
  Crunchy PostgreSQL Operator


    
      Crunchy PostgreSQL Operator

      
        	
          
            Crunchy PostgreSQL Operator
          
          
            	
              
                Run your own production-grade PostgreSQL-as-a-Service on Kubernetes!
              
            

          

        

        	
          
            How it Works
          
        

        	
          
            Included Components
          
        

        	
          
            Supported Platforms
          
          
            	
              
                Storage
              
            

          

        

        	
          
            PostgreSQL Operator Quickstart
          
        

        	
          
            PostgreSQL Operator Installer
          
          
            	
              
                The Very, VERY Quickstart
              
            

            	
              
                Step 1: Configuration
              
              
                	
                  
                    Get the PostgreSQL Operator Installer Manifest
                  
                

                	
                  
                    Configure the PostgreSQL Operator Installer
                  
                

              

            

            	
              
                Step 2: Installation
              
            

            	
              
                Step 3: Verification
              
            

            	
              
                Step 4: Have Some Fun - Create a PostgreSQL Cluster
              
            

          

        

        	
          
            Marketplaces
          
          
            	
              
                Google Cloud Platform Marketplace
              
              
                	
                  
                    Step 1: Prerequisites
                  
                

                	
                  
                    Step 2: Install the PostgreSQL Operator User Keys
                  
                

                	
                  
                    Step 3: Setup PostgreSQL Operator User
                  
                

                	
                  
                    Step 4: Setup Environment variables
                  
                

                	
                  
                    Step 5: Install the PostgreSQL Operator Client pgo
                  
                

                	
                  
                    Step 6: Connect to the PostgreSQL Operator
                  
                

                	
                  
                    Step 7: Create a Namespace
                  
                

                	
                  
                    Step 8: Have Some Fun - Create a PostgreSQL Cluster
                  
                

              

            

          

        

        	
          
            Crunchy PostgreSQL Operator Architecture
          
          
            	
              
                Kubernetes Deployments: The Crunchy PostgreSQL Operator Deployment Model
              
            

          

        

        	
          
            Additional Architecture Information
          
          
            	
              
                Horizontal Scaling
              
            

            	
              
                [Custom Configuration]({{< relref "/advanced/custom-configuration.md"
>}})
              
            

            	
              
                Provisioning Using a Backup from an Another PostgreSQL Cluster
              
            

            	
              
                Deprovisioning
              
            

            	
              
                Backups
              
            

            	
              
                Restores
              
              
                	
                  
                    Restore to a New Cluster
                  
                

                	
                  
                    Restore in-place
                  
                

              

            

            	
              
                Scheduling Backups
              
              
                	
                  
                    Setting Backup Retention Policies
                  
                

                	
                  
                    Schedule Expression Format
                  
                

              

            

            	
              
                Using S3
              
            

          

        

        	
          
            Kubernetes Namespaces and the PostgreSQL Operator
          
          
            	
              
                Namespace Operating Modes
              
              
                	
                  
                    dynamic
                  
                

                	
                  
                    readonly
                  
                

                	
                  
                    disabled
                  
                

              

            

            	
              
                RBAC Reconciliation
              
              
                	
                  
                    dynamic Namespace Operating Mode
                  
                

                	
                  
                    readonly & disabled Namespace Operating Modes
                  
                

                	
                  
                    Disabling RBAC Reconciliation
                  
                

              

            

            	
              
                Namespace Deployment Patterns
              
              
                	
                  
                    One Namespace: PostgreSQL Operator + PostgreSQL Clusters
                  
                

                	
                  
                    Single Tenant: PostgreSQL Operator Separate from PostgreSQL Clusters
                  
                

                	
                  
                    Multi Tenant: PostgreSQL Operator Managing PostgreSQL Clusters in
Multiple Namespaces
                  
                

              

            

            	
              
                [pgo client]({{< relref "/pgo-client/_index.md" >}}) and Namespaces
              
            

            	
              
                Operator Eventing
              
            

            	
              
                Event Watching
              
            

            	
              
                Event Topics
              
            

            	
              
                Event Types
              
            

            	
              
                Event Deployment
              
            

            	
              
                PostgreSQL Operator Containers Overview
              
              
                	
                  
                    PostgreSQL Server and Extensions
                  
                

                	
                  
                    Backup and Restore
                  
                

                	
                  
                    Administration Tools
                  
                

                	
                  
                    Metrics and Monitoring
                  
                

                	
                  
                    Connection Pooling
                  
                

              

            

            	
              
                Storage and the PostgreSQL Operator
              
            

            	
              
                User Roles in the PostgreSQL Operator
              
              
                	
                  
                    Platform Administrator
                  
                

                	
                  
                    Platform User
                  
                

                	
                  
                    PostgreSQL User
                  
                

              

            

            	
              
                How Tablespaces Work in the PostgreSQL Operator
              
            

            	
              
                Adding Tablespaces to a New Cluster
              
            

            	
              
                Adding Tablespaces to Existing Clusters
              
            

            	
              
                Removing Tablespaces
              
            

            	
              
                More Information
              
            

            	
              
                Deploying pgAdmin 4
              
            

            	
              
                User Synchronization
              
            

            	
              
                Deleting pgAdmin 4
              
            

            	
              
                The Crunchy PostgreSQL Operator High-Availability Algorithm
              
            

            	
              
                How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity
              
            

            	
              
                Synchronous Replication: Guarding Against Transactions Loss
              
            

            	
              
                Node Affinity
              
            

            	
              
                Standby Cluster Overview
              
              
                	
                  
                    Key Commands
                  
                

              

            

            	
              
                Creating a Standby PostgreSQL Cluster
              
            

            	
              
                Promoting a Standby Cluster
              
            

            	
              
                Container Dependencies
              
            

            	
              
                Operating Systems
              
            

            	
              
                Kubernetes Distributions
              
            

            	
              
                Storage
              
            

            	
              
                Releases
              
            

            	
              
                conf Directory
              
            

            	
              
                conf/postgres-operator/pgo.yaml
              
            

            	
              
                conf/postgres-operator Directory
              
            

            	
              
                Operator API Server
              
            

            	
              
                Security
              
            

            	
              
                Local pgo CLI Configuration
              
            

          

        

        	
          
            pgo.yaml Configuration
          
          
            	
              
                Storage
              
            

            	
              
                Storage Configuration Examples
              
              
                	
                  
                    HostPath Example
                  
                

                	
                  
                    NFS Example
                  
                

                	
                  
                    Storage Class Example
                  
                

              

            

            	
              
                Miscellaneous (Pgo)
              
            

            	
              
                Storage Configuration Details
              
            

            	
              
                Overriding Storage Configuration Defaults
              
            

            	
              
                Using Storage Configurations for Disaster Recovery
              
            

            	
              
                TLS Configuration
              
              
                	
                  
                    Server Settings
                  
                

                	
                  
                    TLS Trust
                  
                

                	
                  
                    Connection Settings
                  
                

                	
                  
                    Client Settings
                  
                

              

            

          

        

        	
          
            Prerequisites
          
          
            	
              
                Environment
              
            

            	
              
                Client Interfaces
              
            

            	
              
                Ports
              
              
                	
                  
                    Application Ports
                  
                

              

            

          

        

        	
          
            The PostgreSQL Operator Installer
          
          
            	
              
                Quickstart
              
            

            	
              
                Overview
              
            

            	
              
                Requirements
              
              
                	
                  
                    RBAC
                  
                

                	
                  
                    Config Map
                  
                

                	
                  
                    Namespaces
                  
                

              

            

            	
              
                Configuration - postgres-operator.yml
              
              
                	
                  
                    Image Pull Secrets
                  
                

              

            

            	
              
                Installation
              
              
                	
                  
                    Install the [pgo Client]({{< relref "/installation/pgo-client" >}})
                  
                

                	
                  
                    Verify the Installation
                  
                

              

            

            	
              
                Installing Metrics Infrastructure
              
              
                	
                  
                    Installing
                  
                

                	
                  
                    Uninstalling
                  
                

                	
                  
                    Updating Previous Deployment
                  
                

              

            

            	
              
                Post-Installation
              
            

          

        

        	
          
            Install the PostgreSQL Operator (pgo) Client
          
          
            	
              
                Prerequisites
              
            

            	
              
                Linux and macOS
              
              
                	
                  
                    Installing the Client
                  
                

              

            

            	
              
                PGO-Client Container
              
              
                	
                  
                    Installing the PGO-Client Container
                  
                

                	
                  
                    Using the PGO-Client Deployment
                  
                

              

            

            	
              
                Windows
              
              
                	
                  
                    Installing the Client
                  
                

              

            

            	
              
                Verify the Client Installation
              
            

          

        

        	
          
            PostgreSQL Operator Installer Configuration
          
          
            	
              
                General Configuration
              
            

            	
              
                Storage Settings
              
            

            	
              
                Storage Configuration Options
              
              
                	
                  
                    Example Storage Configuration
                  
                

                	
                  
                    PostgreSQL Cluster Storage Defaults
                  
                

                	
                  
                    Considerations for Multi-Zone Cloud Environments
                  
                

                	
                  
                    Default Storage Configuration Types
                  
                

              

            

            	
              
                Pod Anti-affinity Settings
              
            

            	
              
                Understanding pgo_operator_namespace & namespace
              
              
                	
                  
                    Single Namespace
                  
                

                	
                  
                    Multiple Namespaces
                  
                

              

            

            	
              
                Deploying Multiple Operators
              
            

            	
              
                Default Installation - Create Project Structure
              
            

            	
              
                Default Installation - Configure Environment
              
            

            	
              
                Default Installation - Namespace Creation
              
            

            	
              
                Default Installation - Configure Operator Templates
              
              
                	
                  
                    Storage
                  
                

              

            

            	
              
                Operator Security
              
            

            	
              
                Default Installation - Create Kubernetes RBAC Controls
              
            

            	
              
                Default Installation - Deploy the Operator
              
            

            	
              
                Default Installation - Completely Cleaning Up
              
            

            	
              
                pgo CLI Installation
              
            

            	
              
                Verify the Installation
              
            

          

        

        	
          
            The PostgreSQL Operator Helm Chart
          
          
            	
              
                Overview
              
            

            	
              
                Requirements
              
              
                	
                  
                    RBAC
                  
                

                	
                  
                    Namespace
                  
                

                	
                  
                    Config Map
                  
                

                	
                  
                    Configuration - values.yaml
                  
                

              

            

            	
              
                Installation
              
              
                	
                  
                    Install the [pgo Client]({{< relref "/installation/pgo-client" >}})
                  
                

                	
                  
                    Verify the Installation
                  
                

              

            

            	
              
                Metrics Chart
              
              
                	
                  
                    Installing
                  
                

                	
                  
                    Uninstalling
                  
                

              

            

            	
              
                Upgrade and Uninstall
              
              
                	
                  
                    Upgrade
                  
                

                	
                  
                    Uninstall
                  
                

              

            

            	
              
                Debugging
              
            

          

        

        	
          
            Crunchy Data PostgreSQL Operator Playbooks
          
          
            	
              
                Features
              
            

            	
              
                Resources
              
            

          

        

        	
          
            Prerequisites
          
          
            	
              
                Kubernetes Installs
              
            

            	
              
                OpenShift Installs
              
            

            	
              
                Installing from a Windows Host
              
            

            	
              
                Permissions
              
            

            	
              
                Obtaining Operator Ansible Role
              
              
                	
                  
                    GitHub Installation
                  
                

              

            

            	
              
                Configuring the Inventory File
              
            

            	
              
                Configuring - values.yaml
              
            

            	
              
                Deploying Grafana and Prometheus
              
            

            	
              
                Installing Ansible on Linux, macOS or Windows Ubuntu Subsystem
              
            

            	
              
                Install Google Cloud SDK (Optional)
              
            

          

        

        	
          
            Installing
          
          
            	
              
                Installing on Linux
              
            

            	
              
                Installing on macOS
              
            

            	
              
                Installing on Windows Ubuntu Subsystem
              
            

            	
              
                Verifying the Installation
              
            

            	
              
                Configure Environment Variables
              
            

            	
              
                Verify pgo Connection
              
            

          

        

        	
          
            Installing
          
          
            	
              
                Prerequisites
              
            

            	
              
                Installing on Linux
              
            

            	
              
                Installing on macOS
              
            

            	
              
                Installing on Windows
              
            

            	
              
                Verifying the Installation
              
            

            	
              
                Verify Grafana
              
            

            	
              
                Verify Prometheus
              
            

          

        

        	
          
            Updating
          
          
            	
              
                Updating on Linux
              
            

            	
              
                Updating on macOS
              
            

            	
              
                Updating on Windows Ubuntu Subsystem
              
            

            	
              
                Verifying the Update
              
            

            	
              
                Configure Environment Variables
              
            

            	
              
                Verify pgo Connection
              
            

          

        

        	
          
            Uninstalling PostgreSQL Operator
          
          
            	
              
                Deleting pgo Client
              
            

          

        

        	
          
            Uninstalling the Metrics Stack
          
          
            	
              
                General Notes on Using the pgo Client
              
            

            	
              
                Syntax
              
            

            	
              
                Command Overview
              
              
                	
                  
                    Global Flags
                  
                

                	
                  
                    Global Environment Variables
                  
                

              

            

            	
              
                Additional Information
              
            

            	
              
                Setup Before Running the Examples
              
              
                	
                  
                    JSON Output
                  
                

              

            

            	
              
                PostgreSQL Operator System Basics
              
              
                	
                  
                    Checking Connectivity to the PostgreSQL Operator
                  
                

                	
                  
                    Inspecting the PostgreSQL Operator Configuration
                  
                

                	
                  
                    Viewing PostgreSQL Operator Key Metrics
                  
                

                	
                  
                    Viewing PostgreSQL Operator Managed Namespaces
                  
                

              

            

            	
              
                Provisioning: Create, View, Destroy
              
              
                	
                  
                    Creating a PostgreSQL Cluster
                  
                

                	
                  
                    View PostgreSQL Cluster Details
                  
                

                	
                  
                    Deleting a Cluster
                  
                

              

            

            	
              
                Testing PostgreSQL Cluster Availability
              
            

            	
              
                Disaster Recovery: Backups & Restores
              
              
                	
                  
                    Creating a Backup
                  
                

                	
                  
                    Creating Backups in S3
                  
                

                	
                  
                    Displaying Backup Information
                  
                

                	
                  
                    Setting Backup Retention
                  
                

                	
                  
                    Scheduling Backups
                  
                

                	
                  
                    Restore a Cluster
                  
                

                	
                  
                    Logical Backups (pg_dump / pg_dumpall)
                  
                

              

            

            	
              
                High-Availability: Scaling Up & Down
              
              
                	
                  
                    Creating a New Replica
                  
                

                	
                  
                    Viewing Available Replicas
                  
                

                	
                  
                    Manual Failover
                  
                

              

            

            	
              
                Cluster Maintenance & Resource Management
              
            

            	
              
                Clone a PostgreSQL Cluster
              
              
                	
                  
                    Clone a PostgreSQL Cluster to Different PVC Size
                  
                

              

            

            	
              
                Enable TLS
              
              
                	
                  
                    Setup
                  
                

                	
                  
                    Create a TLS Enabled PostgreSQL Cluster
                  
                

                	
                  
                    Force TLS in a PostgreSQL Cluster
                  
                

                	
                  
                    TLS Authentication for PostgreSQL Replication
                  
                

              

            

            	
              
                Custom PostgreSQL Configuration({{< relref
"/advanced/custom-configuration.md" >}})
              
            

            	
              
                pgAdmin 4: PostgreSQL Administration
              
            

            	
              
                Standby Clusters: Multi-Cluster Kubernetes Deployments
              
              
                	
                  
                    Creating a Standby Cluster
                  
                

                	
                  
                    Promoting a Standby Cluster
                  
                

              

            

            	
              
                Monitoring
              
              
                	
                  
                    View Disk Utilization
                  
                

                	
                  
                    PostgreSQL Metrics via pgMonitor
                  
                

              

            

            	
              
                Labels
              
              
                	
                  
                    Add a Label to a PostgreSQL Cluster
                  
                

                	
                  
                    Add a Label to Multiple PostgreSQL Clusters
                  
                

              

            

            	
              
                Policy Management
              
              
                	
                  
                    Create a Policy
                  
                

                	
                  
                    Apply a Policy
                  
                

              

            

            	
              
                Advanced Operations
              
              
                	
                  
                    Connection Pooling via pgBouncer
                  
                

                	
                  
                    Query Analysis via pgBadger
                  
                

                	
                  
                    Create a Cluster using Specific Storage
                  
                

                	
                  
                    Create a Cluster with LoadBalancer ServiceType
                  
                

                	
                  
                    Namespace Operations
                  
                

                	
                  
                    PostgreSQL Operator User Operations
                  
                

                	
                  
                    PostgreSQL Cluster User Operations
                  
                

              

            

            	
              
                PostgreSQL Operator Custom Resource Definitions
              
              
                	
                  
                    Glossary
                  
                

                	
                  
                    pgclusters.crunchydata.com
                  
                

                	
                  
                    pgreplicas.crunchydata.com
                  
                

              

            

            	
              
                Custom Resource Workflows
              
              
                	
                  
                    Create a PostgreSQL Cluster
                  
                

                	
                  
                    Modify a Cluster
                  
                

                	
                  
                    Scale
                  
                

                	
                  
                    Add a Tablespace
                  
                

                	
                  
                    pgBouncer
                  
                

                	
                  
                    Start / Stop a Cluster
                  
                

              

            

            	
              
                Configuring Encryption of PostgreSQL Operator API Connection
              
            

            	
              
                PostreSQL Operator RBAC
              
            

            	
              
                Making Security Changes
              
            

            	
              
                Installation of PostgreSQL Operator RBAC
              
            

            	
              
                Custom PostgreSQL Configuration
              
            

            	
              
                Modifying PostgreSQL Cluster Configuration
              
              
                	
                  
                    Types of Configuration
                  
                

                	
                  
                    Updating Configuration Settings
                  
                

                	
                  
                    Restarting Database Servers
                  
                

                	
                  
                    Refreshing Configuration Settings
                  
                

              

            

            	
              
                Direct API Calls
              
            

            	
              
                Considerations for PostgreSQL Operator Deployments in Multi-Zone Cloud
Environments
              
            

          

        

        	
          
            Upgrading the Crunchy PostgreSQL Operator
          
          
            	
              
                Automated PostgreSQL Operator Upgrade Procedure
              
              
                	
                  
                    Considerations
                  
                

                	
                  
                    Automated Upgrade when using the PostgreSQL Operator Installer
(pgo-deployer), Helm or Ansible
                  
                

                	
                  
                    Automated Upgrade when using a Bash installation of the PostgreSQL
Operator
                  
                

              

            

            	
              
                PostgreSQL Operator Automated Cluster Upgrade
              
            

            	
              
                Manually Upgrading the Operator and PostgreSQL Clusters
              
            

            	
              
                Upgrading the Crunchy PostgreSQL Operator from Version 3.5 to {{< param
operatorVersion >}}
              
              
                	
                  
                    pgBackRest Repo PVC Renaming
                  
                

              

            

            	
              
                Manual PostgreSQL Operator 4 Upgrade Procedure
              
              
                	
                  
                    Ansible Installation Upgrade Procedure
                  
                

                	
                  
                    Bash Installation Upgrade Procedure
                  
                

                	
                  
                    pgBackRest Repo PVC Renaming
                  
                

              

            

          

        

        	
          
            Prerequisites
          
          
            	
              
                Environment Variables
              
            

            	
              
                Other requirements
              
            

          

        

        	
          
            Building
          
          
            	
              
                Dependencies
              
            

            	
              
                Code Generation
              
            

            	
              
                Compile
              
            

          

        

        	
          
            Deployment
          
        

        	
          
            Testing
          
        

        	
          
            Troubleshooting
          
          
            	
              
                Documentation
              
            

            	
              
                Hosting Hugo Locally (Optional)
              
            

            	
              
                Contributing to the Documentation
              
            

            	
              
                Fixes
              
            

            	
              
                Fixes
              
            

            	
              
                Major Features
              
              
                	
                  
                    Create New PostgreSQL Clusters from pgBackRest Repositories
                  
                

                	
                  
                    RBAC Reconciliation
                  
                

                	
                  
                    TLS Authentication for PostgreSQL Instances
                  
                

              

            

            	
              
                Breaking Changes
              
            

            	
              
                Features
              
            

            	
              
                Changes
              
            

            	
              
                Fixes
              
            

            	
              
                Changes
              
            

            	
              
                Fixes
              
            

            	
              
                Changes
              
              
                	
                  
                    Resource Limit Flags
                  
                

                	
                  
                    Other Changes
                  
                

              

            

            	
              
                Fixes
              
            

          

        

        	
          
            Changes
          
          
            	
              
                Initial Support for SCRAM
              
            

            	
              
                pgo restart and pgo reload
              
            

            	
              
                Dynamic Namespace Mode and Older Kubernetes Versions
              
            

            	
              
                Other Changes
              
            

          

        

        	
          
            Fixes
          
        

        	
          
            Major Features
          
          
            	
              
                Standby Clusters + Multi-Kubernetes Deployments
              
            

            	
              
                Installation via the pgo-deployer container
              
            

            	
              
                Automatic PostgreSQL Operator Upgrade Process
              
            

            	
              
                Improved Custom Configuration for PostgreSQL Clusters
              
            

            	
              
                Customize PVC Size on PostgreSQL cluster Creation & Clone
              
              
                	
                  
                    pgo create cluster
                  
                

                	
                  
                    pgo clone cluster
                  
                

              

            

            	
              
                Tablespaces
              
            

            	
              
                Easy TLS-Enabled PostgreSQL Clusters
              
              
                	
                  
                    External WAL Volume
                  
                

              

            

            	
              
                Elimination of ClusterRole Requirement for the PostgreSQL Operator
              
            

            	
              
                Feature Preview: pgAdmin 4 Integration + User Synchronization
              
            

            	
              
                Enhanced pgo df
              
            

            	
              
                Enhanced pgBouncer Integration
              
            

            	
              
                Rewritten pgo User Management commands
              
            

          

        

        	
          
            Breaking Changes
          
        

        	
          
            Features
          
        

        	
          
            Changes
          
        

        	
          
            Fixes
          
        

        	
          
            Changes since 4.2.1
          
        

        	
          
            Fixes since 4.2.1
          
        

        	
          
            Fixes
          
        

        	
          
            Major Features
          
          
            	
              
                High-Availability & Disaster Recovery
              
              
                	
                  
                    New Required HA PostgreSQL Containers: crunchy-postgres-ha and
crunchy-postgres-gis-ha
                  
                

                	
                  
                    pgBackRest Standardization
                  
                

                	
                  
                    Pod Anti-Affinity
                  
                

                	
                  
                    Synchronous Replication
                  
                

                	
                  
                    Updated pgo CLI Flags
                  
                

                	
                  
                    Global Configuration
                  
                

              

            

            	
              
                pgo clone
              
            

            	
              
                Schedule Backups With Retention Policies
              
            

          

        

        	
          
            Breaking Changes
          
          
            	
              
                Feature Removals
              
            

            	
              
                Command Line (pgo)
              
              
                	
                  
                    pgo create cluster
                  
                

                	
                  
                    pgo delete cluster
                  
                

                	
                  
                    pgo scaledown
                  
                

                	
                  
                    pgo test
                  
                

              

            

            	
              
                Additional apiserver Changes
              
            

          

        

        	
          
            Additional Features
          
          
            	
              
                pgo (Operator CLI)
              
            

            	
              
                Builds
              
            

            	
              
                Installation
              
            

            	
              
                Configuration
              
            

            	
              
                Miscellaneous
              
            

          

        

        	
          
            Fixes
          
        

        	
          
            Fixes
          
        

        	
          
            Major Features
          
          
            	
              
                Dynamic Namespace Management
              
            

            	
              
                Lifecycle Events
              
            

          

        

        	
          
            Breaking Changes
          
          
            	
              
                Containers
              
            

            	
              
                API
              
            

            	
              
                Command-line interface
              
            

            	
              
                Installation
              
            

            	
              
                Builds
              
            

          

        

        	
          
            Additional Features
          
          
            	
              
                General PostgreSQL Operator Features
              
            

            	
              
                PostgreSQL Upgrade Management
              
            

            	
              
                PostgreSQL User Management
              
            

            	
              
                Monitoring
              
            

            	
              
                Logging
              
            

            	
              
                Installation
              
            

          

        

        	
          
            Fixes
          
        

      

    

  
Crunchy PostgreSQL Operator

Run your own production-grade PostgreSQL-as-a-Service on Kubernetes!
Latest Release: {{< param operatorVersion >}}
The Crunchy PostgreSQL Operator automates and simplifies deploying and managing open source PostgreSQL clusters on Kubernetes and other Kubernetes-enabled Platforms by providing the essential features you need to keep your PostgreSQL clusters up and running, including:
PostgreSQL Cluster Provisioning
Create, Scale, & Delete PostgreSQL clusters with ease, while fully customizing your Pods and PostgreSQL configuration!

High-Availability
Safe, automated failover backed by a distributed consensus based high-availability solution. Uses Pod Anti-Affinity to help resiliency; you can configure how aggressive this can be! Failed primaries automatically heal, allowing for faster recovery time.
Support for [standby PostgreSQL clusters]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}) that work both within an across [multiple Kubernetes clusters]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}).

Disaster Recovery
Backups and restores leverage the open source pgBackRest utility and includes support for full, incremental, and differential backups as well as efficient delta restores. Set how long you want your backups retained for. Works great with very large databases!

TLS
Secure communication between your applications and data servers by enabling TLS for your PostgreSQL servers, including the ability to enforce that all of your connections to use TLS.

Monitoring
Track the health of your PostgreSQL clusters using the open source pgMonitor library.

PostgreSQL User Management
Quickly add and remove users from your PostgreSQL clusters with powerful commands. Manage password expiration policies or use your preferred PostgreSQL authentication scheme.

Upgrade Management
Safely apply PostgreSQL updates with minimal availability impact to your PostgreSQL clusters.

Advanced Replication Support
Choose between asynchronous replication and synchronous replication for workloads that are sensitive to losing transactions.

Clone
Create new clusters from your existing clusters or backups with pgo create cluster --restore-from.

Connection Pooling
Use pgBouncer for connection pooling

Node Affinity
Have your PostgreSQL clusters deployed to Kubernetes Nodes of your preference

Scheduled Backups
Choose the type of backup (full, incremental, differential) and how frequently you want it to occur on each PostgreSQL cluster.

Backup to S3
Store your backups in Amazon S3 or any object storage system that supports the S3 protocol. The PostgreSQL Operator can backup, restore, and create new clusters from these backups.

Multi-Namespace Support
You can control how the PostgreSQL Operator leverages Kubernetes Namespaces with several different deployment models:
	Deploy the PostgreSQL Operator and all PostgreSQL clusters to the same namespace
	Deploy the PostgreSQL Operator to one namespaces, and all PostgreSQL clusters to a different namespace
	Deploy the PostgreSQL Operator to one namespace, and have your PostgreSQL clusters managed acrossed multiple namespaces
	Dynamically add and remove namespaces managed by the PostgreSQL Operator using the pgo create namespace and pgo delete namespace commands


Full Customizability
The Crunchy PostgreSQL Operator makes it easy to get your own PostgreSQL-as-a-Service up and running on Kubernetes-enabled platforms, but we know that there are further customizations that you can make. As such, the Crunchy PostgreSQL Operator allows you to further customize your deployments, including:
	Selecting different storage classes for your primary, replica, and backup storage
	Select your own container resources class for each PostgreSQL cluster deployment; differentiate between resources applied for primary and replica clusters!
	Use your own container image repository, including support imagePullSecrets and private repositories
	[Customize your PostgreSQL configuration]({{< relref "/advanced/custom-configuration.md" >}})
	Bring your own trusted certificate authority (CA) for use with the Operator API server
	Override your PostgreSQL configuration for each cluster






How it Works
[image: Architecture]Architecture

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as "Custom Resources” to create several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.



Included Components
PostgreSQL containers deployed with the PostgreSQL Operator include the following components:
	PostgreSQL
	PostgreSQL Contrib Modules
	PL/Python + PL/Python 3
	pgAudit
	pgAudit Analyze
	set_user
	pgBackRest
	pgBouncer
	pgAdmin 4
	pgMonitor
	Patroni
	LLVM (for JIT compilation)

In addition to the above, the geospatially enhanced PostgreSQL + PostGIS container adds the following components:
	PostGIS
	pgRouting
	PL/R

Additional containers that are not directly integrated with the PostgreSQL Operator but can work alongside it include:
	pgPool II
	pg_upgrade
	pgBench

For more information about which versions of the PostgreSQL Operator include which components, please visit the [compatibility]({{< relref "configuration/compatibility.md" >}}) section of the documentation.



Supported Platforms
The Crunchy PostgreSQL Operator is tested on the following Platforms:
	Kubernetes 1.13+
	OpenShift 3.11+
	Google Kubernetes Engine (GKE), including Anthos
	Amazon EKS
	VMware Enterprise PKS 1.3+

Storage
The Crunchy PostgreSQL Operator is tested with a variety of different types of Kubernetes storage and Storage Classes, including:
	Rook
	StorageOS
	Google Compute Engine persistent volumes
	NFS
	HostPath

and more. We have had reports of people using the PostgreSQL Operator with other Storage Classes as well.
We know there are a variety of different types of Storage Classes available for Kubernetes and we do our best to test each one, but due to the breadth of this area we are unable to verify PostgreSQL Operator functionality in each one. With that said, the PostgreSQL Operator is designed to be storage class agnostic and has been demonstrated to work with additional Storage Classes. Storage is a rapidly evolving field in Kubernetes and we will continue to adapt the PostgreSQL Operator to modern Kubernetes storage standards.




PostgreSQL Operator Quickstart
Can't wait to try out the PostgreSQL Operator? Let us show you the quickest possible path to getting up and running.
There are two paths to quickly get you up and running with the PostgreSQL Operator:
	Installation via the PostgreSQL Operator Installer
	Installation via a Marketplace
	Installation via Google Cloud Platform Marketplace

Marketplaces can help you get more quickly started in your environment as they provide a mostly automated process, but there are a few steps you will need to take to ensure you can fully utilize your PostgreSQL Operator environment.



PostgreSQL Operator Installer
Below will guide you through the steps for installing and using the PostgreSQL Operator using an installer that works with Ansible.
The Very, VERY Quickstart
If your environment is set up to use hostpath storage (found in things like minikube or OpenShift Code Ready Containers, the following command could work for you:
kubectl create namespace pgo
kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/postgres-operator.yml
If not, please read onward: you can still get up and running fairly quickly with just a little bit of configuration.

Step 1: Configuration
Get the PostgreSQL Operator Installer Manifest
You will need to download the PostgreSQL Operator Installer manifest to your environment, which you can do with the following command:
curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/postgres-operator.yml > postgres-operator.yml
If you wish to download a specific version of the installer, you can substitute master with the version of the tag, i.e.
curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/postgres-operator.yml > postgres-operator.yml

Configure the PostgreSQL Operator Installer
There are many [configuration parameters]({{< relref "/installation/configuration.md">}}) to help you fine tune your installation, but there are a few that you may want to change to get the PostgreSQL Operator to run in your environment. Open up the postgres-operator.yml file and edit a few variables.
Find the pgo_admin_password variable. This is the password you will use with the [pgo client]({{< relref "/installation/pgo-client" >}}) to manage your PostgreSQL clusters. The default is password, but you can change it to something like hippo-elephant.
You will also need to set the storage default storage classes that you would like the PostgreSQL Operator to use. These variables are called primary_storage, replica_storage, backup_storage, and backrest_storage. There are several storage configurations listed out in the configuration file under the heading storage[1-9]_name. Find the one that you want to use, and set it to that value.
For example, if your Kubernetes environment is using NFS storage, you would set these variables to the following:
backrest_storage: "nfsstorage"
backup_storage: "nfsstorage"
primary_storage: "nfsstorage"
replica_storage: "nfsstorage"
If you are using either Openshift or CodeReady Containers, you will need to set disable_fsgroup to 'true' in order to deploy the PostgreSQL Operator in OpenShift environments that have the typical restricted Security Context Constraints.
For a full list of available storage types that can be used with this installation method, please review the [configuration parameters]({{< relref "/installation/configuration.md">}}).


Step 2: Installation
Installation is as easy as executing:
kubectl create namespace pgo
kubectl apply -f postgres-operator.yml
This will launch the pgo-deployer container that will run the various setup and installation jobs. This can take a few minutes to complete depending on your Kubernetes cluster.
While the installation is occurring, download the pgo client set up script. This will help set up your local environment for using the PostgreSQL Operator:
curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/client-setup.sh > client-setup.sh
chmod +x client-setup.sh
When the PostgreSQL Operator is done installing, run the client setup script:
./client-setup.sh
This will download the pgo client and provide instructions for how to easily use it in your environment. It will prompt you to add some environmental variables for you to set up in your session, which you can do with the following commands:
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgo
If you wish to permanently add these variables to your environment, you can run the following:
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgo
EOF

source ~/.bashrc
NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Step 3: Verification
Below are a few steps to check if the PostgreSQL Operator is up and running.
By default, the PostgreSQL Operator installs into a namespace called pgo. First, see that the the Kubernetes Deployment of the Operator exists and is healthy:
kubectl -n pgo get deployments
If successful, you should see output similar to this:
NAME                READY   UP-TO-DATE   AVAILABLE   AGE
postgres-operator   1/1     1            1           16h
Next, see if the Pods that run the PostgreSQL Operator are up and running:
kubectl -n pgo get pods
If successful, you should see output similar to this:
NAME                                READY   STATUS    RESTARTS   AGE
postgres-operator-56d6ccb97-tmz7m   4/4     Running   0          2m
Finally, let's see if we can connect to the PostgreSQL Operator from the pgo command-line client. The Ansible installer installs the pgo command line client into your environment, along with the username/password file that allows you to access the PostgreSQL Operator. In order to communicate with the PostgreSQL Operator API server, you will first need to set up a port forward to your local environment.
In a new console window, run the following command to set up a port forward:
kubectl -n pgo port-forward svc/postgres-operator 8443:8443
Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:
pgo version
If successful, you should see output similar to this:
pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Step 4: Have Some Fun - Create a PostgreSQL Cluster
The quickstart installation method creates a namespace called pgo where the PostgreSQL Operator manages PostgreSQL clusters. Try creating a PostgreSQL cluster called hippo:
pgo create cluster -n pgo hippo
Alternatively, because we set the PGO_NAMESPACE environmental variable in our .bashrc file, we could omit the -n flag from the pgo create cluster command and just run this:
pgo create cluster hippo
Even with PGO_NAMESPACE set, you can always overwrite which namespace to use by setting the -n flag for the specific command. For explicitness, we will continue to use the -n flag in the remaining examples of this quickstart.
If your cluster creation command executed successfully, you should see output similar to this:
created Pgcluster hippo
workflow id 1cd0d225-7cd4-4044-b269-aa7bedae219b
This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status of this cluster using the pgo test command:
pgo test -n pgo hippo
When everything is up and running, you should see output similar to this:
cluster : hippo
    Services
        primary (10.97.140.113:5432): UP
    Instances
        primary (hippo-7b64747476-6dr4h): UP
The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes environment. For more detailed information, you can use pgo show cluster -n pgo hippo.




Marketplaces
Below is the list of the marketplaces where you can find the Crunchy PostgreSQL Operator:
	Google Cloud Platform Marketplace: Crunchy PostgreSQL for GKE

Follow the instructions below for the marketplace that you want to use to deploy the Crunchy PostgreSQL Operator.
Google Cloud Platform Marketplace
The PostgreSQL Operator is installed as part of the Crunchy PostgreSQL for GKE project that is available in the Google Cloud Platform Marketplace (GCP Marketplace). Please follow the steps deploy to get the PostgreSQL Operator deployed!
Step 1: Prerequisites
Install Kubectl and gcloud SDK
	kubectl is required to execute kube commands with in GKE.
	gcloudsdk essential command line tools for google cloud


Verification
Below are a few steps to check if the PostgreSQL Operator is up and running.
For this example we are deploying the operator into a namespace called pgo. First, see that the the Kubernetes Deployment of the Operator exists and is healthy:
kubectl -n pgo get deployments
If successful, you should see output similar to this:
NAME                READY   UP-TO-DATE   AVAILABLE   AGE
postgres-operator   1/1     1            1           16h
Next, see if the Pods that run the PostgreSQL Operator are up and running:
kubectl -n pgo get pods
If successful, you should see output similar to this:
NAME                                READY   STATUS    RESTARTS   AGE
postgres-operator-56d6ccb97-tmz7m   4/4     Running   0          2m


Step 2: Install the PostgreSQL Operator User Keys
After your operator is deployed via GCP Marketplace you will need to get keys used to secure the Operator REST API. For these instructions we will assume the operator is deployed in a namespace named "pgo" if this in not the case for your operator change the namespace to coencide with where your operator is deployed. Using the gcloud utility, ensure you are logged into the GKE cluster that you installed the PostgreSQL Operator into, run the following commands to retrieve the cert and key:
kubectl get secret pgo.tls -n pgo -o jsonpath='{.data.tls\.key}' | base64 --decode > /tmp/client.key
kubectl get secret pgo.tls -n pgo -o jsonpath='{.data.tls\.crt}' | base64 --decode > /tmp/client.crt

Step 3: Setup PostgreSQL Operator User
The PostgreSQL Operator implements its own role-based access control (RBAC) system for authenticating and authorization PostgreSQL Operator users access to its REST API. A default PostgreSQL Operator user (aka a "pgouser") is created as part of the marketplace installation (these credentials are set during the marketplace deployment workflow).
Create the pgouser file in ${HOME?}/.pgo/<operatornamespace>/pgouser and insert the user and password you created on deployment of the PostgreSQL Operator via GCP Marketplace. For example, if you set up a user with the username of username and a password of hippo:
username:hippo

Step 4: Setup Environment variables
The PostgreSQL Operator Client uses several environmental variables to make it easier for interfacing with the PostgreSQL Operator.
Set the environmental variables to use the key / certificate pair that you pulled in Step 2 was deployed via the marketplace. Using the previous examples, You can set up environment variables with the following command:
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="/tmp/client.crt"
export PGO_CLIENT_CERT="/tmp/client.crt"
export PGO_CLIENT_KEY="/tmp/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgo
If you wish to permanently add these variables to your environment, you can run the following command:
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/pgo/pgouser"
export PGO_CA_CERT="/tmp/client.crt"
export PGO_CLIENT_CERT="/tmp/client.crt"
export PGO_CLIENT_KEY="/tmp/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
export PGO_NAMESPACE=pgo
EOF

source ~/.bashrc
NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Step 5: Install the PostgreSQL Operator Client pgo
The pgo client provides a helpful command-line interface to perform key operations on a PostgreSQL Operator, such as creating a PostgreSQL cluster.
The pgo client can be downloaded from GitHub Releases (subscribers can download it from the Crunchy Data Customer Portal).
Note that the pgo client's version must match the version of the PostgreSQL Operator that you have deployed. For example, if you have deployed version {{< param operatorVersion >}} of the PostgreSQL Operator, you must use the pgo for {{< param operatorVersion >}}.
Once you have download the pgo client, change the permissions on the file to be executable if need be as shown below:
chmod +x pgo

Step 6: Connect to the PostgreSQL Operator
Finally, let's see if we can connect to the PostgreSQL Operator from the pgo client. In order to communicate with the PostgreSQL Operator API server, you will first need to set up a port forward to your local environment.
In a new console window, run the following command to set up a port forward:
kubectl -n pgo port-forward svc/postgres-operator 8443:8443
Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:
pgo version
If successful, you should see output similar to this:
pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Step 7: Create a Namespace
We are almost there! You can optionally add a namespace that can be managed by the PostgreSQL Operator to watch and to deploy a PostgreSQL cluster into.
pgo create namespace wateringhole
verify the operator has access to the newly added namespace
pgo show namespace --all
you should see out put similar to this:
pgo username: admin
namespace                useraccess          installaccess       
application-system       accessible          no access                   
default                  accessible          no access                  
kube-public              accessible          no access           
kube-system              accessible          no access           
pgo                      accessible          no access
wateringhole             accessible          accessible  

Step 8: Have Some Fun - Create a PostgreSQL Cluster
You are now ready to create a new cluster in the wateringhole namespace, try the command below:
pgo create cluster -n wateringhole hippo
If successful, you should see output similar to this:
created Pgcluster hippo
workflow id 1cd0d225-7cd4-4044-b269-aa7bedae219b
This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status of this cluster using the pgo test command:
pgo test -n wateringhole hippo
When everything is up and running, you should see output similar to this:
cluster : hippo
    Services
        primary (10.97.140.113:5432): UP
    Instances
        primary (hippo-7b64747476-6dr4h): UP
The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes environment. For more detailed information, you can use pgo show cluster -n wateringhole hippo.
The goal of the Crunchy PostgreSQL Operator is to provide a means to quickly get your applications up and running on PostgreSQL for both development and production environments. To understand how the PostgreSQL Operator does this, we want to give you a tour of its architecture, with explains both the architecture of the PostgreSQL Operator itself as well as recommended deployment models for PostgreSQL in production!





Crunchy PostgreSQL Operator Architecture
[image: Operator Architecture with CRDs]Operator Architecture with CRDs

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as "Custom Resources” to create several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.
The Custom Resource Definitions include:
	pgclusters.crunchydata.com: Stores information required to manage a PostgreSQL cluster. This includes things like the cluster name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to maintain a high-availability cluster, etc.
	pgreplicas.crunchydata.com: Stores information required to manage the replicas within a PostgreSQL cluster. This includes things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.
	pgtasks.crunchydata.com: A general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. take a backup) and tracks the state of said task through its workflow.
	pgpolicies.crunchydata.com: Stores a reference to a SQL file that can be executed against a PostgreSQL cluster. In the past, this was used to manage RLS policies on PostgreSQL clusters.

