Crunchy Postgres for Kubernetes from Crunchy
Data

Crunchy Postgres for Kubernetes is the leading Kubernetes native Postgres solution. Built on PGO, the Postgres Operator
from Crunchy Data, Crunchy Postgres for Kubernetes gives you a declarative Postgres solution that automatically manages

your PostgreSQL clusters providing:

» Fast, easy deployment

High availability

< Backup management and disaster recovery
« Connection management and scaling

» Performance and health monitoring

¢ Much more

Topics to get started

Get started Architecture Supported platforms
Create and connect to your cluster Understand the key components of Guidance on supported Kubernetes,
Crunchy Postgres for Kubernetes OpenShift, and Postgres versions.

Quickstart

Can'twait to try out Crunchy Postgres for Kubernetes? Let us show you the quickest possible path to getting up and running.

This quick start is for kust om ze and kubect | . We also have instructions for installing via Helm and OperatorHub, as
well as more detailed instructions for kust omi ze.

Prerequisites

Please be sure you have the following utilities installed on your host machine:

¢ kubect |

e git

Installation

https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator

Step 1: Download the Examples

First, go to GitHub and fork the Postgres Operator examples repository:

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR_Gd THUB_UN=" $YOUR_G THUB_USERNAME"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

For Powershell environments:

$env: YOUR_G THUB_UN=" YOUR_G THUB USERNAME"
git clone--depthl"git@ithub. com $env: YOUR G THUB_UN post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

Step 2: Install PGO, the Postgres Operator

You can install PGO, the Postgres Operator from Crunchy Data, using the command below:

kubect | apply -k kust omi ze/i nstal | / nanespace
kubect | apply --server-side-kkustoni ze/install/default

This will create a namespace called post gr es- oper at or and create all of the objects required to deploy PGO.

To check on the status of your installation, you can run the following command:

kubect | - n post gres-oper at or get pods - - sel ect or =post gr es- oper at or. crunchydat a. com con-
trol - pl ane=post gres-operat or --fi el d- sel ect or =st at us. phase=Runni ng

If the PGO Pod is healthy, you should see output similar to:

NANMVE READY STATUS RESTARTS AGE
post gr es- oper at or - 9dd545d64-t 4h8d 1/1 Running O 3s

Create a Postgres Cluster

Let's create a simple Postgres cluster. You can do this by executing the following command:
kubect | apply - k kust oni ze/ post gr es

This will create a Postgres cluster named hi ppo in the post gr es- oper at or namespace. You can track the progress of
your cluster using the following command:

kubect | - n post gres-oper at or descri be post grescl ust ers. post gres- oper at or. crunchyda-
t a. comhi ppo

https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

Connect to the Postgres cluster

As part of creating a Postgres cluster, the Postgres Operator creates a PostgreSQL user account. The credentials for this
account are stored in a Secret that has the name <cl ust er Nane>- pguser - <user Nane>.

Within this Secret are attributes that provide information to let you log into the PostgreSQL cluster. These include:

e user : The name of the user account.

e passwor d: The password for the user account.

< dbnane: The name of the database that the user has access to by default.

* host : The name of the host of the database. This references the Service of the primary Postgres instance.

e port:The port that the database is listening on.

e uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database.

e jdbc-uri:A PostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database
via the JDBC driver.

If you deploy your Postgres cluster with the PgBouncer connection pooler, there are additional values that are populated
in the user Secret, including:

* pgbouncer - host : The name of the host of the PgBouncer connection pooler. This references the Service of the
PgBouncer connection pooler.

* pgbouncer - port : The port that the PgBouncer connection pooler is listening on.

e pgbouncer - uri : A PostgreSQL connection URI that provides all the information for logging into the Postgres database

via the PgBouncer connection pooler.

e pgbouncer -j dbc- uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the

Postgres database via the PgBouncer connection pooler using the JDBC driver.

Note that all connections use TLS. PGO sets up a public key infrastructure (PKI) for your Postgres clusters. You can also
choose to bring your own PKI / certificate authority; this is covered later in the documentation.

Connect via psql in the Terminal

Connect Directly

If you are on the same network as your PostgreSQL cluster, you can connect directly to it using the following command:

psqgl $(kubectl -n postgres-operator get secrets hi ppo-pguser-hi ppo-o0go-tem
pl ate='{{.data.uri | base64decode}}"')

Connect Using a Port-Forward
In a new terminal, create a port forward. If you are using Bash, you can run the following commands:
PG _CLUSTER_PRI MARY_POD=$(kubect| get pod - n post gr es- oper at or - o nane -1 post gr es- oper a-

t or. crunchydat a. com cl ust er =hi ppo, post gr es- oper at or. cr unchydat a. coni r ol e=nast er)
kubect| - n post gres-operator port-forward"${PG CLUSTER PRI MARY_PCD} " 5432: 5432

https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/
https://www.pgbouncer.org/
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/

For Powershell environments:

$env: PG_CLUSTER PRI MARY_POD=(kubect| get pod - n post gr es- oper at or - o nanme -| post gr es- oper a-
t or. crunchydat a. com cl ust er =hi ppo, post gr es- oper at or . cr unchydat a. coni r ol e=nmast er)
kubect | - n post gres-operator port-forward"$env: PG CLUSTER PRI MARY_POD" 5432: 5432

Establish a connection to the PostgreSQL cluster. If you are using Bash, you can run:

PG _CLUSTER_USER_SECRET_NAME=hi ppo- pguser - hi ppo

PGPASSWORD=$(kubect | get secrets -n post gres-oper at or "${ PG CLUSTER USER SE-
CRET_NAME}" -0 go-tenpl at e=' {{. dat a. password | base64decode}}"') \

PGUSER=$(kubect | get secrets -n postgres-operator "${ PG CLUSTER USER_SECRET NAME}" -0 go-tem
pl at e=' {{. dat a. user | base64decode}}"') \

PGDATABASE=$(kubect | get secrets -n post gres-oper at or "${ PG CLUSTER USER_SE-
CRET_NAME}" -0 go-tenpl ate=' {{. dat a. dbnane | base64decode}}"') \

psql -hl ocal host

For Powershell environments:

$env: PG_CLUSTER USER SECRET_NAME=" hi ppo- pguser - hi ppo"

$env: PGPASSWORD=(kubect | get secrets -npostgres-operator "$env: PG CLUSTER USER SE-
CRET_NAME" - 0 go-t enpl ate=' {{. dat a. passwor d | base64decode}}"')

$env: PQUSER=(kubect | get secrets -n postgres-operator "$env: PG CLUSTER USER SE-
CRET_NAME" -0 go-tenpl at e=' {{. dat a. user | base64decode}}"')

$env: PGDATABASE=(kubect | get secrets -n post gres-operator "$env: PG CLUSTER USER SE-
CRET_NAME" -0 go-tenpl at e=' {{. dat a. dbnane | base64decode}}"')

psql -hl ocal host

Create a user schema

Starting in Postgres 15, PUBLI C creation permission on the public schema has been removed, but there is a simple way
forward to allow you to start writing queries.
As described in our helpful blog post on the subject, after connecting via psql as the hi ppo user, just execute

CREATE SCHEMA hi ppo AUTHORI ZATI ON hi ppo;

and you will be able to create tables in the hi ppo schema without any additional steps or permissions.

@ Info

Want all the users you define in the spec to have schemas automatically created for them? As of v5.6.1, you can
do that! See how to in our section on Automatically Creating Schema for Users.

Connect an Application

The information provided in the user Secret will allow you to connect an application directly to your PostgreSQL database.

For example, let's connect Keycloak. Keycloak is a popular open source identity management tool that is backed by a
PostgreSQL database. Using the hi ppo cluster we created, we can deploy the following manifest file:

https://www.postgresql.org/docs/release/15.0/
https://www.crunchydata.com/blog/be-ready-public-schema-changes-in-postgres-15
https://www.keycloak.org/

cat <<EOF >> keycl oak. yan
api Ver si on: apps/ vl
ki nd: Depl oynent
net adat a:
nane: keycl oak
nanmespace: post gres-oper at or
| abel s:
app. kuber net es. i o/ name: keycl oak
spec:
sel ector:
mat chLabel s:
app. kuber net es. i o/ nanme: keycl oak
tenpl at e:
met adat a:
| abel s:
app. kuber net es. i o/ nane: keycl oak
spec:
cont ai ners:
- i mage: quay. i o/ keycl oak/ keycl oak: | at est
args: ["start-dev"]
nane: keycl oak
env:
- name: DB_VENDOR
val ue: "post gres"
- nanme: DB_ADDR
val ueFrom { secr et KeyRef: { nanme: hi ppo- pguser - hi ppo, key: host } }
- nanme: DB_PORT
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: port } }
- nane: DB_DATABASE
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: dbnane} }
- nanme: DB _USER
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: user } }
- nanme: DB_PASSWORD
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: password} }
- name: KEYCLOAK_ADM N
val ue: "adm n"
- nane: KEYCLOAK _ADM N_PASSWORD
val ue: "adm n"
- nanme: KC_PROXY
val ue: "edge"
ports:
- name: http
cont ai ner Port: 8080
- name: https
cont ai ner Port: 8443
r eadi nessPr obe:
htt pCet:
pat h: /real ms/ mast er
port: 8080
restartPolicy: Al ways

ECF

kubect | apply -f keycl oak. yam

There is a full example for how to deploy Keycloak with the Postgres Operator in the kust omi ze/ keycl oak folder.

Next Steps

Congratulations, you've got your Postgres cluster up and running, perhaps with an application connected to it!

You can find out more about the post gr escl ust er s custom resource definition through the documentation and through
kubect| expl ai ni.e.:

kubect | expl ai n post grescl usters

You've seen how easy it is to get a Postgres database up and running and connected to your applications using Crunchy
Postgres for Kubernetes. In the next section we will take a closer look at CPK and how its different components work
together to provide everything you need for a production-ready Postgres cluster.

Overview

Crunchy Postgres for Kubernetes is the leading Kubernetes native Postgres solution. Built on PGO, the Postgres Operator

from Crunchy Data, Crunchy Postgres for Kubernetes gives you a declarative Postgres solution that automatically manages
your PostgreSQL clusters.

Designed for seamless integration with your GitOps workflows, getting started with Postgres on Kubernetes is effortless.
Within minutes, you can deploy a production-grade Postgres cluster featuring high availability, disaster recovery, and
monitoring, all secured with TLS communications. Crunchy Postgres for Kubernetes also allows for easy customization
to tailor the cluster to your specific workload needs. Additionally, you have the flexibility to run Postgres on your own
infrastructure or choose a fully managed solution with Crunchy Bridge.

With conveniences like cloning Postgres clusters to using rolling updates to safely roll out disruptive changes with minimal
downtime, Crunchy Postgres for Kubernetes is ready to support your Postgres data at every stage of your release pipeline.
Built for resiliency and uptime, Crunchy Postgres for Kubernetes will keep your desired Postgres in a desired state so you
do not need to worry about it.

Crunchy Postgres for Kubernetes is developed with many years of production experience in automating Postgres man-
agement on Kubernetes, providing a seamless cloud native Postgres solution to keep your data always available.

Key Components

Crunchy Postgres for Kubernetes is designed to provide production ready Kubernetes-native Postgres clusters using a few
key components:

« PGO, the Postgres Operator from Crunchy Data, is the brains behind Crunchy Postgres for Kubernetes enabling users to
interact with their Postgres clusters through PGO. To accomplish this, PGO extends Kubernetes to provide a higher-level
abstraction for rapid creation and management of PostgreSQL clusters by leveraging "Custom Resources" to create

several custom resource definitions (CRDs) that allow for the management of PostgreSQL clusters. PGO itself runs as

a Deployment and is composed of a single container.

» Crunchy Postgres, Crunchy Data's open source distribution of Postgres, along with leading Postgres tools and extensions
such as pgbackrest, Patroni, pgaudit, PostGIS, and more. Each of the components within Crunchy Postgres are built with
upstream source code and compiled, tested and certified by Crunchy Data. These components are provided as a series
of containers via the Crunchy Data access and developer portals.

e The Crunchy Postgres for Kubernetes monitoring stack, a fully integrated solution for monitoring and visualizing key
metrics pertaining to your Postgres databases, as well the containers they run within. Built on industry standards for

https://www.crunchydata.com/products/crunchy-postgresql-for-kubernetes
https://github.com/CrunchyData/postgres-operator
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

monitoring and metrics collection, the Crunchy Postgres for Kubernetes monitoring stack ensures you have the real-time
insights needed to keep all of your Postgres databases running smoothly and efficiently.

« Installers for Kustomize, Helm and OLM, providing flexibility to seamlessly and easily install and deploy Postgres clusters
regardless of your specific Kubernetes distribution, or your preferred tooling for deploying to Kubernetes.

For more detailed architecture information or a full list of components include in Crunchy Postgres for Kubernetes, see:

* Architecture

e Supported Platforms

* Release Notes

Architecture

Several pieces must come together to create a production-ready Postgres cluster and Crunchy Postgres for Kubernetes
provides everything that you need. From high-availability to disaster recovery and monitoring, we’ll cover how a Crunchy
Postgres for Kubernetes deployment fits the pieces together.

Operator

PGO, the Postgres Operator from Crunchy Data, runs as a Kubernetes Deployment and is composed of a single container.

This PGO container holds a collection of Kubernetes controllers that manage native Kubernetes resources (Jobs, Pods)
as well as Custom Resources (PostgresCluster). As a user, you provide Kubernetes with the specification of what you want

your Postgres cluster to look like and PGO uses a Custom Resource Definition(CRD) to teach Kubernetes how to handle

those specifications. PGO's controllers do the work of making your specifications a reality. The main custom resource
definition is post gr escl ust er s. post gr es- oper at or. cr unchydat a. com This CRD allows you to control all the
information about a Postgres cluster, including:

* Resource allocation

« High availability

» Backup management

« Where and how your cluster is deployed (affinity, tolerations, topology spread constraints)
 Disaster Recovery / standby clusters

* Monitoring

e and more.
Crunchy Postgres

Crunchy Postgres for Kubernetes enables you to deploy Kubernetes-native production ready clusters of Crunchy Postgres,
Crunchy Data's open source Postgres distribution. When you use one of Crunchy Data’s installers, you're given the option
to install and deploy a range of Crunchy Postgres versions and specify the number of replicas (in addition to your primary
Postgres instance) in your cluster. The spec you create for the deployment will command Kubernetes to create a number
of Pods corresponding to the number of Postgres clusters, each running a container with Crunchy Postgres inside.

Crunchy Postgres for Kubernetes uses Kubernetes Statefulsets to create Postgres instance groups and support advanced

operations such as rolling updates to minimize Postgres downtime as well as affinity and toleration rules to force one or
more replicas to run on nodes in different regions.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

pgBackRest

A production-ready Postgres cluster demands a disaster recovery solution. Crunchy Postgres for Kubernetes uses
pgBackRest to backup and restore your data. With pgBackRest, you can perform scheduled backups, one-off backups
and point-in-time recoveries. Crunchy Postgres for Kubernetes enables pgBackRest by default. When a new Postgres
cluster is created, a pgBackRest repository is created too. Crunchy Postgres for Kubernetes runs pgBackrest in the same
pod that runs your Crunchy Postgres container. A separate pgBackRest pod can be used to manage backups through
cloud storage services such as S3, GCS, and Azure.

