PGO: The Postgres Operator from Crunchy Data

Contents

PGO: The Postgres Operator from Crunchy Data
How it Works

Included Components

Supported Platforms

PGO: PostgreSQL Operator Quickstart
Postgres Operator Installer

Crunchy PostgreSQL Operator Architecture
Additional Architecture Information
Kubernetes Namespaces and the PostgreSQL Operator
pgo.yaml Configuration

Prerequisites

PGO: Postgres Operator Installer

Install the PostgreSQL Operator (pgo) Client
PGO Installer Configuration

PGO: The Postgres Operator Helm Chart
PGO: Postgres Operator Playbooks
Prerequisites

Installing

Updating

Uninstalling PostgreSQL Operator
Prerequisites

PostgreSQL Operator Monitoring Installer

PostgreSQL Operator Monitoring Installer Configuration

40

42

60

88

93

94

97

101

111

117

117

119

120

122

123

123

125

The PostgreSQL Operator Monitoring Helm Chart

PGO: Postgres Operator Monitoring Playbooks

Prerequisites

Installing the Monitoring Infrastructure

Updating the Monitoring Infrastructure

Uninstalling the Monitoring Infrastructure

Crunchy Postgres Exporter Metrics

pgnodemx

Upgrading the Crunchy PostgreSQL Operator

Upgrade Guidance for PostgreSQL Operator Monitoring

Prerequisites

Building

Deployment

Testing

Troubleshooting

Major Features

Breaking Changes

Features

Changes

Fixes

Changes

Fixes

Changes

Fixes

Major Features

Breaking Changes

Features

Changes

127

129

129

131

132

134

176

176

183

186

197

197

198

198

198

201

203

203

203

204

205

205

219

221

221

227

227

228

Fixes 229

Changes since 4.2.1 229
Fixes since 4.2.1 229
Fixes 230
Major Features 231
Breaking Changes 233
Additional Features 234
Fixes 235
Fixes 236
Major Features 236
Breaking Changes 237
Additional Features 237
Fixes 238

PGO: The Postgres Operator from Crunchy Data

Run Cloud Native PostgreSQL on Kubernetes with PGO: The Postgres Operator from Crunchy Data!

Latest Release: {{< param operatorVersion >}}

PGO, the Postgres Operator developed by Crunchy Data and included in Crunchy PostgreSQL for Kubernetes, automates and simplifies
deploying and managing open source PostgreSQL clusters on Kubernetes.

Whether you need to get a simple Postgres cluster up and running, need to deploy a high availability, fault tolerant cluster in production,
or are running your own database-as-a-service, the PostgreSQL Operator provides the essential features you need to keep your cloud native
Postgres clusters healthy, including:

Postgres Cluster Provisioning({{< relref “/architecture/provisioning.md” >}}) Create, Scale, & Delete PostgreSQL clusters
with ease, while fully customizing your Pods and PostgreSQL configuration!

[High Availability]({{< relref “/architecture/high-availability/_index.md” >}}) Safe, automated failover backed by a dis-
tributed consensus based high-availability solution. Uses Pod Anti-Affinity to help resiliency; you can configure how aggressive this can
be! Failed primaries automatically heal, allowing for faster recovery time.

Support for [standby PostgreSQL clusters]({{< relref “/architecture/high-availability /multi-cluster-kubernetes.md” >}}) that work both
within an across [multiple Kubernetes clusters|({{< relref “/architecture/high-availability /multi-cluster-kubernetes.md” >}}).

[Disaster Recovery]|({{< relref “/architecture/disaster-recovery.md” >}}) Backups and restores leverage the open source
pgBackRest utility and includes support for full, incremental, and differential backups as well as efficient delta restores. Set how long you
want your backups retained for. Works great with very large databases!

TLS Secure communication between your applications and data servers by [enabling TLS for your PostgreSQL servers|({{< relref
“/tutorial/tls.md” >}}), including the ability to enforce all of your connections to use TLS.

Monitoring({{< relref “/architecture/monitoring.md” >}}) [Track the health of your PostgreSQL clusters]({{< relref “/archi-
tecture/monitoring.md” >}1}) using the open source pgMonitor library.

https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes/
https://github.com/CrunchyData/postgres-operator
https://www.crunchydata.com/
https://www.crunchydata.com/developers/download-postgres/containers/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://crunchydata.com/
https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://www.pgbackrest.org
https://github.com/CrunchyData/pgmonitor

PostgreSQL User Management Quickly add and remove users from your PostgreSQL clusters with powerful commands. Manage
password expiration policies or use your preferred PostgreSQL authentication scheme.

Upgrade Management Safely apply PostgreSQL updates with minimal availability impact to your PostgreSQL clusters.

Advanced Replication Support Choose between asynchronous replication and synchronous replication for workloads that are sensitive
to losing transactions.

Clone Create new clusters from your existing clusters or backups with pgo create cluster --restore-from.
Connection Pooling Use pgBouncer({{< relref “tutorial/pgbouncer.md” >}}) for connection pooling.

Affinity and Tolerations Have your PostgreSQL clusters deployed to Kubernetes Nodes of your preference with [node affinity]({{< rel-
ref “architecture/high-availability / index.md“> } }#node-affinity), or designate which nodes Kubernetes can schedule PostgreSQL instances
to with [tolerations]({{< relref "architecture/high-availability/index.md” >} } #tolerations).

Scheduled Backups Choose the type of backup (full, incremental, differential) and how frequently you want it to occur on each
PostgreSQL cluster.

Backup to S3 or GCS Store your backups in Amazon S3, any object storage system that supports the S3 protocol, or GCS. The
PostgreSQL Operator can backup, restore, and create new clusters from these backups.

Multi-Namespace Support You can control how PGO, the Postgres Operator, leverages Kubernetes Namespaces with several different
deployment models:

e Deploy PGO and all PostgreSQL clusters to the same namespace

e Deploy PGO to one namespaces, and all PostgreSQL clusters to a different namespace

e Deploy PGO to one namespace, and have your PostgreSQL clusters managed across multiple namespaces

e Dynamically add and remove namespaces managed by the PostgreSQL Operator using the pgo client to run pgo create namespace
and pgo delete namespace

Full Customizability The Postgres Operator (PGO) makes it easy to get Postgres up and running on Kubernetes-enabled platforms,
but we know that there are further customizations that you can make. As such, PGO allows you to further customize your deployments,
including:

e Selecting different storage classes for your primary, replica, and backup storage

e Select your own container resources class for each PostgreSQL cluster deployment; differentiate between resources applied for primary
and replica clusters!

o Use your own container image repository, including support imagePullSecrets and private repositories

o [Customize your PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}})

o Bring your own trusted certificate authority (CA) for use with the Operator API server

e Override your PostgreSQL configuration for each cluster

How it Works

The Crunchy PostgreSQL Operator extends Kubernetes to provide a higher-level abstraction for rapid creation and management of
PostgreSQL clusters. The Crunchy PostgreSQL Operator leverages a Kubernetes concept referred to as “Custom Resources” to create
several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

 —
 — |
g Kubernetes

4--------- - >
PGO Client
(Linux) [— D @2 , —— Container Suite ————
Custom Resource Definitions primary
(CRDs) PostgreSQL pgbouncer
 —
s | clusters policy
| (pgcluster) (pgpolicies) replica pgbackrest
o PostgreSQL
tasks replicas
. [» (pgtasks) {pgreplicas)
PGO Client Operator
(Mac)
4 .
= D :
—
I Scheduler l E Cluster PVC
o l]
A--mmm - >
PGO Client N
(Windows) A / helm / ku .
? :
! |
v ¥
Crunchy Data . T S
Containers | i P tor.?ge .
"" }) Wrmmmmmmmmmssmmemmsemesmesnes (11111 Persistent Disk
| Container Registry

Figure 1: Architecture

Included Components
PostgreSQL containers deployed with the PostgreSQL Operator include the following components:

e PostgreSQL

e PostgreSQL Contrib Modules
« PL/Python + PL/Python 3
o PL/Perl

e pgAudit

e pgAudit Analyze

e pgnodemx

e pg_cron

e pg_partman

e set user

o TimescaleDB (Apache 2 edition)
e wal2json

o pgBackRest

o pgBouncer

e pgAdmin 4

o pgMonitor

o Patroni

o LLVM (for JIT compilation)

In addition to the above, the geospatially enhanced PostgreSQL + PostGIS container adds the following components:

e PostGIS
e pgRouting
« PL/R

PostgreSQL Operator Monitoring({{< relref “architecture/monitoring/ index.md” >}}) uses the following components:

—

External Application
accessing the DB

https://github.com/CrunchyData/crunchy-containers
https://www.postgresql.org
https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/docs/current/plpython.html
https://www.postgresql.org/docs/current/plperl.html
https://www.pgaudit.org/
https://github.com/pgaudit/pgaudit_analyze
https://github.com/CrunchyData/pgnodemx
https://github.com/citusdata/pg_cron
https://github.com/pgpartman/pg_partman
https://github.com/pgaudit/set_user
https://github.com/timescale/timescaledb
https://github.com/eulerto/wal2json
https://pgbackrest.org/
http://pgbouncer.github.io/
https://www.pgadmin.org/
https://github.com/CrunchyData/pgmonitor
https://patroni.readthedocs.io/
https://llvm.org/
https://www.postgresql.org/docs/current/jit.html
http://postgis.net/
https://pgrouting.org/
https://github.com/postgres-plr/plr

e pgMonitor

e Prometheus
e Grafana

e Alertmanager

Additional containers that are not directly integrated with the PostgreSQL Operator but can work alongside it include:

e pgPool II

e pg upgrade
e pgBench

For more information about which versions of the PostgreSQL Operator include which components, please visit the [compatibility]({{<
relref “configuration/compatibility.md” >}}) section of the documentation.

Supported Platforms

PGO, the Postgres Operator, is Kubernetes-native and maintains backwards compatibility to Kubernetes 1.11 and is tested is tested
against the following platforms:

e Kubernetes 1.17+

e Openshift 4.4+

e OpenShift 3.11

o Google Kubernetes Engine (GKE), including Anthos
o Amazon EKS

e Microsoft AKS

e VMware Tanzu

This list only includes the platforms that the Postgres Operator is specifically tested on as part of the release process: PGO works on
other Kubernetes distributions as well.

Storage

PGO, the Postgres Operator, is tested with a variety of different types of Kubernetes storage and Storage Classes, as well as hostPath
and NFS.

We know there are a variety of different types of Storage Classes available for Kubernetes and we do our best to test each one, but due to
the breadth of this area we are unable to verify Postgres Operator functionality in each one. With that said, the PostgreSQL Operator is
designed to be storage class agnostic and has been demonstrated to work with additional Storage Classes.

The PGO Postgres Operator project source code is available subject to the Apache 2.0 license with the PGO logo and branding assets
covered by our trademark guidelines.

PGO: PostgreSQL Operator Quickstart

Can’t wait to try out PGO, the Postgres Operator from Crunchy Data? Let us show you the quickest possible path to getting up and
running.

There are two paths to quickly get you up and running with PGO:

e Installation via the Postgres Operator Installer

e Installation via a Marketplace

Installation via [Operator Lifecycle Manager|({{< relref “/installation/other /operator-hub.md” >1}1})
Installation via [Google Cloud Marketplace]({{< relref “/installation/other/google-cloud-marketplace.md” >}})

Marketplaces can help you get more quickly started in your environment as they provide a mostly automated process, but there are a few
steps you will need to take to ensure you can fully utilize your PostgreSQL Operator environment. You can find out more information
about how to get started with one of those installers in the Installation({{< relref “/installation/ index.md” >}}) section.

https://github.com/CrunchyData/pgmonitor
https://github.com/prometheus/prometheus
https://github.com/grafana/grafana
https://github.com/prometheus/alertmanager
https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/container-specifications/crunchy-pgpool/
https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/container-specifications/crunchy-upgrade/
https://access.crunchydata.com/documentation/crunchy-postgres-containers/latest/container-specifications/crunchy-pgbench/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://raw.githubusercontent.com/CrunchyData/postgres-operator/master/LICENSE.md
/logos/TRADEMARKS.md

Postgres Operator Installer

Below will guide you through the steps for installing and using the PostgreSQL Operator using an installer that works with Ansible.