There are also a few legacy Custom Resource Definitions that the PostgreSQL Operator comes with that will be removed in a future release.
The PostgreSQL Operator runs as a deployment in a namespace and is composed of up to four Pods, including:
	operator (image: postgres-operator) - This is the heart of the PostgreSQL Operator. It contains a series of Kubernetes controllers that place watch events on a series of native Kubernetes resources (Jobs, Pods) as well as the Custom Resources that come with the PostgreSQL Operator (Pgcluster, Pgtask)
	apiserver (image: pgo-apiserver) - This provides an API that a PostgreSQL Operator User (pgouser) can interface with via the pgo command-line interface (CLI) or directly via HTTP requests. The API server can also control what resources a user can access via a series of RBAC rules that can be defined as part of a pgorole.
	scheduler (image: pgo-scheduler) - A container that runs cron and allows a user to schedule repeatable tasks, such as backups (because it is important to schedule backups in a production environment!)
	event (image: pgo-event, optional) - A container that provides an interface to the nsq message queue and transmits information about lifecycle events that occur within the PostgreSQL Operator (e.g. a cluster is created, a backup is taken, etc.)

The main purpose of the PostgreSQL Operator is to create and update information around the structure of a PostgreSQL Cluster, and to relay information about the overall status and health of a PostgreSQL cluster. The goal is to also simplify this process as much as possible for users. For example, let's say we want to create a high-availability PostgreSQL cluster that has a single replica, supports having backups in both a local storage area and Amazon S3 and has built-in metrics and connection pooling, similar to:
[image: PostgreSQL HA Cluster]PostgreSQL HA Cluster

We can accomplish that with a single command:
pgo create cluster hacluster --replica-count=1 --metrics --pgbackrest-storage-type="local,s3" --pgbouncer --pgbadger
The PostgreSQL Operator handles setting up all of the various Deployments and sidecars to be able to accomplish this task, and puts in the various constructs to maximize resiliency of the PostgreSQL cluster.
You will also notice that high-availability is enabled by default. The Crunchy PostgreSQL Operator uses a distributed-consensus method for PostgreSQL cluster high-availability, and as such delegates the management of each cluster's availability to the clusters themselves. This removes the PostgreSQL Operator from being a single-point-of-failure, and has benefits such as faster recovery times for each PostgreSQL cluster. For a detailed discussion on high-availability, please see the High-Availability section.
Every single Kubernetes object (Deployment, Service, Pod, Secret, Namespace, etc.) that is deployed or managed by the PostgreSQL Operator has a Label associated with the name of vendor and a value of crunchydata. You can use Kubernetes selectors to easily find out which objects are being watched by the PostgreSQL Operator. For example, to get all of the managed Secrets in the default namespace the PostgreSQL Operator is deployed into (pgo):
kubectl get secrets -n pgo --selector=vendor=crunchydata
Kubernetes Deployments: The Crunchy PostgreSQL Operator Deployment Model
The Crunchy PostgreSQL Operator uses Kubernetes Deployments for running PostgreSQL clusters instead of StatefulSets or other objects. This is by design: Kubernetes Deployments allow for more flexibility in how you deploy your PostgreSQL clusters.
For example, let's look at a specific PostgreSQL cluster where we want to have one primary instance and one replica instance. We want to ensure that our primary instance is using our fastest disks and has more compute resources available to it. We are fine with our replica having slower disks and less compute resources. We can create this environment with a command similar to below:
pgo create cluster mixed --replica-count=1 \
  --storage-config=fast --memory=32Gi --cpu=8.0 \
  --replica-storage-config=standard
Now let's say we want to have one replica available to run read-only queries against, but we want its hardware profile to mirror that of the primary instance. We can run the following command:
pgo scale mixed --replica-count=1 \
  --storage-config=fast
Kubernetes Deployments allow us to create heterogeneous clusters with ease and let us scale them up and down as we please. Additional components in our PostgreSQL cluster, such as the pgBackRest repository or an optional pgBouncer, are deployed as Kubernetes Deployments as well.
We can also leverage Kubernees Deployments to apply Node Affinity rules to individual PostgreSQL instances. For instance, we may want to force one or more of our PostgreSQL replicas to run on Nodes in a different region than our primary PostgreSQL instances.
Using Kubernetes Deployments does create additional management complexity, but the good news is: the PostgreSQL Operator manages it for you! Being aware of this model can help you understand how the PostgreSQL Operator gives you maximum flexibility for your PostgreSQL clusters while giving you the tools to troubleshoot issues in production.
The last piece of this model is the use of Kubernetes Services for accessing your PostgreSQL clusters and their various components. The PostgreSQL Operator puts services in front of each Deployment to ensure you have a known, consistent means of accessing your PostgreSQL components.
Note that in some production environments, there can be delays in accessing Services during transition events. The PostgreSQL Operator attempts to mitigate delays during critical operations (e.g. failover, restore, etc.) by directly accessing the Kubernetes Pods to perform given actions.
For a detailed analysis, please see Using Kubernetes Deployments for Running PostgreSQL.




Additional Architecture Information
There is certainly a lot to unpack in the overall architecture of the Crunchy PostgreSQL Operator. Understanding the architecture will help you to plan the deployment model that is best for your environment. For more information on the architectures of various components of the PostgreSQL Operator, please read onward!
What happens when the Crunchy PostgreSQL Operator creates a PostgreSQL cluster?
[image: PostgreSQL HA Cluster]PostgreSQL HA Cluster

First, an entry needs to be added to the Pgcluster CRD that provides the essential attributes for maintaining the definition of a PostgreSQL cluster. These attributes include:
	Cluster name
	The storage and resource definitions to use
	References to any secrets required, e.g. ones to the pgBackRest repository
	High-availability rules
	Which sidecars and ancillary services are enabled, e.g. pgBouncer, pgMonitor

After the Pgcluster CRD entry is set up, the PostgreSQL Operator handles various tasks to ensure that a healthy PostgreSQL cluster can be deployed. These include:
	Allocating the PersistentVolumeClaims that are used to store the PostgreSQL data as well as the pgBackRest repository
	Setting up the Secrets specific to this PostgreSQL cluster
	Setting up the ConfigMap entries specific for this PostgreSQL cluster, including entries that may contain custom configurations as well as ones that are used for the PostgreSQL cluster to manage its high-availability
	Creating Deployments for the PostgreSQL primary instance and the pgBackRest repository

You will notice the presence of a pgBackRest repository. As of version 4.2, this is a mandatory feature for clusters that are deployed by the PostgreSQL Operator. In addition to providing an archive for the PostgreSQL write-ahead logs (WAL), the pgBackRest repository serves several critical functions, including:
	Used to efficiently provision new replicas that are added to the PostgreSQL cluster
	Prevent replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
	Allow failed primaries to automatically and efficiently heal using the "delta restore" feature
	Serves as the basis for the cluster cloning feature
	...and of course, allow for one to take full, differential, and incremental backups and perform full and point-in-time restores

The pgBackRest repository can be configured to use storage that resides within the Kubernetes cluster (the local option), Amazon S3 or a storage system that uses the S3 protocol (the s3 option), or both (local,s3).
Once the PostgreSQL primary instance is ready, there are two follow up actions that the PostgreSQL Operator takes to properly leverage the pgBackRest repository:
	A new pgBackRest stanza is created
	An initial backup is taken to facilitate the creation of any new replica

At this point, if new replicas were requested as part of the pgo create command, they are provisioned from the pgBackRest repository.
There is a Kubernetes Service created for the Deployment of the primary PostgreSQL instance, one for the pgBackRest repository, and one that encompasses all of the replicas. Additionally, if the connection pooler pgBouncer is deployed with this cluster, it will also have a service as well.
An optional monitoring sidecar can be deployed as well. The sidecar, called collect, uses the crunchy-collect container that is a part of pgMonitor and scrapes key health metrics into a Prometheus instance. See Monitoring for more information on how this works.
Horizontal Scaling
There are many reasons why you may want to horizontally scale your PostgreSQL cluster:
	Add more redundancy by having additional replicas
	Leveraging load balancing for your read only queries
	Add in a new replica that has more storage or a different container resource profile, and then failover to that as the new primary

and more.
The PostgreSQL Operator enables the ability to scale up and down via the pgo scale and pgo scaledown commands respectively. When you run pgo scale, the PostgreSQL Operator takes the following steps:
	The PostgreSQL Operator creates a new Kubernetes Deployment with the information specified from the pgo scale command combined with the information already stored as part of the managing the existing PostgreSQL cluster
	During the provisioning of the replica, a pgBackRest restore takes place in order to bring it up to the point of the last backup. If data already exists as part of this replica, then a "delta restore" is performed. (NOTE: If you have not taken a backup in awhile and your database is large, consider taking a backup before performing scaling up.)
	The new replica boots up in recovery mode and recovers to the latest point in time. This allows it to catch up to the current primary.
	Once the replica has recovered, it joins the primary as a streaming replica!

If pgMonitor is enabled, a collect sidecar is also added to the replica Deployment.
Scaling down works in the opposite way:
	The PostgreSQL instance on the scaled down replica is stopped. By default, the data is explicitly wiped out unless the --keep-data flag on pgo scaledown is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted
	The Kubernetes Deployment associated with the replica is removed, as well as any other Kubernetes objects that are specifically associated with this replcia


[Custom Configuration]({{< relref "/advanced/custom-configuration.md" >}})
PostgreSQL workloads often need tuning and additional configuration in production environments, and the PostgreSQL Operator allows for this via its ability to manage [custom PostgreSQL configuration]({{< relref "/advanced/custom-configuration.md" >}}).
The custom configuration can be edit from a ConfigMap that follows the pattern of <clusterName>-pgha-config, where <clusterName> would be hippo in pgo create cluster hippo. When the ConfigMap is edited, the changes are automatically pushed out to all of the PostgreSQL instances within a cluster.
For more information on how this works and what configuration settings are editable, please visit the "[Custom PostgreSQL configuration]({{< relref "/advanced/custom-configuration.md" >}})" section of the documentation.

Provisioning Using a Backup from an Another PostgreSQL Cluster
When provisioning a new PostgreSQL cluster, it is possible to bootstrap the cluster using an existing backup from either another PostgreSQL cluster that is currently running, or from a PostgreSQL cluster that no longer exists (specifically a cluster that was deleted using the keep-backups option, as discussed in section Deprovisioning below). This is specifically accomplished by performing a pgbackrest restore during cluster initialization in order to populate the initial PGDATA directory for the new cluster using the contents of a backup from another cluster.
To leverage this capability, the name of the cluster containing the backup that should be utilzed when restoring simply needs to be specified using the restore-from option when creating a new cluster:
pgo create cluster mycluster2 --restore-from=mycluster1
By default, pgBackRest will restore the latest backup available in the repository, and will replay all available WAL archives. However, additional pgBackRest options can be specified using the restore-opts option, which allows the restore command to be further tailored and customized. For instance, the following demonstrates how a point-in-time restore can be utilized when creating a new cluster:
pgo create cluster mycluster2 \
  --restore-from=mycluster1 \
  --restore-opts="--type=time --target='2020-07-02 20:19:36.13557+00'"
Additionally, if bootstrapping from a cluster the utilizes AWS S3 storage with pgBackRest (or a cluster that utilized AWS S3 storage in the case of a former cluster), you can also also specify s3 as the repository type in order to restore from a backup stored in an S3 storage bucket:
pgo create cluster mycluster2 \
  --restore-from=mycluster1 \
  --restore-opts="--repo-type=s3"
When restoring from a cluster that is currently running, the new cluster will simply connect to the existing pgBackRest repository host for that cluster in order to perform the pgBackRest restore. If restoring from a former cluster that has since been deleted, a new pgBackRest repository host will be deployed for the sole purpose of bootstrapping the new cluster, and will then be destroyed once the restore is complete. Also, please note that it is only possible for one cluster to bootstrap from another cluster (whether running or not) at any given time.

Deprovisioning
There may become a point where you need to completely deprovision, or delete, a PostgreSQL cluster. You can delete a cluster managed by the PostgreSQL Operator using the pgo delete command. By default, all data and backups are removed when you delete a PostgreSQL cluster, but there are some options that allow you to retain data, including:
	--keep-backups - this retains the pgBackRest repository. This can be used to restore the data to a new PostgreSQL cluster.
	--keep-data - this retains the PostgreSQL data directory (aka PGDATA) from the primary PostgreSQL instance in the cluster. This can be used to recreate the PostgreSQL cluster of the same name.

When the PostgreSQL cluster is deleted, the following takes place:
	All PostgreSQL instances are stopped. By default, the data is explicitly wiped out unless the --keep-data flag on pgo scaledown is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted
	Any Services, ConfigMaps, Secrets, etc. Kubernetes objects are all deleted
	The Kubernetes Deployments associated with the PostgreSQL instances are removed, as well as the Kubernetes Deployments associated with pgBackRest repository and, if deployed, the pgBouncer connection pooler

When using the PostgreSQL Operator, the answer to the question "do you take backups of your database" is automatically "yes!"
The PostgreSQL Operator uses the open source pgBackRest backup and restore utility that is designed for working with databases that are many terabytes in size. As described in the Provisioning section, pgBackRest is enabled by default as it permits the PostgreSQL Operator to automate some advanced as well as convenient behaviors, including:
	Efficient provisioning of new replicas that are added to the PostgreSQL cluster
	Preventing replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs
	Allowing failed primaries to automatically and efficiently heal using the "delta restore" feature
	Serving as the basis for the cluster cloning feature
	...and of course, allowing for one to take full, differential, and incremental backups and perform full and point-in-time restores

[image: PostgreSQL Operator pgBackRest Integration]PostgreSQL Operator pgBackRest Integration

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster. When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository as described in the Provisioning section.
At PostgreSQL cluster creation time, you can specify a specific Storage Class for the pgBackRest repository. Additionally, you can also specify the type of pgBackRest repository that can be used, including:
	local: Uses the storage that is provided by the Kubernetes cluster's Storage Class that you select
	s3: Use Amazon S3 or an object storage system that uses the S3 protocol
	local,s3: Use both the storage that is provided by the Kubernetes cluster's Storage Class that you select AND Amazon S3 (or equivalent object storage system that uses the S3 protocol)

The pgBackRest repository consists of the following Kubernetes objects:
	A Deployment
	A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g. SSH keys, AWS S3 keys, etc.)
	A Service

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-ahead log (WAL) archives to the correct repository.

Backups
Backups can be taken with the pgo backup command
The PostgreSQL Operator supports three types of pgBackRest backups:
	Full (full): A full backup of all the contents of the PostgreSQL cluster
	Differential (diff): A backup of only the files that have changed since the last full backup
	Incremental (incr): A backup of only the files that have changed since the last full or differential backup

By default, pgo backup will attempt to take an incremental (incr) backup unless otherwise specified.
For example, to specify a full backup:
pgo backup hacluster --backup-opts="--type=full"
The PostgreSQL Operator also supports setting pgBackRest retention policies as well for backups. For example, to take a full backup and to specify to only keep the last 7 backups:
pgo backup hacluster --backup-opts="--type=full --repo1-retention-full=7"

Restores
The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery. There are two types of ways to restore a cluster:
	Restore to a new cluster using the --restore-from flag in the pgo create cluster({{< relref "/pgo-client/reference/pgo_create_cluster.md" >}}) command.
	Restore in-place using the [pgo restore]({{< relref "/pgo-client/reference/pgo_restore.md" >}}) command. Note that this is destructive.

NOTE: Ensure you are backing up your PostgreSQL cluster regularly, as this will help expedite your restore times. The next section will cover scheduling regular backups.
The following explains how to perform restores based on the restoration method you chose.
Restore to a New Cluster
Restoring to a new PostgreSQL cluster allows one to take a backup and create a new PostgreSQL cluster that can run alongside an existing PostgreSQL cluster. There are several scenarios where using this technique is helpful:
	Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is "creating a clone."
	Restore to a point-in-time and inspect the state of the data without affecting the current cluster

and more.
Restoring to a new cluster can be accomplished using the pgo create cluster({{< relref "/pgo-client/reference/pgo_create_cluster.md" >}}) command with several flags:
	--restore-from: specifies the name of a PostgreSQL cluster (either one that is active, or a former cluster whose pgBackRest repository still exists) to restore from.
	--restore-opts: used to specify additional options, similar to the ones that are passed into pgbackrest restore.

One can copy an entire PostgreSQL cluster into a new cluster with a command as simple as the one below:
pgo create cluster newcluster --restore-from oldcluster
To perform a point-in-time-recovery, you have to pass in the pgBackRest --type and --target options, where --type indicates the type of recovery to perform, and --target indicates the point in time to recover to:
pgo create cluster newcluster \
  --restore-from oldcluster \
  --restore-opts "--type=time --target='2019-12-31 11:59:59.999999+00'"
Note that when using this method, the PostgreSQL Operator can only restore one cluster from each pgBackRest repository at a time. Using the above example, one can only perform one restore from oldcluster at a given time.
When using the restore to a new cluster method, the PostgreSQL Operator takes the following actions:
	After running the normal cluster creation tasks, the PostgreSQL Operator creates a "bootstrap" job that performs a pgBackRest restore to the newly created PVC.
	The PostgreSQL Operator kicks off the new PostgreSQL cluster, which enters into recovery mode until it has recovered to a specified point-in-time or finishes replaying all available write-ahead logs.
	When this is done, the PostgreSQL cluster performs its regular operations when starting up.


Restore in-place
Restoring a PostgreSQL cluster in-place is a destructive action that will perform a recovery on your existing data directory. This is accomplished using the [pgo restore]({{< relref "/pgo-client/reference/pgo_restore.md" >}}) command.
pgo restore lets you specify the point at which you want to restore your database using the --pitr-target flag.
When the PostgreSQL Operator issues a restore, the following actions are taken on the cluster:
	The PostgreSQL Operator disables the "autofail" mechanism so that no failovers will occur during the restore.
	Any replicas that may be associated with the PostgreSQL cluster are destroyed
	A new Persistent Volume Claim (PVC) is allocated using the specifications provided for the primary instance. This may have been set with the --storage-class flag when the cluster was originally created
	A Kubernetes Job is created that will perform a pgBackRest restore operation to the newly allocated PVC. This is facilitated by the pgo-backrest-restore container image.

[image: PostgreSQL Operator Restore Step 1]PostgreSQL Operator Restore Step 1

	When restore Job successfully completes, a new Deployment for the PostgreSQL cluster primary instance is created. A recovery is then issued to the specified point-in-time, or if it is a full recovery, up to the point of the latest WAL archive in the repository.
	Once the PostgreSQL primary instance is available, the PostgreSQL Operator will take a new, full backup of the cluster.

[image: PostgreSQL Operator Restore Step 2]PostgreSQL Operator Restore Step 2

At this point, the PostgreSQL cluster has been restored. However, you will need to re-enable autofail if you would like your PostgreSQL cluster to be highly-available. You can re-enable autofail with this command:
pgo update cluster hacluster --autofail=true


Scheduling Backups
Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its scheduling sidecar that is deployed alongside the Operator.
The PostgreSQL Operator Scheduler is essentially a cron server that will run jobs that it is specified. Schedule commands use the cron syntax to set up scheduled tasks.
[image: PostgreSQL Operator Schedule Backups]PostgreSQL Operator Schedule Backups

For example, to schedule a full backup once a day at 1am, the following command can be used:
pgo create schedule hacluster --schedule="0 1 * * *" \
  --schedule-type=pgbackrest  --pgbackrest-backup-type=full
To schedule an incremental backup once every 3 hours:
pgo create schedule hacluster --schedule="0 */3 * * *" \
  --schedule-type=pgbackrest  --pgbackrest-backup-type=incr
Setting Backup Retention Policies
Unless specified, pgBackRest will keep an unlimited number of backups. As part of your regularly scheduled backups, it is encouraged for you to set a retention policy. This can be accomplished using the --repo1-retention-full for full backups and --repo1-retention-diff for differential backups via the --schedule-opts parameter.
For example, using the above example of taking a nightly full backup, you can specify a policy of retaining 21 backups using the following command:
pgo create schedule hacluster --schedule="0 1 * * *" \
  --schedule-type=pgbackrest  --pgbackrest-backup-type=full \
  --schedule-opts="--repo1-retention-full=21"

Schedule Expression Format
Schedules are expressed using the following rules, which should be familiar to users of cron:
Field name   | Mandatory? | Allowed values  | Allowed special characters
----------   | ---------- | --------------  | --------------------------
Seconds      | Yes        | 0-59            | * / , -
Minutes      | Yes        | 0-59            | * / , -
Hours        | Yes        | 0-23            | * / , -
Day of month | Yes        | 1-31            | * / , - ?
Month        | Yes        | 1-12 or JAN-DEC | * / , -
Day of week  | Yes        | 0-6 or SUN-SAT  | * / , - ?


Using S3
The PostgreSQL Operator integration with pgBackRest allows it to use the AWS S3 object storage system, as well as other object storage systems that implement the S3 protocol.
In order to enable S3 storage, it is helpful to provide some of the S3 information prior to deploying the PostgreSQL Operator, or updating the pgo-config ConfigMap and restarting the PostgreSQL Operator pod.
First, you will need to add the proper S3 bucket name, AWS S3 endpoint and the AWS S3 region to the Cluster section of the pgo.yaml configuration file:
Cluster:
  BackrestS3Bucket: my-postgresql-backups-example
  BackrestS3Endpoint: s3.amazonaws.com
  BackrestS3Region: us-east-1
  BackrestS3URIStyle: host
  BackrestS3VerifyTLS: true
These values can also be set on a per-cluster basis with the pgo create cluster command, i.e.:
	--pgbackrest-s3-bucket - specifics the AWS S3 bucket that should be utilized
	--pgbackrest-s3-endpoint specifies the S3 endpoint that should be utilized
	--pgbackrest-s3-key - specifies the AWS S3 key that should be utilized
	--pgbackrest-s3-key-secret- specifies the AWS S3 key secret that should be utilized
	--pgbackrest-s3-region - specifies the AWS S3 region that should be utilized
	--pgbackrest-s3-uri-style - specifies whether "host" or "path" style URIs should be utilized
	--pgbackrest-s3-verify-tls - set this value to "true" to enable TLS verification

Sensitive information, such as the values of the AWS S3 keys and secrets, are stored in Kubernetes Secrets and are securely mounted to the PostgreSQL clusters.
To enable a PostgreSQL cluster to use S3, the --pgbackrest-storage-type on the pgo create cluster command needs to be set to s3 or local,s3.
Once configured, the pgo backup and pgo restore commands will work with S3 similarly to the above!




Kubernetes Namespaces and the PostgreSQL Operator
The PostgreSQL Operator leverages Kubernetes Namespaces to react to actions taken within a Namespace to keep its PostgreSQL clusters deployed as requested. Early on, the PostgreSQL Operator was scoped to a single namespace and would only watch PostgreSQL clusters in that Namspace, but since version 4.0, it has been expanded to be able to manage PostgreSQL clusters across multiple namespaces.
The following provides more information about how the PostgreSQL Operator works with namespaces, and presents several deployment patterns that can be used to deploy the PostgreSQL Operator.
Namespace Operating Modes
The PostgreSQL Operator can be run with various Namespace Operating Modes, with each mode determining whether or not certain namespace capabilities are enabled for the PostgreSQL Operator installation. When the PostgreSQL Operator is run, the Kubernetes environment is inspected to determine what cluster roles are currently assigned to the pgo-operator ServiceAccount (i.e. the ServiceAccount running the Pod the PostgreSQL Operator is deployed within). Based on the ClusterRoles identified, one of the namespace operating modes described below will be enabled for the [PostgreSQL Operator Installation]({{< relref "installation" >}}). Please consult the installation section for more information on the available settings.
dynamic
Enables full dynamic namespace capabilities, in which the Operator can create, delete and update any namespaces within a Kubernetes cluster. With dynamic mode enabled, the PostgreSQL Operator can respond to namespace events in a Kubernetes cluster, such as when a namespace is created, and take an appropriate action, such as adding the PostgreSQL Operator controllers for the newly created namespace.
The following defines the namespace permissions required for the dynamic mode to be enabled:
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: pgo-cluster-role
rules:
  - apiGroups:
      - ''
    resources:
      - namespaces
    verbs:
      - get
      - list
      - watch
      - create
      - update
      - delete

readonly
In readonly mode, the PostgreSQL Operator is still able to listen to namespace events within a Kubernetes cluster, but it can no longer modify (create, update, delete) namespaces. For example, if a Kubernetes administrator creates a namespace, the PostgreSQL Operator can respond and create controllers for that namespace.
The following defines the namespace permissions required for the readonly mode to be enabled:
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: pgo-cluster-role
rules:
  - apiGroups:
      - ''
    resources:
      - namespaces
    verbs:
      - get
      - list
      - watch

disabled
disabled mode disables namespace capabilities namespace capabilities within the PostgreSQL Operator altogether. While in this mode the PostgreSQL Operator will simply attempt to work with the target namespaces specified during installation. If no target namespaces are specified, then the Operator will be configured to work within the namespace in which it is deployed. Since the Operator is unable to dynamically respond to namespace events in the cluster, in the event that target namespaces are deleted or new target namespaces need to be added, the PostgreSQL Operator will need to be re-deployed.
Please note that it is important to redeploy the PostgreSQL Operator following the deletion of a target namespace to ensure it no longer attempts to listen for events in that namespace.
The disabled mode is enabled the when the PostgreSQL Operator has not been assigned namespace permissions.


RBAC Reconciliation
By default, the PostgreSQL Operator will attempt to reconcile RBAC resources (ServiceAccounts, Roles and RoleBindings) within each namespace configured for the PostgreSQL Operator installation. This allows the PostgreSQL Operator to create, update and delete the various RBAC resources it requires in order to properly create and manage PostgreSQL clusters within each targeted namespace (this includes self-healing RBAC resources as needed if removed and/or misconfigured).
In order for RBAC reconciliation to function properly, the PostgreSQL Operator ServiceAccount must be assigned a certain set of permissions. While the PostgreSQL Operator is not concerned with exactly how it has been assigned the permissions required to reconcile RBAC in each target namespace, the various [installation methods]({{< relref "installation" >}}) supported by the PostgreSQL Operator install a recommended set permissions based on the specific Namespace Operating Mode enabled (see section Namespace Operating Modes({{< relref "#namespace-operating-modes" >}}) above for more information regarding the various Namespace Operating Modes available).
The following section defines the recommended set of permissions that should be assigned to the PostgreSQL Operator ServiceAccount in order to ensure proper RBAC reconciliation based on the specific Namespace Operating Mode enabled. Please note that each PostgreSQL Operator installation method handles the initial configuration and setup of the permissions shown below based on the Namespace Operating Mode configured during installation.
dynamic Namespace Operating Mode
When using the dynamic Namespace Operating Mode, it is recommended that the PostgreSQL Operator ServiceAccount be granted permissions to manage RBAC inside any namespace in the Kubernetes cluster via a ClusterRole. This allows for a fully-hands off approach to managing RBAC within each targeted namespace space. In other words, as namespaces are added and removed post-installation of the PostgreSQL Operator (e.g. using pgo create namespace or pgo delete namespace), the Operator is able to automatically reconcile RBAC in those namespaces without the need for any external administrative action and/or resource creation.
The following defines ClusterRole permissions that are assigned to the PostgreSQL Operator ServiceAccount via the various Operator installation methods when the dynamic Namespace Operating Mode is configured:
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: pgo-cluster-role
rules:
  - apiGroups:
      - ''
    resources:
      - serviceaccounts
    verbs:
      - get
      - create
      - update
      - delete
  - apiGroups:
      - rbac.authorization.k8s.io
    resources:
      - roles
      - rolebindings
    verbs:
      - get
      - create
      - update
      - delete
  - apiGroups:
      - ''
    resources:
      - configmaps
      - endpoints
      - pods
      - pods/exec
      - pods/log
      - replicasets
      - secrets
      - services
      - persistentvolumeclaims
    verbs:
      - get
      - list
      - watch
      - create
      - patch
      - update
      - delete
      - deletecollection
  - apiGroups:
      - apps
    resources:
      - deployments
    verbs:
      - get
      - list
      - watch
      - create
      - patch
      - update
      - delete
      - deletecollection
  - apiGroups:
      - batch
    resources:
      - jobs
    verbs:
      - get
      - list
      - watch
      - create
      - patch
      - update
      - delete
      - deletecollection
  - apiGroups:
      - crunchydata.com
    resources:
      - pgclusters
      - pgpolicies
      - pgreplicas
      - pgtasks
    verbs:
      - get
      - list
      - watch
      - create
      - patch
      - update
      - delete
      - deletecollection

readonly & disabled Namespace Operating Modes
When using the readonly or disabled Namespace Operating Modes, it is recommended that the PostgreSQL Operator ServiceAccount be granted permissions to manage RBAC inside of any configured namespaces using local Roles within each targeted namespace. This means that as new namespaces are added and removed post-installation of the PostgreSQL Operator, an administrator must manually assign the PostgreSQL Operator ServiceAccount the permissions it requires within each target namespace in order to successfully reconcile RBAC within those namespaces.
The following defines the permissions that are assigned to the PostgreSQL Operator ServiceAccount in each configured namespace via the various Operator installation methods when the readonly or disabled Namespace Operating Modes are configured:
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: pgo-local-ns
  namespace: targetnamespace
rules:
  - apiGroups:
      - ''
    resources:
      - serviceaccounts
    verbs:
      - get
      - create
      - update
      - delete
  - apiGroups:
      - rbac.authorization.k8s.io
    resources:
      - roles
      - rolebindings
    verbs:
      - get
      - create
      - update
      - delete
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: pgo-target-role
  namespace: targetnamespace
rules:
- apiGroups:
    - ''
  resources:
    - configmaps
    - endpoints
    - pods
    - pods/exec
    - pods/log
    - replicasets
    - secrets
    - services
    - persistentvolumeclaims
  verbs:
    - get
    - list
    - watch
    - create
    - patch
    - update
    - delete
    - deletecollection
- apiGroups:
    - apps
  resources:
    - deployments
  verbs:
    - get
    - list
    - watch
    - create
    - patch
    - update
    - delete
    - deletecollection
- apiGroups:
    - batch
  resources:
    - jobs
  verbs:
    - get
    - list
    - watch
    - create
    - patch
    - update
    - delete
    - deletecollection
- apiGroups:
    - crunchydata.com
  resources:
    - pgclusters
    - pgpolicies
    - pgtasks
    - pgreplicas
  verbs:
    - get
    - list
    - watch
    - create
    - patch
    - update
    - delete
    - deletecollection

Disabling RBAC Reconciliation
In the event that the reconciliation behavior discussed above is not desired, it can be fully disabled by setting DisableReconcileRBAC to true in the pgo.yaml configuration file. When reconciliation is disabled using this setting, the PostgreSQL Operator will not attempt to reconcile RBAC in any configured namespace. As a result, any RBAC required by the PostreSQL Operator a targeted namespace must be manually created by an administrator.
Please see the the [pgo.yaml configuration guide]({{< relref "configuration/pgo-yaml-configuration.md" >}}), as well as the documentation for the various [installation methods]({{< relref "installation" >}}) supported by the PostgreSQL Operator, for guidance on how to properly configure this setting and therefore disable RBAC reconciliation.


Namespace Deployment Patterns
There are several different ways the PostgreSQL Operator can be deployed in Kubernetes clusters with respect to Namespaces.
One Namespace: PostgreSQL Operator + PostgreSQL Clusters
[image: PostgreSQL Operator Own Namespace Deployment]PostgreSQL Operator Own Namespace Deployment

This patterns is great for testing out the PostgreSQL Operator in development environments, and can also be used to keep your entire PostgreSQL workload within a single Kubernetes Namespace.
This can be set up with the disabled Namespace mode.

Single Tenant: PostgreSQL Operator Separate from PostgreSQL Clusters
[image: PostgreSQL Operator Single Namespace Deployment]PostgreSQL Operator Single Namespace Deployment

The PostgreSQL Operator can be deployed into its own namespace and manage PostgreSQL clusters in a separate namespace.
This can be set up with either the readonly or dynamic Namespace modes.

Multi Tenant: PostgreSQL Operator Managing PostgreSQL Clusters in Multiple Namespaces
[image: PostgreSQL Operator Multi Namespace Deployment]PostgreSQL Operator Multi Namespace Deployment

The PostgreSQL Operator can manage PostgreSQL clusters across multiple namespaces which allows for multi-tenancy.
This can be set up with either the readonly or dynamic Namespace modes.


[pgo client]({{< relref "/pgo-client/_index.md" >}}) and Namespaces
The [pgo client]({{< relref "/pgo-client/_index.md" >}}) needs to be aware of the Kubernetes Namespaces it is issuing commands to. This can be accomplish with the -n flag that is available on most PostgreSQL Operator commands. For example, to create a PostgreSQL cluster called hippo in the pgo namespace, you would execute the following command:
pgo create cluster -n pgo hippo
For convenience, you can set the PGO_NAMESPACE environmental variable to automatically use the desired namespace with the commands.
For example, to create a cluster named hippo in the pgo namespace, you could do the following
# this export only needs to be run once per session
export PGO_NAMESPACE=pgo

pgo create cluster hippo

Operator Eventing
The Operator creates events from the various life-cycle events going on within the Operator logic and driven by pgo users as they interact with the Operator and as Postgres clusters come and go or get updated.

Event Watching
There is a pgo CLI command:
pgo watch alltopic
This command connects to the event stream and listens on a topic for event real-time. The command will not complete until the pgo user enters ctrl-C.
This command will connect to localhost:14150 (default) to reach the event stream. If you have the correct priviledges to connect to the Operator pod, you can port forward as follows to form a connection to the event stream:
kubectl port-forward svc/postgres-operator 14150:4150 -n pgo

Event Topics
The following topics exist that hold the various Operator generated events:
alltopic
clustertopic
backuptopic
loadtopic
postgresusertopic
policytopic
pgbouncertopic
pgotopic
pgousertopic

Event Types
The various event types are found in the source code at https://github.com/CrunchyData/postgres-operator/blob/master/pkg/events/eventtype.go

Event Deployment
The Operator events are published and subscribed via the NSQ project software (https://nsq.io/). NSQ is found in the pgo-event container which is part of the postgres-operator deployment.
You can see the pgo-event logs by issuing the elog bash function found in the examples/envs.sh script.
NSQ looks for events currently at port 4150. The Operator sends events to the NSQ address as defined in the EVENT_ADDR environment variable.
If you want to disable eventing when installing with Bash, set the following environment variable in the Operator Deployment: "name": "DISABLE_EVENTING" "value": "true"
To disable eventing when installing with Ansible, add the following to your inventory file: pgo_disable_eventing='true'

PostgreSQL Operator Containers Overview
The PostgreSQL Operator orchestrates a series of PostgreSQL and PostgreSQL related containers containers that enable rapid deployment of PostgreSQL, including administration and monitoring tools in a Kubernetes environment. The PostgreSQL Operator supports PostgreSQL 9.5+ with multiple PostgreSQL cluster deployment strategies and a variety of PostgreSQL related extensions and tools enabling enterprise grade PostgreSQL-as-a-Service. A full list of the containers supported by the PostgreSQL Operator is provided below.
PostgreSQL Server and Extensions
	PostgreSQL (crunchy-postgres-ha). PostgreSQL database server. The crunchy-postgres container image is unmodified, open source PostgreSQL packaged and maintained by Crunchy Data.

	PostGIS (crunchy-postgres-ha-gis). PostgreSQL database server including the PostGIS extension. The crunchy-postgres-gis container image is unmodified, open source PostgreSQL packaged and maintained by Crunchy Data. This image is identical to the crunchy-postgres image except it includes the open source geospatial extension PostGIS for PostgreSQL in addition to the language extension PL/R which allows for writing functions in the R statistical computing language.



Backup and Restore
	pgBackRest (crunchy-backrest-restore). pgBackRest is a high performance backup and restore utility for PostgreSQL. The crunchy-backrest-restore container executes the pgBackRest utility, allowing FULL and DELTA restore capability.

	pgdump (crunchy-pgdump). The crunchy-pgdump container executes either a pg_dump or pg_dumpall database backup against another PostgreSQL database.

	crunchy-pgrestore (restore). The restore image provides a means of performing a restore of a dump from pg_dump or pg_dumpall via psql or pg_restore to a PostgreSQL container database.



Administration Tools
	pgAdmin4 (crunchy-pgadmin4). PGAdmin4 is a graphical user interface administration tool for PostgreSQL. The crunchy-pgadmin4 container executes the pgAdmin4 web application.

	pgbadger (crunchy-pgbadger). pgbadger is a PostgreSQL log analyzer with fully detailed reports and graphs. The crunchy-pgbadger container executes the pgBadger utility, which generates a PostgreSQL log analysis report using a small HTTP server running on the container.

	pg_upgrade (crunchy-upgrade). The crunchy-upgrade container contains 9.5, 9.6, 10, 11 and 12 PostgreSQL packages in order to perform a pg_upgrade from 9.5 to 9.6, 9.6 to 10, 10 to 11, and 11 to 12 versions.

	scheduler (crunchy-scheduler). The crunchy-scheduler container provides a cron like microservice for automating pgBackRest backups within a single namespace.



Metrics and Monitoring
	Metrics Collection (crunchy-collect). The crunchy-collect container provides real time metrics about the PostgreSQL database via an API. These metrics are scraped and stored by a Prometheus time-series database and are then graphed and visualized through the open source data visualizer Grafana.

	Grafana (crunchy-grafana). Visual dashboards are created from the collected and stored data that crunchy-collect and crunchy-prometheus provide for the crunchy-grafana container, which hosts an open source web-based graphing dashboard called Grafana.

	Prometheus (crunchy-prometheus). Prometheus is a multi-dimensional time series data model with an elastic query language. It is used in collaboration with Crunchy Collect and Grafana to provide metrics.



Connection Pooling
	pgbouncer (crunchy-pgbouncer). pgbouncer is a lightweight connection pooler for PostgreSQL. The crunchy-pgbouncer container provides a pgbouncer image.



Storage and the PostgreSQL Operator
The PostgreSQL Operator allows for a variety of different configurations of persistent storage that can be leveraged by the PostgreSQL instances or clusters it deploys.
The PostgreSQL Operator works with several different storage types, HostPath, Network File System(NFS), and Dynamic storage.
	Hostpath is the simplest storage and useful for single node testing.

	NFS provides the ability to do single and multi-node testing.


Hostpath and NFS both require you to configure persistent volumes so that you can make claims towards those volumes. You will need to monitor the persistent volumes so that you do not run out of available volumes to make claims against.
Dynamic storage classes provide a means for users to request persistent volume claims and have the persistent volume dynamically created for you. You will need to monitor disk space with dynamic storage to make sure there is enough space for users to request a volume. There are multiple providers of dynamic storage classes to choose from. You will need to configure what works for your environment and size the Physical Volumes, Persistent Volumes (PVs), appropriately.
Once you have determined the type of storage you will plan on using and setup PV’s you need to configure the Operator to know about it. You will do this in the pgo.yaml file.
If you are deploying to a cloud environment with multiple zones, for instance Google Kubernetes Engine (GKE), you will want to review topology aware storage class configurations.

User Roles in the PostgreSQL Operator
The PostgreSQL Operator, when used in conjunction with the associated PostgreSQL Containers and Kubernetes, provides you with the ability to host your own open source, Kubernetes native PostgreSQL-as-a-Service infrastructure.
In installing, configuring and operating the PostgreSQL Operator as a PostgreSQL-as-a-Service capability, the following user roles will be required:
	Role	Applicable Component	Authorized Privileges and Functions Performed
	Platform Admininistrator (Privileged User)	PostgreSQL Operator	The Platform Admininistrator is able to control all aspects of the PostgreSQL Operator functionality, including: provisioning and scaling clusters, adding PostgreSQL Administrators and PostgreSQL Users to clusters, setting PostgreSQL cluster security privileges, managing other PostgreSQL Operator users, and more. This user can have access to any database that is deployed and managed by the PostgreSQL Operator.
	Platform User	PostgreSQL Operator	The Platform User has access to a limited subset of PostgreSQL Operator functionality that is defined by specific RBAC rules. A Platform Administrator manages the specific permissions for an Platform User specific permissions. A Platform User only receives a permission if its is explicitly granted to them.
	PostgreSQL Administrator(Privileged Account)	PostgreSQL Containers	The PostgreSQL Administrator is the equivalent of a PostgreSQL superuser (e.g. the "postgres" user) and can perform all the actions that a PostgreSQL superuser is permitted to do, which includes adding additional PostgreSQL Users, creating databases within the cluster.
	PostgreSQL User	PostgreSQL Containers	The PostgreSQL User has access to a PostgreSQL Instance or Cluster but must be granted explicit permissions to perform actions in PostgreSQL based upon their role membership.

As indicated in the above table, both the Operator Administrator and the PostgreSQL Administrators represent privilege users with components within the PostgreSQL Operator.
Platform Administrator
For purposes of this User Guide, the "Platform Administrator" is a Kubernetes system user with PostgreSQL Administrator privileges and has PostgreSQL Operator admin rights. While PostgreSQL Operator admin rights are not required, it is helpful to have admin rights to be able to verify that the installation completed successfully. The Platform Administrator will be responsible for managing the installation of the Crunchy PostgreSQL Operator service in Kubernetes. That installation can be on RedHat OpenShift 3.11+, Kubeadm, or even Google’s Kubernetes Engine.

Platform User
For purposes of this User Guide, a "Platform User" is a Kubernetes system user and has PostgreSQL Operator admin rights. While admin rights are not required for a typical user, testing out functiontionality will be easier, if you want to limit functionality to specific actions section 2.4.5 covers roles. The Platform User is anyone that is interacting with the Crunchy PostgreSQL Operator service in Kubernetes via the PGO CLI tool. Their rights to carry out operations using the PGO CLI tool is governed by PGO Roles(discussed in more detail later) configured by the Platform Administrator. If this is you, please skip to section 2.3.1 where we cover configuring and installing PGO.

PostgreSQL User
In the context of the PostgreSQL Operator, the "PostgreSQL User" is any person interacting with the PostgreSQL database using database specific connections, such as a language driver or a database management GUI.
The default PostgreSQL instance installation via the PostgreSQL Operator comes with the following users:
	Role name	Attributes
	postgres	Superuser, Create role, Create DB, Replication, Bypass RLS
	primaryuser	Replication
	testuser	

The postgres user will be the admin user for the database instance. The primary user is used for replication between primary and replicas. The testuser is a normal user that has access to the database “userdb” that is created for testing purposes.
A Tablespace is a PostgreSQL feature that is used to store data on a volume that is different from the primary data directory. While most workloads do not require them, tablespaces can be particularly helpful for larger data sets or utilizing particular hardware to optimize performance on a particular PostgreSQL object (a table, index, etc.). Some examples of use cases for tablespaces include:
	Partitioning larger data sets across different volumes
	Putting data onto archival systems
	Utilizing hardware (or a storage class) for a particular database
	Storing sensitive data on a volume that supports transparent data-encryption (TDE)

and others.
In order to use PostgreSQL tablespaces properly in a highly-available, distributed system, there are several considerations that need to be accounted for to ensure proper operations:
	Each tablespace must have its own volume; this means that every tablespace for every replica in a system must have its own volume.
	The filesystem map must be consistent across the cluster
	The backup & disaster recovery management system must be able to safely backup and restore data to tablespaces

Additionally, a tablespace is a critical piece of a PostgreSQL instance: if PostgreSQL expects a tablespace to exist and it is unavailable, this could trigger a downtime scenario.
While there are certain challenges with creating a PostgreSQL cluster with high-availability along with tablespaces in a Kubernetes-based environment, the PostgreSQL Operator adds many conveniences to make it easier to use tablespaces in applications.


