
UPGRADE
A practical guide

DALIBO

Feb. 2023

Contents
Anonymization & Data Masking for PostgreSQL 7

Declaring The Masking Rules . 8
Static Masking . 8
Dynamic Masking . 9
Anonymous Dumps . 10
Support . 10
Requirements . 10
Install . 10
Limitations . 10
Performance . 10

Anonymous Dumps 11
EXPERIMENTAL : Transparent Anonymous Dumps 11

1. Create a masked user . 11
2. Grant read access to that user 11
3. Launch pg_dump with the masked user 11

pg_dump_anon . 12
Example . 12
Install With Go . 12
Install With docker . 12
Limitations . 12

Obsolete: pg_dump_anon.sh . 12

Definitions of the terms used in this project 13

Configuration 14
anon.algorithm . 14
anon.maskschema . 14
anon.restrict_to_trusted_schemas . 14
anon.salt . 15

1

anon.sourceshema . 15

Custom Fake Data 15
Alternative fake data packages . 16
Generate your own fake dataset . 16
Load your own fake data . 16
Using the PostgreSQL Faker extension 17
Advanced Faking: masking_functions.md#advanced-faking 17

Put on your Masks ! 17
Escaping String literals . 18
Listing masking rules . 18
Debugging masking rules . 18
Removing a masking rule . 18
Limitations . 19
Declaring Rules with COMMENTs is deprecated. 19

Searching for Identifiers 19
Limitations . 20
Contribute to the dictionnaries . 20

Development Notes 20

Hide sensitive data from a “masked” user 20
How to change the type of a masked column 21
How to drop a masked table . 22
How to unmask a role . 22
Limitations . 22

Listing the tables . 22
Only one schema . 22
Performances . 23
Graphic Tools . 23

Generalization 23
Reducing the accuracy of sensitive data 23
Example . 23
Generalization Functions . 24
Limitations . 25

Singling out and extreme values 25
Generalization is not compatible with dynamic masking 25

k-anonymity . 25
References . 26
How Google Anonymizes Data . 26

Welcome to Paul’s Boutique ! 26
The Story . 26
Objectives . 27

2

https://policies.google.com/technologies/anonymization

About PostgreSQL Anonymizer . 27
About GDPR . 27
Requirements . 28
The Roles . 28
The Sample database . 28
Authors . 29
License . 29
Credits . 29

1 - Static Masking 29
The story . 29
How it works . 29
Learning Objective . 29
The “customer” table . 30
The “payout” table . 30
Activate the extension . 31
Declare the masking rules . 31
Apply the rules permanently . 31
Exercices . 31

E101 - Mask the client’s first names 31
E102 - Hide the last 3 digits of the postcode 31
E103 - Count how many clients live in each postcode area? . . . 31
E104 - Keep only the year of each birth date 32
E105 - Singling out a customer 32

Solutions . 32
S101 . 32
S102 . 33
S103 . 33
S104 . 33
S105 . 33

2- How to use Dynamic Masking 34
The Story . 34
How it works . 34
Objectives . 34
The “company” table . 34
The "supplier" table . 35
Activate the extension . 35
Dynamic Masking . 35

Activate the masking engine . 35
Masking a role . 35

Masking the supplier names . 36
Exercices . 36

E201 - Guess who is the CEO of "Johnny’s Shoe Store" 36
E202 - Anonymize the companies 36
E203 - Pseudonymize the company name 37

3

Solutions . 37
S201 . 37
S202 . 37
S203 . 37

Now the fake company name is always the same. 38

3- Anonymous Dumps 38
The Story . 38
How it works . 38
Learning Objective . 38
Load the data . 38
Activate the extension . 39
Masking a JSON column . 39
Exercices . 40

E301 - Dump the anonymized data into a new database 40
E302 - Pseudonymize the meta fields of the comments 40

Solutions . 41
S301 . 41
S302 . 41

4 - Generalization 42
The Story . 42
How it works . 42
Learning Objective . 42
The "employee" table . 42
Data suppression . 43
K-Anonymity . 43
Range and Generalization functions 44

Declaring the indirect identifiers 44
Exercices . 44

E401 - Simplify v_staff_per_month and decrease granularity . . 44
E402 - Staff progression over the years 45
E403 - Reaching 2-anonymity for the v_staff_per_year view . . 45

Solutions . 45
S401 . 45
S402 . 45
S403 . 45

Conclusion 46
Clean up ! . 46
Many Masking Strategies . 46
Many Masking Functions . 46
Advantages . 47
Drawbacks . 47
Also. 47
Help Wanted! . 47

4

This is a 4 hour workshop! . 47
Questions? . 47

PostgreSQL Anonymizer How To 47
Write . 48
Build . 48
Type make help for more details . 48

Anonymization & Data Masking for PostgreSQL 48
Example . 49
Success Stories . 49
Support . 50

Anonymization & Data Masking for PostgreSQL 50
Declaring The Masking Rules . 51
Static Masking . 51
Dynamic Masking . 52
Anonymous Dumps . 53
Support . 53
Requirements . 53
Install . 53
Limitations . 53
Performance . 54

INSTALL 54
Choose your version : Stable or Latest ? 54
Install on RedHat / CentOS . 54
Install With PGXN : . 55
Install From source . 56
Install with Docker . 56
Install as a “Black Box” . 57
Install on MacOS . 58
Install on Windows . 58
Install in the cloud . 58
Addendum: Alternative way to load the extension 59
Addendum: Troubleshooting . 59

Check that the extension is present 59
Check that the extension is loaded 59
Check that the extension is created 60
Check that the extension is initialized 60

Uninstall . 60
Replace 14 by the version of your postgresql instance. 60

Ideas and Resources 61
Videos / Presentations . 61
Similar technologies . 61

5

https://pgxn.org/

Similar Implementations . 61
GDPR . 61
Concepts . 61
Academic Research . 62

Various Masking Strategies 62
Destruction . 62
Adding Noise . 63
Randomization . 63

Basic Random values . 63
Random between . 63
Random in Array . 64
Random in Enum . 64
Random in Range . 64

Faking . 65
Advanced Faking . 66
Pseudonymization . 66
Generic hashing . 67
Partial Scrambling . 68
Conditional Masking . 68
Generalization . 69
Using pg_catalog functions . 70
Write your own Masks ! . 71

Performances 73
Static Masking . 73
Dynamic Masking . 74
Anonymous Dumps . 74
How to speed things up ? . 74

Prefer MASKED WITH VALUE whenever possible 74
Sampling . 74
Materialized Views . 75

Materialized Views: https://www.postgresql.org/docs/current/static/sql-
creatematerializedview.html . 75

Privacy By Default 75
Disclaimer . 75
Principle . 75
Example . 76
Unmasking columns . 76
Caveat: Add a DEFAULT to the NOT NULL columns 77

Sampling 77
Principle . 77
Example . 78
Syntax . 78

6

Maintaining Referential Integrity . 78

Security 79
Permissions . 79
Limit masking filters only to trusted schemas 79
Security context of the functions . 79

Permanently remove sensitive data 80
Applying masking rules . 80
Shuffling . 81
Adding noise to a column . 81

Upgrade 82
Upgrade to version 1.3 and further versions 82

Using custom masking functions 82
Using pg_catalog functions . 83
Operators . 83
Conditional masking rules . 83

Figure 1: PostgreSQL Anonymizer

Anonymization & Data Masking for PostgreSQL
postgresql_anonymizer is an extension to mask or replace personally iden-
tifiable information (PII) or commercially sensitive data from a PostgreSQL
database.

The project relies on a declarative approach of anonymization. This means
we’re using the PostgreSQL Data Definition Language (DDL) in order to specify
the anonymization strategy inside the table definition itself.

Once the masking rules are defined, you can access the anonymized data in
different ways :

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove permanently the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Generalization : Reducing the accuracy of dates and numbers

7

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
anonymous_dumps.md
static_masking.md
dynamic_masking.md

In addition, various Masking Functions are available: randomization, faking,
partial scrambling, shuffling, noise, or even your own custom function!

Read the Concepts section for more details and NEWS.md for information about
the latest version.

Declaring The Masking Rules
The main idea of this extension is to offer anonymization by design.

The data masking rules should be written by the people who develop the
application because they have the best knowledge of how the data model works.
Therefore masking rules must be implemented directly inside the database
schema.

This allows masking the data directly inside the PostgreSQL instance without
using an external tool and thus limiting the exposure and the risks of data leak.

The data masking rules are declared simply by using security labels :

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;

=# SELECT anon.init();

=# CREATE TABLE player(id SERIAL, name TEXT, points INT);

=# SECURITY LABEL FOR anon ON COLUMN player.name
-# IS 'MASKED WITH FUNCTION anon.fake_last_name()';

=# SECURITY LABEL FOR anon ON COLUMN player.id
-# IS 'MASKED WITH VALUE NULL';

Static Masking
You can permanently remove the PII from a database with anon.anonymize_database().
This will destroy the original data. Use with care.

=# SELECT * FROM customer;
id | full_name | birth | employer | zipcode | fk_shop

-----+------------------+------------+---------------+---------+---------
911 | Chuck Norris | 1940-03-10 | Texas Rangers | 75001 | 12
112 | David Hasselhoff | 1952-07-17 | Baywatch | 90001 | 423

=# SECURITY LABEL FOR anon ON COLUMN customer.full_name
-# IS 'MASKED WITH FUNCTION anon.fake_first_name() || '' '' || anon.fake_last_name()';

=# SECURITY LABEL FOR anon ON COLUMN customer.birth
-# IS 'MASKED WITH FUNCTION anon.random_date_between(''1920-01-01''::DATE,now())';

8

https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/latest/concepts/
NEWS.md
https://www.postgresql.org/docs/current/sql-security-label.html

=# SECURITY LABEL FOR anon ON COLUMN customer.employer
-# IS 'MASKED WITH FUNCTION anon.fake_company()';

=# SECURITY LABEL FOR anon ON COLUMN customer.zipcode
-# IS 'MASKED WITH FUNCTION anon.random_zip()';

=# SELECT anon.anonymize_database();

=# SELECT * FROM customer;
id | full_name | birth | employer | zipcode | fk_shop

-----+-------------------+------------+------------------+---------+---------
911 | michel Duffus | 1970-03-24 | Body Expressions | 63824 | 12
112 | andromach Tulip | 1921-03-24 | Dot Darcy | 38199 | 423

You can also use anonymize_table() and anonymize_column() to remove data
from a subset of the database.

Dynamic Masking
You can hide the PII from a role by declaring it as a “MASKED”. Other roles
will still access the original data.

Example:

=# SELECT * FROM people;
id | firstname | lastname | phone

----+----------+----------+------------
T1 | Sarah | Conor | 0609110911

(1 row)

Step 1 : Activate the dynamic masking engine

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;
=# SELECT anon.start_dynamic_masking();

Step 2 : Declare a masked user

=# CREATE ROLE skynet LOGIN;
=# SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

Step 3 : Declare the masking rules

=# SECURITY LABEL FOR anon ON COLUMN people.lastname
-# IS 'MASKED WITH FUNCTION anon.fake_last_name()';

=# SECURITY LABEL FOR anon ON COLUMN people.phone
-# IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 4 : Connect with the masked user

9

=# \! psql peopledb -U skynet -c 'SELECT * FROM people;'
id | firstname | lastname | phone

----+----------+-----------+------------
T1 | Sarah | Stranahan | 06******11

(1 row)

Anonymous Dumps
Due to the core design of this extension, you cannot use pg_dump with a masked
user. If you want to export the entire database with the anonymized data, you
must use the pg_dump_anon command line. For example

pg_dump_anon.sh -h localhost -p 5432 -U bob bob_db > dump.sql

For more details, read the Anonymous Dumps section.

Support
We need your feedback and ideas! Let us know what you think of this tool, how
it fits your needs and what features are missing.

You can either open an issue or send a message at contact@dalibo.com.

Requirements
This extension works with all supported versions of PostgreSQL.

It requires an extension called pgcrypto which is delivered by the
postgresql-contrib package of the main linux distributions.

Install
See the INSTALL section

Limitations
• The dynamic masking system only works with one schema (by default

public). When you start the masking engine with start_dynamic_masking(),
you can specify the schema that will be masked with. However static
masking with anon.anonymize()and Anonymous Dumps will work fine
with multiple schemas.

• The Anonymous Dumps may not be consistent. Use Static Masking
combined with pg_dump if you can’t fence off your database from DML or
DDL commands during the export.

Performance
See docs/performances.md

10

anonymous_dumps.md
https://gitlab.com/dalibo/postgresql_anonymizer/issues
mailto:contact@dalibo.com
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/current/pgcrypto.html
https://postgresql-anonymizer.readthedocs.io/en/latest/INSTALL/
anonymous_dumps.md
anonymous_dumps.md
static_masking.md
https://postgresql-anonymizer.readthedocs.io/en/latest/performances/

Anonymous Dumps
EXPERIMENTAL : Transparent Anonymous Dumps

WARNING: This feature is under development and will not be
officially supported until version 2.0 is released. Use with care. For
a more stable solution, see the pg_dump_anon section.

To export the anonymized data from a database, follow these 2 steps:

1. Create a masked user

CREATE ROLE dump_anon LOGIN PASSWORD 'x';
ALTER ROLE dump_anon SET anon.transparent_dynamic_masking = True;
SECURITY LABEL FOR anon ON ROLE dump_anon IS 'MASKED';

NOTE: You can replace the name dump_anon by another name.

2. Grant read access to that user

GRANT USAGE ON SCHEMA public TO dump_anon;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO dump_anon;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA public TO dump_anon;

GRANT USAGE ON SCHEMA foo TO dump_anon;
GRANT SELECT ON ALL TABLES IN SCHEMA foo TO dump_anon;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA foo TO dump_anon;

NOTE: Replace foo with any other schema you have inside you database.

3. Launch pg_dump with the masked user

Now to export the anonymous data from a database named foo, let’s use
pg_dump:

pg_dump foo \
--user dump_anon \
--no-security-labels \
--extension pgcatalog.plpgsql \
--file=foo_anonymized.sql

NOTES:

• linebreaks are here for readability

• --no-security-labels will remove the masking rules from the anonymous
dump. This is really important because masked users should not have
access to the masking policy.

11

• --extension pgcatalog.plpgsql will remove the anon extension, which
useless inside the anonymized dump. This option is only available with
pg_dump 14 and later.

• --format=custom is supported

pg_dump_anon
The pg_dump_anon command support most of the options of the regular
[pg_dump] command. The PostgreSQL environment variables ($PGHOST,
PGUSER, etc.) and the .pgpass file are also supported.

Example

A user named bob can export an anonymous dump of the app database like this:

pg_dump_anon -h localhost -U bob --password --file=anonymous_dump.sql app

WARNING: The name of the database must be the last parameter.

For more details about the supported options, simply type pg_dump_anon
--help

Install With Go

go install gitlab.com/dalibo/postgresql_anonymizer/pg_dump_anon

Install With docker

If you do not want to instal Go on your production servers, you can fetch the
binary with:

docker run --rm -v "$PWD":/go/bin golang go get gitlab.com/dalibo/postgresql_anonymizer/pg_dump_anon
sudo install pg_dump_anon $(pg_config --bindir)

Limitations

• The user password is asked automatically. This means you must either
add the --password option to define it interactively or declare it in the
PGPASSWORD variable or put it inside the .pgpass file (however on
Windows,the PGPASSFILE variable must be specified explicitly)

• The plain format is the only supported format. The other formats (custom,
dir and tar) are not supported

Obsolete: pg_dump_anon.sh
Before version 1.0, pg_dump_anon was a bash script. This script was nice and
simple, however under certain conditions the backup were not consistent. See
issue #266 for more details.

