
UPGRADE
A practical guide

DALIBO

Feb. 2023

Contents
Anonymization & Data Masking for Postgres 12

Quick Start . 13
Success Stories . 14
Support . 14
open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/issues 14

Backup Masking (aka Anonymous Dumps) 15
Transparent Anonymous Dumps . 15

1. Create a masked user . 15
2. Grant read access to that masked user 15
3. Launch pg_dump with the masked user 15

Anonymizing an SQL file . 16
Masking primary keys with Backup Masking 17
DEPRECATED : pg_dump_anon.sh and pg_dump_anon 18

Definitions of the terms used in this project 18

Configuration 19
anon.algorithm . 19
anon.maskschema . 19
anon.restrict_to_trusted_schemas . 19
anon.salt . 20
anon.sourceschema . 20

Custom Fake Data 21
Alternative fake data packages . 21
Generate your own fake dataset . 21
Load your own fake data . 22
Using the PostgreSQL Faker extension 22
Advanced Faking: masking_functions.md#advanced-faking 22

1

Put on your Masks ! 22
Principles . 23
Escaping String literals . 23
Listing masking rules . 24
Debugging masking rules . 24
Removing a masking rule . 24
Multiple Masking Policies . 24
Limitations . 25

Searching for Identifiers 25
Limitations . 26
Contribute to the dictionaries . 26
open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/-

/issues . 26

Development Notes 27

Hide sensitive data from a “masked” user 27
Principles . 28
Limitations . 28
How to unmask a role . 28
Legacy Dynamic Masking . 28
Legacy Dynamic Masking: legacy_dynamic_masking.md 29

Welcome to Paul’s Boutique ! 29
The Story . 29
Objectives . 29
About PostgreSQL Anonymizer . 29
About GDPR . 30
Requirements . 30
The Roles . 31
The Sample database . 31
Authors . 31
License . 31
Credits . 32

1 - Static Masking 32
The story . 32
How it works . 32
Learning Objective . 32
The “customer” table . 32
The “payout” table . 33
Activate the extension . 33
Declare the masking rules . 33
Apply the rules permanently . 34
Exercises . 34

2

E101 - Mask the client’s first names 34
E102 - Hide the last 3 digits of the postcode 34
E103 - Count how many clients live in each postcode area? . . . 34
E104 - Keep only the year of each birth date 34
E105 - Singling out a customer 34

Solutions . 35
S101 . 35
S102 . 35
S103 . 35
S104 . 36
S105 . 36

2- How to use Dynamic Masking 37
The Story . 37
How it works . 37
Objectives . 37
The “company” table . 37
The ”supplier” table . 37
Activate the extension . 38
Dynamic Masking . 38

Activate the masking engine . 38
Masking a role . 38

Masking the supplier names . 38
Exercises . 39

E201 - Guess who is the CEO of ”Johnny’s Shoe Store” 39
E202 - Anonymize the companies 39
E203 - Pseudonymize the company name 39

Solutions . 40
S201 . 40
S202 . 40
S203 . 40

Now the fake company name is always the same. 40

3- Anonymous Dumps 41
The Story . 41
How it works . 41
Learning Objective . 41
Load the data . 41
Activate the extension . 42
Masking a JSON column . 42
Exercises . 43

E301 - Dump the anonymized data into a new database 43
E302 - Pseudonymize the meta fields of the comments 43

Solutions . 43
S301 . 44
S302 . 44

3

4 - Generalization 44
The Story . 45
How it works . 45
Learning Objective . 45
The ”employee” table . 45
Data suppression . 46
K-Anonymity . 46
Range and Generalization functions 46

Declaring the indirect identifiers 47
Exercises . 47

E401 - Simplify v_staff_per_month and decrease granularity . . 47
E402 - Staff progression over the years 47
E403 - Reaching 2-anonymity for the v_staff_per_year view . . 48

Solutions . 48
S401 . 48
S402 . 48
S403 . 48

Conclusion 49
Clean up ! . 49
Many Masking Strategies . 49
Many Masking Functions . 49
Advantages . 50
Drawbacks . 50
Also… . 50
Help Wanted! . 50
This is a 4 hour workshop! . 50
Questions? . 50

PostgreSQL Anonymizer How To 50
Write . 51
Build . 51
Type make help for more details . 51

Anonymization & Data Masking for Postgres 51
Quick Start . 52
Success Stories . 53
Support . 54

Anonymization & Data Masking for Postgres 54
Quick Start . 55
Success Stories . 56
Support . 57
open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/issues 57

INSTALL 57

4

Choose your version : Stable or Latest ? 57
Install on RedHat / Rocky Linux / Alma Linux 57
Install on Debian / Ubuntu . 58
Install with Ansible . 59
Install With PGXN . 59
Install From Source . 60
Install with Docker . 60
Install as a “Black Box” . 61
Install on MacOS . 61
Install on Windows . 61
Install in the cloud . 62
Addendum: Alternative way to load the extension 62
Addendum: Troubleshooting . 63

Check that the extension is present 63
Check that the extension is loaded 63
Check that the extension is created 63
Check that the extension is initialized 64

Uninstall . 64
Compatibility Guide . 64

Hide sensitive data from a “masked” user using legacy dynamic
masking 65
How to change the type of a masked column 66
How to drop a masked table . 66
How to unmask a role . 66
Limitations . 67

Listing the tables . 67
Only one schema . 67
Performances . 67
Graphic Tools . 67

2- Navigate to Database > Schemas > mask > Views > foo 67

Ideas and Resources 68
Videos / Presentations . 68
Similar technologies . 68
Similar Implementations . 68
GDPR . 68
Concepts . 69
Academic Research . 69

Masking Data Wrappers 69
Example . 69

Various Masking Strategies 70
Destruction . 71
Adding Noise . 71

5

Randomization . 72
Basic Random values . 72
Random between . 72
Random in Array . 72
Random in Enum . 72
Random in Range . 73
Random Sequence ID . 73

Faking . 74
Advanced Faking . 74
Pseudonymization . 77
Generic hashing . 78
Partial Scrambling . 80
Conditional Masking . 80
Generalization . 81
Using pg_catalog functions . 82
Image bluring . 82
Write your own Masks ! . 83

Masking Views 85
Generalization . 85
Example . 86
Generalization Functions . 87
Limitations . 87

Singling out and extreme values 87
Generalization is not compatible with dynamic masking 88

k-anonymity . 88
References . 88
How Google Anonymizes Data . 89

Performances 89
Static Masking . 89
Dynamic Masking . 89
Anonymous Dumps . 90
How to speed things up ? . 90

Prefer MASKED WITH VALUE whenever possible 90
Sampling . 90
Materialized Views . 90

Materialized Views: https://www.postgresql.org/docs/current/static/sql-
creatematerializedview.html . 91

Privacy By Default 91
Principle . 91
Example . 91
Unmasking columns . 92
Caveat: Add a DEFAULT to the NOT NULL columns 92

6

Anonymous Replica 93
WARNING! DO NOT USE IN PRODUCTION 93
Principle . 93
Preamble: Learn about logical replication ! 93
Quick Setup . 93

Example . 93
A- On the publisher database . 94
B- On the subscriber database 94

Changing the masking rules . 95
Anonymized Standby . 95
Security . 95
Limitations . 96
But I want to anonymize a primary key! 96
Pseudonymization Is Not Anonymization: masking_functions.md#pseudonymization 97

Welcome to Paul’s Boutique ! 97
The Story . 97
Objectives . 97
About GDPR . 97
Requirements . 97
The Roles . 98
The Sample database . 99

1- Static Masking 99
Requirements . 99
The story . 99
How it works . 99
Learning Objective . 99
The “customer” table . 99
The “payout” table . 100
Activate the extension . 100
Declare the masking rules . 100
Apply the rules permanently . 101
Exercises . 101

E101 - Mask the client’s first names 101
E102 - Hide the last 3 digits of the postcode 101
E103 - Count how many clients live in each postcode area? . . . 101
E104 - Keep only the year of each birth date 101
E105 - Singling out a customer 101

Solutions . 102
S101 . 102
S102 . 102
S103 . 103
S104 . 103
S105 . 103

7

2- Dynamic Masking 104
Requirements . 104
The Story . 104
How it works . 104
Objectives . 104
The company table . 104
The supplier table . 105
Activate the extension . 105
Dynamic Masking . 105

Activate the masking engine . 105
Masking a role . 105

Masking the supplier names . 106
Exercises . 106

E201 - Guess who is the CEO of “Johnny’s Shoe Store” 106
E202 - Anonymize the companies 106
E203 - Pseudonymize the company name 107

Solutions . 107
S201 . 107
S202 . 107
S203 . 108

Now the fake company name is always the same. 108

3- Anonymous Dumps 108
The Story . 108
How it works . 108
Learning Objective . 108
Load the data . 108
Activate the extension . 109
Masking a JSON column . 109
Exercises . 111

E301 - Dump the anonymized data into a new database 111
E302 - Remove the email address 111
E303 - Pseudonymize the IP address 111

Solutions . 111
S301 . 111
S302 . 111
S303 . 112

4- Generalization 112
The Story . 112
How it works . 113
Learning Objective . 113
The employee table . 113
Data suppression . 113
K-Anonymity . 114
Range and Generalization functions 114

8

Declaring the indirect identifiers 115
Exercises . 115

E401 - Simplify v_staff_per_month and decrease granularity . . 115
E402 - Staff progression over the years 116
E403 - Reaching 2-anonymity for the v_staff_per_year view . . 116

Solutions . 116
S401 . 116
S402 . 116
S403 . 117

Conclusion 117
Clean up ! . 117
Also… . 117
Help Wanted! . 117

Sampling 117
Principle . 117
Sampling with TABLESAMPLE . 118
Sampling with RLS policies . 119
Maintaining Referential Integrity . 119
Truncate Tables for the masked users 120

Security 120
Permissions . 120
Limit masking filters only to trusted schemas 121
Security context of the functions . 121

Selective Masking (BETA) 121
Principle . 121
Example . 122
Sampling: Sampling.md . 122

Permanently remove sensitive data 123
Applying masking rules . 123
Disabling Static Masking . 124
Static Masking and Multiple Masking Policies 125
Shuffling . 125
Adding noise to a column . 125

Welcome to Paul’s Boutique ! 125
The Story . 125
Objectives . 126
About GDPR . 126
Requirements . 126
The Roles . 127
The Sample database . 127

9

1- Static Masking 127
Requirements . 127
The story . 128
How it works . 128
Learning Objective . 128
The “customer” table . 128
The “payout” table . 129
Activate the extension . 129
Declare the masking rules . 129
Apply the rules permanently . 129
Exercises . 130

E101 - Mask the client’s first names 130
E102 - Hide the last 3 digits of the postcode 130
E103 - Count how many clients live in each postcode area? . . . 130
E104 - Keep only the year of each birth date 130
E105 - Singling out a customer 130

Solutions . 131
S101 . 131
S102 . 131
S103 . 132
S104 . 132
S105 . 132

2- Dynamic Masking 133
Requirements . 133
The Story . 133
How it works . 133
Objectives . 133
The company table . 134
The supplier table . 134
Activate the extension . 135
Dynamic Masking . 135

Activate the masking engine . 135
Masking a role . 135

Masking the supplier names . 135
Exercises . 136

E201 - Guess who is the CEO of “Johnny’s Shoe Store” 136
E202 - Anonymize the companies 136
E203 - Pseudonymize the company name 137

Solutions . 137
S201 . 137
S202 . 137
S203 . 138

Now the fake company name is always the same. 139

3- Anonymous Dumps 139

10

The Story . 139
How it works . 139
Learning Objective . 139
Load the data . 139
Activate the extension . 140
Masking a JSON column . 140
Exercises . 142

E301 - Dump the anonymized data into a new database 142
E302 - Remove the email address 142
E303 - Pseudonymize the IP address 142

Solutions . 142
S301 . 142
S302 . 143
S303 . 143

4- Generalization 144
The Story . 144
How it works . 144
Learning Objective . 144
The employee table . 144
Data suppression . 145
K-Anonymity . 146
Range and Generalization functions 147

Declaring the indirect identifiers 147
Exercises . 148

E401 - Simplify v_staff_per_month and decrease granularity . . 148
E402 - Staff progression over the years 148
E403 - Reaching 2-anonymity for the v_staff_per_year view . . 148

Solutions . 148
S401 . 148
S402 . 149
S403 . 149

Conclusion 149
Clean up ! . 149
Also… . 150
Help Wanted! . 150

DO NOT MODIFY THESE FILES 150

Upgrade 150
Upgrade to version 2.0 and further versions 150
Upgrade to version 1.3 and further versions 151

Using custom masking functions 151
Using pg_catalog functions . 152
Operators . 152

11

Conditional masking rules . 152

Figure 1: PostgreSQL Anonymizer

Anonymization & Data Masking for Postgres
PostgreSQL Anonymizer is an extension to mask or replace personally identifi-
able information (PII) or commercially sensitive data from a Postgres database.

The project has a declarative approach of anonymization. This means you
can declare the masking rules using the PostgreSQL Data Definition Language
(DDL) and specify your anonymization policy inside the table definition itself.

The main goal of this extension is to offer anonymization by design. We
firmly believe that data masking rules should be written by the people who
develop the application because they have the best knowledge of how the data
model works. Therefore masking rules must be implemented directly inside the
database schema.

Once the masking rules are defined, you can apply them using 5 different mask-
ing methods :

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Masking Views : Build dedicated views for the masked users
• Masking Data Wrappers : Apply masking rules on external data

Each method has its pros and cons. Different masking methods may be used in
different contexts. In any case, masking the data directly inside the PostgreSQL
instance without using an external tool is crucial to limit the exposure and the
risks of data leak.

In addition, various Masking Functions are available : randomization, faking,
partial scrambling, shuffling, noise or even your own custom function!

Finally, the extension offers a panel of detection functions that will try to guess
which columns need to be anonymized.

12

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://postgresql-anonymizer.readthedocs.io/en/stable/declare_masking_rules/
anonymous_dumps.md
static_masking.md
dynamic_masking.md
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_views/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_data_wrappers/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/stable/detection/

Quick Start
Step 0. Launch docker image of the project

ANON_IMG=registry.gitlab.com/dalibo/postgresql_anonymizer
docker run --name anon_quickstart --detach -e POSTGRES_PASSWORD=x $ANON_IMG
docker exec -it anon_quickstart psql -U postgres

Step 1. Create a database and load the extension in it

CREATE DATABASE demo;
ALTER DATABASE demo SET session_preload_libraries = 'anon'

\connect demo
You are now connected to database "demo" as user "postgres".

Step 2. Create a table

CREATE TABLE people AS
SELECT 153478 AS id,

'Sarah' AS firstname,
'Conor' AS lastname,
'0609110911' AS phone

;

SELECT * FROM people;
id | firstname | lastname | phone

--------+-----------+----------+------------
153478 | Sarah | Conor | 0609110911

Step 3. Create the extension and activate the masking engine

CREATE EXTENSION anon;
ALTER DATABASE demo SET anon.transparent_dynamic_masking TO true;

Step 4. Declare a masked user

CREATE ROLE skynet LOGIN;

SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

GRANT pg_read_all_data to skynet;

Step 5. Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN people.lastname
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

SECURITY LABEL FOR anon ON COLUMN people.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 6. Connect with the masked user

13

\connect - skynet
You are now connected to database "demo" as user "skynet"

SELECT * FROM people;
id | firstname | lastname | phone

--------+-----------+-----------+------------
153478 | Sarah | Stranahan | 06******11

Success Stories
With PostgreSQL Anonymizer we integrate, from the design of the
database, the principle that outside production the data must be
anonymized. Thus we can reinforce the GDPR rules, without affect-
ing the quality of the tests during version upgrades for example.

— Thierry Aimé, Office of Architecture and Standards in the French
Public Finances Directorate General (DGFiP)

Thanks to PostgreSQL Anonymizer we were able to define complex
masking rules in order to implement full pseudonymization of our
databases without losing functionality. Testing on realistic data
while guaranteeing the confidentiality of patient data is a key point
to improve the robustness of our functionalities and the quality of
our customer service.

— Julien Biaggi, Product Owner at bioMérieux

I just discovered your postgresql_anonymizer extension and used
it at my company for anonymizing our user for local development.
Nice work!

— Max Metcalfe

If this extension is useful to you, please let us know !

Support
We need your feedback and ideas ! Let us know what you think of this tool,
how it fits your needs and what features are missing.

You can either open an issue or send a message at contact@dalibo.com.

open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/issues
title: anonymous_dumps draft: false toc: true —

14

https://gitlab.com/dalibo/postgresql_anonymizer/issues
mailto:contact@dalibo.com
https://gitlab.com/dalibo/postgresql_anonymizer/issues

Backup Masking (aka Anonymous Dumps)
PostgreSQL Anonymous Dumps

Transparent Anonymous Dumps
To export the anonymized data from a database, follow these 3 steps:

1. Create a masked user

CREATE ROLE anon_dumper LOGIN PASSWORD 'x';
ALTER ROLE anon_dumper SET anon.transparent_dynamic_masking = True;
SECURITY LABEL FOR anon ON ROLE anon_dumper IS 'MASKED';

NOTE: You can replace the name anon_dumper by another name.

2. Grant read access to that masked user

GRANT pg_read_all_data to anon_dumper;

NOTE: If you are running PostgreSQL 13 or if you want a more fine-grained
access policy you can grant access more precisely, for instance:

GRANT USAGE ON SCHEMA public TO anon_dumper;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO anon_dumper;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA public TO anon_dumper;

GRANT USAGE ON SCHEMA foo TO anon_dumper;
GRANT SELECT ON ALL TABLES IN SCHEMA foo TO anon_dumper;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA foo TO anon_dumper;

3. Launch pg_dump with the masked user

Now to export the anonymous data from a database named foo, let’s use
pg_dump:

pg_dump foo \
--user anon_dumper \
--no-security-labels \
--exclude-extension="anon" \
--file=foo_anonymized.sql

NOTES:

• linebreaks are here for readability

• --no-security-labels will remove the masking rules from the anony-
mous dump. This is really important because masked users should not
have access to the masking policy.