Installation
Install PGO: the PostgreSQL Operator

On environments that have a default storage class set up (which is most modern Kubernetes environments), the below command should
work:

kubectl create namespace pgo
kubectl apply -f https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param
operatorVersion >}}/installers/kubectl/postgres-operator.yml

This will launch the pgo-deployer container that will run the various setup and installation jobs. This can take a few minutes to complete
depending on your Kubernetes cluster.

If your install is unsuccessful, you may need to modify your configuration. Please read the “Troubleshooting” section. You can still get
up and running fairly quickly with just a little bit of configuration.

Install the pgo Client

During or after the installation of PGO: the Postgres Operator, download the pgo client set up script. This will help set up your local
environment for using the Postgres Operator:

curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion
>}}/installers/kubectl/client-setup.sh > client-setup.sh
chmod +x client-setup.sh

When the Postgres Operator is done installing, run the client setup script:

./client-setup.sh

This will download the pgo client and provide instructions for how to easily use it in your environment. It will prompt you to add some
environmental variables for you to set up in your session, which you can do with the following commands:

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

If you wish to permanently add these variables to your environment, you can run the following:

cat <<EOF >> ~/.bashrc

export PGOUSER="${HOME?}/.pgo/pgo/pgouser"

export PGO_CA_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_CERT="${HOME?}/.pgo/pgo/client.crt"
export PGO_CLIENT_KEY="${HOME?}/.pgo/pgo/client.key"
export PGO_APISERVER_URL='https://127.0.0.1:8443"'
export PGO_NAMESPACE=pgo

EQF

source ~/.bashrc

NOTE: For macOS users, you must use ~/.bash_profile instead of ~/.bashrc

Post-Installation Setup

Below are a few steps to check if PGO: the Postgres Operator is up and running.
By default, PGO installs into a namespace called pgo. First, see that the Kubernetes Deployment of PGO exists and is healthy:
kubectl -n pgo get deployments

https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/

If successful, you should see output similar to this:

NAME READY UP-TO-DATE AVATILABLE AGE
postgres-operator 1/1 1 1 16h
Next, see if the Pods that run the PostgreSQL Operator are up and running:
kubectl -n pgo get pods

If successful, you should see output similar to this:
NAME READY STATUS RESTARTS AGE
postgres-operator -56d6ccb97 -tmz7m 4/4 Running 0 2m

Finally, let’s see if we can connect to the Postgres Operator from the pgo command-line client. The Ansible installer installs the pgo
command line client into your environment, along with the username/password file that allows you to access the PostgreSQL Operator. In
order to communicate with the PostgreSQL Operator API server, you will first need to set up a port forward to your local environment.

In a new console window, run the following command to set up a port forward:

kubectl -n pgo port-forward svc/postgres-operator 8443:8443

Back to your original console window, you can verify that you can connect to the PostgreSQL Operator using the following command:

pgo version

If successful, you should see output similar to this:

pgo client version {{< param operatorVersion >}}
pgo-apiserver version {{< param operatorVersion >}}

Create a PostgreSQL Cluster

The quickstart installation method creates a namespace called pgo where PGO, the Postgres Operator, manages PostgreSQL clusters. Try
creating a PostgreSQL cluster called hippo:

pgo create cluster -n pgo hippo
Alternatively, because we set the [PGO_NAMESPACE]({{ < relref “pgo-client /reference/pgo_ create_ cluster.md” >} }#general-notes-on-using-

the-pgo-client) environmental variable in our .bashrc file, we could omit the -n flag from the pgo create cluster({{< relref “pgo-
client/reference/pgo_ create_ cluster.md” >}}) command and just run this:

pgo create cluster hippo

Even with PGO_NAMESPACE set, you can always overwrite which namespace to use by setting the -n flag for the specific command. For
explicitness, we will continue to use the -n flag in the remaining examples of this quickstart.

If your cluster creation command executed successfully, you should see output similar to this:

created Pgcluster hippo

workflow id 1cd0d225-7cd4-4044-b269-aa7bedae219b

This will create a Postgres cluster named hippo. It may take a few moments for the cluster to be provisioned. You can see the status of
this cluster using the pgo test({{< relref “pgo-client/reference/pgo_test.md” >}}) command:

pgo test -n pgo hippo

When everything is up and running, you should see output similar to this:

cluster : hippo
Services
primary (10.97.140.113:5432): UP
Instances
primary (hippo-7b64747476-6dr4h): UP

The pgo test command provides you the basic information you need to connect to your PostgreSQL cluster from within your Kubernetes
environment. For more detailed information, you can use pgo show cluster -n pgo hippo.

Connect to a PostgreSQL Cluster

By default, PGO creates a database inside the cluster with the same name of the cluster, in this case, hippo. Below demonstrates how
we can connect to hippo.

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

How Users Work

You can get information about the users in your cluster with the [pgo show user|({{< relref “pgo-client/reference/pgo_show__user.md”
>}}) command:

pgo show user -n pgo hippo

This will give you all the unprivileged, non-system PostgreSQL users for the hippo PostgreSQL cluster, for example:
CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR

To get the information about all PostgreSQL users that PGO is managing, you will need to use the --show-system-accounts flag:

pgo show user -n pgo hippo --show-system-accounts

which returns something similar to:

CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR
hippo postgres <REDACTED > never ok
hippo primaryuser <REDACTED> never ok
hippo testuser datalake never ok

The postgres user represents the database superuser and has every privilege granted to it. The PostgreSQL Operator securely interfaces
through the postgres account to perform certain actions, such as managing users.

The primaryuser is the used for replication and [high availability]({{< relref “architecture/high-availability/ index.md” >}}). You
should never need to interface with this user account.

Connecting via psql
Let’s see how we can connect to hippo using psql, the command-line tool for accessing PostgreSQL. Ensure you have installed the psql
client.

PGO, the Postgres Operator, creates a service with the same name as the cluster. See for yourself! Get a list of all of the Services available
in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <none> 2022/TCP ,5432/TCP

59m

hippo-backrest-shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect the hippo cluster. First, in a different console window, set up a port forward to the hippo service:

kubectl -n pgo port-forward svc/hippo 5432:5432

You can connect to the database with the following command, substituting datalake for your actual password:

PGPASSWORD=datalake psql -h localhost -p 5432 -U testuser hippo

You should then be greeted with the PostgreSQL prompt:

psql ({{< param postgresVersion >1}})
Type "help" for help.

hippo=>

https://www.postgresql.org/docs/current/role-attributes.html
https://www.postgresql.org/docs/current/app-psql.html
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12

Connecting via [pgAdmin 4]({{< relref “architecture/pgadmin4.md” >}})

[pgAdmin 4]({{< relref “architecture/pgadmind.md” >}1}) is a graphical tool that can be used to manage and query a PostgreSQL database
from a web browser. The PostgreSQL Operator provides a convenient integration with pgAdmin 4 for managing how users can log into
the database.

To add pgAdmin 4 to hippo, you can execute the following command:

pgo create pgadmin -n pgo hippo

It will take a few moments to create the pgAdmin 4 instance. The PostgreSQL Operator also creates a pgAdmin 4 service. See for yourself!
Get a list of all of the Services available in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <none> 2022/TCP ,5432/TCP

59m

hippo-backrest-shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
hippo-pgadmin ClusterIP 10.96.165.27 <nomne> 5050/ TCP

5mls
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect to our hippo cluster via pgAdmin 4! In a different terminal, set up a port forward to pgAdmin 4:

kubectl -n pgo port-forward svc/hippo-pgadmin 5050:5050

Navigate your browser to http://localhost:5050 and use your database username (testuser) and password (e.g. datalake) to log in.
Though the prompt says “email address”, using your PostgreSQL username will work:

Logh

Forgotten your password? ["engisn v

Figure 2: pgAdmin 4 Login Page
(There are occasions where the initial credentials do not properly get set in pgAdmin 4. If you have trouble logging in, try running the
command pgo update user -n pgo hippo --username=testuser --password=datalake).
Once logged into pgAdmin 4, you will be automatically connected to your database. Explore pgAdmin 4 and run some queries!

For more information, please see the section on [pgAdmin 4]({{< relref “architecture/pgadmind.md” >}1}).

Troubleshooting
Installation Failures

Some Kubernetes environments may require you to customize the configuration for the PostgreSQL Operator installer. The below provides
a guide on the common parameters that require modification, though this may vary based on your installation. For a full reference, please
visit the Installation({{< relref “/installation/ index.md” >}}) section.

If you already attempted to install PGO and that failed, the easiest way to clean up that installation is to delete the Namespace that you
attempted to install the Postgres Operator into. Note: This deletes all of the other objects in the Namespace, so please be
sure this is OK!

To delete the namespace, you can run the following command:

kubectl delete namespace pgo

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Get the Postgres Operator Installer Manifest You will need to download the Postgres Operator Installer manifest to your envi-
ronment, which you can do with the following command:

curl https://raw.githubusercontent.com/CrunchyData/postgres-operator/v{{< param operatorVersion
>}}/installers/kubectl/postgres-operator.yml > postgres-operator.yml

Configure the Postgres Operator Installer There are many [configuration parameters|({{< relref “/installation/configura-
tion.md”>}}) to help you fine tune your installation, but there are a few that you may want to change to get the PostgreSQL Operator
to run in your environment. Open up the postgres-operator.yml file and edit a few variables.

Find the pgo_admin_password variable. This is the password you will use with the [pgo client]({{< relref “/installation/pgo-client” >1}1})
to manage your PostgreSQL clusters. The default is password, but you can change it to something like hippo-elephant.

You may also need to set the storage default storage classes that you would like the PostgreSQL Operator to use. These variables are
called primary_storage, replica_storage, backup_storage, and backrest_storage. There are several storage configurations listed
out in the configuration file under the heading storage[1-9] _name. Find the one that you want to use, and set it to that value.

For example, if your Kubernetes environment is using NF'S storage, you would set these variables to the following:

backrest_storage: "nfsstorage"
backup_storage: "nfsstorage"

primary_storage: "nfsstorage"
replica_storage: "nfsstorage"

In OpenShift and CodeReady Containers, PGO will automatically set disable_fsgroup to true so that it will deploy PostgreSQL clusters
correctly under the restricted Security Context Constraint (SCC). Though we recommend using restricted, if you are using the anyuid
SCC, you will need to set disable_fsgroup to false in order to deploy the PostgreSQL Operator.

For a full list of available storage types that can be used with this installation method, please review the [configuration parameters]({{<
relref “/installation/configuration.md”>}}).

When you are done editing the file, you can install PGO by running the following commands:
kubectl create namespace pgo

kubectl apply -f postgres-operator.yml

PGO, the Postgres Operator, provides functionality that lets you run your own database-as-a-service: from deploying PostgreSQL
clusters with [high availability]({{< relref “architecture/high-availability/ index.md” >}}), to a [full stack monitoring]({{< relref
“architecture/high-availability/ index.md” >}}) solution, essential [disaster recovery and backup tools]({{< relref “architecture/disaster-
recovery.md” >1}}), the ability to secure your cluster with TLS, and much more!