How Tablespaces Work in the PostgreSQL Operator
As stated above, it is important to ensure that every tablespace created has its own volume (i.e. its own persistent volume claim). This is especially true for any replicas in a cluster: you don't want multiple PostgreSQL instances writing to the same volume, as this is a recipe for disaster!
One of the keys to working with tablespaces in a high-availability cluster is to ensure the filesystem that the tablespaces map to is consistent. Specifically, it is imperative to have the LOCATION parameter that is used by PostgreSQL to indicate where a tablespace resides to match in each instance in a cluster.
The PostgreSQL Operator achieves this by mounting all of its tablespaces to a directory called /tablespaces in the container. While each tablespace will exist in a unique PVC across all PostgreSQL instances in a cluster, each instance's tablespaces will mount in a predictable way in /tablespaces.
The PostgreSQL Operator takes this one step further and abstracts this away from you. When your PostgreSQL cluster initialized, the tablespace definition is automatically created in PostgreSQL; you can start using it immediately! An example of this is demonstrated in the next section.
The PostgreSQL Operator ensures the availability of the tablespaces across the different lifecycle events that occur on a PostgreSQL cluster, including:
	High-Availability: Data in the tablespaces is replicated across the cluster, and is available after a downtime event
	Disaster Recovery: Tablespaces are backed up and are properly restored during a recovery
	Clone: Tablespaces are created in any cloned or restored cluster
	Deprovisioining: Tablespaces are deleted when a PostgreSQL instance or cluster is deleted


Adding Tablespaces to a New Cluster
Tablespaces can be used in a cluster with the pgo create cluster command. The command follows this general format:
pgo create cluster hacluster \
    --tablespace=name=tablespace1:storageconfig=storageconfigname \
    --tablespace=name=tablespace2:storageconfig=storageconfigname
For example, to create tablespaces name faststorage1 and faststorage2 on PVCs that use the nfsstorage storage type, you would execute the following command:
pgo create cluster hacluster \
    --tablespace=name=faststorage1:storageconfig=nfsstorage \
    --tablespace=name=faststorage2:storageconfig=nfsstorage
Once the cluster is initialized, you can immediately interface with the tablespaces! For example, if you wanted to create a table called sensor_data on the faststorage1 tablespace, you could execute the following SQL:
CREATE TABLE sensor_data (
  sensor_id int,
  sensor_value numeric,
  created_at timestamptz DEFAULT CURRENT_TIMESTAMP
)
TABLESPACE faststorage1;

Adding Tablespaces to Existing Clusters
You can also add a tablespace to an existing PostgreSQL cluster with the pgo update cluster command. Adding a tablespace to a cluster uses a similar syntax to creating a cluster with tablespaces, for example:
pgo update cluster hacluster \
    --tablespace=name=tablespace3:storageconfig=storageconfigname
NOTE: This operation can cause downtime. In order to add a tablespace to a PostgreSQL cluster, persistent volume claims (PVCs) need to be created and mounted to each PostgreSQL instance in the cluster. The act of mounting a new PVC to a Kubernetes Deployment causes the Pods in the deployment to restart.
When the operation completes, the tablespace will be set up and accessible to use within the PostgreSQL cluster.

Removing Tablespaces
Removing a tablespace is a nontrivial operation. PostgreSQL does not provide a DROP TABLESPACE .. CASCADE command that would drop any associated objects with a tablespace. Additionally, the PostgreSQL documentation covering the DROP TABLESPACE command goes on to note:
A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all database objects before it can be dropped. It is possible that objects in other databases might still reside in the tablespace even if no objects in the current database are using the tablespace. Also, if the tablespace is listed in the temp_tablespaces setting of any active session, the DROP might fail due to temporary files residing in the tablespace.

Because of this, and to avoid a situation where a PostgreSQL cluster is left in an inconsistent state due to trying to remove a tablespace, the PostgreSQL Operator does not provide any means to remove tablespaces automatically. If you do need to remove a tablespace from a PostgreSQL deployment, we recommend following this procedure:
	As a database administrator:
	Log into the primary instance of your cluster.
	Drop any objects that reside within the tablespace you wish to delete. These can be tables, indexes, and even databases themselves
	When you believe you have deleted all objects that depend on the tablespace you wish to remove, you can delete this tablespace from the PostgreSQL cluster using the DROP TABLESPACE command.
	As a Kubernetes user who can modify Deployments and edit an entry in the pgclusters.crunchydata.com CRD in the Namespace that the PostgreSQL cluster is in:
	For each Deployment that represents a PostgreSQL instance in the cluster (i.e. kubectl -n <TARGET_NAMESPACE> get deployments --selector=pgo-pg-database=true,pg-cluster=<CLUSTER_NAME>), edit the Deployment and remove the Volume and VolumeMount entry for the tablespace. If the tablespace is called hippo-ts, the Volume entry will look like: ```yaml

	name: tablespace-hippo-ts persistentVolumeClaim: claimName: -tablespace-hippo-ts and the VolumeMount entry will look like:yaml

  
  
  
  pgo.yaml Configuration
  
  



pgo.yaml Configuration
The pgo.yaml file contains many different configuration settings as described in this section of the documentation.
The pgo.yaml file is broken into major sections as described below: ## Cluster
	Setting	Definition
	BasicAuth	If set to "true" will enable Basic Authentication. If set to "false", will allow a valid Operator user to successfully authenticate regardless of the value of the password provided for Basic Authentication. Defaults to "true".
	CCPImagePrefix	newly created containers will be based on this image prefix (e.g. crunchydata), update this if you require a custom image prefix
	CCPImageTag	newly created containers will be based on this image version (e.g. {{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}}), unless you override it using the --ccp-image-tag command line flag
	Port	the PostgreSQL port to use for new containers (e.g. 5432)
	PGBadgerPort	the port used to connect to pgbadger (e.g. 10000)
	ExporterPort	the port used to connect to postgres exporter (e.g. 9187)
	User	the PostgreSQL normal user name
	Database	the PostgreSQL normal user database
	Replicas	the number of cluster replicas to create for newly created clusters, typically users will scale up replicas on the pgo CLI command line but this global value can be set as well
	PgmonitorPassword	the password to use for pgmonitor metrics collection if you specify --metrics when creating a PG cluster
	Metrics	boolean, if set to true will cause each new cluster to include crunchy-collect as a sidecar container for metrics collection, if set to false (default), users can still add metrics on a cluster-by-cluster basis using the pgo command flag --metrics
	Badger	boolean, if set to true will cause each new cluster to include crunchy-pgbadger as a sidecar container for static log analysis, if set to false (default), users can still add pgbadger on a cluster-by-cluster basis using the pgo create cluster command flag --pgbadger
	Policies	optional, list of policies to apply to a newly created cluster, comma separated, must be valid policies in the catalog
	PasswordAgeDays	optional, if set, will set the VALID UNTIL date on passwords to this many days in the future when creating users or setting passwords, defaults to 60 days
	PasswordLength	optional, if set, will determine the password length used when creating passwords, defaults to 8
	ServiceType	optional, if set, will determine the service type used when creating primary or replica services, defaults to ClusterIP if not set, can be overridden by the user on the command line as well
	Backrest	optional, if set, will cause clusters to have the pgbackrest volume PVC provisioned during cluster creation
	BackrestPort	currently required to be port 2022
	DisableAutofail	optional, if set, will disable autofail capabilities by default in any newly created cluster
	DisableReplicaStartFailReinit	if set to true will disable the detection of a "start failed" states in PG replicas, which results in the re-initialization of the replica in an attempt to bring it back online
	PodAntiAffinity	either preferred, required or disabled to either specify the type of affinity that should be utilized for the default pod anti-affinity applied to PG clusters, or to disable default pod anti-affinity all together (default preferred)
	SyncReplication	boolean, if set to true will automatically enable synchronous replication in new PostgreSQL clusters (default false)
	DefaultInstanceMemory	string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request for each instance in a PostgreSQL cluster. The example configuration uses 128Mi which is very low for a PostgreSQL cluster, as the default amount of shared memory PostgreSQL requests is 128Mi. However, for test clusters, this value is acceptable as the shared memory buffers won't be stressed, but you should absolutely consider raising this in production. If the value is unset, it defaults to 512Mi, which is a much more appropriate minimum.
	DefaultBackrestMemory	string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request for the pgBackRest repository (default 48Mi)
	DefaultPgBouncerMemory	string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request for pgBouncer instances (default 24Mi)
	DisableFSGroup	If set to true, this will disable the use of the fsGroup for the containers related to PostgreSQL, which is normally set to 26. This is geared towards deployments that use Security Context Constraints in the mode of restricted (default false)

Storage
	Setting	Definition
	PrimaryStorage	required, the value of the storage configuration to use for the primary PostgreSQL deployment
	BackupStorage	required, the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes
	ReplicaStorage	required, the value of the storage configuration to use for the replica PostgreSQL deployments
	BackrestStorage	required, the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster
	WALStorage	optional, the value of the storage configuration to use for PostgreSQL Write Ahead Log
	StorageClass	for a dynamic storage type, you can specify the storage class used for storage provisioning(e.g. standard, gold, fast)
	AccessMode	the access mode for new PVCs (e.g. ReadWriteMany, ReadWriteOnce, ReadOnlyMany). See below for descriptions of these.
	Size	the size to use when creating new PVCs (e.g. 100M, 1Gi)
	Storage.storage1.StorageType	supported values are either dynamic, create, if not supplied, create is used
	SupplementalGroups	optional, if set, will cause a SecurityContext to be added to generated Pod and Deployment definitions
	MatchLabels	optional, if set, will cause the PVC to add a matchlabels selector in order to match a PV, only useful when the StorageType is create, when specified a label of key=value is added to the PVC as a match criteria


Storage Configuration Examples
In pgo.yaml, you will need to configure your storage configurations depending on which storage you are wanting to use for Operator provisioning of Persistent Volume Claims. The examples below are provided as a sample. In all the examples you are free to change the Size to meet your requirements of Persistent Volume Claim size.
HostPath Example
HostPath is provided for simple testing and use cases where you only intend to run on a single Linux host for your Kubernetes cluster.
  hostpathstorage:
    AccessMode:  ReadWriteMany
    Size:  1G
    StorageType:  create

NFS Example
In the following NFS example, notice that the SupplementalGroups setting is set, this can be whatever GID you have your NFS mount set to, typically we set this nfsnobody as below. NFS file systems offer a ReadWriteMany access mode.
  nfsstorage:
    AccessMode:  ReadWriteMany
    Size:  1G
    StorageType:  create
    SupplementalGroups:  65534

Storage Class Example
Most Storage Class providers offer ReadWriteOnce access modes, but refer to your provider documentation for other access modes it might support.
  storageos:
    AccessMode:  ReadWriteOnce
    Size:  1G
    StorageType:  dynamic
    StorageClass:  fast


Miscellaneous (Pgo)
	Setting	Definition
	Audit	boolean, if set to true will cause each apiserver call to be logged with an audit marking
	ConfigMapWorkerCount	The number of workers created for the worker queue within the ConfigMap controller (defaults to 2)
	ControllerGroupRefreshInterval	The refresh interval for any per-namespace controller with a refresh interval (defaults to 60 seconds)
	DisableReconcileRBAC	Whether or not to disable RBAC reconciliation in targeted namespaces (defaults to false)
	NamespaceRefreshInterval	The refresh interval for the namespace controller (defaults to 60 seconds)
	NamespaceWorkerCount	The number of workers created for the worker queue within the Namespace controller (defaults to 2)
	PgclusterWorkerCount	The number of workers created for the worker queue within the PGCluster controller (defaults to 1)
	PGOImagePrefix	image tag prefix to use for the Operator containers
	PGOImageTag	image tag to use for the Operator containers
	PGReplicaWorkerCount	The number of workers created for the worker queue within the PGReplica controller (defaults to 1)
	PGTaskWorkerCount	The number of workers created for the worker queue within the PGTask controller (defaults to 1)


Storage Configuration Details
You can define n-number of Storage configurations within the pgo.yaml file. Those Storage configurations follow these conventions -
	they must have lowercase name (e.g. storage1)
	they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and PrimaryStorage configuration values. However, there are command line options in the pgo client that will let a user override these default global values to offer you the user a way to specify very targeted storage configurations when needed (e.g. disaster recovery storage for certain backups).
You can set the storage AccessMode values to the following:
	ReadWriteMany - mounts the volume as read-write by many nodes
	ReadWriteOnce - mounts the PVC as read-write by a single node
	ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration is found, the apiserver will abort. These Storage values are only read at apiserver start time.
The following StorageType values are possible -
	dynamic - this will allow for dynamic provisioning of storage using a StorageClass.
	create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using a naming convention of clustername. When set, the Size, AccessMode settings are used in constructing the new PVC.

The operator will create new PVCs using this naming convention: dbname where dbname is the database name you have specified. For example, if you run:
pgo create cluster example1 -n pgouser1
It will result in a PVC being created named example1 and in the case of a backup job, the pvc is named example1-backup
Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels, when set, this will cause a selector of key=value to be added into the PVC, this will let you target specific PV(s) to be matched for this cluster. Note, if a PV does not match the claim request, then the cluster will not start. Users that want to use this feature have to place labels on their PV resources as part of PG cluster creation before creating the PG cluster. For example, users would add a label like this to their PV before they create the PG cluster:
kubectl label pv somepv myzone=somezone -n pgouser1
If you do not specify MatchLabels in the storage configuration, then no match filter is added and any available PV will be used to satisfy the PVC request. This option does not apply to dynamic storage types.
Example PV creation scripts are provided that add labels to a set of PVs and can be used for testing: $COROOT/pv/create-pv-nfs-labels.sh in that example, a label of crunchyzone=red is set on a set of PVs to test with.
The pgo.yaml includes a storage config named nfsstoragered that when used will demonstrate the label matching. This feature allows you to support n-number of NFS storage configurations and supports spreading a PG cluster across different NFS storage configurations.

Overriding Storage Configuration Defaults
pgo create cluster testcluster --storage-config=bigdisk -n pgouser1
That example will create a cluster and specify a storage configuration of bigdisk to be used for the primary database storage. The replica storage will default to the value of ReplicaStorage as specified in pgo.yaml.
pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk -n pgouser1
That example will create a cluster and specify a storage configuration of fastdisk to be used for the primary database storage, while the replica storage will use the storage configuration slowdisk.
pgo backup testcluster --storage-config=offsitestorage -n pgouser1
That example will create a backup and use the offsitestorage storage configuration for persisting the backup.

Using Storage Configurations for Disaster Recovery
A simple mechanism for partial disaster recovery can be obtained by leveraging network storage, Kubernetes storage classes, and the storage configuration options within the Operator.
For example, if you define a Kubernetes storage class that refers to a storage backend that is running within your disaster recovery site, and then use that storage class as a storage configuration for your backups, you essentially have moved your backup files automatically to your disaster recovery site thanks to network storage.

TLS Configuration
Should you desire to alter the default TLS settings for the Postgres Operator, you can set the following variables as described below.
Server Settings
To disable TLS and make an unsecured connection on port 8080 instead of connecting securely over the default port, 8443, set:
Bash environment variables
export DISABLE_TLS=true
export PGO_APISERVER_PORT=8080      
Or inventory variables if using Ansible
pgo_disable_tls='true'
pgo_apiserver_port=8080
To disable TLS verifcation, set the follwing as a Bash environment variable
export TLS_NO_VERIFY=false
Or the following in the inventory file if using Ansible
pgo_tls_no_verify='false'

TLS Trust
Custom Trust Additions
To configure the server to allow connections from any client presenting a certificate issued by CAs within a custom, PEM-encoded certificate list, set the following as a Bash environment variable
export TLS_CA_TRUST="/path/to/trust/file"
Or the following in the inventory file if using Ansible
pgo_tls_ca_store='/path/to/trust/file'

System Default Trust
To configure the server to allow connections from any client presenting a certificate issued by CAs within the operating system's default trust store, set the following as a Bash environment variable
export ADD_OS_TRUSTSTORE=true
Or the following in the inventory file if using Ansible
pgo_add_os_ca_store='true'


Connection Settings
If TLS authentication has been disabled, or if the Operator's apiserver port is changed, be sure to update the PGO_APISERVER_URL accordingly.
For example with an Ansible installation,
export PGO_APISERVER_URL='https://<apiserver IP>:8443'
would become
export PGO_APISERVER_URL='http://<apiserver IP>:8080'
With a Bash installation,
setip()
{
   export PGO_APISERVER_URL=https://`$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service postgres-operator -o=jsonpath="{.spec.clusterIP}"`:8443
}
would become
setip()
{
   export PGO_APISERVER_URL=http://`$PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service postgres-operator -o=jsonpath="{.spec.clusterIP}"`:8080
}

Client Settings
By default, the pgo client will trust certificates issued by one of the Certificate Authorities listed in the operating system's default CA trust store, if any. To exclude them, either use the environment variable
EXCLUDE_OS_TRUST=true
or use the --exclude-os-trust flag
pgo version --exclude-os-trust
Finally, if TLS has been disabled for the Operator's apiserver, the PGO client connection must be set to match the given settings.
Two options are available, either the Bash environment variable
DISABLE_TLS=true
must be configured, or the --disable-tls flag must be included when using the client, i.e.
pgo version --disable-tls
There are several different ways to install and deploy the PostgreSQL Operator based upon your use case.
For the vast majority of use cases, we recommend using the PostgreSQL Operator Installer({{< relref "/installation/postgres-operator.md" >}}), which uses the pgo-deployer container to set up all of the objects required to run the PostgreSQL Operator.
For advanced use cases, such as for development, one may want to set up a [development environment]({{< relref "/contributing/developer-setup.md" >}}) that is created using a series of scripts controlled by the Makefile.
Before selecting your installation method, it's important that you first read the [prerequisites]({{< relref "/installation/prerequisites.md" >}}) for your deployment environment to ensure that your setup meets the needs for installing the PostgreSQL Operator.







  
  
  
  Prerequisites
  



Prerequisites
The following is required prior to installing PostgreSQL Operator.
Environment
The PostgreSQL Operator is tested in the following environments:
	Kubernetes v1.13+
	Red Hat OpenShift v3.11+
	Red Hat OpenShift v4.3+
	VMWare Enterprise PKS 1.3+
	IBM Cloud Pak Data

IBM Cloud Pak Data
If you install the PostgreSQL Operator, which comes with Crunchy PostgreSQL for Kubernetes, on IBM Cloud Pak Data, please note the following additional requirements:
	Cloud Pak Data Version 2.5
	Minimum Node Requirements (Cloud Paks Cluster): 3
	Crunchy PostgreSQL for Kuberentes (Service):
	Minimum CPU Requirements: 0.2 CPU
	Minimum Memory Requirements: 120MB
	Minimum Storage Requirements: 5MB

Note: PostgreSQL clusters deployed by the PostgreSQL Operator with Crunchy PostgreSQL for Kubernetes are workload dependent. As such, users should allocate enough resources for their PostgreSQL clusters.


Client Interfaces
The PostgreSQL Operator installer will install the [pgo client]({{< relref "/pgo-client/_index.md" >}}) interface to help with using the PostgreSQL Operator. However, it is also recommend that you have access to kubectl or oc and are able to communicate with the Kubernetes or OpenShift cluster that you are working with.

Ports
There are several application ports to note when using the PostgreSQL Operator. These ports allow for the [pgo client]({{< relref "/pgo-client/_index.md" >}}) to interface with the PostgreSQL Operator API as well as for users of the event stream to connect to nsqd and nsqdadmin:
	Container	Port
	API Server	8443
	nsqadmin	4151
	nsqd	4150

If you are using these services, ensure your cluster administrator has given you access to these ports.
Application Ports
The PostgreSQL Operator deploys different services to support a production PostgreSQL environment. Below is a list of the applications and their default Service ports.
	Service	Port
	PostgreSQL	5432
	pgbouncer	5432
	pgBackRest	2022
	postgres-exporter	9187
	pgbadger	10000








  
  
  
  The PostgreSQL Operator Installer
  
  



The PostgreSQL Operator Installer
Quickstart
If you believe that all the default settings in the installation manifest work for you, you can take a chance by running the manifest directly from the repository:
kubectl create namespace pgo
kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/postgres-operator.yml
However, we still advise that you read onward to see how to properly configure the PostgreSQL Operator.

Overview
The PostgreSQL Operator comes with a container called pgo-deployer which handles a variety of lifecycle actions for the PostgreSQL Operator, including:
	Installation
	Upgrading
	Uninstallation

After configuring the Job template, the installer can be run using kubectl apply and takes care of setting up all of the objects required to run the PostgreSQL Operator.
The installation manifest, called postgres-operator.yaml, is available in the installers/kubectl/postgres-operator.yml path in the PostgreSQL Operator repository.

Requirements
RBAC
The pgo-deployer requires a ServiceAccount and ClusterRoleBinding to run the installation job. Both of these resources are already defined in the postgres-operator.yml, but can be updated based on your specific environmental requirements.
By default, the pgo-deployer uses a ServiceAccount called pgo-deployer-sa that has a ClusterRoleBinding (pgo-deployer-crb) with several ClusterRole permissions. This is required to create the Custom Resource Definitions that power the PostgreSQL Operator. While the PostgreSQL Operator itself can be scoped to a specific namespace, you will need to have cluster-admin for the initial deployment, or privileges that allow you to install Custom Resource Definitions. The required list of privileges are available in the postgres-operator.yml file:
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/postgres-operator.yml
If you have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation), then you can remove these objects from the postgres-operator.yml manifest.

Config Map
The pgo-deployer uses a Kubernetes ConfigMap to pass configuration options into the installer. The ConfigMap is defined in the postgres-operator.yaml file and can be updated based on your configuration preferences.

Namespaces
By default, the installer will run in the pgo Namespace. This can be updated in the postgres-operator.yml file. Please ensure that this namespace exists before the job is run.
For example, to create the pgo namespace:
kubectl create namespace pgo
The PostgreSQL Operator has the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces, including the ability to add and remove Namespaces that it watches. Doing so does require the PostgreSQL Operator to have elevated privileges, and as such, the PostgreSQL Operator comes with three "namespace modes" to select what level of privileges to provide:
	dynamic: The default is the default mode. This enables full dynamic Namespace management capabilities, in which the PostgreSQL Operator can create, delete and update any Namespaces within the Kubernetes cluster, while then also having the ability to create the Roles, RoleBindings andService Accounts within those Namespaces for normal operations. The PostgreSQL Operator can also listen for Namespace events and create or remove controllers for various Namespaces as changes are made to Namespaces from Kubernetes and the PostgreSQL Operator's management.

	readonly: In this mode, the PostgreSQL Operator is able to listen for namespace events within the Kubernetes cluster, and then manage controllers as Namespaces are added, updated or deleted. While this still requires a ClusterRole, the permissions mirror those of a "read-only" environment, and as such the PostgreSQL Operator is unable to create, delete or update Namespaces itself nor create RBAC that it requires in any of those Namespaces. Therefore, while in readonly, mode namespaces must be preconfigured with the proper RBAC as the PostgreSQL Operator cannot create the RBAC itself.

	disabled: Use this mode if you do not want to deploy the PostgreSQL Operator with any ClusterRole privileges, especially if you are only deploying the PostgreSQL Operator to a single namespace. This disables any Namespace management capabilities within the PostgreSQL Operator and will simply attempt to work with the target Namespaces specified during installation. If no target Namespaces are specified, then the Operator will be configured to work within the namespace in which it is deployed. As with the readonly mode, while in this mode, Namespaces must be preconfigured with the proper RBAC, since the PostgreSQL Operator cannot create the RBAC itself.




Configuration - postgres-operator.yml
The postgres-operator.yml file contains all of the configuration parameters for deploying the PostgreSQL Operator. The example file contains defaults that should work in most Kubernetes environments, but it may require some customization.
For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{< relref "/installation/configuration.md">}}>)
Configuring to Update and Uninstall
The deploy job can be used to perform different deployment actions for the PostgreSQL Operator. When you run the job it will install the operator by default but you can change the deployment action to uninstall or update. The DEPLOY_ACTION environment variable in the postgres-operator.yml file can be set to install, update, and uninstall.

Image Pull Secrets
If you are pulling the PostgreSQL Operator images from a private registry, you will need to setup an imagePullSecret with access to the registry. The image pull secret will need to be added to the installer service account to have access. The secret will need to be created in each namespace that the PostgreSQL Operator will be using.
After you have configured your image pull secret in the Namespace the installer runs in (by default, this is pgo), add the name of the secret to the job yaml that you are using. You can update the existing section like this:
apiVersion: v1
kind: ServiceAccount
metadata:
    name: pgo-deployer-sa
    namespace: pgo
imagePullSecrets:
  - name: <image_pull_secret_name>
If the service account is configured without using the job yaml file, you can link the secret to an existing service account with the kubectl or oc clients.
# kubectl
kubectl patch serviceaccount <deployer-sa> -p '{"imagePullSecrets": [{"name": "myregistrykey"}]}' -n <install-namespace>

# oc
oc secrets link <registry-secret> <deployer-sa> --for=pull --namespace=<install-namespace>


Installation
Once you have configured the PostgreSQL Operator Installer to your specification, you can install the PostgreSQL Operator with the following command:
kubectl apply -f /path/to/postgres-operator.yml
Install the [pgo Client]({{< relref "/installation/pgo-client" >}})
To use the [pgo Client]({{< relref "/installation/pgo-client" >}}), there are a few additional steps to take in order to get it to work with you PostgreSQL Operator installation. For convenience, you can download and run the client-setup.sh script in your local environment:
curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/client-setup.sh > client-setup.sh
chmod +x client-setup.sh
./client-setup.sh
Running this script can cause existing pgo client binary, pgouser, client.crt, and client.key files to be overwritten.
The client-setup.sh script performs the following tasks:
	Sets $PGO_OPERATOR_NAMESPACE to pgo if it is unset. This is the default namespace that the PostgreSQL Operator is deployed to
	Checks for valid Operating Systems and determines which pgo binary to download
	Creates a directory in $HOME/.pgo/$PGO_OPERATOR_NAMESPACE (e.g. /home/hippo/.pgo/pgo)
	Downloads the pgo binary, saves it to in $HOME/.pgo/$PGO_OPERATOR_NAMESPACE, and sets it to be executable
	Pulls the TLS keypair from the PostgreSQL Operator pgo.tls Secret so that the pgo client can communicate with the PostgreSQL Operator. These are saved as client.crt and client.key in the $HOME/.pgo/$PGO_OPERATOR_NAMESPACE path.
	Pulls the pgouser credentials from the pgouser-admin secret and saves them in the format username:password in a file called pgouser
	client.crt, client.key, and pgouser are all set to be read/write by the file owner. All other permissions are removed.
	Sets the following environmental variables with the following values:

export PGOUSER=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser
export PGO_CA_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_KEY=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key
For convenience, after the script has finished, you can permanently at these environmental variables to your environment:
cat <<EOF >> ~/.bashrc
export PATH="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE:$PATH"
export PGOUSER="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser"
export PGO_CA_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_KEY="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key"
EOF
By default, the client-setup.sh script targets the user that is stored in the pgouser-admin secret in the pgo ($PGO_OPERATOR_NAMESPACE) Namespace. If you wish to use a different Secret, you can set the PGO_USER_ADMIN environmental variable.
For more detailed information about [installing the pgo client]({{< relref "/installation/pgo-client" >}}), please see [Installing the pgo client]({{< relref "/installation/pgo-client" >}}).

Verify the Installation
One way to verify the installation was successful is to execute the [pgo version]({{< relref "/pgo-client/reference/pgo_version.md" >}}) command.
In a new console window, run the following command to set up a port forward:
kubectl -n pgo port-forward svc/postgres-operator 8443:8443
Next, in another console window, set the following environment variable to configure the API server address:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://127.0.0.1:8443"
EOF
Apply those changes to the current session by running:
source ${HOME?}/.bashrc
Now run the pgo version command:
pgo version
If successful, you should see output similar to this:
pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}


Installing Metrics Infrastructure
The pgo-deployer image can be used to deploy Grafana and Prometheus alongside the PostgreSQL Operator. The settings outlined in the [Installing-metrics]({{< relref "/installation/other/ansible/installing-metrics" >}}) seciton of the documentation can be defined in your values.yaml configmap. Once you have updated the relevant metrics options you can update the DEPLOY_ACTION of the job manifest. By updating the environment variable to include install-metrics the installer will use the metrics settings when deploying.
Installing
The following can be used to install the PostgreSQL Operator and metrics infrastructure at the same time.
env:
  - name: DEPLOY_ACTION
    value: install,install-metrics

Uninstalling
The following can be used to uninstall the PostgreSQL Operator and metrics infrastructure at the same time.
env:
  - name: DEPLOY_ACTION
    value: uninstall,uninstall-metrics

Updating Previous Deployment
If you have previously deployed the PostgreSQL Operator, you can install or uninstall the metrics infrastructure separately using these settings:
# Install
env:
  - name: DEPLOY_ACTION
    value: install-metrics
# Uninstall
env:
  - name: DEPLOY_ACTION
    value: uninstall-metrics


Post-Installation
To clean up the installer artifacts, you can simply run:
kubectl delete -f /path/to/postgres-operator.yml
Note that if you still have the ServiceAccount and ClusterRoleBinding in there, you will need to have elevated privileges.






  
  
  
  Install the PostgreSQL Operator (pgo) Client
  
  



Install the PostgreSQL Operator (pgo) Client
The following will install and configure the pgo client on all systems. For the purpose of these instructions it's assumed that the Crunchy PostgreSQL Operator is already deployed.
Prerequisites
	For Kubernetes deployments: kubectl configured to communicate with Kubernetes
	For OpenShift deployments: oc configured to communicate with OpenShift

To authenticate with the Crunchy PostgreSQL Operator API:
	Client CA Certificate
	Client TLS Certificate
	Client Key
	pgouser file containing <username>:<password>

All of the requirements above should be obtained from an administrator who installed the Crunchy PostgreSQL Operator.

Linux and macOS
The following will setup the pgo client to be used on a Linux or macOS system.
Installing the Client
First, download the pgo client from the GitHub official releases. Crunchy Enterprise Customers can download the pgo binaries from https://access.crunchydata.com/ on the downloads page.
Next, install pgo in /usr/local/bin by running the following:
sudo mv /PATH/TO/pgo /usr/local/bin/pgo
sudo chmod +x /usr/local/bin/pgo
Verify the pgo client is accessible by running the following in the terminal:
pgo --help
Configuring Client TLS
With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files by running the following command:
mkdir ${HOME?}/.pgo
chmod 700 ${HOME?}/.pgo
Next, copy the certificates to this new directory:
cp /PATH/TO/client.crt ${HOME?}/.pgo/client.crt && chmod 600 ${HOME?}/.pgo/client.crt
cp /PATH/TO/client.key ${HOME?}/.pgo/client.key && chmod 400 ${HOME?}/.pgo/client.key
Finally, set the following environment variables to point to the client TLS files:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_CA_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/client.key"
EOF
Apply those changes to the current session by running:
source ~/.bashrc

Configuring pgouser
The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL Operator.
To setup the pgouser file, run the following:
echo "<USERNAME_HERE>:<PASSWORD_HERE>" > ${HOME?}/.pgo/pgouser
cat <<EOF >> ${HOME?}/.bashrc
export PGOUSER="${HOME?}/.pgo/pgouser"
EOF
Apply those changes to the current session by running:
source ${HOME?}/.bashrc

Configuring the API Server URL
If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it's required to setup a port-forward tunnel using the kubectl or oc binary.
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
# If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

# If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443
In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
Note: The port-forward will be required for the duration of using the PostgreSQL client.
Next, set the following environment variable to configure the API server address:
cat <<EOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://<IP_OF_OPERATOR_API>:8443"
EOF
Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1
Apply those changes to the current session by running:
source ${HOME?}/.bashrc



PGO-Client Container
The following will setup the pgo client image in a Kubernetes or Openshift environment. The image must be installed using the Ansible installer.
Installing the PGO-Client Container
The pgo-client container can be installed with the Ansible installer by updating the pgo_client_container_install variable in the inventory file. Set this variable to true in the inventory file and run the ansible-playbook. As part of the install the pgo.tls and pgouser-<username> secrets are used to configure the pgo client.

Using the PGO-Client Deployment
Once the container has been installed you can access it by exec'ing into the pod. You can run single commands with the kubectl or oc command line tools or multiple commands by exec'ing into the pod with bash.
kubectl exec -it -n pgo deploy/pgo-client -- pgo version

# or

kubectl exec -it -n pgo deploy/pgo-client bash
The deployment does not require any configuration to connect to the operator.


Windows
The following will setup the pgo client to be used on a Windows system.
Installing the Client
First, download the pgo.exe client from the GitHub official releases.
Next, create a directory for pgo using the following:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: mkdir "%ProgramFiles%\postgres-operator"

Within the same terminal copy the pgo.exe binary to the directory created above using the following command:
copy %HOMEPATH%\Downloads\pgo.exe "%ProgramFiles%\postgres-operator"
Finally, add pgo.exe to the system path by running the following command in the terminal:
setx path "%path%;C:\Program Files\postgres-operator"
Verify the pgo.exe client is accessible by running the following in the terminal:
pgo --help
Configuring Client TLS
With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files using the following:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: mkdir "%HOMEPATH%\pgo"

Next, copy the certificates to this new directory:
copy \PATH\TO\client.crt "%HOMEPATH%\pgo"
copy \PATH\TO\client.key "%HOMEPATH%\pgo"
Finally, set the following environment variables to point to the client TLS files:
setx PGO_CA_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_CERT "%HOMEPATH%\pgo\client.crt"
setx PGO_CLIENT_KEY "%HOMEPATH%\pgo\client.key"

Configuring pgouser
The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL Operator.
To setup the pgouser file, run the following:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: echo USERNAME_HERE:PASSWORD_HERE > %HOMEPATH%\pgo\pgouser

Finally, set the following environment variable to point to the pgouser file:
setx PGOUSER "%HOMEPATH%\pgo\pgouser"

Configuring the API Server URL
If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it's required to setup a port-forward tunnel using the kubectl or oc binary.
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
# If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

# If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443
In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
Note: The port-forward will be required for the duration of using the PostgreSQL client.
Next, set the following environment variable to configure the API server address:
	Left click the Start button in the bottom left corner of the taskbar
	Type cmd to search for Command Prompt
	Right click the Command Prompt application and click "Run as administrator"
	Enter the following command: setx PGO_APISERVER_URL "https://<IP_OF_OPERATOR_API>:8443"
	Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1




Verify the Client Installation
After completing all of the steps above we can verify pgo is configured properly by simply running the following:
pgo version
If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator client has been installed successfully.






  
  
  
  PostgreSQL Operator Installer Configuration
  
  



PostgreSQL Operator Installer Configuration
When installing the PostgreSQL Operator you have many configuration options, these options are listed in this section.
General Configuration
These variables affect the general configuration of the PostgreSQL Operator.
	Name	Default	Required	Description
	archive_mode	true	Required	Set to true enable archive logging on all newly created clusters.
	archive_timeout	60	Required	Set to a value in seconds to configure the timeout threshold for archiving.
	backrest_aws_s3_bucket			Set to configure the bucket used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_endpoint			Set to configure the endpoint used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_key			Set to configure the key used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_region			Set to configure the region used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_secret			Set to configure the secret used by pgBackRest with Amazon Web Service S3 for backups and restoration in S3.
	backrest_aws_s3_uri_style			Set to configure whether “host” or “path” style URIs will be used when connecting to S3.
	backrest_aws_s3_verify_tls			Set this value to true to enable TLS verification when making a pgBackRest connection to S3.f
	backrest_port	2022	Required	Defines the port where pgBackRest will run.
	badger	false	Required	Set to true enable pgBadger capabilities on all newly created clusters. This can be disabled by the client.
	ccp_image_prefix	registry.developers.crunchydata.com/crunchydata	Required	Configures the image prefix used when creating containers from Crunchy Container Suite.
	ccp_image_pull_secret			Name of a Secret containing credentials for container image registries.
	ccp_image_pull_secret_manifest			Provide a path to the Secret manifest to be installed in each namespace. (optional)
	ccp_image_tag	{{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}}	Required	Configures the image tag (version) used when creating containers from Crunchy Container Suite.
	create_rbac	true	Required	Set to true if the installer should create the RBAC resources required to run the PostgreSQL Operator.
	crunchy_debug	false		Set to configure Operator to use debugging mode. Note: this can cause sensitive data such as passwords to appear in Operator logs.
	db_name			Set to a value to configure the default database name on all newly created clusters. By default, the PostgreSQL Operator will set it to the name of the cluster that is being created.
	db_password_age_days	0		Set to a value in days to configure the expiration age on PostgreSQL role passwords on all newly created clusters. If set to “0”, this is the same as saying the password never expires
	db_password_length	24		Set to configure the size of passwords generated by the operator on all newly created roles.
	db_port	5432	Required	Set to configure the default port used on all newly created clusters.
	db_replicas	0	Required	Set to configure the amount of replicas provisioned on all newly created clusters.
	db_user	testuser	Required	Set to configure the username of the dedicated user account on all newly created clusters.
	default_instance_memory	128Mi		Represents the memory request for a PostgreSQL instance.
	default_pgbackrest_memory	48Mi		Represents the memory request for a pgBackRest repository.
	default_pgbouncer_memory	24Mi		Represents the memory request for a pgBouncer instance.
	delete_metrics_namespace	false		Set to configure whether or not the metrics namespace (defined using variable metrics_namespace) is deleted when uninstalling the metrics infrastructure.
	delete_operator_namespace	false		Set to configure whether or not the PGO operator namespace (defined using variable pgo_operator_namespace) is deleted when uninstalling the PGO.
	delete_watched_namespaces	false		Set to configure whether or not the PGO watched namespaces (defined using variable namespace) are deleted when uninstalling the PGO.
	disable_auto_failover	false		If set, will disable autofail capabilities by default in any newly created cluster
	disable_fsgroup	false		Set to true for deployments where you do not want to have the default PostgreSQL fsGroup (26) set. The typical usage is in OpenShift environments that have a restricted Security Context Constraints.
	exporterport	9187	Required	Set to configure the default port used to connect to postgres exporter.
	grafana_admin_password			Set to configure the login password for the Grafana administrator.
	grafana_admin_username	admin		Set to configure the login username for the Grafana administrator.
	grafana_install	false		Set to true to install Crunchy Grafana to visualize metrics.
	grafana_storage_access_mode	ReadWriteOnce		Set to the access mode used by the configured storage class for Grafana persistent volumes.
	grafana_storage_class_name	fast		Set to the name of the storage class used when creating Grafana persistent volumes.
	grafana_supplemental_groups	65534		Set to configure any supplemental groups that should be added to security contexts for Grafana.
	grafana_volume_size	1G		Set to the size of persistent volume to create for Grafana.
	metrics	false	Required	Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
	metrics_namespace	pgo		Namespace in which the metrics deployments with be run.
	namespace	pgo		Set to a comma delimited string of all the namespaces Operator will manage.
	namespace_mode	dynamic		Determines which namespace permissions are assigned to the PostgreSQL Operator using a ClusterRole. Options: dynamic, readonly, and disabled
	pgbadgerport	10000	Required	Set to configure the default port used to connect to pgbadger.
	pgo_add_os_ca_store	false	Required	When true, includes system default certificate authorities.
	pgo_admin_password	examplepassword	Required	Configures the pgo administrator password.
	pgo_admin_perms	*	Required	Sets the access control rules provided by the PostgreSQL Operator RBAC resources for the PostgreSQL Operator administrative account that is created by this installer. Defaults to allowing all of the permissions, which is represented with the *
	pgo_admin_role_name	pgoadmin	Required	Sets the name of the PostgreSQL Operator role that is utilized for administrative operations performed by the PostgreSQL Operator.
	pgo_admin_username	admin	Required	Configures the pgo administrator username.
	pgo_apiserver_port	8443		Set to configure the port used by the Crunchy PostgreSQL Operator apiserver.
	pgo_apiserver_url	https://postgres-operator		Sets the pgo_apiserver_url for the pgo-client deployment.
	pgo_client_cert_secret	pgo.tls		Sets the secret that the pgo-client will use when connecting to the PostgreSQL Operator.
	pgo_client_container_install	false		Run the pgo-client deployment with the PostgreSQL Operator.
	pgo_client_install	true		Enable to download the pgo client binary as part of the Ansible install
	pgo_client_version	{{< param operatorVersion >}}	Required	
	pgo_cluster_admin	false	Required	Determines whether or not the cluster-admin role is assigned to the PGO service account. Must be true to enable PGO namespace & role creation when installing in OpenShift.
	pgo_disable_eventing	false		Set to configure whether or not eventing should be enabled for the Crunchy PostgreSQL Operator installation.
	pgo_disable_tls	false		Set to configure whether or not TLS should be enabled for the Crunchy PostgreSQL Operator apiserver.
	pgo_image_prefix	registry.developers.crunchydata.com/crunchydata	Required	Configures the image prefix used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc).
	pgo_image_pull_secret			Name of a Secret containing credentials for container image registries.
	pgo_image_pull_secret_manifest			Provide a path to the Secret manifest to be installed in each namespace. (optional)
	pgo_image_tag	{{< param centosBase >}}-{{< param operatorVersion >}}	Required	Configures the image tag used when creating containers for the Crunchy PostgreSQL Operator (apiserver, operator, scheduler..etc)
	pgo_installation_name	devtest	Required	The name of the PGO installation.
	pgo_noauth_routes			Configures URL routes with mTLS and HTTP BasicAuth disabled.
	pgo_operator_namespace	pgo	Required	Set to configure the namespace where Operator will be deployed.
	pgo_tls_ca_store			Set to add additional Certificate Authorities for Operator to trust (PEM-encoded file).
	pgo_tls_no_verify	false		Set to configure Operator to verify TLS certificates.
	prometheus_install	false		Set to true to install Crunchy Grafana to visualize metrics.
	prometheus_storage_access_mode	ReadWriteOnce		Set to the access mode used by the configured storage class for Prometheus persistent volumes.
	prometheus_storage_class_name	fast		Set to the name of the storage class used when creating Prometheus persistent volumes.
	prometheus_supplemental_groups	65534		Set to configure any supplemental groups that should be added to security contexts for Prometheus.
	prometheus_volume_size	1G		Set to the size of persistent volume to create for Prometheus.
	reconcile_rbac	true		Determines whether or not the PostgreSQL Operator will granted the permissions needed to reconcile RBAC within targeted namespaces.
	scheduler_timeout	3600	Required	Set to a value in seconds to configure the pgo-scheduler timeout threshold when waiting for schedules to complete.
	service_type	ClusterIP		Set to configure the type of Kubernetes service provisioned on all newly created clusters.
	sync_replication	false		If set to true will automatically enable synchronous replication in new PostgreSQL clusters.