15

• --exclude-extension is only available with pg_dump 17 and later. As
an alternative you can use --extension plpgsql.

• --format=custom is supported

Anonymizing an SQL file
In previous versions of the documentation, this method was also
called « anonymizing black box ».

You can also apply masking rules directly on a database backup file !

The PostgreSQL Anonymizer docker image contains a specific entrypoint script
called /dump.sh. You pass the original data and the masking rules to to that
/dump.sh script and it will return an anonymized dump.

Here’s an example in 4 steps:

Step 1: Dump your original data (for instance dump.sql)

pg_dump --format=plain [...] my_db > dump.sql

Note this method only works with plain sql format (-Fp). You cannot use the
custom format (-Fc) and the directory format (-Fd) here.

If you want to maintain the owners and grants, you need export them with
pg_dumpall --roles-only like this:

(pg_dumpall -Fp [...] --roles-only && pg_dump -Fp [...] my_db) > dump.sql

Step 2: Write your masking rules in a separate file (for instance rules.sql)

RESET search_path;

SECURITY LABEL FOR anon ON COLUMN people.lastname
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

-- etc.

Step 3: Pass the dump and the rules through the docker image and receive an
anonymized dump !

IMG=registry.gitlab.com/dalibo/postgresql_anonymizer:stable
ANON="docker run --rm --interactive $IMG /dump.sh"
cat dump.sql rules.sql | $ANON > anon_dump.sql

(this last step is written on 3 lines for clarity)

NB: You can also gather step 1 and step 3 in a single command:

(pg_dumpall --roles-only && pg_dump my_db && cat rules.sql) | $ANON > anon_dump.sql

NOTES:

16

You can use most the pg_dump output options with the /dump.sh script, for
instance:

cat dump.sql rules.sql | $ANON --data-only --inserts > anon_dump.sql

The RESET search_path command in rules.sql is required because
pg_dump will disable the search_path in dump.sql for security reasons.
Alternatively you can use fully-qualified column names in rules.sql, for
instance public.people.lastname instead of people.lastname.

Masking primary keys with Backup Masking
Primary keys (such as SERIAL) are often masked with the anon.random_id()
function which will generate a unique random identifier every it is called.

However this function will not work with Backup Masking because pg_dump will
* connect in read-only mode to the database (default_transaction_read_only=on;)
and the anon.random_id() function needs to update a sequence to avoid gen-
erating the same value twice.

See issue #529 for more details:

https://gitlab.com/dalibo/postgresql_anonymizer/-/issues/529

Therefore if you use ‘anon.random_id() in some rules, the backup masking
process will throw the following error :

pg_dump: detail: Error message from server:
ERROR: permission denied for sequence random_id_seq

The solution is to rewrite the masking rules based on anon.random_id() and
use anon.pseudo_shift(BIGINT) or anon.pseudo_xor(BIGINT) instead.

For instance the masking rule below:

SECURITY LABEL FOR anon ON COLUMN people.id
IS 'MASKED WITH FUNCTION anon.random_id()';

would become

SECURITY LABEL FOR anon ON COLUMN people.id
IS 'MASKED WITH FUNCTION anon.pseudo_xor(id)';

The anon.pseudo_shift(BIGINT) and anon.pseudo_xor(BIGINT) functions
use a secret value (anon.shift) to pseudonymize the primary key. The se-
cret value can be initialized randomly with anon.set_shift() or defined with
anon.set_shift(INT).

WARNING: Remember that Pseudonymization is not Anonymization !

17

https://www.postgresql.org/docs/current/app-pgdump.html#PG-DUMP-OPTIONS
https://gitlab.com/dalibo/postgresql_anonymizer/-/issues/529
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/#pseudonymization

DEPRECATED : pg_dump_anon.sh and pg_dump_anon
In version 0.x, the anonymous dumps were done with a shell script named
pg_dump_anon.sh. In version 1.x it was done with a golang script named
pg_dump_anon. Both commands are now deprecated. — title: concepts
draft: false toc: true —

Definitions of the terms used in this project
Two main strategies are used:

• Dynamic Masking offers an altered view of the real data without mod-
ifying it. Some users may only read the masked data, others may access
the authentic version.

• Permanent Destruction is the definitive action of substituting the sen-
sitive information with uncorrelated data. Once processed, the authentic
data cannot be retrieved.

The data can be altered with several techniques:

• Deletion or Nullification simply removes data.

• Static Substitution consistently replaces the data with a generic value.
For instance: replacing all values of a TEXT column with the value “CON-
FIDENTIAL”.

• Variance is the action of “shifting” dates and numeric values. For exam-
ple, by applying a +/- 10% variance to a salary column, the dataset will
remain meaningful.

• Generalization reduces the accuracy of the data by replacing it with a
range of values. Instead of saying “Bob is 28 years old”, you can say “Bob
is between 20 and 30 years old”. This is useful for analytics because the
data remains true.

• Shuffling mixes values within the same columns. This method is open to
being reversed if the shuffling algorithm can be deciphered.

• Randomization replaces sensitive data with random-but-plausible
values. The goal is to avoid any identification from the data record while
remaining suitable for testing, data analysis and data processing.

• Partial scrambling is similar to static substitution but leaves out some
part of the data. For instance : a credit card number can be replaced by
‘40XX XXXX XXXX XX96’

• Custom rules are designed to alter data following specific needs. For
instance, randomizing simultaneously a zipcode and a city name while
keeping them coherent.

18

• Pseudonymization is a way to protect personal information by hiding
it using additional information. Encryption and Hashing are two exam-
ples of pseudonymization techniques. However a pseudonymizated data is
still linked to the original data. — title: configure draft: false toc: true
—

Configuration
The extension has currently a few options that be defined for the entire instance
(inside postgresql.conf or with ALTER SYSTEM).

It is also possible and often a good idea to define them at the database level
like this:

ALTER DATABASE customers SET anon.restrict_to_trusted_schemas = on;

Only superuser can change the parameters below :

anon.algorithm

Type Text
Default value ‘sha256’
Visible only to superusers

This is the hashing method used by pseudonymizing functions. Checkout the
pgcrypto documentation for the list of available options.

See anon.salt to learn why this parameter is a very sensitive information.

anon.maskschema

Type Text
Default value ‘mask’
Visible to all users

The schema (i.e. ‘namespace’) where the dynamic masking views will be stored.

anon.restrict_to_trusted_schemas

Type Boolean
Default value off
Visible to all users

19

https://www.postgresql.org/docs/current/pgcrypto.htm

By enabling this parameter, masking rules must be defined using functions lo-
cated in a limited list of namespaces. By default, only the anon schema is
trusted.

This improves security by preventing users from declaring their custom masking
filters. This also means that the schema must be explicit inside the masking
rules.

For more details, check out the Write your own masks section of the Masking
functions chapter.

anon.salt

Type Text
Default value (empty)
Visible only to superusers

This is the salt used by pseudonymizing functions. It is very important to define
a custom salt for each database like this:

ALTER DATABASE foo SET anon.salt = 'This_Is_A_Very_Secret_Salt';

If a masked user can read the salt, he/she can run a brute force attack to retrieve
the original data based on the 3 elements:

• The pseudonymized data
• The hashing algorithm (see anon.algorithm)
• The salt

The GDPR considered that the salt and the name of the hashing algorithm
should be protected with the same level of security that the data itself. This
is why you should store the salt directly within the database with ALTER
DATABASE.

anon.sourceschema

Type Text
Default value ‘public’
Visible to all users

The schema (i.e. ‘namespace’) where the tables are masked by the dynamic
masking engine.

Change this value before starting dynamic masking.

ALTER DATABASE foo SET anon.sourceschema TO 'my_app';

Then reconnect so that the change takes effect and start the engine.

20

masking_functions.md#write-your-own-masks
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/

SELECT start_dynamic_masking();

Custom Fake Data
This extension is delivered with a small set of fake data by default. For each fake
function (fake_email(), fake_first_name()) we provide only 1000 unique
values, and they are only in English.

Here’s how you can create your own set of fake data!

Alternative fake data packages
The project is offering alternative fake datasets (currently only French). You
can download the zip file containing the dataset and load it into the extension
like this:

1. Go to https://gitlab.com/dalibo/postgresql_anonymizer/-/packages

2. Click on “data”

3. Choose your preferred zip file and download it on your server

4. Unzip the file into a folder (for example /path/to/custom_csv_files/)

5. Run SELECT anon.init('/path/to/custom_csv_files/')

Generate your own fake dataset
As an example, here’s a python script that will generate fake data for you:

https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/python/
populate.py

To produce 5000 emails in French & German, you’d call the scripts like this:

populate.py --table email --locales fr,de --lines 5000

This will output the fake data in CSV format.

Use populate.py --help for more details about the script parameters.

You can load the fake data directly into the extension like this:

TRUNCATE anon.email;

COPY anon.email
FROM
PROGRAM 'populate.py --table email --locales fr,de --lines 5000';

SELECT setval('anon.email_oid_seq', max(oid))
FROM anon.email;

21

https://gitlab.com/dalibo/postgresql_anonymizer/-/packages
https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/python/populate.py
https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/python/populate.py

CLUSTER anon.email;

IMPORTANT : This script is provided as an example, it is not
officially supported.

Load your own fake data
If you want to use your own dataset, you can import custom CSV files with :

SELECT anon.init('/path/to/custom_csv_files/')

Look at the data folder to find the format of the CSV files.

Using the PostgreSQL Faker extension
If you need more specialized fake data sets, please read the Advanced Faking
section.

Advanced Faking: masking_functions.md#advanced-
faking
title: datamodel draft: false toc: true —

classDiagram

class identifier_category{
INTEGER id,
TEXT name
BOOL direct_identifier
TEXT anon_function

}

class field_name{
TEXT attname
TEXT lang
INTEGER fk_identifiers_category

}

field_name "1..N" --> "1" identifier_category

Put on your Masks !
The main idea of this extension is to implement the concept of Privacy by
Design, which is principle imposed by the Article 25 of the GDPR.

22

https://en.wikipedia.org/wiki/Privacy_by_design
https://en.wikipedia.org/wiki/Privacy_by_design
https://gdpr-info.eu/art-25-gdpr/

With PostgreSQL Anonymizer, you can declare a masking policy which is a
set of masking rules stored inside the database model and applied to various
database objects.

The data masking rules should be written by the people who develop the applica-
tion because they have the best knowledge of how the data model works. There-
fore masking rules must be implemented directly inside the database schema.

This allows to mask the data directly inside the PostgreSQL instance without
using an external tool and thus limiting the exposure and the risks of data leak.

The data masking rules are declared simply by using security labels:

CREATE TABLE player(id SERIAL, name TEXT, total_points INT, highest_score INT);

INSERT INTO player VALUES
(1, 'Kareem Abdul-Jabbar', 38387, 55),
(5, 'Michael Jordan', 32292, 69);

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.fake_last_name()';

SECURITY LABEL FOR anon ON COLUMN player.id
IS 'MASKED WITH VALUE NULL';

Principles
• You can mask tables in multiple schemas

• Generated columns are respected.

• Row Security Policies aka RLS are respected.

• A masking rule may break data integrity. For instance, you can mask a
NOT NULL column with the value NULL. This is up to you to decide whether
or not the masked users need data integrity.

• You need to declare masking rules on views. By default, the masking rules
declared on the underlying tables are NOT APPLIED on the view. For
instance, if a view v_foo is based upon a table foo, then the masking
rules of table foo will not be applied to v_foo. You will need to declare
specific masking rules for v_foo. Remember that PostgreSQL uses the
view owner (not the current user) to check permissions on the underlying
tables.

Escaping String literals
As you may have noticed the masking rule definitions are placed between single
quotes. Therefore if you need to use a string inside a masking rule, you need to
use C-Style escapes like this:

23

https://www.postgresql.org/docs/current/sql-security-label.html
https://www.postgresql.org/docs/current/ddl-rowsecurity.html
https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-STRINGS-ESCAPE

SECURITY LABEL FOR anon ON COLUMN player.name
IS E'MASKED WITH VALUE \'CONFIDENTIAL\'';

Or use dollar quoting which is easier to read:

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH VALUE $$CONFIDENTIAL$$';

Listing masking rules
To display all the masking rules declared in the current database, check out the
anon.pg_masking_rules:

SELECT * FROM anon.pg_masking_rules;

Debugging masking rules
When an error occurs to due a wrong masking rule, you can get more detailed
information about the problem by setting client_min_messages to DEBUG and
you will get useful details

postgres=# SET client_min_messages=DEBUG;
SET
postgres=# SELECT anon.anonymize_database();
DEBUG: Anonymize table public.bar with firstname = anon.fake_first_name()
DEBUG: Anonymize table public.foo with id = NULL
ERROR: Cannot mask a "NOT NULL" column with a NULL value
HINT: If privacy_by_design is enabled, add a default value to the column
CONTEXT: PL/pgSQL function anon.anonymize_table(regclass) line 47 at RAISE
SQL function "anonymize_database" statement 1

Removing a masking rule
You can simply erase a masking rule like this:

SECURITY LABEL FOR anon ON COLUMN player.name IS NULL;

To remove all rules at once, you can use:

SELECT anon.remove_masks_for_all_columns();

Multiple Masking Policies
By default, there is only one masking policy named ‘anon’. Most of the times,
a single policy is enough. However in more complex situations, the database
owner may want to define different sets of masking rules for different use cases.

This can be achieved by declaring multiple masking policies.

For instance, we can add 2 new policies with:

24

https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-DOLLAR-QUOTING

ALTER DATABASE foo SET anon.masking_policies TO 'devtests, analytics';

Important: You need to reconnect to the database so that the change
takes effect !

We can now define a “devtests” policy for a developer name “devin”. Devin
wants to run CI tests on his code using fake/random data.

SECURITY LABEL FOR devtests ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.fake_last_name()';

SECURITY LABEL FOR devtests ON COLUMN player.highest_score
IS 'MASKED WITH FUNCTION anon.random_int_between(0,50)';

SECURITY LABEL FOR devtests ON ROLE devin IS 'MASKED';

We can also define an “analytics” for a data scientist name “Anna”. Anna needs
to run global stats over the dataset, she want to keep the real value on the
highest_score column but she does not need to know the players names

SECURITY LABEL FOR analytics ON COLUMN player.name
IS 'MASKED WITH VALUE NULL';

SECURITY LABEL FOR analytics ON ROLE anna IS 'MASKED';

Only one policy can be applied to a role. If you define that a role is masked in
several masking policies, only the first one in the list will be applied.

The “anon” policy is always declared and cannot be removed.

If you declare a function as TRUSTED, it will be trusted for all masking policies.

Limitations
• The masking rules are NOT INHERITED ! If you have split a table

into multiple partitions, you need to declare the masking rules for each
partition.

• Masking identity columns is tricky. If an identity column is defined as
GENERATED ALWAYS, then static masking will not work on that column.
Note identity columns are used most of the time for surrogate keys (also
known as “factless keys”) and in general those keys should not required
to be masked. However if you really need to mask and identity column
you can redefine it as GENERATED DEFAULT.

Searching for Identifiers
WARNING : This feature is at an early stage of development.

25

As we’ve seen previously, this extension makes it very easy to declare masking
rules.

However, when you create an anonymization strategy, the hard part is scanning
the database model to find which columns contains direct and indirect identifiers,
and then decide how these identifiers should be masked.

The extension provides a detect() function that will search for common identi-
fier names based on a dictionary. For now, 2 dictionaries are available: english
(‘en_US’) and french (‘fr_FR’). By default, the english dictionary is used:

SELECT anon.detect('en_US');
table_name | column_name | identifiers_category | direct

------------+----------------+----------------------+--------
customer | CreditCard | creditcard | t
vendor | Firstname | firstname | t
customer | firstname | firstname | t
customer | id | account_id | t

The identifier categories are based on the HIPAA classification.

Limitations
This is an heuristic method in the sense that it may report useful information,
but it is based on a pragmatic approach that can lead to detection mistakes,
especially:

• false positive: a column is reported as an identifier, but it is not.
• false negative: a column contains identifiers, but it is not reported

The second one is of course more problematic. In any case, you should only
consider this function as a helping tool, and acknowledge that you still need to
review the entire database model in search of hidden identifiers.

Contribute to the dictionaries
This detection tool is based on dictionaries of identifiers. Currently these dic-
tionaries contain only a few entries.

For instance, you can see the english identifier dictionary here.

You can help us improve this feature by sending us a list of direct and indirect
identifiers you have found in your own data models ! Send us an email at
contact@dalibo.com or open an issue in the project.

open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/-
/issues
title: dev/README draft: false toc: true —

26

declare_masking_rules.md
declare_masking_rules.md
https://www.luc.edu/its/aboutus/itspoliciesguidelines/hipaainformation/the18hipaaidentifiers/
https://gitlab.com/dalibo/postgresql_anonymizer/-/blob/master/data/identifier_en_US.csv
mailto:contact@dalibo.com
https://gitlab.com/dalibo/postgresql_anonymizer/issues
https://gitlab.com/dalibo/postgresql_anonymizer/issues

Development Notes
This folders contains weird ideas, failed tests and dodgy dead ends.

We use jupyter to write these notebooks. Most of them are probably outdated.

Here’s how you can install jupyter:

$ pip3 install --upgrade pip
$ pip3 install --r docs/dev/requirements
$ export PATH=$PATH:~/.local/bin

And then launch jupyter:

$ jupyter notebook
or
$ jupyter notebook --no-browser --port 9999

Or convert the notebooks

jupyter nbconvert docs/dev/*.ipynb --to markdown

Hide sensitive data from a “masked” user
You can hide some data from a role by declaring this role as “MASKED”.