12

https://www.postgresql.org/docs/current/libpq-envars.html
https://www.postgresql.org/docs/current/libpq-pgpass.html
https://www.postgresql.org/docs/current/libpq-envars.html
https://www.postgresql.org/docs/current/libpq-pgpass.html
https://www.postgresql.org/docs/current/libpq-envars.html
https://gitlab.com/dalibo/postgresql_anonymizer/-/issues/266

This script is now renamed to pg_dump_anon.sh and it is still available for
backwards compatibility. But it will be deprecated in version 2.0.

Definitions of the terms used in this project
Two main strategies are used:

• Dynamic Masking offers an altered view of the real data without modi-
fying it. Some users may only read the masked data, others may access
the authentic version.

• Permanent Destruction is the definitive action of substituting the
sensitive information with uncorrelated data. Once processed, the authentic
data cannot be retrieved.

The data can be altered with several techniques:

• Deletion or Nullification simply removes data.

• Static Substitution consistently replaces the data with a generic value.
For instance: replacing all values of a TEXT column with the value
“CONFIDENTIAL”.

• Variance is the action of “shifting” dates and numeric values. For example,
by applying a +/- 10% variance to a salary column, the dataset will remain
meaningful.

• Generalization reduces the accuracy of the data by replacing it with a
range of values. Instead of saying “Bob is 28 years old”, you can say “Bob
is between 20 and 30 years old”. This is useful for analytics because the
data remains true.

• Shuffling mixes values within the same columns. This method is open to
being reversed if the shuffling algorithm can be deciphered.

• Randomization replaces sensitive data with random-but-plausible
values. The goal is to avoid any identification from the data record while
remaining suitable for testing, data analysis and data processing.

• Partial scrambling is similar to static substitution but leaves out some
part of the data. For instance : a credit card number can be replaced by
‘40XX XXXX XXXX XX96’

• Custom rules are designed to alter data following specific needs. For
instance, randomizing simultaneously a zipcode and a city name while
keeping them coherent.

• Pseudonymization is a way to protect personal information by hiding it
using additional information. Encryption and Hashing are two examples
of pseudonymization techniques. However a pseudonymizated data is still
linked to the original data.

13

Configuration
The extension has currently a few options that be defined for the entire instance
(inside postgresql.conf or with ALTER SYSTEM).

It is also possible and often a good idea to define them at the database level like
this:

ALTER DATABASE customers SET anon.restrict_to_trusted_schemas = on;

Only superuser can change the parameters below :

anon.algorithm

Type Text
Default value ‘sha256’
Visible only to superusers

This is the hashing method used by pseudonymizing functions. Checkout the
pgcrypto documentation for the list of available options.

See anon.salt to learn why this parameter is a very sensitive information.

anon.maskschema

Type Text
Default value ‘mask’
Visible to all users

The schema (i.e. ‘namespace’) where the dynamic masking views will be stored.

anon.restrict_to_trusted_schemas

Type Boolean
Default value off
Visible to all users

By enabling this parameter, masking rules must be defined using functions
located in a limited list of namespaces. By default, only the anon schema is
trusted.

This improves security by preventing users from declaring their custom masking
filters. This also means that the schema must be explicit inside the masking
rules.

14

https://www.postgresql.org/docs/current/pgcrypto.htm

For more details, check out the Write your own masks section of the Masking
functions chapter.

anon.salt

Type Text
Default value (empty)
Visible only to superusers

This is the salt used by pseudonymizing functions. It is very important to define
a custom salt for each database like this:

ALTER DATABASE foo SET anon.salt = 'This_Is_A_Very_Secret_Salt';

If a masked user can read the salt, he/she can run a brute force attack to retrieve
the original data based on the 3 elements:

• The pseudonymized data
• The hashing algorithm (see anon.algorithm)
• The salt

The GDPR considered that the salt and the name of the hashing algorithm
should be protected with the same level of security that the data itself. This is
why you should store the salt directly within the database with ALTER DATABASE.

anon.sourceshema

Type Text
Default value ‘public’
Visible to all users

The schema (i.e. ‘namespace’) where the tables are masked by the dynamic
masking engine.

Change this value before starting dynamic masking.

ALTER DATABASE foo SET anon.sourceschema TO 'my_app';

Then reconnect so that the change takes effect and start the engine.

SELECT start_dynamic_masking();

Custom Fake Data
This extension is delivered with a small set of fake data by default. For each fake
function (fake_email(), fake_first_name()) we provide only 1000 unique
values, and they are only in English.

15

masking_functions.md#write-your-own-masks
https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/

Here’s how you can create your own set of fake data!

Alternative fake data packages
The projet is offering alternative fake datasets (currently only French). You can
download the zip file containing the dataset and load it into the extension like
this:

1. Go to https://gitlab.com/dalibo/postgresql_anonymizer/-/packages

2. Click on “data”

3. Choose your prefered zip file and download it on your server

4. Unzip the file into a folder (for example /path/to/custom_csv_files/)

5. Run SELECT anon.init('/path/to/custom_csv_files/')

Generate your own fake dataset
As an example, here’s a python script that will generate fake data for you:

https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/python/
populate.py

To produce 5000 emails in French & German, you’d call the scripts like this:

populate.py --table email --locales fr,de --lines 5000

This will output the fake data in CSV format.

Use populate.py --help for more details about the script parameters.

You can load the fake data directly into the extension like this:

TRUNCATE anon.email;

COPY anon.email
FROM
PROGRAM 'populate.py --table email --locales fr,de --lines 5000';

SELECT setval('anon.email_oid_seq', max(oid))
FROM anon.email;

CLUSTER anon.email;

IMPORTANT : This script is provided as an example, it is not
officially supported.

Load your own fake data
If you want to use your own dataset, you can import custom CSV files with :

16

https://gitlab.com/dalibo/postgresql_anonymizer/-/packages
https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/python/populate.py
https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/python/populate.py

SELECT anon.init('/path/to/custom_csv_files/')

Look at the data folder to find the format of the CSV files.

Using the PostgreSQL Faker extension
If you need more specialized fake data sets, please read the Advanced Faking
section.

Advanced Faking: masking_functions.md#advanced-faking
title: datamodel draft: false toc: true —

classDiagram

class identifier_category{
INTEGER id,
TEXT name
BOOL direct_identifier
TEXT anon_function

}

class field_name{
TEXT attname
TEXT lang
INTEGER fk_identifiers_category

}

field_name "1..N" --> "1" identifier_category

Put on your Masks !
The main idea of this extension is to offer anonymization by design.

The data masking rules should be written by the people who develop the
application because they have the best knowledge of how the data model works.
Therefore masking rules must be implemented directly inside the database
schema.

This allows to mask the data directly inside the PostgreSQL instance without
using an external tool and thus limiting the exposure and the risks of data leak.

The data masking rules are declared simply by using security labels:

CREATE TABLE player(id SERIAL, name TEXT, points INT);

INSERT INTO player VALUES
(1, 'Kareem Abdul-Jabbar', 38387),

17

https://www.postgresql.org/docs/current/sql-security-label.html

(5, 'Michael Jordan', 32292);

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.fake_last_name()';

SECURITY LABEL FOR anon ON COLUMN player.id
IS 'MASKED WITH VALUE NULL';

Escaping String literals
As you may have noticed the masking rule definitions are placed between single
quotes. Therefore if you need to use a string inside a masking rule, you need to
use C-Style escapes like this:

SECURITY LABEL FOR anon ON COLUMN player.name
IS E'MASKED WITH VALUE \'CONFIDENTIAL\'';

Or use dollar quoting which is easier to read:

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH VALUE $$CONFIDENTIAL$$';

Listing masking rules
To display all the masking rules declared in the current database, check out the
anon.pg_masking_rules:

SELECT * FROM anon.pg_masking_rules;

Debugging masking rules
When an error occurs to due a wrong masking rule, you can get more detailed
information about the problem by setting client_min_messages to DEBUG and
you will get useful details

postgres=# SET client_min_messages=DEBUG;
SET
postgres=# SELECT anon.anonymize_database();
DEBUG: Anonymize table public.bar with firstname = anon.fake_first_name()
DEBUG: Anonymize table public.foo with id = NULL
ERROR: Cannot mask a "NOT NULL" column with a NULL value
HINT: If privacy_by_design is enabled, add a default value to the column
CONTEXT: PL/pgSQL function anon.anonymize_table(regclass) line 47 at RAISE
SQL function "anonymize_database" statement 1

Removing a masking rule
You can simply erase a masking rule like this:

18

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-STRINGS-ESCAPE
https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-DOLLAR-QUOTING

SECURITY LABEL FOR anon ON COLUMN player.name IS NULL;

To remove all rules at once, you can use:

SELECT anon.remove_masks_for_all_columns();

Limitations
• The maximum length of a masking rule is 1024 characters. If you need

more, you should probably write a dedicated masking function.

• The masking rules are NOT INHERITED ! If you have split a table
into multiple partitions, you need to declare the masking rules for each
partition.

Declaring Rules with COMMENTs is deprecated.
Previous version of the extension allowed users to declare masking rules using
the COMMENT syntax.

This is not suppported any more. SECURITY LABELS are now the only way to
declare rules. — title: detection draft: false toc: true —

Searching for Identifiers
WARNING : This feature is at an early stage of development.

As we’ve seen previously, this extension makes it very easy to declare masking
rules.

However, when you create an anonymization strategy, the hard part is scanning
the database model to find which columns contains direct and indirect identifiers,
and then decide how these identifiers should be masked.

The extension provides a detect() function that will search for common identifier
names based on a dictionary. For now, 2 dictionaries are available: english
(‘en_US’) and french (‘fr_FR’). By default, the english dictionary is used:

SELECT anon.detect('en_US');
table_name | column_name | identifiers_category | direct

------------+----------------+----------------------+--------
customer | CreditCard | creditcard | t
vendor | Firstname | firstname | t
customer | firstname | firstname | t
customer | id | account_id | t

The identifier categories are based on the HIPAA classification.

19

masking_functions.md#write-your-own-masks
declare_masking_rules.md
declare_masking_rules.md
https://www.luc.edu/its/aboutus/itspoliciesguidelines/hipaainformation/the18hipaaidentifiers/

Limitations
This is an heuristic method in the sense that it may report usefull information,
but it is based on a pragmatic approach that can lead to detection mistakes,
especially:

• false positive: a column is reported as an identifier, but it is not.
• false negative: a column contains identifiers, but it is not reported

The second one is of course more problematic. In any case, you should only
consider this function as a helping tool, and acknowledge that you still need to
review the entire database model in search of hidden identifiers.

Contribute to the dictionnaries
This detection tool is based on dictionnaries of identifiers. Currently these
dictionnaries contain only a few entries.

For instance, you can see the english identifier dictionary here.

You can help us improve this feature by sending us a list of direct and indirect
identifiers you have found in your own data models ! Send us an email at
contact@dalibo.com or open an issue in the project.

Development Notes
This folders contains weird ideas, failed tests and dodgy dead ends.

We use jupyter to write these notebooks. Most of them are probably outdated.

Here’s how you can install jupyter:

$ pip3 install --upgrade pip
$ pip3 install --r docs/dev/requirements
$ export PATH=$PATH:~/.local/bin

And then launch jupyter:

$ jupyter notebook
or
$ jupyter notebook --no-browser --port 9999

Or convert the notebooks

jupyter nbconvert docs/dev/*.ipynb --to markdown

Hide sensitive data from a “masked” user
You can hide some data from a role by declaring this role as a “MASKED” one.
Other roles will still access the original data.

20

https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/data/identifier_en_US.csv
mailto:contact@dalibo.com
https://gitlab.com/dalibo/postgresql_anonymizer/issues
https://jupyter.org/
https://jupyter.org/
https://jupyter.org/

Example:

CREATE TABLE people (id TEXT, firstname TEXT, lastname TEXT, phone TEXT);
INSERT INTO people VALUES ('T1','Sarah', 'Conor','0609110911');
SELECT * FROM people;

=# SELECT * FROM people;
id | firstname | lastname | phone

----+----------+----------+------------
T1 | Sarah | Conor | 0609110911

(1 row)

Step 1 : Activate the dynamic masking engine

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;
=# SELECT anon.start_dynamic_masking();

Step 2 : Declare a masked user

=# CREATE ROLE skynet LOGIN;
=# SECURITY LABEL FOR anon ON ROLE skynet
-# IS 'MASKED';

Step 3 : Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN people.name
IS 'MASKED WITH FUNCTION anon.random_last_name()';

SECURITY LABEL FOR anon ON COLUMN people.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 4 : Connect with the masked user

=# \c - skynet
=> SELECT * FROM people;
id | firstname | lastname | phone

----+----------+-----------+------------
T1 | Sarah | Stranahan | 06******11

(1 row)

How to change the type of a masked column
When dynamic masking is activated, you are not allowed to change the datatype
of a column if there’s a mask upon it.

To modify a masked column, you need to switch of temporarily the masking
engine like this:

BEGIN;
SELECT anon.stop_dynamic_masking();
ALTER TABLE people ALTER COLUMN phone TYPE VARCHAR(255);

21

SELECT anon.start_dynamic_masking();
COMMIT;

How to drop a masked table
The dynamic masking engine will build masking views upon the masked tables.
This means that it is not possible to drop a masked table directly. You will get
an error like this :

DROP TABLE people;
psql: ERROR: cannot drop table people because other objects depend on it
DETAIL: view mask.company depends on table people

To effectively remove the table, it is necessary to add the CASCADE option, so
that the masking view will be dropped too:

DROP TABLE people CASCADE;

How to unmask a role
Simply remove the security label like this:

SECURITY LABEL FOR anon ON ROLE bob IS NULL;

To unmask all masked roles at once you can type:

SELECT anon.remove_masks_for_all_roles();

Limitations
Listing the tables

Due to how the dynamic masking engine works, when a masked role will try to
display the tables in psql with the \dt command, then psql will not show any
tables.

This is because the search_path of the masked role is rigged.

You can try adding explicit schema you want to search, for instance:

\dt *.*
\dt public.*

Only one schema

The dynamic masking system only works with one schema (by default public).
When you start the masking engine with start_dynamic_masking(), you can
specify the schema that will be masked with:

ALTER DATABASE foo SET anon.sourceschema TO 'sales';

Then open a new session to the database and type:

22

SELECT start_dynamic_masking();

However static masking with anon.anonymize()and anonymous export with
anon.dump() will work fine with multiple schemas.

Performances

Dynamic Masking is known to be very slow with some queries, especially if you
try to join 2 tables on a masked key using hashing or pseudonymization.

Graphic Tools

When you are using a masked role with a graphic interface such as DBeaver
or pgAdmin, the “data” panel may produce the following error when trying to
display the content of a masked table called foo:

SQL Error [42501]: ERROR: permission denied for table foo

This is because most of these tools will directly query the public.foo table
instead of being “redirected” by the masking engine toward the mask.foo view.

In order the view the masked data with a graphic tool, you can either:

1- Open the SQL query panel and type SELECT * FROM foo

2- Navigate to Database > Schemas > mask > Views > foo

Generalization
Reducing the accuracy of sensitive data
The idea of generalization is to replace data with a broader, less accurate value.
For instance, instead of saying “Bob is 28 years old”, you can say “Bob is between
20 and 30 years old”. This is interesting for analytics because the data remains
true while avoiding the risk of re-identification.

Generalization is a way to achieve k-anonymity.

PostgreSQL can handle generalization very easily with the RANGE data types,
a very powerful way to store and manipulate a set of values contained between a
lower and an upper bound.