What’s more, you can manage your PostgreSQL clusters with the convenient [pgo client]({{< relref “pgo-client/ index.md” >}}) or by
interfacing directly with the PostgreSQL Operator [custom resources]({{< relref “custom-resources/_index.md” >}}).

Given the robustness of PGO, we think it’s helpful to break down the functionality in this step-by-step tutorial. The tutorial covers the
essential functions the Postgres Operator can perform and covers many common basic and advanced use cases.

So what are you waiting for? Let’s [get started]({{< relref “tutorial/getting-started.md” >}})!

Installation

If you have not installed PGO, the Postgres Operator, yet, we recommend you take a look at our [quickstart]({{< relref “quick-
start/_index.md” >}}) or the [installation]({{< relref “installation/_index.md” >}}) sections.

Customizing an Installation

How to customize a PGO installation is a lengthy topic. The details are covered in the [installation]({{< relref “installation/postgres-
operator.md” >}}) section, as well as a list of all the [configuration variables]({{< relref “installation/configuration.md” >}}) available.

Setup the pgo Client

This tutorial will be using the [pgo client]({{< relref “pgo-client/ index.md” >}}) to interact with the Postgres Operator. Please follow
the instructions in the [quickstart]({{< relref “quickstart/_index.md” >}}) or the [installation]({{< relref “installation/pgo-client.md”
>1}) sections for how to configure the pgo client.

The Postgres Operator and pgo client are designed to work in a [multi-namespace deployment environment]({{< relref “architecture/-
namespace.md” >}}) and many pgo commands require that the namespace flag (-n) are passed into it. You can use the PGO_NAMESPACE
environmental variable to set which namespace a pgo command can use. For example:

export PGO_NAMESPACE=pgo
pgo show cluster --all
would show all of the PostgreSQL clusters deployed to the pgo namespace. This is equivalent to:

pgo show cluster -n pgo --all

(Note: -n takes precedence over PGO_NAMESPACE.)

For convenience, we will use the pgo namespace created as part of the [quickstart]({{< relref “quickstart/ index.md” >}}) in this tutorial.
In the shell that you will be executing the pgo commands in, run the following command:

export PGO_NAMESPACE=pgo

Next Steps

Before proceeding, please make sure that your pgo client setup can communicate with your PGO Deployment. In a separate terminal
window, set up a port forward to your PostgreSQL Operator:

kubectl port-forward -n pgo svc/postgres-operator 8443:8443
The [pgo version|({{< relref “pgo-client/reference/pgo_ version.md” >}}) command is a great way to check connectivity with the Postgres
Operator, as it is a very simple, safe operation. Try it out:

pgo version

If it is working, you should see results similar to:

pgo client version {{< param operatorVersion >}}

pgo-apiserver version {{< param operatorVersion >}}

Note that the version of the pgo client must match that of the PostgreSQL Operator.

You can also use the pgo version command to check the version specifically for the pgo client. This command only runs locally, i.e. it
does not make any requests to the PostgreSQL Operator. For example:

pgo version --client

which yields results similar to:

pgo client version {{< param operatorVersion >}}

Alright, we’re now ready to start our journey with PGO!

If you came here through the [quickstart]({{< relref “quickstart/_index.md” >}}), you may have already [created a cluster]({{< relref
“quickstart/__index.md” >} }#create-a-postgresql-cluster), in which case, feel free to skip ahead, or read onward for a more in depth look
into cluster creation!

Create a PostgreSQL Cluster

Creating a cluster is simple with the pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) command:

pgo create cluster hippo

with output similar to:

created cluster: hippo
workflow id: 25c¢870a0-5d27-42c2-be00-92f0ba8768e7
database name: hippo
users:
username: testuser password: securerandomlygeneratedpassword

This creates a new PostgreSQL cluster named hippo with a database in it named hippo. This operation may take a few moments to
complete. Note the name of the database user (testuser) and password (securerandomlygeneratedpassword) for when we connect to
the PostgreSQL cluster.

To make it easier to copy and paste statements used throughout this tutorial, you can set the password of testuser as part of creating
the PostgreSQL cluster:

pgo create cluster hippo --password=securerandomlygeneratedpassword

You can check on the status of the cluster creation using the pgo test({{< relref “pgo-client/reference/pgo_test.md” >}}) command.
The pgo test command checks to see if the Kubernetes Services and the Pods that comprise the PostgreSQL cluster are available to
receive connections. This includes:

e Testing that the Kubernetes Endpoints are available and able to route requests to healthy Pods.
o Testing that each PostgreSQL instance is available and ready to accept client connections by performing a connectivity check similar
to the one performed by pg_isready.

For example, when the hippo cluster is ready,

pgo test hippo

will yield output similar to:

cluster : hippo
Services
primary (10.96.179.126:5432): UP
Instances
primary (hippo-57675d4£f8f-wwx64): UP

The Create Cluster Process

So what just happened? Let’s break down what occurs during the create cluster process.

1. First, pgo client creates an entry in the PostgreSQL Operator [pgcluster custom resource definition]({{< relref “custom-
resources/_index.md” >}}) with the attributes desired to create the cluster. In the case above, this fills in the name of the
cluster (hippo) and leverages a lot of defaults from the [PostgreSQL Operator configuration]({{< relref “configuration/pgo-yaml-
configuration.md” >}}). We'll discuss more about the PostgreSQL Operator configuration later in the tutorial.

2. Once the custom resource is added, the PostgreSQL Operator begins provisioning the PostgreSQL instace and a pgBackRest repos-
itory which is used to store backups. The following actions occur as part of this process:

 Creating persistent volume claims (PVCs) for the PostgreSQL instance and the pgBackRest repository.

e Creating services that provide a stable network interface for connecting to the PostgreSQL instance and pgBackRest repository.

e Creating deployments that house each PostgreSQL instance and pgBackRest repository. Each of these is responsible for one Pod.

e The PostgreSQL Pod, when it is started, provisions a PostgreSQL database and performs other bootstrapping functions, such as
creating testuser.

e The pgBackRest Pod, when it is started, initializes a pgBackRest repository. Note that the pgBackRest repository is not yet ready
to start taking backups, but will be after the next step!

3. When the PostgreSQL Operator detects that the PostgreSQL and pgBackRest deployments are up and running, it creates a Kuber-
netes Job to create a pgBackRest stanza. This is necessary as part of intializing the pgBackRest repository to accept backups from
our PostgreSQL cluster.

4. When the PostgreSQL Operator detects that the stanza creation is completed, it will take an initial backup of the cluster.

In order for a PostgreSQL cluster to be considered successfully created, all of these steps need to succeed. You can connect to the
PostgreSQL cluster after step two completes, but note for the cluster to be considered “healthy”, you need for pgBackRest to finish
initializig.

You may ask yourself, “wait, why do I need for the pgBackRest repository to be initialized for a cluster to be successfully created?” That is
a good question! The reason is that pgBackRest plays a fundamental role in both the [disaster recovery|({{< relref “architecture/disaster-

recovery.md” >}}) AND [high availability]({{< relref “architecture/high-availability/_index.md” >}}) system with the PostgreSQL Op-
erator, particularly around self-healing.

What Is Created?

There are several Kubernetes objects that are created as part of the pgo create cluster command, including:

e A Deployment representing the primary PostgreSQL instance
e A PVC that persists the data of this instance

e A Service that can connect to this instance

e A Deployment representing the pgBackRest repository

https://www.postgresql.org/docs/current/app-pg-isready.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

e A PVC that persists the data of this repository

e A Service that can connect to this repository

e Secrets representing the following three user accounts:

o postgres: the database superuser for the PostgreSQL cluster. This is in a secret called hippo-postgres-secret.

e primaryuser: the replication user. This is used for copying data between PostgreSQL instance. You should not need to login as
this user. This is in a secret called hippo-primaryuser-secret.

e testuser: the regular user account. This user has access to log into the hippo database that is created. This is the account you
want to give out to your user / application. In a later section, we will see how we can change the default user that is created. This
is in a secret called hippo-testuser-secret, where testuser can be substituted for the name of the user account.

e ConfigMaps, including:

o hippo-pgha-config, which allows you to [customize the configuration of your PostgreSQL cluster|({{< relref “advanced/custom-
configuration.md”>}}). We will cover more about this topic in later sections.

e hippo-config and hippo-leader, which are used by the high availability system. You should not modify these ConfigMaps.

Each deployment contains a single Pod. Do not scale the deployments!: further into the tutorial, we will cover some commands that
let you scale your PostgreSQL cluster.

Some Job artifacts may be left around after the cluster creation process completes, including the stanza creation job (hippo-stanza-create)
and initial backup job (backrest-backup-hippo). If the jobs completed successfully, you can safely delete these objects.

Create a PostgreSQL Cluster With Monitoring

The PostgreSQL Operator Monitoring({{< relref “architecture/monitoring.md” >}}) stack provides a convenient way to gain insights
into the availabilty and performance of your PostgreSQL clusters. In order to collect metrics from your PostgreSQL clusters, you have
to enable the crunchy-postgres-exporter sidecar alongside your PostgreSQL cluster. You can do this with the --metrics flag on
pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}):

pgo create cluster hippo --metrics

Note that the --metrics flag just enables a sidecar that can be scraped. You will need to install the [monitoring stack]({{< relref
“installation/metrics/_index.md” >}}) separately, or tie it into your existing monitoring infrastructure.

Troubleshooting
PostgreSQL / pgBackRest Pods Stuck in Pending Phase

The most common occurrence of this is due to PVCs not being bound. Ensure that you have configure your [storage options]({{< relref
“installation/configuration.md” >} }#storage-settings) correctly for your Kubernetes environment, if for some reason you cannot use your
default storage class or it is unavailable.

Also ensure that you have enough persistent volumes available: your Kubernetes administrator may need to provision more.

stanza-create Job Never Finishes

The most common occurrence of this is due to the Kubernetes network blocking SSH connections between Pods. Ensure that your
Kubernetes networking layer allows for SSH connections over port 2022 in the Namespace that you are deploying your PostgreSQL
clusters into.

PostgreSQL Pod reports “Authentication Failed for ccp_monitoring”

This is a temporary error that occurs when a new PostgreSQL cluster is first initialized with the --metrics flag. The crunchy-postgres-expc
container within the PostgreSQL Pod may be ready before the container with PostgreSQL is ready. If a message in your logs further
down displays a timestamp, e.g.:

2020-11-10 08:23:15.968196-05

Then the ccp_monitoring user is properly reconciled with the PostgreSQL cluster.

If the error message does not go away, this could indicate a few things:

e The PostgreSQL instance has not initialized. Check to ensure that PostgreSQL has successfully started.
e The password for the ccp_monitoring user has changed. In this case you will need to update the Secret with the monitoring
credentials.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/configmap/

Custom Resources

You may also be curious about how to perform the same actions directly with [custom resources]({{< relref “custom-resources/__index.md”
>1}1}). If that is the case, we encourage to skip ahead to the Custom Resources({{< relref “custom-resources/_index.md” >}}) section of
the documentation.

Next Steps

Once your cluster is created, the next step is to [connect to your PostgreSQL cluster|({{< relref “tutorial/connect-cluster.md” >}}). You
can also [learn how to customize your PostgreSQL cluster]({{< relref “tutorial/customize-cluster.md” >}})!