Other roles will still access the original data.

PostgreSQL Dynamic Masking

Example:

CREATE TABLE people (id TEXT, firstname TEXT, lastname TEXT, phone TEXT);
INSERT INTO people VALUES ('T1','Sarah', 'Conor','0609110911');
SELECT * FROM people;

=# SELECT * FROM people;
id | firstname | lastname | phone

----+-----------+----------+------------
T1 | Sarah | Conor | 0609110911

(1 row)

Step 1 : Activate the dynamic masking engine

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;
=# ALTER DATABASE foo SET anon.transparent_dynamic_masking TO true;

Step 2 : Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN people.name
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

27

https://jupyter.org/
https://jupyter.org/
https://jupyter.org/

SECURITY LABEL FOR anon ON COLUMN people.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 3 : Declare a masked user with read access

=# CREATE ROLE skynet LOGIN;
=# SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

GRANT pg_read_all_data to skynet;

NOTE: If you are running PostgreSQL 13 or if you want a more fine-grained
access policy you can grant access more precisely, for instance:

GRANT USAGE ON SCHEMA public TO skynet;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO skynet;
-- etc.

Step 4 : Connect with the masked user

=# \c - skynet
=> SELECT * FROM people;
id | firstname | lastname | phone

----+-----------+-----------+------------
T1 | Sarah | Stranahan | 06******11

(1 row)

Principles
• Masked roles should not be allowed to insert, update or delete data.
• You can mask table in multiple schemas.
• Generated columns are respected.
• You can apply Row Security Policies aka RLS to a masked role.
• A masking rule may break data integrity. For instance, you can mask a

column having a UNIQUE constraint with the value NULL. This is up to
you to decide whether or not the mask users need data integrity.

Limitations
• Masked roles are not allowed to use EXPLAIN

How to unmask a role
Simply remove the security label like this:

SECURITY LABEL FOR anon ON ROLE bob IS NULL;

Legacy Dynamic Masking
In version 1.x, the dynamic masking method was done using a method named
Legacy Dynamic Masking. Although this former method is still functional, it

28

https://www.postgresql.org/docs/current/ddl-rowsecurity.html

will be deprecated in version 3.

Transparent Dynamic Masking and Legacy Dynamic Masking cannot work at
the same time. If you upgraded from version 1, be sure to disable Legacy
Dynamic Masking with:

SELECT anon.stop_legacy_dynamic_masking();

Legacy Dynamic Masking: legacy_dynamic_masking.md
title: how-to/0-masking_data_with_postgresql_anonymizer draft: false toc:
true —

Welcome to Paul’s Boutique !
This is a 4 hours workshop that demonstrates various anonymization techniques
using the PostgreSQL Anonymizer extension.

The Story
Paul’s boutique

Paul’s boutique has a lot of customers. Paul asks his friend Pierre, a Data
Scientist, to make some statistics about his clients : average age, etc…

Pierre wants a direct access to the database in order to write SQL queries.

Jack is an employee of Paul. He’s in charge of relationship with the various
suppliers of the shop.

Paul respects his suppliers privacy. He needs to hide the personal information
to Pierre, but Jack needs read and write access the real data.

Objectives
Using the simple example above, we will learn:

• How to write masking rules
• The difference between static and dynamic masking
• Implementing advanced masking techniques

About PostgreSQL Anonymizer

29

dynamic_masking.md
https://labs.dalibo.com/postgresql_anonymizer

postgresql_anonymizer is an extension to mask or replace personally iden-
tifiable information (PII) or commercially sensitive data from a PostgreSQL
database.

The project has a declarative approach of anonymization. This means you
can declare the masking rules using the PostgreSQL Data Definition Language
(DDL) and specify your anonymization strategy inside the table definition itself.

Once the maskings rules are defined, you can access the anonymized data in 4
different ways:

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Generalization : Create “blurred views” of the original data

About GDPR
This presentation does not go into the details of the GPDR act and the general
concepts of anonymization.

For more information about it, please refer to the talk below:

• Anonymisation, Au-delà du RGPD (Video / French)
• Anonymization, Beyond GDPR (PDF / english)

Requirements
In order to make this workshop, you will need:

• A Linux VM (preferably Debian 11 bullseye or Ubuntu 22.04)
• A PostgreSQL instance (preferably PostgreSQL 14)
• The PostgreSQL Anonymizer (anon) extension, installed and initialized

by a superuser
• A database named “boutique” owned by a superuser called “paul”
• A role “pierre” and a role “jack”, both allowed to connect to the database

“boutique”

A simple way to deploy a workshop environment is to install Docker Desktop
and download the image below:

docker pull registry.gitlab.com/dalibo/postgresql_anonymizer:stable

30

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://postgresql-anonymizer.readthedocs.io/en/stable/declare_masking_rules/
anonymous_dumps.md
static_masking.md
dynamic_masking.md
https://www.youtube.com/watch?v=KGSlp4UygdU
https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisation_beyond_gdpr.pdf
https://www.docker.com/products/docker-desktop/

Check out the INSTALL section in the documentation to learn how to install
the extension in your PostgreSQL instance.

The Roles
We will with 3 different users:

CREATE ROLE paul LOGIN SUPERUSER PASSWORD 'CHANGEME';
CREATE ROLE pierre LOGIN PASSWORD 'CHANGEME';
CREATE ROLE jack LOGIN PASSWORD 'CHANGEME';

Unless stated otherwise, all commands must be executed with the role paul.

Setup a .pgpass file to simplify the connections !

cat > ~/.pgpass << EOL
::boutique:paul:CHANGEME
::boutique:pierre:CHANGEME
::boutique:jack:CHANGEME
EOL
chmod 0600 ~/.pgpass

The Sample database
We will work on a database called “boutique”:

CREATE DATABASE boutique OWNER paul;

We need to activate the anon library inside that database:

ALTER DATABASE boutique
SET session_preload_libraries = 'anon';

Authors
This workshop is a collective work from Damien Clochard, Be Hai Tran, Florent
Jardin, Frédéric Yhuel.

License
This document is distributed under the PostgreSQL license.

The source is available at

https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to

31

https://postgresql-anonymizer.readthedocs.io/en/stable/INSTALL
https://postgresql-anonymizer.readthedocs.io/en/stable/
https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to

Credits
• Cover photo by Alex Conchillos from Pexels (CC Zero)
• “Paul’s Boutique” is the second studio album by American hip hop group

Beastie Boys, released on July 25, 1989 by Capitol Records — title: how-
to/1-static_masking draft: false toc: true —

1 - Static Masking
Static Masking is the simplest way to hide personal information!
This idea is simply to destroy the original data or replace it with an
artificial one.

The story
Over the years, Paul has collected data about his customers and their purchases
in a simple database. He recently installed a brand new sales application and
the old database is now obsolete. He wants to save it and he would like to
remove all personal information before archiving it.

How it works
Learning Objective
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of static masking
• The concept of “Singling Out” a person

The “customer” table
DROP TABLE IF EXISTS customer CASCADE;

DROP TABLE IF EXISTS payout CASCADE;

CREATE TABLE customer (
id SERIAL PRIMARY KEY,
firstname TEXT,
lastname TEXT,
phone TEXT,
birth DATE,
postcode TEXT

);

Insert a few persons:

32

INSERT INTO customer
VALUES
(107,'Sarah','Conor','060-911-0911', '1965-10-10', '90016'),
(258,'Luke', 'Skywalker', NULL, '1951-09-25', '90120'),
(341,'Don', 'Draper','347-515-3423', '1926-06-01', '04520')
;

SELECT * FROM customer;

The “payout” table
Sales are tracked in a simple table:

CREATE TABLE payout (
id SERIAL PRIMARY KEY,
fk_customer_id INT REFERENCES customer(id),
order_date DATE,
payment_date DATE,
amount INT

);

Let’s add some orders:

INSERT INTO payout
VALUES
(1,107,'2021-10-01','2021-10-01', '7'),
(2,258,'2021-10-02','2021-10-03', '20'),
(3,341,'2021-10-02','2021-10-02', '543'),
(4,258,'2021-10-05','2021-10-05', '12'),
(5,258,'2021-10-06','2021-10-06', '92')
;

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;

SELECT anon.init();

SELECT setseed(0);

Declare the masking rules
Paul wants to hide the last name and the phone numbers of his clients. He will
use the fake_last_name() and partial() functions for that:

SECURITY LABEL FOR anon ON COLUMN customer.lastname
IS 'MASKED WITH FUNCTION anon.fake_last_name()';

33

SECURITY LABEL FOR anon ON COLUMN customer.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$X-XXX-XX$$,2)';

Apply the rules permanently
SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, phone
FROM customer;

This is called Static Masking because the real data has been
permanently replaced. We’ll see later how we can use dynamic
anonymization or anonymous exports.

Exercises
E101 - Mask the client’s first names

Declare a new masking rule and run the static anonymization function again.

E102 - Hide the last 3 digits of the postcode

Paul realizes that the postcode gives a clear indication of where his customers
live. However he would like to have statistics based on their ”postcode area”.

Add a new masking rule to replace the last 3 digits by ‘x’.

E103 - Count how many clients live in each postcode area?

Aggregate the customers based on their anonymized postcode.

E104 - Keep only the year of each birth date

Paul wants age-based statistic. But he also wants to hide the real birth date of
the customers.

Replace all the birth dates by January 1rst, while keeping the real year.

HINT: You can use the make_date function !

E105 - Singling out a customer

Even if the ”customer” is properly anonymized, we can still isolate a given
individual based on data stored outside of the table. For instance, we can
identify the best client of Paul’s boutique with a query like this:

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout

34

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE

GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id)

This is called Singling Out a person.

We need to anonymize even further by removing the link between a person and
its company. In the ”order” table, this link is materialized by a foreign key on
the field ”fk_company_id”. However we can’t remove values from this column
or insert fake identifiers because if would break the foreign key constraint.

How can we separate the customers from their payouts while respecting the
integrity of the data?

Find a function that will shuffle the column ”fk_company_id” of the ”payout”
table

HINT: Check out the static masking section of the documentation

Solutions
S101

SECURITY LABEL FOR anon ON COLUMN customer.firstname
IS 'MASKED WITH FUNCTION anon.fake_first_name()';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname
FROM customer;

S102

SECURITY LABEL FOR anon ON COLUMN customer.postcode
IS 'MASKED WITH FUNCTION anon.partial(postcode,2,$$xxx$$,0)';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, postcode
FROM customer;

S103

SELECT postcode, COUNT(id)

35

https://www.pnas.org/content/117/15/8344
https://postgresql-anonymizer.readthedocs.io/en/stable/static_masking#shuffling
https://postgresql-anonymizer.readthedocs.io/en/stable/

FROM customer
GROUP BY postcode;

S104

SECURITY LABEL FOR anon ON COLUMN customer.birth
IS 'MASKED WITH FUNCTION make_date(EXTRACT(YEAR FROM birth)::INT,1,1)';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, birth
FROM customer;

S105

Let’s mix up the values of the fk_customer_id:

SELECT anon.shuffle_column('payout','fk_customer_id','id');

Now let’s try to single out the best client again :

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id);

WARNING

Note that the link between a customer and its payout is now completely false.
For instance, if a customer A had 2 payouts. One of these payout may be linked
to a customer B, while the second one is linked to a customer C.

In other words, this shuffling method with respect the foreign key constraint
(aka the referential integrity) but it will break the data integrity. For some use
case, this may be a problem.

In this case, Pierre will not be able to produce a BI report with the shuffle data,
because the links between the customers and their payments are fake. — title:
how-to/2-dynamic_masking draft: false toc: true —

36

2- How to use Dynamic Masking
With Dynamic Masking, the database owner can hide personal data
for some users, while other users are still allowed to read and write
the authentic data.

The Story
Paul has 2 employees:

• Jack is operating the new sales application, he needs access to the real
data. He is what the GPDR would call a ”data processor”.

• Pierre is a data analyst who runs statistic queries on the database. He
should not have access to any personal data.

How it works
Objectives
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of dynamic masking
• The concept of ”Linkability” of a person

The “company” table
DROP TABLE IF EXISTS supplier CASCADE;

DROP TABLE IF EXISTS company CASCADE;

CREATE TABLE company (
id SERIAL PRIMARY KEY,
name TEXT,
vat_id TEXT UNIQUE

);

INSERT INTO company
VALUES
(952,'Shadrach', 'FR62684255667'),
(194,E'Johnny\'s Shoe Store','CHE670945644'),
(346,'Capitol Records','GB663829617823')
;

SELECT * FROM company;

The ”supplier” table
CREATE TABLE supplier (

37

id SERIAL PRIMARY KEY,
fk_company_id INT REFERENCES company(id),
contact TEXT,
phone TEXT,
job_title TEXT

);

INSERT INTO supplier
VALUES
(299,194,'Johnny Ryall','597-500-569','CEO'),
(157,346,'George Clinton', '131-002-530','Sales manager')
;

SELECT * FROM supplier;

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;

SELECT anon.init();

SELECT setseed(0);

Dynamic Masking
Activate the masking engine

SELECT anon.start_dynamic_masking();

Masking a role

SECURITY LABEL FOR anon ON ROLE pierre IS 'MASKED';

GRANT SELECT ON supplier TO pierre;
GRANT ALL ON SCHEMA public TO jack;
GRANT ALL ON ALL TABLES IN SCHEMA public TO jack;

Now connect as Pierre and try to read the supplier table:

SELECT * FROM supplier;

For the moment, there is no masking rule so Pierre can see the original data in
each table.

Masking the supplier names
Connect as Paul and define a masking rule on the supplier table:

38

SECURITY LABEL FOR anon ON COLUMN supplier.contact
IS 'MASKED WITH VALUE $$CONFIDENTIAL$$';

Now connect as Pierre and try to read the supplier table again:

SELECT * FROM supplier;

Now connect as Jack and try to read the real data:

SELECT * FROM supplier;

Exercises
E201 - Guess who is the CEO of ”Johnny’s Shoe Store”

Masking the supplier name is clearly not enough to provide anonymity.

Connect as Pierre and write a simple SQL query that would reinden-
tify some suppliers based on their job and their company.

Company names and job positions are available in many public datasets. A
simple search on Linkedin or Google, would give you the names of the top
executives of most companies..

This is called Linkability: the ability to connect multiple records
concerning the same data subject.

E202 - Anonymize the companies

We need to anonymize the ”company” table, too. Even if they don’t contain
personal information, some fields can be used to infer the identity of their
employees...

Write 2 masking rules for the company table. The first one will
replace the ”name” field with a fake name. The second will replace
the ”vat_id” with a random sequence of 10 characters

HINT: Go to the documentation and look at the faking functions
and random functions!

Connect as Pierre and check that he cannot view the real company info:

E203 - Pseudonymize the company name

Because of dynamic masking, the fake values will be different every time Pierre
tries to read the table.

Pierre would like to have always the same fake values for a given company. This
is called pseudonymization.

39

https://postgresql-anonymizer.readthedocs.io/en/stable/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#faking
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#randomization

Write a new masking rule over the ”vat_id” field by generating 10
random characters using the md5() function.

Write a new masking rule over the ”name” field by using a
pseudonymizing function.

Solutions
S201

SELECT s.id, s.contact, s.job_title, c.name
FROM supplier s
JOIN company c ON s.fk_company_id = c.id;

S202

SECURITY LABEL FOR anon ON COLUMN company.name
IS 'MASKED WITH FUNCTION anon.fake_company()';

SECURITY LABEL FOR anon ON COLUMN company.vat_id
IS 'MASKED WITH FUNCTION anon.random_string(10)';

Now connect as Pierre and read the table again:

SELECT * FROM company;

Pierre will see different ”fake data” every time he reads the table:

SELECT * FROM company;

S203

ALTER FUNCTION anon.pseudo_company SECURITY DEFINER;

SECURITY LABEL FOR anon ON COLUMN company.name
IS 'MASKED WITH FUNCTION anon.pseudo_company(id)';

Connect as Pierre and read the table multiple times:

SELECT * FROM company;

SELECT * FROM company;

Now the fake company name is always the same.
title: how-to/3-anonymous_dumps draft: false toc: true —

40

https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions#pseudonymization

3- Anonymous Dumps
In many situation, what we want is simply to export the anonymized
data into another database (for testing or to produce statistics). This
is what pg_dump_anon does!

The Story
Paul has a website and a comment section where customers can express their
views.

He hired a web agency to develop a new design for his website. The agency
asked for a SQL export (dump) of the current website database. Paul wants to
”clean” the database export and remove any personal information contained in
the comment section.

How it works
Learning Objective

• Extract the anonymized data from the database
• Write a custom masking function to handle a JSON field.

Load the data
DROP TABLE IF EXISTS website_comment CASCADE;

CREATE TABLE website_comment (
id SERIAL PRIMARY KEY,
message JSONB

);

curl -Ls https://dali.bo/website_comment -o /tmp/website_comment.tsv
head /tmp/website_comment.tsv

COPY website_comment
FROM '/tmp/website_comment.tsv'

SELECT
message->'meta'->'name' AS name,
message->'content' AS content

FROM website_comment
ORDER BY id ASC

41

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();
SELECT setseed(0);

Masking a JSON column
The ”comment” field is filled with personal information and the fact the field
does not have a standard schema makes our tasks harder.

In general, unstructured data are difficult to mask.

As we can see, web visitors can write any kind of information in the comment
section. Our best option is to remove this key entirely because there’s no way
to extract personal data properly.

We can clean the comment column simply by removing the ”content” key!