Example
Here’s a basic table containing medical data:

SELECT * FROM patient;
ssn | firstname | zipcode | birth | disease

-------------+-----------+---------+------------+---------------
253-51-6170 | Alice | 47012 | 1989-12-29 | Heart Disease
091-20-0543 | Bob | 42678 | 1979-03-22 | Allergy

23

https://www.postgresql.org/docs/current/rangetypes.html

565-94-1926 | Caroline | 42678 | 1971-07-22 | Heart Disease
510-56-7882 | Eleanor | 47909 | 1989-12-15 | Acne
098-24-5548 | David | 47905 | 1997-03-04 | Flu
118-49-5228 | Jean | 47511 | 1993-09-14 | Flu
263-50-7396 | Tim | 47900 | 1981-02-25 | Heart Disease
109-99-6362 | Bernard | 47168 | 1992-01-03 | Asthma
287-17-2794 | Sophie | 42020 | 1972-07-14 | Asthma
409-28-2014 | Arnold | 47000 | 1999-11-20 | Diabetes

(10 rows)

We want the anonymized data to remain true because it will be used for statistics.
We can build a view upon this table to remove useless columns and generalize
the indirect identifiers :

CREATE MATERIALIZED VIEW generalized_patient AS
SELECT

'REDACTED'::TEXT AS firstname,
anon.generalize_int4range(zipcode,1000) AS zipcode,
anon.generalize_daterange(birth,'decade') AS birth,
disease

FROM patient;

This will give us a less accurate view of the data:

SELECT * FROM generalized_patient;
firstname | zipcode | birth | disease

-----------+---------------+-------------------------+---------------
REDACTED | [47000,48000) | [1980-01-01,1990-01-01) | Heart Disease
REDACTED | [42000,43000) | [1970-01-01,1980-01-01) | Allergy
REDACTED | [42000,43000) | [1970-01-01,1980-01-01) | Heart Disease
REDACTED | [47000,48000) | [1980-01-01,1990-01-01) | Acne
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Flu
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Flu
REDACTED | [47000,48000) | [1980-01-01,1990-01-01) | Heart Disease
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Asthma
REDACTED | [42000,43000) | [1970-01-01,1980-01-01) | Asthma
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Diabetes

(10 rows)

Generalization Functions
PostgreSQL Anonymizer provides 6 generalization functions. One for each
RANGE type. Generally these functions take the original value as the first
parameter, and a second parameter for the length of each step.

For numeric values :

• anon.generalize_int4range(42,5) returns the range [40,45)
• anon.generalize_int8range(12345,1000) returns the range [12000,13000)

24

https://www.postgresql.org/docs/current/rangetypes.html

• anon.generalize_numrange(42.32378,10) returns the range [40,50)

For time values :

• anon.generalize_tsrange('1904-11-07','year') returns ['1904-01-01','1905-01-01')
• anon.generalize_tstzrange('1904-11-07','week') returns ['1904-11-07','1904-11-14')
• anon.generalize_daterange('1904-11-07','decade') returns

[1900-01-01,1910-01-01)

The possible steps are : microseconds, milliseconds, second, minute, hour, day,
week, month, year, decade, century and millennium.

Limitations
Singling out and extreme values

“Singling Out” is the possibility to isolate an individual in a dataset by using
extreme value or exceptional values.

For example:

SELECT * FROM employees;

id | name | job | salary
------+----------------+------+--------
1578 | xkjefus3sfzd | NULL | 1498
2552 | cksnd2se5dfa | NULL | 2257
5301 | fnefckndc2xn | NULL | 45489
7114 | npodn5ltyp3d | NULL | 1821

In this table, we can see that a particular employee has a very high salary, very
far from the average salary. Therefore this person is probably the CEO of the
company.

With generalization, this is important because the size of the range (the “step”)
must be wide enough to prevent the identification of one single individual.

k-anonymity is a way to assess this risk.

Generalization is not compatible with dynamic masking

By definition, with generalization the data remains true, but the column type is
changed.

This means that the transformation is not transparent, and therefore it cannot
be used with dynamic masking.

k-anonymity
k-anonymity is an industry-standard term used to describe a property of an
anonymized dataset. The k-anonymity principle states that within a given

25

dynamic_masking.md

dataset, any anonymized individual cannot be distinguished from at least k-1
other individuals. In other words, k-anonymity might be described as a “hiding in
the crowd” guarantee. A low value of k indicates there’s a risk of re-identification
using linkage with other data sources.

You can evaluate the k-anonymity factor of a table in 2 steps :

Step 1: First define the columns that are indirect identifiers (also known as quasi
identifiers) like this:

SECURITY LABEL FOR k_anonymity ON COLUMN patient.firstname
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity ON COLUMN patient.zipcode
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity ON COLUMN patient.birth
IS 'INDIRECT IDENTIFIER';

Step 2: Once the indirect identifiers are declared :

SELECT anon.k_anonymity('generalized_patient')

The higher the value, the better. . .

References
•

How Google Anonymizes Data
title: how-to/0-masking_data_with_postgresql_anonymizer draft: false
toc: true —

Welcome to Paul’s Boutique !
This is a 4 hours workshop that demonstrates various anonymization techniques
using the PostgreSQL Anonymizer extension.

The Story
Paul’s boutique

Paul’s boutique has a lot of customers. Paul asks his friend Pierre, a Data
Scientist, to make some statistics about his clients : average age, etc. . .

Pierre wants a direct access to the database in order to write SQL queries.

26

https://en.wikipedia.org/wiki/Quasi-identifier
https://en.wikipedia.org/wiki/Quasi-identifier
https://policies.google.com/technologies/anonymization
https://labs.dalibo.com/postgresql_anonymizer

Jack is an employee of Paul. He’s in charge of relationship with the various
suppliers of the shop.

Paul respects his suppliers privacy. He needs to hide the personnal information
to Pierre, but Jack needs read and write access the real data.

Objectives
Using the simple example above, we will learn:

• How to write masking rules
• The difference between static and dynamic masking
• Implementing advanced masking techniques

About PostgreSQL Anonymizer

postgresql_anonymizer is an extension to mask or replace personally iden-
tifiable information (PII) or commercially sensitive data from a PostgreSQL
database.

The project has a declarative approach of anonymization. This means you
can declare the masking rules using the PostgreSQL Data Definition Language
(DDL) and specify your anonymization strategy inside the table definition itself.

Once the maskings rules are defined, you can access the anonymized data in 4
different ways:

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Generalization : Create “blurred views” of the original data

About GDPR
This presentation does not go into the details of the GPDR act and the general
concepts of anonymization.

For more information about it, please refer to the talk below:

• Anonymisation, Au-delà du RGPD (Video / French)
• Anonymization, Beyond GDPR (PDF / english)

27

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
declare_masking_rules.md
anonymous_dumps.md
static_masking.md
dynamic_masking.md
https://www.youtube.com/watch?v=KGSlp4UygdU
https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisation_beyond_gdpr.pdf

Requirements
In order to make this workshop, you will need:

• A Linux VM (preferably Debian 11 bullseye or Ubuntu 22.04)
• A PostgreSQL instance (preferably PostgreSQL 14)
• The PostgreSQL Anonymizer (anon) extension, installed and initialized by

a superuser
• A database named “boutique” owned by a superuser called “paul”
• A role “pierre” and a role “jack”, both allowed to connect to the database

“boutique”

A simple way to deploy a workshop environment is to install Docker Desktop
and download the image below:

docker pull registry.gitlab.com/dalibo/postgresql_anonymizer:stable

Check out the INSTALL section in the documentation to learn how to install
the extension in your PostgreSQL instance.

The Roles
We will with 3 differents users:

CREATE ROLE paul LOGIN SUPERUSER PASSWORD ’CHANGEME’;
CREATE ROLE pierre LOGIN PASSWORD ’CHANGEME’;
CREATE ROLE jack LOGIN PASSWORD ’CHANGEME’;

Unless stated otherwise, all commands must be executed with the role paul.

Setup a .pgpass file to simplify the connections !

cat > ~/.pgpass << EOL
::boutique:paul:CHANGEME
::boutique:pierre:CHANGEME
::boutique:jack:CHANGEME
EOL
chmod 0600 ~/.pgpass

The Sample database
We will work on a database called “boutique”:

28

https://www.docker.com/products/docker-desktop/
https://postgresql-anonymizer.readthedocs.io/en/stable/INSTALL
https://postgresql-anonymizer.readthedocs.io/en/stable/

CREATE DATABASE boutique OWNER paul;

We need to activate the anon library inside that database:

ALTER DATABASE boutique
SET session_preload_libraries = ’anon’;

Authors
This workshop is a collective work from Damien Clochard, Be Hai Tran, Florent
Jardin, Frédéric Yhuel.

License
This document is distributed under the PostgreSQL license.

The source is available at

https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to

Credits
• Cover photo by Alex Conchillos from Pexels (CC Zero)
• “Paul’s Boutique” is the second studio album by American hip hop group

Beastie Boys, released on July 25, 1989 by Capitol Records — title: how-
to/1-static_masking draft: false toc: true —

1 - Static Masking
Static Masking is the simplest way to hide personal information!
This idea is simply to destroy the original data or replace it with an
artificial one.

The story
Over the years, Paul has collected data about his customers and their purchases
in a simple database. He recently installed a brand new sales application and the
old database is now obsolete. He wants to save it and he would like to remove
all personal information before archiving it.

How it works
Learning Objective
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of static masking
• The concept of “Singling Out” a person

29

https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to

The “customer” table
DROP TABLE IF EXISTS customer CASCADE;

DROP TABLE IF EXISTS payout CASCADE;

CREATE TABLE customer (
id SERIAL PRIMARY KEY,
firstname TEXT,
lastname TEXT,
phone TEXT,
birth DATE,
postcode TEXT

);

Insert a few persons:

INSERT INTO customer
VALUES
(107,’Sarah’,’Conor’,’060-911-0911’, ’1965-10-10’, ’90016’),
(258,’Luke’, ’Skywalker’, NULL, ’1951-09-25’, ’90120’),
(341,’Don’, ’Draper’,’347-515-3423’, ’1926-06-01’, ’04520’)
;

SELECT * FROM customer;

The “payout” table
Sales are tracked in a simple table:

CREATE TABLE payout (
id SERIAL PRIMARY KEY,
fk_customer_id INT REFERENCES customer(id),
order_date DATE,
payment_date DATE,
amount INT

);

Let’s add some orders:

INSERT INTO payout
VALUES
(1,107,’2021-10-01’,’2021-10-01’, ’7’),
(2,258,’2021-10-02’,’2021-10-03’, ’20’),
(3,341,’2021-10-02’,’2021-10-02’, ’543’),
(4,258,’2021-10-05’,’2021-10-05’, ’12’),
(5,258,’2021-10-06’,’2021-10-06’, ’92’)
;

30

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;

SELECT anon.init();

SELECT setseed(0);

Declare the masking rules
Paul wants to hide the last name and the phone numbers of his clients. He will
use the fake_last_name() and partial() functions for that:

SECURITY LABEL FOR anon ON COLUMN customer.lastname
IS ’MASKED WITH FUNCTION anon.fake_last_name()’;

SECURITY LABEL FOR anon ON COLUMN customer.phone
IS ’MASKED WITH FUNCTION anon.partial(phone,2,$$X-XXX-XX$$,2)’;

Apply the rules permanently
SELECT anon.anonymize_table(’customer’);

SELECT id, firstname, lastname, phone
FROM customer;

This is called Static Masking because the real data has been
permanently replaced. We’ll see later how we can use dynamic
anonymization or anonymous exports.

Exercices
E101 - Mask the client’s first names

Declare a new masking rule and run the static anonymization function again.

E102 - Hide the last 3 digits of the postcode

Paul realizes that the postcode gives a clear indication of where his customers
live. However he would like to have statistics based on their "postcode area".

Add a new masking rule to replace the last 3 digits by ‘x’.

E103 - Count how many clients live in each postcode area?

Aggregate the customers based on their anonymized postcode.

31

E104 - Keep only the year of each birth date

Paul wants age-based statistic. But he also wants to hide the real birth date of
the customers.

Replace all the birth dates by January 1rst, while keeping the real year.

HINT: You can use the make_date function !

E105 - Singling out a customer

Even if the "customer" is properly anonymized, we can still isolate a given
individual based on data stored outside of the table. For instance, we can
identify the best client of Paul’s boutique with a query like this:

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id)

This is called Singling Out a person.

We need to anonymize even further by removing the link between a person and
its company. In the "order" table, this link is materialized by a foreign key on
the field "fk_company_id". However we can’t remove values from this column
or insert fake identifiers because if would break the foreign key constraint.

How can we separate the customers from their payouts while respecting the
integrity of the data?

Find a function that will shuffle the column "fk_company_id" of the "payout"
table

HINT: Check out the static masking section of the documentation

Solutions
S101

SECURITY LABEL FOR anon ON COLUMN customer.firstname
IS ’MASKED WITH FUNCTION anon.fake_first_name()’;

SELECT anon.anonymize_table(’customer’);

32

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.pnas.org/content/117/15/8344
https://postgresql-anonymizer.readthedocs.io/en/stable/static_masking#shuffling
https://postgresql-anonymizer.readthedocs.io/en/stable/

SELECT id, firstname, lastname
FROM customer;

S102

SECURITY LABEL FOR anon ON COLUMN customer.postcode
IS ’MASKED WITH FUNCTION anon.partial(postcode,2,$$xxx$$,0)’;

SELECT anon.anonymize_table(’customer’);

SELECT id, firstname, lastname, postcode
FROM customer;

S103

SELECT postcode, COUNT(id)
FROM customer
GROUP BY postcode;

S104

SECURITY LABEL FOR anon ON COLUMN customer.birth
IS ’MASKED WITH FUNCTION make_date(EXTRACT(YEAR FROM birth)::INT,1,1)’;

SELECT anon.anonymize_table(’customer’);

SELECT id, firstname, lastname, birth
FROM customer;

S105

Let’s mix up the values of the fk_customer_id:

SELECT anon.shuffle_column(’payout’,’fk_customer_id’,’id’);

Now let’s try to single out the best client again :

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id);

33

WARNING

Note that the link between a customer and its payout is now completely false.
For instance, if a customer A had 2 payouts. One of these payout may be linked
to a customer B, while the second one is linked to a customer C.

In other words, this shuffling method with respect the foreign key constraint
(aka the referential integrity) but it will break the data integrity. For some use
case, this may be a problem.

In this case, Pierre will not be able to produce a BI report with the shuffle data,
because the links between the customers and their payments are fake. — title:
how-to/2-dynamic_masking draft: false toc: true —

2- How to use Dynamic Masking
With Dynamic Masking, the database owner can hide personnal data
for some users, while other users are still allowed to read and write
the authentic data.

The Story
Paul has 2 employees:

• Jack is operating the new sales application, he needs access to the real
data. He is what the GPDR would call a "data processor".

• Pierre is a data analyst who runs statistic queries on the database. He
should not have access to any personnal data.

How it works
Objectives
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of dynamic masking
• The concept of "Linkability" of a person

The “company” table
DROP TABLE IF EXISTS supplier CASCADE;

DROP TABLE IF EXISTS company CASCADE;

CREATE TABLE company (
id SERIAL PRIMARY KEY,

34

name TEXT,
vat_id TEXT UNIQUE

);

INSERT INTO company
VALUES
(952,’Shadrach’, ’FR62684255667’),
(194,E’Johnny\’s Shoe Store’,’CHE670945644’),
(346,’Capitol Records’,’GB663829617823’)
;

SELECT * FROM company;

The "supplier" table
CREATE TABLE supplier (

id SERIAL PRIMARY KEY,
fk_company_id INT REFERENCES company(id),
contact TEXT,
phone TEXT,
job_title TEXT

);

INSERT INTO supplier
VALUES
(299,194,’Johnny Ryall’,’597-500-569’,’CEO’),
(157,346,’George Clinton’, ’131-002-530’,’Sales manager’)
;

SELECT * FROM supplier;

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;

SELECT anon.init();

SELECT setseed(0);

Dynamic Masking
Activate the masking engine

SELECT anon.start_dynamic_masking();

Masking a role

SECURITY LABEL FOR anon ON ROLE pierre IS ’MASKED’;

35

GRANT SELECT ON supplier TO pierre;
GRANT ALL ON SCHEMA public TO jack;
GRANT ALL ON ALL TABLES IN SCHEMA public TO jack;

Now connect as Pierre and try to read the supplier table:

SELECT * FROM supplier;

For the moment, there is no masking rule so Pierre can see the original data in
each table.

