Disaster Recovery and Cloning
Perhaps someone accidentally dropped the users
table. Perhaps you want to clone your production database to a step-down environment. Perhaps you want to exercise your disaster recovery system (and it is important that you do!).
Regardless of scenario, it’s important to know how you can perform a “restore” operation with PGO to be able to recovery your data from a particular point in time, or clone a database for other purposes.
Let’s look at how we can perform different types of restore operations. First, let’s understand the core restore properties on the custom resource.
Restore Properties
There are several attributes on the custom resource that are important to understand as part of the restore process. All of these attributes are grouped together in the spec.dataSource.postgresCluster
section of the custom resource.
Please review the table below to understand how each of these attributes work in the context of setting up a restore operation.
spec.dataSource.postgresCluster.clusterName
: The name of the cluster that you are restoring from. This corresponds to themetadata.name
attribute on a differentpostgrescluster
custom resource.spec.dataSource.postgresCluster.repoName
: The name of the pgBackRest repository from thespec.dataSource.postgresCluster.clusterName
to use for the restore. Can be one ofrepo1
,repo2
,repo3
, orrepo4
. The repository must exist in the other cluster.spec.dataSource.postgresCluster.options
: Any additional pgBackRest restore options or general options you would like to pass in. For example, you may want to set--process-max
to help improve performance on larger databases.
Let’s walk through some examples for how we can clone and restore our databases.
Clone a Postgres Cluster
Let’s create a clone of our hippo
cluster that we created previously. We know that our cluster is named hippo
(baesd on its metadata.name
) and that we only have a single backup repository called repo1
.
Let’s call our new cluster elephant
. We can create a clone of the hippo
cluster using a manifest like this:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
name: elephant
spec:
dataSource:
postgresCluster:
clusterName: hippo
repoName: repo1
image: registry.developers.crunchydata.com/crunchydata/crunchy-postgres-ha:centos8-13.3-0
postgresVersion: 13
instances:
- dataVolumeClaimSpec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: 1Gi
backups:
pgbackrest:
image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbackrest:centos8-2.33-0
repoHost:
dedicated: {}
repos:
- name: repo1
volume:
volumeClaimSpec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: 1Gi
Note this section of the spec:
spec:
dataSource:
postgresCluster:
clusterName: hippo
repoName: repo1
This is the part that tells PGO to create the elephant
cluster as an independent copy of the hippo
cluster.
The above is all you need to do to clone a Postgres cluster! PGO will work on creating a copy of your data on a new persistent volume claim (PVC) and work on initializing your cluster to spec. Easy!
Perform a Point-in-time-Recovery (PITR)
Did someone drop the user table? You may want to perform a point-in-time-recovery (PITR) to revert your database back to a state before a change occurred. Fortunately, PGO can help you do that.
You can set up a PITR using the restore command of pgBackRest, the backup management tool that powers the disaster recovery capabilities of PGO. You will need to set a few options on spec.dataSource.postgresCluster.options
to perform a PITR. These options include:
--type=time
: This tells pgBackRest to perform a PITR.--target
: Where to perform the PITR to. Any example recovery target is2021-06-09 14:15:11 EDT
.--set
(optional): Choose which backup to start the PITR from.
A few quick notes before we begin:
- To perform a PITR, you must have a backup that is older than your PITR time. In other words, you can’t perform a PITR back to a time where you do not have a backup!
- All relevant WAL files must be successfully pushed for the restore to complete correctly.
- Be sure to select the correct repository name containing the desired backup!
With that in mind, let’s use the elephant
example above. Let’s say we want to perform a point-in-time-recovery (PITR) to 2021-06-09 14:15:11 EDT
, we can use the following manifest:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
name: elephant
spec:
dataSource:
postgresCluster:
clusterName: hippo
repoName: repo1
options:
- --type=time
- --target="2021-06-09 14:15:11 EDT"
image: registry.developers.crunchydata.com/crunchydata/crunchy-postgres-ha:centos8-13.3-0
postgresVersion: 13
instances:
- dataVolumeClaimSpec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: 1Gi
backups:
pgbackrest:
image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbackrest:centos8-2.33-0
repoHost:
dedicated: {}
repos:
- name: repo1
volume:
volumeClaimSpec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: 1Gi
The section to pay attention to is this:
spec:
dataSource:
postgresCluster:
clusterName: hippo
repoName: repo1
options: --type=time --target="2021-06-09 14:15:11 EDT"
Notice how we put in the options to specify where to make the PITR.
Using the above manifest, PGO will go ahead and create a new Postgres cluster that recovers its data up until 2021-06-09 14:15:11 EDT
. At that point, the cluster is promoted and you can start accessing your database from that specific point in time!