SELECT message - ARRAY['content']
FROM website_comment
WHERE id=1;

First let’s create a dedicated schema and declare it as trusted. This means
the ”anon” extension will accept the functions located in this schema as valid
masking functions. Only a superuser should be able to add functions in this
schema.

CREATE SCHEMA IF NOT EXISTS my_masks;

SECURITY LABEL FOR anon ON SCHEMA my_masks IS 'TRUSTED';

Now we can write a function that remove the message content:

CREATE OR REPLACE FUNCTION my_masks.remove_content(j JSONB)
RETURNS JSONB
AS $func$
SELECT j - ARRAY['content']

$func$
LANGUAGE SQL
;

Let’s try it!

42

SELECT my_masks.remove_content(message)
FROM website_comment

And now we can use it in a masking rule:

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.remove_content(message)';

Finally we can export an anonymous dump of the table with pg_dump_anon:

export PATH=$PATH:$(pg_config --bindir)
pg_dump_anon --help

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
export PGUSER=paul
pg_dump_anon boutique --table=website_comment > /tmp/dump.sql

Exercises
E301 - Dump the anonymized data into a new database

Create a database named ”boutique_anon” and transfer the entire database
into it.

E302 - Pseudonymize the meta fields of the comments

Pierre plans to extract general information from the metadata. For instance,
he wants to calculate the number of unique visitors based on the different IP
addresses. But an IP address is an indirect identifier, so Paul needs to
anonymize this field while maintaining the fact that some values appear multiple
times.

Replace the remove_content function with a better one called clean_comment
that will:

• Remove the content key
• Replace the ”name” value with a fake last name
• Replace the ”ip_address” value with its MD5 signature
• Nullify the ”email” key

HINT: Look at the jsonb_set() and jsonb_build_object() func-
tions

Solutions

43

S301

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
export PGUSER=paul
dropdb --if-exists boutique_anon
createdb boutique_anon --owner paul
pg_dump_anon boutique | psql --quiet boutique_anon

export PGHOST=localhost
export PGUSER=paul
psql boutique_anon -c 'SELECT COUNT(*) FROM company'

S302

CREATE OR REPLACE FUNCTION my_masks.clean_comment(message JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT
jsonb_set(
message,
ARRAY['meta'],
jsonb_build_object(

'name',anon.fake_last_name(),
'ip_address', md5((message->'meta'->'ip_addr')::TEXT),
'email', NULL

)
) - ARRAY['content'];

$func$;

SELECT my_masks.clean_comment(message)
FROM website_comment;

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.clean_comment(message)';

4 - Generalization
The main idea of generalization is to ”blur” the original data. For
example, instead of saying ”Mister X was born on July 25, 1989”, we
can say ”Mister X was born is the 80’s”. The information is still true,
but it is less precise and it can’t be used to reidentify the subject.

44

The Story
Paul hired dozens of employees over the years. He kept a record of their hair
color, size and medical condition.

Paul wants to extract weird stats from these details. He provides generalized
views to Pierre.

How it works
Learning Objective
In this section, we will learn:

• The difference between masking and generalization
• The concept of ”K-anonymity”

The ”employee” table
DROP TABLE IF EXISTS employee CASCADE;

CREATE TABLE employee (
id INT PRIMARY KEY,
full_name TEXT,
first_day DATE, last_day DATE,
height INT,
hair TEXT, eyes TEXT, size TEXT,
asthma BOOLEAN,
CHECK(hair = ANY(ARRAY['bald','blond','dark','red'])),
CHECK(eyes = ANY(ARRAY['blue','green','brown'])) ,
CHECK(size = ANY(ARRAY['S','M','L','XL','XXL']))

);

This is awkward and illegal.

Loading the data:

curl -Ls https://dali.bo/employee -o /tmp/employee.tsv
head -n3 /tmp/employee.tsv

COPY employee FROM '/tmp/employee.tsv'

SELECT count(*) FROM employee;

SELECT full_name,first_day, hair, size, asthma
FROM employee
LIMIT 3;

45

Data suppression
Paul wants to find if there’s a correlation between asthma and the eyes color.

He provides the following view to Pierre.

DROP MATERIALIZED VIEW IF EXISTS v_asthma_eyes;

CREATE MATERIALIZED VIEW v_asthma_eyes AS
SELECT eyes, asthma
FROM employee;

SELECT *
FROM v_asthma_eyes
LIMIT 3;

Pierre can now write queries over this view.

SELECT
eyes,
100*COUNT(1) FILTER (WHERE asthma) / COUNT(1) AS asthma_rate

FROM v_asthma_eyes
GROUP BY eyes;

Pierre just proved that asthma is caused by green eyes.

K-Anonymity
The ’asthma’ and ’eyes’ are considered as indirect identifiers.

SECURITY LABEL FOR k_anonymity ON COLUMN v_asthma_eyes.eyes
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity ON COLUMN v_asthma_eyes.asthma
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_asthma_eyes');

The v_asthma_eyes has ’2-anonymity’. This means that each quasi-identifier
combination (the ’eyes-asthma’ tuples) occurs in at least 2 records for a dataset.

In other words, it means that each individual in the view cannot be distinguished
from at least 1 (k-1) other individual.

Range and Generalization functions
DROP MATERIALIZED VIEW IF EXISTS v_staff_per_month;
CREATE MATERIALIZED VIEW v_staff_per_month AS
SELECT

anon.generalize_daterange(first_day,'month') AS first_day,
anon.generalize_daterange(last_day,'month') AS last_day

46

FROM employee;

SELECT *
FROM v_staff_per_month
LIMIT 3;

Pierre can write a query to find how many employees were hired in november
2021.

SELECT COUNT(1)
FILTER (

WHERE make_date(2019,11,1)
BETWEEN lower(first_day)
AND COALESCE(upper(last_day),now())

)
FROM v_staff_per_month;

Declaring the indirect identifiers

Now let’s check the k-anonymity of this view by declaring which columns are
indirect identifiers.

SECURITY LABEL FOR anon ON COLUMN v_staff_per_month.first_day
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR anon ON COLUMN v_staff_per_month.last_day
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_month');

In this case, the k factor is 1 which means that at least one unique individual
can be identified directly by his/her first and last dates.

Note that the security label provider is k_anonymity and not anon.

Exercises
E401 - Simplify v_staff_per_month and decrease granularity

Generalizing dates per month is not enough. Write another view called
’v_staff_per_year’ that will generalize dates per year.

Also simplify the view by using a range of int to store the years instead of a
date range.

E402 - Staff progression over the years

How many people worked for Paul for each year between 2018 and 2021?

47

E403 - Reaching 2-anonymity for the v_staff_per_year view

What is the k-anonymity of ‘v_staff_per_month_years’?

Solutions
S401

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_year;

CREATE MATERIALIZED VIEW v_staff_per_year AS
SELECT
int4range(
extract(year from first_day)::INT,
extract(year from last_day)::INT,
'[]'

) AS period
FROM employee;

‘[]’ will include the upper bound

SELECT *
FROM v_staff_per_year
LIMIT 3;

S402

SELECT
year,
COUNT(1) FILTER (

WHERE year <@ period
)

FROM
generate_series(2018,2021) year,
v_staff_per_year

GROUP BY year
ORDER BY year ASC;

S403

SECURITY LABEL FOR anon ON COLUMN v_staff_per_year.period
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_year');

48

Conclusion

Clean up !
DROP EXTENSION anon CASCADE;

REASSIGN OWNED BY jack TO postgres;
REVOKE ALL ON SCHEMA public FROM jack;

REASSIGN OWNED BY paul TO postgres;

REASSIGN OWNED BY pierre TO postgres;

DROP DATABASE IF EXISTS boutique;

DROP ROLE IF EXISTS jack;
DROP ROLE IF EXISTS paul;
DROP ROLE IF EXISTS pierre;

Many Masking Strategies
• Static Masking : perfect for ”once-and-for-all” anonymization

• Dynamic Masking : useful when one user is untrusted

• Anonymous Dumps : can be used in CI/CD workflows

• Generalization good for statistics and data science

Many Masking Functions
• Destruction and partial destruction
• Adding Noise
• Randomization
• Faking and Advanced Faking
• Pseudonymization
• Generic Hashing
• Custom masking

RTFM -> Masking Functions

49

https://postgresql-anonymizer.readthedocs.io/en/stable/static_masking/
https://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking/
https://postgresql-anonymizer.readthedocs.io/en/stable/anonymous_dumps/
https://postgresql-anonymizer.readthedocs.io/en/stable/generalization/
https://postgresql-anonymizer.readthedocs.io/en/latest/masking_functions/

Advantages
• Masking rules written in SQL
• Masking rules stored in the database schema
• No need for an external ETL
• Works with all current versions of PostgreSQL
• Multiple strategies, multiple functions

Drawbacks
• Does not work with other databases (hence the name)
• Lack of feedback for huge tables (> 10 TB)

Also…
Other projects you may like

• pg_sample : extract a small dataset from a larger PostgreSQL database
• PostgreSQL Faker : An advanced faking extension based on the python

Faker lib

Help Wanted!
This is a free and open project!

labs.dalibo.com/postgresql_anonymizer

Please send us feedback on how you use it, how it fits your needs (or not), etc.

This is a 4 hour workshop!
Sources are here: gitlab.com/dalibo/postgresql_anonymizer

Download the PDF Handout

Questions?
:::

PostgreSQL Anonymizer How To
This is a 4 hours workshop that demonstrates various anonymization techniques.

50

https://github.com/mla/pg_sample
https://gitlab.com/dalibo/postgresql_faker
https://labs.dalibo.com/postgresql_anonymizer
https://gitlab.com/dalibo/postgresql_anonymizer/-/tree/master/docs/how-to
https://dalibo.gitlab.io/postgresql_anonymizer/how-to.handout.pdf

Write
This workshop is written with jupyter-notebook. The *.ipynb files are mixing
markdown content with live SQL statements that are executed on a PostgreSQL
instance.

pip install -r requirements.txt
jupyter notebook

Build
The source files are converted to markdown and then exported to pdf, slides,
epub, etc.

make

The export files will be available in the _build folder.

Type make help for more details
title: index draft: false toc: true —

Figure 2: PostgreSQL Anonymizer

Anonymization & Data Masking for Postgres
PostgreSQL Anonymizer is an extension to mask or replace personally identifi-
able information (PII) or commercially sensitive data from a Postgres database.

The project has a declarative approach of anonymization. This means you
can declare the masking rules using the PostgreSQL Data Definition Language
(DDL) and specify your anonymization policy inside the table definition itself.

The main goal of this extension is to offer anonymization by design. We
firmly believe that data masking rules should be written by the people who
develop the application because they have the best knowledge of how the data
model works. Therefore masking rules must be implemented directly inside the
database schema.

Once the masking rules are defined, you can apply them using 5 different mask-
ing methods :

51

https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://postgresql-anonymizer.readthedocs.io/en/stable/declare_masking_rules/

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Masking Views : Build dedicated views for the masked users
• Masking Data Wrappers : Apply masking rules on external data

Each method has its pros and cons. Different masking methods may be used in
different contexts. In any case, masking the data directly inside the PostgreSQL
instance without using an external tool is crucial to limit the exposure and the
risks of data leak.

In addition, various Masking Functions are available : randomization, faking,
partial scrambling, shuffling, noise or even your own custom function!

Finally, the extension offers a panel of detection functions that will try to guess
which columns need to be anonymized.

Quick Start
Step 0. Launch docker image of the project

ANON_IMG=registry.gitlab.com/dalibo/postgresql_anonymizer
docker run --name anon_quickstart --detach -e POSTGRES_PASSWORD=x $ANON_IMG
docker exec -it anon_quickstart psql -U postgres

Step 1. Create a database and load the extension in it

CREATE DATABASE demo;
ALTER DATABASE demo SET session_preload_libraries = 'anon';

\connect demo
You are now connected to database "demo" as user "postgres".

Step 2. Create a table

CREATE TABLE people AS
SELECT 153478 AS id,

'Sarah' AS firstname,
'Conor' AS lastname,
'0609110911' AS phone

;

SELECT * FROM people;
id | firstname | lastname | phone

--------+-----------+----------+------------
153478 | Sarah | Conor | 0609110911

Step 3. Create the extension and activate the masking engine

CREATE EXTENSION anon;
ALTER DATABASE demo SET anon.transparent_dynamic_masking TO true;

52

anonymous_dumps.md
static_masking.md
dynamic_masking.md
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_views/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_data_wrappers/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/stable/detection/

Step 4. Declare a masked user

CREATE ROLE skynet LOGIN;

SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

GRANT pg_read_all_data to skynet;

Step 5. Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN people.lastname
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

SECURITY LABEL FOR anon ON COLUMN people.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 6. Connect with the masked user

\connect - skynet
You are now connected to database "demo" as user "skynet"

SELECT * FROM people;
id | firstname | lastname | phone

--------+-----------+-----------+------------
153478 | Sarah | Stranahan | 06******11

Success Stories
With PostgreSQL Anonymizer we integrate, from the design of the
database, the principle that outside production the data must be
anonymized. Thus we can reinforce the GDPR rules, without affect-
ing the quality of the tests during version upgrades for example.

— Thierry Aimé, Office of Architecture and Standards in the French
Public Finances Directorate General (DGFiP)

Thanks to PostgreSQL Anonymizer we were able to define complex
masking rules in order to implement full pseudonymization of our
databases without losing functionality. Testing on realistic data
while guaranteeing the confidentiality of patient data is a key point
to improve the robustness of our functionalities and the quality of
our customer service.

— Julien Biaggi, Product Owner at bioMérieux

I just discovered your postgresql_anonymizer extension and used
it at my company for anonymizing our user for local development.

53

Nice work!

— Max Metcalfe

If this extension is useful to you, please let us know !

Support
We need your feedback and ideas ! Let us know what you think of this tool,
how it fits your needs and what features are missing.

You can either open an issue or send a message at contact@dalibo.com.

Figure 3: PostgreSQL Anonymizer

Anonymization & Data Masking for Postgres
PostgreSQL Anonymizer is an extension to mask or replace personally identifi-
able information (PII) or commercially sensitive data from a Postgres database.

The project has a declarative approach of anonymization. This means you
can declare the masking rules using the PostgreSQL Data Definition Language
(DDL) and specify your anonymization policy inside the table definition itself.

The main goal of this extension is to offer anonymization by design. We
firmly believe that data masking rules should be written by the people who
develop the application because they have the best knowledge of how the data
model works. Therefore masking rules must be implemented directly inside the
database schema.

Once the masking rules are defined, you can apply them using 5 different mask-
ing methods :

• Anonymous Dumps : Simply export the masked data into an SQL file
• Static Masking : Remove the PII according to the rules
• Dynamic Masking : Hide PII only for the masked users
• Masking Views : Build dedicated views for the masked users
• Masking Data Wrappers : Apply masking rules on external data

Each method has its pros and cons. Different masking methods may be used in
different contexts. In any case, masking the data directly inside the PostgreSQL

54

https://gitlab.com/dalibo/postgresql_anonymizer/issues
mailto:contact@dalibo.com
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://postgresql-anonymizer.readthedocs.io/en/stable/declare_masking_rules/
anonymous_dumps.md
static_masking.md
dynamic_masking.md
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_views/
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_data_wrappers/

instance without using an external tool is crucial to limit the exposure and the
risks of data leak.

In addition, various Masking Functions are available : randomization, faking,
partial scrambling, shuffling, noise or even your own custom function!

Finally, the extension offers a panel of detection functions that will try to guess
which columns need to be anonymized.

Quick Start
Step 0. Launch docker image of the project

ANON_IMG=registry.gitlab.com/dalibo/postgresql_anonymizer
docker run --name anon_quickstart --detach -e POSTGRES_PASSWORD=x $ANON_IMG
docker exec -it anon_quickstart psql -U postgres

Step 1. Create a database and load the extension in it

CREATE DATABASE demo;
ALTER DATABASE demo SET session_preload_libraries = 'anon'

\connect demo
You are now connected to database "demo" as user "postgres".

Step 2. Create a table

CREATE TABLE people AS
SELECT 153478 AS id,

'Sarah' AS firstname,
'Conor' AS lastname,
'0609110911' AS phone

;

SELECT * FROM people;
id | firstname | lastname | phone

--------+-----------+----------+------------
153478 | Sarah | Conor | 0609110911

Step 3. Create the extension and activate the masking engine

CREATE EXTENSION anon;
ALTER DATABASE demo SET anon.transparent_dynamic_masking TO true;

Step 4. Declare a masked user

CREATE ROLE skynet LOGIN;

SECURITY LABEL FOR anon ON ROLE skynet IS 'MASKED';

GRANT pg_read_all_data to skynet;

55

https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/
https://postgresql-anonymizer.readthedocs.io/en/stable/detection/

Step 5. Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN people.lastname
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

SECURITY LABEL FOR anon ON COLUMN people.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 6. Connect with the masked user

\connect - skynet
You are now connected to database "demo" as user "skynet"

SELECT * FROM people;
id | firstname | lastname | phone

--------+-----------+-----------+------------
153478 | Sarah | Stranahan | 06******11

Success Stories
With PostgreSQL Anonymizer we integrate, from the design of the
database, the principle that outside production the data must be
anonymized. Thus we can reinforce the GDPR rules, without affect-
ing the quality of the tests during version upgrades for example.

— Thierry Aimé, Office of Architecture and Standards in the French
Public Finances Directorate General (DGFiP)

Thanks to PostgreSQL Anonymizer we were able to define complex
masking rules in order to implement full pseudonymization of our
databases without losing functionality. Testing on realistic data
while guaranteeing the confidentiality of patient data is a key point
to improve the robustness of our functionalities and the quality of
our customer service.

— Julien Biaggi, Product Owner at bioMérieux

I just discovered your postgresql_anonymizer extension and used
it at my company for anonymizing our user for local development.
Nice work!

— Max Metcalfe

If this extension is useful to you, please let us know !