Masking the supplier names
Connect as Paul and define a masking rule on the supplier table:

SECURITY LABEL FOR anon ON COLUMN supplier.contact
IS ’MASKED WITH VALUE $$CONFIDENTIAL$$’;

Now connect as Pierre and try to read the supplier table again:

SELECT * FROM supplier;

Now connect as Jack and try to read the real data:

SELECT * FROM supplier;

Exercices
E201 - Guess who is the CEO of "Johnny’s Shoe Store"

Masking the supplier name is clearly not enough to provide anonymity.

Connect as Pierre and write a simple SQL query that would reindentify
some suppliers based on their job and their company.

Company names and job positions are available in many public datasets. A
simple search on Linkedin or Google, would give you the names of the top
executives of most companies..

This is called Linkability: the ability to connect multiple records
concerning the same data subject.

E202 - Anonymize the companies

We need to anonymize the "company" table, too. Even if they don’t contain
personal information, some fields can be used to infer the identity of their
employees...

36

Write 2 masking rules for the company table. The first one will
replace the "name" field with a fake name. The second will replace
the "vat_id" with a random sequence of 10 characters

HINT: Go to the documentation and look at the faking functions
and random functions!

Connect as Pierre and check that he cannot view the real company info:

E203 - Pseudonymize the company name

Because of dynamic masking, the fake values will be different everytime Pierre
tries to read the table.

Pierre would like to have always the same fake values for a given company. This
is called pseudonymization.

Write a new masking rule over the "vat_id" field by generating 10
random characters using the md5() function.

Write a new masking rule over the "name" field by using a
pseudonymizing function.

Solutions
S201

SELECT s.id, s.contact, s.job_title, c.name
FROM supplier s
JOIN company c ON s.fk_company_id = c.id;

S202

SECURITY LABEL FOR anon ON COLUMN company.name
IS ’MASKED WITH FUNCTION anon.fake_company()’;

SECURITY LABEL FOR anon ON COLUMN company.vat_id
IS ’MASKED WITH FUNCTION anon.random_string(10)’;

Now connect as Pierre and read the table again:

SELECT * FROM company;

Pierre will see different "fake data" everytime he reads the table:

SELECT * FROM company;

S203

ALTER FUNCTION anon.pseudo_company SECURITY DEFINER;

SECURITY LABEL FOR anon ON COLUMN company.name

37

https://postgresql-anonymizer.readthedocs.io/en/stable/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#faking
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#randomization
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#pseudonymization

IS ’MASKED WITH FUNCTION anon.pseudo_company(id)’;

Connect as Pierre and read the table multiple times:

SELECT * FROM company;

SELECT * FROM company;

Now the fake company name is always the same.
title: how-to/3-anonymous_dumps draft: false toc: true —

3- Anonymous Dumps
In many situation, what we want is simply to export the anonymized
data into another database (for testing or to produce statistics). This
is what pg_dump_anon does!

The Story
Paul has a website and a comment section where customers can express their
views.

He hired a web agency to develop a new design for his website. The agency
asked for a SQL export (dump) of the current website database. Paul wants to
"clean" the database export and remove any personnal information contained in
the comment section.

How it works
Learning Objective

• Extract the anonymized data from the database
• Write a custom masking function to handle a JSON field.

Load the data
DROP TABLE IF EXISTS website_comment CASCADE;

CREATE TABLE website_comment (
id SERIAL PRIMARY KEY,
message JSONB

);

curl -Ls https://dali.bo/website_comment -o /tmp/website_comment.tsv
head /tmp/website_comment.tsv

38

COPY website_comment
FROM ’/tmp/website_comment.tsv’

SELECT
message->’meta’->’name’ AS name,
message->’content’ AS content

FROM website_comment
ORDER BY id ASC

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();
SELECT setseed(0);

Masking a JSON column
The "comment" field is filled with personal information and the fact the field
does not have a standard schema makes our tasks harder.

In general, unstructured data are difficult to mask.

As we can see, web visitors can write any kind of information in the comment
section. Our best option is to remove this key entirely because there’s no way to
extract personnal data properly.

We can clean the comment column simply by removing the "content" key!

SELECT message - ARRAY[’content’]
FROM website_comment
WHERE id=1;

First let’s create a dedicated schema and declare it as trusted. This means the
"anon" extension will accept the functions located in this schema as valid masking
functions. Only a superuser should be able to add functions in this schema.

CREATE SCHEMA IF NOT EXISTS my_masks;

SECURITY LABEL FOR anon ON SCHEMA my_masks IS ’TRUSTED’;

Now we can write a function that remove the message content:

CREATE OR REPLACE FUNCTION my_masks.remove_content(j JSONB)
RETURNS JSONB

39

AS $func$
SELECT j - ARRAY[’content’]

$func$
LANGUAGE SQL
;

Let’s try it!

SELECT my_masks.remove_content(message)
FROM website_comment

And now we can use it in a masking rule:

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS ’MASKED WITH FUNCTION my_masks.remove_content(message)’;

Finally we can export an anonymous dump of the table with pg_dump_anon:

export PATH=$PATH:$(pg_config --bindir)
pg_dump_anon --help

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
export PGUSER=paul
pg_dump_anon boutique --table=website_comment > /tmp/dump.sql

Exercices
E301 - Dump the anonymized data into a new database

Create a database named "boutique_anon" and transfer the entire database into
it.

E302 - Pseudonymize the meta fields of the comments

Pierre plans to extract general information from the metadata. For instance,
he wants to calculate the number of unique visitors based on the different IP
adresses. But an IP adress is an indirect identifier, so Paul needs to anonymize
this field while maintaining the fact that some values appear multiple times.

Replace the remove_content function with a better one called clean_comment
that will:

• Remove the content key
• Replace the "name" value with a fake last name
• Replace the "ip_address" value with its MD5 signature

40

• Nullify the "email" key

HINT: Look at the jsonb_set() and jsonb_build_object() func-
tions

Solutions
S301

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
export PGUSER=paul
dropdb --if-exists boutique_anon
createdb boutique_anon --owner paul
pg_dump_anon boutique | psql --quiet boutique_anon

export PGHOST=localhost
export PGUSER=paul
psql boutique_anon -c 'SELECT COUNT(*) FROM company'

S302

CREATE OR REPLACE FUNCTION my_masks.clean_comment(message JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT

jsonb_set(
message,
ARRAY[’meta’],
jsonb_build_object(

’name’,anon.fake_last_name(),
’ip_address’, md5((message->’meta’->’ip_addr’)::TEXT),
’email’, NULL

)
) - ARRAY[’content’];

$func$;

SELECT my_masks.clean_comment(message)
FROM website_comment;

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS ’MASKED WITH FUNCTION my_masks.clean_comment(message)’;

41

4 - Generalization
The main idea of generalization is to "blur" the original data. For
example, instead of saying "Mister X was born on July 25, 1989", we
can say "Mister X was born is the 80’s". The information is still true,
but it is less precise and it can’t be used to reidentify the subject.

The Story
Paul hired dozens of employees over the years. He kept a record of their hair
color, size and medical condition.

Paul wants to extract weird stats from these details. He provides generalized
views to Pierre.

How it works
Learning Objective
In this section, we will learn:

• The difference between masking and generalization
• The concept of "K-anonymity"

The "employee" table
DROP TABLE IF EXISTS employee CASCADE;

CREATE TABLE employee (
id INT PRIMARY KEY,
full_name TEXT,
first_day DATE, last_day DATE,
height INT,
hair TEXT, eyes TEXT, size TEXT,
asthma BOOLEAN,
CHECK(hair = ANY(ARRAY[’bald’,’blond’,’dark’,’red’])),
CHECK(eyes = ANY(ARRAY[’blue’,’green’,’brown’])) ,
CHECK(size = ANY(ARRAY[’S’,’M’,’L’,’XL’,’XXL’]))

);

This is awkward and illegal.

Loading the data:

curl -Ls https://dali.bo/employee -o /tmp/employee.tsv
head -n3 /tmp/employee.tsv

42

COPY employee FROM ’/tmp/employee.tsv’

SELECT count(*) FROM employee;

SELECT full_name,first_day, hair, size, asthma
FROM employee
LIMIT 3;

Data suppression
Paul wants to find if there’s a correlation between asthma and the eyes color.

He provides the following view to Pierre.

DROP MATERIALIZED VIEW IF EXISTS v_asthma_eyes;

CREATE MATERIALIZED VIEW v_asthma_eyes AS
SELECT eyes, asthma
FROM employee;

SELECT *
FROM v_asthma_eyes
LIMIT 3;

Pierre can now write queries over this view.

SELECT
eyes,
100*COUNT(1) FILTER (WHERE asthma) / COUNT(1) AS asthma_rate

FROM v_asthma_eyes
GROUP BY eyes;

Pierre just proved that asthma is caused by green eyes.

K-Anonymity
The ’asthma’ and ’eyes’ are considered as indirect identifiers.

SECURITY LABEL FOR anon ON COLUMN v_asthma_eyes.eyes
IS ’INDIRECT IDENTIFIER’;

SECURITY LABEL FOR anon ON COLUMN v_asthma_eyes.asthma
IS ’INDIRECT IDENTIFIER’;

SELECT anon.k_anonymity(’v_asthma_eyes’);

The v_asthma_eyes has ’2-anonymity’. This means that each quasi-identifier
combination (the ’eyes-asthma’ tuples) occurs in at least 2 records for a dataset.

In other words, it means that each individual in the view cannot be distinguished
from at least 1 (k-1) other individual.

43

Range and Generalization functions
DROP MATERIALIZED VIEW IF EXISTS v_staff_per_month;
CREATE MATERIALIZED VIEW v_staff_per_month AS
SELECT

anon.generalize_daterange(first_day,’month’) AS first_day,
anon.generalize_daterange(last_day,’month’) AS last_day

FROM employee;

SELECT *
FROM v_staff_per_month
LIMIT 3;

Pierre can write a query to find how many employees were hired in november
2021.

SELECT COUNT(1)
FILTER (

WHERE make_date(2019,11,1)
BETWEEN lower(first_day)
AND COALESCE(upper(last_day),now())

)
FROM v_staff_per_month;

Declaring the indirect identifiers

Now let’s check the k-anonymity of this view by declaring which columns are
indirect identifiers.

SECURITY LABEL FOR anon ON COLUMN v_staff_per_month.first_day
IS ’INDIRECT IDENTIFIER’;

SECURITY LABEL FOR anon ON COLUMN v_staff_per_month.last_day
IS ’INDIRECT IDENTIFIER’;

SELECT anon.k_anonymity(’v_staff_per_month’);

In this case, the k factor is 1 which means that at least one unique individual
can be identified directly by his/her first and last dates.

Exercices
E401 - Simplify v_staff_per_month and decrease granularity

Generalizing dates per month is not enough. Write another view called
’v_staff_per_year’ that will generalize dates per year.

Also simplify the view by using a range of int to store the years instead of a date
range.

44

E402 - Staff progression over the years

How many people worked for Paul for each year between 2018 and 2021?

E403 - Reaching 2-anonymity for the v_staff_per_year view

What is the k-anonymity of ‘v_staff_per_month_years’?

Solutions
S401

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_year;

CREATE MATERIALIZED VIEW v_staff_per_year AS
SELECT

int4range(
extract(year from first_day)::INT,
extract(year from last_day)::INT,
’[]’

) AS period
FROM employee;

‘[]’ will include the upper bound

SELECT *
FROM v_staff_per_year
LIMIT 3;

S402

SELECT
year,
COUNT(1) FILTER (

WHERE year <@ period
)

FROM
generate_series(2018,2021) year,
v_staff_per_year

GROUP BY year
ORDER BY year ASC;

S403

SECURITY LABEL FOR anon ON COLUMN v_staff_per_year.period
IS ’INDIRECT IDENTIFIER’;

45

SELECT anon.k_anonymity(’v_staff_per_year’);

Conclusion

Clean up !
DROP EXTENSION anon CASCADE;

REASSIGN OWNED BY jack TO postgres;
REVOKE ALL ON SCHEMA public FROM jack;

REASSIGN OWNED BY paul TO postgres;

REASSIGN OWNED BY pierre TO postgres;

DROP DATABASE IF EXISTS boutique;

DROP ROLE IF EXISTS jack;
DROP ROLE IF EXISTS paul;
DROP ROLE IF EXISTS pierre;

Many Masking Strategies
• Static Masking : perfect for "once-and-for-all" anonymization

• Dynamic Masking : useful when one user is untrusted

• Anonymous Dumps : can be used in CI/CD workflows

• Generalization good for statistics and data science

Many Masking Functions
• Destruction and partial destruction
• Adding Noise
• Randomization
• Faking and Advanced Faking
• Pseudonymization
• Generic Hashing

46

https://postgresql-anonymizer.readthedocs.io/en/stable/static_masking/
https://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking/
https://postgresql-anonymizer.readthedocs.io/en/stable/anonymous_dumps/
https://postgresql-anonymizer.readthedocs.io/en/stable/generalization/

• Custom masking

RTFM -> Masking Functions

Advantages
• Masking rules written in SQL
• Masking rules stored in the database schema
• No need for an external ETL
• Works with all current versions of PostgreSQL
• Multiple strategies, multiple functions

Drawbacks
• Does not work with other databases (hence the name)
• Lack of feedback for huge tables (> 10 TB)

Also. . .
Other projects you may like

• pg_sample : extract a small dataset from a larger PostgreSQL database
• PostgreSQL Faker : An advanced faking extension based on the python

Faker lib

Help Wanted!
This is a free and open project!

labs.dalibo.com/postgresql_anonymizer

Please send us feedback on how you use it, how it fits your needs (or not), etc.

This is a 4 hour workshop!
Sources are here: gitlab.com/dalibo/postgresql_anonymizer

Download the PDF Handout

Questions?
:::

PostgreSQL Anonymizer How To
This is a 4 hours workshop that demonstrates various anonymization techniques.

47

https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/
https://github.com/mla/pg_sample
https://gitlab.com/dalibo/postgresql_faker
https://labs.dalibo.com/postgresql_anonymizer
https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to
https://dalibo.gitlab.io/postgresql_anonymizer/how-to.handout.pdf

Write
This workshop is written with jupyter-notebook. The *.ipynb files are mixing
markdown content with live SQL statements that are executed on a PostgreSQL
instance.

pip install -r requirements.txt
jupyter notebook

Build
The source files are converted to markdown and then exported to pdf, slides,
epub, etc.

make

The export files will be available in the _build folder.

Type make help for more details
title: index draft: false toc: true —

Figure 2: PostgreSQL Anonymizer

Anonymization & Data Masking for PostgreSQL
postgresql_anonymizer is an extension to mask or replace personally iden-
tifiable information (PII) or commercially sensitive data from a PostgreSQL
database.

The project has a declarative approach of anonymization. This means you
can declare the masking rules using the PostgreSQL Data Definition Language
(DDL) and specify your anonymization strategy inside the table definition itself.

