installing on MacOS . 76
Installing on Windows Ubuntu Subsystem . 76
Verifying the Installation . 76
Configure Environment Variables . 76
Verify pgo Connection . 77

Installing 77
Prerequisites . 77
Installing on Linux . 78
Installing on MacOS . 78
Installing on Windows . 78
Verifying the Installation . 78
Verify Grafana . 78
Verify Prometheus . 79

Updating 79
Updating on Linux . 79
Updating on MacOS . 79
Updating on Windows Ubuntu Subsystem . 79
Verifying the Update . 80
Configure Environment Variables . 80
Verify pgo Connection . 80

5

Uninstalling PostgreSQL Operator 80

Deleting pgo Client . 81

Uninstalling the Metrics Stack 81

General Notes on Using the pgo Client . 82

Syntax . 82

Command Overview . 82

Global Flags . 83

Global Environment Variables . 83

Additional Information . 84

Setup Before Running the Examples . 84

JSON Output . 84

PostgreSQL Operator System Basics . 84

Checking Connectivity to the PostgreSQL Operator . 85

Inspecting the PostgreSQL Operator Configuration . 85

Viewing PostgreSQL Operator Key Metrics . 86

Viewing PostgreSQL Operator Managed Namespaces . 86

Provisioning: Create, View, Destroy . 87

Creating a PostgreSQL Cluster . 87

View PostgreSQL Cluster Details . 88

Deleting a Cluster . 88

Testing PostgreSQL Cluster Availability . 89

Disaster Recovery: Backups & Restores . 89

Creating a Backup . 89

Creating Backups in S3 . 90

Displaying Backup Information . 90

Setting Backup Retention . 90

Scheduling Backups . 90

Restore a Cluster . 91

Logical Backups (pg_dump / pg_dumpall) . 91

High-Availability: Scaling Up & Down . 92

Creating a New Replica . 92

Viewing Available Replicas . 92

Manual Failover . 92

Cluster Maintenance & Resource Management . 92

Clone a PostgreSQL Cluster . 93

Clone a PostgreSQL Cluster to Different PVC Size . 93

Enable TLS . 93

Setup . 94

Create a TLS Enabled PostgreSQL Cluster . 94

Force TLS in a PostgreSQL Cluster . 95

Custom PostgreSQL Configuration({{< relref “/advanced/custom-configuration.md” >}}) . 95

pgAdmin 4: PostgreSQL Administration . 95

Standby Clusters: Multi-Cluster Kubernetes Deployments . 96

6

Creating a Standby Cluster . 96

Promoting a Standby Cluster . 97

Monitoring . 97

View Disk Utilization . 97

PostgreSQL Metrics via pgMonitor . 97

Labels . 97

Add a Label to a PostgreSQL Cluster . 97

Add a Label to Multiple PostgreSQL Clusters . 97

Policy Management . 98

Create a Policy . 98

Apply a Policy . 98

Advanced Operations . 98

Connection Pooling via pgBouncer . 98

Query Analysis via pgBadger . 98

Create a Cluster using Specific Storage . 98

Create a Cluster with LoadBalancer ServiceType . 99

Namespace Operations . 99

PostgreSQL Operator User Operations . 99

PostgreSQL Cluster User Operations . 99

Configuring Encryption of PostgreSQL Operator API Connection . 100

PostreSQL Operator RBAC . 101

Making Security Changes . 102

Installation of PostgreSQL Operator RBAC . 102

Custom PostgreSQL Configuration . 103

Modifying PostgreSQL Cluster Configuration . 104

Types of Configuration . 104

Updating Configuration Settings . 105

Refreshing Configuration Settings . 106

Direct API Calls . 106

Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud Environments . 107

Upgrading the Crunchy PostgreSQL Operator 109

Automated Upgrade Procedure . 109

Considerations . 109

Automated Upgrade when using an Ansible installation of the PostgreSQL Operator . 110

Automated Upgrade when using a Bash installation of the PostgreSQL Operator . 110

PostgreSQL Operator Automated Cluster Upgrade . 111

Manually Upgrading the Operator and PostgreSQL Clusters . 111

Upgrading the Crunchy PostgreSQL Operator from Version 3.5 to 4.3.0 . 112

Manual PostgreSQL Operator 4 Upgrade Procedure . 113

Ansible Installation Upgrade Procedure . 114

Bash Installation Upgrade Procedure . 115

7

Prerequisites 118

Environment Variables . 118

Other requirements . 118

Building 118

Dependencies . 118

Code Generation . 119

Compile . 119

Deployment 119

Testing 119

Troubleshooting 120

Documentation . 120

Hosting Hugo Locally (Optional) . 120

Contributing to the Documentation . 120

Major Features 121

Standby Clusters + Multi-Kubernetes Deployments . 121

Installation via the pgo-deployer container . 122

Automatic PostgreSQL Operator Upgrade Process . 122

Improved Custom Configuration for PostgreSQL Clusters . 123

Customize PVC Size on PostgreSQL cluster Creation & Clone . 123

pgo create cluster . 123

pgo clone cluster . 123

Tablespaces . 123

Easy TLS-Enabled PostgreSQL Clusters . 124

External WAL Volume . 124

Elimination of ClusterRole Requirement for the PostgreSQL Operator . 125

Feature Preview: pgAdmin 4 Integration + User Synchronization . 125

Enhanced pgo df . 126

Enhanced pgBouncer Integration . 126

Rewritten pgo User Management commands . 126

Breaking Changes 127

Features 127

Changes 128

Fixes 128

Changes since 4.2.1 129

Fixes since 4.2.1 129

Fixes 130

8

Major Features 130
High-Availability & Disaster Recovery . 130

New Required HA PostgreSQL Containers: crunchy-postgres-ha and crunchy-postgres-gis-ha 131
pgBackRest Standardization . 131
Pod Anti-Affinity . 131
Synchronous Replication . 132
Updated pgo CLI Flags . 132
Global Configuration . 132

pgo clone . 132
Schedule Backups With Retention Policies . 132

Breaking Changes 133
Feature Removals . 133
Command Line (pgo) . 133

pgo create cluster . 133
pgo delete cluster . 133
pgo scaledown . 133
pgo test . 133

Additional apiserver Changes . 133

Additional Features 133
pgo (Operator CLI) . 133
Builds . 134
Installation . 134
Configuration . 134
Miscellaneous . 134

Fixes 135

Fixes 135

Major Features 136
Dynamic Namespace Management . 136
Lifecycle Events . 136

Breaking Changes 136
Containers . 136
API . 137
Command-line interface . 137
Installation . 137
Builds . 137

Additional Features 137
General PostgreSQL Operator Features . 137
PostgreSQL Upgrade Management . 137
PostgreSQL User Management . 137
Monitoring . 137
Logging . 138
Installation . 138

9

Fixes 138

Crunchy PostgreSQL Operator

Run your own production-grade PostgreSQL-as-a-Service on Kubernetes!

Latest Release: 4.3.0

The Crunchy PostgreSQL Operator automates and simplifies deploying and managing open source PostgreSQL clusters on Kubernetes
and other Kubernetes-enabled Platforms by providing the essential features you need to keep your PostgreSQL clusters up and running,
including:

PostgreSQL Cluster Provisioning Create, Scale, & Delete PostgreSQL clusters with ease, while fully customizing your Pods and
PostgreSQL configuration!

High-Availability Safe, automated failover backed by a distributed consensus based high-availability solution. Uses Pod Anti-Affinity
to help resiliency; you can configure how aggressive this can be! Failed primaries automatically heal, allowing for faster recovery time.

Support for [standby PostgreSQL clusters]({{< relref “/architecture/high-availability/multi-cluster-kubernetes.md” >}}) that work both
within an across [multiple Kubernetes clusters]({{< relref “/architecture/high-availability/multi-cluster-kubernetes.md” >}}).

Disaster Recovery Backups and restores leverage the open source pgBackRest utility and includes support for full, incremental, and
differential backups as well as efficient delta restores. Set how long you want your backups retained for. Works great with very large
databases!

TLS Secure communication between your applications and data servers by enabling TLS for your PostgreSQL servers, including the
ability to enforce that all of your connections to use TLS.

Monitoring Track the health of your PostgreSQL clusters using the open source pgMonitor library.

PostgreSQL User Management Quickly add and remove users from your PostgreSQL clusters with powerful commands. Manage
password expiration policies or use your preferred PostgreSQL authentication scheme.

Upgrade Management Safely apply PostgreSQL updates with minimal availability impact to your PostgreSQL clusters.

Advanced Replication Support Choose between asynchronous replication and synchronous replication for workloads that are sensitive
to losing transactions.

Clone Create new clusters from your existing clusters with a simple pgo clone command.

Connection Pooling Use pgBouncer for connection pooling

Node Affinity Have your PostgreSQL clusters deployed to Kubernetes Nodes of your preference

Scheduled Backups Choose the type of backup (full, incremental, differential) and how frequently you want it to occur on each
PostgreSQL cluster.

Backup to S3 Store your backups in Amazon S3 or any object storage system that supports the S3 protocol. The PostgreSQL Operator
can backup, restore, and create new clusters from these backups.

10

https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://www.pgbackrest.org
https://github.com/CrunchyData/pgmonitor
https://access.crunchydata.com/documentation/pgbouncer/
https://kubernetes.io/docs/concepts/architecture/nodes/

Multi-Namespace Support You can control how the PostgreSQL Operator leverages Kubernetes Namespaces with several different
deployment models:

• Deploy the PostgreSQL Operator and all PostgreSQL clusters to the same namespace
• Deploy the PostgreSQL Operator to one namespaces, and all PostgreSQL clusters to a different namespace
• Deploy the PostgreSQL Operator to one namespace, and have your PostgreSQL clusters managed acrossed multiple namespaces
• Dynamically add and remove namespaces managed by the PostgreSQL Operator using the pgo create namespace and pgo delete

namespace commands

Full Customizability The Crunchy PostgreSQL Operator makes it easy to get your own PostgreSQL-as-a-Service up and running on
Kubernetes-enabled platforms, but we know that there are further customizations that you can make. As such, the Crunchy PostgreSQL
Operator allows you to further customize your deployments, including:

• Selecting different storage classes for your primary, replica, and backup storage
• Select your own container resources class for each PostgreSQL cluster deployment; differentiate between resources applied for primary

and replica clusters!
• Use your own container image repository, including support imagePullSecrets and private repositories
• [Customize your PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}})
• Bring your own trusted certificate authority (CA) for use with the Operator API server
• Override your PostgreSQL configuration for each cluster

How it Works

Figure 1: Architecture

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

11

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Supported Platforms

The Crunchy PostgreSQL Operator is tested on the following Platforms:

• Kubernetes 1.13+
• OpenShift 3.11+
• Google Kubernetes Engine (GKE), including Anthos
• VMware Enterprise PKS 1.3+

Storage

The Crunchy PostgreSQL Operator is tested with a variety of different types of Kubernetes storage and Storage Classes, including:

• Rook
• StorageOS
• Google Compute Engine persistent volumes
• NFS
• HostPath

and more. We have had reports of people using the PostgreSQL Operator with other Storage Classes as well.

We know there are a variety of different types of Storage Classes available for Kubernetes and we do our best to test each one, but due to
the breadth of this area we are unable to verify PostgreSQL Operator functionality in each one. With that said, the PostgreSQL Operator
is designed to be storage class agnostic and has been demonstrated to work with additional Storage Classes. Storage is a rapidly evolving
field in Kubernetes and we will continue to adapt the PostgreSQL Operator to modern Kubernetes storage standards.

PostgreSQL Operator Quickstart

Can’t wait to try out the PostgreSQL Operator? Let us show you the quickest possible path to getting up and running.

There are two paths to quickly get you up and running with the PostgreSQL Operator:

• Installation via the PostgreSQL Operator Installer
• Installation via a Marketplace
• Installation via Google Cloud Platform Marketplace

Marketplaces can help you get more quickly started in your environment as they provide a mostly automated process, but there are a few
steps you will need to take to ensure you can fully utilize your PostgreSQL Operator environment.

PostgreSQL Operator Installer

Below will guide you through the steps for installing and using the PostgreSQL Operator using an installer that works with Ansible.

The Very, VERY Quickstart

If your environment is set up to use hostpath storage (found in things like minikube or OpenShift Code Ready Containers, the following
command could work for you:

kubectl create namespace pgo
kubectl apply -f

https://raw.githubusercontent.com/CrunchyData/postgres -operator/master/installers/kubectl/postgres -operator.yml

If not, please read onward: you can still get up and running fairly quickly with just a little bit of configuration.

12

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://developers.redhat.com/products/codeready-containers/overview

Step 1: Configuration

Get the PostgreSQL Operator Installer Manifest

You will need to download the PostgreSQL Operator Installer manifest to your environment, which you can do with the following command:

curl
https://raw.githubusercontent.com/CrunchyData/postgres -operator/master/installers/kubectl/postgres -operator.yml
> postgres-operator.yml

If you wish to download a specific version of the installer, you can substitute master with the version of the tag, i.e.

curl
https://raw.githubusercontent.com/CrunchyData/postgres -operator/v4.3.0/installers/kubectl/postgres-operator.yml
> postgres-operator.yml

Configure the PostgreSQL Operator Installer

There are many [configuration parameters]({{< relref “/installation/configuration.md”>}}) to help you fine tune your installation,
but there are a few that you may want to change to get the PostgreSQL Operator to run in your environment. Open up the
postgres-operator.yml file and edit a few variables.

Find the PGO_ADMIN_PASSWORD variable. This is the password you will use with the [pgo client]({{< relref “/installation/pgo-client” >}})
to manage your PostgreSQL clusters. The default is password, but you can change it to something like hippo-elephant.

You will need also need to set the storage default storage classes that you would like the PostgreSQL Operator to use. These variables are
called PRIMARY_STORAGE, REPLICA_STORAGE, BACKUP_STORAGE, and BACKREST_STORAGE. There are several storage configurations listed
out in the configuration file under the heading STORAGE[1-9]_TYPE. Find the one that you want to use, and set it to that value.

For example, if your Kubernetes environment is using NFS storage, you would set these variables to the following:

- name: BACKREST_STORAGE
value: "nfsstorage"

- name: BACKUP_STORAGE
value: "nfsstorage"

- name: PRIMARY_STORAGE
value: "nfsstorage"

- name: REPLICA_STORAGE
value: "nfsstorage"

For a full list of available storage types that can be used with this installation method, please review the [configuration parameters]({{<
relref “/installation/configuration.md”>}}).

Step 2: Installation

Installation is as easy as executing:

kubectl create namespace pgo
kubectl apply -f postgres -operator.yml

This will launch the pgo-deployer container that will run the various setup and installation jobs. This can take a few minutes to complete
depending on your Kubernetes cluster.

While the installation is occurring, download the pgo client set up script. This will help set up your local environment for using the
PostgreSQL Operator:

curl
https://raw.githubusercontent.com/CrunchyData/postgres -operator/v4.3.0/installers/kubectl/client-setup.sh
> client-setup.sh

chmod +x client-setup.sh

When the PostgreSQL Operator is done installing, run the client setup script:

./client-setup.sh

This will download the pgo client and provide instructions for how to easily use it in your environment. It will prompt you to add some
environmental variables for you to set up in your session, which you can do with the following commands:

13

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgo

If you wish to permanently add these variables to your environment, you can run the following:

cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgo
EOF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Step 3: Verification

Below are a few steps to check if the PostgreSQL Operator is up and running.

By default, the PostgreSQL Operator installs into a namespace called pgo. First, see that the the Kubernetes Deployment of the Operator
exists and is healthy:

kubectl -n pgo get deployments

If successful, you should see output similar to this:

NAME READY UP-TO-DATE AVAILABLE AGE
postgres -operator 1/1 1 1 16h

Next, see if the Pods that run the PostgreSQL Operator are up and running:

kubectl -n pgo get pods

If successful, you should see output similar to this:

NAME READY STATUS RESTARTS AGE
postgres -operator -56d6ccb97-tmz7m 4/4 Running 0 2m

Finally, let’s see if we can connect to the PostgreSQL Operator from the pgo command-line client. The Ansible installer installs the pgo
command line client into your environment, along with the username/password file that allows you to access the PostgreSQL Operator. In
order to communicate with the PostgreSQL Operator API server, you will first need to set up a port forward to your local environment.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:

pgo version

If successful, you should see output similar to this:

pgo client version 4.3.0
pgo-apiserver version 4.3.0

Step 4: Have Some Fun - Create a PostgreSQL Cluster

The quickstart installation method creates a namespace called pgo where the PostgreSQL Operator manages PostgreSQL clusters. Try
creating a PostgreSQL cluster called hippo:

pgo create cluster -n pgo hippo

14

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Alternatively, because we set the PGO_NAMESPACE environmental variable in our .bashrc file, we could omit the -n flag from the pgo
create cluster command and just run this:
pgo create cluster hippo

Even with PGO_NAMESPACE set, you can always overwrite which namespace to use by setting the -n flag for the specific command. For
explicitness, we will continue to use the -n flag in the remaining examples of this quickstart.
If your cluster creation command executed successfully, you should see output similar to this:
created Pgcluster hippo
workflow id 1cd0d225 -7cd4-4044-b269-aa7bedae219b

This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status
of this cluster using the pgo test command:
pgo test -n pgo hippo

When everything is up and running, you should see output similar to this:
cluster : hippo

Services
primary (10.97.140.113:5432): UP

Instances
primary (hippo -7b64747476 -6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n pgo hippo.

Marketplaces

Below is the list of the marketplaces where you can find the Crunchy PostgreSQL Operator:

• Google Cloud Platform Marketplace: Crunchy PostgreSQL for GKE

Follow the instructions below for the marketplace that you want to use to deploy the Crunchy PostgreSQL Operator.

Google Cloud Platform Marketplace

The PostgreSQL Operator is installed as part of the Crunchy PostgreSQL for GKE project that is available in the Google Cloud Platform
Marketplace (GCP Marketplace). Please follow the steps deploy to get the PostgreSQL Operator deployed!

Step 1: Prerequisites

Install Kubectl and gcloud SDK

• kubectl is required to execute kube commands with in GKE.
• gcloudsdk essential command line tools for google cloud

Verification Below are a few steps to check if the PostgreSQL Operator is up and running.
For this example we are deploying the operator into a namespace called pgo. First, see that the the Kubernetes Deployment of the
Operator exists and is healthy:
kubectl -n pgo get deployments

If successful, you should see output similar to this:
NAME READY UP-TO-DATE AVAILABLE AGE
postgres -operator 1/1 1 1 16h

Next, see if the Pods that run the PostgreSQL Operator are up and running:
kubectl -n pgo get pods

If successful, you should see output similar to this:
NAME READY STATUS RESTARTS AGE
postgres -operator -56d6ccb97-tmz7m 4/4 Running 0 2m

15

https://console.cloud.google.com/marketplace/details/crunchydata/crunchy-postgresql-operator
https://console.cloud.google.com/marketplace/details/crunchydata/crunchy-postgresql-operator
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://cloud.google.com/sdk/install

Step 2: Install the PostgreSQL Operator User Keys

After your operator is deployed via GCP Marketplace you will need to get keys used to secure the Operator REST API. For these
instructions we will assume the operator is deployed in a namespace named “pgo” if this in not the case for your operator change the
namespace to coencide with where your operator is deployed. Using the gcloud utility, ensure you are logged into the GKE cluster that
you installed the PostgreSQL Operator into, run the following commands to retrieve the cert and key:

kubectl get secret pgo.tls -n pgo -o jsonpath='{.data.tls\.key}' | base64 --decode >
/tmp/client.key

kubectl get secret pgo.tls -n pgo -o jsonpath='{.data.tls\.crt}' | base64 --decode >
/tmp/client.crt

Step 3: Setup PostgreSQL Operator User

The PostgreSQL Operator implements its own role-based access control (RBAC) system for authenticating and authorization PostgreSQL
Operator users access to its REST API. A default PostgreSQL Operator user (aka a “pgouser”) is created as part of the marketplace
installation (these credentials are set during the marketplace deployment workflow).

Create the pgouser file in ${HOME?}/.pgo/<operatornamespace>/pgouser and insert the user and password you created on deployment
of the PostgreSQL Operator via GCP Marketplace. For example, if you set up a user with the username of username and a password of
hippo:

username:hippo

Step 4: Setup Environment variables

The PostgreSQL Operator Client uses several environmental variables to make it easier for interfacing with the PostgreSQL Operator.

Set the environmental variables to use the key / certificate pair that you pulled in Step 2 was deployed via the marketplace. Using the
previous examples, You can set up environment variables with the following command:

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="/tmp/client.crt"
export PGO_CLIENT_CERT="/tmp/client.crt"
export PGO_CLIENT_KEY="/tmp/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgouser1

If you wish to permanently add these variables to your environment, you can run the following command:

cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="/tmp/client.crt"
export PGO_CLIENT_CERT="/tmp/client.crt"
export PGO_CLIENT_KEY="/tmp/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgouser1
EOF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Step 5: Install the PostgreSQL Operator Client pgo

The pgo client provides a helpful command-line interface to perform key operations on a PostgreSQL Operator, such as creating a
PostgreSQL cluster.

The pgo client can be downloaded from GitHub Releases (subscribers can download it from the Crunchy Data Customer Portal).

Note that the pgo client’s version must match the version of the PostgreSQL Operator that you have deployed. For example, if you have
deployed version 4.3.0 of the PostgreSQL Operator, you must use the pgo for 4.3.0.

Once you have download the pgo client, change the permissions on the file to be executable if need be as shown below:

chmod +x pgo

16

https://github.com/crunchydata/postgres-operator/releases
https://access.crunchydata.com

Step 6: Connect to the PostgreSQL Operator

Finally, let’s see if we can connect to the PostgreSQL Operator from the pgo client. In order to communicate with the PostgreSQL
Operator API server, you will first need to set up a port forward to your local environment.
In a new console window, run the following command to set up a port forward:
kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:
pgo version

If successful, you should see output similar to this:
pgo client version 4.3.0
pgo-apiserver version 4.3.0

Step 7: Create a Namespace

We are almost there! You can optionally add a namespace that can be managed by the PostgreSQL Operator to watch and to deploy a
PostgreSQL cluster into.
pgo create namespace wateringhole

verify the operator has access to the newly added namespace
pgo show namespace --all

you should see out put similar to this:
pgo username: admin
namespace useraccess installaccess
application -system accessible no access
default accessible no access
kube-public accessible no access
kube-system accessible no access
pgo accessible no access
wateringhole accessible accessible

Step 8: Have Some Fun - Create a PostgreSQL Cluster

You are now ready to create a new cluster in the wateringhole namespace, try the command below:
pgo create cluster -n wateringhole hippo

If successful, you should see output similar to this:
created Pgcluster hippo
workflow id 1cd0d225 -7cd4-4044-b269-aa7bedae219b

This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status
of this cluster using the pgo test command:
pgo test -n wateringhole hippo

When everything is up and running, you should see output similar to this:
cluster : hippo

Services
primary (10.97.140.113:5432): UP

Instances
primary (hippo -7b64747476 -6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n wateringhole hippo.
The goal of the Crunchy PostgreSQL Operator is to provide a means to quickly get your applications up and running on PostgreSQL for
both development and production environments. To understand how the PostgreSQL Operator does this, we want to give you a tour of
its architecture, with explains both the architecture of the PostgreSQL Operator itself as well as recommended deployment models for
PostgreSQL in production!

17

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Crunchy PostgreSQL Operator Architecture

Figure 2: Operator Architecture with CRDs

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

The Custom Resource Definitions include:

• pgclusters.crunchydata.com: Stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to maintain a high-
availability cluster, etc.

• pgreplicas.crunchydata.com: Stores information required to manage the replicas within a PostgreSQL cluster. This includes
things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.

• pgtasks.crunchydata.com: A general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. create
a cluster, take a backup, perform a clone) and tracks the state of said task through its workflow.

• pgpolicies.crunchydata.com: Stores a reference to a SQL file that can be executed against a PostgreSQL cluster. In the past,
this was used to manage RLS policies on PostgreSQL clusters.

There are also a few legacy Custom Resource Definitions that the PostgreSQL Operator comes with that will be removed in a future
release.

The PostgreSQL Operator runs as a deployment in a namespace and is composed of up to four Pods, including:

• operator (image: postgres-operator) - This is the heart of the PostgreSQL Operator. It contains a series of Kubernetes controllers
that place watch events on a series of native Kubernetes resources (Jobs, Pods) as well as the Custom Resources that come with the
PostgreSQL Operator (Pgcluster, Pgtask)

• apiserver (image: pgo-apiserver) - This provides an API that a PostgreSQL Operator User (pgouser) can interface with via the
pgo command-line interface (CLI) or directly via HTTP requests. The API server can also control what resources a user can access
via a series of RBAC rules that can be defined as part of a pgorole.

• scheduler (image: pgo-scheduler) - A container that runs cron and allows a user to schedule repeatable tasks, such as backups
(because it is important to schedule backups in a production environment!)

• event (image: pgo-event, optional) - A container that provides an interface to the nsq message queue and transmits information
about lifecycle events that occur within the PostgreSQL Operator (e.g. a cluster is created, a backup is taken, a clone fails to create)

18

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/architecture/controller/

The main purpose of the PostgreSQL Operator is to create and update information around the structure of a PostgreSQL Cluster, and
to relay information about the overall status and health of a PostgreSQL cluster. The goal is to also simplify this process as much as
possible for users. For example, let’s say we want to create a high-availability PostgreSQL cluster that has a single replica, supports having
backups in both a local storage area and Amazon S3 and has built-in metrics and connection pooling, similar to:

Figure 3: PostgreSQL HA Cluster

We can accomplish that with a single command:

pgo create cluster hacluster --replica-count=1 --metrics --pgbackrest -storage-type="local,s3"
--pgbouncer --pgbadger

The PostgreSQL Operator handles setting up all of the various Deployments and sidecars to be able to accomplish this task, and puts in
the various constructs to maximize resiliency of the PostgreSQL cluster.

You will also notice that high-availability is enabled by default. The Crunchy PostgreSQL Operator uses a distributed-consensus
method for PostgreSQL cluster high-availability, and as such delegates the management of each cluster’s availability to the clusters
themselves. This removes the PostgreSQL Operator from being a single-point-of-failure, and has benefits such as faster recovery times for
each PostgreSQL cluster. For a detailed discussion on high-availability, please see the High-Availability section.

Every single Kubernetes object (Deployment, Service, Pod, Secret, Namespace, etc.) that is deployed or managed by the PostgreSQL
Operator has a Label associated with the name of vendor and a value of crunchydata. You can use Kubernetes selectors to easily find out
which objects are being watched by the PostgreSQL Operator. For example, to get all of the managed Secrets in the default namespace
the PostgreSQL Operator is deployed into (pgo):

kubectl get secrets -n pgo --selector=vendor=crunchydata

Kubernetes Deployments: The Crunchy PostgreSQL Operator Deployment Model

The Crunchy PostgreSQL Operator uses Kubernetes Deployments for running PostgreSQL clusters instead of StatefulSets or other objects.
This is by design: Kubernetes Deployments allow for more flexibility in how you deploy your PostgreSQL clusters.

For example, let’s look at a specific PostgreSQL cluster where we want to have one primary instance and one replica instance. We want
to ensure that our primary instance is using our fastest disks and has more compute resources available to it. We are fine with our replica
having slower disks and less compute resources. We can create this environment with a command similar to below:

pgo create cluster mixed --replica-count=1 \
--storage-config=fast --memory=32Gi --cpu=8.0 \
--replica-storage-config=standard

19

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Now let’s say we want to have one replica available to run read-only queries against, but we want its hardware profile to mirror that of
the primary instance. We can run the following command:
pgo scale mixed --replica-count=1 \

--storage-config=fast

Kubernetes Deployments allow us to create heterogeneous clusters with ease and let us scale them up and down as we please. Addi-
tional components in our PostgreSQL cluster, such as the pgBackRest repository or an optional pgBouncer, are deployed as Kubernetes
Deployments as well.

We can also leverage Kubernees Deployments to apply Node Affinity rules to individual PostgreSQL instances. For instance, we may want
to force one or more of our PostgreSQL replicas to run on Nodes in a different region than our primary PostgreSQL instances.

Using Kubernetes Deployments does create additional management complexity, but the good news is: the PostgreSQL Operator manages
it for you! Being aware of this model can help you understand how the PostgreSQL Operator gives you maximum flexibility for your
PostgreSQL clusters while giving you the tools to troubleshoot issues in production.

The last piece of this model is the use of Kubernetes Services for accessing your PostgreSQL clusters and their various components.
The PostgreSQL Operator puts services in front of each Deployment to ensure you have a known, consistent means of accessing your
PostgreSQL components.

Note that in some production environments, there can be delays in accessing Services during transition events. The PostgreSQL Operator
attempts to mitigate delays during critical operations (e.g. failover, restore, etc.) by directly accessing the Kubernetes Pods to perform
given actions.

For a detailed analysis, please see Using Kubernetes Deployments for Running PostgreSQL.

Additional Architecture Information

There is certainly a lot to unpack in the overall architecture of the Crunchy PostgreSQL Operator. Understanding the architecture will
help you to plan the deployment model that is best for your environment. For more information on the architectures of various components
of the PostgreSQL Operator, please read onward!

What happens when the Crunchy PostgreSQL Operator creates a PostgreSQL cluster?

Figure 4: PostgreSQL HA Cluster

First, an entry needs to be added to the Pgcluster CRD that provides the essential attributes for maintaining the definition of a
PostgreSQL cluster. These attributes include:

• Cluster name

20

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/services-networking/service/
https://info.crunchydata.com/blog/using-kubernetes-deployments-for-running-postgresql

• The storage and resource definitions to use
• References to any secrets required, e.g. ones to the pgBackRest repository
• High-availability rules
• Which sidecars and ancillary services are enabled, e.g. pgBouncer, pgMonitor

After the Pgcluster CRD entry is set up, the PostgreSQL Operator handles various tasks to ensure that a healthy PostgreSQL cluster can
be deployed. These include:

• Allocating the PersistentVolumeClaims that are used to store the PostgreSQL data as well as the pgBackRest repository
• Setting up the Secrets specific to this PostgreSQL cluster
• Setting up the ConfigMap entries specific for this PostgreSQL cluster, including entries that may contain custom configurations as

well as ones that are used for the PostgreSQL cluster to manage its high-availability
• Creating Deployments for the PostgreSQL primary instance and the pgBackRest repository

You will notice the presence of a pgBackRest repository. As of version 4.2, this is a mandatory feature for clusters that are deployed by
the PostgreSQL Operator. In addition to providing an archive for the PostgreSQL write-ahead logs (WAL), the pgBackRest repository
serves several critical functions, including:

• Used to efficiently provision new replicas that are added to the PostgreSQL cluster
• Prevent replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
• Allow failed primaries to automatically and efficiently heal using the “delta restore” feature
• Serves as the basis for the cluster cloning feature
• …and of course, allow for one to take full, differential, and incremental backups and perform full and point-in-time restores

The pgBackRest repository can be configured to use storage that resides within the Kubernetes cluster (the local option), Amazon S3 or
a storage system that uses the S3 protocol (the s3 option), or both (local,s3).

Once the PostgreSQL primary instance is ready, there are two follow up actions that the PostgreSQL Operator takes to properly leverage
the pgBackRest repository:

• A new pgBackRest stanza is created
• An initial backup is taken to facilitate the creation of any new replica

At this point, if new replicas were requested as part of the pgo create command, they are provisioned from the pgBackRest repository.

There is a Kubernetes Service created for the Deployment of the primary PostgreSQL instance, one for the pgBackRest repository, and
one that encompasses all of the replicas. Additionally, if the connection pooler pgBouncer is deployed with this cluster, it will also have a
service as well.

An optional monitoring sidecar can be deployed as well. The sidecar, called collect, uses the crunchy-collect container that is a part
of pgMonitor and scrapes key health metrics into a Prometheus instance. See Monitoring for more information on how this works.

Horizontal Scaling

There are many reasons why you may want to horizontally scale your PostgreSQL cluster:

• Add more redundancy by having additional replicas
• Leveraging load balancing for your read only queries
• Add in a new replica that has more storage or a different container resource profile, and then failover to that as the new primary

and more.

The PostgreSQL Operator enables the ability to scale up and down via the pgo scale and pgo scaledown commands respectively. When
you run pgo scale, the PostgreSQL Operator takes the following steps:

• The PostgreSQL Operator creates a new Kubernetes Deployment with the information specified from the pgo scale command
combined with the information already stored as part of the managing the existing PostgreSQL cluster

• During the provisioning of the replica, a pgBackRest restore takes place in order to bring it up to the point of the last backup. If
data already exists as part of this replica, then a “delta restore” is performed. (NOTE: If you have not taken a backup in awhile
and your database is large, consider taking a backup before performing scaling up.)

• The new replica boots up in recovery mode and recovers to the latest point in time. This allows it to catch up to the current primary.
• Once the replica has recovered, it joins the primary as a streaming replica!

21

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

If pgMonitor is enabled, a collect sidecar is also added to the replica Deployment.

Scaling down works in the opposite way:

• The PostgreSQL instance on the scaled down replica is stopped. By default, the data is explicitly wiped out unless the --keep-data
flag on pgo scaledown is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted

• The Kubernetes Deployment associated with the replica is removed, as well as any other Kubernetes objects that are specifically
associated with this replcia

[Custom Configuration]({{< relref “/advanced/custom-configuration.md” >}})

PostgreSQL workloads often need tuning and additional configuration in production environments, and the PostgreSQL Operator allows
for this via its ability to manage [custom PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}}).

The custom configuration can be edit from a ConfigMap that follows the pattern of <clusterName>-pgha-config, where <clusterName>
would be hippo in pgo create cluster hippo. When the ConfigMap is edited, the changes are automatically pushed out to all of the
PostgreSQL instances within a cluster.

For more information on how this works and what configuration settings are editable, please visit the “[Custom PostgreSQL configura-
tion]({{< relref”/advanced/custom-configuration.md” >}})” section of the documentation.

Deprovisioning

There may become a point where you need to completely deprovision, or delete, a PostgreSQL cluster. You can delete a cluster managed by
the PostgreSQL Operator using the pgo delete command. By default, all data and backups are removed when you delete a PostgreSQL
cluster, but there are some options that allow you to retain data, including:

• --keep-backups - this retains the pgBackRest repository. This can be used to restore the data to a new PostgreSQL cluster.
• --keep-data - this retains the PostgreSQL data directory (aka PGDATA) from the primary PostgreSQL instance in the cluster. This

can be used to recreate the PostgreSQL cluster of the same name.

When the PostgreSQL cluster is deleted, the following takes place:

• All PostgreSQL instances are stopped. By default, the data is explicitly wiped out unless the --keep-data flag on pgo scaledown
is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted

• Any Services, ConfigMaps, Secrets, etc. Kubernetes objects are all deleted
• The Kubernetes Deployments associated with the PostgreSQL instances are removed, as well as the Kubernetes Deployments

associated with pgBackRest repository and, if deployed, the pgBouncer connection pooler

When using the PostgreSQL Operator, the answer to the question “do you take backups of your database” is automatically “yes!”

The PostgreSQL Operator uses the open source pgBackRest backup and restore utility that is designed for working with databases that
are many terabytes in size. As described in the Provisioning section, pgBackRest is enabled by default as it permits the PostgreSQL
Operator to automate some advanced as well as convenient behaviors, including:

• Efficient provisioning of new replicas that are added to the PostgreSQL cluster
• Preventing replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
• Allowing failed primaries to automatically and efficiently heal using the “delta restore” feature
• Serving as the basis for the cluster cloning feature
• …and of course, allowing for one to take full, differential, and incremental backups and perform full and point-in-time restores

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster.
When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository as described in the Provisioning section.

At PostgreSQL cluster creation time, you can specify a specific Storage Class for the pgBackRest repository. Additionally, you can also
specify the type of pgBackRest repository that can be used, including:

• local: Uses the storage that is provided by the Kubernetes cluster’s Storage Class that you select
• s3: Use Amazon S3 or an object storage system that uses the S3 protocol
• local,s3: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select AND Amazon S3 (or

equivalent object storage system that uses the S3 protocol)

The pgBackRest repository consists of the following Kubernetes objects:

22

https://kubernetes.io/docs/concepts/configuration/configmap/
https://pgbackrest.org

Figure 5: PostgreSQL Operator pgBackRest Integration

• A Deployment
• A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g. SSH keys, AWS S3 keys,

etc.)
• A Service

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-ahead log (WAL) archives
to the correct repository.

Backups

Backups can be taken with the pgo backup command
The PostgreSQL Operator supports three types of pgBackRest backups:

• Full (full): A full backup of all the contents of the PostgreSQL cluster
• Differential (diff): A backup of only the files that have changed since the last full backup
• Incremental (incr): A backup of only the files that have changed since the last full or differential backup

By default, pgo backup will attempt to take an incremental (incr) backup unless otherwise specified.
For example, to specify a full backup:
pgo backup hacluster --backup-opts="--type=full"

The PostgreSQL Operator also supports setting pgBackRest retention policies as well for backups. For example, to take a full backup and
to specify to only keep the last 7 backups:
pgo backup hacluster --backup-opts="--type=full --repo1-retention -full=7"

Restores

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery
using the pgo restore command. Note that both of these options are destructive to the existing PostgreSQL cluster; to “restore” the
PostgreSQL cluster to a new deployment, please see the Clone section.
The pgo restore command lets you specify the point at which you want to restore your database using the --pitr-target flag with the
pgo restore command.
NOTE: Ensure you are backing up your PostgreSQL cluster regularly, as this will help expedite your restore times. The next section will
cover scheduling regular backups.
When the PostgreSQL Operator issues a restore, the following actions are taken on the cluster:

23

• The PostgreSQL Operator disables the “autofail” mechanism so that no failovers will occur during the restore.
• Any replicas that may be associated with the PostgreSQL cluster are destroyed
• A new Persistent Volume Claim (PVC) is allocated using the specifications provided for the primary instance. This may have been

set with the --storage-class flag when the cluster was originally created
• A Kubernetes Job is created that will perform a pgBackRest restore operation to the newly allocated PVC. This is facilitated by

the pgo-backrest-restore container image.

Figure 6: PostgreSQL Operator Restore Step 1

• When restore Job successfully completes, a new Deployment for the PostgreSQL cluster primary instance is created. A recovery is
then issued to the specified point-in-time, or if it is a full recovery, up to the point of the latest WAL archive in the repository.

• Once the PostgreSQL primary instance is available, the PostgreSQL Operator will take a new, full backup of the cluster.

At this point, the PostgreSQL cluster has been restored. However, you will need to re-enable autofail if you would like your PostgreSQL
cluster to be highly-available. You can re-enable autofail with this command:
pgo update cluster hacluster --autofail=true

Scheduling Backups

Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its
scheduling sidecar that is deployed alongside the Operator.
The PostgreSQL Operator Scheduler is essentially a cron server that will run jobs that it is specified. Schedule commands use the cron
syntax to set up scheduled tasks.
For example, to schedule a full backup once a day at 1am, the following command can be used:
pgo create schedule hacluster --schedule="0 1 * * *" \

--schedule-type=pgbackrest --pgbackrest -backup-type=full

To schedule an incremental backup once every 3 hours:
pgo create schedule hacluster --schedule="0 */3 * * *" \

--schedule-type=pgbackrest --pgbackrest -backup-type=incr

24

https://en.wikipedia.org/wiki/Cron

Figure 7: PostgreSQL Operator Restore Step 2

Figure 8: PostgreSQL Operator Schedule Backups

25

Setting Backup Retention Policies

Unless specified, pgBackRest will keep an unlimited number of backups. As part of your regularly scheduled backups, it is encouraged for
you to set a retention policy. This can be accomplished using the --repo1-retention-full for full backups and --repo1-retention-diff
for differential backups via the --schedule-opts parameter.
For example, using the above example of taking a nightly full backup, you can specify a policy of retaining 21 backups using the following
command:
pgo create schedule hacluster --schedule="0 1 * * *" \

--schedule-type=pgbackrest --pgbackrest -backup-type=full \
--schedule-opts="--repo1-retention -full=21"

Schedule Expression Format

Schedules are expressed using the following rules, which should be familiar to users of cron:
Field name	Mandatory?	Allowed values	Allowed special characters
Seconds | Yes | 0-59 | * / , -
Minutes | Yes | 0-59 | * / , -
Hours | Yes | 0-23 | * / , -
Day of month | Yes | 1-31 | * / , - ?
Month | Yes | 1-12 or JAN-DEC | * / , -
Day of week | Yes | 0-6 or SUN-SAT | * / , - ?

Using S3

The PostgreSQL Operator integration with pgBackRest allows it to use the AWS S3 object storage system, as well as other object storage
systems that implement the S3 protocol.
In order to enable S3 storage, it is helpful to provide some of the S3 information prior to deploying the PostgreSQL Operator, or updating
the pgo-config ConfigMap and restarting the PostgreSQL Operator pod.
First, you will need to add the proper S3 bucket name, AWS S3 endpoint and the AWS S3 region to the Cluster section of the pgo.yaml
configuration file:
Cluster:

BackrestS3Bucket: my-postgresql -backups-example
BackrestS3Endpoint: s3.amazonaws.com
BackrestS3Region: us-east-1

These values can also be set on a per-cluster basis with the pgo create cluster command, i.e.:

• --pgbackrest-s3-bucket - specifics the AWS S3 bucket that should be utilized
• --pgbackrest-s3-endpoint specifies the S3 endpoint that should be utilized
• --pgbackrest-s3-key - specifies the AWS S3 key that should be utilized
• --pgbackrest-s3-key-secret- specifies the AWS S3 key secret that should be utilized
• --pgbackrest-s3-region - specifies the AWS S3 region that should be utilized

Sensitive information, such as the values of the AWS S3 keys and secrets, are stored in Kubernetes Secrets and are securely mounted to
the PostgreSQL clusters.
To enable a PostgreSQL cluster to use S3, the --pgbackrest-storage-type on the pgo create cluster command needs to be set to s3
or local,s3.
Once configured, the pgo backup and pgo restore commands will work with S3 similarly to the above!

Kubernetes Namespaces and the PostgreSQL Operator

The PostgreSQL Operator leverages Kubernetes Namespaces to react to actions taken within a Namespace to keep its PostgreSQL clusters
deployed as requested. Early on, the PostgreSQL Operator was scoped to a single namespace and would only watch PostgreSQL clusters
in that Namspace, but since version 4.0, it has been expanded to be able to manage PostgreSQL clusters across multiple namespaces.
The following provides more information about how the PostgreSQL Operator works with namespaces, and presents several deployment
patterns that can be used to deploy the PostgreSQL Operator.

26

Namespace Operating Modes

The PostgreSQL Operator can be run with various Namespace Operating Modes, with each mode determining whether or not certain
namespaces capabilities are enabled for the Operator installation. When the PostgreSQL Operator is run, the Kubernetes environment is
inspected to determine what cluster roles are currently assigned to the pgo-operator ServiceAccount (i.e. the ServiceAccount running
the Pod the PostgreSQL Operator is deployed within). Based on the ClusterRoles identified, one of the namespace operating modes
described below will be enabled for the Operator installation. Please consult the installation guides for the various installation methods
available to determine the settings required to install the ClusterRoles required for each mode.

dynamic

Enables full dynamic namespace capabilities, in which the Operator can create, delete and update any namespaces within the Kubernetes
cluster, while then also having the ability to create the Roles, RoleBindings and ServiceAccounts within those namespaces as required for
the Operator to create PostgreSQL clusters. Additionally, while in this mode the Operator can listen for namespace events (e.g. namespace
additions, updates and deletions), and then create or remove controllers for various namespaces as those namespaces are added or removed
from the Kubernetes cluster and/or Operator install. The mode therefore allows the Operator to dynamically respond to namespace
events in the cluster, and then interact with those namespaces as required to manage PostgreSQL clusters within them.