Patroni

You want your data to always be available. Maintaining high availability requires a cluster of Postgres instances where
there is one leader and some number of replicas. If the leader instance goes down, Crunchy Postgres for Kubernetes uses
Patroni to promote a new leader from your replicas. Each container running a Crunchy Postgres instance comes loaded
with Patroni to handle failover and keep your data available.

Monitoring Stack

Resource starvation happens. You can run out of storage space and you can run out of computing power. Crunchy Postgres
for Kubernetes provides a monitoring stack to help you track the health of your Postgres cluster, replete with dashboards,
alerts, and insights into your workloads. While having high availability, backups, and disaster recovery systems in place

helps in the event of something going wrong with your Postgres cluster, monitoring helps you anticipate problems before
they happen. The monitoring stack includes components provided by pgMonitor and pgnodemx and deploys as a collection

of pods containing Grafana, Alertmanager, and Prometheus.

Supported Platforms

Kubernetes, OpenShift, Postgres Versions

Crunchy Postgres for Kubernetes is compatible with the following Kubernetes and OpensShift versions. Crunchy Postgres
for Kubernetes is generally compatible with Kubernetes, and for specific distribution compatibility, please feel free to contact
us.

Crunchy Postgres for Kubernetes Series Kubernetes Version ~ OpenShift Version Postgres version Status

5.8.x 1.30-32 4.14-18 13-171 Active / Developer
5.7.x 1.28-32 4.12-18 13-171 Active / Developer
5.6.x 1.27-32 4.12-18 13-16? Active
5.5.x 1.25-30 4.10-15 13-16? Active
5.4.x 1.24-29 4.10-15 11-16? Extended
5.3.x 1.22-26 4.8-13 11-15 Extended
5.2.x 1.21-24 4.6-10 11-14 Extended
5.1.x 1.20-24 4.6-10 11-14 Extended
5.0.x 1.20-24 4.6-10 10-14 Extended
4.7 X 1.17-26 4.4-12 11-13 Extended

4.6.X 1.17-21 4.4-12 11-13 Extended

1

../architecture/backups
../architecture/backups
../architecture/high-availability
../architecture/monitoring
https://github.com/CrunchyData/pgmonitor
https://github.com/CrunchyData/pgnodemx
https://github.com/grafana/grafana
https://github.com/prometheus/alertmanager
https://github.com/prometheus/prometheus

In accordance with the Crunchy Developer Program, the latest two major versions of Postgres are published to the Crunchy Data Developer registry
and the Red Hat certified image catalog.

Availability
« Active: Available through Crunchy Data Subscription.
e Extended: Crunchy Data 'Extended' Support Subscription Available.

e Developer: Available through Developer Program.

If you want to check all of the version information for a release, see Components and Compatibility.

Release Frequency

Crunchy Postgres for Kubernetes plans to release on the following frequency.

Monthly Patch Updates Postgres Minor Versions Postgres Major Versions Crunchy Postgres for Kubernetes Updates

Developer Portal
RedHat Marketplace
Customer Portal

Crunchy Data Subscription provides customers with access to all available Crunchy Postgres for Kubernetes versions,
including updates and bug fixes. Crunchy Data will generally maintain the current and two past versions as Active. For
more information about version life cycle or Crunchy Data update and release, please see our contact us or contact us
directly via email at info@crunchydata.com.

Installation

This section provides detailed instructions for anything and everything related to installing PGO in your Kubernetes
environment. This includes instructions for installing PGO according to a variety of supported installation methods, along
with information for customizing the installation of PGO according your specific needs.

Additionally, instructions are provided for installing and configuring PGO Monitoring. Guidance on adjusting which images
your cluster will run can be found in Configuring Cluster Images.

Installing PGO

* PGO Kustomize Install

* PGO Helm Install

Installing PGO Monitoring

¢ PGO Monitoring Kustomize Install

Kustomize

https://www.crunchydata.com/contact
mailto:info@crunchydata.com

Installing PGO Using Kustomize

If you are deploying using the installer from the Crunchy Data Customer Portal, please refer to the guide there for alternative

setup information.

Prerequisites

First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Kustomize installer.

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR_G THUB_UN="$YCOUR_G THUB_USERNAME"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

For Powershell environments:

$env: YOUR G THUB_UN="YOUR G THUB_USERNAME"
git clone--depthl"git@ithub. com $env: YOUR G THUB UN post gr es- oper at or - exanpl es. gi t
cd post gr es- oper at or - exanpl es

The PGO installation project is located in the kust oni ze/ i nstal | directory.

Configuration

While the default Kustomize install should work in most Kubernetes environments, it may be necessary to further customize
the Kustomize project(s) according to your specific needs.

For instance, to customize the image tags utilized for the PGO Deployment, the i nages setting in the kust oni ze/ i n-
stal | /def aul t/ kust om zati on. yani file can be modified:

i mages:

- nane: post gres-oper at or
newNane: regi stry. devel opers. crunchydat a. com crunchydat a/ post gr es- oper at or
newTag: ubi 8-5.4.7-0

If you are deploying using the images from the Crunchy Data Customer Portal, please refer to the private registries guide

for additional setup information.

Please note that the Kustomize install project will also create a namespace for PGO by default (though it is possible to
install without creating the namespace, as shown below). To modify the name of namespace created by the installer, the
kust om ze/i nst al | / nanespace/ nanespace. yam should be modified:

api Version: vl
ki nd: Nanespace
net adat a:
name: cust om nanespace

The namespace setting in kust omi ze/ i nstal | / def aul t / kust om zat i on. yam should be modified accordingly.

https://access.crunchydata.com/
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork
https://access.crunchydata.com/

namespace: cust om nanespace

By default, PGO deploys with debug logging turned on. If you wish to disable this, you need to set the CRUNCHY_DEBUGen-
vironmental variable to " f al se" that is found in the kust om ze/ i nst al | / manager/ manager . yani file. Alternatively,
you can add the following to your kust omi ze/ i nst al | / manager / kust oni zat i on. yam to disable debug logging:

pat chesSt r at egi cMer ge:
- -
api Ver si on: apps/ vl
ki nd: Depl oynent
nmet adat a:
name: pgo
spec:
tenpl at e:
spec:
cont ai ners:
- nane: operat or
env:
- nanme: CRUNCHY_DEBUG
val ue: "fal se"

You can also create additional Kustomize overlays to further patch and customize the installation according to your specific
needs.

Installation Mode

When PGO is installed, it can be configured to manage PostgreSQL clusters in all namespaces within the Kubernetes
cluster, or just those within a single namespace. When managing PostgreSQL clusters in all namespaces, a ClusterRole
and ClusterRoleBinding is created to ensure PGO has the permissions it requires to properly manage PostgreSQL clusters
across all namespaces. However, when PGO is configured to manage PostgreSQL clusters within a single namespace
only, a Role and RoleBinding is created instead.

The installation of the necessary resources for a cluster-wide or a namespace-limited operator is done automatically by
Kustomize, as described below in the Install section. The only potential change you may need to make is to the Namespace
resource and the nanespace field if using a namespace other than the default post gr es- oper at or .

Install

Once the Kustomize project has been modified according to your specific needs, PGO can then be installed using kubect |
and Kustomize. To create the target namespace, run the following:

kubect | apply -k kust oni ze/i nstal | / nanespace

This will create the default post gr es- oper at or namespace, unless you have edited the kust om ze/ i nst al | / narne-
space/ nanespace. yanml resource. That Nanmespace resource should have the same value as the namespace field in
the kust om zat i on. yam file (located either at kust om ze/i nstal | / def aul t or kust oni ze/i nstal |/ si ngl e-
nanespace, depending on whether you are deploying the operator with cluster-wide or namespace-limited permissions).

To install PGO itself in cluster-wide mode, apply the kustomization file in the def aul t folder:

kubect| apply --server-side-kkustoni ze/install/default

To install PGO itself in namespace-limited mode, apply the kustomization file in the si ngl enanespace folder:
kubect| apply --server-side-kkuston ze/install/singl enamespace

The kust om zat i on. yam files in those folders take care of applying the appropriate permissions.

Install the Custom Resource Definition using Older Kubectl

This installer is optimized for Kustomize v4.0.5 or later, which is included in kubect | v1.21.

If you are using an earlier version of kubect | to manage your Kubernetes objects, you should be

able to create the namespace as described above, but when you run the kubect | appl y - - server -si de - k kus-
tom ze/install/default command, you will get an error like:

Error: json: unknown field"l abel s"

To fix this error, download the most recent version of Kustomize.
Once you have installed Kustomize v4.0.5 or later, you can use it to produce valid Kubernetes yaml:

kust om ze bui | d kust om ze/ i nstal | /defaul t
The output from the kust om ze bui | dcommand can be captured to a file or piped directly to kubect | :

kust oni ze bui | d kust omi ze/instal | /default | kubect| apply--server-side-f -

Automated Upgrade Checks

By default, PGO will automatically check for updates to itself and software components by making a request to a URL. If
PGO detects there are updates available, it will print them in the logs. As part of the check, PGO will send aggregated,
anonymized information about the current deployment to the endpoint. An upcoming release will allow for PGO to opt-in
to receive and apply updates to software components automatically.

PGO will check for updates upon startup and once every 24 hours. Any errors in checking will have no impact on PGO's
operation. To disable the upgrade check, you can set the CHECK _FOR_UPGRADES environmental variable on the pgo
Deploymentto " f al se".

For more information about collected data, see the Crunchy Data collection notice.

Uninstall

Once PGO has been installed, it can also be uninstalled using kubect | and Kustomize. To uninstall PGO (assuming it
was installed in cluster-wide mode), the following command can be utilized:

kubect!| del ete -k kustom ze/install/default
To uninstall PGO installed with only namespace permissions, use:

kubect | del et e -k kust om ze/ i nstal |l /singl enanmespace

https://kubectl.docs.kubernetes.io/installation/kustomize/
https://www.crunchydata.com/developers/data-collection-notice

The namespace created with this installation can likewise be cleaned up with:

kubect | del ete -k kust om ze/i nstal | / namespace

Helm

Installing PGO Using Helm

This section provides instructions for installing and configuring PGO using Helm.

There are two sources for the PGO Helm chart:
« the Postgres Operator examples repo;

« the Helm chart hosted on the Crunchy container registry, which supports direct Helm installs.

The Postgres Operator Examples repo

Prerequisites

First, go to GitHub and fork the Postgres Operator examples repository, which contains the PGO Helm installer.

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR_G THUB_UN="$YOUR G THUB_USERNANE"
git clone--depthl"git@ithub. com ${YOUR G THUB UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

For Powershell environments:

$env: YOUR_G THUB_UN=" YOUR_G THUB_USERNAMNME"
git clone--depthl"git@ithub.com $env: YOUR_G THUB_UN post gr es- oper at or - exanpl es. gi t
cd post gr es- oper at or - exanpl es

The PGO Helm chart is located in the hel nf i nst al | directory of this repository.

Configuration

The val ues. yani file for the Helm chart contains all of the available configuration settings for PGO. The default
val ues. yam settings should work in most Kubernetes environments, but it may require some customization depending
on your specific environment and needs.

For instance, it might be necessary to customize the image tags that are utilized using the cont r ol | er | mages setting:

control | erl mages:
cluster: regi stry. devel opers. crunchydat a. coni cr unchydat a/ post gr es- oper at or : ubi 8-5. 4. 7-0

https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

Please note that the val ues. yani file is located in hel mi nstal | .

Logging
By default, PGO deploys with debug logging turned on. If you wish to disable this, you need to set the debug attribute in
the val ues. yanl to false, e.g.:

debug: fal se

Installation Mode

When PGO is installed, it can be configured to manage PostgreSQL clusters in all namespaces within the Kubernetes
cluster, or just those within a single namespace. When managing PostgreSQL clusters in all namespaces, a ClusterRole
and ClusterRoleBinding is created to ensure PGO has the permissions it requires to properly manage PostgreSQL clusters
across all namespaces. However, when PGO is configured to manage PostgreSQL clusters within a single namespace
only, a Role and RoleBinding is created instead.

In order to select between these two modes when installing PGO using Helm, the si ngl eNanespace setting in the
val ues. yan file can be utilized:

si ngl eNanespace: fal se

Specifically, if this setting is set to f al se (which is the default), then a ClusterRole and ClusterRoleBinding will be created,
and PGO will manage PostgreSQL clusters in all namespaces. However, if this setting is set to t r ue, then a Role and
RoleBinding will be created instead, allowing PGO to only manage PostgreSQL clusters in the same namespace utilized
when installing the PGO Helm chart.

Install

Once you have configured the Helm chart according to your specific needs, it can then be installed using hel m

hel mi nst al | $NAVE - n SNAVESPACE hel ni i nst al |

Automated Upgrade Checks

By default, PGO will automatically check for updates to itself and software components by making a request to a URL. If
PGO detects there are updates available, it will print them in the logs. As part of the check, PGO will send aggregated,
anonymized information about the current deployment to the endpoint. An upcoming release will allow for PGO to opt-in
to receive and apply updates to software components automatically.

PGO will check for updates upon startup and once every 24 hours. Any errors in checking will have no impact on PGO's
operation. To disable the upgrade check, you can set the di sabl e_check_f or _upgr ades value in the Helm chart to
true.

For more information about collected data, see the Crunchy Data collection notice.

https://www.crunchydata.com/developers/data-collection-notice

Uninstall

To uninstall PGO, remove all your PostgresCluster objects, then use the hel muni nst al | command:
hel muni nst al | $NAME - n $NAMESPACE
Helm [leaves the CRDs][helm-crd-limits] in place. You can remove them with kubect | del et e

kubect!| delete-f helminstall/crds

The Crunchy Container Registry

Installing directly from the registry

Crunchy Data hosts an OCI registry that hel mcan use directly. (Not all hel mcommands support OCI registries. For more
information on which commands can be used, see the Helm documentation.)

You can install PGO directly from the registry using the hel mi nst al | command:
hel mi nstal | pgooci://registry.devel opers. crunchydat a. com crunchydat a/ pgo

Or to see what values are set in the default val ues. yam before installing, you could run a hel mshowcommand just as
you would with any other registry:

hel mshowval ues oci : //regi stry. devel opers. crunchydat a. com crunchydat a/ pgo

Downloading from the registry

Rather than deploying directly from the Crunchy registry, you can instead use the registry as the source for the Helm chart.

To do so, download the latest Helm chart from the Crunchy Container Registry:

hel mpul | oci://registry.devel opers. crunchydat a. coni cr unchydat a/ pgo
Once the Helm chart has been downloaded, uncompress the bundle

tar - xvf pgo-5.x.y.tgz

And from there, you can follow the instructions above on setting the Configuration and installing a local Helm chart.

Monitoring

The Crunchy Postgres for Kubernetes Monitoring stack is a fully integrated solution for monitoring and visualizing metrics
captured from PostgreSQL clusters created using PGO. By leveraging pgMonitor to configure and integrate the various
tools, components and metrics needed to effectively monitor PostgreSQL clusters, PGO Monitoring provides an powerful

https://helm.sh/docs/topics/registries/
https://github.com/CrunchyData/pgmonitor

and easy-to-use solution to effectively monitor and visualize pertinent PostgreSQL database and container metrics.
Included in the monitoring infrastructure are the following components:

« pgMonitor - Provides the configuration needed to enable the effective capture and visualization of PostgreSQL database
metrics using the various tools comprising the PostgreSQL Operator Monitoring infrastructure

« Grafana - Enables visual dashboard capabilities for monitoring PostgreSQL clusters, specifically using Crunchy
PostgreSQL Exporter data stored within Prometheus

e Prometheus - A multi-dimensional data model with time series data, which is used in collaboration with the Crunchy
PostgreSQL Exporter to provide and store metrics

« Alertmanager - Handles alerts sent by Prometheus by deduplicating, grouping, and routing them to receiver integrations.