Perform an In-Place Point-in-time-Recovery (PITR)
Similar to the PITR restore described above, you may want to perform a similar reversion back to a state before a change occurred, but without creating another PostgreSQL cluster. Fortunately, PGO can help you do this as well.
You can set up a PITR using the restore command of pgBackRest, the backup management tool that powers the disaster recovery capabilities of PGO. You will need to set a few options on spec.dataSource.postgresCluster.options
to perform a PITR. These options include:
--type=time
: This tells pgBackRest to perform a PITR.--target
: Where to perform the PITR to. Any example recovery target is2021-06-09 14:15:11 EDT
.--set
(optional): Choose which backup to start the PITR from.
A few quick notes before we begin:
- To perform a PITR, you must have a backup that is older than your PITR time. In other words, you can’t perform a PITR back to a time where you do not have a backup!
- All relevant WAL files must be successfully pushed for the restore to complete correctly.
- Be sure to select the correct repository name containing the desired backup!
To perform an in-place restore, users will first fill out the restore section of the spec as follows:
spec:
backups:
pgbackrest:
restore:
enabled: true
repoName: repo1
options:
- --type=time
- --target="2021-06-09 14:15:11 EDT"
And to trigger the restore, you will then annotate the PostgresCluster as follows:
kubectl annotate postgrescluster hippo --overwrite \
postgres-operator.crunchydata.com/pgbackrest-restore=id1
And once the restore is complete, in-place restores can be disabled:
spec:
backups:
pgbackrest:
restore:
enabled: false
Notice how we put in the options to specify where to make the PITR.
Using the above manifest, PGO will go ahead and re-create your Postgres cluster that will recover its data up until 2021-06-09 14:15:11 EDT
. At that point, the cluster is promoted and you can start accessing your database from that specific point in time!
Standby Cluster
Advanced high-availability and disaster recovery strategies involve spreading your database clusters across multiple data centers to help maximize uptime. In Kubernetes, this technique is known as “federation”. Federated Kubernetes clusters are able to communicate with each other, coordinate changes, and provide resiliency for applications that have high uptime requirements.
As of this writing, federation in Kubernetes is still in ongoing development. In the meantime, PGO provides a way to deploy Postgres clusters that can span multiple Kubernetes clusters using an external storage system:
- Amazon S3, or a system that uses the S3 protocol,
- Azure Blob Storage, or
- Google Cloud Storage
Standby Postgres clusters are managed just like any other Postgres cluster in PGO.
For example, adding replicas to a standby cluster is matter of increasing the
spec.instances.replicas
value. The main difference is that PostgreSQL data in
the cluster is read-only: one PostgreSQL instance is reading in the database
changes from an external repository while the other instances are replicas of it.
This is known as cascading replication.
The following manifest defines a Postgres cluster that recovers from WAL files stored in an S3 bucket:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
name: hippo-standby
spec:
image: registry.developers.crunchydata.com/crunchydata/crunchy-postgres-ha:centos8-13.3-0
postgresVersion: 13
instances:
- dataVolumeClaimSpec:
accessModes:
- "ReadWriteOnce"
resources:
requests:
storage: 1Gi
backups:
pgbackrest:
image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbackrest:centos8-2.33-0
repos:
- name: repo1
s3:
bucket: "my-bucket"
endpoint: "s3.ca-central-1.amazonaws.com"
region: "ca-central-1"
standby:
enabled: true
repoName: repo1
There comes a time where a standby cluster needs to be promoted to an active cluster. Promoting a standby cluster means that a PostgreSQL instance within it will start accepting both reads and writes. This has the net effect of pushing WAL (transaction archives) to the pgBackRest repository, so we need to take a few steps first to ensure we don’t accidentally create a split-brain scenario.
First, if this is not a disaster scenario, you will want to “shutdown” the
active PostgreSQL cluster. This can be done with the spec.shutdown
attribute:
spec:
shutdown: true
The effect of this is that all the Kubernetes workloads for this cluster are scaled to 0. You can verify this with the following command:
kubectl get deploy,sts,cronjob --selector=postgres-operator.crunchydata.com/cluster=hippo
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/hippo-pgbouncer 0/0 0 0 1h
NAME READY AGE
statefulset.apps/hippo-00-lwgx 0/0 1h
NAME SCHEDULE SUSPEND ACTIVE
cronjob.batch/hippo-pgbackrest-repo1-full @daily True 0
We can then promote the standby cluster by removing or disabling its
spec.standby
section:
spec:
standby:
enabled: false
This change triggers the promotion of the standby leader to a primary PostgreSQL instance, and the cluster begins accepting writes.
Next Steps
Now we’ve seen how to clone a cluster and perform a point-in-time-recovery, let’s see how we can monitor our Postgres cluster to detect and prevent issues from occurring.