The following represents the ClusterRole required for the dynamic mode to be enabled:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: pgo-cluster-role
rules:

- apiGroups:
- ''

resources:
- namespaces

verbs:
- get
- list
- watch
- create
- update
- delete

- apiGroups:
- ''

resources:
- serviceaccounts

verbs:
- get
- create
- delete

- apiGroups:
- rbac.authorization.k8s.io

resources:
- roles

verbs:
- get
- create
- delete
- bind
- escalate

- apiGroups:
- rbac.authorization.k8s.io

resources:
- rolebindings

verbs:
- get
- create
- delete

27

readonly

In this mode the PostgreSQL Operator is still able to listen for namespace events within the Kubernetetes cluster, and then create and run
and/or remove controllers as namespaces are added, updated and deleted. However, while in this mode the Operator is unable to create,
delete or update namespaces itself, nor can it create the RBAC it requires in any of those namespaces to create PostgreSQL clusters.
Therefore, while in a readonly mode namespaces must be pre-configured with the proper RBAC, since the Operator cannot create the
RBAC itself.

The following represents the ClusterRole required for the readonly mode to be enabled:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:

name: pgo-cluster-role
rules:

- apiGroups:
- ''

resources:
- namespaces

verbs:
- get
- list
- watch

disabled

Disables namespace capabilities within the Operator altogether. While in this mode the Operator will simply attempt to work with the
target namespaces specified during installation. If no target namespaces are specified, then the Operator will be configured to work within
the namespace in which it is deployed. As with readonly, while in this mode namespaces must be pre-configured with the proper RBAC,
since the Operator cannot create the RBAC itself. Additionally, in the event that target namespaces are deleted or the required RBAC
within those namespaces are modified, the Operator will need to be re-deployed to ensure it no longer attempts to listen for events in
those namespaces (specifically because while in this mode, the Operator is unable to listen for namespace events, and therefore cannot
detect whether to watch or stop watching namespaces as they are added and/or removed).

Mode disabled is enabled when no ClusterRoles have been installed.

Namespace Deployment Patterns

There are several different ways the PostgreSQL Operator can be deployed in Kubernetes clusters with respect to Namespaces.

One Namespace: PostgreSQL Operator + PostgreSQL Clusters

Figure 9: PostgreSQL Operator Own Namespace Deployment

This patterns is great for testing out the PostgreSQL Operator in development environments, and can also be used to keep your entire
PostgreSQL workload within a single Kubernetes Namespace.

This can be set up with the disabled Namespace mode.

28

Figure 10: PostgreSQL Operator Single Namespace Deployment

Single Tenant: PostgreSQL Operator Separate from PostgreSQL Clusters

The PostgreSQL Operator can be deployed into its own namespace and manage PostgreSQL clusters in a separate namespace.

This can be set up with either the readonly or dynamic Namespace modes.

Multi Tenant: PostgreSQL Operator Managing PostgreSQL Clusters in Multiple Namespaces

Figure 11: PostgreSQL Operator Multi Namespace Deployment

The PostgreSQL Operator can manage PostgreSQL clusters across multiple namespaces which allows for multi-tenancy.

This can be set up with either the readonly or dynamic Namespace modes.

[pgo client]({{< relref “/pgo-client/_index.md” >}}) and Namespaces

The [pgo client]({{< relref “/pgo-client/_index.md” >}}) needs to be aware of the Kubernetes Namespaces it is issuing commands to.
This can be accomplish with the -n flag that is available on most PostgreSQL Operator commands. For example, to create a PostgreSQL
cluster called hippo in the pgo namespace, you would execute the following command:

pgo create cluster -n pgo hippo

For convenience, you can set the PGO_NAMESPACE environmental variable to automatically use the desired namespace with the commands.

For example, to create a cluster named hippo in the pgo namespace, you could do the following

this export only needs to be run once per session
export PGO_NAMESPACE=pgo

pgo create cluster hippo

29

Operator Eventing

The Operator creates events from the various life-cycle events going on within the Operator logic and driven by pgo users as they interact
with the Operator and as Postgres clusters come and go or get updated.

Event Watching

There is a pgo CLI command:

pgo watch alltopic

This command connects to the event stream and listens on a topic for event real-time. The command will not complete until the pgo user
enters ctrl-C.

This command will connect to localhost:14150 (default) to reach the event stream. If you have the correct priviledges to connect to the
Operator pod, you can port forward as follows to form a connection to the event stream:

kubectl port-forward svc/postgres-operator 14150:4150 -n pgo

Event Topics

The following topics exist that hold the various Operator generated events:

alltopic
clustertopic
backuptopic
loadtopic
postgresusertopic
policytopic
pgbouncertopic
pgotopic
pgousertopic

Event Types

The various event types are found in the source code at https://github.com/CrunchyData/postgres-operator/blob/master/events/eventtype.go

Event Deployment

The Operator events are published and subscribed via the NSQ project software (https://nsq.io/). NSQ is found in the pgo-event container
which is part of the postgres-operator deployment.

You can see the pgo-event logs by issuing the elog bash function found in the examples/envs.sh script.

NSQ looks for events currently at port 4150. The Operator sends events to the NSQ address as defined in the EVENT_ADDR environment
variable.

If you want to disable eventing when installing with Bash, set the following environment variable in the Operator Deployment: “name”:
“DISABLE_EVENTING” “value”: “true”

To disable eventing when installing with Ansible, add the following to your inventory file: pgo_disable_eventing=‘true’

PostgreSQL Operator Containers Overview

The PostgreSQL Operator orchestrates a series of PostgreSQL and PostgreSQL related containers containers that enable rapid deployment
of PostgreSQL, including administration and monitoring tools in a Kubernetes environment. The PostgreSQL Operator supports Post-
greSQL 9.5+ with multiple PostgreSQL cluster deployment strategies and a variety of PostgreSQL related extensions and tools enabling
enterprise grade PostgreSQL-as-a-Service. A full list of the containers supported by the PostgreSQL Operator is provided below.

30

PostgreSQL Server and Extensions

• PostgreSQL (crunchy-postgres-ha). PostgreSQL database server. The crunchy-postgres container image is unmodified, open source
PostgreSQL packaged and maintained by Crunchy Data.

• PostGIS (crunchy-postgres-ha-gis). PostgreSQL database server including the PostGIS extension. The crunchy-postgres-gis con-
tainer image is unmodified, open source PostgreSQL packaged and maintained by Crunchy Data. This image is identical to the
crunchy-postgres image except it includes the open source geospatial extension PostGIS for PostgreSQL in addition to the language
extension PL/R which allows for writing functions in the R statistical computing language.

Backup and Restore

• pgBackRest (crunchy-backrest-restore). pgBackRest is a high performance backup and restore utility for PostgreSQL. The crunchy-
backrest-restore container executes the pgBackRest utility, allowing FULL and DELTA restore capability.

• pgdump (crunchy-pgdump). The crunchy-pgdump container executes either a pg_dump or pg_dumpall database backup against
another PostgreSQL database.

• crunchy-pgrestore (restore). The restore image provides a means of performing a restore of a dump from pg_dump or pg_dumpall
via psql or pg_restore to a PostgreSQL container database.

Administration Tools

• pgAdmin4 (crunchy-pgadmin4). PGAdmin4 is a graphical user interface administration tool for PostgreSQL. The crunchy-pgadmin4
container executes the pgAdmin4 web application.

• pgbadger (crunchy-pgbadger). pgbadger is a PostgreSQL log analyzer with fully detailed reports and graphs. The crunchy-pgbadger
container executes the pgBadger utility, which generates a PostgreSQL log analysis report using a small HTTP server running on
the container.

• pg_upgrade (crunchy-upgrade). The crunchy-upgrade container contains 9.5, 9.6, 10, 11 and 12 PostgreSQL packages in order to
perform a pg_upgrade from 9.5 to 9.6, 9.6 to 10, 10 to 11, and 11 to 12 versions.

• scheduler (crunchy-scheduler). The crunchy-scheduler container provides a cron like microservice for automating pgBackRest
backups within a single namespace.

Metrics and Monitoring

• Metrics Collection (crunchy-collect). The crunchy-collect container provides real time metrics about the PostgreSQL database via
an API. These metrics are scraped and stored by a Prometheus time-series database and are then graphed and visualized through
the open source data visualizer Grafana.

• Grafana (crunchy-grafana). Visual dashboards are created from the collected and stored data that crunchy-collect and crunchy-
prometheus provide for the crunchy-grafana container, which hosts an open source web-based graphing dashboard called Grafana.

• Prometheus (crunchy-prometheus). Prometheus is a multi-dimensional time series data model with an elastic query language. It
is used in collaboration with Crunchy Collect and Grafana to provide metrics.

Connection Pooling

• pgbouncer (crunchy-pgbouncer). pgbouncer is a lightweight connection pooler for PostgreSQL. The crunchy-pgbouncer container
provides a pgbouncer image.

Storage and the PostgreSQL Operator

The PostgreSQL Operator allows for a variety of different configurations of persistent storage that can be leveraged by the PostgreSQL
instances or clusters it deploys.

The PostgreSQL Operator works with several different storage types, HostPath, Network File System(NFS), and Dynamic storage.

• Hostpath is the simplest storage and useful for single node testing.

• NFS provides the ability to do single and multi-node testing.

31

Hostpath and NFS both require you to configure persistent volumes so that you can make claims towards those volumes. You will need
to monitor the persistent volumes so that you do not run out of available volumes to make claims against.

Dynamic storage classes provide a means for users to request persistent volume claims and have the persistent volume dynamically created
for you. You will need to monitor disk space with dynamic storage to make sure there is enough space for users to request a volume.
There are multiple providers of dynamic storage classes to choose from. You will need to configure what works for your environment and
size the Physical Volumes, Persistent Volumes (PVs), appropriately.

Once you have determined the type of storage you will plan on using and setup PV’s you need to configure the Operator to know about
it. You will do this in the pgo.yaml file.

If you are deploying to a cloud environment with multiple zones, for instance Google Kubernetes Engine (GKE), you will want to review
topology aware storage class configurations.

User Roles in the PostgreSQL Operator

The PostgreSQL Operator, when used in conjunction with the associated PostgreSQL Containers and Kubernetes, provides you with the
ability to host your own open source, Kubernetes native PostgreSQL-as-a-Service infrastructure.

In installing, configuring and operating the PostgreSQL Operator as a PostgreSQL-as-a-Service capability, the following user roles will be
required:

Role Applicable Component Authorized Privileges and Functions Performed

Platform Admininistrator (Privileged User) PostgreSQL Operator The Platform Admininistrator is able to control all aspects of the PostgreSQL Operator functionality, including: provisioning and scaling clusters, adding PostgreSQL Administrators and PostgreSQL Users to clusters, setting PostgreSQL cluster security privileges, managing other PostgreSQL Operator users, and more. This user can have access to any database that is deployed and managed by the PostgreSQL Operator.
Platform User PostgreSQL Operator The Platform User has access to a limited subset of PostgreSQL Operator functionality that is defined by specific RBAC rules. A Platform Administrator manages the specific permissions for an Platform User specific permissions. A Platform User only receives a permission if its is explicitly granted to them.
PostgreSQL Administrator(Privileged Account) PostgreSQL Containers The PostgreSQL Administrator is the equivalent of a PostgreSQL superuser (e.g. the “postgres” user) and can perform all the actions that a PostgreSQL superuser is permitted to do, which includes adding additional PostgreSQL Users, creating databases within the cluster.
PostgreSQL User PostgreSQL Containers The PostgreSQL User has access to a PostgreSQL Instance or Cluster but must be granted explicit permissions to perform actions in PostgreSQL based upon their role membership.

As indicated in the above table, both the Operator Administrator and the PostgreSQL Administrators represent privilege users with
components within the PostgreSQL Operator.

Platform Administrator

For purposes of this User Guide, the “Platform Administrator” is a Kubernetes system user with PostgreSQL Administrator privileges and
has PostgreSQL Operator admin rights. While PostgreSQL Operator admin rights are not required, it is helpful to have admin rights to
be able to verify that the installation completed successfully. The Platform Administrator will be responsible for managing the installation
of the Crunchy PostgreSQL Operator service in Kubernetes. That installation can be on RedHat OpenShift 3.11+, Kubeadm, or even
Google’s Kubernetes Engine.

Platform User

For purposes of this User Guide, a “Platform User” is a Kubernetes system user and has PostgreSQL Operator admin rights. While admin
rights are not required for a typical user, testing out functiontionality will be easier, if you want to limit functionality to specific actions
section 2.4.5 covers roles. The Platform User is anyone that is interacting with the Crunchy PostgreSQL Operator service in Kubernetes
via the PGO CLI tool. Their rights to carry out operations using the PGO CLI tool is governed by PGO Roles(discussed in more detail
later) configured by the Platform Administrator. If this is you, please skip to section 2.3.1 where we cover configuring and installing PGO.

PostgreSQL User

In the context of the PostgreSQL Operator, the “PostgreSQL User” is any person interacting with the PostgreSQL database using database
specific connections, such as a language driver or a database management GUI.

The default PostgreSQL instance installation via the PostgreSQL Operator comes with the following users:

Role name Attributes

postgres Superuser, Create role, Create DB, Replication, Bypass RLS
primaryuser Replication
testuser

32

The postgres user will be the admin user for the database instance. The primary user is used for replication between primary and replicas.
The testuser is a normal user that has access to the database “userdb” that is created for testing purposes.
A Tablespace is a PostgreSQL feature that is used to store data on a volume that is different from the primary data directory. While most
workloads do not require them, tablespaces can be particularly helpful for larger data sets or utilizing particular hardware to optimize
performance on a particular PostgreSQL object (a table, index, etc.). Some examples of use cases for tablespaces include:

• Partitioning larger data sets across different volumes
• Putting data onto archival systems
• Utilizing hardware (or a storage class) for a particular database
• Storing sensitive data on a volume that supports transparent data-encryption (TDE)

and others.
In order to use PostgreSQL tablespaces properly in a highly-available, distributed system, there are several considerations that need to be
accounted for to ensure proper operations:

• Each tablespace must have its own volume; this means that every tablespace for every replica in a system must have its own volume.
• The filesystem map must be consistent across the cluster
• The backup & disaster recovery management system must be able to safely backup and restore data to tablespaces

Additionally, a tablespace is a critical piece of a PostgreSQL instance: if PostgreSQL expects a tablespace to exist and it is unavailable,
this could trigger a downtime scenario.
While there are certain challenges with creating a PostgreSQL cluster with high-availability along with tablespaces in a Kubernetes-based
environment, the PostgreSQL Operator adds many conveniences to make it easier to use tablespaces in applications.

How Tablespaces Work in the PostgreSQL Operator

As stated above, it is important to ensure that every tablespace created has its own volume (i.e. its own persistent volume claim). This is
especially true for any replicas in a cluster: you don’t want multiple PostgreSQL instances writing to the same volume, as this is a recipe
for disaster!
One of the keys to working with tablespaces in a high-availability cluster is to ensure the filesystem that the tablespaces map to is consistent.
Specifically, it is imperative to have the LOCATION parameter that is used by PostgreSQL to indicate where a tablespace resides to match
in each instance in a cluster.
The PostgreSQL Operator achieves this by mounting all of its tablespaces to a directory called /tablespaces in the container. While each
tablespace will exist in a unique PVC across all PostgreSQL instances in a cluster, each instance’s tablespaces will mount in a predictable
way in /tablespaces.
The PostgreSQL Operator takes this one step further and abstracts this away from you. When your PostgreSQL cluster initialized, the
tablespace definition is automatically created in PostgreSQL; you can start using it immediately! An example of this is demonstrated in
the next section.
The PostgreSQL Operator ensures the availability of the tablespaces across the different lifecycle events that occur on a PostgreSQL
cluster, including:

• High-Availability: Data in the tablespaces is replicated across the cluster, and is available after a downtime event
• Disaster Recovery: Tablespaces are backed up and are properly restored during a recovery
• Clone: Tablespaces are created in any cloned cluster
• Deprovisioining: Tablespaces are deleted when a PostgreSQL instance or cluster is deleted

Adding Tablespaces to a New Cluster

Tablespaces can be used in a cluster with the pgo create cluster command. The command follows this general format:
pgo create cluster hacluster \

--tablespace=name=tablespace1:storageconfig=storageconfigname \
--tablespace=name=tablespace2:storageconfig=storageconfigname

For example, to create tablespaces name faststorage1 and faststorage2 on PVCs that use the nfsstorage storage type, you would
execute the following command:
pgo create cluster hacluster \

--tablespace=name=faststorage1:storageconfig=nfsstorage \
--tablespace=name=faststorage2:storageconfig=nfsstorage

33

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Once the cluster is initialized, you can immediately interface with the tablespaces! For example, if you wanted to create a table called
sensor_data on the faststorage1 tablespace, you could execute the following SQL:

CREATE TABLE sensor_data (
sensor_id int,
sensor_value numeric,
created_at timestamptz DEFAULT CURRENT_TIMESTAMP

)
TABLESPACE faststorage1;

Adding Tablespaces to Existing Clusters

You can also add a tablespace to an existing PostgreSQL cluster with the pgo update cluster command. Adding a tablespace to a
cluster uses a similar syntax to creating a cluster with tablespaces, for example:

pgo update cluster hacluster \
--tablespace=name=tablespace3:storageconfig=storageconfigname

NOTE: This operation can cause downtime. In order to add a tablespace to a PostgreSQL cluster, persistent volume claims (PVCs) need
to be created and mounted to each PostgreSQL instance in the cluster. The act of mounting a new PVC to a Kubernetes Deployment
causes the Pods in the deployment to restart.

When the operation completes, the tablespace will be set up and accessible to use within the PostgreSQL cluster.

More Information

For more information on how tablespaces work in PostgreSQL please refer to the PostgreSQL manual.

Figure 12: pgAdmin 4 Query

pgAdmin 4 is a popular graphical user interface that makes it easy to work with PostgreSQL databases from both a desktop or web-based
client. With its ability to manage and orchestrate changes for PostgreSQL users, the PostgreSQL Operator is a natural partner to keep a
pgAdmin 4 environment synchronized with a PostgreSQL environment.

The PostgreSQL Operator lets you deploy a pgAdmin 4 environment alongside a PostgreSQL cluster and keeps users’ database credentials
synchronized. You can simply log into pgAdmin 4 with your PostgreSQL username and password and immediately have access to your
databases.

Deploying pgAdmin 4

For example, let’s use a PostgreSQL cluster called hippo hippo that has a user named hippo with password datalake:

pgo create cluster hippo --username=hippo --password=datalake

After the PostgreSQL cluster becomes ready, you can create a pgAdmin 4 deployment with the [pgo create pgadmin]({{< relref “/pgo-
client/reference/pgo_create_pgadmin.md” >}}) command:

pgo create pgadmin hippo

34

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.pgadmin.org/

This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information into it. To
access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:

kubectl port-forward svc/hippo-pgadmin 5050:5050

Point your browser at http://localhost:5050 and use your database username (e.g. hippo) and password (e.g. datalake) to log in.
Though the prompt says “email address”, using your PostgreSQL username will work.

Figure 13: pgAdmin 4 Login Page

(Note: if your password does not appear to work, you can retry setting up the user with the [pgo update user]({{< relref “/pgo-
client/reference/pgo_update_user.md” >}}) command: pgo update user hippo --password=datalake)

User Synchronization

The [pgo create user]({{< relref “/pgo-client/reference/pgo_create_user.md” >}}), [pgo update user]({{< relref “/pgo-client/reference/pgo_update_user.md”
>}}), and [pgo delete user]({{< relref “/pgo-client/reference/pgo_delete_user.md” >}}) commands are synchronized with the pgAd-
min 4 deployment. Note that if you use pgo create user without the --managed flag prior to deploying pgAdmin 4, then the user’s
credentials will not be synchronized to the pgAdmin 4 deployment. However, a subsequent run of pgo update user --password will
synchronize the credentials with pgAdmin 4.

Deleting pgAdmin 4

You can remove the pgAdmin 4 deployment with the [pgo delete pgadmin]({{< relref “/pgo-client/reference/pgo_delete_pgadmin.md”
>}}) command.

One of the great things about PostgreSQL is its reliability: it is very stable and typically “just works.” However, there are certain things
that can happen in the environment that PostgreSQL is deployed in that can affect its uptime, including:

• The database storage disk fails or some other hardware failure occurs
• The network on which the database resides becomes unreachable
• The host operating system becomes unstable and crashes
• A key database file becomes corrupted
• A data center is lost

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching
of operating system, hardware upgrade, or other maintenance.

Fortunately, the Crunchy PostgreSQL Operator is prepared for this.

The Crunchy PostgreSQL Operator supports a distributed-consensus based high-availability (HA) system that keeps its managed Post-
greSQL clusters up and running, even if the PostgreSQL Operator disappears. Additionally, it leverages Kubernetes specific features such
as Pod Anti-Affinity to limit the surface area that could lead to a PostgreSQL cluster becoming unavailable. The PostgreSQL Operator
also supports automatic healing of failed primaries and leverages the efficient pgBackRest “delta restore” method, which eliminates the
need to fully reprovision a failed cluster!

The Crunchy PostgreSQL Operator also maintains high-availability during a routine task such as a PostgreSQL minor version upgrade.

For workloads that are sensitive to transaction loss, the Crunchy PostgreSQL Operator supports PostgreSQL synchronous replication,
which can be specified with the --sync-replication when using the pgo create cluster command.

35

Figure 14: PostgreSQL Operator High-Availability Overview

36

(HA is enabled by default in any newly created PostgreSQL cluster. You can update this setting by either using the --disable-autofail
flag when using pgo create cluster, or modify the pgo-config ConfigMap [or the pgo.yaml file] to set DisableAutofail to "true".
These can also be set when a PostgreSQL cluster is running using the pgo update cluster command).

One can also choose to manually failover using the pgo failover command as well.

The high-availability backing for your PostgreSQL cluster is only as good as your high-availability backing for Kubernetes. To learn more
about creating a high-availability Kubernetes cluster, please review the Kubernetes documentation or consult your systems administrator.

The Crunchy PostgreSQL Operator High-Availability Algorithm

A critical aspect of any production-grade PostgreSQL deployment is a reliable and effective high-availability (HA) solution. Organizations
want to know that their PostgreSQL deployments can remain available despite various issues that have the potential to disrupt operations,
including hardware failures, network outages, software errors, or even human mistakes.

The key portion of high-availability that the PostgreSQL Operator provides is that it delegates the management of HA to the PostgreSQL
clusters themselves. This ensures that the PostgreSQL Operator is not a single-point of failure for the availability of any of the PostgreSQL
clusters that it manages, as the PostgreSQL Operator is only maintaining the definitions of what should be in the cluster (e.g. how many
instances in the cluster, etc.).

Each HA PostgreSQL cluster maintains its availability using concepts that come from the Raft algorithm to achieve distributed consensus.
The Raft algorithm (“Reliable, Replicated, Redundant, Fault-Tolerant”) was developed for systems that have one “leader” (i.e. a primary)
and one-to-many followers (i.e. replicas) to provide the same fault tolerance and safety as the PAXOS algorithm while being easier to
implement.

For the PostgreSQL cluster group to achieve distributed consensus on who the primary (or leader) is, each PostgreSQL cluster leverages
the distributed etcd key-value store that is bundled with Kubernetes. After it is elected as the leader, a primary will place a lock in the
distributed etcd cluster to indicate that it is the leader. The “lock” serves as the method for the primary to provide a heartbeat: the
primary will periodically update the lock with the latest time it was able to access the lock. As long as each replica sees that the lock was
updated within the allowable automated failover time, the replicas will continue to follow the leader.

The “log replication” portion that is defined in the Raft algorithm is handled by PostgreSQL in two ways. First, the primary instance will
replicate changes to each replica based on the rules set up in the provisioning process. For PostgreSQL clusters that leverage “synchronous
replication,” a transaction is not considered complete until all changes from those transactions have been sent to all replicas that are
subscribed to the primary.

In the above section, note the key word that the transaction are sent to each replica: the replicas will acknowledge receipt of the transaction,
but they may not be immediately replayed. We will address how we handle this further down in this section.

During this process, each replica keeps track of how far along in the recovery process it is using a “log sequence number” (LSN), a built-in
PostgreSQL serial representation of how many logs have been replayed on each replica. For the purposes of HA, there are two LSNs
that need to be considered: the LSN for the last log received by the replica, and the LSN for the changes replayed for the replica. The
LSN for the latest changes received can be compared amongst the replicas to determine which one has replayed the most changes, and an
important part of the automated failover process.

The replicas periodically check in on the lock to see if it has been updated by the primary within the allowable automated failover timeout.
Each replica checks in at a randomly set interval, which is a key part of Raft algorithm that helps to ensure consensus during an election
process. If a replica believes that the primary is unavailable, it becomes a candidate and initiates an election and votes for itself as the
new primary. A candidate must receive a majority of votes in a cluster in order to be elected as the new primary.

There are several cases for how the election can occur. If a replica believes that a primary is down and starts an election, but the primary
is actually not down, the replica will not receive enough votes to become a new primary and will go back to following and replaying the
changes from the primary.

In the case where the primary is down, the first replica to notice this starts an election. Per the Raft algorithm, each available replica
compares which one has the latest changes available, based upon the LSN of the latest logs received. The replica with the latest LSN wins
and receives the vote of the other replica. The replica with the majority of the votes wins. In the event that two replicas’ logs have the
same LSN, the tie goes to the replica that initiated the voting request.

Once an election is decided, the winning replica is immediately promoted to be a primary and takes a new lock in the distributed etcd
cluster. If the new primary has not finished replaying all of its transactions logs, it must do so in order to reach the desired state based
on the LSN. Once the logs are finished being replayed, the primary is able to accept new queries.

At this point, any existing replicas are updated to follow the new primary.

When the old primary tries to become available again, it realizes that it has been deposed as the leader and must be healed. The old
primary determines what kind of replica it should be based upon the CRD, which allows it to set itself up with appropriate attributes.
It is then restored from the pgBackRest backup archive using the “delta restore” feature, which heals the instance and makes it ready to
follow the new primary, which is known as “auto healing.”

37

https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://raft.github.io/

How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity

By default, when a new PostgreSQL cluster is created using the PostgreSQL Operator, pod anti-affinity rules will be applied to any
deployments comprising the full PG cluster (please note that default pod anti-affinity does not apply to any Kubernetes jobs created by
the PostgreSQL Operator). This includes:

• The primary PG deployment
• The deployments for each PG replica
• The pgBackrest dedicated repostiory deployment
• The pgBouncer deployment (if enabled for the cluster)

There are three types of Pod Anti-Affinity rules that the Crunchy PostgreSQL Operator supports:

• preferred: Kubernetes will try to schedule any pods within a PostgreSQL cluster to different nodes, but in the event it must
schedule two pods on the same Node, it will. As described above, this is the default option.

• required: Kubernetes will schedule pods within a PostgreSQL cluster to different Nodes, but in the event it cannot schedule a pod
to a different Node, it will not schedule the pod until a different node is available. While this guarantees that no pod will share
the same node, it can also lead to downtime events as well. This uses the requiredDuringSchedulingIgnoredDuringExecution
affinity rule.

• disabled: Pod Anti-Affinity is not used.

With the default preferred Pod Anti-Affinity rule enabled, Kubernetes will attempt to schedule pods created by each of the separate
deployments above on a unique node, but will not guarantee that this will occur. This ensures that the pods comprising the PostgreSQL
cluster can always be scheduled, though perhaps not always on the desired node. This is specifically done using the following:

• The preferredDuringSchedulingIgnoredDuringExecution affinity type, which defines an anti-affinity rule that Kubernetes will
attempt to adhere to, but will not guarantee will occur during Pod scheduling

• A combination of labels that uniquely identify the pods created by the various Deployments listed above
• A topology key of kubernetes.io/hostname, which instructs Kubernetes to schedule a pod on specific Node only if there is not

already another pod in the PostgreSQL cluster scheduled on that same Node

If you want to explicitly create a PostgreSQL cluster with the preferred Pod Anti-Affinity rule, you can execute the pgo create command
using the --pod-anti-affinity flag similar to this:
pgo create cluster hacluster --replica-count=2 --pod-anti-affinity=preferred

or it can also be explicitly enabled globally for all clusters by setting PodAntiAffinity to preferred in the pgo.yaml configuration file.
If you want to create a PostgreSQL cluster with the required Pod Anti-Affinity rule, you can execute a command similar to this:
pgo create cluster hacluster --replica-count=2 --pod-anti-affinity=required

or set the required option globally for all clusters by setting PodAntiAffinity to required in the pgo.yaml configuration file.
When required is utilized for the default pod anti-affinity, a separate node is required for each deployment listed above comprising the PG
cluster. This ensures that the cluster remains highly-available by ensuring that node failures do not impact any other deployments in the
cluster. However, this does mean that the PostgreSQL primary, each PostgreSQL replica, the pgBackRest repository and, if deployed, the
pgBouncer Pods will each require a unique node, meaning the minimum number of Nodes required for the Kubernetes cluster will increase
as more Pods are added to the PostgreSQL cluster. Further, if an insufficient number of nodes are available to support this configuration,
certain deployments will fail, since it will not be possible for Kubernetes to successfully schedule the pods for each deployment.

Synchronous Replication: Guarding Against Transactions Loss

Clusters managed by the Crunchy PostgreSQL Operator can be deployed with synchronous replication, which is useful for workloads that
are sensitive to losing transactions, as PostgreSQL will not consider a transaction to be committed until it is committed to all synchronous
replicas connected to a primary. This provides a higher guarantee of data consistency and, when a healthy synchronous replica is present,
a guarantee of the most up-to-date data during a failover event.
This comes at a cost of performance: PostgreSQL has to wait for a transaction to be committed on all synchronous replicas, and a
connected client will have to wait longer than if the transaction only had to be committed on the primary (which is how asynchronous
replication works). Additionally, there is a potential impact to availability: if a synchronous replica crashes, any writes to the primary
will be blocked until a replica is promoted to become a new synchronous replica of the primary.
You can enable synchronous replication by using the --sync-replication flag with the pgo create command, e.g.:
pgo create cluster hacluster --replica-count=2 --sync-replication

38

Node Affinity

Kubernetes Node Affinity can be used to scheduled Pods to specific Nodes within a Kubernetes cluster. This can be useful when you
want your PostgreSQL instances to take advantage of specific hardware (e.g. for geospatial applications) or if you want to have a replica
instance deployed to a specific region within your Kubernetes cluster for high-availability purposes.

The PostgreSQL Operator provides users with the ability to apply Node Affinity rules using the --node-label flag on the pgo create
and the pgo scale commands. Node Affinity directs Kubernetes to attempt to schedule these PostgreSQL instances to the specified Node
label.

To get a list of available Node labels:

kubectl get nodes --show-labels

You can then specify one of those Kubernetes node names (e.g. region=us-east-1) when creating a PostgreSQL cluster;

pgo create cluster thatcluster --node-label=region=us-east-1

The Node Affinity only uses the preferred scheduling strategy (similar to what is described in the Pod Anti-Affinity section above), so
if a Pod cannot be scheduled to a particular Node matching the label, it will be scheduled to a different Node.

Figure 15: PostgreSQL Operator High-Availability Overview

Advanced [high-availability]({{< relref “/architecture/high-availability/_index.md” >}}) and [disaster recovery]({{< relref “/architecture/disaster-
recovery.md” >}}) strategies involve spreading your database clusters across multiple data centers to help maximize uptime. In Kubernetes,
this technique is known as “federation”. Federated Kubernetes clusters are able to communicate with each other, coordinate changes, and
provide resiliency for applications that have high uptime requirements.

As of this writing, federation in Kubernetes is still in ongoing development area and is something we monitor with intense interest. As
Kubernetes federation continues to mature, we wanted to provide a way to deploy PostgreSQL clusters managed by the PostgreSQL
Operator that can span multiple Kubernetes clusters. This can be accomplished with a few environmental setups:

• Two Kubernetes clusters
• S3, or an external storage system that uses the S3 protocol

39

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity
https://en.wikipedia.org/wiki/Federation_(information_technology)
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator

At a high-level, the PostgreSQL Operator follows the “active-standby” data center deployment model for managing the PostgreSQL
clusters across Kuberntetes clusters. In one Kubernetes cluster, the PostgreSQL Operator deploy PostgreSQL as an “active” PostgreSQL
cluster, which means it has one primary and one-or-more replicas. In another Kubernetes cluster, the PostgreSQL cluster is deployed as
a “standby” cluster: every PostgreSQL instance is a replica.

A side-effect of this is that in each of the Kubernetes clusters, the PostgreSQL Operator can be used to deploy both active and standby
PostgreSQL clusters, allowing you to mix and match! While the mixing and matching may not ideal for how you deploy your PostgreSQL
clusters, it does allow you to perform online moves of your PostgreSQL data to different Kubernetes clusters as well as manual online
upgrades.

Lastly, while this feature does extend high-availability, promoting a standby cluster to an active cluster is not automatic. While the
PostgreSQL clusters within a Kubernetes cluster do support self-managed high-availability, a cross-cluster deployment requires someone
to specifically promote the cluster from standby to active.

Standby Cluster Overview

Standby PostgreSQL clusters are managed just like any other PostgreSQL cluster that is managed by the PostgreSQL Operator. For exam-
ple, adding replicas to a standby cluster is identical to before: you can use [pgo scale]({{< relref “/pgo-client/reference/pgo_scale.md”
>}}).

As the architecture diagram above shows, the main difference is that there is no primary instance: one PostgreSQL instance is reading in
the database changes from the S3 repository, while the other replicas are replicas of that instance. This is known as cascading replication.
replicas are cascading replicas, i.e. replicas replicating from a database server that itself is replicating from another database server.

Because standby clusters are effectively read-only, certain functionality that involves making changes to a database, e.g. PostgreSQL
user changes, is blocked while a cluster is in standby mode. Additionally, backups and restores are blocked as well. While pgBackRest
does support backups from standbys, this requires direct access to the primary database, which cannot be done until the PostgreSQL
Operator supports Kubernetes federation. If a blocked function is called on a standby cluster via the [pgo client]({{< relref “/pgo-
client/_index.md“>}}) or a direct call to the API server, the call will return an error.

Key Commands

pgo create cluster({{< relref “/pgo-client/reference/pgo_create_cluster.md” >}}) This first step to creating a standby
PostgreSQL cluster is…to create a PostgreSQL standby cluster. We will cover how to set this up in the example below, but wanted to
provide some of the standby-specific flags that need to be used when creating a standby cluster. These include:

• --standby: Creates a cluster as a PostgreSQL standby cluster
• --password-superuser: The password for the postgres superuser account, which performs a variety of administrative actions.
• --password-replication: The password for the replication account (primaryuser), used to maintain high-availability.
• --password: The password for the standard user account created during PostgreSQL cluster initialization.
• --pgbackrest-repo-path: The specific pgBackRest repository path that should be utilized by the standby cluster. Allows a standby

cluster to specify a path that matches that of the active cluster it is replicating.
• --pgbackrest-storage-type: Must be set to s3
• --pgbackrest-s3-key: The S3 key to use
• --pgbackrest-s3-key-secret: The S3 key secret to use
• --pgbackrest-s3-bucket: The S3 bucket to use
• --pgbackrest-s3-endpoint: The S3 endpoint to use
• --pgbackrest-s3-region: The S3 region to use

With respect to the credentials, it should be noted that when the standby cluster is being created within the same Kubernetes cluster
AND it has access to the Kubernetes Secret created for the active cluster, one can use the --secret-from flag to set up the credentials.

[pgo update cluster]({{< relref “/pgo-client/reference/pgo_update_cluster.md” >}}) [pgo update cluster]({{< relref
“/pgo-client/reference/pgo_update_cluster.md” >}}) is responsible for the promotion and disabling of a standby cluster, and contains
several flags to help with this process:

• --enable-standby: Enables standby mode in a cluster for a cluster. This will bootstrap a PostgreSQL cluster to become aligned
with the current active cluster and begin to follow its changes.

• --promote-standby: Enables standby mode in a cluster. This is a destructive action that results in the deletion of all PVCs for
the cluster (data will be retained according Storage Class and/or Persistent Volume reclaim policies). In order to allow the proper
deletion of PVCs, the cluster must also be shutdown.

• --shutdown: Scales all deployments for the cluster to 0, resulting in a full shutdown of the PG cluster. This includes the primary,
any replicas, as well as any supporting services (pgBackRest and pgBouncer if enabled).

40

https://www.postgresql.org/docs/current/warm-standby.html#CASCADING-REPLICATION
https://pgbackrest.org/
https://www.pgbackrest.org
(\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20relref%20"/pgo-client/common-tasks.md"%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax #connection-pooling-via-pgbouncer)

• --startup: Scales all deployments for the cluster to 1, effectively starting a PG cluster that was previously shutdown. This includes
the primary, any replicas, as well as any supporting services (pgBackRest and pgBouncer if enabled). The primary is brought online
first in order to maintain a consistent primary/replica architecture across startups and shutdowns.

Creating a Standby PostgreSQL Cluster

Let’s create a PostgreSQL deployment that has both an active and standby cluster! You can try this example either within a single
Kubernetes cluster, or across multuple Kubernetes clusters.

First, deploy a new active PostgreSQL cluster that is configured to use S3 with pgBackRest. For example:

pgo create cluster hippo --pgbouncer --replica-count=2 \
--pgbackrest -storage-type=local,s3 \
--pgbackrest -s3-key=<redacted > \
--pgbackrest -s3-key-secret=<redacted > \
--pgbackrest -s3-bucket=watering -hole \
--pgbackrest -s3-endpoint=s3.amazonaws.com \
--pgbackrest -s3-region=us-east-1 \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

(Replace the placeholder values with your actual values. We are explicitly setting all of the passwords for the primary cluster to make it
easier to run the example as is).

The above command creates an active PostgreSQL cluster with two replicas and a pgBouncer deployment. Wait a few moments for this
cluster to become live before proceeding.

Once the cluster has been created, you can then create the standby cluster. This can either be in another Kubernetes cluster or within
the same Kubernetes cluster. If using a separate Kubernetes cluster, you will need to provide the proper passwords for the superuser and
replication accounts. You can also provide a password for the regular PostgreSQL database user created during cluster initialization to
ensure the passwords and associated secrets across both clusters are consistent.

(If the standby cluster is being created using the same PostgreSQL Operator deployment (and therefore the same Kubernetes cluster), the
--secret-from flag can also be used in lieu of these passwords. You would specify the name of the cluster [e.g. hippo] as the value of the
--secret-from variable.)

With this in mind, create a standby cluster similar to this below:

pgo create cluster hippo-standby --standby --pgbouncer --replica-count=2 \
--pgbackrest -storage-type=s3 \
--pgbackrest -s3-key=<redacted > \
--pgbackrest -s3-key-secret=<redacted > \
--pgbackrest -s3-bucket=watering -hole \
--pgbackrest -s3-endpoint=s3.amazonaws.com \
--pgbackrest -s3-region=us-east-1 \
--pgbackrest -repo-path=/backrestrepo/hippo-backrest -shared-repo \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

Note the use of the --pgbackrest-repo-path flag as it points to the name of the pgBackRest repository that is used for the original
hippo cluster.

At this point, the standby cluster will bootstrap as a standby along with two cascading replicas. pgBouncer will be deployed at this time
as well, but will remain non-functional until hippo-standby is promoted. To see that the Pod is indeed a standby, you can check the logs.

kubectl logs hippo-standby-dcff544d6 -s6d58…

Thu Mar 19 18:16:54 UTC 2020 INFO: Node standby-dcff544d6 -s6d58 fully initialized for cluster
standby and is ready for use

2020-03-19 18:17:03,390 INFO: Lock owner: standby-dcff544d6 -s6d58; I am standby-dcff544d6 -s6d58
2020-03-19 18:17:03,454 INFO: Lock owner: standby-dcff544d6 -s6d58; I am standby-dcff544d6 -s6d58
2020-03-19 18:17:03,598 INFO: no action. i am the standby leader with the lock
2020-03-19 18:17:13,389 INFO: Lock owner: standby-dcff544d6 -s6d58; I am standby-dcff544d6 -s6d58
2020-03-19 18:17:13,466 INFO: no action. i am the standby leader with the lock

You can also see that this is a standby cluster from the [pgo show cluster]({{< relref “/pgo-client/reference/pgo_show_cluster.md”
>}}) command.

41

pgo show cluster hippo

cluster : standby (crunchy-postgres-ha:centos7 -12.2-4.3.0)
standby : true

Promoting a Standby Cluster

There comes a time where a standby cluster needs to be promoted to an active cluster. Promoting a standby cluster means that a
PostgreSQL instance within it will become a priary and start accepting both reads and writes. This has the net effect of pushing WAL
(transaction archives) to the pgBackRest repository, so we need to take a few steps first to ensure we don’t accidentally create a split-brain
scenario.

First, if this is not a disaster scenario, you will want to “shutdown” the active PostgreSQL cluster. This can be done with the --shutdown
flag:

pgo update cluster hippo --shutdown

The effect of this is that all the Kubernetes Deployments for this cluster are scaled to 0. You can verify this with the following command:

kubectl get deployments --selector pg-cluster=hippo

NAME READY UP-TO-DATE AVAILABLE AGE
hippo 0/0 0 0 32m
hippo-backrest -shared-repo 0/0 0 0 32m
hippo-kvfo 0/0 0 0 27m
hippo-lkge 0/0 0 0 27m
hippo-pgbouncer 0/0 0 0 31m

We can then promote the standby cluster using the --promote-standby flag:

pgo update cluster hippo-standby --promote-standby

This command essentially removes the standby configuration from the Kubernetes cluster’s DCS, which triggers the promotion of the
current standby leader to a primary PostgreSQL instance. You can view this promotion in the PostgreSQL standby leader’s (soon to be
active leader’s) logs:

kubectl logs hippo-standby-dcff544d6 -s6d58…

2020-03-19 18:28:11,919 INFO: Reloading PostgreSQL configuration.
server signaled
2020-03-19 18:28:16,792 INFO: Lock owner: standby-dcff544d6 -s6d58; I am standby-dcff544d6 -s6d58
2020-03-19 18:28:16,850 INFO: Reaped pid=5377, exit status=0
2020-03-19 18:28:17,024 INFO: no action. i am the leader with the lock
2020-03-19 18:28:26,792 INFO: Lock owner: standby-dcff544d6 -s6d58; I am standby-dcff544d6 -s6d58
2020-03-19 18:28:26,924 INFO: no action. i am the leader with the lock

As pgBouncer was enabled for the cluster, the pgbouncer user’s password is rotated, which will bring pgBouncer online with the newly
promoted active cluster. If pgBouncer is still having trouble connecting, you can explicitly rotate the password with the following command:

pgo update pgbouncer --rotate-password hippo-standby

With the standby cluster now promoted, the cluster with the original active PostgreSQL cluster can now be turned into a standby
PostgreSQL cluster. This is done by deleting and recreating all PVCs for the cluster and re-initializing it as a standby using the S3
repository. Being that this is a destructive action (i.e. data will only be retained if any Storage Classes and/or Persistent Volumes have
the appropriate reclaim policy configured) a warning is shown when attempting to enable standby.

pgo update cluster hippo --enable-standby
Enabling standby mode will result in the deletion of all PVCs for this cluster!
Data will only be retained if the proper retention policy is configured for any associated storage

classes and/or persistent volumes.
Please proceed with caution.
WARNING: Are you sure? (yes/no): yes
updated pgcluster hippo

To verify that standby has been enabled, you can check the DCS configuration for the cluster to verify that the proper standby settings
are present.