By leveraging the installation method described in this section, Crunchy Postgres for Kubernetes Monitoring can be
deployed alongside Crunchy Postgres for Kubernetes.

Kustomize

Installing Crunchy Postgres for Kubernetes Moni-
toring Using Kustomize

This section provides instructions for installing and configuring Crunchy Postgres for Kubernetes Monitoring using
Kustomize.

Prerequisites

First, go to GitHub and fork the Postgres Operator examples repository, which contains the Monitoring Kustomize installer.

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repo, you can download it to your working environment with a command similar to this:

YOUR_Gd THUB_UN=" $YOUR_G THUB_USERNAME"
git clone--depthl"git@ithub.com ${ YOUR G THUB_UN}/ post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

For Powershell environments:

$env: YOUR_G THUB_UN=" YOUR_G THUB_ USERNAME"
git clone--depthl"git@ithub. com $env: YOUR G THUB_UN post gr es- oper at or - exanpl es. gi t"
cd post gr es- oper at or - exanpl es

To add the Crunchy Postgres Exporter sidecar to your cluster, open the kust om ze/ post gr es/ post gr es. yan file
and add the following YAML to the spec:

noni t ori ng:
pgnoni t or:
exporter: {}

https://github.com/CrunchyData/pgmonitor
https://grafana.com/
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

The Monitoring project is located in the kust oni ze/ noni t or i ng directory.

Configuration

While the default Kustomize install should work in most Kubernetes environments, it may be necessary to further customize
the project according to your specific needs.

For instance, by default f sGr oup is set to 26 for the securi t yCont ext defined for the various Deployments comprising
the Monitoring stack:

securityCont ext:
f sG oup: 26

In most Kubernetes environments this setting is needed to ensure processes within the container have the permissions
needed to write to any volumes mounted to each of the Pods comprising the Monitoring stack. However, when installing
in an OpenShift environment (and more specifically when using the r est ri ct ed Security Context Constraint), the

f sG oup setting should be removed since OpenShift will automatically handle setting the proper f sG oup within the
Pod's securi t yCont ext .

Additionally, within this same section it may also be necessary to modify the suppl enent al G oups setting according to
your specific storage configuration:

securityCont ext:
suppl enent al G oups: 65534

Therefore, the following files (located under kust om ze/ noni t or i ng) should be modified and/or patched (e.g. using
additional overlays) as needed to ensure the securi t yCont ext is properly defined for your Kubernetes environment:

e al ert manager/ depl oynent . yani

« graf ana/ depl oynent . yani

e pronet heus/ depl oynent . yam

Those files should also be modified to set appropriate constraints on compute resources for the Grafana, Prometheus

and/or AlertManager deployments. And to modify the configuration for the various storage resources (i.e. PersistentVol-
umecClaims) created by the Monitoring installer, modify the following files:

e al ert manager/ pvc. yam

e grafanal/ pvc. yan

e pronet heus/ pvc. yan

Additionally, it is also possible to further customize the configuration for the various components comprising the Monitoring
stack (Grafana, Prometheus and/or AlertManager) by modifying the following configuration resources:

e al ert manager/ confi g/ al ert manager. yni

e grafana/ confi g/ crunchy_grafana_dat asource. yni

e pronet heus/ confi g/ crunchy-al ert-rul es-pg. yn

e pronet heus/ confi g/ pronet heus. ynl

Finally, please note that the default username and password for Grafana can be updated by modifying the Secret
gr af ana- adm n defined in kust om ze/ noni t ori ng/ gr af ana/ kust om zat i on. yam :

secr et Gener at or :
- nanme: grafana-adm n
literals:
- "passwor d=adni n"
- "user nane=adm n"

Install

Once the Kustomize project has been modified according to your specific needs, Monitoring can then be installed using
kubect | and Kustomize:

kubect | appl y - k kust onm ze/ noni t ori ng

Once installed, a simple way to immediately access the various Monitoring stack components is by using the kubect |
port-forward command. For example, to access the Grafana dashboards, you would use a command similar to

kubect | - n post gres-operator port-forward service/crunchy-grafana 3000: 3000

and then login via a web browser pointed to | ocal host : 3000.

If you are upgrading or altering a preexisting installation, see below for specific instructions for this use-case.

Installing using Older Kubectl

This installer is optimized for Kustomize v4.0.5 or later, which is included in kubect | v1.21.
If you are using an earlier version of kubect | to manage your Kubernetes objects,
the kubect | appl y - k kust om ze/ noni t or i ngommand will produce an error:

Error: json: unknown field"l abel s"

To fix this error, download the most recent version of Kustomize.
Once you have installed Kustomize v4.0.5 or later, you can use it to produce valid Kubernetes yam!:

kust om ze bui | d kust om ze/ moni t ori ng
The output from the kust om ze bui | dcommand can be captured to a file or piped directly to kubect | :

kust om ze bui | d kust om ze/ noni toring| kubect! apply-f -

Uninstall

And similarly, once Monitoring has been installed, it can uninstalled using kubect | and Kustomize:

kubect | del et e -k kust om ze/ noni tori ng

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/
https://kubectl.docs.kubernetes.io/installation/kustomize/

Upgrading the Monitoring stack to v5.5.x

Several changes have been made to the kustomize installer for the Monitoring stack in order to make the project easier to
read and modify:

< Project reorganization
The project has been reorganized so that each tranche of the Monitoring stack has its own folder. This should make it
easier to find and modify the Kubernetes objects or configurations for each tranche. For example, if you want to modify

the Prometheus configuration, you can find the source file in pr omet heus/ conf i g/ pr onet heus. ym ; if you want to
modify the PVC used by Prometheus, you can find the source file in pr onet heus/ pvc. yamn .

< Image and configuration updating in line with pgMonitor
Crunchy Postgres for Kubernetes Monitoring used the Grafana dashboards and configuration set by the pgMonitor project.

We have updated the installer to pgMonitor v4.9 settings, including updating the images for the Alertmanager, Grafana,
and Prometheus Deployments.

* Regularize naming conventions

We have changed the following Kubernetes objects to regularize our installation:
 the ServiceAccount pr onet heus- sa is renamed pr onet heus
« the ClusterRole pr onet heus- cr is renamed pr onet heus

« the ClusterRoleBinding pr onet heus- cr b is renamed pr onet heus (and has been updated to take into account the
ClusterRole and ServiceAccount renaming)

« the ConfigMaps al ert manager - r ul es- confi g isrenamed al ert -rul es-confi g

 the Secret gr af ana- secr et is renamed gr af ana- admi n

How to upgrade the Monitoring installation

First, verify that you are using a Monitoring installation from before these changes. To verify, you can check that the existing
monitoring Deployments are lacking a vendor label:

kubect | get depl oynments - L vendor

NANME READY UP- TO- DATE AVAI LABLE AGE VENDOR
crunchy- gr af ana 1/1 1 1 11s
crunchy-pronmetheus 1/1 1 1 11s

crunchy-al ert manager 1/1 1 1 11s

If the vendor label show cr unchydat a, then you are using an updated installer and do not need to follow the instructions
here:

kubect | get depl oynments - L vendor

NAMVE READY UP- TO- DATE AVAI LABLE AGE VENDOR
crunchy- gr af ana 1/1 1 1 16s crunchydata
crunchy-prometheus 1/1 1 1 16s crunchydat a
crunchy-al ert manager 1/1 1 1 16s crunchydat a

Second, if you have an older version of the Monitoring stack installed, before upgrading to the new version, you should
first remove the Deployments:

kubect | del et e depl oynent s crunchy- gr af ana cr unchy- pr onet heus crunchy- al ert manager

Now you can install as usual:
kubect | apply - k kust oni ze/ noni t ori ng

This will leave some orphaned Kubernetes objects, that can be cleaned up manually without impacting performance. The
objects to be cleaned up include all of the objects listed above in point 3 on Regularize naming conventions:

kubect | del et e cl ust errol ebi ndi ng pronet heus-crb
kubect | del et e servi ceaccount pronet heus-sa

kubect | del etecl usterrol e pronet heus-cr

kubect | del et e confi gmap al ert manager-rul es-config
kubect | del et e secret graf ana-secret

Alternately, you can install the Monitoring stack with the - - pr une - - al | flags to remove the objects that are no longer
managed by this manifest:

kubect | apply -k kust om ze --prune --all

This will remove those objects that are namespaced: the ConfigMap, Secret, and ServiceAccount. To prune cluster-wide
objects, see the - - prune-al | ow i st flag.

Pruning is an automated feature and should be used with caution.

Further Information

For further information about monitoring features, see our tutorial.

Helm

Installing Crunchy Postgres for Kubernetes Moni-
toring Helm

This section provides instructions for installing and configuring Crunchy Postgres for Kubernetes Monitoring using Helm.

The Crunchy Postgres for Kubernetes Monitoring Helm chart is hosted on the Crunchy container registry, which supports
direct Helm installs.

Installing directly from the registry

Crunchy Data hosts an OCI registry that hel mcan use directly. (Not all hel mcommands support OCI registries. For more
information on which commands can be used, see the Helm documentation.)

You can install Crunchy Postgres for Kubernetes Monitoring directly from the registry using the hel mi nst al | command:

hel mi nstal | crunchy oci ://registry. devel opers. crunchydat a. conf crunchydat a/ cr unchy- noni -
toring

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/declarative-config/#how-to-delete-objects
https://helm.sh/docs/topics/registries/

Or to see what values are set in the default val ues. yam before installing, you could run a hel mshowcommand just as
you would with any other registry:

hel mshowval ues oci : //regi stry. devel opers. crunchydat a. com crunchydat a/ crunchy- noni t ori ng

Downloading from the registry

Rather than deploying directly from the Crunchy registry, you can instead use the registry as the source for the Helm chart.
You might do this in order to configure the Helm chart before installing.

To do so, download the Helm chart from the Crunchy Container Registry:

#To pul | downt he nost recent Hel mchart
hel mpul | oci://registry. devel opers. crunchydat a. com crunchydat a/ cr unchy- noni t ori ng

To pul | down a speci fi c Hel mchart
hel mpul | oci://registry. devel opers. crunchydat a. com crunchydat a/ crunchy- noni t ori ng - -ver -
sion0.1.0

Once the Helm chart has been downloaded, uncompress the bundle
tar -xvf crunchy-nmonitoring-0.1.0.tgz

And from there, you can follow the instructions below on setting the Configuration and installing a local Helm chart.

Configuration

The val ues. yani file for the Helm chart contains all of the available configuration settings for the Monitoring stack. The
default val ues. yam settings should work in most Kubernetes environments, but it may require some customization
depending on your specific environment and needs.

For instance, it might be necessary to change the image versions for Alertmanager, Grafana, and/or Prometheus or to
apply certain labels, etc. Each segment of the Monitoring stack has its own section. So if you needed to update only the
Alertmanager image, you would update the al ert manager . i nage field.

Security Configuration

By default, the Crunchy Postgres for Kubernetes Monitoring Helm chart sets the securi t yCont ext . f sG oup to 26 for
the Deployments comprising the Monitoring stack (i.e., Alertmanager, Grafana, and Prometheus).

In most Kubernetes environments this setting is needed to ensure processes within the container have the permissions
needed to write to any volumes mounted to each of the Pods comprising the Monitoring stack. However, when installing
in an OpenShift environment (and more specifically when using the r est ri ct ed Security Context Constraint), the

f sG oup setting should be removed since OpenShift will automatically handle setting the proper f sG oup within the
Pod's securi t yCont ext .

The f sG oup setting can be removed by setting the openShi ft value to t r ue. This can be done either by changing the
value in the val ues. yanl file or by setting the value on the command line during installation or upgrade:

hel mi nstal | crunchy oci ://registry. devel opers. crunchydat a. conl crunchydat a/ cr unchy- noni -
toring--set openShift=true

If you need to make additional changes to pod's secur i t yCont ext , it may be necessary to download the Helm chart and
alter the Deployments directly rather than setting values in the val ues. yani . For instance, if it is necessary to modify the
suppl enent al G oups setting according to your specific storage configuration, you will need to update the Deployment
files:

e tenpl at es/ al ert nanager / depl oynent . yani
e tenpl at es/ gr af ana/ depl oynent . yani

* t enpl at es/ pr onet heus/ depl oynent . yani

Compute and Storage Resources Configuration

To set appropriate constraints on compute resources for the Grafana, Prometheus and/or AlertManager Deployments,
update the Deployment files:

e tenpl at es/ al ert nanager / depl oynent . yani

e tenpl at es/ gr af ana/ depl oynent . yani

* t enpl at es/ pr onet heus/ depl oynent . yani

Similarly, to modify the configuration for the various storage resources (i.e. PersistentVolumeClaims) created by the

Monitoring installer, the pvc. yani file can also be modified for the Alertmanager, Grafana, and Prometheus segments of
the Monitoring stack.

Additional Configuration

Like the Kustomize installation, the Crunchy Postgres for Kubernetes Monitoring stack installation includes ConfigMaps with
configurations for the various Deployments. It is possible to further customize the configuration for the various components
comprising the Monitoring stack (Grafana, Prometheus and/or AlertManager) by modifying the configuration resources,
which are located in the conf i g directory:

e al ert mnager.ym

e crunchy-al ert-rul es-pg.ym

e crunchy_grafana_dat asource. yni

e pronet heus. ym

If you want to make changes to the Grafana dashboards, those configurations and dashboard json files are located in the
dashboar ds directory. If you wish to add a new dashboard as part of your Helm chart, you can accomplish that by putting

the json file in the dashboar ds directory. All the json files in that directory are imported by the Helm chart and loaded in
the Grafana configuration.

Finally, please note that the default username and password for Grafana can be updated by modifying the val ues. yam :

gr af ana:

adm n:
password: adni n
user name: adni n

Uninstall

To uninstall the Monitoring stack, use the hel muni nst al | command:

hel muni nstal | crunchy - n $NAMESPACE

Private Registries

Crunchy Postgres for Kubernetes can use containers that are stored in private registries. There are a variety of techniques
that are used to load containers from private registries, including image pull secrets. This guide will demonstrate how to

install Crunchy Postgres for Kubernetes and deploy a Postgres cluster using the Crunchy Data Customer Portal registry

as an example.

Create an Image Pull Secret

The Kubernetes documentation provides several methods for creating image pull secrets. You can choose the method that

is most appropriate for your installation. You will need to create image pull secrets in the namespace that Crunchy Postgres
for Kubernetes is deployed and in each namespace where you plan to deploy Postgres clusters.

For example, to create an image pull secret for accessing the Crunchy Data Customer Portal image registry in the
post gr es- oper at or hamespace, you can execute the following commands:

kubect | creat e ns post gres-oper at or

kubect | createsecret docker-regi stry crunchy-regcred-npostgres-operator --docker-serv-
er =regi stry. crunchydat a. com- - docker - user nane=$YOUR_USERNAME - - dock-
er-emai | =$YOUR_EMAI L - - docker - passwor d=$YOUR PASSWORD

This creates an image pull secret named cr unchy-r egcr ed in the post gr es- oper at or namespace.

