PGO: The Postgres Operator from Crunchy Data

Contents

PGO: The Postgres Operator from Crunchy Data
How it Works

Included Components

Supported Platforms

PGO: PostgreSQL Operator Quickstart
Postgres Operator Installer

Crunchy PostgreSQL Operator Architecture
Additional Architecture Information
Kubernetes Namespaces and the PostgreSQL Operator
pgo.yaml Configuration

Prerequisites

PGO: Postgres Operator Installer

Install the PostgreSQL Operator (pgo) Client
PGO Installer Configuration

PGO: The Postgres Operator Helm Chart
PGO: Postgres Operator Playbooks
Prerequisites

Installing

Updating

Uninstalling PostgreSQL Operator
Prerequisites

PostgreSQL Operator Monitoring Installer

PostgreSQL Operator Monitoring Installer Configuration

40

42

60

88

92

93

97

100

110

116

116

118

120

121

122

122

124

The PostgreSQL Operator Monitoring Helm Chart

PGO: Postgres Operator Monitoring Playbooks

Prerequisites

Installing the Monitoring Infrastructure

Updating the Monitoring Infrastructure

Uninstalling the Monitoring Infrastructure

Crunchy Postgres Exporter Metrics

pgnodemx

Upgrading the Crunchy PostgreSQL Operator

Upgrade Guidance for PostgreSQL Operator Monitoring

Prerequisites

Building

Deployment

Testing

Troubleshooting

Major Features

Breaking Changes

Features

Changes

Fixes

Changes

Fixes

Changes

Fixes

Major Features

Breaking Changes

Features

Changes

127

128

129

130

132

133

175

175

182

185

196

196

197

197

197

199

201

201

202

202

203

203

217

219

219

225

226

226

Fixes 227

Changes since 4.2.1 227
Fixes since 4.2.1 228
Fixes 228
Major Features 229
Breaking Changes 231
Additional Features 232
Fixes 233
Fixes 234
Major Features 234
Breaking Changes 235
Additional Features 235
Fixes 236

PGO: The Postgres Operator from Crunchy Data

Run Cloud Native PostgreSQL on Kubernetes with PGO: The Postgres Operator from Crunchy Data!

Latest Release: {{< param operatorVersion >}}

PGO, the Postgres Operator developed by Crunchy Data and included in Crunchy PostgreSQL for Kubernetes, automates and simplifies
deploying and managing open source PostgreSQL clusters on Kubernetes.

Whether you need to get a simple Postgres cluster up and running, need to deploy a high availability, fault tolerant cluster in production,
or are running your own database-as-a-service, the PostgreSQL Operator provides the essential features you need to keep your cloud native
Postgres clusters healthy, including:

Postgres Cluster Provisioning({{< relref “/architecture/provisioning.md” >}}) Create, Scale, & Delete PostgreSQL clusters
with ease, while fully customizing your Pods and PostgreSQL configuration!

[High Availability]({{< relref “/architecture/high-availability/_index.md” >}}) Safe, automated failover backed by a dis-
tributed consensus based high-availability solution. Uses Pod Anti-Affinity to help resiliency; you can configure how aggressive this can
be! Failed primaries automatically heal, allowing for faster recovery time.

Support for [standby PostgreSQL clusters]({{< relref “/architecture/high-availability /multi-cluster-kubernetes.md” >}}) that work both
within an across [multiple Kubernetes clusters|({{< relref “/architecture/high-availability /multi-cluster-kubernetes.md” >}}).

[Disaster Recovery]|({{< relref “/architecture/disaster-recovery.md” >}}) Backups and restores leverage the open source
pgBackRest utility and includes support for full, incremental, and differential backups as well as efficient delta restores. Set how long you
want your backups retained for. Works great with very large databases!

TLS Secure communication between your applications and data servers by [enabling TLS for your PostgreSQL servers|({{< relref
“/tutorial/tls.md” >}}), including the ability to enforce all of your connections to use TLS.

Monitoring({{< relref “/architecture/monitoring.md” >}}) [Track the health of your PostgreSQL clusters]({{< relref “/archi-
tecture/monitoring.md” >}1}) using the open source pgMonitor library.

https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes/
https://github.com/CrunchyData/postgres-operator
https://www.crunchydata.com/
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://crunchydata.com/
https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://www.pgbackrest.org
https://github.com/CrunchyData/pgmonitor

PostgreSQL User Management Quickly add and remove users from your PostgreSQL clusters with powerful commands. Manage
password expiration policies or use your preferred PostgreSQL authentication scheme.

Upgrade Management Safely apply PostgreSQL updates with minimal availability impact to your PostgreSQL clusters.

Advanced Replication Support Choose between asynchronous replication and synchronous replication for workloads that are sensitive
to losing transactions.

Clone Create new clusters from your existing clusters or backups with pgo create cluster --restore-from.
Connection Pooling Use pgBouncer({{< relref “tutorial/pgbouncer.md” >}}) for connection pooling.

Affinity and Tolerations Have your PostgreSQL clusters deployed to Kubernetes Nodes of your preference with [node affinity]({{< rel-
ref “architecture/high-availability / index.md“> } }#node-affinity), or designate which nodes Kubernetes can schedule PostgreSQL instances
to with [tolerations]({{< relref "architecture/high-availability/index.md” >} } #tolerations).

Scheduled Backups Choose the type of backup (full, incremental, differential) and how frequently you want it to occur on each
PostgreSQL cluster.

Backup to S3 or GCS Store your backups in Amazon S3, any object storage system that supports the S3 protocol, or GCS. The
PostgreSQL Operator can backup, restore, and create new clusters from these backups.

Multi-Namespace Support You can control how PGO, the Postgres Operator, leverages Kubernetes Namespaces with several different
deployment models:

e Deploy PGO and all PostgreSQL clusters to the same namespace

e Deploy PGO to one namespaces, and all PostgreSQL clusters to a different namespace

e Deploy PGO to one namespace, and have your PostgreSQL clusters managed across multiple namespaces

e Dynamically add and remove namespaces managed by the PostgreSQL Operator using the pgo client to run pgo create namespace
and pgo delete namespace

Full Customizability The Postgres Operator (PGO) makes it easy to get Postgres up and running on Kubernetes-enabled platforms,
but we know that there are further customizations that you can make. As such, PGO allows you to further customize your deployments,
including:

e Selecting different storage classes for your primary, replica, and backup storage

e Select your own container resources class for each PostgreSQL cluster deployment; differentiate between resources applied for primary
and replica clusters!

o Use your own container image repository, including support imagePullSecrets and private repositories

o [Customize your PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}})

o Bring your own trusted certificate authority (CA) for use with the Operator API server

e Override your PostgreSQL configuration for each cluster

How it Works

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

 —
 — |
g Kubernetes

4--------- - >
PGO Client
(Linux) [— D @2 , —— Container Suite ————
Custom Resource Definitions primary
(CRDs) PostgreSQL pgbouncer
 —
s | clusters policy
| (pgcluster) (pgpolicies) replica pgbackrest
o PostgreSQL
tasks replicas
. [» (pgtasks) {pgreplicas)
PGO Client Operator
(Mac)
4 .
= D :
—
I Scheduler l E Cluster PVC
o l]
A--mmm - >
PGO Client N
(Windows) A / helm / ku .
? :
! |
v ¥
Crunchy Data . T S
Containers | i P tor.?ge .
"" }) Wrmmmmmmmmmssmmemmsemesmesnes (11111 Persistent Disk
| Container Registry

Figure 1: Architecture

Included Components
PostgreSQL containers deployed with the PostgreSQL Operator include the following components:

e PostgreSQL

e PostgreSQL Contrib Modules
« PL/Python + PL/Python 3
o PL/Perl

e pgAudit

e pgAudit Analyze

e pgnodemx

e pg_cron

e pg_partman

e set user

o TimescaleDB (Apache-licensed community edition)
e wal2json

o pgBackRest

o pgBouncer

e pgAdmin 4

o pgMonitor

o Patroni

o LLVM (for JIT compilation)

In addition to the above, the geospatially enhanced PostgreSQL + PostGIS container adds the following components:

e PostGIS
e pgRouting
« PL/R

PostgreSQL Operator Monitoring({{< relref “architecture/monitoring/ index.md” >}}) uses the following components:

—

External Application
accessing the DB

https://github.com/CrunchyData/crunchy-containers
https://www.postgresql.org
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/plpython.html
https://www.postgresql.org/docs/current/plperl.html
https://www.pgaudit.org/
https://github.com/pgaudit/pgaudit_analyze
https://github.com/CrunchyData/pgnodemx
https://github.com/citusdata/pg_cron
https://github.com/pgpartman/pg_partman
https://github.com/pgaudit/set_user
https://github.com/timescale/timescaledb
https://github.com/eulerto/wal2json
https://pgbackrest.org/
http://pgbouncer.github.io/
https://www.pgadmin.org/
https://github.com/CrunchyData/pgmonitor
https://patroni.readthedocs.io/
https://llvm.org/
https://www.postgresql.org/docs/current/jit.html
http://postgis.net/
https://pgrouting.org/
https://github.com/postgres-plr/plr

e pgMonitor

e Prometheus
e Grafana

e Alertmanager

Additional containers that are not directly integrated with the PostgreSQL Operator but can work alongside it include:

e pgPool II

e pg upgrade
e pgBench

For more information about which versions of the PostgreSQL Operator include which components, please visit the [compatibility]({{<
relref “configuration/compatibility.md” >}}) section of the documentation.

Supported Platforms

PGO, the Postgres Operator, is Kubernetes-native and maintains backwards compatibility to Kubernetes 1.11 and is tested is tested
against the following platforms:

e Kubernetes 1.17+

e Openshift 4.4+

e OpenShift 3.11

o Google Kubernetes Engine (GKE), including Anthos
o Amazon EKS

e Microsoft AKS

e VMware Tanzu

This list only includes the platforms that the Postgres Operator is specifically tested on as part of the release process: PGO works on
other Kubernetes distributions as well.

Storage

PGO, the Postgres Operator, is tested with a variety of different types of Kubernetes storage and Storage Classes, as well as hostPath
and NFS.

We know there are a variety of different types of Storage Classes available for Kubernetes and we do our best to test each one, but due to
the breadth of this area we are unable to verify Postgres Operator functionality in each one. With that said, the PostgreSQL Operator is
designed to be storage class agnostic and has been demonstrated to work with additional Storage Classes.

The PGO Postgres Operator project source code is available subject to the Apache 2.0 license with the PGO logo and branding assets
covered by our trademark guidelines.

PGO: PostgreSQL Operator Quickstart

Can’t wait to try out PGO, the Postgres Operator from Crunchy Data? Let us show you the quickest possible path to getting up and
running.

There are two paths to quickly get you up and running with PGO:

e Installation via the Postgres Operator Installer

e Installation via a Marketplace

Installation via [Operator Lifecycle Manager|({{< relref “/installation/other /operator-hub.md” >1}1})
Installation via [Google Cloud Marketplace]({{< relref “/installation/other/google-cloud-marketplace.md” >}})

Marketplaces can help you get more quickly started in your environment as they provide a mostly automated process, but there are a few
steps you will need to take to ensure you can fully utilize your PostgreSQL Operator environment. You can find out more information
about how to get started with one of those installers in the Installation({{< relref “/installation/ index.md” >}}) section.

https://github.com/CrunchyData/pgmonitor
https://github.com/prometheus/prometheus
https://github.com/grafana/grafana
https://github.com/prometheus/alertmanager
https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/container-specifications/crunchy-pgpool/
https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/container-specifications/crunchy-upgrade/
https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/container-specifications/crunchy-pgbench/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/LICENSE.md
/logos/TRADEMARKS.md

Postgres Operator Installer

Below will guide you through the steps for installing and using the PostgreSQL Operator using an installer that works with Ansible.

Installation
Install PGO: the PostgreSQL Operator

On environments that have a default storage class set up (which is most modern Kubernetes environments), the below command should
work:

kubectl create namespace pgo
kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param
operatorVersion >}}/installers/kubectl/postgres-operator.yml

This will launch the pgo-deployer container that will run the various setup and installation jobs. This can take a few minutes to complete
depending on your Kubernetes cluster.

If your install is unsuccessful, you may need to modify your configuration. Please read the “Troubleshooting” section. You can still get
up and running fairly quickly with just a little bit of configuration.

Install the pgo Client

During or after the installation of PGO: the Postgres Operator, download the pgo client set up script. This will help set up your local
environment for using the Postgres Operator:

curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion
>}}/installers/kubectl/client-setup.sh > client-setup.sh
chmod +x client-setup.sh

When the Postgres Operator is done installing, run the client setup script:

./client-setup.sh

This will download the pgo client and provide instructions for how to easily use it in your environment. It will prompt you to add some
environmental variables for you to set up in your session, which you can do with the following commands:

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

If you wish to permanently add these variables to your environment, you can run the following:

cat <<EOF >> ~/.bashrc

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

EQF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Post-Installation Setup

Below are a few steps to check if PGO: the Postgres Operator is up and running.
By default, PGO installs into a namespace called pgo. First, see that the Kubernetes Deployment of PGO exists and is healthy:
kubectl -n pgo get deployments

https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/

If successful, you should see output similar to this:

NAME READY UP-TO-DATE AVATILABLE AGE
postgres-operator 1/1 1 1 16h
Next, see if the Pods that run the PostgreSQL Operator are up and running:
kubectl -n pgo get pods

If successful, you should see output similar to this:
NAME READY STATUS RESTARTS AGE
postgres-operator -56d6ccb97 -tmz7m 4/4 Running 0 2m

Finally, let’s see if we can connect to the Postgres Operator from the pgo command-line client. The Ansible installer installs the pgo
command line client into your environment, along with the username/password file that allows you to access the PostgreSQL Operator. In
order to communicate with the PostgreSQL Operator API server, you will first need to set up a port forward to your local environment.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:

pgo version

If successful, you should see output similar to this:

pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Create a PostgreSQL Cluster

The quickstart installation method creates a namespace called pgo where PGO, the Postgres Operator, manages PostgreSQL clusters. Try
creating a PostgreSQL cluster called hippo:

pgo create cluster -n pgo hippo
Alternatively, because we set the [PGO_NAMESPACE]({{ < relref “pgo-client /reference/pgo_ create_ cluster.md” >} }#general-notes-on-using-

the-pgo-client) environmental variable in our .bashrc file, we could omit the -n flag from the pgo create cluster({{< relref “pgo-
client/reference/pgo_ create_ cluster.md” >}}) command and just run this:

pgo create cluster hippo

Even with PGO_NAMESPACE set, you can always overwrite which namespace to use by setting the -n flag for the specific command. For
explicitness, we will continue to use the -n flag in the remaining examples of this quickstart.

If your cluster creation command executed successfully, you should see output similar to this:

created Pgcluster hippo

workflow id 1cd0d225-7cd4-4044-b269-aa7bedae219b

This will create a Postgres cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status of
this cluster using the pgo test({{< relref “pgo-client/reference/pgo_test.md” >}}) command:

pgo test -n pgo hippo

When everything is up and running, you should see output similar to this:

cluster : hippo
Services
primary (10.97.140.113:5432): UP
Instances
primary (hippo-7b64747476-6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n pgo hippo.

Connect to a PostgreSQL Cluster

By default, PGO creates a database inside the cluster with the same name of the cluster, in this case, hippo. Below demonstrates how
we can connect to hippo.

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

How Users Work

You can get information about the users in your cluster with the [pgo show user|({{< relref “pgo-client/reference/pgo_show__user.md”
>}}) command:

pgo show user -n pgo hippo

This will give you all the unprivileged, non-system PostgreSQL users for the hippo PostgreSQL cluster, for example:
CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR

To get the information about all PostgreSQL users that PGO is managing, you will need to use the --show-system-accounts flag:

pgo show user -n pgo hippo --show-system-accounts

which returns something similar to:

CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR
hippo postgres <REDACTED > never ok
hippo primaryuser <REDACTED> never ok
hippo testuser datalake never ok

The postgres user represents the database superuser and has every privilege granted to it. The PostgreSQL Operator securely interfaces
through the postgres account to perform certain actions, such as managing users.

The primaryuser is the used for replication and [high availability]({{< relref “architecture/high-availability/ index.md” >}}). You
should never need to interface with this user account.

Connecting via psql
Let’s see how we can connect to hippo using psql, the command-line tool for accessing PostgreSQL. Ensure you have installed the psql
client.

PGO, the Postgres Operator, creates a service with the same name as the cluster. See for yourself! Get a list of all of the Services available
in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <none> 2022/TCP ,5432/TCP

59m

hippo-backrest-shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect the hippo cluster. First, in a different console window, set up a port forward to the hippo service:

kubectl -n pgo port-forward svc/hippo 5432:5432

You can connect to the database with the following command, substituting datalake for your actual password:

PGPASSWORD=datalake psql -h localhost -p 5432 -U testuser hippo

You should then be greeted with the PostgreSQL prompt:

psql ({{< param postgresVersion >1}})
Type "help" for help.

hippo=>

https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/app-psql.html
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12

Connecting via [pgAdmin 4]({{< relref “architecture/pgadmin4.md” >}})

[pgAdmin 4]({{< relref “architecture/pgadmind.md” >}1}) is a graphical tool that can be used to manage and query a PostgreSQL database
from a web browser. The PostgreSQL Operator provides a convenient integration with pgAdmin 4 for managing how users can log into
the database.

To add pgAdmin 4 to hippo, you can execute the following command:

pgo create pgadmin -n pgo hippo

It will take a few moments to create the pgAdmin 4 instance. The PostgreSQL Operator also creates a pgAdmin 4 service. See for yourself!
Get a list of all of the Services available in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <none> 2022/TCP ,5432/TCP

59m

hippo-backrest-shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
hippo-pgadmin ClusterIP 10.96.165.27 <nomne> 5050/ TCP

5mls
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect to our hippo cluster via pgAdmin 4! In a different terminal, set up a port forward to pgAdmin 4:

kubectl -n pgo port-forward svc/hippo-pgadmin 5050:5050

Navigate your browser to http://localhost:5050 and use your database username (testuser) and password (e.g. datalake) to log in.
Though the prompt says “email address”, using your PostgreSQL username will work:

Logh

Forgotten your password? ["engisn v

Figure 2: pgAdmin 4 Login Page
(There are occasions where the initial credentials do not properly get set in pgAdmin 4. If you have trouble logging in, try running the
command pgo update user -n pgo hippo --username=testuser --password=datalake).
Once logged into pgAdmin 4, you will be automatically connected to your database. Explore pgAdmin 4 and run some queries!

For more information, please see the section on [pgAdmin 4]({{< relref “architecture/pgadmind.md” >}1}).

Troubleshooting
Installation Failures

Some Kubernetes environments may require you to customize the configuration for the PostgreSQL Operator installer. The below provides
a guide on the common parameters that require modification, though this may vary based on your installation. For a full reference, please
visit the Installation({{< relref “/installation/ index.md” >}}) section.

If you already attempted to install PGO and that failed, the easiest way to clean up that installation is to delete the Namespace that you
attempted to install the Postgres Operator into. Note: This deletes all of the other objects in the Namespace, so please be
sure this is OK!

To delete the namespace, you can run the following command:

kubectl delete namespace pgo

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Get the Postgres Operator Installer Manifest You will need to download the Postgres Operator Installer manifest to your envi-
ronment, which you can do with the following command:

curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion
>}}/installers/kubectl/postgres-operator.yml > postgres-operator.yml

Configure the Postgres Operator Installer There are many [configuration parameters|({{< relref “/installation/configura-
tion.md”>}}) to help you fine tune your installation, but there are a few that you may want to change to get the PostgreSQL Operator
to run in your environment. Open up the postgres-operator.yml file and edit a few variables.

Find the pgo_admin_password variable. This is the password you will use with the [pgo client]({{< relref “/installation/pgo-client” >1}1})
to manage your PostgreSQL clusters. The default is password, but you can change it to something like hippo-elephant.

You may also need to set the storage default storage classes that you would like the PostgreSQL Operator to use. These variables are
called primary_storage, replica_storage, backup_storage, and backrest_storage. There are several storage configurations listed
out in the configuration file under the heading storage[1-9] _name. Find the one that you want to use, and set it to that value.

For example, if your Kubernetes environment is using NF'S storage, you would set these variables to the following:

backrest_storage: "nfsstorage"
backup_storage: "nfsstorage"

primary_storage: "nfsstorage"
replica_storage: "nfsstorage"

In OpenShift and CodeReady Containers, PGO will automatically set disable_fsgroup to true so that it will deploy PostgreSQL clusters
correctly under the restricted Security Context Constraint (SCC). Though we recommend using restricted, if you are using the anyuid
SCC, you will need to set disable_fsgroup to false in order to deploy the PostgreSQL Operator.

For a full list of available storage types that can be used with this installation method, please review the [configuration parameters]({{<
relref “/installation/configuration.md”>}}).

When you are done editing the file, you can install PGO by running the following commands:
kubectl create namespace pgo

kubectl apply -f postgres-operator.yml

PGO, the Postgres Operator, provides functionality that lets you run your own database-as-a-service: from deploying PostgreSQL
clusters with [high availability]({{< relref “architecture/high-availability/ index.md” >}}), to a [full stack monitoring]({{< relref
“architecture/high-availability/ index.md” >}}) solution, essential [disaster recovery and backup tools]({{< relref “architecture/disaster-
recovery.md” >1}}), the ability to secure your cluster with TLS, and much more!

What’s more, you can manage your PostgreSQL clusters with the convenient [pgo client]({{< relref “pgo-client/ index.md” >}}) or by
interfacing directly with the PostgreSQL Operator [custom resources]({{< relref “custom-resources/_index.md” >}}).

Given the robustness of PGO, we think it’s helpful to break down the functionality in this step-by-step tutorial. The tutorial covers the
essential functions the Postgres Operator can perform and covers many common basic and advanced use cases.

So what are you waiting for? Let’s [get started]({{< relref “tutorial/getting-started.md” >}})!

Installation

If you have not installed PGO, the Postgres Operator, yet, we recommend you take a look at our [quickstart]({{< relref “quick-
start/_index.md” >}}) or the [installation]({{< relref “installation/_index.md” >}}) sections.

Customizing an Installation

How to customize a PGO installation is a lengthy topic. The details are covered in the [installation]({{< relref “installation/postgres-
operator.md” >}}) section, as well as a list of all the [configuration variables]({{< relref “installation/configuration.md” >}}) available.

Setup the pgo Client

This tutorial will be using the [pgo client]({{< relref “pgo-client/ index.md” >}}) to interact with the Postgres Operator. Please follow
the instructions in the [quickstart]({{< relref “quickstart/_index.md” >}}) or the [installation]({{< relref “installation/pgo-client.md”
>1}) sections for how to configure the pgo client.

The Postgres Operator and pgo client are designed to work in a [multi-namespace deployment environment]({{< relref “architecture/-
namespace.md” >}}) and many pgo commands require that the namespace flag (-n) are passed into it. You can use the PGO_NAMESPACE
environmental variable to set which namespace a pgo command can use. For example:

export PGO_NAMESPACE=pgo
pgo show cluster --all
would show all of the PostgreSQL clusters deployed to the pgo namespace. This is equivalent to:

pgo show cluster -n pgo --all

(Note: -n takes precedence over PGO_NAMESPACE.)

For convenience, we will use the pgo namespace created as part of the [quickstart]({{< relref “quickstart/ index.md” >}}) in this tutorial.
In the shell that you will be executing the pgo commands in, run the following command:

export PGO_NAMESPACE=pgo

Next Steps

Before proceeding, please make sure that your pgo client setup can communicate with your PGO Deployment. In a separate terminal
window, set up a port forward to your PostgreSQL Operator:

kubectl port-forward -n pgo svc/postgres-operator 8443:8443
The [pgo version|({{< relref “pgo-client/reference/pgo_ version.md” >}}) command is a great way to check connectivity with the Postgres
Operator, as it is a very simple, safe operation. Try it out:

pgo version

If it is working, you should see results similar to:

pgo client version {{< param operatorVersion >}}

pgo-apiserver version {{< param operatorVersion >}}

Note that the version of the pgo client must match that of the PostgreSQL Operator.

You can also use the pgo version command to check the version specifically for the pgo client. This command only runs locally, i.e. it
does not make any requests to the PostgreSQL Operator. For example:

pgo version --client

which yields results similar to:

pgo client version {{< param operatorVersion >}}

Alright, we’re now ready to start our journey with PGO!

If you came here through the [quickstart]({{< relref “quickstart/_index.md” >}}), you may have already [created a cluster]({{< relref
“quickstart/__index.md” >} }#create-a-postgresql-cluster), in which case, feel free to skip ahead, or read onward for a more in depth look
into cluster creation!

Create a PostgreSQL Cluster

Creating a cluster is simple with the pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) command:

pgo create cluster hippo

with output similar to:

created cluster: hippo
workflow id: 25c¢870a0-5d27-42c2-be00-92f0ba8768e7
database name: hippo
users:
username: testuser password: securerandomlygeneratedpassword

This creates a new PostgreSQL cluster named hippo with a database in it named hippo. This operation may take a few moments to
complete. Note the name of the database user (testuser) and password (securerandomlygeneratedpassword) for when we connect to
the PostgreSQL cluster.

To make it easier to copy and paste statements used throughout this tutorial, you can set the password of testuser as part of creating
the PostgreSQL cluster:

pgo create cluster hippo --password=securerandomlygeneratedpassword

You can check on the status of the cluster creation using the pgo test({{< relref “pgo-client/reference/pgo_test.md” >}}) command.
The pgo test command checks to see if the Kubernetes Services and the Pods that comprise the PostgreSQL cluster are available to
receive connections. This includes:

e Testing that the Kubernetes Endpoints are available and able to route requests to healthy Pods.
o Testing that each PostgreSQL instance is available and ready to accept client connections by performing a connectivity check similar
to the one performed by pg_isready.

For example, when the hippo cluster is ready,

pgo test hippo

will yield output similar to:

cluster : hippo
Services
primary (10.96.179.126:5432): UP
Instances
primary (hippo-57675d4£f8f-wwx64): UP

The Create Cluster Process

So what just happened? Let’s break down what occurs during the create cluster process.

1. First, pgo client creates an entry in the PostgreSQL Operator [pgcluster custom resource definition]({{< relref “custom-
resources/_index.md” >}}) with the attributes desired to create the cluster. In the case above, this fills in the name of the
cluster (hippo) and leverages a lot of defaults from the [PostgreSQL Operator configuration]({{< relref “configuration/pgo-yaml-
configuration.md” >}}). We'll discuss more about the PostgreSQL Operator configuration later in the tutorial.

2. Once the custom resource is added, the PostgreSQL Operator begins provisioning the PostgreSQL instace and a pgBackRest repos-
itory which is used to store backups. The following actions occur as part of this process:

 Creating persistent volume claims (PVCs) for the PostgreSQL instance and the pgBackRest repository.

e Creating services that provide a stable network interface for connecting to the PostgreSQL instance and pgBackRest repository.

e Creating deployments that house each PostgreSQL instance and pgBackRest repository. Each of these is responsible for one Pod.

e The PostgreSQL Pod, when it is started, provisions a PostgreSQL database and performs other bootstrapping functions, such as
creating testuser.

e The pgBackRest Pod, when it is started, initializes a pgBackRest repository. Note that the pgBackRest repository is not yet ready
to start taking backups, but will be after the next step!

3. When the PostgreSQL Operator detects that the PostgreSQL and pgBackRest deployments are up and running, it creates a Kuber-
netes Job to create a pgBackRest stanza. This is necessary as part of intializing the pgBackRest repository to accept backups from
our PostgreSQL cluster.

4. When the PostgreSQL Operator detects that the stanza creation is completed, it will take an initial backup of the cluster.

In order for a PostgreSQL cluster to be considered successfully created, all of these steps need to succeed. You can connect to the
PostgreSQL cluster after step two completes, but note for the cluster to be considered “healthy”, you need for pgBackRest to finish
initializig.

You may ask yourself, “wait, why do I need for the pgBackRest repository to be initialized for a cluster to be successfully created?” That is
a good question! The reason is that pgBackRest plays a fundamental role in both the [disaster recovery|({{< relref “architecture/disaster-

recovery.md” >}}) AND [high availability]({{< relref “architecture/high-availability/_index.md” >}}) system with the PostgreSQL Op-
erator, particularly around self-healing.

What Is Created?

There are several Kubernetes objects that are created as part of the pgo create cluster command, including:

e A Deployment representing the primary PostgreSQL instance
e A PVC that persists the data of this instance

e A Service that can connect to this instance

e A Deployment representing the pgBackRest repository

https://www.postgresql.org/docs/current/app-pg-isready.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

e A PVC that persists the data of this repository

e A Service that can connect to this repository

e Secrets representing the following three user accounts:

o postgres: the database superuser for the PostgreSQL cluster. This is in a secret called hippo-postgres-secret.

e primaryuser: the replication user. This is used for copying data between PostgreSQL instance. You should not need to login as
this user. This is in a secret called hippo-primaryuser-secret.

e testuser: the regular user account. This user has access to log into the hippo database that is created. This is the account you
want to give out to your user / application. In a later section, we will see how we can change the default user that is created. This
is in a secret called hippo-testuser-secret, where testuser can be substituted for the name of the user account.

e ConfigMaps, including:

o hippo-pgha-config, which allows you to [customize the configuration of your PostgreSQL cluster|({{< relref “advanced/custom-
configuration.md”>}}). We will cover more about this topic in later sections.

e hippo-config and hippo-leader, which are used by the high availability system. You should not modify these ConfigMaps.

Each deployment contains a single Pod. Do not scale the deployments!: further into the tutorial, we will cover some commands that
let you scale your PostgreSQL cluster.

Some Job artifacts may be left around after the cluster creation process completes, including the stanza creation job (hippo-stanza-create)
and initial backup job (backrest-backup-hippo). If the jobs completed successfully, you can safely delete these objects.

Create a PostgreSQL Cluster With Monitoring

The PostgreSQL Operator Monitoring({{< relref “architecture/monitoring.md” >}}) stack provides a convenient way to gain insights
into the availabilty and performance of your PostgreSQL clusters. In order to collect metrics from your PostgreSQL clusters, you have
to enable the crunchy-postgres-exporter sidecar alongside your PostgreSQL cluster. You can do this with the --metrics flag on
pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}):

pgo create cluster hippo --metrics

Note that the --metrics flag just enables a sidecar that can be scraped. You will need to install the [monitoring stack]({{< relref
“installation/metrics/_index.md” >}}) separately, or tie it into your existing monitoring infrastructure.

Troubleshooting
PostgreSQL / pgBackRest Pods Stuck in Pending Phase

The most common occurrence of this is due to PVCs not being bound. Ensure that you have configure your [storage options]({{< relref
“installation/configuration.md” >} }#storage-settings) correctly for your Kubernetes environment, if for some reason you cannot use your
default storage class or it is unavailable.

Also ensure that you have enough persistent volumes available: your Kubernetes administrator may need to provision more.

stanza-create Job Never Finishes

The most common occurrence of this is due to the Kubernetes network blocking SSH connections between Pods. Ensure that your
Kubernetes networking layer allows for SSH connections over port 2022 in the Namespace that you are deploying your PostgreSQL
clusters into.

PostgreSQL Pod reports “Authentication Failed for ccp_monitoring”

This is a temporary error that occurs when a new PostgreSQL cluster is first initialized with the --metrics flag. The crunchy-postgres-expc
container within the PostgreSQL Pod may be ready before the container with PostgreSQL is ready. If a message in your logs further
down displays a timestamp, e.g.:

2020-11-10 08:23:15.968196-05

Then the ccp_monitoring user is properly reconciled with the PostgreSQL cluster.

If the error message does not go away, this could indicate a few things:

e The PostgreSQL instance has not initialized. Check to ensure that PostgreSQL has successfully started.
e The password for the ccp_monitoring user has changed. In this case you will need to update the Secret with the monitoring
credentials.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/configmap/

Custom Resources

You may also be curious about how to perform the same actions directly with [custom resources]({{< relref “custom-resources/__index.md”
>1}1}). If that is the case, we encourage to skip ahead to the Custom Resources({{< relref “custom-resources/_index.md” >}}) section of
the documentation.

Next Steps

Once your cluster is created, the next step is to [connect to your PostgreSQL cluster|({{< relref “tutorial/connect-cluster.md” >}}). You
can also [learn how to customize your PostgreSQL cluster]({{< relref “tutorial/customize-cluster.md” >}})!

Naturally, once the [PostgreSQL cluster is created]({{< relref “tutorial/create-cluster.md” >}}), you may want to connect to it. You
can get the credentials of the users of the cluster using the [pgo show user|({{< relref “pgo-client/reference/pgo_show_user.md” >}})
command, i.e.:

pgo show user hippo

yields output similar to:

CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR

hippo testuser securerandomlygeneratedpassword mnever ok

If you need to get the password of one of the system or privileged accounts, you will need to use the —-show-system-accounts flag, i.e.:

pgo show user hippo --show-system-accounts

CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR
hippo postgres B>xy}9+7wTVp) gkntf }X | HON never ok

hippo primaryuser ~zULckQy-\KPws:2UoC+szX1l never ok

hippo testuser securerandomlygeneratedpassword never ok

Let’s look at three different ways we can connect to the PostgreSQL cluster.

Connecting via psql
Let’s see how we can connect to hippo using psql, the command-line tool for accessing PostgreSQL. Ensure you have installed the psql
client.

The PostgreSQL Operator creates a service with the same name as the cluster. See for yourself! Get a list of all of the Services available
in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-1IP EXTERNAL -IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <nomne> 2022/TCP ,5432/TCP

59m

hippo-backrest -shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect the hippo cluster. First, in a different console window, set up a port forward to the hippo service:

kubectl -n pgo port-forward svc/hippo 5432:5432

You can connect to the database with the following command, substituting datalake for your actual password:

PGPASSWORD=datalake psql -h localhost -p 5432 -U testuser hippo

You should then be greeted with the PostgreSQL prompt:

psql ({{< param postgresVersion >}})
Type "help" for help.

hippo=>

https://www.postgresql.org/docs/current/app-psql.html
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12

Connecting via [pgAdmin 4|({{< relref “architecture/pgadmin4.md” >}})

[PgAdmin 4]({{ < relref “architecture/pgadmind.md” >}}) is a graphical tool that can be used to manage and query a PostgreSQL database
from a web browser. The PostgreSQL Operator provides a convenient integration with pgAdmin 4 for managing how users can log into
the database.

To add pgAdmin 4 to hippo, you can execute the following command:

pgo create pgadmin -n pgo hippo

It will take a few moments to create the pgAdmin 4 instance. The PostgreSQL Operator also creates a pgAdmin 4 service. See for yourself!
Get a list of all of the Services available in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <none> 2022/TCP ,5432/TCP

59m

hippo-backrest-shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
hippo-pgadmin ClusterIP 10.96.165.27 <none> 5050/ TCP

5mls
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect to our hippo cluster via pgAdmin 4! In a different terminal, set up a port forward to pgAdmin 4:

kubectl -n pgo port-forward svc/hippo-pgadmin 5050:5050

Navigate your browser to http://localhost:5050 and use your database username (testuser) and password (e.g. datalake) to log in.
Though the prompt says “email address”, using your PostgreSQL username will work:

Lagin

Logh

Forgotien your password? | Engsh ,.'|

Figure 3: pgAdmin 4 Login Page
(There are occasions where the initial credentials do not properly get set in pgAdmin 4. If you have trouble logging in, try running the
command pgo update user -n pgo hippo --username=testuser --password=datalake).

Once logged into pgAdmin 4, you will be automatically connected to your database. Explore pgAdmin 4 and run some queries!

Connecting from a Kubernetes Application
Within a Kubernetes Cluster

Connecting a Kubernetes application that is within the same cluster that your PostgreSQL cluster is deployed in is as simple as under-
standing the default Kubernetes DNS system. A cluster created by the PostgreSQL Operator automatically creates a Service of the same
name (e.g. hippo).

Following the example we’ve created, the hostname for our PostgreSQL cluster is hippo.pgo (or hippo.pgo.svc.cluster.local). To
get your exact DNS resolution rules, you may need to consult with your Kubernetes administrator.

Knowing this, we can construct a Postgres URI that contains all of the connection info:
postgres://testuser:securerandomlygeneratedpassword@hippo.pgo.svc.cluster.local:5432/hippo

which breaks down as such:

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#what-things-get-dns-names
https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

o postgres: the scheme, i.e. a Postgres URI

e testuser: the name of the PostgreSQL user

e securerandomlygeneratedpassword: the password for testuser
e hippo.pgo.svc.cluster.local: the hostname

e 5432: the port

e hippo: the database you want to connect to

If your application or connection driver cannot use the Postgres URI, the above should allow for you to break down the connection string
into its appropriate components.

Outside a Kubernetes Cluster
To connect to a database from an application that is outside a Kubernetes cluster, you will need to set one of the following:

e A Service type of LoadBalancer or NodePort
e An Ingress. The PostgreSQL Operator does not provide any management for Ingress types.

To have the PostgreSQL Operator create a Service that is of type LoadBalancer or NodePort, you can use the -—service-type flag as
part of creating a PostgreSQL cluster, e.g.:

pgo create cluster hippo --service-type=LoadBalancer

You can also set the ServiceType attribute of the [PostgreSQL Operator configuration]({{< relref “configuration/pgo-yaml-
configuration.md” >}}) to provide a default Service type for all PostgreSQL clusters that are created.

Next Steps

We've created a cluster and we’ve connected to it! Now, let’s [learn what customizations we can make as part of the cluster creation
process]({{< relref “tutorial/customize-cluster.md” >}}).

The PostgreSQL Operator makes it very easy and quick to [create a cluster]({{< relref “tutorial/create-cluster.md” >}1}), but there are
possibly more customizations you want to make to your cluster. These include:

» Resource allocations (e.g. Memory, CPU, PVC size)

o Sidecars (e.g. Monitoring({{< relref “architecture/monitoring.md” >}}), pgBouncer({{< relref “tutorial/pgbouncer.md” >}}),
[pgAdmin 4]({{< relref “architecture/pgadmind.md” >}1}))

« High Availability (e.g. adding replicas)

 Specifying specific PostgreSQL images (e.g. one with PostGIS)

e Specifying a Pod anti-affinity and Node affinity

o Enable and/or require TLS for all connections

o [Custom PostgreSQL configurations]({{< relref “advanced/custom-configuration.md” >}})

and more.

There are an abundance of ways to customize your PostgreSQL clusters with the PostgreSQL Operator. You can read about all of these
options in the pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) reference.

The goal of this section is to present a few of the common actions that can be taken to help create the PostgreSQL cluster of your choice.
Later sections of the tutorial will cover other topics, such as creating a cluster with TLS or tablespaces.

Create a PostgreSQL Cluster With Monitoring

The PostgreSQL Operator Monitoring({{< relref “architecture/monitoring.md” >}}) stack provides a convenient way to gain insights
into the availabilty and performance of your PostgreSQL clusters. In order to collect metrics from your PostgreSQL clusters, you have
to enable the crunchy-postgres-exporter sidecar alongside your PostgreSQL cluster. You can do this with the --metrics flag on
pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}):

pgo create cluster hippo --metrics
Note that the —--metrics flag just enables a sidecar that can be scraped. You will need to install the [monitoring stack]({{< relref
“installation/metrics/__index.md” >}}) separately, or tie it into your existing monitoring infrastructure.

If you have an exiting cluster that you would like to add metrics collection to, you can use the --enable-metrics flag on the [pgo
update cluster|({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) command:

pgo update cluster hippo --enable-metrics

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Customize PVC Size

Databases come in all different sizes, and those sizes can certainly change over time. As such, it is helpful to be able to specify what size
PVC you want to store your PostgreSQL data.

Customize PVC Size for PostgreSQL

The PostgreSQL Operator lets you choose the size of your “PostgreSQL data directory” (aka “PGDATA” directory) using the --pvc-size
flag. The PVC size should be selected using standard Kubernetes resource units, e.g. 20Gi.

For example, to create a PostgreSQL cluster that has a data directory that is 20Gi in size:

pgo create cluster hippo --pvc-size=20Gi

Customize PVC Size for pgBackRest

You can also specify the PVC size for the [pgBackRest repository]({{< relref “architecture/disaster-recovery.md” >}}) with the
--pgbackrest-pvc-size. pgBackRest is used to store all of your backups, so you want to size it so that you can meet your backup
retention policy.

For example, to create a pgBackRest repository that has a PVC sized to 100Gi in size:

pgo create cluster hippo --pgbackrest-pvc-size=100Gi

Customize CPU / Memory

Databases have different CPU and memory requirements, often which is dictated by the amount of data in your working set (i.e. actively
accessed data). Kubernetes provides several ways for Pods to manage CPU and memory resources:

e« CPU & Memory Requests
e« CPU & Memory Limits

A CPU or Memory Request tells Kubernetes to ensure that there is at least that amount of resource available on the Node to schedule a
Pod to.

A CPU Limit tells Kubernetes to not let a Pod exceed utilizing that amount of CPU. A Pod will only be allowed to use that maximum
amount of CPU. Similarly, a Memory limit tells Kubernetes to not let a Pod exceed a certain amount of Memory. In this case, if Kubernetes
detects that a Pod has exceed a Memory limit, it will try to terminate any processes that are causing the limit to be exceed. We mention
this as, prior to cgroups v2, Memory limits can potentially affect PostgreSQL availability and we advise to use them carefully.

The below goes into how you can customize the CPU and memory resources that are made available to the core deployment Pods with your
PostgreSQL cluster. Customizing CPU and memory does add more resources to your PostgreSQL cluster, but to fully take advantage of
additional resources, you will need to customize your PostgreSQL configuration and tune parameters such as shared_buffers and others.

Customize CPU / Memory for PostgreSQL

The PostgreSQL Operator provides several flags for pgo create cluster({{< relref “pgo-client/reference/pgo_ create_ cluster.md” >}})
to help manage resources for a PostgreSQL instance:

e ——cpu: Specify the CPU Request for a PostgreSQL instance

e ——cpu-limit: Specify the CPU Limit for a PostgreSQL instance

e —-memory: Specify the Memory Request for a PostgreSQL instance

e ——memory-limit: Specify the Memory Limit for a PostgreSQL instance

For example, to create a PostgreSQL cluster that makes a CPU Request of 2.0 with a CPU Limit of 4.0 and a Memory Request of 4Gi
with a Memory Limit of 6Gi:

pgo create cluster hippo \
--cpu=2.0 --cpu-limit=4.0 \
--memory=4Gi --memory-limit=6Gi

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes
https://pgbackrest.org/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Customize CPU / Memory for Crunchy PostgreSQL Exporter Sidecar

If you deploy your PostgreSQL cluster with monitoring, you may want to adjust the resources of the crunchy-postgres-exporter sidecar
that runs next to each PostgreSQL instnace. You can do this with the following flags:

e ——exporter-cpu: Specify the CPU Request for a crunchy-postgres-exporter sidecar

e ——exporter-cpu-limit: Specify the CPU Limit for a crunchy-postgres-exporter sidecar

e —-—exporter-memory: Specify the Memory Request for a crunchy-postgres-exporter sidecar

e —-—exporter-memory-limit: Specify the Memory Limit for a crunchy-postgres-exporter sidecar

For example, to create a PostgreSQL cluster with a metrics sidecar with custom CPU and memory requests 4+ limits, you could do the
following:

pgo create cluster hippo --metrics \
--exporter-cpu=0.5 --exporter-cpu-limit=1.0 \
-—exporter-memory=256Mi --exporter-memory-limit=1Gi

Customize CPU / Memory for pgBackRest

You can also customize the CPU and memory requests and limits for pgBackRest with the following flags:

o —-pgbackrest-cpu: Specify the CPU Request for pgBackRest

o —-pgbackrest-cpu-limit: Specify the CPU Limit for pgBackRest

e —-pgbackrest-memory: Specify the Memory Request for pgBackRest

e —-pgbackrest-memory-limit: Specify the Memory Limit for pgBackRest

For example, to create a PostgreSQL cluster with custom CPU and memory requests + limits for pgBackRest, you could do the following:

pgo create cluster hippo \
--pgbackrest-cpu=0.5 --pgbackrest-cpu-limit=1.0 \
--pgbackrest -memory=256Mi --pgbackrest-memory-limit=1Gi

Create a High Availability PostgreSQL Cluster

[High availability]({{ < relref “architecture/high-availability/ _index.md” >}}) allows you to deploy PostgreSQL clusters with redundancy
that allows them to be accessible by your applications even if there is a downtime event to your primary instance. The PostgreSQL
clusters use the distributed consensus storage system that comes with Kubernetes so that availability is tied to that of your Kubernetes
clusters. For an in-depth discussion of the topic, please read the [high availability]({{< relref “architecture/high-availability/ index.md”
>1}1}) section of the documentation.

To create a high availability PostgreSQL cluster with one replica, you can run the following command:
pgo create cluster hippo --replica-count=1

You can scale up and down your PostgreSQL cluster with the [pgo scale]({{< relref “pgo-client/reference/pgo_scale.md” >}}) and
pgo scaledown({{< relref “pgo-client/reference/pgo_scaledown.md” >}}) commands.

Set Tolerations for a PostgreSQL Cluster
Tolerations help with the scheduling of Pods to appropriate nodes. There are many reasons that a Kubernetes administrator may want
to use tolerations, such as restricting the types of Pods that can be assigned to particular nodes.

The PostgreSQL Operator supports adding tolerations to PostgreSQL instances using the --toleration flag. The format for adding a
toleration is as such:

rule:Effect

or

rule

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

where a rule can represent existence (e.g. key) or equality (key=value) and Effect is one of NoSchedule, PreferNoSchedule, or
NoExecute. For more information on how tolerations work, please refer to the Kubernetes documentation.

You can assign multiple tolerations to a PostgreSQL cluster.