Naturally, once the [PostgreSQL cluster is created]({{< relref “tutorial/create-cluster.md” >}}), you may want to connect to it. You
can get the credentials of the users of the cluster using the [pgo show user|({{< relref “pgo-client/reference/pgo_show_user.md” >}})
command, i.e.:

pgo show user hippo

yields output similar to:

CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR

hippo testuser securerandomlygeneratedpassword mnever ok

If you need to get the password of one of the system or privileged accounts, you will need to use the —-show-system-accounts flag, i.e.:

pgo show user hippo --show-system-accounts

CLUSTER USERNAME PASSWORD EXPIRES STATUS ERROR
hippo postgres B>xy}9+7wTVp) gkntf }X | HON never ok

hippo primaryuser ~zULckQy-\KPws:2UoC+szX1l never ok

hippo testuser securerandomlygeneratedpassword never ok

Let’s look at three different ways we can connect to the PostgreSQL cluster.

Connecting via psql
Let’s see how we can connect to hippo using psql, the command-line tool for accessing PostgreSQL. Ensure you have installed the psql
client.

The PostgreSQL Operator creates a service with the same name as the cluster. See for yourself! Get a list of all of the Services available
in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-1IP EXTERNAL -IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <nomne> 2022/TCP ,5432/TCP

59m

hippo-backrest -shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect the hippo cluster. First, in a different console window, set up a port forward to the hippo service:

kubectl -n pgo port-forward svc/hippo 5432:5432

You can connect to the database with the following command, substituting datalake for your actual password:

PGPASSWORD=datalake psql -h localhost -p 5432 -U testuser hippo

You should then be greeted with the PostgreSQL prompt:

psql ({{< param postgresVersion >}})
Type "help" for help.

hippo=>

https://www.postgresql.org/docs/current/app-psql.html
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12
https://www.crunchydata.com/developers/download-postgres/binaries/postgresql12

Connecting via [pgAdmin 4|({{< relref “architecture/pgadmin4.md” >}})

[PgAdmin 4]({{ < relref “architecture/pgadmind.md” >}}) is a graphical tool that can be used to manage and query a PostgreSQL database
from a web browser. The PostgreSQL Operator provides a convenient integration with pgAdmin 4 for managing how users can log into
the database.

To add pgAdmin 4 to hippo, you can execute the following command:

pgo create pgadmin -n pgo hippo

It will take a few moments to create the pgAdmin 4 instance. The PostgreSQL Operator also creates a pgAdmin 4 service. See for yourself!
Get a list of all of the Services available in the pgo namespace:

kubectl -n pgo get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)

AGE
hippo ClusterIP 10.96.218.63 <none> 2022/TCP ,5432/TCP

59m

hippo-backrest-shared-repo ClusterIP 10.96.75.175 <none> 2022/ TCP

59m
hippo-pgadmin ClusterIP 10.96.165.27 <none> 5050/ TCP

5mls
postgres-operator ClusterIP 10.96.121.246 <none> 8443/TCP ,4171/TCP ,4150/TCP

71im

Let’s connect to our hippo cluster via pgAdmin 4! In a different terminal, set up a port forward to pgAdmin 4:

kubectl -n pgo port-forward svc/hippo-pgadmin 5050:5050

Navigate your browser to http://localhost:5050 and use your database username (testuser) and password (e.g. datalake) to log in.
Though the prompt says “email address”, using your PostgreSQL username will work:

Lagin

Logh

Forgotien your password? | Engsh ,.'|

Figure 3: pgAdmin 4 Login Page
(There are occasions where the initial credentials do not properly get set in pgAdmin 4. If you have trouble logging in, try running the
command pgo update user -n pgo hippo --username=testuser --password=datalake).

Once logged into pgAdmin 4, you will be automatically connected to your database. Explore pgAdmin 4 and run some queries!

Connecting from a Kubernetes Application
Within a Kubernetes Cluster

Connecting a Kubernetes application that is within the same cluster that your PostgreSQL cluster is deployed in is as simple as under-
standing the default Kubernetes DNS system. A cluster created by the PostgreSQL Operator automatically creates a Service of the same
name (e.g. hippo).

Following the example we’ve created, the hostname for our PostgreSQL cluster is hippo.pgo (or hippo.pgo.svc.cluster.local). To
get your exact DNS resolution rules, you may need to consult with your Kubernetes administrator.

Knowing this, we can construct a Postgres URI that contains all of the connection info:
postgres://testuser:securerandomlygeneratedpassword@hippo.pgo.svc.cluster.local:5432/hippo

which breaks down as such:

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#what-things-get-dns-names
https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

o postgres: the scheme, i.e. a Postgres URI

e testuser: the name of the PostgreSQL user

e securerandomlygeneratedpassword: the password for testuser
e hippo.pgo.svc.cluster.local: the hostname

e 5432: the port

e hippo: the database you want to connect to

If your application or connection driver cannot use the Postgres URI, the above should allow for you to break down the connection string
into its appropriate components.

Outside a Kubernetes Cluster
To connect to a database from an application that is outside a Kubernetes cluster, you will need to set one of the following:

e A Service type of LoadBalancer or NodePort
e An Ingress. The PostgreSQL Operator does not provide any management for Ingress types.

To have the PostgreSQL Operator create a Service that is of type LoadBalancer or NodePort, you can use the -—service-type flag as
part of creating a PostgreSQL cluster, e.g.:

pgo create cluster hippo --service-type=LoadBalancer

You can also set the ServiceType attribute of the [PostgreSQL Operator configuration]({{< relref “configuration/pgo-yaml-
configuration.md” >}}) to provide a default Service type for all PostgreSQL clusters that are created.

Next Steps

We've created a cluster and we’ve connected to it! Now, let’s [learn what customizations we can make as part of the cluster creation
process]({{< relref “tutorial/customize-cluster.md” >}}).

The PostgreSQL Operator makes it very easy and quick to [create a cluster]({{< relref “tutorial/create-cluster.md” >}1}), but there are
possibly more customizations you want to make to your cluster. These include:

» Resource allocations (e.g. Memory, CPU, PVC size)

o Sidecars (e.g. Monitoring({{< relref “architecture/monitoring.md” >}}), pgBouncer({{< relref “tutorial/pgbouncer.md” >}}),
[pgAdmin 4]({{< relref “architecture/pgadmind.md” >}1}))

« High Availability (e.g. adding replicas)

 Specifying specific PostgreSQL images (e.g. one with PostGIS)

e Specifying a Pod anti-affinity and Node affinity

o Enable and/or require TLS for all connections

o [Custom PostgreSQL configurations]({{< relref “advanced/custom-configuration.md” >}})

and more.

There are an abundance of ways to customize your PostgreSQL clusters with the PostgreSQL Operator. You can read about all of these
options in the pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) reference.

The goal of this section is to present a few of the common actions that can be taken to help create the PostgreSQL cluster of your choice.
Later sections of the tutorial will cover other topics, such as creating a cluster with TLS or tablespaces.

Create a PostgreSQL Cluster With Monitoring

The PostgreSQL Operator Monitoring({{< relref “architecture/monitoring.md” >}}) stack provides a convenient way to gain insights
into the availabilty and performance of your PostgreSQL clusters. In order to collect metrics from your PostgreSQL clusters, you have
to enable the crunchy-postgres-exporter sidecar alongside your PostgreSQL cluster. You can do this with the --metrics flag on
pgo create cluster({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}):

pgo create cluster hippo --metrics
Note that the —--metrics flag just enables a sidecar that can be scraped. You will need to install the [monitoring stack]({{< relref
“installation/metrics/__index.md” >}}) separately, or tie it into your existing monitoring infrastructure.

If you have an exiting cluster that you would like to add metrics collection to, you can use the --enable-metrics flag on the [pgo
update cluster|({{< relref “pgo-client/reference/pgo_ create_cluster.md” >}}) command:

pgo update cluster hippo --enable-metrics

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Customize PVC Size

Databases come in all different sizes, and those sizes can certainly change over time. As such, it is helpful to be able to specify what size
PVC you want to store your PostgreSQL data.

Customize PVC Size for PostgreSQL

The PostgreSQL Operator lets you choose the size of your “PostgreSQL data directory” (aka “PGDATA” directory) using the --pvc-size
flag. The PVC size should be selected using standard Kubernetes resource units, e.g. 20Gi.

For example, to create a PostgreSQL cluster that has a data directory that is 20Gi in size:

pgo create cluster hippo --pvc-size=20Gi

Customize PVC Size for pgBackRest

You can also specify the PVC size for the [pgBackRest repository]({{< relref “architecture/disaster-recovery.md” >}}) with the
--pgbackrest-pvc-size. pgBackRest is used to store all of your backups, so you want to size it so that you can meet your backup
retention policy.

For example, to create a pgBackRest repository that has a PVC sized to 100Gi in size:

pgo create cluster hippo --pgbackrest-pvc-size=100Gi

Customize CPU / Memory

Databases have different CPU and memory requirements, often which is dictated by the amount of data in your working set (i.e. actively
accessed data). Kubernetes provides several ways for Pods to manage CPU and memory resources:

e« CPU & Memory Requests
e« CPU & Memory Limits

A CPU or Memory Request tells Kubernetes to ensure that there is at least that amount of resource available on the Node to schedule a
Pod to.

A CPU Limit tells Kubernetes to not let a Pod exceed utilizing that amount of CPU. A Pod will only be allowed to use that maximum
amount of CPU. Similarly, a Memory limit tells Kubernetes to not let a Pod exceed a certain amount of Memory. In this case, if Kubernetes
detects that a Pod has exceed a Memory limit, it will try to terminate any processes that are causing the limit to be exceed. We mention
this as, prior to cgroups v2, Memory limits can potentially affect PostgreSQL availability and we advise to use them carefully.

The below goes into how you can customize the CPU and memory resources that are made available to the core deployment Pods with your
PostgreSQL cluster. Customizing CPU and memory does add more resources to your PostgreSQL cluster, but to fully take advantage of
additional resources, you will need to customize your PostgreSQL configuration and tune parameters such as shared_buffers and others.

Customize CPU / Memory for PostgreSQL

The PostgreSQL Operator provides several flags for pgo create cluster({{< relref “pgo-client/reference/pgo_ create_ cluster.md” >}})
to help manage resources for a PostgreSQL instance:

e ——cpu: Specify the CPU Request for a PostgreSQL instance

e ——cpu-limit: Specify the CPU Limit for a PostgreSQL instance

e —-memory: Specify the Memory Request for a PostgreSQL instance

e ——memory-limit: Specify the Memory Limit for a PostgreSQL instance

For example, to create a PostgreSQL cluster that makes a CPU Request of 2.0 with a CPU Limit of 4.0 and a Memory Request of 4Gi
with a Memory Limit of 6Gi:

pgo create cluster hippo \
--cpu=2.0 --cpu-limit=4.0 \
--memory=4Gi --memory-limit=6Gi

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes
https://pgbackrest.org/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Customize CPU / Memory for Crunchy PostgreSQL Exporter Sidecar

If you deploy your PostgreSQL cluster with monitoring, you may want to adjust the resources of the crunchy-postgres-exporter sidecar
that runs next to each PostgreSQL instnace. You can do this with the following flags:

e ——exporter-cpu: Specify the CPU Request for a crunchy-postgres-exporter sidecar

e ——exporter-cpu-limit: Specify the CPU Limit for a crunchy-postgres-exporter sidecar

e —-—exporter-memory: Specify the Memory Request for a crunchy-postgres-exporter sidecar

e —-—exporter-memory-limit: Specify the Memory Limit for a crunchy-postgres-exporter sidecar

For example, to create a PostgreSQL cluster with a metrics sidecar with custom CPU and memory requests 4+ limits, you could do the
following:

pgo create cluster hippo --metrics \
--exporter-cpu=0.5 --exporter-cpu-limit=1.0 \
-—exporter-memory=256Mi --exporter-memory-limit=1Gi

Customize CPU / Memory for pgBackRest

You can also customize the CPU and memory requests and limits for pgBackRest with the following flags:

o —-pgbackrest-cpu: Specify the CPU Request for pgBackRest

o —-pgbackrest-cpu-limit: Specify the CPU Limit for pgBackRest

e —-pgbackrest-memory: Specify the Memory Request for pgBackRest

e —-pgbackrest-memory-limit: Specify the Memory Limit for pgBackRest

For example, to create a PostgreSQL cluster with custom CPU and memory requests + limits for pgBackRest, you could do the following:

pgo create cluster hippo \
--pgbackrest-cpu=0.5 --pgbackrest-cpu-limit=1.0 \
--pgbackrest -memory=256Mi --pgbackrest-memory-limit=1Gi

Create a High Availability PostgreSQL Cluster

[High availability]({{ < relref “architecture/high-availability/ _index.md” >}}) allows you to deploy PostgreSQL clusters with redundancy
that allows them to be accessible by your applications even if there is a downtime event to your primary instance. The PostgreSQL
clusters use the distributed consensus storage system that comes with Kubernetes so that availability is tied to that of your Kubernetes
clusters. For an in-depth discussion of the topic, please read the [high availability]({{< relref “architecture/high-availability/ index.md”
>1}1}) section of the documentation.