Once the maskings rules are defined, you can access the anonymized data in 3
different ways :

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users

48

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
declare_masking_rules.md
anonymous_dumps.md
static_masking.md
dynamic_masking.md

In addition, various Masking Functions are available : randomization, faking,
partial scrambling, shuffling, noise or even your own custom function!

Beyond masking, it is also possible to use a fourth approach called Generalization
which is perfect for statistics and data analytics.

Finally, the extension offers a panel of detection functions that will try to guess
which columns need to be anonymized.

Example
=# SELECT * FROM people;
id | firstname | lastname | phone

----+-----------+----------+------------
T1 | Sarah | Conor | 0609110911

Step 1 : Activate the dynamic masking engine

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;
=# SELECT anon.start_dynamic_masking();

Step 2 : Declare a masked user

=# CREATE ROLE skynet LOGIN;
=# SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

Step 3 : Declare the masking rules

=# SECURITY LABEL FOR anon ON COLUMN people.lastname
-# IS 'MASKED WITH FUNCTION anon.fake_last_name()';

=# SECURITY LABEL FOR anon ON COLUMN people.phone
-# IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 4 : Connect with the masked user

=# \connect - skynet
=> SELECT * FROM people;
id | firstname | lastname | phone

----+-----------+-----------+------------
T1 | Sarah | Stranahan | 06******11

Success Stories
With PostgreSQL Anonymizer we integrate, from the design of the
database, the principle that outside production the data must be
anonymized. Thus we can reinforce the GDPR rules, without affecting
the quality of the tests during version upgrades for example.

— Thierry Aimé, Office of Architecture and Standards in the French
Public Finances Directorate General (DGFiP)

49

https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/
detection.md

Thanks to PostgreSQL Anonymizer we were able to define complex
masking rules in order to implement full pseudonymization of our
databases without losing functionality. Testing on realistic data
while guaranteeing the confidentiality of patient data is a key point
to improve the robustness of our functionalities and the quality of
our customer service.

— Julien Biaggi, Product Owner at bioMérieux

I just discovered your postgresql_anonymizer extension and used it
at my company for anonymizing our user for local development. Nice
work!

— Max Metcalfe

If this extension is useful to you, please let us know !

Support
We need your feedback and ideas ! Let us know what you think of this tool, how
it fits your needs and what features are missing.

You can either open an issue or send a message at contact@dalibo.com.

Figure 3: PostgreSQL Anonymizer

Anonymization & Data Masking for PostgreSQL
postgresql_anonymizer is an extension to mask or replace personally iden-
tifiable information (PII) or commercially sensitive data from a PostgreSQL
database.

The project relies on a declarative approach of anonymization. This means
we’re using the PostgreSQL Data Definition Language (DDL) in order to specify
the anonymization strategy inside the table definition itself.

Once the masking rules are defined, you can access the anonymized data in
different ways :

50

https://gitlab.com/dalibo/postgresql_anonymizer/issues
mailto:contact@dalibo.com
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove permanently the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Generalization : Reducing the accuracy of dates and numbers

In addition, various Masking Functions are available: randomization, faking,
partial scrambling, shuffling, noise, or even your own custom function!

Read the Concepts section for more details and NEWS.md for information about
the latest version.

Declaring The Masking Rules
The main idea of this extension is to offer anonymization by design.

The data masking rules should be written by the people who develop the
application because they have the best knowledge of how the data model works.
Therefore masking rules must be implemented directly inside the database
schema.

This allows masking the data directly inside the PostgreSQL instance without
using an external tool and thus limiting the exposure and the risks of data leak.

The data masking rules are declared simply by using security labels :

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;

=# SELECT anon.init();

=# CREATE TABLE player(id SERIAL, name TEXT, points INT);

=# SECURITY LABEL FOR anon ON COLUMN player.name
-# IS 'MASKED WITH FUNCTION anon.fake_last_name()';

=# SECURITY LABEL FOR anon ON COLUMN player.id
-# IS 'MASKED WITH VALUE NULL';

Static Masking
You can permanently remove the PII from a database with anon.anonymize_database().
This will destroy the original data. Use with care.

=# SELECT * FROM customer;
id | full_name | birth | employer | zipcode | fk_shop

-----+------------------+------------+---------------+---------+---------
911 | Chuck Norris | 1940-03-10 | Texas Rangers | 75001 | 12
112 | David Hasselhoff | 1952-07-17 | Baywatch | 90001 | 423

=# SECURITY LABEL FOR anon ON COLUMN customer.full_name

51

anonymous_dumps.md
static_masking.md
dynamic_masking.md
https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/latest/concepts/
NEWS.md
https://www.postgresql.org/docs/current/sql-security-label.html

-# IS 'MASKED WITH FUNCTION anon.fake_first_name() || '' '' || anon.fake_last_name()';

=# SECURITY LABEL FOR anon ON COLUMN customer.birth
-# IS 'MASKED WITH FUNCTION anon.random_date_between(''1920-01-01''::DATE,now())';

=# SECURITY LABEL FOR anon ON COLUMN customer.employer
-# IS 'MASKED WITH FUNCTION anon.fake_company()';

=# SECURITY LABEL FOR anon ON COLUMN customer.zipcode
-# IS 'MASKED WITH FUNCTION anon.random_zip()';

=# SELECT anon.anonymize_database();

=# SELECT * FROM customer;
id | full_name | birth | employer | zipcode | fk_shop

-----+-------------------+------------+------------------+---------+---------
911 | michel Duffus | 1970-03-24 | Body Expressions | 63824 | 12
112 | andromach Tulip | 1921-03-24 | Dot Darcy | 38199 | 423

You can also use anonymize_table() and anonymize_column() to remove data
from a subset of the database.

Dynamic Masking
You can hide the PII from a role by declaring it as a “MASKED”. Other roles
will still access the original data.

Example:

=# SELECT * FROM people;
id | firstname | lastname | phone

----+----------+----------+------------
T1 | Sarah | Conor | 0609110911

(1 row)

Step 1 : Activate the dynamic masking engine

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;
=# SELECT anon.start_dynamic_masking();

Step 2 : Declare a masked user

=# CREATE ROLE skynet LOGIN;
=# SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

Step 3 : Declare the masking rules

=# SECURITY LABEL FOR anon ON COLUMN people.lastname
-# IS 'MASKED WITH FUNCTION anon.fake_last_name()';

52

=# SECURITY LABEL FOR anon ON COLUMN people.phone
-# IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 4 : Connect with the masked user

=# \! psql peopledb -U skynet -c 'SELECT * FROM people;'
id | firstname | lastname | phone

----+----------+-----------+------------
T1 | Sarah | Stranahan | 06******11

(1 row)

Anonymous Dumps
Due to the core design of this extension, you cannot use pg_dump with a masked
user. If you want to export the entire database with the anonymized data, you
must use the pg_dump_anon command line. For example

pg_dump_anon.sh -h localhost -p 5432 -U bob bob_db > dump.sql

For more details, read the Anonymous Dumps section.

Support
We need your feedback and ideas! Let us know what you think of this tool, how
it fits your needs and what features are missing.

You can either open an issue or send a message at contact@dalibo.com.

Requirements
This extension works with all supported versions of PostgreSQL.

It requires an extension called pgcrypto which is delivered by the
postgresql-contrib package of the main linux distributions.

Install
See the INSTALL section

Limitations
• The dynamic masking system only works with one schema (by default

public). When you start the masking engine with start_dynamic_masking(),
you can specify the schema that will be masked with. However static
masking with anon.anonymize()and Anonymous Dumps will work fine
with multiple schemas.

• The Anonymous Dumps may not be consistent. Use Static Masking
combined with pg_dump if you can’t fence off your database from DML or
DDL commands during the export.

53

anonymous_dumps.md
https://gitlab.com/dalibo/postgresql_anonymizer/issues
mailto:contact@dalibo.com
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/current/pgcrypto.html
https://postgresql-anonymizer.readthedocs.io/en/latest/INSTALL/
anonymous_dumps.md
anonymous_dumps.md
static_masking.md

Performance
See docs/performances.md

INSTALL
The installation process is composed of 4 basic steps:

• Step 1: Deploy the extension into the host server
• Step 2: Load the extension in the PostgreSQL instance
• Step 3: Create the extension inside the database
• Step 4: Initialize the extension internal data

There are multiple ways to install the extension :

• Install on RedHat / CentOS
• Install with PGXN
• Install from source
• Install with docker
• Install as a black box
• Install on MacOS
• Install on Windows
• Install in the cloud
• Uninstall

In the examples below, we load the extension (step2) using a parameter called
session_preload_libraries but there are other ways to load it. See Load the
extension for more details.

If you’re having any problem, check the Troubleshooting section.

Choose your version : Stable or Latest ?
This extension is available in two versions :

• stable is recommended for production
• latest is useful if you want to test new features

Install on RedHat / CentOS
This is the recommended way to install the stable extension
This method works for RHEL/CentOS 7 and 8. If you’re running
RHEL/CentOS 6, consider upgrading or read the Install With
PGXN section.

Step 0: Add the PostgreSQL Official RPM Repo to your system. It should be
something like:

sudo yum install https://.../pgdg-redhat-repo-latest.noarch.rpm

54

https://postgresql-anonymizer.readthedocs.io/en/latest/performances/
https://yum.postgresql.org/

Step 1: Deploy

sudo yum install postgresql_anonymizer_14

(Replace 14 with the major version of your PostgreSQL instance.)

Step 2: Load the extension.

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon the current list)

Step 3: Close your session and open a new one. Create the extension.

CREATE EXTENSION anon CASCADE;

Step 4: Initialize the extension

SELECT anon.init();

All new connections to the database can now use the extension.

Install With PGXN :
This method will install the stable extension

Step 1: Deploy the extension into the host server with:

sudo apt install pgxnclient postgresql-server-dev-12
sudo pgxn install postgresql_anonymizer

(Replace 12 with the major version of your PostgreSQL instance.)

Step 2: Load the extension.

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon the current list)

Step 3: Close your session and open a new one. Create the extension.

CREATE EXTENSION anon CASCADE;

Step 4: Initialize the extension

SELECT anon.init();

All new connections to the database can now use the extension.

Additional notes:

• PGXN can also be installed with pip install pgxn
• If you have several versions of PostgreSQL installed on your system, you

may have to point to the right version with the --pg_config parameter.
See Issue #93 for more details.

• Check out the pgxn install documentation for more information.

55

https://pgxn.org/
https://gitlab.com/dalibo/postgresql_anonymizer/issues/93
https://github.com/pgxn/pgxnclient/blob/master/docs/usage.rst#pgxn-install

Install From source
This is the recommended way to install the latest extension

Step 0: First you need to install the postgresql development libraries. On most
distributions, this is available through a package called postgresql-devel or
postgresql-server-dev.

Step 1: Download the source from the official repository on Gitlab, either the
archive of the latest release, or the latest version from the master branch:

git clone https://gitlab.com/dalibo/postgresql_anonymizer.git

Step 2: Build the project like any other PostgreSQL extension:

make extension
sudo make install

NOTE: If you have multiple versions of PostgreSQL on the server, you may need
to specify which version is your target by defining the PG_CONFIG env variable
like this:

make extension PG_CONFIG=/usr/lib/postgresql/14/bin/pg_config
sudo make install PG_CONFIG=/usr/lib/postgresql/14/bin/pg_config

Step 3: Load the extension:

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon the current list)

Step 4: Close your session and open a new one. Create the extension.

CREATE EXTENSION anon CASCADE;

Step 5: Initialize the extension:

SELECT anon.init();

All new connections to the database can now use the extension.

Install with Docker
If you can’t (or don’t want to) install the PostgreSQL Anonymizer extension
directly inside your instance, then you can use the docker image :

docker pull registry.gitlab.com/dalibo/postgresql_anonymizer:stable

The image is available with 2 two tags:

• latest (default) contains the current developments
• stable is the based on the previous release

You can run the docker image like the regular postgres docker image.

For example:

56

https://gitlab.com/dalibo/postgresql_anonymizer/
https://gitlab.com/dalibo/postgresql_anonymizer/-/releases
https://hub.docker.com/_/postgres

Launch a postgres docker container

docker run -d -e POSTGRES_PASSWORD=x -p 6543:5432 registry.gitlab.com/dalibo/postgresql_anonymizer

then connect:

export PGPASSWORD=x
psql --host=localhost --port=6543 --user=postgres

The extension is already created and initialized, you can use it directly:

SELECT anon.partial_email('daamien@gmail.com');
partial_email

da******@gm******.com

(1 row)

Note: The docker image is based on the latest PostgreSQL version and we do
not plan to provide a docker image for each version of PostgreSQL. However you
can build your own image based on the version you need like this:

PG_MAJOR_VERSION=11 make docker_image

Install as a “Black Box”
You can also treat the docker image as an “anonymizing black box” by using a
specific entrypoint script called /anon.sh. You pass the original data and the
masking rules to the /anon.sh script and it will return a anonymized dump.

Here’s an example in 4 steps:

Step 1: Dump your original data (for instance dump.sql)

pg_dump --format=plain [...] my_db > dump.sql

Note this method only works with plain sql format (-Fp). You cannot use the
custom format (-Fc) and the directory format (-Fd) here.

If you want to maintain the owners and grants, you need export them with
pg_dumpall --roles-only like this:

(pg_dumpall -Fp [...] --roles-only && pg_dump -Fp [...] my_db) > dump.sql

Step 2: Write your masking rules in a separate file (for instance rules.sql)

SELECT pg_catalog.set_config('search_path', 'public', false);

CREATE EXTENSION anon CASCADE;
SELECT anon.init();

SECURITY LABEL FOR anon ON COLUMN people.lastname
IS 'MASKED WITH FUNCTION anon.fake_last_name()';

57

-- etc.

Step 3: Pass the dump and the rules through the docker image and receive an
anonymized dump !

IMG=registry.gitlab.com/dalibo/postgresql_anonymizer
ANON="docker run --rm -i $IMG /anon.sh"
cat dump.sql rules.sql | $ANON > anon_dump.sql

(this last step is written on 3 lines for clarity)

NB: You can also gather step 1 and step 3 in a single command:

(pg_dumpall --roles-only && pg_dump my_db && cat rules.sql) | $ANON > anon_dump.sql

Install on MacOS
WE DO NOT PROVIDE COMMUNITY SUPPORT FOR THIS
EXTENSION ON MACOS SYSTEMS.

However it should be possible to build the extension with the following lines:

export C_INCLUDE_PATH="$(xcrun --show-sdk-path)/usr/include"
make extension
make install

Install on Windows
WE DO NOT PROVIDE COMMUNITY SUPPORT FOR THIS
EXTENSION ON WINDOWS.

However it is possible to compile it using Visual Studio and the build.bat file.

We provide Windows binaries and install files as part of our commercial support.

Install in the cloud
This extension must be installed with superuser privileges, which is something
that most Database As A Service platforms (DBaaS), such as Amazon RDS
or Microsoft Azure SQL, do not allow. They must add the extension to their
catalog in order for you to use it.

At the time we are writing this (March 2024), the following platforms provide
PostgreSQL Anonymizer:

• Crunchy Bridge
• Google Cloud SQL
• Neon
• Postgres.ai
• Tembo

58

https://access.crunchydata.com/documentation/postgresql-anonymizer/latest/
https://cloud.google.com/sql/docs/postgres/extensions#postgresql_anonymizer
https://neon.tech/blog/easily-anonymize-production-data-in-postgres
https://postgres.ai/docs/database-lab/masking
https://tembo.io/blog/anon-dump

Please refer to their own documentation on how to activate the extension as
they might have a platform-specific install procedure.