Install Crunchy Postgres for Kubernetes from a Private Registry

To install Crunchy Postgres for Kubernetes from a private registry, you will need to set an image pull secret on the installation
manifest.

Kustomize

When using the Kustomize install method, you can set up the image pull secret by adding a patch to the kust om ze/ i n-
stal | /def aul t/ kust om zati on. yanml manifest. In this example, we will use the cr unchy- r egcr ed secret that we
created earlier:

pat ches:
- target: { group: apps, version: vl, ki nd: Depl oynent, nane: pgo }
pat ch: | -
- path: /spec/tenpl at e/ spec/i magePul | Secr et s
op: add

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://access.crunchydata.com/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

val ue:
- name: crunchy-regcred

If you are using a version of kubect | priorto v1. 21. 0, you will have to create an explicit patch file named i n-
stal |l -ops. yam :

-pat h: / spec/tenpl at e/ spec/ i magePul | Secrets
op: add

val ue:

- nanme: crunchy-regcred

and add the following to the manifest:

pat chesJson6902:
- target: { group: apps, version: vl, ki nd: Depl oynent, nane: pgo }
pat h: install-ops. yam

You can then install Crunchy Postgres for Kubernetes from the private registry using the standard installation procedure,

eg.

kubect| apply --server-side-kkustoni ze/install/default

Helm

To set up an image pull secret when using the Helm installer, you need to edit the val ues. yani file, adding the name of
the image pull secret to the i magePul | Secr et Nanes array:

#i magePul | Secret Nanesisalist of secret nanestousefor pullingcontroller inmges.
#Mreinfo: https://kubernetes.iol/docs/concepts/containers/imges/#specifying-im
agepul | secr et s-on- a- pod

i magePul | Secr et Nanmes: [crunchy-regcred]

You can then install Crunchy Postgres for Kubernetes from the private registry using the standard installation procedure,
e.g.:

hel mi nst al | $NAME - n SNAMESPACE hel nf i nst al |

Deploy a Postgres cluster from a Private Registry

To deploy a Postgres cluster using images from a private registry, you will need to set the value of spec. i magePul | Se-
crets onaPostgresC uster custom resource.

Kustomize

To deploy a Postgres cluster in the post gr es- oper at or namespace, with an image pull secret containing credentials
for the Crunchy Data Customer Portal, you can use the following manifest:

api Ver si on: post gres- operator. crunchydata. com vlbetal
ki nd: Post gresd ust er

net adat a:

nane: hi ppo

https://access.crunchydata.com/

spec:
i magePul | Secrets:
- nane: crunchy-regcred
i mage: regi stry. crunchydat a. com crunchydat a/ crunchy- post gr es: ubi 8-16. 4-5.4.7-0
post gresVer si on: 16
i nst ances:
- nane: i nstancel
dat aVol uned ai nSpec:
accesshMbdes:
- ' ReadWi t eOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
i mage: regi stry. crunchydat a. coni cr unchydat a/ crunchy- pgbackr est : ubi 8-5.4.7-0
r epos:
- nanme: repol
vol une:
vol umed ai nmSpec:
accesshMdes:
- ' ReadWi t eOnce'
resour ces:
requests:
storage: 1G

Helm

To deploy a Postgres cluster with Helm, you wouldn't edit the Post gr esCl ust er manifest directly, but would edit the
val ues. yam file in the chart, adding the name of the image pull secret to the i magePul | Secr et s array:

#i magePul | Secretsreferences Secretsthat credentialsfor pullinginmgefrom
#privaterepositories
i magePul | Secrets: [crunchy-regcred]

Tutorials

Ready to get started with PGO, the Postgres Operator from Crunchy Data? Us too!

This tutorial covers several concepts around day-to-day life managing a Postgres cluster with PGO. While going through
and looking at various "HOWTOs" with PGO, we will also cover concepts and features that will help you have a successful
cloud native Postgres journey!

In this tutorial, you will learn:

* How to create a Postgres cluster

« How to connect to a Postgres cluster

« How to scale and create a high availability (HA) Postgres cluster

* How to resize your cluster

< How to set up proper disaster recovery and manage backups and restores

* How to apply software updates to Postgres and other components

https://github.com/CrunchyData/postgres-operator
https://github.com/CrunchyData/postgres-operator
https://www.crunchydata.com

* How to set up connection pooling

* How to delete your cluster
and more.

You will also see:

* How PGO helps your Postgres cluster achieve high availability

« How PGO can heal your Postgres cluster and ensure all objects are present and available
« How PGO sets up disaster recovery

« How to manage working with PGO in a single namespace or in a cluster-wide installation of PGO.
Let's get started!

Basic Setup

Setting up your environment

The first thing that you will need is a Kubernetes or Openshift environment running a supported version. You can see all of
the versions in our documentation. You can deploy to your environment locally, in the cloud, or even run it via a managed
Kubernetes offering.

You will also need to insure that you have a modern version of gi t installed locally, as well as kubect | installed and
configured on your local workstation. You can install those from your OS's package manager. You can refer to the reference
for git if you are not already familiar with it, or you need to install it by hand. You can also visit the kubectl reference for

more information about how to install and use this tool.

Once you have your tools and environment set up, we can move on to installing Crunchy Postgres for Kubernetes.

Download the Examples

First, go to GitHub and fork the Postgres Operator examples repository:

https://github.com/CrunchyData/postgres-operator-examples/fork

Once you have forked this repository, you can download it to your working directory with a command similar to this:

cd <Your Wor ki ng Di r ect ory>
YOUR_G THUB_UN=" $YOUR_G THUB_USERNAME"
git clone--depthl"git@ithub. com ${YOUR G THUB UN}/ post gr es- oper at or - exanpl es. gi t"

For Powershell environments:

cd <Your Wor ki ng Di r ect ory>
$env: YOUR_G THUB_UN=" YOUR_G THUB_USERNAMNME"
git clone--depthl1"git@ithub.com $env: YOUR_G THUB_UN post gr es- oper at or - exanpl es. gi t"

With the examples repo cloned into your working directory, navigate (for example, cd post gr es- oper at or - exanpl es)
to the top level folder of the repo. If you use | s - | ahit should look something like this:

https://git-scm.com
https://kubernetes.io/docs/reference/kubectl/
https://github.com/CrunchyData/postgres-operator-examples/fork
https://github.com/CrunchyData/postgres-operator-examples/fork

~/ Code/ Crunchy/ post gr es- oper at or - exanpl es | s - | ah
total 32

drwxr-xr-x 8hippo staff 256BMuy 22 14: 27 .
drwxr-xr-x 9hippo staff 288BJun 29 13:59..

dr wxr - xr-x 14 hi ppo staff 448BMay 912:00.qgit
drwxr-xr-x 3hippo staff 96BJul 19 2022 . git hub
-rwr--r-- 1hippo staff 11KApr 312:17 LI CENSE. nd
-rwW-r--r--@1hippo staff 1.1KMay 9 11: 27 READVE. nd
drwxr-xr-x 4hippo staff 128BJul 19 2022 hel m
drwxr - xr-x 12 hi ppo staff 384BJul 19 2022 kust oni ze

Once you have your local environment set up, we can press onwards to installing Crunchy Postgres for Kubernetes...

Install Crunchy Postgres for Kubernetes

Our next task is to install Crunchy Postgres for Kubernetes into a namespace in Kubernetes. This example uses a default
namespace of post gr es- oper at or . However, you can install it in other namespaces or even cluster wide if you need.
You can read more about that in our advanced install guides.

First, we need to set up the namespace that we are going to use. Use this command to create the default namespace:
kubect | apply -k kustoni ze/i nstal | / nanespace

Next, you will need to install the various containers and configuration that makes up Crunchy Postgres for Kubernetes. Here
is the command to do that:

kubect | apply --server-side-kkuston ze/install/default
To check on the status of your installation, you can run the following command:

kubect | - n post gres-oper at or get pods - - sel ect or =post gr es- oper at or. crunchydat a. com con-
trol - pl ane=post gres-operat or --fi el d-sel ect or=st at us. phase=Runni ng

If the PGO Pod is healthy, you should see output similar to:

NANVE READY STATUS RESTARTS ACE
post gr es- oper at or - 9dd545d64-t 4h8d 1/1 Running O 3s

Now that we have installed all of the supporting containers and configuration, it's time to roll our sleeves up and set up a
Postgres cluster...

Create a Postgres Cluster

If you came here through the quickstart, you may have already created a cluster. If you created a cluster by using the
example in the kust o ze/ post gr es directory, feel free to skip to connecting to a cluster or follow our instructions on
deleting your cluster for a fresh start.

Create a Postgres Cluster

Creating a Postgres cluster is pretty simple. Using the example in the kust oni ze/ post gr es directory, all we have to do
is run:

kubect | apply -k kust oni ze/ post gr es

and PGO will create a simple Postgres cluster named hi ppo in the post gr es- oper at or namespace. You can
track the status of your Postgres cluster using kubect | descri beon the post gr escl ust ers. post gr es- oper a-
tor. crunchydat a. comcustom resource:

kubect | - n post gres-operat or descri be post grescl ust ers. post gres- oper at or. crunchyda-
t a. comhi ppo

and you can track the state of the Postgres Pod using the following command:

kubect | - n post gres-oper at or get pods - - sel ect or =post gr es- oper at or. crunchydat a. con cl us-
t er =hi ppo, post gr es- oper at or. crunchydat a. com i nst ance

What Happens When a Postgres Cluster is Created

PGO created a Postgres cluster based on the information provided to it in the Kustomize manifests located in the kus-
t om ze/ post gr es directory. Let's better understand what happened by inspecting the kust om ze/ post gr es/ post -
gres.yamn file:

api Ver si on: post gres-operator. crunchydat a. com vibetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo
spec:
post gresVer si on: 16
i nst ances:
- name: i nstancel
dat aVol unmed ai nSpec:
accesshMbdes:
- "ReadWit eOnce"
resour ces
requests:
storage: 1G
backups:
pgbackrest :
r epos:
- nanme: repol
vol une:
vol umed ai nmSpec:
accesshMbdes:
- "ReadW it eOnce"
resour ces:
requests:
st orage: 1G

When we ran the kubect | appl ycommand earlier, what we did was create a Post gr esCl ust er custom resource in
Kubernetes. PGO detected that we added a new Post gr esCl ust er resource and started to create all the objects needed
to run Postgres in Kubernetes!

What else happened? PGO read the value from net adat a. name to provide the Postgres cluster with the name hi ppo.
Additionally, PGO knew which containers to use for Postgres and pgBackRest by looking at the values in spec. i mage
and spec. backups. pgbackr est . i mage respectively. The value in spec. post gr esVer si on is important as it will
help PGO track which major version of Postgres you are using.

PGO knows how many Postgres instances to create through the spec. i nst ances section of the manifest. While name
is optional, we opted to give it the name i nst ancel. We could have also created multiple replicas and instances during
cluster initialization, but we will cover that more when we discuss how to scale and create a HA Postgres cluster.

A very important piece of your Post gr esC ust er custom resource is the dat aVol uneCl ai nSpec section. This
describes the storage that your Postgres instance will use. It is modeled after the Persistent Volume Claim. If you do

not provide a spec. i nst ances. dat aVol umed ai nSpec. st or aged assNane, then the default storage class in your
Kubernetes environment is used.

As part of creating a Postgres cluster, we also specify information about our backup archive. PGO uses pgBackRest, an
open source backup and restore tool designed to handle terabyte-scale backups. As part of initializing our cluster, we can
specify where we want our backups and archives (write-ahead logs or WAL) stored. We will talk about this portion of the

Post gr esCl ust er spec in greater depth in the disaster recovery section of this tutorial, and also see how we can store
backups in Amazon S3, Google GCS, and Azure Blob Storage.

Troubleshooting

PostgreSQL / pgBackRest Pods Stuck in Pendi ng Phase

The most common occurrence of this is due to PVCs not being bound. Ensure that you have set up your storage options
correctly in any vol uned ai nSpec.You can always update your settings and reapply your changes with kubect | appl y.

Also ensure that you have enough persistent volumes available: your Kubernetes administrator may need to provision
more.

If you are on OpenShift, you may need to set spec. openshi ft totrue.

Next Steps

We're up and running -- now let's connect to our Postgres cluster!

Connect to a Postgres Cluster

It's one thing to create a Postgres cluster; it's another thing to connect to it. Let's explore how PGO makes it possible to
connect to a Postgres cluster!

Background: Services, Secrets, and TLS

PGO creates a collection of Kubernetes Services to provide stable endpoints for connecting to your Postgres databases.
These endpoints make it easy to provide a consistent way for your application to maintain connectivity to your data. To
inspect what services are available, you can run the following command:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://pgbackrest.org/
https://www.postgresql.org/docs/current/wal-intro.html
https://kubernetes.io/docs/concepts/services-networking/service/

kubect | - n post gres-oper at or get svc --sel ect or =post gr es- oper at or. cr unchydat a. coni cl us-
t er =hi ppo

which will yield something similar to:

NANMVE TYPE CLUSTER- 1 P EXTERNAL- | P PORT(S) AGE

hi ppo- ha Clusterl P 10.103. 73. 92 <none> 5432/ TCP 3h14m

hi ppo- ha-config Cdusterl P None <none> <none> 3hl4m

hi ppo- pods Cl usterl P None <none> <none> 3hl4m

hi ppo-primary CusterlP None <none> 5432/ TCP 3h1l4m

hi ppo-replicas CusterlP 10.98.110.215 <none> 5432/ TCP 3h14m

You do not need to worry about most of these Services, as they are used to help manage the overall health of your Postgres
cluster. For the purposes of connecting to your database, the Service of interest is called hi ppo- pri mary. Thanks to
PGO, you do not need to even worry about that, as that information is captured within a Secret!

When your Postgres cluster is initialized, PGO will bootstrap a database and create a Postgres user that your ap-
plication can use to access the database. This information is stored in a Secret named with the pattern <cl ust er -
Nane>- pguser - <user Name>. For our hi ppo cluster, this Secret is called hi ppo- pguser - hi ppo. This Secret contains
the information you need to connect your application to your Postgres database:

* user : The name of the user account.

* passwor d: The password for the user account.

dbnane: The name of the database that the user has access to by default.

< host : The name of the host of the database. This references the Service of the primary Postgres instance.

e port:The port that the database is listening on.

e uri: A PostgreSQL connection URI that provides all the information for logging into the Postgres database.

e jdbc-uri:A PostgreSQL JDBC connection URI that provides all the information for logging into the Postgres database
via the JDBC driver.

All connections are over TLS. PGO provides its own certificate authority (CA) to allow you to securely connect your
applications to your Postgres clusters. This allows you to use the veri fy-ful | "SSL mode" of Postgres, which provides

eavesdropping protection and prevents MITM attacks. You can also choose to bring your own CA, which is described later
in this tutorial in the Customize Cluster section.

Modifying Service Type, NodePort Value and Metadata

By default, PGO deploys Services with the Cl ust er | P Service type. Based on how you want to expose your database,
you may want to modify the Services to use a different Service type and NodePort value.