To create a high availability PostgreSQL cluster with one replica, you can run the following command:
pgo create cluster hippo --replica-count=1

You can scale up and down your PostgreSQL cluster with the [pgo scale]({{< relref “pgo-client/reference/pgo_scale.md” >}}) and
pgo scaledown({{< relref “pgo-client/reference/pgo_scaledown.md” >}}) commands.

Set Tolerations for a PostgreSQL Cluster
Tolerations help with the scheduling of Pods to appropriate nodes. There are many reasons that a Kubernetes administrator may want
to use tolerations, such as restricting the types of Pods that can be assigned to particular nodes.

The PostgreSQL Operator supports adding tolerations to PostgreSQL instances using the --toleration flag. The format for adding a
toleration is as such:

rule:Effect

or

rule

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

where a rule can represent existence (e.g. key) or equality (key=value) and Effect is one of NoSchedule, PreferNoSchedule, or
NoExecute. For more information on how tolerations work, please refer to the Kubernetes documentation.

You can assign multiple tolerations to a PostgreSQL cluster.

For example, to add two tolerations to a new PostgreSQL cluster, one that is an existence toleration for a key of ssd and the other that
is an equality toleration for a key/value pair of zone/east, you can run the following command:

pgo create cluster hippo \
-—toleration=ssd:NoSchedule \
-—-toleration=zone=east:NoSchedule

Tolerations can be updated on an existing cluster using the [pgo update cluster]({{ relref “pgo-client/reference/pgo_update_ cluster.md”
}}) command. For example, to add a toleration of zone=west:NoSchedule and remove the toleration of zone=east:NoSchedule, you
could run the following command:

pgo update cluster hippo \
--toleration=zone=west:NoSchedule \
--toleration=zone-east:NoSchedule-

You can also add or edit tolerations directly on the pgclusters.crunchydata.com custom resource and the PostgreSQL Operator will
roll out the changes to the appropriate instances.

Customize PostgreSQL Configuration

PostgreSQL provides a lot of different knobs that can be used to fine tune the configuration for your workload. While you can [customize
your PostgreSQL configuration]({{< relref “advanced/custom-configuration.md” >}}) after your cluster has been deployed, you may also
want to load in your custom configuration during initialization.

The PostgreSQL Operator uses Patroni to help manage cluster initialization and high availability. To understand how to build out a
configuration file to be used to customize your PostgreSQL cluster, please review the Patroni documentation.

For example, let’s say we want to create a PostgreSQL cluster with shared_buffers set to 2GB, max_connections set to 30 and
password_encryption set to scram-sha-256. We would create a configuration file that looks similar to:

bootstrap:
dcs:
postgresql:
parameters:

max_connections: 30

shared_buffers: 2GB

password_encryption: scram-sha-256
Save this configuration in a file called postgres-ha.yaml
Next, create a ConfigMap called hippo-custom-config like so:
kubectl -n pgo create configmap hippo-custom-config --from-file=postgres-ha.yaml
You can then have you new PostgreSQL cluster use hippo-custom-config as part of its cluster initialization by using the --custom-config
flag of pgo create cluster:
pgo create cluster hippo --custom-config=hippo-custom-config
After your cluster is initialized, [connect to your cluster]({{< relref “tutorial/connect-cluster.md” >}}) and confirm that your settings

have been applied:
SHOW shared_buffers;

shared_buffers

Troubleshooting
PostgreSQL Pod Can’t Be Scheduled

There are many reasons why a PostgreSQL Pod may not be scheduled:

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://www.postgresql.org/docs/current/runtime-config.html
https://patroni.readthedocs.io/
https://patroni.readthedocs.io/en/latest/SETTINGS.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

¢ Resources are unavailable. Ensure that you have a Kubernetes Node with enough resources to satisfy your memory or CPU
Request.

e PVC cannot be provisioned. Ensure that you request a PVC size that is available, or that your PVC storage class is set up
correctly.

e Node affinity rules cannot be satisfied. If you assigned a node label, ensure that the Nodes with that label are available for
scheduling. If they are, ensure that there are enough resources available.

o Pod anti-affinity rules cannot be satisfied. This most likely happens when [pod anti-affinity]({{< relref “architecture/high-
availability/_index.md” >}}#how-the-crunchy-postgresql-operator-uses-pod-anti-affinity) is set to required and there are not
enough Nodes available for scheduling. Consider adding more Nodes or relaxing your anti-affinity rules.

PostgreSQL Pod reports “Authentication Failed for ccp_monitoring”

This is a temporary error that occurs when a new PostgreSQL cluster is first initialized with the -~-metrics flag. The crunchy-postgres-expc
container within the PostgreSQL Pod may be ready before the container with PostgreSQL is ready. If a message in your logs further
down displays a timestamp, e.g.:

2020-11-10 08:23:15.968196-05

Then the ccp_monitoring user is properly reconciled with the PostgreSQL cluster.

If the error message does not go away, this could indicate a few things:

e The PostgreSQL instance has not initialized. Check to ensure that PostgreSQL has successfully started.
e The password for the ccp_monitoring user has changed. In this case you will need to update the Secret with the monitoring
credentials.

PostgreSQL Pod Not Scheduled to Nodes Matching Tolerations

While Kubernetes Tolerations allow for Pods to be scheduled to Nodes based on their taints, this does not mean that the Pod will
be assigned to those nodes. To provide Kubernetes scheduling guidance on where a Pod should be assigned, you must also use Node
Affinity ({{ < relref “architecture/high-availability/ index.md” >}}#node-affinity).

Next Steps

As mentioned at the beginning, there are a lot more customizations that you can make to your PostgreSQL cluster, and we will cover
those as the tutorial progresses! This section was to get you familiar with some of the most common customizations, and to explore how
many options pgo create cluster has!

Now you have your PostgreSQL cluster up and running and using the resources as you see fit. What if you want to make changes to the
cluster? We’ll explore some of the commands that can be used to update your PostgreSQL cluster!

You’ve done it: your application is a huge success! It’s so successful that you database needs more resources to keep up with the demand.
How do you add more resources to your PostgreSQL cluster?

The PostgreSQL Operator provides several options to [update a cluster’s]({{< relref “pgo-client/reference/pgo_update_ cluster.md” >}})
resource utilization, including:

 Resource allocations (e.g. Memory, CPU, PVC size)

e Tablespaces

o Annotations

e Auvailability options

o Configuration({{< relref “advanced/custom-configuration.md” >}})

and more. There are additional actions that can be taken as well outside of the update process, including [scaling a cluster]({{<
relref “architecture/high-availability/_index.md” >}}), adding a pgBouncer or [pgAdmin 4]({{< relref “architecture/pgadmind.md” >}})
Deployment, and more.

The goal of this section is to present a few of the common actions that can be taken to update your PostgreSQL cluster so it has the
resources and configuration that you require.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Update CPU / Memory

You can update the CPU and memory resources available to the Pods in your PostgreSQL cluster by using the [pgo update cluster]({{<
relref “pgo-client/reference/pgo_ create_ cluster.md” >}}) command. You can also modify the custom resource attributes to resize these
attributes as well. By using this method, the PostgreSQL instances are safely shut down and the new resources are applied in a rolling
fashion (though we caution that a brief downtime may still occur).

Customizing CPU and memory does add more resources to your PostgreSQL cluster, but to fully take advantage of additional resources,
you will need to [customize your PostgreSQL configuration]({{< relref “advanced/custom-configuration.md” >}}) and tune parameters
such as shared_buffers and others.

Customize CPU / Memory for PostgreSQL

The PostgreSQL Operator provides several flags for [pgo update cluster|({{< relref “pgo-client/reference/pgo_update_ cluster.md”
>1}}) to help manage resources for a PostgreSQL instance:

e ——cpu: Specify the CPU Request for a PostgreSQL instance

e ——cpu-limit: Specify the CPU Limit for a PostgreSQL instance

e —-memory: Specify the Memory Request for a PostgreSQL instance

e ——memory-limit: Specify the Memory Limit for a PostgreSQL instance

For example, to update a PostgreSQL cluster that makes a CPU Request of 2.0 with a CPU Limit of 4.0 and a Memory Request of 4Gi
with a Memory Limit of 6Gi:

pgo update cluster hippo \
--cpu=2.0 --cpu-limit=4.0 \
--memory=4Gi --memory-limit=6Gi

Customize CPU / Memory for Crunchy PostgreSQL Exporter Sidecar

If your PostgreSQL cluster has monitoring, you may want to adjust the resources of the crunchy-postgres-exporter sidecar that runs
next to each PostgreSQL instnace. You can do this with the following flags:

o ——exporter-cpu: Specify the CPU Request for a crunchy-postgres-exporter sidecar

e ——exporter-cpu-limit: Specify the CPU Limit for a crunchy-postgres-exporter sidecar

e —-—exporter-memory: Specify the Memory Request for a crunchy-postgres-exporter sidecar

e —-—exporter-memory-limit: Specify the Memory Limit for a crunchy-postgres-exporter sidecar

For example, to update a PostgreSQL cluster with a metrics sidecar with custom CPU and memory requests + limits, you could do the
following:

pgo update cluster hippo \
--exporter-cpu=0.5 --exporter-cpu-limit=1.0 \
--exporter-memory=256Mi --exporter-memory-limit=1Gi

Customize CPU / Memory for pgBackRest

You can also customize the CPU and memory requests and limits for pgBackRest with the following flags:

e ——-pgbackrest-cpu: Specify the CPU Request for pgBackRest

e —-pgbackrest-cpu-limit: Specify the CPU Limit for pgBackRest

e —-pgbackrest-memory: Specify the Memory Request for pgBackRest

e —-pgbackrest-memory-limit: Specify the Memory Limit for pgBackRest

For example, to update a PostgreSQL cluster with custom CPU and memory requests + limits for pgBackRest, you could do the following:

pgo update cluster hippo \
--pgbackrest-cpu=0.5 --pgbackrest-cpu-limit=1.0 \
--pgbackrest -memory=256Mi --pgbackrest-memory-limit=1Gi

Customize PostgreSQL Configuration

PostgreSQL provides a lot of different knobs that can be used to fine tune the configuration for your workload. While you can [customize
your PostgreSQL configuration]({{ < relref “advanced/custom-configuration.md” >}}) after your cluster has been deployed, you may also
want to load in your custom configuration during initialization.

The configuration can be customized by editing the <clusterName>-pgha-config ConfigMap. For example, with the hippo cluster:
kubectl -n pgo edit configmap hippo-pgha-config

We recommend that you read the section on how to [customize your PostgreSQL configuration]({{< relref “advanced/custom-
configuration.md” >}}) to find out how to customize your configuration.