42

kubectl get cm hippo-config -o yaml | grep standby
%f

\"%p\""},"use_pg_rewind":true,"use_slots":false},"standby_cluster":{"create_replica_methods":["pgbackrest_standby"],"restore_command":"source

Also, the PVCs for the cluster should now only be a few seconds old, since they were recreated.

kubectl get pvc --selector pg-cluster=hippo
NAME STATUS VOLUME CAPACITY AGE
hippo Bound crunchy-pv251 1Gi 33s
hippo-kvfo Bound crunchy-pv174 1Gi 29s
hippo-lkge Bound crunchy-pv228 1Gi 26s
hippo-pgbr-repo Bound crunchy-pv295 1Gi 22s

And finally, the cluster can be restarted:

pgo update cluster hippo --startup

At this point, the cluster will reinitialize from scratch as a standby, just like the original standby that was created above. Therefore any
transactions written to the original standby, should now replicate back to this cluster.

Container Dependencies

The Operator depends on the Crunchy Containers and there are version dependencies between the two projects. Below are the operator
releases and their dependent container release. For reference, the Postgres and PgBackrest versions for each container release are also
listed.

Operator Release Container Release Postgres PgBackrest Version

4.3.0 4.3.0 12.2 2.25
11.7 2.25
10.12 2.25
9.6.17 2.25
9.5.21 2.25

4.2.1 4.3.0 12.1 2.20
11.6 2.20
10.11 2.20
9.6.16 2.20
9.5.20 2.20

4.2.0 4.3.0 12.1 2.20
11.6 2.20
10.11 2.20
9.6.16 2.20
9.5.20 2.20

4.1.1 4.1.1 12.1 2.18
11.6 2.18
10.11 2.18
9.6.16 2.18
9.5.20 2.18

4.1.0 2.4.2 11.5 2.17
10.10 2.17
9.6.15 2.17

43

Operator Release Container Release Postgres PgBackrest Version

9.5.19 2.17

4.0.1 2.4.1 11.4 2.13
10.9 2.13
9.6.14 2.13
9.5.18 2.13

4.0.0 2.4.0 11.3 2.13
10.8 2.13
9.6.13 2.13
9.5.17 2.13

3.5.4 2.3.3 11.4 2.13
10.9 2.13
9.6.14 2.13
9.5.18 2.13

3.5.3 2.3.2 11.3 2.13
10.8 2.13
9.6.13 2.13
9.5.17 2.13

3.5.2 2.3.1 11.2 2.10
10.7 2.10
9.6.12 2.10
9.5.16 2.10

Features sometimes are added into the underlying Crunchy Containers to support upstream features in the Operator thus dictating a
dependency between the two projects at a specific version level.

Operating Systems

The PostgreSQL Operator is developed on both CentOS 7 and RHEL 7 operating systems. The underlying containers are designed to use
either CentOS 7 or Red Hat UBI 7 as the base container image.
Other Linux variants are possible but are not supported at this time.
Also, please note that as of version 4.2.2 of the PostgreSQL Operator, Red Hat Universal Base Image (UBI) 7 has replaced RHEL 7 as
the base container image for the various PostgreSQL Operator containers. You can find out more information about Red Hat UBI from
the following article:
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

Kubernetes Distributions

The Operator is designed and tested on Kubernetes and OpenShift Container Platform.

Storage

The Operator is designed to support HostPath, NFS, and Storage Classes for persistence. The Operator does not currently include code
specific to a particular storage vendor.

44

https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

Releases

The Operator is released on a quarterly basis often to coincide with Postgres releases.

There are pre-release and or minor bug fix releases created on an as-needed basis.

The operator is template-driven; this makes it simple to configure both the client and the operator.

conf Directory

The Operator is configured with a collection of files found in the conf directory. These configuration files are deployed to your Kubernetes
cluster when the Operator is deployed. Changes made to any of these configuration files currently require a redeployment of the Operator
on the Kubernetes cluster.

The server components of the Operator include Role Based Access Control resources which need to be created a single time by a Kubernetes
cluster-admin user. See the Installation section for details on installing a Postgres Operator server.

The configuration files used by the Operator are found in 2 places: * the pgo-config ConfigMap in the namespace the Operator is running
in * or, a copy of the configuration files are also included by default into the Operator container images themselves to support a very
simplistic deployment of the Operator

If the pgo-config ConfigMap is not found by the Operator, it will use the configuration files that are included in the Operator container
images.

conf/postgres-operator/pgo.yaml

The pgo.yaml file sets many different Operator configuration settings and is described in the [pgo.yaml configuration]({{< ref “pgo-yaml-
configuration.md” >}}) documentation section.

The pgo.yaml file is deployed along with the other Operator configuration files when you run:

make deployoperator

conf/postgres-operator Directory

Files within the conf/postgres-operator directory contain various templates that are used by the Operator when creating Kubernetes
resources. In an advanced Operator deployment, administrators can modify these templates to add their own custom meta-data or make
other changes to influence the Resources that get created on your Kubernetes cluster by the Operator.

Files within this directory are used specifically when creating PostgreSQL Cluster resources. Sidecar components such as pgBouncer
templates are also located within this directory.

As with the other Operator templates, administrators can make custom changes to this set of templates to add custom features or metadata
into the Resources created by the Operator.

Operator API Server

The Operator’s API server can be configured to allow access to select URL routes without requiring TLS authentication from the client
and without the HTTP Basic authentication used for role-based-access.

This configuration is performed by defining the NOAUTH_ROUTES environment variable for the apiserver container within the Operator pod.

Typically, this configuration is made within the deploy/deployment.json file for bash-based installations and ansible/roles/pgo-operator/templates/deployment.json.j2
for ansible installations.

For example:

...
containers: [

{
"name": "apiserver"
"env": [

{
"name": "NOAUTH_ROUTES",
"value": "/health"

}
]
...

45

}
...

]
...

The NOAUTH_ROUTES variable must be set to a comma-separated list of URL routes. For example: /health,/version,/example3 would
opt to disable authentication for $APISERVER_URL/health, $APISERVER_URL/version, and $APISERVER_URL/example3 respectively.

Currently, only the following routes may have authentication disabled using this setting:

/health

The /healthz route is used by kubernetes probes and has its authentication disabed without requiring NOAUTH_ROUTES.

Security

Setting up pgo users and general security configuration is described in the Security section of this documentation.

Local pgo CLI Configuration

You can specify the default namespace you want to use by setting the PGO_NAMESPACE environment variable locally on the host the
pgo CLI command is running.

export PGO_NAMESPACE=pgouser1

When that variable is set, each command you issue with pgo will use that namespace unless you over-ride it using the –namespace command
line flag.

pgo show cluster foo --namespace=pgouser2

pgo.yaml Configuration

The pgo.yaml file contains many different configuration settings as described in this section of the documentation.

The pgo.yaml file is broken into major sections as described below: ## Cluster

Setting Definition

BasicAuth If set to "true" will enable Basic Authentication. If set to "false", will allow a valid Operator user to successfully authenticate regardless of the value of the password provided for Basic Authentication. Defaults to "true".

CCPImagePrefix newly created containers will be based on this image prefix (e.g. crunchydata), update this if you require a custom image prefix
CCPImageTag newly created containers will be based on this image version (e.g. centos7-12.2-4.3.0), unless you override it using the –ccp-image-tag command line flag
Port the PostgreSQL port to use for new containers (e.g. 5432)
PGBadgerPort the port used to connect to pgbadger (e.g. 10000)
ExporterPort the port used to connect to postgres exporter (e.g. 9187)
User the PostgreSQL normal user name
Database the PostgreSQL normal user database
Replicas the number of cluster replicas to create for newly created clusters, typically users will scale up replicas on the pgo CLI command line but this global value can be set as well
PgmonitorPassword the password to use for pgmonitor metrics collection if you specify –metrics when creating a PG cluster
Metrics boolean, if set to true will cause each new cluster to include crunchy-collect as a sidecar container for metrics collection, if set to false (default), users can still add metrics on a cluster-by-cluster basis using the pgo command flag –metrics
Badger boolean, if set to true will cause each new cluster to include crunchy-pgbadger as a sidecar container for static log analysis, if set to false (default), users can still add pgbadger on a cluster-by-cluster basis using the pgo create cluster command flag –pgbadger
Policies optional, list of policies to apply to a newly created cluster, comma separated, must be valid policies in the catalog
PasswordAgeDays optional, if set, will set the VALID UNTIL date on passwords to this many days in the future when creating users or setting passwords, defaults to 60 days
PasswordLength optional, if set, will determine the password length used when creating passwords, defaults to 8
ServiceType optional, if set, will determine the service type used when creating primary or replica services, defaults to ClusterIP if not set, can be overridden by the user on the command line as well
Backrest optional, if set, will cause clusters to have the pgbackrest volume PVC provisioned during cluster creation
BackrestPort currently required to be port 2022

46

Setting Definition

DisableAutofail optional, if set, will disable autofail capabilities by default in any newly created cluster
DisableReplicaStartFailReinit if set to true will disable the detection of a “start failed” states in PG replicas, which results in the re-initialization of the replica in an attempt to bring it back online
PodAntiAffinity either preferred, required or disabled to either specify the type of affinity that should be utilized for the default pod anti-affinity applied to PG clusters, or to disable default pod anti-affinity all together (default preferred)
SyncReplication boolean, if set to true will automatically enable synchronous replication in new PostgreSQL clusters (default false)
DefaultInstanceMemory string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request for each instance in a PostgreSQL cluster. The example configuration uses 128Mi which is very low for a PostgreSQL cluster, as the default amount of shared memory PostgreSQL requests is 128Mi. However, for test clusters, this value is acceptable as the shared memory buffers won’t be stressed, but you should absolutely consider raising this in production. If the value is unset, it defaults to 512Mi, which is a much more appropriate minimum.
DefaultBackrestMemory string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request for the pgBackRest repository (default 48Mi)
DefaultPgBouncerMemory string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request for pgBouncer instances (default 24Mi)

Storage

Setting Definition

PrimaryStorage required, the value of the storage configuration to use for the primary PostgreSQL deployment
BackupStorage required, the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes
ReplicaStorage required, the value of the storage configuration to use for the replica PostgreSQL deployments
BackrestStorage required, the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster
WALStorage optional, the value of the storage configuration to use for PostgreSQL Write Ahead Log
StorageClass for a dynamic storage type, you can specify the storage class used for storage provisioning(e.g. standard, gold, fast)
AccessMode the access mode for new PVCs (e.g. ReadWriteMany, ReadWriteOnce, ReadOnlyMany). See below for descriptions of these.
Size the size to use when creating new PVCs (e.g. 100M, 1Gi)
Storage.storage1.StorageType supported values are either dynamic, create, if not supplied, create is used
SupplementalGroups optional, if set, will cause a SecurityContext to be added to generated Pod and Deployment definitions
MatchLabels optional, if set, will cause the PVC to add a matchlabels selector in order to match a PV, only useful when the StorageType is create, when specified a label of key=value is added to the PVC as a match criteria

Storage Configuration Examples

In pgo.yaml, you will need to configure your storage configurations depending on which storage you are wanting to use for Operator
provisioning of Persistent Volume Claims. The examples below are provided as a sample. In all the examples you are free to change the
Size to meet your requirements of Persistent Volume Claim size.

HostPath Example

HostPath is provided for simple testing and use cases where you only intend to run on a single Linux host for your Kubernetes cluster.

hostpathstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create

NFS Example

In the following NFS example, notice that the SupplementalGroups setting is set, this can be whatever GID you have your NFS mount set
to, typically we set this nfsnobody as below. NFS file systems offer a ReadWriteMany access mode.

nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
SupplementalGroups: 65534

47

Storage Class Example

Most Storage Class providers offer ReadWriteOnce access modes, but refer to your provider documentation for other access modes it might
support.

storageos:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: fast

Miscellaneous (Pgo)

Setting Definition

Audit boolean, if set to true will cause each apiserver call to be logged with an audit marking
ConfigMapWorkerCount The number of workers created for the worker queue within the ConfigMap controller (defaults to 2)
ControllerGroupRefreshInterval The refresh interval for any per-namespace controller with a refresh interval (defaults to 60 seconds)
NamespaceRefreshInterval The refresh interval for the namespace controller (defaults to 60 seconds)
PgclusterWorkerCount The number of workers created for the worker queue within the PGCluster controller (defaults to 1)
PGOImagePrefix image tag prefix to use for the Operator containers
PGOImageTag image tag to use for the Operator containers
PGReplicaWorkerCount The number of workers created for the worker queue within the PGReplica controller (defaults to 1)
PGTaskWorkerCount The number of workers created for the worker queue within the PGTask controller (defaults to 1)

Storage Configuration Details

You can define n-number of Storage configurations within the pgo.yaml file. Those Storage configurations follow these conventions -

• they must have lowercase name (e.g. storage1)
• they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and PrimaryStorage configuration values. However,
there are command line options in the pgo client that will let a user override these default global values to offer you the user a way to
specify very targeted storage configurations when needed (e.g. disaster recovery storage for certain backups).

You can set the storage AccessMode values to the following:

• ReadWriteMany - mounts the volume as read-write by many nodes
• ReadWriteOnce - mounts the PVC as read-write by a single node
• ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration is found, the apiserver will abort.
These Storage values are only read at apiserver start time.

The following StorageType values are possible -

• dynamic - this will allow for dynamic provisioning of storage using a StorageClass.
• create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using a naming convention of clustername.

When set, the Size, AccessMode settings are used in constructing the new PVC.

The operator will create new PVCs using this naming convention: dbname where dbname is the database name you have specified. For
example, if you run:

pgo create cluster example1 -n pgouser1

It will result in a PVC being created named example1 and in the case of a backup job, the pvc is named example1-backup

48

Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels, when set, this will cause a selector of
key=value to be added into the PVC, this will let you target specific PV(s) to be matched for this cluster. Note, if a PV does not match
the claim request, then the cluster will not start. Users that want to use this feature have to place labels on their PV resources as part of
PG cluster creation before creating the PG cluster. For example, users would add a label like this to their PV before they create the PG
cluster:

kubectl label pv somepv myzone=somezone -n pgouser1

If you do not specify MatchLabels in the storage configuration, then no match filter is added and any available PV will be used to satisfy
the PVC request. This option does not apply to dynamic storage types.

Example PV creation scripts are provided that add labels to a set of PVs and can be used for testing: $COROOT/pv/create-pv-nfs-labels.sh
in that example, a label of crunchyzone=red is set on a set of PVs to test with.

The pgo.yaml includes a storage config named nfsstoragered that when used will demonstrate the label matching. This feature allows
you to support n-number of NFS storage configurations and supports spreading a PG cluster across different NFS storage configurations.

Overriding Storage Configuration Defaults

pgo create cluster testcluster --storage-config=bigdisk -n pgouser1

That example will create a cluster and specify a storage configuration of bigdisk to be used for the primary database storage. The replica
storage will default to the value of ReplicaStorage as specified in pgo.yaml.

pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk -n
pgouser1

That example will create a cluster and specify a storage configuration of fastdisk to be used for the primary database storage, while the
replica storage will use the storage configuration slowdisk.

pgo backup testcluster --storage-config=offsitestorage -n pgouser1

That example will create a backup and use the offsitestorage storage configuration for persisting the backup.

Using Storage Configurations for Disaster Recovery

A simple mechanism for partial disaster recovery can be obtained by leveraging network storage, Kubernetes storage classes, and the
storage configuration options within the Operator.

For example, if you define a Kubernetes storage class that refers to a storage backend that is running within your disaster recovery site,
and then use that storage class as a storage configuration for your backups, you essentially have moved your backup files automatically to
your disaster recovery site thanks to network storage.

TLS Configuration

Should you desire to alter the default TLS settings for the Postgres Operator, you can set the following variables as described below.

Server Settings

To disable TLS and make an unsecured connection on port 8080 instead of connecting securely over the default port, 8443, set:

Bash environment variables

export DISABLE_TLS=true
export PGO_APISERVER_PORT=8080

Or inventory variables if using Ansible

pgo_disable_tls='true'
pgo_apiserver_port=8080

To disable TLS verifcation, set the follwing as a Bash environment variable

export TLS_NO_VERIFY=false

Or the following in the inventory file if using Ansible

pgo_tls_no_verify='false'

49

TLS Trust

Custom Trust Additions To configure the server to allow connections from any client presenting a certificate issued by CAs within a
custom, PEM-encoded certificate list, set the following as a Bash environment variable

export TLS_CA_TRUST="/path/to/trust/file"

Or the following in the inventory file if using Ansible

pgo_tls_ca_store='/path/to/trust/file'

System Default Trust To configure the server to allow connections from any client presenting a certificate issued by CAs within the
operating system’s default trust store, set the following as a Bash environment variable

export ADD_OS_TRUSTSTORE=true

Or the following in the inventory file if using Ansible

pgo_add_os_ca_store='true'

Connection Settings

If TLS authentication has been disabled, or if the Operator’s apiserver port is changed, be sure to update the PGO_APISERVER_URL
accordingly.

For example with an Ansible installation,

export PGO_APISERVER_URL='https://<apiserver IP>:8443'

would become

export PGO_APISERVER_URL='http://<apiserver IP>:8080'

With a Bash installation,

setip()
{

export PGO_APISERVER_URL=https://`$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service
postgres -operator -o=jsonpath="{.spec.clusterIP}"`:8443

}

would become

setip()
{

export PGO_APISERVER_URL=http://`$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service
postgres -operator -o=jsonpath="{.spec.clusterIP}"`:8080

}

Client Settings

By default, the pgo client will trust certificates issued by one of the Certificate Authorities listed in the operating system’s default CA
trust store, if any. To exclude them, either use the environment variable

EXCLUDE_OS_TRUST=true

or use the –exclude-os-trust flag

pgo version --exclude-os-trust

Finally, if TLS has been disabled for the Operator’s apiserver, the PGO client connection must be set to match the given settings.

Two options are available, either the Bash environment variable

DISABLE_TLS=true

must be configured, or the –disable-tls flag must be included when using the client, i.e.

pgo version --disable-tls

50

There are several different ways to install and deploy the PostgreSQL Operator based upon your use case.

For the vast majority of use cases, we recommend using the PostgreSQL Operator Installer({{< relref “/installation/postgres-
operator/_index.md” >}}), which uses the pgo-deployer container to set up all of the objects required to run the PostgreSQL
Operator.

For advanced use cases, such as for development, one may want to set up a [development environment]({{< relref “/contributing/developer-
setup.md” >}}) that is created using a series of scripts controlled by the Makefile.

Before selecting your installation method, it’s important that you first read the [prerequisites]({{< relref “/installation/prerequisites.md”
>}}) for your deployment environment to ensure that your setup meets the needs for installing the PostgreSQL Operator.

Prerequisites

The following is required prior to installing PostgreSQL Operator.

Environment

The PostgreSQL Operator is tested in the following environments:

• Kubernetes v1.13+
• Red Hat OpenShift v3.11+
• Red Hat OpenShift v4.3+
• VMWare Enterprise PKS 1.3+
• IBM Cloud Pak Data

IBM Cloud Pak Data If you install the PostgreSQL Operator, which comes with Crunchy PostgreSQL for Kubernetes, on IBM Cloud
Pak Data, please note the following additional requirements:

• Cloud Pak Data Version 2.5
• Minimum Node Requirements (Cloud Paks Cluster): 3
• Crunchy PostgreSQL for Kuberentes (Service):
• Minimum CPU Requirements: 0.2 CPU
• Minimum Memory Requirements: 120MB
• Minimum Storage Requirements: 5MB

Note: PostgreSQL clusters deployed by the PostgreSQL Operator with Crunchy PostgreSQL for Kubernetes are workload dependent. As
such, users should allocate enough resources for their PostgreSQL clusters.

Client Interfaces

The PostgreSQL Operator installer will install the pgo client interface to help with using the PostgreSQL Operator. However, it is also
recommend that you have access to kubectl or oc and are able to communicate with the Kubernetes or OpenShift cluster that you are
working with.

Ports

There are several application ports to note when using the PostgreSQL Operator. These ports allow for the [pgo client]({{< relref “/pgo-
client/_index.md” >}}) to interface with the PostgreSQL Operator API as well as for users of the event stream to connect to nsqd and
nsqdadmin:

Container Port

API Server 8443
nsqadmin 4151
nsqd 4150

If you are using these services, ensure your cluster adminsitrator has given you access to these ports.

51

https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
(\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20relref%20"/pgo-client/_index.md"%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax)
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.okd.io/download.html

Application Ports

The PostgreSQL Operator deploys different services to support a production PostgreSQL environment. Below is a list of the applications
and their default Service ports.

Service Port

PostgreSQL 5432
pgbouncer 5432
pgBackRest 2022
postgres-exporter 9187
pgbadger 10000

The PostgreSQL Operator Installer

Quickstart

If you believe that all the default settings in the installation manifest work for you, you can take a chance by running the manifest directly
from the repository:

kubectl create namespace pgo
kubectl apply -f

https://raw.githubusercontent.com/CrunchyData/postgres -operator/master/installers/kubectl/postgres -operator.yml

However, we still advise that you read onward to see how to properly configure the PostgreSQL Operator.

Overview

The PostgreSQL Operator comes with a container called pgo-deployer which handles a variety of lifecycle actions for the PostgreSQL
Operator, including:

• Installation
• Upgrading
• Uninstallation

After configuring the Job template, the installer can be run using kubectl apply and takes care of setting up all of the objects required
to run the PostgreSQL Operator.

The installation manifest, called postgres-operator.yaml, is available in the installers/kubectl/postgres-operator.yml path in
the PostgreSQL Operator repository

Requirements

RBAC

The pgo-deployer requires a ServiceAccount and ClusterRoleBinding to run the installation job. Both of these resources are already
defined in the postgres-operator.yml, but can be updated based on your specific environmental requirements.

By default, the pgo-deployer uses a ServiceAccount called pgo-deployer-sa that has a ClusterRoleBinding (pgo-deployer-crb) with
the cluster-admin permission. This is required to create the Custom Resource Definitions that power the PostgreSQL Operator. While
the PostgreSQL Operator itself can be scoped to a specific namespace, you will need to have cluster-admin for the initial deployment,
or privileges that allow you to install Custom Resource Definitions.

If you have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation),
then you can remove these objects from the postgres-operator.yml manifest.

52

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#apply
https://github.com/CrunchyData/postgres-operator/blob/master/installers/kubectl/postgres-operator.yml
https://github.com/CrunchyData/postgres-operator/blob/master/installers/kubectl/postgres-operator.yml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Namespaces

By default, the installer will run in the pgo Namespace. This can be updated in the postgres-operator.yml file. Please ensure that
this namespace exists before the job is run.

For example, to create the pgo namespace:

kubectl create namespace pgo

The PostgreSQL Operator has the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces, including the ability
to add and remove Namespaces that it watches. Doing so does require the PostgreSQL Operator to have elevated privileges, and as such,
the PostgreSQL Operator comes with three “namespace modes” to select what level of privileges to provide:

• dynamic: The default is the default mode. This enables full dynamic Namespace management capabilities, in which the PostgreSQL
Operator can create, delete and update any Namespaces within the Kubernetes cluster, while then also having the ability to create
the Roles, RoleBindings andService Accounts within those Namespaces for normal operations. The PostgreSQL Operator can also
listen for Namespace events and create or remove controllers for various Namespaces as changes are made to Namespaces from
Kubernetes and the PostgreSQL Operator’s management.

• readonly: In this mode, the PostgreSQL Operator is able to listen for namespace events within the Kubernetes cluster, and then
manage controllers as Namespaces are added, updated or deleted. While this still requires a ClusterRole, the permissions mirror
those of a “read-only” environment, and as such the PostgreSQL Operator is unable to create, delete or update Namespaces itself
nor create RBAC that it requires in any of those Namespaces. Therefore, while in readonly, mode namespaces must be preconfigured
with the proper RBAC as the PostgreSQL Operator cannot create the RBAC itself.

• disabled: Use this mode if you do not want to deploy the PostgreSQL Operator with any ClusterRole privileges, especially if you
are only deploying the PostgreSQL Operator to a single namespace. This disables any Namespace management capabilities within
the PostgreSQL Operator and will simply attempt to work with the target Namespaces specified during installation. If no target
Namespaces are specified, then the Operator will be configured to work within the namespace in which it is deployed. As with
the readonly mode, while in this mode, Namespaces must be preconfigured with the proper RBAC, since the PostgreSQL Operator
cannot create the RBAC itself.

Configuration - postgres-operator.yml

The postgres-operator.yml file contains all of the configuration parameters for deploying the PostgreSQL Operator. The example file
contains defaults that should work in most Kubernetes environments, but it may require some customization.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{<
relref “/installation/configuration.md”>}}>)

Configuring to Update and Uninstall The deploy job can be used to perform different deployment actions for the PostgreSQL
Operator. When you run the job it will install the operator by default but you can change the deployment action to uninstall or update.
The DEPLOY_ACTION environment variable in the postgres-operator.yml file can be set to install, update, and uninstall.

Image Pull Secrets

If you are pulling the PostgreSQL Operator images from a private registry, you will need to setup an imagePullSecret with access to the
registry. The image pull secret will need to be added to the installer service account to have access. The secret will need to be created in
each namespace that the PostgreSQL Operator will be using.

After you have configured your image pull secret in the Namespace the installer runs in (by default, this is pgo), add the name of the
secret to the job yaml that you are using. You can update the existing section like this:

apiVersion: v1
kind: ServiceAccount
metadata:

name: pgo-deployer -sa
namespace: pgo

imagePullSecrets:
- name: <image_pull_secret_name >

If the service account is configured without using the job yaml file, you can link the secret to an existing service account with the kubectl
or oc clients.

53

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://github.com/CrunchyData/postgres-operator/blob/master/installers/kubectl/postgres-operator.yml
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

kubectl
kubectl patch serviceaccount <deployer-sa> -p '{"imagePullSecrets": [{"name": "myregistrykey"}]}'

-n <install-namespace >

oc
oc secrets link <registry-secret> <deployer-sa> --for=pull --namespace=<install-namespace >

Installation

Once you have configured the PostgreSQL Operator Installer to your specification, you can install the PostgreSQL Operator with the
following command:

kubectl apply -f /path/to/postgres-operator.yml

Install the [pgo Client]({{< relref “/installation/pgo-client” >}})

To use the [pgo Client]({{< relref “/installation/pgo-client” >}}), there are a few additional steps to take in order to get it to work with
you PostgreSQL Operator installation. For convenience, you can download and run the client-setup.sh script in your local environment:

curl
https://raw.githubusercontent.com/CrunchyData/postgres -operator/master/installers/kubectl/client-setup.sh
> client-setup.sh

chmod +x client-setup.sh
./client-setup.sh

{{% notice tip %}} Running this script can cause existing pgo client binary, pgouser, client.crt, and client.key files to be overwritten.
{{% /notice %}}

The client-setup.sh script performs the following tasks:

• Sets $PGO_OPERATOR_NAMESPACE to pgo if it is unset. This is the default namespace that the PostgreSQßL Operator is deployed to
• Checks for valid Operating Systems and determines which pgo binary to download
• Creates a directory in $HOME/.pgo/$PGO_OPERATOR_NAMESPACE (e.g. /home/hippo/.pgo/pgo)
• Downloads the pgo binary, saves it to in $HOME/.pgo/$PGO_OPERATOR_NAMESPACE, and sets it to be executable
• Pulls the TLS keypair from the PostgreSQL Operator pgo.tls Secret so that the pgo client can communicate with the PostgreSQL

Operator. These are saved as client.crt and client.key in the $HOME/.pgo/$PGO_OPERATOR_NAMESPACE path.
• Pulls the pgouser credentials from the pgouser-admin secret and saves them in the format username:password in a file called

pgouser
• client.crt, client.key, and pgouser are all set to be read/write by the file owner. All other permissions are removed.
• Sets the following environmental variables with the following values:

export PGOUSER=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser
export PGO_CA_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_KEY=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key

For convenience, after the script has finished, you can permanently at these environmental variables to your environment:

cat <<EOF >> ~/.bashrc
export PATH="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE:$PATH"
export PGOUSER="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser"
export PGO_CA_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_KEY="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key"
EOF

{{% notice tip %}} If you are using MacOS the pgo-mac binary will need to be renamed to pgo. Alternatively, you can update your path
to include pgo-mac. export PATH="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgo-mac:$PATH" {{% /notice %}}

By default, the client-setup.sh script targets the user that is stored in the pgouser-admin secret in the pgo ($PGO_OPERATOR_NAMESPACE)
Namespace. If you wish to use a different Secret, you can set the PGO_USER_ADMIN environmental variable.

For more detailed information about [installing the pgo client]({{< relref “/installation/pgo-client” >}}), please see [Installing the pgo
client]({{< relref “/installation/pgo-client” >}}).

54

https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/installers/kubectl/client-setup.sh

Verify the Installation

One way to verify the installation was successful is to execute the [pgo version]({{< relref “/pgo-client/reference/pgo_version.md” >}})
command.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

In another console window, run the pgo version command:

pgo version

If successful, you should see output similar to this:

pgo client version 4.3.0
pgo-apiserver version 4.3.0

Post-Installation

To clean up the installer artifacts, you can simply run:

kubectl delete -f /path/to/postgres-operator.yml

Note that if you still have the ServiceAccount and ClusterRoleBinding in there, you will need to have elevated privileges.

Install the PostgreSQL Operator (pgo) Client

The following will install and configure the pgo client on all systems. For the purpose of these instructions it’s assumed that the Crunchy
PostgreSQL Operator is already deployed.

Prerequisites

• For Kubernetes deployments: kubectl configured to communicate with Kubernetes
• For OpenShift deployments: oc configured to communicate with OpenShift

The Crunchy Postgres Operator als requires the following in order to authenticate with the apiserver:

• Client CA Certificate
• Client TLS Certificate
• Client Key
• pgouser file containing <username>:<password>

All of the requirements above should be obtained from an administrator who installed the Crunchy PostgreSQL Operator.

Linux and MacOS

The following will setup the pgo client to be used on a Linux or MacOS system.

Installing the Client

First, download the pgo client from the GitHub official releases. Crunchy Enterprise Customers can download the pgo binaries from
https://access.crunchydata.com/ on the downloads page.

Next, install pgo in /usr/local/bin by running the following:

sudo mv /PATH/TO/pgo /usr/local/bin/pgo
sudo chmod +x /usr/local/bin/pgo

Verify the pgo client is accessible by running the following in the terminal:

pgo --help

55

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://github.com/CrunchyData/postgres-operator/releases

Configuring Client TLS With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files by running the following command:
mkdir ${HOME?}/.pgo
chmod 700 ${HOME?}/.pgo

Next, copy the certificates to this new directory:
cp /PATH/TO/client.crt ${HOME?}/.pgo/client.crt && chmod 600 ${HOME?}/.pgo/client.crt
cp /PATH/TO/client.pem ${HOME?}/.pgo/client.pem && chmod 400 ${HOME?}/.pgo/client.pem

Finally, set the following environment variables to point to the client TLS files:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_CA_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/client.pem"
EOF

Apply those changes to the current session by running:
source ~/.bashrc

Configuring pgouser The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL
Operator.
To setup the pgouser file, run the following:
echo "<USERNAME_HERE >:<PASSWORD_HERE >" > ${HOME?}/.pgo/pgouser

cat <<EOF >> ${HOME?}/.bashrc
export PGOUSER="${HOME?}/.pgo/pgouser"
EOF

Apply those changes to the current session by running:
source ${HOME?}/.bashrc

Configuring the API Server URL If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it’s required to setup
a port-forward tunnel using the kubectl or oc binary.
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:
If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443

In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
Note: The port-forward will be required for the duration of using the PostgreSQL client.
Next, set the following environment variable to configure the API server address:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://<IP_OF_OPERATOR_API >:8443"
EOF

Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1
Apply those changes to the current session by running:
source ${HOME?}/.bashrc

PGO-Client Container

The following will setup the pgo client image in a Kubernetes or Openshift environment. The image must be installed using the Ansible
installer.

56

Installing the PGO-Client Container

The pgo-client container can be installed with the Ansible installer by updating the pgo_client_container_install variable in the
inventory file. Set this variable to true in the inventory file and run the ansible-playbook. As part of the install the pgo.tls and
pgouser-<username> secrets are used to configure the pgo client.

Using the PGO-Client Deployment

Once the container has been installed you can access it by exec’ing into the pod. You can run single commands with the kubectl or oc
command line tools or multiple commands by exec’ing into the pod with bash.
kubectl exec -it -n pgo <pgo-client-deployment -name> -c "pgo version"

or

kubectl exec -it -n pgo <pgo-client-deployment -name> bash

The deployment does not require any configuration to connect to the operator.

Windows

The following will setup the pgo client to be used on a Windows system.

Installing the Client

First, download the pgo.exe client from the GitHub official releases.
Next, create a directory for pgo using the following:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: mkdir "%ProgramFiles%\postgres-operator"

Within the same terminal copy the pgo.exe binary to the directory created above using the following command:
copy %HOMEPATH%\Downloads\pgo.exe "%ProgramFiles%\postgres-operator"

Finally, add pgo.exe to the system path by running the following command in the terminal:
setx path "%path%;C:\Program Files\postgres-operator"

Verify the pgo.exe client is accessible by running the following in the terminal:
pgo --help

Configuring Client TLS With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files using the following:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: mkdir "%HOMEPATH%\pgo"

Next, copy the certificates to this new directory:
copy \PATH\TO\client.crt "%HOMEPATH%\pgo"
copy \PATH\TO\client.pem "%HOMEPATH%\pgo"

Finally, set the following environment variables to point to the client TLS files:
setx PGO_CA_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_KEY "%HOMEPATH%\pgo\client.pem"

57

https://github.com/CrunchyData/postgres-operator/releases

Configuring pgouser The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL
Operator.

To setup the pgouser file, run the following:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: echo USERNAME_HERE:PASSWORD_HERE > %HOMEPATH%\pgo\pgouser

Finally, set the following environment variable to point to the pgouser file:

setx PGOUSER "%HOMEPATH%\pgo\pgouser"

Configuring the API Server URL If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it’s required to setup
a port-forward tunnel using the kubectl or oc binary.

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443

In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.

Note: The port-forward will be required for the duration of using the PostgreSQL client.

Next, set the following environment variable to configure the API server address:

• Left click the Start button in the bottom left corner of the taskbar
• Type cmd to search for Command Prompt
• Right click the Command Prompt application and click “Run as administrator”
• Enter the following command: setx PGO_APISERVER_URL "https://<IP_OF_OPERATOR_API>:8443"
• Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1

Verify the Client Installation

After completing all of the steps above we can verify pgo is configured properly by simply running the following:

pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator client has been installed
successfully.

PostgreSQL Operator Installer Configuration

The [pgo-deployer container]({{< relref “/installation/postgres-operator” >}}) is launched by using a Kubernetes Job manifest and
contains many configurable options.

This section lists the options that you can configure to deploy the PostgreSQL Operator in your environment. The following list of
environmental variables can be used in the postgres-operator.yml manifest.

General Configuration

These environmental variables affect the general configuration of the PostgreSQL Operator.

Name Default Required Description

ARCHIVE_MODE true Required Set to true enable archive logging on all newly created clusters.
ARCHIVE_TIMEOUT 60 Required Set to a value in seconds to configure the timeout threshold for archiving.

58

https://github.com/CrunchyData/postgres-operator/blob/master/installers/kubectl/postgres-operator.yml

Name Default Required Description

BACKREST true Required Set to true enable pgBackRest capabilities on all newly created cluster request. This can be disabled by the client.
BACKREST_AWS_S3_BUCKET Set to configure the bucket used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
BACKREST_AWS_S3_ENDPOINT Set to configure the endpoint used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
BACKREST_AWS_S3_KEY Set to configure the key used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
BACKREST_AWS_S3_REGION Set to configure the region used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
BACKREST_AWS_S3_SECRET Set to configure the secret used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
BACKREST_PORT 2022 Required Defines the port where pgBackRest will run.
BADGER false Required Set to true enable pgBadger capabilities on all newly created clusters. This can be disabled by the client.
CCP_IMAGE_PREFIX crunchydata Required Configures the image prefix used when creating containers from Crunchy Container Suite.
CCP_IMAGE_PULL_SECRET Name of a Secret containing credentials for container image registries.
CCP_IMAGE_PULL_MANIFEST Provide a path to the Secret manifest to be installed in each namespace. (optional)
CCP_IMAGE_TAG Required Configures the image tag (version) used when creating containers from Crunchy Container Suite.
CREATE_RBAC true Required Set to true if the installer should create the RBAC resources required to run the PostgreSQL Operator.
CRUNCHY_DEBUG false Set to configure Operator to use debugging mode. Note: this can cause sensitive data such as passwords to appear in Operator logs.
DB_NAME Set to a value to configure the default database name on all newly created clusters. By default, the PostgreSQL Operator will set it to the name of the cluster that is being created.
DB_PASSWORD_AGE_DAYS 0 Set to a value in days to configure the expiration age on PostgreSQL role passwords on all newly created clusters. If set to “0”, this is the same as saying the password never expires
DB_PASSWORD_LENGTH 24 Set to configure the size of passwords generated by the operator on all newly created roles.
DB_PORT 5432 Required Set to configure the default port used on all newly created clusters.
DB_REPLICAS 0 Required Set to configure the amount of replicas provisioned on all newly created clusters.
DB_USER testuser Required Set to configure the username of the dedicated user account on all newly created clusters.
DEFAULT_INSTANCE_MEMORY 128Mi Represents the memory request for a PostgreSQL instance.
DEFAULT_PGBACKREST_MEMORY 48Mi Represents the memory request for a pgBackRest repository.
DEFAULT_PGBOUNCER_MEMORY 24Mi Represents the memory request for a pgBouncer instance.
DELETE_METRICS_NAMESPACE false Set to configure whether or not the metrics namespace (defined using variable metrics_namespace) is deleted when uninstalling the metrics infrastructure.
DELETE_OPERATOR_NAMESPACE false Set to configure whether or not the PGO operator namespace (defined using variable pgo_operator_namespace) is deleted when uninstalling the PGO.
DELETE_WATCHED_NAMESPACES false Set to configure whether or not the PGO watched namespaces (defined using variable namespace) are deleted when uninstalling the PGO.
DISABLE_AUTO_FAILOVER false If set, will disable autofail capabilities by default in any newly created cluster
EXPORTERPORT 9187 Required Set to configure the default port used to connect to postgres exporter.
GRAFANA_ADMIN_PASSWORD Set to configure the login password for the Grafana administrator.
GRAFANA_ADMIN_USERNAME admin Set to configure the login username for the Grafana administrator.
GRAFANA_INSTALL false Set to true to install Crunchy Grafana to visualize metrics.
GRAFANA_STORAGE_ACCESS_MODE ReadWriteOnce Set to the access mode used by the configured storage class for Grafana persistent volumes.
GRAFANA_STORAGE_CLASS_NAME fast Set to the name of the storage class used when creating Grafana persistent volumes.
GRAFANA_SUPPLEMENTAL_GROUPS 65534 Set to configure any supplemental groups that should be added to security contexts for Grafana.
GRAFANA_VOLUME_SIZE 1G Set to the size of persistent volume to create for Grafana.
METRICS false Required Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
NAMESPACE Set to a comma delimited string of all the namespaces Operator will manage.
NAMESPACE_MODE dynamic When installing RBAC using ‘create_rbac’, the namespace mode determines what Cluster Roles are installed. Options: dynamic, readonly, and disabled

PGBADGERPORT 10000 Required Set to configure the default port used to connect to pgbadger.
PGO_ADD_OS_CA_STORE false Required When true, includes system default certificate authorities.
PGO_ADMIN_PASSWORD Required Configures the pgo administrator password.
PGO_ADMIN_PERMS * Required Sets the access control rules provided by the PostgreSQL Operator RBAC resources for the PostgreSQL Operator administrative account that is created by this installer. Defaults to allowing all of the permissions, which is represented with the *
PGO_ADMIN_ROLE_NAME pgoadmin Required Sets the name of the PostgreSQL Operator role that is utilized for administrative operations performed by the PostgreSQL Operator.
PGO_ADMIN_USERNAME admin Required Configures the pgo administrator username.

59

Name Default Required Description

PGO_APISERVER_PORT 8443 Set to configure the port used by the Crunchy PostgreSQL Operator apiserver.
PGO_APISERVER_URL https://postgres-operator Sets the pgo_apiserver_url for the pgo-client deployment.
PGO_CLIENT_CERT_SECRET pgo.tls Sets the secret that the pgo-client will use when connecting to the PostgreSQL Operator.
PGO_CLIENT_CONTAINER_INSTALL false Run the pgo-client deployment with the PostgreSQL Operator.
PGO_CLUSTER_ADMIN false Required Determines whether or not the cluster-admin role is assigned to the PGO service account. Must be true to enable PGO namespace & role creation when installing in OpenShift.
PGO_DISABLE_EVENTING false Set to configure whether or not eventing should be enabled for the Crunchy PostgreSQL Operator installation.
PGO_DISABLE_TLS false Set to configure whether or not TLS should be enabled for the Crunchy PostgreSQL Operator apiserver.
PGO_IMAGE_PREFIX crunchydata Required Configures the image prefix used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc).
PGO_IMAGE_PULL_SECRET Name of a Secret containing credentials for container image registries.
PGO_IMAGE_PULL_MANIFEST Provide a path to the Secret manifest to be installed in each namespace. (optional)
PGO_IMAGE_TAG Required Configures the image tag used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc)
PGO_INSTALLATION_NAME devtest Required The name of the PGO installation.
PGO_NOAUTH_ROUTES Configures URL routes with mTLS and HTTP BasicAuth disabled.
PGO_OPERATOR_NAMESPACE pgo Required Set to configure the namespace where Operator will be deployed.
PGO_TLS_CA_STORE Set to add additional Certificate Authorities for Operator to trust (PEM-encoded file).
PGO_TLS_NO_VERIFY false Set to configure Operator to verify TLS certificates.
PROMETHEUS_INSTALL false Set to true to install Crunchy Grafana to visualize metrics.
PROMETHEUS_STORAGE_ACCESS_MODE ReadWriteOnce Set to the access mode used by the configured storage class for Prometheus persistent volumes.
PROMETHEUS_STORAGE_CLASS_NAME fast Set to the name of the storage class used when creating Prometheus persistent volumes.
PROMETHEUS_SUPPLEMENTAL_GROUPS 65534 Set to configure any supplemental groups that should be added to security contexts for Prometheus.
PROMETHEUS_VOLUME_SIZE 1G Set to the size of persistent volume to create for Prometheus.
SCHEDULER_TIMEOUT 3600 Required Set to a value in seconds to configure the pgo-scheduler timeout threshold when waiting for schedules to complete.
SERVICE_TYPE ClusterIP Set to configure the type of Kubernetes service provisioned on all newly created clusters.
SYNC_REPLICATION false If set to true will automatically enable synchronous replication in new PostgreSQL clusters.

Storage Settings

The store configuration options defined in this section can be used to specify the storage configurations that are used by the PostgreSQL
Operator.