You can modify the Services that PGO manages from the following attributes:
e spec. ser Vi ce - this manages the Service for connecting to a Postgres primary.
e spec. proxy. pgBouncer. servi ce - this manages the Service for connecting to the PgBouncer connection pooler.

e spec. userl nterface. pgAdni n. servi ce - this manages the Service for connecting to the pgAdmin management
tool.

https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS
https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

For example, say you want to set the Postgres primary to use a NodePor t service, a specific nodePor t value, and set a
specific annotation and label, you would add the following to your manifest:

spec:
servi ce:
met adat a:
annot at i ons:
my- annot at i on: val uel
| abel s:
nmy- 1 abel : val ue2
type: NodePort
nodePort: 32000

For our hi ppo cluster, you would see the Service type and nodePort modification as well as the annotation and label. For
example:

kubect | - n post gres-oper at or get svc --sel ect or =post gr es- oper at or. cr unchydat a. cont cl us-
t er =hi ppo

will yield something similar to:

NANMVE TYPE CLUSTER- | P EXTERNAL- | P PORT(S) ACE

hi ppo- ha NodePor t 10. 105. 57. 191 <none> 5432: 32000/ TCP 48s
hi ppo- ha-config Custerl P None <none> <none> 48s

hi ppo- pods Clusterl P None <none> <none> 48s

hi ppo-primary Custerl P None <none> 5432/ TCP 48s

hi ppo-replicas CdusterlP 10.106.18.99 <none> 5432/ TCP 48s

and the top of the output from running
kubect | - n post gres-oper at or descri be svc hi ppo- ha

will show our custom annotation and label have been added:

NANE: hi ppo- ha
Namespace: post gr es- oper at or
Label s: ny- | abel =val ue2

post gr es- oper at or. crunchydat a. cont cl ust er =hi ppo
post gr es- oper at or. crunchydat a. cont pat r oni =hi ppo- ha
Annot at i ons: ny- annot ati on: val uel

Note that setting the nodePor t value is not allowed when using the (default) Cl ust er | P type, and it must be in-range
and not otherwise in use or the operation will fail. Additionally, be aware that any annotations or labels provided here will
win in case of conflicts with any annotations or labels a user configures elsewhere.

Finally, if you are exposing your Services externally and are relying on TLS verification, you will need to use the custom
TLS features of PGO).

Connect via psql in the Terminal

Connect Directly

If you are on the same network as your PostgreSQL cluster, you can connect directly to it using the following command:

psqgl $(kubectl -n post gres-operator get secrets hi ppo-pguser-hi ppo-o0go-tem
pl ate='{{.data.uri | base64decode}}"')

Connect Using a Port-Forward

In a new terminal, create a port forward. If you are using Bash, you can run the following commands:

PG_CLUSTER PRI MARY_POD=$(kubect| get pod - n post gr es- oper at or - o nane -| post gr es- oper a-
t or. crunchydat a. com cl ust er =hi ppo, post gr es- oper at or. cr unchydat a. coni r ol e=nmast er)
kubect| - n post gres-operator port-forward"${PG CLUSTER PRI MARY_ PCD}" 5432: 5432

For Powershell environments:

$env: PG_CLUSTER PRI MARY_POD=(kubect | get pod - n post gr es-oper at or - o nane -| post gr es- oper a-
t or.crunchydat a. com cl ust er =hi ppo, post gr es- oper at or. cr unchydat a. coni r ol e=nast er)
kubect| - npost gres-operator port-forward"$env: PG CLUSTER PRI MARY_POD" 5432: 5432

Establish a connection to the PostgreSQL cluster. If you are using Bash, you can run:

PG_CLUSTER_USER_SECRET_NAME=hi ppo- pguser - hi ppo

PGPASSWORD=$(kubect | get secrets -n postgres-operator "${ PG CLUSTER USER SE-
CRET_NAME}" -0 go-tenpl ate=' {{. dat a. password | base64decode}}') \

PGUSER=$(kubect | get secrets -n postgres-operator "${ PG CLUSTER USER_SECRET_ NAME}" -0 go-tem
pl at e=' {{. dat a. user | base64decode}}"') \

PGDATABASE=$(kubect | get secrets -n post gres-oper at or "${ PG CLUSTER USER SE-
CRET_NAME}" -0 go-tenpl ate=' {{. dat a. dbnane | base64decode}}"') \

psql -hl ocal host

For Powershell environments:

$env: PG_CLUSTER USER SECRET_NAME="hi ppo- pguser - hi ppo"

$env: PGPASSWORD=(kubect | get secrets -npostgres-operator "$env: PG CLUSTER USER SE-
CRET_NAME" -0 go-tenpl ate=' {{. dat a. password | base64decode}}"')

$env: PQUSER=(kubect| get secrets -n post gres-operator "$env: PG CLUSTER USER SE-
CRET_NAME" - 0 go-tenpl ate=' {{. dat a. user | base64decode}}")

$env: PGDATABASE=(kubect | get secrets -npostgres-operator "$env: PG CLUSTER USER SE-
CRET_NAME" -0 go-tenpl ate=' {{. dat a. dbnane | base64decode}} ')

psql -hl ocal host

Connecting With pgAdmin

Crunchy Postgres for Kubernetes also provides a pgAdmin image for users who prefer working with a graphical user
interface. For more information, see our documentation on pgAdmin 4.

Connect an Application

For this tutorial, we are going to connect Keycloak, an open source identity management application. Keycloak can be
deployed on Kubernetes and is backed by a Postgres database. While we provide an example of deploying Keycloak and

https://www.keycloak.org/
https://github.com/CrunchyData/postgres-operator-examples/tree/main/kustomize/keycloak

a PostgresCluster in the Postgres Operator examples repository, the manifest below deploys it using our hi ppo cluster

that is already running:

kubect| apply--fil ename=- <<ECF
api Ver si on: apps/ vl
ki nd: Depl oynent
net adat a:
nane: keycl oak
nanmespace: post gres-oper at or
| abel s:
app. kuber net es. i o/ name: keycl oak
spec:
sel ector:
mat chLabel s:
app. kuber net es. i o/ nane: keycl oak
tenpl at e:
met adat a:
| abel s:
app. kuber net es. i o/ nane: keycl oak
spec:
cont ai ners:
- i mage: quay. i o/ keycl oak/ keycl oak: | at est
args: ["start-dev"]
nane: keycl oak
env:
- name: DB_VENDOR
val ue: "post gres"
- nanme: DB_ADDR
val ueFrom { secr et KeyRef: { nanme: hi ppo- pguser - hi ppo, key: host } }
- nanme: DB_PORT
val ueFrom { secret KeyRef: { nanme: hi ppo- pguser - hi ppo, key: port } }
- nane: DB_DATABASE
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: dbnane} }
- nanme: DB _USER
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: user } }
- nanme: DB_PASSWORD
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: password} }
- name: KEYCLOAK_ADM N
val ue: "adm n"
- nane: KEYCLOAK _ADM N_PASSWORD
val ue: "adm n"
- nanme: KC_PROXY
val ue: "edge"
ports:
- name: http
cont ai ner Port: 8080
- name: https
cont ai ner Port: 8443
r eadi nessPr obe:

htt pCet:

pat h: /real ms/ mast er

port: 8080
restartPolicy: Al ways

ECF
Notice this part of the manifest:

- nane: DB _ADDR
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: host } }
- name: DB_PORT
val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: port } }

https://github.com/CrunchyData/postgres-operator-examples/tree/main/kustomize/keycloak
https://github.com/CrunchyData/postgres-operator-examples

- nane: DB_DATABASE

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: dbnanme} }

- nanme: DB_USER

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: user } }

- nanme: DB _PASSWORD

val ueFrom { secret KeyRef: { nane: hi ppo- pguser - hi ppo, key: password} }

The above manifest shows how all of these values are derived from the hi ppo- pguser - hi ppo Secret. This means that
we do not need to know any of the connection credentials or have to insecurely pass them around -- they are made directly
available to the application!

Using this method, you can tie an application directly into your GitOps pipeline that connects to Postgres without any prior
knowledge of how PGO will deploy Postgres: all of the information your application needs is propagated into the Secret!

Next Steps

Now that we have seen how to connect an application to a cluster, let's learn how to create a high availability Postgres
cluster!

Connection Pooling

Connection pooling can be helpful for scaling and maintaining overall availability between your application and the
database. PGO helps facilitate this by supporting the PgBouncer connection pooler and state manager.

Let's look at how we can add a connection pooler and connect it to our application!

Adding a Connection Pooler

We will explore adding a connection pooler using the kust omni ze/ keycl oak example in the Postgres Operator examples

repository.

Connection poolers are added using the spec. pr oxy section of the custom resource. Currently, the only connection
pooler supported is PgBouncer.

You can add a PgBouncer connection pooler by providing the spec. pr oxy. pgBouncer attribute and leaving it empty. In
the kust om ze/ keycl oak/ post gr es. yani file, add the following YAML to the spec:

pr oxy:
pgBouncer: {}

(You can also find an example of this in the kust omi ze/ exanpl es/ hi gh-avai | abi | i t y example).

Save your changes and run;
kubect | apply -k kust oni ze/ keycl oak

PGO will detect the change and create a new PgBouncer Deployment!

That was fairly easy to set up, so now let's look at how we can connect our application to the connection pooler.

https://www.pgbouncer.org/
https://github.com/CrunchyData/postgres-operator-examples
https://www.pgbouncer.org/

Connecting to a Connection Pooler

When a connection pooler is deployed to the cluster, PGO adds additional information to the user Secrets to allow
for applications to connect directly to the connection pooler. Recall that in this example, our user Secret is called
keycl oakdb- pguser - keycl oakdb. Describe the user Secret:

kubect | - n post gres-operat or descri be secret s keycl oakdb- pguser - keycl oakdb

You should see that there are several new attributes included in this Secret that allow for you to connect to your Postgres
instance via the connection pooler:

* pgbouncer - host : The name of the host of the PgBouncer connection pooler. This references the Service of the
PgBouncer connection pooler.

* pgbouncer - port : The port that the PgBouncer connection pooler is listening on.

e pgbouncer - uri : A PostgreSQL connection URI that provides all the information for logging into the Postgres database

via the PgBouncer connection pooler.

e pgbouncer-j dbc-uri : A PostgreSQL JDBC connection URI that provides all the information for logging into the

Postgres database via the PgBouncer connection pooler using the JDBC driver. Note that by default, the connection string
disables JDBC managing prepared transactions for optimal use with PgBouncer.

Open up the file in kust om ze/ keycl oak/ keycl oak. yan . Update the DB_ADDR and DB_PORT values to be the
following:

- nane: DB_ADDR
val ueFrom { secret KeyRef: { nane: keycl oakdb- pguser - keycl oakdb, key: pgbouncer-host } }
- name: DB_PORT
val ueFrom { secret KeyRef: { nane: keycl oakdb- pguser - keycl oakdb, key: pgbouncer-port } }

This changes Keycloak's configuration so that it will now connect through the connection pooler.

Apply the changes:
kubect | apply -k kust om ze/ keycl oak

Kubernetes will detect the changes and begin to deploy a new Keycloak Pod. When it is completed, Keycloak will now be
connected to Postgres via the PgBouncer connection pooler!

TLS

PGO deploys every cluster and component over TLS. This includes the PgBouncer connection pooler. If you are using
your own custom TLS setup, you will need to provide a Secret reference for a TLS key / certificate pair for PgBouncer in
spec. pr oxy. pgBouncer . cust onifLSSecr et .

Your TLS certificate for PgBouncer should have a Common Name (CN) setting that matches the PgBouncer Service
name. This is the name of the cluster suffixed with - pgbouncer . For example, for our hi ppo cluster this would be
hi ppo- pgbouncer . For the keycl oakdb example, it would be keycl oakdb- pgbouncer .

https://kubernetes.io/docs/concepts/services-networking/service/
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/
https://www.pgbouncer.org/faq.html#how-to-use-prepared-statements-with-transaction-pooling

To customize the TLS for PgBouncer, you will need to create a Secret in the Namespace of your Postgres cluster that
contains the TLS key (t | s. key), TLS certificate (t | s. crt) and the CA certificate (ca. crt) to use. The Secret should
contain the following values:

dat a:

ca.crt: $VALUE
tls.crt: $VALUE
tls. key: $VALUE

For example, if you have files named ca. crt, keycl oakdb- pgbouncer . key, and keycl oakdb- pgbouncer. crt
stored on your local machine, you could run the following command:

kubect | creat e secret generi c -npostgres-operator keycl oakdb- pgbounc-
er.tls--fromfile=ca.crt=ca.crt --fromfile=tls.key=keycl oakdb- pgbounc-
er.key--fromfile=tls.crt=keycl oakdb-pgbouncer.crt

You can specify the custom TLS Secret in the spec. pr oxy. pgBouncer . cust omTlLSSecr et . nane field in your
post gr escl ust er. post gr es- oper at or . cr unchydat a. comcustom resource, e.g.:

spec:
pr oxy:
pgBouncer :
cust onrLSSecr et :
name: keycl oakdb- pgbouncer.tls

Customizing

The PgBouncer connection pooler is highly customizable, both from a configuration and Kubernetes deployment stand-
point. Let's explore some of the customizations that you can do!

Configuration

PgBouncer configuration can be customized through spec. pr oxy. pgBouncer . conf i g. After making configuration

changes, PGO will roll them out to any PgBouncer instance and automatically issue a "reload".

There are several ways you can customize the configuration:
e spec. proxy. pgBouncer. confi g. gl obal : Accepts key-value pairs that apply changes globally to PgBouncer.

e spec. proxy. pgBouncer. confi g. dat abases: Accepts key-value pairs that represent PgBouncer database defin-
itions.

e spec. proxy. pgBouncer. confi g. user s: Accepts key-value pairs that represent connection settings applied to
specific users.

e spec. proxy. pgBouncer. confi g. fil es: Accepts a list of files that are mounted in the / et ¢/ pgbouncer directory

and loaded before any other options are considered using PgBouncer's include directive.

For example, to set the connection pool mode to t r ansact i on, you would set the following configuration:

spec:

pr oxy:
pgBouncer :
config:

https://www.pgbouncer.org/config.html
https://www.pgbouncer.org/config.html#section-databases
https://www.pgbouncer.org/config.html#section-databases
https://www.pgbouncer.org/config.html#section-users
https://www.pgbouncer.org/config.html#section-users
https://www.pgbouncer.org/config.html#include-directive

gl obal :
pool node: transacti on

For a reference on PgBouncer configuration please see:

https://www.pgbouncer.org/config.html

Replicas
PGO deploys one PgBouncer instance by default. You may want to run multiple PgBouncer instances to have some level

of redundancy, though you still want to be mindful of how many connections are going to your Postgres database!

You can manage the number of PgBouncer instances that are deployed through the spec. pr oxy. pgBouncer . repli -
cas attribute.

Resources

You can manage the CPU and memory resources given to a PgBouncer instance through the spec. pr oxy. pgBounc-
er. resour ces attribute. The layout of spec. pr oxy. pgBouncer . r esour ces should be familiar: it follows the same
pattern as the standard Kubernetes structure for setting container resources.

For example, let's say we want to set some CPU and memory limits on our PgBouncer instances. We could add the following

configuration:

spec:
pr oxy:
pgBouncer :
resour ces
limts:
cpu: 200m
nmenory: 128M

As PGO deploys the PgBouncer instances using a Deployment these changes are rolled out using a rolling update to
minimize disruption between your application and Postgres instances!

Annotations / Labels

You can apply custom annotations and labels to your PgBouncer instances through the spec. pr oxy. pgBouncer . net a-
dat a. annot at i ons and spec. pr oxy. pgBouncer . net adat a. | abel s attributes respectively. Note that any changes
to either of these two attributes take precedence over any other custom labels you have added.