For example, to add two tolerations to a new PostgreSQL cluster, one that is an existence toleration for a key of ssd and the other that
is an equality toleration for a key/value pair of zone/east, you can run the following command:

pgo create cluster hippo \
-—toleration=ssd:NoSchedule \
-—-toleration=zone=east:NoSchedule

Tolerations can be updated on an existing cluster using the [pgo update cluster]({{ relref “pgo-client/reference/pgo_update_ cluster.md”
}}) command. For example, to add a toleration of zone=west:NoSchedule and remove the toleration of zone=east:NoSchedule, you
could run the following command:

pgo update cluster hippo \
--toleration=zone=west:NoSchedule \
--toleration=zone-east:NoSchedule-

You can also add or edit tolerations directly on the pgclusters.crunchydata.com custom resource and the PostgreSQL Operator will
roll out the changes to the appropriate instances.

Customize PostgreSQL Configuration

PostgreSQL provides a lot of different knobs that can be used to fine tune the configuration for your workload. While you can [customize
your PostgreSQL configuration]({{< relref “advanced/custom-configuration.md” >}}) after your cluster has been deployed, you may also
want to load in your custom configuration during initialization.

The PostgreSQL Operator uses Patroni to help manage cluster initialization and high availability. To understand how to build out a
configuration file to be used to customize your PostgreSQL cluster, please review the Patroni documentation.

For example, let’s say we want to create a PostgreSQL cluster with shared_buffers set to 2GB, max_connections set to 30 and
password_encryption set to scram-sha-256. We would create a configuration file that looks similar to:

bootstrap:
dcs:
postgresql:
parameters:

max_connections: 30

shared_buffers: 2GB

password_encryption: scram-sha-256
Save this configuration in a file called postgres-ha.yaml
Next, create a ConfigMap called hippo-custom-config like so:
kubectl -n pgo create configmap hippo-custom-config --from-file=postgres-ha.yaml
You can then have you new PostgreSQL cluster use hippo-custom-config as part of its cluster initialization by using the --custom-config
flag of pgo create cluster:
pgo create cluster hippo --custom-config=hippo-custom-config
After your cluster is initialized, [connect to your cluster]({{< relref “tutorial/connect-cluster.md” >}}) and confirm that your settings

have been applied:
SHOW shared_buffers;

shared_buffers

Troubleshooting
PostgreSQL Pod Can’t Be Scheduled

There are many reasons why a PostgreSQL Pod may not be scheduled:

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://www.postgresql.org/docs/current/runtime-config.html
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/en/latest/SETTINGS.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

¢ Resources are unavailable. Ensure that you have a Kubernetes Node with enough resources to satisfy your memory or CPU
Request.

e PVC cannot be provisioned. Ensure that you request a PVC size that is available, or that your PVC storage class is set up
correctly.

e Node affinity rules cannot be satisfied. If you assigned a node label, ensure that the Nodes with that label are available for
scheduling. If they are, ensure that there are enough resources available.

o Pod anti-affinity rules cannot be satisfied. This most likely happens when [pod anti-affinity]({{< relref “architecture/high-
availability/_index.md” >}}#how-the-crunchy-postgresql-operator-uses-pod-anti-affinity) is set to required and there are not
enough Nodes available for scheduling. Consider adding more Nodes or relaxing your anti-affinity rules.

PostgreSQL Pod reports “Authentication Failed for ccp_monitoring”

This is a temporary error that occurs when a new PostgreSQL cluster is first initialized with the -~-metrics flag. The crunchy-postgres-expc
container within the PostgreSQL Pod may be ready before the container with PostgreSQL is ready. If a message in your logs further
down displays a timestamp, e.g.:

2020-11-10 08:23:15.968196-05

Then the ccp_monitoring user is properly reconciled with the PostgreSQL cluster.

If the error message does not go away, this could indicate a few things:

e The PostgreSQL instance has not initialized. Check to ensure that PostgreSQL has successfully started.
e The password for the ccp_monitoring user has changed. In this case you will need to update the Secret with the monitoring
credentials.

PostgreSQL Pod Not Scheduled to Nodes Matching Tolerations

While Kubernetes Tolerations allow for Pods to be scheduled to Nodes based on their taints, this does not mean that the Pod will
be assigned to those nodes. To provide Kubernetes scheduling guidance on where a Pod should be assigned, you must also use Node
Affinity ({{ < relref “architecture/high-availability/ index.md” >}}#node-affinity).

Next Steps

As mentioned at the beginning, there are a lot more customizations that you can make to your PostgreSQL cluster, and we will cover
those as the tutorial progresses! This section was to get you familiar with some of the most common customizations, and to explore how
many options pgo create cluster has!

Now you have your PostgreSQL cluster up and running and using the resources as you see fit. What if you want to make changes to the
cluster? We’ll explore some of the commands that can be used to update your PostgreSQL cluster!

You’ve done it: your application is a huge success! It’s so successful that you database needs more resources to keep up with the demand.
How do you add more resources to your PostgreSQL cluster?

The PostgreSQL Operator provides several options to [update a cluster’s]({{< relref “pgo-client/reference/pgo_update_ cluster.md” >}})
resource utilization, including:

 Resource allocations (e.g. Memory, CPU, PVC size)

e Tablespaces

o Annotations

e Auvailability options

o Configuration({{< relref “advanced/custom-configuration.md” >}})

and more. There are additional actions that can be taken as well outside of the update process, including [scaling a cluster]({{<
relref “architecture/high-availability/_index.md” >}}), adding a pgBouncer or [pgAdmin 4]({{< relref “architecture/pgadmind.md” >}})
Deployment, and more.

The goal of this section is to present a few of the common actions that can be taken to update your PostgreSQL cluster so it has the
resources and configuration that you require.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Update CPU / Memory

You can update the CPU and memory resources available to the Pods in your PostgreSQL cluster by using the [pgo update cluster]({{<
relref “pgo-client/reference/pgo_ create_ cluster.md” >}}) command. You can also modify the custom resource attributes to resize these
attributes as well. By using this method, the PostgreSQL instances are safely shut down and the new resources are applied in a rolling
fashion (though we caution that a brief downtime may still occur).

Customizing CPU and memory does add more resources to your PostgreSQL cluster, but to fully take advantage of additional resources,
you will need to [customize your PostgreSQL configuration]({{< relref “advanced/custom-configuration.md” >}}) and tune parameters
such as shared_buffers and others.

Customize CPU / Memory for PostgreSQL

The PostgreSQL Operator provides several flags for [pgo update cluster|({{< relref “pgo-client/reference/pgo_update_ cluster.md”
>1}}) to help manage resources for a PostgreSQL instance:

e ——cpu: Specify the CPU Request for a PostgreSQL instance

e ——cpu-limit: Specify the CPU Limit for a PostgreSQL instance

e —-memory: Specify the Memory Request for a PostgreSQL instance

e ——memory-limit: Specify the Memory Limit for a PostgreSQL instance

For example, to update a PostgreSQL cluster that makes a CPU Request of 2.0 with a CPU Limit of 4.0 and a Memory Request of 4Gi
with a Memory Limit of 6Gi:

pgo update cluster hippo \
--cpu=2.0 --cpu-limit=4.0 \
--memory=4Gi --memory-limit=6Gi

Customize CPU / Memory for Crunchy PostgreSQL Exporter Sidecar

If your PostgreSQL cluster has monitoring, you may want to adjust the resources of the crunchy-postgres-exporter sidecar that runs
next to each PostgreSQL instnace. You can do this with the following flags:

o ——exporter-cpu: Specify the CPU Request for a crunchy-postgres-exporter sidecar

e ——exporter-cpu-limit: Specify the CPU Limit for a crunchy-postgres-exporter sidecar

e —-—exporter-memory: Specify the Memory Request for a crunchy-postgres-exporter sidecar

e —-—exporter-memory-limit: Specify the Memory Limit for a crunchy-postgres-exporter sidecar

For example, to update a PostgreSQL cluster with a metrics sidecar with custom CPU and memory requests + limits, you could do the
following:

pgo update cluster hippo \
--exporter-cpu=0.5 --exporter-cpu-limit=1.0 \
--exporter-memory=256Mi --exporter-memory-limit=1Gi

Customize CPU / Memory for pgBackRest

You can also customize the CPU and memory requests and limits for pgBackRest with the following flags:

e ——-pgbackrest-cpu: Specify the CPU Request for pgBackRest

e —-pgbackrest-cpu-limit: Specify the CPU Limit for pgBackRest

e —-pgbackrest-memory: Specify the Memory Request for pgBackRest

e —-pgbackrest-memory-limit: Specify the Memory Limit for pgBackRest

For example, to update a PostgreSQL cluster with custom CPU and memory requests + limits for pgBackRest, you could do the following:

pgo update cluster hippo \
--pgbackrest-cpu=0.5 --pgbackrest-cpu-limit=1.0 \
--pgbackrest -memory=256Mi --pgbackrest-memory-limit=1Gi

Customize PostgreSQL Configuration

PostgreSQL provides a lot of different knobs that can be used to fine tune the configuration for your workload. While you can [customize
your PostgreSQL configuration]({{ < relref “advanced/custom-configuration.md” >}}) after your cluster has been deployed, you may also
want to load in your custom configuration during initialization.

The configuration can be customized by editing the <clusterName>-pgha-config ConfigMap. For example, with the hippo cluster:
kubectl -n pgo edit configmap hippo-pgha-config

We recommend that you read the section on how to [customize your PostgreSQL configuration]({{< relref “advanced/custom-
configuration.md” >}}) to find out how to customize your configuration.

Update PVC Size

You can update the PVC sizes for your PostgreSQL cluster, the pgBackRest repository, and an optional external WAL PVC by using
the [pgo update cluster|({{< relref “pgo-client/reference/pgo_update_cluster.md” >}}) command. You can also modify the custom
resource attributes to resize these attributes as well. By using this method, the PostgreSQL instances are safely shut down and the new
resources are applied in a rolling fashion (though we caution that a brief downtime may still occur).

It is possible to update the PVC size for a replica instance or a pgAdmin 4 instance as well, but you must do this by editing a custom
resource directly.

Update PVC Size for a Postgres Cluster

PGO provides the --pvc-size flag on the [pgo update cluster|({{< relref “pgo-client/reference/pgo_update_cluster.md” >}}) com-
mand to let you update the size of the PVC that stores your PostgreSQL data. To use this feature, the new PVC size must be larger
than the old PVC size.

For example, let’s say your current PostgreSQL cluster named hippo has a PVC size of 10Gi. To update your PostgreSQL cluster to use
a 20Gi PVC, you would use the following command:

pgo update cluster hippo --pvc-size=20Gi

As mentioned above, if you have deployed a HA Postgres cluster, the Postgres Operator will apply the changes using a rolling update to
minimize downtime.

Update PVC Size for a pgBackRest Repository
If you are using pgBackRest repository with posix mode (not s3 or gcs only modes), you can resize its PVC using the
--pgbackrest-pvc-size flag on the [pgo update cluster]({{< relref “pgo-client/reference/pgo_create_ cluster.md” >}}) command.

For example, let’s say your current PostgreSQL cluster named hippo has a pgBackRest PVC size of 30Gi. To update your PostgreSQL
cluster to use a 60Gi PVC, you would use the following command:

pgo update cluster hippo --pgbackrest-pvc-size=60Gi

Troubleshooting
Configuration Did Not Update
Any updates to a ConfigMap may take a few moments to propagate to all of your Pods. Once it is propagated, the PostgreSQL Operator

will attempt to reload the new configuration on each Pod.

If the information has propagated but the Pods have not been reloaded, you can force an explicit reload with the [pgo reload]({{< relref
“pgo-client /reference/pgo_reload.md” >}}) command:

pgo reload hippo

Some customized configuration settings can only be applied to your PostgreSQL cluster after it is restarted. For example, to restart the
hippo cluster, you can use the [pgo restart|({{< relref “pgo-client/reference/pgo_restart.md” >}}) command:

pgo restart hippo

https://www.postgresql.org/docs/current/runtime-config.html

Next Steps
We’ve seen how to create, customize, and update a PostgreSQL cluster with the PostgreSQL Operator. What about [deleting a PostgreSQL
cluster]({{< relref “tutorial/delete-cluster.md” >}1})?

There are many reasons you may want to delete a PostgreSQL cluster, and a few different questions to consider, such as do you want to
permanently delete the data or save it for later use?

The PostgreSQL Operator offers several different workflows for deleting a cluster, from wiping all assets, to keeping PVCs of your data
directory, your backup repository, or both.

Delete Everything
Deleting everything in a PostgreSQL cluster is a simple as using the pgo delete cluster({{< relref “pgo-client/reference/pgo_ delete_ cluste
>}}) command. For example, to delete the hippo cluster:

pgo delete cluster hippo

This command launches a Job that uses the pgo-rmdata container to delete all of the Kubernetes objects associated with this PostgreSQL
cluster. Once the pgo-rmdata Job finishes executing, all of your data, configurations, etc. will be removed.

Keep Backups

If you want to keep your backups, which can be used to [restore your PostgreSQL cluster at a later time]({{< relref “architecture/disaster-
recovery.md” >} } #restore-to-a-new-cluster) (a popular method for cloning and having sample data for your development team to use!),
use the ——keep-backups flag! For example, to delete the hippo PostgreSQL cluster but keep all of its backups:

pgo delete cluster hippo --keep-backups

This keeps the pgBackRest PVC which follows the pattern <clusterName>-hippo-pgbr-repo (e.g. hippo-pgbr-repo) and any PVCs
that were created using the pgdump method of [pgo backup|({{< relref “pgo-client/reference/pgo_backup.md”>}}).

Keep the PostgreSQL Data Directory

You may also want to keep your PostgreSQL cluster data directory, which is the core of your database, but remove any actively running
Pods. This can be accomplished with the --keep-data flag. For example, to keep the data directory of the hippo cluster:

pgo delete cluster hippo --keep-data

Once the pgo-rmdata Job completes, your data PVC for hippo will still remain, but you will be unable to access it unless you attach it
to a new PostgreSQL instance. The easiest way to access your data again is to create a PostgreSQL cluster with the same name:

pgo create cluster hippo

and the PostgreSQL Operator will re-attach your PVC to the newly running cluster.

Next Steps

We've covered the fundamental lifecycle elements of the PostgreSQL Operator, but there is much more to learn! If you're curious about
how things work in the PostgreSQL Operator and how to perform daily tasks, we suggest you continue with the following sections:

o [Architecture]({{< relref “architecture/ index.md” >}})
o [Common pgo Client Tasks]({{< relref “pgo-client/common-tasks.md” >}})

The tutorial will now go into some more advanced topics. Up next, learn how to [secure connections to your PostgreSQL clusters with
TLS]({{< relref “tutorial/tls.md” >}}).

TLS allows secure TCP connections to PostgreSQL, and the PostgreSQL Operator makes it easy to enable this PostgreSQL feature. The
TLS support in the PostgreSQL Operator does not make an opinion about your PKI, but rather loads in your TLS key pair that you wish
to use for the PostgreSQL server as well as its corresponding certificate authority (CA) certificate. Both of these Secrets are required to
enable TLS support for your PostgreSQL cluster when using the PostgreSQL Operator, but it in turn allows seamless TLS support.

https://kubernetes.io/docs/concepts/workloads/controllers/job/

Prerequisites

There are three items that are required to enable TLS in your PostgreSQL clusters:

e A CA certificate
e A TLS private key
e A TLS certificate

There are a variety of methods available to generate these items: in fact, Kubernetes comes with its own certificate management system!
It is up to you to decide how you want to manage this for your cluster. The PostgreSQL documentation also provides an example for how
to generate a TLS certificate as well.

To set up TLS for your PostgreSQL cluster, you have to create two Secrets: one that contains the CA certificate, and the other that
contains the server TLS key pair.

First, create the Secret that contains your CA certificate. Create the Secret as a generic Secret, and note that the following requirements
must be met:

e The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster
e The name of the key that is holding the CA must be ca.crt

There are optional settings for setting up the CA secret:
« You can pass in a certificate revocation list (CRL) for the CA secret by passing in the CRL using the ca.crl key name in the Secret.

For example, to create a CA Secret with the trusted CA to use for the PostgreSQL clusters, you could execute the following command:

kubectl create secret generic postgresql-ca -n pgo --from-file=ca.crt=/path/to/ca.crt

To create a CA Secret that includes a CRL, you could execute the following command:

kubectl create secret generic postgresql-ca -n pgo \
--from-file=ca.crt=/path/to/ca.crt \
--from-file=ca.crl=/path/to/ca.crl

Note that you can reuse this CA Secret for other PostgreSQL clusters deployed by the PostgreSQL Operator.

Next, create the Secret that contains your TLS key pair. Create the Secret as a a TLS Secret, and note the following requirement must
be met:

e The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster

kubectl create secret tls hippo-tls-keypair -n pgo \
--cert=/path/to/server.crt \
--key=/path/to/server.key

Now you can create a TLS-enabled PostgreSQL cluster!

Create a Postgres Cluster with TLS

Using the above example, to create a TLS-enabled PostgreSQL cluster that can accept both TLS and non-TLS connections, execute the
following command:

pgo create cluster hippo \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair

Including the --server-ca-secret and --server-tls-secret flags automatically enable TLS connections in the PostgreSQL cluster
that is deployed. These flags should reference the CA Secret and the TLS key pair Secret, respectively.

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSvl.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://blog.crunchydata.com/blog/tls-postgres-kubernetes-openssl
https://kubernetes.io/docs/concepts/configuration/secret/

Force TLS For All Connections

There are many environments where you want to force all remote connections to occur over TLS, for example, if you deploy your PostgreSQL
cluster’s in a public cloud or on an untrusted network. The PostgreSQL Operator lets you force all remote connections to occur over TLS
by using the --tls-only flag.

For example, using the setup above, you can force TLS in a PostgreSQL cluster by executing the following command:

pgo create cluster hippo \
--tls-only \
--server-ca-secret=postgresql-ca --server-tls-secret=hippo-tls-keypair

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSvl.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

If you try to connect to a PostgreSQL cluster that is deployed using the --tls-only with TLS disabled (i.e. PGSSLMODE=disable), you
will receive an error that connections without TLS are unsupported.

TLS Authentication for Replicas

PostgreSQL supports certificate-based authentication, which allows for PostgreSQL to authenticate users based on the common name
(CN) in a certificate. Using this feature, the PostgreSQL Operator allows you to configure PostgreSQL replicas in a cluster to authenticate
using a certificate instead of a password.

To use this feature, first you will need to set up a Kubernetes TLS Secret that has a CN of primaryuser. If you do not wish to have this
as your CN; you will need to map the CN of this certificate to the value of primaryuser using a pg_ident username map, which you can
configure as part of a [custom PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}}).

You also need to ensure that the certificate is verifiable by the certificate authority (CA) chain that you have provided for your
PostgreSQL cluster. The CA is provided as part of the --server-ca-secret flag in the pgo create cluster({{< relref “/pgo-
client /reference/pgo_ create_cluster.md” >}}) command.

To create a PostgreSQL cluster that uses TLS authentication for replication, first create Kubernetes Secrets for the server and the
CA. For the purposes of this example, we will use the ones that were created earlier: postgresql-ca and hippo-tls-keypair.
After generating a certificate that has a CN of primaryuser, create a Kubernetes Secret that references this TLS keypair called
hippo-tls-replication-keypair:

kubectl create secret tls hippo-tls-replication-keypair -n pgo \
--cert=/path/to/replication.crt \
--key=/path/to/replication.key

We can now create a PostgreSQL cluster and allow for it to use TLS authentication for its replicas! Let’s create a PostgreSQL cluster
with two replicas that also requires TLS for any connection:

pgo create cluster hippo \
--tls-only \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair \
--replication-tls-secret=hippo-tls-replication-keypair \
--replica-count=2

By default, the PostgreSQL Operator has each replica connect to PostgreSQL using a PostgreSQL TLS mode of verify-ca. If you wish to
perform TLS mutual authentication between PostgreSQL instances (i.e. certificate-based authentication with SSL mode of verify-full),
you will need to create a [PostgreSQL custom configuration]({{< relref “/advanced/custom-configuration.md” >}}).

Add TLS to an Existing PostgreSQL Cluster

You can add TLS to an existing PostgreSQL cluster using the [pgo update cluster|({{< relref “/pgo-client/reference/pgo_update_ cluster.i
>}}) or by modifying the pgclusters.crunchydata.com custom resource directly. pgo update cluster provides several flags for TLS
management, including:

e —-disable-server-tls: removes TLS from a cluster
e —-disable-tls-only: removes the TLS-only requirement from a cluster
e ——enable-tls-only: adds the TLS-only requirement to a cluster

https://www.postgresql.org/docs/current/auth-cert.html
https://www.postgresql.org/docs/current/auth-username-maps.html
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS

e —-server-ca-secret: combined with ——server-tls-secret, enables TLS in a cluster
e —-server—tls-secret: combined with --server-ca-secret, enables TLS in a cluster
e —-replication-tls-secret: enables certificate-based authentication between Postgres instances.

If you have an existing cluster named hippo that does not have TLS, and have a TLS keypair in a Secret named hippo-tls-keypair and
a CA in a Secret name postgresql-ca and want to require all connections to use TLS, you could use the following command:

pgo update cluster hippo \
--enable-tls-only \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair

While PGO attempts to leave any pg_hba.conf customizations you have in place, there are circumstance where it can override them when
enabling/disabling TLS. If you do have custom pg_hba. conf rules, after adding or removing TLS from an existing Posgres cluster, check
your pg_hba.conf values to ensure it matches your expectations.

Troubleshooting
Replicas Cannot Connect to Primary

If your primary is forcing all connections over TLS, ensure that your replicas are connecting with a sslmode of prefer or higher.

If using TLS authentication with your replicas, ensure that the common name (CN) for the replicas is primaryuser or that you have set
up an entry in pg_ident that provides a mapping from your CN to primaryuser.

pg_hba.conf Values Have Changed After TLS Update

PGO will attempt to preserve all of your custom TLS rules, but there are cases where it may make modifications. This a normal part
of adding/removing TLS from an existing Postgres cluster. You can safely update your pg_hba.conf rules after the TLS changes are
completed, and they will be preserved.

Next Steps

You’ve now secured connections to your database. However, how do you scale and pool your PostgreSQL connections? Learn how to [set
up and configure pgBouncer]({{< relref “tutorial/pgbouncer.md” >}})!

pgBouncer is a lightweight connection poooler and state manager that provides an efficient gateway to metering connections to PostgreSQL.
The PostgreSQL Operator provides an integration with pgBouncer that allows you to deploy it alongside your PostgreSQL cluster.

This tutorial covers how you can set up pgBouncer, functionality that the PostgreSQL Operator provides to manage it, and more.

Setup pgBouncer

pgBouncer lives as an independent Deployment next to your PostgreSQL cluster but, thanks to the PostgreSQL Operator, is synchronized
with various aspects of your environment.

There are two ways you can set up pgBouncer for your cluster. You can add pgBouncer when you create your cluster, e.g.:

pgo create cluster hippo --pgbouncer

or after your PostgreSQL cluster has been provisioned with the [pgo create pgbouncer]({{< relref “pgo-client/reference/pgo_ create_pgbot
>1):

pgo create pgbouncer hippo

There are several managed objects that are created alongside the pgBouncer Deployment, these include:

e The pgBouncer Deployment itself

¢ One or more pgBouncer Pods

e A pgBouncer ConfigMap, e.g. hippo-pgbouncer-cm which has two entries:

e pgbouncer.ini, which is the configuration for the pgBouncer instances

o pg_hba.conf, which controls how clients can connect to pgBouncer

e A pgBouncer Secret e.g. hippo-pgbouncer-secret, that contains the following values:

o password: the password for the pgbouncer user. The pgbouncer user is described in more detail further down.

o users.txt: the description for how the pgbouncer user and only the pgbouncer user can explicitly connect to a pgBouncer instance.

https://www.pgbouncer.org/

The pgbouncer user

The pgbouncer user is a special type of PostgreSQL user that is solely for the administration of pgBouncer. It performs several roles,
including:

e Securely load PostgreSQL user credentials into pgBouncer so pgBouncer can perform authentication and connection forwarding
e The ability to log into pgBouncer itself for administration, introspection, and looking at statistics

The pgBouncer user is not meant to be used to log into PostgreSQL directly: the account is given permissions for ad hoc tasks.
More information on how to connect to pgBouncer is provided in the next section.

Connect to a Postgres Cluster Through pgBouncer

Connecting to a PostgreSQL cluster through pgBouncer is similar to how you [connect to PostgreSQL directly]({{< relref “tutorial/connect-
cluster.md”>}1}), but you are connecting through a different service. First, note the types of users that can connect to PostgreSQL through
pgBouncer:

o Any regular user that’s created through [pgo create user|({{< relref “pgo-client/reference/pgo_create user.md” >}}) or a user
that is not a system account.

o The postgres superuser

The following example will follow similar steps for how you would connect to a [Postgres Cluster via psql]({{< relref “tutorial/connect-
cluster.md”>} } #connection-via-psql), but applies to all other connection methods.

First, get a list of Services that are available in your namespace:

kubectl -n pgo get svc

You should see a list similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
AGE
hippo ClusterIP 10.96.104.207 <none> 2022/TCP ,5432/TCP
12m
hippo-backrest-shared-repo ClusterIP 10.96.134.253 <none> 2022/ TCP
12m
hippo-pgbouncer ClusterIP 10.96.85.35 <none> 5432/ TCP
1im

We are going to want to create a port forward to the hippo-pgbouncer service. In a separate terminal window, run the following command:
kubectl -n pgo port-forward svc/hippo-pgbouncer 5432:5432

Recall in the [earlier part of the tutorial]({{< relref “tutorial/connect-cluster.md”>}}) that we created a user called testuser with a
password of securerandomlygeneratedpassword. We can the connect to PostgreSQL via pgBouncer by executing the following command:

PGPASSWORD=securerandomlygeneratedpassword psql -h localhost -p 5432 -U testuser hippo

You should then be greeted with the PostgreSQL prompt:

psql ({{< param postgresVersion >1}})
Type "help" for help.

hippo=>

Validation: Did this actually work?
This looks just like how we connected to PostgreSQL before, so how do we know that we are connected to PostgreSQL via pgBouncer?
Let’s log into pgBoucner as the pgbouncer user and demonstrate this.

In another terminal window, get the credential for the pgBouncer user. This can be done with the [pgo show pgbouncer]|({{< relref
“pgo-client /reference/pgo show pgbouncer.md” >}}) command:

pgo show pgbouncer hippo

which yields something that looks like:

CLUSTER SERVICE USERNAME PASSWORD CLUSTER IP EXTERNAL IP

hippo hippo-pgbouncer pgbouncer randompassword 10.96.85.35

Copy the actual password and log into pgbouncer with the following command:

PGPASSWORD=randompassword psql -h localhost -p 5432 -U pgbouncer pgbouncer

You should see something similar to this:
psql ({{< param postgresVersion >}}, server 1.14.0/bouncer)
Type "help" for help.

pgbouncer=#

In the pgboucner terminal, run the following command. This will show you the overall connection statistics for pgBouncer:

SHOW stats;

Success, you have connected to pgBouncer!

Setup pgBouncer with TLS

Similarly to how you can [setup TLS for PostgreSQL]({{< relref “tutorial/tls.md” >}}), you can set up TLS connections for pgBouncer.
To do this, the PostgreSQL Operator takes the following steps:

o Ensuring TLS communication between a client (e.g. psql, your application, etc.) and pgBouncer
e Ensuring TLS communication between pgBouncer and PostgreSQL

When TLS is enabled, the PostgreSQL Operator configures pgBouncer to require each client to use TLS to communicate with pgBouncer.
Additionally, the PostgreSQL Operator requires that pgBouncer and the PostgreSQL cluster share the same certificate authority (CA)
bundle, which allows for pgBouncer to communicate with the PostgreSQL cluster using PostgreSQL’s verify-ca SSL mode.

The below guide will show you how set up TLS for pgBouncer.

Prerequisites

In order to set up TLS connections for pgBouncer, you must first [enable TLS on your PostgreSQL cluster]({{< relref “tutorial/tls.md”
>1})-

For the purposes of this exercise, we will re-use the Secret TLS keypair hippo-tls-keypair that was created for the PostgreSQL server.
This is only being done for convenience: you can substitute hippo-tls-keypair with a different TLS key pair as long as it can be verified
by the certificate authority (CA) that you selected for your PostgreSQL cluster. Recall that the certificate authority (CA) bundle is stored
in a Secret named postgresql-ca.

Create pgBouncer with TLS
Knowing that our TLS key pair is stored in a Secret called hippo-tls-keypair, you can setup pgBouncer with TLS using the following
command:

pgo create pgbouncer hippo --tls-secret=hippo-tls-keypair

And that’s it! So long as the prerequisites are satisfied, this will create a pgBouncer instance that is TLS enabled.
Don’t believe it? Try logging in. First, ensure you have a port-forward from pgBouncer to your host machine:

kubectl -n pgo port-forward svc/hippo-pgbouncer 5432:5432

Then, connect to the pgBouncer instances:

PGPASSWORD=securerandomlygeneratedpassword psql -h localhost -p 5432 -U testuser hippo

You should see something similar to this:

psql ({{< param postgresVersion >}})
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

hippo=>

https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-PROTECTION

Still don’t believe it? You can verify your connection using the PostgreSQL get_backend_pid () function and the pg_stat_ssl monitoring
view:

hippo=> SELECT * FROM pg_stat_ssl WHERE pid = pg_backend_pid();

pid | ssl | version | cipher | bits | compression | client_dn | client_serial |
issuer_dn
————— - Fomm Fmm - t-————= domm - fomm fommm - +-—-
15653 | t | TLSv1.3 | TLS_AES_256_GCM_SHA384 | 256 | f I | I

Create a PostgreSQL cluster with pgBouncer and TLS

Want to create a PostgreSQL cluster with pgBouncer with TLS enabled? You can with the pgo create cluster({{< relref “pgo-
client/reference/pgo_ create cluster.md” >}}) command and using the —-pgbouncer-tls-secret flag. Using the same Secrets that were
created in the [creating a PostgreSQL cluster with TLS]({{ relref “tutorial/tls.md” }}) tutorial, you can create a PostgreSQL cluster with
pgBouncer and TLS with the following command:

pgo create cluster hippo \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair \
--pgbouncer \
--pgbouncer-tls-secret=hippo-tls-keypair

Customize CPU / Memory for pgBouncer
Provisioning

The PostgreSQL Operator provides several flags for pgo create cluster({{< relref “pgo-client/reference/pgo_ create_ cluster.md” >}})
to help manage resources for pgBouncer:

e —-pgbouncer-cpu: Specify the CPU Request for pgBouncer

e —-pgbouncer-cpu-limit: Specify the CPU Limit for pgBouncer

e —-pgbouncer-memory: Specify the Memory Request for pgBouncer

e —-pgbouncer-memory-limit: Specify the Memory Limit for pgBouncer

Additional, the PostgreSQL Operator provides several flags for [pgo create pgbouncer]({{< relref “pgo-client/reference/pgo_ create_pgbot
>1}}) to help manage resources for pgBouncer:

e ——cpu: Specify the CPU Request for pgBouncer

e ——cpu-limit: Specify the CPU Limit for pgBouncer

e —-memory: Specify the Memory Request for pgBouncer

e ——memory-limit: Specify the Memory Limit for pgBouncer

To create a pgBouncer Deployment that makes a CPU Request of 1.0 with a CPU Limit of 2.0 and a Memory Request of 64Mi with a
Memory Limit of 256Mi:

pgo create pgbouncer hippo \
--cpu=1.0 --cpu-limit=2.0 \
--memory=64Mi --memory-limit=256Mi

Updating

You can also add more memory and CPU resources to pgBouncer with the [pgo update pgbouncer|({{< relref “pgo-client/reference/pgo_ up
>}}) command, including;:

e ——cpu: Specify the CPU Request for pgBouncer

e ——cpu-limit: Specify the CPU Limit for pgBouncer

e ——memory: Specify the Memory Request for pgBouncer

e —-memory-limit: Specify the Memory Limit for pgBouncer

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-SSL-VIEW

For example, to update a pgBouncer to a CPU Request of 2.0 with a CPU Limit of 3.0 and a Memory Request of 128Mi with a Memory
Limit of 512Mi:

pgo update pgbouncer hippo \
--cpu=2.0 --cpu-1limit=3.0 \
--memory=128Mi --memory-limit=512Mi

Scaling pgBouncer

You can add more pgBouncer instances when provisioning pgBouncer and to an existing pgBouncer Deployment.

Provisioning

To add pgBouncer instances when creating a PostgreSQL cluster, use the ——-pgbouncer-replicas flag on pgo create cluster. For
example, to add 2 replicas:

pgo create cluster hippo --pgbouncer --pgbouncer-replicas=2

If adding a pgBouncer to an already provisioned PostgreSQL cluster, use the —-replicas flag on pgo create pgbouncer. For example,
to add a pgBouncer instance with 2 replicas:

pgo create pgbouncer hippo --replicas=2

Updating
To update pgBouncer instances to scale the replicas, use the pgo update pgbouncer command with the -—replicas flag. This flag can
scale pgBouncer up and down. For example, to run 3 pgBouncer replicas:

pgo update pgbouncer hippo --replicas=3

Rotate pgBouncer Password

If you wish to rotate the pgBouncer password, you can use the --rotate-password flag on pgo update pgbouncer:

pgo update pgbouncer hippo --rotate-password

This will change the pgBouncer password and synchronize the change across all pgBouncer instances.

Next Steps

Now that you have connection pooling set up, let’s create a [high availability PostgreSQL cluster|({{< relref “tutorial /high-availability.md”
>

One of the great things about PostgreSQL is its reliability: it is very stable and typically “just works.” However, there are certain things
that can happen in the environment that PostgreSQL is deployed in that can affect its uptime, including:

e The database storage disk fails or some other hardware failure occurs
e The network on which the database resides becomes unreachable

e The host operating system becomes unstable and crashes

e A key database file becomes corrupted

e A data center is lost

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching
of operating system, hardware upgrade, or other maintenance.

Fortunately, the Crunchy PostgreSQL Operator is prepared for this.

The Crunchy PostgreSQL Operator supports a distributed-consensus based high-availability (HA) system that keeps its managed Post-
greSQL clusters up and running, even if the PostgreSQL Operator disappears. Additionally, it leverages Kubernetes specific features such
as Pod Anti-Affinity to limit the surface area that could lead to a PostgreSQL cluster becoming unavailable. The PostgreSQL Operator
also supports automatic healing of failed primaries and leverages the efficient pgBackRest “delta restore” method, which eliminates the
need to fully reprovision a failed cluster!

This tutorial will cover the “howtos” of high availbility. For more information on the topic, please review the detailed [high availability
architecture]({{< relref “architecture/high-availability/ index.md” >}}) section.

. Kubernetes

Control Plane 1 Control Plane 2 Control Plane 3

Kubernetes Load Balancer

@ O ETA

@ Replica 2

Node 1 Node 2 Node 3

Figure 4: PostgreSQL Operator High-Availability Overview

Create a HA PostgreSQL Cluster

High availability is enabled in the PostgreSQL Operator by default so long as you have more than one replica. To create a high availability
PostgreSQL cluster, you can execute the following command:

pgo create cluster hippo --replica-count=1

Scale a PostgreSQL Cluster

You can scale an existing PostgreSQL cluster to add HA to it by using the [pgo scale]({{< relref “pgo-client/reference/pgo_scale.md”>}})
command:

pgo scale hippo

Scale Down a PostgreSQL Cluster

To scale down a PostgreSQL cluster, you will have to provide a target of which instance you want to scale down. You can do this with
the pgo scaledown({{< relref “pgo-client/reference/pgo_scaledown.md”>}}) command:

pgo scaledown hippo --query

which will yield something similar to:

Cluster: hippo

REPLICA STATUS NODE REPLICATION LAG PENDING RESTART
hippo-ojnd running nodeO1 0 MB false
Once you have determined which instance you want to scale down, you can run the following command:

pgo scaledown hippo --target=hippo-ojnd

Manual Failover

Each PostgreSQL cluster will manage its own availability. If you wish to manually fail over, you will need to use the [pgo failover|({{<
relref “pgo-client /reference/pgo_ failover.md”>}}) command.
There are two ways to issue a manual failover to your PostgreSQL cluster:

1. Allow for the PostgreSQL Operator to select the best replica candidate for failover.
2. Select your own replica candidate for failover.

Both methods are detailed below.

Manual Failover - PostgreSQL Operator Candidate Selection

To have the PostgreSQL Operator select the best replica candidate for failover, all you need to do is execute the following command:
pgo failover hippo

The PostgreSQL Operator will determine which is the best replica candidate to fail over to, and take into account factors such as replication
lag and current timeline.

Manual Failover - Manual Selection

If you wish to have your cluster manually failover, you must first query your determine which instance you want to fail over to. You can
do so with the following command:

pgo failover hippo --query

which will yield something similar to:

Cluster: hippo

REPLICA STATUS NODE REPLICATION LAG PENDING RESTART
hippo-ojnd running nodeO1 0 MB false
Once you have determine your failover target, you can run the following command:

pgo failover hippo --target==hippo-ojnd

Synchronous Replication

If you have a [write sensitive workload and wish to use synchronous replication]({{< relref “architecture/high-availability/ index.md”
>} }#synchronous-replication-guarding-against-transactions-loss), you can create your PostgreSQL cluster with synchronous replication
turned on:

pgo create cluster hippo --sync-replication

Please understand the tradeoffs of synchronous replication before using it.

Pod Anti-Affinity and Node Affinity

To learn how to use pod anti-affinity and node affinity, please refer to the [high availability architecture documentation]({{< relref
“architecture/high-availability/ index.md” >}}).

Tolerations

If you want to have a PostgreSQL instance use specific Kubernetes tolerations, you can use the --toleration flag on [pgo scale|({{<
relref “pgo-client/reference/pgo_scale.md”>}}). Any tolerations added to the new PostgreSQL instance fully replace any tolerations
available to the entire cluster.

For example, to assign equality toleration for a key/value pair of zone/west, you can run the following command:
pgo scale hippo --toleration=zone=west:NoSchedule

For more information on the PostgreSQL Operator and tolerations, please review the [high availability architecture documentation]({{<
relref “architecture/high-availability/ index.md” >}}).

Troubleshooting
No Primary Available After Both Synchronous Replication Instances Fail

Though synchronous replication is available for guarding against transaction loss for [write sensitive workloads]({{< relref
“architecture/high-availability/ index.md” >} }#synchronous-replication-guarding-against-transactions-loss), by default the high
availability systems prefers availability over consistency and will continue to accept writes to a primary even if a replica fails. Additionally,
in most scenarios, a system using synchronous replication will be able to recover and self heal should a primary or a replica go down.

However, in the case that both a primary and its synchronous replica go down at the same time, a new primary may not be promoted. To
guard against transaction loss, the high availability system will not promote any instances if it cannot determine if they had been one of
the synchronous instances. As such, when it recovers, it will bring up all the instances as replicas.

To get out of this situation, inspect the replicas using pgo failover --query to determine the best candidate (typically the one with
the least amount of replication lag). After determining the best candidate, promote one of the replicas using pgo failover --target
command.

If you are still having issues, you may need to execute into one of the Pods and inspect the state with the patronictl command.

A detailed breakdown of this case be found here.

Next Steps

Backups, restores, point-in-time-recoveries: [disaster recovery]({{< relref “architecture/disaster-recovery.md” >}}) is a big topic! We’ll
learn about you can [perform disaster recovery]({{< relref “tutorial/disaster-recovery.md” >}}) and more in the PostgreSQL Operator.

When using the PostgreSQL Operator, the answer to the question “do you take backups of your database” is automatically “yes!”

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster.
When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository as described in [creating a PostgreSQL
cluster]({{< relref “tutorial/create-cluster.md” >}}) section.

For more information on how disaster recovery in the PostgreSQL Operator works, please see the [disaster recovery architecture]({{<
relref “architecture/disaster-recovery.md”>}}) section.

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://github.com/CrunchyData/postgres-operator/issues/2132#issuecomment-748719843

Creating a Backup

The PostgreSQL Operator uses the open source pgBackRest backup and recovery utility for managing backups and PostgreSQL archives.
pgBackRest has several types of backups that you can take:

e Full: Back up the entire database
« Differential: Create a backup of everything since the last full back up was taken
o Incremental: Back up everything since the last backup was taken, whether it was full, differential, or incremental

When a new PostgreSQL cluster is provisioned by the PostgreSQL Operator, a full pgBackRest backup is taken by default.

To create a backup, you can run the following command:

pgo backup hippo

which by default, will create an incremental pgBackRest backup. The reason for this is that the PostgreSQL Operator initially creates a

pgBackRest full backup when the cluster is initial provisioned, and pgBackRest will take incremental backups for each subsequent backup
until a different backup type is specified.

Most pgBackRest options are supported and can be passed in by the PostgreSQL Operator via the --backup-opts flag.
Creating a Full Backup

You can create a full backup using the following command:

pgo backup hippo --backup-opts="--type=full"

Creating a Differential Backup

You can create a differential backup using the following command:

pgo backup hippo --backup-opts="--type=diff"

Creating an Incremental Backup

You can create a differential backup using the following command:

pgo backup hippo --backup-opts="--type=incr"

An incremental backup is created without specifying any options after a full or differential backup is taken.

Creating Backups in S3

The PostgreSQL Operator supports creating backups in S3 or any object storage system that uses the S3 protocol. For more information,
please read the section on [PostgreSQL Operator Backups with S3]({{< relref “architecture/disaster-recovery.md”>}}#using-s3) in the
architecture section.

Creating Backups in GCS

The PostgreSQL Operator supports creating backups in Google Cloud Storage (GCS). For more information, please read the section on
[PostgreSQL Operator Backups with GCS]({{< relref “architecture/disaster-recovery.md”>}}#using-ges) in the architecture section.

Set Backup Retention
By default, pgBackRest will allow you to keep on creating backups until you run out of disk space. As such, it may be helpful to manage
how many backups are retained.

pgBackRest comes with several flags for managing how backups can be retained:

e —-repol-retention-full: how many full backups to retain
e —-repol-retention-diff: how many differential backups to retain
e —-repol-retention-archive: how many sets of WAL archives to retain alongside the full and differential backups that are retained

https://www.pgbackrest.org
https://pgbackrest.org/command.html#command-backup

For example, to create a full backup and retain the previous 7 full backups, you would execute the following command:

pgo backup hippo --backup-opts="--type=full --repol-retention-full=7"

pgBackRest also supports time-based retention. Please review the pgBackRest documentation for more information.

Schedule Backups

It is good practice to take backups regularly. The PostgreSQL Operator allows you to schedule backups to occur automatically.

The PostgreSQL Operator comes with a scheduler is essentially a cron server that will run jobs that it is specified. Schedule commands
use the cron syntax to set up scheduled tasks.

@ scheduler

I— WAL archive-push
@ crunchy-postgres-ha [EEFYRNIIEES pgo-backrest-repo
- \

backup

Lo
_—

1
backup

WAL archive-push —> Backup
PVC

Figure 5: PostgreSQL Operator Schedule Backups

For example, to schedule a full backup once a day at lam, the following command can be used:

pgo create schedule hippo --schedule="0 1 * * %" \
--schedule-type=pgbackrest --pgbackrest-backup-type=full

To schedule an incremental backup once every 3 hours:

pgo create schedule hippo --schedule="0 */3 * x *x" \
--schedule-type=pgbackrest --pgbackrest-backup-type=incr

You can also add the backup retention settings to these commands.

View Backups

You can view all of the available backups in your pgBackRest repository with the pgo show backup command:

pgo show backup hippo

Restores

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster (i.e. a “clone” or “copy”) as well as a
point-in-time-recovery. There are two types of ways to restore a cluster:

o Restore to a new cluster using the --restore-from flag in the pgo create cluster({{< relref “/pgo-client/reference/pgo_ create_ clus
>1}}) command. This is effectively a clone or a copy.

o Restore in-place using the [pgo restore]({{< relref “/pgo-client/reference/pgo_restore.md” >}}) command. Note that this is
destructive.

https://pgbackrest.org/command.html#command-backup
https://en.wikipedia.org/wiki/Cron

It is typically better to perform a restore to a new cluster, particularly when performing a point-in-time-recovery, as it can allow you to
more effectively manage your downtime and avoid making undesired changes to your production data.

Additionally, the “restore to a new cluster” technique works so long as you have a pgBackRest repository available: the pgBackRest
repository does not need to be attached to an active cluster! For example, if a cluster named hippo was deleted as such:

pgo delete cluster hippo --keep-backups

you can create a new cluster from the backups like so:
pgo create cluster datalake --restore-from=hippo

Below provides guidance on how to perform a restore to a new PostgreSQL cluster both as a full copy and to a specific point in time.
Additionally, it also shows how to restore in place to a specific point in time.

Restore to a New Cluster (aka “copy” or “clone”)

Restoring to a new PostgreSQL cluster allows one to take a backup and create a new PostgreSQL cluster that can run alongside an existing
PostgreSQL cluster. There are several scenarios where using this technique is helpful:

« Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is “creating a clone.”
« Restore to a point-in-time and inspect the state of the data without affecting the current cluster

and more.

Restore Everything To create a new PostgreSQL cluster from a backup and restore it fully, you can execute the following command:

pgo create cluster datalake --restore-from=hippo

Partial Restore / Point-in-time-Recovery (PITR) To create a new PostgreSQL cluster and restore it to specific point-in-time
(e.g. before a key table was dropped), you can use the following command, substituting the time that you wish to restore to:

pgo create cluster datalake \
--restore-from hippo \
--restore-opts "--type=time --target='2019-12-31 11:59:59.999999+00"'"

When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections,
add pgBackRest’s --target-action=pause option to the -—-restore-opts parameter.

The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter.
For more information, please review the pgBackRest restore options

Restore in-place

Restoring a PostgreSQL cluster in-place is a destructive action that will perform a recovery on your existing data directory. This is
accomplished using the [pgo restore|({{< relref “/pgo-client/reference/pgo_restore.md” >}}) command. The most common scenario is
to restore the database to a specific point in time.