Storage Settings
The store configuration options defined in this section can be used to specify the storage configurations that are used by the PostgreSQL Operator.

Storage Configuration Options
Kubernetes and OpenShift offer support for a wide variety of different storage types and we provide suggested configurations for different environments. These storage types can be modified or removed as needed, while additional storage configurations can also be added to meet the specific storage requirements for your PostgreSQL clusters.
The following storage variables are utilized to add or modify operator storage configurations in the with the installer:
	Name	Required	Description
	storage<ID>_name	Yes	Set to specify a name for the storage configuration.
	storage<ID>_access_mode	Yes	Set to configure the access mode of the volumes created when using this storage definition.
	storage<ID>_size	Yes	Set to configure the size of the volumes created when using this storage definition.
	storage<ID>_class	Required when using the dynamic storage type	Set to configure the storage class name used when creating dynamic volumes.
	storage<ID>_supplemental_groups	Required when using NFS storage	Set to configure any supplemental groups that should be added to security contexts on newly created clusters.
	storage<ID>_type	Yes	Set to either create or dynamic to configure the operator to create persistent volumes or have them created dynamically by a storage class.

The ID portion of storage prefix for each variable name above should be an integer that is used to group the various storage variables into a single storage configuration.
Example Storage Configuration
storage3_name: 'nfsstorage'
storage3_access_mode: 'ReadWriteMany'
storage3_size: '1G'
storage3_type: 'create'
storage3_supplemental_groups: 65534
As this example storage configuration shows, integer 3 is used as the ID for each of the storage variables, which together form a single storage configuration called nfsstorage. This approach allows different storage configurations to be created by defining the proper storage variables with a unique ID for each required storage configuration.

PostgreSQL Cluster Storage Defaults
You can specify the default storage to use for PostgreSQL, pgBackRest, and other elements that require storage that can outlast the lifetime of a Pod. While the PostgreSQL Operator defaults to using hostpathstorage to work with environments that are typically used to test, we recommend using one of the other storage classes in production deployments.
	Name	Default	Required	Description
	backrest_storage	hostpathstorage	Required	Set the value of the storage configuration to use for the pgbackrest shared repository deployment created when a user specifies pgbackrest to be enabled on a cluster.
	backup_storage	hostpathstorage	Required	Set the value of the storage configuration to use for backups, including the storage for pgbackrest repo volumes.
	primary_storage	hostpathstorage	Required	Set to configure which storage definition to use when creating volumes used by PostgreSQL primaries on all newly created clusters.
	replica_storage	hostpathstorage	Required	Set to configure which storage definition to use when creating volumes used by PostgreSQL replicas on all newly created clusters.
	wal_storage			Set to configure which storage definition to use when creating volumes used for PostgreSQL Write-Ahead Log.

Example Defaults
backrest_storage: 'nfsstorage'
backup_storage: 'nfsstorage'
primary_storage: 'nfsstorage'
replica_storage: 'nfsstorage'
With the configuration shown above, the nfsstorage storage configuration would be used by default for the various containers created for a PG cluster (i.e. containers for the primary DB, replica DB's, backups and/or pgBackRest).


Considerations for Multi-Zone Cloud Environments
When using the Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consideration must be taken to ensure all pods and the volumes they require are scheduled and provisioned within the same zone. Specifically, being that a pod is unable mount a volume that is located in another zone, any volumes that are dynamically provisioned must be provisioned in a topology-aware manner according to the specific scheduling requirements for the pod. For instance, this means ensuring that the volume containing the database files for the primary database in a new PostgreSQL cluster is provisioned in the same zone as the node containing the PostgreSQL primary pod that will be using it.

Default Storage Configuration Types
Host Path Storage
	Name	Value
	storage1_name	hostpathstorage
	storage1_access_mode	ReadWriteMany
	storage1_size	1G
	storage1_type	create


Replica Storage
	Name	Value
	storage2_name	replicastorage
	storage2_access_mode	ReadWriteMany
	storage2_size	1G
	storage2_type	create


NFS Storage
	Name	Value
	storage3_name	nfsstorage
	storage3_access_mode	ReadWriteMany
	storage3_size	1G
	storage3_type	create
	storage3_supplemental_groups	65534


NFS Storage Red
	Name	Value
	storage4_name	nfsstoragered
	storage4_access_mode	ReadWriteMany
	storage4_size	1G
	storage4_match_labels	crunchyzone=red
	storage4_type	create
	storage4_supplemental_groups	65534


StorageOS
	Name	Value
	storage5_name	storageos
	storage5_access_mode	ReadWriteOnce
	storage5_size	5Gi
	storage5_type	dynamic
	storage5_class	fast


Primary Site
	Name	Value
	storage6_name	primarysite
	storage6_access_mode	ReadWriteOnce
	storage6_size	4G
	storage6_type	dynamic
	storage6_class	primarysite


Alternate Site
	Name	Value
	storage7_name	alternatesite
	storage7_access_mode	ReadWriteOnce
	storage7_size	4G
	storage7_type	dynamic
	storage7_class	alternatesite


GCE
	Name	Value
	storage8_name	gce
	storage8_access_mode	ReadWriteOnce
	storage8_size	300M
	storage8_type	dynamic
	storage8_class	standard


Rook
	Name	Value
	storage9_name	rook
	storage9_access_mode	ReadWriteOnce
	storage9_size	1Gi
	storage9_type	dynamic
	storage9_class	rook-ceph-block




Pod Anti-affinity Settings
This will set the default pod anti-affinity for the deployed PostgreSQL clusters. Pod Anti-Affinity is set to determine where the PostgreSQL Pods are deployed relative to each other There are three levels:
	required: Pods must be scheduled to different Nodes. If a Pod cannot be scheduled to a different Node from the other Pods in the anti-affinity group, then it will not be scheduled.
	preferred (default): Pods should be scheduled to different Nodes. There is a chance that two Pods in the same anti-affinity group could be scheduled to the same node
	disabled: Pods do not have any anti-affinity rules

The POD_ANTI_AFFINITY label sets the Pod anti-affinity for all of the Pods that are managed by the Operator in a PostgreSQL cluster. In addition to the PostgreSQL Pods, this also includes the pgBackRest repository and any pgBouncer pods. By default, the pgBackRest and pgBouncer pods inherit the value of POD_ANTI_AFFINITY, but one can override the default by setting the POD_ANTI_AFFINITY_PGBACKREST and POD_ANTI_AFFINITY_PGBOUNCER variables for pgBackRest and pgBouncer respectively
	Name	Default	Required	Description
	pod_anti_affinity	preferred		This will set the default pod anti-affinity for the deployed PostgreSQL clusters.
	pod_anti_affinity_pgbackrest			This will set the default pod anti-affinity for the pgBackRest pods.
	pod_anti_affinity_pgbouncer			This will set the default pod anti-affinity for the pgBouncer pods.


Understanding pgo_operator_namespace & namespace
The Crunchy PostgreSQL Operator can be configured to be deployed and manage a single namespace or manage several namespaces. The following are examples of different types of deployment models:
Single Namespace
To deploy the Crunchy PostgreSQL Operator to work with a single namespace (in this example our namespace is named pgo), configure the following settings:
pgo_operator_namespace: 'pgo'
namespace: 'pgo'

Multiple Namespaces
To deploy the Crunchy PostgreSQL Operator to work with multiple namespaces (in this example our namespaces are named pgo, pgouser1 and pgouser2), configure the following settings:
pgo_operator_namespace: 'pgo'
namespace: 'pgouser1,pgouser2'


Deploying Multiple Operators
The 4.0 release of the Crunchy PostgreSQL Operator allows for multiple operator deployments in the same cluster.
To install the Crunchy PostgreSQL Operator to multiple namespaces, it's recommended to have an configuration file for each deployment of the operator.
For each operator deployment the following variables should be configured uniquely for each install.
For example, operator could be deployed twice by changing the pgo_operator_namespace and namespace for those deployments:
Install A would deploy operator to the pgo namespace and it would manage the pgo target namespace.
# Config A
pgo_operator_namespace: 'pgo'
namespace: 'pgo'
...
Install B would deploy operator to the pgo2 namespace and it would manage the pgo2 and pgo3 target namespaces.
# Config B
pgo_operator_namespace: 'pgo2'
namespace: 'pgo2,pgo3'
...
Each install of the operator will create a corresponding directory in $HOME/.pgo/<PGO NAMESPACE> which will contain the TLS and pgouser client credentials.
Though the years, we have built up several other methods for installing the PostgreSQL Operator. The next few sections provide some alternative ways of deploying the PostgreSQL Operator. Some of these methods are deprecated and may be removed in a future release.
A full installation of the Operator includes the following steps:
	create a project structure
	configure your environment variables
	configure Operator templates
	create security resources
	deploy the operator
	install pgo CLI (end user command tool)

Operator end-users are only required to install the pgo CLI client on their host and can skip the server-side installation steps. pgo CLI clients are provided for Linux, Mac, and Windows clients.
The Operator can be deployed by multiple methods including:
	default installation
	Ansible playbook installation
	Openshift Console installation using OLM


Default Installation - Create Project Structure
The Operator follows a golang project structure, you can create a structure as follows on your local Linux host:
mkdir -p $HOME/odev/src/github.com/crunchydata $HOME/odev/bin $HOME/odev/pkg
cd $HOME/odev/src/github.com/crunchydata
git clone https://github.com/CrunchyData/postgres-operator.git
cd postgres-operator
git checkout v{{< param operatorVersion >}}
This creates a directory structure under your HOME directory name odev and clones the current Operator version to that structure.

Default Installation - Configure Environment
Environment variables control aspects of the Operator installation. You can copy a sample set of Operator environment variables and aliases to your .bashrc file to work with.
cat $HOME/odev/src/github.com/crunchydata/postgres-operator/examples/envs.sh >> $HOME/.bashrc
source $HOME/.bashrc

Default Installation - Namespace Creation
Creating Kubernetes namespaces is typically something that only a privileged Kubernetes user can perform so log into your Kubernetes cluster as a user that has the necessary privileges.
The NAMESPACE environment variable is a comma separated list of namespaces that specify where the Operator will be provisioing PG clusters into, specifically, the namespaces the Operator is watching for Kubernetes events. This value is set as follows:
export NAMESPACE=pgouser1,pgouser2
This means namespaces called pgouser1 and pgouser2 will be created as part of the default installation.
In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an extra step during installation for the operator to function properly with watched namespaces. This limitation does not exist when using Kubernetes 1.12+. When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh script handles the limitation properly in both the bash and ansible installation.
However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution whose version is below 1.12. In Kubernetes version 1.12+ the pgo create namespace command works as expected.
The PGO_OPERATOR_NAMESPACE environment variable is the name of the namespace that the Operator will be installed into. For the installation example, this value is set as follows:
export PGO_OPERATOR_NAMESPACE=pgo
This means a pgo namespace will be created and the Operator will be deployed into that namespace.
Create the Operator namespaces using the Makefile target:
make setupnamespaces
Note: The setupnamespaces target only creates the namespace(s) specified in PGO_OPERATOR_NAMESPACE environment variable
The Design section of this documentation talks further about the use of namespaces within the Operator.

Default Installation - Configure Operator Templates
Within the Operator conf directory are several configuration files and templates used by the Operator to determine the various resources that it deploys on your Kubernetes cluster, specifically the PostgreSQL clusters it deploys.
When you install the Operator you must make choices as to what kind of storage the Operator has to work with for example. Storage varies with each installation. As an installer, you would modify these configuration templates used by the Operator to customize its behavior.
Note: when you want to make changes to these Operator templates and configuration files after your initial installation, you will need to re-deploy the Operator in order for it to pick up any future configuration changes.
Here are some common examples of configuration changes most installers would make:
Storage
Inside conf/postgres-operator/pgo.yaml there are various storage configurations defined.
PrimaryStorage: gce
WALStorage: gce
BackupStorage: gce
ReplicaStorage: gce
  gce:
    AccessMode:  ReadWriteOnce
    Size:  1G
    StorageType:  dynamic
    StorageClass:  standard
Listed above are the pgo.yaml sections related to storage choices. PrimaryStorage specifies the name of the storage configuration used for PostgreSQL primary database volumes to be provisioned. In the example above, a NFS storage configuration is picked. That same storage configuration is selected for the other volumes that the Operator will create.
This sort of configuration allows for a PostgreSQL primary and replica to use different storage if you want. Other storage settings like AccessMode, Size, StorageType, and StorageClass further define the storage configuration. Currently, NFS, HostPath, and Storage Classes are supported in the configuration.
As part of the Operator installation, you will need to adjust these storage settings to suit your deployment requirements. For users wanting to try out the Operator on Google Kubernetes Engine you would make the following change to the storage configuration in pgo.yaml:
For NFS Storage, it is assumed that there are sufficient Persistent Volumes (PV) created for the Operator to use when it creates Persistent Volume Claims (PVC). The creation of Persistent Volumes is something a Kubernetes cluster-admin user would typically provide before installing the Operator. There is an example script which can be used to create NFS Persistent Volumes located here:
./pv/create-nfs-pv.sh
That script looks for the IP address of an NFS server using the environment variable PGO_NFS_IP you would set in your .bashrc environment.
A similar script is provided for HostPath persistent volume creation if you wanted to use HostPath for testing:
./pv/create-pv.sh
Adjust the above PV creation scripts to suit your local requirements, the purpose of these scripts are solely to produce a test set of Volume to test the Operator.
Other settings in pgo.yaml are described in the pgo.yaml Configuration section of the documentation.


Operator Security
The Operator implements its own RBAC (Role Based Access Controls) for authenticating Operator users access to the Operator REST API.
A default admin user is created when the operator is deployed. Create a .pgouser in your home directory and insert the text from below:
admin:examplepassword
The format of the .pgouser client file is:
<username>:<password>
To create a unique administrator user on deployment of the operator edit this file and update the .pgouser file accordingly:
$PGOROOT/deploy/install-bootstrap-creds.sh
After installation users can create optional Operator users as follows:
pgo create pgouser someuser --pgouser-namespaces="pgouser1,pgouser2" --pgouser-password=somepassword --pgouser-roles="somerole,someotherrole"
Note, you can also store the pgouser file in alternate locations, see the Security documentation for details.
Operator security is discussed in the Security section Security of the documentation.
Adjust these settings to meet your local requirements.

Default Installation - Create Kubernetes RBAC Controls
The Operator installation requires Kubernetes administrators to create Resources required by the Operator. These resources are only allowed to be created by a cluster-admin user. To install on Google Cloud, you will need a user account with cluster-admin privileges. If you own the GKE cluster you are installing on, you can add cluster-admin role to your account as follows:
kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user $(gcloud config get-value account)
Specifically, Custom Resource Definitions for the Operator, and Service Accounts used by the Operator are created which require cluster permissions.
Tor create the Kubernetes RBAC used by the Operator, run the following as a cluster-admin Kubernetes user:
make installrbac
This set of Resources is created a single time unless a new Operator release requires these Resources to be recreated. Note that when you run make installrbac the set of keys used by the Operator REST API and also the pgbackrest ssh keys are generated.
Verify the Operator Custom Resource Definitions are created as follows:
kubectl get crd
You should see the pgclusters CRD among the listed CRD resource types.
See the Security documentation for a description of the various RBAC resources created and used by the Operator.

Default Installation - Deploy the Operator
At this point, you as a normal Kubernetes user should be able to deploy the Operator. To do this, run the following Makefile target:
make deployoperator
This will cause any existing Operator to be removed first, then the configuration to be bundled into a ConfigMap, then the Operator Deployment to be created.
This will create a postgres-operator Deployment and a postgres-operator Service.Operator administrators needing to make changes to the Operator configuration would run this make target to pick up any changes to pgo.yaml, pgo users/roles, or the Operator templates.

Default Installation - Completely Cleaning Up
You can completely remove all the namespaces you have previously created using the default installation by running the following:
make cleannamespaces
This will permanently delete each namespace the Operator installation created previously.

pgo CLI Installation
Most users will work with the Operator using the pgo CLI tool. That tool is downloaded from the GitHub Releases page for the Operator (https://github.com/crunchydata/postgres-operator/releases). Crunchy Enterprise Customer can download the pgo binaries from https://access.crunchydata.com/ on the downloads page.
The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation to work with a remote Operator.
If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref "Configuration/tls.md" >}}) for additional configuration information.
Prior to using pgo, users testing the Operator on a single host can specify the postgres-operator URL as follows:
    $ kubectl get service postgres-operator -n pgo
    NAME                CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
    postgres-operator   10.104.47.110   <none>        8443/TCP   7m
    $ export PGO_APISERVER_URL=https://10.104.47.110:8443
    pgo version
That URL address needs to be reachable from your local pgo client host. Your Kubernetes administrator will likely need to create a network route, ingress, or LoadBalancer service to expose the Operator REST API to applications outside of the Kubernetes cluster. Your Kubernetes administrator might also allow you to run the Kubernetes port-forward command, contact your administrator for details.
Next, the pgo client needs to reference the keys used to secure the Operator REST API:
    export PGO_CA_CERT=$PGOROOT/conf/postgres-operator/server.crt
    export PGO_CLIENT_CERT=$PGOROOT/conf/postgres-operator/server.crt
    export PGO_CLIENT_KEY=$PGOROOT/conf/postgres-operator/server.key
You can also specify these keys on the command line as follows:
pgo version --pgo-ca-cert=$PGOROOT/conf/postgres-operator/server.crt --pgo-client-cert=$PGOROOT/conf/postgres-operator/server.crt --pgo-client-key=$PGOROOT/conf/postgres-operator/server.key
if you are running the Operator on Google Cloud, you would open up another terminal and run kubectl port-forward ... to forward the Operator pod port 8443 to your localhost where you can access the Operator API from your local workstation.
At this point, you can test connectivity between your laptop or workstation and the Postgres Operator deployed on a Kubernetes cluster as follows:
pgo version
You should get back a valid response showing the client and server version numbers.

Verify the Installation
Now that you have deployed the Operator, you can verify that it is running correctly.
You should see a pod running that contains the Operator:
kubectl get pod --selector=name=postgres-operator -n pgo
NAME                                 READY     STATUS    RESTARTS   AGE
postgres-operator-79bf94c658-zczf6   3/3       Running   0          47s
That pod should show 3 of 3 containers in running state and that the operator is installed into the pgo namespace.
The sample environment script, examples/env.sh, if used creates some bash functions that you can use to view the Operator logs. This is useful in case you find one of the Operator containers not in a running status.
Using the pgo CLI, you can verify the versions of the client and server match as follows:
pgo version
This also tests connectivity between your pgo client host and the Operator server.






  
  
  
  The PostgreSQL Operator Helm Chart
  



The PostgreSQL Operator Helm Chart
Overview
The PostgreSQL Operator comes with a container called pgo-deployer which handles a variety of lifecycle actions for the PostgreSQL Operator, including:
	Installation
	Upgrading
	Uninstallation

After configuring the values.yaml file with you configuration options, the installer will be run using the helm command line tool and takes care of setting up all of the objects required to run the PostgreSQL Operator.
The postgres-operator Helm chart is available in the Helm directory in the PostgreSQL Operator repository.

Requirements
RBAC
The Helm chart will create the ServiceAccount, ClusterRole, and ClusterRoleBinding that are required to run the pgo-deployer. If you have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation), you can disable their creation using the rbac.create and serviceAccount.create variables in the values.yaml file. If these options are disabled, you must provide the name of your preconfigured ServiceAccount using serviceAccount.name.

Namespace
In order to install the PostgreSQL Operator using the Helm chart you will need to first create the namespace in which the pgo-deployer will be run. By default, it will run in the namespace that is provided to helm at the command line.
kubectl create namespace <namespace>
helm install postgres-operator -n <namespace> /path/to/chart_dir
The PostgreSQL Operator has the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces, including the ability to add and remove Namespaces that it watches. Doing so does require the PostgreSQL Operator to have elevated privileges, and as such, the PostgreSQL Operator comes with three "namespace modes" to select what level of privileges to provide. Detailed information about these "namespace modes" can be found in the Namespace(<{{< relref "/installation/postgres-operator.md" >}}>) section here.

Config Map
The pgo-deployer uses a Kubernetes ConfigMap to pass configuration options into the installer. The values in your values.yaml file will be used to populate the configuation options in the ConfigMap.

Configuration - values.yaml
The values.yaml file contains all of the configuration parametes for deploying the PostgreSQL Operator. The values.yaml file contains the defaults that should work in most Kubernetes environments, but it may require some customization.
For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{< relref "/installation/configuration.md">}}>)


Installation
Once you have configured the PostgreSQL Operator Installer to your specification, you can install the PostgreSQL Operator with the following command:
helm install <name> -n <namespace> /path/to/chart_dir
Take note of the name used when installing, this name will be used to upgrade and uninstall the PostgreSQL Operator.
Install the [pgo Client]({{< relref "/installation/pgo-client" >}})
To use the [pgo Client]({{< relref "/installation/pgo-client" >}}), there are a few additional steps to take in order to get it to work with your PostgreSQL Operator installation. For convenience, you can download and run the client-setup.sh script in your local environment:
curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/installers/kubectl/client-setup.sh > client-setup.sh
chmod +x client-setup.sh
./client-setup.sh
Running this script can cause existing pgo client binary, pgouser, client.crt, and client.key files to be overwritten.
The client-setup.sh script performs the following tasks:
	Sets $PGO_OPERATOR_NAMESPACE to pgo if it is unset. This is the default namespace that the PostgreSQL Operator is deployed to
	Checks for valid Operating Systems and determines which pgo binary to download
	Creates a directory in $HOME/.pgo/$PGO_OPERATOR_NAMESPACE (e.g. /home/hippo/.pgo/pgo)
	Downloads the pgo binary, saves it to in $HOME/.pgo/$PGO_OPERATOR_NAMESPACE, and sets it to be executable
	Pulls the TLS keypair from the PostgreSQL Operator pgo.tls Secret so that the pgo client can communicate with the PostgreSQL Operator. These are saved as client.crt and client.key in the $HOME/.pgo/$PGO_OPERATOR_NAMESPACE path.
	Pulls the pgouser credentials from the pgouser-admin secret and saves them in the format username:password in a file called pgouser
	client.crt, client.key, and pgouser are all set to be read/write by the file owner. All other permissions are removed.
	Sets the following environmental variables with the following values:

export PGOUSER=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser
export PGO_CA_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_KEY=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key
For convenience, after the script has finished, you can permanently add these environmental variables to your environment:
cat <<EOF >> ~/.bashrc
export PATH="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE:$PATH"
export PGOUSER="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser"
export PGO_CA_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_KEY="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key"
EOF
By default, the client-setup.sh script targets the user that is stored in the pgouser-admin secret in the pgo ($PGO_OPERATOR_NAMESPACE) Namespace. If you wish to use a different Secret, you can set the PGO_USER_ADMIN environmental variable.
For more detailed information about [installing the pgo client]({{< relref "/installation/pgo-client" >}}), please see [Installing the pgo client]({{< relref "/installation/pgo-client" >}}).

Verify the Installation
One way to verify the installation was successful is to execute the [pgo version]({{< relref "/pgo-client/reference/pgo_version.md" >}}) command.
In a new console window, run the following command to set up a port forward:
kubectl -n pgo port-forward svc/postgres-operator 8443:8443
In another console window, run the pgo version command:
pgo version
If successful, you should see output similar to this:
pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}


Metrics Chart
The PostgreSQL Operator metrics infrastructure can be installed using a separate Helm chart. This chart can install or uninstall the Grafana and Prometheus deployments that are part of the metrics stack. The metrics installer runs similarly to the postgres-operator chart by creating the ServiceAccount, RBAC resources, and ConfigMap that are needed to run the install job.
The metrics Helm chart is available in the Helm directory in the PostgreSQL Operator repository.
Installing
Ensure that you have installed the PostgreSQL Operator before installing metrics.
helm install metrics -n pgo /path/to/metrics/chart_dir

Uninstalling
helm install metrics -n pgo /path/to/metrics/chart_dir


Upgrade and Uninstall
Once install has be completed using Helm, it will also be used to upgrade and uninstall your PostgreSQL Operator.
The name and namespace in the following sections should match the options provided at install.
Upgrade
To make changes to your deployment of the PostgreSQL Operator you will use the helm upgrade command. Once the configuration changes have been made to you values.yaml file, you can run the following command to implement them in the deployment:
helm upgrade <name> -n <namespace> /path/to/updated_chart

Uninstall
To uninstall the PostgreSQL Operator you will use the helm uninstall command. This will uninstall the operator and clean up resources used by the pgo-deployer.
helm uninstall <name> -n <namespace>


Debugging
When the pgo-deployer job does not complete successfully, the resources that are created and normally cleaned up by Helm will be left in your Kubernetes cluster. This will allow you to use the failed job and its logs to debug the issue. The following command will show the logs for the pgo-deployer job:
kubectl logs -n <namespace> job.batch/pgo-deploy
You can also view the logs as the job is running by using the kubectl -f follow flag:
kubectl logs -n <namespace> job.batch/pgo-deploy -f
These logs will provide feedback if there are any misconfigurations in your install. Once you have finished debugging the failed job and fixed any configuration issues, you can take steps to re-run your install, upgrade, or uninstall. By running another command the resources from the failed install will be cleaned up so that a successfull install can run.






  
  
  
  Crunchy Data PostgreSQL Operator Playbooks
  



Crunchy Data PostgreSQL Operator Playbooks
The Crunchy Data PostgreSQL Operator Playbooks contain Ansible roles for installing and managing the [Crunchy Data PostgreSQL Operator]({{< relref "/installation/other/ansible/installing-operator.md" >}}).
Features
The playbooks provided allow users to:
	install PostgreSQL Operator on Kubernetes and OpenShift
	install PostgreSQL Operator from a Linux, Mac or Windows (Ubuntu subsystem) host
	generate TLS certificates required by the PostgreSQL Operator
	support a variety of deployment models


Resources
	Ansible
	Crunchy Data
	Crunchy Data PostgreSQL Operator Project







  
  
  
  Prerequisites
  
  



Prerequisites
The following is required prior to installing Crunchy PostgreSQL Operator using Ansible:
	postgres-operator playbooks source code for the target version
	Ansible 2.9.0+

Kubernetes Installs
	Kubernetes v1.11+
	Cluster admin privileges in Kubernetes
	kubectl configured to communicate with Kubernetes


OpenShift Installs
	OpenShift v3.09+
	Cluster admin privileges in OpenShift
	oc configured to communicate with OpenShift


Installing from a Windows Host
If the Crunchy PostgreSQL Operator is being installed from a Windows host the following are required:
	Windows Subsystem for Linux (WSL)
	Ubuntu for Windows


Permissions
The installation of the Crunchy PostgreSQL Operator requires elevated privileges, as the following objects need to be created:
	Custom Resource Definitions
	Cluster RBAC for using one of the multi-namespace modes
	Create required namespaces

In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an extra step during installation for the operator to function properly with watched namespaces. This limitation does not exist when using Kubernetes 1.12+. When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh script handles the limitation properly in both the bash and ansible installation.
However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution whose version is below 1.12. In Kubernetes version 1.12+ the pgo create namespace command works as expected.

Obtaining Operator Ansible Role
	Clone the postgres-operator project

GitHub Installation
All necessary files (inventory.yaml, values.yaml, main playbook and roles) can be found in the installers/ansible directory in the source code.


Configuring the Inventory File
The inventory.yaml file included with the PostgreSQL Operator Playbooks allows installers to configure how Ansible will connect to your Kubernetes cluster. This file should contain the following connection variables:
You will have to uncomment out either the kubernetes or openshift variables if you are being using them for your environment. Both sets of variables cannot be used at the same time. The unused variables should be left commented out or removed.
	Name	Default	Required	Description
	kubernetes_context		Required, if deploying to Kubernetes	When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
	openshift_host		Required, if deploying to OpenShift	When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
	openshift_password		Required, if deploying to OpenShift	When deploying to OpenShift, set to configure the password used for login.
	openshift_skip_tls_verify		Required, if deploying to OpenShift	When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
	openshift_token		Required, if deploying to OpenShift	When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
	openshift_user		Required, if deploying to OpenShift	When deploying to OpenShift, set to configure the username used for login.

To retrieve the kubernetes_context value for Kubernetes installs, run the following command:
kubectl config current-context

Configuring - values.yaml
The values.yaml file contains all of the configuration parameters for deploying the PostgreSQL Operator. The example file contains defaults that should work in most Kubernetes environments, but it may require some customization.
For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{< relref "/installation/configuration.md">}}>)

Deploying Grafana and Prometheus
PostgreSQL clusters created by the operator can be configured to create additional containers for collecting metrics.
These metrics are very useful for understanding the overall health and performance of PostgreSQL database deployments over time. The collectors included by the operator are:
	PostgreSQL Exporter - PostgreSQL metrics

The operator, however, does not install the necessary timeseries database (Prometheus) for storing the collected metrics or the front end visualization (Grafana) of those metrics.
Included in these playbooks are roles for deploying Granfana and/or Prometheus. See the values.yaml file for options to install the metrics stack.
At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes.

Installing Ansible on Linux, macOS or Windows Ubuntu Subsystem
To install Ansible on Linux or macOS, see the official documentation provided by Ansible.

Install Google Cloud SDK (Optional)
If Crunchy PostgreSQL Operator is going to be installed in a Google Kubernetes Environment the Google Cloud SDK is required.
To install the Google Cloud SDK on Linux or macOS, see the official Google Cloud documentation.
When installing the Google Cloud SDK on the Windows Ubuntu Subsystem, run the following commands to install:
wget https://sdk.cloud.google.com --output-document=/tmp/install-gsdk.sh
# Review the /tmp/install-gsdk.sh prior to running
chmod +x /tmp/install-gsdk.sh
/tmp/install-gsdk.sh






  
  
  
  Installing
  
  



Installing
The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now install the PostgreSQL Operator.
The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks are stored. See the installers/ansible directory in the Crunchy PostgreSQL Operator project for the inventory file, values file, main playbook and ansible roles.
Installing on Linux
On a Linux host with Ansible installed we can run the following command to install the PostgreSQL Operator:
ansible-playbook -i /path/to/inventory.yaml --tags=install --ask-become-pass main.yml

Installing on macOS
On a macOS host with Ansible installed we can run the following command to install the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory.yaml --tags=install --ask-become-pass main.yml

Installing on Windows Ubuntu Subsystem
On a Windows host with an Ubuntu subsystem we can run the following commands to install the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory.yaml --tags=install --ask-become-pass main.yml

Verifying the Installation
This may take a few minutes to deploy. To check the status of the deployment run the following:
# Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

# OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Configure Environment Variables
After the Crunchy PostgreSQL Operator has successfully been installed we will need to configure local environment variables before using the pgo client.
If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref "Configuration/tls.md" >}}) for additional configuration information.
To configure the environment variables used by pgo run the following command:
Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to.
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE>/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE>/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF
Apply those changes to the current session by running:
source ~/.bashrc

Verify pgo Connection
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
# If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

# If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443
You can subsitute pgo in the above examples with the namespace that you deployed the PostgreSQL Operator into.
On a separate terminal verify the PostgreSQL client can communicate with the Crunchy PostgreSQL Operator:
pgo version
If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been installed successfully.
[ansible-prerequisites]: {{< relref "/installation/other/ansible/prerequisites.md" >}}






  
  
  
  Installing
  
  



Installing
PostgreSQL clusters created by the Crunchy PostgreSQL Operator can optionally be configured to serve performance metrics via Prometheus Exporters. The metric exporters included in the database pod serve realtime metrics for the database container. In order to store and view this data, Grafana and Prometheus are required. The Crunchy PostgreSQL Operator does not create this infrastructure, however, they can be installed using the provided Ansible roles.
Prerequisites
The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now install the PostgreSQL Operator.
At a minimum, the following variables should be configured to install the metrics infrastructure:
	Name	Default	Description
	ccp_image_prefix	crunchydata	Configures the image prefix used when creating containers from Crunchy Container Suite.
	ccp_image_tag		Configures the image tag (version) used when creating containers from Crunchy Container Suite.
	disable_fsgroup	false	Set to true for deployments where you do not want to have the default fsGroup set. The typical usage is in deployment environments that have a restricted Security Context Constraints.
	grafana_admin_username	admin	Set to configure the login username for the Grafana administrator.
	grafana_admin_password		Set to configure the login password for the Grafana administrator.
	grafana_install	false	Set to true to install Crunchy Grafana to visualize metrics.
	grafana_storage_access_mode		Set to the access mode used by the configured storage class for Grafana persistent volumes.
	grafana_storage_class_name		Set to the name of the storage class used when creating Grafana persistent volumes.
	grafana_volume_size		Set to the size of persistent volume to create for Grafana.
	kubernetes_context		When deploying to Kubernetes, set to configure the context name of the kubeconfig to be used for authentication.
	metrics	false	Set to true enable performance metrics on all newly created clusters. This can be disabled by the client.
	metrics_namespace	pgo	Configures the target namespace when deploying Grafana and/or Prometheus
	openshift_host		When deploying to OpenShift, set to configure the hostname of the OpenShift cluster to connect to.
	openshift_password		When deploying to OpenShift, set to configure the password used for login.
	openshift_skip_tls_verify		When deploying to Openshift, set to ignore the integrity of TLS certificates for the OpenShift cluster.
	openshift_token		When deploying to OpenShift, set to configure the token used for login (when not using username/password authentication).
	openshift_user		When deploying to OpenShift, set to configure the username used for login.
	prometheus_install	false	Set to true to install Crunchy Prometheus timeseries database.
	prometheus_storage_access_mode		Set to the access mode used by the configured storage class for Prometheus persistent volumes.
	prometheus_storage_class_name		Set to the name of the storage class used when creating Prometheus persistent volumes.

Administrators can choose to install Grafana, Prometheus or both by configuring the grafana_install and prometheus_install variables in the values.yaml file.
The following commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks are located. See the ansible directory in the Crunchy PostgreSQL Operator project for the inventory file, values file, main playbook and ansible roles.
At this time the Crunchy PostgreSQL Operator Playbooks only support storage classes. For more information on storage classes see the official Kubernetes documentation.

Installing on Linux
On a Linux host with Ansible installed we can run the following command to install the Metrics stack:
ansible-playbook -i /path/to/inventory.yaml --tags=install-metrics main.yml

Installing on macOS
On a macOS host with Ansible installed we can run the following command to install the Metrics stack:
ansible-playbook -i /path/to/inventory.yaml --tags=install-metrics main.yml

Installing on Windows
On a Windows host with the Ubuntu subsystem we can run the following commands to install the Metrics stack:
ansible-playbook -i /path/to/inventory.yaml --tags=install-metrics main.yml

Verifying the Installation
This may take a few minutes to deploy. To check the status of the deployment run the following:
# Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

# OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Verify Grafana
In a separate terminal we need to setup a port forward to the Crunchy Grafana deployment to ensure connection can be made outside of the cluster:
# If deployed to Kubernetes
kubectl port-forward -n <METRICS_NAMESPACE> svc/grafana 3000:3000

# If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/grafana 3000:3000
In a browser navigate to http://127.0.0.1:3000 to access the Grafana dashboard.
No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the following command:
pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>

Verify Prometheus
In a separate terminal we need to setup a port forward to the Crunchy Prometheus deployment to ensure connection can be made outside of the cluster:
# If deployed to Kubernetes
kubectl port-forward -n <METRICS_NAMESPACE> svc/prometheus  9090:9090

# If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/prometheus 9090:9090
In a browser navigate to http://127.0.0.1:9090 to access the Prometheus dashboard.
No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the following command:
pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>
[ansible-prerequisites]: {{< relref "/installation/other/ansible/prerequisites.md" >}}






  
  
  
  Updating
  
  



Updating
Updating the Crunchy PostgreSQL Operator is essential to the lifecycle management of the service. Using the update flag will:
	Update and redeploy the operator deployment
	Recreate configuration maps used by operator
	Remove any deprecated objects
	Allow administrators to change settings configured in the values.yaml
	Reinstall the pgo client if a new version is specified

The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now update the PostgreSQL Operator.
The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory in the Crunchy PostgreSQL Operator project for the inventory file, values file, main playbook and ansible roles.
Updating on Linux
On a Linux host with Ansible installed we can run the following command to update
the PostgreSQL Operator:
ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Updating on macOS
On a macOS host with Ansible installed we can run the following command to update
the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Updating on Windows Ubuntu Subsystem
On a Windows host with an Ubuntu subsystem we can run the following commands to update
the PostgreSQL Operator.
ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Verifying the Update
This may take a few minutes to deploy. To check the status of the deployment run the following:
# Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

# OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Configure Environment Variables
After the Crunchy PostgreSQL Operator has successfully been updated we will need to configure local environment variables before using the pgo client.
To configure the environment variables used by pgo run the following command:
Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to. Also, if TLS was disabled, or if the port was changed, update PGO_APISERVER_URL accordingly.
cat <<EOF >> ~/.bashrc
export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE>/pgouser"
export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE>/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'
EOF
Apply those changes to the current session by running:
source ~/.bashrc

Verify pgo Connection
In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside of the cluster:
# If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

# If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443
In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
On a separate terminal verify the PostgreSQL Operator client can communicate with the PostgreSQL Operator:
pgo version
If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been updated successfully.
[ansible-prerequisites]: {{< relref "/installation/other/ansible/prerequisites.md" >}}






  
  
  
  Uninstalling PostgreSQL Operator
  
  



Uninstalling PostgreSQL Operator
The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now uninstall the PostgreSQL Operator.
First, it is recommended to use the playbooks tagged with the same version of the PostgreSQL Operator currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:
ansible-playbook -i /path/to/inventory.yaml --tags=uninstall --ask-become-pass main.yml
Deleting pgo Client
If variable pgo_client_install is set to true in the values.yaml file, the pgo client will also be removed when uninstalling.
Otherwise, the pgo client can be manually uninstalled by running the following command:
rm /usr/local/bin/pgo
[ansible-prerequisites]: {{< relref "/installation/other/ansible/prerequisites.md" >}}






  
  
  
  Uninstalling the Metrics Stack
  
  



Uninstalling the Metrics Stack
The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now uninstall the PostgreSQL Operator Metrics Infrastructure.
First, it is recommended to use the playbooks tagged with the same version of the Metrics stack currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:
ansible-playbook -i /path/to/inventory.yaml --tags=uninstall-metrics main.yml
[ansible-prerequisites]: {{< relref "/installation/other/ansible/prerequisites.md" >}}
The PostgreSQL Operator Client, aka pgo, is the most convenient way to interact with the PostgreSQL Operator. pgo provides many convenience methods for creating, managing, and deleting PostgreSQL clusters through a series of simple commands. The pgo client interfaces with the API that is provided by the PostgreSQL Operator and can leverage the RBAC and TLS systems that are provided by the PostgreSQL Operator
[image: Architecture]Architecture

The pgo client is available for Linux, macOS, and Windows, as well as a pgo-client container that can be deployed alongside the PostgreSQL Operator.
You can download pgo from the releases page, or have it installed in your preferred binary format or as a container in your Kubernetes cluster using the Ansible Installer.
General Notes on Using the pgo Client
Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool when managing PostgreSQL deployments across many Kubernetes namespaces, this can become onerous for the intents of this guide.
If you install the PostgreSQL Operator using the quickstart guide, you will install the PostgreSQL Operator to a namespace called pgo. We can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global pgo Client reference,
For convenience, we will use the pgo namespace in the examples below. For even more convenience, we recommend setting pgo to be the value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:
export PGO_NAMESPACE=pgo
If you do not wish to set this environmental variable, or are in an environment where you are unable to use environmental variables, you will have to use the --namespace (or -n) flag for most commands, e.g.
pgo version -n pgo

Syntax
The syntax for pgo is similar to what you would expect from using the kubectl or oc binaries. This is by design: one of the goals of the PostgreSQL Operator project is to allow for seamless management of PostgreSQL clusters in Kubernetes-enabled environments, and by following the command patterns that users are familiar with, the learning curve is that much easier!
To get an overview of everything that is available at the top-level of pgo, execute:
pgo
The syntax for the commands that pgo executes typicall follow this format:
pgo [command] ([TYPE] [NAME]) [flags]
Where command is a verb like:
	create
	show
	delete

And type is a resource type like:
	cluster
	backup
	user

And name is the name of the resource type like:
	hacluster
	gisdba

There are several global flags that are available to every pgo command as well as flags that are specific to particular commands. To get a list of all the options and flags available to a command, you can use the --help flag. For example, to see all of the options available to the pgo create cluster command, you can run the following:
pgo create cluster --help

Command Overview
The following table provides an overview of the commands that the pgo client provides:
	Operation	Syntax	Description
	apply	pgo apply mypolicy --selector=name=mycluster	Apply a SQL policy on a Postgres cluster(s) that have a label matching service-name=mycluster
	backup	pgo backup mycluster	Perform a backup on a Postgres cluster(s)
	cat	pgo cat mycluster filepath	Perform a Linux cat command on the cluster.
	clone	pgo clone oldcluster newcluster	DEPRECATED: Copies the primary database of an existing cluster to a new cluster. For a more robust method to copy data, use pgo create cluster newcluster --restore-from oldcluster
	create	pgo create cluster mycluster	Create an Operator resource type (e.g. cluster, policy, schedule, user, namespace, pgouser, pgorole)
	delete	pgo delete cluster mycluster	Delete an Operator resource type (e.g. cluster, policy, user, schedule, namespace, pgouser, pgorole)
	df	pgo df mycluster	Display the disk status/capacity of a Postgres cluster.
	failover	pgo failover mycluster	Perform a manual failover of a Postgres cluster.
	help	pgo help	Display general pgo help information.
	label	pgo label mycluster --label=environment=prod	Create a metadata label for a Postgres cluster(s).
	load	pgo load --load-config=load.json --selector=name=mycluster	Perform a data load into a Postgres cluster(s).
	reload	pgo reload mycluster	Perform a pg_ctl reload command on a Postgres cluster(s).
	restore	pgo restore mycluster	Perform a pgbackrest or pgdump restore on a Postgres cluster.
	scale	pgo scale mycluster	Create a Postgres replica(s) for a given Postgres cluster.
	scaledown	pgo scaledown mycluster --query	Delete a replica from a Postgres cluster.
	show	pgo show cluster mycluster	Display Operator resource information (e.g. cluster, user, policy, schedule, namespace, pgouser, pgorole).
	status	pgo status	Display Operator status.
	test	pgo test mycluster	Perform a SQL test on a Postgres cluster(s).
	update	pgo update cluster mycluster --disable-autofail	Update a Postgres cluster(s), pgouser, pgorole, user, or namespace.
	upgrade	pgo upgrade mycluster	Perform a minor upgrade to a Postgres cluster(s).
	version	pgo version	Display Operator version information.