Pod Anti-Affinity / Pod Affinity / Node Affinity

You can control the pod anti-affinity, pod affinity, and node affinity through the spec. pr oxy. pgBouncer. affinity

attribute, specifically:
e spec. proxy. pgBouncer. af fi ni ty. nodeAf fi ni ty: controls node affinity for the PgBouncer instances.
e spec. proxy. pgBouncer. af fini ty. podAffi nity:controls Pod affinity for the PgBouncer instances.

e spec. proxy. pgBouncer. af fi ni ty. podAnti Af fi ni ty: controls Pod anti-affinity for the PgBouncer instances.

https://www.pgbouncer.org/config.html
https://www.pgbouncer.org/config.html
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

Each of the above follows the standard Kubernetes specification for setting affinity.

For example, to set a preferred Pod anti-affinity rule for the kust om ze/ keycl oak example, you would want to add the
following to your configuration:

spec:
pr oxy:
pgBouncer :
affinity:
podAnti Affinity:
pr ef erredDuri ngSchedul i ngl gnor edDur i ngExecut i on
- weight: 1
podAf finityTerm
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. com cl ust er: keycl oakdhb
post gr es- oper at or. crunchydat a. coni r ol e: pgbouncer
t opol ogyKey: kuber net es. i o/ host nane

Tolerations

You can deploy PgBouncer instances to Nodes with Taints by setting Tolerations through spec. pr oxy. pgBouncer . t ol -
er at i ons. This attribute follows the Kubernetes standard tolerations layout.

For example, if there were a set of Nodes with a Taint of r ol e=connect i on- pool er s: NoSchedul e that you want to
schedule your PgBouncer instances to, you could apply the following configuration:

spec:
pr oxy:
pgBouncer :
tol erations:
- effect: NoSchedul e
key: rol e
oper at or : Equal
val ue: connecti on- pool ers

Note that setting a toleration does not necessarily mean that the PgBouncer instances will be assigned to Nodes with those
taints. Tolerations act as a key: they allow for you to access Nodes. If you want to ensure that your PgBouncer instances

are deployed to specific nodes, you need to combine setting tolerations with node affinity.

Pod Spread Constraints

Besides using affinity, anti-affinity and tolerations, you can also set Topology Spread Constraints through
spec. proxy. pgBouncer . t opol ogySpr eadConst r ai nt s. This attribute follows the Kubernetes standard topology

spread contraint layout.

For example, since each of of our pgBouncer Pods will have the standard post gr es- oper at or. cr unchyda-

ta. conirol e: pgbouncer Label set, we can use this Label when determining the max Skew. In the example below, since
we have 3 nodes with a maxSkew of 1 and we've set whenUnsat i sfi abl e to Schedul eAnyway, we should ideally see
1 Pod on each of the nodes, but our Pods can be distributed less evenly if other constraints keep this from happening.

pr oxy:
pgBouncer :
replicas: 3

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://blog.crunchydata.com/blog/kubernetes-pod-tolerations-and-postgresql-deployment-strategies
https://blog.crunchydata.com/blog/kubernetes-pod-tolerations-and-postgresql-deployment-strategies
https://blog.crunchydata.com/blog/kubernetes-pod-tolerations-and-postgresql-deployment-strategies
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

t opol ogySpr eadConstrai nts:
- maxSkew: 1
t opol ogyKey: ny- node- | abel
whenUnsat i sfi abl e: Schedul eAnyway
| abel Sel ect or:
mat chLabel s:
post gr es- oper at or. crunchydat a. com r ol e: pgbouncer

If you want to ensure that your PgBouncer instances are deployed more evenly (or not deployed at all), you need to update
whenUnsat i sfi abl e to DoNot Schedul e.

Next Steps

Now that we can enable connection pooling in a cluster, let's explore some ways that we can manage users and databases
in our Postgres cluster using PGO.

User / Database Management

PGO comes with some out-of-the-box conveniences for managing users and databases in your Postgres cluster. However,
you may have requirements where you need to create additional users, adjust user privileges or add additional databases
to your cluster.

For detailed information for how user and database management works in PGO, please see the User Management section
of the architecture guide.

Creating a New User

You can create a new user with the following snippet in the post gr escl ust er custom resource. Let's add this to our
hi ppo database:

spec:
users:
- nane: rhino
You can now apply the changes and see that the new user is created. Note the following:
« The user would only be able to connect to the default post gr es database.

e The user will not have any connection credentials populated into the hi ppo- pguser - r hi no Secret.

e The user is unprivileged.

Creating a New Database

Let's create a new database named zoo that we will let the r hi no user access:

spec:
users:
- nane: rhi no
dat abases:
- 200

Inspect the hi ppo- pguser - r hi no Secret. You should now see that the dbnane and uri fields are now populated!

We can set role privileges by using the standard role attributes that Postgres provides and adding them to the
spec. users. opti ons. Let's say we want the rhino to become a superuser (be careful about doling out Postgres
superuser privileges!). You can add the following to the spec:

spec:
users:
- name: rhino
dat abases:
- Z00
options: ' SUPERUSER

There you have it: we have created a Postgres user named r hi no with superuser privileges that has access to the zoo
database (though a superuser has access to all databases!).

Adjusting Privileges

Let's say you want to revoke the superuser privilege from r hi no. You can do so with the following:

spec:
users:
- nane: rhi no
dat abases:
- 700
options: ' NOSUPERUSER

If you want to add multiple privileges, you can add each privilege with a space between them in opt i ons, e.g.:

spec:
users:
- nane: rhino
dat abases:
- Z0O
opti ons: ' CREATEDB CREATERCLE'

Managing the post gr es User

By default, PGO does not give you access to the post gr es user. However, you can get access to this account by doing
the following:

spec:
users:
- name: postgres

This will create a Secret of the pattern <cl ust er Nane>- pguser - post gr es that contains the credentials of the
post gr es account. For our hi ppo cluster, this would be hi ppo- pguser - post gr es.

Skipping user and database creation

In this tutorial, we've described two different PGO behaviors:

https://www.postgresql.org/docs/current/role-attributes.html

« if you leave out the spec. user s section, the default user and database get created;

« if you fill in the spec. user s section, those custom users and databases get created, but not the default user and
database.

But what if you want to avoid creating the default user and database AND avoid creating custom users and databases?
That can be accomplished by setting spec. user s to an empty list:

spec:
users: []

For example, if we created a PostgresCluster with the above empty list for spec. user s, that cluster would have only the
roles required by Crunchy Postgres for Kubernetes, and only the databases that a new PostgreSQL cluster would have.

Deleting a User

PGO does not delete users automatically: after you remove the user from the spec, it will still exist in your cluster. To remove
a user and all of its objects, as a superuser you will need to run DROP OANEDIn each database the user has objects in, and
DROP ROLEin your Postgres cluster.

For example, with the above r hi no user, you would run the following:

DROP OAWNED BY r hi no;
DROP RCLE T hi no;

Note that you may need to run DROP OANED BY r hi no CASCADEyased upon your object ownership structure -- be very
careful with this command!

Deleting a Database

PGO does not delete databases automatically: after you remove all instances of the database from the spec, it will still exist
in your cluster. To completely remove the database, you must run the DROP DATABASEcommand as a Postgres superuser.

For example, to remove the zoo database, you would execute the following:

DROP DATABASE z00;

Delete a Postgres Cluster

There comes a time when it is necessary to delete your cluster. If you have been following along with the example, you

can delete your Postgres cluster by simply running:
kubect | del et e -k kust om ze/ post gres

PGO will remove all of the objects associated with your cluster.

With data retention, this is subject to the retention policy of your PVC. For more information on how Kubernetes manages

data retention, please refer to the Kubernetes docs on volume reclaiming.

https://www.postgresql.org/docs/current/sql-drop-owned.html
https://www.postgresql.org/docs/current/sql-droprole.html
https://www.postgresql.org/docs/current/sql-dropdatabase.html
https://github.com/CrunchyData/postgres-operator-examples
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming

Backup and Disaster Recovery

Database backups create exciting opportunities. When you need to provision development and staging environments, your
backups help you to mimic production.

When you need to share data across teams, backing up to shared buckets makes access easy. And most importantly, when
a worst case scenario arises, having the ability to restore from your backups will keep you safe from catastrophe.

In Backup Configuration we'll show you how to backup your data to multiple locations for safe keeping. In Backup
Management we'll show you how to create backup schedules, retention policies and how to take one-off backups whenever
you want. In Disaster Recovery and Cloning we'll show you how to design against disaster with standby clusters and how
to practice disaster recovery, so that you'll have the hands-on experience to handle a worst case scenario.

Backup Configuration

An important part of a healthy Postgres cluster is maintaining backups. PGO optimizes its use of open source pgBackRest
to be able to support terabyte size databases. What's more, PGO makes it convenient to perform many common and
advanced actions that can occur during the lifecycle of a database, including:

« Setting automatic backup schedules and retention policies

« Backing data up to multiple locationse Support for backup storage in Kubernetes, AWS S3 (or S3-compatible systems
like MinlO), Google Cloud Storage (GCS), and Azure Blob Storage

« Taking one-off / ad hoc backups
e Performing a "point-in-time-recovery"

¢ Cloning data to a new instance
and more.

Let's explore the various disaster recovery features in PGO by first looking at how to set up backups.

Understanding Backup Configuration and Basic Operations

The backup configuration for a PGO managed Postgres cluster resides in the spec. backups. pgbackr est section of
a custom resource. In addition to indicating which version of pgBackRest to use, this section allows you to configure the
fundamental backup settings for your Postgres cluster, including:

e spec. backups. pgbackr est . i mage - image to use for pgBackRest containers. Keep in mind the pgBackRest version
used needs to be compatible with operator and Postgres images according to the compatibility matrix.

e spec. backups. pgbackr est. confi gur ati on - additional configuration and references to Secrets that are needed
for configuration of your backups. For example, this may reference a Secret that contains your S3 credentials.

e spec. backups. pgbackr est . gl obal -global pgBackRest configuration. An example of this may be setting the global

pgBackRest logging level (e.g.1 og- | evel - consol e: i nf 0, or providing configuration to optimize performance.

https://pgbackrest.org/
https://pgbackrest.org/configuration.html

« spec. backups. pgbackr est . r epos - information on each specific pgBackRest backup repository. This allows you
to configure where and how your backups and WAL archive are stored. You can keep backups in up to four (4) different
locations!

You can configure the r epos section based on the backup storage system you are looking to use. There are four storage
types supported in spec. backups. pgbackr est . r epos:

Storage Type Description

azure For use with Azure Blob Storage.

gcs For use with Google Cloud Storage (GCS).

s3 For use with Amazon S3 or any S3 compatible storage system such as MinlO.
vol une For use with a Kubernetes Persistent Volume.

spec. backups. pgbackr est . repos. nane - requires a name, and that name must follow pgBackRest's convention of
assigning configuration to a specific repository using a r epoN format, e.g. r epol, r epo2, etc. You can customize your
configuration based upon the name that you assign in the spec. Please see Set up Multiple Backup Repositories.

By default, backups are stored in a directory that follows the pattern pgbackr est / r epoNwhere Nis the number of the
repo. This typically does not present issues when storing your backup information in a Kubernetes volume, but it can present
complications if you are storing all of your backups in the same backup in a blob storage system like S3/GCS/Azure. You
can avoid conflicts by setting the r epoN- pat h variable in spec. backups. pgbackr est . gl obal . The convention we
recommend for setting this variable is / pgbackr est / $NAMESPACE/ $CLUSTER_NAME/ r epoN. For example, if | have a
cluster named hi ppo in the namespace post gr es- oper at or, | would set the following:

spec:
backups:
pgbackrest :
gl obal :
repol- pat h: / pgbackrest/ post gres- oper at or/ hi ppo/ repol

As mentioned earlier, you can store backups in up to four different repositories. You can also mix and match, e.g. you could
store your backups in two different S3 repositories. Each storage type does have its own required attributes that you need
to set. We will cover that later in this section.

Now that we've covered the basics, let's learn how to set up our backup repositories.

Setting Up a Backup Repository

As mentioned above, PGO, the Postgres Operator from Crunchy Data, supports multiple ways to store backups. Let's look
into each method and see how you can ensure your backups and archives are being safely stored.

Using Kubernetes Volumes

The simplest way to get started storing backups is to use a Kubernetes Volume. This was already configured as part of
the create a Postgres cluster example. Let's take a closer look at some of that configuration:

- nane: repol

vol une:
vol umed ai npec:
accessMdes:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

- "ReadWit eOnce"

resour ces:
requests:
storage: 1G

The one requirement of vol une is that you need to fill out the vol unmeC ai nSpec attribute. This attribute uses the same
format as a persistent volume claim spec. In fact, we performed a similar set up when we created a Postgres cluster.

In the above example, we assume that the Kubernetes cluster is using a default storage class. If your cluster does not
have a default storage class, or you wish to use a different storage class, you will have to set spec. backups. pgback-
rest.repos. vol une. vol umed ai nSpec. st or ageC assNarne.

Using S3
Setting up backups in S3 requires a few additional modifications to your custom resource spec and either

« the use of a Secret to manage your S3 credentials, or

« setting up identity providers in AWS to allow pgBackRest to assume a role with permissions.

Using S3 Credentials

There is an example for creating a Postgres cluster that uses S3 for backups in the kust oni ze/ s3 directory in the
Postgres Operator examples repository. In this directory, there is a file called s3. conf . exanpl e. Copy this example file

to s3. conf:
cp s3. conf. exanpl e s3. conf

Note that s3. conf is protected from commitby a . gi ti gnore.

Open up s3. conf, you will see something similar to:

repol- s3- key=3YOUR_AW5_S3_KEY
repol- s3-key-secret =3YOUR_AW5_S3 KEY_SECRET

Replace the values with your AWS S3 credentials and save.

Now, open up kust om ze/ s3/ post gres. yani . In the s3 section, you will see something similar to:

s3:
bucket : "$YOUR_AWS_S3_BUCKET NANE"
endpoi nt: "$YOUR_AWS S3 ENDPO NT"
regi on: "$YOUR AW5S S3 REG ON'

Again, replace these values with the values that match your S3 configuration. For endpoi nt , only use the domain and, if
necessary, the port (e.g. s3. us- east - 2. anazonaws. com.

Note that r egi on is required by S3, as does pgBackRest. If you are using a storage system with a S3 compatibility layer
that does not require r egi on, you can fill in region with a random value.

If you are using MinlO, you may need to set the URI style to use pat h mode. You can do this from the global settings, e.g.
forrepol:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/CrunchyData/postgres-operator-examples

spec:
backups:
pgbackrest :
gl obal :
repol-s3-uri-style: path

When your configuration is saved, you can deploy your cluster:
kubect | apply -k kust onm ze/ s3

Watch your cluster: you will see that your backups and archives are now being stored in S3!

Using an AWS-integrated identity provider and role

If you deploy PostgresClusters to AWS Elastic Kubernetes Service, you can take advantage of their IAM role integration.
When you attach a certain annotation to your PostgresCluster spec, AWS will automatically mount an AWS token and
other needed environment variables. These environment variables will then be used by pgBackRest to assume the identity
of a role that has permissions to upload to an S3 repository.

This method requires additional setup in AWS IAM. Use the procedure in the linked documentation for the first two steps

described below:
« Create an OIDC provider for your EKS cluster.