Point-in-time-Recovery (PITR) The more likely scenario when performing a PostgreSQL cluster restore is to recover to a particular
point-in-time (e.g. before a key table was dropped). For example, to restore a cluster to December 31, 2019 at 11:59pm:

pgo restore hippo --pitr-target="2019-12-31 11:59:59.999999+00" \

--backup-opts="--type=time"
When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections,
add pgBackRest’s —-target-action=pause option to the -—-backup-opts parameter.

The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter.
For more information, please review the pgBackRest restore options

https://pgbackrest.org/command.html#command-restore
https://pgbackrest.org/command.html#command-restore

Deleting a Backup

You typically do not want to delete backups. Instead, it’s better to set a backup retention policy as part of scheduling your ackups.

However, there are situations where you may want to explicitly delete backups, in particular, if you need to reclaim space on your backup

disk or if you accidentally created too many backups.

If you delete a backup that is not set to expire, you may be unable to meet your retention requirements. If you are deleting backups to

free space, it is recommended to delete your oldest backups first.

In these cases, a backup can be deleted using the [pgo delete backup|({{< relref “pgo-client/reference/pgo_ delete backup.md” >}})
command. You must specify a specific backup to delete using the --target flag. You can get the backup names from the [pgo show

backup|({{< relref “pgo-client /reference/pgo_show_ backup.md” >}}) command.

Let’s say that the hippo cluster currently has a set of backups that look like this, obtained from running the pgo show backup hippo

command:
cluster: hippo

storage type: posix

stanza: db
status: ok
cipher: none

db (current)
wal archive min/max (12-1)

full backup: 20201220-171801F

timestamp start/stop: 2020-12-20 17:18:01 +0000 UTC / 2020-12-20 17:18:10 +0000 UTC

wal start/stop: 000000010000000000000002 / 000000010000000000000002
database size: 31.3MiB, backup size: 31.3MiB

repository size: 3.8MiB, repository backup size: 3.8MiB

backup reference list:

incr backup: 20201220-171801F_20201220-1719391

timestamp start/stop: 2020-12-20 17:19:39 +0000 UTC / 2020-12-20 17:19:41 +0000 UTC

wal start/stop: 000000010000000000000005 / 000000010000000000000005
database size: 31.3MiB, backup size: 216.3KiB

repository size: 3.8MiB, repository backup size: 25.9KiB

backup reference list: 20201220-171801F

incr backup: 20201220-171801F_20201220-1720461

timestamp start/stop: 2020-12-20 17:20:46 +0000 UTC / 2020-12-20 17:23:29 +0000 UTC

wal start/stop: 00000001000000000000000A / 00000001000000000000000A
database size: 65.9MiB, backup size: 37.5MiB
repository size: 7.7MiB, repository backup size: 4.3MiB

backup reference list: 20201220-171801F, 20201220-171801F_20201220-1719391

full backup: 20201220-201305F

timestamp start/stop: 2020-12-20 20:13:05 +0000 UTC / 2020-12-20 20:13:15 +0000 UTC

wal start/stop: 00000001000000000000000F / 00000001000000000000000F
database size: 65.9MiB, backup size: 65.9MiB

repository size: 7.7MiB, repository backup size: 7.7MiB

backup reference list:

Note that the backup targets can be found after the backup type, e.g. 20201220-171801F or 20201220-171801F_20201220-1720461

One can delete the oldest backup, in this case 20201220-171801F, by running the following command:
pgo delete backup hippo --target=20201220-171801F

You can then verify the backup is deleted with pgo show backup hippo:

cluster: hippo
storage type: posix

stanza: db
status: ok
cipher: none

db (current)
wal archive min/max (12-1)

full backup: 20201220-201305F
timestamp start/stop: 2020-12-20 20:13:05 +0000 UTC / 2020-12-20 20:13:15 +0000 UTC
wal start/stop: 00000001000000000000000F / 00000001000000000000000F
database size: 65.9MiB, backup size: 65.9MiB
repository size: 7.7MiB, repository backup size: 7.7MiB
backup reference list:

Note that deleting the oldest backup also had the effect of deleting all of the backups that depended on it. This is a feature of pgBackRest!

Next Steps
There are cases where you may want to take [logical backups]({{< relref “tutorial/pgdump.md” >}}), aka pg_dump / pg_dumpall. Let’s
learn how to do that with the PostgreSQL Operator!

The PostgreSQL Operator supports taking logical backups with pg_dump and pg_dumpall. While they do not provide the same performance
and storage optimizations as the physical backups provided by pgBackRest, logical backups are helpful when one wants to upgrade between
major PostgreSQL versions, or provide only a subset of a database, such as a table.

Create a Logical Backup

To create a logical backup of the postgres database, you can run the following command:

pgo backup hippo --backup-type=pgdump

To create a logical backup of a specific database, you can use the --database flag, as in the following command:

pgo backup hippo --backup-type=pgdump --database=hippo

You can pass in specific options to ——backup-opts, which can accept most of the options that the pg_dump command accepts. For example,
to only dump the data from a specific table called users:

pgo backup hippo --backup-type=pgdump --backup-opts="-t users"

To use pg_dumpall to create a logical backup of all the data in a PostgreSQL cluster, you must pass the ~——dump-all flag in —-backup-opts,
i.e.:

pgo backup hippo --backup-type=pgdump --backup-opts="--dump-all"

Viewing Logical Backups

To view an available list of logical backups, you can use the pgo show backup command with the —-backup-type=pgdump flag:
pgo show backup --backup-type=pgdump hippo

This provides information about the PVC that the logical backups are stored on as well as the timestamps required to perform a restore
from a logical backup.

Restore from a Logical Backup

To restore from a logical backup, you need to reference the PVC that the logical backup is stored to, as well as the timestamp that was

created by the logical backup.

You can get the timestamp from the pgo show backup --backup-type=pgdump command.

You can restore a logical backup using the following command:

pgo restore hippo --backup-type=pgdump --backup-pvc=hippo-pgdump-pvc \
--pitr-target="2019-01-15-00-03-25" -n pgouserl

To restore to a specific database, add the --pgdump-database flag to the command from above:

pgo restore hippo --backup-type=pgdump --backup-pvc=hippo-pgdump-pvc \
--pgdump-database=mydb --pitr-target="2019-01-15-00-03-25" -n pgouserl

https://pgbackrest.org/
https://www.postgresql.org/docs/current/app-pgdump.html

The goal of the Crunchy PostgreSQL Operator is to provide a means to quickly get your applications up and running on PostgreSQL for
both development and production environments. To understand how the PostgreSQL Operator does this, we want to give you a tour of
its architecture, with explains both the architecture of the PostgreSQL Operator itself as well as recommended deployment models for
PostgreSQL in production!

Crunchy PostgreSQL Operator Architecture

g ﬁ Kubernetes
L]

PGO Client
(Linux) S — D , [— Container Suite ———
API Server
Custom Resource Definitions primary
(CRDs) PostgreSQL pgbouncer
clusters policy | —
(pgcluster) (pgpolicies) replica pgbackrest —
PostgreSQL l
tasks replicas o
. Ammmm e — - > (potasks) (pgreplicas) ooooo i >
PGO Client
(Mac) \, J External Application
A i accessing the DB

@ iy v
e
' -
' —]
g Scheduler 5 : l — Cluster PVC
EEEEET TR 0
PGO Client S) ;
(Windows) A / helm / ku .
E ; v
Crunchy Data ' . . St
I I I I Containers ' . . orage)
mmmmmmmmsmmnemmnmmmnenes (1111111] Persistent Disk
Container Registry

Figure 6: Operator Architecture with CRDs

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

The Custom Resource Definitions include:

e pgclusters.crunchydata.com: Stores information required to manage a PostgreSQL cluster. This includes things like the cluster
name, what storage and resource classes to use, which version of PostgreSQL to run, information about how to maintain a high-
availability cluster, etc.

e pgreplicas.crunchydata.com: Stores information required to manage the replicas within a PostgreSQL cluster. This includes
things like the number of replicas, what storage and resource classes to use, special affinity rules, etc.

o pgtasks.crunchydata.com: A general purpose CRD that accepts a type of task that is needed to run against a cluster (e.g. take a
backup) and tracks the state of said task through its workflow.

e pgpolicies.crunchydata.com: Stores a reference to a SQL file that can be executed against a PostgreSQL cluster. In the past,
this was used to manage RLS policies on PostgreSQL clusters.

There are also a few legacy Custom Resource Definitions that the PostgreSQL Operator comes with that will be removed in a future
release.

The PostgreSQL Operator runs as a deployment in a namespace and is composed of up to four Pods, including;:

» operator (image: postgres-operator) - This is the heart of the PostgreSQL Operator. It contains a series of Kubernetes controllers
that place watch events on a series of native Kubernetes resources (Jobs, Pods) as well as the Custom Resources that come with the
PostgreSQL Operator (Pgcluster, Pgtask)

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/architecture/controller/

o apiserver (image: pgo-apiserver) - This provides an API that a PostgreSQL Operator User (pgouser) can interface with via the
pgo command-line interface (CLI) or directly via HT'TP requests. The API server can also control what resources a user can access
via a series of RBAC rules that can be defined as part of a pgorole.

o scheduler (image: pgo-scheduler) - A container that runs cron and allows a user to schedule repeatable tasks, such as backups
(because it is important to schedule backups in a production environment!)

o event (image: pgo-event, optional) - A container that provides an interface to the nsq message queue and transmits information
about lifecycle events that occur within the PostgreSQL Operator (e.g. a cluster is created, a backup is taken, etc.)

The main purpose of the PostgreSQL Operator is to create and update information around the structure of a PostgreSQL Cluster, and
to relay information about the overall status and health of a PostgreSQL cluster. The goal is to also simplify this process as much as
possible for users. For example, let’s say we want to create a high-availability PostgreSQL cluster that has a single replica, supports having
backups in both a local storage area and Amazon S3 and has built-in metrics and connection pooling, similar to:

Incoming Application Requests Metrics Dashboard Log Analytics Dashboard

patadostseice
crunchy - grafana

‘

— m
crunchy - pgbadger crunchy - pgbadger crunchy - pgbadger \

|

o~ ~ . PN crunchy - backrest
ﬂ\@\ crunchy - postgres ’\@ crunchy - postgres (@) crunchy - postgres

Backup
Data PVC Data PVC Data PVC
storage

storage class replica storage class replica storage class primary

primary DB service |: crunchy - prometheus

crunchy - collect

Figure 7: PostgreSQL HA Cluster

We can accomplish that with a single command:

pgo create cluster hacluster --replica-count=1 --metrics --pgbackrest-storage-type="posix,s3"
--pgbouncer --pgbadger

The PostgreSQL Operator handles setting up all of the various Deployments and sidecars to be able to accomplish this task, and puts in
the various constructs to maximize resiliency of the PostgreSQL cluster.

You will also notice that high-availability is enabled by default. The Crunchy PostgreSQL Operator uses a distributed-consensus
method for PostgreSQL cluster high-availability, and as such delegates the management of each cluster’s availability to the clusters
themselves. This removes the PostgreSQL Operator from being a single-point-of-failure, and has benefits such as faster recovery times for
each PostgreSQL cluster. For a detailed discussion on high-availability, please see the High-Availability section.

Every single Kubernetes object (Deployment, Service, Pod, Secret, Namespace, etc.) that is deployed or managed by the PostgreSQL
Operator has a Label associated with the name of vendor and a value of crunchydata. You can use Kubernetes selectors to easily find out
which objects are being watched by the PostgreSQL Operator. For example, to get all of the managed Secrets in the default namespace
the PostgreSQL Operator is deployed into (pgo):

kubectl get secrets -n pgo --selector=vendor=crunchydata

Kubernetes Deployments: The Crunchy PostgreSQL Operator Deployment Model

The Crunchy PostgreSQL Operator uses Kubernetes Deployments for running PostgreSQL clusters instead of StatefulSets or other objects.
This is by design: Kubernetes Deployments allow for more flexibility in how you deploy your PostgreSQL clusters.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

For example, let’s look at a specific PostgreSQL cluster where we want to have one primary instance and one replica instance. We want
to ensure that our primary instance is using our fastest disks and has more compute resources available to it. We are fine with our replica
having slower disks and less compute resources. We can create this environment with a command similar to below:

pgo create cluster mixed --replica-count=1 \
--storage-config=fast --memory=32Gi --cpu=8.0 \
--replica-storage-config=standard

Now let’s say we want to have one replica available to run read-only queries against, but we want its hardware profile to mirror that of
the primary instance. We can run the following command:

pgo scale mixed --replica-count=1 \
--storage-config=fast

Kubernetes Deployments allow us to create heterogeneous clusters with ease and let us scale them up and down as we please. Addi-
tional components in our PostgreSQL cluster, such as the pgBackRest repository or an optional pgBouncer, are deployed as Kubernetes
Deployments as well.

We can also leverage Kubernees Deployments to apply Node Affinity rules to individual PostgreSQL instances. For instance, we may want
to force one or more of our PostgreSQL replicas to run on Nodes in a different region than our primary PostgreSQL instances.

Using Kubernetes Deployments does create additional management complexity, but the good news is: the PostgreSQL Operator manages
it for you! Being aware of this model can help you understand how the PostgreSQL Operator gives you maximum flexibility for your
PostgreSQL clusters while giving you the tools to troubleshoot issues in production.

The last piece of this model is the use of Kubernetes Services for accessing your PostgreSQL clusters and their various components.
The PostgreSQL Operator puts services in front of each Deployment to ensure you have a known, consistent means of accessing your
PostgreSQL components.

Note that in some production environments, there can be delays in accessing Services during transition events. The PostgreSQL Operator
attempts to mitigate delays during critical operations (e.g. failover, restore, etc.) by directly accessing the Kubernetes Pods to perform
given actions.

For a detailed analysis, please see Using Kubernetes Deployments for Running PostgreSQL.

Additional Architecture Information

There is certainly a lot to unpack in the overall architecture of the Crunchy PostgreSQL Operator. Understanding the architecture will
help you to plan the deployment model that is best for your environment. For more information on the architectures of various components
of the PostgreSQL Operator, please read onward!

What happens when the Crunchy PostgreSQL Operator creates a PostgreSQL cluster?

First, an entry needs to be added to the Pgcluster CRD that provides the essential attributes for maintaining the definition of a
PostgreSQL cluster. These attributes include:

e Cluster name

o The storage and resource definitions to use

e References to any secrets required, e.g. ones to the pgBackRest repository

e High-availability rules

e Which sidecars and ancillary services are enabled, e.g. pgBouncer, pgMonitor

After the Pgcluster CRD entry is set up, the PostgreSQL Operator handles various tasks to ensure that a healthy PostgreSQL cluster can
be deployed. These include:

e Allocating the PersistentVolumeClaims that are used to store the PostgreSQL data as well as the pgBackRest repository

e Setting up the Secrets specific to this PostgreSQL cluster

e Setting up the ConfigMap entries specific for this PostgreSQL cluster, including entries that may contain custom configurations as
well as ones that are used for the PostgreSQL cluster to manage its high-availability

e Creating Deployments for the PostgreSQL primary instance and the pgBackRest repository

You will notice the presence of a pgBackRest repository. As of version 4.2, this is a mandatory feature for clusters that are deployed by
the PostgreSQL Operator. In addition to providing an archive for the PostgreSQL write-ahead logs (WAL), the pgBackRest repository
serves several critical functions, including:

e Used to efficiently provision new replicas that are added to the PostgreSQL cluster

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/services-networking/service/
https://info.crunchydata.com/blog/using-kubernetes-deployments-for-running-postgresql
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

Incoming Appllcatlon Requests Metrics Dashboard Log Analytics Dashboard

pabadger service
crunchy - grafana

‘ crunchy - pgbouncer l
replica DB service primary DB service crunchy - prometheus

crunchy - collect

crunchy - collect
crunchy - pgbadger

)
(#8y crunchy - postgres
@) cruncry-posta

crunchy - pgbadger crunchy - pgbadger ‘

P~ —_——— crunchy - backrest
crunchy - postgres (gy crunchy - postgres

B:‘i;‘t‘:‘ g

storage class replica storage class replica storage class primary storage

Figure 8: PostgreSQL HA Cluster

e Prevent replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs

o Allow failed primaries to automatically and efficiently heal using the “delta restore” feature

e Serves as the basis for the cluster cloning feature

o ..and of course, allow for one to take full, differential, and incremental backups and perform full and point-in-time restores

The pgBackRest repository can be configured to use storage that resides within the Kubernetes cluster (the posix option), Amazon S3 or
a storage system that uses the S3 protocol (the s3 option), or both (posix,s3).

Once the PostgreSQL primary instance is ready, there are two follow up actions that the PostgreSQL Operator takes to properly leverage
the pgBackRest repository:

e A new pgBackRest stanza is created
e An initial backup is taken to facilitate the creation of any new replica

At this point, if new replicas were requested as part of the pgo create command, they are provisioned from the pgBackRest repository.

There is a Kubernetes Service created for the Deployment of the primary PostgreSQL instance, one for the pgBackRest repository, and
one that encompasses all of the replicas. Additionally, if the connection pooler pgBouncer is deployed with this cluster, it will also have a
service as well.

An optional monitoring sidecar can be deployed as well. The sidecar, called exporter, uses the crunchy-postgres-exporter container
that is a part of pgMonitor and scrapes key health metrics into a Prometheus instance. See Monitoring for more information on how this
works.

Horizontal Scaling

There are many reasons why you may want to horizontally scale your PostgreSQL cluster:

¢ Add more redundancy by having additional replicas
e Leveraging load balancing for your read only queries
e Add in a new replica that has more storage or a different container resource profile, and then failover to that as the new primary

and more.

The PostgreSQL Operator enables the ability to scale up and down via the pgo scale and pgo scaledown commands respectively. When
you run pgo scale, the PostgreSQL Operator takes the following steps:

e The PostgreSQL Operator creates a new Kubernetes Deployment with the information specified from the pgo scale command
combined with the information already stored as part of the managing the existing PostgreSQL cluster

e During the provisioning of the replica, a pgBackRest restore takes place in order to bring it up to the point of the last backup. If
data already exists as part of this replica, then a “delta restore” is performed. (NOTE: If you have not taken a backup in awhile
and your database is large, consider taking a backup before performing scaling up.)

e The new replica boots up in recovery mode and recovers to the latest point in time. This allows it to catch up to the current primary.

e Once the replica has recovered, it joins the primary as a streaming replica!

If pgMonitor is enabled, an exporter sidecar is also added to the replica Deployment.

Scaling down works in the opposite way:

e The PostgreSQL instance on the scaled down replica is stopped. By default, the data is explicitly wiped out unless the --keep-data
flag on pgo scaledown is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted

e The Kubernetes Deployment associated with the replica is removed, as well as any other Kubernetes objects that are specifically
associated with this replcia

Custom Configuration({{< relref “/advanced/custom-configuration.md” >}})

PostgreSQL workloads often need tuning and additional configuration in production environments, and the PostgreSQL Operator allows
for this via its ability to manage [custom PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}}).

The custom configuration can be edit from a ConfigMap that follows the pattern of <clusterName>-pgha-config, where <clusterName>
would be hippo in pgo create cluster hippo. When the ConfigMap is edited, the changes are automatically pushed out to all of the
PostgreSQL instances within a cluster.

For more information on how this works and what configuration settings are editable, please visit the “[Custom PostgreSQL configura-
tion]({{< relref” /advanced/custom-configuration.md” >}})” section of the documentation.

Provisioning Using a Backup from an Another PostgreSQL Cluster

When provisioning a new PostgreSQL cluster, it is possible to bootstrap the cluster using an existing backup from either another PostgreSQL
cluster that is currently running, or from a PostgreSQL cluster that no longer exists (specifically a cluster that was deleted using the
keep-backups option, as discussed in section Deprovisioning below). This is specifically accomplished by performing a pgbackrest
restore during cluster initialization in order to populate the initial PGDATA directory for the new cluster using the contents of a backup
from another cluster.

To leverage this capability, the name of the cluster containing the backup that should be utilzed when restoring simply needs to be specified
using the restore-from option when creating a new cluster:

pgo create cluster mycluster2 --restore-from=myclusterl

By default, pgBackRest will restore the latest backup available in the repository, and will replay all available WAL archives. However,
additional pgBackRest options can be specified using the restore-opts option, which allows the restore command to be further tailored
and customized. For instance, the following demonstrates how a point-in-time restore can be utilized when creating a new cluster:

pgo create cluster mycluster2 \
--restore-from=myclusterl \
--restore-opts="--type=time --target='2020-07-02 20:19:36.13557+00"'"

Additionally, if bootstrapping from a cluster the utilizes AWS S3 storage with pgBackRest (or a cluster that utilized AWS S3 storage in
the case of a former cluster), you can also also specify s3 as the repository type in order to restore from a backup stored in an S3 storage
bucket:

pgo create cluster mycluster2 \
--restore-from=myclusterl \
--restore-opts="--repo-type=s3"

When restoring from a cluster that is currently running, the new cluster will simply connect to the existing pgBackRest repository host for
that cluster in order to perform the pgBackRest restore. If restoring from a former cluster that has since been deleted, a new pgBackRest
repository host will be deployed for the sole purpose of bootstrapping the new cluster, and will then be destroyed once the restore is
complete. Also, please note that it is only possible for one cluster to bootstrap from another cluster (whether running or not) at any given
time. And finally, if the cluster being utilized for restore is in another namespace than the cluster being created, the proper namespace
can be specified using the -—-restore-from-namespace option.

https://kubernetes.io/docs/concepts/configuration/configmap/

Deprovisioning

There may become a point where you need to completely deprovision, or delete, a PostgreSQL cluster. You can delete a cluster managed by
the PostgreSQL Operator using the pgo delete command. By default, all data and backups are removed when you delete a PostgreSQL
cluster, but there are some options that allow you to retain data, including:

e —-keep-backups - this retains the pgBackRest repository. This can be used to restore the data to a new PostgreSQL cluster.
o --keep-data - this retains the PostgreSQL data directory (aka PGDATA) from the primary PostgreSQL instance in the cluster. This
can be used to recreate the PostgreSQL cluster of the same name.

When the PostgreSQL cluster is deleted, the following takes place:

o All PostgreSQL instances are stopped. By default, the data is explicitly wiped out unless the --keep-data flag on pgo scaledown
is specified. Once the data is removed, the PersistentVolumeClaim (PVC) is also deleted

e Any Services, ConfigMaps, Secrets, etc. Kubernetes objects are all deleted

e The Kubernetes Deployments associated with the PostgreSQL instances are removed, as well as the Kubernetes Deployments
associated with pgBackRest repository and, if deployed, the pgBouncer connection pooler

When using the PostgreSQL Operator, the answer to the question “do you take backups of your database” is automatically “yes!”

The PostgreSQL Operator uses the open source pgBackRest backup and restore utility that is designed for working with databases that
are many terabytes in size. As described in the Provisioning section, pgBackRest is enabled by default as it permits the PostgreSQL
Operator to automate some advanced as well as convenient behaviors, including:

o FEfficient provisioning of new replicas that are added to the PostgreSQL cluster

e Preventing replicas from falling out of sync from the PostgreSQL primary by allowing them to replay old WAL logs

o Allowing failed primaries to automatically and efficiently heal using the “delta restore” feature

e Serving as the basis for the cluster cloning feature

e ..and of course, allowing for one to take full, differential, and incremental backups and perform full and point-in-time restores

| WAL archive-push

@ crunchy-postgres-ha pgo-backrest-repo
-

WAL archive-push —»

Backup
PVC

Figure 9: PostgreSQL Operator pgBackRest Integration

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster.
When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository as described in the Provisioning section.

At PostgreSQL cluster creation time, you can specify a specific Storage Class for the pgBackRest repository. Additionally, you can also
specify the type of pgBackRest repository that can be used, including:

e posix: Uses the storage that is provided by the Kubernetes cluster’s Storage Class that you select
e s3: Use Amazon S3 or an object storage system that uses the S3 protocol

https://pgbackrest.org

o gcs: Use Google Cloud Storage (GCS)
e posix,s3: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select AND Amazon S3 (or
equivalent object storage system that uses the S3 protocol)

e posix,gcs: Use both the storage that is provided by the Kubernetes cluster’s Storage Class that you select and Google Cloud
Storage (GCS)

The pgBackRest repository consists of the following Kubernetes objects:

e A Deployment

o A Secret that contains information that is specific to the PostgreSQL cluster that it is deployed with (e.g. SSH keys, AWS S3 keys,
etc.)

e A Service

The PostgreSQL primary is automatically configured to use the pgbackrest archive-push and push the write-ahead log (WAL) archives
to the correct repository.

Backups

Backups can be taken with the pgo backup command

The PostgreSQL Operator supports three types of pgBackRest backups:

o Full (full): A full backup of all the contents of the PostgreSQL cluster
o Differential (diff): A backup of only the files that have changed since the last full backup
o Incremental (incr): A backup of only the files that have changed since the last full or differential backup

By default, pgo backup will attempt to take an incremental (incr) backup unless otherwise specified.

For example, to specify a full backup:

pgo backup hacluster --backup-opts="--type=full"

The PostgreSQL Operator also supports setting pgBackRest retention policies as well for backups. For example, to take a full backup and
to specify to only keep the last 7 backups:

pgo backup hacluster --backup-opts="--type=full --repol-retention-full=7"

Restores

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster as well as a point-in-time-recovery. There
are two types of ways to restore a cluster:

o Restore to a new cluster using the —-restore-from flag in the pgo create cluster({{< relref “/pgo-client /reference/pgo_ create_ clus
>}}) command.

o Restore in-place using the [pgo restore]({{< relref “/pgo-client/reference/pgo_restore.md” >}}) command. Note that this is
destructive.

NOTE: Ensure you are backing up your PostgreSQL cluster regularly, as this will help expedite your restore times. The next section will
cover scheduling regular backups.

The following explains how to perform restores based on the restoration method you chose.
Restore to a New Cluster

Restoring to a new PostgreSQL cluster allows one to take a backup and create a new PostgreSQL cluster that can run alongside an existing
PostgreSQL cluster. There are several scenarios where using this technique is helpful:

o Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is “creating a clone.”
e Restore to a point-in-time and inspect the state of the data without affecting the current cluster

and more.

Restoring to a new cluster can be accomplished using the pgo create cluster({{< relref “/pgo-client/reference/pgo_ create_ cluster.md”
>}}) command with several flags:

o --restore-from: specifies the name of a PostgreSQL cluster (either one that is active, or a former cluster whose pgBackRest
repository still exists) to restore from.

e —-restore-from-namespace (optional): the namespace of the PostgreSQL cluster specified using --restore-from (the namespace
of the cluster being created is utilized if a namespace is not specified using this option)

e —-restore-opts: used to specify additional options, similar to the ones that are passed into pgbackrest restore.

One can copy an entire PostgreSQL cluster into a new cluster with a command as simple as the one below:

pgo create cluster newcluster --restore-from oldcluster

To perform a point-in-time-recovery, you have to pass in the pgBackRest —-type and --target options, where ——type indicates the type
of recovery to perform, and --target indicates the point in time to recover to:

pgo create cluster newcluster \
--restore-from oldcluster \
--restore-opts "--type=time --target='2019-12-31 11:59:59.999999+00"'"

Note that when using this method, the PostgreSQL Operator can only restore one cluster from each pgBackRest repository at a time. Using
the above example, one can only perform one restore from oldcluster at a given time. Additionally, if the cluster being utilized for restore
is in another namespace than the cluster being created, the proper namespace can be specified using the --restore-from-namespace
option.

When using the restore to a new cluster method, the PostgreSQL Operator takes the following actions:

e After running the normal cluster creation tasks, the PostgreSQL Operator creates a “bootstrap” job that performs a pgBackRest
restore to the newly created PVC.

e The PostgreSQL Operator kicks off the new PostgreSQL cluster, which enters into recovery mode until it has recovered to a specified
point-in-time or finishes replaying all available write-ahead logs.

e When this is done, the PostgreSQL cluster performs its regular operations when starting up.

Restore in-place

Restoring a PostgreSQL cluster in-place is a destructive action that will perform a recovery on your existing data directory. This is
accomplished using the [pgo restore]({{< relref ¢/pgo-client/reference/pgo_restore.md” >}}) command.

pgo restore lets you specify the point at which you want to restore your database using the --pitr-target flag.

When the PostgreSQL Operator issues a restore, the following actions are taken on the cluster:

e The PostgreSQL Operator disables the “autofail” mechanism so that no failovers will occur during the restore.

e Any replicas that may be associated with the PostgreSQL cluster are destroyed

o A new Persistent Volume Claim (PVC) is allocated using the specifications provided for the primary instance. This may have been
set with the --storage-class flag when the cluster was originally created

e A Kubernetes Job is created that will perform a pgBackRest restore operation to the newly allocated PVC.

e When restore Job successfully completes, a new Deployment for the PostgreSQL cluster primary instance is created. A recovery is
then issued to the specified point-in-time, or if it is a full recovery, up to the point of the latest WAL archive in the repository.
e Once the PostgreSQL primary instance is available, the PostgreSQL Operator will take a new, full backup of the cluster.

At this point, the PostgreSQL cluster has been restored. However, you will need to re-enable autofail if you would like your PostgreSQL
cluster to be highly-available. You can re-enable autofail with this command:

pgo update cluster hacluster --enable-autofail

https://pgbackrest.org/command.html#command-restore

@ cruncry -nostgres-ha pgo-backrest-repo

pgo-backrest-restore

@ crunchy-postgres-ha

Figure 10: PostgreSQL Operator Restore Step 1

Scheduling Backups
Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its
scheduling sidecar that is deployed alongside the Operator.

The PostgreSQL Operator Scheduler is essentially a cron server that will run jobs that it is specified. Schedule commands use the cron
syntax to set up scheduled tasks.

For example, to schedule a full backup once a day at lam, the following command can be used:

pgo create schedule hacluster --schedule="0 1 * * *" \
--schedule-type=pgbackrest --pgbackrest-backup-type=full

To schedule an incremental backup once every 3 hours:

pgo create schedule hacluster --schedule="0 */3 * * x" \
--schedule-type=pgbackrest --pgbackrest-backup-type=incr

Setting Backup Retention Policies

Unless specified, pgBackRest will keep an unlimited number of backups. As part of your regularly scheduled backups, it is encouraged for
you to set a retention policy. This can be accomplished using the --repol-retention-full for full backups and --repol-retention-diff
for differential backups via the -—schedule-opts parameter.

For example, using the above example of taking a nightly full backup, you can specify a policy of retaining 21 backups using the following
command:

pgo create schedule hacluster --schedule="0 1 * * *x" \
--schedule-type=pgbackrest --pgbackrest-backup-type=full \
--schedule-opts="--repol-retention-full=21"

https://en.wikipedia.org/wiki/Cron

@ cruncry -nostgres-ha pgo-backrest-repo

WAL archive-push

@ crunchy-postgres-ha

WAL archive-push

Figure 11: PostgreSQL Operator Restore Step 2

@ scheduler
1 WAL archive-push
backup |
¥
@ crunchy-postgres-ha [EEFYRNIIEES pgo-backrest-repo _\

backup

1
backup

WAL archive-push —

Figure 12: PostgreSQL Operator Schedule Backups

Schedule Expression Format

Schedules are expressed using the following rules, which should be familiar to users of cron:

Field name | Mandatory? | Allowed values | Allowed special characters
---------- I it B I I e e
Seconds | Yes | 0-59 | *x / , -

Minutes | Yes | 0-59 |l *x / , -

Hours | Yes | 0-23 =/ , -

Day of month | Yes | 1-31 | =/ , -7

Month | Yes | 1-12 or JAN-DEC | * / , -

Day of week | Yes | 0-6 or SUN-SAT | *x / , - 7

Using S3

The PostgreSQL Operator integration with pgBackRest allows it to use the AWS S3 object storage system, as well as other object storage
systems that implement the S3 protocol.

In order to enable S3 storage, it is helpful to provide some of the S3 information prior to deploying the PostgreSQL Operator, or updating
the pgo-config ConfigMap and restarting the PostgreSQL Operator pod.

First, you will need to add the proper S3 bucket name, AWS S3 endpoint and the AWS S3 region to the Cluster section of the pgo.yaml
configuration file:

Cluster:
BackrestS3Bucket: my-postgresql -backups-example
BackrestS3Endpoint: s3.amazonaws.com
BackrestS3Region: us-east-1
BackrestS3URIStyle: host
BackrestS3VerifyTLS: true

These values can also be set on a per-cluster basis with the pgo create cluster command, i.e.:

o —-pgbackrest-s3-bucket - specifics the AWS S3 bucket that should be utilized

o —-pgbackrest-s3-endpoint specifies the S3 endpoint that should be utilized

e —-pgbackrest-s3-key - specifies the AWS S3 key that should be utilized

e —-pgbackrest-s3-key-secret- specifies the AWS S3 key secret that should be utilized

e —-pgbackrest-s3-region - specifies the AWS S3 region that should be utilized

e —-pgbackrest-s3-uri-style - specifies whether “host” or “path” style URIs should be utilized
e —-pgbackrest-s3-verify-tls - set this value to “true” to enable TLS verification

Sensitive information, such as the values of the AWS S3 keys and secrets, are stored in Kubernetes Secrets and are securely mounted to
the PostgreSQL clusters.

To enable a PostgreSQL cluster to use S3, the --pgbackrest-storage-type on the pgo create cluster command needs to be set to s3
or posix,s3.

Once configured, the pgo backup and pgo restore commands will work with S3 similarly to the abovel!

Using GCS

The PostgreSQL Operator integration with pgBackRest allows it to use the Google Cloud Storage (GCS) object storage system.

In order to enable GCS, it is helpful to provide some of the GCS information prior to deploying PGO, the Postgres Operator, or updating
the pgo-config ConfigMap and restarting the Postgres Operator pod.

The easiest way to get started is by setting the GCS bucket name that you wish to use with the Postgres Operator. You can do this by
editing the Cluster section of the pgo.yaml configuration file:

Cluster:
BackrestGCSBucket: my-postgresql -backups-example

These values can also be set on a per-cluster basis with the pgo create cluster command. The two most important ones are:

o —-pgbackrest-gcs-bucket - specifics the GCS bucket that should be utilized. If not specified, the default bucket name that you
set in the pgo.yaml configuration file will be used.

| WAL archive-push

pgo-backrest-repo

WAL archive-push —»

Backup
PVC

Figure 13: PostgreSQL Operator pgBackRest GCS

e —-pgbackrest-gcs-key - A path to the GCS credential file on your local system. This will be added to the pgBackRest Secret.
There are some other options that are optional, but explained below for completeness:

o --pgbackrest-gcs-endpoint specifies an alternative GCS endpoint.
e —-pgbackrest-gcs-key-type- Either service or token, defaults to service.

As mentioned above, GCS keys are stored in Kubernetes Secrets and are securely mounted to PostgreSQL clusters.

To enable a PostgreSQL cluster to use GCS, the --pgbackrest-storage-type on the pgo create cluster command needs to be set to
gcs or posix,gcs.

Once configured, the pgo backup and pgo restore commands will work with GCS similarly to the above!

Deleting a Backup

If you delete a backup that is not set to expire, you may be unable to meet your retention requirements. If you are deleting backups to
free space, it is recommended to delete your oldest backups first.

A backup can be deleted using the [pgo delete backup|({{< relref “pgo-client/reference/pgo_delete backup.md” >}}) command. You
must specify a specific backup to delete using the --target flag. You can get the backup names from the [pgo show backup]({{< relref
“pgo-client /reference/pgo_show__backup.md” >}}) command.

For example, using a PostgreSQL cluster called hippo, pretend there is an example pgBackRest repository in the state shown after running
the pgo show backup hippo command:

cluster: hippo
storage type: posix

stanza: db
status: ok
cipher: none

db (current)
wal archive min/max (12-1)

full backup: 20201220-171801F
timestamp start/stop: 2020-12-20 17:18:01 +0000 UTC / 2020-12-20 17:18:10 +0000 UTC
wal start/stop: 000000010000000000000002 / 000000010000000000000002
database size: 31.3MiB, backup size: 31.3MiB

repository size: 3.8MiB, repository backup size: 3.8MiB
backup reference list:

incr backup: 20201220-171801F_20201220-1719391I
timestamp start/stop: 2020-12-20 17:19:39 +0000 UTC / 2020-12-20 17:19:41 +0000 UTC
wal start/stop: 000000010000000000000005 / 000000010000000000000005
database size: 31.3MiB, backup size: 216.3KiB
repository size: 3.8MiB, repository backup size: 25.9KiB
backup reference list: 20201220-171801F

incr backup: 20201220-171801F_20201220-1720461
timestamp start/stop: 2020-12-20 17:20:46 +0000 UTC / 2020-12-20 17:23:29 +0000 UTC
wal start/stop: 00000001000000000000000A / 00000001000000000000000A
database size: 65.9MiB, backup size: 37.5MiB
repository size: 7.7MiB, repository backup size: 4.3MiB
backup reference list: 20201220-171801F, 20201220-171801F_20201220-1719391I

full backup: 20201220-201305F
timestamp start/stop: 2020-12-20 20:13:05 +0000 UTC / 2020-12-20 20:13:15 +0000 UTC
wal start/stop: 00000001000000000000000F / 00000001000000000000000F
database size: 65.9MiB, backup size: 65.9MiB
repository size: 7.7MiB, repository backup size: 7.7MiB
backup reference list:

The backup targets can be found after the backup type, e.g. 20201220-171801F or 20201220-171801F_20201220-1720461
One can delete the oldest backup, in this case 20201220-171801F, by running the following command:
pgo delete backup hippo --target=20201220-171801F

Verify the backup is deleted with pgo show backup hippo:

cluster: hippo
storage type: posix

stanza: db
status: ok
cipher: none

db (current)
wal archive min/max (12-1)

full backup: 20201220-201305F
timestamp start/stop: 2020-12-20 20:13:05 +0000 UTC / 2020-12-20 20:13:15 +0000 UTC
wal start/stop: 00000001000000000000000F / 00000001000000000000000F
database size: 65.9MiB, backup size: 65.9MiB
repository size: 7.7MiB, repository backup size: 7.7MiB
backup reference list:

(Note: this had the net effect of expiring all of the incremental backups associated with the full backup that as deleted. This is a feature
of pgBackRest).

While having [high availability]({{< relref “architecture/high-availability/ index.md” >}}) and [disaster recovery]({{< relref
“architecture/disaster-recovery.md” >}}) systems in place helps in the event of something going wrong with your PostgreSQL
cluster, monitoring helps you anticipate problems before they happen. Additionally, monitoring can help you diagnose and resolve
additional issues that may not result in downtime, but cause degraded performance.

There are many different ways to monitor systems within Kubernetes, including tools that come with Kubernetes itself. This is by no
means to be a comprehensive on how to monitor everything in Kubernetes, but rather what the PostgreSQL Operator provides to give
you an [out-of-the-box monitoring solution]({{< relref “installation/metrics/ index.md” >}}).

Getting Started

If you want to install the metrics stack, please visit the [installation]({{< relref “installation/metrics/ index.md” >}}) instructions for
the PostgreSQL Operator Monitoring({{< relref “installation/metrics/_index.md” >}}) stack.

8 PostgreSQLDetails -

cluster jkatz:hippo ~ pod Database All ~ 82 CRUD_Details 38 pgBackRest 83 POD Details 38 PostgreSQL Overview 28 PostgreSQL Service Health Overview 88 Prometheus Alerts

jkatz:hippo : Backup Status
Time Since Last Backup: 2 minutes
Active Connections Idle In Transaction Idle y TPS - All-All Z Connections - All-All

- idle
= Idlein txn

== active

5.500%

16:46

database size - All-All WAL size MB - jkatz:hippo-All

— Total: jkatz:hippo-* - — hippo-64b5665555-Xj5G2

= hippo (hippo-64b5665555-x52) = hippo-krhx-94846986d-zdm8g
= hippo (hippo-krhx-94846986d-zdm8g)

— postgres (hippo-64b5665555-xj5q2)

postgres (hippo-krhx-94846986d-zdm8g)

16:49 16:50 16:49 16:50

Row activity - All- All Replication Status - jkatz:hippo

== Fetched == Replica (10.44.0.9) lag bytes
== Inserted == Replica (10.44.0.9) lag time
== Updated

== Deleted

Lag in bytes
(ss:wuryy) swn be

0
16:46:00 16:47:00 16:47:30 16:48:.00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30

Figure 14: PostgreSQL Operator Monitoring

Once the metrics stack is set up, you will need to deploy your PostgreSQL clusters with monitoring enabled. To do so, you will need to
use the ——metrics flag as part of the pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) command, for
example:

pgo create cluster --metrics hippo

If you have already created a cluster and want to add metrics collection to it, you can use the --enable-metrics flag as part of the
[pgo update cluster|({{< relref “pgo-client/reference/pgo_update_cluster.md” >}}) command, for example:

pgo update cluster --enable-metrics hippo

Components

The PostgreSQL Operator Monitoring({{< relref “installation/metrics/_index.md” >}}) stack is made up of several open source compo-
nents:

e pgMonitor, which provides the core of the monitoring infrastructure including the following components:

e postgres_exporter, which provides queries used to collect metrics information about a PostgreSQL instance.

e Prometheus, a time-series database that scrapes and stores the collected metrics so they can be consumed by other services.

e Grafana, a visualization tool that provides charting and other capabilities for viewing the collected monitoring data.

o Alertmanager, a tool that can send alerts when metrics hit a certain threshold that require someone to intervene.

o pgnodemx, a PostgreSQL extension that is able to pull container-specific metrics (e.g. CPU utilization, memory consumption) from
the container itself via SQL queries.

Visualizations

Below is a brief description of all the visualizations provided by the PostgreSQL Operator Monitoring({{< relref “installation/met-
rics/ index.md” >}}) stack. Some of the descriptions may include some directional guidance on how to interpret the charts, though this
is only to provide a starting point: actual causes and effects of issues can vary between systems.

Many of the visualizations can be broken down based on the following groupings:

e Cluster: which PostgreSQL cluster should be viewed
e Pod: the specific Pod or PostgreSQL instance

https://github.com/CrunchyData/pgmonitor
https://github.com/CrunchyData/pgmonitor/tree/master/exporter/postgres
https://github.com/prometheus/prometheus
https://github.com/grafana/grafana
https://github.com/prometheus/alertmanager
https://github.com/CrunchyData/pgnodemx

Overview

88 PostgreSQL Overview -

jkatz:hippo - Overview jkatz:rhino - Overview

HA CLUSTER HA CLUSTER

jkatz:zebra - Overview

Standalone Cluster

Figure 15: PostgreSQL Operator Monitoring - O

The overview provides an overview of all of the PostgreSQL clusters that are being monitoring by the PostgreSQL Operator Monitoring
ack. This includes the following information:

e The name of the PostgreSQL cluster and the namespace that it is in
o The type of PostgreSQL cluster (HA [high availability] or standalone)
o The status of the cluster, as indicate by color. Green indicates the cluster is available, red indicates that it is not.

Each entry is clickable to de additional cluster details.

PostgreSQL Details

8 PostgreSQLDetails -

cluster jkatz:hippo v pod All v Database All v 22 CRUD_Details 88 pgBackRest 83 POD Details 38 PostgreSQL Overview 28 PostgreSQL Service Health Overview 83 Prometheus Alerts
jkatz:hippo : Backup Status
Time Since Last Backup: 2 minutes

Active Connections Idle In Transaction Idle TPS - All-All Connections - All-All

- idle
== Idlein txn

= active

5.500%

0
16:46
database size - All-All WAL size MB - jkatz:hippo-All

== Total : jkatz:hippo-* == hippo-64b5665555-Xj5q2
== hippo (hippo-64b5665555-j5qz) == hippo-krhx-94846986d-zdm8g
== hippo (hippo-krhx-94846986d-zdm8g)

== postgres (hippo-64b5665555-xj5qz)

16:49 16:50 postgres (hippo-krhx-94846986d-zdm8g) 16:49 16:50

Row activity - All- All Replication Status - jkatz:hippo

== Fetched = Replica (10.44.0.9) lag bytes
— Inserted — Replica (10.44.0.9) lag time
== Updated

== Deleted

Lag in bytes
(ss:wuryy) awn beq

0
16:46:00 16:46:30 16:47.00 16:47:30 16:48:00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30

Figure 16: PostgreSQL Operator Monitoring - Cluster Cluster Details

The PostgreSQL Details view provides more information about a specific PostgreSQL cluster that is being managed and monitored by
the PostgreSQL Operator. These include many key PostgreSQL-specific metrics that help make decisions around managing a PostgreSQL
cluster. These include:

e Backup Status: The last time a backup was taken of the cluster. Green is good. Orange means that a backup has not been taken
in more than a day and may warrant investigation.

o Active Connections: How many clients are connected to the database. Too many clients connected could impact performance and,
for values approaching 100%, can lead to clients being unable to connect.

e Idle in Transaction: How many clients have a connection state of “idle in transaction”. Too many clients in this state can cause
performance issues and, in certain cases, maintenance issues.

e Idle: How many clients are connected but are in an “idle” state.

e TPS: The number of “transactions per second” that are occurring. Usually needs to be combined with another metric to help with
analysis. “Higher is better” when performing benchmarking.

o Connections: An aggregated view of active, idle, and idle in transaction connections.

o Database Size: How large databases are within a PostgreSQL cluster. Typically combined with another metric for analysis. Helps
keep track of overall disk usage and if any triage steps need to occur around PVC size.

o WAL Size: How much space write-ahead logs (WAL) are taking up on disk. This can contribute to extra space being used on your
data disk, or can give you an indication of how much space is being utilized on a separate WAL PVC. If you are using replication
slots, this can help indicate if a slot is not being acknowledged if the numbers are much larger than the max_wal_size setting (the
PostgreSQL Operator does not use slots by default).

e Row Activity: The number of rows that are selected, inserted, updated, and deleted. This can help you determine what percentage
of your workload is read vs. write, and help make database tuning decisions based on that, in conjunction with other metrics.

e Replication Status: Provides guidance information on how much replication lag there is between primary and replica PostgreSQL
instances, both in bytes and time. This can provide an indication of how much data could be lost in the event of a failover.