Storage Configuration Options

Kubernetes and OpenShift offer support for a wide variety of different storage types and we provide suggested configurations for different
environments. These storage types can be modified or removed as needed, while additional storage configurations can also be added to
meet the specific storage requirements for your PostgreSQL clusters.

The following storage variables are utilized to add or modify operator storage configurations in the with the installer:

Name Required Description

storage<ID>_name Yes Set to specify a name for the storage configuration.
storage<ID>_access_mode Yes Set to configure the access mode of the volumes created when using this storage definition.
storage<ID>_size Yes Set to configure the size of the volumes created when using this storage definition.
storage<ID>_class Required when using the dynamic storage type Set to configure the storage class name used when creating dynamic volumes.
storage<ID>_supplemental_groups Required when using NFS storage Set to configure any supplemental groups that should be added to security contexts on newly created clusters.
storage<ID>_type Yes Set to either create or dynamic to configure the operator to create persistent volumes or have them created dynamically by a storage class.

The ID portion of storage prefix for each variable name above should be an integer that is used to group the various storage variables into

60

a single storage configuration.

Example Storage Configuration

Name Value

STORAGE3_NAME nfsstorage
STORAGE3_ACCESS_MODE ReadWriteMany
STORAGE3_SIZE 1G
STORAGE3_TYPE create
STORAGE3_SUPPLEMENTAL_GROUPS 65534

As this example storage configuration shows, integer 3 is used as the ID for each of the storage variables, which together form a single
storage configuration called nfsstorage. This approach allows different storage configurations to be created by defining the proper
storage variables with a unique ID for each required storage configuration.

PostgreSQL Cluster Storage Defaults

You can specify the default storage to use for PostgreSQL, pgBackRest, and other elements that require storage that can outlast the
lifetime of a Pod. While the PostgreSQL Operator defaults to using hostpathstorage to work with environments that are typically used
to test, we recommend using one of the other storage classes in production deployments.

Name Default Required Description

BACKREST_STORAGE hostpathstorage Required Set the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster.
BACKUP_STORAGE hostpathstorage Required Set the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes.
PRIMARY_STORAGE hostpathstorage Required Set to configure which storage definition to use when creating volumes used by PostgreSQL primaries on all newly created clusters.
REPLICA_STORAGE hostpathstorage Required Set to configure which storage definition to use when creating volumes used by PostgreSQL replicas on all newly created clusters.
WAL_STORAGE Set to configure which storage definition to use when creating volumes used for PostgreSQL Write-Ahead Log

Storage Configuration Types

Name Value

STORAGE1_NAME hostpathstorage
STORAGE1_ACCESS_MODE ReadWriteMany
STORAGE1_SIZE 1G
STORAGE1_TYPE create

Host Path Storage

Name Value

STORAGE2_NAME replicastorage
STORAGE2_ACCESS_MODE ReadWriteMany
STORAGE2_SIZE 1G
STORAGE2_TYPE create

Replica Storage

61

Name Value

STORAGE3_NAME nfsstorage
STORAGE3_ACCESS_MODE ReadWriteMany
STORAGE3_SIZE 1G
STORAGE3_TYPE create
STORAGE3_SUPPLEMENTAL_GROUPS 65534

NFS Storage

Name Value

STORAGE4_NAME nfsstoragered
STORAGE4_ACCESS_MODE ReadWriteMany
STORAGE4_SIZE 1G
STORAGE4_MATCH_LABELS crunchyzone=red
STORAGE4_TYPE create
STORAGE4_SUPPLEMENTAL_GROUPS 65534

NFS Storage Red

Name Value

STORAGE5_NAME storageos
STORAGE5_ACCESS_MODE ReadWriteOnce
STORAGE5_SIZE 5Gi
STORAGE5_TYPE dynamic
STORAGE5_CLASS fast

StorageOS

Name Value

STORAGE6_NAME primarysite
STORAGE6_ACCESS_MODE ReadWriteOnce
STORAGE6_SIZE 4G
STORAGE6_TYPE dynamic
STORAGE6_CLASS primarysite

Primary Site

Name Value

STORAGE7_NAME alternatesite
STORAGE6_ACCESS_MODE ReadWriteOnce
STORAGE7_SIZE 4G
STORAGE7_TYPE dynamic

62

Name Value

STORAGE6_CLASS alternatesite

Alternate Site

Name Value

STORAGE8_NAME gce
STORAGE8_ACCESS_MODE ReadWriteOnce
STORAGE8_SIZE 300M
STORAGE8_TYPE dynamic
STORAGE8_CLASS standard

GCE

Name Value

STORAGE9_NAME rook
STORAGE9_ACCESS_MODE ReadWriteOnce
STORAGE9_SIZE 1Gi
STORAGE9_TYPE dynamic
STORAGE9_CLASS rook-ceph-block

Rook

Pod Anti-affinity Settings

This will set the default pod anti-affinity for the deployed PostgreSQL clusters. Pod Anti-Affinity is set to determine where the PostgreSQL
Pods are deployed relative to each other There are three levels:

• required: Pods must be scheduled to different Nodes. If a Pod cannot be scheduled to a different Node from the other Pods in the
anti-affinity group, then it will not be scheduled.

• preferred (default): Pods should be scheduled to different Nodes. There is a chance that two Pods in the same anti-affinity group
could be scheduled to the same node

• disabled: Pods do not have any anti-affinity rules

The POD_ANTI_AFFINITY label sets the Pod anti-affinity for all of the Pods that are managed by the Operator in a PostgreSQL cluster. In
addition to the PostgreSQL Pods, this also includes the pgBackRest repository and any pgBouncer pods. By default, the pgBackRest and
pgBouncer pods inherit the value of POD_ANTI_AFFINITY, but one can override the default by setting the POD_ANTI_AFFINITY_PGBACKREST
and POD_ANTI_AFFINITY_PGBOUNCER variables for pgBackRest and pgBouncer respectively

Name Default Required Description

POD_ANTI_AFFINITY preferred This will set the default pod anti-affinity for the deployed PostgreSQL clusters.
POD_ANTI_AFFINITY_PGBACKREST This will set the default pod anti-affinity for the pgBackRest pods.
POD_ANTI_AFFINITY_PGBOUNCER This will set the default pod anti-affinity for the pgBouncer pods.

Though the years, we have built up several other methods for installing the PostgreSQL Operator. The next few sections provide some
alternative ways of deploying the PostgreSQL Operator. Some of these methods are deprecated and may be removed in a future release.

A full installation of the Operator includes the following steps:

63

• create a project structure
• configure your environment variables
• configure Operator templates
• create security resources
• deploy the operator
• install pgo CLI (end user command tool)

Operator end-users are only required to install the pgo CLI client on their host and can skip the server-side installation steps. pgo CLI
clients are provided for Linux, Mac, and Windows clients.

The Operator can be deployed by multiple methods including:

• default installation
• Ansible playbook installation
• Openshift Console installation using OLM

Default Installation - Create Project Structure

The Operator follows a golang project structure, you can create a structure as follows on your local Linux host:

mkdir -p $HOME/odev/src/github.com/crunchydata $HOME/odev/bin $HOME/odev/pkg
cd $HOME/odev/src/github.com/crunchydata
git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres -operator
git checkout v4.3.0

This creates a directory structure under your HOME directory name odev and clones the current Operator version to that structure.

Default Installation - Configure Environment

Environment variables control aspects of the Operator installation. You can copy a sample set of Operator environment variables and
aliases to your .bashrc file to work with.

cat $HOME/odev/src/github.com/crunchydata/postgres-operator/examples/envs.sh >> $HOME/.bashrc
source $HOME/.bashrc

For various scripts used by the Operator, the expenv utility is required, download this utility from the Github Releases page, and place
it into your PATH (e.g. $HOME/odev/bin). {{% notice tip %}}There is also a Makefile target that includes is expenv and several other
dependencies that are only needed if you plan on building from source:

make setup

{{% /notice %}}

Default Installation - Namespace Creation

The default installation will create 3 namespaces to use for deploying the Operator into and for holding Postgres clusters created by the
Operator.

Creating Kubernetes namespaces is typically something that only a privileged Kubernetes user can perform so log into your Kubernetes
cluster as a user that has the necessary privileges.

On Openshift if you do not want to install the Operator as the system administrator, you can grant cluster-admin privileges to a user as
follows:

oc adm policy add-cluster-role-to-user cluster-admin pgoinstaller

In the above command, you are granting cluster-admin privileges to a user named pgoinstaller.

The NAMESPACE environment variable is a comma separated list of namespaces that specify where the Operator will be provisioing PG
clusters into, specifically, the namespaces the Operator is watching for Kubernetes events. This value is set as follows:

export NAMESPACE=pgouser1 ,pgouser2

64

This means namespaces called pgouser1 and pgouser2 will be created as part of the default installation.

{{% notice warning %}}In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an
extra step during installation for the operator to function properly with watched namespaces. This limitation does not exist when using
Kubernetes 1.12+. When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh
script handles the limitation properly in both the bash and ansible installation.

However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace
to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin
privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution
whose version is below 1.12. In Kubernetes version 1.12+ the pgo create namespace command works as expected.

{{% /notice %}}

The PGO_OPERATOR_NAMESPACE environment variable is the name of the namespace that the Operator will be installed into. For
the installation example, this value is set as follows:

export PGO_OPERATOR_NAMESPACE=pgo

This means a pgo namespace will be created and the Operator will be deployed into that namespace.

Create the Operator namespaces using the Makefile target:

make setupnamespaces

Note: The setupnamespaces target only creates the namespace(s) specified in PGO_OPERATOR_NAMESPACE environment variable

The Design section of this documentation talks further about the use of namespaces within the Operator.

Default Installation - Configure Operator Templates

Within the Operator conf directory are several configuration files and templates used by the Operator to determine the various resources
that it deploys on your Kubernetes cluster, specifically the PostgreSQL clusters it deploys.

When you install the Operator you must make choices as to what kind of storage the Operator has to work with for example. Storage
varies with each installation. As an installer, you would modify these configuration templates used by the Operator to customize its
behavior.

Note: when you want to make changes to these Operator templates and configuration files after your initial installation, you will need to
re-deploy the Operator in order for it to pick up any future configuration changes.

Here are some common examples of configuration changes most installers would make:

Storage

Inside conf/postgres-operator/pgo.yaml there are various storage configurations defined.

PrimaryStorage: gce
WALStorage: gce
BackupStorage: gce
ReplicaStorage: gce

gce:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: standard

Listed above are the pgo.yaml sections related to storage choices. PrimaryStorage specifies the name of the storage configuration used
for PostgreSQL primary database volumes to be provisioned. In the example above, a NFS storage configuration is picked. That same
storage configuration is selected for the other volumes that the Operator will create.

This sort of configuration allows for a PostgreSQL primary and replica to use different storage if you want. Other storage settings like
AccessMode, Size, StorageType, and StorageClass further define the storage configuration. Currently, NFS, HostPath, and Storage Classes
are supported in the configuration.

As part of the Operator installation, you will need to adjust these storage settings to suit your deployment requirements. For users wanting
to try out the Operator on Google Kubernetes Engine you would make the following change to the storage configuration in pgo.yaml:

For NFS Storage, it is assumed that there are sufficient Persistent Volumes (PV) created for the Operator to use when it creates Persistent
Volume Claims (PVC). The creation of Persistent Volumes is something a Kubernetes cluster-admin user would typically provide before
installing the Operator. There is an example script which can be used to create NFS Persistent Volumes located here:

65

./pv/create-nfs-pv.sh

That script looks for the IP address of an NFS server using the environment variable PGO_NFS_IP you would set in your .bashrc
environment.

A similar script is provided for HostPath persistent volume creation if you wanted to use HostPath for testing:

./pv/create-pv.sh

Adjust the above PV creation scripts to suit your local requirements, the purpose of these scripts are solely to produce a test set of Volume
to test the Operator.

Other settings in pgo.yaml are described in the pgo.yaml Configuration section of the documentation.

Operator Security

The Operator implements its own RBAC (Role Based Access Controls) for authenticating Operator users access to the Operator REST
API.

A default admin user is created when the operator is deployed. Create a .pgouser in your home directory and insert the text from below:

pgoadmin:examplepassword

The format of the .pgouser client file is:

<username >:<password >

To create a unique administrator user on deployment of the operator edit this file and update the .pgouser file accordingly:

$PGOROOT/deploy/install-bootstrap -creds.sh

After installation users can create optional Operator users as follows:

pgo create pgouser someuser --pgouser-namespaces="pgouser1,pgouser2"
--pgouser-password=somepassword --pgouser-roles="somerole ,someotherrole"

Note, you can also store the pgouser file in alternate locations, see the Security documentation for details.

Operator security is discussed in the Security section Security of the documentation.

Adjust these settings to meet your local requirements.

Default Installation - Create Kubernetes RBAC Controls

The Operator installation requires Kubernetes administrators to create Resources required by the Operator. These resources are only
allowed to be created by a cluster-admin user. To install on Google Cloud, you will need a user account with cluster-admin privileges. If
you own the GKE cluster you are installing on, you can add cluster-admin role to your account as follows:

kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user
$(gcloud config get-value account)

Specifically, Custom Resource Definitions for the Operator, and Service Accounts used by the Operator are created which require cluster
permissions.

Tor create the Kubernetes RBAC used by the Operator, run the following as a cluster-admin Kubernetes user:

make installrbac

This set of Resources is created a single time unless a new Operator release requires these Resources to be recreated. Note that when you
run make installrbac the set of keys used by the Operator REST API and also the pgbackrest ssh keys are generated.

Verify the Operator Custom Resource Definitions are created as follows:

kubectl get crd

You should see the pgclusters CRD among the listed CRD resource types.

See the Security documentation for a description of the various RBAC resources created and used by the Operator.

66

Default Installation - Deploy the Operator

At this point, you as a normal Kubernetes user should be able to deploy the Operator. To do this, run the following Makefile target:

make deployoperator

This will cause any existing Operator to be removed first, then the configuration to be bundled into a ConfigMap, then the Operator
Deployment to be created.

This will create a postgres-operator Deployment and a postgres-operator Service.Operator administrators needing to make changes to the
Operator configuration would run this make target to pick up any changes to pgo.yaml, pgo users/roles, or the Operator templates.

Default Installation - Completely Cleaning Up

You can completely remove all the namespaces you have previously created using the default installation by running the following:

make cleannamespaces

This will permanently delete each namespace the Operator installation created previously.

pgo CLI Installation

Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the
Operator (https://github.com/crunchydata/postgres-operator/releases). Crunchy Enterprise Customer can download the pgo binaries
from https://access.crunchydata.com/ on the downloads page.

The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation
to work with a remote Operator.

{{% notice info %}}

If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref “Configuration/tls.md” >}})
for additional configuration information.

{{% / notice %}}

Prior to using pgo, users testing the Operator on a single host can specify the postgres-operator URL as follows:

$ kubectl get service postgres-operator -n pgo
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres -operator 10.104.47.110 <none> 8443/TCP 7m
$ export PGO_APISERVER_URL=https://10.104.47.110:8443
pgo version

That URL address needs to be reachable from your local pgo client host. Your Kubernetes administrator will likely need to create a
network route, ingress, or LoadBalancer service to expose the Operator REST API to applications outside of the Kubernetes cluster. Your
Kubernetes administrator might also allow you to run the Kubernetes port-forward command, contact your adminstrator for details.

Next, the pgo client needs to reference the keys used to secure the Operator REST API:

export PGO_CA_CERT=$PGOROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$PGOROOT/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$PGOROOT/conf/postgres-operator/server.key

You can also specify these keys on the command line as follows:

pgo version --pgo-ca-cert=$PGOROOT/conf/postgres-operator/server.crt
--pgo-client-cert=$PGOROOT/conf/postgres -operator/server.crt
--pgo-client-key=$PGOROOT/conf/postgres -operator/server.key

{{% notice tip %}} if you are running the Operator on Google Cloud, you would open up another terminal and run kubectl port-forward
… to forward the Operator pod port 8443 to your localhost where you can access the Operator API from your local workstation. {{%
/notice %}}

At this point, you can test connectivity between your laptop or workstation and the Postgres Operator deployed on a Kubernetes cluster
as follows:

pgo version

You should get back a valid response showing the client and server version numbers.

67

Verify the Installation

Now that you have deployed the Operator, you can verify that it is running correctly.

You should see a pod running that contains the Operator:
kubectl get pod --selector=name=postgres-operator -n pgo
NAME READY STATUS RESTARTS AGE
postgres -operator -79bf94c658-zczf6 3/3 Running 0 47s

That pod should show 3 of 3 containers in running state and that the operator is installed into the pgo namespace.

The sample environment script, examples/env.sh, if used creates some bash functions that you can use to view the Operator logs. This is
useful in case you find one of the Operator containers not in a running status.

Using the pgo CLI, you can verify the versions of the client and server match as follows:
pgo version

This also tests connectivity between your pgo client host and the Operator server.

Crunchy Data PostgreSQL Operator Playbooks

The Crunchy Data PostgreSQL Operator Playbooks contain Ansible roles for installing and managing the [Crunchy Data PostgreSQL
Operator]({{< relref “/installation/other/ansible/installing-operator.md” >}}).

Features

The playbooks provided allow users to:

• install PostgreSQL Operator on Kubernetes and OpenShift
• install PostgreSQL Operator from a Linux, Mac or Windows (Ubuntu subsystem) host
• generate TLS certificates required by the PostgreSQL Operator
• configure PostgreSQL Operator settings from a single inventory file
• support a variety of deployment models

Resources

• Ansible
• Crunchy Data
• Crunchy Data PostgreSQL Operator Project

Prerequisites

The following is required prior to installing Crunchy PostgreSQL Operator using Ansible:

• postgres-operator playbooks source code for the target version
• Ansible 2.8.0+

Kubernetes Installs

• Kubernetes v1.11+
• Cluster admin privileges in Kubernetes
• kubectl configured to communicate with Kubernetes

OpenShift Installs

• OpenShift v3.09+
• Cluster admin privileges in OpenShift
• oc configured to communicate with OpenShift

68

https://www.ansible.com/
https://www.ansible.com/
https://www.crunchydata.com/
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html

Installing from a Windows Host

If the Crunchy PostgreSQL Operator is being installed from a Windows host the following are required:

• Windows Subsystem for Linux (WSL)
• Ubuntu for Windows

Permissions

The installation of the Crunchy PostgreSQL Operator requires elevated privileges.
It is required that the playbooks are run as a cluster-admin to ensure the playbooks can install:

• Custom Resource Definitions
• Cluster RBAC
• Create required namespaces

{{% notice warning %}}In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an
extra step during installation for the operator to function properly with watched namespaces. This limitation does not exist when using
Kubernetes 1.12+. When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh
script handles the limitation properly in both the bash and ansible installation.

However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace
to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin
privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution
whose version is below 1.12. In Kubernetes version 1.12+ the pgo create namespace command works as expected.

{{% /notice %}}

Obtaining Operator Ansible Role

There are two ways to obtain the Crunchy PostgreSQL Operator Roles:

• Clone the postgres-operator project

• postgres-operator-playbooks RPM provided for Crunchy customers via the Crunchy Access Portal.

GitHub Installation

All necessary files (inventory, main playbook and roles) can be found in the ansible directory in the postgres-operator project.

RPM Installation using Yum

Available to Crunchy customers is an RPM containing all the necessary Ansible roles and files required for installation using Ansible. The
RPM can be found in Crunchy’s yum repository. For information on setting up yum to use the Crunchy repoistory, see the Crunchy Access
Portal.

To install the Crunchy PostgreSQL Operator Ansible roles using yum, run the following command on a RHEL or CentOS host:

sudo yum install postgres -operator-playbooks

• Ansible roles can be found in: /usr/share/ansible/roles/crunchydata
• Ansible playbooks/inventory files can be found in: /usr/share/ansible/postgres-operator/playbooks

Once installed users should take a copy of the inventory file included in the installation using the following command:

cp /usr/share/ansible/postgres-operator/playbooks/inventory ${HOME?}

Configuring the Inventory File

The inventory file included with the PostgreSQL Operator Playbooks allows installers to configure how the operator will function when
deployed into Kubernetes. This file should contain all configurable variables the playbooks offer.

69

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6
https://github.com/CrunchyData/postgres-operator
https://access.crunchydata.com/
https://github.com/CrunchyData/postgres-operator
https://access.crunchydata.com/
https://access.crunchydata.com/

Requirements

The following configuration parameters must be set in order to deploy the Crunchy PostgreSQL Operator.

Additionally, storage variables will need to be defined to provide the Crunchy PostgreSQL Operator with any required storage configu-
ration. Guidance for defining storage variables can be found further in this documentation.

{{% notice tip %}} You should remove or comment out variables either either the kubernetes or openshift variables if you are not being
using them for your environment. Both sets of variables cannot be used at the same time. {{% /notice %}}

• archive_mode
• archive_timeout
• backup_storage
• backrest
• backrest_storage
• badger
• ccp_image_prefix
• ccp_image_tag
• create_rbac
• db_password_length
• db_port
• db_replicas
• db_user
• ‘disable_auto_failover“
• exporterport
• kubernetes_context (Comment out if deploying to am OpenShift environment)
• metrics
• openshift_host (Comment out if deploying to a Kubernetes environment)
• openshift_password (Comment out if deploying to a Kubernetes environment)
• openshift_skip_tls_verify (Comment out if deploying to a Kubernetes environment)
• openshift_token (Comment out if deploying to a Kubernetes environment)
• openshift_user (Comment out if deploying to a Kubernetes environment)
• pgbadgerport
• pgo_admin_password
• pgo_admin_perms
• pgo_admin_role_name
• pgo_admin_username
• pgo_client_version
• pgo_image_prefix
• pgo_image_tag
• pgo_installation_name
• pgo_operator_namespace
• primary_storage
• replica_storage
• scheduler_timeout

Configuration Parameters

Name Default Required Description

archive_mode true Required Set to true enable archive logging on all newly created clusters.
archive_timeout 60 Required Set to a value in seconds to configure the timeout threshold for archiving.
backrest false Required Set to true enable pgBackRest capabilities on all newly created cluster request. This can be disabled by the client.
backrest_aws_s3_bucket Set to configure the bucket used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_endpoint Set to configure the endpoint used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_key Set to configure the key used by pgBackRest to authenticate with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_region Set to configure the region used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
backrest_aws_s3_secret Set to configure the secret used by pgBackRest to authenticate with Amazon Web Service S3 for backups and restoration in S3.

70

Name Default Required Description

backrest_storage storageos Required Set to configure which storage definition to use when creating volumes used by pgBackRest on all newly created clusters.
backup_storage storageos Required Set to configure which storage definition to use when creating volumes used for storing logical backups created by pg_dump.
badger false Required Set to true enable pgBadger capabilities on all newly created clusters. This can be disabled by the client.
ccp_image_prefix crunchydata Required Configures the image prefix used when creating containers from Crunchy Container Suite.
ccp_image_tag Required Configures the image tag (version) used when creating containers from Crunchy Container Suite.
cleanup false Set to configure the playbooks to delete all objects when uninstalling the Operator. Note: this will delete all objects related to the Operator (including clusters provisioned).
create_rbac true Required Set to true if the installer should create the RBAC resources required to run the PostgreSQL Operator.
crunchy_debug false Set to configure Operator to use debugging mode. Note: this can cause sensitive data such as passwords to appear in Operator logs.
default_instance_memory 512Mi The default amount of memory to request for a PostgreSQL instance
default_pgbackrest_memory 48Mi The default amount of memory to request for a pgBackRest repository
default_pgbouncer_memory 24Mi The default amount of memory to request for a pgBouncer instance
delete_metrics_namespace false Set to configure whether or not the metrics namespace (defined using variable metrics_namespace) is deleted when uninstalling the metrics infrastructure
delete_operator_namespace false Set to configure whether or not the PGO operator namespace (defined using variable pgo_operator_namespace) is deleted when uninstalling the PGO.
delete_watched_namespaces false Set to configure whether or not the PGO watched namespaces (defined using variable namespace) are deleted when uninstalling the PGO.
db_name userdb Set to a value to configure the default database name on all newly created clusters.
db_password_age_days 0 Set to a value in days to configure the expiration age on PostgreSQL role passwords on all newly created clusters. If set to “0”, this is the same as saying the password never expires
db_password_length 24 Required Set to configure the size of passwords generated by the operator on all newly created roles.
db_port 5432 Required Set to configure the default port used on all newly created clusters.
db_replicas 1 Required Set to configure the amount of replicas provisioned on all newly created clusters.
db_user testuser Required Set to configure the username of the dedicated user account on all newly created clusters.
disable_failover false Required Set to true disable auto failover capabilities on all newly created cluster requests. This cannot be overriden by the client on a cluster create, but on a cluster update. Setting this is not generally recommend, as it disable high-availability capabilities.
exporterport 9187 Required Set to configure the default port used to connect to postgres exporter.
grafana_admin_password Set to configure the login password for the Grafana administrator.
grafana_admin_username admin Set to configure the login username for the Grafana administrator.
grafana_install true Set to true to install Crunchy Grafana to visualize metrics.
grafana_storage_access_mode Set to the access mode used by the configured storage class for Grafana persistent volumes.
grafana_storage_class_name Set to the name of the storage class used when creating Grafana persistent volumes.
grafana_volume_size Set to the size of persistent volume to create for Grafana.
kubernetes_context Required, if deploying to Kubernetes When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
log_statement none Set to none, ddl, mod, or all to configure the statements that will be logged in PostgreSQL’s logs on all newly created clusters.
metrics false Required Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
metrics_namespace metrics Configures the target namespace when deploying Grafana and/or Prometheus
namespace Set to a comma delimited string of all the namespaces Operator will manage.
namespace_mode dynamic Required Determines which ClusterRoles will be installed as required to enable various namespace functionality within the Operator. Valid values are dynamic, readonly or disabled. If disabled is selected, then no ClusterRoles are installed.
openshift_host Required, if deploying to OpenShift When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
openshift_password Required, if deploying to OpenShift When deploying to OpenShift, set to configure the password used for login.
openshift_skip_tls_verify Required, if deploying to OpenShift When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
openshift_token Required, if deploying to OpenShift When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
openshift_user Required, if deploying to OpenShift When deploying to OpenShift, set to configure the username used for login.
pgbadgerport 10000 Required Set to configure the default port used to connect to pgbadger.
pgo_add_os_ca_store false When true, includes system default certificate authorities
pgo_admin_username admin Required Configures the pgo administrator username.
pgo_admin_password Required Configures the pgo administrator password.
pgo_admin_perms * Required Sets the access control rules provided by the PostgreSQL Operator RBAC resources for the PostgreSQL Operator administrative account that is created by this installer. Defaults to allowing all of the permissions, which is represented with the *

71

Name Default Required Description

pgo_admin_role_name pgoadmin Required Sets the name of the PostgreSQL Operator role that is utilized for administrative operations performed by the PostgreSQL Operator.
pgo_apiserver_port 8443 Set to configure the port used by the Crunchy PostgreSQL Operator apiserver.
pgo_client_install true Configures the playbooks to install the pgo client if set to true.
pgo_client_version Required Configures which version of pgo the playbooks should install.
pgo_disable_eventing false Set to configure whether or not eventing should be enabled for the Crunchy PostgreSQL Operator installation.
pgo_disable_tls false Set to configure whether or not TLS should be enabled for the Crunchy PostgreSQL Operator apiserver.
pgo_image_prefix crunchydata Required Configures the image prefix used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc).
pgo_image_tag Required Configures the image tag used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc)
pgo_installation_name Required The name of the PGO installation.
pgo_noauth_routes Configures URL routes with mTLS and HTTP BasicAuth disabled.
pgo_operator_namespace Required Set to configure the namespace where Operator will be deployed.
pgo_tls_ca_store Set to add additional Certificate Authorities for Operator to trust (PEM-encoded file).
pgo_tls_no_verify false Set to configure Operator to verify TLS certificates.
pgo_client_container_install false Installs the pgo-client deployment along with ansible install
pgo_apiserver_url https://postgres-operator Sets the pgo_apiserver_url in the pgo-client deployment
pgo_client_cert_secret pgo.tls Sets the secret that the pgo-client will use when connecting to the operator. Secret should hold the TLS certs
pod_anti_affinity preferred Sets the default pod anti-affinity for the deployed PostgreSQL clusters, which is applied to the PostgreSQL instances, the pgBackRest repository, and any pgBouncer instances
pod_anti_affinity_pgbackrest If set, overrides the value of pod_anti_affinity for just the pgBackRest repository
pod_anti_affinity_pgbouncer If set, overrides the value of pod_anti_affinity for just the pgBouncer Pods
primary_storage storageos Required Set to configure which storage definition to use when creating volumes used by PostgreSQL primaries on all newly created clusters.
prometheus_install true Set to true to install Crunchy Prometheus timeseries database.
prometheus_storage_access_mode Set to the access mode used by the configured storage class for Prometheus persistent volumes.
prometheus_storage_class_name Set to the name of the storage class used when creating Prometheus persistent volumes.
replica_storage storageos Required Set to configure which storage definition to use when creating volumes used by PostgreSQL replicas on all newly created clusters.
scheduler_timeout 3600 Required Set to a value in seconds to configure the pgo-scheduler timeout threshold when waiting for schedules to complete.
service_type ClusterIP Set to configure the type of Kubernetes service provisioned on all newly created clusters.
sync_replication false If set to true, defaults the PostgreSQL clusters to be deployed with synchronous replication
pgo_cluster_admin false Determines whether or not the cluster-admin role is assigned to the PGO service account. Must be true to enable PGO namespace & role creation when installing in OpenShift.

{{% notice tip %}} To retrieve the kubernetes_context value for Kubernetes installs, run the following command:

kubectl config current-context

{{% /notice %}}

Storage

Kubernetes and OpenShift offer support for a wide variety of different storage types, and by default, the inventory is pre-populated with
storage configurations for some of these storage types. However, the storage types defined in the inventory can be modified or removed
as needed, while additional storage configurations can also be added to meet the specific storage requirements for your PG clusters.

The following storage variables are utilized to add or modify operator storage configurations in the inventory:

Name Required Description

storage<ID>_name Yes Set to specify a name for the storage configuration.
storage<ID>_access_mode Yes Set to configure the access mode of the volumes created when using this storage definition.
storage<ID>_size Yes Set to configure the size of the volumes created when using this storage definition.
storage<ID>_class Required when using the dynamic storage type Set to configure the storage class name used when creating dynamic volumes.

72

Name Required Description

storage<ID>_supplemental_groups Required when using NFS storage Set to configure any supplemental groups that should be added to security contexts on newly created clusters.
storage<ID>_type Yes Set to either create or dynamic to configure the operator to create persistent volumes or have them created dynamically by a storage class.

The ID portion of storage prefix for each variable name above should be an integer that is used to group the various storage variables
into a single storage configuration. For instance, the following shows a single storage configuration for NFS storage:
storage3_name='nfsstorage '
storage3_access_mode='ReadWriteMany '
storage3_size='1G'
storage3_type='create'
storage3_supplemental_groups=65534

As this example storage configuration shows, integer 3 is used as the ID for each of the storage variables, which together form a single
storage configuration called nfsstorage. This approach allows different storage configurations to be created by defining the proper
storage variables with a unique ID for each required storage configuration.
Additionally, once all storage configurations have been defined in the inventory, they can then be used to specify the default storage
configuration that should be utilized for the various PG pods created by the operator. This is done using the following variables, which
are also defined in the inventory:
backrest_storage='nfsstorage '
backup_storage='nfsstorage '
primary_storage='nfsstorage '
replica_storage='nfsstorage '

With the configuration shown above, the nfsstorage storage configuration would be used by default for the various containers created
for a PG cluster (i.e. containers for the primary DB, replica DB’s, backups and/or pgBackRest).

Examples

The following are additional examples of storage configurations for various storage types.

Generic Storage Class The following example defines a storageTo setup storage1 to use the storage class fast
storage5_name='storageos '
storage5_access_mode='ReadWriteOnce '
storage5_size='5Gi'
storage5_type='dynamic'
storage5_class='fast'

To assign this storage definition to all primary pods created by the Operator, we can configure the primary_storage=storageos variable
in the inventory file.

GKE The storage class provided by Google Kubernetes Environment (GKE) can be configured to be used by the Operator by setting
the following variables in the inventory file:
storage8_name='gce'
storage8_access_mode='ReadWriteOnce '
storage8_size='300M'
storage8_type='dynamic'
storage8_class='standard '

To assign this storage definition to all primary pods created by the Operator, we can configure the primary_storage=gce variable in the
inventory file.

Considerations for Multi-Zone Cloud Environments

When using the Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consideration must betaken to
ensure all pods and the volumes they require are scheduled and provisioned within the same zone. Specifically, being that a pod is unable
mount a volume that is located in another zone, any volumes that are dynamically provisioned must be provisioned in a topology-aware
manner according to the specific scheduling requirements for the pod. For instance, this means ensuring that the volume containing the
database files for the primary database in a new PostgreSQL cluster is provisioned in the same zone as the node containing the PostgreSQL
primary pod that will be using it.

73

Resource Configuration

Kubernetes and OpenShift allow specific resource requirements to be specified for the various containers deployed inside of a pod. This
includes defining the required resources for each container, i.e. how much memory and CPU each container will need, while also allowing
resource limits to be defined, i.e. the maximum amount of memory and CPU a container will be allowed to consume. In support of this
capability, the Crunchy PGO allows any required resource configurations to be defined in the inventory, which can the be utilized by
the operator to set any desired resource requirements/limits for the various containers that will be deployed by the Crunchy PGO when
creating and managing PG clusters.

The following resource variables are utilized to add or modify operator resource configurations in the inventory:

Name Required Description

resource<ID>_requests_memory Yes The amount of memory required by the container.
resource<ID>_requests_cpu Yes The amount of CPU required by the container.
resource<ID>_limits_memory Yes The maximum amount of memory that can be consumed by the container.
resource<ID>_limits_cpu Yes The maximum amount of CPU that can be consumed by the container.

The ID portion of resource prefix for each variable name above should be an integer that is used to group the various resource variables
into a single resource configuration. For instance, the following shows a single resource configuration called small:
resource1_name='small'
resource1_requests_memory='512Mi'
resource1_requests_cpu=0.1
resource1_limits_memory='512Mi'
resource1_limits_cpu=0.1

As this example resource configuration shows, integer 1 is used as the ID for each of the resource variables, which together form a single
resource configuration called small. This approach allows different resource configurations to be created by defining the proper resource
variables with a unique ID for each required resource configuration.

With the configuration shown above, the large resource configuration would be used by default for all database containers, while the
small resource configuration would then be utilized by default for the various other containers created for a PG cluster.

Understanding pgo_operator_namespace & namespace

The Crunchy PostgreSQL Operator can be configured to be deployed and manage a single namespace or manage several namespaces. The
following are examples of different types of deployment models configurable in the inventory file.

Single Namespace

To deploy the Crunchy PostgreSQL Operator to work with a single namespace (in this example our namespace is named pgo), configure
the following inventory settings:
pgo_operator_namespace='pgo'
namespace='pgo'

Multiple Namespaces

To deploy the Crunchy PostgreSQL Operator to work with multiple namespaces (in this example our namespaces are named pgo, pgouser1
and pgouser2), configure the following inventory settings:
pgo_operator_namespace='pgo'
namespace='pgouser1 ,pgouser2 '

Deploying Multiple Operators

The 4.0 release of the Crunchy PostgreSQL Operator allows for multiple operator deployments in the same cluster.
To install the Crunchy PostgreSQL Operator to multiple namespaces, it’s recommended to have an inventory file for each deployment of
the operator.

For each operator deployment the following inventory variables should be configured uniquely for each install.

74

For example, operator could be deployed twice by changing the pgo_operator_namespace and namespace for those deployments:

Inventory A would deploy operator to the pgo namespace and it would manage the pgo target namespace.

Inventory A
pgo_operator_namespace='pgo'
namespace='pgo'
...

Inventory B would deploy operator to the pgo2 namespace and it would manage the pgo2 and pgo3 target namespaces.

Inventory B
pgo_operator_namespace='pgo2'
namespace='pgo2,pgo3'
...

Each install of the operator will create a corresponding directory in $HOME/.pgo/<PGO NAMESPACE> which will contain the TLS and
pgouser client credentials.

Deploying Grafana and Prometheus

PostgreSQL clusters created by the operator can be configured to create additional containers for collecting metrics.
These metrics are very useful for understanding the overall health and performance of PostgreSQL database deployments over time. The
collectors included by the operator are:

• PostgreSQL Exporter - PostgreSQL metrics

The operator, however, does not install the necessary timeseries database (Prometheus) for storing the collected metrics or the front end
visualization (Grafana) of those metrics.

Included in these playbooks are roles for deploying Granfana and/or Prometheus. See the inventory file for options to install the metrics
stack.

{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. {{% /notice %}}

Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem

To install Ansible on Linux or MacOS, see the official documentation provided by Ansible.

Install Google Cloud SDK (Optional)

If Crunchy PostgreSQL Operator is going to be installed in a Google Kubernetes Environment the Google Cloud SDK is required.

To install the Google Cloud SDK on Linux or MacOS, see the official Google Cloud documentation.

When installing the Google Cloud SDK on the Windows Ubuntu Subsystem, run the following commands to install:

wget https://sdk.cloud.google.com --output-document=/tmp/install-gsdk.sh
Review the /tmp/install -gsdk.sh prior to running
chmod +x /tmp/install-gsdk.sh
/tmp/install-gsdk.sh

Installing

The following assumes the proper prerequisites are satisfied we can now install the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory
in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.

75

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#intro-installation-guide
https://cloud.google.com/sdk/install

Installing on Linux

On a Linux host with Ansible installed we can run the following command to install the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Installing on MacOS

On a MacOS host with Ansible installed we can run the following command to install the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

Installing on Windows Ubuntu Subsystem

On a Windows host with an Ubuntu subsystem we can run the following commands to install the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=install --ask-become-pass main.yml

Verifying the Installation

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME >
kubectl get pods -n <NAMESPACE_NAME >

OpenShift
oc get deployments -n <NAMESPACE_NAME >
oc get pods -n <NAMESPACE_NAME >

Configure Environment Variables

After the Crunchy PostgreSQL Operator has successfully been installed we will need to configure local environment variables before using
the pgo client.

{{% notice info %}}

If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref “Configuration/tls.md” >}})
for additional configuration information.

{{% / notice %}}

To configure the environment variables used by pgo run the following command:

Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to.

cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE >/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE >/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF

Apply those changes to the current session by running:

source ~/.bashrc

76

Verify pgo Connection

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443

You can subsitute pgo in the above examples with the namespace that you deployed the PostgreSQL Operator into.

On a separate terminal verify the PostgreSQL client can communicate with the Crunchy PostgreSQL Operator:

pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been installed successfully.

Installing

PostgreSQL clusters created by the Crunchy PostgreSQL Operator can optionally be configured to serve performance metrics via
Prometheus Exporters. The metric exporters included in the database pod serve realtime metrics for the database container. In order to
store and view this data, Grafana and Prometheus are required. The Crunchy PostgreSQL Operator does not create this infrastructure,
however, they can be installed using the provided Ansible roles.

Prerequisites

The following assumes the proper prerequisites are satisfied we can now install the PostgreSQL Operator.

At a minimum, the following inventory variables should be configured to install the metrics infrastructure:

Name Default Description

ccp_image_prefix crunchydata Configures the image prefix used when creating containers from Crunchy Container Suite.
ccp_image_tag Configures the image tag (version) used when creating containers from Crunchy Container Suite.
grafana_admin_username admin Set to configure the login username for the Grafana administrator.
grafana_admin_password Set to configure the login password for the Grafana administrator.
grafana_install true Set to true to install Crunchy Grafana to visualize metrics.
grafana_storage_access_mode Set to the access mode used by the configured storage class for Grafana persistent volumes.
grafana_storage_class_name Set to the name of the storage class used when creating Grafana persistent volumes.
grafana_volume_size Set to the size of persistent volume to create for Grafana.
kubernetes_context When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
metrics false Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
metrics_namespace pgo Configures the target namespace when deploying Grafana and/or Prometheus
openshift_host When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
openshift_password When deploying to OpenShift, set to configure the password used for login.
openshift_skip_tls_verify When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
openshift_token When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
openshift_user When deploying to OpenShift, set to configure the username used for login.
prometheus_install true Set to true to install Crunchy Prometheus timeseries database.
prometheus_storage_access_mode Set to the access mode used by the configured storage class for Prometheus persistent volumes.
prometheus_storage_class_name Set to the name of the storage class used when creating Prometheus persistent volumes.

{{% notice tip %}} Administrators can choose to install Grafana, Prometheus or both by configuring the grafana_install and
prometheus_install variables in the inventory files. {{% /notice %}}

77

The following commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks are located. See the ansible
directory in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.

{{% notice tip %}} At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. For more information on
storage classes see the official Kubernetes documentation. {{% /notice %}}

Installing on Linux

On a Linux host with Ansible installed we can run the following command to install the Metrics stack:

ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=install-metrics --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Installing on MacOS

On a MacOS host with Ansible installed we can run the following command to install the Metrics stack:

ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

Installing on Windows

On a Windows host with the Ubuntu subsystem we can run the following commands to install the Metrics stack:

ansible-playbook -i /path/to/inventory --tags=install-metrics main.yml

Verifying the Installation

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME >
kubectl get pods -n <NAMESPACE_NAME >

OpenShift
oc get deployments -n <NAMESPACE_NAME >
oc get pods -n <NAMESPACE_NAME >

Verify Grafana

In a separate terminal we need to setup a port forward to the Crunchy Grafana deployment to ensure connection can be made outside of
the cluster:

If deployed to Kubernetes
kubectl port-forward -n <METRICS_NAMESPACE > svc/grafana 3000:3000

If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE > svc/grafana 3000:3000

In a browser navigate to http://127.0.0.1:3000 to access the Grafana dashboard.

{{% notice tip %}} No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the
following command:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE >

{{% /notice %}}

78

https://kubernetes.io/docs/concepts/storage/storage-classes/

Verify Prometheus

In a separate terminal we need to setup a port forward to the Crunchy Prometheus deployment to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward -n <METRICS_NAMESPACE > svc/prometheus 9090:9090

If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE > svc/prometheus 9090:9090

In a browser navigate to http://127.0.0.1:9090 to access the Prometheus dashboard.

{{% notice tip %}} No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the
following command:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE >

{{% /notice %}}

Updating

Updating the Crunchy PostgreSQL Operator is essential to the lifecycle management of the service. Using the update flag will:

• Update and redeploy the operator deployment
• Recreate configuration maps used by operator
• Remove any deprecated objects
• Allow administrators to change settings configured in the inventory
• Reinstall the pgo client if a new version is specified

The following assumes the proper prerequisites are satisfied we can now update the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory
in the Crunchy PostgreSQL Operator project for the inventory file, main playbook and ansible roles.

Updating on Linux

On a Linux host with Ansible installed we can run the following command to update
the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:

export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

Updating on MacOS

On a MacOS host with Ansible installed we can run the following command to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

Updating on Windows Ubuntu Subsystem

On a Windows host with an Ubuntu subsystem we can run the following commands to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory --tags=update --ask-become-pass main.yml

79

Verifying the Update

This may take a few minutes to deploy. To check the status of the deployment run the following:
Kubernetes
kubectl get deployments -n <NAMESPACE_NAME >
kubectl get pods -n <NAMESPACE_NAME >

OpenShift
oc get deployments -n <NAMESPACE_NAME >
oc get pods -n <NAMESPACE_NAME >

Configure Environment Variables

After the Crunchy PostgreSQL Operator has successfully been updated we will need to configure local environment variables before using
the pgo client.
To configure the environment variables used by pgo run the following command:
Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to. Also, if TLS was
disabled, or if the port was changed, update PGO_APISERVER_URL accordingly.
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE >/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE >/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE >/client.pem"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF

Apply those changes to the current session by running:
source ~/.bashrc

Verify pgo Connection

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:
If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443

In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
On a separate terminal verify the PostgreSQL Operator client can communicate with the PostgreSQL Operator:
pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been updated successfully.