Global Flags
There are several global flags available to the pgo client.
NOTE: Flags take precedence over environmental variables.
	Flag	Description
	--apiserver-url	The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client.
	--debug	Enable additional output for debugging.
	--disable-tls	Disable TLS authentication to the Postgres Operator.
	--exclude-os-trust	Exclude CA certs from OS default trust store.
	-h, --help	Print out help for a command command.
	-n, --namespace	The namespace to execute the pgo command in. This is required for most pgo commands.
	--pgo-ca-cert	The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
	--pgo-client-cert	The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
	--pgo-client-key	The client key file path for authenticating to the PostgreSQL Operator apiserver.


Global Environment Variables
There are several environmental variables that can be used with the pgo client.
NOTE Flags take precedence over environmental variables.
	Name	Description
	EXCLUDE_OS_TRUST	Exclude CA certs from OS default trust store.
	GENERATE_BASH_COMPLETION	If set, will allow pgo to leverage "bash completion" to help complete commands as they are typed.
	PGO_APISERVER_URL	The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client.
	PGO_CA_CERT	The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
	PGO_CLIENT_CERT	The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
	PGO_CLIENT_KEY	The client key file path for authenticating to the PostgreSQL Operator apiserver.
	PGO_NAMESPACE	The namespace to execute the pgo command in. This is required for most pgo commands.
	PGOUSER	The path to the pgouser file. Will be ignored if either PGOUSERNAME or PGOUSERPASS are set.
	PGOUSERNAME	The username (role) used for auth on the operator apiserver. Requires that PGOUSERPASS be set.
	PGOUSERPASS	The password for used for auth on the operator apiserver. Requires that PGOUSERNAME be set.



Additional Information
How can you use the pgo client to manage your day-to-day PostgreSQL operations? The next section covers many of the common types of tasks that one needs to perform when managing production PostgreSQL clusters. Beyond that is the full reference for all the available commands and flags for the pgo client.
	Common pgo Client Tasks
	pgo Client Reference

While the full pgo client reference will tell you everything you need to know about how to use pgo, it may be helpful to see several examples on how to conduct "day-in-the-life" tasks for administrating PostgreSQL cluster with the PostgreSQL Operator.
The below guide covers many of the common operations that are required when managing PostgreSQL clusters. The guide is broken up by different administrative topics, such as provisioning, high-availability, etc.

Setup Before Running the Examples
Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool when managing PostgreSQL deployxments across many Kubernetes namespaces, this can become onerous for the intents of this guide.
If you install the PostgreSQL Operator using the quickstart guide, you will install the PostgreSQL Operator to a namespace called pgo. We can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global pgo Client reference,
For convenience, we will use the pgo namespace in the examples below. For even more convenience, we recommend setting pgo to be the value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:
export PGO_NAMESPACE=pgo
If you do not wish to set this environmental variable, or are in an environment where you are unable to use environmental variables, you will have to use the --namespace (or -n) flag for most commands, e.g.
pgo version -n pgo
JSON Output
The default for the pgo client commands is to output their results in a readable format. However, there are times where it may be helpful to you to have the format output in a machine parseable format like JSON.
Several commands support the -o/--output flags that delivers the results of the command in the specified output. Presently, the only output that is supported is json.
As an example of using this feature, if you wanted to get the results of the pgo test command in JSON, you could run the following:
pgo test hacluster -o json


PostgreSQL Operator System Basics
To get started, it's first important to understand the basics of working with the PostgreSQL Operator itself. You should know how to test if the PostgreSQL Operator is working, check the overall status of the PostgreSQL Operator, view the current configuration that the PostgreSQL Operator us using, and seeing which Kubernetes Namespaces the PostgreSQL Operator has access to.
While this may not be as fun as creating high-availability PostgreSQL clusters, these commands will help you to perform basic troubleshooting tasks in your environment.
Checking Connectivity to the PostgreSQL Operator
A common task when working with the PostgreSQL Operator is to check connectivity to the PostgreSQL Operator. This can be accomplish with the pgo version command:
pgo version
which, if working, will yield results similar to:
pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Inspecting the PostgreSQL Operator Configuration
The pgo show config command allows you to view the current configuration that the PostgreSQL Operator is using. This can be helpful for troubleshooting issues such as which PostgreSQL images are being deployed by default, which storage classes are being used, etc.
You can run the pgo show config command by running:
pgo show config
which yields output similar to:
BasicAuth: ""
Cluster:
  CCPImagePrefix: crunchydata
  CCPImageTag: {{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}}
  Policies: ""
  Metrics: false
  Badger: false
  Port: "5432"
  PGBadgerPort: "10000"
  ExporterPort: "9187"
  User: testuser
  Database: userdb
  PasswordAgeDays: "60"
  PasswordLength: "8"
  Replicas: "0"
  ServiceType: ClusterIP
  BackrestPort: 2022
  Backrest: true
  BackrestS3Bucket: ""
  BackrestS3Endpoint: ""
  BackrestS3Region: ""
  BackrestS3URIStyle: ""
  BackrestS3VerifyTLS: true
  DisableAutofail: false
  PgmonitorPassword: ""
  EnableCrunchyadm: false
  DisableReplicaStartFailReinit: false
  PodAntiAffinity: preferred
  SyncReplication: false
Pgo:
  Audit: false
  PGOImagePrefix: crunchydata
  PGOImageTag: {{< param centosBase >}}-{{< param operatorVersion >}}
PrimaryStorage: nfsstorage
BackupStorage: nfsstorage
ReplicaStorage: nfsstorage
BackrestStorage: nfsstorage
Storage:
  nfsstorage:
    AccessMode: ReadWriteMany
    Size: 1G
    StorageType: create
    StorageClass: ""
    SupplementalGroups: "65534"
    MatchLabels: ""

Viewing PostgreSQL Operator Key Metrics
The pgo status command provides a generalized statistical view of the overall resource consumption of the PostgreSQL Operator. These stats include:
	The total number of PostgreSQL instances
	The total number of Persistent Volume Claims (PVC) that are allocated, along with the total amount of disk the claims specify
	The types of container images that are deployed, along with how many are deployed
	The nodes that are used by the PostgreSQL Operator

and more
You can use the pgo status command by running:
pgo status
which yields output similar to:
Databases:               8
Claims:                  8
Total Volume Size:       8Gi       

Database Images:
                         4  crunchydata/crunchy-postgres-ha:{{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}}
                         4  crunchydata/pgo-backrest-repo:{{< param centosBase >}}-{{< param operatorVersion >}}
                         8  crunchydata/pgo-backrest:{{< param centosBase >}}-{{< param operatorVersion >}}

Databases Not Ready:

Labels (count > 1): [count] [label]
    [8] [vendor=crunchydata]
    [4] [pgo-backrest-repo=true]
    [4] [pgouser=admin]
    [4] [pgo-pg-database=true]
    [4] [crunchy_collect=false]
    [4] [pg-pod-anti-affinity=]
    [4] [pgo-version={{< param operatorVersion >}}]
    [4] [archive-timeout=60]
    [2] [pg-cluster=hacluster]

Viewing PostgreSQL Operator Managed Namespaces
The PostgreSQL Operator has the ability to manage PostgreSQL clusters across Kubernetes Namespaces. During the course of Operations, it can be helpful to know which namespaces the PostgreSQL Operator can use for deploying PostgreSQL clusters.
You can view which namespaces the PostgreSQL Operator can utilize by using the pgo show namespace command. To list out the namespaces that the PostgreSQL Operator has access to, you can run the following command:
pgo show namespace --all
which yields output similar to:
pgo username: admin
namespace                useraccess          installaccess       
default                  accessible          no access           
kube-node-lease          accessible          no access           
kube-public              accessible          no access           
kube-system              accessible          no access           
pgo                      accessible          no access           
pgouser1                 accessible          accessible          
pgouser2                 accessible          accessible          
somethingelse            no access           no access   
NOTE: Based on your deployment, your Kubernetes administrator may restrict access to the multi-namespace feature of the PostgreSQL Operator. In this case, you do not need to worry about managing your namespaces and as such do not need to use this command, but we recommend setting the PGO_NAMESPACE variable as described in the general notes on this page.


Provisioning: Create, View, Destroy
Creating a PostgreSQL Cluster
You can create a cluster using the pgo create cluster command:
pgo create cluster hacluster
which if successfully, will yield output similar to this:
created Pgcluster hacluster
workflow id ae714d12-f5d0-4fa9-910f-21944b41dec8
Create a PostgreSQL Cluster with Different PVC Sizes
You can also create a PostgreSQL cluster with an arbitrary PVC size using the pgo create cluster command. For example, if you want to create a PostgreSQL cluster with with a 128GB PVC, you can use the following command:
pgo create cluster hacluster --pvc-size=128Gi
The above command sets the PVC size for all PostgreSQL instances in the cluster, i.e. the primary and replicas.
This also extends to the size of the pgBackRest repository as well, if you are using the local Kubernetes cluster storage for your backup repository. To create a PostgreSQL cluster with a pgBackRest repository that uses a 1TB PVC, you can use the following command:
pgo create cluster hacluster --pgbackrest-pvc-size=1Ti

Specify CPU / Memory for a PostgreSQL Cluster
To specify the amount of CPU and memory to request for a PostgreSQL cluster, you can use the --cpu and --memory flags of the pgo create cluster command. Both of these values utilize the Kubernetes quantity format for specifying how to allocate resources.
For example, to create a PostgreSQL cluster that requests 4 CPU cores and has 16 gibibytes of memory, you can use the following command:
pgo create cluster hacluster --cpu=4 --memory=16Gi

Create a PostgreSQL Cluster with PostGIS
To create a PostgreSQL cluster that uses the geospatial extension PostGIS, you can execute the following command, updated with your desired image tag. In the example below, the cluster will use PostgreSQL {{< param postgresVersion >}} and PostGIS {{< param postgisVersion >}}:
pgo create cluster hagiscluster \
  --ccp-image=crunchy-postgres-gis-ha \
  --ccp-image-tag={{< param centosBase >}}-{{< param postgresVersion >}}-{{< param postgisVersion >}}-{{< param operatorVersion >}}

Create a PostgreSQL Cluster with a Tablespace
Tablespaces are a PostgreSQL feature that allows a user to select specific volumes to store data to, which is helpful in several types of scenarios. Often your workload does not require a tablespace, but the PostgreSQL Operator provides support for tablespaces throughout the lifecycle of a PostgreSQL cluster.
To create a PostgreSQL cluster that uses the tablespace feature with NFS storage, you can execute the following command:
pgo create cluster hactsluster --tablespace=name=ts1:storageconfig=nfsstorage
You can use your preferred storage engine instead of nfsstorage. For example, to create multiple tablespaces on GKE, you can execute the following command:
pgo create cluster hactsluster \
    --tablespace=name=ts1:storageconfig=gce \
    --tablespace=name=ts2:storageconfig=gce
Tablespaces are immediately available once the PostgreSQL cluster is provisioned. For example, to create a table using the tablespace ts1, you can run the following SQL on your PostgreSQL cluster:
CREATE TABLE sensor_data (
  id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
  sensor1 numeric,
  sensor2 numeric,
  sensor3 numeric,
  sensor4 numeric
)
TABLESPACE ts1;
You can also create tablespaces that have different sized PVCs from the ones defined in the storage specification. For instance, to create two tablespaces, one that uses a 10GiB PVC and one that uses a 20GiB PVC, you can execute the following command:
pgo create cluster hactsluster \
    --tablespace=name=ts1:storageconfig=gce:pvcsize=10Gi \
    --tablespace=name=ts2:storageconfig=gce:pvcsize=20Gi

Create a PostgreSQL Cluster Using a Backup from Another PostgreSQL Cluster
It is also possible to create a new PostgreSQL Cluster using a backup from another PostgreSQL cluster. To do so, simply specify the cluster containing the backup that you would like to utilize using the restore-from option:
pgo create cluster hacluster2 --restore-from=hacluster1
When using this approach, a pgbackrest restore will be performed using the pgBackRest repository for the restore-from cluster specified in order to populate the initial PGDATA directory for the new PostgreSQL cluster. By default, pgBackRest will restore to the latest backup available and replay all WAL. However, a restore-opts option is also available that allows the restore command to be further customized, e.g. to perform a point-in-time restore and/or restore from an S3 storage bucket:
pgo create cluster hacluster2 \
  --restore-from=hacluster1 \
  --restore-opts="--repo-type=s3 --type=time --target='2020-07-02 20:19:36.13557+00'"

Tracking a Newly Provisioned Cluster
A new PostgreSQL cluster can take a few moments to provision. You may have noticed that the pgo create cluster command returns something called a "workflow id". This workflow ID allows you to track the progress of your new PostgreSQL cluster while it is being provisioned using the pgo show workflow command:
pgo show workflow ae714d12-f5d0-4fa9-910f-21944b41dec8
which can yield output similar to:
parameter           value
---------           -----
pg-cluster          hacluster
task completed      2019-12-27T02:10:14Z
task submitted      2019-12-27T02:09:46Z
workflowid          ae714d12-f5d0-4fa9-910f-21944b41dec8


View PostgreSQL Cluster Details
To see details about your PostgreSQL cluster, you can use the pgo show cluster command. These details include elements such as:
	The version of PostgreSQL that the cluster is using
	The PostgreSQL instances that comprise the cluster
	The Pods assigned to the cluster for all of the associated components, including the nodes that the pods are assigned to
	The Persistent Volume Claims (PVC) that are being consumed by the cluster
	The Kubernetes Deployments associated with the cluster
	The Kubernetes Services associated with the cluster
	The Kubernetes Labels that are assigned to the PostgreSQL instances

and more.
You can view the details of the cluster by executing the following command:
pgo show cluster hacluster
which will yield output similar to:
cluster : hacluster (crunchy-postgres-ha:{{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}})
    pod : hacluster-6dc6cfcfb9-f9knq (Running) on node01 (1/1) (primary)
    pvc : hacluster
    resources : CPU Limit= Memory Limit=, CPU Request= Memory Request=
    storage : Primary=200M Replica=200M
    deployment : hacluster
    deployment : hacluster-backrest-shared-repo
    service : hacluster - ClusterIP (10.102.20.42)
    labels : pg-pod-anti-affinity= archive-timeout=60 crunchy-pgbadger=false crunchy_collect=false deployment-name=hacluster pg-cluster=hacluster crunchy-pgha-scope=hacluster autofail=true pgo-backrest=true pgo-version={{< param operatorVersion >}} current-primary=hacluster name=hacluster pgouser=admin workflowid=ae714d12-f5d0-4fa9-910f-21944b41dec8

Deleting a Cluster
You can delete a PostgreSQL cluster that is managed by the PostgreSQL Operator by executing the following command:
pgo delete cluster hacluster
This will remove the cluster from being managed by the PostgreSQL Operator, as well as delete the root data Persistent Volume Claim (PVC) and backup PVCs associated with the cluster.
If you wish to keep your PostgreSQL data PVC, you can delete the cluster with the following command:
pgo delete cluster hacluster --keep-data
You can then recreate the PostgreSQL cluster with the same data by using the pgo create cluster command with a cluster of the same name:
pgo create cluster hacluster
This technique is used when performing tasks such as upgrading the PostgreSQL Operator.
You can also keep the pgBackRest repository associated with the PostgreSQL cluster by using the --keep-backups flag with the pgo delete cluster command:
pgo delete cluster hacluster --keep-backups


Testing PostgreSQL Cluster Availability
You can test the availability of your cluster by using the pgo test command. The pgo test command checks to see if the Kubernetes Services and the Pods that comprise the PostgreSQL cluster are available to receive connections. This includes:
	Testing that the Kubernetes Endpoints are available and able to route requests to healthy Pods
	Testing that each PostgreSQL instance is available and ready to accept client connections by performing a connectivity check similar to the one performed by pg_isready

To test the availability of a PostgreSQL cluster, you can run the following command:
pgo test hacluster
which will yield output similar to:
cluster : hacluster
    Services
        primary (10.102.20.42:5432): UP
    Instances
        primary (hacluster-6dc6cfcfb9-f9knq): UP

Disaster Recovery: Backups & Restores
The PostgreSQL Operator supports sophisticated functionality for managing your backups and restores. For more information for how this works, please see the disaster recovery guide.
Creating a Backup
The PostgreSQL Operator uses the open source pgBackRest backup and recovery utility for managing backups and PostgreSQL archives. These backups are also used as part of managing the overall health and high-availability of PostgreSQL clusters managed by the PostgreSQL Operator and used as part of the cloning process as well.
When a new PostgreSQL cluster is provisioned by the PostgreSQL Operator, a full pgBackRest backup is taken by default. This is required in order to create new replicas (via pgo scale) for the PostgreSQL cluster as well as healing during a failover scenario.
To create a backup, you can run the following command:
pgo backup hacluster
which by default, will create an incremental pgBackRest backup. The reason for this is that the PostgreSQL Operator initially creates a pgBackRest full backup when the cluster is initial provisioned, and pgBackRest will take incremental backups for each subsequent backup until a different backup type is specified.
Most pgBackRest options are supported and can be passed in by the PostgreSQL Operator via the --backup-opts flag. What follows are some examples for how to utilize pgBackRest with the PostgreSQL Operator to help you create your optimal disaster recovery setup.
Creating a Full Backup
You can create a full backup using the following command:
pgo backup hacluster --backup-opts="--type=full"

Creating a Differential Backup
You can create a differential backup using the following command:
pgo backup hacluster --backup-opts="--type=diff"

Creating an Incremental Backup
You can create a differential backup using the following command:
pgo backup hacluster --backup-opts="--type=incr"
An incremental backup is created without specifying any options after a full or differential backup is taken.


Creating Backups in S3
The PostgreSQL Operator supports creating backups in S3 or any object storage system that uses the S3 protocol. For more information, please read the section on PostgreSQL Operator Backups with S3 in the architecture section.

Displaying Backup Information
You can see information about the current state of backups in a PostgreSQL cluster managed by the PostgreSQL Operator by executing the following command:
pgo show backup hacluster

Setting Backup Retention
By default, pgBackRest will allow you to keep on creating backups until you run out of disk space. As such, it may be helpful to manage how many backups are retained.
pgBackRest comes with several flags for managing how backups can be retained:
	--repo1-retention-full: how many full backups to retain
	--repo1-retention-diff: how many differential backups to retain
	--repo1-retention-archive: how many sets of WAL archives to retain alongside the full and differential backups that are retained

For example, to create a full backup and retain the previous 7 full backups, you would execute the following command:
pgo backup hacluster --backup-opts="--type=full --repo1-retention-full=7"

Scheduling Backups
Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its scheduling sidecar that is deployed alongside the Operator.
Creating a Scheduled Backup
For example, to schedule a full backup once a day at midnight, you can execute the following command:
pgo create schedule hacluster --schedule="0 1 * * *" \
  --schedule-type=pgbackrest  --pgbackrest-backup-type=full
To schedule an incremental backup once every 3 hours, you can execute the following command:
pgo create schedule hacluster --schedule="0 */3 * * *" \
  --schedule-type=pgbackrest  --pgbackrest-backup-type=incr
You can also create regularly scheduled backups and combine it with a retention policy. For example, using the above example of taking a nightly full backup, you can specify a policy of retaining 21 backups by executing the following command:
pgo create schedule hacluster --schedule="0 0 * * *" \
  --schedule-type=pgbackrest  --pgbackrest-backup-type=full \
  --schedule-opts="--repo1-retention-full=21"


Restore a Cluster
The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster (i.e. a "clone" or "copy") as well as a point-in-time-recovery. There are two types of ways to restore a cluster:
	Restore to a new cluster using the --restore-from flag in the pgo create cluster({{< relref "/pgo-client/reference/pgo_create_cluster.md" >}}) command. This is effectively a clone or a copy.
	Restore in-place using the [pgo restore]({{< relref "/pgo-client/reference/pgo_restore.md" >}}) command. Note that this is destructive.

It is typically better to perform a restore to a new cluster, particularly when performing a point-in-time-recovery, as it can allow you to more effectively manage your downtime and avoid making undesired changes to your production data.
Additionally, the "restore to a new cluster" technique works so long as you have a pgBackRest repository available: the pgBackRest repository does not need to be attached to an active cluster! For example, if a cluster named hippo was deleted as such:
pgo delete cluster hippo --keep-backups
you can create a new cluster from the backups like so:
pgo create cluster datalake --restore-from=hippo
Below provides guidance on how to perform a restore to a new PostgreSQL cluster both as a full copy and to a specific point in time. Additionally, it also shows how to restore in place to a specific point in time.
Restore to a New Cluster (aka "copy" or "clone")
Restoring to a new PostgreSQL cluster allows one to take a backup and create a new PostgreSQL cluster that can run alongside an existing PostgreSQL cluster. There are several scenarios where using this technique is helpful:
	Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is "creating a clone."
	Restore to a point-in-time and inspect the state of the data without affecting the current cluster

and more.
Full Restore
To create a new PostgreSQL cluster from a backup and restore it fully, you can execute the following command:
pgo create cluster newcluster --restore-from=oldcluster

Point-in-time-Recovery (PITR)
To create a new PostgreSQL cluster and restore it to specific point-in-time (e.g. before a key table was dropped), you can use the following command, substituting the time that you wish to restore to:
pgo create cluster newcluster \
  --restore-from oldcluster \
  --restore-opts "--type=time --target='2019-12-31 11:59:59.999999+00'"
When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections, add pgBackRest's --target-action=pause option to the --restore-opts parameter.
The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter. For more information, please review the pgBackRest restore options


Restore in-place
Restoring a PostgreSQL cluster in-place is a destructive action that will perform a recovery on your existing data directory. This is accomplished using the [pgo restore]({{< relref "/pgo-client/reference/pgo_restore.md" >}}) command. The most common scenario is to restore the database to a specific point in time.
Point-in-time-Recovery (PITR)
The more likely scenario when performing a PostgreSQL cluster restore is to recover to a particular point-in-time (e.g. before a key table was dropped). For example, to restore a cluster to December 31, 2019 at 11:59pm:
pgo restore hacluster --pitr-target="2019-12-31 11:59:59.999999+00" \
  --backup-opts="--type=time"
When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections, add pgBackRest's --target-action=pause option to the --backup-opts parameter.
The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter. For more information, please review the pgBackRest restore options
Using this technique, after a restore is complete, you will need to re-enable high availability on the PostgreSQL cluster manually. You can re-enable high availability by executing the following command:
pgo update cluster hacluster --autofail=true



Logical Backups (pg_dump / pg_dumpall)
The PostgreSQL Operator supports taking logical backups with pg_dump and pg_dumpall. While they do not provide the same performance and storage optimizations as the physical backups provided by pgBackRest, logical backups are helpful when one wants to upgrade between major PostgreSQL versions, or provide only a subset of a database, such as a table.
Create a Logical Backup
To create a logical backup of the 'postgres' database, you can run the following command:
pgo backup hacluster --backup-type=pgdump
To create a logical backup of a specific database, you can use the --database flag, as in the following command:
pgo backup hacluster --backup-type=pgdump --database=mydb
You can pass in specific options to --backup-opts, which can accept most of the options that the pg_dump command accepts. For example, to only dump the data from a specific table called users:
pgo backup hacluster --backup-type=pgdump --backup-opts="-t users"
To use pg_dumpall to create a logical backup of all the data in a PostgreSQL cluster, you must pass the --dump-all flag in --backup-opts, i.e.:
pgo backup hacluster --backup-type=pgdump --backup-opts="--dump-all"

Viewing Logical Backups
To view an available list of logical backups, you can use the pgo show backup command:
pgo show backup --backup-type=pgdump
This provides information about the PVC that the logical backups are stored on as well as the timestamps required to perform a restore from a logical backup.

Restore from a Logical Backup
To restore from a logical backup, you need to reference the PVC that the logical backup is stored to, as well as the timestamp that was created by the logical backup.
You can restore a logical backup using the following command:
pgo restore hacluster --backup-type=pgdump --backup-pvc=hacluster-pgdump-pvc \
  --pitr-target="2019-01-15-00-03-25" -n pgouser1
To restore to a specific database, add the --pgdump-database flag to the command from above:
pgo restore hacluster --backup-type=pgdump --backup-pvc=hacluster-pgdump-pvc \
  --pgdump-database=mydb --pitr-target="2019-01-15-00-03-25" -n pgouser1



High-Availability: Scaling Up & Down
The PostgreSQL Operator supports a robust high-availability set up to ensure that your PostgreSQL clusters can stay up and running. For detailed information on how it works, please see the high-availability architecture section.
Creating a New Replica
To create a new replica, also known as "scaling up", you can execute the following command:
pgo scale hacluster --replica-count=1
If you wanted to add two new replicas at the same time, you could execute the following command:
pgo scale hacluster --replica-count=2

Viewing Available Replicas
You can view the available replicas in a few ways. First, you can use pgo show cluster to see the overall information about the PostgreSQL cluster:
pgo show cluster hacluster
You can also find specific replica names by using the --query flag on the pgo failover and pgo scaledown commands, e.g.:
pgo failover --query hacluster

Manual Failover
The PostgreSQL Operator is set up with an automated failover system based on distributed consensus, but there may be times where you wish to have your cluster manually failover. If you wish to have your cluster manually failover, first, query your cluster to determine which failover targets are available. The query command also provides information that may help your decision, such as replication lag:
pgo failover --query hacluster
Once you have selected the replica that is best for your to failover to, you can perform a failover with the following command:
pgo failover hacluster --target=hacluster-abcd
where hacluster-abcd is the name of the PostgreSQL instance that you want to promote to become the new primary
Destroying a Replica
To destroy a replica, first query the available replicas by using the --query flag on the pgo scaledown command, i.e.:
pgo scaledown hacluster --query
Once you have picked the replica you want to remove, you can remove it by executing the following command:
pgo scaledown hacluster --target=hacluster-abcd
where hacluster-abcd is the name of the PostgreSQL replica that you want to destroy.



Cluster Maintenance & Resource Management
There are several operations that you can perform to modify a PostgreSQL cluster over its lifetime.
Modify CPU / Memory for a PostgreSQL Cluster
As database workloads change, it may be necessary to modify the CPU and memory allocation for your PostgreSQL cluster. The PostgreSQL Operator allows for this via the --cpu and --memory flags on the pgo update cluster command. Similar to the create command, both flags accept values that follow the Kubernetes quantity format.
For example, to update a PostgreSQL cluster to use 8 CPU cores and has 32 gibibytes of memory, you can use the following command:
pgo update cluster hacluster --cpu=8 --memory=32Gi
The resource allocations apply to all instances in a PostgreSQL cluster: this means your primary and any replicas will have the same cluster resource allocations. Be sure to specify resource requests that your Kubernetes environment can support.
NOTE: This operation can cause downtime. Modifying the resource requests allocated to a Deployment requires that the Pods in a Deployment must be restarted. Each PostgreSQL instance is safely shutdown using the "fast" shutdown method to help ensure it will not enter crash recovery mode when a new Pod is created.
When the operation completes, each PostgreSQL instance will have the new resource allocations.

Adding a Tablespace to a Cluster
Based on your workload or volume of data, you may wish to add a tablespace to your PostgreSQL cluster.
You can add a tablespace to an existing PostgreSQL cluster with the pgo update cluster command. Adding a tablespace to a cluster uses a similar syntax to creating a cluster with a tablespace, for example:
pgo update cluster hacluster \
    --tablespace=name=tablespace3:storageconfig=storageconfigname
NOTE: This operation can cause downtime. In order to add a tablespace to a PostgreSQL cluster, persistent volume claims (PVCs) need to be created and mounted to each PostgreSQL instance in the cluster. The act of mounting a new PVC to a Kubernetes Deployment causes the Pods in the deployment to restart.
Each PostgreSQL instance is safely shutdown using the "fast" shutdown method to help ensure it will not enter crash recovery mode when a new Pod is created.
When the operation completes, the tablespace will be set up and accessible to use within the PostgreSQL cluster.
For more information on tablespaces, please visit the tablespace section of the documentation.


Clone a PostgreSQL Cluster
You can create a copy of an existing PostgreSQL cluster in a new PostgreSQL cluster by using the pgo create cluster({{< relref "/pgo-client/reference/pgo_create_cluster.md" >}}) command with the --restore-from flag (and, if needed, --restore-opts). The command copies the pgBackRest repository from either an active PostgreSQL cluster, or a pgBackRest repository that exists from a former cluster that was deleted using pgo delete cluster --keep-backups.
You can clone a PostgreSQL cluster by running the following command:
pgo clone hacluster newhacluster
By leveraging pgo create cluster, you are able to copy the data from a PostgreSQL cluster while creating the topology of a new cluster the way you want to. For instance, if you want to copy data from an existing cluster that does not have metrics to a new cluster that does, you can accomplish that with the following command:
pgo create cluster newcluster --restore-from=oldcluster --metrics
Clone a PostgreSQL Cluster to Different PVC Size
You can have a cloned PostgreSQL cluster use a different PVC size, which is useful when moving your PostgreSQL cluster to a larger PVC. For example, to clone a PostgreSQL cluster to a 256GiB PVC, you can execute the following command:
pgo create cluster bighippo --restore-from=hippo  --pvc-size=256Gi
You can also have the cloned PostgreSQL cluster use a larger pgBackRest backup repository by setting its PVC size. For example, to have a cloned PostgreSQL cluster use a 1TiB pgBackRest repository, you can execute the following command:
pgo create cluster bighippo --restore-from=hippo --pgbackrest-pvc-size=1Ti


Enable TLS
TLS allows secure TCP connections to PostgreSQL, and the PostgreSQL Operator makes it easy to enable this PostgreSQL feature. The TLS support in the PostgreSQL Operator does not make an opinion about your PKI, but rather loads in your TLS key pair that you wish to use for the PostgreSQL server as well as its corresponding certificate authority (CA) certificate. Both of these Secrets are required to enable TLS support for your PostgreSQL cluster when using the PostgreSQL Operator, but it in turn allows seamless TLS support.
Setup
There are three items that are required to enable TLS in your PostgreSQL clusters:
	A CA certificate
	A TLS private key
	A TLS certificate

There are a variety of methods available to generate these items: in fact, Kubernetes comes with its own certificate management system! It is up to you to decide how you want to manage this for your cluster. The PostgreSQL documentation also provides an example for how to generate a TLS certificate as well.
To set up TLS for your PostgreSQL cluster, you have to create two Secrets: one that contains the CA certificate, and the other that contains the server TLS key pair.
First, create the Secret that contains your CA certificate. Create the Secret as a generic Secret, and note that the following requirements must be met:
	The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster
	The name of the key that is holding the CA must be ca.crt

There are optional settings for setting up the CA secret:
	You can pass in a certificate revocation list (CRL) for the CA secret by passing in the CRL using the ca.crl key name in the Secret.

For example, to create a CA Secret with the trusted CA to use for the PostgreSQL clusters, you could execute the following command:
kubectl create secret generic postgresql-ca --from-file=ca.crt=/path/to/ca.crt
To create a CA Secret that includes a CRL, you could execute the following command:
kubectl create secret generic postgresql-ca \
  --from-file=ca.crt=/path/to/ca.crt \
  --from-file=ca.crl=/path/to/ca.crl
Note that you can reuse this CA Secret for other PostgreSQL clusters deployed by the PostgreSQL Operator.
Next, create the Secret that contains your TLS key pair. Create the Secret as a a TLS Secret, and note the following requirement must be met:
	The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster

kubectl create secret tls hacluster-tls-keypair \
  --cert=/path/to/server.crt \
  --key=/path/to/server.key
Now you can create a TLS-enabled PostgreSQL cluster!

Create a TLS Enabled PostgreSQL Cluster
Using the above example, to create a TLS-enabled PostgreSQL cluster that can accept both TLS and non-TLS connections, execute the following command:
pgo create cluster hacluster-tls \
  --server-ca-secret=postgresql-ca \
  --server-tls-secret=hacluster-tls-keypair
Including the --server-ca-secret and --server-tls-secret flags automatically enable TLS connections in the PostgreSQL cluster that is deployed. These flags should reference the CA Secret and the TLS key pair Secret, respectively.
If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see something like this in your psql terminal:
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: off)

Force TLS in a PostgreSQL Cluster
There are many environments where you want to force all remote connections to occur over TLS, for example, if you deploy your PostgreSQL cluster's in a public cloud or on an untrusted network. The PostgreSQL Operator lets you force all remote connections to occur over TLS by using the --tls-only flag.
For example, using the setup above, you can force TLS in a PostgreSQL cluster by executing the following command:
pgo create cluster hacluster-tls-only \
  --tls-only \
  --server-ca-secret=hacluster-tls-keypair --server-tls-secret=postgresql-ca
If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see something like this in your psql terminal:
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: off)
If you try to connect to a PostgreSQL cluster that is deployed using the --tls-only with TLS disabled (i.e. PGSSLMODE=disable), you will receive an error that connections without TLS are unsupported.

TLS Authentication for PostgreSQL Replication
PostgreSQL supports certificate-based authentication, which allows for PostgreSQL to authenticate users based on the common name (CN) in a certificate. Using this feature, the PostgreSQL Operator allows you to configure PostgreSQL replicas in a cluster to authenticate using a certificate instead of a password.
To use this feature, first you will need to set up a Kubernetes TLS Secret that has a CN of primaryuser. If you do not wish to have this as your CN, you will need to map the CN of this certificate to the value of primaryuser using a pg_ident username map, which you can configure as part of a [custom PostgreSQL configuration]({{< relref "/advanced/custom-configuration.md" >}}).
You also need to ensure that the certificate is verifiable by the certificate authority (CA) chain that you have provided for your PostgreSQL cluster. The CA is provided as part of the --server-ca-secret flag in the pgo create cluster({{< relref "/pgo-client/reference/pgo_create_cluster.md" >}}) command.
To create a PostgreSQL cluster that uses TLS authentication for replication, first create Kubernetes Secrets for the server and the CA. For the purposes of this example, we will use the ones that were created earlier: postgresql-ca and hacluster-tls-keypair. After generating a certificate that has a CN of primaryuser, create a Kubernetes Secret that references this TLS keypair called hacluster-tls-replication-keypair:
kubectl create secret tls hacluster-tls-replication-keypair \
  --cert=/path/to/replication.crt \
  --key=/path/to/replication.key
We can now create a PostgreSQL cluster and allow for it to use TLS authentication for its replicas! Let's create a PostgreSQL cluster with two replicas that also requires TLS for any connection:
pgo create cluster hippo \
  --tls-only \
  --server-ca-secret=postgresql-ca \
  --server-tls-secret=hacluster-tls-keypair \
  --replication-tls-secret=hacluster-tls-replication-keypair \
  --replica-count=2
By default, the PostgreSQL Operator has each replica connect to PostgreSQL using a PostgreSQL TLS mode of verify-ca. If you wish to perform TLS mutual authentication between PostgreSQL instances (i.e. certificate-based authentication with SSL mode of verify-full), you will need to create a [PostgreSQL custom configuration]({{< relref "/advanced/custom-configuration.md" >}}).


Custom PostgreSQL Configuration({{< relref "/advanced/custom-configuration.md" >}})
Customizing PostgreSQL configuration is currently not subject to the pgo client, but given it is a common question, we thought it may be helpful to link to how to do it from here. To find out more about how to [customize your PostgreSQL configuration]({{< relref "/advanced/custom-configuration.md" >}}), please refer to the Custom PostgreSQL Configuration({{< relref "/advanced/custom-configuration.md" >}}) section of the documentation.

pgAdmin 4: PostgreSQL Administration
pgAdmin 4 is a popular graphical user interface that lets you work with PostgreSQL databases from both a desktop or web-based client. In the case of the PostgreSQL Operator, the pgAdmin 4 web client can be deployed and synchronized with PostgreSQL clusters so that users can administrate their databases with their PostgreSQL username and password.
For example, let's work with a PostgreSQL cluster called hippo that has a user named hippo with password datalake, e.g.:
pgo create cluster hippo --username=hippo --password=datalake
Once the hippo PostgreSQL cluster is ready, create the pgAdmin 4 deployment with the [pgo create pgadmin]({{< relref "/pgo-client/reference/pgo_create_pgadmin.md" >}}) command:
pgo create pgadmin hippo
This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information into it. To access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:
kubectl port-forward svc/hippo-pgadmin 5050:5050
Point your browser at http://localhost:5050 and use your database username (e.g. hippo) and password (e.g. datalake) to log in.
[image: pgAdmin 4 Login Page]pgAdmin 4 Login Page

(Note: if your password does not appear to work, you can retry setting up the user with the [pgo update user]({{< relref "/pgo-client/reference/pgo_update_user.md" >}}) command: pgo update user hippo --password=datalake)
The pgo create user, pgo update user, and pgo delete user commands are synchronized with the pgAdmin 4 deployment. Any user with credentials to this PostgreSQL cluster will be able to log in and use pgAdmin 4:
[image: pgAdmin 4 Query]pgAdmin 4 Query

You can remove the pgAdmin 4 deployment with the [pgo delete pgadmin]({{< relref "/pgo-client/reference/pgo_delete_pgadmin.md" >}}) command.
For more information, please read the [pgAdmin 4 Architecture]({{< relref "/architecture/pgadmin4.md" >}}) section of the documentation.

Standby Clusters: Multi-Cluster Kubernetes Deployments
A [standby PostgreSQL cluster]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}) can be used to create an advanced high-availability set with a PostgreSQL cluster running in a different Kubernetes cluster, or used for other operations such as migrating from one PostgreSQL cluster to another. Note: this is not [high availability]({{< relref "/architecture/high-availability/_index.md" >}}) per se: a high-availability PostgreSQL cluster will automatically fail over upon a downtime event, whereas a standby PostgreSQL cluster must be explicitly promoted.
With that said, you can run multiple PostgreSQL Operators in different Kubernetes clusters, and the below functionality will work!
Below are some commands for setting up and using standby PostgreSQL clusters. For more details on how standby clusters work, please review the section on [Kubernetes Multi-Cluster Deployments]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}).
Creating a Standby Cluster
Before creating a standby cluster, you will need to ensure that your primary cluster is created properly. Standby clusters require the use of S3 or equivalent S3-compatible storage system that is accessible to both the primary and standby clusters. For example, to create a primary cluster to these specifications:
shell pgo create cluster hippo --pgbouncer --replica-count=2 \   --pgbackrest-storage-type=local,s3 \   --pgbackrest-s3-key=<redacted> \   --pgbackrest-s3-key-secret=<redacted> \   --pgbackrest-s3-bucket=watering-hole \   --pgbackrest-s3-endpoint=s3.amazonaws.com \   --pgbackrest-s3-region=us-east-1 \   --pgbackrest-s3-uri-style=host \   --pgbackrest-s3-verify-tls=true \   --password-superuser=supersecrethippo \   --password-replication=somewhatsecrethippo \   --password=opensourcehippo
Before setting up the standby PostgreSQL cluster, you will need to wait a few moments for the primary PostgreSQL cluster to be ready. Once your primary PostgreSQL cluster is available, you can create a standby cluster by using the following command:
pgo create cluster hippo-standby --standby --replica-count=2 \
  --pgbackrest-storage-type=s3 \
  --pgbackrest-s3-key=<redacted> \
  --pgbackrest-s3-key-secret=<redacted> \
  --pgbackrest-s3-bucket=watering-hole \
  --pgbackrest-s3-endpoint=s3.amazonaws.com \
  --pgbackrest-s3-region=us-east-1 \
  --pgbackrest-s3-uri-style=host \
  --pgbackrest-s3-verify-tls=true \
  --pgbackrest-repo-path=/backrestrepo/hippo-backrest-shared-repo \
  --password-superuser=supersecrethippo \
  --password-replication=somewhatsecrethippo \
  --password=opensourcehippo
If you are unsure of your user credentials form the original hippo cluster, you can retrieve them using the [pgo show user]({{< relref "/pgo-client/reference/pgo_show_user.md" >}}) command with the --show-system-accounts flag:
pgo show user hippo --show-system-accounts
The standby cluster will take a few moments to bootstrap, but it is now set up!

Promoting a Standby Cluster
Before promoting a standby cluster, it is first necessary to shut down the primary cluster, otherwise you can run into a potential "split-brain" scenario (if your primary Kubernetes cluster is down, it may not be possible to do this).
To shutdown, run the following command:
pgo update cluster hippo --shutdown
Once it is shut down, you can promote the standby cluster:
pgo update cluster hippo-standby --promote-standby
The standby is now an active PostgreSQL cluster and can start to accept writes.
To convert the previous active cluster into a standby cluster, you can run the following command:
pgo update cluster hippo --enable-standby
This will take a few moments to make this PostgreSQL cluster into a standby cluster. When it is ready, you can start it up with the following command:
pgo update cluster hippo --startup


Monitoring
View Disk Utilization
You can see a comparison of Postgres data size versus the Persistent volume claim size by entering the following:
pgo df hacluster -n pgouser1

PostgreSQL Metrics via pgMonitor
You can view metrics about your PostgreSQL cluster using the pgMonitor stack by deploying the "crunchy-collect" sidecar with the PostgreSQL cluster:
pgo create cluster hacluster --metrics
Note: To store and visualize the metrics, you must deploy Prometheus and Grafana with yoru PostgreSQL cluster. For instructions on installing Grafana and Prometheus in your environment, please review the [installation instructions]({{< relref "/installation/other/ansible/installing-metrics.md" >}}) for the metrics stack.