Conflicts/DeadLocks - All - All Cache Hit Ratio - All-All

== Conflicts R T == postgres - (hippo-64b5665555-xj5qz)

= DeadLocks % = postgres - (hippo-krhx-94846986d-zdm8g)
== hippo - (hippo-64b5665555-xj5qz)
== hippo - (hippo-krhx-94846986d-zdm8g)

16:49 ° 16:49 16:50
Buffers - All Commit & Rollback ~

== Allocated == Commit
== Backend | — e T~ == Rollback
- FSync T

== CheckPoint

Clean

o— v ! @ 4 0 ¢)]
16:49 16:46:00 16:46:30 16:47:00 16:47:30 16:48:00 16:48:30 16:49:00 16:49:30 16:50:00 16:50:30

2020-09-01 16:47:30
= Commit: 335
= Rollback: 0

Locks - All - All

== accessexclusivelock

= exclusivelock

== rowexclusivelock

== sharerowexclusivelock
shareupdateexclusivelock

accesssharelock

Figure 17: PostgreSQL Operator Monitoring - Cluster Cluster Details 2

o Conflicts / Deadlocks: These occur when PostgreSQL is unable to complete operations, which can result in transaction loss. The
goal is for these numbers to be 0. If these are occurring, check your data access and writing patterns.

e Cache Hit Ratio: A measure of how much of the “working data”, e.g. data that is being accessed and manipulated, resides in memory.
This is used to understand how much PostgreSQL is having to utilize the disk. The target number of this should be as high as
possible. How to achieve this is the subject of books, but certain takes efforts on your applications use PostgreSQL.

o Buffers: The buffer usage of various parts of the PostgreSQL system. This can be used to help understand the overall throughput
between various parts of the system.

e Commit & Rollback: How many transactions are committed and rolled back.

e Locks: The number of locks that are present on a given system.

88 POD Details - ’] @Last 5 minutes ~

cluster jkatzhippo~ pod Al ~ 22 CRUD_Details 22 pgBackRest 23 PostgreSQL Overview 52 PostgreSQL Service Health Overview 2 PostgreSQLDetails 22 Prometheus Alerts

Disk Usage Disk Activity

100% 1.5 MBs

75%
1.0 MBs

50% /
B T — e — 500 kBs
25%

0%

_— 0Bs
16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:45:00 16:45:30 16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 X : 16:44:30 16:45:00 16:45:30

== /pgwal == /pgwal == /pgwal-Inodes == /pgwal-Inodes == /pgwal -Reads == /pgwal-Reads == /pgwal - Writes == /pgwal - Writes

CPU stats ~

4GiB
3GiB
2GiB
954 MiB
—-
16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 144 16:44:30 6:45:00 16:45:30

IS
3

w
S

=)

N
S
1UN0J $58901d

0%

Wiy — Wit — (R — Reaes — @eizd) — @i — By — DRy — e — gz — B — 0 16:41:00 16:41:30 164200 16:42:30 164300 164330 164400 16:44:30 164500 16:4530

Mapped file Mapped file Active anon Active anon == Inactive anon == Inactive anon == Active file == Active file

& . == % Used == % Used % Throttled % Throttled Process count Process count
== Inactiva fila == Inactiva fila

Network Traffic Container resources

5MBs
4 MBs
3 MBs
2MBs f

1MBs

0Bs - 0B
16:41:00 16:41:30 16:42:00 : 16:43:00 16:43:30 16:44:00 16:44:30 :45:00 16:45:30 16:41:00 16:41:30 16:42:00 16:42:30 16:43:00 16:43:30 16:44:00 16:44:30 16:4500 16:45:30

== ethO -rx bytes == lo-rxbytes == ethO-rxbytes == lo-rxbytes eth0 - tx bytes lo - tx bytes eth0 - tx bytes lo - tx bytes Memory limit Memory limit Memory request Memory request == CPU request == CPU request CPU limit CPU limit

Figure 18: PostgreSQL Operator Monitoring - Pod Details

Pod Details

Pod details provide information about a given Pod or Pods that are being used by a PostgreSQL cluster. These are similar to “operating
system” or “node” metrics, with the differences that these are looking at resource utilization by a container, not the entire node.

It may be helpful to view these metrics on a “pod” basis, by using the Pod filter at the top of the dashboard.

o Disk Usage: How much space is being consumed by a volume.

o Disk Activity: How many reads and writes are occurring on a volume.

e Memory: Various information about memory utilization, including the request and limit as well as actually utilization.
e CPU: The amount of CPU being utilized by a Pod

e Network Traffic: The amount of networking traffic passing through each network device.

e Container ResourceS: The CPU and memory limits and requests.

Backups

There are a variety of reasons why you need to monitoring your backups, starting from answering the fundamental question of “do I
have backups available?” Backups can be used for a variety of situations, from cloning new clusters to restoring clusters after a disaster.
Additionally, Postgres can run into issues if your backup repository is not healthy, e.g. if it cannot push WAL archives. If your backups
are set up properly and healthy, you will be set up to mitigate the risk of data loss!

The backup, or pgBackRest panel, will provide information about the overall state of your backups. This includes:

e Recovery Window: This is an indicator of how far back you are able to restore your data from. This represents all of the backups
and archives available in your backup repository. Typically, your recovery window should be close to your overall data retention
specifications.

e Time Since Last Backup: this indicates how long it has been since your last backup. This is broken down into pgBackRest backup
type (full, incremental, differential) as well as time since the last WAL archive was pushed.

o Backup Runtimes: How long the last backup of a given type (full, incremental differential) took to execute. If your backups are slow,
consider providing more resources to the backup jobs and tweaking pgBackRest’s performance tuning settings.

o Backup Size: How large the backups of a given type (full, incremental, differential).

e« WAL Stats: Shows the metrics around WAL archive pushes. If you have failing pushes, you should to see if there is a transient or
permanent error that is preventing WAL archives from being pushed. If left untreated, this could end up causing issues for your
Postgres cluster.

B8 pgBackRest ¢ <3

jkatz:hippo v 55 POD Details B3 PostgreSQL Service Health B3 PostgreSQLDetails 53 Prometheus Alerts 55 Query Statistics

Recovery Window

00:34:36

Time Since Backup Runtimes

41.7 min 4.17 min
Incremental Backup == Incremental

33.3 min Differential Backup 3.33 min Full

) Full Backup .
25 min 2.50 min
WAL Archive

16.7 min 1.67 min

8.33 min 50s

96 ——— A = W T
11:50 11:52 11:54 11:56 11:58 12:00 11:48 11:50 11:52 11:54 11:56 11:58 12:00
Backup Size WAL Stats

119 MiB
== Incremental Failed count

95.4 MiB Full == Archive count

71.5 MiB
47.7 MiB

23.8 MiB .
/ /
[[

0B 0 ‘ ‘
11:52 1154 11:56 1158 12:00 11:50 11:52 11:54 11:56 11:58

Figure 19: PostgreSQL O

88 PostgreSQL Service Health ¥ <«

jkatz:hippo v master v 88 pgBackRest 53 POD Details 53 PostgreSQLDetails 33 Prometheus Alerts 33 Query Statistics
Saturation (pct used) Traffic

== Connections Transactions
== Mount:/pgdata Active connections

Queries

11:36 11:38 11:40 11:42 K 11:36 11:38 11:40 11:42

Errors Query Duration

4.67 min
Deadlock Avg: postgres(hippo)
46.7 s

Conflicts 7785 Avg: testuser(hippo)

scrape error 130s Avg: ccp_monitoring(p

archive error 216 ms Avg: postgres(postgre:
36 ms

Avg: testuser(postgres

6ms
Max: postgres(hippo)
1ms

Max: testuser(hippo)

0.100 ms
11:40 11:42 Max: ccp_monitoring(f

Figure 20: PostgreSQL Operator Monitoring - Service Health Overview

PostgreSQL Service Health Overview

The Service Health Overview provides information about the Kubernetes Services that sit in front of the PostgreSQL Pods. This provides
information about the status of the network.

e Saturation: How much of the available network to the Service is being consumed. High saturation may cause degraded performance
to clients or create an inability to connect to the PostgreSQL cluster.

o Traffic: Displays the number of transactions per minute that the Service is handling.

e Errors: Displays the total number of errors occurring at a particular Service.

e Latency: What the overall network latency is when interfacing with the Service.

Query Runtime

88 Query Statistics

katzhippo ~ - Al BE poBackest Y PODDwtails BE PostgreSOL Senvica Health BB PouigreSQLDwtails B Promestheus.

Quasries Executed Query Runtime Quary Mean Rustims Riows Retrieved or Affected

Query Executions

= iz hippo,
= dix postgres, user: cop_monitorng
= S poslyren, BT POsIgres

dtx postgres, user: testuser

Figure 21: PostgreSQL Operator Monitoring - Query Performance

Looking at the overall performance of queries can help optimize a Postgres deployment, both from [providing resources]({{< relref
“tutorial/customize-cluster.md” >}}) to query tuning in the application itself.

You can get a sense of the overall activity of a PostgreSQL cluster from the chart that is visualized above:

o Queries Executed: The total number of queries executed on a system during the period.

e Query runtime: The aggregate runtime of all the queries combined across the system that were executed in the period.

e Query mean runtime: The average query time across all queries executed on the system in the given period.

e Rows retrieved or affected: The total number of rows in a database that were either retrieved or had modifications made to them.

PostgreSQL Operator Monitoring also further breaks down the queries so you can identify queries that are being executed too frequently
or are taking up too much time.

e Query Mean Runtime (Top N): This highlights the N number of slowest queries by average runtime on the system. This might
indicate you are missing an index somewhere, or perhaps the query could be rewritten to be more efficient.

e Query Max Runtime (Top N): This highlights the N number of slowest queries by absolute runtime. This could indicate that a
specific query or the system as a whole may need more resources.

e Query Total Runtime (Top N): This highlights the N of slowest queres by aggregate runtime. This could indicate that a ORM is
looping over a single query and executing it many times that could possibly be rewritten as a single, faster query.

Alerts

Alerting lets one view and receive alerts about actions that require intervention, for example, a HA cluster that cannot self-heal. The
alerting system is powered by Alertmanager.

The alerts that come installed by default include:

e PGExporterScrapeError: The Crunchy PostgreSQL Exporter is having issues scraping statistics used as part of the monitoring
stack.

e PGIsUp: A PostgreSQL instance is down.

e PGIdleTxn: There are too many connections that are in the “idle in transaction” state.

e PGQueryTime: A single PostgreSQL query is taking too long to run. Issues a warning at 12 hours and goes critical after 24.

e PGConnPerc: Indicates that there are too many connection slots being used. Issues a warning at 75% and goes critical above 90%.

https://github.com/prometheus/alertmanager

88 Query Statistics

L
L
posigres.
L
postgres

posigres

hippo
hippo
hippo
posigres
posigres

posigres

magier
masier
masier
masier
maglar

masier

master
master
master

master

master
master
master
master

master

Query Mean Runtime (Top N)
eopy pghench_scesunts from stdin 58EE| testuser
vacuum analyze pgbench_accounts testuser
sslect ksnctext as lsn, nq_cal.al
ater table pgbench_accounts add primary.
CREATE DATABASE "hippa™ postgrEs
SELECT current_database() as dbname, n.n p_monitoring
Cusary Max Rurrtima (Top N)
select lsnctext as lsn, pg_catal 2.500min. postgres
vacuumn analyze pobench_sccounts testuser
copy pabench_accounts from stdin testuser
alter table pgbench_asccounts add primary

testuser

SELECT cusrent_database() as dbname, n.n ccp_monitoring

SELECT datname s dbname, pg_database s
Query Total Rurtime (Top N)

UPDATE pgbench_sccounts SET abalance = a BE1 mE) testuser

UPDATE pgbench_branches SET bbalance = b I testusar
UPOHTE ppbench,_tallers SET thalance = th _ user

P AS (SELECT config_file 5. manitaring

SELECT * FROM pg_stat_database _monitoring

SELECT * FROM pg_stat_database_coni p_manitoring

katzhippo
Jiatz-hippo
jatz-hippo

Jkatz:hippo

Jkatzhippo

jkatzhippo
jkatzhippe
jkatzhippo
jkatzhippo

jkatrhippo

Jratz:hippo
Jratz:hippo
Jratz:hippo
Jratz:hippo
Jratz:hippo

Jratz:hippo

Figure 22: PostgreSQL Operator Monitoring - Query Analysis

88 Prometheus Alerts

B9 poBackRest

~ Environment Summa

Namespaces

PG Instances

3

~ Alert Summary

Crit
2

2021-04-24 11:44:16

2021-04-24 11:44:16

2021-04-24 11:3
2021-04-24 11
2021-04-24 11
2021-04-24 11

2021-04-24 11

Firing

PGExporsrSorapaEmor firing

PGisUp firing

Aberts (1 week)

critical PGExporterScrapeEmor panding

eritical PGExporterSerapeEmor panding

critical pending

critical

panding

critical panding

B8 POD Detalls

Jatz:hippo-2

Jatz:hippo-2

ratz:hippo-2
Jatzhippe-2
Jratzhippo-2
Pratzhippe-2

[ratz:hippo-2

B8 PostgreS0L Service Health 58 PostgreS0iDetalls

hippa-2

hippe-2

B8 Ouery Statistics

hippo-2-667185cicbe

hippo-2-8b718Scicb-.

10.85.196.210
10.85.196.210

196.210

Figure 23: PostgreSQL Operator Monitoring - Alerts

e PGDiskSize: Indicates that a PostgreSQL database is too large and could be in danger of running out of disk space. Issues a warning
at 75% and goes critical at 90%.

e PGReplicationByteLag: Indicates that a replica is too far behind a primary instance, which coul risk data loss in a failover scenario.
Issues a warning at 50MB an goes critical at 100MB.

e PGReplicationSlotsInactive: Indicates that a replication slot is inactive. Not attending to this can lead to out-of-disk errors.

e PGXIDWraparound: Indicates that a PostgreSQL instance is nearing transaction ID wraparound. Issues a warning at 50% and goes
critical at 75%. It’s important that you vacuum your database to prevent this.

e PGEmergencyVacuum: Indicates that autovacuum is not running or cannot keep up with ongoing changes, i.e. it’s past its “freeze”
age. Issues a warning at 110% and goes critical at 125%.

e PGArchiveCommandStatus: Indicates that the archive command, which is used to ship WAL archives to pgBackRest, is failing.

e PGSequenceExhaustion: Indicates that a sequence is over 75% used.

e PGSettingsPendingRestart: Indicates that there are settings changed on a PostgreSQL instance that requires a restart.

Optional alerts that can be enabled:

e PGMinimumVersion: Indicates if PostgreSQL is below a desired version.

e PGRecoveryStatusSwitch_Replica: Indicates that a replica has been promoted to a primary.

e PGConnectionAbsent_Prod: Indicates that metrics collection is absent from a PostgresQL instance.

e PGSettingsChecksum: Indicates that PostgreSQL settings have changed from a previous state.

e PGDataChecksum: Indicates that there are data checksum failures on a PostgreSQL instance. This could be a sign of data corruption.

You can modify these alerts as you see fit, and add your own alerts as well! Please see the [installation instructions]({{< relref “installa-
tion/metrics/ _index.md” >}}) for general setup of the PostgreSQL Operator Monitoring stack.

Kubernetes Namespaces and the PostgreSQL Operator

The PostgreSQL Operator leverages Kubernetes Namespaces to react to actions taken within a Namespace to keep its PostgreSQL clusters
deployed as requested. Early on, the PostgreSQL Operator was scoped to a single namespace and would only watch PostgreSQL clusters
in that Namspace, but since version 4.0, it has been expanded to be able to manage PostgreSQL clusters across multiple namespaces.

The following provides more information about how the PostgreSQL Operator works with namespaces, and presents several deployment
patterns that can be used to deploy the PostgreSQL Operator.

Namespace Operating Modes

The PostgreSQL Operator can be run with various Namespace Operating Modes, with each mode determining whether or not certain
namespace capabilities are enabled for the PostgreSQL Operator installation. When the PostgreSQL Operator is run, the Kubernetes envi-
ronment is inspected to determine what cluster roles are currently assigned to the pgo-operator ServiceAccount (i.e. the ServiceAccount
running the Pod the PostgreSQL Operator is deployed within). Based on the ClusterRoles identified, one of the namespace operating
modes described below will be enabled for the [PostgreSQL Operator Installation]({{< relref “installation” >}}). Please consult the
installation section for more information on the available settings.

dynamic

Enables full dynamic namespace capabilities, in which the Operator can create, delete and update any namespaces within a Kubernetes
cluster. With dynamic mode enabled, the PostgreSQL Operator can respond to namespace events in a Kubernetes cluster, such as
when a namespace is created, and take an appropriate action, such as adding the PostgreSQL Operator controllers for the newly created
namespace.

The following defines the namespace permissions required for the dynamic mode to be enabled:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: pgo-cluster-role
rules:
- apiGroups:

resources:
- namespaces
verbs:

https://info.crunchydata.com/blog/managing-transaction-id-wraparound-in-postgresql

- get

- list

- watch
- create
- update
- delete

readonly

In readonly mode, the PostgreSQL Operator is still able to listen to namespace events within a Kubernetes cluster, but it can no longer
modify (create, update, delete) namespaces. For example, if a Kubernetes administrator creates a namespace, the PostgreSQL Operator
can respond and create controllers for that namespace.

The following defines the namespace permissions required for the readonly mode to be enabled:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1l
metadata:
name: pgo-cluster-role
rules:
- apiGroups:

resources:
- namespaces
verbs:
- get
- list
- watch

disabled

disabled mode disables namespace capabilities namespace capabilities within the PostgreSQL Operator altogether. While in this mode
the PostgreSQL Operator will simply attempt to work with the target namespaces specified during installation. If no target namespaces
are specified, then the Operator will be configured to work within the namespace in which it is deployed. Since the Operator is unable to
dynamically respond to namespace events in the cluster, in the event that target namespaces are deleted or new target namespaces need
to be added, the PostgreSQL Operator will need to be re-deployed.

Please note that it is important to redeploy the PostgreSQL Operator following the deletion of a target namespace to ensure it no longer
attempts to listen for events in that namespace.

The disabled mode is enabled the when the PostgreSQL Operator has not been assigned namespace permissions.

RBAC Reconciliation

By default, the PostgreSQL Operator will attempt to reconcile RBAC resources (ServiceAccounts, Roles and RoleBindings) within each
namespace configured for the PostgreSQL Operator installation. This allows the PostgreSQL Operator to create, update and delete the
various RBAC resources it requires in order to properly create and manage PostgreSQL clusters within each targeted namespace (this
includes self-healing RBAC resources as needed if removed and/or misconfigured).

In order for RBAC reconciliation to function properly, the PostgreSQL Operator ServiceAccount must be assigned a certain set of
permissions. While the PostgreSQL Operator is not concerned with exactly how it has been assigned the permissions required to reconcile
RBAC in each target namespace, the various [installation methods]({{< relref “installation” >}}) supported by the PostgreSQL Operator
install a recommended set permissions based on the specific Namespace Operating Mode enabled (see section Namespace Operating
Modes({{< relref “#namespace-operating-modes” >}}) above for more information regarding the various Namespace Operating Modes
available).

The following section defines the recommended set of permissions that should be assigned to the PostgreSQL Operator ServiceAccount in
order to ensure proper RBAC reconciliation based on the specific Namespace Operating Mode enabled. Please note that each PostgreSQL
Operator installation method handles the initial configuration and setup of the permissions shown below based on the Namespace Operating
Mode configured during installation.

dynamic Namespace Operating Mode

When using the dynamic Namespace Operating Mode, it is recommended that the PostgreSQL Operator ServiceAccount be granted
permissions to manage RBAC inside any namespace in the Kubernetes cluster via a ClusterRole. This allows for a fully-hands off approach
to managing RBAC within each targeted namespace space. In other words, as namespaces are added and removed post-installation of
the PostgreSQL Operator (e.g. using pgo create namespace or pgo delete namespace), the Operator is able to automatically reconcile
RBAC in those namespaces without the need for any external administrative action and/or resource creation.

The following defines ClusterRole permissions that are assigned to the PostgreSQL Operator ServiceAccount via the various Operator
installation methods when the dynamic Namespace Operating Mode is configured:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1l
metadata:
name: pgo-cluster-role
rules:
- apiGroups:

resources:
- serviceaccounts
verbs:
- get
- create
- update
- delete
- apiGroups:
- rbac.authorization.k8s.io
resources:
- roles
- rolebindings
verbs:
- get
- create
- update
- delete
- apiGroups:

resources:

- configmaps

- endpoints

- pods

- pods/exec

- secrets

- services

- persistentvolumeclaims

verbs:

- get

- list

- watch

- create

- patch

- update

- delete

- deletecollection
- apiGroups:

resources:
- pods/log
verbs:
- get
- list
- watch
- apiGroups:
- apps
resources:

- deployments

- replicasets
verbs:

- get

- list

- watch

- create

- patch

- update

- delete

- deletecollection

- apiGroups:

- batch
resources:

- jobs
verbs:

- get

- list

- watch

- create

- patch

- update

- delete

- deletecollection

- apiGroups:

- crunchydata.com
resources:

- pgclusters

- pgpolicies

- pgreplicas

- pgtasks
verbs:

- get

- list

- watch

- create

- patch

- update

- delete

- deletecollection

readonly & disabled Namespace Operating Modes

When using the readonly or disabled Namespace Operating Modes, it is recommended that the PostgreSQL Operator ServiceAccount
be granted permissions to manage RBAC inside of any configured namespaces using local Roles within each targeted namespace. This
means that as new namespaces are added and removed post-installation of the PostgreSQL Operator, an administrator must manually
assign the PostgreSQL Operator ServiceAccount the permissions it requires within each target namespace in order to successfully reconcile
RBAC within those namespaces.

The following defines the permissions that are assigned to the PostgreSQL Operator ServiceAccount in each configured namespace via the
various Operator installation methods when the readonly or disabled Namespace Operating Modes are configured:

kind: Role
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: pgo-local-ns
namespace: targetnamespace
rules:
- apiGroups:

resources:

- serviceaccounts
verbs:

- get

- create
- update
- delete
- apiGroups:
- rbac.authorization.k8s.io
resources:
- roles
- rolebindings
verbs:
- get
- create
- update
- delete
apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
name: pgo-target-role
namespace: targetnamespace
rules:
- apiGroups:

resources:
- configmaps
- endpoints
- pods
- pods/exec
- pods/log
- replicasets
- sSecrets
- services
- persistentvolumeclaims
verbs:
- get
- list
- watch
- create
- patch
- update
- delete
- deletecollection
- apiGroups:
- apps
resources:
- deployments
verbs:
- get
- list
- watch
- create
- patch
- update
- delete
- deletecollection
- apiGroups:
- batch
resources:
- jobs
verbs:
- get
- list
- watch
- create
- patch
- update

- delete
- deletecollection
- apiGroups:

- crunchydata.com
resources:

- pgclusters

- pgpolicies

- pgtasks

- pgreplicas
verbs:

- get

- list

- watch

- create

- patch

- update

- delete

- deletecollection

Disabling RBAC Reconciliation

In the event that the reconciliation behavior discussed above is not desired, it can be fully disabled by setting DisableReconcileRBAC to
true in the pgo.yaml configuration file. When reconciliation is disabled using this setting, the PostgreSQL Operator will not attempt to
reconcile RBAC in any configured namespace. As a result, any RBAC required by the PostreSQL Operator a targeted namespace must
be manually created by an administrator.

Please see the the [pgo.yaml configuration guide]({{< relref “configuration/pgo-yaml-configuration.md” >}1}), as well as the documentation
for the various [installation methods|({{< relref “installation” >}}) supported by the PostgreSQL Operator, for guidance on how to properly
configure this setting and therefore disable RBAC reconciliation.

Namespace Deployment Patterns

There are several different ways the PostgreSQL Operator can be deployed in Kubernetes clusters with respect to Namespaces.

One Namespace: PostgreSQL Operator + PostgreSQL Clusters

%

Kubernetes

@ PostgreSQL Operator

+

0

h
H
i

3+
[T ——T——T1
S e
- -

cluster 1 cluster 2

Figure 24: PostgreSQL Operator Own Namespace Deployment

This patterns is great for testing out the PostgreSQL Operator in development environments, and can also be used to keep your entire
PostgreSQL workload within a single Kubernetes Namespace.

This can be set up with the disabled Namespace mode.
Single Tenant: PostgreSQL Operator Separate from PostgreSQL Clusters

The PostgreSQL Operator can be deployed into its own namespace and manage PostgreSQL clusters in a separate namespace.

This can be set up with either the readonly or dynamic Namespace modes.

5

Kubernetes

pee: pgo

@ PostgreSQL Operator

+ +

(1 - - =
O A
- -

cluster 1 cluster 2

namespce: hippo

Figure 25: PostgreSQL Operator Single Namespace Deployment

%

Kubernetes

pee: pgo

@ PostgreSQL Operator

+ +

H
I

U

f

[

S==S== S=
- -
- cluster 2

cluster 1 cluster 2

amespce: hippo namespce: rhino

Figure 26: PostgreSQL Operator Multi Namespace Deployment

Multi Tenant: PostgreSQL Operator Managing PostgreSQL Clusters in Multiple Namespaces

The PostgreSQL Operator can manage PostgreSQL clusters across multiple namespaces which allows for multi-tenancy.

This can be set up with either the readonly or dynamic Namespace modes.

[pgo client]({{< relref “/pgo-client/__index.md” >}}) and Namespaces
The [pgo client]({{< relref “/pgo-client/ index.md” >}}) needs to be aware of the Kubernetes Namespaces it is issuing commands to.

This can be accomplish with the -n flag that is available on most PostgreSQL Operator commands. For example, to create a PostgreSQL
cluster called hippo in the pgo namespace, you would execute the following command:

pgo create cluster -n pgo hippo

For convenience, you can set the PGO_NAMESPACE environmental variable to automatically use the desired namespace with the commands.
For example, to create a cluster named hippo in the pgo namespace, you could do the following

this export only needs to be run once per session
export PGO_NAMESPACE=pgo

pgo create cluster hippo

Operator Eventing

The Operator creates events from the various life-cycle events going on within the Operator logic and driven by pgo users as they interact
with the Operator and as Postgres clusters come and go or get updated.

Event Watching

There is a pgo CLI command:

pgo watch alltopic

This command connects to the event stream and listens on a topic for event real-time. The command will not complete until the pgo user
enters ctrl-C.

This command will connect to localhost:14150 (default) to reach the event stream. If you have the correct priviledges to connect to the
Operator pod, you can port forward as follows to form a connection to the event stream:

kubectl port-forward svc/postgres-operator 14150:4150 -n pgo

Event Topics

The following topics exist that hold the various Operator generated events:

alltopic
clustertopic
backuptopic
loadtopic
postgresusertopic
policytopic
pgbouncertopic
pgotopic
pgousertopic

Event Types

The various event types are found in the source code at https://github.com/CrunchyData/postgres-operator/blob/master/pkg/events/eventt

Event Deployment

The Operator events are published and subscribed via the NSQ project software (https://nsq.io/). NSQ is found in the pgo-event container
which is part of the postgres-operator deployment.

You can see the pgo-event logs by issuing the elog bash function found in the examples/envs.sh script.

NSQ looks for events currently at port 4150. The Operator sends events to the NSQ address as defined in the EVENT __ADDR environment
variable.

If you want to disable eventing when installing with Bash, set the following environment variable in the Operator Deployment: “name”:
“DISABLE_ EVENTING” “value”: “true”

To disable eventing when installing with Ansible, add the following to your inventory file: pgo_ disable_eventing=‘true’

PostgreSQL Operator Containers Overview

The PostgreSQL Operator orchestrates a series of PostgreSQL and PostgreSQL related containers containers that enable rapid deployment
of PostgreSQL, including administration and monitoring tools in a Kubernetes environment. The PostgreSQL Operator supports Post-
greSQL 9.5+ with multiple PostgreSQL cluster deployment strategies and a variety of PostgreSQL related extensions and tools enabling
enterprise grade PostgreSQL-as-a-Service. A full list of the containers supported by the PostgreSQL Operator is provided below.

PostgreSQL Server, Tools, and Extensions

o PostgreSQL (crunchy-postgres-ha). PostgreSQL database server. The crunchy-postgres container image is unmodified, open source
PostgreSQL packaged and maintained by Crunchy Data. The container supports PostgreSQL tools by running in different modes,
more information on running modes can be found in the Crunchy Container documentation. The PostgreSQL operator uses the
following running modes:

— pgdump (MODE: pgdump) running in pgdump mode, the image executes either a pg_dump or pg_dumpall database backup
against another PostgreSQL database.

— pgrestore (MODE: pgrestore) running in pgrestore mode, the image provides a means of performing a restore of a dump from
pg__dump or pg_ dumpall via psql or pg_restore to a PostgreSQL container database.

— sqlrunner (MODE: sqlrunner) running in sqlrunner mode, the image will use psql to issue specified queries, defined in SQL
files, to a PostgreSQL container database.

https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/

o PostGIS (crunchy-postgres-ha-gis). PostgreSQL database server including the PostGIS extension. The crunchy-postgres-gis con-
tainer image is unmodified, open source PostgreSQL packaged and maintained by Crunchy Data. This image is identical to the
crunchy-postgres image except it includes the open source geospatial extension PostGIS for PostgreSQL in addition to the language
extension PL/R which allows for writing functions in the R statistical computing language.

Backup and Restore

» pgBackRest (crunchy-postgres-ha). pgBackRest is a high performance backup and restore utility for PostgreSQL. The crunchy-
postgres-ha container executes the pgBackRest utility, allowing FULL and DELTA restore capability.

Administration Tools

¢ pgAdming (crunchy-pgadmind). PGAdmin4 is a graphical user interface administration tool for PostgreSQL. The crunchy-pgadmin4
container executes the pgAdmin4 web application.

» pgbadger (crunchy-pgbadger). pgbadger is a PostgreSQL log analyzer with fully detailed reports and graphs. The crunchy-pgbadger
container executes the pgBadger utility, which generates a PostgreSQL log analysis report using a small HTTP server running on
the container.

o pg_upgrade (crunchy-upgrade). The crunchy-upgrade container contains 9.5, 9.6, 10, 11 and 12 PostgreSQL packages in order to
perform a pg_upgrade from 9.5 to 9.6, 9.6 to 10, 10 to 11, and 11 to 12 versions.

o scheduler (crunchy-scheduler). The crunchy-scheduler container provides a cron like microservice for automating pgBackRest
backups within a single namespace.

Metrics and Monitoring

e Metrics Collection (crunchy-postgres-exporter). The crunchy-postgres-exporter container provides real time metrics about the
PostgreSQL database via an API. These metrics are scraped and stored by a Prometheus time-series database and are then graphed
and visualized through the open source data visualizer Grafana.

o Grafana (grafana). Hosts an open source web-based graphing dashboard called Grafana. Provides visual dashboards for monitoring
PostgreSQL clusters, specifically using Crunchy PostgreSQL Exporter data stored within Prometheus.

o Prometheus (prometheus). Prometheus is a multi-dimensional time series data model with an elastic query language. It is used in
collaboration with the Crunchy PostgreSQL Exporter and Grafana to provide and store metrics.

o Alertmanager (alertmanager). Handles alerts sent by Prometheus by deduplicating, grouping, and routing them to reciever
integrations.

Connection Pooling

o pgbouncer (crunchy-pghouncer). pgbouncer is a lightweight connection pooler for PostgreSQL. The crunchy-pgbouncer container
provides a pgbouncer image.

Storage and the PostgreSQL Operator

The PostgreSQL Operator allows for a variety of different configurations of persistent storage that can be leveraged by the PostgreSQL
instances or clusters it deploys.

The PostgreSQL Operator works with several different storage types, HostPath, Network File System(NFS), and Dynamic storage.

o Hostpath is the simplest storage and useful for single node testing.

e NFS provides the ability to do single and multi-node testing.

Hostpath and NFS both require you to configure persistent volumes so that you can make claims towards those volumes. You will need
to monitor the persistent volumes so that you do not run out of available volumes to make claims against.

Dynamic storage classes provide a means for users to request persistent volume claims and have the persistent volume dynamically created
for you. You will need to monitor disk space with dynamic storage to make sure there is enough space for users to request a volume.
There are multiple providers of dynamic storage classes to choose from. You will need to configure what works for your environment and
size the Physical Volumes, Persistent Volumes (PVs), appropriately.

Once you have determined the type of storage you will plan on using and setup PV’s you need to configure the Operator to know about
it. You will do this in the pgo.yaml file.

If you are deploying to a cloud environment with multiple zones, for instance Google Kubernetes Engine (GKE), you will want to review
topology aware storage class configurations.

User Roles in the PostgreSQL Operator

The PostgreSQL Operator, when used in conjunction with the associated PostgreSQL Containers and Kubernetes, provides you with the
ability to host your own open source, Kubernetes native PostgreSQL-as-a-Service infrastructure.

In installing, configuring and operating the PostgreSQL Operator as a PostgreSQL-as-a-Service capability, the following user roles will be
required:

Role Applicable Component Authorized Privileges and Functions Performed
Platform Admininistrator (Privileged User) PostgreSQL Operator The Platform Admininistrator is able to control all aspects of
Platform User PostgreSQL Operator The Platform User has access to a limited subset of PostgreSC

PostgreSQL Administrator(Privileged Account) PostgreSQL Containers The PostgreSQL Administrator is the equivalent of a PostgreS
PostgreSQL User PostgreSQL Containers The PostgreSQL User has access to a PostgreSQL Instance or

As indicated in the above table, both the Operator Administrator and the PostgreSQL Administrators represent privilege users with
components within the PostgreSQL Operator.

Platform Administrator

For purposes of this User Guide, the “Platform Administrator” is a Kubernetes system user with PostgreSQL Administrator privileges and
has PostgreSQL Operator admin rights. While PostgreSQL Operator admin rights are not required, it is helpful to have admin rights to
be able to verify that the installation completed successfully. The Platform Administrator will be responsible for managing the installation
of the Crunchy PostgreSQL Operator service in Kubernetes. That installation can be on RedHat OpenShift 3.11+, Kubeadm, or even
Google’s Kubernetes Engine.

Platform User

For purposes of this User Guide, a “Platform User” is a Kubernetes system user and has PostgreSQL Operator admin rights. While admin
rights are not required for a typical user, testing out functiontionality will be easier, if you want to limit functionality to specific actions
section 2.4.5 covers roles. The Platform User is anyone that is interacting with the Crunchy PostgreSQL Operator service in Kubernetes
via the PGO CLI tool. Their rights to carry out operations using the PGO CLI tool is governed by PGO Roles(discussed in more detail
later) configured by the Platform Administrator. If this is you, please skip to section 2.3.1 where we cover configuring and installing PGO.

PostgreSQL User

In the context of the PostgreSQL Operator, the “PostgreSQL User” is any person interacting with the PostgreSQL database using database
specific connections, such as a language driver or a database management GUI.

The default PostgreSQL instance installation via the PostgreSQL Operator comes with the following users:

Role name Attributes

postgres Superuser, Create role, Create DB, Replication, Bypass RLS
primaryuser Replication

testuser

The postgres user will be the admin user for the database instance. The primary user is used for replication between primary and replicas.
The testuser is a normal user that has access to the database “userdb” that is created for testing purposes.

A Tablespace is a PostgreSQL feature that is used to store data on a volume that is different from the primary data directory. While most
workloads do not require them, tablespaces can be particularly helpful for larger data sets or utilizing particular hardware to optimize
performance on a particular PostgreSQL object (a table, index, etc.). Some examples of use cases for tablespaces include:

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html

o Partitioning larger data sets across different volumes
Putting data onto archival systems

Utilizing hardware (or a storage class) for a particular database
« Storing sensitive data on a volume that supports transparent data-encryption (TDE)

and others.

In order to use PostgreSQL tablespaces properly in a highly-available, distributed system, there are several considerations that need to be
accounted for to ensure proper operations:

e Each tablespace must have its own volume; this means that every tablespace for every replica in a system must have its own volume.
e The filesystem map must be consistent across the cluster
e The backup & disaster recovery management system must be able to safely backup and restore data to tablespaces

Additionally, a tablespace is a critical piece of a PostgreSQL instance: if PostgreSQL expects a tablespace to exist and it is unavailable,
this could trigger a downtime scenario.

While there are certain challenges with creating a PostgreSQL cluster with high-availability along with tablespaces in a Kubernetes-based
environment, the PostgreSQL Operator adds many conveniences to make it easier to use tablespaces in applications.

How Tablespaces Work in the PostgreSQL Operator

As stated above, it is important to ensure that every tablespace created has its own volume (i.e. its own persistent volume claim). This is
especially true for any replicas in a cluster: you don’t want multiple PostgreSQL instances writing to the same volume, as this is a recipe
for disaster!

One of the keys to working with tablespaces in a high-availability cluster is to ensure the filesystem that the tablespaces map to is consistent.
Specifically, it is imperative to have the LOCATION parameter that is used by PostgreSQL to indicate where a tablespace resides to match
in each instance in a cluster.

The PostgreSQL Operator achieves this by mounting all of its tablespaces to a directory called /tablespaces in the container. While each
tablespace will exist in a unique PVC across all PostgreSQL instances in a cluster, each instance’s tablespaces will mount in a predictable
way in /tablespaces.

The PostgreSQL Operator takes this one step further and abstracts this away from you. When your PostgreSQL cluster initialized, the
tablespace definition is automatically created in PostgreSQL; you can start using it immediately! An example of this is demonstrated in
the next section.

The PostgreSQL Operator ensures the availability of the tablespaces across the different lifecycle events that occur on a PostgreSQL
cluster, including:

o High-Availability: Data in the tablespaces is replicated across the cluster, and is available after a downtime event
e Disaster Recovery: Tablespaces are backed up and are properly restored during a recovery

e Clone: Tablespaces are created in any cloned or restored cluster

e Deprovisioining: Tablespaces are deleted when a PostgreSQL instance or cluster is deleted

Adding Tablespaces to a New Cluster

Tablespaces can be used in a cluster with the pgo create cluster command. The command follows this general format:

pgo create cluster hacluster \
--tablespace=name=tablespacel:storageconfig=storageconfigname \
--tablespace=name=tablespace2:storageconfig=storageconfigname

For example, to create tablespaces name faststoragel and faststorage2 on PVCs that use the nfsstorage storage type, you would
execute the following command:

pgo create cluster hacluster \
--tablespace=name=faststoragel:storageconfig=nfsstorage \
--tablespace=name=faststorage2:storageconfig=nfsstorage

Once the cluster is initialized, you can immediately interface with the tablespaces! For example, if you wanted to create a table called
sensor_data on the faststoragel tablespace, you could execute the following SQL:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

CREATE TABLE sensor_data (

sensor_id int,

sensor_value numeric,

created_at timestamptz DEFAULT CURRENT_TIMESTAMP
)
TABLESPACE faststoragel;

Adding Tablespaces to Existing Clusters

You can also add a tablespace to an existing PostgreSQL cluster with the pgo update cluster command. Adding a tablespace to a
cluster uses a similar syntax to creating a cluster with tablespaces, for example:

pgo update cluster hacluster \
--tablespace=name=tablespaced:storageconfig=storageconfigname

NOTE: This operation can cause downtime. In order to add a tablespace to a PostgreSQL cluster, persistent volume claims (PVCs) need
to be created and mounted to each PostgreSQL instance in the cluster. The act of mounting a new PVC to a Kubernetes Deployment
causes the Pods in the deployment to restart.

When the operation completes, the tablespace will be set up and accessible to use within the PostgreSQL cluster.

Removing Tablespaces

Removing a tablespace is a nontrivial operation. PostgreSQL does not provide a DROP TABLESPACE .. CASCADE command that would
drop any associated objects with a tablespace. Additionally, the PostgreSQL documentation covering the DROP TABLESPACE command
goes on to note:

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all database objects before
it can be dropped. It is possible that objects in other databases might still reside in the tablespace even if no objects in the
current database are using the tablespace. Also, if the tablespace is listed in the temp_ tablespaces setting of any active session,
the DROP might fail due to temporary files residing in the tablespace.

Because of this, and to avoid a situation where a PostgreSQL cluster is left in an inconsistent state due to trying to remove a tablespace,
the PostgreSQL Operator does not provide any means to remove tablespaces automatically. If you do need to remove a tablespace from
a PostgreSQL deployment, we recommend following this procedure:

As a database administrator:
Log into the primary instance of your cluster.
Drop any objects that reside within the tablespace you wish to delete. These can be tables, indexes, and even databases themselves

Ll S

When you believe you have deleted all objects that depend on the tablespace you wish to remove, you can delete this tablespace

from the PostgreSQL cluster using the DROP TABLESPACE command.

5. As a Kubernetes user who can modify Deployments and edit an entry in the pgclusters.crunchydata.com CRD in the Namespace
that the PostgreSQL cluster is in:

6. For each Deployment that represents a PostgreSQL instance in the cluster (i.e. kubectl -n <TARGET_NAMESPACE> get

deployments --selector=pgo-pg-database=true,pg-cluster=<CLUSTER_NAME>), edit the Deployment and remove the Volume

and VolumeMount entry for the tablespace. If the tablespace is called hippo-ts, the Volume entry will look like: “‘yaml

e name: tablespace-hippo-ts persistentVolumeClaim: claimName: -tablespace-hippo-ts and the VolumeMount entry will look
like:yaml
o mountPath: /tablespaces/hippo-ts name: tablespace-hippo-ts “*

2. Modify the CR entry for the PostgreSQL cluster and remove the tablespaceMounts entry. If your PostgreSQL cluster is called
hippo, then the name of the CR entry is also called hippo. If your tablespace is called hippo-ts, then you would remove the YAML
stanza called hippo-ts from the tablespaceMounts entry.

More Information

For more information on how tablespaces work in PostgreSQL please refer to the PostgreSQL manual.

pgAdmin 4 is a popular graphical user interface that makes it easy to work with PostgreSQL databases from both a desktop or web-based
client. With its ability to manage and orchestrate changes for PostgreSQL users, the PostgreSQL Operator is a natural partner to keep a
pgAdmin 4 environment synchronized with a PostgreSQL environment.

https://www.postgresql.org/docs/current/sql-droptablespace.html
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.pgadmin.org/

2=l Admin File~ Object~

Browser 5 & Dashboard Properties SOL Statistics Dependencies Dependents & hipporhippog@h

astgreSOL Operator (1) BB al~- @~«B & v T\ HNlmt 2 B k| v S5 @
& [hippo/hippo@hippo
| Query Edic

1 CREATE TABLE hippos

2 id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

e Query History Scratch Pad *

timestamptz HOT NULL DEFAULT CURRENT_TIMESTAMP

Data Qutpit Explain Messages Notifications
Figure 27: pgAdmin 4 Query

The PostgreSQL Operator lets you deploy a pgAdmin 4 environment alongside a PostgreSQL cluster and keeps users’ database credentials
synchronized. You can simply log into pgAdmin 4 with your PostgreSQL username and password and immediately have access to your
databases.

Deploying pgAdmin 4

For example, let’s use a PostgreSQL cluster called hippo hippo that has a user named hippo with password datalake:

pgo create cluster hippo --username=hippo --password=datalake

After the PostgreSQL cluster becomes ready, you can create a pgAdmin 4 deployment with the [pgo create pgadmin|({{< relref ¢/pgo-
client /reference/pgo_ create_pgadmin.md” >}}) command:

pgo create pgadmin hippo

This will use the configured storage configuration and default PVC size. If desired, you can set a custom storage configuration (in this
case gce) and PVC size using:

pgo create pgadmin hippo --storage-config=gce --pvc-size=1G

This creates a pgAdmin 4 deployment unique to this PostgreSQL cluster and synchronizes the PostgreSQL user information into it. To
access pgAdmin 4, you can set up a port-forward to the Service, which follows the pattern <clusterName>-pgadmin, to port 5050:
kubectl port-forward svc/hippo-pgadmin 5050:5050

Point your browser at http://localhost:5050 and use your database username (e.g. hippo) and password (e.g. datalake) to log in.
Though the prompt says “email address”, using your PostgreSQL username will work.

pgAdmin 4

Login

Login

Forgotien your password? | English

Figure 28: pgAdmin 4 Login Page

(Note: if your password does not appear to work, you can retry setting up the user with the [pgo update user|({{< relref “/pgo-
client /reference/pgo_update user.md” >}}) command: pgo update user hippo --password=datalake)

User Synchronization

The [pgo create user]({{< relref “/pgo-client /reference/pgo_ create_user.md” >}}), [pgo update user|({{< relref “/pgo-client/reference
>1}1), and [pgo delete user|({{< relref “/pgo-client/reference/pgo_delete_user.md” >}}) commands are synchronized with the pgAd-
min 4 deployment. Note that if you use pgo create user without the --managed flag prior to deploying pgAdmin 4, then the user’s
credentials will not be synchronized to the pgAdmin 4 deployment. However, a subsequent run of pgo update user --password will
synchronize the credentials with pgAdmin 4.

Deleting pgAdmin 4
You can remove the pgAdmin 4 deployment with the [pgo delete pgadmin]({{< relref “/pgo-client/reference/pgo_delete_ pgadmin.md”
>1}}) command.

One of the great things about PostgreSQL is its reliability: it is very stable and typically “just works.” However, there are certain things
that can happen in the environment that PostgreSQL is deployed in that can affect its uptime, including:

o The database storage disk fails or some other hardware failure occurs
o The network on which the database resides becomes unreachable

e The host operating system becomes unstable and crashes

o A key database file becomes corrupted

e A data center is lost

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching
of operating system, hardware upgrade, or other maintenance.

Fortunately, the Crunchy PostgreSQL Operator is prepared for this.