Uninstalling PostgreSQL Operator

The following assumes the proper prerequisites are satisfied we can now uninstall the PostgreSQL Operator.
First, it is recommended to use the playbooks tagged with the same version of the PostgreSQL Operator currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:
ansible-playbook -i /path/to/inventory --tags=uninstall --ask-become-pass main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=uninstall --ask-become-pass \
/usr/share/ansible/postgres-operator/playbooks/main.yml

80

Deleting pgo Client

If variable pgo_client_install is set to true in the inventory file, the pgo client will also be removed when uninstalling.
Otherwise, the pgo client can be manually uninstalled by running the following command:
rm /usr/local/bin/pgo

Uninstalling the Metrics Stack

The following assumes the proper prerequisites are satisfied we can now uninstall the PostgreSQL Operator Metrics Infrastructure.
First, it is recommended to use the playbooks tagged with the same version of the Metrics stack currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:
ansible-playbook -i /path/to/inventory --tags=uninstall -metrics main.yml

If the Crunchy PostgreSQL Operator playbooks were installed using yum, use the following commands:
export ANSIBLE_ROLES_PATH=/usr/share/ansible/roles/crunchydata

ansible-playbook -i /path/to/inventory --tags=uninstall -metrics \
/usr/share/ansible/postgres-operator/playbooks/main.yml

The PostgreSQL Operator Client, aka pgo, is the most convenient way to interact with the PostgreSQL Operator. pgo provides many
convenience methods for creating, managing, and deleting PostgreSQL clusters through a series of simple commands. The pgo client
interfaces with the API that is provided by the PostgreSQL Operator and can leverage the RBAC and TLS systems that are provided by
the PostgreSQL Operator

Figure 16: Architecture

The pgo client is available for Linux, macOS, and Windows, as well as a pgo-client container that can be deployed alongside the
PostgreSQL Operator.
You can download pgo from the releases page, or have it installed in your preferred binary format or as a container in your Kubernetes
cluster using the Ansible Installer.

81

https://github.com/crunchydata/postgres-operator/releases

General Notes on Using the pgo Client

Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool
when managing PostgreSQL deployments across many Kubernetes namespaces, this can become onerous for the intents of this guide.

If you install the PostgreSQL Operator using the quickstart guide, you will have two namespaces installed: pgouser1 and pgouser2. We
can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global
pgo Client reference,

For convenience, we will use the pgouser1 namespace in the examples below. For even more convenience, we recommend setting pgouser1
to be the value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:

export PGO_NAMESPACE=pgouser1

If you do not wish to set this environmental variable, or are in an environment where you are unable to use environmental variables, you
will have to use the --namespace (or -n) flag for most commands, e.g.

pgo version -n pgouser1

Syntax

The syntax for pgo is similar to what you would expect from using the kubectl or oc binaries. This is by design: one of the goals of the
PostgreSQL Operator project is to allow for seamless management of PostgreSQL clusters in Kubernetes-enabled environments, and by
following the command patterns that users are familiar with, the learning curve is that much easier!

To get an overview of everything that is available at the top-level of pgo, execute:

pgo

The syntax for the commands that pgo executes typicall follow this format:

pgo [command] ([TYPE] [NAME]) [flags]

Where command is a verb like:

• create
• show
• delete

And type is a resource type like:

• cluster
• backup
• user

And name is the name of the resource type like:

• hacluster
• gisdba

There are several global flags that are available to every pgo command as well as flags that are specific to particular commands. To get
a list of all the options and flags available to a command, you can use the --help flag. For example, to see all of the options available to
the pgo create cluster command, you can run the following:

pgo create cluster --help

Command Overview

The following table provides an overview of the commands that the pgo client provides:

Operation Syntax Description

apply pgo apply mypolicy --selector=name=mycluster Apply a SQL policy on a Postgres cluster(s) that have a label matching service-name=mycluster

backup pgo backup mycluster Perform a backup on a Postgres cluster(s)

82

Operation Syntax Description

cat pgo cat mycluster filepath Perform a Linux cat command on the cluster.
clone pgo clone oldcluster newcluster Copies the primary database of an existing cluster to a new cluster
create pgo create cluster mycluster Create an Operator resource type (e.g. cluster, policy, schedule, user, namespace, pgouser, pgorole)
delete pgo delete cluster mycluster Delete an Operator resource type (e.g. cluster, policy, user, schedule, namespace, pgouser, pgorole)
df pgo df mycluster Display the disk status/capacity of a Postgres cluster.
failover pgo failover mycluster Perform a manual failover of a Postgres cluster.
help pgo help Display general pgo help information.
label pgo label mycluster --label=environment=prod Create a metadata label for a Postgres cluster(s).
load pgo load --load-config=load.json --selector=name=mycluster Perform a data load into a Postgres cluster(s).
reload pgo reload mycluster Perform a pg_ctl reload command on a Postgres cluster(s).
restore pgo restore mycluster Perform a pgbackrest or pgdump restore on a Postgres cluster.
scale pgo scale mycluster Create a Postgres replica(s) for a given Postgres cluster.
scaledown pgo scaledown mycluster --query Delete a replica from a Postgres cluster.
show pgo show cluster mycluster Display Operator resource information (e.g. cluster, user, policy, schedule, namespace, pgouser, pgorole).
status pgo status Display Operator status.
test pgo test mycluster Perform a SQL test on a Postgres cluster(s).
update pgo update cluster mycluster --disable-autofail Update a Postgres cluster(s), pgouser, pgorole, user, or namespace.
upgrade pgo upgrade mycluster Perform a minor upgrade to a Postgres cluster(s).
version pgo version Display Operator version information.

Global Flags

There are several global flags available to the pgo client.

NOTE: Flags take precedence over environmental variables.

Flag Description

--apiserver-url The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client.
--debug Enable additional output for debugging.
--disable-tls Disable TLS authentication to the Postgres Operator.
--exclude-os-trust Exclude CA certs from OS default trust store.
-h ,--help Print out help for a command command.
-n ,--namespace The namespace to execute the pgo command in. This is required for most pgo commands.
--pgo-ca-cert The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
--pgo-client-cert The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
--pgo-client-key The client key file path for authenticating to the PostgreSQL Operator apiserver.

Global Environment Variables

There are several environmental variables that can be used with the pgo client.

NOTE Flags take precedence over environmental variables.

Name Description

EXCLUDE_OS_TRUST Exclude CA certs from OS default trust store.
GENERATE_BASH_COMPLETION If set, will allow pgo to leverage “bash completion” to help complete commands as they are typed.
PGO_APISERVER_URL The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client.

83

Name Description

PGO_CA_CERT The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
PGO_CLIENT_CERT The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
PGO_CLIENT_KEY The client key file path for authenticating to the PostgreSQL Operator apiserver.
PGO_NAMESPACE The namespace to execute the pgo command in. This is required for most pgo commands.
PGOUSER The path to the pgouser file. Will be ignored if either PGOUSERNAME or PGOUSERPASS are set.
PGOUSERNAME The username (role) used for auth on the operator apiserver. Requires that PGOUSERPASS be set.
PGOUSERPASS The password for used for auth on the operator apiserver. Requires that PGOUSERNAME be set.

Additional Information

How can you use the pgo client to manage your day-to-day PostgreSQL operations? The next section covers many of the common types
of tasks that one needs to perform when managing production PostgreSQL clusters. Beyond that is the full reference for all the available
commands and flags for the pgo client.

• Common pgo Client Tasks
• pgo Client Reference

While the full pgo client reference will tell you everything you need to know about how to use pgo, it may be helpful to see several examples
on how to conduct “day-in-the-life” tasks for administrating PostgreSQL cluster with the PostgreSQL Operator.
The below guide covers many of the common operations that are required when managing PostgreSQL clusters. The guide is broken up
by different administrative topics, such as provisioning, high-availability, etc.

Setup Before Running the Examples

Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool
when managing PostgreSQL deployxments across many Kubernetes namespaces, this can become onerous for the intents of this guide.
If you install the PostgreSQL Operator using the quickstart guide, you will have two namespaces installed: pgouser1 and pgouser2. We
can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global
pgo Client reference,
For convenience, we will use the pgouser1 namespace in the examples below. For even more convenience, we recommend setting pgouser1
to be the value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:
export PGO_NAMESPACE=pgouser1

If you do not wish to set this environmental variable, or are in an environment where you are unable to use environmental variables, you
will have to use the --namespace (or -n) flag for most commands, e.g.
pgo version -n pgouser1

JSON Output

The default for the pgo client commands is to output their results in a readable format. However, there are times where it may be helpful
to you to have the format output in a machine parseable format like JSON.
Several commands support the -o/--output flags that delivers the results of the command in the specified output. Presently, the only
output that is supported is json.
As an example of using this feature, if you wanted to get the results of the pgo test command in JSON, you could run the following:
pgo test hacluster -o json

PostgreSQL Operator System Basics

To get started, it’s first important to understand the basics of working with the PostgreSQL Operator itself. You should know how to
test if the PostgreSQL Operator is working, check the overall status of the PostgreSQL Operator, view the current configuration that the
PostgreSQL Operator us using, and seeing which Kubernetes Namespaces the PostgreSQL Operator has access to.
While this may not be as fun as creating high-availability PostgreSQL clusters, these commands will help you to perform basic trou-
bleshooting tasks in your environment.

84

Checking Connectivity to the PostgreSQL Operator

A common task when working with the PostgreSQL Operator is to check connectivity to the PostgreSQL Operator. This can be accomplish
with the pgo version command:
pgo version

which, if working, will yield results similar to:
pgo client version 4.3.0
pgo-apiserver version 4.3.0

Inspecting the PostgreSQL Operator Configuration

The pgo show config command allows you to view the current configuration that the PostgreSQL Operator is using. This can be helpful
for troubleshooting issues such as which PostgreSQL images are being deployed by default, which storage classes are being used, etc.

You can run the pgo show config command by running:
pgo show config

which yields output similar to:
BasicAuth: ""
Cluster:

CCPImagePrefix: crunchydata
CCPImageTag: centos7 -12.2-4.3.0
Policies: ""
Metrics: false
Badger: false
Port: "5432"
PGBadgerPort: "10000"
ExporterPort: "9187"
User: testuser
Database: userdb
PasswordAgeDays: "60"
PasswordLength: "8"
Replicas: "0"
ServiceType: ClusterIP
BackrestPort: 2022
Backrest: true
BackrestS3Bucket: ""
BackrestS3Endpoint: ""
BackrestS3Region: ""
DisableAutofail: false
PgmonitorPassword: ""
EnableCrunchyadm: false
DisableReplicaStartFailReinit: false
PodAntiAffinity: preferred
SyncReplication: false

Pgo:
Audit: false
PGOImagePrefix: crunchydata
PGOImageTag: centos7 -4.3.0

PrimaryStorage: nfsstorage
BackupStorage: nfsstorage
ReplicaStorage: nfsstorage
BackrestStorage: nfsstorage
Storage:

nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
StorageClass: ""
SupplementalGroups: "65534"
MatchLabels: ""

85

Viewing PostgreSQL Operator Key Metrics

The pgo status command provides a generalized statistical view of the overall resource consumption of the PostgreSQL Operator. These
stats include:

• The total number of PostgreSQL instances
• The total number of Persistent Volume Claims (PVC) that are allocated, along with the total amount of disk the claims specify
• The types of container images that are deployed, along with how many are deployed
• The nodes that are used by the PostgreSQL Operator

and more
You can use the pgo status command by running:
pgo status

which yields output similar to:
Operator Start: 2019-12-26 17:53:45 +0000 UTC
Databases: 8
Claims: 8
Total Volume Size: 8Gi

Database Images:
4 crunchydata/crunchy-postgres-ha:centos7 -12.2-4.3.0
4 crunchydata/pgo-backrest-repo:centos7 -4.3.0
8 crunchydata/pgo-backrest:centos7 -4.3.0

Databases Not Ready:

Labels (count > 1): [count] [label]
[8] [vendor=crunchydata]
[4] [pgo-backrest -repo=true]
[4] [pgouser=pgoadmin]
[4] [pgo-pg-database=true]
[4] [crunchy_collect=false]
[4] [pg-pod-anti-affinity=]
[4] [pgo-version=4.3.0]
[4] [archive-timeout=60]
[2] [pg-cluster=hacluster]

Viewing PostgreSQL Operator Managed Namespaces

The PostgreSQL Operator has the ability to manage PostgreSQL clusters across Kubernetes Namespaces. During the course of Operations,
it can be helpful to know which namespaces the PostgreSQL Operator can use for deploying PostgreSQL clusters.
You can view which namespaces the PostgreSQL Operator can utilize by using the pgo show namespace command. To list out the
namespaces that the PostgreSQL Operator has access to, you can run the following command:
pgo show namespace --all

which yields output similar to:
pgo username: pgoadmin
namespace useraccess installaccess
default accessible no access
kube-node-lease accessible no access
kube-public accessible no access
kube-system accessible no access
pgo accessible no access
pgouser1 accessible accessible
pgouser2 accessible accessible
somethingelse no access no access

NOTE: Based on your deployment, your Kubernetes administrator may restrict access to the multi-namespace feature of the PostgreSQL
Operator. In this case, you do not need to worry about managing your namespaces and as such do not need to use this command, but we
recommend setting the PGO_NAMESPACE variable as described in the general notes on this page.

86

Provisioning: Create, View, Destroy

Creating a PostgreSQL Cluster

You can create a cluster using the pgo create cluster command:

pgo create cluster hacluster

which if successfully, will yield output similar to this:

created Pgcluster hacluster
workflow id ae714d12 -f5d0-4fa9-910f-21944b41dec8

Create a PostgreSQL Cluster with Different PVC Sizes You can also create a PostgreSQL cluster with an arbitrary PVC size
using the pgo create cluster command. For example, if you want to create a PostgreSQL cluster with with a 128GB PVC, you can
use the following command:

pgo create cluster hacluster --pvc-size=128Gi

The above command sets the PVC size for all PostgreSQL instances in the cluster, i.e. the primary and replicas.

This also extends to the size of the pgBackRest repository as well, if you are using the local Kubernetes cluster storage for your backup
repository. To create a PostgreSQL cluster with a pgBackRest repository that uses a 1TB PVC, you can use the following command:

pgo create cluster hacluster --pgbackrest -pvc-size=1Ti

Specify CPU / Memory for a PostgreSQL Cluster To specify the amount of CPU and memory to request for a PostgreSQL
cluster, you can use the --cpu and --memory flags of the pgo create cluster command. Both of these values utilize the Kubernetes
quantity format for specifying how to allocate resources.

For example, to create a PostgreSQL cluster that requests 4 CPU cores and has 16 gibibytes of memory, you can use the following
command:

pgo create cluster hacluster --cpu=4 --memory=16Gi

Create a PostgreSQL Cluster with PostGIS To create a PostgreSQL cluster that uses the geospatial extension PostGIS, you can
execute the following command:

pgo create cluster hagiscluster --ccp-image=crunchy-postgres-gis-ha

Create a PostgreSQL Cluster with a Tablespace Tablespaces are a PostgreSQL feature that allows a user to select specific volumes
to store data to, which is helpful in several types of scenarios. Often your workload does not require a tablespace, but the PostgreSQL
Operator provides support for tablespaces throughout the lifecycle of a PostgreSQL cluster.

To create a PostgreSQL cluster that uses the tablespace feature with NFS storage, you can execute the following command:

pgo create cluster hactsluster --tablespace=name=ts1:storageconfig=nfsstorage

You can use your preferred storage engine instead of nfsstorage. For example, to create multiple tablespaces on GKE, you can execute
the following command:

pgo create cluster hactsluster \
--tablespace=name=ts1:storageconfig=gce \
--tablespace=name=ts2:storageconfig=gce

Tablespaces are immediately available once the PostgreSQL cluster is provisioned. For example, to create a table using the tablespace
ts1, you can run the following SQL on your PostgreSQL cluster:

CREATE TABLE sensor_data (
id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
sensor1 numeric,
sensor2 numeric,
sensor3 numeric,
sensor4 numeric

)
TABLESPACE ts1;

87

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

You can also create tablespaces that have different sized PVCs from the ones defined in the storage specification. For instance, to create
two tablespaces, one that uses a 10GiB PVC and one that uses a 20GiB PVC, you can execute the following command:

pgo create cluster hactsluster \
--tablespace=name=ts1:storageconfig=gce:pvcsize=10Gi \
--tablespace=name=ts2:storageconfig=gce:pvcsize=20Gi

Tracking a Newly Provisioned Cluster A new PostgreSQL cluster can take a few moments to provision. You may have noticed that
the pgo create cluster command returns something called a “workflow id”. This workflow ID allows you to track the progress of your
new PostgreSQL cluster while it is being provisioned using the pgo show workflow command:

pgo show workflow ae714d12 -f5d0-4fa9-910f-21944b41dec8

which can yield output similar to:

parameter value
--------- -----
pg-cluster hacluster
task completed 2019-12-27T02:10:14Z
task submitted 2019-12-27T02:09:46Z
workflowid ae714d12-f5d0-4fa9-910f-21944b41dec8

View PostgreSQL Cluster Details

To see details about your PostgreSQL cluster, you can use the pgo show cluster command. These details include elements such as:

• The version of PostgreSQL that the cluster is using
• The PostgreSQL instances that comprise the cluster
• The Pods assigned to the cluster for all of the associated components, including the nodes that the pods are assigned to
• The Persistent Volume Claims (PVC) that are being consumed by the cluster
• The Kubernetes Deployments associated with the cluster
• The Kubernetes Services associated with the cluster
• The Kubernetes Labels that are assigned to the PostgreSQL instances

and more.

You can view the details of the cluster by executing the following command:

pgo show cluster hacluster

which will yield output similar to:

cluster : hacluster (crunchy-postgres-ha:centos7 -12.2-4.3.0)
pod : hacluster -6dc6cfcfb9 -f9knq (Running) on node01 (1/1) (primary)
pvc : hacluster
resources : CPU Limit= Memory Limit=, CPU Request= Memory Request=
storage : Primary=200M Replica=200M
deployment : hacluster
deployment : hacluster -backrest-shared-repo
service : hacluster - ClusterIP (10.102.20.42)
labels : pg-pod-anti-affinity= archive-timeout=60 crunchy-pgbadger=false crunchy_collect=false

deployment -name=hacluster pg-cluster=hacluster crunchy-pgha-scope=hacluster autofail=true
pgo-backrest=true pgo-version=4.3.0 current-primary=hacluster name=hacluster
pgouser=pgoadmin workflowid=ae714d12 -f5d0-4fa9-910f-21944b41dec8

Deleting a Cluster

You can delete a PostgreSQL cluster that is managed by the PostgreSQL Operator by executing the following command:

pgo delete cluster hacluster

This will remove the cluster from being managed by the PostgreSQL Operator, as well as delete the root data Persistent Volume Claim
(PVC) and backup PVCs associated with the cluster.

If you wish to keep your PostgreSQL data PVC, you can delete the cluster with the following command:

88

pgo delete cluster hacluster --keep-data

You can then recreate the PostgreSQL cluster with the same data by using the pgo create cluster command with a cluster of the same
name:

pgo create cluster hacluster

This technique is used when performing tasks such as upgrading the PostgreSQL Operator.

You can also keep the pgBackRest repository associated with the PostgreSQL cluster by using the --keep-backups flag with the pgo
delete cluster command:

pgo delete cluster hacluster --keep-backups

Testing PostgreSQL Cluster Availability

You can test the availability of your cluster by using the pgo test command. The pgo test command checks to see if the Kubernetes
Services and the Pods that comprise the PostgreSQL cluster are available to receive connections. This includes:

• Testing that the Kubernetes Endpoints are available and able to route requests to healthy Pods
• Testing that each PostgreSQL instance is available and ready to accept client connections by performing a connectivity check similar

to the one performed by pg_isready

To test the availability of a PostgreSQL cluster, you can run the following command:

pgo test hacluster

which will yield output similar to:

cluster : hacluster
Services

primary (10.102.20.42:5432): UP
Instances

primary (hacluster -6dc6cfcfb9 -f9knq): UP

Disaster Recovery: Backups & Restores

The PostgreSQL Operator supports sophisticated functionality for managing your backups and restores. For more information for how
this works, please see the disaster recovery guide.

Creating a Backup

The PostgreSQL Operator uses the open source pgBackRest backup and recovery utility for managing backups and PostgreSQL archives.
These backups are also used as part of managing the overall health and high-availability of PostgreSQL clusters managed by the PostgreSQL
Operator and used as part of the cloning process as well.

When a new PostgreSQL cluster is provisioned by the PostgreSQL Operator, a full pgBackRest backup is taken by default. This is required
in order to create new replicas (via pgo scale) for the PostgreSQL cluster as well as healing during a failover scenario.

To create a backup, you can run the following command:

pgo backup hacluster

which by default, will create an incremental pgBackRest backup. The reason for this is that the PostgreSQL Operator initially creates a
pgBackRest full backup when the cluster is initial provisioned, and pgBackRest will take incremental backups for each subsequent backup
until a different backup type is specified.

Most pgBackRest options are supported and can be passed in by the PostgreSQL Operator via the --backup-opts flag. What follows are
some examples for how to utilize pgBackRest with the PostgreSQL Operator to help you create your optimal disaster recovery setup.

Creating a Full Backup You can create a full backup using the following command:

pgo backup hacluster --backup-opts="--type=full"

89

https://www.pgbackrest.org

Creating a Differential Backup You can create a differential backup using the following command:

pgo backup hacluster --backup-opts="--type=diff"

Creating an Incremental Backup You can create a differential backup using the following command:

pgo backup hacluster --backup-opts="--type=incr"

An incremental backup is created without specifying any options after a full or differential backup is taken.

Creating Backups in S3

The PostgreSQL Operator supports creating backups in S3 or any object storage system that uses the S3 protocol. For more information,
please read the section on PostgreSQL Operator Backups with S3 in the architecture section.

Displaying Backup Information

You can see information about the current state of backups in a PostgreSQL cluster managed by the PostgreSQL Operator by executing
the following command:

pgo show backup hacluster

Setting Backup Retention

By default, pgBackRest will allow you to keep on creating backups until you run out of disk space. As such, it may be helpful to manage
how many backups are retained.

pgBackRest comes with several flags for managing how backups can be retained:

• --repo1-retention-full: how many full backups to retain
• --repo1-retention-diff: how many differential backups to retain
• --repo1-retention-archive: how many sets of WAL archives to retain alongside the full and differential backups that are retained

For example, to create a full backup and retain the previous 7 full backups, you would execute the following command:

pgo backup hacluster --backup-opts="--type=full --repo1-retention -full=7"

Scheduling Backups

Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its
scheduling sidecar that is deployed alongside the Operator.

Creating a Scheduled Backup For example, to schedule a full backup once a day at midnight, you can execute the following command:

pgo create schedule hacluster --schedule="0 1 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=full

To schedule an incremental backup once every 3 hours, you can execute the following command:

pgo create schedule hacluster --schedule="0 */3 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=incr

You can also create regularly scheduled backups and combine it with a retention policy. For example, using the above example of taking
a nightly full backup, you can specify a policy of retaining 21 backups by executing the following command:

pgo create schedule hacluster --schedule="0 0 * * *" \
--schedule-type=pgbackrest --pgbackrest -backup-type=full \
--schedule-opts="--repo1-retention -full=21"

90

Restore a Cluster

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery
using the pgo restore command. Note that both of these options are destructive to the existing PostgreSQL cluster; to “restore” the
PostgreSQL cluster to a new deployment, please see the clone section.

After a restore, there are some cleanup steps you will need to perform. Please review the Post Restore Cleanup section.

Full Restore To perform a full restore of a PostgreSQL cluster, you can execute the following command:

pgo restore hacluster

If you want your PostgreSQL cluster to be restored to a specific node, you can execute the following command:

pgo restore hacluster --node-label=failure-domain.beta.kubernetes.io/zone=us-central1-a

There are very few reasons why you will want to execute a full restore. If you want to make a copy of your PostgreSQL cluster, please use
pgo clone.

Point-in-time-Recovery (PITR) The more likely scenario when performing a PostgreSQL cluster restore is to recover to a particular
point-in-time (e.g. before a key table was dropped). For example, to restore a cluster to December 23, 2019 at 8:00am:

pgo restore hacluster --pitr-target="2019-12-23 08:00:00.000000+00" \
--backup-opts="--type=time"

When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections,
add pgBackRest’s --target-action=pause option to the --backup-opts parameter.

The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter.
For more information, please review the pgBackRest restore options

Post Restore Cleanup After a restore is complete, you will need to re-enable high-availability on a PostgreSQL cluster manually. You
can re-enable high-availability by executing the following command:

pgo update cluster hacluster --autofail=true

Logical Backups (pg_dump / pg_dumpall)

The PostgreSQL Operator supports taking logical backups with pg_dump and pg_dumpall. While they do not provide the same performance
and storage optimizations as the physical backups provided by pgBackRest, logical backups are helpful when one wants to upgrade between
major PostgreSQL versions, or provide only a subset of a database, such as a table.

Create a Logical Backup To create a logical backup of a full database, you can run the following command:

pgo backup hacluster --backup-type=pgdump

You can pass in specific options to --backup-opts, which can accept most of the options that the pg_dump command accepts. For example,
to only dump the data from a specific table called users:

pgo backup hacluster --backup-type=pgdump --backup-opts="-t users"

To use pg_dumpall to create a logical backup of all the data in a PostgreSQL cluster, you must pass the --dump-all flag in --backup-opts,
i.e.:

pgo backup hacluster --backup-type=pgdump --backup-opts="--dump-all"

Viewing Logical Backups To view an available list of logical backups, you can use the pgo show backup command:

pgo show backup --backup-type=pgdump

This provides information about the PVC that the logical backups are stored on as well as the timestamps required to perform a restore
from a logical backup.

91

https://pgbackrest.org/command.html#command-restore
https://www.postgresql.org/docs/current/app-pgdump.html

Restore from a Logical Backup To restore from a logical backup, you need to reference the PVC that the logical backup is stored
to, as well as the timestamp that was created by the logical backup.

You can restore a logical backup using the following command:

pgo restore hacluster --backup-type=pgdump --backup-pvc=hacluster -pgdump-pvc \
--pitr-target="2019-01-15-00-03-25" -n pgouser1

High-Availability: Scaling Up & Down

The PostgreSQL Operator supports a robust high-availability set up to ensure that your PostgreSQL clusters can stay up and running.
For detailed information on how it works, please see the high-availability architecture section.

Creating a New Replica

To create a new replica, also known as “scaling up”, you can execute the following command:

pgo scale hacluster --replica-count=1

If you wanted to add two new replicas at the same time, you could execute the following command:

pgo scale hacluster --replica-count=2

Viewing Available Replicas

You can view the available replicas in a few ways. First, you can use pgo show cluster to see the overall information about the
PostgreSQL cluster:

pgo show cluster hacluster

You can also find specific replica names by using the --query flag on the pgo failover and pgo scaledown commands, e.g.:

pgo failover --query hacluster

Manual Failover

The PostgreSQL Operator is set up with an automated failover system based on distributed consensus, but there may be times where
you wish to have your cluster manually failover. If you wish to have your cluster manually failover, first, query your cluster to determine
which failover targets are available. The query command also provides information that may help your decision, such as replication lag:

pgo failover --query hacluster

Once you have selected the replica that is best for your to failover to, you can perform a failover with the following command:

pgo failover hacluster --target=hacluster -abcd

where hacluster-abcd is the name of the PostgreSQL instance that you want to promote to become the new primary

Destroying a Replica To destroy a replica, first query the available replicas by using the --query flag on the pgo scaledown command,
i.e.:

pgo scaledown hacluster --query

Once you have picked the replica you want to remove, you can remove it by executing the following command:

pgo scaledown hacluster --target=hacluster -abcd

where hacluster-abcd is the name of the PostgreSQL replica that you want to destroy.

Cluster Maintenance & Resource Management

There are several operations that you can perform to modify a PostgreSQL cluster over its lifetime.

92

Modify CPU / Memory for a PostgreSQL Cluster As database workloads change, it may be necessary to modify the CPU and
memory allocation for your PostgreSQL cluster. The PostgreSQL Operator allows for this via the --cpu and --memory flags on the
pgo update cluster command. Similar to the create command, both flags accept values that follow the Kubernetes quantity format.

For example, to update a PostgreSQL cluster to use 8 CPU cores and has 32 gibibytes of memory, you can use the following command:

pgo update cluster hacluster --cpu=8 --memory=32Gi

The resource allocations apply to all instances in a PostgreSQL cluster: this means your primary and any replicas will have the same
cluster resource allocations. Be sure to specify resource requests that your Kubernetes environment can support.

NOTE: This operation can cause downtime. Modifying the resource requests allocated to a Deployment requires that the Pods in a
Deployment must be restarted. Each PostgreSQL instance is safely shutdown using the “fast” shutdown method to help ensure it will not
enter crash recovery mode when a new Pod is created.

When the operation completes, each PostgreSQL instance will have the new resource allocations.

Adding a Tablespace to a Cluster Based on your workload or volume of data, you may wish to add a tablespace to your PostgreSQL
cluster.

You can add a tablespace to an existing PostgreSQL cluster with the pgo update cluster command. Adding a tablespace to a cluster
uses a similar syntax to creating a cluster with a tablespace, for example:

pgo update cluster hacluster \
--tablespace=name=tablespace3:storageconfig=storageconfigname

NOTE: This operation can cause downtime. In order to add a tablespace to a PostgreSQL cluster, persistent volume claims (PVCs) need
to be created and mounted to each PostgreSQL instance in the cluster. The act of mounting a new PVC to a Kubernetes Deployment
causes the Pods in the deployment to restart.

Each PostgreSQL instance is safely shutdown using the “fast” shutdown method to help ensure it will not enter crash recovery mode when
a new Pod is created.

When the operation completes, the tablespace will be set up and accessible to use within the PostgreSQL cluster.

For more information on tablespaces, please visit the tablespace section of the documentation.

Clone a PostgreSQL Cluster

You can create a copy of an existing PostgreSQL cluster in a new PostgreSQL cluster by using the pgo clone command. The command
copies the pgBackRest repository from the existing cluster and creates a new, single instance primary as its own cluster. To create the
new, single instance, copy of a PostgreSQL cluster, you can execute the following command:

pgo clone hacluster newhacluster

Clone a PostgreSQL Cluster to Different PVC Size

You can have a cloned PostgreSQL cluster use a different PVC size, which is useful when moving your PostgreSQL cluster to a larger
PVC. For example, to clone a PostgreSQL cluster to a 256GiB PVC, you can execute the following command:

pgo clone hacluster newhacluster --pvc-size=256Gi

You can also have the cloned PostgreSQL cluster use a larger pgBackRest backup repository by setting its PVC size. For example, to have
a cloned PostgreSQL cluster use a 1TiB pgBackRest repository, you can execute the following command:

pgo clone hacluster newhacluster --pgbackrest -pvc-size=1Ti

Enable TLS

TLS allows secure TCP connections to PostgreSQL, and the PostgreSQL Operator makes it easy to enable this PostgreSQL feature. The
TLS support in the PostgreSQL Operator does not make an opinion about your PKI, but rather loads in your TLS key pair that you wish
to use for the PostgreSQL server as well as its corresponding certificate authority (CA) certificate. Both of these Secrets are required to
enable TLS support for your PostgreSQL cluster when using the PostgreSQL Operator, but it in turn allows seamless TLS support.

93

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://www.postgresql.org/docs/current/app-pg-ctl.html
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.postgresql.org/docs/current/app-pg-ctl.html

Setup

There are three items that are required to enable TLS in your PostgreSQL clusters:

• A CA certificate
• A TLS private key
• A TLS certificate

There are a variety of methods available to generate these items: in fact, Kubernetes comes with its own certificate management system!
It is up to you to decide how you want to manage this for your cluster. The PostgreSQL documentation also provides an example for how
to generate a TLS certificate as well.

To set up TLS for your PostgreSQL cluster, you have to create two Secrets: one that contains the CA certificate, and the other that
contains the server TLS key pair.

First, create the Secret that contains your CA certificate. Create the Secret as a generic Secret, and note that the following requirements
must be met:

• The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster
• The name of the key that is holding the CA must be ca.crt

There are optional settings for setting up the CA secret:

• You can pass in a certificate revocation list (CRL) for the CA secret by passing in the CRL using the ca.crl key name in the Secret.

For example, to create a CA Secret with the trusted CA to use for the PostgreSQL clusters, you could execute the following command:

kubectl create secret generic postgresql -ca --from-file=ca.crt=/path/to/ca.crt

To create a CA Secret that includes a CRL, you could execute the following command:

kubectl create secret generic postgresql -ca \
--from-file=ca.crt=/path/to/ca.crt \
--from-file=ca.crl=/path/to/ca.crl

Note that you can reuse this CA Secret for other PostgreSQL clusters deployed by the PostgreSQL Operator.

Next, create the Secret that contains your TLS key pair. Create the Secret as a a TLS Secret, and note the following requirement must
be met:

• The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster

kubectl create secret tls hacluster -tls-keypair \
--cert=/path/to/server.crt \
--key=/path/to/server.key

Now you can create a TLS-enabled PostgreSQL cluster!

Create a TLS Enabled PostgreSQL Cluster

Using the above example, to create a TLS-enabled PostgreSQL cluster that can accept both TLS and non-TLS connections, execute the
following command:

pgo create cluster hacluster -tls \
--server-ca-secret=hacluster -tls-keypair \
--server-tls-secret=postgresql -ca

Including the --server-ca-secret and --server-tls-secret flags automatically enable TLS connections in the PostgreSQL cluster
that is deployed. These flags should reference the CA Secret and the TLS key pair Secret, respectively.

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

94

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://www.postgresql.org/docs/current/ssl-tcp.html#SSL-CERTIFICATE-CREATION
https://kubernetes.io/docs/concepts/configuration/secret/

Force TLS in a PostgreSQL Cluster

There are many environments where you want to force all remote connections to occur over TLS, for example, if you deploy your PostgreSQL
cluster’s in a public cloud or on an untrusted network. The PostgreSQL Operator lets you force all remote connections to occur over TLS
by using the --tls-only flag.

For example, using the setup above, you can force TLS in a PostgreSQL cluster by executing the following command:
pgo create cluster hacluster -tls-only \

--tls-only \
--server-ca-secret=hacluster -tls-keypair --server-tls-secret=postgresql -ca

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:

off)

If you try to connect to a PostgreSQL cluster that is deployed using the --tls-only with TLS disabled (i.e. PGSSLMODE=disable), you
will receive an error that connections without TLS are unsupported.

Custom PostgreSQL Configuration({{< relref “/advanced/custom-configuration.md” >}})

Customizing PostgreSQL configuration is currently not subject to the pgo client, but given it is a common question, we thought it
may be helpful to link to how to do it from here. To find out more about how to [customize your PostgreSQL configuration]({{<
relref “/advanced/custom-configuration.md” >}}), please refer to the Custom PostgreSQL Configuration({{< relref “/advanced/custom-
configuration.md” >}}) section of the documentation.

pgAdmin 4: PostgreSQL Administration

pgAdmin 4 is a popular graphical user interface that lets you work with PostgreSQL databases from both a desktop or web-based client.
In the case of the PostgreSQL Operator, the pgAdmin 4 web client can be deployed and synchronized with PostgreSQL clusters so that
users can administrate their databases with their PostgreSQL username and password.

For example, let’s work with a PostgreSQL cluster called hippo that has a user named hippo with password datalake, e.g.:
pgo create cluster hippo --username=hippo --password=datalake

Once the hippo PostgreSQL cluster is ready, create the pgAdmin 4 deployment with the [pgo create pgadmin]({{< relref “/pgo-
client/reference/pgo_create_pgadmin.md” >}}) command:
pgo create pgadmin hippo

This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information into it. To
access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:
kubectl port-forward svc/hippo-pgadmin 5050:5050

Point your browser at http://localhost:5050 and use your database username (e.g. hippo) and password (e.g. datalake) to log in.

Figure 17: pgAdmin 4 Login Page

(Note: if your password does not appear to work, you can retry setting up the user with the [pgo update user]({{< relref “/pgo-
client/reference/pgo_update_user.md” >}}) command: pgo update user hippo --password=datalake)

95

https://www.pgadmin.org/

Figure 18: pgAdmin 4 Query

The pgo create user, pgo update user, and pgo delete user commands are synchronized with the pgAdmin 4 deployment. Any user
with credentials to this PostgreSQL cluster will be able to log in and use pgAdmin 4:
You can remove the pgAdmin 4 deployment with the [pgo delete pgadmin]({{< relref “/pgo-client/reference/pgo_delete_pgadmin.md”
>}}) command.
For more information, please read the [pgAdmin 4 Architecture]({{< relref “/architecture/pgadmin4.md” >}}) section of the documenta-
tion.

Standby Clusters: Multi-Cluster Kubernetes Deployments

A [standby PostgreSQL cluster]({{< relref “/architecture/high-availability/multi-cluster-kubernetes.md” >}}) can be used to create an
advanced high-availability set with a PostgreSQL cluster running in a different Kubernetes cluster, or used for other operations such as mi-
grating from one PostgreSQL cluster to another. Note: this is not [high availability]({{< relref “/architecture/high-availability/_index.md”
>}}) per se: a high-availability PostgreSQL cluster will automatically fail over upon a downtime event, whereas a standby PostgreSQL
cluster must be explicitly promoted.
With that said, you can run multiple PostgreSQL Operators in different Kubernetes clusters, and the below functionality will work!
Below are some commands for setting up and using standby PostgreSQL clusters. For more details on how standby clusters work, please
review the section on [Kubernetes Multi-Cluster Deployments]({{< relref “/architecture/high-availability/multi-cluster-kubernetes.md”
>}}).

Creating a Standby Cluster

Before creating a standby cluster, you will need to ensure that your primary cluster is created properly. Standby clusters require the use
of S3 or equivalent S3-compatible storage system that is accessible to both the primary and standby clusters. For example, to create a
primary cluster to these specifications:
shell pgo create cluster hippo --pgbouncer --replica-count=2 \ --pgbackrest-storage-type=local,s3 \ --pgbackrest-s3-key=<redacted>
\ --pgbackrest-s3-key-secret=<redacted> \ --pgbackrest-s3-bucket=watering-hole \ --pgbackrest-s3-endpoint=s3.amazonaws.com
\ --pgbackrest-s3-region=us-east-1 \ --password-superuser=supersecrethippo \ --password-replication=somewhatsecrethippo
\ --password=opensourcehippo

Before setting up the standby PostgreSQL cluster, you will need to wait a few moments for the primary PostgreSQL cluster to be ready.
Once your primary PostgreSQL cluster is available, you can create a standby cluster by using the following command:
pgo create cluster hippo-standby --standby --replica-count=2 \

--pgbackrest -storage-type=s3 \
--pgbackrest -s3-key=<redacted > \
--pgbackrest -s3-key-secret=<redacted > \
--pgbackrest -s3-bucket=watering -hole \
--pgbackrest -s3-endpoint=s3.amazonaws.com \
--pgbackrest -s3-region=us-east-1 \
--pgbackrest -repo-path=/backrestrepo/hippo-backrest -shared-repo \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

The standby cluster will take a few moments to bootstrap, but it is now set up!

96

Promoting a Standby Cluster

Before promoting a standby cluster, it is first necessary to shut down the primary cluster, otherwise you can run into a potential “split-brain”
scenario (if your primary Kubernetes cluster is down, it may not be possible to do this).

To shutdown, run the following command:

pgo update cluster hippo --shutdown

Once it is shut down, you can promote the standby cluster:

pgo update cluster hippo-standby --promote-standby

The standby is now an active PostgreSQL cluster and can start to accept writes.

To convert the previous active cluster into a standby cluster, you can run the following command:

pgo update cluster hippo --enable-standby

This will take a few moments to make this PostgreSQL cluster into a standby cluster. When it is ready, you can start it up with the
following command:

pgo update cluster hippo --startup

Monitoring

View Disk Utilization

You can see a comparison of Postgres data size versus the Persistent volume claim size by entering the following:

pgo df hacluster -n pgouser1

PostgreSQL Metrics via pgMonitor

You can view metrics about your PostgreSQL cluster using the pgMonitor stack by deploying the “crunchy-collect” sidecar with the
PostgreSQL cluster:

pgo create cluster hacluster --metrics

Note: To store and visualize the metrics, you must deploy Prometheus and Grafana with yoru PostgreSQL cluster. For in-
structions on installing Grafana and Prometheus in your environment, please review the [installation instructions]({{< relref
“/installation/other/ansible/installing-metrics.md” >}}) for the metrics stack.

Labels

Labels are a helpful way to organize PostgreSQL clusters, such as by application type or environment. The PostgreSQL Operator supports
managing Kubernetes Labels as a convenient way to group PostgreSQL clusters together.

You can view which labels are assigned to a PostgreSQL cluster using the pgo show cluster command. You are also able to see these
labels when using kubectl or oc.

Add a Label to a PostgreSQL Cluster

Labels can be added to PostgreSQL clusters using the pgo label command. For example, to add a label with a key/value pair of
env=production, you could execute the following command:

pgo label hacluster --label=env=production

Add a Label to Multiple PostgreSQL Clusters

You can add also add a label to multiple PostgreSQL clusters simultaneously using the --selector flag on the pgo label command. For
example, to add a label with a key/value pair of env=production to clusters that have a label key/value pair of app=payment, you could
execute the following command:

pgo label --selector=app=payment --label=env=production

97

https://en.wikipedia.org/wiki/Split-brain_(computing)

Policy Management

Create a Policy

To create a SQL policy, enter the following:

pgo create policy mypolicy --in-file=mypolicy.sql -n pgouser1

This examples creates a policy named mypolicy using the contents of the file mypolicy.sql which is assumed to be in the current directory.

You can view policies as following:

pgo show policy --all -n pgouser1

Apply a Policy

pgo apply mypolicy --selector=environment=prod
pgo apply mypolicy --selector=name=hacluster

Advanced Operations

Connection Pooling via pgBouncer

To add a pgbouncer Deployment to your Postgres cluster, enter:

pgo create cluster hacluster --pgbouncer -n pgouser1

You can add pgbouncer after a Postgres cluster is created as follows:

pgo create pgbouncer hacluster
pgo create pgbouncer --selector=name=hacluster

You can also specify a pgbouncer password as follows:

pgo create cluster hacluster --pgbouncer --pgbouncer -pass=somepass -n pgouser1

You can remove a pgbouncer from a cluster as follows:

pgo delete pgbouncer hacluster -n pgouser1

Query Analysis via pgBadger

You can create a pgbadger sidecar container in your Postgres cluster pod as follows:

pgo create cluster hacluster --pgbadger -n pgouser1

Create a Cluster using Specific Storage

pgo create cluster hacluster --storage-config=somestorageconfig -n pgouser1

Likewise, you can specify a storage configuration when creating a replica:

pgo scale hacluster --storage-config=someslowerstorage -n pgouser1

This example specifies the somestorageconfig storage configuration to be used by the Postgres cluster. This lets you specify a storage
configuration that is defined in the pgo.yaml file specifically for a given Postgres cluster.