Labels
Labels are a helpful way to organize PostgreSQL clusters, such as by application type or environment. The PostgreSQL Operator supports managing Kubernetes Labels as a convenient way to group PostgreSQL clusters together.
You can view which labels are assigned to a PostgreSQL cluster using the pgo show cluster command. You are also able to see these labels when using kubectl or oc.
Add a Label to a PostgreSQL Cluster
Labels can be added to PostgreSQL clusters using the pgo label command. For example, to add a label with a key/value pair of env=production, you could execute the following command:
pgo label hacluster --label=env=production

Add a Label to Multiple PostgreSQL Clusters
You can add also add a label to multiple PostgreSQL clusters simultaneously using the --selector flag on the pgo label command. For example, to add a label with a key/value pair of env=production to clusters that have a label key/value pair of app=payment, you could execute the following command:
pgo label --selector=app=payment --label=env=production


Policy Management
Create a Policy
To create a SQL policy, enter the following:
pgo create policy mypolicy --in-file=mypolicy.sql -n pgouser1
This examples creates a policy named mypolicy using the contents of the file mypolicy.sql which is assumed to be in the current directory.
You can view policies as following:
pgo show policy --all -n pgouser1

Apply a Policy
pgo apply mypolicy --selector=environment=prod
pgo apply mypolicy --selector=name=hacluster


Advanced Operations
Connection Pooling via pgBouncer
To add a pgbouncer Deployment to your Postgres cluster, enter:
pgo create cluster hacluster --pgbouncer -n pgouser1
You can add pgbouncer after a Postgres cluster is created as follows:
pgo create pgbouncer hacluster
pgo create pgbouncer --selector=name=hacluster
You can also specify a pgbouncer password as follows:
pgo create cluster hacluster --pgbouncer --pgbouncer-pass=somepass -n pgouser1
You can remove a pgbouncer from a cluster as follows:
pgo delete pgbouncer hacluster -n pgouser1

Query Analysis via pgBadger
You can create a pgbadger sidecar container in your Postgres cluster pod as follows:
pgo create cluster hacluster --pgbadger -n pgouser1

Create a Cluster using Specific Storage
pgo create cluster hacluster --storage-config=somestorageconfig -n pgouser1
Likewise, you can specify a storage configuration when creating a replica:
pgo scale hacluster --storage-config=someslowerstorage -n pgouser1
This example specifies the somestorageconfig storage configuration to be used by the Postgres cluster. This lets you specify a storage configuration that is defined in the pgo.yaml file specifically for a given Postgres cluster.
You can create a Cluster using a Preferred Node as follows:
pgo create cluster hacluster --node-label=speed=superfast -n pgouser1
That command will cause a node affinity rule to be added to the Postgres pod which will influence the node upon which Kubernetes will schedule the Pod.
Likewise, you can create a Replica using a Preferred Node as follows:
pgo scale hacluster --node-label=speed=slowerthannormal -n pgouser1

Create a Cluster with LoadBalancer ServiceType
pgo create cluster hacluster --service-type=LoadBalancer -n pgouser1
This command will cause the Postgres Service to be of a specific type instead of the default ClusterIP service type.

Namespace Operations
Create an Operator namespace where Postgres clusters can be created and managed by the Operator:
pgo create namespace mynamespace
Update a Namespace to be able to be used by the Operator:
pgo update namespace somenamespace
Delete a Namespace:
pgo delete namespace mynamespace

PostgreSQL Operator User Operations
PGO users are users defined for authenticating to the PGO REST API. You can manage those users with the following commands:
pgo create pgouser someuser --pgouser-namespaces="pgouser1,pgouser2" --pgouser-password="somepassword" --pgouser-roles="pgoadmin"
pgo create pgouser otheruser --all-namespaces --pgouser-password="somepassword" --pgouser-roles="pgoadmin"
Update a user:
pgo update pgouser someuser --pgouser-namespaces="pgouser1,pgouser2" --pgouser-password="somepassword" --pgouser-roles="pgoadmin"
pgo update pgouser otheruser --all-namespaces --pgouser-password="somepassword" --pgouser-roles="pgoadmin"
Delete a PGO user:
pgo delete pgouser someuser
PGO roles are also managed as follows:
pgo create pgorole somerole --permissions="Cat,Ls"
Delete a PGO role with:
pgo delete pgorole somerole
Update a PGO role with:
pgo update pgorole somerole --permissions="Cat,Ls"

PostgreSQL Cluster User Operations
Managed Postgres users can be viewed using the following command:
pgo show user hacluster
Postgres users can be created using the following command examples:
pgo create user hacluster --username=somepguser --password=somepassword --managed
pgo create user --selector=name=hacluster --username=somepguser --password=somepassword --managed
Those commands are identical in function, and create on the hacluster Postgres cluster, a user named somepguser, with a password of somepassword, the account is managed meaning that these credentials are stored as a Secret on the Kubernetes cluster in the Operator namespace.
Postgres users can be deleted using the following command:
pgo delete user hacluster --username=somepguser
That command deletes the user on the hacluster Postgres cluster.
Postgres users can be updated using the following command:
pgo update user hacluster --username=somepguser --password=frodo
That command changes the password for the user on the hacluster Postgres cluster.
[image: Operator Architecture with CRDs]Operator Architecture with CRDs

As discussed in the [architecture overview]({{< relref "/architecture/overview.md" >}}), the heart of the [PostgreSQL Operator]({{< relref "_index.md" >}}), and any Kubernetes Operator, is one or more Custom Resources Definitions, also known as "CRDs". CRDs provide extensions to the Kubernetes API, and, in the case of the PostgreSQL Operator, allow you to perform actions such as:
	Creating a PostgreSQL Cluster
	Updating PostgreSQL Cluster resource allocations
	Add additional utilities to a PostgreSQL cluster, e.g. pgBouncer({{< relref "/pgo-client/reference/pgo_create_pgbouncer.md" >}}) for connection pooling and more.

The PostgreSQL Operator provides the [pgo client]({{< relref "/pgo-client/_index.md" >}}) as a convenience for interfacing with the CRDs, as manipulating the CRDs directly can be a tedious process. For example, there are several Kubernetes objects that need to be set up prior to creating a pgcluster custom resource in order to successfully deploy a new PostgreSQL cluster.
The Kubernetes community trend has been to move towards supporting a "custom resource only" workflow for using Operators, and this is something that the PostgreSQL Operator aims to do as well. Certain workflows are fully driven by Custom Resources (e.g. creating a PostgreSQL cluster), while others still need to interface through the [pgo client]({{< relref "/pgo-client/_index.md" >}}) (e.g. adding a PostgreSQL user).
The following sections will describe the functionality that is available today when manipulating the PostgreSQL Operator Custom Resources directly.


PostgreSQL Operator Custom Resource Definitions
There are several PostgreSQL Operator Custom Resource Definitions (CRDs) that are installed in order for the PostgreSQL Operator to successfully function:
	pgclusters.crunchydata.com: Stores information required to manage a PostgreSQL cluster. This includes things like the cluster name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to maintain a high-availability cluster, etc.
	pgreplicas.crunchydata.com: Stores information required to manage the replicas within a PostgreSQL cluster. This includes things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.
	pgtasks.crunchydata.com: A general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. take a backup) and tracks the state of said task through its workflow.
	pgpolicies.crunchydata.com: Stores a reference to a SQL file that can be executed against a PostgreSQL cluster. In the past, this was used to manage RLS policies on PostgreSQL clusters.

Below takes an in depth look for what each attribute does in a Custom Resource Definition, and how they can be used in the creation and update workflow.
Glossary
	create: if an attribute is listed as create, it means it can affect what happens when a new Custom Resource is created.
	update: if an attribute is listed as update, it means it can affect the Custom Resource, and by extension the objects it manages, when the attribute is updated.


pgclusters.crunchydata.com
The pgclusters.crunchydata.com Custom Resource Definition is the fundamental definition of a PostgreSQL cluster. Most attributes only affect the deployment of a PostgreSQL cluster at the time the PostgreSQL cluster is created. Some attributes can be modified during the lifetime of the PostgreSQL cluster and make changes, as described below.
Specification (Spec)
	Attribute	Action	Description
	BackrestLimits	create, update	Specify the container resource limits that the pgBackRest repository should use. Follows the Kubernetes definitions of resource limits.
	BackrestResources	create, update	Specify the container resource requests that the pgBackRest repository should use. Follows the Kubernetes definitions of resource requests.
	BackrestS3Bucket	create	An optional parameter that specifies a S3 bucket that pgBackRest should use.
	BackrestS3Endpoint	create	An optional parameter that specifies the S3 endpoint pgBackRest should use.
	BackrestS3Region	create	An optional parameter that specifies a cloud region that pgBackRest should use.
	BackrestS3URIStyle	create	An optional parameter that specifies if pgBackRest should use the path or host S3 URI style.
	BackrestS3VerifyTLS	create	An optional parameter that specifies if pgBackRest should verify the TLS endpoint.
	BackrestStorage	create	A specification that gives information about the storage attributes for the pgBackRest repository, which stores backups and archives, of the PostgreSQL cluster. For details, please see the Storage Specification section below. This is required.
	CCPImage	create	The name of the PostgreSQL container image to use, e.g. crunchy-postgres-ha or crunchy-postgres-ha-gis.
	CCPImagePrefix	create	If provided, the image prefix (or registry) of the PostgreSQL container image, e.g. registry.developers.crunchydata.com/crunchydata. The default is to use the image prefix set in the PostgreSQL Operator configuration.
	CCPImageTag	create	The tag of the PostgreSQL container image to use, e.g. {{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}}.
	CollectSecretName	create	An optional attribute unless crunchy_collect is specified in the UserLabels; contains the name of a Kubernetes Secret that contains the credentials for a PostgreSQL user that is used for metrics collection, and is created when the PostgreSQL cluster is first bootstrapped. For more information, please see User Secret Specification.
	ClusterName	create	The name of the PostgreSQL cluster, e.g. hippo. This is used to group PostgreSQL instances (primary, replicas) together.
	CustomConfig	create	If specified, references a custom ConfigMap to use when bootstrapping a PostgreSQL cluster. For the shape of this file, please see the section on [Custom Configuration]({{< relref "/advanced/custom-configuration.md" >}})
	Database	create	The name of a database that the PostgreSQL user can log into after the PostgreSQL cluster is created.
	ExporterPort	create	If the "crunchy_collect" label is set in UserLabels, then this specifies the port that the metrics sidecar runs on (e.g. 9187)
	Limits	create, update	Specify the container resource limits that the PostgreSQL cluster should use. Follows the Kubernetes definitions of resource limits.
	Name	create	The name of the PostgreSQL instance that is the primary. On creation, this should be set to be the same as ClusterName.
	Namespace	create	The Kubernetes Namespace that the PostgreSQL cluster is deployed in.
	PGBadgerPort	create	If the "crunchy-pgbadger" label is set in UserLabels, then this specifies the port that the pgBadger sidecar runs on (e.g. 10000)
	PGDataSource	create	Used to indicate if a PostgreSQL cluster should bootstrap its data from a pgBackRest repository. This uses the PostgreSQL Data Source Specification, described below.
	PGOImagePrefix	create	If provided, the image prefix (or registry) of any PostgreSQL Operator images that are used for jobs, e.g. registry.developers.crunchydata.com/crunchydata. The default is to use the image prefix set in the PostgreSQL Operator configuration.
	PgBouncer	create, update	If specified, defines the attributes to use for the pgBouncer connection pooling deployment that can be used in conjunction with this PostgreSQL cluster. Please see the specification defined below.
	PodAntiAffinity	create	A required section. Sets the [pod anti-affinity rules]({{< relref "/architecture/high-availability/index.md#how-the-crunchy-postgresql-operator-uses-pod-anti-affinity" >}}) for the PostgreSQL cluster and associated deployments. Please see the Pod Anti-Affinity Specification section below. | | Policies | create | If provided, a comma-separated list referring to pgpolicies.crunchydata.com.Spec.Name that should be run once the PostgreSQL primary is first initialized. | | Port | create | The port that PostgreSQL will run on, e.g. 5432. | | PrimaryStorage | create | A specification that gives information about the storage attributes for the primary instance in the PostgreSQL cluster. For details, please see the Storage Specification section below. This is required. | | RootSecretName | create | The name of a Kubernetes Secret that contains the credentials for a PostgreSQL replication user_ that is created when the PostgreSQL cluster is first bootstrapped. For more information, please see User Secret Specification.
	ReplicaStorage	create	A specification that gives information about the storage attributes for any replicas in the PostgreSQL cluster. For details, please see the Storage Specification section below. This will likely be changed in the future based on the nature of the high-availability system, but presently it is still required that you set it. It is recommended you use similar settings to that of PrimaryStorage.
	Replicas	create	The number of replicas to create after a PostgreSQL primary is first initialized. This only works on create; to scale a cluster after it is initialized, please use the [pgo scale]({{< relref "/pgo-client/reference/pgo_scale.md" >}}) command.
	Resources	create, update	Specify the container resource requests that the PostgreSQL cluster should use. Follows the Kubernetes definitions of resource requests.
	RootSecretName	create	The name of a Kubernetes Secret that contains the credentials for a PostgreSQL superuser that is created when the PostgreSQL cluster is first bootstrapped. For more information, please see User Secret Specification.
	SyncReplication	create	If set to true, specifies the PostgreSQL cluster to use [synchronous replication]({{< relref "/architecture/high-availability/_index.md#how-the-crunchy-postgresql-operator-uses-pod-anti-affinity#synchronous-replication-guarding-against-transactions-loss" >}}).| | User | create | The name of the PostgreSQL user that is created when the PostgreSQL cluster is first created. | | UserLabels | create | A set of key-value string pairs that are used as a sort of "catch-all" for things that really should be modeled in the CRD. These values do get copied to the actually CR labels. If you want to set up metrics collection or pgBadger, you would specify "crunchy_collect": "true" and "crunchy-pgbadger": "true" here, respectively. However, this structure does need to be set, so just follow whatever is in the example. | | UserSecretName | create | The name of a Kubernetes Secret that contains the credentials for a standard PostgreSQL user that is created when the PostgreSQL cluster is first bootstrapped. For more information, please see User Secret Specification.| | TablespaceMounts | create,update | Lists any tablespaces that are attached to the PostgreSQL cluster. Tablespaces can be added at a later time by updating the TablespaceMounts entry, but they cannot be removed. Stores a map of information, with the key being the name of the tablespace, and the value being a Storage Specification, defined below. | | TLS | create | Defines the attributes for enabling TLS for a PostgreSQL cluster. See TLS Specification below. | | TLSOnly | create | If set to true, requires client connections to use only TLS to connect to the PostgreSQL database. | | Standby | create, update | If set to true, indicates that the PostgreSQL cluster is a "standby" cluster, i.e. is in read-only mode entirely. Please see [Kubernetes Multi-Cluster Deployments]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}) for more information. | | Shutdown | create, update | If set to true, indicates that a PostgreSQL cluster should shutdown. If set to false, indicates that a PostgreSQL cluster should be up and running. |

Storage Specification
The storage specification is a spec that defines attributes about the storage to be used for a particular function of a PostgreSQL cluster (e.g. a primary instance or for the pgBackRest backup repository). The below describes each attribute and how it works.
	Attribute	Action	Description
	AccessMode	create	The name of the Kubernetes Persistent Volume Access Mode to use.
	MatchLabels	create	Only used with StorageType of create, used to match a particular subset of provisioned Persistent Volumes.
	Name	create	Only needed for PrimaryStorage in pgclusters.crunchydata.com.Used to identify the name of the PostgreSQL cluster. Should match ClusterName.
	Size	create	The size of the Persistent Volume Claim (PVC). Must use a Kubernetes resource value, e.g. 20Gi.
	StorageClass	create	The name of the Kubernetes StorageClass to use.
	StorageType	create	Set to create if storage is provisioned (e.g. using hostpath). Set to dynamic if using a dynamic storage provisioner, e.g. via a StorageClass.
	SupplementalGroups	create	If provided, a comma-separated list of group IDs to use in case it is needed to interface with a particular storage system. Typically used with NFS or hostpath storage.


Pod Anti-Affinity Specification
Sets the [pod anti-affinity]({{< relref "/architecture/high-availability/_index.md#how-the-crunchy-postgresql-operator-uses-pod-anti-affinity" >}}) for the PostgreSQL cluster and associated deployments. Each attribute can contain one of the following values:
	required
	preferred (which is also the recommended default)
	disabled

For a detailed explanation for how this works. Please see the [high-availability]({{< relref "/architecture/high-availability/_index.md#how-the-crunchy-postgresql-operator-uses-pod-anti-affinity" >}}) documentation.
	Attribute	Action	Description
	Default	create	The default pod anti-affinity to use for all Pods managed in a given PostgreSQL cluster.
	PgBackRest	create	If set to a value that differs from Default, specifies the pod anti-affinity to use for just the pgBackRest repository.
	PgBouncer	create	If set to a value that differs from Default, specifies the pod anti-affinity to use for just the pgBouncer Pods.


PostgreSQL Data Source Specification
This specification is used when one wants to bootstrap the data in a PostgreSQL cluster from a pgBackRest repository. This can be a pgBackRest repository that is attached to an active PostgreSQL cluster or is kept around to be used for spawning new PostgreSQL clusters.
	Attribute	Action	Description
	RestoreFrom	create	The name of a PostgreSQL cluster, active or former, that will be used for bootstrapping the data of a new PostgreSQL cluster.
	RestoreOpts	create	Additional pgBackRest restore options that can be used as part of the bootstrapping operation, for example, point-in-time-recovery options.


TLS Specification
The TLS specification makes a reference to the various secrets that are required to enable TLS in a PostgreSQL cluster. For more information on how these secrets should be structured, please see [Enabling TLS in a PostgreSQL Cluster]({{< relref "/pgo-client/common-tasks.md#enable-tls" >}}).
	Attribute	Action	Description
	CASecret	create	A reference to the name of a Kubernetes Secret that specifies a certificate authority for the PostgreSQL cluster to trust.
	ReplicationTLSSecret	create	A reference to the name of a Kubernetes TLS Secret that contains a keypair for authenticating the replication user. Must be used with CASecret and TLSSecret.
	TLSSecret	create	A reference to the name of a Kubernetes TLS Secret that contains a keypair that is used for the PostgreSQL instance to identify itself and perform TLS communications with PostgreSQL clients. Must be used with CASecret.


pgBouncer Specification
The pgBouncer specification defines how a pgBouncer deployment can be deployed alongside the PostgreSQL cluster. pgBouncer is a PostgreSQL connection pooler that can also help manage connection state, and is helpful to deploy alongside a PostgreSQL cluster to help with failover scenarios too.
	Attribute	Action	Description
	Limits	create, update	Specify the container resource limits that the pgBouncer Pods should use. Follows the Kubernetes definitions of resource limits.
	Replicas	create, update	The number of pgBouncer instances to deploy. Must be set to at least 1 to deploy pgBouncer. Setting to 0 removes an existing pgBouncer deployment for the PostgreSQL cluster.
	Resources	create, update	Specify the container resource requests that the pgBouncer Pods should use. Follows the Kubernetes definitions of resource requests.




pgreplicas.crunchydata.com
The pgreplicas.crunchydata.com Custom Resource Definition contains information pertaning to the structure of PostgreSQL replicas associated within a PostgreSQL cluster. All of the attributes only affect the replica when it is created.
Specification (Spec)
	Attribute	Action	Description
	ClusterName	create	The name of the PostgreSQL cluster, e.g. hippo. This is used to group PostgreSQL instances (primary, replicas) together.
	Name	create	The name of this PostgreSQL replica. It should be unique within a ClusterName.
	Namespace	create	The Kubernetes Namespace that the PostgreSQL cluster is deployed in.
	ReplicaStorage	create	A specification that gives information about the storage attributes for any replicas in the PostgreSQL cluster. For details, please see the Storage Specification section in the pgclusters.crunchydata.com description. This will likely be changed in the future based on the nature of the high-availability system, but presently it is still required that you set it. It is recommended you use similar settings to that of PrimaryStorage.
	UserLabels	create	A set of key-value string pairs that are used as a sort of "catch-all" for things that really should be modeled in the CRD. These values do get copied to the actually CR labels. If you want to set up metrics collection, you would specify "crunchy_collect": "true" here. This also allows for node selector pinning using NodeLabelKey and NodeLabelValue. However, this structure does need to be set, so just follow whatever is in the example.




Custom Resource Workflows
Create a PostgreSQL Cluster
The fundamental workflow for interfacing with a PostgreSQL Operator Custom Resource Definition is for creating a PostgreSQL cluster. However, this is also one of the most complicated workflows to go through, as there are several Kubernetes objects that need to be created prior to using this method. These include:
	Secrets
	Information for setting up a pgBackRest repository
	PostgreSQL superuser bootstrap credentials
	PostgreSQL replication user bootstrap credentials
	PostgresQL standard user bootstrap credentials

Additionally, if you want to add some of the other sidecars, you may need to create additional secrets.
The following guide goes through how to create a PostgreSQL cluster called hippo by creating a new custom resource.
Step 1: Create the pgBackRest Secret
pgBackRest is a fundamental part of a PostgreSQL deployment with the PostgreSQL Operator: not only is it a backup and archive repository, but it also helps with operations such as self-healing. A PostgreSQL instance a pgBackRest communicate using ssh, and as such, we need to generate a unique ssh keypair for communication for each PostgreSQL cluster we deploy.
In this example, we generate a ssh keypair using ED25519 keys, but if your environment requires it, you can also use RSA keys.
In your working directory, run the following commands:

# this variable is the name of the cluster being created
export pgo_cluster_name=hippo
# this variable is the namespace the cluster is being deployed into
export cluster_namespace=pgo

# generate a SSH public/private keypair for use by pgBackRest
ssh-keygen -t ed25519 -N '' -f "${pgo_cluster_name}-key"

# base64 encoded the keys for the generation of the Kubernetes secret, and place
# them into variables temporarily
public_key_temp=$(cat "${pgo_cluster_name}-key.pub" | base64)
private_key_temp=$(cat "${pgo_cluster_name}-key" | base64)
export pgbackrest_public_key="${public_key_temp//[$'\n']}" pgbackrest_private_key="${private_key_temp//[$'\n']}"

# create the backrest-repo-config example file and substitute in the newly
# created keys
#
# (Note: that the "config" / "sshd_config" entries contain configuration to
# ensure that PostgreSQL instances are able to communicate with the pgBackRest
# repository, which houses backups and archives, and vice versa. Most of the
# settings follow the sshd defaults, with a few overrides. Edit at your own
# discretion.)
cat 

  
  
  
  Upgrading the Crunchy PostgreSQL Operator
  



Upgrading the Crunchy PostgreSQL Operator
There are two methods for upgrading your existing deployment of the PostgreSQL Operator.
If you are upgrading from PostgreSQL Operator 4.1.0 or later, you are encouraged to use the Automated Upgrade Procedure. This method simplifies the upgrade process, as well as maintains your existing clusters in place prior to their upgrade.
For versions before 4.1.0, please see the appropriate manual procedure.
Automated PostgreSQL Operator Upgrade Procedure
The automated upgrade to a new release of the PostgreSQL Operator comprises two main steps:
	Upgrading the PostgreSQL Operator itself
	Upgrading the existing PostgreSQL Clusters to the new release

The first step will result in an upgraded PostgreSQL Operator that is able to create and manage new clusters as expected, but will be unable to manage existing clusters until they have been upgraded. The second step upgrades the clusters to the current Operator version, allowing them to once again be fully managed by the Operator.
The automated upgrade procedure is designed to facilate the quickest and most efficient method to the current release of the PostgreSQL Operator. However, as with any upgrade, there are several considerations before beginning.
Considerations
	Versions Supported - This upgrade currently supports cluster upgrades from PostgreSQL Operator version 4.1.0 and later.

	PostgreSQL Major Version Requirements - The underlying PostgreSQL major version must match between the old and new clusters. For example, if you are upgrading a 4.1.0 version of the PostgreSQL Operator and the cluster is using PostgreSQL 11.5, your upgraded clusters will need to use container images with a later minor version of PostgreSQL 11. Note that this is not a requirement for new clusters, which may use any currently supported version. For more information, please see the [Compatibility Requirements]({{< relref "configuration/compatibility.md" >}}).

	Cluster Downtime - The re-creation of clusters will take some time, generally on the order of minutes but potentially longer depending on the operating environment. As such, the timing of the upgrade will be an important consideration. It should be noted that the upgrade of the PostgreSQL Operator itself will leave any existing cluster resources in place until individual pgcluster upgrades are performed.

	Destruction and Re-creation of Certain Resources - As this upgrade process does destroy and recreate most elements of the cluster, unhealthy Kubernetes or Openshift environments may have difficulty recreating the necessary elements. Node availability, necessary PVC storage allocations and processing requirements are a few of the resource considerations to make before proceeding.

	Compatibility with Custom Configurations - Given the nearly endless potential for custom configuration settings, it is important to consider any resource or implemenation that might be uniquely tied to the current PostgreSQL Operator version.

	Storage Requirements - An essential part of both the automated and manual upgrade procedures is the reuse of existing PVCs. As such, it is essential that the existing storage settings are maintained for any upgraded clusters.

	As opposed to the manual upgrade procedures, the automated upgrade is designed to leave existing resources (such as CRDs, config maps, secrets, etc) in place whenever possible to minimize the need for resource re-creation.

	Metrics - While the PostgreSQL Operator upgrade process will not delete an existing Metrics Stack, it does not currently support the upgrade of existing metrics infrastructure.


NOTE: As with any upgrade procedure, it is strongly recommended that a full logical backup is taken before any upgrade procedure is started. Please see the Logical Backups section of the Common Tasks page for more information.


Automated Upgrade when using the PostgreSQL Operator Installer (pgo-deployer), Helm or Ansible
For all existing PostgreSQL Operator deployments that were installed using the Ansible installation method, the PostgreSQL Operator Installer or the Helm Chart Installation of the PostgreSQL Operator, the upgrade process is straightforward.
First, you will copy your existing configuration file (whether inventory, postgres-operator.yml, values.yaml, etc, depending on method and version) as a backup for your existing settings. You will reference these settings, but you will need to use the updated version of this file for the current version of PostgreSQL Operator.
In all three cases, you will need to use the relevant update functionality available with your chosen installation method. For all three options, please keep the above Considerations in mind, particularly with regard to the version and storage requirements listed.
PostgreSQL Operator Installer
For existing PostgreSQL Operator deployments that were installed using the PostgreSQL Operator Installer, you will check out the appropriate release tag and update your the new configuration files. After this, you will need to update your Operator installation using the DEPLOY_ACTION method described in the Configuring to Update and Uninstall section of the documentation.
Please note, you will need to ensure that you have executed the post-installation cleanup between each DEPLOY_ACTION activity.

Helm
For existing PostgreSQL Operator deployments that were installed using the Helm installer, you will check out the appropriate release tag and update your the new configuration files. Then you will need to use the helm upgrade command as described in the Helm Upgrade section of the Helm installation documentation.

Ansible
For existing PostgreSQL Operator deployments that were installed using Ansible, you will first need to check out the appropriate release tag of the Operator. Then please follow the [Update Instructions]({{< relref "installation/other/ansible/updating-operator.md" >}}), being sure to update the new inventory file with your required settings.

Wrapping Up the PostgreSQL Operator Upgrade
Once the upgrade is complete, you should now see the PostgreSQL Operator pods are up and ready. It is strongly recommended that you create a test cluster to validate proper functionality before moving on to the Automated Cluster Upgrade section below.


Automated Upgrade when using a Bash installation of the PostgreSQL Operator
Like the Ansible procedure given above, the Bash upgrade procedure for upgrading the PostgreSQL Operator will require some manual configuration steps before the upgrade can take place. These updates will be made to your user's environment variables and the pgo.yaml configuration file.
PostgreSQL Operator Configuration Updates
To begin, you will need to make the following updates to your existing configuration.
Bashrc File Updates
First, you will make the following updates to your $HOME/.bashrc file.
When upgrading from version 4.1.X, in $HOME/.bashrc
Add the following variables:
export TLS_CA_TRUST=""
export ADD_OS_TRUSTSTORE=false
export NOAUTH_ROUTES=""

# Disable default inclusion of OS trust in PGO clients
export EXCLUDE_OS_TRUST=false
Then, for either 4.1.X or 4.2.X,
Update the PGO_VERSION variable to {{< param operatorVersion >}}
Finally, source this file with
source $HOME/.bashrc

PostgreSQL Operator Configuration File updates
Next, you will and save a copy of your existing pgo.yaml file ($PGOROOT/conf/postgres-operator/pgo.yaml) as pgo_old.yaml or similar.
Once this is saved, you will checkout the current release of the PostgreSQL Operator and update the pgo.yaml for the current version, making sure to make updates to the CCPImageTag and storage settings in line with the Considerations given above.


Upgrading the Operator
Once the above configuration updates are completed, the PostgreSQL Operator can be upgraded. To help ensure that needed resources are not inadvertently deleted during an upgrade of the PostgreSQL Operator, a helper script is provided. This script provides a similar function to the Ansible installation method's 'update' tag, where the Operator is undeployed, and the designated namespaces, RBAC rules, pods, etc are redeployed or recreated as appropriate, but required CRDs and other resources are left in place.
To use the script, execute:
$PGOROOT/deploy/upgrade-pgo.sh
This script will undeploy the current PostgreSQL Operator, configure the desired namespaces, install the RBAC configuration, deploy the new Operator, and, attempt to install a new PGO client, assuming default location settings are being used.
After this script completes, it is strongly recommended that you create a test cluster to validate the Operator is functioning as expected before moving on to the individual cluster upgrades.



PostgreSQL Operator Automated Cluster Upgrade
Previously, the existing cluster upgrade focused on updating a cluster's underlying container images. However, due to the various changes in the PostgreSQL Operator's operation between the various versions (including numerous updates to the relevant CRDs, integration of Patroni for HA and other significant changes), updates between PostgreSQL Operator releases required the manual deletion of the existing clusters while preserving the underlying PVC storage. After installing the new PostgreSQL Operator version, the clusters could be recreated manually with the name of the new cluster matching the existing PVC's name.
The automated upgrade process provides a mechanism where, instead of being deleted, the existing PostgreSQL clusters will be left in place during the PostgreSQL Operator upgrade. While normal Operator functionality will be restricted on these existing clusters until they are upgraded to the currently installed PostgreSQL Operator version, the pods, services, etc will still be in place and accessible via other methods (e.g. kubectl, service IP, etc).
To upgrade a PostgreSQL cluster using the standard (crunchy-postgres-ha) image, you can run the following command:
pgo upgrade mycluster
If you are using the PostGIS-enabled image (i.e. crunchy-postgres-gis-ha) or any other custom images, you will need to add the --ccp-image-tag:
pgo upgrade --ccp-image-tag={{< param centosBase >}}-{{< param postgresVersion >}}-{{< param postgisVersion >}}-{{< param operatorVersion >}} mygiscluster
Where {{< param postgresVersion >}} is the PostgreSQL version, {{< param postgisVersion >}} is the PostGIS version and {{< param operatorVersion >}} is the PostgreSQL Operator version. Please note, no tag validation will be performed and additional steps may be required to upgrade your PostGIS extension implementation. For more information on PostGIS upgrade considerations, please see PostGIS Upgrade Documentation.
This will follow a similar process to the documented manual process, where the pods, deployments, replicasets, pgtasks and jobs are deleted, the cluster's replicas are scaled down and replica PVCs deleted, but the primary PVC and backrest-repo PVC are left in place. Existing services for the primary, replica and backrest-shared-repo are also kept and will be updated to the requirements of the current version. Configmaps and secrets are kept except where deletion is required. For a cluster 'mycluster', the following configmaps will be deleted (if they exist) and recreated:
mycluster-leader
mycluster-pgha-default-config
along with the following secret:
mycluster-backrest-repo-config
The pgcluster CRD will be read, updated automatically and replaced, at which point the normal cluster creation process will take over. The end result of the upgrade should be an identical numer of pods, deployments, replicas, etc with a new pgbackrest backup taken, but existing backups left in place.
Finally, to disable PostgreSQL version checking during the upgrade, such as for when container images are re-tagged and no longer follow the standard version tagging format, use the "ignore-validation" flag:
pgo upgrade mycluster --ignore-validation
That will allow the upgrade to proceed, regardless of the tag values. Please note, the underlying image must still be chosen in accordance with the Considerations listed above.

Manually Upgrading the Operator and PostgreSQL Clusters
In the event that the automated upgrade cannot be used, below are manual upgrade procedures for both PostgreSQL Operator 3.5 and 4.0 releases. These procedures will require action by the Operator administrator of your organization in order to upgrade to the current release of the Operator. Some upgrade steps are still automated within the Operator, but not all are possible with this upgrade method. As such, the pages below show the specific steps required to upgrade different versions of the PostgreSQL Operator depending on your current environment.
NOTE: If you are upgrading from Crunchy PostgreSQL Operator version 4.1.0 or later, the Automated Upgrade Procedure is recommended. If you are upgrading PostgreSQL 12 clusters, you MUST use the Automated Upgrade Procedure.
When performing a manual upgrade, it is recommended to upgrade to the latest PostgreSQL Operator available.
[Manual Upgrade - PostgreSQL Operator 3.5]( {{< relref "upgrade/manual/upgrade35.md" >}})
[Manual Upgrade - PostgreSQL Operator 4]( {{< relref "upgrade/manual/upgrade4.md" >}})

Upgrading the Crunchy PostgreSQL Operator from Version 3.5 to {{< param operatorVersion >}}
This section will outline the procedure to upgrade a given cluster created using PostgreSQL Operator 3.5.x to PostgreSQL Operator version {{< param operatorVersion >}}. This version of the PostgreSQL Operator has several fundamental changes to the existing PGCluster structure and deployment model. Most notably, all PGClusters use the new Crunchy PostgreSQL HA container in place of the previous Crunchy PostgreSQL containers. The use of this new container is a breaking change from previous versions of the Operator.
Crunchy PostgreSQL High Availability Containers
Using the PostgreSQL Operator {{< param operatorVersion >}} requires replacing your crunchy-postgres and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containers respectively. The underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the new high-availability functionality.
A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario, and to automatically heal after a failover event.
When creating your new clusters using version {{< param operatorVersion >}} of the PostgreSQL Operator, the pgo create cluster command will automatically use the new crunchy-postgres-ha image if the image is unspecified. If you are creating a PostGIS enabled cluster, please be sure to use the updated image name and image tag, as with the command:
pgo create cluster mygiscluster --ccp-image=crunchy-postgres-gis-ha --ccp-image-tag={{< param centosBase >}}-{{< param postgresVersion >}}-{{< param postgisVersion >}}-{{< param operatorVersion >}}
Where {{< param postgresVersion >}} is the PostgreSQL version, {{< param postgisVersion >}} is the PostGIS version and {{< param operatorVersion >}} is the PostgreSQL Operator version. Please note, no tag validation will be performed and additional steps may be required to upgrade your PostGIS extension implementation. For more information on PostGIS upgrade considerations, please see PostGIS Upgrade Documentation.
NOTE: As with any upgrade procedure, it is strongly recommended that a full logical backup is taken before any upgrade procedure is started. Please see the Logical Backups section of the Common Tasks page for more information.
Prerequisites.
You will need the following items to complete the upgrade:
	The code for the latest PostgreSQL Operator available
	The latest client binary


Step 1
Create a new Linux user with the same permissions as the existing user used to install the Crunchy PostgreSQL Operator. This is necessary to avoid any issues with environment variable differences between 3.5 and {{< param operatorVersion >}}.

Step 2
For the cluster(s) you wish to upgrade, record the cluster details provided by
pgo show cluster <clustername>
so that your new clusters can be recreated with the proper settings.
Also, you will need to note the name of the primary PVC. If it does not exactly match the cluster name, you will need to recreate your cluster using the primary PVC name as the new cluster name.
For example, given the following output:
$ pgo show cluster mycluster

cluster : mycluster (crunchy-postgres:centos7-11.5-2.4.2)
    pod : mycluster-7bbf54d785-pk5dq (Running) on kubernetes1 (1/1) (replica)
    pvc : mycluster
    pod : mycluster-ypvq-5b9b8d645-nvlb6 (Running) on kubernetes1 (1/1) (primary)
    pvc : mycluster-ypvq
...
the new cluster's name will need to be "mycluster-ypvq"

Step 3
NOTE: Skip this step if your primary PVC still matches your original cluster name, or if you do not have pgBackrestBackups you wish to preserve for use in the upgraded cluster.
Otherwise, noting the primary PVC name mentioned in Step 2, run
kubectl exec mycluster-backrest-shared-repo-<id> -- bash -c "mv /backrestrepo/mycluster-backrest-shared-repo /backrestrepo/mycluster-ypvq-backrest-shared-repo"
where "mycluster" is the original cluster name, "mycluster-ypvq" is the primary PVC name and "mycluster-backrest-shared-repo-" is the pgBackRest shared repo pod name.

  
  
  
  Prerequisites
  



Prerequisites
The target development host for these instructions is a CentOS 7 or RHEL 7 host. Others operating systems are possible, however we do not support building or running the Operator on others at this time.
Environment Variables
The following environment variables are expected by the steps in this guide:
	Variable	Example	Description
	GOPATH	$HOME/odev | Golang project directory `PGOROOT` | $GOPATH/src/github.com/crunchydata/postgres-operator	Operator repository location
	PGO_BASEOS	{{< param centosBase >}}	Base OS for container images
	PGO_CMD	kubectl	Cluster management tool executable
	PGO_IMAGE_PREFIX	crunchydata	Container image prefix
	PGO_OPERATOR_NAMESPACE	pgo	Kubernetes namespace for the operator
	PGO_VERSION	{{< param operatorVersion >}}	Operator version

examples/envs.sh contains the above variable definitions as well as others used by postgres-operator tools

Other requirements
	The development host has been created, has access to yum updates, and has a regular user account with sudo rights to run yum.
	GOPATH points to a directory containing src,pkg, and bin directories.
	The development host has $GOPATH/bin added to its PATH environment variable. Development tools will be installed to this path. Defining a GOBIN environment variable other than $GOPATH/bin may yield unexpected results.
	The development host has git installed and has cloned the postgres-operator repository to $GOPATH/src/github.com/crunchydata/postgres-operator. Makefile targets below are run from the repository directory.
	Deploying the Operator will require deployment access to a Kubernetes or OpenShift cluster
	Once you have cloned the git repository, you will need to download the CentOS 7 repository files and GPG keys and place them in the $PGOROOT/conf directory. You can do so with the following code:

cd $PGOROOT
curl https://api.developers.crunchydata.com/downloads/repo/rpm-centos/postgresql12/crunchypg12.repo > conf/crunchypg12.repo
curl https://api.developers.crunchydata.com/downloads/repo/rpm-centos/postgresql11/crunchypg11.repo > conf/crunchypg11.repo
curl https://api.developers.crunchydata.com/downloads/gpg/RPM-GPG-KEY-crunchydata-dev > conf/RPM-GPG-KEY-crunchydata-dev






  
  
  
  Building
  
  



Building
Dependencies
Configuring build dependencies is automated via the setup target in the project Makefile:
make setup
The setup target ensures the presence of:
	GOPATH and PATH as described in the prerequisites
	EPEL yum repository
	go compiler version 1.13+
	dep dependency manager
	NSQ messaging binaries
	docker container tool
	buildah OCI image building tool

By default, docker is not configured to run its daemon. Refer to the docker post-installation instructions to configure it to run once or at system startup. This is not done automatically.

Code Generation
Code generation is leveraged to generate the clients and informers utilized to interact with the various Custom Resources (e.g. pgclusters) comprising the PostgreSQL Operator declarative API. Code generation is provided by the Kubernetes code-generator project, and the following two Make targets are included within the PostgreSQL Operator project to both determine if any generated code within the project requires an update, and then update that code as needed:
# Check to see if an update to generated code is needed:
make verify-codegen

# Update any generated code:
make update-codegen
Therefore, in the event that a Custom Resource defined within the PostgreSQL Operator API ($PGOROOT/pkg/apis/crunchydata.com) is updated, the verify-codegen target will indicate that an update is needed, and the update-codegen target should then be utilized to generate the updated code prior to compiling.

Compile
Please be sure to have your GPG Key and .repo file in the conf directory before proceeding.
You will build all the Operator binaries and Docker images by running:
make all
This assumes you have Docker installed and running on your development host.
By default, the Makefile will use buildah to build the container images, to override this default to use docker to build the images, set the IMGBUILDER variable to docker
The project uses the golang dep package manager to vendor all the golang source dependencies into the vendor directory. You typically do not need to run any dep commands unless you are adding new golang package dependencies into the project outside of what is within the project for a given release.
After a full compile, you will have a pgo binary in $HOME/odev/bin and the Operator images in your local Docker registry.






  
  
  
  Deployment
  



Deployment
Now that you have built the PostgreSQL Operator images, you can now deploy them to your Kubernetes cluster. To deploy the image and associated Kubernetes manifests, you can execute the following command:
make deployoperator
If your Kubernetes cluster is not local to your development host, you will need to specify a config file that will connect you to your Kubernetes cluster. See the Kubernetes documentation for details.





  
  
  
  Testing
  



Testing
Once the PostgreSQL Operator is deployed, you can run the end-to-end regression test suite interface with the PostgreSQL client. You need to ensure that the pgo client executable is in your $PATH. The test suite can be run using the following commands:
cd $PGOROOT/testing/pgo_cli
GO111MODULE=on go test -count=1 -parallel=2 -timeout=30m -v .
For more information, please follow the testing README in the source repository.





  
  
  
  Troubleshooting
  



Troubleshooting
Debug level logging in turned on by default when deploying the Operator.
Sample bash functions are supplied in examples/envs.sh to view the Operator logs.
You can view the Operator REST API logs with the alog bash function.
You can view the Operator core logic logs with the olog bash function.
You can view the Scheduler logs with the slog bash function.
These logs contain the following details:
Timestamp
Logging Level
Message Content
Function Information
File Information
PGO version
Additionally, you can view the Operator deployment Event logs with the elog bash function.
You can enable the pgo CLI debugging with the following flag:
pgo version --debug
You can set the REST API URL as follows after a deployment if you are developing on your local host by executing the setip bash function.
Documentation
The documentation website is generated using Hugo.