. Kubernetes

Control Plane 1 Control Plane 2 Control Plane 3

Kubernetes Load Balancer

@ O ETA

@ Replica 2

Node 1 Node 2 Node 3

Figure 29: PostgreSQL Operator High-Availability Overview

The Crunchy PostgreSQL Operator supports a distributed-consensus based high-availability (HA) system that keeps its managed Post-
greSQL clusters up and running, even if the PostgreSQL Operator disappears. Additionally, it leverages Kubernetes specific features such

as Pod Anti-Affinity to limit the surface area that could lead to a PostgreSQL cluster becoming unavailable. The PostgreSQL Operator
also supports automatic healing of failed primaries and leverages the efficient pgBackRest “delta restore” method, which eliminates the
need to fully reprovision a failed cluster!

The Crunchy PostgreSQL Operator also maintains high-availability during a routine task such as a PostgreSQL minor version upgrade.

For workloads that are sensitive to transaction loss, the Crunchy PostgreSQL Operator supports PostgreSQL synchronous replication,
which can be specified with the --sync-replication when using the pgo create cluster command.

(HA is enabled by default in any newly created PostgreSQL cluster. You can update this setting by either using the ——disable-autofail
flag when using pgo create cluster, or modify the pgo-config ConfigMap [or the pgo.yaml file] to set DisableAutofail to "true".
These can also be set when a PostgreSQL cluster is running using the pgo update cluster command).

One can also choose to manually failover using the pgo failover command as well.

The high-availability backing for your PostgreSQL cluster is only as good as your high-availability backing for Kubernetes. To learn more
about creating a high-availability Kubernetes cluster, please review the Kubernetes documentation or consult your systems administrator.

The Crunchy PostgreSQL Operator High-Availability Algorithm

A critical aspect of any production-grade PostgreSQL deployment is a reliable and effective high-availability (HA) solution. Organizations
want to know that their PostgreSQL deployments can remain available despite various issues that have the potential to disrupt operations,
including hardware failures, network outages, software errors, or even human mistakes.

The key portion of high-availability that the PostgreSQL Operator provides is that it delegates the management of HA to the PostgreSQL
clusters themselves. This ensures that the PostgreSQL Operator is not a single-point of failure for the availability of any of the PostgreSQL
clusters that it manages, as the PostgreSQL Operator is only maintaining the definitions of what should be in the cluster (e.g. how many
instances in the cluster, etc.).

Each HA PostgreSQL cluster maintains its availability using concepts that come from the Raft algorithm to achieve distributed consensus.
The Raft algorithm (“Reliable, Replicated, Redundant, Fault-Tolerant”) was developed for systems that have one “leader” (i.e. a primary)
and one-to-many followers (i.e. replicas) to provide the same fault tolerance and safety as the PAXOS algorithm while being easier to
implement.

For the PostgreSQL cluster group to achieve distributed consensus on who the primary (or leader) is, each PostgreSQL cluster leverages
the distributed etcd key-value store that is bundled with Kubernetes. After it is elected as the leader, a primary will place a lock in the
distributed eted cluster to indicate that it is the leader. The “lock” serves as the method for the primary to provide a heartbeat: the
primary will periodically update the lock with the latest time it was able to access the lock. As long as each replica sees that the lock was
updated within the allowable automated failover time, the replicas will continue to follow the leader.

The “log replication” portion that is defined in the Raft algorithm is handled by PostgreSQL in two ways. First, the primary instance will
replicate changes to each replica based on the rules set up in the provisioning process. For PostgreSQL clusters that leverage “synchronous
replication,” a transaction is not considered complete until all changes from those transactions have been sent to all replicas that are
subscribed to the primary.

In the above section, note the key word that the transaction are sent to each replica: the replicas will acknowledge receipt of the transaction,
but they may not be immediately replayed. We will address how we handle this further down in this section.

During this process, each replica keeps track of how far along in the recovery process it is using a “log sequence number” (LSN), a built-in
PostgreSQL serial representation of how many logs have been replayed on each replica. For the purposes of HA, there are two LSNs
that need to be considered: the LSN for the last log received by the replica, and the LSN for the changes replayed for the replica. The
LSN for the latest changes received can be compared amongst the replicas to determine which one has replayed the most changes, and an
important part of the automated failover process.

The replicas periodically check in on the lock to see if it has been updated by the primary within the allowable automated failover timeout.
Each replica checks in at a randomly set interval, which is a key part of Raft algorithm that helps to ensure consensus during an election
process. If a replica believes that the primary is unavailable, it becomes a candidate and initiates an election and votes for itself as the
new primary. A candidate must receive a majority of votes in a cluster in order to be elected as the new primary.

There are several cases for how the election can occur. If a replica believes that a primary is down and starts an election, but the primary
is actually not down, the replica will not receive enough votes to become a new primary and will go back to following and replaying the
changes from the primary.

In the case where the primary is down, the first replica to notice this starts an election. Per the Raft algorithm, each available replica
compares which one has the latest changes available, based upon the LSN of the latest logs received. The replica with the latest LSN wins
and receives the vote of the other replica. The replica with the majority of the votes wins. In the event that two replicas’ logs have the
same LSN, the tie goes to the replica that initiated the voting request.

Once an election is decided, the winning replica is immediately promoted to be a primary and takes a new lock in the distributed etcd
cluster. If the new primary has not finished replaying all of its transactions logs, it must do so in order to reach the desired state based
on the LSN. Once the logs are finished being replayed, the primary is able to accept new queries.

https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://kubernetes.io/docs/tasks/administer-cluster/highly-available-master/
https://raft.github.io/

At this point, any existing replicas are updated to follow the new primary.

When the old primary tries to become available again, it realizes that it has been deposed as the leader and must be healed. The old
primary determines what kind of replica it should be based upon the CRD, which allows it to set itself up with appropriate attributes.
It is then restored from the pgBackRest backup archive using the “delta restore” feature, which heals the instance and makes it ready to
follow the new primary, which is known as “auto healing.”

How The Crunchy PostgreSQL Operator Uses Pod Anti-Affinity

By default, when a new PostgreSQL cluster is created using the PostgreSQL Operator, pod anti-affinity rules will be applied to any
deployments comprising the full PG cluster (please note that default pod anti-affinity does not apply to any Kubernetes jobs created by
the PostgreSQL Operator). This includes:

e The primary PG deployment

e The deployments for each PG replica

e The pgBackrest dedicated repository deployment

e The pgBouncer deployment (if enabled for the cluster)

There are three types of Pod Anti-Affinity rules that the Crunchy PostgreSQL Operator supports:

e preferred: Kubernetes will try to schedule any pods within a PostgreSQL cluster to different nodes, but in the event it must
schedule two pods on the same Node, it will. As described above, this is the default option.

e required: Kubernetes will schedule pods within a PostgreSQL cluster to different Nodes, but in the event it cannot schedule a pod
to a different Node, it will not schedule the pod until a different node is available. While this guarantees that no pod will share
the same node, it can also lead to downtime events as well. This uses the requiredDuringSchedulingIgnoredDuringExecution
affinity rule.

e disabled: Pod Anti-Affinity is not used.

With the default preferred Pod Anti-Affinity rule enabled, Kubernetes will attempt to schedule pods created by each of the separate
deployments above on a unique node, but will not guarantee that this will occur. This ensures that the pods comprising the PostgreSQL
cluster can always be scheduled, though perhaps not always on the desired node. This is specifically done using the following:

e The preferredDuringSchedulingIgnoredDuringExecution affinity type, which defines an anti-affinity rule that Kubernetes will
attempt to adhere to, but will not guarantee will occur during Pod scheduling

e A combination of labels that uniquely identify the pods created by the various Deployments listed above

o A topology key of kubernetes.io/hostname, which instructs Kubernetes to schedule a pod on specific Node only if there is not
already another pod in the PostgreSQL cluster scheduled on that same Node

If you want to explicitly create a PostgreSQL cluster with the preferred Pod Anti-Affinity rule, you can execute the pgo create command
using the --pod-anti-affinity flag similar to this:

pgo create cluster hacluster --replica-count=2 --pod-anti-affinity=preferred

or it can also be explicitly enabled globally for all clusters by setting PodAntiAffinity to preferred in the pgo.yaml configuration file.
If you want to create a PostgreSQL cluster with the required Pod Anti-Affinity rule, you can execute a command similar to this:

pgo create cluster hacluster --replica-count=2 --pod-anti-affinity=required

or set the required option globally for all clusters by setting PodAntiAffinity to required in the pgo.yaml configuration file.

When required is utilized for the default pod anti-affinity, a separate node is required for each deployment listed above comprising the PG
cluster. This ensures that the cluster remains highly-available by ensuring that node failures do not impact any other deployments in the
cluster. However, this does mean that the PostgreSQL primary, each PostgreSQL replica, the pgBackRest repository and, if deployed, the
pgBouncer Pods will each require a unique node, meaning the minimum number of Nodes required for the Kubernetes cluster will increase
as more Pods are added to the PostgreSQL cluster. Further, if an insufficient number of nodes are available to support this configuration,
certain deployments will fail, since it will not be possible for Kubernetes to successfully schedule the pods for each deployment.

It is possible to fine tune the pod anti-affinity rules further, specifically, set different affinity rules for the PostgreSQL, pg-
BackRest, and pgBouncer Deployments. These can be handled by the following flags on pgo create cluster({{< relref “pgo-
client /reference/pgo__create__cluster.md”>}}):

o --pod-anti-affinity: Sets the pod anti-affinity rules for all the managed Deployments in the cluster (PostgreSQL, pgBackRest,
pgBouncer)

e —-pod-anti-affinity-pgbackrest: Sets the pod anti-affinity rules for only the pgBackRest Deployment. This takes precedence
over the value of --pod-anti-affinity.

e —-pod-anti-affinity-pgbouncer: Sets the pod anti-affinity rules for only the pgBouncer Deployment. This takes precedence over
the value of --pod-anti-affinity.

For example, to use required pod anti-affinity between PostgreSQL instances but use only preferred anti-affinity for pgBackRest and
pgBouncer, you could use the following command:

pgo create cluster hippo --replicas=2 --pgbouncer \
--pod-anti-affinity=required \
--pod-anti-affinity=preferred \
-—-pod-anti-afinity=preferred

Synchronous Replication: Guarding Against Transactions Loss

Clusters managed by the Crunchy PostgreSQL Operator can be deployed with synchronous replication, which is useful for workloads that
are sensitive to losing transactions, as PostgreSQL will not consider a transaction to be committed until it is committed to all synchronous
replicas connected to a primary. This provides a higher guarantee of data consistency and, when a healthy synchronous replica is present,
a guarantee of the most up-to-date data during a failover event.

This comes at a cost of performance: PostgreSQL has to wait for a transaction to be committed on all synchronous replicas, and a
connected client will have to wait longer than if the transaction only had to be committed on the primary (which is how asynchronous
replication works). Additionally, there is a potential impact to availability: if a synchronous replica crashes, any writes to the primary
will be blocked until a replica is promoted to become a new synchronous replica of the primary.

You can enable synchronous replication by using the -—sync-replication flag with the pgo create command, e.g.:

pgo create cluster hacluster --replica-count=2 --sync-replication

Node Affinity

Kubernetes Node Affinity can be used to scheduled Pods to specific Nodes within a Kubernetes cluster. This can be useful when you
want your PostgreSQL instances to take advantage of specific hardware (e.g. for geospatial applications) or if you want to have a replica
instance deployed to a specific region within your Kubernetes cluster for high-availability purposes.

The PostgreSQL Operator provides users with the ability to apply Node Affinity rules using the --node-label flag on the pgo create
and the pgo scale commands. Node Affinity directs Kubernetes to attempt to schedule these PostgreSQL instances to the specified Node
label.

To get a list of available Node labels:

kubectl get nodes --show-labels

You can then specify one of those Kubernetes node names (e.g. region=us-east-1) when creating a PostgreSQL cluster;

pgo create cluster thatcluster --node-label=region=us-east-1

By default, node affinity uses the preferred scheduling strategy (similar to what is described in the Pod Anti-Affinity section above), so
if a Pod cannot be scheduled to a particular Node matching the label, it will be scheduled to a different Node.

The PostgreSQL Operator supports two different types of node affinity:

e preferred
e required

which can be selected with the -—node-affinity-type flag, e.g:

pgo create cluster hippo \
--node-label=region=us-east-1 --node-affinity-type=required

When creating a cluster, the node affinity rules will be applied to the primary and any other PostgreSQL instances that are
added. If you would like to specify a node affinity rule for a specific instance, you can do so with the [pgo scale]({{< relref
“pgo-client /reference/pgo_scale.md”>}}) command and the --node-label and --node-affinity-type flags, i.e:

pgo scale cluster hippo \
--node-label=region=us-south-1 --node-affinity-type=required

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity

Tolerations

Kubernetes Tolerations can help with the scheduling of Pods to appropriate nodes. There are many reasons that a Kubernetes administrator
may want to use tolerations, such as restricting the types of Pods that can be assigned to particular Nodes. Reasoning and strategy for
using taints and tolerations is outside the scope of this documentation.

The PostgreSQL Operator supports the setting of tolerations across all PostgreSQL instances in a cluster, as well as for each particular
PostgreSQL instance within a cluster. Both the pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md”>}}) and
[pgo scale|({{< relref “pgo-client/reference/pgo_scale.md”>}}) commands support the ——toleration flag, which allows for one or more
tolerations to be added to a PostgreSQL cluster. Values accepted by the --toleration use the following format:

rule:Effect

where a rule can represent existence (e.g. key) or equality (key=value) and Effect is one of NoSchedule, PreferNoSchedule, or
NoExecute. For more information on how tolerations work, please refer to the Kubernetes documentation.

For example, to add two tolerations to a new PostgreSQL cluster, one that is an existence toleration for a key of ssd and the other that
is an equality toleration for a key/value pair of zone/east, you can run the following command:

pgo create cluster hippo \
--toleration=ssd:NoSchedule \
--toleration=zone=east:NoSchedule

For another example, to assign equality toleration for a key/value pair of zone/west to a new instance in the hippo cluster, you can run
the following command:

pgo scale hippo --toleration=zone=west:NoSchedule

Tolerations can be updated on an existing cluster. You can do this by either modifying the pgclusters.crunchydata.com and
pereplicas.crunchydata.com custom resources directly, e.g. via the kubectl edit command, or with the [pgo update cluster|({{
relref “pgo-client /reference/pgo_update_ cluster.md” }}) command. Using the pgo update cluster command, a toleration can be
removed by adding a - at the end of the toleration effect.

For example, to add a toleration of zone=west:NoSchedule and remove the toleration of zone=east:NoSchedule, you could run the
following command:

pgo update cluster hippo \
--toleration=zone=west:NoSchedule \
--toleration=zone-east:NoSchedule-

Once the updates are applied, the PostgreSQL Operator will roll out the changes to the appropriate instances.

Rolling Updates

During the lifecycle of a PostgreSQL cluster, there are certain events that may require a planned restart, such as an update to a “restart
required” PostgreSQL configuration setting (e.g. shared_buffers) or a change to a Kubernetes Deployment template (e.g. [changing
the memory request]({{< relref “tutorial/customize-cluster.md”>}}#customize-cpu-memory)). Restarts can be disruptive in a high
availability deployment, which is why many setups employ a “rolling update” strategy (aka a “rolling restart”) to minimize or eliminate
downtime during a planned restart.

Because PostgreSQL is a stateful application, a simple rolling restart strategy will not work: PostgreSQL needs to ensure that there is a
primary available that can accept reads and writes. This requires following a method that will minimize the amount of downtime when
the primary is taken offline for a restart.

The PostgreSQL Operator provides a mechanism for rolling updates implicitly on certain operations that change the Deployment templates
(e.g. memory updates, CPU updates, adding tablespaces, modifiny annotations) and explicitly through the [pgo restart]({{< relref “pgo-
client/reference/pgo_restart.md”>}}) command with the --rolling flag. The PostgreSQL Operator uses the following algorithm to
perform the rolling restart to minimize any potential interruptions:

1. Each replica is updated in sequential order. This follows the following process:

2. The replica is explicitly shut down to ensure any outstanding changes are flushed to disk.

3. If requested, the PostgreSQL Operator will apply any changes to the Deployment.

4. The replica is brought back online. The PostgreSQL Operator waits for the replica to become available before it proceeds to the
next replica.

5. The above steps are repeated until all of the replicas are restarted.

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/

6. A controlled switchover is performed. The PostgreSQL Operator determines which replica is the best candidate to become the new
primary. It then demotes the primary to become a replica and promotes the best candidate to become the new primary.

7. The former primary follows a process similar to what is described in step 1.

The downtime is thus constrained to the amount of time the switchover takes.

A rolling update strategy will be used if any of the following changes are made to a PostgreSQL cluster, either through the pgo update
command or from a modification to the custom resource:

e Memory resource adjustments

e CPU resource adjustments

e PVC resizes

e Custom annotation changes

o Enabling/disabling the monitoring sidecar on a PostgreSQL cluster (--metrics)
o Enabling/disabling the pgBadger sidecar on a PostgreSQL cluster (--pgbadger)
e S3 bucket name updates

e Tablespace additions

o Toleration modifications

or

=
pgBac
A

- »
%’Go L %’GO -]
et postgres-operator o postgres-operator pgBackRest
j

A
['

crunchy-postgres

@ crunchy-postgres
1~ replica replica

@ crunchy-postgres @ crunchy-postgres @
Nkl &7 primary G - fad7 standby See% 74

' '
' '
' '
v v

% @ crunchy-postgres @ crunchy-postgres %
~ ~

replica

replica

Kubernetes Kubernetes

cluster #1 cluster #2

Figure 30: PostgreSQL Operator High-Availability Overview

Advanced [high-availability] ({{ < relref “/architecture/high-availability /_index.md” >}}) and [disaster recovery]({{< relref “ /architecture/d
recovery.md” >}1}) strategies involve spreading your database clusters across multiple data centers to help maximize uptime. In Kubernetes,
this technique is known as “federation”. Federated Kubernetes clusters are able to communicate with each other, coordinate changes, and
provide resiliency for applications that have high uptime requirements.

As of this writing, federation in Kubernetes is still in ongoing development and is something we monitor with intense interest. As
Kubernetes federation continues to mature, we wanted to provide a way to deploy PostgreSQL clusters managed by the PostgreSQL
Operator that can span multiple Kubernetes clusters. This can be accomplished with a few environmental setups:

o Two Kubernetes clusters

https://en.wikipedia.org/wiki/Federation_(information_technology)
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator

e An external storage system, using one of the following;:
e S3, or an external storage system that uses the S3 protocol OR
« GCS

At a high-level, the PostgreSQL Operator follows the “active-standby” data center deployment model for managing the PostgreSQL
clusters across Kuberntetes clusters. In one Kubernetes cluster, the PostgreSQL Operator deploy PostgreSQL as an “active” PostgreSQL
cluster, which means it has one primary and one-or-more replicas. In another Kubernetes cluster, the PostgreSQL cluster is deployed as
a “standby” cluster: every PostgreSQL instance is a replica.

A side-effect of this is that in each of the Kubernetes clusters, the PostgreSQL Operator can be used to deploy both active and standby
PostgreSQL clusters, allowing you to mix and match! While the mixing and matching may not ideal for how you deploy your PostgreSQL
clusters, it does allow you to perform online moves of your PostgreSQL data to different Kubernetes clusters as well as manual online
upgrades.

Lastly, while this feature does extend high-availability, promoting a standby cluster to an active cluster is not automatic. While the
PostgreSQL clusters within a Kubernetes cluster do support self-managed high-availability, a cross-cluster deployment requires someone
to specifically promote the cluster from standby to active.

Standby Cluster Overview

Standby PostgreSQL clusters are managed just like any other PostgreSQL cluster that is managed by the PostgreSQL Operator. For exam-
ple, adding replicas to a standby cluster is identical to before: you can use [pgo scale|({{< relref “/pgo-client/reference/pgo_ scale.md”

>1})-

As the architecture diagram above shows, the main difference is that there is no primary instance: one PostgreSQL instance is reading in
the database changes from the S3 or GCS repository, while the other replicas are replicas of that instance. This is known as cascading
replication. replicas are cascading replicas, i.e. replicas replicating from a database server that itself is replicating from another database
server.

Because standby clusters are effectively read-only, certain functionality that involves making changes to a database, e.g. PostgreSQL
user changes, is blocked while a cluster is in standby mode. Additionally, backups and restores are blocked as well. While pgBackRest
does support backups from standbys, this requires direct access to the primary database, which cannot be done until the PostgreSQL
Operator supports Kubernetes federation. If a blocked function is called on a standby cluster via the [pgo client]({{< relref “/pgo-
client/_index.md“>}}) or a direct call to the API server, the call will return an error.

Key Commands

pgo create cluster({{< relref “/pgo-client/reference/pgo_ create_ cluster.md” >}}) This first step to creating a standby
PostgreSQL cluster is..to create a PostgreSQL standby cluster. We will cover how to set this up in the example below, but wanted to
provide some of the standby-specific flags that need to be used when creating a standby cluster. These include:

e —-standby: Creates a cluster as a PostgreSQL standby cluster

e —-password-superuser: The password for the postgres superuser account, which performs a variety of administrative actions.

o --password-replication: The password for the replication account (primaryuser), used to maintain high-availability.

e —-password: The password for the standard user account created during PostgreSQL cluster initialization.

e —-pgbackrest-repo-path: The specific pgBackRest repository path that should be utilized by the standby cluster. Allows a standby
cluster to specify a path that matches that of the active cluster it is replicating.

o —-pgbackrest-storage-type: Must be set to either s3 or gcs

If you are using S3 or an S3-compatible storage system, you will need to set the following flags:

e —-pgbackrest-s3-key: The S3 key to use

e —-pgbackrest-s3-key-secret: The S3 key secret to use
e —-pgbackrest-s3-bucket: The S3 bucket to use

e —-pgbackrest-s3-endpoint: The S3 endpoint to use

e —-pgbackrest-s3-region: The S3 region to use

If you are using GCS, you will need to set the following flags:

e —-pgbackrest-gcs-bucket: The GCS bucket to use
e —-pgbackrest-gcs-key: A reference to a file on your local system that contains the GCS key information

https://www.postgresql.org/docs/current/warm-standby.html#CASCADING-REPLICATION
https://www.postgresql.org/docs/current/warm-standby.html#CASCADING-REPLICATION
https://pgbackrest.org/

If you do not want to set the user credentials, you can retrieve them at a later time by using the [pgo show user|({{< relref “/pgo-
client /reference/pgo_show__user.md” >}}) command with the --show-system-accounts flag, e.g.

pgo show user --show-system-accounts hippo

With respect to the credentials, it should be noted that when the standby cluster is being created within the same Kubernetes cluster
AND it has access to the Kubernetes Secret created for the active cluster, one can use the -—-secret-from flag to set up the credentials.

[pgo update cluster|({{< relref “/pgo-client/reference/pgo_update_ cluster.md” >}}) [pgo update cluster]({{< relref
“ /pgo-client /reference/pgo_update_ cluster.md” >}}) is responsible for the promotion and disabling of a standby cluster, and contains
several flags to help with this process:

e —-—enable-standby: Enables standby mode in a cluster for a cluster. This will bootstrap a PostgreSQL cluster to become aligned
with the current active cluster and begin to follow its changes.

e —-promote-standby: Enables standby mode in a cluster. This is a destructive action that results in the deletion of all PVCs for
the cluster (data will be retained according Storage Class and/or Persistent Volume reclaim policies). In order to allow the proper
deletion of PVCs, the cluster must also be shutdown.

e —-shutdown: Scales all deployments for the cluster to 0, resulting in a full shutdown of the PG cluster. This includes the primary,
any replicas, as well as any supporting services (pgBackRest and pgBouncer if enabled).

e —-startup: Scales all deployments for the cluster to 1, effectively starting a PG cluster that was previously shutdown. This includes
the primary, any replicas, as well as any supporting services (pgBackRest and pgBouncer if enabled). The primary is brought online
first in order to maintain a consistent primary /replica architecture across startups and shutdowns.

Creating a Standby PostgreSQL Cluster

Let’s create a PostgreSQL deployment that has both an active and standby cluster! You can try this example either within a single
Kubernetes cluster, or across multuple Kubernetes clusters.

First, deploy a new active PostgreSQL cluster that is configured to use S3 or GCS with pgBackRest.
An example that uses S3:

pgo create cluster hippo --pgbouncer --replica-count=2 \
--pgbackrest-storage-type=posix,s3 \
--pgbackrest-s3-key=<redacted> \
--pgbackrest-s3-key-secret=<redacted> \
--pgbackrest-s3-bucket=watering-hole \
--pgbackrest-s3-endpoint=s3.amazonaws.com \
--pgbackrest-s3-region=us-east-1 \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

An example that uses GCS:

pgo create cluster hippo --pgbouncer --replica-count=2 \
--pgbackrest-storage-type=posix,gcs \
--pgbackrest-gcs-bucket=watering-hole \
--pgbackrest-gcs-key=/path/to/your/gcs/credentials. json \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

(Replace the placeholder values with your actual values. We are explicitly setting all of the passwords for the primary cluster to make it
easier to run the example as is).

The above command creates an active PostgreSQL cluster with two replicas and a pgBouncer deployment. Wait a few moments for this
cluster to become live before proceeding.

Once the cluster has been created, you can then create the standby cluster. This can either be in another Kubernetes cluster or within
the same Kubernetes cluster. If using a separate Kubernetes cluster, you will need to provide the proper passwords for the superuser and
replication accounts. You can also provide a password for the regular PostgreSQL database user created during cluster initialization to
ensure the passwords and associated secrets across both clusters are consistent.

(If the standby cluster is being created using the same PostgreSQL Operator deployment (and therefore the same Kubernetes cluster), the
--secret-fronm flag can also be used in lieu of these passwords. You would specify the name of the cluster [e.g. hippo] as the value of the
--secret-from variable.)

https://www.pgbackrest.org
(\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20relref%20"/pgo-client/common-tasks.md"%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax #connection-pooling-via-pgbouncer)

With this in mind, create a standby cluster. Below are examples that allow you to create a standby cluster using S3 and GCS.
With S3:

pgo create cluster hippo-standby --standby --pgbouncer --replica-count=2 \
--pgbackrest-storage-type=s3 \
--pgbackrest-s3-key=<redacted> \
--pgbackrest-s3-key-secret=<redacted> \
--pgbackrest-s3-bucket=watering-hole \
--pgbackrest-s3-endpoint=s3.amazonaws.com \
--pgbackrest-s3-region=us-east-1 \
--pgbackrest-repo-path=/backrestrepo/hippo-backrest-shared-repo \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

With GCS:

pgo create cluster hippo-standby --standby --pgbouncer --replica-count=2 \
--pgbackrest-storage-type=gcs \
--pgbackrest-gcs-bucket=watering-hole \
--pgbackrest-gcs-key=/path/to/your/gcs/credentials. json \
--pgbackrest -repo-path=/backrestrepo/hippo-backrest-shared-repo \
--password-superuser=supersecrethippo \
--password-replication=somewhatsecrethippo \
--password=opensourcehippo

(If you are unsure of your credentials, you can use pgo show user hippo --show-system-accounts to retrieve them).

Note the use of the —-pgbackrest-repo-path flag as it points to the name of the pgBackRest repository that is used for the original
hippo cluster.

At this point, the standby cluster will bootstrap as a standby along with two cascading replicas. pgBouncer will be deployed at this time
as well, but will remain non-functional until hippo-standby is promoted. To see that the Pod is indeed a standby, you can check the logs.

kubectl logs hippo-standby-dcff544d6-s6d58..

Thu Mar 19 18:16:54 UTC 2020 INFO: Node standby-dcff544d6-s6d58 fully initialized for cluster
standby and is ready for use

2020-03-19 18:17:03,390 INFO: Lock owner: standby-dcff544d6-s6d58; I am standby-dcff544d6-s6d58

2020-03-19 18:17:03,454 INFO: Lock owner: standby-dcff544d6-s6d58; I am standby-dcff544d6-s6d58

2020-03-19 18:17:03,598 INFO: no action. i am the standby leader with the lock

2020-03-19 18:17:13,389 INFO: Lock owner: standby-dcff544d6-s6d58; I am standby-dcff544d6-s6d58

2020-03-19 18:17:13,466 INFO: no action. i am the standby leader with the lock

You can also see that this is a standby cluster from the [pgo show cluster|({{< relref “/pgo-client/reference/pgo_show_ cluster.md”
>1}1}) command.

pgo show cluster hippo

cluster : standby (crunchy-postgres-ha:{{< param centosBase >}}-{{< param postgresVersion >}}-{{<

param operatorVersion >}1})
standby : true

Promoting a Standby Cluster

There comes a time where a standby cluster needs to be promoted to an active cluster. Promoting a standby cluster means that a
PostgreSQL instance within it will become a primary and start accepting both reads and writes. This has the net effect of pushing WAL
(transaction archives) to the pgBackRest repository, so we need to take a few steps first to ensure we don’t accidentally create a split-brain
scenario.

First, if this is not a disaster scenario, you will want to “shutdown” the active PostgreSQL cluster. This can be done with the --shutdown
flag:

pgo update cluster hippo --shutdown

The effect of this is that all the Kubernetes Deployments for this cluster are scaled to 0. You can verify this with the following command:

kubectl get deployments --selector pg-cluster=hippo

NAME READY UP-TO-DATE AVAILABLE AGE
hippo 0/0 0 0 32m
hippo-backrest-shared-repo 0/0 0 0 32m
hippo-kvfo 0/0 0 0 27m
hippo-1lkge 0/0 0 0 27m
hippo-pgbouncer 0/0 0 0 31im

We can then promote the standby cluster using the --promote-standby flag:

pgo update cluster hippo-standby --promote-standby

This command essentially removes the standby configuration from the Kubernetes cluster’s DCS, which triggers the promotion of the
current standby leader to a primary PostgreSQL instance. You can view this promotion in the PostgreSQL standby leader’s (soon to be
active leader’s) logs:

kubectl logs hippo-standby-dcff544d6-s6d58..

2020-03-19 18:28:11,919 INFO: Reloading PostgreSQL configuration.

server signaled

2020-03-19 18:28:16,792 INFO: Lock owner: standby-dcff544d6-s6d58; I am standby-dcff544d6-s6d58
2020-03-19 18:28:16,850 INFO: Reaped pid=5377, exit status=0

2020-03-19 18:28:17,024 INFO: no action. i am the leader with the lock

2020-03-19 18:28:26,792 INFO: Lock owner: standby-dcff544d6-s6d58; I am standby-dcff544d6-s6d58
2020-03-19 18:28:26,924 INFO: no action. i am the leader with the lock

As pgBouncer was enabled for the cluster, the pgbouncer user’s password is rotated, which will bring pgBouncer online with the newly
promoted active cluster. If pgBouncer is still having trouble connecting, you can explicitly rotate the password with the following command:

pgo update pgbouncer --rotate-password hippo-standby

With the standby cluster now promoted, the cluster with the original active PostgreSQL cluster can now be turned into a standby
PostgreSQL cluster. This is done by deleting and recreating all PVCs for the cluster and re-initializing it as a standby using the S3 or
GCS repository. Being that this is a destructive action (i.e. data will only be retained if any Storage Classes and/or Persistent Volumes
have the appropriate reclaim policy configured) a warning is shown when attempting to enable standby.

pgo update cluster hippo --enable-standby

Enabling standby mode will result in the deletion of all PVCs for this cluster!

Data will only be retained if the proper retention policy is configured for any associated storage
classes and/or persistent volumes.

Please proceed with caution.

WARNING: Are you sure? (yes/no): yes

updated pgcluster hippo

To verify that standby has been enabled, you can check the DCS configuration for the cluster to verify that the proper standby settings
are present.

kubectl get cm hippo-config -o yaml | grep standby
Wi
\"%p\""},"use_pg_rewind":true,"use_slots":falsel},"standby_cluster":{"create_replica_methods": |

Also, the PVCs for the cluster should now only be a few seconds old, since they were recreated.

kubectl get pvc --selector pg-cluster=hippo

NAME STATUS VOLUME CAPACITY AGE
hippo Bound crunchy-pv251 1Gi 33s
hippo-kvfo Bound crunchy-pvi74 1Gi 29s
hippo-lkge Bound crunchy-pv228 1Gi 26s
hippo-pgbr-repo Bound crunchy-pv295 1Gi 22s

And finally, the cluster can be restarted:

pgo update cluster hippo --startup

At this point, the cluster will reinitialize from scratch as a standby, just like the original standby that was created above. Therefore any
transactions written to the original standby, should now replicate back to this cluster.

Container Dependencies

The Operator depends on the Crunchy Containers and there are version dependencies between the two projects. Below are the operator
releases and their dependent container release. For reference, the Postgres and PgBackrest versions for each container release are also
listed.

Operator Release Container Release Postgres PgBackrest Version

4.7.2 4.7.2 13.4 2.33
12.8 2.33
11.13 2.33
10.18 2.33
9.6.23 2.33
4.7.1 4.7.1 13.3 2.33
12.7 2.33
11.12 2.33
10.17 2.33
9.6.22 2.33
4.7.0 4.7.0 13.3 2.33
12.7 2.33
11.12 2.33
10.17 2.33
9.6.22 2.33
4.6.2 4.6.2 13.2 2.31
12.6 2.31
11.11 2.31
10.16 2.31
9.6.21 2.31
4.6.1 4.6.1 13.2 2.31
12.6 2.31
11.11 2.31
10.16 2.31
9.6.21 2.31
4.6.0 4.6.0 13.1 2.31
12.5 2.31
11.10 2.31
10.15 2.31
9.6.20 2.31
4.5.1 4.5.1 13.1 2.29
12.5 2.29
11.10 2.29
10.15 2.29

9.6.20 2.29

Operator Release

Container Release

Postgres

PgBackrest Version

4.5.0

4.4.1

4.4.0

4.3.2

4.3.1

4.3.0

4.2.1

4.5.0

4.4.1

4.4.0

4.3.2

4.3.1

4.3.0

4.3.0

9.5.24

13.0
12.4
11.9
10.14
9.6.19
9.5.23

12.4
11.9
10.14
9.6.19
9.5.23

12.3
11.8
10.13
9.6.18
9.5.22

12.3
11.8
10.13
9.6.18
9.5.22

12.3
11.8
10.13
9.6.18
9.5.22

12.2
11.7
10.12
9.6.17
9.5.21

12.1
11.6
10.11
9.6.16
9.5.20

2.29

2.29
2.29
2.29
2.29
2.29
2.29

2.27
2.27
2.27
2.27
2.27

2.27
2.27
2.27
2.27
2.27

2.25
2.25
2.25
2.25
2.25

2.25
2.25
2.25
2.25
2.25

2.25
2.25
2.25
2.25
2.25

2.20
2.20
2.20
2.20
2.20

Operator Release Container Release Postgres PgBackrest Version

4.2.0 4.3.0 12.1 2.20
11.6 2.20
10.11 2.20
9.6.16 2.20
9.5.20 2.20
4.1.1 4.1.1 12.1 2.18
11.6 2.18
10.11 2.18
9.6.16 2.18
9.5.20 2.18
4.1.0 2.4.2 11.5 2.17
10.10 2.17
9.6.15 2.17
9.5.19 2.17
4.0.1 2.4.1 11.4 2.13
10.9 2.13
9.6.14 2.13
9.5.18 2.13
4.0.0 2.4.0 11.3 2.13
10.8 2.13
9.6.13 2.13
9.5.17 2.13
3.54 2.3.3 11.4 2.13
10.9 2.13
9.6.14 2.13
9.5.18 2.13
3.5.3 2.3.2 11.3 2.13
10.8 2.13
9.6.13 2.13
9.5.17 2.13
3.5.2 2.3.1 11.2 2.10
10.7 2.10
9.6.12 2.10
9.5.16 2.10

Features sometimes are added into the underlying Crunchy Containers to support upstream features in the Operator thus dictating a

dependency between the two projects at a specific version level.

Operating Systems

The PostgreSQL Operator is developed on both CentOS 7 and RHEL 7 operating systems. The underlying containers are designed to use
either CentOS 7 or Red Hat UBI 7 as the base container image.

Other Linux variants are possible but are not supported at this time.

Also, please note that as of version 4.2.2 of the PostgreSQL Operator, Red Hat Universal Base Image (UBI) 7 has replaced RHEL 7 as
the base container image for the various PostgreSQL Operator containers. You can find out more information about Red Hat UBI from
the following article:

https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

Kubernetes Distributions

The Operator is designed and tested on Kubernetes and OpenShift Container Platform.

Storage

The Operator is designed to support HostPath, NFS, and Storage Classes for persistence. The Operator does not currently include code
specific to a particular storage vendor.

Releases

The Operator is released on a quarterly basis often to coincide with Postgres releases.
There are pre-release and or minor bug fix releases created on an as-needed basis.

The operator is template-driven; this makes it simple to configure both the client and the operator.

conf Directory

The Operator is configured with a collection of files found in the conf directory. These configuration files are deployed to your Kubernetes
cluster when the Operator is deployed. Changes made to any of these configuration files currently require a redeployment of the Operator
on the Kubernetes cluster.

The server components of the Operator include Role Based Access Control resources which need to be created a single time by a privileged
Kubernetes user. See the Installation section for details on installing a Postgres Operator server.

The configuration files used by the Operator are found in 2 places: * the pgo-config ConfigMap in the namespace the Operator is running
in * or, a copy of the configuration files are also included by default into the Operator container images themselves to support a very
simplistic deployment of the Operator

If the pgo-config ConfigMap is not found by the Operator, it will create a pgo-config ConfigMap using the configuration files that are
included in the Operator container.

conf/postgres-operator/pgo.yaml

The pgo.yaml file sets many different Operator configuration settings and is described in the [pgo.yaml configuration]({{< ref “pgo-yaml-
configuration.md” >}}) documentation section.

The pgo.yaml file is deployed along with the other Operator configuration files when you run:

make deployoperator

https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

Config Directory

Files within the PGO CONF DIR directory contain various templates that are used by the Operator when creating Kubernetes resources.
In an advanced Operator deployment, administrators can modify these templates to add their own custom meta-data or make other changes
to influence the Resources that get created on your Kubernetes cluster by the Operator.

Files within this directory are used specifically when creating PostgreSQL Cluster resources. Sidecar components such as pgBouncer
templates are also located within this directory.

As with the other Operator templates, administrators can make custom changes to this set of templates to add custom features or metadata
into the Resources created by the Operator.

Operator API Server

The Operator’s API server can be configured to allow access to select URL routes without requiring TLS authentication from the client
and without the HTTP Basic authentication used for role-based-access.

This configuration is performed by defining the NOAUTH_ROUTES environment variable for the apiserver container within the Operator pod.

Typically, this configuration is made within the deploy/deployment . json file for bash-based installations and ansible/roles/pgo-operato:
for ansible installations.

For example:

containers: [

{
"name": "apiserver"
"env": [
{
"name": "NOAUTH_ROUTES",
"value": "/health"
}
]
}

The NOAUTH_ROUTES variable must be set to a comma-separated list of URL routes. For example: /health,/version,/example3 would
opt to disable authentication for $APISERVER_URL/health, $APISERVER_URL/version, and $APISERVER_URL/example3 respectively.

Currently, only the following routes may have authentication disabled using this setting:

/health

The /healthz route is used by kubernetes probes and has its authentication disabed without requiring NOAUTH_ ROUTES.

Security

Setting up pgo users and general security configuration is described in the Security section of this documentation.

Local pgo CLI Configuration

You can specify the default namespace you want to use by setting the PGO_NAMESPACE environment variable locally on the host the
pgo CLI command is running.

export PGO_NAMESPACE=pgouserl

When that variable is set, each command you issue with pgo will use that namespace unless you over-ride it using the -namespace command
line flag.

pgo show cluster foo --namespace=pgouser2

pgo.yaml Configuration

The pgo.yaml file contains many different configuration settings as described in this section of the documentation.

The pgo.yaml file is broken into major sections as described below: ## Cluster

Setting

Definition

BasicAuth
CCPImagePrefix
CCPImageTag

Port

PGBadgerPort
ExporterPort

User

Database

Replicas

Metrics

Badger

Policies
PasswordAgeDays
PasswordLength
ServiceType

Backrest

BackrestPort
DisableAutofail
DisableReplicaStartFailReinit
PodAntiAffinity
SyncReplication
DefaultInstanceMemory
DefaultBackrest Memory
DefaultPgBouncerMemory

If set to "true" will enable Basic Authentication. If set to "false", will allow a valid Operator user to su
newly created containers will be based on this image prefix (e.g. crunchydata), update this if you require
newly created containers will be based on this image version (e.g. {{< param centosBase >}}-{{< param
the PostgreSQL port to use for new containers (e.g. 5432)

the port used to connect to pgbadger (e.g. 10000)

the port used to connect to postgres exporter (e.g. 9187)

the PostgreSQL normal user name

the PostgreSQL normal user database

the number of cluster replicas to create for newly created clusters, typically users will scale up replicas on
boolean, if set to true will cause each new cluster to include crunchy-postgres-exporter as a sidecar contai
boolean, if set to true will cause each new cluster to include crunchy-pgbadger as a sidecar container for s
optional, list of policies to apply to a newly created cluster, comma separated, must be valid policies in th
optional, if set, will set the VALID UNTIL date on passwords to this many days in the future when creati
optional, if set, will determine the password length used when creating passwords, defaults to 8

optional, if set, will determine the service type used when creating primary or replica services, defaults to
optional, if set, will cause clusters to have the pgbackrest volume PVC provisioned during cluster creation
currently required to be port 2022

optional, if set, will disable autofail capabilities by default in any newly created cluster

if set to true will disable the detection of a “start failed” states in PG replicas, which results in the re-ini
either preferred, required or disabled to either specify the type of affinity that should be utilized for t
boolean, if set to true will automatically enable synchronous replication in new PostgreSQL clusters (defa
string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request f
string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request f

string, matches a Kubernetes resource value. If set, it is used as the default value of the memory request f

DisableFSGroup If set to true, this will disable the use of the fsGroup for the containers related to PostgreSQL, which is r
Storage

Setting Definition

PrimaryStorage required, the value of the storage configuration to use for the primary PostgreSQL deployment
ReplicaStorage required, the value of the storage configuration to use for the replica PostgreSQL deployments
BackrestStorage required, the value of the storage configuration to use for the pgBackRest repository.

BackupStorage required, the value of the storage configuration to use for backups generated by pg_dump.

WALStorage optional, the value of the storage configuration to use for PostgreSQL Write Ahead Log

PGAdminStorage optional, the value of the storage configuration to use for pgAdmin

StorageClass optional, for a dynamic storage type, you can specify the storage class used for storage provisioning (e.g. s
AccessMode the access mode for new PVCs (e.g. ReadWriteMany, ReadWriteOnce, ReadOnlyMany). See below for de:
Size the size to use when creating new PVCs (e.g. 100M, 1Gi)

Storage.storagel.StorageType
SupplementalGroups

supported values are either dynamic, create, if not supplied, create is used

optional, if set, will cause a SecurityContext to be added to generated Pod and Deployment definitions

Setting Definition

MatchLabels optional, if set, will cause the PVC to add a matchlabels selector in order to match a PV, only useful wher

Storage Configuration Examples

In pgo.yaml, you will need to configure your storage configurations depending on which storage you are wanting to use for Operator
provisioning of Persistent Volume Claims. The examples below are provided as a sample. In all the examples you are free to change the

Size to meet your requirements of Persistent Volume Claim size.

HostPath Example

HostPath is provided for simple testing and use cases where you only intend to run on a single Linux host for your Kubernetes cluster.

hostpathstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create

NFS Example

In the following NFS example, notice that the SupplementalGroups setting is set, this can be whatever GID you have your NFS mount set
to, typically we set this nfsnobody as below. NFS file systems offer a Read WriteMany access mode.

nfsstorage:

AccessMode: ReadWriteMany
Size: 1G

StorageType: <create
SupplementalGroups: 65534

Storage Class Example

Most Storage Class providers offer Read WriteOnce access modes, but refer to your provider documentation for other access modes it might

support.
storageos:
AccessMode: ReadWriteOnce
Size: 1G
StorageType: dynamic
StorageClass: fast

Miscellaneous (Pgo)

Setting Definition
Audit boolean, if set to true will cause each apiserver call to be logged with an audit marking
ConfigMapWorkerCount The number of workers created for the worker queue within the ConfigMap controller (defaults to 2)

ControllerGroupRefreshInterval
DisableReconcileRBAC
NamespaceRefreshInterval

Namespace Worker Count

The refresh interval for any per-namespace controller with a refresh interval (defaults to 60 seconds)
Whether or not to disable RBAC reconciliation in targeted namespaces (defaults to false)
The refresh interval for the namespace controller (defaults to 60 seconds)

The number of workers created for the worker queue within the Namespace controller (defaults to 2)

PgclusterWorkerCount The number of workers created for the worker queue within the PGCluster controller (defaults to 1)
PGOImagePrefix image tag prefix to use for the Operator containers

PGOImageTag image tag to use for the Operator containers

PGReplicaWorkerCount The number of workers created for the worker queue within the PGReplica controller (defaults to 1)

PC(Tacl-Warleoar(C\a11n+

The n1imber of worlere created for the warler atietie vwithin the P(ITaclr contraller (Aefaiilte +a 1)

Storage Configuration Details

You can define n-number of Storage configurations within the pgo.yaml file. Those Storage configurations follow these conventions -

e they must have lowercase name (e.g. storagel)
o they must be unique names (e.g. mydrstorage, faststorage, slowstorage)

These Storage configurations are referenced in the BackupStorage, ReplicaStorage, and PrimaryStorage configuration values. However,
there are command line options in the pgo client that will let a user override these default global values to offer you the user a way to
specify very targeted storage configurations when needed (e.g. disaster recovery storage for certain backups).

You can set the storage AccessMode values to the following:

e ReadWriteMany - mounts the volume as read-write by many nodes
e ReadWriteOnce - mounts the PVC as read-write by a single node
e ReadOnlyMany - mounts the PVC as read-only by many nodes

These Storage configurations are validated when the pgo-apiserver starts, if a non-valid configuration is found, the apiserver will abort.
These Storage values are only read at apiserver start time.