56

Support
We need your feedback and ideas ! Let us know what you think of this tool,
how it fits your needs and what features are missing.

You can either open an issue or send a message at contact@dalibo.com.

open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/issues
title: INSTALL draft: false toc: true —

INSTALL
The installation process is composed of 4 basic steps:

• Step 1: Deploy the extension into the host server
• Step 2: Load the extension in the PostgreSQL instance
• Step 3: Create and Initialize the extension inside the database

There are multiple ways to install the extension :

• Install on RedHat / Rocky Linux / Alma Linux
• Install on Debian / Ubuntu
• Install with Ansible
• Install with PGXN
• Install from source
• Install with docker
• Install as a black box
• Install on MacOS
• Install on Windows
• Install in the cloud
• Uninstall

In the examples below, we load the extension (step2) using a parameter called
session_preload_libraries but there are other ways to load it. See Load the
extension for more details.

If you’re having any problem, check the Troubleshooting section.

Choose your version : Stable or Latest ?
This extension is available in two versions :

• stable is recommended for production
• latest is useful if you want to test new features

Install on RedHat / Rocky Linux / Alma Linux
!!! warning “New RPM repository !”

57

https://gitlab.com/dalibo/postgresql_anonymizer/issues
mailto:contact@dalibo.com
https://gitlab.com/dalibo/postgresql_anonymizer/issues

DO NOT use the package provided by the PGDG RPM repository.
It is obsolete.

Step 0: Add the DaLibo Labs RPM repository to your system.

sudo dnf install https://yum.dalibo.org/labs/dalibo-labs-4-1.noarch.rpm

Alternatively you can download the latest version from the Gitlab Package
Registry.

Step 1: Deploy

sudo yum install postgresql_anonymizer_16

(Replace 16 with the major version of your PostgreSQL instance.)

Step 2: Load the extension.

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon to the current list)

The setting will be applied for the next sessions, i.e. You need to
reconnect to the database for the change to visible

Step 3: Close your session and open a new one. Create the extension.

CREATE EXTENSION anon;
SELECT anon.init();

All new connections to the database can now use the extension.

Install on Debian / Ubuntu
This is the recommended way to install the stable version

Step 0: Add the DaLibo Labs DEB Repo to your system.

apt install curl lsb-release
echo deb http://apt.dalibo.org/labs $(lsb_release -cs)-dalibo main > /etc/apt/sources.list.d/dalibo-labs.list
curl -fsSL -o /etc/apt/trusted.gpg.d/dalibo-labs.gpg https://apt.dalibo.org/labs/debian-dalibo.gpg
apt update

Alternatively you can download the latest version from the Gitlab Package
Registry.

Step 1: Deploy

sudo apt install postgresql_anonymizer_16

(Replace 16 with the major version of your PostgreSQL instance.)

Step 2: Load the extension.

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon the current list)

58

https://yum.dalibo.org/labs/
https://gitlab.com/dalibo/postgresql_anonymizer/-/packages
https://gitlab.com/dalibo/postgresql_anonymizer/-/packages
https://apt.dalibo.org/labs/
https://gitlab.com/dalibo/postgresql_anonymizer/-/packages
https://gitlab.com/dalibo/postgresql_anonymizer/-/packages

The setting will be applied for the next sessions, i.e. You need to
reconnect to the database for the change to visible

Step 3: Close your session and open a new one. Create the extension.

CREATE EXTENSION anon;
SELECT anon.init();

All new connections to the database can now use the extension.

Install with Ansible
This method will install the stable extension

Step 1a: Install the Dalibo PostgreSQL Essential Ansible Collection

ansible-galaxy collection install dalibo.advanced

Step 1b: Write a playbook (e.g. anon.yml) to the postgresql_anonymizer role
to the database servers. For instance:

- name: Install the PostgreSQL Anonymizer extension on all hosts of the pgsql group
hosts: pgsql
roles:

- dalibo.advanced.anon

Step 1c: Launch the playbook

ansible-playbook anon.yml

Step 2: Load the extension.

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon the current list)

The setting will be applied for the next sessions, i.e. You need to
reconnect to the database for the change to visible

Step 3: Close your session and open a new one. Create the extension.

CREATE EXTENSION anon;
SELECT anon.init();

All new connections to the database can now use the extension.

Install With PGXN
!!! warning

This method is not available currently but you can use the
"Install From Source" method below which is very similar.

59

https://galaxy.ansible.com/ui/repo/published/dalibo/advanced/
https://pgxn.org/

Install From Source
This is the recommended way to install the latest extension

Important: Building the extension requires a full Rust development environ-
ment. It is not recommended to build it on a production server.

Before anything else, you need to install the PGRX System Requirements and
install and initialise PGRX itself using

cargo install cargo-pgrx --version 0.14.3 --locked
cargo pgrx init

NOTE: You may need to specify your pg_config location in the second com-
mand by using the --pg{version} flag (e.g. --pg16 /usr/lib/postgresql/16/bin/pg_config).

Step 0: Download the source from the official repository on Gitlab, either the
archive of the latest release, or clone the latest branch:

git clone https://gitlab.com/dalibo/postgresql_anonymizer.git

Step 1: Build the project like any other PostgreSQL extension:

make extension
sudo make install

NOTE: If you have multiple versions of PostgreSQL on the server or if the
package does not build/install correctly, you may need to specify which version
is your target by defining the PG_CONFIG and PGVER env variable like this:

make extension PG_CONFIG=/usr/lib/postgresql/14/bin/pg_config PGVER=pg14
sudo make install PG_CONFIG=/usr/lib/postgresql/14/bin/pg_config PGVER=pg14

Step 2: Load the extension:

Please note that in order to load the extension you must connect to Postgresql
with a user having superuser privileges. Also, the extension (as all Postgresql
extensions) will be created only in the given database and not globally.

ALTER DATABASE foo SET session_preload_libraries = 'anon';

(If you’re already loading extensions that way, just add anon the current list)

Step 3: Close your session and open a new one on the same PostgreSQL database.
Create the extension.

CREATE EXTENSION anon;
SELECT anon.init();

All new connections to the given database can now use the extension.

Install with Docker
If you can’t (or don’t want to) install the PostgreSQL Anonymizer extension
directly inside your instance, then you can use the docker image :

60

https://github.com/pgcentralfoundation/pgrx?tab=readme-ov-file#system-requirements
https://gitlab.com/dalibo/postgresql_anonymizer/
https://gitlab.com/dalibo/postgresql_anonymizer/-/releases

docker pull registry.gitlab.com/dalibo/postgresql_anonymizer:stable

The image is available with 2 two tags:

• latest (default) contains the current developments
• stable is the based on the previous release

You can run the docker image like the regular postgres docker image.

For example:

Launch a postgres docker container

docker run -d -e POSTGRES_PASSWORD=x -p 6543:5432 registry.gitlab.com/dalibo/postgresql_anonymizer

then connect:

export PGPASSWORD=x
psql --host=localhost --port=6543 --user=postgres

The extension is already created and initialized, you can use it directly:

SELECT anon.partial_email('daamien@gmail.com');
partial_email

da******@gm******.com

(1 row)

Note: The docker image is based on the latest PostgreSQL version and we do
not plan to provide a docker image for each version of PostgreSQL. However
you can build your own image based on the version you need like this:

DOCKER_PG_MAJOR_VERSION=16 make docker_image

Install as a “Black Box”
see Anonymous Dumps

Install on MacOS
WE DO NOT PROVIDE COMMUNITY SUPPORT FOR THIS EX-
TENSION ON MACOS SYSTEMS.

However it should be possible to build the extension if you install the PGRX
Mac OS system requirements and then follow the regular install from source
procedure.

Install on Windows
PostgreSQL Anonymizer is built upon the [PGRX] framework and currently
[PGRX] does not support compiling PostgreSQL extensions for Windows.

61

https://hub.docker.com/_/postgres
anonymous_dumps.md
https://github.com/pgcentralfoundation/pgrx?tab=readme-ov-file#system-requirements
https://github.com/pgcentralfoundation/pgrx?tab=readme-ov-file#system-requirements

This is means that there’s no native build of PostgreSQL Anonymizer for Win-
dows.

However is it possible to run PostgreSQL inside a WSL2 container, which is
basically an Ubuntu subsystem running on Windows.

You can then install PostgreSQL Anonymizer inside the WSL2 container like
you would on a regular Ubuntu server.

Please read the Windows documentation for more details:

• Install WSL2
• Install PostgreSQL in WSL2

Install in the cloud
This extension must be installed with superuser privileges, which is something
that most Database As A Service platforms (DBaaS), such as Amazon RDS
or Microsoft Azure SQL, do not allow. They must add the extension to their
catalog in order for you to use it.

At the time we are writing this (Feb. 2025), the following platforms provide
PostgreSQL Anonymizer:

• Alibaba Cloud
• Crunchy Bridge
• Google Cloud SQL
• Microsoft Azure Database
• Neon
• Postgres.ai
• Tembo

Please refer to their own documentation on how to activate the extension as
they might have a platform-specific install procedure.

If your favorite DBaaS provider is not present in the list above, there is not
much we can do about it… Although we have open discussions with some major
actors in this domain, we DO NOT have internal knowledge on whether or not
they will support it in the near future. If privacy and anonymity are a concern
to you, we encourage you to contact the customer service of these platforms and
ask them directly if they plan to add this extension to their catalog.

Addendum: Alternative way to load the extension
It is recommended to load the extension like this:

ALTER DATABASE foo SET session_preload_libraries='anon'

It has several benefits:

62

https://learn.microsoft.com/windows/wsl/install
https://learn.microsoft.com/windows/wsl/tutorials/wsl-database#install-postgresql
https://www.alibabacloud.com/help/en/rds/apsaradb-rds-for-postgresql/extensions-supported-by-apsaradb-rds-for-postgresql
https://access.crunchydata.com/documentation/postgresql-anonymizer/latest/
https://cloud.google.com/sql/docs/postgres/extensions#postgresql_anonymizer
https://learn.microsoft.com/fr-fr/azure/postgresql/flexible-server/concepts-extensions
https://neon.tech/docs/extensions/postgresql-anonymizer
https://postgres.ai/docs/database-lab/masking
https://tembo.io/blog/anon-dump

• First, it will be dumped by pg_dump with the-C option, so the database
dump will be self efficient.

• Second, it is propagated to a standby instance by streaming replication.
Which means you can use the anonymization functions on a read-only
clone of the database (provided the extension is installed on the standby
instance)

However, you can load the extension globally in the instance using the
shared_preload_libraries parameter :

ALTER SYSTEM SET shared_preload_libraries = 'anon'"

Then restart the PostgreSQL instance.

Addendum: Troubleshooting
If you are having difficulties, you may have missed a step during the installation
processes. Here’s a quick checklist to help you:

Check that the extension is present

First, let’s see if the extension was correctly deployed:

ls $(pg_config --sharedir)/extension/anon
ls $(pg_config --pkglibdir)/anon.so

If you get an error, the extension is probably not present on host server. Go
back to step 1.

Check that the extension is loaded

Now connect to your database and look at the configuration with:

SHOW local_preload_libraries;
SHOW session_preload_libraries;
SHOW shared_preload_libraries;

If you don’t see anon in any of these parameters, go back to step 2.

Check that the extension is created

Again connect to your database and type:

SELECT * FROM pg_extension WHERE extname= 'anon';

If the result is empty, the extension is not declared in your database. Go back
to step 3.

63

Check that the extension is initialized

Finally, look at the state of the extension:

SELECT anon.is_initialized();

If the result is not t, the extension data is not present. Go back to step 3.

Uninstall
Step 1: Remove all rules

SELECT anon.remove_masks_for_all_columns();
SELECT anon.remove_masks_for_all_roles();

Although this step is not mandatory, it is highly recommended.

In some situations ever, it may be useful to keep the masking rules inside the
database schema even if the anon extension is removed ! Keep in mind that
pg_dump and pg_restore both have an option --no-security-labels to ex-
clude the masking rules when you want to import/export the database.

Step 2: Drop the extension

DROP EXTENSION anon;

Step 3: Unload the extension

ALTER DATABASE foo RESET session_preload_libraries;

Or modify shared_preload_libraries depending on how you loaded the ex-
tension…

Step 4: Uninstall the extension

For Redhat / Rocky:

sudo yum remove postgresql_anonymizer_17

Replace 17 by the version of your postgresql instance.

Compatibility Guide
PostgreSQL Anonymizer is designed to work on the most current setups. As we
are trying to find the right balance between innovation and backward compati-
bility, we define a comprehensive list of platforms and software that we officially
support for each version.

Version Released EOL Postgres OS
2.0 dec. 2024 dec. 2025 13 to 17 RHEL 8 & 9, Debian 11 & 12, Ubuntu 24.04
1.3 mar. 2024 dec. 2024 12 to 16 RHEL 8 & 9
1.2 jan. 2024 mar. 2024 12 to 16 RHEL 8 & 9
1.1 sept. 2022 jan. 2024 11 to 15 RHEL 7 & 8

64

https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html

The extension may work on other distributions than the ones above, however
provide packages only for these versions and we do not guarantee free community
support for other OS.

If you need support on other platforms, we may offer commercial support for it.
Please contact our commercial team at contact@dalibo.com for more details. —
title: legacy_dynamic_masking draft: false toc: true —

Hide sensitive data from a “masked” user using
legacy dynamic masking

This page present the Legacy Dynamic Masking method that
was developed in version 1. This method is now replaced by the
Transparent Dynamic Masking method which is better in many ways.
The Legacy Dynamic Masking is still supported in version3 but
it will be deprecated in version 3.

You can hide some data from a role by declaring this role as a “MASKED” one.
Other roles will still access the original data.

Example:

CREATE TABLE people (id TEXT, firstname TEXT, lastname TEXT, phone TEXT);
INSERT INTO people VALUES ('T1','Sarah', 'Conor','0609110911');
SELECT * FROM people;

=# SELECT * FROM people;
id | firstname | lastname | phone

----+----------+----------+------------
T1 | Sarah | Conor | 0609110911

(1 row)

Step 1 : Activate the dynamic masking engine

=# CREATE EXTENSION IF NOT EXISTS anon CASCADE;
=# SELECT anon.start_dynamic_masking();

Step 2 : Declare a masked user

=# CREATE ROLE skynet LOGIN;
=# SECURITY LABEL FOR anon ON ROLE skynet
-# IS 'MASKED';

Step 3 : Declare the masking rules

SECURITY LABEL FOR anon ON COLUMN people.name
IS 'MASKED WITH FUNCTION anon.random_last_name()';

65

mailto:contact@dalibo.com
dynamic_masking.md

SECURITY LABEL FOR anon ON COLUMN people.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$******$$,2)';

Step 4 : Connect with the masked user

=# \c - skynet
=> SELECT * FROM people;
id | firstname | lastname | phone

----+----------+-----------+------------
T1 | Sarah | Stranahan | 06******11

(1 row)

How to change the type of a masked column
When dynamic masking is activated, you are not allowed to change the datatype
of a column if there’s a mask upon it.

To modify a masked column, you need to switch of temporarily the masking
engine like this:

BEGIN;
SELECT anon.stop_dynamic_masking();
ALTER TABLE people ALTER COLUMN phone TYPE VARCHAR(255);
SELECT anon.start_dynamic_masking();
COMMIT;

How to drop a masked table
The dynamic masking engine will build masking views upon the masked tables.
This means that it is not possible to drop a masked table directly. You will get
an error like this :

DROP TABLE people;
psql: ERROR: cannot drop table people because other objects depend on it
DETAIL: view mask.company depends on table people

To effectively remove the table, it is necessary to add the CASCADE option, so
that the masking view will be dropped too:

DROP TABLE people CASCADE;

How to unmask a role
Simply remove the security label like this:

SECURITY LABEL FOR anon ON ROLE bob IS NULL;

To unmask all masked roles at once you can type:

SELECT anon.remove_masks_for_all_roles();

66

Limitations
Listing the tables

Due to how the dynamic masking engine works, when a masked role will try to
display the tables in psql with the \dt command, then psql will not show any
tables.

This is because the search_path of the masked role is rigged.

You can try adding explicit schema you want to search, for instance:

\dt *.*
\dt public.*

Only one schema

The dynamic masking system only works with one schema (by default public).
When you start the masking engine with start_dynamic_masking(), you can
specify the schema that will be masked with:

ALTER DATABASE foo SET anon.sourceschema TO 'sales';

Then open a new session to the database and type:

SELECT start_dynamic_masking();

However static masking with anon.anonymize()and anonymous export with
anon.dump() will work fine with multiple schemas.

Performances

Dynamic Masking is known to be very slow with some queries, especially if you
try to join 2 tables on a masked key using hashing or pseudonymization.

Graphic Tools

When you are using a masked role with a graphic interface such as DBeaver
or pgAdmin, the “data” panel may produce the following error when trying to
display the content of a masked table called foo:

SQL Error [42501]: ERROR: permission denied for table foo

This is because most of these tools will directly query the public.foo table
instead of being “redirected” by the masking engine toward the mask.foo view.