Hosting Hugo Locally (Optional)
If you would like to build the documentation locally, view the official Installing Hugo guide to set up Hugo locally.
You can then start the server by running the following commands -
cd $PGOROOT/docs/
hugo server
The local version of the Hugo server is accessible by default from localhost:1313. Once you've run hugo server, that will let you interactively make changes to the documentation as desired and view the updates in real-time.

Contributing to the Documentation
All documentation is in Markdown format and uses Hugo weights for positioning of the pages.
The current production release documentation is updated for every tagged major release.
When you're ready to commit a change, please verify that the documentation generates locally.
If you would like to submit an feature / issue for us to consider please submit an to the official GitHub Repository.
If you would like to work the issue, please add that information in the issue so that we can confirm we are not already working no need to duplicate efforts.
If you have any question you can submit a Support - Question and Answer issue and we will work with you on how you can get more involved.
So you decided to submit an issue and work it. Great! Let's get it merged in to the codebase. The following will go a long way to helping get the fix merged in quicker.
	Create a pull request from your fork to the master branch.
	Update the checklists in the Pull Request Description.
	Reference which issues this Pull Request is resolving.

Crunchy Data announces the release of the PostgreSQL Operator 4.4.1 on November 25, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The PostgreSQL Operator 4.4.2 release includes the following software versions upgrades:
	The PostgreSQL containers now use versions 12.5, 11.10, 10.15, 9.6.20, and 9.5.24

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.

Fixes
	Proper determination if a pgcluster custom resource creation has been processed by its corresponding Postgres Operator controller. This prevents the custom resource from being run by the creation logic multiple times.
	The pgo scaledown now allows for the removal of replicas that are not actively running.
	The pgo scaledown --query command now shows replicas that may not be in an active state.
	Fix readiness check for a standby leader. Previously, the standby leader would not report as ready, even though it was. Reported by Alec Rooney (@alrooney).
	pgBackRest commands can now be executed even if there are multiple pgBackRest Pods available in a Deployment, so long as there is only one "running" pgBackRest Pod. Reported by Rubin Simons (@rubin55).
	Ensure pgBackRest S3 Secrets can be upgraded from PostgreSQL Operator 4.3.
	Ensure pgBouncer Port is derived from the cluster's port, not the Operator configuration defaults.
	External WAL PVCs are only removed for the replica they are targeted for on a scaledown. Reported by (@dakine1111).
	Ensure pgo show backup will work regardless of state of any of the PostgreSQL clusters. This pulls the information directly from the pgBackRest Pod itself. Reported by (@saltenhub).
	When deleting a cluster with the --keep-backups flag, ensure that backups that were created via --backup-type=pgdump are retained.
	Return an error if a cluster is not found when using pgo df instead of timing out.
	The operator container will no longer panic if all Deployments are scaled to 0 without using the pgo update cluster <mycluster> --shutdown command.
	Ensure that sidecars (e.g. metrics collection, pgAdmin 4, pgBouncer) are deployable when using the PostGIS-enabled PostgreSQL image. Reported by Jean-Denis Giguère (@jdenisgiguere).
	Allow for special characters in pgBackRest environmental variables. Reported by (@SockenSalat).
	Ensure password for the pgbouncer administrative user stays synchronized between an existing Kubernetes Secret and PostgreSQL should the pgBouncer be recreated.
	When uninstalling an instance of the Postgres Operator in a Kubernetes cluster that has multiple instances of the Postgres Operator, ensure that only the requested instance to be uninstalled is the one that's uninstalled.
	The logger no longer defaults to using a log level of DEBUG.

Crunchy Data announces the release of the PostgreSQL Operator 4.4.1 on August 17, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The PostgreSQL Operator 4.4.1 release includes the following software versions upgrades:
	The PostgreSQL containers now use versions 12.4, 11.9, 10.14, 9.6.19, and 9.5.23

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.

Fixes
	The pgBackRest URI style defaults to host if it is not set.
	Fix pgo label when applying multiple labels at once.
	pgBadger now has a default memory limit of 64Mi, which should help avoid a visit from the OOM killer.
	Fix pgo create pgorole so that the expression --permissions=* works.

Crunchy Data announces the release of the PostgreSQL Operator 4.4.0 on July 17, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The PostgreSQL Operator 4.4.0 release includes the following software versions upgrades:
	PostGIS 3.0 is now supported. There is now a manual upgrade path between PostGIS containers.
	pgRouting is now included in the PostGIS containers.
	pgBackRest is now at version 2.27.
	pgBouncer is now at version 1.14.

PostgreSQL Operator is tested with Kubernetes 1.15 - 1.18, OpenShift 3.11+, OpenShift 4.4+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.

Major Features
	Create New PostgreSQL Clusters from pgBackRest Repositories
	Improvements to RBAC Reconciliation.
	TLS Authentication for PostgreSQL Instances.
	A Helm Chart is now available and support for deploying the PostgreSQL Operator.

Create New PostgreSQL Clusters from pgBackRest Repositories
A technique frequently used in PostgreSQL data management is to have a pgBackRest repository that can be used to create new PostgreSQL clusters. This can be helpful for a variety of purposes:
	Creating a development or test database from a production data set
	Performing a point-in-time-restore on a database that is separate from the primary database

and more.
This can be accomplished with the following new flags on pgo create cluster:
	--restore-from: used to specify the name of the pgBackRest repository to restore from via the name of the PostgreSQL cluster (whether the PostgreSQL cluster is active or not).
	--restore-opts: used to specify additional options like the ones specified to pgbackrest restore (e.g. --type and --target if performing a point-in-time-recovery).

Only one restore can be performed against a pgBackRest repository at a given time.

RBAC Reconciliation
PostgreSQL Operator 4.3 introduced a change that allows for the Operator to manage the role-based access controls (RBAC) based upon the Namespace Operating mode that is selected. This ensures that the PostgreSQL Operator is able to function correctly within the Namespace or Namespaces that it is permitted to access. This includes Service Accounts, Roles, and Role Bindings within a Namespace.
PostgreSQL Operator 4.4 removes the requirements of granting the PostgreSQL Operator bind and escalate privileges for being able to reconcile its own RBAC, and further defines which RBAC is specifically required to use the PostgreSQL Operator (i.e. the removal of wildcard * privileges). The permissions that the PostgreSQL Operator requires to perform the reconciliation are assigned when it is deployed and is a function of which NAMESPACE_MODE is selected (dynamic, readonly, or disabled).
This change renames the DYNAMIC_RBAC parameter in the installer to RECONCILE_RBAC and is set to true by default.
For more information on how RBAC reconciliation works, please visit the RBAC reconciliation documentation.

TLS Authentication for PostgreSQL Instances
Certificate-based authentication is a powerful PostgreSQL feature that allows for a PostgreSQL client to authenticate using a TLS certificate. While there are a variety of permutations for this can be set up, we can at least create a standardized way for enabling the replication connection to authenticate with a certificate, as we do have a known certificate authority.
PostgreSQL Operator 4.4 introduces the --replication-tls-secret flag on the pgo create cluster command, which, if specified and if the prerequisites are specified (--server-tls-secret and --server-ca-secret), then the replication account ("primaryuser") is configured to use certificate-based authentication. Combine with --tls-only for powerful results.
Note that the common name (CN) on the certificate MUST be "primaryuser", otherwise one must specify a mapping in a pg_ident configuration block to map to "primary" user.
When mounted to the container, the connection sslmode that the replication user uses is set to verify-ca by default. We can make that guarantee based on the certificate authority that is being mounted. Using verify-full would cause the Operator to make assumptions about the cluster that we cannot make, and as such a custom pg_ident configuration block is needed for that. However, using verify-full allows for mutual authentication between primary and replica.


Breaking Changes
	The parameter to set the RBAC reconciliation settings is renamed to RECONCILE_RBAC (from DYNAMIC_RBAC).


Features
	Added support for using the URI path style feature of pgBackRest. This includes:
	Adding the BackrestS3URIStyle configuration parameter to the PostgreSQL Operator ConfigMap (pgo.yaml), which accepts the values of host or path.
	Adding the --pgbackrest-s3-uri-style flag to pgo create cluster, which accepts values of host or path.
	Added support to disable TLS verification when connecting to a pgBackRest repository. This includes:
	Adding the BackrestS3VerifyTLS configuration parameter to the PostgreSQL Operator ConfigMap (pgo.yaml). Defaults to true.
	Adding the --pgbackrest-s3-verify-tls flag to pgo create cluster, which accepts values of true or false.
	Perform a pg_dump from a specific database using the --database flag when using pgo backup with --backup-type=pgdump.
	Restore a pg_dump to a specific database using the --pgdump-database flag using pgo restore when --backup-type=pgdump is specified.
	Allow for support of authentication parameters in the pgha-config (e.g. sslmode). See the documentation for words of caution on using these.
	Add the --client flag to pgo version to output the client version of pgo.
	A Helm Chart using Helm v3 is now available.


Changes
	pgo clone is now deprecated. For a better cloning experience, please use pgo create cluster --restore-from
	The PostgreSQL cluster scope is now utilized to identify and sync the ConfigMap responsible for the DCS for a PostgreSQL cluster.
	The PGMONITOR_PASSWORD is now populated by an environmental variable secret. This environmental variable is only set on a primary instance as it is only needed at the time a PostgreSQL cluster is initialized.
	Remove "Operator Start Time" from pgo status as it is more convenient and accurate to get this information from kubectl and the like, and it was not working due to RBAC privileges. (Reported by @mw-0).
	Removed unused pgcluster attributes PrimaryHost and SecretFrom.
	pgo-rmdata container no longer runs as the root user, but as daemon (UID 2)
	Remove dependency on the expenv binary that was included in the PostgreSQL Operator release. All expenv calls were either replaced with the native envsubst program or removed.


Fixes
	Add validation to ensure that limits for CPU/memory are greater-than-or-equal-to the requests. This applies to any command that can set a limit/request.
	Ensure PVC capacities are being accurately reported when using pgo show cluster
	Ensure WAL archives are pushed to all repositories when pgBackRest is set to use both a local and a S3-based repository
	Silence expected error conditions when a pgBackRest repository is being initialized.
	Deployments with pgo-deployer using the default file with hostpathstorage will now successfully deploy PostgreSQL clusters without any adjustments.
	Add the watch permissions to the pgo-deployer ServiceAccount.
	Ensure the PostgreSQL Operator can be uninstalled by adding list verb ClusterRole privileges to several Kubernetes objects.
	Ensure client-setup.sh executes to completion if existing PostgreSQL Operator credentials exist that were created by a different installation method.
	Ensure client-setup.sh works with when there is an existing pgo client in the install path.
	Update the documentation to properly name CCP_IMAGE_PULL_SECRET_MANIFEST and PGO_IMAGE_PULL_SECRET_MANIFEST in the pgo-deployer configuration.
	Bring up the correct number of pgBouncer replicas when pgo update cluster --startup is issued.
	Fixed issue where pgo scale would not work after pgo update cluster --shutdown and pgo update cluster --startup were run.
	Ensure pgo scaledown deletes external WAL volumes from the replica that is removed.
	Fix for PostgreSQL cluster startup logic when performing a restore.
	Several fixes for selecting default storage configurations and sizes when using the pgo-deployer container. These include #1, #4, and #8.
	Do not consider non-running Pods as primary Pods when checking for multiple primaries (Reported by @djcooklup).
	Fix race condition that could occur while pgo upgrade was running while a HA configuration map attempted to sync. (Reported by Paul Heinen @v3nturetheworld).
	The custom setup example was updated to reflect the current state of bootstrapping the PostgreSQL container.
	Silence "ConfigMap not found" error messages that occurred during PostgreSQL cluster initialization, as these were not real errors.
	Fix an issue with controller processing, which could manifest in PostgreSQL clusters not being deleted.
	Eliminate gcc from the postgres-ha and pgadmin4 containers.

Crunchy Data announces the release of the PostgreSQL Operator 4.3.3 on August 17, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The PostgreSQL Operator 4.3.3 release includes the following software versions upgrades:
	The PostgreSQL containers now use versions 12.4, 11.9, 10.14, 9.6.19, and 9.5.23
	pgBouncer is now at version 1.14.

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.

Changes
	Perform a pg_dump from a specific database using the --database flag when using pgo backup with --backup-type=pgdump.
	Restore a pg_dump to a specific database using the --pgdump-database flag using pgo restore when --backup-type=pgdump is specified.
	Add the --client flag to pgo version to output the client version of pgo.
	The PostgreSQL cluster scope is now utilized to identify and sync the ConfigMap responsible for the DCS for a PostgreSQL cluster.
	The PGMONITOR_PASSWORD is now populated by an environmental variable secret. This environmental variable is only set on a primary instance as it is only needed at the time a PostgreSQL cluster is initialized.
	Remove "Operator Start Time" from pgo status as it is more convenient and accurate to get this information from kubectl and the like, and it was not working due to RBAC privileges. (Reported by @mw-0).
	pgo-rmdata container no longer runs as the root user, but as daemon (UID 2)
	Remove dependency on the expenv binary that was included in the PostgreSQL Operator release. All expenv calls were either replaced with the native envsubst program or removed.


Fixes
	Add validation to ensure that limits for CPU/memory are greater-than-or-equal-to the requests. This applies to any command that can set a limit/request.
	Ensure WAL archives are pushed to all repositories when pgBackRest is set to use both a local and a S3-based repository
	Silence expected error conditions when a pgBackRest repository is being initialized.
	Add the watch permissions to the pgo-deployer ServiceAccount.
	Ensure client-setup.sh works with when there is an existing pgo client in the install path
	Ensure the PostgreSQL Operator can be uninstalled by adding list verb ClusterRole privileges to several Kubernetes objects.
	Bring up the correct number of pgBouncer replicas when pgo update cluster --startup is issued.
	Fixed issue where pgo scale would not work after pgo update cluster --shutdown and pgo update cluster --startup were run.
	Ensure pgo scaledown deletes external WAL volumes from the replica that is removed.
	Fix for PostgreSQL cluster startup logic when performing a restore.
	Do not consider non-running Pods as primary Pods when checking for multiple primaries (Reported by @djcooklup).
	Fix race condition that could occur while pgo upgrade was running while a HA configuration map attempted to sync. (Reported by Paul Heinen @v3nturetheworld).
	Silence "ConfigMap not found" error messages that occurred during PostgreSQL cluster initialization, as these were not real errors.
	Fix an issue with controller processing, which could manifest in PostgreSQL clusters not being deleted.
	Eliminate gcc from the postgres-ha and pgadmin4 containers.
	Fix pgo label when applying multiple labels at once.

Crunchy Data announces the release of the PostgreSQL Operator 4.3.2 on May 27, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
Version 4.3.2 of the PostgreSQL Operator contains bug fixes to the installer container and changes to how CPU/memory requests and limits can be specified.
PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.

Changes
Resource Limit Flags
PostgreSQL Operator 4.3.0 introduced some new options to tune the resource requests for PostgreSQL instances under management and other associated deployments, including pgBackRest and pgBouncer. From some of our learnings of running PostgreSQL in Kubernetes, we heavily restricted how the limits on the Pods could be set, and tied them to be the same as the requests.
Due to feedback from a variety of sources, this caused more issues than it helped, and as such, we decided to introduce a breaking change into a patch release and remove the --enable-*-limit and --disable-*-limit series of flags and replace them with flags that allow you to specifically choose CPU and memory limits.
This release introduces several new flags to various commands, including:
	pgo create cluster --cpu-limit
	pgo create cluster --memory-limit
	pgo create cluster --pgbackrest-cpu-limit
	pgo create cluster --pgbackrest-memory-limit
	pgo create cluster --pgbouncer-cpu-limit
	pgo create cluster --pgbouncer-memory-limit
	pgo update cluster --cpu-limit
	pgo update cluster --memory-limit
	pgo update cluster --pgbackrest-cpu-limit
	pgo update cluster --pgbackrest-memory-limit
	pgo create pgbouncer --cpu-limit
	pgo create pgbouncer --memory-limit
	pgo update pgbouncer --cpu-limit
	pgo update pgbouncer --memory-limit

Additionally, these values can be modified directly in a pgcluster Custom Resource and the PostgreSQL Operator will react and make the modifications.

Other Changes
	The pgo-deployer container can now run using an aribtrary UID.
	For deployments of the PostgreSQL Operator using the pgo-deployer container to OpenShift 3.11 environments, a new template YAML file, postgresql-operator-ocp311.yml is provided. This YAML file requires that the pgo-deployer is run with cluster-admin role for OpenShift 3.11 environments due to the lack of support of the escalate RBAC verb. Other environments (e.g. Kubernetes, OpenShift 4+) still do not require cluster-admin.
	Allow for the resumption of download the pgo client if the client-setup.sh script gets interrupted. Contributed by Itay Grudev (@itay-grudev).



Fixes
	The pgo-deployer container now assigns the required Service Account all the appropriate get RBAC privileges via the postgres-operator.yml file that it needs to properly install. This allows the install functionality to properly work across multiple runs.
	For OpenShift deploymments, the pgo-deployer leverages version 4.4 of the oc client.
	Use numeric UIDs for users in the PostgreSQL Operator management containers to support MustRunAsNonRoot Pod Security Policies and the like. Reported by Olivier Beyler (@obeyler).

Crunchy Data announces the release of the PostgreSQL Operator 4.3.1 on May 18, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The PostgreSQL Operator 4.3.1 release includes the following software versions upgrades:
	The PostgreSQL containers now use versions 12.3, 11.8, 10.13, 9.6.18, and 9.5.22

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.






  
  
  
  Changes
  



Changes
Initial Support for SCRAM
SCRAM is a password authentication method in PostgreSQL that has been available since PostgreSQL 10 and is considered to be superior to the md5 authentication method. The PostgreSQL Operator now introduces support for SCRAM on the pgo create user and pgo update user commands by means of the --password-type flag. The following values for --password-type will select the following authentication methods:
	--password-type="", --password-type="md5" => md5
	--password-type="scram", --password-type="scram-sha-256" => SCRAM-SHA-256

In turn, the PostgreSQL Operator will hash the passwords based on the chosen method and store the computed hash in PostgreSQL.
When using SCRAM support, it is important to note the following observations and limitations:
	When using one of the password modifications commands on pgo update user (e.g. --password, --rotate-password, --expires) with the desire to keep the persisted password using SCRAM, it is necessary to specify the "--password-type=scram-sha-256" directive.
	SCRAM does not work with the current pgBouncer integration with the PostgreSQL Operator. pgBouncer presently supports only one password-based authentication type at a time. Additionally, to enable support for SCRAM, pgBouncer would require a list of plaintext passwords to be stored in a file that is accessible to it. Future work can evaluate how to leverage SCRAM support with pgBouncer.


pgo restart and pgo reload
This release introduces the pgo restart command, which allow you to perform a PostgreSQL restart on one or more instances within a PostgreSQL cluster.
You restart all instances at the same time using the following command:
pgo restart hippo
or specify a specific instance to restart using the --target flag (which follows a similar behavior to the --target flag on pgo scaledown and pgo failover):
pgo restart hippo --target=hippo-abcd
The restart itself is performed by calling the Patroni restart REST endpoint on the specific instance (primary or replica) being restarted.
As with the pgo failover and pgo scaledown commands it is also possible to specify the --query flag to query instances available for restart:
pgo restart mycluster --query
With the new pgo restart command, using --query flag with the pgo failover and pgo scaledown commands include the PENDING RESTART information, which is now returned with any replication information.
This release allows for the pgo reload command to properly reloads all instances (i.e. the primary and all replicas) within the cluster.

Dynamic Namespace Mode and Older Kubernetes Versions
The dynamic namespace mode (e.g. pgo create namespace + pgo delete namespace) provides the ability to create and remove Kubernetes namespaces and automatically add them unto the purview of the PostgreSQL Operator. Through the course of fixing usability issues with working with the other namespaces modes (readonly, disabled), a change needed to be introduced that broke compatibility with Kubernetes 1.12 and earlier.
The PostgreSQL Operator still supports managing PostgreSQL Deployments across multiple namespaces in Kubernetes 1.12 and earlier, but only with readonly mode. In readonly mode, a cluster administrator needs to create the namespace and the RBAC needed to run the PostgreSQL Operator in that namespace. However, it is now possible to define the RBAC required for the PostgreSQL Operator to manage clusters in a namespace via a ServiceAccount, as described in the Namespace section of the documentation.
The usability change allows for one to add namespace to the PostgreSQL Operator's purview (or deploy the PostgreSQL Operator within a namespace) and automatically set up the appropriate RBAC for the PostgreSQL Operator to correctly operate.

Other Changes
	The RBAC required for deploying the PostgreSQL Operator is now decomposed into the exact privileges that are needed. This removes the need for requiring a cluster-admin privilege for deploying the PostgreSQL Operator. Reported by (@obeyler).
	With namespace modes disabled and readonly, the PostgreSQL Operator will now dynamically create the required RBAC when a new namespace is added if that namespace has the RBAC defined in local-namespace-rbac.yaml. This occurs when PGO_DYNAMIC_NAMESPACE is set to true.
	If the PostgreSQL Operator has permissions to manage it's own RBAC within a namespace, it will now reconcile and auto-heal that RBAC as needed (e.g. if it is invalid or has been removed) to ensure it can properly interact with and manage that namespace.
	Add default CPU and memory limits for the metrics collection and pgBadger sidecars to help deployments that wish to have a Pod QoS of Guaranteed. The metrics defaults are 100m/24Mi and the pgBadger defaults are 500m/24Mi. Reported by (@jose-joye).
	Introduce DISABLE_FSGROUP option as part of the installation. When set to true, this does not add a FSGroup to the Pod Security Context when deploying PostgreSQL related containers or pgAdmin 4. This is helpful when deploying the PostgreSQL Operator in certain environments, such as OpenShift with a restricted Security Context Constraint. Defaults to false.
	Remove the custom Security Context Constraint (SCC) that would be deployed with the PostgreSQL Operator, so now the PostgreSQL Operator can be deployed using default OpenShift SCCs (e.g. "restricted", though note that DISABLE_FSGROUP will need to be set to true for that). The example PostgreSQL Operator SCC is left in the examples directory for reference.
	When PGO_DISABLE_TLS is set to true, then PGO_TLS_NO_VERIFY is set to true.
	Some of the pgo-deployer environmental variables that we not needed to be set by a user were internalized. These include ANSIBLE_CONFIG and HOME.
	When using the pgo-deployer container to install the PostgreSQL Operator, update the default watched namespace to pgo as the example only uses this namespace.







  
  
  
  Fixes
  



Fixes
	Fix for cloning a PostgreSQL cluster when the pgBackRest repository is stored in S3.
	The pgo show namespace command now properly indicates which namespaces a user is able to access.
	Ensure the pgo-apiserver will successfully run if PGO_DISABLE_TLS is set to true. Reported by (@zhubx007).
	Prevent a run of pgo-deployer from failing if it detects the existence of dependent cluster-wide objects already present.
	Deployments with pgo-deployer using the default file with hostpathstorage will now successfully deploy PostgreSQL clusters without any adjustments.
	Ensure image pull secrets are attached to deployments of the pgo-client container.
	Ensure client-setup.sh executes to completion if existing PostgreSQL Operator credentials exist that were created by a different installation method
	Update the documentation to properly name CCP_IMAGE_PULL_SECRET_MANIFEST and PGO_IMAGE_PULL_SECRET_MANIFEST in the pgo-deployer configuration.
	Several fixes for selecting default storage configurations and sizes when using the pgo-deployer container. These include #1, #4, and #8 in the STORAGE family of variables.
	The custom setup example was updated to reflect the current state of bootstrapping the PostgreSQL container.

Crunchy Data announces the release of the PostgreSQL Operator 4.3.0 on May 1, 2020.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The PostgreSQL Operator 4.3.0 release includes the following software versions upgrades:
	The PostgreSQL containers now use versions 12.2, 11.7, 10.12, 9.6.17, and 9.5.21
	This now includes support for using the JIT compilation feature introduced in PostgreSQL 11
	PostgreSQL containers now support PL/Python3
	pgBackRest is now at version 2.25
	Patroni is now at version 1.6.5
	postgres_exporter is now at version 0.7.0
	pgAdmin 4 is at 4.18

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.18, OpenShift 3.11+, OpenShift 4.3+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.





  
  
  
  Major Features
  
  



Major Features
	Standby Clusters + Multi-Kubernetes Deployments({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}})
	[Improved custom configuration for PostgreSQL clusters]({{< relref "/advanced/custom-configuration.md" >}})
	Installation via the pgo-deployer container({{< relref "/installation/postgres-operator/_index.md" >}})
	[Automatic Upgrades of the PostgreSQL Operator via pgo upgrade]({{< relref "/upgrade/_index.md" >}})
	Set [custom PVC sizes]({{< relref "pgo-client/common-tasks/_index.md" >}}#create-a-postgresql-cluster-with-different-pvc-sizes) for PostgreSQL clusters on creation and clone
	Support for PostgreSQL Tablespaces({{< relref "/architecture/tablespaces.md" >}})
	The ability to specify an external volume for write-ahead logs (WAL)
	[Elimination of ClusterRole requirement]({{< relref "/architecture/namespace.md" >}}) for using the PostgreSQL Operator
	[Easy TLS-enabled PostgreSQL cluster creation]({{< relref "pgo-client/common-tasks/_index.md" >}}#enable-tls)
	All Operator commands now support TLS-only PostgreSQL workflows
	Feature Preview: [pgAdmin 4 Integration + User Synchronization]({{< relref "/architecture/pgadmin4.md" >}})

Standby Clusters + Multi-Kubernetes Deployments
A key component of building database architectures that can ensure continuity of operations is to be able to have the database available across multiple data centers. In Kubernetes, this would mean being able to have the PostgreSQL Operator be able to have the PostgreSQL Operator run in multiple Kubernetes clusters, have PostgreSQL clusters exist in these Kubernetes clusters, and only ensure the "standby" deployment is promoted in the event of an outage or planned switchover.
As of this release, the PostgreSQL Operator now supports standby PostgreSQL clusters that can be deployed across namespaces or other Kubernetes or Kubernetes-enabled clusters (e.g. OpenShift). This is accomplished by leveraging the PostgreSQL Operator's support for [pgBackRest]({{< relref "/architecture/disaster-recovery.md" >}}) and leveraging an intermediary, i.e. S3, to provide the ability for the standby cluster to read in the PostgreSQL archives and replicate the data. This allows a user to quickly promote a standby PostgreSQL cluster in the event that the primary cluster suffers downtime (e.g. data center outage), for planned switchovers such as Kubernetes cluster maintenance or moving a PostgreSQL workload from one data center to another.
To support standby clusters, there are several new flags available on pgo create cluster that are required to set up a new standby cluster. These include:
	--standby: If set, creates the PostgreSQL cluster as a standby cluster.
	--pgbackrest-repo-path: Allows the user to override the pgBackRest repository path for a cluster. While this setting can now be utilized when creating any cluster, it is typically required for the creation of standby clusters as the repository path will need to match that of the primary cluster.
	--password-superuser: When creating a standby cluster, allows the user to specify a password for the superuser that matches the superuser account in the cluster the standby is replicating from.
	--password-replication: When creating a standby cluster, allows the user to specify a password for the replication user that matches the superuser account in the cluster the standby is replicating from.

Note that the --password flag must be used to ensure the password of the main PostgreSQL user account matches that of the primary PostgreSQL cluster, if you are using Kubernetes to manage the user's password.
For example, if you have a cluster named hippo and wanted to create a standby cluster called hippo and assuming the S3 credentials are using the defaults provided to the PostgreSQL Operator, you could execute a command similar to:
pgo create cluster hippo-standby --standby \
  --pgbackrest-repo-path=/backrestrepo/hippo-backrest-shared-repo
  --password-superuser=superhippo
  --password-replication=replicahippo
To shutdown the primary cluster (if you can), you can execute a command similar to:
pgo update cluster hippo --shutdown
To promote the standby cluster to be able to accept write traffic, you can execute the following command:
pgo update cluster hippo-standby --promote-standby
To convert the old primary cluster into a standby cluster, you can execute the following command:
pgo update cluster hippo --enable-standby
Once the old primary is converted to a standby cluster, you can bring it online with the following command:
pgo update cluster hippo --startup
For information on the architecture and how to [set up a standby PostgreSQL cluster]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}), please refer to the [documentation]({{< relref "/architecture/high-availability/multi-cluster-kubernetes.md" >}}).
At present, streaming replication between the primary and standby clusters are not supported, but the PostgreSQL instances within each cluster do support streaming replication.

Installation via the pgo-deployer container
Installation, alongside upgrading, have long been two of the biggest challenges of using the PostgreSQL Operator. This release makes improvements on both (with upgrading being described in the next section).
For installation, we have introduced a new container called [pgo-deployer]({{< relref "/installation/postgres-operator/index.md" >}}). For environments that use hostpath storage (e.g. minikube), [installing the PostgreSQL Operator]({{< relref "/installation/postgres-operator/index.md" >}}) can be as simple as:
kubectl create namespace pgo
kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v4.3.0/installers/kubectl/postgres-operator.yml
The pgo-deployer container can be configured by a manifest called postgres-operator.yml and provides a set of [environmental variables]({{< relref "/installation/configuration/index.md" >}}) that should be familiar from using the [other installers]({{< relref "/installation/other/index.md" >}}).
The pgo-deployer launches a Job in the namespace that the PostgreSQL Operator will be installed into and sets up the requisite Kubernetes objects: CRDs, Secrets, ConfigMaps, etc.
The pgo-deployer container can also be used to uninstall the PostgreSQL Operator. For more information, please see the [installation documentation]({{< relref "/installation/_index.md" >}}).

Automatic PostgreSQL Operator Upgrade Process
One of the biggest challenges to using a newer version of the PostgreSQL Operator was upgrading from an older version.
This release introduces the ability to [automatically upgrade from an older version of the Operator]({{< relref "/upgrade/index.md" >}}) (as early as 4.1.0) to the newest version (4.3.0) using the [pgo upgrade]({{< relref "/pgo-client/reference/pgoupgrade.md" >}}) command.
The pgo upgrade command follows a process similar to the [manual PostgreSQL Operator upgrade]({{< relref "/upgrade/manual/upgrade4.md" >}}) process, but instead automates it.
To find out more about how to upgrade the PostgreSQL Operator, please review the [upgrade documentation]({{< relref "/upgrade/_index.md" >}}).

Improved Custom Configuration for PostgreSQL Clusters
The ability to customize the configuration for a PostgreSQL cluster with the PostgreSQL Operator can now be easily modified by making changes directly to the ConfigMap that is created with each PostgreSQL cluster. The ConfigMap, which follows the pattern <clusterName>-pgha-config (e.g. hippo-pgha-config for pgo create cluster hippo), manages the user-facing configuration settings available for a PostgreSQL cluster, and when modified, it will automatically synchronize the settings across all primaries and replicas in a PostgreSQL cluster.
Presently, the ConfigMap can be edited using the kubectl edit cm command, and future iterations will add functionality to the PostgreSQL Operator to make this process easier.

Customize PVC Size on PostgreSQL cluster Creation & Clone
The PostgreSQL Operator provides the ability to set customization for how large the PVC can be via the "storage config" options available in the PostgreSQL Operator configuration file (aka pgo.yaml). While these provide a baseline level of customizability, it is often important to be able to set the size of the PVC that a PostgreSQL cluster should use at cluster creation time. In other words, users should be able to choose exactly how large they want their PostgreSQL PVCs ought to be.
PostgreSQL Operator 4.3 introduces the ability to set the PVC sizes for the PostgreSQL cluster, the pgBackRest repository for the PostgreSQL cluster, and the PVC size for each tablespace at cluster creation time. Additionally, this behavior has been extended to the clone functionality as well, which is helpful when trying to resize a PostgreSQL cluster. Here is some information on the flags that have been added:
pgo create cluster
--pvc-size - sets the PVC size for the PostgreSQL data directory --pgbackrest-pvc-size - sets the PVC size for the PostgreSQL pgBackRest repository
For tablespaces, one can use the pvcsize option to set the PVC size for that tablespace.

pgo clone cluster
--pvc-size - sets the PVC size for the PostgreSQL data directory for the newly created cluster --pgbackrest-pvc-size - sets the PVC size for the PostgreSQL pgBackRest repository for the newly created cluster


Tablespaces
Tablespaces can be used to spread out PostgreSQL workloads across multiple volumes, which can be used for a variety of use cases:
	Partitioning larger data sets
	Putting data onto archival systems
	Utilizing hardware (or a storage class) for a particular database object, e.g. an index

and more.
Tablespaces can be created via the pgo create cluster command using the --tablespace flag. The arguments to --tablespace can be passed in using one of several key/value pairs, including:
	name (required) - the name of the tablespace
	storageconfig (required) - the storage configuration to use for the tablespace
	pvcsize - if specified, the size of the PVC. Defaults to the PVC size in the storage configuration

Each value is separated by a :, for example:
pgo create cluster hacluster --tablespace=name=ts:storageconfig=nfsstorage
All tablespaces are mounted in the /tablespaces directory. The PostgreSQL Operator manages the mount points and persistent volume claims (PVCs) for the tablespaces, and ensures they are available throughout all of the PostgreSQL lifecycle operations, including:
	Provisioning
	Backup & Restore
	High-Availability, Failover, Healing
	Clone

etc.
One additional value is added to the pgcluster CRD:
	TablespaceMounts: a map of the name of the tablespace and its associated storage.

Tablespaces are automatically created in the PostgreSQL cluster. You can access them as soon as the cluster is initialized. For example, using the tablespace created above, you could create a table on the tablespace ts with the following SQL:
CREATE TABLE (id int) TABLESPACE ts;
Tablespaces can also be added to existing PostgreSQL clusters by using the pgo update cluster command. The syntax is similar to that of creating a PostgreSQL cluster with a tablespace, i.e.:
pgo update cluster hacluster --tablespace=name=ts2:storageconfig=nfsstorage
As additional volumes need to be mounted to the Deployments, this action can cause downtime, though the expectation is that the downtime is brief.
Based on usage, future work will look to making this more flexible. Dropping tablespaces can be tricky as no objects must exist on a tablespace in order for PostgreSQL to drop it (i.e. there is no DROP TABLESPACE .. CASCADE command).

Easy TLS-Enabled PostgreSQL Clusters
Connecting to PostgreSQL clusters is a typical requirement when deploying to an untrusted network, such as a public cloud. The PostgreSQL Operator makes it easy to enable TLS for PostgreSQL. To do this, one must create two secrets prior: one containing the trusted certificate authority (CA) and one containing the PostgreSQL server's TLS keypair, e.g.:
kubectl create secret generic postgresql-ca --from-file=ca.crt=/path/to/ca.crt
kubectl create secret tls hippo-tls-keypair \
  --cert=/path/to/server.crt \
  --key=/path/to/server.key
From there, one can create a PostgreSQL cluster that supports TLS with the following command:
pgo create cluster hippo-tls \
  --server-ca-secret=postgresql-ca \
  --server-tls-secret=hippo-tls-keypair
To create a PostgreSQL cluster that only accepts TLS connections and rejects any connection attempts made over an insecure channel, you can use the --tls-only flag on cluster creation, e.g.:
pgo create cluster hippo-tls \
  --tls-only \
  --server-ca-secret=postgresql-ca \
  --server-tls-secret=hippo-tls-keypair
External WAL Volume
An optimization used for improving PostgreSQL performance related to file system usage is to have the PostgreSQL write-ahead logs (WAL) written to a different mounted volume than other parts of the PostgreSQL system, such as the data directory.
To support this, the PostgreSQL Operator now supports the ability to specify an external volume for writing the PostgreSQL write-head log (WAL) during cluster creation, which carries through to replicas and clones. When not specified, the WAL resides within the PGDATA directory and volume, which is the present behavior.
To create a PostgreSQL cluster to use an external volume, one can use the --wal-storage-config flag at cluster creation time to select the storage configuration to use, e.g.
pgo create cluster --wal-storage-config=nfsstorage hippo
Additionally, it is also possible to specify the size of the WAL storage on all newly created clusters. When in use, the size of the volume can be overridden per-cluster. This is specified with the --wal-storage-size flag, i.e.
pgo create cluster --wal-storage-config=nfsstorage --wal-storage-size=10Gi hippo
This implementation does not define the WAL volume in any deployment templates because the volume name and mount path are constant.


Elimination of ClusterRole Requirement for the PostgreSQL Operator
PostgreSQL Operator 4.0 introduced the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces. PostgreSQL Operator 4.1 built on this functionality by allowing users to dynamically control which Namespaces it managed as well as the PostgreSQL clusters deployed to them. In order to leverage this feature, one must grant a ClusterRole level permission via a ServiceAccount to the PostgreSQL Operator.
There are a lot of deployment environments for the PostgreSQL Operator that only need for it to exists within a single namespace and as such, granting cluster-wide privileges is superfluous, and in many cases, undesirable. As such, it should be possible to deploy the PostgreSQL Operator to a single namespace without requiring a ClusterRole.
To do this, but maintain the aforementioned Namespace functionality for those who require it, PostgreSQL Operator 4.3 introduces the ability to opt into deploying it with minimum required ClusterRole privileges and in turn, the ability to deploy the PostgreSQL Operator without a ClusterRole. To do so, the PostgreSQL Operator introduces the concept of "namespace operating mode" which lets one select the type deployment to create. The namespace mode is set at the install time for the PostgreSQL Operator, and files into one of three options:
	dynamic: This is the default. This enables full dynamic Namespace management capabilities, in which the PostgreSQL Operator can create, delete and update any Namespaces within the Kubernetes cluster, while then also having the ability to create the Roles, Role Bindings and Service Accounts within those Namespaces for normal operations. The PostgreSQL Operator can also listen for Namespace events and create or remove controllers for various Namespaces as changes are made to Namespaces from Kubernetes and the PostgreSQL Operator's management.

	readonly: In this mode, the PostgreSQL Operator is able to listen for namespace events within the Kubernetetes cluster, and then manage controllers as Namespaces are added, updated or deleted. While this still requires a ClusterRole, the permissions mirror those of a "read-only" environment, and as such the PostgreSQL Operator is unable to create, delete or update Namespaces itself nor create RBAC that it requires in any of those Namespaces. Therefore, while in readonly, mode namespaces must be preconfigured with the proper RBAC as the PostgreSQL Operator cannot create the RBAC itself.

	disabled: Use this mode if you do not want to deploy the PostgreSQL Operator with any ClusterRole privileges, especially if you are only deploying the PostgreSQL Operator to a single namespace. This disables any Namespace management capabilities within the PostgreSQL Operator and will simply attempt to work with the target Namespaces specified during installation. If no target Namespaces are specified, then the Operator will be configured to work within the namespace in which it is deployed. As with the readonly mode, while in this mode, Namespaces must be pre-configured with the proper RBAC, since the PostgreSQL Operator cannot create the RBAC itself.


Based on the installer you use, the variables to set this mode are either named:
	PostgreSQL Operator Installer: NAMESPACE_MODE
	Developer Installer: PGO_NAMESPACE_MODE
	Ansible Installer: namespace_mode


Feature Preview: pgAdmin 4 Integration + User Synchronization
pgAdmin 4 is a popular graphical user interface that lets you work with PostgreSQL databases from both a desktop or web-based client. With its ability to manage and orchestrate changes for PostgreSQL users, the PostgreSQL Operator is a natural partner to keep a pgAdmin 4 environment synchronized with a PostgreSQL environment.
This release introduces an integration with pgAdmin 4 that allows you to deploy a pgAdmin 4 environment alongside a PostgreSQL cluster and keeps the user's database credentials synchronized. You can simply log into pgAdmin 4 with your PostgreSQL username and password and immediately have access to your databases.
For example, let's there is a PostgreSQL cluster called hippo that has a user named hippo with password datalake:
pgo create cluster hippo --username=hippo --password=datalake
After the PostgreSQL cluster becomes ready, you can create a pgAdmin 4 deployment with the [pgo create pgadmin]({{< relref "/pgo-client/reference/pgo_create_pgadmin.md" >}}) command:
pgo create pgadmin hippo
This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information into it. To access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:
kubectl port-forward svc/hippo-pgadmin 5050:5050
Point your browser at http://localhost:5050 and use your database username (e.g. hippo) and password (e.g. datalake) to log in.
(Note: if your password does not appear to work, you can retry setting up the user with the [pgo update user]({{< relref "/pgo-client/reference/pgo_update_user.md" >}}) command: pgo update user hippo --password=datalake)
The pgo create user, pgo update user, and pgo delete user commands are synchronized with the pgAdmin 4 deployment. Note that if you use pgo create user without the --managed flag prior to deploying pgAdmin 4, then the user's credentials will not be synchronized to the pgAdmin 4 deployment. However, a subsequent run of pgo update user --password will synchronize the credentials with pgAdmin 4.
You can remove the pgAdmin 4 deployment with the [pgo delete pgadmin]({{< relref "/pgo-client/reference/pgo_delete_pgadmin.md" >}}) command.
We have released the first version of this change under "feature preview" so you can try it out. As with all of our features, we open to feedback on how we can continue to improve the PostgreSQL Operator.

Enhanced pgo df
pgo df provides information on the disk utilization of a PostgreSQL cluster, and previously, this was not reporting accurate numbers. The new pgo df looks at each PVC that is mounted to each PostgreSQL instance in a cluster, including the PVCs for tablespaces, and computers the overall utilization. Even better, the data is returned in a structured format for easy scraping. This implementation also leverages Golang concurrency to help compute the results quickly.