Update PVC Size

You can update the PVC sizes for your PostgreSQL cluster, the pgBackRest repository, and an optional external WAL PVC by using
the [pgo update cluster|({{< relref “pgo-client/reference/pgo_update_cluster.md” >}}) command. You can also modify the custom
resource attributes to resize these attributes as well. By using this method, the PostgreSQL instances are safely shut down and the new
resources are applied in a rolling fashion (though we caution that a brief downtime may still occur).

It is possible to update the PVC size for a replica instance or a pgAdmin 4 instance as well, but you must do this by editing a custom
resource directly.

Update PVC Size for a Postgres Cluster

PGO provides the --pvc-size flag on the [pgo update cluster|({{< relref “pgo-client/reference/pgo_update_cluster.md” >}}) com-
mand to let you update the size of the PVC that stores your PostgreSQL data. To use this feature, the new PVC size must be larger
than the old PVC size.

For example, let’s say your current PostgreSQL cluster named hippo has a PVC size of 10Gi. To update your PostgreSQL cluster to use
a 20Gi PVC, you would use the following command:

pgo update cluster hippo --pvc-size=20Gi

As mentioned above, if you have deployed a HA Postgres cluster, the Postgres Operator will apply the changes using a rolling update to
minimize downtime.

Update PVC Size for a pgBackRest Repository
If you are using pgBackRest repository with posix mode (not s3 or gcs only modes), you can resize its PVC using the
--pgbackrest-pvc-size flag on the [pgo update cluster]({{< relref “pgo-client/reference/pgo_create_ cluster.md” >}}) command.

For example, let’s say your current PostgreSQL cluster named hippo has a pgBackRest PVC size of 30Gi. To update your PostgreSQL
cluster to use a 60Gi PVC, you would use the following command:

pgo update cluster hippo --pgbackrest-pvc-size=60Gi

Troubleshooting
Configuration Did Not Update
Any updates to a ConfigMap may take a few moments to propagate to all of your Pods. Once it is propagated, the PostgreSQL Operator

will attempt to reload the new configuration on each Pod.

If the information has propagated but the Pods have not been reloaded, you can force an explicit reload with the [pgo reload]({{< relref
“pgo-client /reference/pgo_reload.md” >}}) command:

pgo reload hippo

Some customized configuration settings can only be applied to your PostgreSQL cluster after it is restarted. For example, to restart the
hippo cluster, you can use the [pgo restart|({{< relref “pgo-client/reference/pgo_restart.md” >}}) command:

pgo restart hippo

https://www.postgresql.org/docs/current/runtime-config.html

Next Steps
We’ve seen how to create, customize, and update a PostgreSQL cluster with the PostgreSQL Operator. What about [deleting a PostgreSQL
cluster]({{< relref “tutorial/delete-cluster.md” >}1})?

There are many reasons you may want to delete a PostgreSQL cluster, and a few different questions to consider, such as do you want to
permanently delete the data or save it for later use?

The PostgreSQL Operator offers several different workflows for deleting a cluster, from wiping all assets, to keeping PVCs of your data
directory, your backup repository, or both.

Delete Everything
Deleting everything in a PostgreSQL cluster is a simple as using the pgo delete cluster({{< relref “pgo-client/reference/pgo_ delete_ cluste
>}}) command. For example, to delete the hippo cluster:

pgo delete cluster hippo

This command launches a Job that uses the pgo-rmdata container to delete all of the Kubernetes objects associated with this PostgreSQL
cluster. Once the pgo-rmdata Job finishes executing, all of your data, configurations, etc. will be removed.

Keep Backups

If you want to keep your backups, which can be used to [restore your PostgreSQL cluster at a later time]({{< relref “architecture/disaster-
recovery.md” >} } #restore-to-a-new-cluster) (a popular method for cloning and having sample data for your development team to use!),
use the ——keep-backups flag! For example, to delete the hippo PostgreSQL cluster but keep all of its backups:

pgo delete cluster hippo --keep-backups

This keeps the pgBackRest PVC which follows the pattern <clusterName>-hippo-pgbr-repo (e.g. hippo-pgbr-repo) and any PVCs
that were created using the pgdump method of [pgo backup|({{< relref “pgo-client/reference/pgo_backup.md”>}}).

Keep the PostgreSQL Data Directory

You may also want to keep your PostgreSQL cluster data directory, which is the core of your database, but remove any actively running
Pods. This can be accomplished with the --keep-data flag. For example, to keep the data directory of the hippo cluster:

pgo delete cluster hippo --keep-data

Once the pgo-rmdata Job completes, your data PVC for hippo will still remain, but you will be unable to access it unless you attach it
to a new PostgreSQL instance. The easiest way to access your data again is to create a PostgreSQL cluster with the same name:

pgo create cluster hippo

and the PostgreSQL Operator will re-attach your PVC to the newly running cluster.

Next Steps

We've covered the fundamental lifecycle elements of the PostgreSQL Operator, but there is much more to learn! If you're curious about
how things work in the PostgreSQL Operator and how to perform daily tasks, we suggest you continue with the following sections:

o [Architecture]({{< relref “architecture/ index.md” >}})
o [Common pgo Client Tasks]({{< relref “pgo-client/common-tasks.md” >}})

The tutorial will now go into some more advanced topics. Up next, learn how to [secure connections to your PostgreSQL clusters with
TLS]({{< relref “tutorial/tls.md” >}}).

TLS allows secure TCP connections to PostgreSQL, and the PostgreSQL Operator makes it easy to enable this PostgreSQL feature. The
TLS support in the PostgreSQL Operator does not make an opinion about your PKI, but rather loads in your TLS key pair that you wish
to use for the PostgreSQL server as well as its corresponding certificate authority (CA) certificate. Both of these Secrets are required to
enable TLS support for your PostgreSQL cluster when using the PostgreSQL Operator, but it in turn allows seamless TLS support.

https://kubernetes.io/docs/concepts/workloads/controllers/job/

Prerequisites

There are three items that are required to enable TLS in your PostgreSQL clusters:

e A CA certificate
e A TLS private key
e A TLS certificate

There are a variety of methods available to generate these items: in fact, Kubernetes comes with its own certificate management system!
It is up to you to decide how you want to manage this for your cluster. The PostgreSQL documentation also provides an example for how
to generate a TLS certificate as well.

To set up TLS for your PostgreSQL cluster, you have to create two Secrets: one that contains the CA certificate, and the other that
contains the server TLS key pair.

First, create the Secret that contains your CA certificate. Create the Secret as a generic Secret, and note that the following requirements
must be met:

e The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster
e The name of the key that is holding the CA must be ca.crt

There are optional settings for setting up the CA secret:
« You can pass in a certificate revocation list (CRL) for the CA secret by passing in the CRL using the ca.crl key name in the Secret.

For example, to create a CA Secret with the trusted CA to use for the PostgreSQL clusters, you could execute the following command:

kubectl create secret generic postgresql-ca -n pgo --from-file=ca.crt=/path/to/ca.crt

To create a CA Secret that includes a CRL, you could execute the following command:

kubectl create secret generic postgresql-ca -n pgo \
--from-file=ca.crt=/path/to/ca.crt \
--from-file=ca.crl=/path/to/ca.crl

Note that you can reuse this CA Secret for other PostgreSQL clusters deployed by the PostgreSQL Operator.

Next, create the Secret that contains your TLS key pair. Create the Secret as a a TLS Secret, and note the following requirement must
be met:

e The Secret must be created in the same Namespace as where you are deploying your PostgreSQL cluster

kubectl create secret tls hippo-tls-keypair -n pgo \
--cert=/path/to/server.crt \
--key=/path/to/server.key

Now you can create a TLS-enabled PostgreSQL cluster!

Create a Postgres Cluster with TLS

Using the above example, to create a TLS-enabled PostgreSQL cluster that can accept both TLS and non-TLS connections, execute the
following command:

pgo create cluster hippo \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair

Including the --server-ca-secret and --server-tls-secret flags automatically enable TLS connections in the PostgreSQL cluster
that is deployed. These flags should reference the CA Secret and the TLS key pair Secret, respectively.

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSvl.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://blog.crunchydata.com/blog/tls-postgres-kubernetes-openssl
https://kubernetes.io/docs/concepts/configuration/secret/

Force TLS For All Connections

There are many environments where you want to force all remote connections to occur over TLS, for example, if you deploy your PostgreSQL
cluster’s in a public cloud or on an untrusted network. The PostgreSQL Operator lets you force all remote connections to occur over TLS
by using the --tls-only flag.

For example, using the setup above, you can force TLS in a PostgreSQL cluster by executing the following command:

pgo create cluster hippo \
--tls-only \
--server-ca-secret=postgresql-ca --server-tls-secret=hippo-tls-keypair

If deployed successfully, when you connect to the PostgreSQL cluster, assuming your PGSSLMODE is set to prefer or higher, you will see
something like this in your psql terminal:

SSL connection (protocol: TLSvl.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

If you try to connect to a PostgreSQL cluster that is deployed using the --tls-only with TLS disabled (i.e. PGSSLMODE=disable), you
will receive an error that connections without TLS are unsupported.

TLS Authentication for Replicas

PostgreSQL supports certificate-based authentication, which allows for PostgreSQL to authenticate users based on the common name
(CN) in a certificate. Using this feature, the PostgreSQL Operator allows you to configure PostgreSQL replicas in a cluster to authenticate
using a certificate instead of a password.

To use this feature, first you will need to set up a Kubernetes TLS Secret that has a CN of primaryuser. If you do not wish to have this
as your CN; you will need to map the CN of this certificate to the value of primaryuser using a pg_ident username map, which you can
configure as part of a [custom PostgreSQL configuration]({{< relref “/advanced/custom-configuration.md” >}}).

You also need to ensure that the certificate is verifiable by the certificate authority (CA) chain that you have provided for your
PostgreSQL cluster. The CA is provided as part of the --server-ca-secret flag in the pgo create cluster({{< relref “/pgo-
client /reference/pgo_ create_cluster.md” >}}) command.

To create a PostgreSQL cluster that uses TLS authentication for replication, first create Kubernetes Secrets for the server and the
CA. For the purposes of this example, we will use the ones that were created earlier: postgresql-ca and hippo-tls-keypair.
After generating a certificate that has a CN of primaryuser, create a Kubernetes Secret that references this TLS keypair called
hippo-tls-replication-keypair:

kubectl create secret tls hippo-tls-replication-keypair -n pgo \
--cert=/path/to/replication.crt \
--key=/path/to/replication.key

We can now create a PostgreSQL cluster and allow for it to use TLS authentication for its replicas! Let’s create a PostgreSQL cluster
with two replicas that also requires TLS for any connection:

pgo create cluster hippo \
--tls-only \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair \
--replication-tls-secret=hippo-tls-replication-keypair \
--replica-count=2

By default, the PostgreSQL Operator has each replica connect to PostgreSQL using a PostgreSQL TLS mode of verify-ca. If you wish to
perform TLS mutual authentication between PostgreSQL instances (i.e. certificate-based authentication with SSL mode of verify-full),
you will need to create a [PostgreSQL custom configuration]({{< relref “/advanced/custom-configuration.md” >}}).

Add TLS to an Existing PostgreSQL Cluster

You can add TLS to an existing PostgreSQL cluster using the [pgo update cluster|({{< relref “/pgo-client/reference/pgo_update_ cluster.i
>}}) or by modifying the pgclusters.crunchydata.com custom resource directly. pgo update cluster provides several flags for TLS
management, including:

e —-disable-server-tls: removes TLS from a cluster
e —-disable-tls-only: removes the TLS-only requirement from a cluster
e ——enable-tls-only: adds the TLS-only requirement to a cluster

https://www.postgresql.org/docs/current/auth-cert.html
https://www.postgresql.org/docs/current/auth-username-maps.html
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS

e —-server-ca-secret: combined with ——server-tls-secret, enables TLS in a cluster
e —-server—tls-secret: combined with --server-ca-secret, enables TLS in a cluster
e —-replication-tls-secret: enables certificate-based authentication between Postgres instances.