The following StorageType values are possible -

e dynamic - this will allow for dynamic provisioning of storage using a StorageClass.

o create - This setting allows for the creation of a new PVC for each PostgreSQL cluster using a naming convention of clustername.
When set, the Size, AccessMode settings are used in constructing the new PVC.

The operator will create new PVCs using this naming convention: dbname where dbname is the database name you have specified. For
example, if you run:

pgo create cluster examplel -n pgouserl

It will result in a PVC being created named example! and in the case of a backup job, the pvc is named examplel-backup

Note, when Storage Type is create, you can specify a storage configuration setting of MatchLabels, when set, this will cause a selector of
key=value to be added into the PVC, this will let you target specific PV(s) to be matched for this cluster. Note, if a PV does not match
the claim request, then the cluster will not start. Users that want to use this feature have to place labels on their PV resources as part of
PG cluster creation before creating the PG cluster. For example, users would add a label like this to their PV before they create the PG
cluster:

kubectl label pv somepv myzone=somezone -n pgouserl
If you do not specify MatchLabels in the storage configuration, then no match filter is added and any available PV will be used to satisfy
the PVC request. This option does not apply to dynamic storage types.

Example PV creation scripts are provided that add labels to a set of PVs and can be used for testing: $COR0O0T/pv/create-pv-nfs-labels.sh
in that example, a label of crunchyzone=red is set on a set of PVs to test with.

The pgo.yaml includes a storage config named nfsstoragered that when used will demonstrate the label matching. This feature allows
you to support n-number of NFS storage configurations and supports spreading a PG cluster across different NFS storage configurations.

Overriding Storage Configuration Defaults

pgo create cluster testcluster --storage-config=bigdisk -n pgouserl

That example will create a cluster and specify a storage configuration of bigdisk to be used for the primary database storage. The replica

storage will default to the value of ReplicaStorage as specified in pgo.yaml.

pgo create cluster testcluster2 --storage-config=fastdisk --replica-storage-config=slowdisk -n
pgouserl

That example will create a cluster and specify a storage configuration of fastdisk to be used for the primary database storage, while the

replica storage will use the storage configuration slowdisk.

pgo backup testcluster --storage-config=offsitestorage -n pgouserl

That example will create a backup and use the offsitestorage storage configuration for persisting the backup.

Using Storage Configurations for Disaster Recovery
A simple mechanism for partial disaster recovery can be obtained by leveraging network storage, Kubernetes storage classes, and the
storage configuration options within the Operator.

For example, if you define a Kubernetes storage class that refers to a storage backend that is running within your disaster recovery site,
and then use that storage class as a storage configuration for your backups, you essentially have moved your backup files automatically to
your disaster recovery site thanks to network storage.

TLS Configuration

Should you desire to alter the default TLS settings for the Postgres Operator, you can set the following variables as described below.

Server Settings

To disable TLS and make an unsecured connection on port 8080 instead of connecting securely over the default port, 8443, set:
Bash environment variables

export DISABLE_TLS=true

export PGO_APISERVER_PORT=8080

Or inventory variables if using Ansible

pgo_disable_tls='true'

pgo_apiserver_port=8080

To disable TLS verifcation, set the follwing as a Bash environment variable

export TLS_NO_VERIFY=false

Or the following in the inventory file if using Ansible

pgo_tls_no_verify='false'

TLS Trust
Custom Trust Additions To configure the server to allow connections from any client presenting a certificate issued by CAs within a
custom, PEM-encoded certificate list, set the following as a Bash environment variable

export TLS_CA_TRUST="/path/to/trust/file"

Or the following in the inventory file if using Ansible

pgo_tls_ca_store='/path/to/trust/file'

System Default Trust To configure the server to allow connections from any client presenting a certificate issued by CAs within the
operating system’s default trust store, set the following as a Bash environment variable

export ADD_OS_TRUSTSTORE=true

Or the following in the inventory file if using Ansible

pgo_add_os_ca_store='true'

Connection Settings

If TLS authentication has been disabled, or if the Operator’s apiserver port is changed, be sure to update the PGO_APISERVER,_ URL
accordingly.

For example with an Ansible installation,

export PGO_APISERVER_URL='https://<apiserver IP>:8443'

would become

export PGO_APISERVER_URL='http://<apiserver IP>:8080'

With a Bash installation,

setip ()
{

export PGO_APISERVER_URL=https:// $PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service
postgres-operator -o=jsonpath="{.spec.clusterIP}" " :8443
X

would become

setip ()

{
export PGO_APISERVER_URL=http:// $PGO_CMD -n "$PGO_OPERATOR_NAMESPACE" get service
postgres -operator -o=jsonpath="{.spec.clusterIP}" :8080

Client Settings
By default, the pgo client will trust certificates issued by one of the Certificate Authorities listed in the operating system’s default CA
trust store, if any. To exclude them, either use the environment variable

EXCLUDE_OS_TRUST=true

or use the —exclude-os-trust flag

pgo version --exclude-os-trust

Finally, if TLS has been disabled for the Operator’s apiserver, the PGO client connection must be set to match the given settings.
Two options are available, either the Bash environment variable

DISABLE_TLS=true

must be configured, or the —disable-tls flag must be included when using the client, i.e.

pgo version --disable-tls

There are several different ways to install and deploy the PGO, the Postgres Operator based upon your use case.

For the vast majority of use cases, we recommend using the Postgres Operator Installer({{< relref “/installation/postgres-operator.md”
>1}}), which uses the pgo-deployer container to set up all of the objects required to run the PostgreSQL Operator.

For advanced use cases, such as for development, one may want to set up a [development environment]({{< relref “/contributing/developer-
setup.md” >}1}) that is created using a series of scripts controlled by the Makefile.

Before selecting your installation method, it’s important that you first read the [prerequisites]({{< relref “/installation/prerequisites.md”
>}}) for your deployment environment to ensure that your setup meets the needs for installing the PostgreSQL Operator.

Prerequisites

The following is required prior to installing PGO.

Environment

PGO is tested in the following environments:

e Kubernetes v1.13+

e Red Hat OpenShift v3.11+

e Red Hat OpenShift v4.4+

e Amazon EKS

e VMWare Enterprise PKS 1.3+
e IBM Cloud Pak Data

https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator

IBM Cloud Pak Data If you install PGO, which comes with Crunchy PostgreSQL for Kubernetes, on IBM Cloud Pak Data, please
note the following additional requirements:

¢ Cloud Pak Data Version 2.5

o Minimum Node Requirements (Cloud Paks Cluster): 3
o Crunchy PostgreSQL for Kuberentes (Service):

¢ Minimum CPU Requirements: 0.2 CPU

e Minimum Memory Requirements: 120MB

e Minimum Storage Requirements: 5MB

Note: PostgreSQL clusters deployed by PGO with Crunchy PostgreSQL for Kubernetes are workload dependent. As such, users should
allocate enough resources for their PostgreSQL clusters.

Client Interfaces

The Postgres Operator installer will install the [pgo client]({{< relref “/pgo-client/_index.md” >}}) interface to help with using PGO.
However, it is also recommend that you have access to kubectl or oc and are able to communicate with the Kubernetes or OpenShift
cluster that you are working with.

Ports

There are several application ports to note when using the PostgreSQL Operator. These ports allow for the [pgo client]({{< relref “/pgo-
client/ index.md” >}}) to interface with the PostgreSQL Operator API as well as for users of the event stream to connect to nsqd and
nsqdadmin:

Container Port

API Server 8443
nsqadmin 4151
nsqd 4150

If you are using these services, ensure your cluster administrator has given you access to these ports.

Application Ports

PGO deploys different services to support a production PostgreSQL environment. Below is a list of the applications and their default
Service ports.

Service Port
PostgreSQL 5432
pgbouncer 5432
pgBackRest 2022

postgres-exporter 9187
pgbadger 10000

PGO: Postgres Operator Installer

Quickstart

If you believe that all the default settings in the installation manifest work for you, you can take a chance by running the manifest directly
from the repository:

kubectl create namespace pgo
kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param
operatorVersion >}}/installers/kubectl/postgres-operator.yml

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://www.okd.io/download.html

However, we still advise that you read onward to see how to properly configure the PostgreSQL Operator.

Overview

PGO comes with a container called pgo-deployer which handles a variety of lifecycle actions for the Postgres Operator, including:

o Installation
o Upgrading
¢ Uninstallation

After configuring the Job template, the installer can be run using kubectl apply and takes care of setting up all of the objects required
to run the PostgreSQL Operator.

The installation manifest, called postgres-operator.yaml, is available in the installers/kubectl/postgres-operator.yml path in
the PostgreSQL Operator repository.

Requirements
RBAC

The pgo-deployer requires a ServiceAccount and ClusterRoleBinding to run the installation job. Both of these resources are already
defined in the postgres-operator.yml, but can be updated based on your specific environmental requirements.

By default, the pgo-deployer uses a ServiceAccount called pgo-deployer-sa that has a ClusterRoleBinding (pgo-deployer-crb) with
several ClusterRole permissions. This is required to create the Custom Resource Definitions that power PGO. While the Postgres Operator
itself can be scoped to a specific namespace, you will need to have cluster-admin for the initial deployment, or privileges that allow you
to install Custom Resource Definitions. The required list of privileges are available in the postgres-operator.yml file:

https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion >}}/installers/kubectl/postgres-
operator.yml

If you have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation),
then you can remove these objects from the postgres-operator.yml manifest.

Config Map

The pgo-deployer uses a Kubernetes ConfigMap to pass configuration options into the installer. The ConfigMap is defined in the
postgres-operator.yaml file and can be updated based on your configuration preferences.

Namespaces

By default, the installer will run in the pgo Namespace. This can be updated in the postgres-operator.yml file. Please ensure that
this namespace exists before the job is run.

For example, to create the pgo namespace:

kubectl create namespace pgo

The Postgres Operator has the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces, including the ability to
add and remove Namespaces that it watches. Doing so does require the PostgreSQL Operator to have elevated privileges, and as such,
the PostgreSQL Operator comes with three “namespace modes” to select what level of privileges to provide:

e dynamic: The default is the default mode. This enables full dynamic Namespace management capabilities, in which the PostgreSQL
Operator can create, delete and update any Namespaces within the Kubernetes cluster, while then also having the ability to create
the Roles, RoleBindings andService Accounts within those Namespaces for normal operations. The PostgreSQL Operator can also
listen for Namespace events and create or remove controllers for various Namespaces as changes are made to Namespaces from
Kubernetes and the PostgreSQL Operator’s management.

e readonly: In this mode, the PostgreSQL Operator is able to listen for namespace events within the Kubernetes cluster, and then
manage controllers as Namespaces are added, updated or deleted. While this still requires a ClusterRole, the permissions mirror
those of a “read-only” environment, and as such the PostgreSQL Operator is unable to create, delete or update Namespaces itself
nor create RBAC that it requires in any of those Namespaces. Therefore, while in readonly, mode namespaces must be preconfigured
with the proper RBAC as the PostgreSQL Operator cannot create the RBAC itself.

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#apply
https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

e disabled: Use this mode if you do not want to deploy the PostgreSQL Operator with any ClusterRole privileges, especially if you
are only deploying the PostgreSQL Operator to a single namespace. This disables any Namespace management capabilities within
the PostgreSQL Operator and will simply attempt to work with the target Namespaces specified during installation. If no target
Namespaces are specified, then the Operator will be configured to work within the namespace in which it is deployed. As with
the readonly mode, while in this mode, Namespaces must be preconfigured with the proper RBAC, since the PostgreSQL Operator
cannot create the RBAC itself.

Configuration - postgres-operator.yml

The postgres-operator.yml file contains all of the configuration parameters for deploying PGO. The example file contains defaults that
should work in most Kubernetes environments, but it may require some customization.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{<
relref “/installation/configuration.md”>}}>)

Configuring to Update and Uninstall The deploy job can be used to perform different deployment actions for the PostgreSQL
Operator. When you run the job it will install the operator by default but you can change the deployment action to uninstall or update.
The DEPLOY_ACTION environment variable in the postgres-operator.yml file can be set to install, update, and uninstall.

Image Pull Secrets

If you are pulling PGO images from a private registry, you will need to setup an imagePullSecret with access to the registry. The image
pull secret will need to be added to the installer service account to have access. The secret will need to be created in each namespace that
the PostgreSQL Operator will be using.

After you have configured your image pull secret in the Namespace the installer runs in (by default, this is pgo), add the name of the
secret to the job yaml that you are using. You can update the existing section like this:
apiVersion: vl
kind: ServiceAccount
metadata:

name: pgo-deployer-sa

namespace: pgo
imagePullSecrets:

- name: <image_pull_secret_name>

If the service account is configured without using the job yaml file, you can link the secret to an existing service account with the kubectl
or oc clients.

kubectl
kubectl patch serviceaccount <deployer-sa> -p '{"imagePullSecrets": [{"name": "myregistrykey"}]1}'
-n <install-namespace>

oc
oc secrets link <registry-secret> <deployer-sa> --for=pull --namespace=<install-namespace>

Installation

Once you have configured the PGO Installer to your specification, you can install the PostgreSQL Operator with the following command:

kubectl apply -f /path/to/postgres-operator.yml

Install the [pgo Client]({{< relref “/installation/pgo-client” >}})
To use the [pgo Client]({{< relref “/installation/pgo-client” >}}), there are a few additional steps to take in order to get it to work with
you PostgreSQL Operator installation. For convenience, you can download and run the client-setup.sh script in your local environment:

curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion
>}}/installers/kubectl/client-setup.sh > client-setup.sh

chmod +x client-setup.sh

./client-setup.sh

Running this script can cause existing pgo client binary, pgouser, client.crt, and client.key files to be overwritten.

The client-setup.sh script performs the following tasks:

https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/client-setup.sh

e Sets $PGO_OPERATOR_NAMESPACE to pgo if it is unset. This is the default namespace that the PostgreSQL Operator is deployed to

e Checks for valid Operating Systems and determines which pgo binary to download

o Creates a directory in $HOME/ .pgo/$PGO_OPERATOR_NAMESPACE (e.g. /home/hippo/.pgo/pgo)

o Downloads the pgo binary, saves it to in $HOME/ . pgo/$PGO_OPERATOR_NAMESPACE, and sets it to be executable

o Pulls the TLS keypair from the PostgreSQL Operator pgo.tls Secret so that the pgo client can communicate with the PostgreSQL
Operator. These are saved as client.crt and client.key in the $HOME/.pgo/$PGO_OPERATOR_NAMESPACE path.

o Pulls the pgouser credentials from the pgouser-admin secret and saves them in the format username:password in a file called
pgouser

o client.crt, client.key, and pgouser are all set to be read/write by the file owner. All other permissions are removed.

e Sets the following environmental variables with the following values:

export PGOUSER=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser

export PGO_CA_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_KEY=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key

For convenience, after the script has finished, you can permanently at these environmental variables to your environment:

cat <<EOF >> ~/.bashrc

export PATH="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE: $PATH"

export PGOUSER="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser"

export PGO_CA_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_KEY="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key"
EOQF

By default, the client-setup.sh script targets the user that is stored in the pgouser-admin secret in the pgo ($PGO_OPERATOR_NAMESPACE)
Namespace. If you wish to use a different Secret, you can set the PGO_USER_ADMIN environmental variable.

For more detailed information about [installing the pgo client]({{< relref “/installation/pgo-client” >}}), please see [Installing the pgo
client]({{< relref “/installation/pgo-client” >}}).

Verify the Installation

One way to verify the installation was successful is to execute the [pgo version]({{< relref “/pgo-client/reference/pgo_ version.md” >}})
command.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Next, in another console window, set the following environment variable to configure the API server address:

cat <<EQOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://127.0.0.1:8443"
EOF

Apply those changes to the current session by running:

source ${HOME?}/.bashrc

Now run the pgo version command:

pgo version

If successful, you should see output similar to this:

pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Post-Installation

To clean up the installer artifacts, you can simply run:

kubectl delete -f /path/to/postgres-operator.yml

Note that if you still have the ServiceAccount and ClusterRoleBinding in there, you will need to have elevated privileges.

Installing the PGO Monitoring Infrastructure

Please see the [PostgreSQL Operator Monitoring installation section]({{< relref “/installation/metrics” >}}) for instructions on how to
install the PostgreSQL Operator Monitoring infrastructure.

Install the PostgreSQL Operator (pgo) Client

The following will install and configure the pgo client on all systems. For the purpose of these instructions it’s assumed that PGO: the
Postgres Operator from Crunchy Data is already deployed.

Prerequisites

e For Kubernetes deployments: kubectl configured to communicate with Kubernetes
e For OpenShift deployments: oc configured to communicate with OpenShift

To authenticate with the PGO API:

o Client CA Certificate

e Client TLS Certificate

e Client Key

e pgouser file containing <username>:<password>

All of the requirements above should be obtained from an administrator who installed PGO.

Linux and macOS

The following will setup the pgo client to be used on a Linux or macOS system.

Installing the Client

First, download the pgo client from the GitHub official releases. Crunchy Enterprise Customers can download the pgo binaries from
https://access.crunchydata.com/ on the downloads page.

Next, install pgo in /usr/local/bin by running the following:

sudo mv /PATH/TO/pgo /usr/local/bin/pgo

sudo chmod +x /usr/local/bin/pgo

Verify the pgo client is accessible by running the following in the terminal:

pgo --help

Configuring Client TLS With the client TLS requirements satisfied we can setup pgo to use them.
First, create a directory to hold these files by running the following command:

mkdir ${HOME?}/.pgo
chmod 700 ${HOME?}/.pgo

Next, copy the certificates to this new directory:

cp /PATH/TO/client.crt ${HOME?}/.pgo/client.crt && chmod 600 ${HOME?}/.pgo/client.crt
cp /PATH/TO/client.key ${HOME?}/.pgo/client.key && chmod 400 ${HOME?}/.pgo/client.key

Finally, set the following environment variables to point to the client TLS files:

cat <<EOF >> ${HOME?}/.bashrc

export PGO_CA_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/client.key"
EQF

Apply those changes to the current session by running:

source ~/.bashrc

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://github.com/CrunchyData/postgres-operator/releases

Configuring pgouser The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL
Operator.

To setup the pgouser file, run the following:

echo "<USERNAME_HERE>:<PASSWORD_HERE>" > ${HOME?}/.pgo/pgouser
cat <<EOF >> ${HOME?}/.bashrc

export PGOUSER="${HOME?}/.pgo/pgouser"

EQF

Apply those changes to the current session by running:

source ${HOME?}/.bashrc

Configuring the API Server URL If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it’s required to setup
a port-forward tunnel using the kubectl or oc binary.

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to UOUpenShift

oc port-forward -n pgo svc/postgres-operator 8443:8443

In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
Note: The port-forward will be required for the duration of using the PostgreSQL client.

Next, set the following environment variable to configure the API server address:

cat <<EOF >> ${HOME?}/.bashrc
export PGO_APISERVER_URL="https://<IP_OF_OPERATOR_API>:8443"
EOF

Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1
Apply those changes to the current session by running:

source ${HOME?}/.bashrc

PGO-Client Container

The following will setup the pgo client image in a Kubernetes or Openshift environment. The image must be installed using the Ansible
installer.

Installing the PGO-Client Container
The pgo-client container can be installed with the Ansible installer by updating the pgo_client_container_install variable in the

inventory file. Set this variable to true in the inventory file and run the ansible-playbook. As part of the install the pgo.tls and
pgouser-<username> secrets are used to configure the pgo client.

Using the PGO-Client Deployment

Once the container has been installed you can access it by exec’ing into the pod. You can run single commands with the kubectl or oc
command line tools or multiple commands by exec’ing into the pod with bash.

kubectl exec -it -n pgo deploy/pgo-client -- pgo version
or
kubectl exec -it -n pgo deploy/pgo-client bash

The deployment does not require any configuration to connect to the operator.

Windows

The following will setup the pgo client to be used on a Windows system.

Installing the Client

First, download the pgo.exe client from the GitHub official releases.

Next, create a directory for pgo using the following:

o Left click the Start button in the bottom left corner of the taskbar

e Type cmd to search for Command Prompt

e Right click the Command Prompt application and click “Run as administrator”
o Enter the following command: mkdir "Y%ProgramFiles)\postgres-operator"

Within the same terminal copy the pgo.exe binary to the directory created above using the following command:

copy %HOMEPATHY,\Downloads\pgo.exe "} ProgramFiles\postgres-operator"

Finally, add pgo.exe to the system path by running the following command in the terminal:

setx path "Ypath’;C:\Program Files\postgres-operator"

Verify the pgo.exe client is accessible by running the following in the terminal:

pgo --help

Configuring Client TLS With the client TLS requirements satisfied we can setup pgo to use them.

First, create a directory to hold these files using the following:

o Left click the Start button in the bottom left corner of the taskbar

e Type cmd to search for Command Prompt

e Right click the Command Prompt application and click “Run as administrator”
o Enter the following command: mkdir "%HOMEPATHY\pgo"

Next, copy the certificates to this new directory:

copy \PATH\TO\client.crt "%HOMEPATH%\pgo"
copy \PATH\TO\client.key "% HOMEPATH%\pgo"

Finally, set the following environment variables to point to the client TLS files:

setx PGO_CA_CERT "%HOMEPATH/\pgo\client.crt"
setx PGO_CLIENT_CERT ") HOMEPATHY\pgo\client.crt"
setx PGO_CLIENT_KEY "/HOMEPATHY\pgo\client.key"

Configuring pgouser The pgouser file contains the username and password used for authentication with the Crunchy PostgreSQL
Operator.

To setup the pgouser file, run the following;:

e Left click the Start button in the bottom left corner of the taskbar

e Type cmd to search for Command Prompt

« Right click the Command Prompt application and click “Run as administrator”

Enter the following command: echo USERNAME_HERE:PASSWORD_HERE >) HOMEPATH),\pgo\pgouser

Finally, set the following environment variable to point to the pgouser file:

setx PGOUSER "/ HOMEPATHY%\pgo\pgouser"

https://github.com/CrunchyData/postgres-operator/releases

Configuring the API Server URL If the Crunchy PostgreSQL Operator is not accessible outside of the cluster, it’s required to setup
a port-forward tunnel using the kubectl or oc binary.

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside

of the cluster:

If deployed to Kubernetes

kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to OpenShift

oc port-forward -n pgo svc/postgres-operator 8443:8443

In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
Note: The port-forward will be required for the duration of using the PostgreSQL client.

Next, set the following environment variable to configure the API server address:

e Left click the Start button in the bottom left corner of the taskbar
o Type cmd to search for Command Prompt
e Right click the Command Prompt application and click “Run as administrator”

e Enter the following command: setx PGO_APISERVER_URL "https://<IP_OF_OPERATOR_API>:8443"

e Note: if port-forward is being used, the IP of the Operator API is 127.0.0.1

Verify the Client Installation

After completing all of the steps above we can verify pgo is configured properly by simply running the following:

pgo version

If the above command outputs versions of both the client and API server, the pgo client has been installed successfully.

PGO Installer Configuration

When installing PGO, the Postgres Operator you have many configuration options, these options are listed in this section.

General Configuration

These variables affect the general configuration of the PostgreSQL Operator.

Name

Default

archive_mode
archive_timeout
backrest_aws_s3_bucket
backrest_aws_s3_endpoint
backrest_aws_s3_key
backrest_aws_s3_region
backrest_aws_s3_secret
backrest_aws_s3_uri_style
backrest_aws_s3_verify_tls
backrest_gcs_bucket
backrest_gcs_endpoint
backrest_gcs_key_type
backrest_port

badger

ccp_image_prefix

cco imace null secret

true

60

2022
false

registry.developers.crunchydata.com/crunchydata

Name Default Re
ccp_image_pull_secret_manifest

ccp_image_tag {{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >}} Re
create_rbac true Re
crunchy_debug false

db_name

db_password_age_days 0

db_password_length 24

db_port 5432 Re
db_replicas 0 Re
db_user testuser Re
default_instance_memory 128Mi

default_pgbackrest_memory 48Mi

default_pgbouncer_memory 24Mi

delete_operator_namespace false

delete_watched_namespaces false

disable_auto_failover false

disable_fsgroup

exporterport 9187 Re
metrics false Re
namespace pgo

namespace_mode dynamic

pgbadgerport 10000 Re
pgo_add_os_ca_store false Re
pgo_admin_password examplepassword

pgo_admin_perms * Re
pgo_admin_role_name pgoadmin Re
pgo_admin_username admin Re
pgo_apiserver_port 8443

pgo_apiserver_url https://postgres-operator

pgo_client_cert_secret pgo.tls

pgo_client_container_install false

pgo_client_install true

pgo_client_version {{< param operatorVersion >}} Re
pgo_cluster_admin false Re
pgo_disable_eventing false

pgo_disable_tls false

pgo_image_prefix registry.developers.crunchydata.com/crunchydata Re
pgo_image_pull_secret

pgo_image_pull_secret_manifest

pgo_image_tag {{< param centosBase >}}-{{< param operatorVersion >}} Re
pgo_installation_name devtest Re
pgo_noauth_routes

pgo_operator_namespace pgo Re

pgo_tls_ca_store

Name Default Re«

pgo_tls_no_verify false

reconcile_rbac true

scheduler_timeout 3600 Re
service_type ClusterIP

sync_replication false

Storage Settings

The store configuration options defined in this section can be used to specify the storage configurations that are used by the PostgreSQL
Operator.

Storage Configuration Options

Kubernetes and OpenShift offer support for a wide variety of different storage types and we provide suggested configurations for different
environments. These storage types can be modified or removed as needed, while additional storage configurations can also be added to
meet the specific storage requirements for your PostgreSQL clusters.

The following storage variables are utilized to add or modify operator storage configurations in the with the installer:

Name Required Description

storage<ID>_name Yes Set to specify a name for the storage configuratic
storage<ID>_access_mode Yes Set to configure the access mode of the volumes
storage<ID>_size Yes Set to configure the size of the volumes created v
storage<ID>_class Required when using the dynamic storage type Set to configure the storage class name used whe
storage<ID>_supplemental_groups Required when using NFS storage Set to configure any supplemental groups that sh
storage<ID>_type Yes Set to either create or dynamic to configure the

The ID portion of storage prefix for each variable name above should be an integer that is used to group the various storage variables into
a single storage configuration.

Example Storage Configuration

storage3_name: 'nfsstorage'
storage3_access_mode: 'ReadWriteMany'
storage3_size: '1G'

storage3_type: 'create'

storage3_supplemental_groups: 65534

As this example storage configuration shows, integer 3 is used as the ID for each of the storage variables, which together form a single
storage configuration called nfsstorage. This approach allows different storage configurations to be created by defining the proper
storage variables with a unique ID for each required storage configuration.

PostgreSQL Cluster Storage Defaults
You can specify the default storage to use for PostgreSQL, pgBackRest, and other elements that require storage that can outlast the

lifetime of a Pod. While the PostgreSQL Operator defaults to using default to work with the default storage class available in your
environment.

Name Default Required Description

backrest_storage default Required Set the value of the storage configuration to use for the pgBackRest repository.
backup_storage default Required required, the value of the storage configuration to use for backups generated by pg_dump.

primary_storage default Required Set to configure which storage definition to use when creating volumes used by PostgreSQL

Name Default Required Description

replica_storage default Required Set to configure which storage definition to use when creating volumes used by PostgreSQL r

wal_storage Set to configure which storage definition to use when creating volumes used for PostgreSQL

backrest_storage: default
backup_storage: default
primary_storage: default
replica_storage: default

With the configuration shown above, the default storage class available in the deployment environment is used.

Considerations for Multi-Zone Cloud Environments

When using the Operator in a Kubernetes cluster consisting of nodes that span multiple zones, special consideration must be taken to
ensure all pods and the volumes they require are scheduled and provisioned within the same zone. Specifically, being that a pod is unable
mount a volume that is located in another zone, any volumes that are dynamically provisioned must be provisioned in a topology-aware
manner according to the specific scheduling requirements for the pod. For instance, this means ensuring that the volume containing the
database files for the primary database in a new PostgreSQL cluster is provisioned in the same zone as the node containing the PostgreSQL
primary pod that will be using it.

Default Storage Configuration Types

Name Value

storagel name default

storagel access__mode ReadWriteOnce

storagel _ size 1G
storagel_type dynamic
Default StorageClass
Name Value
storage2 name hostpathstorage
storage2_ access_mode ReadWriteMany
storage2_ size 1G
storage2_ type create
Host Path Storage
Name Value
storage3 name nfsstorage
storage3_ access_ mode ReadWriteMany
storage3_ size 1G
storage3_ type create

storage3 supplemental groups 65534

NFS Storage

NFS Storage Red

StorageOS

Primary Site

Alternate Site

Name Value

Name Value

storaged name nfsstoragered
storage4_ access_ mode ReadWriteMany
storaged_ size 1G

storage4_match_ labels

storaged_type

crunchyzone=red

create

storage4_ supplemental groups 65534

Name Value

storageb name storageos
storageb_access_mode ReadWriteOnce
storageb_ size 5Gi

storageb_ type dynamic
storageb_ class fast

Name Value

storage6_ name primarysite
storage6_access__mode ReadWriteOnce
storage6_ size 4G

storage6_ type dynamic
storage6_ class primarysite
Name Value

storage7_ name alternatesite
storage7_access_mode ReadWriteOnce
storage7_ size 4G
storage7_type dynamic
storage7_ class alternatesite

Name Value
storage8 name gce
storage8_access _mode ReadWriteOnce
storage8_ size 300M
storage8_type dynamic
storage8_ class standard
GCE
Name Value
storage9 name rook
storage9_access_mode ReadWriteOnce
storage9_ size 1Gi
storage9 type dynamic
storage9__class rook-ceph-block
Rook

Pod Anti-affinity Settings

This will set the default pod anti-affinity for the deployed PostgreSQL clusters. Pod Anti-Affinity is set to determine where the PostgreSQL
Pods are deployed relative to each other There are three levels:

e required: Pods must be scheduled to different Nodes. If a Pod cannot be scheduled to a different Node from the other Pods in the
anti-affinity group, then it will not be scheduled.

o preferred (default): Pods should be scheduled to different Nodes. There is a chance that two Pods in the same anti-affinity group
could be scheduled to the same node

e disabled: Pods do not have any anti-affinity rules

The POD_ANTI_AFFINITY label sets the Pod anti-affinity for all of the Pods that are managed by the Operator in a PostgreSQL cluster. In
addition to the PostgreSQL Pods, this also includes the pgBackRest repository and any pgBouncer pods. By default, the pgBackRest and
pgBouncer pods inherit the value of POD_ANTI_AFFINITY, but one can override the default by setting the POD_ANTI_AFFINITY_PGBACKREST
and POD_ANTI_AFFINITY_PGBOUNCER variables for pgBackRest and pgBouncer respectively

Name Default Required Description

This will set the default pod anti-affinity for the deployed PostgreSQL clusters
This will set the default pod anti-affinity for the pgBackRest pods.

pod_anti_affinity preferred
pod_anti_affinity_pgbackrest

pod_anti_affinity_pgbouncer This will set the default pod anti-affinity for the pgBouncer pods.

Understanding pgo_operator_namespace & namespace

The Crunchy PostgreSQL Operator can be configured to be deployed and manage a single namespace or manage several namespaces. The
following are examples of different types of deployment models:

Single Namespace

To deploy the Crunchy PostgreSQL Operator to work with a single namespace (in this example our namespace is named pgo), configure
the following settings:

pgo_operator_namespace: 'pgo'
'Pgo

namespace: !

Multiple Namespaces
To deploy the Crunchy PostgreSQL Operator to work with multiple namespaces (in this example our namespaces are named pgo, pgouser1
and pgouser?2), configure the following settings:

pgo_operator_namespace: 'pgo'
namespace: 'pgouserl,pgouser2’

Deploying Multiple Operators

The 4.0 release of the Crunchy PostgreSQL Operator allows for multiple operator deployments in the same cluster.
To install the Crunchy PostgreSQL Operator to multiple namespaces, it’s recommended to have an configuration file for each deployment
of the operator.

For each operator deployment the following variables should be configured uniquely for each install.
For example, operator could be deployed twice by changing the pgo_operator_namespace and namespace for those deployments:

Install A would deploy operator to the pgo namespace and it would manage the pgo target namespace.

Config A
pgo_operator_namespace: 'pgo'
namespace: 'pgo'

Install B would deploy operator to the pgo2 namespace and it would manage the pgo2 and pgo3 target namespaces.

Config B
pgo_operator_namespace: 'pgo2'
namespace: 'pgo2,pgo3’

Each install of the operator will create a corresponding directory in $HOME/.pgo/<PGO NAMESPACE> which will contain the TLS and
pgouser client credentials.

Though the years, we have built up several other methods for installing the PGO. The next few sections provide some alternative ways of
deploying the PostgreSQL Operator. Some of these methods are deprecated and may be removed in a future release.

A full installation of PGO includes the following steps:

e get the PGO project

e configure your environment variables

« configure PGO templates

e create security resources

e deploy the operator

o install pgo client (end user command tool)

PGO end-users are only required to install the pgo client on their host and can skip the server-side installation steps. pgo clients are
provided for Linux, Mac, and Windows clients.

PGO can be deployed by multiple methods including:

o default installation
e Ansible playbook installation
¢ Openshift Console installation using OLM

Default Installation - Get Project

The PGO source code is made available on GitHub. You can get a copy using git clone:

git clone -b v{{< param operatorVersion >}} https://github.com/CrunchyData/postgres-operator.git
cd postgres-operator

Default Installation - Configure Environment
Environment variables control aspects of the Operator installation. You can copy a sample set of Operator environment variables and
aliases to your .bashrc file to work with.

cat ./examples/envs.sh >> $HOME/.bashrc
source 3$HOME/.bashrc

Default Installation - Namespace Creation
Creating Kubernetes namespaces is typically something that only a privileged Kubernetes user can perform so log into your Kubernetes
cluster as a user that has the necessary privileges.

The NAMESPACE environment variable is a comma separated list of namespaces that specify where the Operator will be provisioing PG
clusters into, specifically, the namespaces the Operator is watching for Kubernetes events. This value is set as follows:

export NAMESPACE=pgouserl, pgouser2

This means namespaces called pgouser! and pgouser2 will be created as part of the default installation.

In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an extra step during
installation for PGO to function properly with watched namespaces. This limitation does not exist when using Kubernetes 1.12+. When
a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh script handles the limitation
properly in both the bash and ansible installation.

However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace
to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin
privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution
whose version is below 1.12. In Kubernetes version 1.124 the pgo create namespace command works as expected.

The PGO_OPERATOR_NAMESPACE environment variable is the name of the namespace that the Operator will be installed into. For
the installation example, this value is set as follows:

export PGO_OPERATOR_NAMESPACE=pgo

This means a pgo namespace will be created and the Operator will be deployed into that namespace.
Create the Operator namespaces using the Makefile target:

make setupnamespaces

Note: The setupnamespaces target only creates the namespace(s) specified in PGO_OPERATOR_ NAMESPACE environment variable

The Design section of this documentation talks further about the use of namespaces within the Operator.

Default Installation - Configure PGO Templates

Within PGO’s PGO__CONF DIR directory are several configuration files and templates used by PGO to determine the various resources
that it deploys on your Kubernetes cluster, specifically the PostgreSQL clusters it deploys.

When you install PGO you must make choices as to what kind of storage the Operator has to work with for example. Storage varies with
each installation. As an installer, you would modify these configuration templates used by the Operator to customize its behavior.

Note: when you want to make changes to these PGO templates and configuration files after your initial installation, you will need to
re-deploy the Operator in order for it to pick up any future configuration changes.

Here are some common examples of configuration changes most installers would make:

Storage

Inside conf/postgres-operator/pgo.yaml there are various storage configurations defined.

PrimaryStorage: gce
WALStorage: gce
BackupStorage: gce
ReplicaStorage: gce
PGAdminStorage: gce
gce:
AccessMode: ReadWriteOnce

Size: 1G
StorageType: dynamic
StorageClass: standard

Listed above are the pgo.yaml sections related to storage choices. PrimaryStorage specifies the name of the storage configuration used
for PostgreSQL primary database volumes to be provisioned. In the example above, a NFS storage configuration is picked. That same
storage configuration is selected for the other volumes that the Operator will create.

This sort of configuration allows for a PostgreSQL primary and replica to use different storage if you want. Other storage settings like
AccessMode, Size, Storage Type, and StorageClass further define the storage configuration. Currently, NFS, HostPath, and Storage Classes
are supported in the configuration.

As part of PGO installation, you will need to adjust these storage settings to suit your deployment requirements. For users wanting to
try out the Operator on Google Kubernetes Engine you would make the following change to the storage configuration in pgo.yaml:

For NFS Storage, it is assumed that there are sufficient Persistent Volumes (PV) created for the Operator to use when it creates Persistent
Volume Claims (PVC). The creation of Persistent Volumes is something a Kubernetes cluster-admin user would typically provide before
installing the Operator. There is an example script which can be used to create NFS Persistent Volumes located here:

./pv/create-nfs-pv.sh

That script looks for the IP address of an NFS server using the environment variable PGO_NFS_TIP you would set in your .bashrc
environment.

A similar script is provided for HostPath persistent volume creation if you wanted to use HostPath for testing:

./pv/create-pv.sh

Adjust the above PV creation scripts to suit your local requirements, the purpose of these scripts are solely to produce a test set of Volume
to test the Operator.

Other settings in pgo.yaml are described in the pgo.yaml Configuration section of the documentation.

PGO Security

PGO implements its own RBAC (Role Based Access Controls) for authenticating Operator users access to the PGO REST APL
A default admin user is created when PGO is deployed. Create a .pgouser in your home directory and insert the text from below:

admin:examplepassword

The format of the .pgouser client file is:

<username >: <password>

To create a unique administrator user on deployment of the operator edit this file and update the .pgouser file accordingly:

$PGOROOT/deploy/install-bootstrap-creds.sh

After installation users can create optional PGO users as follows:
pgo create pgouser someuser --pgouser -namespaces="pgouserl,pgouser2"
--pgouser -password=somepassword --pgouser-roles="somerole,someotherrole"
Note, you can also store the pgouser file in alternate locations, see the Security documentation for details.
PGO security is further discussed in the section Security({{< relref “security/_index.md” >}}) section of the documentation.

Adjust these settings to meet your local requirements.

Default Installation - Create Kubernetes RBAC Controls

PGO installation requires Kubernetes administrators to create Resources required by PGO. These resources are only allowed to be created
by a cluster-admin user. To install on Google Cloud, you will need a user account with cluster-admin privileges. If you own the GKE
cluster you are installing on, you can add cluster-admin role to your account as follows:

kubectl create clusterrolebinding cluster-admin-binding --clusterrole cluster-admin --user
$(gcloud config get-value account)
Specifically, Custom Resource Definitions for the Operator, and Service Accounts used by the Operator are created which require cluster

permissions.

Tor create the Kubernetes RBAC used by the Operator, run the following as a cluster-admin Kubernetes user:

make installrbac

This set of Resources is created a single time unless a new PGO release requires these Resources to be recreated. Note that when you run
make installrbac the set of keys used by the PGO REST API and also the pgbackrest ssh keys are generated.

Verify the Operator Custom Resource Definitions are created as follows:

kubectl get crd

You should see the pgclusters CRD among the listed CRD resource types.

See the Security documentation for a description of the various RBAC resources created and used by the Operator.

Default Installation - Deploy PGO

At this point, you as a normal Kubernetes user should be able to deploy the Operator. To do this, run the following Makefile target:
make deployoperator

This will cause any existing PGO installation to be removed first, then the configuration to be bundled into a ConfigMap, then the
Operator Deployment to be created.

This will create a postgres-operator Deployment and a postgres-operator Service.Operator administrators needing to make changes to the
PGO configuration would run this make target to pick up any changes to pgo.yaml, pgo users/roles, or the Operator templates.

Default Installation - Completely Cleaning Up

You can completely remove all the namespaces you have previously created using the default installation by running the following:

make cleannamespaces

This will permanently delete each namespace the PGO installation created previously.

pgo client Installation

Most users will work with the Operator using the pgo client. That tool is downloaded from the GitHub Releases page for the Op-
erator (https://github.com/crunchydata/postgres-operator/releases). Crunchy Data customers can download the pgo binaries from
https://access.crunchydata.com/ on the downloads page.

The pgo client is provided in Mac, Windows, and Linux binary formats, download the appropriate client to your local laptop or workstation
to work with a remote Operator.

You can also use the pgo-client container.

If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref “Configuration/tls.md” >}})
for additional configuration information.

Prior to using pgo, users testing the Operator on a single host can specify the postgres-operator URL as follows:

$ kubectl get service postgres-operator -n pgo

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
postgres-operator 10.104.47.110 <none> 8443/ TCP Tm
$ export PGO_APISERVER_URL=https://10.104.47.110:8443

pgo version

That URL address needs to be reachable from your local pgo client host. Your Kubernetes administrator will likely need to create a
network route, ingress, or LoadBalancer service to expose the PGO REST API to applications outside of the Kubernetes cluster. Your
Kubernetes administrator might also allow you to run the Kubernetes port-forward command, contact your administrator for details.

Next, the pgo client needs to reference the keys used to secure the PGO REST API:

export PGO_CA_CERT=$PGORO0T/conf/postgres-operator/server.crt
export PGO_CLIENT_CERT=$PGOROO0T/conf/postgres-operator/server.crt
export PGO_CLIENT_KEY=$PGOROOT/conf/postgres-operator/server.key

You can also specify these keys on the command line as follows:

pgo version --pgo-ca-cert=$PGOR0O0T/conf/postgres-operator/server.crt
--pgo-client-cert=$PGOR0O0T/conf/postgres-operator/server.crt
--pgo-client-key=$PGOROOT/conf/postgres-operator/server.key

if you are running PGO on Google Cloud, you would open up another terminal and run kubect! port-forward .. to forward the Postgres
Operator pod port 8443 to your localhost where you can access the PGO API from your local workstation.

At this point, you can test connectivity between your laptop or workstation and the Postgres Operator deployed on a Kubernetes cluster
as follows:

pgo version

You should get back a valid response showing the client and server version numbers.

Verify the Installation

Now that you have deployed PGO, you can verify that it is running correctly.

You should see a pod running that contains the Operator:

kubectl get pod --selector=name=postgres-operator -n pgo
NAME READY STATUS RESTARTS AGE
postgres-operator-79bf94c658-zczf6 3/3 Running 0 47s

That pod should show 3 of 3 containers in running state and that the operator is installed into the pgo namespace.

The sample environment script, examples/env.sh, if used creates some bash functions that you can use to view the Postgres Operator logs.
This is useful in case you find one of the PGO containers not in a running status.

Using the pgo client, you can verify the versions of the client and server match as follows:

pgo version

This also tests connectivity between your pgo client host and Postgres Operator container.

PGO: The Postgres Operator Helm Chart

Overview

PGO, the Postgres Operator from Crunchy Data, comes with a container called pgo-deployer which handles a variety of lifecycle actions
for the PostgreSQL Operator, including:

o Installation
o Upgrading
o Uninstallation

After configuring the values.yaml file with you configuration options, the installer will be run using the helm command line tool and
takes care of setting up all of the objects required to run the PostgreSQL Operator.

The postgres-operator Helm chart is available in the Helm directory in the PostgreSQL Operator repository.

Requirements

RBAC

The Helm chart will create the ServiceAccount, ClusterRole, and ClusterRoleBinding that are required to run the pgo-deployer. If you
have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation), you
can disable their creation using the rbac.create and serviceAccount.create variables in the values.yaml file. If these options are
disabled, you must provide the name of your preconfigured ServiceAccount using serviceAccount.name.

Namespace

In order to install the PostgreSQL Operator using the Helm chart you will need to first create the namespace in which the pgo-deployer
will be run. By default, it will run in the namespace that is provided to helm at the command line.

kubectl create namespace <namespace>
helm install postgres-operator -n <namespace> /path/to/chart_dir

The PostgreSQL Operator has the ability to manage PostgreSQL clusters across multiple Kubernetes Namespaces, including the ability
to add and remove Namespaces that it watches. Doing so does require the PostgreSQL Operator to have elevated privileges, and as such,
the PostgreSQL Operator comes with three “namespace modes” to select what level of privileges to provide. Detailed information about
these “namespace modes” can be found in the Namespace(<{{< relref “/installation/postgres-operator.md” >}}>) section here.

https://github.com/CrunchyData/postgres-operator/tree/master/installers/helm
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Config Map

The pgo-deployer uses a Kubernetes ConfigMap to pass configuration options into the installer. The values in your values.yaml file
will be used to populate the configuation options in the ConfigMap.

Configuration - values.yanml

The values.yaml file contains all of the configuration parametes for deploying the PostgreSQL Operator. The values.yaml file contains
the defaults that should work in most Kubernetes environments, but it may require some customization.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{<
relref “/installation/configuration.md”>}}>)

Installation

Once you have configured the PostgreSQL Operator Installer to your specification, you can install the PostgreSQL Operator with the
following command:

helm install <name> -n <namespace> /path/to/chart_dir

Take note of the name used when installing, this name will be used to upgrade and uninstall the PostgreSQL Operator.

Install the [pgo Client]({{< relref “/installation/pgo-client” >}})

To use the [pgo Client]({{< relref “/installation/pgo-client” >}1}), there are a few additional steps to take in order to get it to work
with your PostgreSQL Operator installation. For convenience, you can download and run the client-setup.sh script in your local
environment:

curl
https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/installers/kubectl/client-s
> client-setup.sh

chmod +x client-setup.sh

./client-setup.sh

Running this script can cause existing pgo client binary, pgouser, client.crt, and client.key files to be overwritten.