If your favorite DBaaS provider is not present in the list above, there is not
much we can do about it. . . Although we have open discussions with some major
actors in this domain, we DO NOT have internal knowledge on wether or not
they will support it in the near future. If privacy and anonymity are a concern
to you, we encourage you to contact the customer service of these platforms and
ask them directly if they plan to add this extension to their catalog.

Addendum: Alternative way to load the extension
It is recommended to load the extension like this:

ALTER DATABASE foo SET session_preload_libraries='anon'

It has several benefits:

• First, it will be dumped by pg_dump with the-C option, so the database
dump will be self efficient.

• Second, it is propagated to a standby instance by streaming replication.
Which means you can use the anonymization functions on a read-only
clone of the database (provided the extension is installed on the standby
instance)

However, you can load the extension globally in the instance using the
shared_preload_libraries parameter :

ALTER SYSTEM SET shared_preload_libraries = 'anon'"

Then restart the PostgreSQL instance.

Addendum: Troubleshooting
If you are having difficulties, you may have missed a step during the installation
processes. Here’s a quick checklist to help you:

Check that the extension is present

First, let’s see if the extension was correctly deployed:

ls $(pg_config --sharedir)/extension/anon
ls $(pg_config --pkglibdir)/anon.so

If you get an error, the extension is probably not present on host server. Go
back to step 1.

Check that the extension is loaded

Now connect to your database and look at the configuration with:

59

SHOW local_preload_libraries;
SHOW session_preload_libraries;
SHOW shared_preload_libraries;

If you don’t see anon in any of these parameters, go back to step 2.

Check that the extension is created

Again connect to your database and type:

SELECT * FROM pg_extension WHERE extname= 'anon';

If the result is empty, the extension is not declared in your database. Go back
to step 3.

Check that the extension is initialized

Finally, look at the state of the extension:

SELECT anon.is_initialized();

If the result is not t, the extension data is not present. Go back to step 4.

Uninstall
Step 1: Remove all rules

SELECT anon.remove_masks_for_all_columns();
SELECT anon.remove_masks_for_all_roles();

THIS IS NOT MANDATORY ! It is possible to keep the masking rules
inside the database schema even if the anon extension is removed !

Step 2: Drop the extension

DROP EXTENSION anon CASCADE;

The anon extension also installs pgcrypto as a dependency, if you don’t need it,
you can remove it too:

DROP EXTENSION pgcrypto;

Step 3: Unload the extension

ALTER DATABASE foo RESET session_preload_libraries;

Step 4: Uninstall the extension

For Redhat / CentOS / Rocky:

sudo yum remove postgresql_anonymizer_14

Replace 14 by the version of your postgresql instance.
title: links draft: false toc: true —

60

https://www.postgresql.org/docs/current/pgcrypto.html

Ideas and Resources
Videos / Presentations

• French: https://www.youtube.com/watch?v=KGSlp4UygdU
• Chinese: https://www.youtube.com/watch?v=n9atI31FcSM

Similar technologies
• greenmask Anonymous dump utility written in Golang

• pganonymize A commandline tool for anonymizing PostgreSQL databases

• pgantomizer Anonymous dumps based on masking rules written in a YAML
file

• pgsodium and postgresql-anonymizer Pseudononymous Access To En-
crypted Table

• pg_diffix PostgreSQL extension implementing differential privacy (inactive)

• pg_anonymize PostgreSQL extension implementing dynamic data
anonymization

• pg-anonymizer Dump anonymized PostgreSQL database with a NodeJS
CLI

Similar Implementations
• Dynamic Data Masking With MS SQL Server

• Citus : Using search_path and views to hide columns for reporting with
Postgres

• MariaDB : Masking with maxscale

GDPR
• Ultimate Guide to Data Anonymization

• UK ICO Anonymisation Code of Practice

• L. Sweeney, Simple Demographics Often Identify People Uniquely, 2000

• How Google anonymizes data

• IAPP’s Guide To Anonymisation

Concepts
• Differential_Privacy

• K-Anonymity

61

https://github.com/GreenmaskIO/greenmask
https://github.com/rheinwerk-verlag/pganonymize
https://github.com/asgeirrr/pgantomizer
https://github.com/michelp/pgsodium/blob/michelp/anonymizer-example/example/PgSodiumAnonymizer.ipynb
https://github.com/diffix/pg_diffix
https://github.com/rjuju/pg_anonymize
https://github.com/rap2hpoutre/pg-anonymizer
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://www.citusdata.com/blog/2018/07/03/masking-columns-in-postgresql/
https://www.citusdata.com/blog/2018/07/03/masking-columns-in-postgresql/
https://mariadb.com/kb/en/mariadb-enterprise/mariadb-maxscale-21-masking/
https://piwik.pro/blog/the-ultimate-guide-to-data-anonymization-in-analytics/
https://ico.org.uk/media/1061/anonymisation-code.pdf
https://dataprivacylab.org/projects/identifiability/paper1.pdf
https://policies.google.com/technologies/anonymization?hl=en
https://iapp.org/media/pdf/resource_center/Guide_to_Anonymisation.pdf
https://en.wikipedia.org/wiki/Differential_Privacy
https://en.wikipedia.org/wiki/K-anonymity

Academic Research
• L. Sweeney. k-anonymity: a model for protecting privacy. Interna-

tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10 (5), 2002, pp. 557-570. https://epic.org/wp-content/uploads/privacy/
reidentification/Sweeney_Article.pdf

• A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in 29th IEEE Symposium on Security and Privacy, 2008,
pp. 111–125. https://www.cs.cornell.edu/~shmat/shmat_oak08netflix.pdf
— title: masking_functions draft: false toc: true —

Various Masking Strategies
The extension provides functions to implement 8 main anonymization strategies:

• Destruction
• Adding Noise
• Randomization
• Faking
• Advanced Faking
• Pseudonymization
• Generic Hashing
• Partial scrambling
• Conditional masking
• Generalization
• Using pg_catalog functions
• Write your own Masks !

Depending on your data, you may need to use different strategies on different
columns :

• For names and other ‘direct identifiers’ , Faking is often useful
• Shuffling is convenient for foreign keys
• Adding Noise is interesting for numeric values and dates
• Partial Scrambling is perfect for email address and phone numbers
• etc.

Destruction
First of all, the fastest and safest way to anonymize a data is to destroy it :-)

In many cases, the best approach to hide the content of a column is to replace
all the values with a single static value.

For instance, you can replace a entire column by the word ‘CONFIDENTIAL’
like this:

62

https://epic.org/wp-content/uploads/privacy/reidentification/Sweeney_Article.pdf
https://epic.org/wp-content/uploads/privacy/reidentification/Sweeney_Article.pdf
https://www.cs.cornell.edu/~shmat/shmat_oak08netflix.pdf
masking_functions.md#conditional-masking
masking_functions.md#using-pg_catalog-functions
masking_functions.md#write-your-own-masks
static_masking.md#shuffling

SECURITY LABEL FOR anon
ON COLUMN users.address
IS 'MASKED WITH VALUE ''CONFIDENTIAL'' ';

Adding Noise
This is also called Variance. The idea is to “shift” dates and numeric values.
For example, by applying a +/- 10% variance to a salary column, the dataset
will remain meaningful.

• anon.noise(original_value,ratio) where original_value can be an
integer, a bigint or a double precision. If the ratio is 0.33, the
return value will be the original value randomly shifted with a ratio of +/-
33%

• anon.dnoise(original_value, interval) where original_value can be
a date, a timestamp, or a time. If interval = ‘2 days’, the return value will
be the original value randomly shifted by +/- 2 days

WARNING : The noise() masking functions are vulnerable to a form of repeat
attack, especially with Dynamic Masking. A masked user can guess an original
value by requesting its masked value multiple times and then simply use the AVG()
function to get a close approximation. (See demo/noise_reduction_attack.sql
for more details). In a nutshell, these functions are best fitted for Anonymous
Dumps and Static Masking. They should be avoided when using Dynamic
Masking.

Randomization
The extension provides a large choice of functions to generate purely random
data :

Basic Random values

• anon.random_date() returns a date
• anon.random_string(n) returns a TEXT value containing n letters
• anon.random_zip() returns a 5-digit code
• anon.random_phone(p) returns a 8-digit phone with p as a prefix
• anon.random_hash(seed) returns a hash of a random string for a given

seed

Random between

To pick any value inside between two bounds:

• anon.random_date_between(d1,d2) returns a date between d1 and d2
• anon.random_int_between(i1,i2) returns an integer between i1 and i2
• anon.random_bigint_between(b1,b2) returns a bigint between b1 and

b2

63

dynamic_masking.md
anonymous_dumps.md
anonymous_dumps.md
static_masking.md
dynamic_masking.md
dynamic_masking.md

NOTE: With these functions, the lower and upper bounds are included. For
instance anon.random_int_between(1,3) returns either 1, 2 or 3.

For more advanced interval descriptions, check out the Random in Range section.

Random in Array

The random_in function returns an element a given array

For example:

• anon.random_in(ARRAY[1,2,3]) returns an int between 1 and 3
• anon.random_in(ARRAY['red','green','blue']) returns a text

Random in Enum

This is one especially useful when working with ENUM types!

• anon.random_in_enum(variable_of_an_enum_type) returns any val

CREATE TYPE card AS ENUM ('visa', 'mastercard', ‘amex’);

SELECT anon.random_in_enum(NULL::CARD);
random_in_enum

mastercard

CREATE TABLE customer (
id INT,
...
credit_card CARD

);

SECURITY LABEL FOR anon ON COLUMN customer.creditcard
IS 'MASKED WITH FUNCTION anon.random_in_enum(creditcard)'

Random in Range

RANGE types are a powerfull way to describe an interval of values, where can
define inclusive or excluvive bounds:

https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-
EXAMPLES

There a function for each subtype of range:

• anon.random_in_int4range('[5,6)') returns an INT of value 5
• anon.random_in_int8range('(6,7]') returns a BIGINT of value 7
• ‘anon.random_in_numrange(‘[0.1,0.9]’) returns a NUMERIC between 0.1

and 0.9

64

https://www.postgresql.org/docs/current/rangetypes.html
https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-EXAMPLES
https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-EXAMPLES

• anon.random_in_daterange('[2001-01-01, 2001-12-31)') returns a
date in 2001

• anon.random_in_tsrange('[2022-10-01,2022-10-31]') returns a
TIMESTAMP in october 2022

• anon.random_in_tstzrange('[2022-10-01,2022-10-31]') returns a
TIMESTAMP WITH TIMEZONE in october 2022

NOTE: It is not possible to get a random value from a RANGE with an infinite
bound. For example anon.random_in_int4range('[2022,)') returns NULL.

Faking
The idea of Faking is to replace sensitive data with random-but-plausible
values. The goal is to avoid any identification from the data record while
remaining suitable for testing, data analysis and data processing.

In order to use the faking functions, you have to init() the extension in your
database first:

SELECT anon.init();

The init() function will import a default dataset of random data (iban, names,
cities, etc.).

This dataset is in English and very small (1000 values for each
category). If you want to use localized data or load a specific
dataset, please read the Custom Fake Data section.

Once the fake data is loaded, you have access to these faking functions:

• anon.fake_address() returns a complete post address
• anon.fake_city() returns an existing city
• anon.fake_country() returns a country
• anon.fake_company() returns a generic company name
• anon.fake_email() returns a valid email address
• anon.fake_first_name() returns a generic first name
• anon.fake_iban() returns a valid IBAN
• anon.fake_last_name() returns a generic last name
• anon.fake_postcode() returns a valid zipcode
• anon.fake_siret() returns a valid SIRET

For TEXT and VARCHAR columns, you can use the classic Lorem Ipsum
generator:

• anon.lorem_ipsum() returns 5 paragraphs
• anon.lorem_ipsum(2) returns 2 paragraphs
• anon.lorem_ipsum(paragraphs := 4) returns 4 paragraphs
• anon.lorem_ipsum(words := 20) returns 20 words
• anon.lorem_ipsum(characters := 7) returns 7 characters

65

custom_fake_data.md
https://lipsum.com

• anon.lorem_ipsum(characters := anon.length(table.column))
returns the same amount of characters as the original string

Advanced Faking
Generating fake data is a complex topic. The functions provided here are limited
to basic use case. For more advanced faking methods, in particular if you are
looking for localized fake data, take a look at PostgreSQL Faker, an extension
based upon the well-known Faker python library.

This extension provides an advanced faking engine with localisation support.

For example:

CREATE SCHEMA faker;
CREATE EXTENSION faker SCHEMA faker;
SELECT faker.faker('de_DE');
SELECT faker.first_name_female();
first_name_female

Mirja

Pseudonymization
Pseudonymization is similar to Faking in the sense that it generates realistic
values. The main difference is that the pseudonymization is deterministic : the
functions always will return the same fake value based on a seed and an optional
salt.

In order to use the faking functions, you have to init() the extension in your
database first:

SELECT anon.init();

Once the fake data is loaded you have access to 10 pseudo functions:

• anon.pseudo_first_name(seed,salt) returns a generic first name
• anon.pseudo_last_name(seed,salt) returns a generic last name
• anon.pseudo_email(seed,salt) returns a valid email address
• anon.pseudo_city(seed,salt) returns an existing city
• anon.pseudo_country(seed,salt) returns a country
• anon.pseudo_company(seed,salt) returns a generic company name
• anon.pseudo_iban(seed,salt) returns a valid IBAN
• anon.pseudo_siret(seed,salt) returns a valid SIRET

The second argument (salt) is optional. You can call each function with only the
seed like this anon.pseudo_city('bob'). The salt is here to increase complexity
and avoid dictionary and brute force attacks (see warning below). If a specific
salt is not given, the value of the anon.salt GUC parameter is used instead
(see the Generic Hashing section for more details).

66

https://gitlab.com/dalibo/postgresql_faker
https://faker.readthedocs.io

The seed can be any information related to the subject. For instance, we can
consistently generate the same fake email address for a given person by using
her login as the seed :

SECURITY LABEL FOR anon
ON COLUMN users.emailaddress
IS 'MASKED WITH FUNCTION anon.pseudo_email(users.login) ';

NOTE : You may want to produce unique values using a pseudonymization
function. For instance, if you want to mask an email column that is declared as
UNIQUE. In this case, you will need to initialize the extension with a fake dataset
that is way bigger than the numbers of rows of the table. Otherwise you may
see some “collisions” happening, i.e. two different original values producing the
same pseudo value.

WARNING : Pseudonymization is often confused with anonymization but in
fact they serve 2 different purposes : pseudonymization is a way to protect
the personal information but the pseudonymized data is still “linked” to the real
data. The GDPR makes it very clear that personal data which has undergone
pseudonymization is still related to a person. (see GDPR Recital 26)

Generic hashing
In theory, hashing is not a valid anonymization technique, however in practice it
is sometimes necessary to generate a determinist hash of the original data.

For instance, when a pair of primary key / foreign key is a “natural key”, it may
contain actual information (like a customer number containing a birth date or
something similar).

Hashing such columns allows to keep referential integrity intact even for relatively
unusual source data. Therefore, the

• anon.digest(value,salt,algorithm) lets you choose a salt, and a hash
algorithm from a pre-defined list

• anon.hash(value) will return a text hash of the value using a secret salt
(defined by the anon.salt parameter) and hash algorithm (defined by
the anon.algorithm parameter). The default value of anon.algorithm
is sha256 and possible values are: md5, sha1, sha224, sha256, sha384 or
sha512. The default value of anon.salt is an empty string. You can
modify these values with:

ALTER DATABASE foo SET anon.salt TO 'xsfnjefnjsnfjsnf';
ALTER DATABASE foo SET anon.algorithm TO 'sha384';

Keep in mind that hashing is a form a Pseudonymization. This means that the
data can be “de-anonymized” using the hashed value and the masking function.
If an attacker gets access to these 2 elements, he or she could re-identify some
persons using brute force or dictionary attacks. Therefore, the salt and

67

https://www.privacy-regulation.eu/en/recital-26-GDPR.htm

the algorithm used to hash the data must be protected with the same
level of security that the original dataset.