You can create a Cluster using a Preferred Node as follows:

pgo create cluster hacluster --node-label=speed=superfast -n pgouser1

That command will cause a node affinity rule to be added to the Postgres pod which will influence the node upon which Kubernetes will
schedule the Pod.

Likewise, you can create a Replica using a Preferred Node as follows:

pgo scale hacluster --node-label=speed=slowerthannormal -n pgouser1

98

Create a Cluster with LoadBalancer ServiceType

pgo create cluster hacluster --service-type=LoadBalancer -n pgouser1

This command will cause the Postgres Service to be of a specific type instead of the default ClusterIP service type.

Namespace Operations

Create an Operator namespace where Postgres clusters can be created and managed by the Operator:

pgo create namespace mynamespace

Update a Namespace to be able to be used by the Operator:

pgo update namespace somenamespace

Delete a Namespace:

pgo delete namespace mynamespace

PostgreSQL Operator User Operations

PGO users are users defined for authenticating to the PGO REST API. You can manage those users with the following commands:

pgo create pgouser someuser --pgouser-namespaces="pgouser1,pgouser2"
--pgouser-password="somepassword" --pgouser-roles="pgoadmin"

pgo create pgouser otheruser --all-namespaces --pgouser-password="somepassword"
--pgouser-roles="pgoadmin"

Update a user:

pgo update pgouser someuser --pgouser-namespaces="pgouser1,pgouser2"
--pgouser-password="somepassword" --pgouser-roles="pgoadmin"

pgo update pgouser otheruser --all-namespaces --pgouser-password="somepassword"
--pgouser-roles="pgoadmin"

Delete a PGO user:

pgo delete pgouser someuser

PGO roles are also managed as follows:

pgo create pgorole somerole --permissions="Cat,Ls"

Delete a PGO role with:

pgo delete pgorole somerole

Update a PGO role with:

pgo update pgorole somerole --permissions="Cat,Ls"

PostgreSQL Cluster User Operations

Managed Postgres users can be viewed using the following command:

pgo show user hacluster

Postgres users can be created using the following command examples:

pgo create user hacluster --username=somepguser --password=somepassword --managed
pgo create user --selector=name=hacluster --username=somepguser --password=somepassword --managed

Those commands are identical in function, and create on the hacluster Postgres cluster, a user named somepguser, with a password of
somepassword, the account is managed meaning that these credentials are stored as a Secret on the Kubernetes cluster in the Operator
namespace.

Postgres users can be deleted using the following command:

pgo delete user hacluster --username=somepguser

99

That command deletes the user on the hacluster Postgres cluster.

Postgres users can be updated using the following command:

pgo update user hacluster --username=somepguser --password=frodo

That command changes the password for the user on the hacluster Postgres cluster.

Configuring Encryption of PostgreSQL Operator API Connection

The PostgreSQL Operator REST API connection is encrypted with keys stored in the pgo.tls Secret.

The pgo.tls Secret can be generated prior to starting the PostgreSQL Operator or you can let the PostgreSQL Operator generate the
Secret for you if the Secret does not exist.

Adjust the default keys to meet your security requirements using your own keys. The pgo.tls Secret is created when you run:

make deployoperator

The keys are generated when the RBAC script is executed by the cluster admin:

make installrbac

In some scenarios like an OLM deployment, it is preferable for the Operator to generate the Secret keys at runtime, if the pgo.tls Secret
does not exit when the Operator starts, a new TLS Secret will be generated.

In this scenario, you can extract the generated Secret TLS keys using:

kubectl cp <pgo-namespace >/<pgo-pod>:/tmp/server.key /tmp/server.key -c apiserver
kubectl cp <pgo-namespace >/<pgo-pod>:/tmp/server.crt /tmp/server.crt -c apiserver

example of the command below:

kubectl cp pgo/postgres -operator -585584f57d-ntwr5:tmp/server.key /tmp/server.key -c apiserver
kubectl cp pgo/postgres -operator -585584f57d-ntwr5:tmp/server.crt /tmp/server.crt -c apiserver

This server.key and server.crt can then be used to access the pgo-apiserver from the pgo CLI by setting the following variables in your
client environment:

export PGO_CA_CERT=/tmp/server.crt
export PGO_CLIENT_CERT=/tmp/server.crt
export PGO_CLIENT_KEY=/tmp/server.key

You can view the TLS secret using:

kubectl get secret pgo.tls -n pgo

or

oc get secret pgo.tls -n pgo

If you create the Secret outside of the Operator, for example using the default installation script, the key and cert that are generated by
the default installation are found here:

$PGOROOT/conf/postgres -operator/server.crt
$PGOROOT/conf/postgres -operator/server.key

The key and cert are generated using the deploy/gen-api-keys.sh script.

That script gets executed when running:

make installrbac

You can extract the server.key and server.crt from the Secret using the following:

oc get secret pgo.tls -n $PGO_OPERATOR_NAMESPACE -o jsonpath='{.data.tls\.key}' | base64 --decode
> /tmp/server.key

oc get secret pgo.tls -n $PGO_OPERATOR_NAMESPACE -o jsonpath='{.data.tls\.crt}' | base64 --decode
> /tmp/server.crt

This server.key and server.crt can then be used to access the pgo-apiserver REST API from the pgo CLI on your client host.

100

PostreSQL Operator RBAC

The conf/postgres-operator/pgorole file is read at start up time when the operator is deployed to the Kubernetes cluster. This file defines
the PostgreSQL Operator roles whereby PostgreSQL Operator API users can be authorized.

The conf/postgres-operator/pgouser file is read at start up time also and contains username, password, role, and namespace information
as follows:

username:password:pgoadmin:
pgouser1:password:pgoadmin:pgouser1
pgouser2:password:pgoadmin:pgouser2
pgouser3:password:pgoadmin:pgouser1,pgouser2
readonlyuser:password:pgoreader:

The format of the pgouser server file is:

<username >:<password >:<role>:<namespace ,namespace >

The namespace is a comma separated list of namespaces that user has access to. If you do not specify a namespace, then all namespaces
is assumed, meaning this user can access any namespace that the Operator is watching.

A user creates a .pgouser file in their $HOME directory to identify themselves to the Operator. An entry in .pgouser will need to match
entries in the conf/postgres-operator/pgouser file. A sample .pgouser file contains the following:

username:password

The format of the .pgouser client file is:

<username >:<password >

The users pgouser file can also be located at:

/etc/pgo/pgouser

or it can be found at a path specified by the PGOUSER environment variable.

If the user tries to access a namespace that they are not configured for within the server side pgouser file then they will get an error
message as follows:

Error: user [pgouser1] is not allowed access to namespace [pgouser2]

If you wish to add all avaiable permissions to a pgorole, you can specify it by using a single * in your configuration. Note that if you are
editing your YAML file directly, you will need to ensure to write it as "*" to ensure it is recognized as a string.

The following list shows the current complete list of possible pgo permissions that you can specify within the pgorole file when creating
roles:

Permission Description

ApplyPolicy allow pgo apply
Cat allow pgo cat
Clone allow pgo clone
CreateBackup allow pgo backup
CreateCluster allow pgo create cluster
CreateDump allow pgo create pgdump
CreateFailover allow pgo failover
CreatePgAdmin allow pgo create pgadmin
CreatePgbouncer allow pgo create pgbouncer
CreatePolicy allow pgo create policy
CreateSchedule allow pgo create schedule
CreateUpgrade allow pgo upgrade
CreateUser allow pgo create user
DeleteBackup allow pgo delete backup
DeleteCluster allow pgo delete cluster
DeletePgAdmin allow pgo delete pgadmin

101

Permission Description

DeletePgbouncer allow pgo delete pgbouncer
DeletePolicy allow pgo delete policy
DeleteSchedule allow pgo delete schedule
DeleteUpgrade allow pgo delete upgrade
DeleteUser allow pgo delete user
DfCluster allow pgo df
Label allow pgo label
Load allow pgo load
Reload allow pgo reload
Restore allow pgo restore
RestoreDump allow pgo restore for pgdumps
ShowBackup allow pgo show backup
ShowCluster allow pgo show cluster
ShowConfig allow pgo show config
ShowPgAdmin allow pgo show pgadmin
ShowPgBouncer allow pgo show pgbouncer
ShowPolicy allow pgo show policy
ShowPVC allow pgo show pvc
ShowSchedule allow pgo show schedule
ShowNamespace allow pgo show namespace
ShowSystemAccounts allows commands with the--show-system-accounts flag to return system account information (e.g. the postgres superuser)
ShowUpgrade allow pgo show upgrade
ShowWorkflow allow pgo show workflow
Status allow pgo status
TestCluster allow pgo test
UpdatePgBouncer allow pgo update pgbouncer
UpdateCluster allow pgo update cluster
User allow pgo user
Version allow pgo version

If the user is unauthorized for a pgo command, the user will get back this response:

Error: Authentication Failed: 403

Making Security Changes

Importantly, it is necesssary to redeploy the PostgreSQL Operator prior to giving effect to the user security changes in the pgouser and
pgorole files:

make deployoperator

Performing this command will recreate the pgo-config ConfigMap that stores these files and is mounted by the Operator during its
initialization.

Installation of PostgreSQL Operator RBAC

Please note, installation of the PostgreSQL Operator RBAC requires Kubernetes Cluster-Admin.

The first step is to install the PostgreSQL Operator RBAC configuration. This can be accomplished by running:

102

make installrbac

This script will install the PostreSQL Operator Custom Resource Definitions, CRD’s and creates the following RBAC resources on your
Kubernetes cluster:

Setting Definition

Custom Resource Definitions (crd.yaml) pgclusters
pgpolicies
pgreplicas
pgtasks
pgupgrades

Cluster Roles (cluster-roles.yaml) pgopclusterrole
pgopclusterrolecrd

Cluster Role Bindings (cluster-roles-bindings.yaml) pgopclusterbinding
pgopclusterbindingcrd

Service Account (service-accounts.yaml) postgres-operator
pgo-backrest

Roles (rbac.yaml) pgo-role
pgo-backrest-role

Role Bindings (rbac.yaml) pgo-backrest-role-binding
pgo-role-binding

Note that the cluster role bindings have a naming convention of pgopclusterbinding-PGOOPERATORN AMESPACEandpgopclusterbindingcrd−PGO_OPERATOR_NAMESPACE.
The PGO_OPERATOR_NAMESPACE environment variable is added to make each cluster role binding name unique and to support
more than a single PostgreSQL Operator being deployed on the same Kubernertes cluster.

Also, the specific Cluster Roles installed depends on the Namespace Mode enabled via the PGO_NAMESPACE_MODE environment variable
when running make installrbac. Please consult the Namespace documentation for more information regarding the Namespace Modes
available, including the specific ClusterRoles required to enable each mode.

Custom PostgreSQL Configuration

Users and administrators can specify a custom set of PostgreSQL configuration files to be used when creating a new PostgreSQL cluster.
The configuration files you can change include -

• postgres-ha.yaml
• setup.sql

Different configurations for PostgreSQL might be defined for the following -

• OLTP types of databases
• OLAP types of databases
• High Memory
• Minimal Configuration for Development
• Project Specific configurations
• Special Security Requirements

Global ConfigMap If you create a configMap called pgo-custom-pg-config with any of the above files within it, new clusters will use
those configuration files when setting up a new database instance. You do NOT have to specify all of the configuration files. It is entirely
up to your use case to determine which to use.

An example set of configuration files and a script to create the global configMap is found at

$PGOROOT/examples/custom-config

If you run the create.sh script there, it will create the configMap that will include the PostgreSQL configuration files within that directory.

103

Config Files Purpose The postgres-ha.yaml file is the main configuration file that allows for the configuration of a wide variety of
tuning parameters for you PostgreSQL cluster. This includes various PostgreSQL settings, e.g. those that should be applied to files such
as postgresql.conf, pg_hba.conf and pg_ident.conf, as well as tuning paramters for the High Availability features inlcuded in each
cluster. The various configuration settings available can be found here

The setup.sql file is a SQL file that is executed following the initialization of a new PostgreSQL cluster, specifically after initdb is run when
the database is first created. Changes would be made to this if you wanted to define which database objects are created by default.

Granular Config Maps Granular config maps can be defined if it is necessary to use a different set of configuration files for different
clusters rather than having a single configuration (e.g. Global Config Map). A specific set of ConfigMaps with their own set of PostgreSQL
configuration files can be created. When creating new clusters, a --custom-config flag can be passed along with the name of the
ConfigMap which will be used for that specific cluster or set of clusters.

Defaults If there is no reason to change the default PostgreSQL configuration files that ship with the Crunchy Postgres container, there
is no requirement to. In this event, continue using the Operator as usual and avoid defining a global configMap.

Modifying PostgreSQL Cluster Configuration

Once a PostgreSQL cluster has been initialized, its configuration settings can be updated and modified as needed. This done by modifying
the <clusterName>-pgha-config ConfigMap that is created for each individual PostgreSQL cluster.

The <clusterName>-pgha-config ConfigMap is populated following cluster initializtion, specifically using the baseline configuration
settings used to bootstrap the cluster. Therefore, any customiztions applied using a custom postgres-ha.yaml file as described in the
Custom PostgreSQL Configuration section above will also be included when the ConfigMap is populated.

The various configuration settings available for modifying and updating and cluster’s configuration can be found here. Please proceed with
caution when modiying configuration, especially those settings applied by default by Operator. Certain settings are required for normal
operation of the Operator and the PostgreSQL clusters it creates, and altering these settings could result in expected behavior.

Types of Configuration

Within the <clusterName>-pgha-config ConfigMap are two forms of configuration:

• Distributed Configuration Store (DCS): Cluster-wide configuration settings that are applied to all database servers in the
PostgreSQL cluster

• Local Database: Configuration settings that are applied individually to each database server (i.e. the primary and each replica)
within the cluster.

The DCS configuration settings are stored within the <clusterName>-pgha-config ConfigMap in a configuration named <clusterName>-dcs-config,
while the local database configurations are stored in one or more configurations named <serverName>-local-config (with one local
configuration for the primary and each replica within the cluster). Please note that as described here, certain settings can only be applied
via the DCS to ensure they are uniform among the primary and all replicas within the cluster.

The following is an example of the both the DCS and primary configuration settings as stored in the <clusterName>-pgha-config
ConfigMap for a cluster named mycluster. Please note the mycluster-dcs-config configuration defining the DCS configuration
for mycluster, along with the mycluster-local-config configuration defining the local configuration for the database server named
mycluster, which is the current primary within the PostgreSQL cluster.

$ kubectl describe cm mycluster -pgha-config
Name: mycluster -pgha-config
Namespace: pgouser1
Labels: pg-cluster=mycluster

pgha-config=true
vendor=crunchydata

Annotations: <none>

Data
====
mycluster -dcs-config:

postgresql:

parameters:
archive_command: source /opt/cpm/bin/pgbackrest/pgbackrest -set-env.sh && pgbackrest

archive-push "%p"

104

https://access.crunchydata.com/documentation/patroni/latest/settings/index.html#settings
https://access.crunchydata.com/documentation/patroni/latest/settings/index.html#settings
https://access.crunchydata.com/documentation/patroni/latest/dynamic_configuration/

archive_mode: true
archive_timeout: 60
log_directory: pg_log
log_min_duration_statement: 60000
log_statement: none
max_wal_senders: 6
shared_buffers: 128MB
shared_preload_libraries: pgaudit.so,pg_stat_statements.so
temp_buffers: 8MB
unix_socket_directories: /tmp,/crunchyadm
wal_level: logical
work_mem: 4MB

recovery_conf:
restore_command: source /opt/cpm/bin/pgbackrest/pgbackrest -set-env.sh && pgbackrest

archive-get %f "%p"
use_pg_rewind: true

mycluster -local-config:

postgresql:

callbacks:
on_role_change: /opt/cpm/bin/callbacks/pgha-on-role-change.sh

create_replica_methods:
- pgbackrest
- basebackup
pg_hba:
- local all postgres peer
- local all crunchyadm peer
- host replication primaryuser 0.0.0.0/0 md5
- host all primaryuser 0.0.0.0/0 reject
- host all all 0.0.0.0/0 md5
pgbackrest:

command: /opt/cpm/bin/pgbackrest/pgbackrest -create-replica.sh
keep_data: true
no_params: true

pgbackrest_standby:
command: /opt/cpm/bin/pgbackrest/pgbackrest -create-replica.sh
keep_data: true
no_master: 1
no_params: true

pgpass: /tmp/.pgpass
remove_data_directory_on_rewind_failure: true
use_unix_socket: true

Updating Configuration Settings

In order to update a cluster’s configuration settings and then apply those settings (e.g. to the DCS and/or any individual database
servers), the DCS and local configuration settings within the <clusterName>-pgha-config ConfigMap can be modified. This can be done
using the various commands available using the kubectl client (or the oc client if using OpenShift) for modifying Kubernetes resources.
For instance, the following command can be utilized to open the ConfigMap in a local text editor, and then update the various cluster
configurations as needed:

kubectl edit configmap mycluster -pgha-config

Once the <clusterName>-pgha-config ConfigMap has been updated, any changes made will be detected by the Operator, and then
applied to the DCS and/or any individual database servers within the cluster.

PostgreSQL Configuration In order to update the postgresql.conf file for a one of more database servers, the parameters section
of either the DCS and/or a local database configuration can be updated, e.g.:

postgresql:

parameters:
max_wal_senders: 10

105

The various key/value pairs provided within the paramters section result in the configuration of the same settings within the
postgresql.conf file. Please note that settings applied locally to a database server take precendence over those set via the DCS (with
the exception being those that must be set via the DCS, as described here).

Also, please note that pg_hba and pg_ident sections exist to update both the pg_hba.conf and pg_ident.conf PostgreSQL configuration
files as needed.

Restarting Database Servers Changes to certain settings may require a restart of a PostgreSQL database. This can be accomplished
using the patronictl utility included wihtin each PostgreSQL database container in the cluster, specifically using the patronictl
restart command. For example, to detect if a restart is needed for a server in a cluster called mycluster, the kubectl exec command
can be utilized to access the database container for the primary PostgreSQL database server, and run the patronictl list command:

$ kubectl exec -it mycluster -6f89d8bb85 -pnlwz -- patronictl list
+ Cluster: mycluster (6821144425371877525) -------+---------+----+-----------+-----------------+
| Member | Host | Role | State | TL | Lag in MB | Pending restart |
+-----------------------------+-----------+--------+---------+----+-----------+-----------------+
| mycluster -6f89d8bb85 -pnlwz | 10.44.0.6 | Leader | running | 1 | | * |
+-----------------------------+-----------+--------+---------+----+-----------+-----------------+

Here we can see that the mycluster-6f89d8bb85-pnlwz server is pending a restart, which can then be accomplished as follows:

$ kubectl exec -it mycluster -6f89d8bb85 -pnlwz -- patronictl restart mycluster
mycluster -6f89d8bb85 -pnlwz

+ Cluster: mycluster (6821144425371877525) -------+---------+----+-----------+
| Member | Host | Role | State | TL | Lag in MB |
+-----------------------------+-----------+--------+---------+----+-----------+
| mycluster -6f89d8bb85 -pnlwz | 10.44.0.6 | Leader | running | 1 | |
+-----------------------------+-----------+--------+---------+----+-----------+
When should the restart take place (e.g. 2020-04-29T17:23) [now]: now
Are you sure you want to restart members mycluster -6f89d8bb85 -pnlwz? [y/N]: y
Restart if the PostgreSQL version is less than provided (e.g. 9.5.2) []:
Success: restart on member mycluster -6f89d8bb85 -pnlwz

Please note that these commands can be run from the primary or any replica database container within the PostgreSQL cluster being
updated.

Refreshing Configuration Settings

If necessary, it is possible to refresh the configuration stored within the <clusterName>-pgha-config ConfigMap with a fresh copy of
either the DCS configuration and/or the configuration for one or more local database servers. This is specifically done by fully deleting
a configuration from the <clusterName>-pgha-config ConfigMap. Once a configuration has been deleted, the Operator will detect this
and refresh the ConfigMap with a fresh copy of that specific configuration.

For instance, the following kubectl patch command can be utilized to remove the mycluster-dcs-config configuration from the example
above, causing that specific configuration to be refreshed with a fresh copy of the DCS configuration settings for mycluster:

kubectl patch configmap mycluster -pgha-config \
--type='json' -p='[{"op": "remove", "path": "/data/mycluster -dcs-config"}]'

Direct API Calls

The API can also be accessed by interacting directly with the API server. This can be done by making curl calls to POST or GET
information from the server. In order to make these calls you will need to provide certificates along with your request using the --cacert,
--key, and --cert flags. Next you will need to provide the username and password for the RBAC along with a header that includes the
content type and the --insecure flag. These flags will be the same for all of your interactions with the API server and can be seen in the
following examples.

The most basic example of this interaction is getting the version of the API server. You can send a GET request to $PGO_APISERVER_URL/version
and this will send back a json response including the API server version. This is important because the server version and the client
version must match. If you are using pgo this means you must have the correct version of the client but with a direct call you can specify
the client version as part of the request.

The API server is setup to work with the pgo command line interface so the parameters that are passed to the server can be found by
looking at the related flags.

Get API Server Version

106

https://access.crunchydata.com/documentation/patroni/latest/dynamic_configuration/

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X GET $PGO_APISERVER_URL/version

You can create a cluster by sending a POST request to $PGO_APISERVER_URL/clusters. In this example --data is being sent to the API
URL that includes the client version that was returned from the version call, the namespace where the cluster should be created, and the
name of the new cluster.

Create Cluster

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X POST --data \

'{"ClientVersion":"4.3.0",
"Namespace":"pgouser1",
"Name":"mycluster",
"Series":1}' \

$PGO_APISERVER_URL/clusters

The last two examples show you how to show and delete a cluster. Notice how instead of passing "Name":"mycluster" you pass
"Clustername":"mycluster"to reference a cluster that has already been created. For the show cluster example you can replace
"Clustername":"mycluster" with "AllFlag":true to show all of the clusters that are in the given namespace.

Show Cluster

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X POST --data \

'{"ClientVersion":"4.3.0",
"Namespace":"pgouser1",
"Clustername":"mycluster"}' \

$PGO_APISERVER_URL/showclusters

Delete Cluster

curl --cacert $PGO_CA_CERT --key $PGO_CLIENT_KEY --cert $PGO_CA_CERT \
-u pgoadmin:examplepassword -H "Content-Type:application/json" --insecure \
-X POST --data \

'{"ClientVersion":"4.3.0",
"Namespace":"pgouser1",
"Clustername":"mycluster"}' \

$PGO_APISERVER_URL/clustersdelete

Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud Environments

Overview When using the PostgreSQL Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consider-
ation must be taken to ensure all pods and the associated volumes re scheduled and provisioned within the same zone.

Given that a pod is unable mount a volume that is located in another zone, any volumes that are dynamically provisioned must be
provisioned in a topology-aware manner according to the specific scheduling requirements for the pod.

This means that when a new PostgreSQL cluster is created, it is necessary to ensure that the volume containing the database files for
the primary PostgreSQL database within the PostgreSQL clluster is provisioned in the same zone as the node containing the PostgreSQL
primary pod that will be accesing the applicable volume.

Dynamic Provisioning of Volumes: Default Behavoir By default, the Kubernetes scheduler will ensure any pods created that
claim a specific volume via a PVC are scheduled on a node in the same zone as that volume. This is part of the default Kubernetes
multi-zone support.

However, when using Kubernetes dynamic provisioning, volumes are not provisioned in a topology-aware manner.

More specifically, when using dynamnic provisioning, volumes wills not be provisioned according to the same scheduling requirements that
will be placed on the pod that will be using it (e.g. it will not consider node selectors, resource requirements, pod affinity/anti-affinity,
and various other scheduling requirements). Rather, PVCs are immediately bound as soon as they are requested, which means volumes
are provisioned without knowledge of these scheduling requirements.

This behavior defined using the volumeBindingMode configuration applicable to the Storage Class being utilized to dynamically provision
the volume. By default,volumeBindingMode is set to Immediate.

107

https://kubernetes.io/docs/setup/multiple-zones/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

This default behavoir for dynamic provisioning can be seen in the Storage Class definition for a Google Cloud Engine Persistent Disk
(GCE PD):

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard
volumeBindingMode: Immediate

As indicated, volumeBindingMode indicates the default value of Immediate.

Issues with Dynamic Provisioning of Volumes in PostgreSQL Operator Unfortunately, the default setting for dynamic provisi-
noing of volumes in mulit-zone Kubernetes cluster environments results in undesired behavoir when using the PostgreSQL Operator.

Within the PostgreSQL Operator, a node label is implemented as a preferredDuringSchedulingIgnoredDuringExecution node affinity
rule, which is an affinity rule that Kubernetes will attempt to adhere to when scheduling any pods for the cluster, but will not guarantee.
More information on node affinity rules can be found here).

By using Immediate for the volumeBindingMode in a multi-zone cluster environment, the scheduler will ignore any requested (but not
mandatory) scheduling requirements if necessary to ensure the pod can be scheduled. The scheduler will ultimately schedule the pod on
a node in the same zone as the volume, even if another node was requested for scheduling that pod.

As it relates to the PostgreSQL Operator specifically, a node label specified using the --node-label option when creating a cluster using
the pgo create cluster command in order target a specific node (or nodes) for the deployment of that cluster.

Therefore, if the volume ends up in a zone other than the zone containing the node (or nodes) defined by the node label, the node label
will be ignored, and the pod will be scheduled according to the zone containing the volume.

Configuring Volumes to be Topology Aware In order to overcome this default behavior, it is necessary to make the dynamically
provisioned volumes topology aware.

This is accomplished by setting the volumeBindingMode for the storage class to WaitForFirstConsumer, which delays the dynamic
provisioning of a volume until a pod using it is created.

In other words, the PVC is no longer bound as soon as it is requested, but rather waits for a pod utilizing it to be creating prior to binding.
This change ensures that volume can take into account the scheduling requirements for the pod, which in the case of a multi-zone cluster
means ensuring the volume is provisioned in the same zone containing the node where the pod has be scheduled. This also means the
scheduler should no longer ignore a node label in order to follow a volume to another zone when scheduling a pod, since the volume will
now follow the pod according to the pods specificscheduling requirements.

The following is an example of the the same Storage Class defined above, only with volumeBindingMode now set to WaitForFirstConsumer:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:

type: pd-standard
volumeBindingMode: WaitForFirstConsumer

Additional Solutions If you are using a version of Kubernetes that does not support WaitForFirstConsumer, an alternate (and now
deprecated) solution exists in the form of parameters that can be defined on the Storage Class definition to ensure volumes are provisioned
in a specific zone (or zones).

For instance, when defining a Storage Class for a GCE PD for use in Google Kubernetes Engine (GKE) cluster, the zone parameter can
be used to ensure any volumes dynamically provisioned using that Storage Class are located in that specific zone. The following is an
example of a Storage Class for a GKE cluster that will provision volumes in the us-east1 zone:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

name: example-sc
provisioner: kubernetes.io/gce-pd
parameters:

108

https://kubernetes.i/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

type: pd-standard
replication -type: none
zone: us-east1

Once storage classes have been defined for one or more zones, they can then be defined as one or more storage configurations within the
pgo.yaml configuration file (as described in the PGO YAML configuration guide).

From there those storage configurations can then be selected when creating a new cluster, as shown in the following example:

pgo create cluster mycluster --storage-config=example-sc

With this approach, the pod will once again be scheduled according to the zone in which the volume was provisioned.

However, the zone parameters defined on the Storage Class bring consistency to scheduling by guaranteeing that the volume, and therefore
also the pod using that volume, are scheduled in a specific zone as defined by the user, bringing consistency and predictability to volume
provisioning and pod scheduling in multi-zone clusters.

For more information regarding the specific parameters available for the Storage Classes being utilizing in your cloud environment, please
see the Kubernetes documentation for Storage Classes.

Lastly, while the above applies to the dynamic provisioning of volumes, it should be noted that volumes can also be manually provisioned
in desired zones in order to achieve the desired topology requirements for any pods and their volumes.

Upgrading the Crunchy PostgreSQL Operator

Below are two methods for upgrading your existing deployment of the PostgreSQL Operator.

If you are upgrading from PostgreSQL Operator 4.1.0 or later, you can use the Automated Upgrade Procedure.

For versions before 4.1.0, please see the appropriate manual procedure.

Automated Upgrade Procedure

The automated upgrade to a new release of the PostgreSQL Operator comprises two main steps:

• Upgrading the PostgreSQL Operator itself
• Upgrading the existing PostgreSQL Clusters to the new release

The first step will result in an upgraded PostgreSQL Operator that is able to create and manage new clusters as expected, but will be
unable to manage existing clusters until they have been upgraded. The second step upgrades the clusters to the current Operator version,
allowing them to once again be fully managed by the Operator.

The automated upgrade procedure is designed to facilate the quickest and most efficient method to the current release of the PostgreSQL
Operator. However, as with any upgrade, there are several considerations before beginning.

Considerations

1. Cluster Downtime - The re-creation of clusters will take some time, generally on the order of minutes but potentially longer depending
on the operating environment. As such, the timing of the upgrade will be an important consideration. It should be noted that the
upgrade of the PostgreSQL Operator itself will leave any existing cluster resources in place until individual pgcluster upgrades are
performed.

2. Destruction and Re-creation of Certain Resources - As this upgrade process does destroy and recreate most elements of the cluster,
unhealthy Kubernetes or Openshift environments may have difficulty recreating the necessary elements. Node availability, necessary
PVC storage allocations and processing requirements are a few of the resource considerations to make before proceeding.

3. Compatibility with Custom Configurations - Given the nearly endless potential for custom configuration settings, it is important to
consider any resource or implemenation that might be uniquely tied to the current PostgreSQL Operator version.

4. Versions Supported - This upgrade currently supports cluster upgrades from PostgreSQL Operator version 4.1.0 and later.

5. PostgreSQL Major Version Requirements - The underlying PostgreSQL major version must match between the old and new clusters.
For example, if you are upgrading a 4.1.0 version of the PostgreSQL Operator and the cluster is using PostgreSQL 11.5, your upgraded
clusters will need to use container images with a later minor version of PostgreSQL 11. Note that this is not a requirement for new
clusters, which may use any currently supported version. For more information, please see the [Compatibility Requirements]({{<
relref “configuration/compatibility.md” >}}).

109

https://kubernetes.io/docs/concepts/storage/storage-classes/

6. Storage Requirements - An essential part of both the automated and manual upgrade procedures is the reuse of existing PVCs. As
such, it is essential that the existing storage settings are maintained for any upgraded clusters.

7. As opposed to the manual upgrade procedures, the automated upgrade is designed to leave existing resources (such as CRDs, config
maps, secrets, etc) in place whenever possible to minimize the need for resource re-creation.

8. Metrics - While the PostgreSQL Operator upgrade process will not delete an existing Metrics Stack, it does not currently support
the upgrade of existing metrics infrastructure.

NOTE: As with any upgrade procedure, it is strongly recommended that a full logical backup is taken before any upgrade
procedure is started. Please see the Logical Backups section of the Common Tasks page for more information.

Automated Upgrade when using an Ansible installation of the PostgreSQL Operator

For existing PostgreSQL Operator deployments that were installed using Ansible, the upgrade process is straightforward.

First, you will copy your existing inventory file as a backup for your existing settings. You will reference these settings, but you will need
to use the updated version of the inventory file for the current version of PostgreSQL Operator.

Once you’ve checked out the appropriate release tag, please follow the [Update Instructions]({{< relref “installation/other/ansible/updating-
operator.md” >}}), being sure to update the new inventory file with your required settings. Please keep the above Considerations in
mind, particularly with regard to the version and storage requirements listed.

Once the update is complete, you should now see the PostgreSQL Operator pods are up and ready. It is strongly recommended that you
create a test cluster to validate proper functionality before moving on to the Automated Cluster Upgrade section below.

Automated Upgrade when using a Bash installation of the PostgreSQL Operator

Like the Ansible procedure given above, the Bash upgrade procedure for upgrading the PostgreSQL Operator will require some manual
configuration steps before the upgrade can take place. These updates will be made to your user’s environment variables and the pgo.yaml
configuration file.

PostgreSQL Operator Configuration Updates To begin, you will need to make the following updates to your existing configuration.

Bashrc File Updates First, you will make the following updates to your $HOME/.bashrc file.

When upgrading from version 4.1.X, in $HOME/.bashrc

Add the following variables:

export TLS_CA_TRUST=""
export ADD_OS_TRUSTSTORE=false
export NOAUTH_ROUTES=""

Disable default inclusion of OS trust in PGO clients
export EXCLUDE_OS_TRUST=false

Then, for either 4.1.X or 4.2.X,

Update the PGO_VERSION variable to 4.3.0

Finally, source this file with

source $HOME/.bashrc

PostgreSQL Operator Configuration File updates Next, you will and save a copy of your existing pgo.yaml file ($PGOROOT/conf/postgres-operator/pgo.yaml)
as pgo_old.yaml or similar.

Once this is saved, you will checkout the current release of the PostgreSQL Operator and update the pgo.yaml for the current version,
making sure to make updates to the CCPImageTag and storage settings in line with the Considerations given above.

110

Upgrading the Operator Once the above configuration updates are completed, the PostgreSQL Operator can be upgraded. To help
ensure that needed resources are not inadvertently deleted during an upgrade of the PostgreSQL Operator, a helper script is provided. This
script provides a similar function to the Ansible installation method’s ‘update’ tag, where the Operator is undeployed, and the designated
namespaces, RBAC rules, pods, etc are redeployed or recreated as appropriate, but required CRDs and other resources are left in place.

To use the script, execute:

$PGOROOT/deploy/upgrade-pgo.sh

This script will undeploy the current PostgreSQL Operator, configure the desired namespaces, install the RBAC configuration, deploy the
new Operator, and, attempt to install a new PGO client, assuming default location settings are being used.

After this script completes, it is strongly recommended that you create a test cluster to validate the Operator is functioning as expected
before moving on to the individual cluster upgrades.

PostgreSQL Operator Automated Cluster Upgrade

Previously, the existing cluster upgrade focused on updating a cluster’s underlying container images. However, due to the various changes
in the PostgreSQL Operator’s operation between the various versions (including numerous updates to the relevant CRDs, integration
of Patroni for HA and other significant changes), updates between PostgreSQL Operator releases required the manual deletion of the
existing clusters while preserving the underlying PVC storage. After installing the new PostgreSQL Operator version, the clusters could
be recreated manually with the name of the new cluster matching the existing PVC’s name.

The automated upgrade process provides a mechanism where, instead of being deleted, the existing PostgreSQL clusters will be left in
place during the PostgreSQL Operator upgrade. While normal Operator functionality will be restricted on these existing clusters until
they are upgraded to the currently installed PostgreSQL Operator version, the pods, services, etc will still be in place and accessible via
other methods (e.g. kubectl, service IP, etc).

To upgrade a particular cluster, use

pgo upgrade mycluster

This will follow a similar process to the documented manual process, where the pods, deployments, replicasets, pgtasks and jobs are
deleted, the cluster’s replicas are scaled down and replica PVCs deleted, but the primary PVC and backrest-repo PVC are left in place.
Existing services for the primary, replica and backrest-shared-repo are also kept and will be updated to the requirements of the current
version. Configmaps and secrets are kept except where deletion is required. For a cluster ‘mycluster’, the following configmaps will be
deleted (if they exist) and recreated:

mycluster -leader
mycluster -pgha-default-config

along with the following secret:

mycluster -backrest -repo-config

The pgcluster CRD will be read, updated automatically and replaced, at which point the normal cluster creation process will take over.
The end result of the upgrade should be an identical numer of pods, deployments, replicas, etc with a new pgbackrest backup taken, but
existing backups left in place.

Finally, to disable PostgreSQL version checking during the upgrade, such as for when container images are re-tagged and no longer follow
the standard version tagging format, use the “ignore-validation” flag:

pgo upgrade mycluster --ignore-validation

That will allow the upgrade to proceed, regardless of the tag values. Please note, the underlying image must still be chosen in accordance
with the considerations listed above.

Manually Upgrading the Operator and PostgreSQL Clusters

In the event that the automated upgrade cannot be used, below are manual upgrade procedures for both PostgreSQL Operator 3.5 and
4.0 releases. These procedures will require action by the Operator administrator of your organization in order to upgrade to the current
release of the Operator. Some upgrade steps are still automated within the Operator, but not all are possible with this upgrade method.
As such, the pages below show the specific steps required to upgrade different versions of the PostgreSQL Operator depending on your
current environment.

In the event that you are performing a manual upgrade, it is recommended to upgrade to the latest PostgreSQL Operator available.

[Manual Upgrade - PostgreSQL Operator 3.5]({{< relref “upgrade/upgrade35.md” >}})

[Manual Upgrade - PostgreSQL Operator 4]({{< relref “upgrade/upgrade4.md” >}})

111

Upgrading the Crunchy PostgreSQL Operator from Version 3.5 to 4.3.0

This section will outline the procedure to upgrade a given cluster created using PostgreSQL Operator 3.5.x to PostgreSQL Operator version
4.3.0. This version of the PostgreSQL Operator has several fundamental changes to the existing PGCluster structure and deployment
model. Most notably, all PGClusters use the new Crunchy PostgreSQL HA container in place of the previous Crunchy PostgreSQL
containers. The use of this new container is a breaking change from previous versions of the Operator.

Crunchy PostgreSQL High Availability Containers Using the PostgreSQL Operator 4.3.0 requires replacing your crunchy-postgres
and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containers respectively. The
underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the
new high-availability functionality.

A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is
deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario,
and to automatically heal after a failover event.

When creating your new clusters using version 4.3.0 of the PostgreSQL Operator, the pgo create cluster command will automatically
use the new crunchy-postgres-ha image if the image is unspecified. If you are creating a PostGIS enabled cluster, please be sure to use
the updated image name, as with the command:

pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis-ha

NOTE: As with any upgrade procedure, it is strongly recommended that a full logical backup is taken before any upgrade
procedure is started. Please see the Logical Backups section of the Common Tasks page for more information.

Prerequisites. You will need the following items to complete the upgrade:

• The code for the latest PostgreSQL Operator available
• The latest client binary

Step 0 Create a new Linux user with the same permissions as the existing user used to install the Crunchy PostgreSQL Operator. This
is necessary to avoid any issues with environment variable differences between 3.5 and 4.3.0.

Step 1 For the cluster(s) you wish to upgrade, record the cluster details provided by

pgo show cluster <clustername >

so that your new clusters can be recreated with the proper settings.

Also, you will need to note the name of the primary PVC. If it does not exactly match the cluster name, you will need to recreate your
cluster using the primary PVC name as the new cluster name.

For example, given the following output:

$ pgo show cluster mycluster

cluster : mycluster (crunchy-postgres:centos7 -11.5-2.4.2)
pod : mycluster -7bbf54d785 -pk5dq (Running) on kubernetes1 (1/1) (replica)
pvc : mycluster
pod : mycluster -ypvq-5b9b8d645-nvlb6 (Running) on kubernetes1 (1/1) (primary)
pvc : mycluster -ypvq

...

the new cluster’s name will need to be “mycluster-ypvq”

Step2 For the cluster(s) you wish to upgrade, scale down any replicas, if necessary, then delete the cluster

pgo delete cluster <clustername >

NOTE: Please record the name of each cluster, the namespace used, and be sure not to delete the associated PVCs or
CRDs!

112

Step 3 Delete the 3.5.x version of the operator by executing:

$COROOT/deploy/cleanup.sh
$COROOT/deploy/remove-crd.sh

Step 4 Log in as your new Linux user and install the 4.3.0 PostgreSQL Operator.

[Bash Installation]({{< relref “installation/other/bash.md” >}})

Be sure to add the existing namespace to the Operator’s list of watched namespaces (see the [Namespace]({{< relref “architecture/names-
pace.md” >}}) section of this document for more information) and make sure to avoid overwriting any existing data storage.

Step 5 Once the Operator is installed and functional, create a new 4.3.0 cluster matching the cluster details recorded in Step 1. Be sure
to use the primary PVC name (also noted in Step 1) and the same major PostgreSQL version as was used previously. This will allow the
new clusters to utilize the existing PVCs. A s imple example is given below, but more information on cluster creation can be found here

pgo create cluster <clustername > -n <namespace >

Step 6 Manually update the old leftover Secrets to use the new label as defined in 4.3.0:

kubectl label secret/<clustername >-postgres-secret pg-cluster=<clustername > -n <namespace >
kubectl label secret/<clustername >-primaryuser -secret pg-cluster=<clustername > -n <namespace >
kubectl label secret/<clustername >-testuser-secret pg-cluster=<clustername > -n <namespace >

Step 7 To verify cluster status, run

pgo test <clustername > -n <namespace >

Output should be similar to:

cluster : mycluster
Services

primary (10.106.70.238:5432): UP
Instances

primary (mycluster -7d49d98665 -7zxzd): UP

Step 8 Scale up to the required number of replicas, as needed.

Congratulations! Your cluster is upgraded and ready to use!

Manual PostgreSQL Operator 4 Upgrade Procedure

Below are the procedures for upgrading to version 4.3.0 of the Crunchy PostgreSQL Operator using the Bash or Ansible installation
methods. This version of the PostgreSQL Operator has several fundamental changes to the existing PGCluster structure and deployment
model. Most notably for those upgrading from 4.1 and below, all PGClusters use the new Crunchy PostgreSQL HA container in place of
the previous Crunchy PostgreSQL containers. The use of this new container is a breaking change from previous versions of the Operator
did not use the HA containers.

Crunchy PostgreSQL High Availability Containers Using the PostgreSQL Operator 4.3.0 requires replacing your crunchy-postgres
and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containers respectively. The
underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the
new high-availability functionality.

A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is
deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario,
and to automatically heal after a failover event.

When creating your new clusters using version 4.3.0 of the PostgreSQL Operator, the pgo create cluster command will automatically
use the new crunchy-postgres-ha image if the image is unspecified. If you are creating a PostGIS enabled cluster, please be sure to use
the updated image name, as with the command:

pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis-ha

113

NOTE: As with any upgrade procedure, it is strongly recommended that a full logical backup is taken before any upgrade
procedure is started. Please see the Logical Backups section of the Common Tasks page for more information. The
Ansible installation upgrade procedure is below. Please click here for the Bash installation upgrade procedure.

Ansible Installation Upgrade Procedure

Below are the procedures for upgrading the PostgreSQL Operator and PostgreSQL clusters using the Ansible installation method.

Prerequisites. You will need the following items to complete the upgrade:

• The latest 4.3.0 code for the Postgres Operator available

These instructions assume you are executing in a terminal window and that your user has admin privileges in your Kubernetes or Openshift
environment.

Step 0 For the cluster(s) you wish to upgrade, record the cluster details provided by

pgo show cluster <clustername >

so that your new clusters can be recreated with the proper settings.

Also, you will need to note the name of the primary PVC. If it does not exactly match the cluster name, you will need to recreate your
cluster using the primary PVC name as the new cluster name.

For example, given the following output:

$ pgo show cluster mycluster

cluster : mycluster (crunchy-postgres:centos7 -11.5-2.4.2)
pod : mycluster -7bbf54d785 -pk5dq (Running) on kubernetes1 (1/1) (replica)
pvc : mycluster
pod : mycluster -ypvq-5b9b8d645-nvlb6 (Running) on kubernetes1 (1/1) (primary)
pvc : mycluster -ypvq

...

the new cluster’s name will need to be “mycluster-ypvq”

Step 1 For the cluster(s) you wish to upgrade, scale down any replicas, if necessary (see pgo scaledown --help for more information
on command usage) page for more information), then delete the cluster

pgo delete cluster <clustername >

Please note the name of each cluster, the namespace used, and be sure not to delete the associated PVCs or CRDs!