The client-setup.sh script performs the following tasks:

o Sets $PGO_OPERATOR_NAMESPACE to pgo if it is unset. This is the default namespace that the PostgreSQL Operator is deployed to

e Checks for valid Operating Systems and determines which pgo binary to download

o Creates a directory in $HOME/ . pgo/$PGO_OPERATOR_NAMESPACE (e.g. /home/hippo/.pgo/pgo)

o Downloads the pgo binary, saves it to in $HOME/ .pgo/$PGO_OPERATOR_NAMESPACE, and sets it to be executable

o Pulls the TLS keypair from the PostgreSQL Operator pgo.tls Secret so that the pgo client can communicate with the PostgreSQL
Operator. These are saved as client.crt and client.key in the $HOME/.pgo/$PGO_OPERATOR_NAMESPACE path.

e Pulls the pgouser credentials from the pgouser-admin secret and saves them in the format username:password in a file called
pgouser

o client.crt, client.key, and pgouser are all set to be read/write by the file owner. All other permissions are removed.

e Sets the following environmental variables with the following values:

export PGOUSER=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser

export PGO_CA_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_CERT=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt
export PGO_CLIENT_KEY=$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key

For convenience, after the script has finished, you can permanently add these environmental variables to your environment:

cat <<EOF >> ~/.bashrc

export PATH="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE:$PATH"

export PGOUSER="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/pgouser"

export PGO_CA_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_CERT="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.crt"
export PGO_CLIENT_KEY="$HOME/.pgo/$PGO_OPERATOR_NAMESPACE/client.key"
EOQF

https://kubernetes.io/docs/concepts/configuration/configmap/
https://github.com/CrunchyData/postgres-operator/blob/master/installers/helm/values.yaml
https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/installers/kubectl/client-setup.sh

By default, the client-setup.sh script targets the user that is stored in the pgouser-admin secret in the pgo ($PGO_OPERATOR_NAMESPACE)
Namespace. If you wish to use a different Secret, you can set the PGO_USER_ADMIN environmental variable.

For more detailed information about [installing the pgo client]({{< relref “/installation/pgo-client” >}}), please see [Installing the pgo
client]({{< relref “/installation/pgo-client” >}}).

Verify the Installation

One way to verify the installation was successful is to execute the [pgo version|({{< relref “/pgo-client/reference/pgo_ version.md” >1}})
command.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

In another console window, run the pgo version command:

pgo version

If successful, you should see output similar to this:

pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Upgrade and Uninstall

Once install has be completed using Helm, it will also be used to upgrade and uninstall your PostgreSQL Operator.

The name and namespace in the following sections should match the options provided at install.

Upgrade
To make changes to your deployment of the PostgreSQL Operator you will use the helm upgrade command. Once the configuration
changes have been made to you values.yaml file, you can run the following command to implement them in the deployment:

helm upgrade <name> -n <namespace> /path/to/updated_chart

Uninstall
To uninstall the PostgreSQL Operator you will use the helm uninstall command. This will uninstall the operator and clean up resources
used by the pgo-deployer.

helm uninstall <name> -n <namespace>

Debugging

When the pgo-deployer job does not complete successfully, the resources that are created and normally cleaned up by Helm will be left
in your Kubernetes cluster. This will allow you to use the failed job and its logs to debug the issue. The following command will show
the logs for the pgo-deployer job:

kubectl logs -n <namespace> job.batch/pgo-deploy

You can also view the logs as the job is running by using the kubectl -f follow flag:
kubectl logs -n <namespace> job.batch/pgo-deploy -f
These logs will provide feedback if there are any misconfigurations in your install. Once you have finished debugging the failed job and

fixed any configuration issues, you can take steps to re-run your install, upgrade, or uninstall. By running another command the resources
from the failed install will be cleaned up so that a successfull install can run.

PGO: the PostgreSQL Operator from Crunchy Data is installed as part of Crunchy PostgreSQL for GKE that is available in the Google
Cloud Marketplace.

Step 1: Install

Install Crunchy PostgreSQL for GKE to a Google Kubernetes Engine cluster using Google Cloud Marketplace.

https://console.cloud.google.com/marketplace/details/crunchydata/crunchy-postgresql-operator
https://console.cloud.google.com/marketplace/details/crunchydata/crunchy-postgresql-operator

Step 2: Verify Installation

Install kubectl using the gcloud components command of the Google Cloud SDK or by following the Kubernetes documentation.

Using the gcloud utility, ensure you are logged into the GKE cluster in which you installed PGO, the PostgreSQL Operator, and see that
it is running in the namespace in which you installed it. For example, in the pgo namespace:

kubectl -n pgo get deployments,pods

If successful, you should see output similar to this:

NAME READY UP-TO-DATE AVAILABLE AGE
deployment .apps/postgres-operator 1/1 1 1 16h
NAME READY STATUS RESTARTS AGE
pod/postgres -operator-56d6ccb97 -tmz7m 4/4 Running 0 2m

Step 3: Install the PGO User Keys

You will need to get TLS keys used to secure the Operator REST API. Again, in the pgo namespace:

kubectl -n pgo get secret pgo.tls -o 'go-template={{ index .data "tls.crt" | base64decode }}' >
/tmp/client.crt
kubectl -n pgo get secret pgo.tls -o 'go-template={{ index .data "tls.key" | base64decode }}' >

/tmp/client.key

Step 4: Setup PGO User

PGO implements its own role-based access control (RBAC) system for authenticating and authorization PostgreSQL Operator users
access to its REST API. A default PostgreSQL Operator user (aka a “pgouser”) is created as part of the marketplace installation (these
credentials are set during the marketplace deployment workflow).

Create the pgouser file in ${HOME?}/.pgo/<operatornamespace>/pgouser and insert the user and password you created on deployment
of the PostgreSQL Operator via GCP Marketplace. For example, if you set up a user with the username of username and a password of
hippo:

username:hippo

Step 5: Setup Environment variables

The pgo Client uses several environmental variables to make it easier for interfacing with the PGO, the Postgres Operator.

Set the environmental variables to use the key / certificate pair that you pulled in Step 3 was deployed via the marketplace. Using the
previous examples, You can set up environment variables with the following command:

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="/tmp/client.crt"

export PGO_CLIENT_CERT="/tmp/client.crt"

export PGO_CLIENT_KEY="/tmp/client.key"

export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

If you wish to permanently add these variables to your environment, you can run the following command:

cat <<EOF >> ~/.bashrc

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="/tmp/client.crt"

export PGO_CLIENT_CERT="/tmp/client.crt"

export PGO_CLIENT_KEY="/tmp/client.key"

export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

EQF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

https://cloud.google.com/sdk/docs/install
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Step 6: Install the pgo Client

The pgo client provides a helpful command-line interface to perform key operations on a PGO Deployment, such as creating a PostgreSQL
cluster.

The pgo client can be downloaded from GitHub Releases (subscribers can download it from the Crunchy Data Customer Portal).

Note that the pgo client’s version must match the deployed version of PGO. For example, if you have deployed version {{< param
operatorVersion >}} of the PostgreSQL Operator, you must use the pgo for {{< param operatorVersion >}}.

Once you have download the pgo client, change the permissions on the file to be executable if need be as shown below:

chmod +x pgo

Step 7: Connect to PGO

Finally, let’s see if we can connect to the Postgres Operator from the pgo client. In order to communicate with the PGO API server, you
will first need to set up a port forward to your local environment.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:

pgo version

If successful, you should see output similar to this:

pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Step 8: Create a Namespace

We are almost there! You can optionally add a namespace that can be managed by PGO to watch and to deploy a PostgreSQL cluster
into.

pgo create namespace wateringhole

verify the operator has access to the newly added namespace

pgo show namespace --all

you should see out put similar to this:

pgo username: admin

namespace useraccess installaccess
application-system accessible no access
default accessible no access
kube-public accessible no access
kube-system accessible no access
pgo accessible no access
wateringhole accessible accessible

Step 9: Have Some Fun - Create a PostgreSQL Cluster

You are now ready to create a new cluster in the wateringhole namespace, try the command below:

pgo create cluster -n wateringhole hippo

If successful, you should see output similar to this:
created Pgcluster hippo
workflow id 1cd0d225-7cd4-4044-b269-aa7bedae219b

This will create a PostgreSQL cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status
of this cluster using the pgo test command:

https://github.com/crunchydata/postgres-operator/releases
https://access.crunchydata.com
https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

pgo test -n wateringhole hippo

When everything is up and running, you should see output similar to this:

cluster : hippo
Services
primary (10.97.140.113:5432): UP
Instances
primary (hippo-7b64747476-6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n wateringhole hippo.

If your Kubernetes cluster is already running the Operator Lifecycle Manager, then PGO, the Postgres Operator from Crunchy Data, can
be installed as part of Crunchy PostgreSQL for Kubernetes that is available in OperatorHub.io.

Before You Begin

There are some optional Secrets you can add before installing PGO into your cluster.

Secrets (optional)

If you plan to use AWS S3 to store backups and would like to have the keys available for every backup, you can create a Secret as described
below:

kubectl -n "$PGO_OPERATOR_NAMESPACE" create secret generic pgo-backrest-repo-config \
--from-literal=aws-s3-key="<your-aws-s3-key>" \
-—from-literal=aws-s3-key-secret="<your-aws-s3-key-secret>"

kubectl -n "$PGO_OPERATOR_NAMESPACE" label secret pgo-backrest-repo-config \
vendor=crunchydata

Certificates (optional)

PGO has an API that uses TLS to communicate securely with clients. If you have a certificate bundle validated by your organization, you
can install it now. If not, the API will automatically generate and use a self-signed certificate.

kubectl -n "$PGO_OPERATOR_NAMESPACE" create secret tls pgo.tls \
--cert=/path/to/server.crt \
--key=/path/to/server.key

Installation

Create an OperatorGroup and a Subscription in your chosen namespace. Make sure the source and sourceNamespace match the
CatalogSource from earlier.

kubectl -n "$PGO_OPERATOR_NAMESPACE" create -f- <<YAML
apiVersion: operators.coreos.com/vl
kind: OperatorGroup
metadata:
name: postgresql
spec:
targetNamespaces: ["$PGO_OPERATOR_NAMESPACE"]

apiVersion: operators.coreos.com/vlialphal
kind: Subscription
metadata:
name: postgresql
spec:
name: postgresql
channel: stable
source: operatorhubio-catalog

https://olm.operatorframework.io/
https://operatorhub.io/operator/postgresql

sourceNamespace: olm
startingCSV: postgresoperator.v{{< param operatorVersion >1}}
YAML

After You Install

Once PGO is installed in your Kubernetes cluster, you will need to do a few things to use the [PostgreSQL Operator Client]({{< relref
“/pgo-client/ index.md” >}}).

Install the first set of client credentials and download the pgo binary and client certificates.

PGO_CMD=kubectl ./deploy/install-bootstrap-creds.sh

PGO_CMD=kubectl ./installers/kubectl/client-setup.sh

The client needs to be able to reach the PGO API from outside the Kubernetes cluster. Create an external service or forward a port
locally.

kubectl -n "$PGO_OPERATOR_NAMESPACE" expose deployment postgres-operator --type=LoadBalancer

export PGO_APISERVER_URL="https://$(
kubectl -n "$PGO_OPERATOR_NAMESPACE" get service postgres-operator \
-o jsonpath="{.status.loadBalancer.ingress[*]['ip', 'hostname']2}"
) :8443"

or

kubectl -n "$PGO_OPERATOR_NAMESPACE" port-forward deployment/postgres-operator 8443

export PGO_APISERVER_URL="https://127.0.0.1:8443"

Verify connectivity using the pgo command.

pgo version
pgo client version {{< param operatorVersion >1}}
pgo-apiserver version {{< param operatorVersion >}}

PGO: Postgres Operator Playbooks

PGO, the Postgres Operator from Crunchy Data, Playbooks contain Ansible roles for installing and managing the [Crunchy Data Post-
greSQL Operator]({{< relref “/installation/other/ansible/installing-operator.md” >1}1}).

Features
The playbooks provided allow users to:

¢ install PGO on Kubernetes and OpenShift

e install PGO from a Linux, Mac or Windows (Ubuntu subsystem) host
e generate TLS certificates required by the PostgreSQL Operator

e support a variety of deployment models

Resources

e Ansible
e Crunchy Data
e Crunchy Data PostgreSQL Operator Project

Prerequisites

The following is required prior to installing Crunchy PostgreSQL Operator using Ansible:

e postgres-operator playbooks source code for the target version
e Ansible 2.9.0+

https://www.ansible.com/
https://www.ansible.com/
https://www.crunchydata.com/
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator/

Kubernetes Installs

o Kubernetes v1.11+4
e Cluster admin privileges in Kubernetes
o kubectl configured to communicate with Kubernetes

OpenShift Installs

e OpenShift v3.09+
e Cluster admin privileges in OpenShift
e oc configured to communicate with OpenShift

Installing from a Windows Host

If the Crunchy PostgreSQL Operator is being installed from a Windows host the following are required:

o Windows Subsystem for Linux (WSL)
o Ubuntu for Windows

Permissions

The installation of the Crunchy PostgreSQL Operator requires elevated privileges, as the following objects need to be created:

e Custom Resource Definitions
e Cluster RBAC for using one of the multi-namespace modes
o Create required namespaces

In Kubernetes versions prior to 1.12 (including Openshift up through 3.11), there is a limitation that requires an extra step during
installation for the operator to function properly with watched namespaces. This limitation does not exist when using Kubernetes 1.12+.
When a list of namespaces are provided through the NAMESPACE environment variable, the setupnamespaces.sh script handles the
limitation properly in both the bash and ansible installation.

However, if the user wishes to add a new watched namespace after installation, where the user would normally use pgo create namespace
to add the new namespace, they should instead run the add-targeted-namespace.sh script or they may give themselves cluster-admin
privileges instead of having to run setupnamespaces.sh script. Again, this is only required when running on a Kubernetes distribution
whose version is below 1.12. In Kubernetes version 1.124 the pgo create namespace command works as expected.

Obtaining Operator Ansible Role

e Clone the postgres-operator project

GitHub Installation

All necessary files (inventory.yaml, values.yaml, main playbook and roles) can be found in the installers/ansible directory in the source
code.

Configuring the Inventory File
The inventory.yaml file included with the PostgreSQL Operator Playbooks allows installers to configure how Ansible will connect to
your Kubernetes cluster. This file should contain the following connection variables:

You will have to uncomment out either the kubernetes or openshift variables if you are being using them for your environment. Both
sets of variables cannot be used at the same time. The unused variables should be left commented out or removed.

Name Default Required Description
kubernetes_context Required, if deploying to Kubernetes When deploying to Kubernetes, set to configure the co
openshift_host Required, if deploying to OpenShift When deploying to OpenShift, set to configure the hos

openshift_password Required, if deploying to OpenShift When deploying to OpenShift, set to configure the pas

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator/tree/master/installers/ansible
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator

Name Default Required Description

openshift_skip_tls_verify Required, if deploying to OpenShift When deploying to Openshift, set to ignore the integri
openshift_token Required, if deploying to OpenShift =~ When deploying to OpenShift, set to configure the tok
openshift_user Required, if deploying to OpenShift =~ When deploying to OpenShift, set to configure the use

To retrieve the kubernetes_context value for Kubernetes installs, run the following command:

kubectl config current-context

Configuring - values.yaml

The values.yaml file contains all of the configuration parameters for deploying the PostgreSQL Operator. The example file contains
defaults that should work in most Kubernetes environments, but it may require some customization.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Configuration Reference](<{{<
relref “/installation/configuration.md”>}}>)

Installing Ansible on Linux, macOS or Windows Ubuntu Subsystem

To install Ansible on Linux or macOS, see the official documentation provided by Ansible.

Install Google Cloud SDK (Optional)

If Crunchy PostgreSQL Operator is going to be installed in a Google Kubernetes Environment the Google Cloud SDK is required.
To install the Google Cloud SDK on Linux or macOS, see the official Google Cloud documentation.
When installing the Google Cloud SDK on the Windows Ubuntu Subsystem, run the following commands to install:

wget https://sdk.cloud.google.com --output-document=/tmp/install-gsdk.sh
Review the /tmp/install-gsdk.sh prior to running

chmod +x /tmp/install-gsdk.sh

/tmp/install-gsdk.sh

Installing

The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now install the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks are stored. See the installers/ansible
directory in the Crunchy PostgreSQL Operator project for the inventory file, values file, main playbook and ansible roles.

Installing on Linux

On a Linux host with Ansible installed we can run the following command to install the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory.yaml --tags=install --ask-become-pass main.yml

Installing on macOS

On a macOS host with Ansible installed we can run the following command to install the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory.yaml --tags=install --ask-become-pass main.yml

Installing on Windows Ubuntu Subsystem

On a Windows host with an Ubuntu subsystem we can run the following commands to install the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory.yaml --tags=install --ask-become-pass main.yml

https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/ansible/values.yaml
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#intro-installation-guide
https://cloud.google.com/sdk/install

Verifying the Installation

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Install the pgo Client

If TLS authentication was disabled during installation, please see the [TLS Configuration Page] ({{< relref “Configuration/tls.md” >}})
for additional configuration information.

During or after the installation of PGO: the Postgres Operator, download the pgo client set up script. This will help set up your local
environment for using the Postgres Operator:

curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion
>}}/installers/kubectl/client-setup.sh > client-setup.sh
chmod +x client-setup.sh

When the Postgres Operator is done installing, run the client setup script:

./client-setup.sh

This will download the pgo client and provide instructions for how to easily use it in your environment. It will prompt you to add some
environmental variables for you to set up in your session, which you can do with the following commands:

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

If you wish to permanently add these variables to your environment, you can run the following:

cat <<EOF >> ~/.bashrc

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

EQOF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Verify pgo Connection

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes

kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to OpenShift
oc port-forward -n pgo svc/postgres-operator 8443:8443

You can subsitute pgo in the above examples with the namespace that you deployed the PostgreSQL Operator into.

On a separate terminal verify the PostgreSQL client can communicate with the Crunchy PostgreSQL Operator:

pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been installed successfully.

[ansible-prerequisites]: {{< relref “/installation/other/ansible/prerequisites.md” >}}

Updating
Updating the Crunchy PostgreSQL Operator is essential to the lifecycle management of the service. Using the update flag will:

e Update and redeploy the operator deployment

e Recreate configuration maps used by operator

e Remove any deprecated objects

o Allow administrators to change settings configured in the values.yaml
o Reinstall the pgo client if a new version is specified

The following assumes the proper [prerequisites are satisfied|[ansible-prerequisites] we can now update the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory
in the Crunchy PostgreSQL Operator project for the inventory file, values file, main playbook and ansible roles.

Updating on Linux

On a Linux host with Ansible installed we can run the following command to update
the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Updating on macOS

On a macOS host with Ansible installed we can run the following command to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Updating on Windows Ubuntu Subsystem
On a Windows host with an Ubuntu subsystem we can run the following commands to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Verifying the Update

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <NAMESPACE_NAME>
kubectl get pods -n <NAMESPACE_NAME>

OpenShift
oc get deployments -n <NAMESPACE_NAME>
oc get pods -n <NAMESPACE_NAME>

Configure Environment Variables

After the Crunchy PostgreSQL Operator has successfully been updated we will need to configure local environment variables before using
the pgo client.

To configure the environment variables used by pgo run the following command:

Note: <PGO_NAMESPACE> should be replaced with the namespace the Crunchy PostgreSQL Operator was deployed to. Also, if TLS was
disabled, or if the port was changed, update PGO__ APISERVER, URL accordingly.

cat <<EOF >> ~/.bashrc

export PGOUSER="${HOME?}/.pgo/<PGO_NAMESPACE>/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/<PGO_NAMESPACE>/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/<PGO_NAMESPACE>/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443'

EQF

Apply those changes to the current session by running:

source ~/.bashrc

Verify pgo Connection

In a separate terminal we need to setup a port forward to the Crunchy PostgreSQL Operator to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes

kubectl port-forward -n pgo svc/postgres-operator 8443:8443

If deployed to UOpenShift

oc port-forward -n pgo svc/postgres-operator 8443:8443

In the above examples, you can substitute pgo for the namespace that you deployed the PostgreSQL Operator into.
On a separate terminal verify the PostgreSQL Operator client can communicate with the PostgreSQL Operator:

pgo version

If the above command outputs versions of both the client and API server, the Crunchy PostgreSQL Operator has been updated successfully.

[ansible-prerequisites]: {{< relref “/installation/other/ansible/prerequisites.md” >}}

Uninstalling PostgreSQL Operator

The following assumes the proper [prerequisites are satisfied][ansible-prerequisites| we can now uninstall the PostgreSQL Operator.
First, it is recommended to use the playbooks tagged with the same version of the PostgreSQL Operator currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:

ansible-playbook -i /path/to/inventory.yaml --tags=uninstall --ask-become-pass main.yml

Deleting pgo Client

If variable pgo_client_install is set to true in the values.yaml file, the pgo client will also be removed when uninstalling.
Otherwise, the pgo client can be manually uninstalled by running the following command:

rm /usr/local/bin/pgo

[ansible-prerequisites]: {{< relref “/installation/other/ansible/prerequisites.md” >}}

The PostgreSQL Operator Monitoring infrastructure is a fully integrated solution for monitoring and visualizing metrics captured from
PostgreSQL clusters created using the PostgreSQL Operator. By leveraging pgMonitor to configure and integrate the various tools,
components and metrics needed to effectively monitor PostgreSQL clusters, the PostgreSQL Operator Monitoring infrastructure provides
an powerful and easy-to-use solution to effectively monitor and visualize pertinent PostgreSQL database and container metrics. Included
in the monitoring infrastructure are the following components:

https://github.com/CrunchyData/pgmonitor

e pgMonitor - Provides the configuration needed to enable the effective capture and visualization of PostgreSQL database metrics
using the various tools comprising the PostgreSQL Operator Monitoring infrastructure

e Grafana - Enables visual dashboard capabilities for monitoring PostgreSQL clusters, specifically using Crunchy PostgreSQL Exporter
data stored within Prometheus

e Prometheus - A multi-dimensional data model with time series data, which is used in collaboration with the Crunchy PostgreSQL
Exporter to provide and store metrics

o Alertmanager - Handles alerts sent by Prometheus by deduplicating, grouping, and routing them to reciever integrations.

When installing the monitoring infrastructure, various configuration options and settings are available to tailor the installation accord-
ing to your needs. For instance, custom dashboards and datasources can be utilized with Grafana, while custom scrape configura-
tions can be utilized with Promtheus. Please see the [monitoring configuration reference](<{{< relref “/installation/metrics/metrics-
configuration.md”>}}>) for additional details.

By leveraging the various installation methods described in this section, the PostgreSQL Operator Metrics infrastructure can be de-
ployed alongside the PostgreSQL Operator. There are several different ways to install and deploy the PostgreSQL Operator Monitoring
infrastructure based upon your use case.

For the vast majority of use cases, we recommend using the PostgreSQL Operator Monitoring Installer({{< relref “/installation/metrics/postg
operator-metrics.md” >}1}), which uses the pgo-deployer container to set up all of the objects required to run the PostgreSQL Operator
Monitoring infrastructure.

Additionally, Ansible(<{{< relref “/installation/metrics/metrics-configuration.md”>}}>) and Helm(<{{< relref “/installation/metric-
s/other/ansible”>}}>) installers are available.

Before selecting your installation method, it’s important that you first read the [prerequisites]({{< relref “/installation/metrics/metrics-
prerequisites.md” >}}) for your deployment environment to ensure that your setup meets the needs for installing the PostgreSQL Operator
Monitoring infrastructure.

Prerequisites

The following is required prior to installing PostgreSQL Operator Monitoring.

Environment

PostgreSQL Operator Monitoring is tested in the following environments:

e Kubernetes v1.13+

e Red Hat OpenShift v3.11+

¢ Red Hat OpenShift v4.3+

e VMWare Enterprise PKS 1.3+

Application Ports

The PostgreSQL Operator Monitoring installer deploys different services as needed to support PostgreSQL Operator Monitoring collection
and monitoring. Below is a list of the applications and their default Service ports.

Service Port

Grafana 3000
Prometheus 9090
Alertmanager 9093

PostgreSQL Operator Monitoring Installer

Quickstart

If you believe that all the default settings in the installation manifest work for you, you can take a chance by running the metrics manifest
directly from the repository:

kubectl create namespace pgo

https://github.com/CrunchyData/pgmonitor
https://grafana.com/
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator

kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param
operatorVersion >}}/installers/metrics/kubectl/postgres-operator-metrics.yml

Note that in OpenShift and CodeReady Containers you will need to set the disable_fsgroup to true attribute to true if you are using
the restricted Security Context Constraint (SCC). If you are using the anyuid SCC, you will need to set disable_fsgroup to false.

However, we still advise that you read onward to see how to properly configure the PostgreSQL Operator Monitoring infrastructure.

Overview

The PostgreSQL Operator comes with a container called pgo-deployer which handles a variety of lifecycle actions for the PostgreSQL
Operator Monitoring infrastructure, including:

o Installation
o Upgrading
¢ Uninstallation

After configuring the Job template, the installer can be run using kubectl apply and takes care of setting up all of the objects required
to run the PostgreSQL Operator.

The installation manifest, called postgres-operator-metrics.yml, is available in the installers/metrics/kubectl/postgres-operator-
path in the PostgreSQL Operator repository.

Requirements
RBAC
The pgo-deployer requires a ServiceAccount and ClusterRoleBinding to run the installation job. Both of these resources are already

defined in the postgres-operator-metrics.yml, but can be updated based on your specific environmental requirements.

By default, the pgo-deployer uses a ServiceAccount called pgo-metrics-deployer-sa that has a ClusterRoleBinding (pgo-metrics-deploy
with several ClusterRole permissions. This ClusterRole is needed for the initial configuration and deployment of the various applications
comprising the monitoring infrastructure. This includes permissions to create:

o RBAC for use by Prometheus and/or Grafana
e The metrics namespace

The required list of privileges are available in the postgres-operator-metrics.yml file:

https://raw.githubusercontent.com/CrunchyData/postgres-operator /v{{ < param operatorVersion >}}/installers/metrics/kubectl/postgres
operator-metrics.yml

If you have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation),
then you can remove these objects from the postgres-operator-metrics.yml manifest.

Config Map

The pgo-deployer uses a Kubernetes ConfigMap to pass configuration options into the installer. The ConfigMap is defined in the
postgres-operator-metrics.yaml file and can be updated based on your configuration preferences.

Namespaces

By default, the PostgreSQL Operator Monitoring installer will run in the pgo Namespace. This can be updated in the postgres-operator-me
file. Please ensure that this namespace exists before the job is run.

For example, to create the pgo namespace:

kubectl create namespace pgo

https://kubernetes.io/docs/reference/kubectl/cheatsheet/#apply
https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/metrics/kubectl/postgres-operator-metrics.yml
https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/metrics/kubectl/postgres-operator-metrics.yml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/metrics/kubectl/postgres-operator-metrics.yml
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://raw.githubusercontent.com/CrunchyData/postgres-operator/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/kubectl/postgres-operator.yml
https://kubernetes.io/docs/concepts/configuration/configmap/

Configuration - postgres-operator-metrics.yml

The postgres-operator-metrics.yml file contains all of the configuration parameters for deploying PostgreSQL Operator Monitoring.
The example file contains defaults that should work in most Kubernetes environments, but it may require some customization.

Note that in OpenShift and CodeReady Containers you will need to set the disable_fsgroup to true attribute to true if you are using
the restricted Security Context Constraint (SCC). If you are using the anyuid SCC, you will need to set disable_fsgroup to false.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Monitoring Installer Configuration
Reference|(<{{< relref “/installation/metrics/metrics-configuration.md”>}1}>)

Configuring to Update and Uninstall The deploy job can be used to perform different deployment actions for the PostgreSQL
Operator Monitoring infrastructure. When you run the job it will install the monitoring infrastructure by default but you can change the
deployment action to uninstall or update. The DEPLOY_ACTION environment variable in the postgres-operator-metrics.yml file can be
set to install-metrics, update-metrics, and uninstall-metrics.

Image Pull Secrets

If you are pulling PostgreSQL Operator Monitoring images from a private registry, you will need to setup an imagePullSecret with access
to the registry. The image pull secret will need to be added to the installer service account to have access. The secret will need to be
created in each namespace that the PostgreSQL Operator will be using.

After you have configured your image pull secret in the Namespace the installer runs in (by default, this is pgo), add the name of the
secret to the job yaml that you are using. You can update the existing section like this:

apiVersion: vl
kind: ServiceAccount
metadata:
name: pgo-metrics-deployer-sa
namespace: pgo
imagePullSecrets:
- name: <image_pull_secret_name>

If the service account is configured without using the job yaml file, you can link the secret to an existing service account with the kubectl
or oc clients.

kubectl
kubectl patch serviceaccount <deployer-sa> -p '{"imagePullSecrets": [{"name": "myregistrykey"}]}'
-n <install-namespace>

oc
oc secrets link <registry-secret> <deployer-sa> --for=pull --namespace=<install-namespace>

Installation

Once you have configured the PostgreSQL Operator Monitoring installer to your specification, you can install the PostgreSQL Operator
Monitoring infrastructure with the following command:

kubectl apply -f /path/to/postgres-operator-metrics.yml

Post-Installation

To clean up the installer artifacts, you can simply run:

kubectl delete -f /path/to/postgres-operator-metrics.yml

Note that if you still have the ServiceAccount and ClusterRoleBinding in there, you will need to have elevated privileges.

PostgreSQL Operator Monitoring Installer Configuration

When installing the PostgreSQL Operator Monitoring infrastructure you have various configuration options available, which are defined
below.

https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/metrics/kubectl/postgres-operator-metrics.yml
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

General Configuration

These variables affect the general configuration of PostgreSQL Operator Monitoring.

Name Default Required Description

alertmanager_log_level info Set the log level for Alertmanager logging.
alertmanager_service_type ClusterIP Required How to expose the Alertmanager service.
alertmanager_storage_access_mode ReadWriteOnce Required Set to the access mode used by the configured storage class for
alertmanager_storage_class_name fast Set to the name of the storage class used when creating Alertm
alertmanager_supplemental_groups 65534 Set to configure any supplemental groups that should be added
alertmanager_volume_size 1Gi Required Set to the size of persistent volume to create for Alertmanager.
create_rbac true Required Set to true if the installer should create the RBAC resources re
db_port 5432 Required Set to configure the PostgreSQL port used by all PostgreSQL c
delete_metrics_namespace false Set to configure whether or not the metrics namespace (defined
disable_fsgroup false Set to true for deployments where you do not want to have the
grafana_admin_password admin Required Set to configure the login password for the Grafana administrat
grafana_admin_username admin Required Set to configure the login username for the Grafana administra
grafana_install true Required Set to true to install Grafana to visualize metrics.
grafana_service_type ClusterIP Required How to expose the Grafana service.
grafana_storage_access_mode ReadWriteOnce Required Set to the access mode used by the configured storage class for
grafana_storage_class_name fast Set to the name of the storage class used when creating Grafan
grafana_supplemental_groups 65534 Set to configure any supplemental groups that should be added
grafana_volume_size 1Gi Required Set to the size of persistent volume to create for Grafana.
metrics_image_pull_secret Name of a Secret containing credentials for container image reg
metrics_image_pull_secret_manifest Provide a path to the image Secret manifest to be installed in t
metrics_namespace 1G Required The namespace that should be created (if it doesn’t already exi
pgbadgerport 10000 Required Set to configure the port used by pgbadger in any PostgreSQL
prometheus_install false Required Set to true to install Promotheus in order to capture metrics ex
prometheus_service_type true Required How to expose the Prometheus service.
prometheus_storage_access_mode ReadWriteOnce Required Set to the access mode used by the configured storage class for
prometheus_storage_class_name fast Set to the name of the storage class used when creating Prome
prometheus_supplemental_groups 65534 Set to configure any supplemental groups that should be added
prometheus_volume_size 1Gi Required Set to the size of persistent volume to create for Prometheus.

Custom Configuration

When installing the PostgreSQL Operator Monitoring infrastructure, it is possible to further customize the various Deployments included
(e.g. Alertmanager, Grafana, and/or Prometheus) using custom configuration files. Specifically, by pointing the PostgreSQL Operator
Monitoring installer to one or more ConfigMaps containing any desired custom configuration settings, those settings will then be applied
during configuration and installation of the PostgreSQL Operator Monitoring infrastructure.

The specific custom configuration settings available are as follows:

Name

Default

Required Description

alertmanager_custom_config
alertmanager_custom_rules_config
grafana_datasources_custom_config
grafana_dashboards_custom_config

prometheus_custom_configmap

alertmanager-config

alertmanager-rules-config

grafana-datasources

grafana-dashboards

crunchy-prometheus

The name of a ConfigMap containing a custom alertma:
The name of a ConfigMap container custom alerting rule
The name of a ConfigMap containing custom Grafana d:
The name of a ConfigMap containing custom Grafana d:

The name of a ConfigMap containing a custom prometh.

https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

Name Default Required Description

Please note that when using custom ConfigMaps per the above configuration settings, any defaults for the specific configuration being
customized are no longer applied.

Using Alertmanager

The Alertmanager deployment requires a custom configuration file to configure reciever integrations that are supported by Prometheus
Alertmanager. The installer will create a configmap containing an example Alertmanager configuration file created by the pgMonitor
project, this file can be found in the pgMonitor repository. This example file, along with the Alertmanager configuration docs, will help
you to configure alerting for you specific use cases.

Alertmanager cannot be installed without also deploying the Crunchy Prometheus deployment. Once both are deployed, Prometheus is
automatically configured to send alerts to the Alertmanager.

Using RedHat Certified Containers & Custom Images

By default, the PostgreSQL Operator Monitoring installer will deploy the official Grafana and Prometheus containers that are publically
available on dockerhub:

o https://hub.docker.com/r/grafana/grafana
o https://hub.docker.com/r/prom/prometheus
o https://hub.docker.com/r/prom/alertmanager

However, if RedHat certified containers are needed, the following certified images have also been verified with the PostgreSQL Operator
Metric infrastructure, and can therefore be utilized instead:

o https://catalog.redhat.com/software/containers/openshiftd/ose-grafana/5cdc17d55a13467289f58321
o https://catalog.redhat.com/software/containers/openshift4/ose-prometheus/5cdc1e585a13467289f584 1a
o https://catalog.redhat.com/software/containers/openshift4/ose-prometheus-alertmanager/5cdcletbbed8bd5717d60b17

The following configuration settings can be applied to properly configure the image prefix, name and tag as needed to use the RedHat
certified containers:

Name Default Required Description

alertmanager_image_prefix prom Required Configure the image prefix to use for the Alertmanager container.
alertmanager_image_name alertmanager Required Configure the image name to use for the Alertmanager container.
alertmanager_image_tag v0.21.0 Required Configures the image tag to use for the Alertmanager container.
grafana_image_prefix grafana Required Configures the image prefix to use for the Grafana container.
grafana_image_name grafana Required Configures the image name to use for the Grafana container.
grafana_image_tag 7.4.5 Required Configures the image tag to use for the Grafana container.
prometheus_image_prefix prom Required Configures the image prefix to use for the Prometheus container.
prometheus_image_name promtheus Required Configures the image name to use for the Prometheus container.
prometheus_image_tag v2.26.1 Required Configures the image tag to use for the Prometheus container.

Additionally, these same settings can be utilized as needed to support custom image names, tags, and additional container registries.

Helm Only Configuration Settings

When using Helm, the following settings can be defined to control the image prefix and image tag utilized for the pgo-deployer container
that is run to install, update or uninstall the PostgreSQL Operator Monitoring infrastructure:

https://github.com/CrunchyData/pgmonitor/blob/master/prometheus/crunchy-alertmanager.yml
https://prometheus.io/docs/alerting/latest/configuration/
https://hub.docker.com/

Name Default Required Description

pgo_image_prefix registry.developers.crunchydata.com/crunchydata Required Configures the image prefix used by the

pgo_image_tag {{< param centosBase >}}-{{< param operatorVersion >}} Required Configures the image tag used by the p

This section provides additional methods for installing the PostgreSQL Operator Metrics infrastructure.

The PostgreSQL Operator Monitoring Helm Chart

Overview

The PostgreSQL Operator comes with a container called pgo-deployer which handles a variety of lifecycle actions for the PostgreSQL
Operator Monitoring infrastructure, including:

o Installation
o Upgrading
e Uninstallation

After configuring the values.yaml file with you configuration options, the installer will be run using the helm command line tool and
takes care of setting up all of the objects required to run the PostgreSQL Operator.

The PostgreSQL Operator Monitoring Helm chart is available in the Helm directory in the PostgreSQL Operator repository.

Requirements
RBAC

The Helm chart will create the ServiceAccount, ClusterRole, and ClusterRoleBinding that are required to run the pgo-deployer. If you
have already configured the ServiceAccount and ClusterRoleBinding for the installation process (e.g. from a previous installation), you
can disable their creation using the rbac.create and serviceAccount.create variables in the values.yaml file. If these options are
disabled, you must provide the name of your preconfigured ServiceAccount using serviceAccount.name.

Namespace
In order to install the PostgreSQL Operator using the Helm chart you will need to first create the namespace in which the pgo-deployer
will be run. By default, it will run in the namespace that is provided to helm at the command line.

kubectl create namespace <namespace>
helm install postgres-operator-metrics -n <namespace> /path/to/chart_dir

Config Map

The pgo-deployer uses a Kubernetes ConfigMap to pass configuration options into the installer. The values in your values.yaml file
will be used to populate the configuation options in the ConfigMap.

Configuration - values.yaml
The values.yaml file contains all of the configuration parameters for deploying the PostgreSQL Operator Monitoring infrastructure. The
values.yaml file contains the defaults that should work in most Kubernetes environments, but it may require some customization.

Note that in OpenShift and CodeReady Containers you will need to set the disable_fsgroup to true attribute to true if you are using
the restricted Security Context Constraint (SCC). If you are using the anyuid SCC, you will need to set disable_fsgroup to false.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Monitoring Installer Configuration
Reference](<{{< relref “/installation/metrics/metrics-configuration.md”>}}>)

https://github.com/CrunchyData/postgres-operator/tree/master/installers/metrics/helm
https://kubernetes.io/docs/concepts/configuration/configmap/
https://github.com/CrunchyData/postgres-operator/blob/master/installers/metrics/helm/values.yaml

Installation

Once you have configured the PostgreSQL Operator Monitoring installer to your specification, you can install the PostgreSQL Operator
Monitoring infrastructure with the following command:

helm install <name> -n <namespace> /path/to/chart_dir

Take note of the name used when installing, this name will be used to upgrade and uninstall the PostgreSQL Operator.

Upgrade and Uninstall

Once install has be completed using Helm, it will also be used to upgrade and uninstall your PostgreSQL Operator.

The name and namespace in the following sections should match the options provided at install.

Upgrade

To make changes to your deployment of the PostgreSQL Operator you will use the helm upgrade command. Once the configuration
changes have been made to you values.yaml file, you can run the following command to implement them in the deployment:

helm upgrade <name> -n <namespace> /path/to/updated_chart

Uninstall

To uninstall the PostgreSQL Operator you will use the helm uninstall command. This will uninstall the operator and clean up resources
used by the pgo-deployer.

helm uninstall <name> -n <namespace>

Debugging

When the pgo-deployer job does not complete successfully, the resources that are created and normally cleaned up by Helm will be left
in your Kubernetes cluster. This will allow you to use the failed job and its logs to debug the issue. The following command will show
the logs for the pgo-deployer job:

kubectl logs -n <namespace> job.batch/pgo-metrics-deploy

You can also view the logs as the job is running by using the kubectl -f follow flag:
kubectl logs -n <namespace> job.batch/pgo-metrics-deploy -f
These logs will provide feedback if there are any misconfigurations in your install. Once you have finished debugging the failed job and

fixed any configuration issues, you can take steps to re-run your install, upgrade, or uninstall. By running another command the resources
from the failed install will be cleaned up so that a successfull install can run.

PGO: Postgres Operator Monitoring Playbooks

PGO, the Postgres Operator from Crunchy Data, Monitoring Playbooks contain Ansible roles for installing and managing the [Crunchy
Data PostgreSQL Operator Monitoring infrastructure]({{< relref “/installation/other/ansible/installing-operator.md” >}}).

Features

The playbooks provided allow users to:

o install PGO Monitoring on Kubernetes and OpenShift
o install PGO from a Linux, Mac or Windows (Ubuntu subsystem) host
e support a variety of deployment models

https://www.ansible.com/

Resources

e Ansible
e Crunchy Data
e Crunchy Data PostgreSQL Operator Project

Prerequisites
The following is required prior to installing the Crunchy PostgreSQL Operator Monitoring infrastructure using Ansible:

e postgres-operator playbooks source code for the target version
e Ansible 2.9.0+

Kubernetes Installs

e Kubernetes v1.11+
e Cluster admin privileges in Kubernetes
e kubectl configured to communicate with Kubernetes

OpenShift Installs

e OpenShift v3.11+
e Cluster admin privileges in OpenShift
e oc configured to communicate with OpenShift

Installing from a Windows Host

If the Crunchy PostgreSQL Operator is being installed from a Windows host the following are required:

o Windows Subsystem for Linux (WSL)
o Ubuntu for Windows

Permissions

The installation of the Crunchy PostgreSQL Operator Monitoring infrastructure requires elevated privileges, as the following objects need
to be created:

o RBAC for use by Prometheus and/or Grafana
e The metrics namespace

Obtaining Operator Ansible Role

e Clone the postgres-operator project

GitHub Installation

All necessary files (inventory.yaml, values.yaml, main playbook and roles) can be found in the installers/metrics/ansible directory
in the source code.

Configuring the Inventory File
The inventory.yaml file included with the PostgreSQL Operator Monitoring Playbooks allows installers to configure how Ansible will
connect to your Kubernetes cluster. This file should contain the following connection variables:

You will have to uncomment out either the kubernetes or openshift variables if you are being using them for your environment. Both
sets of variables cannot be used at the same time. The unused variables should be left commented out or removed.

https://www.ansible.com/
https://www.crunchydata.com/
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator/tree/master/installers/metrics/ansible
https://github.com/CrunchyData/postgres-operator

Name Default Required Description

kubernetes_context Required, if deploying to Kubernetes When deploying to Kubernetes, set to configure the co
openshift_host Required, if deploying to OpenShift =~ When deploying to OpenShift, set to configure the hos
openshift_password Required, if deploying to OpenShift When deploying to OpenShift, set to configure the pas
openshift_skip_tls_verify Required, if deploying to OpenShift When deploying to Openshift, set to ignore the integri
openshift_token Required, if deploying to OpenShift =~ When deploying to OpenShift, set to configure the tok
openshift_user Required, if deploying to OpenShift =~ When deploying to OpenShift, set to configure the use

To retrieve the kubernetes_context value for Kubernetes installs, run the following command:

kubectl config current-context

Configuring - values.yaml

The values.yaml file contains all of the configuration parameters for deploying the PostgreSQL Operator Monitoring infrastructure. The
example file contains defaults that should work in most Kubernetes environments, but it may require some customization.

Note that in OpenShift and CodeReady Containers you will need to set the disable_fsgroup to true attribute to true if you are using
the restricted Security Context Constraint (SCC). If you are using the anyuid SCC, you will need to set disable_fsgroup to false.

For a detailed description of each configuration parameter, please read the [PostgreSQL Operator Installer Metrics Configuration Refer-
ence](<{{< relref “/installation/metrics/metrics-configuration.md”>}}>)

Installing the Monitoring Infrastructure

PostgreSQL clusters created by the Crunchy PostgreSQL Operator can optionally be configured to serve performance metrics via
Prometheus Exporters. The metric exporters included in the database pod serve realtime metrics for the database container. In order to
store and view this data, Grafana and Prometheus are required. The Crunchy PostgreSQL Operator does not create this infrastructure,
however, they can be installed using the provided Ansible roles.

Prerequisites

The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now install the PostgreSQL Operator.

Installing on Linux

On a Linux host with Ansible installed we can run the following command to install the Metrics stack:

ansible-playbook -i /path/to/inventory.yaml --tags=install-metrics main.yml

Installing on macOS

On a macOS host with Ansible installed we can run the following command to install the Metrics stack:

ansible-playbook -i /path/to/inventory.yaml --tags=install-metrics main.yml

Installing on Windows

On a Windows host with the Ubuntu subsystem we can run the following commands to install the Metrics stack:

ansible-playbook -i /path/to/inventory.yaml --tags=install-metrics main.yml

https://github.com/CrunchyData/postgres-operator/blob/v\protect \char "007B\relax \protect \char "007B\relax \char "003C\relax {}%20param%20operatorVersion%20\char "003E\relax {}\protect \char "007D\relax \protect \char "007D\relax /installers/metrics/ansible/values.yaml

Verifying the Installation

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <metrics_namespace>
kubectl get pods -n <metrics_namespace>

OpenShift
oc get deployments -n <metrics_namespace>
oc get pods -n <metrics_namespace>

Verify Alertmanager

In a separate terminal we need to setup a port forward to the Crunchy Alertmanager deployment to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes

kubectl port-forward -n <METRICS_NAMESPACE> svc/crunchy-alertmanager 9093:9093

If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/crunchy-alertmanager 9093:9093

In a browser navigate to http://127.0.0.1:9093 to access the Alertmanager dashboard.

Verify Grafana

In a separate terminal we need to setup a port forward to the Crunchy Grafana deployment to ensure connection can be made outside of
the cluster:

If deployed to Kubernetes

kubectl port-forward -n <METRICS_NAMESPACE> svc/crunchy-grafana 3000:3000

If deployed to UpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/crunchy-grafana 3000:3000
In a browser navigate to http://127.0.0.1:3000 to access the Grafana dashboard.

No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters, run the following command
following installation of the PostgreSQL Operator:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>

Verify Prometheus
In a separate terminal we need to setup a port forward to the Crunchy Prometheus deployment to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes
kubectl port-forward -n <METRICS_NAMESPACE> svc/crunchy-prometheus 9090:9090

If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/crunchy-prometheus 9090:9090

In a browser navigate to http://127.0.0.1:9090 to access the Prometheus dashboard.
No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the following command:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>

[ansible-prerequisites]: {{< relref “/installation/metrics/other/ansible/metrics-prerequisites.md” >}}

Updating the Monitoring Infrastructure

Updating the PostgreSQL Operator Monitoring infrastrcutre is essential to the lifecycle management of the service. Using the
update-metrics flag will:

Update and redeploy the monitoring infrastructure deployments

o Recreate configuration maps and/or secrets used by the monitoring infrastructure
o Remove any deprecated objects

e Allow administrators to change settings configured in the values.yaml

The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now update the PostgreSQL Operator.