In a nutshell, we recommend that you use the anon.hash() function rather than
anon.digest() because the salt will not appear clearly in the masking rule.

Furthermore: in practice the hash function will return a long string of character
like this:

SELECT anon.hash('bob');
hash

--
95b6accef02c5a725a8c9abf19ab5575f99ca3d9997984181e4b3f81d96cbca4d0977d694ac490350e01d0d213639909987ef52de8e44d6258d536c55e427397

For some columns, this may be too long and you may have to cut some parts the
hash in order to fit into the column. For instance, if you have a foreign key based
on a phone number and the column is a VARCHAR(12) you can transform the
data like this:

SECURITY LABEL FOR anon ON COLUMN people.phone_number
IS 'MASKED WITH FUNCTION anon.left(anon.hash(phone_number),12)';

SECURITY LABEL FOR anon ON COLUMN call_history.fk_phone_number
IS 'MASKED WITH FUNCTION anon.left(anon.hash(fk_phone_number),12)';

Of course, cutting the hash value to 12 characters will increase the risk of
“collision” (2 different values having the same fake hash). In such case, it’s up to
you to evaluate this risk.

Partial Scrambling
Partial scrambling leaves out some part of the data. For instance : a credit
card number can be replaced by ‘40XX XXXX XXXX XX96’.

2 functions are available:

• anon.partial('abcdefgh',1,'xxxx',3) will return ‘axxxxfgh’;
• anon.partial_email('daamien@gmail.com') will become ‘da******@gm******.com’

Conditional Masking
In some situations, you may want to apply a masking filter only for some value
or for a limited number of lines in the table.

For instance, if you want to “preserve NULL values”, i.e. masking only the lines
that contains a value, you can use the anon.ternary function, which works like
a CASE WHEN x THEN y ELSE z statement :

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH FUNCTION anon.ternary(score IS NULL,

68

NULL,
anon.random_int_between(0,100));

You may also want to exclude some lines within the table. Like keeping the
password of some users so that they still may be able to connect to a testing
deployment of your application:

SECURITY LABEL FOR anon ON COLUMN account.password
IS 'MASKED WITH FUNCTION anon.ternary(id > 1000, NULL::TEXT, password)';

WARNING : Conditional masking may create a partially deterministic “con-
nection” between the original data and the masked data. And that connection
can be used to retrieve personal information from the masked data. For instance,
if NULL values are preserved for a “deceased_date” column, it will reveal which
persons are still actually alive. . . In a nutshell: conditional masking may of-
ten produce a dataset that is not fully anonymized and therefore would still
technically contain personal information.

Generalization
Generalization is the principle of replacing the original value by a range containing
this value. For instance, instead of saying ‘Paul is 42 years old’, you would say
‘Paul is between 40 and 50 years old’.

The generalization functions are a data type transformation. There-
fore it is not possible to use them with the dynamic masking engine.
However they are useful to create anonymized views. See example
below.

Let’s imagine a table containing health information:

SELECT * FROM patient;
id | name | zipcode | birth | disease

----+----------+----------+------------+---------------
1 | Alice | 47678 | 1979-12-29 | Heart Disease
2 | Bob | 47678 | 1959-03-22 | Heart Disease
3 | Caroline | 47678 | 1988-07-22 | Heart Disease
4 | David | 47905 | 1997-03-04 | Flu
5 | Eleanor | 47909 | 1999-12-15 | Heart Disease
6 | Frank | 47906 | 1968-07-04 | Cancer
7 | Geri | 47605 | 1977-10-30 | Heart Disease
8 | Harry | 47673 | 1978-06-13 | Cancer
9 | Ingrid | 47607 | 1991-12-12 | Cancer

We can build a view upon this table to suppress some columns (SSN and name)
and generalize the zipcode and the birth date like this:

CREATE VIEW anonymized_patient AS
SELECT

'REDACTED' AS lastname,

69

anon.generalize_int4range(zipcode,100) AS zipcode,
anon.generalize_tsrange(birth,'decade') AS birth
disease

FROM patients;

The anonymized table now looks like that:

SELECT * FROM anonymized_patient;
lastname | zipcode | birth | disease

----------+---------------+-----------------------------+---------------
REDACTED | [47600,47700) | ["1970-01-01","1980-01-01") | Heart Disease
REDACTED | [47600,47700) | ["1950-01-01","1960-01-01") | Heart Disease
REDACTED | [47600,47700) | ["1980-01-01","1990-01-01") | Heart Disease
REDACTED | [47900,48000) | ["1990-01-01","2000-01-01") | Flu
REDACTED | [47900,48000) | ["1990-01-01","2000-01-01") | Heart Disease
REDACTED | [47900,48000) | ["1960-01-01","1970-01-01") | Cancer
REDACTED | [47600,47700) | ["1970-01-01","1980-01-01") | Heart Disease
REDACTED | [47600,47700) | ["1970-01-01","1980-01-01") | Cancer
REDACTED | [47600,47700) | ["1990-01-01","2000-01-01") | Cancer

The generalized values are still useful for statistics because they remain true,
but they are less accurate, and therefore reduce the risk of re-identification.

PostgreSQL offers several RANGE data types which are perfect for dates and
numeric values.

For numeric values, 3 functions are available:

• generalize_int4range(value, step)
• generalize_int8range(value, step)
• generalize_numrange(value, step)

. . . where value is the data that will be generalized, and step is the size of each
range.

Using pg_catalog functions
Since version 1.3, the pg_catalog schema is not trusted by default. This is a
security measure designed to prevent users from using sophisticated functions in
masking rules (such as pg_catalog.query_to_xml, pg_catalog.ts_stat or the
system administration functions) that should not be used as masking functions.

However, the extension provides bindings to some useful and safe functions from
the pg_catalog schema for your convenience:

• anon.concat(TEXT,TEXT)
• anon.concat(TEXT,TEXT, TEXT)
• anon.date_add(TIMESTAMP WITH TIME ZONE,INTERVAL)
• anon.date_part(TEXT,TIMESTAMP)
• anon.date_part(TEXT,INTERVAL)

70

https://www.postgresql.org/docs/current/rangetypes.html
https://www.postgresql.org/docs/current/functions-admin.html

• anon.date_subtract(TIMESTAMP WITH TIME ZONE, INTERVAL)
• anon.date_trunc(TEXT,TIMESTAMP)
• anon.date_trunc(TEXT,TIMESTAMP WITH TIME ZONE,TEXT)
• anon.date_trunc(TEXT,INTERVAL)
• anon.left(TEXT,INTEGER)
• anon.length(TEXT)
• anon.lower(TEXT)
• anon.make_date(INT,INT,INT)
• anon.make_time(INT,INT,DOUBLE PRECISION)
• anon.md5(TEXT)
• anon.random()
• anon.replace(TEXT,TEXT,TEXT)
• anon.regexp_replace(TEXT,TEXT,TEXT)
• anon.regexp_replace(TEXT,TEXT,TEXT,TEXT)
• anon.right(TEXT,INTEGER)
• anon.substr(TEXT,INTEGER)
• anon.substr(TEXT,INTEGER,INTEGER)
• anon.upper(TEXT)

If you need more bindings, you can either

• Write your own mapping function in a trusted schema (see below)
• Set the pg_catalog schema as TRUSTED (not recommended)
• open an issue

Write your own Masks !
You can also use your own function as a mask. The function must either be
destructive (like Partial Scrambling) or insert some randomness in the dataset
(like Faking).

Especially for complex data types, you may have to write your own function.
This will be a common use case if you have to hide certain parts of a JSON field.

For example:

CREATE TABLE company (
business_name TEXT,
info JSONB

)

The info field contains unstructured data like this:

SELECT jsonb_pretty(info) FROM company WHERE business_name = 'Soylent Green';
jsonb_pretty

{

"employees": [
{

71

"lastName": "Doe",
"firstName": "John"

},
{

"lastName": "Smith",
"firstName": "Anna"

},
{

"lastName": "Jones",
"firstName": "Peter"

}
]

}
(1 row)

Using the PostgreSQL JSON functions and operators, you can walk through the
keys and replace the sensitive values as needed.

CREATE SCHEMA custom_masks;

-- This step requires superuser privilege
SECURITY LABEL FOR anon ON SCHEMA custom_masks IS 'TRUSTED';

CREATE FUNCTION custom_masks.remove_last_name(j JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT

json_build_object(
'employees' ,
array_agg(

jsonb_set(e ,'{lastName}', to_jsonb(anon.fake_last_name()))
)

)::JSONB
FROM jsonb_array_elements(j->'employees') e
$func$;

Then check that the function is working correctly:

SELECT custom_masks.remove_last_name(info) FROM company;

When that’s ok you can declare this function as the mask of the info field:

SECURITY LABEL FOR anon ON COLUMN company.info
IS 'MASKED WITH FUNCTION custom_masks.remove_last_name(info)';

And try it out !

SELECT anonymize_table('company');

72

https://www.postgresql.org/docs/current/functions-json.html

SELECT jsonb_pretty(info) FROM company WHERE business_name = 'Soylent Green';
jsonb_pretty

{

"employees": [+
{ +

"lastName": "Prawdzik",+
"firstName": "John" +

}, +
{ +

"lastName": "Baltazor",+
"firstName": "Anna" +

}, +
{ +

"lastName": "Taylan", +
"firstName": "Peter" +

} +
] +

}
(1 row)

This is just a quick and dirty example. As you can see, manipulating a sophisti-
cated JSON structure with SQL is possible, but it can be tricky at first! There
are multiple ways of walking through the keys and updating values. You will
probably have to try different approaches, depending on your real JSON data
and the performance you want to reach.

Performances
Any anonymization process has a price as it will consume CPU time, RAM space
and probably a bunch of disk I/O. . . Here’s a a quick overview of the question
depending on what strategy you are using. . . .

In a nutshell, the anonymization performances will mainly depend on 2 important
factors:

• The size of the database
• The number of masking rules

Static Masking
Basically what static masking does it rewrite entirely the masked tables on disk.
This may be slow depending on your environment. And during this process, the
tables will be locked.

As an example: Anonymizing a 44GB database with 29 masking rules on an AWS
EC2 instance takes approximately 25 minutes (see MR 107 for more details).

73

https://gitlab.com/dalibo/postgresql_anonymizer/-/issues/107#note_861963703

In this case, the cost of anonymization is “paid” by all the users but
it is paid once and for all.

Dynamic Masking
With dynamic masking, the real data is replaced on-the-fly every time a masked
user sends a query to the database. This means that the masking users will
have slower response time than regular (unmasked) users. This is generally ok
because usually masked users are not considered as important as the regular
ones.

If you apply 3 or 4 rules to a table, the response time for the masked users
should approx. 20% to 30% slower than for the normal users.

As the masking rules are applied for each queries of the masked users, the
dynamic masking is appropriate when you have a limited number of masked
users that connect only from time to time to the database. For instance, a data
analyst connecting once a week to generate a business report.

If there are multiple masked users or if a masked user is very active, you should
probably export the masked data once-a-week on a secondary instance and let
these users connect to this secondary instance.

In this case, the cost of anonymization is “paid” only by the masked
users.

Anonymous Dumps
Some benchmarks made in march 2022 suggest that the pg_dump_anon wrapper
is twice as slow as the regular pg_dump tool.

If the backup process of your database takes 1 hour with pg_dump, then anonymiz-
ing and exporting the entire database with pg_dump_anon will probably take 2
hours.

In this case, the cost of anonymization is “paid” by the user asking
for the anonymous export. Other users of the database will not be
affected.

How to speed things up ?
Prefer MASKED WITH VALUE whenever possible

It is always faster to replace the original data with a static value instead of
calling a masking function.

Sampling

If you need to anonymize data for testing purpose, chances are that a smaller
subset of your database will be enough. In that case, you can easily speed up

74

the anonymization by downsizing the volume of data.

Checkout the Sampling section for more details.

Materialized Views

Dynamic masking is not always required! In some cases, it is more efficient to
build Materialized Views instead.

For instance:

CREATE MATERIALIZED VIEW masked_customer AS
SELECT

id,
anon.random_last_name() AS name,
anon.random_date_between('1920-01-01'::DATE,now()) AS birth,
fk_last_order,
store_id

FROM customer;

Materialized Views: https://www.postgresql.org/docs/current/static/sql-
creatematerializedview.html
title: privacy_by_default draft: false toc: true —

Privacy By Default
Disclaimer
This feature is considered in beta and not ready for production until
version 2.O is published.

Use with care.

Principle
The GDPR regulation (and other privacy laws) introduces the concept of data
protection by default. In a nutshell, it means that by default, organisations
should ensure that data is processed with the highest privacy protection so that
by default personal data isn’t made accessible to an indefinite number of persons.

By applying this principle to anonymization, we end up with the idea of privacy
by default which basically means that all columns of all tables should be masked
by default, without having to declare a masking rule for each of them.

To enable this feature, simply set the option anon.privacy_by_default to on.

75

https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en

Example
Imagine a database named foo with a basic table containing HTTP logs:

SELECT * FROM access_logs LIMIT 1;
date_open | ip_addr | url | browser_agent

---------------------+-----------------+------------+------------------------------
2009-01-08 00:00:00 | 192.168.100.128 | /home.html | Mozilla/5.0 (Windows; en_US)

(1 row)

Now let’s activate privacy by default:

ALTER DATABASE foo SET anon.privacy_by_default = True;

The setting will be applied for the next sessions and we can now anonymize the
table without writing any masking rule.

SELECT anon.anonymize_database();
anonymize_database

t

SELECT * FROM access_logs LIMIT 1;
date_open | ip_addr | url | browser_agent

-----------+---------+-----+---------------
| | | unkown

Unmasking columns
As we can see, when the anon.privacy_by_default is defined all the values
will be replaced by the column’s default value or NULL. The entire dataset is
destroyed.

Now instead of writing rules to mask the sensible columns, we will write rules to
unmask the ones we want to allow.

For instance, let’s say that we want to keep the authentic value of the url field,
we can simply “unmask” the column like this:

SECURITY LABEL FOR anon ON COLUMN access_logs.url
IS 'NOT MASKED';

This can also be achieved by a masking rule that will replace the value with
itself:

SECURITY LABEL FOR anon ON COLUMN access_logs.url
IS 'MASKED WITH VALUE url';

Now we’d like to unmask the date_open field in the anonymized dataset but we
need to generalize the dates to keep only the year:

76

SECURITY LABEL FOR anon ON COLUMN access_logs.date_open
IS 'MASKED WITH FUNCTION make_date(EXTRACT(year FROM date_open)::INT,1,1)';

Caveat: Add a DEFAULT to the NOT NULL columns
It is a bit ironic that the anon.privacy_by_default parameter is not enabled
by default. This reason is simple: activating this option may or may not
lead to contraint violations depending on the columns constraints placed in the
database model.

Let’s say we want to add a NOT NULL constraint on the date_open column:

ALTER TABLE public.access_logs
ALTER COLUMN date_open
SET NOT NULL;

Now if we try to anonymize the table, we get the following violation:

SELECT anon.anonymize_table('public.access_logs') as test4;
ERROR: Cannot mask a "NOT NULL" column with a NULL value
HINT: If privacy_by_design is enabled, add a default value to the column

The solution here is simply to define a default value and this value will be used
for the privacy_by_default mechanism.