Step 2 Save a copy of your current inventory file with a new name (such as inventory.backup) and checkout the latest 4.3.0 tag of the
Postgres Operator.

Step 3 Update the new inventory file with the appropriate values for your new Operator installation, as described in the [Ansible
Install Prerequisites]({{< relref “installation/other/ansible/prerequisites.md” >}}) and the [Compatibility Requirements Guide]({{<
relref “configuration/compatibility.md” >}}).

Step 4 Now you can upgrade your Operator installation and configure your connection settings as described in the [Ansible Update
Page]({{< relref “installation/other/ansible/updating-operator.md” >}}).

Step 5 Verify the Operator is running:

kubectl get pod -n <operator namespace >

And that it is upgraded to the appropriate version

pgo version

114

Step 6 Once the Operator is installed and functional, create a new 4.3.0 cluster matching the cluster details recorded in Step 0. Be sure
to use the primary PVC name (also noted in Step 0) and the same major PostgreSQL version as was used previously. This will allow the
new clusters to utilize the existing PVCs. A simple example is given below, but more information on cluster creation can be found here

pgo create cluster <clustername > -n <namespace >

Step 7 To verify cluster status, run

pgo test <clustername > -n <namespace >

Output should be similar to:

cluster : mycluster
Services

primary (10.106.70.238:5432): UP
Instances

primary (mycluster -7d49d98665 -7zxzd): UP

Step 8 Scale up to the required number of replicas, as needed.

Congratulations! Your cluster is upgraded and ready to use!

Bash Installation Upgrade Procedure

Below are the procedures for upgrading the PostgreSQL Operator and PostgreSQL clusters using the Bash installation method.

Prerequisites. You will need the following items to complete the upgrade:

• The code for the latest release of the PostgreSQL Operator
• The latest PGO client binary

Finally, these instructions assume you are executing from $PGOROOT in a terminal window and that your user has admin privileges in
your Kubernetes or Openshift environment.

Step 0 You will most likely want to run:

pgo show config -n <any watched namespace >

Save this output to compare once the procedure has been completed to ensure none of the current configuration changes are missing.

Step 1 For the cluster(s) you wish to upgrade, record the cluster details provided by

pgo show cluster <clustername >

so that your new clusters can be recreated with the proper settings.

Step 2 For the cluster(s) you wish to upgrade, scale down any replicas, if necessary (see pgo scaledown --help for more information
on command usage) page for more information), then delete the cluster

pgo delete cluster <clustername >

NOTE: Please record the name of each cluster, the namespace used, and be sure not to delete the associated PVCs or
CRDs!

Step 3 Delete the 4.X version of the Operator by executing:

$PGOROOT/deploy/cleanup.sh
$PGOROOT/deploy/remove-crd.sh
$PGOROOT/deploy/cleanup-rbac.sh

115

Step 4 For versions 4.0, 4.1 and 4.2, update environment variables in the bashrc:

export PGO_VERSION=4.3.0

Note: This will be the only update to the bashrc file for 4.2.

If you are pulling your images from the same registry as before this should be the only update to the existing 4.X environment variables.

Operator 4.0

If you are upgrading from PostgreSQL Operator 4.0, you will need the following new environment variables:

PGO_INSTALLATION_NAME is the unique name given to this Operator install
this supports multi-deployments of the Operator on the same Kubernetes cluster
export PGO_INSTALLATION_NAME=devtest

for setting the pgo apiserver port, disabling TLS or not verifying TLS
if TLS is disabled, ensure setip() function port is updated and http is used in place of https
export PGO_APISERVER_PORT=8443 # Defaults: 8443 for TLS enabled, 8080 for TLS disabled
export DISABLE_TLS=false
export TLS_NO_VERIFY=false
export TLS_CA_TRUST=""
export ADD_OS_TRUSTSTORE=false
export NOAUTH_ROUTES=""

for disabling the Operator eventing
export DISABLE_EVENTING=false

There is a new eventing feature, so if you want an alias to look at the eventing logs you can add the following:

elog () {
$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" logs `$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get pod

--selector=name=postgres -operator -o jsonpath="{.items[0].metadata.name}"` -c event
}

Operator 4.1

If you are upgrading from PostgreSQL Operator 4.1.0 or 4.1.1, you will only need the following subset of the environment variables listed
above:

export TLS_CA_TRUST=""
export ADD_OS_TRUSTSTORE=false
export NOAUTH_ROUTES=""

Step 5 Source the updated bash file:

source ~/.bashrc

Step 6 Ensure you have checked out the latest 4.3.0 version of the source code and update the pgo.yaml file in $PGOROOT/conf/postgres-operator/pgo.yaml

You will want to use the 4.3.0 pgo.yaml file and update custom settings such as image locations, storage, and resource configs.

Step 7 Create an initial Operator Admin user account. You will need to edit the $PGOROOT/deploy/install-bootstrap-creds.sh file
to configure the username and password that you want for the Admin account. The default values are:

export PGOADMIN_USERNAME=pgoadmin
export PGOADMIN_PASSWORD=examplepassword

You will need to update the $HOME/.pgouserfile to match the values you set in order to use the Operator. Additional accounts can
be created later following the steps described in the ‘Operator Security’ section of the main [Bash Installation Guide] ({{< relref
“installation/other/bash.md” >}}). Once these accounts are created, you can change this file to login in via the PGO CLI as that user.

116

Step 8 Install the 4.3.0 Operator:

Setup the configured namespaces:

make setupnamespaces

Install the RBAC configurations:

make installrbac

Deploy the PostgreSQL Operator:

make deployoperator

Verify the Operator is running:

kubectl get pod -n <operator namespace >

Step 9 Next, update the PGO client binary to 4.3.0 by replacing the existing 4.X binary with the latest 4.3.0 binary available.

You can run:

which pgo

to ensure you are replacing the current binary.

Step 10 You will want to make sure that any and all configuration changes have been updated. You can run:

pgo show config -n <any watched namespace >

This will print out the current configuration that the Operator will be using.

To ensure that you made any required configuration changes, you can compare with Step 0 to make sure you did not miss anything. If
you happened to miss a setting, update the pgo.yaml file and rerun:

make deployoperator

Step 11 The Operator is now upgraded to 4.3.0 and all users and roles have been recreated. Verify this by running:

pgo version

Step 12 Once the Operator is installed and functional, create a new 4.3.0 cluster matching the cluster details recorded in Step 1. Be
sure to use the same name and the same major PostgreSQL version as was used previously. This will allow the new clusters to utilize the
existing PVCs. A simple example is given below, but more information on cluster creation can be found here

pgo create cluster <clustername > -n <namespace >

Step 13 To verify cluster status, run

pgo test <clustername > -n <namespace >

Output should be similar to:

cluster : mycluster
Services

primary (10.106.70.238:5432): UP
Instances

primary (mycluster -7d49d98665 -7zxzd): UP

Step 14 Scale up to the required number of replicas, as needed.

Congratulations! Your cluster is upgraded and ready to use!

The PostgreSQL Operator is an open source project hosted on GitHub.

This guide is intended for those wanting to build the Operator from source or contribute via pull requests.

117

https://github.com/crunchydata/postgres-operator

Prerequisites

The target development host for these instructions is a CentOS 7 or RHEL 7 host. Others operating systems are possible, however we do
not support building or running the Operator on others at this time.

Environment Variables

The following environment variables are expected by the steps in this guide:

Variable Example Description

GOPATH HOME/odev|Golangprojectdirectory‘PGOROOT ‘|GOPATH/src/github.com/crunchydata/postgres-operator Operator repository location
PGO_BASEOS centos7 Base OS for container images
PGO_CMD kubectl Cluster management tool executable
PGO_IMAGE_PREFIX crunchydata Container image prefix
PGO_OPERATOR_NAMESPACE pgo Kubernetes namespace for the operator
PGO_VERSION 4.3.0 Operator version

{{% notice tip %}} examples/envs.sh contains the above variable definitions as well as others used by postgres-operator tools {{% /notice
%}}

Other requirements

• The development host has been created, has access to yum updates, and has a regular user account with sudo rights to run yum.
• GOPATH points to a directory containing src,pkg, and bin directories.
• The development host has $GOPATH/bin added to its PATH environment variable. Development tools will be installed to this path.

Defining a GOBIN environment variable other than $GOPATH/bin may yield unexpected results.
• The development host has git installed and has cloned the postgres-operator repository to $GOPATH/src/github.com/crunchydata/postgres-operator.

Makefile targets below are run from the repository directory.
• Deploying the Operator will require deployment access to a Kubernetes or OpenShift cluster
• Once you have cloned the git repository, you will need to download the CentOS 7 repository files and GPG keys and place them in

the $PGOROOT/conf directory. You can do so with the following code:

cd $PGOROOT
curl

https://api.developers.crunchydata.com/downloads/repo/rpm-centos/postgresql12/crunchypg12.repo
> conf/crunchypg12.repo

curl
https://api.developers.crunchydata.com/downloads/repo/rpm-centos/postgresql11/crunchypg11.repo
> conf/crunchypg11.repo

curl https://api.developers.crunchydata.com/downloads/gpg/RPM-GPG-KEY-crunchydata -dev >
conf/RPM-GPG-KEY-crunchydata -dev

Building

Dependencies

Configuring build dependencies is automated via the setup target in the project Makefile:
make setup

The setup target ensures the presence of:

• GOPATH and PATH as described in the prerequisites
• EPEL yum repository
• golang compiler
• dep dependency manager

118

• NSQ messaging binaries
• docker container tool
• buildah OCI image building tool

By default, docker is not configured to run its daemon. Refer to the docker post-installation instructions to configure it to run once or at
system startup. This is not done automatically.

Code Generation

Code generation is leveraged to generate the clients and informers utilized to interact with the various Custom Resources (e.g. pgclusters)
comprising the PostgreSQL Operator declarative API. Code generation is provided by the Kubernetes code-generator project, and the
following two Make targets are included within the PostgreSQL Operator project to both determine if any generated code within the
project requires an update, and then update that code as needed:

Check to see if an update to generated code is needed:
make verify-codegen

Update any generated code:
make update-codegen

Therefore, in the event that a Custom Resource defined within the PostgreSQL Operator API ($PGOROOT/apis/crunchydata.com) is
updated, the verify-codegen target will indicate that an update is needed, and the update-codegen target should then be utilized to
generate the updated code prior to compiling.

Compile

{{% notice tip %}} Please be sure to have your GPG Key and .repo file in the conf directory before proceeding. {{% /notice %}}

You will build all the Operator binaries and Docker images by running:

make all

This assumes you have Docker installed and running on your development host.

By default, the Makefile will use buildah to build the container images, to override this default to use docker to build the images, set the
IMGBUILDER variable to docker

The project uses the golang dep package manager to vendor all the golang source dependencies into the vendor directory. You typically
do not need to run any dep commands unless you are adding new golang package dependencies into the project outside of what is within
the project for a given release.

After a full compile, you will have a pgo binary in $HOME/odev/bin and the Operator images in your local Docker registry.

Deployment

Now that you have built the PostgreSQL Operator images, you can now deploy them to your Kubernetes cluster. To deploy the image
and associated Kubernetes manifests, you can execute the following command:

make deployoperator

If your Kubernetes cluster is not local to your development host, you will need to specify a config file that will connect you to your
Kubernetes cluster. See the Kubernetes documentation for details.

Testing

Once the PostgreSQL Operator is deployed, you can run the end-to-end regression test suite interface with the PostgreSQL client. You
need to ensure that the pgo client executable is in your $PATH. The test suite can be run using the following commands:

cd $PGOROOT/testing/pgo_cli
GO111MODULE=on go test -count=1 -parallel=2 -timeout=30m -v .

For more information, please follow the testing README in the source repository.

119

https://docs.docker.com/install/linux/linux-postinstall/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/kubernetes/code-generator
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://github.com/CrunchyData/postgres-operator/blob/master/testing/pgo_cli/README.md

Troubleshooting

Debug level logging in turned on by default when deploying the Operator.

Sample bash functions are supplied in examples/envs.sh to view the Operator logs.

You can view the Operator REST API logs with the alog bash function.

You can view the Operator core logic logs with the olog bash function.

You can view the Scheduler logs with the slog bash function.

These logs contain the following details:

Timestamp
Logging Level
Message Content
Function Information
File Information
PGO version

Additionally, you can view the Operator deployment Event logs with the elog bash function.

You can enable the pgo CLI debugging with the following flag:

pgo version --debug

You can set the REST API URL as follows after a deployment if you are developing on your local host by executing the setip bash
function.

Documentation

The documentation website is generated using Hugo.

Hosting Hugo Locally (Optional)

If you would like to build the documentation locally, view the official Installing Hugo guide to set up Hugo locally.

You can then start the server by running the following commands -

cd $PGOROOT/docs/
hugo server

The local version of the Hugo server is accessible by default from localhost:1313. Once you’ve run hugo server, that will let you interactively
make changes to the documentation as desired and view the updates in real-time.

Contributing to the Documentation

All documentation is in Markdown format and uses Hugo weights for positioning of the pages.

The current production release documentation is updated for every tagged major release.

When you’re ready to commit a change, please verify that the documentation generates locally.

If you would like to submit an feature / issue for us to consider please submit an to the official GitHub Repository.

If you would like to work the issue, please add that information in the issue so that we can confirm we are not already working no need
to duplicate efforts.

If you have any question you can submit a Support - Question and Answer issue and we will work with you on how you can get more
involved.

So you decided to submit an issue and work it. Great! Let’s get it merged in to the codebase. The following will go a long way to helping
get the fix merged in quicker.

1. Create a pull request from your fork to the master branch.
2. Update the checklists in the Pull Request Description.
3. Reference which issues this Pull Request is resolving.

120

https://gohugo.io/
https://gohugo.io/getting-started/installing/
https://github.com/CrunchyData/postgres-operator/issues/new/choose

Crunchy Data announces the release of the PostgreSQL Operator 4.3.0 on May 1, 2020.

The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.

The PostgreSQL Operator 4.3.0 release includes the following software versions upgrades:

• The PostgreSQL containers now use versions 12.2, 11.7, 10.12, 9.6.17, and 9.5.21
• This now includes support for using the JIT compilation feature introduced in PostgreSQL 11
• PostgreSQL containers now support PL/Python3
• pgBackRest is now at version 2.25
• Patroni is now at version 1.6.5
• postgres_exporter is now at version 0.7.0
• pgAdmin 4 is at 4.18

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and
VMware Enterprise PKS 1.3+.

Major Features

• Standby Clusters + Multi-Kubernetes Deployments({{< relref “/architecture/high-availability/multi-cluster-kubernetes.md” >}})
• [Improved custom configuration for PostgreSQL clusters]({{< relref “/advanced/custom-configuration.md” >}})
• Installation via the pgo-deployer container({{< relref “/installation/postgres-operator/_index.md” >}})
• [Automatic Upgrades of the PostgreSQL Operator via pgo upgrade]({{< relref “/upgrade/_index.md” >}})
• Set [custom PVC sizes]({{< relref “pgo-client/common-tasks/_index.md” >}}#create-a-postgresql-cluster-with-different-pvc-sizes)

for PostgreSQL clusters on creation and clone
• Support for PostgreSQL Tablespaces({{< relref “/architecture/tablespaces.md” >}})
• The ability to specify an external volume for write-ahead logs (WAL)
• [Elimination of ClusterRole requirement]({{< relref “/architecture/namespace.md” >}}) for using the PostgreSQL Operator
• [Easy TLS-enabled PostgreSQL cluster creation]({{< relref “pgo-client/common-tasks/_index.md” >}}#enable-tls)
• All Operator commands now support TLS-only PostgreSQL workflows
• Feature Preview: [pgAdmin 4 Integration + User Synchronization]({{< relref “/architecture/pgadmin4.md” >}})

Standby Clusters + Multi-Kubernetes Deployments

A key component of building database architectures that can ensure continuity of operations is to be able to have the database available
across multiple data centers. In Kubernetes, this would mean being able to have the PostgreSQL Operator be able to have the PostgreSQL
Operator run in multiple Kubernetes clusters, have PostgreSQL clusters exist in these Kubernetes clusters, and only ensure the “standby”
deployment is promoted in the event of an outage or planned switchover.

As of this release, the PostgreSQL Operator now supports standby PostgreSQL clusters that can be deployed across namespaces or other
Kubernetes or Kubernetes-enabled clusters (e.g. OpenShift). This is accomplished by leveraging the PostgreSQL Operator’s support for
[pgBackRest]({{< relref “/architecture/disaster-recovery.md” >}}) and leveraging an intermediary, i.e. S3, to provide the ability for the
standby cluster to read in the PostgreSQL archives and replicate the data. This allows a user to quickly promote a standby PostgreSQL
cluster in the event that the primary cluster suffers downtime (e.g. data center outage), for planned switchovers such as Kubernetes cluster
maintenance or moving a PostgreSQL workload from one data center to another.

To support standby clusters, there are several new flags available on pgo create cluster that are required to set up a new standby
cluster. These include:

• --standby: If set, creates the PostgreSQL cluster as a standby cluster.
• --pgbackrest-repo-path: Allows the user to override the pgBackRest repository path for a cluster. While this setting can now

be utilized when creating any cluster, it is typically required for the creation of standby clusters as the repository path will need to
match that of the primary cluster.

• --password-superuser: When creating a standby cluster, allows the user to specify a password for the superuser that matches the
superuser account in the cluster the standby is replicating from.

• --password-replication: When creating a standby cluster, allows the user to specify a password for the replication user that
matches the superuser account in the cluster the standby is replicating from.

Note that the --password flag must be used to ensure the password of the main PostgreSQL user account matches that of the primary
PostgreSQL cluster, if you are using Kubernetes to manage the user’s password.

For example, if you have a cluster named hippo and wanted to create a standby cluster called hippo and assuming the S3 credentials are
using the defaults provided to the PostgreSQL Operator, you could execute a command similar to:

121

https://www.crunchydata.com/products/crunchy-postgresql-operator/
https://github.com/CrunchyData/crunchy-containers/

pgo create cluster hippo-standby --standby \
--pgbackrest -repo-path=/backrestrepo/hippo-backrest -shared-repo
--password-superuser=superhippo
--password-replication=replicahippo

To shutdown the primary cluster (if you can), you can execute a command similar to:

pgo update cluster hippo --shutdown

To promote the standby cluster to be able to accept write traffic, you can execute the following command:

pgo update cluster hippo-standby --promote-standby

To convert the old primary cluster into a standby cluster, you can execute the following command:

pgo update cluster hippo --enable-standby

Once the old primary is converted to a standby cluster, you can bring it online with the following command:

pgo update cluster hippo --startup

For information on the architecture and how to [set up a standby PostgreSQL cluster]({{< relref “/architecture/high-availability/multi-
cluster-kubernetes.md” >}}), please refer to the [documentation]({{< relref “/architecture/high-availability/multi-cluster-kubernetes.md”
>}}).

At present, streaming replication between the primary and standby clusters are not supported, but the PostgreSQL instances within each
cluster do support streaming replication.

Installation via the pgo-deployer container

Installation, alongside upgrading, have long been two of the biggest challenges of using the PostgreSQL Operator. This release makes
improvements on both (with upgrading being described in the next section).

For installation, we have introduced a new container called [pgo-deployer]({{< relref “/installation/postgres-operator/_index.md” >}}).
For environments that use hostpath storage (e.g. minikube), [installing the PostgreSQL Operator]({{< relref “/installation/postgres-
operator/_index.md” >}}) can be as simple as:

kubectl create namespace pgo
kubectl apply -f

https://raw.githubusercontent.com/CrunchyData/postgres -operator/v4.3.0/installers/kubectl/postgres-operator.yml

The pgo-deployer container can be configured by a manifest called postgres-operator.yml and provides a set of [environmental
variables]({{< relref “/installation/configuration/_index.md” >}}) that should be familiar from using the [other installers]({{< relref
“/installation/other/_index.md” >}}).

The pgo-deployer launches a Job in the namespace that the PostgreSQL Operator will be installed into and sets up the requisite
Kubernetes objects: CRDs, Secrets, ConfigMaps, etc.

The pgo-deployer container can also be used to uninstall the PostgreSQL Operator. For more information, please see the [installation
documentation]({{< relref “/installation/_index.md” >}}).

Automatic PostgreSQL Operator Upgrade Process

One of the biggest challenges to using a newer version of the PostgreSQL Operator was upgrading from an older version.

This release introduces the ability to [automatically upgrade from an older version of the Operator]({{< relref “/upgrade/_index.md”
>}}) (as early as 4.1.0) to the newest version (4.3.0) using the [pgo upgrade]({{< relref “/pgo-client/reference/pgo_upgrade.md” >}})
command.

The pgo upgrade command follows a process similar to the [manual PostgreSQL Operator upgrade]({{< relref “/upgrade/upgrade4.md”
>}}) process, but instead automates it.

To find out more about how to upgrade the PostgreSQL Operator, please review the [upgrade documentation]({{< relref “/up-
grade/_index.md” >}}).

122

https://raw.githubusercontent.com/CrunchyData/postgres-operator/v4.3.0/installers/kubectl/postgres-operator.yml

Improved Custom Configuration for PostgreSQL Clusters

The ability to customize the configuration for a PostgreSQL cluster with the PostgreSQL Operator can now be easily modified by
making changes directly to the ConfigMap that is created with each PostgreSQL cluster. The ConfigMap, which follows the pattern
<clusterName>-pgha-config (e.g. hippo-pgha-config for pgo create cluster hippo), manages the user-facing configuration settings
available for a PostgreSQL cluster, and when modified, it will automatically synchronize the settings across all primaries and replicas in
a PostgreSQL cluster.

Presently, the ConfigMap can be edited using the kubectl edit cm command, and future iterations will add functionality to the Post-
greSQL Operator to make this process easier.

Customize PVC Size on PostgreSQL cluster Creation & Clone

The PostgreSQL Operator provides the ability to set customization for how large the PVC can be via the “storage config” options available
in the PostgreSQL Operator configuration file (aka pgo.yaml). While these provide a baseline level of customizability, it is often important
to be able to set the size of the PVC that a PostgreSQL cluster should use at cluster creation time. In other words, users should be able
to choose exactly how large they want their PostgreSQL PVCs ought to be.

PostgreSQL Operator 4.3 introduces the ability to set the PVC sizes for the PostgreSQL cluster, the pgBackRest repository for the
PostgreSQL cluster, and the PVC size for each tablespace at cluster creation time. Additionally, this behavior has been extended to the
clone functionality as well, which is helpful when trying to resize a PostgreSQL cluster. Here is some information on the flags that have
been added:

pgo create cluster

--pvc-size - sets the PVC size for the PostgreSQL data directory --pgbackrest-pvc-size - sets the PVC size for the PostgreSQL
pgBackRest repository

For tablespaces, one can use the pvcsize option to set the PVC size for that tablespace.

pgo clone cluster

--pvc-size - sets the PVC size for the PostgreSQL data directory for the newly created cluster --pgbackrest-pvc-size - sets the PVC
size for the PostgreSQL pgBackRest repository for the newly created cluster

Tablespaces

Tablespaces can be used to spread out PostgreSQL workloads across multiple volumes, which can be used for a variety of use cases:

• Partitioning larger data sets
• Putting data onto archival systems
• Utilizing hardware (or a storage class) for a particular database object, e.g. an index

and more.

Tablespaces can be created via the pgo create cluster command using the --tablespace flag. The arguments to --tablespace can
be passed in using one of several key/value pairs, including:

• name (required) - the name of the tablespace
• storageconfig (required) - the storage configuration to use for the tablespace
• pvcsize - if specified, the size of the PVC. Defaults to the PVC size in the storage configuration

Each value is separated by a :, for example:

pgo create cluster hacluster --tablespace=name=ts:storageconfig=nfsstorage

All tablespaces are mounted in the /tablespaces directory. The PostgreSQL Operator manages the mount points and persistent volume
claims (PVCs) for the tablespaces, and ensures they are available throughout all of the PostgreSQL lifecycle operations, including:

• Provisioning
• Backup & Restore
• High-Availability, Failover, Healing

123

• Clone

etc.

One additional value is added to the pgcluster CRD:

• TablespaceMounts: a map of the name of the tablespace and its associated storage.

Tablespaces are automatically created in the PostgreSQL cluster. You can access them as soon as the cluster is initialized. For example,
using the tablespace created above, you could create a table on the tablespace ts with the following SQL:

CREATE TABLE (id int) TABLESPACE ts;

Tablespaces can also be added to existing PostgreSQL clusters by using the pgo update cluster command. The syntax is similar to that
of creating a PostgreSQL cluster with a tablespace, i.e.:

pgo update cluster hacluster --tablespace=name=ts2:storageconfig=nfsstorage

As additional volumes need to be mounted to the Deployments, this action can cause downtime, though the expectation is that the
downtime is brief.

Based on usage, future work will look to making this more flexible. Dropping tablespaces can be tricky as no objects must exist on a
tablespace in order for PostgreSQL to drop it (i.e. there is no DROP TABLESPACE .. CASCADE command).

Easy TLS-Enabled PostgreSQL Clusters

Connecting to PostgreSQL clusters is a typical requirement when deploying to an untrusted network, such as a public cloud. The
PostgreSQL Operator makes it easy to enable TLS for PostgreSQL. To do this, one must create two secrets prior: one containing the
trusted certificate authority (CA) and one containing the PostgreSQL server’s TLS keypair, e.g.:

kubectl create secret generic postgresql -ca --from-file=ca.crt=/path/to/ca.crt
kubectl create secret tls hippo-tls-keypair \

--cert=/path/to/server.crt \
--key=/path/to/server.key

From there, one can create a PostgreSQL cluster that supports TLS with the following command:

pgo create cluster hippo-tls \
--server-ca-secret=hippo-tls-keypair \
--server-tls-secret=postgresql -ca

To create a PostgreSQL cluster that only accepts TLS connections and rejects any connection attempts made over an insecure channel,
you can use the --tls-only flag on cluster creation, e.g.:

pgo create cluster hippo-tls \
--tls-only \
--server-ca-secret=hippo-tls-keypair \
--server-tls-secret=postgresql -ca

External WAL Volume

An optimization used for improving PostgreSQL performance related to file system usage is to have the PostgreSQL write-ahead logs
(WAL) written to a different mounted volume than other parts of the PostgreSQL system, such as the data directory.

To support this, the PostgreSQL Operator now supports the ability to specify an external volume for writing the PostgreSQL write-head
log (WAL) during cluster creation, which carries through to replicas and clones. When not specified, the WAL resides within the PGDATA
directory and volume, which is the present behavior.

To create a PostgreSQL cluster to use an external volume, one can use the --wal-storage-config flag at cluster creation time to select
the storage configuration to use, e.g.

pgo create cluster --wal-storage-config=nfsstorage hippo

Additionally, it is also possible to specify the size of the WAL storage on all newly created clusters. When in use, the size of the volume
can be overridden per-cluster. This is specified with the --wal-storage-size flag, i.e.

pgo create cluster --wal-storage-config=nfsstorage --wal-storage-size=10Gi hippo

This implementation does not define the WAL volume in any deployment templates because the volume name and mount path are constant.

124

https://access.crunchydata.com/documentation/postgres-operator/latest/latest/pgo-client/common-tasks/#enable-tls

Elimination of ClusterRole Requirement for the PostgreSQL Operator

PostgreSQL Operator 4.0 introduced the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces. PostgreSQL
Operator 4.1 built on this functionality by allowing users to dynamically control which Namespaces it managed as well as the PostgreSQL
clusters deployed to them. In order to leverage this feature, one must grant a ClusterRole level permission via a ServiceAccount to the
PostgreSQL Operator.

There are a lot of deployment environments for the PostgreSQL Operator that only need for it to exists within a single namespace and
as such, granting cluster-wide privileges is superfluous, and in many cases, undesirable. As such, it should be possible to deploy the
PostgreSQL Operator to a single namespace without requiring a ClusterRole.

To do this, but maintain the aforementioned Namespace functionality for those who require it, PostgreSQL Operator 4.3 introduces the
ability to opt into deploying it with minimum required ClusterRole privileges and in turn, the ability to deploy the PostgreSQL Operator
without a ClusterRole. To do so, the PostgreSQL Operator introduces the concept of “namespace operating mode” which lets one select
the type deployment to create. The namespace mode is set at the install time for the PostgreSQL Operator, and files into one of three
options:

• dynamic: This is the default. This enables full dynamic Namespace management capabilities, in which the PostgreSQL Operator
can create, delete and update any Namespaces within the Kubernetes cluster, while then also having the ability to create the Roles,
Role Bindings and Service Accounts within those Namespaces for normal operations. The PostgreSQL Operator can also listen for
Namespace events and create or remove controllers for various Namespaces as changes are made to Namespaces from Kubernetes
and the PostgreSQL Operator’s management.

• readonly: In this mode, the PostgreSQL Operator is able to listen for namespace events within the Kubernetetes cluster, and then
manage controllers as Namespaces are added, updated or deleted. While this still requires a ClusterRole, the permissions mirror
those of a “read-only” environment, and as such the PostgreSQL Operator is unable to create, delete or update Namespaces itself nor
create RBAC that it requires in any of those Namespaces. Therefore, while in readonly, mode namespaces must be preconfigured
with the proper RBAC as the PostgreSQL Operator cannot create the RBAC itself.

• disabled: Use this mode if you do not want to deploy the PostgreSQL Operator with any ClusterRole privileges, especially if you
are only deploying the PostgreSQL Operator to a single namespace. This disables any Namespace management capabilities within
the PostgreSQL Operator and will simply attempt to work with the target Namespaces specified during installation. If no target
Namespaces are specified, then the Operator will be configured to work within the namespace in which it is deployed. As with the
readonly mode, while in this mode, Namespaces must be pre-configured with the proper RBAC, since the PostgreSQL Operator
cannot create the RBAC itself.

Based on the installer you use, the variables to set this mode are either named:

• PostgreSQL Operator Installer: NAMESPACE_MODE
• Developer Installer: PGO_NAMESPACE_MODE
• Ansible Installer: namespace_mode

Feature Preview: pgAdmin 4 Integration + User Synchronization

pgAdmin 4 is a popular graphical user interface that lets you work with PostgreSQL databases from both a desktop or web-based client.
With its ability to manage and orchestrate changes for PostgreSQL users, the PostgreSQL Operator is a natural partner to keep a pgAdmin
4 environment synchronized with a PostgreSQL environment.

This release introduces an integration with pgAdmin 4 that allows you to deploy a pgAdmin 4 environment alongside a PostgreSQL cluster
and keeps the user’s database credentials synchronized. You can simply log into pgAdmin 4 with your PostgreSQL username and password
and immediately have access to your databases.

For example, let’s there is a PostgreSQL cluster called hippo that has a user named hippo with password datalake:

pgo create cluster hippo --username=hippo --password=datalake

After the PostgreSQL cluster becomes ready, you can create a pgAdmin 4 deployment with the [pgo create pgadmin]({{< relref “/pgo-
client/reference/pgo_create_pgadmin.md” >}}) command:

pgo create pgadmin hippo

This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information into it. To
access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:

kubectl port-forward svc/hippo-pgadmin 5050:5050

125

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://www.pgadmin.org/

Point your browser at http://localhost:5050 and use your database username (e.g. hippo) and password (e.g. datalake) to log in.

(Note: if your password does not appear to work, you can retry setting up the user with the [pgo update user]({{< relref “/pgo-
client/reference/pgo_update_user.md” >}}) command: pgo update user hippo --password=datalake)

The pgo create user, pgo update user, and pgo delete user commands are synchronized with the pgAdmin 4 deployment. Note
that if you use pgo create user without the --managed flag prior to deploying pgAdmin 4, then the user’s credentials will not be
synchronized to the pgAdmin 4 deployment. However, a subsequent run of pgo update user --password will synchronize the credentials
with pgAdmin 4.

You can remove the pgAdmin 4 deployment with the [pgo delete pgadmin]({{< relref “/pgo-client/reference/pgo_delete_pgadmin.md”
>}}) command.

We have released the first version of this change under “feature preview” so you can try it out. As with all of our features, we open to
feedback on how we can continue to improve the PostgreSQL Operator.

Enhanced pgo df

pgo df provides information on the disk utilization of a PostgreSQL cluster, and previously, this was not reporting accurate numbers.
The new pgo df looks at each PVC that is mounted to each PostgreSQL instance in a cluster, including the PVCs for tablespaces, and
computers the overall utilization. Even better, the data is returned in a structured format for easy scraping. This implementation also
leverages Golang concurrency to help compute the results quickly.

Enhanced pgBouncer Integration

The pgBouncer integration was completely rewritten to support the TLS-only operations via the PostgreSQL Operator. While most of
the work was internal, you should now see a much more stable pgBouncer experience.

The pgBouncer attributes in the pgclusters.crunchydata.com CRD are also declarative and any updates will be reflected by the
PostgreSQL Operator.

Additionally, a few new commands were added:

• pgo create pgbouncer --cpu and pgo update pgbouncer --memory resource request flags for settings container resources for the
pgBouncer instances. For CPU, this will also set the limit.

• pgo create pgbouncer --enable-memory-limit sets the Kubernetes resource limit for memory
• pgo create pgbouncer --replicas sets the number of pgBouncer Pods to deploy with a PostgreSQL cluster. The default is 1.
• pgo show pgbouncer shows information about a pgBouncer deployment
• pgo update pgbouncer --cpu and pgo update pgbouncer --memory resource request flags for settings container resources for the

pgBouncer instances after they are deployed. For CPU, this will also set the limit.
• pgo update pgbouncer --disables-memory-limit and pgo update pgbouncer --enable-memory-limit respectively unset and

set the Kubernetes resource limit for memory
• pgo update pgbouncer --replicas sets the number of pgBouncer Pods to deploy with a PostgreSQL cluster.
• pgo update pgbouncer --rotate-password allows one to rotate the service account password for pgBouncer

Rewritten pgo User Management commands

The user management commands were rewritten to support the TLS only workflow. These commands now return additional information
about a user when actions are taken. Several new flags have been added too, including the option to view all output in JSON. Other flags
include:

• pgo update user --rotate-password to automatically rotate the password
• pgo update user --disable-login which disables the ability for a PostgreSQL user to login
• pgo update user --enable-login which enables the ability for a PostgreSQL user to login
• pgo update user --valid-always which sets a password to always be valid, i.e. it has no expiration
• pgo show user does not show system accounts by default now, but can be made to show the system accounts by using pgo show

user --show-system-accounts

A major change as well is that the default password expiration function is now defaulted to be unlimited (i.e. never expires) which aligns
with typical PostgreSQL workflows.

126

Breaking Changes

• pgo create cluster will now set the default database name to be the name of the cluster. For example, pgo create cluster
hippo would create the initial database named hippo.

• The Database configuration parameter in pgo.yaml (db_name in the Ansible inventory) is now set to "" by default.
• the --password/-w flag for pgo create cluster now only sets the password for the regular user account that is created, not all of

the system accounts (e.g. the postgres superuser).
• A default postgres-ha.yaml file is no longer is no longer created by the Operator for every PostgreSQL cluster.
• “Limit” resource parameters are no longer set on the containers, in particular, the PostgreSQL container, due to undesired behavior

stemming from the host machine OOM killer. Further details can be found in the original pull request.
• Added DefaultInstanceMemory, DefaultBackrestMemory, and DefaultPgBouncerMemory options to the pgo.yaml configuration

to allow for the setting of default memory requests for PostgreSQL instances, the pgBackRest repository, and pgBouncer instances
respectively.

• If unset by either the PostgreSQL Operator configuration or one-off, the default memory resource requests for the following applica-
tions are:

• PostgreSQL: The installers default to 128Mi (suitable for test environments), though the “default of last resort” is 512Mi to be
consistent with the PostgreSQL default shared memory requirement

• pgBackRest: 48Mi
• pgBouncer: 24Mi
• Remove the Default...ContainerResources set of parameters from the pgo.yaml configuration file.
• The pgbackups.crunchydata.com, deprecated since 4.2.0, has now been completely removed, along with any code that interfaced

with it.
• The PreferredFailoverFeature is removed. This had not been doing anything since 4.2.0, but some of the legacy bits and

configuration were still there.
• pgo status no longer returns information about the nodes available in a Kubernetes cluster
• Remove --series flag from pgo create cluster command. This affects API calls more than actual usage of the pgo client.
• pgo benchmark, pgo show benchmark, pgo delete benchmark are removed. PostgreSQL benchmarks with pgbench can still be

executed using the crunchy-pgbench container.
• pgo ls is removed.
• The API that is used by pgo create cluster now returns its contents in JSON. The output now includes information about the

user that is created.
• The API that is used by pgo show backup now returns its contents in JSON. The output view of pgo show backup remains the

same.
• Remove the PreferredFailoverNode feature, as it had already been effectively removed.
• Remove explicit rm calls when cleaning up PostgreSQL clusters. This behavior is left to the storage provisioner that one deploys

with their PostgreSQL instances.
• Schedule backup job names have been shortened, and follow a pattern that looks like <clusterName>-<backupType>-sch-backup

Features

• Several additions to pgo create cluster around PostgreSQL users and databases, including:
• --ccp-image-prefix sets the CCPImagePrefix that specifies the image prefix for the PostgreSQL related containers that are deployed

by the PostgreSQL Operator
• --cpu flag that sets the amount of CPU to use for the PostgreSQL instances in the cluster. This also sets the limit. ---database /
-d flag that sets the name of the initial database created.

• --enable-memory-limit, --enable-pgbackrest-memory-limit, --enable-pgbouncer-memory-limit enable the Kubernetes mem-
ory resource limit for PostgreSQL, pgBackRest, and pgBouncer respectively

• --memory flag that sets the amount of memory to use for the PostgreSQL instances in the cluster
• --user / -u flag that sets the PostgreSQL username for the standard database user
• --password-length sets the length of the password that should be generated, if --password is not set.
• --pgbackrest-cpu flag that sets the amount of CPU to use for the pgBackRest repository
• --pgbackrest-memory flag that sets the amount of memory to use for the pgBackRest repository
• --pgbackrest-s3-ca-secret specifies the name of a Kubernetes Secret that contains a key (aws-s3-ca.crt) to override the default

CA used for making connections to a S3 interface
• --pgbackrest-storage-config lets one specify a different storage configuration to use for a local pgBackRest repository
• --pgbouncer-cpu flag that sets the amount of CPU to use for the pgBouncer instances
• --pgbouncer-memory flag that sets the amount of memory to use for the pgBouncer instances
• --pgbouncer-replicas sets the number of pgBouncer Pods to deploy with the PostgreSQL cluster. The default is 1.
• --pgo-image-prefix sets the PGOImagePrefix that specifies the image prefix for the PostgreSQL Operator containers that help to

manage the PostgreSQL clusters

127

https://github.com/CrunchyData/postgres-operator/pull/1391

• --show-system-accounts returns the credentials of the system accounts (e.g. the postgres superuser) along with the credentials
for the standard database user

• pgo update cluster now supports the --cpu, --disable-memory-limit, --disable-pgbackrest-memory-limit, --enable-memory-limit,
--enable-pgbackrest-memory-limit, --memory, --pgbackrest-cpu, and --pgbackrest-memory flags to allow PostgreSQL in-
stances and the pgBackRest repository to have their resources adjusted post deployment

• Added the PodAntiAffinityPgBackRest and PodAntiAffinityPgBouncer to the pgo.yaml configuration file to set specific Pod
anti-affinity rules for pgBackRest and pgBouncer Pods that are deployed along with PostgreSQL clusters that are managed by the
Operator. The default for pgBackRest and pgBouncer is to use the value that is set in PodAntiAffinity.

• pgo create cluster now supports the --pod-anti-affinity-pgbackrest and --pod-anti-affinity-pgbouncer flags to specif-
ically overwrite the pgBackRest repository and pgBouncer Pod anti-affinity rules on a specific PostgreSQL cluster deployment,
which overrides any values present in PodAntiAffinityPgBackRest and PodAntiAffinityPgBouncer respectfully. The default for
pgBackRest and pgBouncer is to use the value for pod anti-affinity that is used for the PostgreSQL instances in the cluster.

• One can specify the “image prefix” (e.g. crunchydata) for the containers that are deployed by the PostgreSQL Operator. This adds
two fields to the pgcluster CRD: CCPImagePrefix and ‘PGOImagePrefix

• Specify a different S3 Certificate Authority (CA) with pgo create cluster by using the --pgbackrest-s3-ca-secret flag, which
refers to an existing Secret that contains a key called aws-s3-ca.crt that contains the CA. Reported by Aurelien Marie @(aurelien-
marie)

• pgo clone now supports the --enable-metrics flag, which will deploy the monitoring sidecar along with the newly cloned Post-
greSQL cluster.

• The pgBackRest repository now uses ED25519 SSH key pairs.
• Add the --enable-autofail flag to pgo update to make it clear how the autofailover mechanism can be re-enabled for a PostgreSQL

cluster.

Changes

• Remove backoffLimit from Jobs that can be retried, which is most of them.
• POSIX shared memory is now used for the PostgreSQL Deployments.
• Increase the number of namespaces that can be watched by the PostgreSQL Operator.
• The number of unsupported pgBackRest flags on the deny list has been reduced.
• The liveness and readiness probes for a PostgreSQL cluster now reference the /opt/cpm/bin/health
• wal_level is now defaulted to logical to enable logical replication
• archive_timeout is now a default setting in the crunchy-postgres-ha and crunchy-postgres-ha-gis containers and is set to 60
• ArchiveTimeout, LogStatement, LogMinDurationStatement are removed from pgo.yaml, as these can be customized either via a

custom postgresql.conf file or postgres-ha.yaml file
• Quoted identifiers for the database name and user name in bootstrap scripts for the PostgreSQL containers
• Password generation now leverages cryptographically secure random number generation and uses the full set of typeable ASCII

characters
• The node ClusterRole is no longer used
• The names of the scheduled backups are shortened to use the pattern <clusterName>-<backupType>-sch-backup
• The PostgreSQL Operator now logs its timestamps using RFC3339 formatting as implemented by Go
• SSH key pairs are no longer created as part of the Operator installation process. This was a legacy behavior that had not been

removed
• The pv/create-pv-nfs.sh has been modified to create persistent volumes with their own directories on the NFS filesystems. This

better mimics production environments. The older version of the script still exists as pv/create-pv-nfs-legacy.sh
• Load pgBackRest S3 credentials into environmental variables as Kubernetes Secrets, to avoid revealing their contents in Kubernetes

commands or in logs
• Update how the pgBackRest and pgMonitor pamareters are loaded into Deployment templates to no longer use JSON fragments
• The pgo-rmdata Job no longer calls the rm command on any data within the PVC, but rather leaves this task to the storage

provisioner
• Remove using expenv in the add-targeted-namespace.sh script

Fixes

• Ensure PostgreSQL clusters can be successfully restored via pgo restore after ‘pgo scaledown’ is executed
• Allow the original primary to be removed with pgo scaledown after it is failed over
• The replica Service is now properly managed based on the existence of replicas in a PostgreSQL cluster, i.e. if there are replicas, the

Service exists, if not, it is removed
• Report errors in a SQL policy at the time pgo apply is executed, which was the previous behavior. Reported by José Joye (@jose-

joye)

128

https://en.wikipedia.org/wiki/EdDSA#Ed25519

• Ensure all replicas are listed out via the --query flag in pgo scaledown and pgo failover. This now follows the pattern outlined
by the Kubernetes safe random string generator

• Default the recovery action to “promote” when performing a “point-in-time-recovery” (PITR), which will ensure that a PITR process
completes

• The stanza-create Job now waits for both the PostgreSQL cluster and the pgBackRest repository to be ready before executing
• Remove backoffLimit from Jobs that can be retried, which is most of them. Reported by Leo Khomenko (@lkhomenk)
• The pgo-rmdata Job will not fail if a PostgreSQL cluster has not been properly initialized
• Fixed a separate pgo-rmdata crash related to an improper SecurityContext
• The failover ConfigMap for a PostgreSQL cluster is now removed when the cluster is deleted
• Allow the standard PostgreSQL user created with the Operator to be able to create and manage objects within its own user schema.