The commands should be run in the directory where the Crunchy PostgreSQL Operator playbooks is stored. See the ansible directory
in the Crunchy PostgreSQL Operator project for the inventory file, values file, main playbook and ansible roles.

Updating on Linux

On a Linux host with Ansible installed we can run the following command to update
the PostgreSQL Operator:

ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Updating on macOS

On a macOS host with Ansible installed we can run the following command to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Updating on Windows Ubuntu Subsystem
On a Windows host with an Ubuntu subsystem we can run the following commands to update
the PostgreSQL Operator.

ansible-playbook -i /path/to/inventory.yaml --tags=update --ask-become-pass main.yml

Verifying the Update

This may take a few minutes to deploy. To check the status of the deployment run the following:

Kubernetes
kubectl get deployments -n <metrics_namespace>
kubectl get pods -n <metrics_namespace>

OpenShift
oc get deployments -n <metrics_namespace>
oc get pods -n <metrics_namespace>

Verify Alertmanager

In a separate terminal we need to setup a port forward to the Crunchy Alertmanager deployment to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes

kubectl port-forward -n <METRICS_NAMESPACE> svc/crunchy-alertmanager 9093:9093

If deployed to UOpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/crunchy-alertmanager 9093:9093

In a browser navigate to http://127.0.0.1:9093 to access the Alertmanager dashboard.

Verify Grafana

In a separate terminal we need to setup a port forward to the Crunchy Grafana deployment to ensure connection can be made outside of
the cluster:

If deployed to Kubernetes

kubectl port-forward -n <METRICS_NAMESPACE> svc/crunchy-grafana 3000:3000

If deployed to OpenShift
oc port-forward -n <METRICS_NAMESPACE> svc/crunchy-grafana 3000:3000
In a browser navigate to http://127.0.0.1:3000 to access the Grafana dashboard.

No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters, run the following command
following installation of the PostgreSQL Operator:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>

Verify Prometheus

In a separate terminal we need to setup a port forward to the Crunchy Prometheus deployment to ensure connection can be made outside
of the cluster:

If deployed to Kubernetes

kubectl port-forward -n <METRICS_NAMESPACE> svc/crunchy-prometheus 9090:9090

If deployed to OpenShift

oc port-forward -n <METRICS_NAMESPACE> svc/crunchy-prometheus 9090:9090

In a browser navigate to http://127.0.0.1:9090 to access the Prometheus dashboard.

No metrics will be scraped if no exporters are available. To create a PostgreSQL cluster with metric exporters run the following command:

pgo create cluster <NAME OF CLUSTER> --metrics --namespace=<NAMESPACE>

[ansible-prerequisites]: {{< relref “/installation/metrics/other/ansible/metrics-prerequisites.md” >}}

Uninstalling the Monitoring Infrastructure

The following assumes the proper [prerequisites are satisfied][ansible-prerequisites] we can now uninstall the PostgreSQL Operator Moni-
toring infrastructure.

First, it is recommended to use the playbooks tagged with the same version of the Metrics infratructure currently deployed.
With the correct playbooks acquired and prerequisites satisfied, simply run the following command:

ansible-playbook -i /path/to/inventory.yaml --tags=uninstall-metrics main.yml

[ansible-prerequisites]: {{< relref “/installation/metrics/other/ansible/metrics-prerequisites.md” >}}

The PostgreSQL Operator Client, aka pgo, is the most convenient way to interact with the Postgres Operator. pgo provides many
convenience methods for creating, managing, and deleting PostgreSQL clusters through a series of simple commands. The pgo client
interfaces with the API that is provided by the PostgreSQL Operator and can leverage the RBAC and TLS systems that are provided by
the PGO: PostgreSQL Operator.

The pgo client is available for Linux, macOS, and Windows, as well as a pgo-client container that can be deployed alongside the
PostgreSQL Operator.

You can download pgo from the releases page, or have it installed in your preferred binary format or as a container in your Kubernetes
cluster using the Ansible Installer.

General Notes on Using the pgo Client

Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool
when managing PostgreSQL deployments across many Kubernetes namespaces, this can become onerous for the intents of this guide.

If you install the PostgreSQL Operator using the quickstart guide, you will install the PostgreSQL Operator to a namespace called pgo.
We can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global
pgo Client reference,

https://github.com/crunchydata/postgres-operator/releases

L@

PGO Client
(Linux)
API Server
PGO Client TR g Operator
(Mac)
)
g Scheduler
PP ——
PGO Client
(Windows)

&
I
i
¥

Kubernetes

Custom Resource Definitions

—— Container Suite ———

primary

PostgreSQL Pgbouncer

replica
PostgreSQL

pgbackrest

kubectl / helm / ki

Crunchy Data
I I I I Containers
Container Registry

For convenience, we will use the pgo namespace in the examples below. For even more convenience, we recommend setting pgo to be the

Cluster PVC

A Storage

""""""""""""""" (111111 Persistent Disk

Figure 31: Architecture

External Application
accessing the DB

value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:

export PGO_NAMESPACE=pgo

If you do not wish to set this environmental variable, or are in an environment where you are unable to use environmental variables, you
will have to use the --namespace (or -n) flag for most commands, e.g.

pgo version -n pgo

Syntax

The syntax for pgo is similar to what you would expect from using the kubectl or oc binaries. This is by design: one of the goals of the
PostgreSQL Operator project is to allow for seamless management of PostgreSQL clusters in Kubernetes-enabled environments, and by

following the command patterns that users are familiar with, the learning curve is that much easier!

To get an overview of everything that is available at the top-level of pgo, execute:

pgo

The syntax for the commands that pgo executes typicall follow this format:

pgo [command] ([TYPE] [NAME]) [flags]

Where command is a verb like:

e cCreate
e show
e delete

And type is a resource type like:

e cluster
e backup

e user

And name is the name of the resource type like:

e hacluster

e gisdba

There are several global flags that are available to every pgo command as well as flags that are specific to particular commands. To get
a list of all the options and flags available to a command, you can use the ——help flag. For example, to see all of the options available to
the pgo create cluster command, you can run the following:

pgo create cluster --help

Command Overview

The following table provides an overview of the commands that the pgo client provides:

Operation Syntax Description

apply pgo apply mypolicy --selector=name=mycluster Apply a SQL policy on a Postgres cluster(s) that have a label mat
backup pgo backup mycluster Perform a backup on a Postgres cluster(s)

cat pgo cat mycluster filepath Perform a Linux cat command on the cluster.

create pgo create cluster mycluster Create an Operator resource type (e.g. cluster, policy, schedule, us
delete pgo delete cluster mycluster Delete an Operator resource type (e.g. cluster, policy, user, schedu
df pgo df mycluster Display the disk status/capacity of a Postgres cluster.

failover pgo failover mycluster Perform a manual failover of a Postgres cluster.

help pgo help Display general pgo help information.

label pgo label mycluster --label=environment=prod Create a metadata label for a Postgres cluster(s).

reload pgo reload mycluster Perform a pg_ctl reload command on a Postgres cluster(s).
restore pgo restore mycluster Perform a pgbackrest or pgdump restore on a Postgres cluster.
scale pgo scale mycluster Create a Postgres replica(s) for a given Postgres cluster.
scaledown pgo scaledown mycluster --query Delete a replica from a Postgres cluster.

show pgo show cluster mycluster Display Operator resource information (e.g. cluster, user, policy, sc
status pgo status Display Operator status.

test pgo test mycluster Perform a SQL test on a Postgres cluster(s).

update pgo update cluster mycluster --disable-autofail Update a Postgres cluster(s), pgouser, pgorole, user, or namespace
upgrade pgo upgrade mycluster Perform a minor upgrade to a Postgres cluster(s).

version pgo version Display Operator version information.

Global Flags

There are several global flags available to the pgo client.

NOTE: Flags take precedence over environmental variables.

Flag

Description

--apiserver-url

--debug

—-disable-tls

The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client. Note that the

Enable additional output for debugging.

Disable TLS authentication to the Postgres Operator.

—-exclude-os-trust
-h ,--help

-n ,-—namespace

Exclude CA certs from OS default trust store.
Print out help for a command command.

The namespace to execute the pgo command in. This is required for most pgo commands.

Flag Description

--pgo-ca-cert The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
--pgo-client-cert The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
--pgo-client-key The client key file path for authenticating to the PostgreSQL Operator apiserver.

Global Environment Variables

There are several environmental variables that can be used with the pgo client.

NOTE Flags take precedence over environmental variables.

Name Description

EXCLUDE_0S_TRUST Exclude CA certs from OS default trust store.
PGO_APISERVER_URL The URL for the PostgreSQL Operator apiserver that will process the request from the pgo client. Note that the U

PGO_CA_CERT The CA certificate file path for authenticating to the PostgreSQL Operator apiserver.
PGO_CLIENT_CERT The client certificate file path for authenticating to the PostgreSQL Operator apiserver.
PGO_CLIENT_KEY The client key file path for authenticating to the PostgreSQL Operator apiserver.
PGO_NAMESPACE The namespace to execute the pgo command in. This is required for most pgo commands.
PGOUSER The path to the pgouser file. Will be ignored if either PGOUSERNAME or PGOUSERPASS are set.
PGOUSERNAME The username (role) used for auth on the operator apiserver. Requires that PGOUSERPASS be set.
PGOUSERPASS The password for used for auth on the operator apiserver. Requires that PGOUSERNAME be set.

Additional Information

How can you use the pgo client to manage your day-to-day PostgreSQL operations? The next section covers many of the common types
of tasks that one needs to perform when managing production PostgreSQL clusters. Beyond that is the full reference for all the available
commands and flags for the pgo client.

e Common pgo Client Tasks
o pgo Client Reference

While the full pgo client reference will tell you everything you need to know about how to use pgo, it may be helpful to see several examples
on how to conduct “day-in-the-life” tasks for administrating PostgreSQL cluster with the PostgreSQL Operator.

The below guide covers many of the common operations that are required when managing PostgreSQL clusters. The guide is broken up
by different administrative topics, such as provisioning, high-availability, etc.

Setup Before Running the Examples
Many of the pgo client commands require you to specify a namespace via the -n or --namespace flag. While this is a very helpful tool
when managing PostgreSQL deployxments across many Kubernetes namespaces, this can become onerous for the intents of this guide.

If you install the PostgreSQL Operator using the quickstart guide, you will install the PostgreSQL Operator to a namespace called pgo.
We can choose to always use one of these namespaces by setting the PGO_NAMESPACE environmental variable, which is detailed in the global
pgo Client reference,

For convenience, we will use the pgo namespace in the examples below. For even more convenience, we recommend setting pgo to be the
value of the PGO_NAMESPACE variable. In the shell that you will be executing the pgo commands in, run the following command:

export PGO_NAMESPACE=pgo
If you do not wish to set this environmental variable, or are in an environment where you are unable to use environmental variables, you
will have to use the ——namespace (or -n) flag for most commands, e.g.

pgo version -n pgo

JSON Output

The default for the pgo client commands is to output their results in a readable format. However, there are times where it may be helpful
to you to have the format output in a machine parseable format like JSON.

Several commands support the -o/--output flags that delivers the results of the command in the specified output. Presently, the only
output that is supported is json.

As an example of using this feature, if you wanted to get the results of the pgo test command in JSON, you could run the following:

pgo test hacluster -o json

PostgreSQL Operator System Basics

To get started, it’s first important to understand the basics of working with the PostgreSQL Operator itself. You should know how to
test if the PostgreSQL Operator is working, check the overall status of the PostgreSQL Operator, view the current configuration that the
PostgreSQL Operator us using, and seeing which Kubernetes Namespaces the PostgreSQL Operator has access to.

While this may not be as fun as creating high-availability PostgreSQL clusters, these commands will help you to perform basic trou-
bleshooting tasks in your environment.

Checking Connectivity to the PostgreSQL Operator

A common task when working with the PostgreSQL Operator is to check connectivity to the PostgreSQL Operator. This can be accomplish
with the pgo version command:

pgo version

which, if working, will yield results similar to:

pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Inspecting the PostgreSQL Operator Configuration

The pgo show config command allows you to view the current configuration that the PostgreSQL Operator is using. This can be helpful
for troubleshooting issues such as which PostgreSQL images are being deployed by default, which storage classes are being used, etc.

You can run the pgo show config command by running:

pgo show config

which yields output similar to:

BasicAuth: ""

Cluster:
CCPImagePrefix: crunchydata
CCPImageTag: {{< param centosBase >}}-{{< param postgresVersion >}}-{{< param operatorVersion >1}}
Policies: ""
Metrics: false
Badger: false
Port: "5432"
PGBadgerPort: "10000"
ExporterPort: "9187"
User: testuser
Database: userdb
PasswordAgeDays: "60"
PasswordLength: "8"
Replicas: "O"
ServiceType: ClusterIP
BackrestPort: 2022
Backrest: true
BackrestS3Bucket: ""
BackrestS3Endpoint: ""
BackrestS3Region: ""
BackrestS3URIStyle: ""

BackrestS3VerifyTLS: true
DisableAutofail: false
DisableReplicaStartFailReinit: false
PodAntiAffinity: preferred
SyncReplication: false
Pgo:
Audit: false
PGOImagePrefix: crunchydata
PGOImageTag: {{< param centosBase >}}-{{< param operatorVersion >1}}
PrimaryStorage: nfsstorage
BackupStorage: nfsstorage
ReplicaStorage: nfsstorage
BackrestStorage: nfsstorage
Storage:
nfsstorage:
AccessMode: ReadWriteMany
Size: 1G
StorageType: create
StorageClass: ""
SupplementalGroups: "65534"
MatchLabels: ""

Viewing PostgreSQL Operator Managed Namespaces
The PostgreSQL Operator has the ability to manage PostgreSQL clusters across Kubernetes Namespaces. During the course of Operations,
it can be helpful to know which namespaces the PostgreSQL Operator can use for deploying PostgreSQL clusters.

You can view which namespaces the PostgreSQL Operator can utilize by using the pgo show namespace command. To list out the
namespaces that the PostgreSQL Operator has access to, you can run the following command:

pgo show namespace --all

which yields output similar to:

pgo username: admin

namespace useraccess installaccess
default accessible no access
kube-node-lease accessible no access
kube-public accessible no access
kube-system accessible no access
pgo accessible no access
pgouserl accessible accessible
pgouser?2 accessible accessible
somethingelse no access no access

NOTE: Based on your deployment, your Kubernetes administrator may restrict access to the multi-namespace feature of the PostgreSQL
Operator. In this case, you do not need to worry about managing your namespaces and as such do not need to use this command, but we
recommend setting the PGO_NAMESPACE variable as described in the general notes on this page.

Provisioning: Create, View, Destroy
Creating a PostgreSQL Cluster

You can create a cluster using the pgo create cluster command:

pgo create cluster hacluster

which if successfully, will yield output similar to this:

created Pgcluster hacluster
workflow id ae714d12-f5d4d0-4fa9-910f-21944b41dec8

Create a PostgreSQL Cluster with Different PVC Sizes You can also create a PostgreSQL cluster with an arbitrary PVC size
using the pgo create cluster command. For example, if you want to create a PostgreSQL cluster with with a 128GB PVC, you can
use the following command:

pgo create cluster hacluster --pvc-size=128Gi

The above command sets the PVC size for all PostgreSQL instances in the cluster, i.e. the primary and replicas.

This also extends to the size of the pgBackRest repository as well, if you are using the local Kubernetes cluster storage for your backup
repository. To create a PostgreSQL cluster with a pgBackRest repository that uses a 1TB PVC, you can use the following command:

pgo create cluster hacluster --pgbackrest-pvc-size=1Ti

Specify CPU / Memory for a PostgreSQL Cluster To specify the amount of CPU and memory to request for a PostgreSQL
cluster, you can use the —-cpu and --memory flags of the pgo create cluster command. Both of these values utilize the Kubernetes
quantity format for specifying how to allocate resources.

For example, to create a PostgreSQL cluster that requests 4 CPU cores and has 16 gibibytes of memory, you can use the following
command:

pgo create cluster hacluster --cpu=4 --memory=16Gi

Create a PostgreSQL Cluster with PostGIS To create a PostgreSQL cluster that uses the geospatial extension PostGIS, you can
execute the following command, updated with your desired image tag. In the example below, the cluster will use PostgreSQL {{< param
postgresVersion >}} and PostGIS {{< param postgisVersion >}}:

pgo create cluster hagiscluster \
--ccp-image=crunchy-postgres-gis-ha \
--ccp-image-tag={{< param centosBase >}}-{{< param postgresVersion >}}-{{< param postgisVersion
>}}-{{< param operatorVersion >}}

Create a PostgreSQL Cluster with a Tablespace Tablespaces are a PostgreSQL feature that allows a user to select specific volumes
to store data to, which is helpful in several types of scenarios. Often your workload does not require a tablespace, but the PostgreSQL
Operator provides support for tablespaces throughout the lifecycle of a PostgreSQL cluster.

To create a PostgreSQL cluster that uses the tablespace feature with NFS storage, you can execute the following command:

pgo create cluster hactsluster --tablespace=name=tsl:storageconfig=nfsstorage

You can use your preferred storage engine instead of nfsstorage. For example, to create multiple tablespaces on GKE, you can execute
the following command:

pgo create cluster hactsluster \
--tablespace=name=tsl:storageconfig=gce \
--tablespace=name=ts2:storageconfig=gce

Tablespaces are immediately available once the PostgreSQL cluster is provisioned. For example, to create a table using the tablespace
ts1, you can run the following SQL on your PostgreSQL cluster:

CREATE TABLE sensor_data (
id int GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
sensorl numeric,
sensor2?2 numeric,
sensor3 numeric,
sensor4 numeric
)
TABLESPACE tsli;

You can also create tablespaces that have different sized PVCs from the ones defined in the storage specification. For instance, to create
two tablespaces, one that uses a 10GiB PVC and one that uses a 20GiB PVC, you can execute the following command:

pgo create cluster hactsluster \
--tablespace=name=tsl:storageconfig=gce:pvcsize=10Gi \
-—-tablespace=name=ts2:storageconfig=gce:pvcsize=20Gi

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Create a PostgreSQL Cluster Using a Backup from Another PostgreSQL Cluster It is also possible to create a new PostgreSQL
Cluster using a backup from another PostgreSQL cluster. To do so, simply specify the cluster containing the backup that you would like
to utilize using the restore-from option:

pgo create cluster hacluster2 --restore-from=haclusterl

When using this approach, a pgbackrest restore will be performed using the pgBackRest repository for the restore-from cluster
specified in order to populate the initial PGDATA directory for the new PostgreSQL cluster. By default, pgBackRest will restore to the
latest backup available and replay all WAL. However, a restore-opts option is also available that allows the restore command to be
further customized, e.g. to perform a point-in-time restore and/or restore from an S3 storage bucket:

pgo create cluster hacluster2 \
--restore-from=haclusterl \
--restore-opts="--repo-type=s3 --type=time --target='2020-07-02 20:19:36.13557+00"'"

Tracking a Newly Provisioned Cluster A new PostgreSQL cluster can take a few moments to provision. You may have noticed that
the pgo create cluster command returns something called a “workflow id”. This workflow ID allows you to track the progress of your
new PostgreSQL cluster while it is being provisioned using the pgo show workflow command:

pgo show workflow ae714d12-f5d0-4fa9-910f-21944b41dec8

which can yield output similar to:

parameter value

pg-cluster hacluster

task completed 2019-12-27T02:10:147Z

task submitted 2019-12-27T02:09:46Z

workflowid ae714d12-£f5d0-4£fa9-910£f-21944b41dec8

View PostgreSQL Cluster Details

To see details about your PostgreSQL cluster, you can use the pgo show cluster command. These details include elements such as:

e The version of PostgreSQL that the cluster is using

e The PostgreSQL instances that comprise the cluster

e The Pods assigned to the cluster for all of the associated components, including the nodes that the pods are assigned to
o The Persistent Volume Claims (PVC) that are being consumed by the cluster

e The Kubernetes Deployments associated with the cluster

e The Kubernetes Services associated with the cluster

e The Kubernetes Labels that are assigned to the PostgreSQL instances

and more.
You can view the details of the cluster by executing the following command:

pgo show cluster hacluster

which will yield output similar to:

cluster : hacluster (crunchy-postgres-ha:{{< param centosBase >}}-{{< param postgresVersion
>}}-{{< param operatorVersion >}})
pod : hacluster-6dc6cfcfb9-f9knq (Running) on nodeO1 (1/1) (primary)
pvc : hacluster
resources : CPU Limit= Memory Limit=, CPU Request= Memory Request=
storage : Primary=200M Replica=200M
deployment : hacluster

deployment : hacluster-backrest-shared-repo
service : hacluster - ClusterIP (10.102.20.42)
labels : archive-timeout=60 deployment-name=hacluster pg-cluster=hacluster

crunchy-pgha-scope=hacluster pgo-version={{< param operatorVersion >}}
current -primary=hacluster name=hacluster pgouser=admin
workflowid=ae714d12-f5d0-4fa9-910f-21944b41dec8

Deleting a Cluster

You can delete a PostgreSQL cluster that is managed by the PostgreSQL Operator by executing the following command:

pgo delete cluster hacluster

This will remove the cluster from being managed by the PostgreSQL Operator, as well as delete the root data Persistent Volume Claim
(PVC) and backup PVCs associated with the cluster.

If you wish to keep your PostgreSQL data PVC, you can delete the cluster with the following command:

pgo delete cluster hacluster --keep-data

You can then recreate the PostgreSQL cluster with the same data by using the pgo create cluster command with a cluster of the same
name:

pgo create cluster hacluster

This technique is used when performing tasks such as upgrading the PostgreSQL Operator.

You can also keep the pgBackRest repository associated with the PostgreSQL cluster by using the --keep-backups flag with the pgo
delete cluster command:

pgo delete cluster hacluster --keep-backups

Testing PostgreSQL Cluster Availability

You can test the availability of your cluster by using the pgo test command. The pgo test command checks to see if the Kubernetes
Services and the Pods that comprise the PostgreSQL cluster are available to receive connections. This includes:

e Testing that the Kubernetes Endpoints are available and able to route requests to healthy Pods
e Testing that each PostgreSQL instance is available and ready to accept client connections by performing a connectivity check similar
to the one performed by pg_isready

To test the availability of a PostgreSQL cluster, you can run the following command:

pgo test hacluster

which will yield output similar to:

cluster : hacluster
Services
primary (10.102.20.42:5432): UP
Instances
primary (hacluster-6dc6cfcfb9-£f9knqg): UP

Disaster Recovery: Backups & Restores

The PostgreSQL Operator supports sophisticated functionality for managing your backups and restores. For more information for how
this works, please see the disaster recovery guide.

Creating a Backup

The PostgreSQL Operator uses the open source pgBackRest backup and recovery utility for managing backups and PostgreSQL archives.
These backups are also used as part of managing the overall health and high-availability of PostgreSQL clusters managed by the PostgreSQL
Operator and used as part of the cloning process as well.

When a new PostgreSQL cluster is provisioned by the PostgreSQL Operator, a full pgBackRest backup is taken by default. This is required
in order to create new replicas (via pgo scale) for the PostgreSQL cluster as well as healing during a failover scenario.

To create a backup, you can run the following command:
pgo backup hacluster
which by default, will create an incremental pgBackRest backup. The reason for this is that the PostgreSQL Operator initially creates a

pgBackRest full backup when the cluster is initial provisioned, and pgBackRest will take incremental backups for each subsequent backup
until a different backup type is specified.

Most pgBackRest options are supported and can be passed in by the PostgreSQL Operator via the ——backup-opts flag. What follows are
some examples for how to utilize pgBackRest with the PostgreSQL Operator to help you create your optimal disaster recovery setup.

https://www.pgbackrest.org

Creating a Full Backup You can create a full backup using the following command:

pgo backup hacluster --backup-opts="--type=full"

Creating a Differential Backup You can create a differential backup using the following command:

pgo backup hacluster --backup-opts="--type=diff"

Creating an Incremental Backup You can create a differential backup using the following command:

pgo backup hacluster --backup-opts="--type=incr"

An incremental backup is created without specifying any options after a full or differential backup is taken.

Creating Backups in S3

The PostgreSQL Operator supports creating backups in S3 or any object storage system that uses the S3 protocol. For more information,
please read the section on PostgreSQL Operator Backups with S3 in the architecture section.

Displaying Backup Information
You can see information about the current state of backups in a PostgreSQL cluster managed by the PostgreSQL Operator by executing
the following command:

pgo show backup hacluster

Setting Backup Retention
By default, pgBackRest will allow you to keep on creating backups until you run out of disk space. As such, it may be helpful to manage
how many backups are retained.

pgBackRest comes with several flags for managing how backups can be retained:

e —-repol-retention-full: how many full backups to retain
o —-repol-retention-diff: how many differential backups to retain
e —-repol-retention-archive: how many sets of WAL archives to retain alongside the full and differential backups that are retained

For example, to create a full backup and retain the previous 7 full backups, you would execute the following command:

pgo backup hacluster --backup-opts="--type=full --repol-retention-full=T7"

Scheduling Backups

Any effective disaster recovery strategy includes having regularly scheduled backups. The PostgreSQL Operator enables this through its
scheduling sidecar that is deployed alongside the Operator.

Creating a Scheduled Backup For example, to schedule a full backup once a day at midnight, you can execute the following command:
pgo create schedule hacluster --schedule="0 1 * * *" \

--schedule-type=pgbackrest --pgbackrest-backup-type=full
To schedule an incremental backup once every 3 hours, you can execute the following command:
pgo create schedule hacluster --schedule="0 */3 * * *" \

--schedule-type=pgbackrest --pgbackrest-backup-type=incr
You can also create regularly scheduled backups and combine it with a retention policy. For example, using the above example of taking
a nightly full backup, you can specify a policy of retaining 21 backups by executing the following command:

pgo create schedule hacluster --schedule="0 0 * * *" \
--schedule-type=pgbackrest --pgbackrest-backup-type=full \
--schedule-opts="--repol-retention-full=21"

Restore a Cluster

The PostgreSQL Operator supports the ability to perform a full restore on a PostgreSQL cluster (i.e. a “clone” or “copy”) as well as a
point-in-time-recovery. There are two types of ways to restore a cluster:

o Restore to a new cluster using the —~—restore-from flag in the pgo create cluster({{< relref “/pgo-client /reference/pgo_ create_ clus
>1}1}) command. This is effectively a clone or a copy.

o Restore in-place using the [pgo restore]({{< relref “/pgo-client/reference/pgo_restore.md” >}}) command. Note that this is
destructive.

It is typically better to perform a restore to a new cluster, particularly when performing a point-in-time-recovery, as it can allow you to
more effectively manage your downtime and avoid making undesired changes to your production data.

Additionally, the “restore to a new cluster” technique works so long as you have a pgBackRest repository available: the pgBackRest
repository does not need to be attached to an active cluster! For example, if a cluster named hippo was deleted as such:

pgo delete cluster hippo --keep-backups

you can create a new cluster from the backups like so:
pgo create cluster datalake --restore-from=hippo

Below provides guidance on how to perform a restore to a new PostgreSQL cluster both as a full copy and to a specific point in time.
Additionally, it also shows how to restore in place to a specific point in time.

Restore to a New Cluster (aka “copy” or “clone”) Restoring to a new PostgreSQL cluster allows one to take a backup and create
a new PostgreSQL cluster that can run alongside an existing PostgreSQL cluster. There are several scenarios where using this technique
is helpful:

e Creating a copy of a PostgreSQL cluster that can be used for other purposes. Another way of putting this is “creating a clone.”
e Restore to a point-in-time and inspect the state of the data without affecting the current cluster

and more.

Full Restore To create a new PostgreSQL cluster from a backup and restore it fully, you can execute the following command:

pgo create cluster newcluster --restore-from=oldcluster

Full Restore Across Namespaces To create a new PostgreSQL cluster from a backup in another namespace and restore it fully, you
can execute the following command:

pgo create cluster newcluster --restore-from=oldcluster --restore-from-namespace=oldnamespace

Point-in-time-Recovery (PITR) To create a new PostgreSQL cluster and restore it to specific point-in-time (e.g. before a key table
was dropped), you can use the following command, substituting the time that you wish to restore to:

pgo create cluster newcluster \
--restore-from oldcluster \
--restore-opts "--type=time --target='2019-12-31 11:59:59.999999+00"'"

When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections,
add pgBackRest’s --target-action=pause option to the --restore-opts parameter.

The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter.
For more information, please review the pgBackRest restore options

Restore in-place Restoring a PostgreSQL cluster in-place is a destructive action that will perform a recovery on your existing data
directory. This is accomplished using the [pgo restore|({{< relref “/pgo-client/reference/pgo_restore.md” >}}) command. The most
common scenario is to restore the database to a specific point in time.

https://pgbackrest.org/command.html#command-restore

Point-in-time-Recovery (PITR) The more likely scenario when performing a PostgreSQL cluster restore is to recover to a particular
point-in-time (e.g. before a key table was dropped). For example, to restore a cluster to December 31, 2019 at 11:59pm:

pgo restore hacluster --pitr-target="2019-12-31 11:59:59.999999+00" \

--backup-opts="--type=time"
When the restore is complete, the cluster is immediately available for reads and writes. To inspect the data before allowing connections,
add pgBackRest’s —-target-action=pause option to the -—-backup-opts parameter.

The PostgreSQL Operator supports the full set of pgBackRest restore options, which can be passed into the --backup-opts parameter.
For more information, please review the pgBackRest restore options

Using this technique, after a restore is complete, you will need to re-enable high availability on the PostgreSQL cluster manually. You can
re-enable high availability by executing the following command:

pgo update cluster hacluster --enable-autofail

Logical Backups (pg_dump / pg_dumpall)

The PostgreSQL Operator supports taking logical backups with pg_dump and pg_dumpall. While they do not provide the same performance
and storage optimizations as the physical backups provided by pgBackRest, logical backups are helpful when one wants to upgrade between
major PostgreSQL versions, or provide only a subset of a database, such as a table.

Create a Logical Backup To create a logical backup of the ‘postgres’ database, you can run the following command:

pgo backup hacluster --backup-type=pgdump

To create a logical backup of a specific database, you can use the --database flag, as in the following command:

pgo backup hacluster --backup-type=pgdump --database=mydb

You can pass in specific options to —-backup-opts, which can accept most of the options that the pg_dump command accepts. For example,
to only dump the data from a specific table called users:

pgo backup hacluster --backup-type=pgdump --backup-opts="-t users"

To use pg_dumpall to create a logical backup of all the data in a PostgreSQL cluster, you must pass the ——dump-all flag in —-backup-opts,
ie.:

pgo backup hacluster --backup-type=pgdump --backup-opts="--dump-all"

Viewing Logical Backups To view an available list of logical backups, you can use the pgo show backup command:
pgo show backup --backup-type=pgdump

This provides information about the PVC that the logical backups are stored on as well as the timestamps required to perform a restore
from a logical backup.

Restore from a Logical Backup To restore from a logical backup, you need to reference the PVC that the logical backup is stored
to, as well as the timestamp that was created by the logical backup.

You can restore a logical backup using the following command:

pgo restore hacluster --backup-type=pgdump --backup-pvc=hacluster-pgdump-pvc \
--pitr-target="2019-01-15-00-03-25" -n pgouserl

To restore to a specific database, add the --pgdump-database flag to the command from above:

pgo restore hacluster --backup-type=pgdump --backup-pvc=hacluster-pgdump-pvc \
--pgdump-database=mydb --pitr-target="2019-01-15-00-03-25" -n pgouserl

High-Availability: Scaling Up & Down

The PostgreSQL Operator supports a robust high-availability set up to ensure that your PostgreSQL clusters can stay up and running.
For detailed information on how it works, please see the high-availability architecture section.

https://pgbackrest.org/command.html#command-restore
https://www.postgresql.org/docs/current/app-pgdump.html

Creating a New Replica

To create a new replica, also known as “scaling up”, you can execute the following command:

pgo scale hacluster --replica-count=1

If you wanted to add two new replicas at the same time, you could execute the following command:

pgo scale hacluster --replica-count=2

Viewing Available Replicas
You can view the available replicas in a few ways. First, you can use pgo show cluster to see the overall information about the

PostgreSQL cluster:

pgo show cluster hacluster

You can also find specific replica names by using the --query flag on the pgo failover and pgo scaledown commands, e.g.:

pgo failover --query hacluster

Manual Failover

The PostgreSQL Operator is set up with an automated failover system based on distributed consensus, but there may be times where you
wish to have your cluster manually failover. There are two ways to issue a manual failover to your PostgreSQL cluster:

1. Allow for the PostgreSQL Operator to select the best replica candidate to failover to
2. Select your own replica candidate to failover to.

To have the PostgreSQL Operator select the best replica candidate for failover, all you need to do is execute the following command:
pgo failover hacluster

If you wish to have your cluster manually failover, you must first query your cluster to determine which failover targets are available. The
query command also provides information that may help your decision, such as replication lag:

pgo failover hacluster --query

Once you have selected the replica that is best for your to failover to, you can perform a failover with the following command:

pgo failover hacluster --target=hacluster-abcd

where hacluster-abcd is the name of the PostgreSQL instance that you want to promote to become the new primary.

Both methods perform the failover immediately upon execution.

Destroying a Replica To destroy a replica, first query the available replicas by using the --query flag on the pgo scaledown command,
ie.

pgo scaledown hacluster --query

Once you have picked the replica you want to remove, you can remove it by executing the following command:

pgo scaledown hacluster --target=hacluster-abcd

where hacluster-abcd is the name of the PostgreSQL replica that you want to destroy.

Monitoring
PostgreSQL Metrics via pgMonitor

You can view metrics about your PostgreSQL cluster using PostgreSQL Operator Monitoring({{< relref “/installation/metrics” >}}),
which uses open source pgMonitor. First, you need to install the PostgreSQL Operator Monitoring({{< relref “/installation/metrics”
>1}}) stack for your PostgreSQL Operator environment.

After that, you need to ensure that you deploy the crunchy-postgres-exporter with each PostgreSQL cluster that you deploy:
pgo create cluster hippo --metrics

For more information on how monitoring with the PostgreSQL Operator works, please see the Monitoring({{< relref “/architecture/mon-
itoring.md” >}}) section of the documentation.

https://github.com/CrunchyData/pgmonitor

View Disk Utilization

You can see a comparison of Postgres data size versus the Persistent volume claim size by entering the following:

pgo df hacluster -n pgouserl

Cluster Maintenance & Resource Management

There are several operations that you can perform to modify a PostgreSQL cluster over its lifetime.

Modify CPU / Memory for a PostgreSQL Cluster As database workloads change, it may be necessary to modify the CPU and
memory allocation for your PostgreSQL cluster. The PostgreSQL Operator allows for this via the --cpu and --memory flags on the
pgo update cluster command. Similar to the create command, both flags accept values that follow the Kubernetes quantity format.

For example, to update a PostgreSQL cluster to use 8 CPU cores and has 32 gibibytes of memory, you can use the following command:
pgo update cluster hacluster --cpu=8 --memory=32Gi

The resource allocations apply to all instances in a PostgreSQL cluster: this means your primary and any replicas will have the same
cluster resource allocations. Be sure to specify resource requests that your Kubernetes environment can support.

NOTE: This operation can cause downtime. Modifying the resource requests allocated to a Deployment requires that the Pods in a
Deployment must be restarted. Each PostgreSQL instance is safely shutdown using the “fast” shutdown method to help ensure it will not
enter crash recovery mode when a new Pod is created.

When the operation completes, each PostgreSQL instance will have the new resource allocations.

Adding a Tablespace to a Cluster Based on your workload or volume of data, you may wish to add a tablespace to your PostgreSQL
cluster.

You can add a tablespace to an existing PostgreSQL cluster with the pgo update cluster command. Adding a tablespace to a cluster
uses a similar syntax to creating a cluster with a tablespace, for example:

pgo update cluster hacluster \

--tablespace=name=tablespace3d:storageconfig=storageconfigname

NOTE: This operation can cause downtime. In order to add a tablespace to a PostgreSQL cluster, persistent volume claims (PVCs) need
to be created and mounted to each PostgreSQL instance in the cluster. The act of mounting a new PVC to a Kubernetes Deployment
causes the Pods in the deployment to restart.

Each PostgreSQL instance is safely shutdown using the “fast” shutdown method to help ensure it will not enter crash recovery mode when
a new Pod is created.

When the operation completes, the tablespace will be set up and accessible to use within the PostgreSQL cluster.

For more information on tablespaces, please visit the tablespace section of the documentation.

Clone a PostgreSQL Cluster

You can create a copy of an existing PostgreSQL cluster in a new PostgreSQL cluster by using the pgo create cluster({{< relref
“ /pgo-client /reference/pgo_ create_ cluster.md” >}}) command with the --restore-from flag (and, if needed, --restore-opts). The
command copies the pgBackRest repository from either an active PostgreSQL cluster, or a pgBackRest repository that exists from a
former cluster that was deleted using pgo delete cluster --keep-backups.

You can clone a PostgreSQL cluster by running the following command:
pgo create cluster newcluster --restore-from=oldcluster
By leveraging pgo create cluster, you are able to copy the data from a PostgreSQL cluster while creating the topology of a new cluster

the way you want to. For instance, if you want to copy data from an existing cluster that does not have metrics to a new cluster that
does, you can accomplish that with the following command:

pgo create cluster newcluster --restore-from=oldcluster --metrics

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://www.postgresql.org/docs/current/app-pg-ctl.html
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.postgresql.org/docs/current/app-pg-ctl.html

Clone a PostgreSQL Cluster to Different PVC Size

You can have a cloned PostgreSQL cluster use a different PVC size, which is useful when moving your PostgreSQL cluster to a larger
PVC. For example, to clone a PostgreSQL cluster to a 256GiB PVC, you can execute the following command:

pgo create cluster bighippo --restore-from=hippo --pvc-size=256Gi

You can also have the cloned PostgreSQL cluster use a larger pgBackRest backup repository by setting its PVC size. For example, to have
a cloned PostgreSQL cluster use a 1TiB pgBackRest repository, you can execute the following command:

pgo create cluster bighippo --restore-from=hippo --pgbackrest-pvc-size=1Ti

Enable TLS

TLS allows secure TCP connections to PostgreSQL, and the PostgreSQL Operator makes it easy to enable this PostgreSQL feature. The
TLS support in the PostgreSQL Operator does not make an opinion about your PKI, but rather loads in your TLS key pair that you wish
to use for the PostgreSQL server as well as its corresponding certificate authority (CA) certificate. Both of these Secrets are required to
enable TLS support for your PostgreSQL cluster when using the PostgreSQL Operator, but it in turn allows seamless TLS support.

Setup

There are three items that are required to enable TLS in your PostgreSQL clusters:

e A CA certificate
e A TLS private key
e A TLS certificate

There are a variety of methods available to generate these items: in fact, Kubernetes comes with its own certificate management system!
It is up to you to decide how you want to manage this for your cluster. The PostgreSQL documentation also provides an example for how
to generate a TLS certificate as well.

To set up TLS for your PostgreSQL cluster, you have to create two Secrets: one that contains the CA certificate, and the other that
contains the server TLS key pair.

First, create the Secret that contains your CA certificate. Create the Secret as a generic Secret, and note that the following requirements
must be met:

e The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster
e The name of the key that is holding the CA must be ca.crt

There are optional settings for setting up the CA secret:
« You can pass in a certificate revocation list (CRL) for the CA secret by passing in the CRL using the ca.crl key name in the Secret.

For example, to create a CA Secret with the trusted CA to use for the PostgreSQL clusters, you could execute the following command:

kubectl create secret generic postgresql-ca --from-file=ca.crt=/path/to/ca.crt

To create a CA Secret that includes a CRL, you could execute the following command:

kubectl create secret generic postgresql-ca \
--from-file=ca.crt=/path/to/ca.crt \
--from-file=ca.crl=/path/to/ca.crl
Note that you can reuse this CA Secret for other PostgreSQL clusters deployed by the PostgreSQL Operator.

Next, create the Secret that contains your TLS key pair. Create the Secret as a a TLS Secret, and note the following requirement must
be met:

e The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster

kubectl create secret tls hacluster-tls-keypair \
--cert=/path/to/server.crt \
--key=/path/to/server.key

Now you can create a TLS-enabled PostgreSQL cluster!

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://blog.crunchydata.com/blog/tls-postgres-kubernetes-openssl
https://kubernetes.io/docs/concepts/configuration/secret/

Create a TLS Enabled PostgreSQL Cluster

Using the above example, to create a TLS-enabled PostgreSQL cluster that can accept both TLS and non-TLS connections, execute the
following command:

pgo create cluster hacluster-tls \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hacluster-tls-keypair

Including the --server-ca-secret and --server-tls-secret flags automatically enable TLS connections in the PostgreSQL cluster
that is deployed. These flags should reference the CA Secret and the TLS key pair Secret, respectively.

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

Force TLS in a PostgreSQL Cluster

There are many environments where you want to force all remote connections to occur over TLS, for example, if you deploy your PostgreSQL
cluster’s in a public cloud or on an untrusted network. The PostgreSQL Operator lets you force all remote connections to occur over TLS
by using the --tls-only flag.

For example, using the setup above, you can force TLS in a PostgreSQL cluster by executing the following command:

pgo create cluster hacluster-tls-only \
--tls-only \
--server-ca-secret=postgresql-ca --server-tls-secret=hacluster-tls-keypair

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSvl.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

If you try to connect to a PostgreSQL cluster that is deployed using the --tls-only with TLS disabled (i.e. PGSSLMODE=disable), you
will receive an error that connections without TLS are unsupported.

TLS Authentication for PostgreSQL Replication

PostgreSQL supports certificate-based authentication, which allows for PostgreSQL to authenticate users based on the common name
(CN) in a certificate. Using this feature, the PostgreSQL Operator allows you to configure PostgreSQL replicas in a cluster to authenticate
using a certificate instead of a password.

To use this feature, first you will need to set up a Kubernetes TLS Secret that has a CN of primaryuser. If you do not wish to have this
as your CN; you will need to map the CN of this certificate to the value of primaryuser using a pg_ident username map, which you can
configure as part of a [custom PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}}).

You also need to ensure that the certificate is verifiable by the certificate authority (CA) chain that you have provided for your
PostgreSQL cluster. The CA is provided as part of the --server-ca-secret flag in the pgo create cluster({{< relref “/pgo-
client /reference/pgo_ create_cluster.md” >}}) command.

To create a PostgreSQL cluster that uses TLS authentication for replication, first create Kubernetes Secrets for the server and the
CA. For the purposes of this example, we will use the ones that were created earlier: postgresql-ca and hacluster-tls-keypair.
After generating a certificate that has a CN of primaryuser, create a Kubernetes Secret that references this TLS keypair called
hacluster-tls-replication-keypair:

kubectl create secret tls hacluster-tls-replication-keypair \
--cert=/path/to/replication.crt \
--key=/path/to/replication.key

We can now create a PostgreSQL cluster and allow for it to use TLS authentication for its replicas! Let’s create a PostgreSQL cluster
with two replicas that also requires TLS for any connection:

pgo create cluster hippo \
--tls-only \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hacluster-tls-keypair \
--replication-tls-secret=hacluster-tls-replication-keypair \
--replica-count=2

https://www.postgresql.org/docs/current/auth-cert.html
https://www.postgresql.org/docs/current/auth-username-maps.html

By default, the PostgreSQL Operator has each replica connect to PostgreSQL using a PostgreSQL TLS mode of verify-ca. If you wish to
perform TLS mutual authentication between PostgreSQL instances (i.e. certificate-based authentication with SSL mode of verify-full),
you will need to create a [PostgreSQL custom configuration]({{< relref “/advanced/custom-configuration.md” >}}).

Add TLS to an Existing PostgreSQL Cluster

You can add TLS support to an existing PostgreSQL cluster using the [pgo update cluster]({{< relref “/pgo-client/reference/pgo_update_
>1}1}) command. The following flags are used to manage TLS in a Postgres cluster, including:

e -—-disable-server-tls: removes TLS from a cluster

o —-disable-tls-only: removes the TLS-only requirement from a cluster

e —-enable-tls-only: adds the TLS-only requirement to a cluster

e —-server-ca-secret: combined with --server-tls-secret, enables TLS in a cluster

e —-server—tls-secret: combined with --server-ca-secret, enables TLS in a cluster

e —-replication-tls-secret: enables certificate-based authentication between Postgres instances.

Using the above examples, to add TLS to a PostgreSQL cluster named hippo and require TLS, you can use the following command:

pgo update cluster hippo \
--enable-tls-only \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hacluster-tls-keypair

Conversely, you can disable TLS with the --disable-tls flag:

pgo update cluster hippo --disable-server-tls

Custom PostgreSQL Configuration({{< relref “/advanced/custom-configuration.md” >}})

Customizing PostgreSQL configuration is currently not subject to the pgo client, but given it is a common question, we thought it
may be helpful to link to how to do it from here. To find out more about how to [customize your PostgreSQL configuration]({{<
relref “/advanced/custom-configuration.md” >}}), please refer to the Custom PostgreSQL Configuration({{< relref ¢/advanced/custom-
configuration.md” >}}) section of the documentation.

pgAdmin 4: PostgreSQL Administration

pgAdmin 4 is a popular graphical user interface that lets you work with PostgreSQL databases from both a desktop or web-based client.
In the case of the PostgreSQL Operator, the pgAdmin 4 web client can be deployed and synchronized with PostgreSQL clusters so that
users can administrate their databases with their PostgreSQL username and password.

For example, let’s work with a PostgreSQL cluster called hippo that has a user named hippo with password datalake, e.g.:

pgo create cluste