» Create an IAM policy for bucket access and an IAM role with a trust relationship with the OIDC provider in step 1.

The third step is to associate that IAM role with a ServiceAccount, but there's no need to do that manually, as PGO does
that for you. First, make a note of the IAM role's ARN.

You can then make the following changes to the files in the kust om ze/ s3 directory in the Postgres Operator examples

repository:

1. Add the s3 section to the spec in kust om ze/ s3/ post gr es. yam as discussed in the Using S3 Credentials section

above. In addition to that, add the required eks. anmazonaws. cont r ol e- ar n annotation to the PostgresCluster spec
using the IAM ARN that you noted above.

For instance, given an IAM role with the ARN ar n: aws: i am : 123456768901: r ol e/ al | ow_bucket access, you
would add the following to the PostgresCluster spec:

spec:
nmet adat a:
annot at i ons:
eks. amazonaws. com rol e-arn: "arn: aws: i am : 123456768901: rol e/ al | ow _bucket access"

That annot at i ons field will get propagated to the ServiceAccounts that require it automatically.

2. Copy the s3. conf . exanpl e file to s3. conf:
cp s3. conf. exanpl e s3. conf
Update that kust om ze/ s3/ s3. conf file so that it looks like this:

repol-s3-key-type=web-id

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://github.com/CrunchyData/postgres-operator-examples

Thatrepol- s3- key-type=web-i d line will tell pgBackRest to use the IAM integration.

With those changes saved, you can deploy your cluster:
kubect| apply - k kust oni ze/ s3

And watch as it spins up and backs up to S3 using pgBackRest's IAM integration.

Using Google Cloud Storage (GCS)

Similar to S3, setting up backups in Google Cloud Storage (GCS) requires a few additional modifications to your custom
resource spec and the use of a Secret to protect your GCS credentials.

There is an example for creating a Postgres cluster that uses GCS for backups in the kust omi ze/ gcs directory in the
Postgres Operator examples repository. In order to configure this example to use GCS for backups, you will need do two

things.

First, copy your GCS key secret (which is a JSON file) into kust om ze/ gcs/ gcs- key. j son. Note thata . gi ti gnore
directive prevents you from committing this file.

Next, open the post gr es. yanl file and edit spec. backups. pgbackr est . repos. gcs. bucket to the name of the
GCS bucket that you want to back up to.

Save this file, and then run:
kubect | apply -k kust oni ze/ gcs

Watch your cluster: you will see that your backups and archives are now being stored in GCS!

Using Azure Blob Storage

Similar to the above, setting up backups in Azure Blob Storage requires a few additional modifications to your custom
resource spec and the use of a Secret to protect your Azure Storage credentials.

There is an example for creating a Postgres cluster that uses Azure for backups in the kust omi ze/ azur e directory in the
Postgres Operator examples repository. In this directory, there is a file called azur e. conf . exanpl e. Copy this example

file to azure. conf :
cp azur e. conf . exanpl e azur e. conf

Note that azur e. conf is protected from commit by a . gi ti gnor e.

Open up azur e. conf, you will see something similar to:

repol- azure- account =$YOUR_AZURE_ACCOUNT
repol- azure- key=$YOUR_AZURE_KEY

Replace the values with your Azure credentials and save.

Now, open up kust om ze/ azur e/ post gr es. yanl . In the azur e section, you will see something similar to:

https://pgbackrest.org/configuration.html#section-repository/option-repo-s3-key-type
https://github.com/CrunchyData/postgres-operator-examples
https://github.com/CrunchyData/postgres-operator-examples

azure:
cont ai ner: "$YOUR_AZURE_CONTAI NER"

Again, replace these values with the values that match your Azure configuration.

When your configuration is saved, you can deploy your cluster:
kubect | apply -k kust oni ze/ azure

Watch your cluster: you will see that your backups and archives are now being stored in Azure!

Set Up Multiple Backup Repositories

It is possible to store backups in multiple locations. For example, you may want to keep your backups both within your
Kubernetes cluster and S3. There are many reasons for doing this:

* Itis typically faster to heal Postgres instances when your backups are closer
* You can set different backup retention policies based upon your available storage

* You want to ensure that your backups are distributed geographically
and more.

PGO lets you store your backups in up to four locations simultaneously. You can mix and match: for example, you can store
backups both locally and in GCS, or store your backups in two different GCS repositories.

The multi-backup-repo example in the Postgres Operator examples repository sets up backups in four different locations

using each storage type. You can modify this example to match your desired backup topology.

Additional Notes

While storing Postgres archives (write-ahead log [WAL] files) occurs in parallel when saving data to multiple pgBackRest
repos, you cannot take parallel backups to different repos at the same time. PGO will ensure that all backups are taken
serially. Future work in pgBackRest will address parallel backups to different repos. Please don't confuse this with parallel
backup: pgBackRest does allow for backups to use parallel processes when storing them to a single repo!

Encryption

You can encrypt your backups using AES-256 encryption using the CBC mode. This can be used independent of any
encryption that may be supported by an external backup system.

To encrypt your backups, you need to set the cipher type and provide a passphrase. The passphrase should be long and
random (e.g. the pgBackRest documentation recommends openssl| rand - base64 48The passphrase should be kept
in a Secret.

Let's use our hi ppo cluster as an example. Let's create a new directory. First, create a file called pgbackr est - se-
crets. conf in this directory. It should look something like this:

repol- ci pher - pass=your - super - secur e- encrypti on- key- passphr ase

https://github.com/CrunchyData/postgres-operator-examples/tree/main/kustomize/multi-backup-repo

This contains the passphrase used to encrypt your data.

Next, create a kust om zat i on. yanl file that looks like this:

nanespace: post gres-operat or

secret Generat or: - nanme: hi ppo- pgbackrest-secrets

files:
- pgbackrest -secrets. conf

gener at or Opti ons: di sabl eNanmeSuf fi xHash: true

resources: - postgres. yant

Finally, create the manifest for the Postgres cluster in a file named post gr es. yani that is similar to the following:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbetal
ki nd: Post gresd uster
net adat a
nane: hi ppo
spec:
post gr esVer si on: 16
i nst ances:
- dat aVol uned ai nfSpec:
accesshMdes:
- ' ReadWi t eOnce'
resour ces
requests:
st orage: 1G
backups:
pgbackrest :
confi gurati on:
- secret:
name: hi ppo- pgbackr est-secrets
gl obal :
repol- ci pher-type: aes-256-cbc
r epos:
- hane: repol
vol une:
vol uned ai nSpec
accesshMdes:
- 'ReadWiteOnce'
resour ces:
request s:
storage: 1G

Notice the reference to the Secret that contains the encryption key:

spec:
backups:
pgbackrest :
confi guration:
- secret:
nane: hi ppo- pgbackr est -secrets

as well as the configuration for enabling AES-256 encryption using the CBC mode:

spec:
backups:
pgbackrest :

gl obal :
r epol- ci pher-type: aes-256-chc

You can now create a Postgres cluster that has encrypted backups!

Limitations

Currently the encryption settings cannot be changed on backups after they are established.

Custom Backup Configuration

Most of your backup configuration can be configured through the spec. backups. pgbackr est . gl obal attribute, or
through information that you supply in the ConfigMap or Secret that you refer to in spec. backups. pgbackr est . con-
fi gurati on.You can also provide additional Secret values if need be, e.g.r epol- ci pher - pass for encrypting backups.

The full list of pgBackRest configuration options is available at https://pgbackrest.org/configuration.html.

N\ Warning

Some pgBackRest options require write access to paths with adequate storage capacity within your container. For

example, if you enable archive-async, make sure you also add a proper spool-path.

IPv6 Support

If you are running your cluster in an IPv6-only environment, you will need to add an annotation to your PostgresCluster
so that PGO knows to set pgBackRest'st | s- ser ver - addr ess to an IPv6 address. Otherwise, t | s- server - addr ess
will be set to 0. 0. 0. 0, making pgBackRest inaccessible, and backups will not run. The annotation should be added as

shown below:

api Ver si on: post gres-operator. crunchydata. com vlibetal
ki nd: Post gresd uster
net adat a:
nane: hi ppo
annot at i ons:
post gr es- oper at or. crunchydat a. com pgbackr est -i p-versi on: | Pv6

Next Steps

We've now seen how to use PGO to get our backups and archives set up and safely stored. Now let's take a look at backup
management and how we can do things such as set backup frequency, set retention policies, and even take one-off

backups!

Backup Management

In the previous section, we looked at a brief overview of the full disaster recovery feature set that PGO provides and

explored how to configure backups for our Postgres cluster.

https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html#section-archive/option-archive-async
https://pgbackrest.org/configuration.html#section-general/option-spool-path

Now that we have backups set up, lets look at some of the various backup management tasks we can perform. These
include:

¢ Setting up scheduled backups
« Setting backup retention policies

» Taking one-off / ad hoc backups

Managing Scheduled Backups

PGO sets up your Postgres clusters so that they are continuously archiving the write-ahead |log: your data is constantly
being stored in your backup repository. Effectively, this is a backup!

However, in a disaster recovery scenario, you likely want to get your Postgres cluster back up and running as quickly as
possible (e.g. a short "recovery time objective (RTO)"). What helps accomplish this is to take periodic backups. This makes

it faster to restore!

pgBackRest, the backup management tool used by PGO, provides different backup types to help both from a space
management and RTO optimization perspective. These backup types include:

e ful | : A backup of your entire Postgres cluster. This is the largest of all of the backup types.
« di fferential : Abackup of all of the data since the last f ul | backup.

« i ncrenent al : A backup of all of the data since the lastful | , di fferential, orincrenental backup.

Selecting the appropriate backup strategy for your Postgres cluster is outside the scope of this tutorial, but let's look at
how we can set up scheduled backups.

Backup schedules are stored in the spec. backups. pgbackr est . r epos. schedul es section. Each value in this
section accepts a cron-formatted string that dictates the backup schedule.

Let's say that our backup policy is to take a full backup weekly on Sunday at 1am and take differential backups daily at
lam on every day except Sunday. We would want to add configuration to our spec that looks similar to:

spec:
backups:
pgbackrest :
r epos:
- hanme: repol
schedul es:
full: "01** 0"
differential: "01* * 1-6"

To manage scheduled backups, PGO will create several Kubernetes CronJobs that will perform backups on the specified
periods. The backups will use the configuration that you specified.

Ensuring you take regularly scheduled backups is important to maintaining Postgres cluster health. However, you don't
need to keep all of your backups: this could cause you to run out of space! As such, it's also important to set a backup
retention policy.

Managing Backup Retention

https://www.postgresql.org/docs/current/wal-intro.html
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Time_Objective
https://pgbackrest.org/
https://docs.k8s.io/concepts/workloads/controllers/cron-jobs/#cron-schedule-syntax
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

PGO lets you set backup retention on full and differential backups. When a full backup expires, either through your retention
policy or through manual expiration, pgBackRest will clean up any backup and WAL files associated with it. For example,
if you have a full backup with four associated incremental backups, when the full backup expires, all of its incremental
backups also expire.

There are two different types of backup retention you can set:
e count : This is based on the number of backups you want to keep. This is the default.
e ti ne: This is based on the total number of days you would like to keep a backup.

Let's look at an example where we keep full backups for 14 days. The most convenient way to do this is through the
spec. backups. pgbackrest . gl obal section:

spec:
backups:
pgbackrest :
gl obal :
repol-retention-full: "14"
repol-retention-full-type: tine

The full list of available configuration options is in the pgBackRest configuration guide.

Taking a One-Off Backup

There are times where you may want to take a one-off backup, such as before major application changes or updates. This
is not your typical declarative action -- in fact a one-off backup is imperative in its nature! -- but it is possible to take a
one-off backup of your Postgres cluster with PGO.

First, you need to configure the spec. backups. pgbackr est . manual section to be able to take a one-off backup. This
contains information about the type of backup you want to take and any other pgBackRest configuration options.

Let's configure the custom resource to take a one-off full backup:

spec:
backups:
pgbackrest :
manual
r epoNane: repol
options:
- --type=full

This does not trigger the one-off backup -- you have to do that by adding the post gr es- oper at or . cr unchyda-
t a. com pgbackr est - backup annotation to your custom resource. The best way to set this annotation is with a
timestamp, so you know when you initialized the backup.

For example, for our hi ppo cluster, we can run the following command to trigger the one-off backup:

kubect | annot at e - n post gr es- oper at or post grescl ust er hi ppo post gres- oper at or. crunchyda-
t a. conl pgbackr est - backup="$(dat e) "

PGO will detect this annotation and create a new, one-off backup Job!

https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html

If you intend to take one-off backups with similar settings in the future, you can leave those in the spec; just update the
annotation to a different value the next time you are taking a backup.

To re-run the command above, you will need to add the - - over wri t e flag so the annotation's value can be updated, i.e.

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite postgres-opera-
t or. crunchydat a. com pgbackr est - backup="$(date)"

Next Steps

We've covered the fundamental tasks with managing backups. What about restores? Or cloning data into new Postgres
clusters? Let's explore!

Disaster Recovery and Cloning

Perhaps someone accidentally dropped the user s table. Perhaps you want to clone your production database to a
step-down environment. Perhaps you want to exercise your disaster recovery system (and it is important that you do!).

Regardless of scenario, it's important to know how you can perform a "restore" operation with PGO to be able to recovery
your data from a particular point in time, or clone a database for other purposes.

Let's look at how we can perform different types of restore operations. First, let's understand the core restore properties

on the custom resource.

Restore Properties

@ Info

As of v5.0.5, PGO offers the ability to restore from an existing PostgresCluster or a remote cloud-based data
source, such as S3, GCS, etc. For more on that, see the Clone From Backups Stored in S3 / GCS / Azure Blob

Storage section.

Note that you cannot use both a local PostgresCluster data source and a remote cloud-based data source at one
time; if both the dat aSour ce. post gr esCl ust er and dat aSour ce. pgbackr est fields are filled in, the local
PostgresCluster data source will take precedence.

There are several attributes on the custom resource that are important to understand as part of the restore process. All of
these attributes are grouped together in the spec. dat aSour ce. post gr esd ust er section of the custom resource.

Please review the table below to understand how each of these attributes work in the context of setting up a restore
operation.
e spec. dat aSour ce. post gr esd ust er . cl ust er Nane: The name of the cluster that you are restoring from. This

corresponds to the met adat a. nane attribute on a different post gr escl ust er custom resource.

« spec. dat aSour ce. post gr esd ust er. cl ust er Nanespace: The nhamespace of the cluster that you are restoring
from. Used when the cluster exists in a different namespace.

e spec. dat aSour ce. post gr esC ust er . r epoNane: The name of the pgBackRest repository from the spec. dat a-
Sour ce. post gr esCl ust er. cl ust er Nane to use for the restore. Can be one of r epol, r epo2, r epo3, orr epo4.The
repository must exist in the other cluster.

* spec. dat aSour ce. post gr esCl ust er. opt i ons: Any additional pgBackRest restore options or general options that
PGO allows. For example, you may want to set - - pr ocess- max to help improve performance on larger databases; but
you will not be able to set- - t ar get - act i on, since that option is currently disallowed. (PGO always sets it to pr onot e
ifa--target is present, and otherwise leaves it blank.)

e spec. dat aSour ce. post gr esCl ust er. resour ces: Setting resource limits and requests of the restore job can
ensure that it runs efficiently.

e spec. dat aSour ce. post gresC ust er. af fi ni ty: Custom Kubernetes affinity rules constrain the restore job so

that it only runs on certain nodes.