Reported by Nicolas HAHN (@hahnn)
• Honor the value of “PasswordLength” when it is set in the pgo.yaml file for password generation. The default is now set at 24
• Do not log pgBackRest environmental variables to the Kubernetes logs
• By default, exclude using the trusted OS certificate authority store for the Windows pgo client.
• Update the pgo-client imagePullPolicy to be IfNotPresent, which is the default for all of the managed containers across the

project
• Set UsePAM yes in the sshd_config file to fix an issue with using SSHD in newer versions of Docker
• Only add Operator labels to a managed namespace if the namespace already exists when executing the add-targeted-namespace.sh

script

Crunchy Data announces the release of the PostgreSQL Operator 4.2.2 on February, 18, 2020.
The PostgreSQL Operator 4.2.2 release provides bug fixes and continued support to the 4.2 release line.
This release includes updates for several packages supported by the PostgreSQL Operator, including:

• The PostgreSQL containers now use versions 12.2, 11.7, 10.12, 9.6.17, and 9.5.21
• The PostgreSQL containers now support PL/Python3
• Patroni is updated to version 1.6.4

The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
PostgreSQL Operator is tested with Kubernetes 1.13+, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise
PKS 1.3+.

Changes since 4.2.1

• Added the --enable-autofail flag to pgo update to make it clear how the auto-failover mechanism can be re-enabled for a
PostgreSQL cluster.

• Remove using expenv in the add-targeted-namespace.sh script

Fixes since 4.2.1

• Ensure PostgreSQL clusters can be successfully restored via pgo restore after ‘pgo scaledown’ is executed
• Ensure all replicas are listed out via the --query flag in pgo scaledown and pgo failover. This now follows the pattern outlined

by the Kubernetes safe random string generator (#1247)
• Honor the value of “PasswordLength” when it is set in the pgo.yaml file for password generation. The default is now set at 24
• Set UsePAM yes in the sshd_config file to fix an issue with using SSHD in newer versions of Docker
• The backup task listed in the pgtask CRD is now only deleted if one already exists
• Ensure that a successful “rmdata” Job does not delete all cluster pgtasks listed in the CRD after a successful run
• Only add Operator labels to a managed namespace if the namespace already exists when executing the add-targeted-namespace.sh

script
• Remove logging of PostgreSQL user credentials in the PostgreSQL Operator logs
• Consolidation of the Dockerfiles for RHEL7/UBI7 builds
• Several fixes to the documentation (#1233)

Crunchy Data announces the release of the PostgreSQL Operator 4.2.1 on January, 16, 2020.
The PostgreSQL Operator 4.2.1 provides bug fixes and continued support to the 4.2 release line.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
PostgreSQL Operator is tested with Kubernetes 1.13+, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise
PKS 1.3+.

129

https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apimachinery/pkg/util/rand/rand.go
https://www.crunchydata.com
https://www.crunchydata.com/products/crunchy-postgresql-operator/
https://github.com/CrunchyData/crunchy-containers/
https://github.com/kubernetes/kubernetes/blob/master/staging/src/k8s.io/apimachinery/pkg/util/rand/rand.go
https://www.crunchydata.com
https://www.crunchydata.com/products/crunchy-postgresql-operator/
https://github.com/CrunchyData/crunchy-containers/

Fixes

• Ensure Pod labels are updated after failover (#1218)
• Fix for scheduled tasks to continue executing even after pgo delete schedule is called (#1215)
• Ensure pgo restore carries through the --node-label to the new primary (#1206)
• Fix for displaying incorrect replica names with the --query flag on pgo scaledown/pgo failover after a failover occurred
• Fix for default CA exclusion for the Windows-based [pgo client]({{< relref “pgo-client/_index.md” >}})
• Fix a race condition where the pgo-rmdata job could fail when doing its final pass on deleting PVCs. This went unnoticed as it was

the final task to occur
• Fix image pull policy for the pgo-client container to match the project default (IfNotPresent)
• Update the “Create CRD Example” to reference the crunchy-postgres-ha container
• Update comments used for the API documentation generation via Swagger
• Update the directions for running the PostgreSQL Operator from the GCP Marketplace deployer
• Updated OLM installer example and added generation script
• Update the “cron” package to v3.0.1

Crunchy Data announces the release of the PostgreSQL Operator 4.2.0 on December, 31, 2019.
The focus of the 4.2.0 release of the PostgreSQL Operator was on the resiliency and uptime of the PostgreSQL clusters that the PostgreSQL
Operator manages, with an emphasis on high-availability and removing the Operator from being a single-point-of-failure in the HA process.
This release introduces support for a distributed-consensus based high-availability approach using Kubernetes distributed consensus store as
the backing, which, in other words, allows for the PostgreSQL clusters to manage their own availability and not the PostgreSQL Operator.
This is accomplished by leveraging the open source high-availability framework Patroni as well as the open source, high-performant
PostgreSQL disaster recovery management tool pgBackRest.
To accomplish this, we have introduced a new container called crunchy-postgres-ha (and for geospatial workloads, crunchy-postgres-gis-ha).
If you are upgrading from an older version of the PostgreSQL Operator, you will need to modify your installation to
use these containers.
Included in the PostgreSQL Operator 4.2.0 introduces the following new features:

• An improved PostgreSQL HA (high-availability) solution using distributed consensus that is backed by Kubernetes. This includes:
• Elimination of the PostgreSQL Operator as the arbiter that decides when a cluster should fail over
• Support for Pod anti-affinity, which indicates to Kubernetes schedule pods (e.g. PostgreSQL instances) on separate nodes
• Failed primaries now automatically heal, which significantly reduces the time in which they can rejoin the cluster.
• Introduction of synchronous replication for workloads that are sensitive to transaction loss (with a tradeoff of performance and

potentially availability)
• Standardization of physical backups and restores on pgBackRest, with native support for pg_basebackup removed.
• Introduction of the ability to clone PostgreSQL clusters using the pgo clone command. This feature copies the pgBackRest

repository from a cluster and creates a new, single instance primary as its own cluster.
• Allow one to use their own certificate authority (CA) when interfacing with the Operator API, and to specify usage of the CA from

the pgo command-line interface (CLI)

The container building process has been optimized, with build speed ups reported to be 70% faster.
The Postgres Operator 4.2.0 release also includes the following software versions upgrades:

• The PostgreSQL containers now use versions 12.1, 11.6, 10.11, 9.6.16, and 9.5.20.
• pgBackRest is upgraded to use version 2.20
• pgBouncer is upgraded to use version 1.12
• Patroni uses version 1.6.3

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.15, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise
PKS 1.3+. We have taken steps to ensure the PostgreSQL Operator is compatible with Kubernetes 1.16+, but did not test thoroughly
on it for this release. Cursory testing indicates that the PostgreSQL Operator is compatible with Kubernetes 1.16 and beyond, but we
advise that you run your own tests.

Major Features

High-Availability & Disaster Recovery

PostgreSQL Operator 4.2.0 makes significant enhancements to the high-availability and disaster recovery capabilities of the PostgreSQL
Operator by moving to a distributed-consensus based model for maintaining availability, standardizing around pgBackRest for backups
and restores, and removing the Operator itself as a single-point-of-failure in relation to PostgreSQL cluster resiliency.

130

https://www.crunchydata.com
https://www.crunchydata.com/products/crunchy-postgresql-operator/
https://www.postgresql.org
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://patroni.readthedocs.io
https://pgbackrest.org/
https://access.crunchydata.com/documentation/pgbackrest/
https://access.crunchydata.com/documentation/pgbouncer/
https://access.crunchydata.com/documentation/patroni/

As the high-availability environment introduced by PostgreSQL Operator 4.2.0 is now the default, setting up a HA cluster is as easy as:
pgo create cluster hacluster
pgo scale hacluster --replica-count=2

If you wish to disable high-availability for a cluster, you can use the following command:
pgo create cluster boringcluster --disable-autofail

New Required HA PostgreSQL Containers: crunchy-postgres-ha and crunchy-postgres-gis-ha

Using the PostgreSQL Operator 4.2.0 requires replacing your crunchy-postgres and crunchy-postgres-gis containers with the
crunchy-postgres-ha and crunchy-postgres-gis-ha containres respectively. The underlying PostgreSQL installations in the container
remain the same but are now optimized for Kubernetes environments to provide the new high-availability functionality.

A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is
deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario,
and to automatically heal after a failover event.

Upgrading to these new containers is as simple as modifying your CRD ccpimage parameter to use crunchy-postgres-ha to use the HA
enabled containers. Please see our upgrade instructions to select your preferred upgrade strategy.

pgBackRest Standardization

pgBackRest is now the only backup and restore method supported by the PostgreSQL Operator. This has allowed for the following
features:

• Faster creation of new replicas when a scale up request is made
• Automatic healing of PostgreSQL instances after a failover event, leveraging the pgBackRest delta restore feature. This allows for a

significantly shorter healing process
• The ability to clone PostgreSQL clusters

As part of this standardization, one change to note is that after a PostgreSQL cluster is created, the PostgreSQL Operator will schedule
a full backup of the cluster. This is to ensure that a new replica can be created from a pgBackRest backup. If this initial backup fails, no
new replicas will be provisioned.

When upgrading from an earlier version, please ensure that you have at least one pgBackRest full backup in your backup repository.

Pod Anti-Affinity

PostgreSQL Operator 4.2.0 adds support for Kubernetes pod anti-affinity, which provides guidance on how Kubernetes should schedule
pods relative to each other. This is helpful in high-availability architectures to ensure that PostgreSQL pods are spread out in order to
withstand node failures. For example, in a setup with two PostgreSQL instances, you would not want both instances scheduled to the
same node: if that node goes down or becomes unreachable, then your cluster will be unavailable!

The way the PostgreSQL Operator uses pod anti-affinity is that it tries to ensure that none of the managed pods within the same cluster
are scheduled to the same node. These include:

• Any PostgreSQL instances
• The pod that manages pgBackRest repository
• If deployed, any pgBouncer pods

This helps improve the likelihood that a cluster can remain up even if a downtime event occurs.
There are three options available for pod anti-affinity:

• preferred: Kubernetes will try to schedule any pods within a PostgreSQL cluster to different nodes, but in the event it must
schedule two pods on the same node, it will. This is the default option

• required: Kubernetes will schedule pods within a PostgreSQL cluster to different nodes, but in the event it cannot schedule a pod
to a different node, it will not schedule the pod until a different node is available. While this guarantees that no pod will share the
same node, it can also lead to downtime events as well.

• disabled: Pod anti-affinity is not used.

These options can be combined with the existing node affinity functionality (--node-label) to group the scheduling of pods to particular
node labels!

131

https://pgbackrest.org/configuration.html#section-general/option-delta

Synchronous Replication

PostgreSQL Operator 4.2 introduces support for synchronous replication by leveraging the “synchronous mode” functionality provided
by Patroni. Synchronous replication is useful for workloads that are sensitive to losing transactions, as PostgreSQL will not consider a
transaction to be committed until it is committed to all synchronous replicas connected to a primary. This provides a higher guarantee of
data consistency and, when a healthy synchronous replica is present, a guarantee of the most up-to-date data during a failover event.

This comes at a cost of performance as PostgreSQL: as PostgreSQL has to wait for a transaction to be committed on all synchronous
replicas, a connected client will have to wait longer than if the transaction only had to be committed on the primary (which is how
asynchronous replication works). Additionally, there is a potential impact to availability: if a synchronous replica crashes, any writes to
the primary will be blocked until a replica is promoted to become a new synchronous replica of the primary.

You can enable synchronous replication by using the --sync-replication flag with the pgo create command.

Updated pgo CLI Flags

• pgo create now has a CLI flag for pod anti-affinity called --pod-anti-affinity, which accepts the values required, preferred,
and disabled

• pgo create --sync-replication specifies to create a PostgreSQL HA cluster with synchronous replication

Global Configuration

To support high-availability there are some new settings that you can manage from your pgo.yaml file:

• DisableAutofail - when set to true, this will disable the new HA functionality in any newly created PostgreSQL clusters. By
default, this is false.

• DisableReplicaStartFailReinit - when set to true, this will disable attempting to re-provision a PostgreSQL replica when it is
stuck in a “start failed” state. By default, this false.

• PodAntiAffinity - Determines the type of pod anti-affinity rules to apply to the pods within a newly PostgreSQL cluster. If set
to required, pods within a PostgreSQL cluster must be scheduled on different nodes, otherwise a pod will fail to schedule. If set
to preferred, Kubernetes will make a best effort to schedule pods of the same PostgreSQL cluster on different nodes. If set to
disabled, this feature is disabled. By default, this is preferred.

• SyncReplication - If set to true, enables synchronous replication in newly created PostgreSQL clusters. Default to false.

pgo clone

PostgreSQL Operator 4.2.0 introduces the ability to clone the data from one PostgreSQL cluster into a brand new PostgreSQL cluster.
The command to do so is simple:
pgo clone oldcluster newcluster

After the command is executed, the PostgreSQL Operator checks to see if a) the oldcluster exists and b) the newcluster does not exist.
If both of these conditions hold, the PostgreSQL Operator creates two new PVCs the match the specs of the oldcluster PostgreSQL
data PVC (PrimaryStorage) and its pgBackRest repository PVC (BackrestStorage).

If these PVCs are successfully created, the PostgreSQL Operator will copy the contents of the pgBackRest repository from the oldcluster
to the one setup for the newcluster by means of a Kubernetes Job that is running rsync provided by the pgo-backrest-repo-sync
container. We are able to do this because all changes to the pgBackRest repository are atomic.

If this successfully completes, the PostgreSQL Operator then runs a pgBackRest restore job to restore the PostgreSQL cluster. On a
successful restore, the new PostgreSQL cluster is then scheduled and runs in recovery mode until it reaches a consistent state, and then
comes online as a brand new cluster

To optimize the time it takes to restore for a clone, we recommend taking a backup of the cluster you want to clone. You can do this with
the pgo backup command, and choose if you want to take a full, differential, or incremental backup.

Future work will be focused on additional options, such as being able to clone a PostgreSQL cluster to a particular point-in-time (so long
as the backup is available to support it) and supporting other pgo create flags.

Schedule Backups With Retention Policies

While the PostgreSQL Operator has had the ability to schedule full, incremental, and differential pgBackRest backups for awhile, it has
not been possible to set the retention policy on these backups. Backup retention policies allow users to manage their backup storage whle
maintaining enough backups to be able to recover to a specific point-in-time, or perform forensic work on data in a particular state.

For example, one can schedule a full backup to occur nightly at midnight and keep up to 21 full backups (e.g. a 21 day retention policy):

132

pgo create schedule mycluster --schedule="0 0 * * *" --schedule-type="pgbackrest"
--pgbackrest -backup-type=full --schedule -opts="--repo1-retention -full=21"

Breaking Changes

Feature Removals

• Physical backups using pg_basebackup are no longer supported. Any command-line option that references using this method has
been removed. The API endpoints where one can specify a pg_basebackup remain, but will be removed in a future release (likely
the next one).

• Removed the pgo-lspvc container. This container was used with the pgo show pvc and performed searches on the mounted
filesystem. This would cause issues both on environments that could not support a PVC being mounted multiple times, and for
underlying volumes that contained numerous files. Now, pgo show pvc only lists the PVCs associated with the PostgreSQL clusters
managed by the PostgreSQL Operator.

• Native support for pgpool has been removed.

Command Line (pgo)

pgo create cluster

• The --pgbackrest option is removed as it is no longer needed. pgBackRest is enabled by default

pgo delete cluster

The default behavior for pgo delete cluster has changed so that all backups and PostgreSQL data are deleted by default.
To keep a backup after a cluster is deleted, one can use the --keep-backups flag with pgo delete cluster, and to keep the PostgreSQL
data directory, one can specify the --keep-data flag. There is a plan to remove the --keep-data flag in a future release, though this has
not been determined yet.

The -b, --delete-backups, -d, and --delete-data flags are all deprecated and will be removed in the next release.

pgo scaledown

With this release, pgo scaledown will delete the PostgreSQL data directory of the replica by default. To keep the PostgreSQL
directory after the replica has scaled down, one can use the --keep-data flag.

pgo test

pgo test is optimized to provide faster results about the availability of a PostgreSQL cluster. Instead of attempting to make PostgreSQL
connections to each PostgreSQL instance with each user, pgo test now checks the availability of the service endpoints for each PostgreSQL
cluster as well as the output of the PostgreSQL readiness checks, which check the connectivity of a PostgreSQL cluster.

Both the API and the output of pgo test are modified for this optimization.

Additional apiserver Changes

• An authorization failure in the apiserver (i.e. not having the correct RBAC permission for a pgouser) will return a status code of
403 instead of 401

• The pgorole permissions now support the "*" permission to specify all pgorole RBAC permissions are granted to a pgouser. Users
upgrading from an earlier version should note this change if they want to assign their users to access new features.

Additional Features

pgo (Operator CLI)

• Support the pgBackRest options for backup retention, including --repo1-retention-full, --repo1-retention-diff,
--repo1-retention-archive, --repo1-retention-archive-type, which can be added in the --backup-opts flag in the
pgo backup command. For example:

133

create a pgBackRest incremental backup with one full backup being retained and two differential
backups being retained, along with incremental backups associated with each

pgo backup mycluster --backup-type="pgbackrest" --backup-opts="--type=incr
--repo1-retention -diff=2 --repo1-retention -full=1"

create a pgBackRest full backup where 2 other full backups are retained, with WAL archive
retained for full and differential backups

pgo backup mycluster --backup-opts="--type=full --repo1-retention -full=2
--repo1-retention -archive=4 --repo1-retention -archive-type=diff"

• Allow for users to define S3 credentials and other options for pgBackRest backups on a per-cluster basis, in addition to leveraging
the globally provided templates. This introduces the following flags on the pgo create cluster command:

• --pgbackrest-s3-bucket - specifics the AWS S3 bucket that should be utilized

• --pgbackrest-s3-endpoint specifies the S3 endpoint that should be utilized

• --pgbackrest-s3-key - specifies the AWS S3 key that should be utilized

• --pgbackrest-s3-key-secret- specifies the AWS S3 key secret that should be utilized

• --pgbackrest-s3-region - specifies the AWS S3 region that should be utilized

• Add the --disable-tls flag to the pgo command-line client, as to be compatible with the Operator API server that is deployed
with DISABLE_TLS enabled.

• Improved output for the pgo scaledown --query and and pgo failover --query commands, including providing easy-to-
understand results on replication lag

• Containerized pgo via the pgo-client container. This can be installed from the Ansible installer using the pgo_client_container_install
flag, and it installs into the same namespace as the PostgreSQL Operator. You can connect to the container via kubectl exec and
execute pgo commands!

Builds

• Refactor the Dockerfiles to rely on a “base” definition for ease of management and to ensure consistent builds across all container
images during a full make

• Selecting which image builder to use is now argument based using the IMGBUILDER environmental variable. Default is buildah
• Optimize yum clean invocation to occur on same line as the RUN, which leads to smaller image builds.

Installation

• Add the pgo_noauth_routes (Ansible) / NOAUTH_ROUTES (Bash) configuration variables to disable TLS/BasicAuth authentication
on particular API routes. This defaults to '/health'

• Add the pgo_tls_ca_store Ansible / TLS_CA_TRUST (Bash) configuration variables to specify a PEM encoded list of trusted
certificate authorities (CA) for the Operator to use when authenticating API requests over TLS

• Add the pgo_add_os_ca_store / ADD_OS_TRUSTSTORE (Bash) to specify to use the trusted CA that is provided by the operating
system. Defaults to true

Configuration

• Enable individual ConfigMap files to be customized without having to upload every single ConfigMap file available in pgo-config.
Patch by Conor Quin (@Conor-Quin)

• Add EXCLUDE_OS_TRUST environmental variable that allows the pgo client to specify that it does not want to use the trusted certificate
authorities (CA) provided by the operating system.

Miscellaneous

• Migrated Kubernetes API groups using API version extensions/v1beta1 to their respective updated API groups/versions. This
improves compatibility with Kubernetes 1.16 and beyond. Original patch by Lucas Bickel (@hairmare)

• Add a Kubernetes Service Account to every Pod that is managed by the PostgreSQL Operator

134

• Add support for private repositories using imagePullSecret. This can be configured during installation by setting the
pgo_image_pull_secret and pgo_image_pull_secret_manifest in the inventory file using Ansible installer, or with the
PGO_IMAGE_PULL_SECRET and PGO_IMAGE_PULL_SECRET_MANIFEST environmental variables using the Bash installer. The “pull
secret” is the name of the pull secret, whereas the manifest is what is used to define the secret

• The pgorole permissions now support the "*" permission to specify all pgorole RBAC permissions are granted to a pgouser
• Policies that are executed using pgo apply and pgo create cluster --policies are now executed over a UNIX socket directly

on the Pod of the primary PostgreSQL instance. Reported by @yuanlinios
• A new sidecar, crunchyadm, is available for running managemnet commands on a PostgreSQL cluster. As this is experimental, this

feature is disabled by default.

Fixes

• Update the YAML library to v2.2.4 to mitigate issues presented in CVE-2019-11253
• Specify the pgbackrest user by its ID number (2000) in the backrest-repo container image so that containers instantiated with the

runAsNonRoot option enabled recognize the pgbackrest user as non-root.
• Ensure any Kubernetes Secret associated with a PostgreSQL backup is deleted when the --delete-backups flag is specified on

pgo delete cluster
• The pgBouncer pod can now support connecting to databases that are added after a PostgreSQL cluster is deployed
• Remove misleading error messages from the logs that were caused by the readiness/liveness probes on the apiserver and event

containers in the postgres-operator pod
• Several fixes to the cleanup of a PostgreSQL cluster after a deletion event (e.g. pgo delete cluster) to ensure data is safely

removed. This includes ensuring schedules managed by pgo schedule are removed, as well as PostgreSQL cluster and backup data
• Skip the HTTP Basic Authorization check if the BasicAuth parameter in pgo.yaml is set to false
• Ensure all available backup types are displayed in the pgo schedule are listed (full, incr, diff)
• Ensure schedule tasks create with pgo create schedule are deleted when pgo delete cluster is called
• Fix the missing readiness/liveness probes used to check the status of the apiserver and event containers in the postgres-operator

pod
• Remove misleading error messages from the logs that were caused by the readiness/liveness probes on the apiserver and event

containers in the postgres-operator pod
• Fix a race condition where the pgo-rmdata job could fail when doing its final pass on deleting PVCs. This became noticeable after

adding in the task to clean up any configmaps that a PostgreSQL cluster relied on
• Improved logging around authorization failures in the apiserver

This release was to update the supported PostgreSQL versions to 12.2, 11.7, 10.12, 9.6.17, and 9.5.21

Crunchy Data announces the release of PostgreSQL Operator 4.1.1 on November, 22, 2019.

Postgres Operator 4.1.1 provide bug fixes and continued support to Postgres Operator 4.1 as well as continued compatibility with newer
versions of PostgreSQL.

The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.

The Postgres Operator 4.1.1 release includes the following software versions upgrades:

• The PostgreSQL now uses versions 12.1, 11.6, 10.11, 9.6.16, and 9.5.20.

Postgres Operator is tested with Kubernetes 1.13 - 1.15, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise
PKS 1.3+. At present, Postgres Operator 4.1 is not compatible with Kubernetes 1.16.

Fixes

• Add the --disable-tls flag to the pgo command-line client, as to be compatible with the Operator API server that is deployed
with DISABLE_TLS enabled. This is backported due to this functionality being missed in the 4.1 release.

• Update the YAML library to v2.2.4 to mitigate issues presented in CVE-2019-11253
• Specify the pgbackrest user by its ID number (2000) in the backrest-repo container image so that containers instantiated with the

runAsNonRoot option enabled recognize the pgbackrest user as non-root.
• Ensure any Kubernetes Secret associated with a PostgreSQL backup is deleted when the --delete-backups flag is specified on

pgo delete cluster
• Enable individual ConfigMap files to be customized without having to upload every single ConfigMap file available in pgo-config.

Patch by Conor Quin (@Conor-Quin)
• Skip the HTTP Basic Authorization check if the BasicAuth parameter in pgo.yaml is set to false

135

https://www.crunchydata.com
https://www.crunchydata.com/products/crunchy-postgresql-operator/
https://github.com/CrunchyData/crunchy-containers/

Crunchy Data announces the release of PostgreSQL Operator 4.1 on October 15, 2019.

In addition to new features, such as dynamic namespace manage by the Operator and the ability to subscribe to a stream of lifecycle
events that occur with PostgreSQL clusters, this release adds many new features and bug fixes.

The Postgres Operator 4.1 release also includes the following software versions upgrades:

• The PostgreSQL now uses versions 11.5, 10.10, 9.6.15, and 9.5.19. The PostgreSQL container now includes support for PL/Python.
• pgBackRest is now 2.17
• pgMonitor now uses version 3.2

To build Postgres Operator 4.1, you will need to utilize buildah version 1.9.0 and above.

Postgres Operator is tested with Kubernetes 1.13 - 1.15, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise
PKS 1.3+. At present, Postgres Operator 4.1 is not compatible with Kubernetes 1.16.

Major Features

Dynamic Namespace Management

Postgres Operator 4.1 introduces the ability to dynamically management Kubernetes namespaces from the Postgres Operator itself.
Kubernetes namespaces provide the ability to isolate workloads within a Kubernetes cluster, which can provide additional security and
privacy amongst users.

The previous version of the Postgres Operator allowed users to add Kubernetes namespaces to which the Postgres Operator could deploy
and manage clusters. Postgres Operator 4.1 expands on this ability by allowing the Operator to dynamically add and remove namespaces
using the pgo create namespace and pgo delete namespace commands.

This allows for several different deployment patterns for PostgreSQL clusters, including:

• Deploying PostgreSQL clusters within a single namespace for an individual user
• Deploying a PostgreSQL cluster into its own namespace

Note that deleting a namespace in Kubernetes deletes all of the objects that reside within that namespace, including active PostgreSQL
clusters. Ensure that you wish to delete everything inside a namespace before executing pgo delete namespace.

This has also lead to a change in terms of how role-based access control (RBAC) is handled. Traditionally, RBAC permissions we added
to the ClusterRole objects, but in order to support dynamic namespace management, the RBAC has been moved to the Role objects.

If you would like to use the dynamic namespace feature Kubernetes 1.11 and OpenShift 3.11, you will also need to utilize the
add-targeted-namespace.sh script that is bundled with Postgres Operator 4.1. To add a namespace to dynamically to your Postgres
Operator deployment in Kubernetes 1.11, you first need to create the namespace with kubectl (e.g. kubectl create namespace
yournamespace) and then run the add-targeted-namespace.sh script (./add-targeted-namespace.sh yournamespace).

Lifecycle Events

Postgres Operator 4.1 now provides PostgreSQL lifecycle events that occur during the operation of a cluster. Lifecycle events include
things such as when a cluster is provisioned, a replica is added, a backup is taken, a cluster fails over, etc. Each deployed PostgreSQL
cluster managed by the PostgreSQL Operator will report back to the Operator around these lifecycle events via the NSQ distributed
messaging platform.

You can subscribe to lifecycle events by topic using the pgo watch command. For subscribe to all events for clusters under manage-
ment, you can run pgo watch alltopic. Eventing can be disabled using the DISABLE_EVENTING environmental variable within the
postgres-operator deployment.

For more information, please read the [Eventing]({{< relref “/architecture/eventing.md” >}}) section of the documentation.

Breaking Changes

Containers

• The node_exporter container is no longer shipped with the PostgreSQL Operator. A detailed explanation of how node-style metrics
are handled is available in the “Additional Features” section.

136

https://www.crunchydata.com
https://www.crunchydata.com/products/crunchy-postgresql-operator/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

API

• The pgo update cluster API endpoint now uses a HTTP POST instead of GET
• The user management endpoints (e.g. pgo create user) now use a HTTP POST instead of a GET.

Command-line interface

• Removed the -db flag from pgo create user and pgo update user
• Removed --update-password flag from the pgo user command

Installation

• Changed the Ansible installer to use uninstall and uninstall-metrics tags instead of deprovision and deprovision-metrics
respectively

Builds

• The Makefile now uses buildah for building the containers instead of Docker. The PostgreSQL Operator can be built with buildah
v1.9.0 and above.

Additional Features

General PostgreSQL Operator Features

• PostgreSQL Operator users and roles can now be dynamically managed (i.e. pgouser and pgorole)

• Readiness probes have been added to the apiserver and scheduler and is now included in the new event container. The scheduler
uses a special heartbeat task to provide its readiness.

• Added the DISABLE_TLS environmental variable for apiserver, which allows the API server to run over HTTP.

• Added the NOAUTH_ROUTES environmental variable for apiserver, which allows useres to bypass TLS authentication on certain
routes (e.g. /health). At present, only /health can be used in this variable.

• Services ports for the postgres_exporter and pgBadger are now templated so a user can now customize them beyond the defaults.

PostgreSQL Upgrade Management

• The process to perform a minor upgrade on a PostgreSQL deployment was modified in order to minimize downtime. Now, when a
pgo upgrade cluster command is run, the PostgreSQL Operator will upgrade all the replicas to the desired version of PostgreSQL
before upgrading the primary container. If autofail is enabled, the PostgreSQL Operator will failover to a pod that is already
updated to a newer version, which minimizes downtime and allows the cluster to upgrade to the desired, updated version of
PostgreSQL.

• pgo upgrade now supports the --all flag, which will upgrade every single PostgreSQL cluster managed by the PostgreSQL Operator
(i.e. pgo upgrade --all)

PostgreSQL User Management

• All user passwords are now loaded in from Kubernetes Secrets.
• pgo create user --managed now supports any acceptable password for PostgreSQL
• Improved error message for calling the equivalent pgo show user command when interfacing with the API directly and there are

no clusters found for th euser.

Monitoring

• Updated the Grafana dashboards to use those found in pgMonitor v3.2
• The crunchy-collect container now connects to PostgreSQL using a password that is stored in a Kubernetes secret
• Introduced support for collecting host-style metrics via the cAdvisor installations that are installed and running on each Kubelet.

This requires for the ClusterRole to have the nodes and nodes/metrics resources granted to it.

137

Logging

• Updated logging to provide additional details of where issues occurred, including file and line number where the issue originated.

Installation

• The Ansible installer uninstall tag now has the option of preserving portions of the previous installation
• The Ansible installer supports NFS and hostpath storage options
• The Ansible installer can now set the fsgroup for the metrics tag
• The Ansible installer now has the same configuration options as the bash installer
• The Ansible installer now supports a separate RBAC installation
• Add a custom security context constraint (SCC) to the Ansible and bash installers that is applied to pods created by the Operator.

This makes it possible to customize the control permissions for the PostgreSQL cluster pods managed by the Operator

Fixes

• Fixed a bug where testuser was always created even if the username was modified in the pgo.yaml
• Fixed the --expired flag for pgo show user to show the number of days until a user’s password expires
• Fixed the workflow for pgo benchmark jobs to show completion
• Modify the create a cluster via a custom resource definition (CRD) to use pgBackRest
• Fixed an issue with the pgpool label when a pg_dump is performed by calling the REST API
• Fixed the pgo load example, which previous used a hardcoded namespace. This has changed with the support of dynamic names-

paces.

138

	Crunchy PostgreSQL Operator
	Run your own production-grade PostgreSQL-as-a-Service on Kubernetes!

	How it Works
	Supported Platforms
	Storage

	PostgreSQL Operator Quickstart
	PostgreSQL Operator Installer
	The Very, VERY Quickstart
	Step 1: Configuration
	Get the PostgreSQL Operator Installer Manifest
	Configure the PostgreSQL Operator Installer

	Step 2: Installation
	Step 3: Verification
	Step 4: Have Some Fun - Create a PostgreSQL Cluster

	Marketplaces
	Google Cloud Platform Marketplace
	Step 1: Prerequisites
	Step 2: Install the PostgreSQL Operator User Keys
	Step 3: Setup PostgreSQL Operator User
	Step 4: Setup Environment variables
	Step 5: Install the PostgreSQL Operator Client !pgo!
	Step 6: Connect to the PostgreSQL Operator
	Step 7: Create a Namespace
	Step 8: Have Some Fun - Create a PostgreSQL Cluster

	Crunchy PostgreSQL Operator Architecture
	Kubernetes Deployments: The Crunchy PostgreSQL Operator Deployment Model

	Additional Architecture Information
	Horizontal Scaling
	[Custom Configuration]({{< relref ``/advanced/custom-configuration.md'' >}})
	Deprovisioning
	Backups
	Restores
	Scheduling Backups
	Setting Backup Retention Policies
	Schedule Expression Format

	Using S3

	Kubernetes Namespaces and the PostgreSQL Operator
	Namespace Operating Modes
	!dynamic!
	!readonly!
	!disabled!

	Namespace Deployment Patterns
	One Namespace: PostgreSQL Operator + PostgreSQL Clusters
	Single Tenant: PostgreSQL Operator Separate from PostgreSQL Clusters
	Multi Tenant: PostgreSQL Operator Managing PostgreSQL Clusters in Multiple Namespaces

	[!pgo! client]({{< relref ``/pgo-client/_index.md" >}}) and Namespaces
	Operator Eventing
	Event Watching
	Event Topics
	Event Types
	Event Deployment
	PostgreSQL Operator Containers Overview
	PostgreSQL Server and Extensions
	Backup and Restore
	Administration Tools
	Metrics and Monitoring
	Connection Pooling

	Storage and the PostgreSQL Operator
	User Roles in the PostgreSQL Operator
	Platform Administrator
	Platform User
	PostgreSQL User

	How Tablespaces Work in the PostgreSQL Operator
	Adding Tablespaces to a New Cluster
	Adding Tablespaces to Existing Clusters
	More Information
	Deploying pgAdmin 4
	User Synchronization
	Deleting pgAdmin 4
	The Crunchy PostgreSQL Operator High-Availability Algorithm
	How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity
	Synchronous Replication: Guarding Against Transactions Loss
	Node Affinity
	Standby Cluster Overview
	Key Commands

	Creating a Standby PostgreSQL Cluster
	Promoting a Standby Cluster
	Container Dependencies
	Operating Systems
	Kubernetes Distributions
	Storage
	Releases
	conf Directory
	conf/postgres-operator/pgo.yaml
	conf/postgres-operator Directory
	Operator API Server
	Security
	Local pgo CLI Configuration

	pgo.yaml Configuration
	Storage
	Storage Configuration Examples
	HostPath Example
	NFS Example
	Storage Class Example

	Miscellaneous (Pgo)
	Storage Configuration Details
	Overriding Storage Configuration Defaults
	Using Storage Configurations for Disaster Recovery
	TLS Configuration
	Server Settings
	TLS Trust
	Connection Settings
	Client Settings

	Prerequisites
	Environment
	Client Interfaces
	Ports
	Application Ports

	The PostgreSQL Operator Installer
	Quickstart
	Overview
	Requirements
	RBAC
	Namespaces

	Configuration - !postgres-operator.yml!
	Image Pull Secrets

	Installation
	Install the [!pgo! Client]({{< relref ``/installation/pgo-client'' >}})
	Verify the Installation

	Post-Installation

	Install the PostgreSQL Operator (!pgo!) Client
	Prerequisites
	Linux and MacOS
	Installing the Client

	PGO-Client Container
	Installing the PGO-Client Container
	Using the PGO-Client Deployment

	Windows
	Installing the Client

	Verify the Client Installation

	PostgreSQL Operator Installer Configuration
	General Configuration
	Storage Settings
	Storage Configuration Options
	Example Storage Configuration
	PostgreSQL Cluster Storage Defaults
	Storage Configuration Types

	Pod Anti-affinity Settings
	Default Installation - Create Project Structure
	Default Installation - Configure Environment
	Default Installation - Namespace Creation
	Default Installation - Configure Operator Templates
	Storage

	Operator Security
	Default Installation - Create Kubernetes RBAC Controls
	Default Installation - Deploy the Operator
	Default Installation - Completely Cleaning Up
	pgo CLI Installation
	Verify the Installation

	Crunchy Data PostgreSQL Operator Playbooks
	Features
	Resources

	Prerequisites
	Kubernetes Installs
	OpenShift Installs
	Installing from a Windows Host
	Permissions
	Obtaining Operator Ansible Role
	GitHub Installation
	RPM Installation using Yum

	Configuring the Inventory File
	Requirements
	Configuration Parameters

	Storage
	Examples
	Considerations for Multi-Zone Cloud Environments

	Resource Configuration
	Understanding !pgooperatornamespace! & !namespace!
	Single Namespace
	Multiple Namespaces

	Deploying Multiple Operators
	Deploying Grafana and Prometheus
	Installing Ansible on Linux, MacOS or Windows Ubuntu Subsystem
	Install Google Cloud SDK (Optional)

	Installing
	Installing on Linux
	Installing on MacOS
	Installing on Windows Ubuntu Subsystem
	Verifying the Installation
	Configure Environment Variables
	Verify !pgo! Connection

	Installing
	Prerequisites
	Installing on Linux
	Installing on MacOS
	Installing on Windows
	Verifying the Installation
	Verify Grafana
	Verify Prometheus

	Updating
	Updating on Linux
	Updating on MacOS
	Updating on Windows Ubuntu Subsystem
	Verifying the Update
	Configure Environment Variables
	Verify !pgo! Connection

	Uninstalling PostgreSQL Operator
	Deleting !pgo! Client

	Uninstalling the Metrics Stack
	General Notes on Using the !pgo! Client
	Syntax
	Command Overview
	Global Flags
	Global Environment Variables

	Additional Information
	Setup Before Running the Examples
	JSON Output

	PostgreSQL Operator System Basics
	Checking Connectivity to the PostgreSQL Operator
	Inspecting the PostgreSQL Operator Configuration
	Viewing PostgreSQL Operator Key Metrics
	Viewing PostgreSQL Operator Managed Namespaces

	Provisioning: Create, View, Destroy
	Creating a PostgreSQL Cluster
	View PostgreSQL Cluster Details
	Deleting a Cluster

	Testing PostgreSQL Cluster Availability
	Disaster Recovery: Backups & Restores
	Creating a Backup
	Creating Backups in S3
	Displaying Backup Information
	Setting Backup Retention
	Scheduling Backups
	Restore a Cluster
	Logical Backups (!pgdump! / !pgdumpall!)

	High-Availability: Scaling Up & Down
	Creating a New Replica
	Viewing Available Replicas
	Manual Failover

	Cluster Maintenance & Resource Management
	Clone a PostgreSQL Cluster
	Clone a PostgreSQL Cluster to Different PVC Size

	Enable TLS
	Setup
	Create a TLS Enabled PostgreSQL Cluster
	Force TLS in a PostgreSQL Cluster

	[custom-postgresql-configuration]Custom PostgreSQL Configuration({{< relref ``/advanced/custom-configuration.md'' >}})
	pgAdmin 4: PostgreSQL Administration
	Standby Clusters: Multi-Cluster Kubernetes Deployments
	Creating a Standby Cluster
	Promoting a Standby Cluster

	Monitoring
	View Disk Utilization
	PostgreSQL Metrics via pgMonitor

	Labels
	Add a Label to a PostgreSQL Cluster
	Add a Label to Multiple PostgreSQL Clusters

	Policy Management
	Create a Policy
	Apply a Policy

	Advanced Operations
	Connection Pooling via pgBouncer
	Query Analysis via pgBadger
	Create a Cluster using Specific Storage
	Create a Cluster with LoadBalancer ServiceType
	Namespace Operations
	PostgreSQL Operator User Operations
	PostgreSQL Cluster User Operations

	Configuring Encryption of PostgreSQL Operator API Connection
	PostreSQL Operator RBAC
	Making Security Changes
	Installation of PostgreSQL Operator RBAC
	Custom PostgreSQL Configuration
	Modifying PostgreSQL Cluster Configuration
	Types of Configuration
	Updating Configuration Settings
	Refreshing Configuration Settings

	Direct API Calls
	Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud Environments

	Upgrading the Crunchy PostgreSQL Operator
	Automated Upgrade Procedure
	Considerations
	Automated Upgrade when using an Ansible installation of the PostgreSQL Operator
	Automated Upgrade when using a Bash installation of the PostgreSQL Operator

	PostgreSQL Operator Automated Cluster Upgrade
	Manually Upgrading the Operator and PostgreSQL Clusters
	Upgrading the Crunchy PostgreSQL Operator from Version 3.5 to 4.3.0
	Manual PostgreSQL Operator 4 Upgrade Procedure
	Ansible Installation Upgrade Procedure
	Bash Installation Upgrade Procedure

	Prerequisites
	Environment Variables
	Other requirements

	Building
	Dependencies
	Code Generation
	Compile

	Deployment
	Testing
	Troubleshooting
	Documentation
	Hosting Hugo Locally (Optional)
	Contributing to the Documentation

	Major Features
	Standby Clusters + Multi-Kubernetes Deployments
	Installation via the !pgo-deployer! container
	Automatic PostgreSQL Operator Upgrade Process
	Improved Custom Configuration for PostgreSQL Clusters
	Customize PVC Size on PostgreSQL cluster Creation & Clone
	pgo create cluster
	pgo clone cluster

	Tablespaces
	Easy TLS-Enabled PostgreSQL Clusters
	External WAL Volume

	Elimination of !ClusterRole! Requirement for the PostgreSQL Operator
	Feature Preview: pgAdmin 4 Integration + User Synchronization
	Enhanced !pgo df!
	Enhanced pgBouncer Integration
	Rewritten pgo User Management commands

	Breaking Changes
	Features
	Changes
	Fixes
	Changes since 4.2.1
	Fixes since 4.2.1
	Fixes
	Major Features
	High-Availability & Disaster Recovery
	New Required HA PostgreSQL Containers: !crunchy-postgres-ha! and !crunchy-postgres-gis-ha!
	pgBackRest Standardization
	Pod Anti-Affinity
	Synchronous Replication
	Updated pgo CLI Flags
	Global Configuration

	!pgo clone!
	Schedule Backups With Retention Policies

	Breaking Changes
	Feature Removals
	Command Line (!pgo!)
	!pgo create cluster!
	!pgo delete cluster!
	!pgo scaledown!
	!pgo test!

	Additional apiserver Changes

	Additional Features
	pgo (Operator CLI)
	Builds
	Installation
	Configuration
	Miscellaneous

	Fixes
	Fixes
	Major Features
	Dynamic Namespace Management
	Lifecycle Events

	Breaking Changes
	Containers
	API
	Command-line interface
	Installation
	Builds

	Additional Features
	General PostgreSQL Operator Features
	PostgreSQL Upgrade Management
	PostgreSQL User Management
	Monitoring
	Logging
	Installation

	Fixes