ALTER TABLE public.access_logs
ALTER COLUMN date_open
SET DEFAULT now();

Other constraints (foreign keys, UNIQUE, CHECK, etc.) should work fine
without a DEFAULT value.

Sampling
Principle
The GDPR introduces the concept of principle of “[data minimisation]” which
means that the collection of personal information must be limited to what is
directly relevant and necessary to accomplish a specified purpose.

If you’re writing an anonymization policy for a dataset, chances are that you
don’t need to anonymize the entire database. In most cases, extract a subset
of the table is sufficient. For example, if you want to export an anonymous
dumps of the data for testing purpose in a CI workflow, extracting and masking
only 10% of the database may be enough.

Furthermore, anonymizing a smaller portion (i.e a “sample”) of the dataset will
be way faster.

77

Example
Let’s say you have a huge amounts of http logs stored in a table. You want to
remove the ip addresses and extract only 10% of the table:

CREATE TABLE http_logs (
id integer NOT NULL,
date_opened DATE,
ip_address INET,
url TEXT

);

SECURITY LABEL FOR anon ON COLUMN http_logs.ip_address
IS 'MASKED WITH VALUE NULL';

SECURITY LABEL FOR anon ON TABLE http_logs
IS 'TABLESAMPLE BERNOULLI(10)';

Now you can either do static masking, dynamic masking or an anonymous dumps.
The mask data will represent a 10% portion of the real data.

Syntax
The syntax is exactly the same as the TABLESAMPLE clause which can be
placed at the end of a SELECT statement.

You can also defined a sampling ratio at the database-level and it will be applied
to all the tables that don’t have their own TABLESAMPLE rule.

SECURITY LABEL FOR anon ON DATABASE app
IS 'TABLESAMPLE SYSTEM(33)';

Maintaining Referential Integrity
NOTE :The sampling method describe above WILL FAIL if you
have foreign keys pointing at the table you want to sample.

Extracting a subset of a database while maintaining referential integrity is tricky
and it is not supported by this extension.

If you really need to keep referential integrity in an anonymized dataset, you
need to do it in 2 steps:

• First, extract a sample with pg_sample
• Second, anonymize that sample

There may be other sampling tools for PostgreSQL but pg_sample is probably
the best one.

78

https://wiki.postgresql.org/wiki/TABLESAMPLE_Implementation
https://www.postgresql.org/docs/current/sql-select.html
https://github.com/mla/pg_sample
https://github.com/mla/pg_sample

Security
Permissions
Here’s an overview of what users can do depending on the priviledge they have:

Action Superuser Owner Masked Role
Create the extension Yes
Drop the extension Yes
Init the extension Yes
Reset the extension Yes
Configure the extension Yes
Put a mask upon a role Yes
Start dynamic masking Yes
Stop dynamic masking Yes
Create a table Yes Yes
Declare a masking rule Yes Yes
Insert, delete, update a row Yes Yes
Static Masking Yes Yes
Select the real data Yes Yes
Regular Dump Yes Yes
Anonymous Dump Yes Yes
Use the masking functions Yes Yes Yes
Select the masked data Yes Yes Yes
View the masking rules Yes Yes Yes

Limit masking filters only to trusted schemas
By default, the database owner can only write masking rules with functions that
are located in the trusted schemas which are controlled by the superusers.

Out of the box, only the anon schema is declared as trusted. This means that
by defautt the functions from the pg_catalog cannot be used in masking rules.

For more details, read the Using pg_catalog functions section.

Security context of the functions
Most of the functions of this extension are declared with the SECURITY INVOKER
tag. This means that these functions are executed with the privileges of the user
that calls them. This is an important restriction.

This extension contains another few functions declared with the tag SECURITY
DEFINER.

79

masking_functions.md#using-pg_catalog-functions

Permanently remove sensitive data
Sometimes, it is useful to transform directly the original dataset. You can do
that with different methods:

• Applying masking rules
• Shuffling a column
• Adding noise to a column

These methods will destroy the original data. Use with care.

Applying masking rules
You can permanently apply the masking rules of a database with
anon.anonymize_database().

Let’s use a basic example :

CREATE TABLE customer(
id SERIAL,
full_name TEXT,
birth DATE,
employer TEXT,
zipcode TEXT,
fk_shop INTEGER

);

INSERT INTO customer
VALUES
(911,'Chuck Norris','1940-03-10','Texas Rangers', '75001',12),
(312,'David Hasselhoff','1952-07-17','Baywatch', '90001',423)
;

SELECT * FROM customer;

id | full_name | birth | employer | zipcode | fk_shop
-----+------------------+------------+---------------+---------+---------
911 | Chuck Norris | 1940-03-10 | Texas Rangers | 75001 | 12
112 | David Hasselhoff | 1952-07-17 | Baywatch | 90001 | 423

Step 1: Load the extension :

CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();

Step 2: Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN customer.full_name
IS 'MASKED WITH FUNCTION anon.fake_first_name() || '' '' || anon.fake_last_name()';

80

declare_masking_rules.md

SECURITY LABEL FOR anon ON COLUMN customer.employer
IS 'MASKED WITH FUNCTION anon.fake_company()';

SECURITY LABEL FOR anon ON COLUMN customer.zipcode
IS 'MASKED WITH FUNCTION anon.random_zip()';

Step 3: Replace authentic data in the masked columns :

SELECT anon.anonymize_database();

SELECT * FROM customer;

id | full_name | birth | employer | zipcode | fk_shop
-----+-------------+------------+---------------------+---------+---------
911 | jesse Kosel | 1940-03-10 | Marigold Properties | 62172 | 12
312 | leolin Bose | 1952-07-17 | Inventure | 20026 | 423

You can also use anonymize_table() and anonymize_column() to remove data
from a subset of the database :

SELECT anon.anonymize_table('customer');
SELECT anon.anonymize_column('customer','zipcode');

WARNING : Static masking is a slow process. The principle of static
masking is to update all lines of all tables containing at least one masked
column. This basically means that PostgreSQL will rewrite all the data on disk.
Depending on the database size, the hardware and the instance config, it may
be faster to export the anonymized data (See Anonymous Dumps) and reload
it into the database.

Shuffling
Shuffling mixes values within the same columns.

• anon.shuffle_column(shuffle_table, shuffle_column, primary_key)
will rearrange all values in a given column. You need to provide a primary
key of the table.

This is useful for foreign keys because referential integrity will be kept.

IMPORTANT: shuffle_column() is not a masking function because it works
“verticaly” : it will modify all the values of a column at once.

Adding noise to a column
There are also some functions that can add noise on an entire column:

• anon.add_noise_on_numeric_column(table, column, ratio) if ratio
= 0.33, all values of the column will be randomly shifted with a ratio of

81

anonymous_dumps.md
masking_functions.md

+/- 33%

• anon.add_noise_on_datetime_column(table, column, interval) if
interval = ‘2 days’, all values of the column will be randomly shifted by
+/- 2 days

IMPORTANT : These noise functions are vulnerable to a form of repeat attack.
See demo/noise_reduction_attack.sql for more details.

Upgrade
Currently there’s no way to upgrade easily from a version to another. The
operation ALTER EXTENSION ... UPDATE ... is not supported.

You need to drop and recreate the extension after every upgrade.

Upgrade to version 1.3 and further versions
Starting with version 1.3, the extension enforces a series of security checks and
it will refuse some masking rules that were previously accepted.

Here’s a few example of the changes you may need to make to your masking
policy

Using custom masking functions

If you have developed custom masking functions, you now need to place them
inside a dedicated schema and declare that this schema is trusted

For example, let’s say you have a function remove_phone that delete phone
numbers from a JSONB field

First create a schema:

CREATE SCHEMA IF NOT EXISTS my_masks;

Then a superuser must declare it as trusted:

SECURITY LABEL FOR anon ON SCHEMA my_masks IS 'TRUSTED';

Now you can write the function:

CREATE OR REPLACE FUNCTION my_masks.remove_phone(j JSONB)
RETURNS JSONB
AS $$

SELECT j - ARRAY['phone']
$$
LANGUAGE SQL ;

And finally use it in a masking rule:

82

SECURITY LABEL FOR anon ON COLUMN player.personal_details
IS 'MASKED WITH FUNCTION my_masks.remove_phone(personal_details)';

See the Write your own Masks ! section of the doc for more details. . .

Using pg_catalog functions

With version 1.3 and later, the pg_catalog schema is not longer trusted because
it contains system administration functions that should not be used as masking
functions.

However the extension provides bindings to some useful and safe commodity
functions from the pg_catalog schema.

For instance, the following rule

SECURITY LABEL FOR anon ON COLUMN employee.phone
IS 'MASKED WITH FUNCTION md5(phone)'

SECURITY LABEL FOR anon ON COLUMN employee.phone
IS 'MASKED WITH FUNCTION anon.md5(phone)'

See the Using pg_catalog functions section of the doc for more details. . .

Operators

The MASKED WITH FUNCTION syntax is now more strict and in particular opera-
tors are not allowed as a masking value.

For instance, until version 1.3

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.fake_first_name() || anon.fake_last_name()';

Now operators must be replaced by an actual function. For instance, the ||
operator would be replaced by anon.concat

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.concat(anon.fake_first_name(),anon.fake_last_name())';

Conditional masking rules

The MASKED WITH VALUE CASE WHEN ... was never an intended feature but it
work by accident.

Until version 1.3, the syntax below was accepted:

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH VALUE CASE WHEN score IS NULL

THEN NULL
ELSE anon.random_int_between(0,100)
END';

83

masking_functions.md#write-your-own-masks
https://www.postgresql.org/docs/current/functions-admin.html
masking_functions.md#Using-pg_catalog-functions

The CASE syntax is now rejected and can be replaced by the anon.ternary()
function:

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH FUNCTION anon.ternary(score IS NULL,

NULL,
anon.random_int_between(0,100)

)';

See the Conditional Masking section of the doc for more details. . .

84

masking_functions.md#conditional-masking

	Anonymization & Data Masking for PostgreSQL
	Declaring The Masking Rules
	Static Masking
	Dynamic Masking
	Anonymous Dumps
	Support
	Requirements
	Install
	Limitations
	Performance

	Anonymous Dumps
	EXPERIMENTAL : Transparent Anonymous Dumps
	1. Create a masked user
	2. Grant read access to that user
	3. Launch pg_dump with the masked user

	pg_dump_anon
	Example
	Install With Go
	Install With docker
	Limitations

	Obsolete: pg_dump_anon.sh

	Definitions of the terms used in this project
	Configuration
	anon.algorithm
	anon.maskschema
	anon.restrict_to_trusted_schemas
	anon.salt
	anon.sourceshema

	Custom Fake Data
	Alternative fake data packages
	Generate your own fake dataset
	Load your own fake data
	Using the PostgreSQL Faker extension
	Advanced Faking: masking_functions.md#advanced-faking

	Put on your Masks !
	Escaping String literals
	Listing masking rules
	Debugging masking rules
	Removing a masking rule
	Limitations
	Declaring Rules with COMMENTs is deprecated.

	Searching for Identifiers
	Limitations
	Contribute to the dictionnaries

	Development Notes
	Hide sensitive data from a “masked” user
	How to change the type of a masked column
	How to drop a masked table
	How to unmask a role
	Limitations
	Listing the tables
	Only one schema
	Performances
	Graphic Tools

	Generalization
	Reducing the accuracy of sensitive data
	Example
	Generalization Functions
	Limitations
	Singling out and extreme values
	Generalization is not compatible with dynamic masking

	k-anonymity
	References
	How Google Anonymizes Data

	Welcome to Paul’s Boutique !
	The Story
	Objectives
	About PostgreSQL Anonymizer
	About GDPR
	Requirements
	The Roles
	The Sample database
	Authors
	License
	Credits

	1 - Static Masking
	The story
	How it works
	Learning Objective
	The “customer” table
	The “payout” table
	Activate the extension
	Declare the masking rules
	Apply the rules permanently
	Exercices
	E101 - Mask the client’s first names
	E102 - Hide the last 3 digits of the postcode
	E103 - Count how many clients live in each postcode area?
	E104 - Keep only the year of each birth date
	E105 - Singling out a customer

	Solutions
	S101
	S102
	S103
	S104
	S105

	2- How to use Dynamic Masking
	The Story
	How it works
	Objectives
	The “company” table
	The "supplier" table
	Activate the extension
	Dynamic Masking
	Activate the masking engine
	Masking a role

	Masking the supplier names
	Exercices
	E201 - Guess who is the CEO of "Johnny's Shoe Store"
	E202 - Anonymize the companies
	E203 - Pseudonymize the company name

	Solutions
	S201
	S202
	S203

	Now the fake company name is always the same.

	3- Anonymous Dumps
	The Story
	How it works
	Learning Objective
	Load the data
	Activate the extension
	Masking a JSON column
	Exercices
	E301 - Dump the anonymized data into a new database
	E302 - Pseudonymize the meta fields of the comments

	Solutions
	S301
	S302

	4 - Generalization
	The Story
	How it works
	Learning Objective
	The "employee" table
	Data suppression
	K-Anonymity
	Range and Generalization functions
	Declaring the indirect identifiers

	Exercices
	E401 - Simplify v_staff_per_month and decrease granularity
	E402 - Staff progression over the years
	E403 - Reaching 2-anonymity for the v_staff_per_year view

	Solutions
	S401
	S402
	S403

	Conclusion
	Clean up !
	Many Masking Strategies
	Many Masking Functions
	Advantages
	Drawbacks
	Also…
	Help Wanted!
	This is a 4 hour workshop!
	Questions?

	PostgreSQL Anonymizer How To
	Write
	Build
	Type make help for more details

	Anonymization & Data Masking for PostgreSQL
	Example
	Success Stories
	Support

	Anonymization & Data Masking for PostgreSQL
	Declaring The Masking Rules
	Static Masking
	Dynamic Masking
	Anonymous Dumps
	Support
	Requirements
	Install
	Limitations
	Performance

	INSTALL
	Choose your version : Stable or Latest ?
	Install on RedHat / CentOS
	Install With PGXN :
	Install From source
	Install with Docker
	Install as a “Black Box”
	Install on MacOS
	Install on Windows
	Install in the cloud
	Addendum: Alternative way to load the extension
	Addendum: Troubleshooting
	Check that the extension is present
	Check that the extension is loaded
	Check that the extension is created
	Check that the extension is initialized

	Uninstall
	Replace 14 by the version of your postgresql instance.

	Ideas and Resources
	Videos / Presentations
	Similar technologies
	Similar Implementations
	GDPR
	Concepts
	Academic Research

	Various Masking Strategies
	Destruction
	Adding Noise
	Randomization
	Basic Random values
	Random between
	Random in Array
	Random in Enum
	Random in Range

	Faking
	Advanced Faking
	Pseudonymization
	Generic hashing
	Partial Scrambling
	Conditional Masking
	Generalization
	Using pg_catalog functions
	Write your own Masks !

	Performances
	Static Masking
	Dynamic Masking
	Anonymous Dumps
	How to speed things up ?
	Prefer MASKED WITH VALUE whenever possible
	Sampling
	Materialized Views

	Materialized Views: https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html

	Privacy By Default
	Disclaimer
	Principle
	Example
	Unmasking columns
	Caveat: Add a DEFAULT to the NOT NULL columns

	Sampling
	Principle
	Example
	Syntax
	Maintaining Referential Integrity

	Security
	Permissions
	Limit masking filters only to trusted schemas
	Security context of the functions

	Permanently remove sensitive data
	Applying masking rules
	Shuffling
	Adding noise to a column

	Upgrade
	Upgrade to version 1.3 and further versions
	Using custom masking functions
	Using pg_catalog functions
	Operators
	Conditional masking rules