Enhanced pgBouncer Integration
The pgBouncer integration was completely rewritten to support the TLS-only operations via the PostgreSQL Operator. While most of the work was internal, you should now see a much more stable pgBouncer experience.
The pgBouncer attributes in the pgclusters.crunchydata.com CRD are also declarative and any updates will be reflected by the PostgreSQL Operator.
Additionally, a few new commands were added:
	pgo create pgbouncer --cpu and pgo update pgbouncer --memory resource request flags for settings container resources for the pgBouncer instances. For CPU, this will also set the limit.
	pgo create pgbouncer --enable-memory-limit sets the Kubernetes resource limit for memory
	pgo create pgbouncer --replicas sets the number of pgBouncer Pods to deploy with a PostgreSQL cluster. The default is 1.
	pgo show pgbouncer shows information about a pgBouncer deployment
	pgo update pgbouncer --cpu and pgo update pgbouncer --memory resource request flags for settings container resources for the pgBouncer instances after they are deployed. For CPU, this will also set the limit.
	pgo update pgbouncer --disables-memory-limit and pgo update pgbouncer --enable-memory-limit respectively unset and set the Kubernetes resource limit for memory
	pgo update pgbouncer --replicas sets the number of pgBouncer Pods to deploy with a PostgreSQL cluster.
	pgo update pgbouncer --rotate-password allows one to rotate the service account password for pgBouncer


Rewritten pgo User Management commands
The user management commands were rewritten to support the TLS only workflow. These commands now return additional information about a user when actions are taken. Several new flags have been added too, including the option to view all output in JSON. Other flags include:
	pgo update user --rotate-password to automatically rotate the password
	pgo update user --disable-login which disables the ability for a PostgreSQL user to login
	pgo update user --enable-login which enables the ability for a PostgreSQL user to login
	pgo update user --valid-always which sets a password to always be valid, i.e. it has no expiration
	pgo show user does not show system accounts by default now, but can be made to show the system accounts by using pgo show user --show-system-accounts

A major change as well is that the default password expiration function is now defaulted to be unlimited (i.e. never expires) which aligns with typical PostgreSQL workflows.






  
  
  
  Breaking Changes
  



Breaking Changes
	pgo create cluster will now set the default database name to be the name of the cluster. For example, pgo create cluster hippo would create the initial database named hippo.
	The Database configuration parameter in pgo.yaml (db_name in the Ansible inventory) is now set to "" by default.
	the --password/-w flag for pgo create cluster now only sets the password for the regular user account that is created, not all of the system accounts (e.g. the postgres superuser).
	A default postgres-ha.yaml file is no longer is no longer created by the Operator for every PostgreSQL cluster.
	"Limit" resource parameters are no longer set on the containers, in particular, the PostgreSQL container, due to undesired behavior stemming from the host machine OOM killer. Further details can be found in the original pull request.
	Added DefaultInstanceMemory, DefaultBackrestMemory, and DefaultPgBouncerMemory options to the pgo.yaml configuration to allow for the setting of default memory requests for PostgreSQL instances, the pgBackRest repository, and pgBouncer instances respectively.
	If unset by either the PostgreSQL Operator configuration or one-off, the default memory resource requests for the following applications are:
	PostgreSQL: The installers default to 128Mi (suitable for test environments), though the "default of last resort" is 512Mi to be consistent with the PostgreSQL default shared memory requirement
	pgBackRest: 48Mi
	pgBouncer: 24Mi
	Remove the Default...ContainerResources set of parameters from the pgo.yaml configuration file.
	The pgbackups.crunchydata.com, deprecated since 4.2.0, has now been completely removed, along with any code that interfaced with it.
	The PreferredFailoverFeature is removed. This had not been doing anything since 4.2.0, but some of the legacy bits and configuration were still there.
	pgo status no longer returns information about the nodes available in a Kubernetes cluster
	Remove --series flag from pgo create cluster command. This affects API calls more than actual usage of the pgo client.
	pgo benchmark, pgo show benchmark, pgo delete benchmark are removed. PostgreSQL benchmarks with pgbench can still be executed using the crunchy-pgbench container.
	pgo ls is removed.
	The API that is used by pgo create cluster now returns its contents in JSON. The output now includes information about the user that is created.
	The API that is used by pgo show backup now returns its contents in JSON. The output view of pgo show backup remains the same.
	Remove the PreferredFailoverNode feature, as it had already been effectively removed.
	Remove explicit rm calls when cleaning up PostgreSQL clusters. This behavior is left to the storage provisioner that one deploys with their PostgreSQL instances.
	Schedule backup job names have been shortened, and follow a pattern that looks like <clusterName>-<backupType>-sch-backup






  
  
  
  Features
  



Features
	Several additions to pgo create cluster around PostgreSQL users and databases, including:
	--ccp-image-prefix sets the CCPImagePrefix that specifies the image prefix for the PostgreSQL related containers that are deployed by the PostgreSQL Operator
	--cpu flag that sets the amount of CPU to use for the PostgreSQL instances in the cluster. This also sets the limit. ---database / -d flag that sets the name of the initial database created.
	--enable-memory-limit, --enable-pgbackrest-memory-limit, --enable-pgbouncer-memory-limit enable the Kubernetes memory resource limit for PostgreSQL, pgBackRest, and pgBouncer respectively
	--memory flag that sets the amount of memory to use for the PostgreSQL instances in the cluster
	--user / -u flag that sets the PostgreSQL username for the standard database user
	--password-length sets the length of the password that should be generated, if --password is not set.
	--pgbackrest-cpu flag that sets the amount of CPU to use for the pgBackRest repository
	--pgbackrest-memory flag that sets the amount of memory to use for the pgBackRest repository
	--pgbackrest-s3-ca-secret specifies the name of a Kubernetes Secret that contains a key (aws-s3-ca.crt) to override the default CA used for making connections to a S3 interface
	--pgbackrest-storage-config lets one specify a different storage configuration to use for a local pgBackRest repository
	--pgbouncer-cpu flag that sets the amount of CPU to use for the pgBouncer instances
	--pgbouncer-memory flag that sets the amount of memory to use for the pgBouncer instances
	--pgbouncer-replicas sets the number of pgBouncer Pods to deploy with the PostgreSQL cluster. The default is 1.
	--pgo-image-prefix sets the PGOImagePrefix that specifies the image prefix for the PostgreSQL Operator containers that help to manage the PostgreSQL clusters
	--show-system-accounts returns the credentials of the system accounts (e.g. the postgres superuser) along with the credentials for the standard database user
	pgo update cluster now supports the --cpu, --disable-memory-limit, --disable-pgbackrest-memory-limit, --enable-memory-limit, --enable-pgbackrest-memory-limit, --memory, --pgbackrest-cpu, and --pgbackrest-memory flags to allow PostgreSQL instances and the pgBackRest repository to have their resources adjusted post deployment
	Added the PodAntiAffinityPgBackRest and PodAntiAffinityPgBouncer to the pgo.yaml configuration file to set specific Pod anti-affinity rules for pgBackRest and pgBouncer Pods that are deployed along with PostgreSQL clusters that are managed by the Operator. The default for pgBackRest and pgBouncer is to use the value that is set in PodAntiAffinity.
	pgo create cluster now supports the --pod-anti-affinity-pgbackrest and --pod-anti-affinity-pgbouncer flags to specifically overwrite the pgBackRest repository and pgBouncer Pod anti-affinity rules on a specific PostgreSQL cluster deployment, which overrides any values present in PodAntiAffinityPgBackRest and PodAntiAffinityPgBouncer respectfully. The default for pgBackRest and pgBouncer is to use the value for pod anti-affinity that is used for the PostgreSQL instances in the cluster.
	One can specify the "image prefix" (e.g. crunchydata) for the containers that are deployed by the PostgreSQL Operator. This adds two fields to the pgcluster CRD: CCPImagePrefix and `PGOImagePrefix
	Specify a different S3 Certificate Authority (CA) with pgo create cluster by using the --pgbackrest-s3-ca-secret flag, which refers to an existing Secret that contains a key called aws-s3-ca.crt that contains the CA. Reported by Aurelien Marie @(aurelienmarie)
	pgo clone now supports the --enable-metrics flag, which will deploy the monitoring sidecar along with the newly cloned PostgreSQL cluster.
	The pgBackRest repository now uses ED25519 SSH key pairs.
	Add the --enable-autofail flag to pgo update to make it clear how the autofailover mechanism can be re-enabled for a PostgreSQL cluster.






  
  
  
  Changes
  



Changes
	Remove backoffLimit from Jobs that can be retried, which is most of them.
	POSIX shared memory is now used for the PostgreSQL Deployments.
	Increase the number of namespaces that can be watched by the PostgreSQL Operator.
	The number of unsupported pgBackRest flags on the deny list has been reduced.
	The liveness and readiness probes for a PostgreSQL cluster now reference the /opt/cpm/bin/health
	wal_level is now defaulted to logical to enable logical replication
	archive_timeout is now a default setting in the crunchy-postgres-ha and crunchy-postgres-ha-gis containers and is set to 60
	ArchiveTimeout, LogStatement, LogMinDurationStatement are removed from pgo.yaml, as these can be customized either via a custom postgresql.conf file or postgres-ha.yaml file
	Quoted identifiers for the database name and user name in bootstrap scripts for the PostgreSQL containers
	Password generation now leverages cryptographically secure random number generation and uses the full set of typeable ASCII characters
	The node ClusterRole is no longer used
	The names of the scheduled backups are shortened to use the pattern <clusterName>-<backupType>-sch-backup
	The PostgreSQL Operator now logs its timestamps using RFC3339 formatting as implemented by Go
	SSH key pairs are no longer created as part of the Operator installation process. This was a legacy behavior that had not been removed
	The pv/create-pv-nfs.sh has been modified to create persistent volumes with their own directories on the NFS filesystems. This better mimics production environments. The older version of the script still exists as pv/create-pv-nfs-legacy.sh
	Load pgBackRest S3 credentials into environmental variables as Kubernetes Secrets, to avoid revealing their contents in Kubernetes commands or in logs
	Update how the pgBackRest and pgMonitor pamareters are loaded into Deployment templates to no longer use JSON fragments
	The pgo-rmdata Job no longer calls the rm command on any data within the PVC, but rather leaves this task to the storage provisioner
	Remove using expenv in the add-targeted-namespace.sh script






  
  
  
  Fixes
  



Fixes
	Ensure PostgreSQL clusters can be successfully restored via pgo restore after 'pgo scaledown' is executed
	Allow the original primary to be removed with pgo scaledown after it is failed over
	The replica Service is now properly managed based on the existence of replicas in a PostgreSQL cluster, i.e. if there are replicas, the Service exists, if not, it is removed
	Report errors in a SQL policy at the time pgo apply is executed, which was the previous behavior. Reported by José Joye (@jose-joye)
	Ensure all replicas are listed out via the --query flag in pgo scaledown and pgo failover. This now follows the pattern outlined by the Kubernetes safe random string generator
	Default the recovery action to "promote" when performing a "point-in-time-recovery" (PITR), which will ensure that a PITR process completes
	The stanza-create Job now waits for both the PostgreSQL cluster and the pgBackRest repository to be ready before executing
	Remove backoffLimit from Jobs that can be retried, which is most of them. Reported by Leo Khomenko (@lkhomenk)
	The pgo-rmdata Job will not fail if a PostgreSQL cluster has not been properly initialized
	Fixed a separate pgo-rmdata crash related to an improper SecurityContext
	The failover ConfigMap for a PostgreSQL cluster is now removed when the cluster is deleted
	Allow the standard PostgreSQL user created with the Operator to be able to create and manage objects within its own user schema. Reported by Nicolas HAHN (@hahnn)
	Honor the value of "PasswordLength" when it is set in the pgo.yaml file for password generation. The default is now set at 24
	Do not log pgBackRest environmental variables to the Kubernetes logs
	By default, exclude using the trusted OS certificate authority store for the Windows pgo client.
	Update the pgo-client imagePullPolicy to be IfNotPresent, which is the default for all of the managed containers across the project
	Set UsePAM yes in the sshd_config file to fix an issue with using SSHD in newer versions of Docker
	Only add Operator labels to a managed namespace if the namespace already exists when executing the add-targeted-namespace.sh script

Crunchy Data announces the release of the PostgreSQL Operator 4.2.2 on February, 18, 2020.
The PostgreSQL Operator 4.2.2 release provides bug fixes and continued support to the 4.2 release line.
This release includes updates for several packages supported by the PostgreSQL Operator, including:
	The PostgreSQL containers now use versions 12.2, 11.7, 10.12, 9.6.17, and 9.5.21
	The PostgreSQL containers now support PL/Python3
	Patroni is updated to version 1.6.4

The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
PostgreSQL Operator is tested with Kubernetes 1.13+, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.





  
  
  
  Changes since 4.2.1
  



Changes since 4.2.1
	Added the --enable-autofail flag to pgo update to make it clear how the auto-failover mechanism can be re-enabled for a PostgreSQL cluster.
	Remove using expenv in the add-targeted-namespace.sh script






  
  
  
  Fixes since 4.2.1
  



Fixes since 4.2.1
	Ensure PostgreSQL clusters can be successfully restored via pgo restore after 'pgo scaledown' is executed
	Ensure all replicas are listed out via the --query flag in pgo scaledown and pgo failover. This now follows the pattern outlined by the Kubernetes safe random string generator (#1247)
	Honor the value of "PasswordLength" when it is set in the pgo.yaml file for password generation. The default is now set at 24
	Set UsePAM yes in the sshd_config file to fix an issue with using SSHD in newer versions of Docker
	The backup task listed in the pgtask CRD is now only deleted if one already exists
	Ensure that a successful "rmdata" Job does not delete all cluster pgtasks listed in the CRD after a successful run
	Only add Operator labels to a managed namespace if the namespace already exists when executing the add-targeted-namespace.sh script
	Remove logging of PostgreSQL user credentials in the PostgreSQL Operator logs
	Consolidation of the Dockerfiles for RHEL7/UBI7 builds
	Several fixes to the documentation (#1233)

Crunchy Data announces the release of the PostgreSQL Operator 4.2.1 on January, 16, 2020.
The PostgreSQL Operator 4.2.1 provides bug fixes and continued support to the 4.2 release line.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
PostgreSQL Operator is tested with Kubernetes 1.13+, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+.





  
  
  
  Fixes
  



Fixes
	Ensure Pod labels are updated after failover (#1218)
	Fix for scheduled tasks to continue executing even after pgo delete schedule is called (#1215)
	Ensure pgo restore carries through the --node-label to the new primary (#1206)
	Fix for displaying incorrect replica names with the --query flag on pgo scaledown/pgo failover after a failover occurred
	Fix for default CA exclusion for the Windows-based [pgo client]({{< relref "pgo-client/_index.md" >}})
	Fix a race condition where the pgo-rmdata job could fail when doing its final pass on deleting PVCs. This went unnoticed as it was the final task to occur
	Fix image pull policy for the pgo-client container to match the project default (IfNotPresent)
	Update the "Create CRD Example" to reference the crunchy-postgres-ha container
	Update comments used for the API documentation generation via Swagger
	Update the directions for running the PostgreSQL Operator from the GCP Marketplace deployer
	Updated OLM installer example and added generation script
	Update the "cron" package to v3.0.1

Crunchy Data announces the release of the PostgreSQL Operator 4.2.0 on December, 31, 2019.
The focus of the 4.2.0 release of the PostgreSQL Operator was on the resiliency and uptime of the PostgreSQL clusters that the PostgreSQL Operator manages, with an emphasis on high-availability and removing the Operator from being a single-point-of-failure in the HA process. This release introduces support for a distributed-consensus based high-availability approach using Kubernetes distributed consensus store as the backing, which, in other words, allows for the PostgreSQL clusters to manage their own availability and not the PostgreSQL Operator. This is accomplished by leveraging the open source high-availability framework Patroni as well as the open source, high-performant PostgreSQL disaster recovery management tool pgBackRest.
To accomplish this, we have introduced a new container called crunchy-postgres-ha (and for geospatial workloads, crunchy-postgres-gis-ha). If you are upgrading from an older version of the PostgreSQL Operator, you will need to modify your installation to use these containers.
Included in the PostgreSQL Operator 4.2.0 introduces the following new features:
	An improved PostgreSQL HA (high-availability) solution using distributed consensus that is backed by Kubernetes. This includes:
	Elimination of the PostgreSQL Operator as the arbiter that decides when a cluster should fail over
	Support for Pod anti-affinity, which indicates to Kubernetes schedule pods (e.g. PostgreSQL instances) on separate nodes
	Failed primaries now automatically heal, which significantly reduces the time in which they can rejoin the cluster.
	Introduction of synchronous replication for workloads that are sensitive to transaction loss (with a tradeoff of performance and potentially availability)
	Standardization of physical backups and restores on pgBackRest, with native support for pg_basebackup removed.
	Introduction of the ability to clone PostgreSQL clusters using the pgo clone command. This feature copies the pgBackRest repository from a cluster and creates a new, single instance primary as its own cluster.
	Allow one to use their own certificate authority (CA) when interfacing with the Operator API, and to specify usage of the CA from the pgo command-line interface (CLI)

The container building process has been optimized, with build speed ups reported to be 70% faster.
The Postgres Operator 4.2.0 release also includes the following software versions upgrades:
	The PostgreSQL containers now use versions 12.1, 11.6, 10.11, 9.6.16, and 9.5.20.
	pgBackRest is upgraded to use version 2.20
	pgBouncer is upgraded to use version 1.12
	Patroni uses version 1.6.3

PostgreSQL Operator is tested with Kubernetes 1.13 - 1.15, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+. We have taken steps to ensure the PostgreSQL Operator is compatible with Kubernetes 1.16+, but did not test thoroughly on it for this release. Cursory testing indicates that the PostgreSQL Operator is compatible with Kubernetes 1.16 and beyond, but we advise that you run your own tests.





  
  
  
  Major Features
  



Major Features
High-Availability & Disaster Recovery
PostgreSQL Operator 4.2.0 makes significant enhancements to the high-availability and disaster recovery capabilities of the PostgreSQL Operator by moving to a distributed-consensus based model for maintaining availability, standardizing around pgBackRest for backups and restores, and removing the Operator itself as a single-point-of-failure in relation to PostgreSQL cluster resiliency.
As the high-availability environment introduced by PostgreSQL Operator 4.2.0 is now the default, setting up a HA cluster is as easy as:
pgo create cluster hacluster
pgo scale hacluster --replica-count=2
If you wish to disable high-availability for a cluster, you can use the following command:
pgo create cluster boringcluster --disable-autofail
New Required HA PostgreSQL Containers: crunchy-postgres-ha and crunchy-postgres-gis-ha
Using the PostgreSQL Operator 4.2.0 requires replacing your crunchy-postgres and crunchy-postgres-gis containers with the crunchy-postgres-ha and crunchy-postgres-gis-ha containres respectively. The underlying PostgreSQL installations in the container remain the same but are now optimized for Kubernetes environments to provide the new high-availability functionality.
A major change to this container is that the PostgreSQL process is now managed by Patroni. This allows a PostgreSQL cluster that is deployed by the PostgreSQL Operator to manage its own uptime and availability, to elect a new leader in the event of a downtime scenario, and to automatically heal after a failover event.
Upgrading to these new containers is as simple as modifying your CRD ccpimage parameter to use crunchy-postgres-ha to use the HA enabled containers. Please see our upgrade instructions to select your preferred upgrade strategy.

pgBackRest Standardization
pgBackRest is now the only backup and restore method supported by the PostgreSQL Operator. This has allowed for the following features:
	Faster creation of new replicas when a scale up request is made
	Automatic healing of PostgreSQL instances after a failover event, leveraging the pgBackRest delta restore feature. This allows for a significantly shorter healing process
	The ability to clone PostgreSQL clusters

As part of this standardization, one change to note is that after a PostgreSQL cluster is created, the PostgreSQL Operator will schedule a full backup of the cluster. This is to ensure that a new replica can be created from a pgBackRest backup. If this initial backup fails, no new replicas will be provisioned.
When upgrading from an earlier version, please ensure that you have at least one pgBackRest full backup in your backup repository.

Pod Anti-Affinity
PostgreSQL Operator 4.2.0 adds support for Kubernetes pod anti-affinity, which provides guidance on how Kubernetes should schedule pods relative to each other. This is helpful in high-availability architectures to ensure that PostgreSQL pods are spread out in order to withstand node failures. For example, in a setup with two PostgreSQL instances, you would not want both instances scheduled to the same node: if that node goes down or becomes unreachable, then your cluster will be unavailable!
The way the PostgreSQL Operator uses pod anti-affinity is that it tries to ensure that none of the managed pods within the same cluster are scheduled to the same node. These include:
	Any PostgreSQL instances
	The pod that manages pgBackRest repository
	If deployed, any pgBouncer pods

This helps improve the likelihood that a cluster can remain up even if a downtime event occurs.
There are three options available for pod anti-affinity:
	preferred: Kubernetes will try to schedule any pods within a PostgreSQL cluster to different nodes, but in the event it must schedule two pods on the same node, it will. This is the default option
	required: Kubernetes will schedule pods within a PostgreSQL cluster to different nodes, but in the event it cannot schedule a pod to a different node, it will not schedule the pod until a different node is available. While this guarantees that no pod will share the same node, it can also lead to downtime events as well.
	disabled: Pod anti-affinity is not used.

These options can be combined with the existing node affinity functionality (--node-label) to group the scheduling of pods to particular node labels!

Synchronous Replication
PostgreSQL Operator 4.2 introduces support for synchronous replication by leveraging the "synchronous mode" functionality provided by Patroni. Synchronous replication is useful for workloads that are sensitive to losing transactions, as PostgreSQL will not consider a transaction to be committed until it is committed to all synchronous replicas connected to a primary. This provides a higher guarantee of data consistency and, when a healthy synchronous replica is present, a guarantee of the most up-to-date data during a failover event.
This comes at a cost of performance as PostgreSQL: as PostgreSQL has to wait for a transaction to be committed on all synchronous replicas, a connected client will have to wait longer than if the transaction only had to be committed on the primary (which is how asynchronous replication works). Additionally, there is a potential impact to availability: if a synchronous replica crashes, any writes to the primary will be blocked until a replica is promoted to become a new synchronous replica of the primary.
You can enable synchronous replication by using the --sync-replication flag with the pgo create command.

Updated pgo CLI Flags
	pgo create now has a CLI flag for pod anti-affinity called --pod-anti-affinity, which accepts the values required, preferred, and disabled
	pgo create --sync-replication specifies to create a PostgreSQL HA cluster with synchronous replication


Global Configuration
To support high-availability there are some new settings that you can manage from your pgo.yaml file:
	DisableAutofail - when set to true, this will disable the new HA functionality in any newly created PostgreSQL clusters. By default, this is false.
	DisableReplicaStartFailReinit - when set to true, this will disable attempting to re-provision a PostgreSQL replica when it is stuck in a "start failed" state. By default, this false.
	PodAntiAffinity - Determines the type of pod anti-affinity rules to apply to the pods within a newly PostgreSQL cluster. If set to required, pods within a PostgreSQL cluster must be scheduled on different nodes, otherwise a pod will fail to schedule. If set to preferred, Kubernetes will make a best effort to schedule pods of the same PostgreSQL cluster on different nodes. If set to disabled, this feature is disabled. By default, this is preferred.
	SyncReplication - If set to true, enables synchronous replication in newly created PostgreSQL clusters. Default to false.



pgo clone
PostgreSQL Operator 4.2.0 introduces the ability to clone the data from one PostgreSQL cluster into a brand new PostgreSQL cluster. The command to do so is simple:
pgo clone oldcluster newcluster
After the command is executed, the PostgreSQL Operator checks to see if a) the oldcluster exists and b) the newcluster does not exist. If both of these conditions hold, the PostgreSQL Operator creates two new PVCs the match the specs of the oldcluster PostgreSQL data PVC (PrimaryStorage) and its pgBackRest repository PVC (BackrestStorage).
If these PVCs are successfully created, the PostgreSQL Operator will copy the contents of the pgBackRest repository from the oldcluster to the one setup for the newcluster by means of a Kubernetes Job that is running rsync provided by the pgo-backrest-repo-sync container. We are able to do this because all changes to the pgBackRest repository are atomic.
If this successfully completes, the PostgreSQL Operator then runs a pgBackRest restore job to restore the PostgreSQL cluster. On a successful restore, the new PostgreSQL cluster is then scheduled and runs in recovery mode until it reaches a consistent state, and then comes online as a brand new cluster
To optimize the time it takes to restore for a clone, we recommend taking a backup of the cluster you want to clone. You can do this with the pgo backup command, and choose if you want to take a full, differential, or incremental backup.
Future work will be focused on additional options, such as being able to clone a PostgreSQL cluster to a particular point-in-time (so long as the backup is available to support it) and supporting other pgo create flags.

Schedule Backups With Retention Policies
While the PostgreSQL Operator has had the ability to schedule full, incremental, and differential pgBackRest backups for awhile, it has not been possible to set the retention policy on these backups. Backup retention policies allow users to manage their backup storage whle maintaining enough backups to be able to recover to a specific point-in-time, or perform forensic work on data in a particular state.
For example, one can schedule a full backup to occur nightly at midnight and keep up to 21 full backups (e.g. a 21 day retention policy):
pgo create schedule mycluster --schedule="0 0 * * *" --schedule-type="pgbackrest" --pgbackrest-backup-type=full --schedule-opts="--repo1-retention-full=21"






  
  
  
  Breaking Changes
  



Breaking Changes
Feature Removals
	Physical backups using pg_basebackup are no longer supported. Any command-line option that references using this method has been removed. The API endpoints where one can specify a pg_basebackup remain, but will be removed in a future release (likely the next one).
	Removed the pgo-lspvc container. This container was used with the pgo show pvc and performed searches on the mounted filesystem. This would cause issues both on environments that could not support a PVC being mounted multiple times, and for underlying volumes that contained numerous files. Now, pgo show pvc only lists the PVCs associated with the PostgreSQL clusters managed by the PostgreSQL Operator.
	Native support for pgpool has been removed.


Command Line (pgo)
pgo create cluster
	The --pgbackrest option is removed as it is no longer needed. pgBackRest is enabled by default


pgo delete cluster
The default behavior for pgo delete cluster has changed so that all backups and PostgreSQL data are deleted by default.
To keep a backup after a cluster is deleted, one can use the --keep-backups flag with pgo delete cluster, and to keep the PostgreSQL data directory, one can specify the --keep-data flag. There is a plan to remove the --keep-data flag in a future release, though this has not been determined yet.
The -b, --delete-backups, -d, and --delete-data flags are all deprecated and will be removed in the next release.

pgo scaledown
With this release, pgo scaledown will delete the PostgreSQL data directory of the replica by default. To keep the PostgreSQL directory after the replica has scaled down, one can use the --keep-data flag.

pgo test
pgo test is optimized to provide faster results about the availability of a PostgreSQL cluster. Instead of attempting to make PostgreSQL connections to each PostgreSQL instance with each user, pgo test now checks the availability of the service endpoints for each PostgreSQL cluster as well as the output of the PostgreSQL readiness checks, which check the connectivity of a PostgreSQL cluster.
Both the API and the output of pgo test are modified for this optimization.


Additional apiserver Changes
	An authorization failure in the apiserver (i.e. not having the correct RBAC permission for a pgouser) will return a status code of 403 instead of 401
	The pgorole permissions now support the "*" permission to specify all pgorole RBAC permissions are granted to a pgouser. Users upgrading from an earlier version should note this change if they want to assign their users to access new features.







  
  
  
  Additional Features
  



Additional Features
pgo (Operator CLI)
	Support the pgBackRest options for backup retention, including --repo1-retention-full, --repo1-retention-diff, --repo1-retention-archive, --repo1-retention-archive-type, which can be added in the --backup-opts flag in the pgo backup command. For example:

# create a pgBackRest incremental backup with one full backup being retained and two differential backups being retained, along with incremental backups associated with each
pgo backup mycluster --backup-type="pgbackrest" --backup-opts="--type=incr --repo1-retention-diff=2 --repo1-retention-full=1"

# create a pgBackRest full backup where 2 other full backups are retained, with WAL archive retained for full and differential backups
pgo backup mycluster --backup-opts="--type=full --repo1-retention-full=2 --repo1-retention-archive=4 --repo1-retention-archive-type=diff"
	Allow for users to define S3 credentials and other options for pgBackRest backups on a per-cluster basis, in addition to leveraging the globally provided templates. This introduces the following flags on the pgo create cluster command:
	--pgbackrest-s3-bucket - specifics the AWS S3 bucket that should be utilized
	--pgbackrest-s3-endpoint specifies the S3 endpoint that should be utilized
	--pgbackrest-s3-key - specifies the AWS S3 key that should be utilized
	--pgbackrest-s3-key-secret- specifies the AWS S3 key secret that should be utilized
	--pgbackrest-s3-region - specifies the AWS S3 region that should be utilized
	Add the --disable-tls flag to the pgo command-line client, as to be compatible with the Operator API server that is deployed with DISABLE_TLS enabled.
	Improved output for the pgo scaledown --query and and pgo failover --query commands, including providing easy-to-understand results on replication lag

	Containerized pgo via the pgo-client container. This can be installed from the Ansible installer using the pgo_client_container_install flag, and it installs into the same namespace as the PostgreSQL Operator. You can connect to the container via kubectl exec and execute pgo commands!



Builds
	Refactor the Dockerfiles to rely on a "base" definition for ease of management and to ensure consistent builds across all container images during a full make
	Selecting which image builder to use is now argument based using the IMGBUILDER environmental variable. Default is buildah
	Optimize yum clean invocation to occur on same line as the RUN, which leads to smaller image builds.


Installation
	Add the pgo_noauth_routes (Ansible) / NOAUTH_ROUTES (Bash) configuration variables to disable TLS/BasicAuth authentication on particular API routes. This defaults to '/health'
	Add the pgo_tls_ca_store Ansible / TLS_CA_TRUST (Bash) configuration variables to specify a PEM encoded list of trusted certificate authorities (CA) for the Operator to use when authenticating API requests over TLS
	Add the pgo_add_os_ca_store / ADD_OS_TRUSTSTORE (Bash) to specify to use the trusted CA that is provided by the operating system. Defaults to true


Configuration
	Enable individual ConfigMap files to be customized without having to upload every single ConfigMap file available in pgo-config. Patch by Conor Quin (@Conor-Quin)
	Add EXCLUDE_OS_TRUST environmental variable that allows the pgo client to specify that it does not want to use the trusted certificate authorities (CA) provided by the operating system.


Miscellaneous
	Migrated Kubernetes API groups using API version extensions/v1beta1 to their respective updated API groups/versions. This improves compatibility with Kubernetes 1.16 and beyond. Original patch by Lucas Bickel (@hairmare)
	Add a Kubernetes Service Account to every Pod that is managed by the PostgreSQL Operator
	Add support for private repositories using imagePullSecret. This can be configured during installation by setting the pgo_image_pull_secret and pgo_image_pull_secret_manifest in the inventory file using Ansible installer, or with the PGO_IMAGE_PULL_SECRET and PGO_IMAGE_PULL_SECRET_MANIFEST environmental variables using the Bash installer. The "pull secret" is the name of the pull secret, whereas the manifest is what is used to define the secret
	The pgorole permissions now support the "*" permission to specify all pgorole RBAC permissions are granted to a pgouser
	Policies that are executed using pgo apply and pgo create cluster --policies are now executed over a UNIX socket directly on the Pod of the primary PostgreSQL instance. Reported by @yuanlinios
	A new sidecar, crunchyadm, is available for running managemnet commands on a PostgreSQL cluster. As this is experimental, this feature is disabled by default.







  
  
  
  Fixes
  



Fixes
	Update the YAML library to v2.2.4 to mitigate issues presented in CVE-2019-11253
	Specify the pgbackrest user by its ID number (2000) in the backrest-repo container image so that containers instantiated with the runAsNonRoot option enabled recognize the pgbackrest user as non-root.
	Ensure any Kubernetes Secret associated with a PostgreSQL backup is deleted when the --delete-backups flag is specified on pgo delete cluster
	The pgBouncer pod can now support connecting to databases that are added after a PostgreSQL cluster is deployed
	Remove misleading error messages from the logs that were caused by the readiness/liveness probes on the apiserver and event containers in the postgres-operator pod
	Several fixes to the cleanup of a PostgreSQL cluster after a deletion event (e.g. pgo delete cluster) to ensure data is safely removed. This includes ensuring schedules managed by pgo schedule are removed, as well as PostgreSQL cluster and backup data
	Skip the HTTP Basic Authorization check if the BasicAuth parameter in pgo.yaml is set to false
	Ensure all available backup types are displayed in the pgo schedule are listed (full, incr, diff)
	Ensure schedule tasks create with pgo create schedule are deleted when pgo delete cluster is called
	Fix the missing readiness/liveness probes used to check the status of the apiserver and event containers in the postgres-operator pod
	Remove misleading error messages from the logs that were caused by the readiness/liveness probes on the apiserver and event containers in the postgres-operator pod
	Fix a race condition where the pgo-rmdata job could fail when doing its final pass on deleting PVCs. This became noticeable after adding in the task to clean up any configmaps that a PostgreSQL cluster relied on
	Improved logging around authorization failures in the apiserver

This release was to update the supported PostgreSQL versions to 12.2, 11.7, 10.12, 9.6.17, and 9.5.21
Crunchy Data announces the release of PostgreSQL Operator 4.1.1 on November, 22, 2019.
Postgres Operator 4.1.1 provide bug fixes and continued support to Postgres Operator 4.1 as well as continued compatibility with newer versions of PostgreSQL.
The PostgreSQL Operator is released in conjunction with the Crunchy Container Suite.
The Postgres Operator 4.1.1 release includes the following software versions upgrades:
	The PostgreSQL now uses versions 12.1, 11.6, 10.11, 9.6.16, and 9.5.20.

Postgres Operator is tested with Kubernetes 1.13 - 1.15, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+. At present, Postgres Operator 4.1 is not compatible with Kubernetes 1.16.





  
  
  
  Fixes
  



Fixes
	Add the --disable-tls flag to the pgo command-line client, as to be compatible with the Operator API server that is deployed with DISABLE_TLS enabled. This is backported due to this functionality being missed in the 4.1 release.
	Update the YAML library to v2.2.4 to mitigate issues presented in CVE-2019-11253
	Specify the pgbackrest user by its ID number (2000) in the backrest-repo container image so that containers instantiated with the runAsNonRoot option enabled recognize the pgbackrest user as non-root.
	Ensure any Kubernetes Secret associated with a PostgreSQL backup is deleted when the --delete-backups flag is specified on pgo delete cluster
	Enable individual ConfigMap files to be customized without having to upload every single ConfigMap file available in pgo-config. Patch by Conor Quin (@Conor-Quin)
	Skip the HTTP Basic Authorization check if the BasicAuth parameter in pgo.yaml is set to false

Crunchy Data announces the release of PostgreSQL Operator 4.1 on October 15, 2019.
In addition to new features, such as dynamic namespace manage by the Operator and the ability to subscribe to a stream of lifecycle events that occur with PostgreSQL clusters, this release adds many new features and bug fixes.
The Postgres Operator 4.1 release also includes the following software versions upgrades:
	The PostgreSQL now uses versions 11.5, 10.10, 9.6.15, and 9.5.19. The PostgreSQL container now includes support for PL/Python.
	pgBackRest is now 2.17
	pgMonitor now uses version 3.2

To build Postgres Operator 4.1, you will need to utilize buildah version 1.9.0 and above.
Postgres Operator is tested with Kubernetes 1.13 - 1.15, OpenShift 3.11+, Google Kubernetes Engine (GKE), and VMware Enterprise PKS 1.3+. At present, Postgres Operator 4.1 is not compatible with Kubernetes 1.16.





  
  
  
  Major Features
  



Major Features
Dynamic Namespace Management
Postgres Operator 4.1 introduces the ability to dynamically management Kubernetes namespaces from the Postgres Operator itself. Kubernetes namespaces provide the ability to isolate workloads within a Kubernetes cluster, which can provide additional security and privacy amongst users.
The previous version of the Postgres Operator allowed users to add Kubernetes namespaces to which the Postgres Operator could deploy and manage clusters. Postgres Operator 4.1 expands on this ability by allowing the Operator to dynamically add and remove namespaces using the pgo create namespace and pgo delete namespace commands.
This allows for several different deployment patterns for PostgreSQL clusters, including:
	Deploying PostgreSQL clusters within a single namespace for an individual user
	Deploying a PostgreSQL cluster into its own namespace

Note that deleting a namespace in Kubernetes deletes all of the objects that reside within that namespace, including active PostgreSQL clusters. Ensure that you wish to delete everything inside a namespace before executing pgo delete namespace.
This has also lead to a change in terms of how role-based access control (RBAC) is handled. Traditionally, RBAC permissions we added to the ClusterRole objects, but in order to support dynamic namespace management, the RBAC has been moved to the Role objects.
If you would like to use the dynamic namespace feature Kubernetes 1.11 and OpenShift 3.11, you will also need to utilize the add-targeted-namespace.sh script that is bundled with Postgres Operator 4.1. To add a namespace to dynamically to your Postgres Operator deployment in Kubernetes 1.11, you first need to create the namespace with kubectl (e.g. kubectl create namespace yournamespace) and then run the add-targeted-namespace.sh script (./add-targeted-namespace.sh yournamespace).

Lifecycle Events
Postgres Operator 4.1 now provides PostgreSQL lifecycle events that occur during the operation of a cluster. Lifecycle events include things such as when a cluster is provisioned, a replica is added, a backup is taken, a cluster fails over, etc. Each deployed PostgreSQL cluster managed by the PostgreSQL Operator will report back to the Operator around these lifecycle events via the NSQ distributed messaging platform.
You can subscribe to lifecycle events by topic using the pgo watch command. For subscribe to all events for clusters under management, you can run pgo watch alltopic. Eventing can be disabled using the DISABLE_EVENTING environmental variable within the postgres-operator deployment.
For more information, please read the [Eventing]({{< relref "/architecture/eventing.md" >}}) section of the documentation.






  
  
  
  Breaking Changes
  



Breaking Changes
Containers
	The node_exporter container is no longer shipped with the PostgreSQL Operator. A detailed explanation of how node-style metrics are handled is available in the "Additional Features" section.


API
	The pgo update cluster API endpoint now uses a HTTP POST instead of GET
	The user management endpoints (e.g. pgo create user) now use a HTTP POST instead of a GET.


Command-line interface
	Removed the -db flag from pgo create user and pgo update user
	Removed --update-password flag from the pgo user command


Installation
	Changed the Ansible installer to use uninstall and uninstall-metrics tags instead of deprovision and deprovision-metrics respectively


Builds
	The Makefile now uses buildah for building the containers instead of Docker. The PostgreSQL Operator can be built with buildah v1.9.0 and above.







  
  
  
  Additional Features
  



Additional Features
General PostgreSQL Operator Features
	PostgreSQL Operator users and roles can now be dynamically managed (i.e. pgouser and pgorole)

	Readiness probes have been added to the apiserver and scheduler and is now included in the new event container. The scheduler uses a special heartbeat task to provide its readiness.

	Added the DISABLE_TLS environmental variable for apiserver, which allows the API server to run over HTTP.

	Added the NOAUTH_ROUTES environmental variable for apiserver, which allows useres to bypass TLS authentication on certain routes (e.g. /health). At present, only /health can be used in this variable.

	Services ports for the postgres_exporter and pgBadger are now templated so a user can now customize them beyond the defaults.



PostgreSQL Upgrade Management
	The process to perform a minor upgrade on a PostgreSQL deployment was modified in order to minimize downtime. Now, when a pgo upgrade cluster command is run, the PostgreSQL Operator will upgrade all the replicas to the desired version of PostgreSQL before upgrading the primary container. If autofail is enabled, the PostgreSQL Operator will failover to a pod that is already updated to a newer version, which minimizes downtime and allows the cluster to upgrade to the desired, updated version of PostgreSQL.

	pgo upgrade now supports the --all flag, which will upgrade every single PostgreSQL cluster managed by the PostgreSQL Operator (i.e. pgo upgrade --all)



PostgreSQL User Management
	All user passwords are now loaded in from Kubernetes Secrets.
	pgo create user --managed now supports any acceptable password for PostgreSQL
	Improved error message for calling the equivalent pgo show user command when interfacing with the API directly and there are no clusters found for th euser.


Monitoring
	Updated the Grafana dashboards to use those found in pgMonitor v3.2
	The crunchy-collect container now connects to PostgreSQL using a password that is stored in a Kubernetes secret
	Introduced support for collecting host-style metrics via the cAdvisor installations that are installed and running on each Kubelet. This requires for the ClusterRole to have the nodes and nodes/metrics resources granted to it.


Logging
	Updated logging to provide additional details of where issues occurred, including file and line number where the issue originated.


Installation
	The Ansible installer uninstall tag now has the option of preserving portions of the previous installation
	The Ansible installer supports NFS and hostpath storage options
	The Ansible installer can now set the fsgroup for the metrics tag
	The Ansible installer now has the same configuration options as the bash installer
	The Ansible installer now supports a separate RBAC installation
	Add a custom security context constraint (SCC) to the Ansible and bash installers that is applied to pods created by the Operator. This makes it possible to customize the control permissions for the PostgreSQL cluster pods managed by the Operator







  
  
  
  Fixes
  



Fixes
	Fixed a bug where testuser was always created even if the username was modified in the pgo.yaml
	Fixed the --expired flag for pgo show user to show the number of days until a user's password expires
	Fixed the workflow for pgo benchmark jobs to show completion
	Modify the create a cluster via a custom resource definition (CRD) to use pgBackRest
	Fixed an issue with the pgpool label when a pg_dump is performed by calling the REST API
	Fixed the pgo load example, which previous used a hardcoded namespace. This has changed with the support of dynamic namespaces.




images/img10.png
ZAdmin Flev Object~ Toosv Help~

Browse B % Osmows Puperes SO Swaisics Ompedences Oependens B hoponypogh. B b o x
+ Bicuechy sl tpetr (1) >lal-]m/[al~]@]]8a[av] v]v mr 5@ s w o[
- Grero I
P — S
> =vow Loverzotr qeryisas s e x
> Gataomaecpnies 758 o ceneaaTeD v ogrAuLT s ToDNTIT DAY KEY,
> B Tablrprs 3 e et
© Crented.at tinestansts NOT WULL DEPAULY CURRENT_TIXESTANS
sl






images/img11.png
pgAdmin 4

||‘E

Login

Forgotten yourpassword?





images/img12.png
. Kubernetes

Control Plane 1 Control Plane 2 Control Plane 3

Kubernetes Load Balancer

Node 1 Node 2 Node 3





images/img13.png
-

pgBackRest pgBackRest

postgres-operator postgres-operator

Iy A
: :

crunchy-postgres crunchy-postgres
~

@ crunchy-postgres crunchy-postgres
replica primary 7~

standby replica

% crunchy-postgres crunchy-postgres %
o

replica

replica

Kubernetes
cluster #2

Kubernetes
cluster #1






images/img4.png
@ cruncry-nostgres-ha pgo-backrest-repo

pgo-backrest-restore

@ crunchy-postgres-ha






images/img3.png
WAL archive-push

@ crunchy-postgres-ha pgo-backrest-repo

WAL archive-push —»

Backup
PVC





images/img6.png
@ scheduler
1 WAL archive-push
backup |
‘
@ crunc