In order the view the masked data with a graphic tool, you can either:

1- Open the SQL query panel and type SELECT * FROM foo

2- Navigate to Database > Schemas > mask > Views > foo
title: links draft: false toc: true —

67

Ideas and Resources
Videos / Presentations

• French: https://www.youtube.com/watch?v=KGSlp4UygdU
• English: https://www.youtube.com/watch?v=niIIFL4s-L8
• Chinese: https://www.youtube.com/watch?v=n9atI31FcSM

Similar technologies
• database anonymizer An anonymizing ETL for MySQL and PostgreSQL

• greenmask Anonymous dump utility written in Golang

• pganonymize A commandline tool for anonymizing PostgreSQL databases

• pgantomizer Anonymous dumps based on masking rules written in a
YAML file

• pgsodium and postgresql-anonymizer Pseudonymous Access To Encrypted
Table

• pg_diffix PostgreSQL extension implementing differential privacy (inac-
tive)

• pg_anonymize PostgreSQL extension implementing dynamic data
anonymization

• pg-anonymizer Dump anonymized PostgreSQL database with a NodeJS
CLI

Similar Implementations
• Dynamic Data Masking With MS SQL Server

• Citus : Using search_path and views to hide columns for reporting with
Postgres

• MariaDB : Masking with maxscale

GDPR
• Ultimate Guide to Data Anonymization

• UK ICO Anonymisation Code of Practice

• L. Sweeney, Simple Demographics Often Identify People Uniquely, 2000

• How Google anonymizes data

• IAPP’s Guide To Anonymisation

68

https://gitnet.fr/deblan/database-anonymizer
https://github.com/GreenmaskIO/greenmask
https://github.com/rheinwerk-verlag/pganonymize
https://github.com/asgeirrr/pgantomizer
https://github.com/michelp/pgsodium/blob/michelp/anonymizer-example/example/PgSodiumAnonymizer.ipynb
https://github.com/diffix/pg_diffix
https://github.com/rjuju/pg_anonymize
https://github.com/rap2hpoutre/pg-anonymizer
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://www.citusdata.com/blog/2018/07/03/masking-columns-in-postgresql/
https://www.citusdata.com/blog/2018/07/03/masking-columns-in-postgresql/
https://mariadb.com/kb/en/mariadb-enterprise/mariadb-maxscale-21-masking/
https://piwik.pro/blog/the-ultimate-guide-to-data-anonymization-in-analytics/
https://ico.org.uk/media/1061/anonymisation-code.pdf
https://dataprivacylab.org/projects/identifiability/paper1.pdf
https://policies.google.com/technologies/anonymization?hl=en
https://iapp.org/media/pdf/resource_center/Guide_to_Anonymisation.pdf

Concepts
• Differential_Privacy

• K-Anonymity

Academic Research
• L. Sweeney. k-anonymity: a model for protecting privacy. In-

ternational Journal on Uncertainty, Fuzziness and Knowledge-
based Systems, 10 (5), 2002, pp. 557-570. https://epic.org/wp-
content/uploads/privacy/reidentification/Sweeney_Article.pdf

• A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in 29th IEEE Symposium on Security and Privacy, 2008,
pp. 111–125. https://www.cs.cornell.edu/~shmat/shmat_oak08netflix.
pdf — title: masking_data_wrappers draft: false toc: true —

Masking Data Wrappers
The principle of a masking data wrappers is to use Postgres as a “masking proxy”
in front of any type of external data source. Using Foreign Data Wrappers, we
can apply masking rules to data stored in CSV files, in another RDBM, in a
NoSQL store, in a LDAP directory, etc.

PostgreSQL Masking Data Wrappers

Of course the remote data source can be another PostgreSQL instance !

Example
Here’s a basic CSV file containing application logs

$ cat /tmp/app.log
Mon Nov 04 08:25:32 2024 sarah 10.0.0.45 view_dashboard
Mon Nov 04 09:15:00 2024 mike 172.16.0.89 update_profile
Mon Nov 04 09:30:45 2024 emma 192.168.2.200 download_report
[...]

Let’s create a foreign table based on this file

CREATE EXTENSION IF NOT EXISTS file_fdw;

CREATE SERVER external_files FOREIGN DATA WRAPPER file_fdw;

CREATE SCHEMA files;

CREATE FOREIGN TABLE files.app_log
(

69

https://en.wikipedia.org/wiki/Differential_Privacy
https://en.wikipedia.org/wiki/K-anonymity
https://epic.org/wp-content/uploads/privacy/reidentification/Sweeney_Article.pdf
https://epic.org/wp-content/uploads/privacy/reidentification/Sweeney_Article.pdf
https://www.cs.cornell.edu/~shmat/shmat_oak08netflix.pdf
https://www.cs.cornell.edu/~shmat/shmat_oak08netflix.pdf
https://wiki.postgresql.org/wiki/Foreign_data_wrappers

tms TIMESTAMP,
login VARCHAR(255),
ip INET,
action TEXT

)
SERVER external_files
OPTIONS (filename '/tmp/app.log')

;

We can now declare masking rules on the columns of the foreign table, just like
we would do for a regular table.

SECURITY LABEL FOR anon ON COLUMN files.app_log.login
IS 'MASKED WITH VALUE $$CONFIDENTIAL$$';

SECURITY LABEL FOR anon ON COLUMN files.app_log.ip
IS 'MASKED WITH FUNCTION anon.dummy_ipv4()';

… and that’s it ! The masked users will now see the filtered data :

SET ROLE some_masked_user;

SELECT * FROM files.app_log LIMIT 1;
tms | login | ip | action

--------------------------+--------------+--------------+---------------
Mon Nov 04 08:23:15 2024 | CONFIDENTIAL | 85.249.91.21 | login_success

Or export the data to a new CSV file

SET ROLE some_masked_user;

COPY files.app_log TO '/tmp/anonymized_app.log'

Various Masking Strategies
The extension provides functions to implement 8 main anonymization strategies:

• Destruction
• Adding Noise
• Randomization
• Faking
• Advanced Faking
• Pseudonymization
• Generic Hashing
• Partial scrambling
• Conditional masking
• Generalization
• Using pg_catalog functions

70

masking_functions.md#conditional-masking
masking_functions.md#using-pg_catalog-functions

• Image bluring
• Write your own Masks !

Depending on your data, you may need to use different strategies on different
columns :

• For names and other ‘direct identifiers’ , Faking is often useful
• Shuffling is convenient for foreign keys
• Adding Noise is interesting for numeric values and dates
• Partial Scrambling is perfect for email address and phone numbers
• etc.

Destruction
First of all, the fastest and safest way to anonymize a data is to destroy it :-)

In many cases, the best approach to hide the content of a column is to replace
all the values with a single static value.

For instance, you can replace a entire column by the word ‘CONFIDENTIAL’
like this:

SECURITY LABEL FOR anon
ON COLUMN users.address
IS 'MASKED WITH VALUE ''CONFIDENTIAL'' ';

Adding Noise
This is also called Variance. The idea is to “shift” dates and numeric values.
For example, by applying a +/- 10% variance to a salary column, the dataset
will remain meaningful.

• anon.noise(original_value,ratio) where original_value can be an
integer, a bigint or a double precision. If the ratio is 0.33, the
return value will be the original value randomly shifted with a ratio of
+/- 33%

• anon.dnoise(original_value, interval) where original_value can be
a date, a timestamp, or a time. If interval = ‘2 days’, the return value
will be the original value randomly shifted by +/- 2 days

WARNING : The noise() masking functions are vulnerable to a form
of repeat attack, especially with Dynamic Masking. A masked user can
guess an original value by requesting its masked value multiple times and
then simply use the AVG() function to get a close approximation. (See
demo/noise_reduction_attack.sql for more details). In a nutshell, these
functions are best fitted for Anonymous Dumps and Static Masking. They
should be avoided when using Dynamic Masking.

71

masking_functions.md#write-your-own-masks
dynamic_masking.md
anonymous_dumps.md
static_masking.md
dynamic_masking.md

Randomization
The extension provides a large choice of functions to generate purely random
data :

Basic Random values

• anon.random_date() returns a date
• anon.random_string(n) returns a TEXT value containing n letters
• anon.random_zip() returns a 5-digit code
• anon.random_phone(p) returns a 8-digit phone with p as a prefix
• anon.random_hash(seed) returns a hash of a random string for a given

seed

Random between

To pick any value inside between two bounds:

• anon.random_date_between(d1,d2) returns a date between d1 and d2
• anon.random_int_between(i1,i2) returns an integer between i1 and i2
• anon.random_bigint_between(b1,b2) returns a bigint between b1 and

b2

NOTE: With these functions, the lower and upper bounds are included. For
instance anon.random_int_between(1,3) returns either 1, 2 or 3.

For more advanced interval descriptions, check out the Random in Range sec-
tion.

Random in Array

The random_in function returns an element a given array

For example:

• anon.random_in(ARRAY[1,2,3]) returns an int between 1 and 3
• anon.random_in(ARRAY['red','green','blue']) returns a text

Random in Enum

This is one especially useful when working with ENUM types!

• anon.random_in_enum(variable_of_an_enum_type) returns any val

CREATE TYPE card AS ENUM ('visa', 'mastercard', ‘amex’);

SELECT anon.random_in_enum(NULL::CARD);
random_in_enum

mastercard

72

CREATE TABLE customer (
id INT,
...
credit_card CARD

);

SECURITY LABEL FOR anon ON COLUMN customer.creditcard
IS 'MASKED WITH FUNCTION anon.random_in_enum(creditcard)'

Random in Range

RANGE types are a powerful way to describe an interval of values, where can
define inclusive or excluvive bounds:

https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-
EXAMPLES

There a function for each subtype of range:

• anon.random_in_int4range('[5,6)') returns an INT of value 5
• anon.random_in_int8range('(6,7]') returns a BIGINT of value 7
• anon.random_in_numrange('[0.1,0.9]') returns a NUMERIC between

0.1 and 0.9
• anon.random_in_daterange('[2001-01-01, 2001-12-31)') returns a

date in 2001
• anon.random_in_tsrange('[2022-10-01,2022-10-31]') returns a

TIMESTAMP in october 2022
• anon.random_in_tstzrange('[2022-10-01,2022-10-31]') returns a

TIMESTAMP WITH TIMEZONE in october 2022

NOTE: It is not possible to get a random value from a RANGE with an infinite
bound. For example anon.random_in_int4range('[2022,)') returns NULL.

Random Sequence ID

When masking a SERIAL columns it can be useful to general a UNIQUE value
based on a sequence.

• anon.random_id() returns a BIGINT
• anon.random_id_int() returns a INT
• anon.random_id_small_int() returns a SMALLINT

Each call to these functions will return a incremented value much like the
[nextval()] function.

At any time, you can reset the current sequence value with a new value. For
instance:

SELECT pg_catalog.setval('anon.random_id_seq', 42);

73

https://www.postgresql.org/docs/current/rangetypes.html
https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-EXAMPLES
https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-EXAMPLES

Faking
The idea of Faking is to replace sensitive data with random-but-plausible
values. The goal is to avoid any identification from the data record while re-
maining suitable for testing, data analysis and data processing.

In order to use the faking functions, you have to init() the extension in your
database first:

SELECT anon.init();

The init() function will import a default dataset of random data (iban, names,
cities, etc.).

This dataset is in English and very small (1000 values for each
category). If you want to use localized data or load a specific dataset,
please read the Custom Fake Data section.

Once the fake data is loaded, you have access to these faking functions:

• anon.fake_address() returns a complete post address
• anon.fake_city() returns an existing city
• anon.fake_country() returns a country
• anon.fake_company() returns a generic company name
• anon.fake_email() returns a valid email address
• anon.fake_first_name() returns a generic first name
• anon.fake_iban() returns a valid IBAN
• anon.fake_last_name() returns a generic last name
• anon.fake_postcode() returns a valid zipcode
• anon.fake_siret() returns a valid SIRET

For TEXT and VARCHAR columns, you can use the classic Lorem Ipsum gen-
erator:

• anon.lorem_ipsum() returns 5 paragraphs
• anon.lorem_ipsum(2) returns 2 paragraphs
• anon.lorem_ipsum(paragraphs := 4) returns 4 paragraphs
• anon.lorem_ipsum(words := 20) returns 20 words
• anon.lorem_ipsum(characters := 7) returns 7 characters
• anon.lorem_ipsum(characters := anon.length(table.column))

returns the same amount of characters as the original string

Advanced Faking
Generating fake data is a complex topic. The fake_ functions provided above
are limited to basic use case. For more advanced faking methods, in particular
if you are looking for localized fake data, PostgreSQL Anonymizer provides
an advanced faking engine with localisation support.

This engine (fake-rs) is available via more than 70 functions with the dummy_
prefix:

74

custom_fake_data.md
https://lipsum.com
https://github.com/cksac/fake-rs

tips:

The fake_* and dummy_* functions achieve the same goal.

The fake_* functions are the first implementation in pl/pgsql. They were intro-
duced in Version 1. It’s a rather naïve and limited approach.

The dummy_* functions are a new implementation based on a Rust library. It
provides a more advanced fake generator and adds localization. It was introduced
in Version 2.

New users should always prefer the dummy_* functions. The fake_* functions
are kept for backward compatibility.

• anon.dummy_bic()
• anon.dummy_bs()
• anon.dummy_bs_adj()
• anon.dummy_bs_noun()
• anon.dummy_bs_verb()
• anon.dummy_building_number()
• anon.dummy_buzzword()
• anon.dummy_buzzword_middle()
• anon.dummy_buzzword_tail()
• anon.dummy_catchphrase()
• anon.dummy_cell_number()
• anon.dummy_city_name()
• anon.dummy_city_prefix()
• anon.dummy_city_suffix()
• anon.dummy_color()
• anon.dummy_company_name()
• anon.dummy_company_suffix()
• anon.dummy_country_code()
• anon.dummy_country_name()
• anon.dummy_credit_card_number()
• anon.dummy_currency_code()
• anon.dummy_currency_name()
• anon.dummy_currency_symbol()
• anon.dummy_dir_path()
• anon.dummy_domain_suffix()
• anon.dummy_file_extension()
• anon.dummy_file_name()
• anon.dummy_file_path()
• anon.dummy_first_name()
• anon.dummy_free_email()
• anon.dummy_free_email_provider()
• anon.dummy_health_insurance_code()
• anon.dummy_hex_color()
• anon.dummy_hsl_color()

75

• anon.dummy_hsla_color()
• anon.dummy_industry()
• anon.dummy_ip()
• anon.dummy_ipv4()
• anon.dummy_ipv6()
• anon.dummy_isbn()
• anon.dummy_isbn13()
• anon.dummy_isin()
• anon.dummy_last_name()
• anon.dummy_latitude()
• anon.dummy_licence_plate()
• anon.dummy_longitude()
• anon.dummy_mac_address()
• anon.dummy_name()
• anon.dummy_name_with_title()
• anon.dummy_phone_number()
• anon.dummy_post_code()
• anon.dummy_profession()
• anon.dummy_rfc_status_code()
• anon.dummy_rgb_color()
• anon.dummy_rgba_color()
• anon.dummy_safe_email()
• anon.dummy_secondary_address()
• anon.dummy_secondary_address_type()
• anon.dummy_state_abbr()
• anon.dummy_state_name()
• anon.dummy_street_name()
• anon.dummy_street_suffix()
• anon.dummy_suffix()
• anon.dummy_timezone()
• anon.dummy_title()
• anon.dummy_user_agent()
• anon.dummy_username()
• anon.dummy_uuidv1()
• anon.dummy_uuidv3()
• anon.dummy_uuidv4()
• anon.dummy_uuidv5()
• anon.dummy_valid_statux_code()
• anon.dummy_word()
• anon.dummy_words(int4range)
• anon.dummy_zip_code()

For each of this function, you can add the _locale(...) suffix and specify in
which local context you want.

For example:

76

SELECT anon.dummy_last_name();
dummy_last_name

Tillman

SELECT anon.dummy_last_name_locale('fr_FR');
dummy_last_name_locale

Granier

SELECT anon.dummy_last_name_locale('pt_BR');
dummy_last_name_locale

Barreto

Currently 7 locales are available: ar_SA, en_US(default), fr_FR, ja_JP,
pt_BR, zh_CN, zh_TW.

Not that some dummy_ functions are not implemented for certain locales. If
you wish to contribute or ask for missing fake data, please contact directly the
fake-rs project, which is the library that this extension is using under the hood
!

Pseudonymization
Pseudonymization is similar to Faking in the sense that it generates realistic
values. The main difference is that the pseudonymization is deterministic : the
functions always will return the same fake value based on a seed and an optional
salt.

In order to use the faking functions, you have to init() the extension in your
database first:

SELECT anon.init();

Once the fake data is loaded you have access to 10 pseudo functions:

• anon.pseudo_first_name(seed,salt) returns a generic first name
• anon.pseudo_last_name(seed,salt) returns a generic last name
• anon.pseudo_email(seed,salt) returns a valid email address
• anon.pseudo_city(seed,salt) returns an existing city
• anon.pseudo_country(seed,salt) returns a country
• anon.pseudo_company(seed,salt) returns a generic company name
• anon.pseudo_iban(seed,salt) returns a valid IBAN
• anon.pseudo_siret(seed,salt) returns a valid SIRET

The second argument (salt) is optional. You can call each function with only
the seed like this anon.pseudo_city('bob'). The salt is here to increase com-

77

https://github.com/cksac/fake-rs

plexity and avoid dictionary and brute force attacks (see warning below). If a
specific salt is not given, the value of the anon.salt GUC parameter is used
instead (see the Generic Hashing section for more details).

The seed can be any information related to the subject. For instance, we can
consistently generate the same fake email address for a given person by using
her login as the seed :

SECURITY LABEL FOR anon
ON COLUMN users.emailaddress
IS 'MASKED WITH FUNCTION anon.pseudo_email(users.login) ';

NOTE: You may want to produce unique values using a pseudonymization
function. For instance, if you want to mask an email column that is declared as
UNIQUE. In this case, you will need to initialize the extension with a fake dataset
that is way bigger than the numbers of rows of the table. Otherwise you may
see some “collisions” happening, i.e. two different original values producing the
same pseudo value.

It is also possible to pseudonymize a primary key using:

• anon.pseudo_shift(id) returns a shifted version of the id
• anon.pseudo_xor(id) returns an exclusive OR value of the id

Both anon.pseudo_shift(BIGINT) and anon.pseudo_xor(BIGINT) functions
use a secret value (anon.shift) to pseudonymize the primary key. That se-
cret value can be initialized randomly with anon.set_shift() or defined with
anon.set_shift(INT).