If you have an existing cluster named hippo that does not have TLS, and have a TLS keypair in a Secret named hippo-tls-keypair and
a CA in a Secret name postgresql-ca and want to require all connections to use TLS, you could use the following command:

pgo update cluster hippo \
--enable-tls-only \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair

While PGO attempts to leave any pg_hba.conf customizations you have in place, there are circumstance where it can override them when
enabling/disabling TLS. If you do have custom pg_hba. conf rules, after adding or removing TLS from an existing Posgres cluster, check
your pg_hba.conf values to ensure it matches your expectations.

Troubleshooting
Replicas Cannot Connect to Primary

If your primary is forcing all connections over TLS, ensure that your replicas are connecting with a sslmode of prefer or higher.

If using TLS authentication with your replicas, ensure that the common name (CN) for the replicas is primaryuser or that you have set
up an entry in pg_ident that provides a mapping from your CN to primaryuser.

pg_hba.conf Values Have Changed After TLS Update

PGO will attempt to preserve all of your custom TLS rules, but there are cases where it may make modifications. This a normal part
of adding/removing TLS from an existing Postgres cluster. You can safely update your pg_hba.conf rules after the TLS changes are
completed, and they will be preserved.

Next Steps

You’ve now secured connections to your database. However, how do you scale and pool your PostgreSQL connections? Learn how to [set
up and configure pgBouncer]({{< relref “tutorial/pgbouncer.md” >}})!

pgBouncer is a lightweight connection poooler and state manager that provides an efficient gateway to metering connections to PostgreSQL.
The PostgreSQL Operator provides an integration with pgBouncer that allows you to deploy it alongside your PostgreSQL cluster.

This tutorial covers how you can set up pgBouncer, functionality that the PostgreSQL Operator provides to manage it, and more.

Setup pgBouncer

pgBouncer lives as an independent Deployment next to your PostgreSQL cluster but, thanks to the PostgreSQL Operator, is synchronized
with various aspects of your environment.

There are two ways you can set up pgBouncer for your cluster. You can add pgBouncer when you create your cluster, e.g.:

pgo create cluster hippo --pgbouncer

or after your PostgreSQL cluster has been provisioned with the [pgo create pgbouncer]({{< relref “pgo-client/reference/pgo_ create_pgbot
>1):

pgo create pgbouncer hippo

There are several managed objects that are created alongside the pgBouncer Deployment, these include:

e The pgBouncer Deployment itself

¢ One or more pgBouncer Pods

e A pgBouncer ConfigMap, e.g. hippo-pgbouncer-cm which has two entries:

e pgbouncer.ini, which is the configuration for the pgBouncer instances

o pg_hba.conf, which controls how clients can connect to pgBouncer

e A pgBouncer Secret e.g. hippo-pgbouncer-secret, that contains the following values:

o password: the password for the pgbouncer user. The pgbouncer user is described in more detail further down.

o users.txt: the description for how the pgbouncer user and only the pgbouncer user can explicitly connect to a pgBouncer instance.

https://www.pgbouncer.org/

The pgbouncer user

The pgbouncer user is a special type of PostgreSQL user that is solely for the administration of pgBouncer. It performs several roles,
including:

e Securely load PostgreSQL user credentials into pgBouncer so pgBouncer can perform authentication and connection forwarding
e The ability to log into pgBouncer itself for administration, introspection, and looking at statistics

The pgBouncer user is not meant to be used to log into PostgreSQL directly: the account is given permissions for ad hoc tasks.
More information on how to connect to pgBouncer is provided in the next section.

Connect to a Postgres Cluster Through pgBouncer

Connecting to a PostgreSQL cluster through pgBouncer is similar to how you [connect to PostgreSQL directly]({{< relref “tutorial/connect-
cluster.md”>}1}), but you are connecting through a different service. First, note the types of users that can connect to PostgreSQL through
pgBouncer:

o Any regular user that’s created through [pgo create user|({{< relref “pgo-client/reference/pgo_create user.md” >}}) or a user
that is not a system account.

o The postgres superuser

The following example will follow similar steps for how you would connect to a [Postgres Cluster via psql]({{< relref “tutorial/connect-
cluster.md”>} } #connection-via-psql), but applies to all other connection methods.

First, get a list of Services that are available in your namespace:

kubectl -n pgo get svc

You should see a list similar to:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
AGE
hippo ClusterIP 10.96.104.207 <none> 2022/TCP ,5432/TCP
12m
hippo-backrest-shared-repo ClusterIP 10.96.134.253 <none> 2022/ TCP
12m
hippo-pgbouncer ClusterIP 10.96.85.35 <none> 5432/ TCP
1im

We are going to want to create a port forward to the hippo-pgbouncer service. In a separate terminal window, run the following command:
kubectl -n pgo port-forward svc/hippo-pgbouncer 5432:5432

Recall in the [earlier part of the tutorial]({{< relref “tutorial/connect-cluster.md”>}}) that we created a user called testuser with a
password of securerandomlygeneratedpassword. We can the connect to PostgreSQL via pgBouncer by executing the following command:

PGPASSWORD=securerandomlygeneratedpassword psql -h localhost -p 5432 -U testuser hippo

You should then be greeted with the PostgreSQL prompt:

psql ({{< param postgresVersion >1}})
Type "help" for help.

hippo=>

Validation: Did this actually work?
This looks just like how we connected to PostgreSQL before, so how do we know that we are connected to PostgreSQL via pgBouncer?
Let’s log into pgBoucner as the pgbouncer user and demonstrate this.

In another terminal window, get the credential for the pgBouncer user. This can be done with the [pgo show pgbouncer]|({{< relref
“pgo-client /reference/pgo show pgbouncer.md” >}}) command:

pgo show pgbouncer hippo

which yields something that looks like:

CLUSTER SERVICE USERNAME PASSWORD CLUSTER IP EXTERNAL IP

hippo hippo-pgbouncer pgbouncer randompassword 10.96.85.35

Copy the actual password and log into pgbouncer with the following command:

PGPASSWORD=randompassword psql -h localhost -p 5432 -U pgbouncer pgbouncer

You should see something similar to this:
psql ({{< param postgresVersion >}}, server 1.14.0/bouncer)
Type "help" for help.

pgbouncer=#

In the pgboucner terminal, run the following command. This will show you the overall connection statistics for pgBouncer:

SHOW stats;

Success, you have connected to pgBouncer!

Setup pgBouncer with TLS

Similarly to how you can [setup TLS for PostgreSQL]({{< relref “tutorial/tls.md” >}}), you can set up TLS connections for pgBouncer.
To do this, the PostgreSQL Operator takes the following steps:

o Ensuring TLS communication between a client (e.g. psql, your application, etc.) and pgBouncer
e Ensuring TLS communication between pgBouncer and PostgreSQL

When TLS is enabled, the PostgreSQL Operator configures pgBouncer to require each client to use TLS to communicate with pgBouncer.
Additionally, the PostgreSQL Operator requires that pgBouncer and the PostgreSQL cluster share the same certificate authority (CA)
bundle, which allows for pgBouncer to communicate with the PostgreSQL cluster using PostgreSQL’s verify-ca SSL mode.

The below guide will show you how set up TLS for pgBouncer.

Prerequisites

In order to set up TLS connections for pgBouncer, you must first [enable TLS on your PostgreSQL cluster]({{< relref “tutorial/tls.md”
>1})-

For the purposes of this exercise, we will re-use the Secret TLS keypair hippo-tls-keypair that was created for the PostgreSQL server.
This is only being done for convenience: you can substitute hippo-tls-keypair with a different TLS key pair as long as it can be verified
by the certificate authority (CA) that you selected for your PostgreSQL cluster. Recall that the certificate authority (CA) bundle is stored
in a Secret named postgresql-ca.

Create pgBouncer with TLS
Knowing that our TLS key pair is stored in a Secret called hippo-tls-keypair, you can setup pgBouncer with TLS using the following
command:

pgo create pgbouncer hippo --tls-secret=hippo-tls-keypair

And that’s it! So long as the prerequisites are satisfied, this will create a pgBouncer instance that is TLS enabled.
Don’t believe it? Try logging in. First, ensure you have a port-forward from pgBouncer to your host machine:

kubectl -n pgo port-forward svc/hippo-pgbouncer 5432:5432

Then, connect to the pgBouncer instances:

PGPASSWORD=securerandomlygeneratedpassword psql -h localhost -p 5432 -U testuser hippo

You should see something similar to this:

psql ({{< param postgresVersion >}})
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)
Type "help" for help.

hippo=>

https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-PROTECTION

Still don’t believe it? You can verify your connection using the PostgreSQL get_backend_pid () function and the pg_stat_ssl monitoring
view:

hippo=> SELECT * FROM pg_stat_ssl WHERE pid = pg_backend_pid();

pid | ssl | version | cipher | bits | compression | client_dn | client_serial |
issuer_dn
————— - Fomm Fmm - t-————= domm - fomm fommm - +-—-
15653 | t | TLSv1.3 | TLS_AES_256_GCM_SHA384 | 256 | f I | I

Create a PostgreSQL cluster with pgBouncer and TLS

Want to create a PostgreSQL cluster with pgBouncer with TLS enabled? You can with the pgo create cluster({{< relref “pgo-
client/reference/pgo_ create cluster.md” >}}) command and using the —-pgbouncer-tls-secret flag. Using the same Secrets that were
created in the [creating a PostgreSQL cluster with TLS]({{ relref “tutorial/tls.md” }}) tutorial, you can create a PostgreSQL cluster with
pgBouncer and TLS with the following command:

pgo create cluster hippo \
--server-ca-secret=postgresql-ca \
--server-tls-secret=hippo-tls-keypair \
--pgbouncer \
--pgbouncer-tls-secret=hippo-tls-keypair

Customize CPU / Memory for pgBouncer
Provisioning

The PostgreSQL Operator provides several flags for pgo create cluster({{< relref “pgo-client/reference/pgo_ create_ cluster.md” >}})
to help manage resources for pgBouncer:

e —-pgbouncer-cpu: Specify the CPU Request for pgBouncer

e —-pgbouncer-cpu-limit: Specify the CPU Limit for pgBouncer

e —-pgbouncer-memory: Specify the Memory Request for pgBouncer

e —-pgbouncer-memory-limit: Specify the Memory Limit for pgBouncer

Additional, the PostgreSQL Operator provides several flags for [pgo create pgbouncer]({{< relref “pgo-client/reference/pgo_ create_pgbot
>1}}) to help manage resources for pgBouncer:

e ——cpu: Specify the CPU Request for pgBouncer

e ——cpu-limit: Specify the CPU Limit for pgBouncer

e —-memory: Specify the Memory Request for pgBouncer

e ——memory-limit: Specify the Memory Limit for pgBouncer

To create a pgBouncer Deployment that makes a CPU Request of 1.0 with a CPU Limit of 2.0 and a Memory Request of 64Mi with a
Memory Limit of 256Mi:

pgo create pgbouncer hippo \
--cpu=1.0 --cpu-limit=2.0 \
--memory=64Mi --memory-limit=256Mi

Updating

You can also add more memory and CPU resources to pgBouncer with the [pgo update pgbouncer|({{< relref “pgo-client/reference/pgo_ up
>}}) command, including;:

e ——cpu: Specify the CPU Request for pgBouncer

e ——cpu-limit: Specify the CPU Limit for pgBouncer

e ——memory: Specify the Memory Request for pgBouncer

e —-memory-limit: Specify the Memory Limit for pgBouncer

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-SSL-VIEW

For example, to update a pgBouncer to a CPU Request of 2.0 with a CPU Limit of 3.0 and a Memory Request of 128Mi with a Memory
Limit of 512Mi:

pgo update pgbouncer hippo \
--cpu=2.0 --cpu-1limit=3.0 \
--memory=128Mi --memory-limit=512Mi

Scaling pgBouncer

You can add more pgBouncer instances when provisioning pgBouncer and to an existing pgBouncer Deployment.