« spec. dat aSour ce. post gresCl ust er. t ol erati ons: Custom Kubernetes tolerations allow the restore job to run

on tainted nodes.

Let's walk through some examples for how we can clone and restore our databases.

Clone a Postgres Cluster

Let's create a clone of our hi ppo cluster that we created previously. We know that our cluster is named hi ppo (based on
its met adat a. nane) and that we only have a single backup repository called r epol.

Let's call our new cluster el ephant . We can create a clone of the hi ppo cluster using a manifest like this:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: el ephant
spec:
dat aSour ce:
post gresCl uster:
cl ust er Nane: hi ppo
repoNane: repol
post gresVer si on: 16
i nst ances:
- dat aVol umed ai nSpec:
accessMdes:
- "ReadWit eOnce”
resour ces
requests:
storage: 1G
backups:
pgbackrest :
r epos:
- name: repol
vol une:
vol umedl ai nSpec:
accessMdes:
- "ReadWiteOnce"
resour ces:
requests:
st orage: 1G

https://pgbackrest.org/command.html#command-restore
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Note this section of the spec:

spec:
dat aSour ce:
post gresCl uster:
cl ust er Nane: hi ppo
repoNane: repol

This is the part that tells PGO to create the el ephant cluster as an independent copy of the hi ppo cluster.

The above is all you need to do to clone a Postgres cluster! PGO will work on creating a copy of your data on a new
persistent volume claim (PVC) and work on initializing your cluster to spec. Easy!

Perform a Point-in-time-Recovery (PITR)

Did someone drop the user table? You may want to perform a point-in-time-recovery (PITR) to revert your database back
to a state before a change occurred. Fortunately, PGO can help you do that.

You can set up a PITR using the restore command of pgBackRest, the backup management tool that powers the disaster

recovery capabilities of PGO. You will need to set a few options on spec. dat aSour ce. post gresd ust er. opti ons
to perform a PITR. These options include:

e --type=ti nme: This tells pgBackRest to perform a PITR.

e --target:Where to perform the PITR to. An example recovery target is 2021- 06- 09 14: 15: 11- 04 The timezone
specified here as -04 for EDT. Please see the pgBackRest documentation for other timezone options.

e --set (optional): Choose which backup to start the PITR from.

A few quick notes before we begin:

« To perform a PITR, you must have a backup that finished before your PITR time. In other words, you can't perform a
PITR back to a time where you do not have a backup!

« All relevant WAL files must be successfully pushed for the restore to complete correctly.

» Be sure to select the correct repository name containing the desired backup!

With that in mind, let's use the el ephant example above. Let's say we want to perform a point-in-time-recovery (PITR) to
2021- 06- 09 14: 15: 11- 04 we can use the following manifest:

api Ver si on: post gres- operator. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a:
nane: el ephant
spec:
dat aSour ce:
post gresCl ust er:
cl ust er Nane: hi ppo
repoNane: repol
options:
- --type=tinme
- --target="2021-06-09 14: 15: 11- 04"
post gr esVer si on: 16
i nst ances:
- dat aVol uned ai nfSpec:
accesshMbdes:
- "ReadWit eOnce"

https://pgbackrest.org/command.html#command-restore
https://www.pgbackrest.org
https://pgbackrest.org/user-guide.html#pitr

resour ces
requests:
storage: 1G
backups:
pgbackrest :
r epos:
- nane: repol
vol une:
vol umed ai nmSpec:
accesshMdes:
- "ReadWit eOnce"
resour ces:
requests:
storage: 1G

The section to pay attention to is this:

spec:
dat aSour ce:

post gresCl ust er:

cl ust er Nane: hi ppo

repoNane: repol

options:

- --type=tine

- --target="2021-06-09 14: 15: 11- 04"

Notice how we put in the options to specify where to make the PITR.

Using the above manifest, PGO will go ahead and create a new Postgres cluster that recovers its data up until
2021- 06- 09 14: 15: 11- 04 At that point, the cluster is promoted and you can start accessing your database from that
specific point in time!

Perform an In-Place Point-in-time-Recovery (PITR)

Similar to the PITR restore described above, you may want to perform a similar reversion back to a state before a change
occurred, but without creating another PostgreSQL cluster. Fortunately, PGO can help you do this as well.

You can set up a PITR using the restore command of pgBackRest, the backup management tool that powers the disaster

recovery capabilities of PGO. You will need to set a few options on spec. backups. pgbackrest . restore. opti ons
to perform a PITR. These options include:

e --type=ti me: This tells pgBackRest to perform a PITR.
e --target:Where to perform the PITR to. An example recovery target is 2021- 06- 09 14: 15: 11- 04

e --set (optional): Choose which backup to start the PITR from.

A few quick notes before we begin:

» To perform a PITR, you must have a backup that finished before your PITR time. In other words, you can't perform a
PITR back to a time where you do not have a backup!

 All relevant WAL files must be successfully pushed for the restore to complete correctly.

* Be sure to select the correct repository name containing the desired backup!

To perform an in-place restore, users will first fill out the restore section of the spec as follows:

https://pgbackrest.org/command.html#command-restore
https://www.pgbackrest.org

spec:
backups:
pgbackrest :
restore:
enabl ed: true
repoNane: repol
options:
- --type=tine
- --target="2021- 06- 09 14: 15: 11- 04"

And to trigger the restore, you will then annotate the PostgresCluster as follows:

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite postgres-opera-
t or. crunchydat a. coml pgbackr est -rest ore="$(date) "

And once the restore is complete, in-place restores can be disabled:

spec:
backups:
pgbackrest :
restore:
enabl ed: fal se

Notice how we put in the options to specify where to make the PITR.

Using the above manifest, PGO will go ahead and re-create your Postgres cluster to recover its data up until
2021- 06- 09 14: 15: 11- 04 At that point, the cluster is promoted and you can start accessing your database from that
specific point in time!

Restore Individual Databases

You might need to restore specific databases from a cluster backup, for performance reasons or to move selected
databases to a machine that does not have enough space to restore the entire cluster backup.

N\ Warning

pgBackRest supports this case, but it is important to make sure this is what you want. Restoring in this manner will
restore the requested database from backup and make it accessible, but all of the other databases in the backup
will NOT be accessible after restore.

For example, if your backup includes databasest est 1, t est 2, and t est 3, and you request that t est 2 be
restored, the t est 1 and t est 3 databases will NOT be accessible after restore is completed. Please review the
pgBackRest documentation on the limitations on restoring individual databases.

You can restore individual databases from a backup using a spec similar to the following:

spec:

backups:

pgbackrest :
restore:
enabl ed: true
repoNane: repol

https://pgbackrest.org/user-guide.html#restore/option-db-include

opti ons:
- --db-i ncl ude=hi ppo

where - - db- i ncl ude=hi ppo would restore only the contents of the hi ppo database.

Standby Cluster

Advanced high-availability and disaster recovery strategies involve spreading your database clusters across data centers to
help maximize uptime. PGO provides ways to deploy postgresclusters that can span multiple Kubernetes clusters using an
external storage system or PostgreSQL streaming replication. The disaster recovery architecture documentation provides
a high-level overview of using standby clusters with PGO.

Creating a Standby Cluster

This tutorial section will describe how to create three different types of standby clusters, one using an external storage
system, one that is streaming data directly from the primary, and one that takes advantage of both external storage and
streaming. These example clusters can be created in the same Kubernetes cluster, using a single PGO instance, or spread
across different Kubernetes clusters and PGO instances with the correct storage and networking configurations.

Repo-based Standby

A repo-based standby will recover from WAL files that a pgBackRest repo stored in external storage. The primary
cluster should be created with a cloud-based backup configuration. The following manifest defines a Postgrescluster with
st andby. enabl ed set to true and r epoName configured to point to the s3 repo configured in the primary:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a
nane: hi ppo- st andby
spec:
post gr esVer si on: 16
i nst ances:
- dat aVol uned ai nSpec: { accessModes: [ReadW it eOnce], resources: { requests: { storage: 1G } } }
backups:
pgbackrest :
r epos:
- name: repol
s3:
bucket: "ny- bucket"
endpoi nt: "s3.ca-central - 1. amazonaws. cont'
region: "ca-central -1"
st andby:
enabl ed: true
repoNane: repol

Streaming Standby

A streaming standby relies on an authenticated connection to the primary over the network. The primary cluster should
be accessible via the network and allow TLS authentication (TLS is enabled by default). In the following manifest, we
have st andby. enabl ed set to t r ue and have provided both the host and port that point to the primary cluster. We

have also defined cust onTLSSecr et and cust onmRepl i cati onTLSSecr et to provide certs that allow the standby to
authenticate to the primary. For this type of standby, you must use custom TLS:

api Ver si on: post gres- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd ust er
net adat a
nane: hi ppo- st andby
spec:
post gr esVer si on: 16
i nst ances:

- dat aVol umed ai nSpec: { accessModes: [ReadW it eOnce], resources: { requests: { storage: 1G } } }
backups:

pgbackrest :

r epos:

- hanme: repol

vol une:
vol umed ai nSpec: { accessMbdes: [ReadWiteOnce], resources: { requests: { storage: 1G } } }

cust onTLSSecr et :

nanme: cl uster-cert
cust omRepl i cati onTLSSecr et :

nanme: replication-cert
st andby:

enabl ed: true

host: "192.0. 2. 2"

port: 5432

Streaming Standby with an External Repo

Another option is to create a standby cluster using an external pgBackRest repo that streams from the primary. With this
setup, the standby cluster will continue recovering from the pgBackRest repo if streaming replication falls behind. In this
manifest, we have enabled the settings from both previous examples:

api Ver si on: post gres- operat or. crunchydata. com vlbetal
ki nd: Post gresd ust er
net adat a:
nane: hi ppo- st andby
spec:
post gr esVer si on: 16
i nst ances:
- dat aVol uned ai nSpec: { accessModes: [ReadW it eOnce], resources: { requests: { storage: 1G } } }
backups:
pgbackrest :
r epos:
- name: repol
s3:
bucket: "ny-bucket"
endpoi nt: "s3. ca-central - 1. amazonaws. cont
region: "ca-central -1"
cust onrLSSecr et :
name: cl uster-cert
cust onRepl i cati onTLSSecr et :
name: replication-cert
st andby:
enabl ed: true
repoNane: repol
host: "192.0. 2. 2"
port: 5432

Monitoring a Standby Cluster

When deploying a standby cluster with monitoring enabled, additional configuration is required to allow the post gr es_ex-
port er to gather metrics from the database. The ccp_noni t or i ng password stored in the standby is replicated from
the primary database. Because the standby cluster is reconciled separately from the primary, the secret that is created
does not have the correct credentials.

To enable monitoring within a standby cluster, you will need to ensure the password defined within the $CLUS-
TER_NAME- noni t or i ng secret matches across both the primary and standby PostgresClusters. You can either copy the
password from the secret in the primary cluster into the standby secret, or provide a custom password for both clusters.
Reference the day-two monitoring tutorial for more information about setting a custom monitoring password.

After the standby cluster's monitoring secret contains the correct credentials for the ccp_noni t or i ng user, the post -
gres_export er processes will be able to connect to Postgres and gather metrics. These metrics will be available through
Grafana and the rest of the monitoring stack.

Promoting a Standby Cluster

At some point, you will want to promote the standby to start accepting both reads and writes. This has the net effect of
pushing WAL (transaction archives) to the pgBackRest repository, so we need to ensure we don't accidentally create a
split-brain scenario. Split-brain can happen if two primary instances attempt to write to the same repository. If the primary
cluster is still active, make sure you shutdown the primary before trying to promote the standby cluster.

Once the primary is inactive, we can promote the standby cluster by removing or disabling its spec. st andby section:

spec:
st andby:
enabl ed: fal se

This change triggers the promotion of the standby leader to a primary PostgreSQL instance and the cluster begins
accepting writes.

Clone From Backups Stored in S3/GCS / Azure Blob Storage

You can clone a Postgres cluster from backups that are stored in AWS S3 (or a storage system that uses the S3 protocol),
GCS, or Azure Blob Storage without needing an active Postgres cluster! The method to do so is similar to how you clone
from an existing PostgresCluster. This is useful if you want to have a data set for people to use but keep it compressed on
cheaper storage.

For the purposes of this example, let's say that you created a Postgres cluster named hi ppo that has its backups stored
in S3 that looks similar to this:

api Ver si on: post gres- oper at or. crunchydat a. com vlbetal
ki nd: Post gresd ust er
net adat a:

nane: hi ppo
spec:

post gr esVer si on: 16

i nst ances:

- dat aVol uned ai nfSpec:

accesshMbdes:

https://grafana.com/

- ' ReadWi t eOnce'
resour ces
requests:
st orage: 1G
backups:
pgbackrest :
confi gurati on:
- secret:
name: pgo- s3-creds
gl obal :
repol- pat h: / pgbackrest/ post gres- oper at or/ hi ppo/ repol
manual :
repoNane: repol
options:
- --type=ful
r epos:
- nanme: repol
s3:
bucket: ' ny- bucket'
endpoi nt: 's3. ca-central - 1. amazonaws. con
region: 'ca-central -1

Ensure that the credentials in pgo- s3- cr eds match your S3 credentials. For more details on deploying a Postgres cluster
using S3 for backups, please see the Backups section of the tutorial.

For optimal performance when creating a new cluster from an active cluster, ensure that you take a recent full backup of
the previous cluster. The above manifest is set up to take a full backup. Assuming hi ppo is created in the post gr es- op-
er at or namespace, you can trigger a full backup with the following command. If you are using Bash:

kubect | annot at e - n post gr es- oper at or post grescl uster hi ppo--overwite postgres-opera-
t or. crunchydat a. com pgbackr est - backup="$(date' +%_%1 M %5)"

For Powershell environments:

kubect | annot at e - n post gr es- oper at or post grescl ust er hi ppo--overwite postgres-opera-
t or. crunchydat a. coml pgbackr est - backup="$(Get - Dat e - For mat "yyyy- MM} dd_HH: mm ss")"

Wait for the backup to complete. Once this is done, you can delete the Postgres cluster.

Now, let's clone the data from the hi ppo backup into a new cluster called el ephant . You can use a manifest similar to
this:

api Ver si on: post gr es- oper at or. crunchydat a. com vlbet al
ki nd: Post gresd uster
nmet adat a:
nane: el ephant
spec:
post gr esVer si on: 16
dat aSour ce:
pgbackrest :
stanza: db
configuration:
- secret:
nane: pgo- s3-creds
gl obal :
repol- pat h: / pgbackrest/ post gres- operat or/ hi ppo/ repol
r epo:
name: repol
s3:

bucket: ' ny- bucket
endpoi nt: 's3.ca-central - 1. anazonaws. comn
regi on: 'ca-central -1'
i nst ances:
- dat aVol umed ai nSpec:
accessMdes:
- 'ReadWiteOnce'
resour ces
requests:
storage: 1G
backups:
pgbackrest :
confi guration:
- secret:
nane: pgo- s3-creds
gl obal :
repol- pat h: / pgbackrest/ post gres-operator/ el ephant/repol
r epos:
- nanme: repol
s3:
bucket: ' ny- bucket
endpoi nt: 's3.ca-central -1. amazonaws. con
region: 'ca-central -1'

There are a few things to note in this manifest. First, note that the spec. dat aSour ce. pgba