This is very useful to replace anon.random_id() when using Backup Masking.

� WARNING: Pseudonymization is often confused with anonymization but in
fact they serve 2 different purposes : pseudonymization is a way to protect
the personal information but the pseudonymized data is still “linked” to the real
data. The GDPR makes it very clear that personal data which has undergone
pseudonymization is still related to a person. (see GDPR Recital 26)

Generic hashing
Hashing is another pseudonymization technique (see WARNING above). In
practice it is sometimes useful to generate a determinist hash of the original
data.

For instance, when a pair of primary key / foreign key is a “natural key”, it may
contain actual information (like a customer number containing a birth date or
something similar).

Hashing such columns allows to keep referential integrity intact even for rela-
tively unusual source data. Therefore, the

78

anonymous_dumps.md
https://www.privacy-regulation.eu/en/recital-26-GDPR.htm

• anon.digest(value,salt,algorithm) lets you choose a salt, and a hash
algorithm from a pre-defined list

• anon.hash(value) will return a text hash of the value using a secret salt
(defined by the anon.salt parameter) and hash algorithm (defined by the
anon.algorithm parameter). The default value of anon.algorithm is
sha256 and possible values are: md5, sha224, sha256, sha384 or sha512.
The default value of anon.salt is an empty string. You can modify these
values with:

ALTER DATABASE foo SET anon.salt TO 'xsfnjefnjsnfjsnf';
ALTER DATABASE foo SET anon.algorithm TO 'sha384';

Keep in mind that hashing is a form a Pseudonymization. This means that the
data can be “de-anonymized” using the hashed value and the masking function.
If an attacker gets access to these 2 elements, he or she could re-identify some
persons using brute force or dictionary attacks. Therefore, the salt and
the algorithm used to hash the data must be protected with the same
level of security that the original dataset.

In a nutshell, we recommend that you use the anon.hash() function rather than
anon.digest() because the salt will not appear clearly in the masking rule.

Furthermore: in practice the hash function will return a long string of character
like this:

SELECT anon.hash('bob');
hash

--
95b6accef02c5a725a8c9abf19ab5575f99ca3d9997984181e4b3f81d96cbca4d0977d694ac490350e01d0d213639909987ef52de8e44d6258d536c55e427397

For some columns, this may be too long and you may have to cut some parts
the hash in order to fit into the column. For instance, if you have a foreign
key based on a phone number and the column is a VARCHAR(12) you can
transform the data like this:

SECURITY LABEL FOR anon ON COLUMN people.phone_number
IS 'MASKED WITH FUNCTION anon.left(anon.hash(phone_number),12)';

SECURITY LABEL FOR anon ON COLUMN call_history.fk_phone_number
IS 'MASKED WITH FUNCTION anon.left(anon.hash(fk_phone_number),12)';

Of course, cutting the hash value to 12 characters will increase the risk of
“collision” (2 different values having the same fake hash). In such case, it’s
up to you to evaluate this risk.

� WARNING: The hashing functions will fail when the input contains an
unescaped character (especially a single backslash). In most situation, this is
the sign of a bug in the application, generally when data input is not sanitized
properly. Users who really want to mask unescaped characters with this function

79

should disable the standard_conforming_strings parameter. See Issue 539 for
more details.

Partial Scrambling
Partial scrambling leaves out some part of the data. For instance : a credit
card number can be replaced by ‘40XX XXXX XXXX XX96’.

2 functions are available:

• anon.partial('abcdefgh',1,'xxxx',3) will return ‘axxxxfgh’;
• anon.partial_email('daamien@gmail.com') will become ‘da******@gm******.com’

Conditional Masking
In some situations, you may want to apply a masking filter only for some value
or for a limited number of lines in the table.

For instance, if you want to “preserve NULL values”, i.e. masking only the lines
that contains a value, you can use the anon.ternary function, which works like
a CASE WHEN x THEN y ELSE z statement:

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH FUNCTION anon.ternary(score IS NULL,

NULL,
anon.random_int_between(0,100));

You can also use the anon.ternary function to keep a ratio of NULL values in
the otherwise anonymized data like in the following example where each line as
as 10% chance to be a NULL value:

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH FUNCTION anon.ternary(pg_catalog.random() <= .1,

NULL,
anon.random_int_between(0,100));

You may also want to exclude some lines within the table. Like keeping the
password of some users so that they still may be able to connect to a testing
deployment of your application:

SECURITY LABEL FOR anon ON COLUMN account.password
IS 'MASKED WITH FUNCTION anon.ternary(id > 1000, NULL::TEXT, password)';

WARNING : Conditional masking may create a partially deterministic “con-
nection” between the original data and the masked data. And that connection
can be used to retrieve personal information from the masked data. For in-
stance, if NULL values are preserved for a “deceased_date” column, it will
reveal which persons are still actually alive… In a nutshell: conditional masking
may often produce a dataset that is not fully anonymized and therefore would
still technically contain personal information.

80

https://gitlab.com/dalibo/postgresql_anonymizer/-/issues/539

Generalization
Generalization is the principle of replacing the original value by a range contain-
ing this value. For instance, instead of saying ‘Paul is 42 years old’, you would
say ‘Paul is between 40 and 50 years old’.

The generalization functions are a data type transformation. There-
fore it is not possible to use them with the dynamic masking engine.
However they are useful to create anonymized views. See example
below.

Let’s imagine a table containing health information:

SELECT * FROM patient;
id | name | zipcode | birth | disease

----+----------+----------+------------+---------------
1 | Alice | 47678 | 1979-12-29 | Heart Disease
2 | Bob | 47678 | 1959-03-22 | Heart Disease
3 | Caroline | 47678 | 1988-07-22 | Heart Disease
4 | David | 47905 | 1997-03-04 | Flu
5 | Eleanor | 47909 | 1999-12-15 | Heart Disease
6 | Frank | 47906 | 1968-07-04 | Cancer
7 | Geri | 47605 | 1977-10-30 | Heart Disease
8 | Harry | 47673 | 1978-06-13 | Cancer
9 | Ingrid | 47607 | 1991-12-12 | Cancer

We can build a view upon this table to suppress some columns (SSN and name
) and generalize the zipcode and the birth date like this:

CREATE VIEW anonymized_patient AS
SELECT

'REDACTED' AS lastname,
anon.generalize_int4range(zipcode,100) AS zipcode,
anon.generalize_tsrange(birth,'decade') AS birth
disease

FROM patients;

The anonymized table now looks like that:

SELECT * FROM anonymized_patient;
lastname | zipcode | birth | disease

----------+---------------+-----------------------------+---------------
REDACTED | [47600,47700) | ["1970-01-01","1980-01-01") | Heart Disease
REDACTED | [47600,47700) | ["1950-01-01","1960-01-01") | Heart Disease
REDACTED | [47600,47700) | ["1980-01-01","1990-01-01") | Heart Disease
REDACTED | [47900,48000) | ["1990-01-01","2000-01-01") | Flu
REDACTED | [47900,48000) | ["1990-01-01","2000-01-01") | Heart Disease
REDACTED | [47900,48000) | ["1960-01-01","1970-01-01") | Cancer
REDACTED | [47600,47700) | ["1970-01-01","1980-01-01") | Heart Disease

81

REDACTED | [47600,47700) | ["1970-01-01","1980-01-01") | Cancer
REDACTED | [47600,47700) | ["1990-01-01","2000-01-01") | Cancer

The generalized values are still useful for statistics because they remain true,
but they are less accurate, and therefore reduce the risk of re-identification.

PostgreSQL offers several RANGE data types which are perfect for dates and
numeric values.

For numeric values, 3 functions are available:

• generalize_int4range(value, step)
• generalize_int8range(value, step)
• generalize_numrange(value, step)

…where value is the data that will be generalized, and step is the size of each
range.

Using pg_catalog functions
Since version 1.3, the pg_catalog schema is not trusted by default. This is a
security measure designed to prevent users from using sophisticated functions in-
side masking rules (such as pg_catalog.query_to_xml, pg_catalog.ts_stat
or the system administration functions) that should not be used as masking
functions.

However, the extension allows using some useful and safe functions from the
pg_catalog schema for your convenience. These are small subset of functions
that are declared as TRUSTED for anonymization.

The list of TRUSTED pg_catalog functions is available via the anon.pg_trusted_functions
views :

SELECT * FROM anon.pg_trusted_functions;

If you need to use a pg_catalog function which is not in this list, you can ask a
superuser to trust it with:

SECURITY LABEL FOR anon ON FUNCTION pg_catalog.foo IS 'TRUSTED';

Note: Even when multiple masking policies are defined, the functions
must be declared as TRUSTED in the “anon” policy and they will be
trusted for all policies.

Image bluring
Images can show some sensitive data, for example

• A photo concerning personal data.
• A barcode representing personal data.

it is possible to blur this image using

82

https://www.postgresql.org/docs/current/rangetypes.html
https://www.postgresql.org/docs/current/functions-admin.html
declare_masking_rules.md#multiple_masking_policies

• anon.image_blur(data,sigma) returns a bytea
• data type bytea: the image data
• sigma type numeric: This parameter controls the amount of blurring. A

higher sigma value results in a more blurred image, while a lower sigma
value results in a less blurred image.

usage :

CREATE TABLE images (
id SERIAL PRIMARY KEY,
name TEXT NOT NULL,
image_data BYTEA NOT NULL

);
create extension anon;
SELECT anon.init();

SECURITY LABEL FOR anon ON COLUMN images.image_data
IS 'MASKED WITH FUNCTION anon.image_blur(image_data,1.0)';

SELECT anon.anonymize_database();

Write your own Masks !
You can also use your own function as a mask. The function must either be
destructive (like Partial Scrambling) or insert some randomness in the dataset
(like Faking).

Especially for complex data types, you may have to write your own function.
This will be a common use case if you have to hide certain parts of a JSON
field.

For example:

CREATE TABLE company (
business_name TEXT,
info JSONB

)

The info field contains unstructured data like this:

SELECT jsonb_pretty(info) FROM company WHERE business_name = 'Soylent Green';
jsonb_pretty

{

"employees": [
{

"lastName": "Doe",
"firstName": "John"

},

83

{
"lastName": "Smith",
"firstName": "Anna"

},
{

"lastName": "Jones",
"firstName": "Peter"

}
]

}
(1 row)

Using the PostgreSQL JSON functions and operators, you can walk through
the keys and replace the sensitive values as needed.

CREATE SCHEMA custom_masks;

CREATE FUNCTION custom_masks.remove_last_name(j JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT
json_build_object(
'employees' ,
array_agg(
jsonb_set(e ,'{lastName}', to_jsonb(anon.fake_last_name()))

)
)::JSONB

FROM jsonb_array_elements(j->'employees') e
$func$;

-- This step requires superuser privilege
SECURITY LABEL FOR anon ON FUNCTION custom_masks.remove_last_name IS 'TRUSTED';

Then check that the function is working correctly:

SELECT custom_masks.remove_last_name(info) FROM company;

When that’s ok you can declare this function as the mask of the info field:

SECURITY LABEL FOR anon ON COLUMN company.info
IS 'MASKED WITH FUNCTION custom_masks.remove_last_name(info)';

And try it out !

SELECT anonymize_table('company');
SELECT jsonb_pretty(info) FROM company WHERE business_name = 'Soylent Green';

jsonb_pretty

84

https://www.postgresql.org/docs/current/functions-json.html

{
"employees": [+

{ +
"lastName": "Prawdzik",+
"firstName": "John" +

}, +
{ +

"lastName": "Baltazor",+
"firstName": "Anna" +

}, +
{ +

"lastName": "Taylan", +
"firstName": "Peter" +

} +
] +

}
(1 row)

This is just a quick and dirty example. As you can see, manipulating a sophisti-
cated JSON structure with SQL is possible, but it can be tricky at first! There
are multiple ways of walking through the keys and updating values. You will
probably have to try different approaches, depending on your real JSON data
and the performance you want to reach. — title: masking_views draft: false
toc: true —

Masking Views
The principe of a masking view is simply to build dedicated interface upon a
table. This is useful when the masking policy needs to modify the database
model.

PostgreSQL Masking Views

Generalization
The idea of generalization is to replace data with a broader, less accurate value.
For instance, instead of saying “Bob is 28 years old”, you can say “Bob is
between 20 and 30 years old”. This is interesting for analytics because the data
remains true while avoiding the risk of re-identification.

Generalization is a way to achieve k-anonymity.

PostgreSQL can handle generalization very easily with the RANGE data types,
a very powerful way to store and manipulate a set of values contained between
a lower and an upper bound.

85

https://www.postgresql.org/docs/current/rangetypes.html

Example
Here’s a basic table containing medical data:

SELECT * FROM confidential.patient;
ssn | firstname | zipcode | birth | disease

-------------+-----------+---------+------------+---------------
253-51-6170 | Alice | 47012 | 1989-12-29 | Heart Disease
091-20-0543 | Bob | 42678 | 1979-03-22 | Allergy
565-94-1926 | Caroline | 42678 | 1971-07-22 | Heart Disease
510-56-7882 | Eleanor | 47909 | 1989-12-15 | Acne
098-24-5548 | David | 47905 | 1997-03-04 | Flu
118-49-5228 | Jean | 47511 | 1993-09-14 | Flu
263-50-7396 | Tim | 47900 | 1981-02-25 | Heart Disease
109-99-6362 | Bernard | 47168 | 1992-01-03 | Asthma
287-17-2794 | Sophie | 42020 | 1972-07-14 | Asthma
409-28-2014 | Arnold | 47000 | 1999-11-20 | Diabetes

(10 rows)

We want the anonymized data to remain true because it will be used for statis-
tics. We can build a view upon this table to remove useless columns and gener-
alize the indirect identifiers :

CREATE SCHEMA stats;

CREATE MATERIALIZED VIEW stats.generalized_patient AS
SELECT
'REDACTED'::TEXT AS firstname,
anon.generalize_int4range(zipcode,1000) AS zipcode,
anon.generalize_daterange(birth,'decade') AS birth,
disease

FROM confidential.patient;

This will give us a less accurate view of the data:

SELECT * FROM generalized_patient;
firstname | zipcode | birth | disease

-----------+---------------+-------------------------+---------------
REDACTED | [47000,48000) | [1980-01-01,1990-01-01) | Heart Disease
REDACTED | [42000,43000) | [1970-01-01,1980-01-01) | Allergy
REDACTED | [42000,43000) | [1970-01-01,1980-01-01) | Heart Disease
REDACTED | [47000,48000) | [1980-01-01,1990-01-01) | Acne
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Flu
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Flu
REDACTED | [47000,48000) | [1980-01-01,1990-01-01) | Heart Disease
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Asthma
REDACTED | [42000,43000) | [1970-01-01,1980-01-01) | Asthma
REDACTED | [47000,48000) | [1990-01-01,2000-01-01) | Diabetes

86

(10 rows)

Now we can give read access only to the masking views for a given user:

CREATE USER bob;

REVOKE USAGE ON SCHEMA confidential FROM bob;
REVOKE ALL PRIVILEGES ON ALL TABLES IN SCHEMA confidential FROM bob;
GRANT USAGE ON SCHEMA stats TO bob;
GRANT SELECT ON ALL TABLES IN SCHEMA stats TO bob;

Generalization Functions
PostgreSQL Anonymizer provides 6 generalization functions. One for each
RANGE type. Generally these functions take the original value as the first
parameter, and a second parameter for the length of each step.

For numeric values :

• anon.generalize_int4range(42,5) returns the range [40,45)
• anon.generalize_int8range(12345,1000) returns the range [12000,13000)
• anon.generalize_numrange(42.32378,10) returns the range [40,50)

For time values :

• anon.generalize_tsrange('1904-11-07','year') returns ['1904-01-01','1905-01-01')
• anon.generalize_tstzrange('1904-11-07','week') returns ['1904-11-07','1904-11-14')
• anon.generalize_daterange('1904-11-07','decade') returns

[1900-01-01,1910-01-01)

The possible steps are : microseconds, milliseconds, second, minute, hour, day,
week, month, year, decade, century and millennium.

Limitations
Singling out and extreme values

“Singling Out” is the possibility to isolate an individual in a dataset by using
extreme value or exceptional values.

For example:

SELECT * FROM employees;

id | name | job | salary
------+----------------+------+--------
1578 | xkjefus3sfzd | NULL | 1498
2552 | cksnd2se5dfa | NULL | 2257
5301 | fnefckndc2xn | NULL | 45489
7114 | npodn5ltyp3d | NULL | 1821

87

https://www.postgresql.org/docs/current/rangetypes.html

In this table, we can see that a particular employee has a very high salary, very
far from the average salary. Therefore this person is probably the CEO of the
company.

With generalization, this is important because the size of the range (the “step”)
must be wide enough to prevent the identification of one single individual.

k-anonymity is a way to assess this risk.

Generalization is not compatible with dynamic masking

By definition, with generalization the data remains true, but the column type
is changed.

This means that the transformation is not transparent, and therefore it cannot
be used with dynamic masking.

k-anonymity
k-anonymity is an industry-standard term used to describe a property of an
anonymized dataset. The k-anonymity principle states that within a given
dataset, any anonymized individual cannot be distinguished from at least k-1
other individuals. In other words, k-anonymity might be described as a “hid-
ing in the crowd” guarantee. A low value of k indicates there’s a risk of re-
identification using linkage with other data sources.