Provisioning

To add pgBouncer instances when creating a PostgreSQL cluster, use the ——-pgbouncer-replicas flag on pgo create cluster. For
example, to add 2 replicas:

pgo create cluster hippo --pgbouncer --pgbouncer-replicas=2

If adding a pgBouncer to an already provisioned PostgreSQL cluster, use the —-replicas flag on pgo create pgbouncer. For example,
to add a pgBouncer instance with 2 replicas:

pgo create pgbouncer hippo --replicas=2

Updating
To update pgBouncer instances to scale the replicas, use the pgo update pgbouncer command with the -—replicas flag. This flag can
scale pgBouncer up and down. For example, to run 3 pgBouncer replicas:

pgo update pgbouncer hippo --replicas=3

Rotate pgBouncer Password

If you wish to rotate the pgBouncer password, you can use the --rotate-password flag on pgo update pgbouncer:

pgo update pgbouncer hippo --rotate-password

This will change the pgBouncer password and synchronize the change across all pgBouncer instances.

Next Steps

Now that you have connection pooling set up, let’s create a [high availability PostgreSQL cluster|({{< relref “tutorial /high-availability.md”
>

One of the great things about PostgreSQL is its reliability: it is very stable and typically “just works.” However, there are certain things
that can happen in the environment that PostgreSQL is deployed in that can affect its uptime, including:

e The database storage disk fails or some other hardware failure occurs
e The network on which the database resides becomes unreachable

e The host operating system becomes unstable and crashes

e A key database file becomes corrupted

e A data center is lost

There may also be downtime events that are due to the normal case of operations, such as performing a minor upgrade, security patching
of operating system, hardware upgrade, or other maintenance.

Fortunately, the Crunchy PostgreSQL Operator is prepared for this.

The Crunchy PostgreSQL Operator supports a distributed-consensus based high-availability (HA) system that keeps its managed Post-
greSQL clusters up and running, even if the PostgreSQL Operator disappears. Additionally, it leverages Kubernetes specific features such
as Pod Anti-Affinity to limit the surface area that could lead to a PostgreSQL cluster becoming unavailable. The PostgreSQL Operator
also supports automatic healing of failed primaries and leverages the efficient pgBackRest “delta restore” method, which eliminates the
need to fully reprovision a failed cluster!

This tutorial will cover the “howtos” of high availbility. For more information on the topic, please review the detailed [high availability
architecture]({{< relref “architecture/high-availability/ index.md” >}}) section.

. Kubernetes

Control Plane 1 Control Plane 2 Control Plane 3

Kubernetes Load Balancer

@ O ETA

@ Replica 2

Node 1 Node 2 Node 3

Figure 4: PostgreSQL Operator High-Availability Overview

Create a HA PostgreSQL Cluster

High availability is enabled in the PostgreSQL Operator by default so long as you have more than one replica. To create a high availability
PostgreSQL cluster, you can execute the following command:

pgo create cluster hippo --replica-count=1

Scale a PostgreSQL Cluster

You can scale an existing PostgreSQL cluster to add HA to it by using the [pgo scale]({{< relref “pgo-client/reference/pgo_scale.md”>}})
command:

pgo scale hippo

Scale Down a PostgreSQL Cluster

To scale down a PostgreSQL cluster, you will have to provide a target of which instance you want to scale down. You can do this with
the pgo scaledown({{< relref “pgo-client/reference/pgo_scaledown.md”>}}) command:

pgo scaledown hippo --query

which will yield something similar to:

Cluster: hippo

REPLICA STATUS NODE REPLICATION LAG PENDING RESTART
hippo-ojnd running nodeO1 0 MB false
Once you have determined which instance you want to scale down, you can run the following command:

pgo scaledown hippo --target=hippo-ojnd

Manual Failover

Each PostgreSQL cluster will manage its own availability. If you wish to manually fail over, you will need to use the [pgo failover|({{<
relref “pgo-client /reference/pgo_ failover.md”>}}) command.
There are two ways to issue a manual failover to your PostgreSQL cluster:

1. Allow for the PostgreSQL Operator to select the best replica candidate for failover.
2. Select your own replica candidate for failover.

Both methods are detailed below.

Manual Failover - PostgreSQL Operator Candidate Selection

To have the PostgreSQL Operator select the best replica candidate for failover, all you need to do is execute the following command:
pgo failover hippo

The PostgreSQL Operator will determine which is the best replica candidate to fail over to, and take into account factors such as replication
lag and current timeline.

Manual Failover - Manual Selection

If you wish to have your cluster manually failover, you must first query your determine which instance you want to fail over to. You can
do so with the following command:

pgo failover hippo --query

which will yield something similar to:

Cluster: hippo

REPLICA STATUS NODE REPLICATION LAG PENDING RESTART
hippo-ojnd running nodeO1 0 MB false
Once you have determine your failover target, you can run the following command:

pgo failover hippo --target==hippo-ojnd

Synchronous Replication

If you have a [write sensitive workload and wish to use synchronous replication]({{< relref “architecture/high-availability/ index.md”
>} }#synchronous-replication-guarding-against-transactions-loss), you can create your PostgreSQL cluster with synchronous replication
turned on:

pgo create cluster hippo --sync-replication

Please understand the tradeoffs of synchronous replication before using it.

Pod Anti-Affinity and Node Affinity

To learn how to use pod anti-affinity and node affinity, please refer to the [high availability architecture documentation]({{< relref
“architecture/high-availability/ index.md” >}}).

Tolerations

If you want to have a PostgreSQL instance use specific Kubernetes tolerations, you can use the --toleration flag on [pgo scale|({{<
relref “pgo-client/reference/pgo_scale.md”>}}). Any tolerations added to the new PostgreSQL instance fully replace any tolerations
available to the entire cluster.

For example, to assign equality toleration for a key/value pair of zone/west, you can run the following command:
pgo scale hippo --toleration=zone=west:NoSchedule

For more information on the PostgreSQL Operator and tolerations, please review the [high availability architecture documentation]({{<
relref “architecture/high-availability/ index.md” >}}).

Troubleshooting
No Primary Available After Both Synchronous Replication Instances Fail

Though synchronous replication is available for guarding against transaction loss for [write sensitive workloads]({{< relref
“architecture/high-availability/ index.md” >} }#synchronous-replication-guarding-against-transactions-loss), by default the high
availability systems prefers availability over consistency and will continue to accept writes to a primary even if a replica fails. Additionally,
in most scenarios, a system using synchronous replication will be able to recover and self heal should a primary or a replica go down.

However, in the case that both a primary and its synchronous replica go down at the same time, a new primary may not be promoted. To
guard against transaction loss, the high availability system will not promote any instances if it cannot determine if they had been one of
the synchronous instances. As such, when it recovers, it will bring up all the instances as replicas.

To get out of this situation, inspect the replicas using pgo failover --query to determine the best candidate (typically the one with
the least amount of replication lag). After determining the best candidate, promote one of the replicas using pgo failover --target
command.

If you are still having issues, you may need to execute into one of the Pods and inspect the state with the patronictl command.

A detailed breakdown of this case be found here.

Next Steps

Backups, restores, point-in-time-recoveries: [disaster recovery]({{< relref “architecture/disaster-recovery.md” >}}) is a big topic! We’ll
learn about you can [perform disaster recovery]({{< relref “tutorial/disaster-recovery.md” >}}) and more in the PostgreSQL Operator.

When using the PostgreSQL Operator, the answer to the question “do you take backups of your database” is automatically “yes!”

The PostgreSQL Operator leverages a pgBackRest repository to facilitate the usage of the pgBackRest features in a PostgreSQL cluster.
When a new PostgreSQL cluster is created, it simultaneously creates a pgBackRest repository as described in [creating a PostgreSQL
cluster]({{< relref “tutorial/create-cluster.md” >}}) section.

For more information on how disaster recovery in the PostgreSQL Operator works, please see the [disaster recovery architecture]({{<
relref “architecture/disaster-recovery.md”>}}) section.

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://github.com/CrunchyData/postgres-operator/issues/2132#issuecomment-748719843

Creating a Backup

The PostgreSQL Operator uses the open source pgBackRest backup and recovery utility for managing backups and PostgreSQL archives.
pgBackRest has several types of backups that you can take:

e Full: Back up the entire database
« Differential: Create a backup of everything since the last full back up was taken
o Incremental: Back up everything since the last backup was taken, whether it was full, differential, or incremental

When a new PostgreSQL cluster is provisioned by the PostgreSQL Operator, a full pgBackRest backup is taken by default.

To create a backup, you can run the following command:

pgo backup hippo

which by default, will create an incremental pgBackRest backup. The reason for this is that the PostgreSQL Operator initially creates a

pgBackRest full backup when the cluster is initial provisioned, and pgBackRest will take incremental backups for each subsequent backup
until a different backup type is specified.

Most pgBackRest options are supported and can be passed in by the PostgreSQL Operator via the --backup-opts flag.
Creating a Full Backup

You can create a full backup using the following command:

pgo backup hippo --backup-opts="--type=full"

Creating a Differential Backup

You can create a differential backup using the following command:

pgo backup hippo --backup-opts="--type=diff"

Creating an Incremental Backup

You can create a differential backup using the following command:

pgo backup hippo --backup-opts="--type=incr"

An incremental backup is created without specifying any options after a full or differential backup is taken.

Creating Backups in S3

The PostgreSQL Operator supports creating backups in S3 or any object storage system that uses the S3 protocol. For more information,
please read the section on [PostgreSQL Operator Backups with S3]({{< relref “architecture/disaster-recovery.md”>}}#using-s3) in the
architecture section.

Creating Backups in GCS

The PostgreSQL Operator supports creating backups in Google Cloud Storage (GCS). For more information, please read the section on
[PostgreSQL Operator Backups with GCS]({{< relref “architecture/disaster-recovery.md”>}}#using-ges) in the architecture section.

Set Backup Retention
By default, pgBackRest will allow you to keep on creating backups until you run out of disk space. As such, it may be helpful to manage
how many backups are retained.

pgBackRest comes with several flags for managing how backups can be retained:

e —-repol-retention-full: how many full backups to retain
e —-repol-retention-diff: how many differential backups to retain
e —-repol-retention-archive: how many sets of WAL archives to retain alongside the full and differential backups that are retained

https://www.pgbackrest.org
https://pgbackrest.org/command.html#command-backup

For example, to create a full backup and retain the previous 7 full backups, you would execute the following command:

pgo backup hippo --backup-opts="--type=full --repol-retention-full=7"

pgBackRest also supports time-based retention. Please review the pgBackRest documentation for more information.

Schedule Backups

It is good practice to take backups regularly. The PostgreSQL Operator allows you to schedule backups to occur automatically.

The PostgreSQL Operator comes with a scheduler is essentially a cron server that will run jobs that it is specified. Schedule commands
use the cron syntax to set up scheduled tasks.

@ scheduler

I— WAL archive-push
@ crunchy-postgres-ha [EEFYRNIIEES pgo-backrest-repo