You can evaluate the k-anonymity factor of a table in 2 steps :

Step 1: First define the columns that are indirect identifiers (also known as
quasi identifiers) like this:

SECURITY LABEL FOR k_anonymity ON COLUMN patient.firstname
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity ON COLUMN patient.zipcode
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity ON COLUMN patient.birth
IS 'INDIRECT IDENTIFIER';

Step 2: Once the indirect identifiers are declared :

SELECT anon.k_anonymity('generalized_patient')

The higher the value, the better…

References
•

88

dynamic_masking.md
https://en.wikipedia.org/wiki/Quasi-identifier

How Google Anonymizes Data
title: performances draft: false toc: true —

Performances
Any anonymization process has a price as it will consume CPU time, RAM space
and probably a bunch of disk I/O… Here’s a a quick overview of the question
depending on what strategy you are using….

In a nutshell, the anonymization performances will mainly depend on 2 impor-
tant factors:

• The size of the database
• The number of masking rules

Static Masking
Basically what static masking does it rewrite entirely the masked tables on disk.
This may be slow depending on your environment. And during this process, the
tables will be locked.

As an example: Anonymizing a 44GB database with 29 masking rules on an
AWS EC2 instance takes approximately 25 minutes (see MR 107 for more de-
tails).

In this case, the cost of anonymization is “paid” by all the users but
it is paid once and for all.

Dynamic Masking
With dynamic masking, the real data is replaced on-the-fly every time a
masked user sends a query to the database. This means that the masking users
will have slower response time than regular (unmasked) users. This is generally
ok because usually masked users are not considered as important as the regular
ones.

If you apply 3 or 4 rules to a table, the response time for the masked users
should approx. 20% to 30% slower than for the normal users.

As the masking rules are applied for each queries of the masked users, the
dynamic masking is appropriate when you have a limited number of masked
users that connect only from time to time to the database. For instance, a data
analyst connecting once a week to generate a business report.

If there are multiple masked users or if a masked user is very active, you should
probably export the masked data once-a-week on a secondary instance and let
these users connect to this secondary instance.

89

https://policies.google.com/technologies/anonymization
https://gitlab.com/dalibo/postgresql_anonymizer/-/issues/107#note_861963703

In this case, the cost of anonymization is “paid” only by the masked
users.

Anonymous Dumps
Some benchmarks made in march 2022 suggest that the pg_dump_anon wrapper
is twice as slow as the regular pg_dump tool.

If the backup process of your database takes 1 hour with pg_dump, then
anonymizing and exporting the entire database with pg_dump_anon will
probably take 2 hours.

In this case, the cost of anonymization is “paid” by the user asking
for the anonymous export. Other users of the database will not be
affected.

How to speed things up ?
Prefer MASKED WITH VALUE whenever possible

It is always faster to replace the original data with a static value instead of
calling a masking function.

Sampling

If you need to anonymize data for testing purpose, chances are that a smaller
subset of your database will be enough. In that case, you can easily speed up
the anonymization by downsizing the volume of data.

Checkout the Sampling section for more details.

Materialized Views

Dynamic masking is not always required! In some cases, it is more efficient to
build Materialized Views instead.

For instance:

CREATE MATERIALIZED VIEW masked_customer AS
SELECT

id,
anon.random_last_name() AS name,
anon.random_date_between('1920-01-01'::DATE,now()) AS birth,
fk_last_order,
store_id

FROM customer;

90

Materialized Views: https://www.postgresql.org/docs/current/static/sql-
creatematerializedview.html
title: privacy_by_default draft: false toc: true —

Privacy By Default
Principle
The GDPR regulation (and other privacy laws) introduces the concept of data
protection by default. In a nutshell, it means that by default, organisations
should ensure that data is processed with the highest privacy protection so
that by default personal data isn’t made accessible to an indefinite number of
persons.

By applying this principle to anonymization, we end up with the idea of privacy
by default which basically means that all columns of all tables should be
masked by default, without having to declare a masking rule for each of them.

To enable this feature, simply set the option anon.privacy_by_default to on.

Example
Imagine a database named foo with a basic table containing HTTP logs:

SELECT * FROM access_logs LIMIT 1;
date_open | ip_addr | url | browser_agent

---------------------+-----------------+------------+------------------------------
2009-01-08 00:00:00 | 192.168.100.128 | /home.html | Mozilla/5.0 (Windows; en_US)

(1 row)

Now let’s activate privacy by default:

ALTER DATABASE foo SET anon.privacy_by_default = True;

The setting will be applied for the next sessions, i.e. You need to
reconnect to the database for the change to visible

We can now anonymize the table without writing any masking rule.

SELECT anon.anonymize_database();
anonymize_database

t

SELECT * FROM access_logs LIMIT 1;
date_open | ip_addr | url | browser_agent

-----------+---------+-----+---------------
| | | unknown

91

https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en

Unmasking columns
As we can see, when the anon.privacy_by_default is defined all the values
will be replaced by the column’s default value or NULL. The entire dataset is
destroyed.

Now instead of writing rules to mask the sensible columns, we will write rules
to unmask the ones we want to allow.

For instance, let’s say that we want to keep the authentic value of the url field,
we can simply “unmask” the column like this:

SECURITY LABEL FOR anon ON COLUMN access_logs.url
IS 'NOT MASKED';

This can also be achieved by a masking rule that will replace the value with
itself:

SECURITY LABEL FOR anon ON COLUMN access_logs.url
IS 'MASKED WITH VALUE url';

Now we’d like to unmask the date_open field in the anonymized dataset but
we need to generalize the dates to keep only the year:

SECURITY LABEL FOR anon ON COLUMN access_logs.date_open
IS 'MASKED WITH FUNCTION make_date(EXTRACT(year FROM date_open)::INT,1,1)';

Caveat: Add a DEFAULT to the NOT NULL columns
It is a bit ironic that the anon.privacy_by_default parameter is not enabled
by default. This reason is simple: activating this option may or may not
lead to constraint violations depending on the columns constraints placed in
the database model.

Let’s say we want to add a NOT NULL constraint on the date_open column:

ALTER TABLE public.access_logs
ALTER COLUMN date_open
SET NOT NULL;

Now if we try to anonymize the table, we get the following violation:

SELECT anon.anonymize_table('public.access_logs') as test4;
ERROR: Cannot mask a "NOT NULL" column with a NULL value
HINT: If privacy_by_design is enabled, add a default value to the column

The solution here is simply to define a default value and this value will be used
for the privacy_by_default mechanism.

ALTER TABLE public.access_logs
ALTER COLUMN date_open
SET DEFAULT now();

92

Other constraints (foreign keys, UNIQUE, CHECK, etc.) should work fine
without a DEFAULT value. — title: replica_masking draft: false toc: true —

Anonymous Replica
WARNING! DO NOT USE IN PRODUCTION
This feature is currently under heavy development. This implementation of
Replica Masking is provided for testing purpose only. Major breaking changes
may be introduced at any time and we may even remove this feature entirely if
we feel it does not reach our standard of quality and stability.

We welcome any feedback, testing reports, comments and contributions. But at
the moment, we do not guarantee any form of support for this feature.

Our current plan is to stabilize this feature in version 3.0, which is scheduled
for early 2026.

Thanks for your understanding.

Principle
In some situations, you may want to have an anonymized copy of your produc-
tion database on another instance like with Backup Masking (aka “Anonymized
Dumps”) but you also would like this copy to be up-to-date with the original
data like with Dynamic Masking…

With the Replica Masking feature, you can use PostgreSQL logical replication
to create an anonymized clone of your production database.

PostgreSQL Replica Masking

Preamble: Learn about logical replication !
PostgreSQL logical replication is a powerful mechanism. Before setting up a
anonymous replica, be sure that you are able to configure standard logical repli-
cation correctly.

There are many tutorials available for that and we also recommend reading the
PostgreSQL manual:

https://www.postgresql.org/docs/current/logical-replication.html

Quick Setup
Example

Let’s say we want to anonymize a table person in a database foo like this:

93

anonymous_dumps.md
dynamic_masking.md
https://www.postgresql.org/docs/current/logical-replication.html

CREATE TABLE person (
id SERIAL PRIMARY KEY,
name TEXT,
company TEXT

);

INSERT INTO person VALUES (1, 'Alice', 'CompanyA');
INSERT INTO person VALUES (2, 'Bob', 'CompanyB');
INSERT INTO person VALUES (3, 'Charlie', 'CompanyC');
INSERT INTO person VALUES (4, 'David', 'CompanyD');
INSERT INTO person VALUES (5, 'Eve', 'CompanyE');

A- On the publisher database

A1- Create a replication role:

CREATE ROLE anon_replicator LOGIN REPLICATION PASSWORD 'CHANGE-ME-3747';
GRANT USAGE ON SCHEMA public TO anon_replicator;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO anon_replicator;

Be sure to configure your pg_hba.conf file to allow anon_replicator to connect
from the subscriber database.

A2- Create a publication:

CREATE PUBLICATION pub FOR TABLE person;

All of this is pretty standard. There’s nothing special regarding anonymization
on the publisher database. In fact, the publisher database “does not know” that
the data will be masked on the subscriber.

B- On the subscriber database

B1- Create the table (DDL commands are NOT replicated):

CREATE TABLE person (
id SERIAL PRIMARY KEY,
name TEXT,
company TEXT

);

B2- Enable replica masking:

ALTER DATABASE foo SET anon.replica_masking TO on;

B3- Reconnect to the database so that the configuration is applied.

B4- Define the masking rules:

SECURITY LABEL FOR anon ON COLUMN person.company
IS 'MASKED WITH FUNCTION pg_catalog.md5(company)';

94

SECURITY LABEL FOR anon ON COLUMN person.name
IS 'MASKED WITH FUNCTION anon.dummy_first_name()';

B5- start the replica masking engine:

SELECT anon.start_replica_masking();

B6- Create the subscription:

CREATE SUBSCRIPTION anon_sub
CONNECTION 'host=prod_srv user=anon_replicator password=CHANGE-ME-3747 dbname=foo'
PUBLICATION pub;

Wait for a few milliseconds while the data is being synchronized and masked…

Et voilà !

SELECT * FROM person;

id | name | company
----+-----------+----------------------------------
1 | Christine | a1e551387ba94e882ccc5356948d6462
2 | Percival | 75b4e152a05dae2f1d7991182e707fad
3 | Ignatius | e2a211f97064ee5a86853ae61e1bb2b9
4 | Karley | 8d543957c23828bb0d888cf7da59a817
5 | Alfredo | 566ca1969819cbf2098202255914bf23

Changing the masking rules
Anytime you add or remove a masking rule, you need to update the replica
masking engine.

SELECT anon.refresh_replica_masking();

Anonymized Standby
In complement to Replica Masking, it is possible to use Hot Standby replication
to build a distant clone of the Anonymized Replica. This is useful to export the
database to a remote datacenter because the Anonymized Replica will operate as
a masking proxy, “cleaning” the personal information before it gets transferred
to the Standby instance.

PostgreSQL Standby Masking

Security
Keep in mind that the masking rules are applied on-the-fly in the subscriber
database, which means:

95

• The original data is transferred through the connection between the pub-
lisher and the subscriber. Therefore this connection should be protected
like in a regular logical replication setup.

• The superuser of the subscriber instance and the owner of the subscriber
database can disable Replica Masking at anytime. They can both ac-
cess the original, just like the superuser and the owner of the publisher
database. Therefore, a third role should be created on the subscriber
database to provide unprivileged and read-only access to the data.

• The replication role is also able to access the original data at any time.

• The logs of the subscriber database may contain unmasked data.

Limitations
• Anonymous replication is based on logical replication, therefore it has

the same restrictions, in particular: DDL commands, sequences, Large
Objects are NOT replicated.

• The REPLICA IDENTITY FULL method is NOT supported. This means
that all replicated tables MUST have a primary key.

• The primary key of a table should not be masked.

But I want to anonymize a primary key!
If you need to anonymize a primary key in a table, this means that it is a natural
key (as opposed to a surrogate key).

Natural keys are problematic for many reasons:

• they can change over time (like email addresses or product codes), forcing
cascading updates throughout related tables

• they’re often not truly unique in practice, even seemingly unique values
like SSNs can have duplicates or exceptions

• they tend to be longer and more complex than simple integers
• they make joins slower and indexes larger
• they can contain sensitive information that you might not want exposed

in URLs or logs.
• they may change whenever business rules evolve, requiring database re-

structuring.

Surrogate keys (i.e. auto-incrementing integers) avoid these issues by providing
stable, meaningless identifiers that never need to change.

In particular for anonymization: surrogate keys make your life easier since you
don’t have to mask them. In the other hand, natural keys are often a nightmare:
in most situations they will force you to use complex pseudonymization tech-

96

https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://en.wikipedia.org/wiki/Surrogate_key

niques, and keep in mind that that Pseudonymization Is Not Anonymization
!

Pseudonymization Is Not Anonymization: masking_functions.md#pseudonymization
title: runbooks/0-intro draft: false toc: true —

Welcome to Paul’s Boutique !
This is a 4 hours workshop that demonstrates various anonymization techniques
using the PostgreSQL Anonymizer extension.

The Story
Paul’s boutique

Paul’s boutique has a lot of customers. Paul asks his friend Pierre, a Data
Scientist, to make some statistics about his clients : average age, etc…

Pierre wants a direct access to the database in order to write SQL queries.

Jack is an employee of Paul. He’s in charge of relationship with the various
suppliers of the shop.

Paul respects his suppliers privacy. He needs to hide the personal information
to Pierre, but Jack needs read and write access the real data.

Objectives
Using the simple example above, we will learn:

• How to write masking rules
• The difference between static and dynamic masking
• Implementing advanced masking techniques

About GDPR
This tutorial does not go into the details of the GPDR act and the general
concepts of anonymization.

For more information about it, please refer to the talk below:

• Anonymisation, Au-delà du RGPD (Video / French)
• Anonymization, Beyond GDPR (PDF / english)

Requirements
In order to make this workshop, you will need:

• A Linux VM (preferably Debian 12 bookworm or Ubuntu 24.04)

97

https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/#pseudonymization
https://postgresql-anonymizer.readthedocs.io/en/stable/masking_functions/#pseudonymization
https://labs.dalibo.com/postgresql_anonymizer
https://www.youtube.com/watch?v=KGSlp4UygdU
https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisation_beyond_gdpr.pdf

• A PostgreSQL instance (preferably PostgreSQL 17)
• The PostgreSQL Anonymizer (anon) extension, installed and initialized

by a superuser
• A database named “boutique” owned by a superuser called “paul”
• A role “pierre” and a role “jack”, both allowed to connect to the database

“boutique”

Check out the INSTALL section to learn how to install the PostgreSQL
Anonymizer extension:

!!! tip

A simple way to deploy a workshop environment is to install [Docker Desktop]
and download the image below:

ANON_IMG=registry.gitlab.com/dalibo/postgresql_anonymizer:stable
docker pull $ANON_IMG

And you can then launch it with:

docker run --name anon_tuto --detach -e POSTGRES_PASSWORD=x $ANON_IMG
docker exec -it anon_tuto psql -U postgres

!!! tip Check out the INSTALL section in the documentation to learn how to
install the extension in your PostgreSQL instance.

The Roles
We will with 3 different users:

CREATE ROLE paul LOGIN SUPERUSER PASSWORD 'CHANGEME';

CREATE ROLE pierre LOGIN PASSWORD 'CHANGEME';

CREATE ROLE jack LOGIN PASSWORD 'CHANGEME';
GRANT pg_read_all_data TO jack;
GRANT pg_write_all_data TO jack;

Unless stated otherwise, all commands must be executed with the role paul.

!!! Tip Setup a .pgpass file to simplify the connections !

cat > ~/.pgpass << EOL
::boutique:paul:CHANGEME
::boutique:pierre:CHANGEME
::boutique:jack:CHANGEME
EOL
chmod 0600 ~/.pgpass

98

https://postgresql-anonymizer.readthedocs.io/en/stable/INSTALL/
https://labs.dalibo.com/postgresql_anonymizer
https://labs.dalibo.com/postgresql_anonymizer
https://postgresql-anonymizer.readthedocs.io/en/stable/INSTALL
https://postgresql-anonymizer.readthedocs.io/en/stable/

The Sample database
We will work on a database called “boutique”:

CREATE DATABASE boutique OWNER paul;

We need to activate the anon library inside that database:

ALTER DATABASE boutique
SET session_preload_libraries = 'anon';

1- Static Masking
� Static Masking is the simplest way to hide personal information! This idea is
simply to destroy the original data or replace it with an artificial one.

Requirements
Please check out the intro of this tutorial if you haven’t read it yet

The story
Over the years, Paul has collected data about his customers and their purchases
in a simple database. He recently installed a brand new sales application and
the old database is now obsolete. He wants to save it and he would like to
remove all personal information before archiving it.

How it works
Learning Objective
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of static masking
• The concept of “Singling Out” a person

The “customer” table
DROP TABLE IF EXISTS customer CASCADE;

DROP TABLE IF EXISTS payout CASCADE;

CREATE TABLE customer (
id SERIAL PRIMARY KEY,
firstname TEXT,
lastname TEXT,
phone TEXT,

99

birth DATE,
postcode TEXT

);

Insert a few persons:

INSERT INTO customer
VALUES
(107,'Sarah','Conor','060-911-0911', '1965-10-10', '90016'),
(258,'Luke', 'Skywalker', NULL, '1951-09-25', '90120'),
(341,'Don', 'Draper','347-515-3423', '1926-06-01', '04520')
;

SELECT * FROM customer;

The “payout” table
Sales are tracked in a simple table:

CREATE TABLE payout (
id SERIAL PRIMARY KEY,
fk_customer_id INT REFERENCES customer(id),
order_date DATE,
payment_date DATE,
amount INT

);

Let’s add some orders:

INSERT INTO payout
VALUES
(1,107,'2021-10-01','2021-10-01', '7'),
(2,258,'2021-10-02','2021-10-03', '20'),
(3,341,'2021-10-02','2021-10-02', '543'),
(4,258,'2021-10-05','2021-10-05', '12'),
(5,258,'2021-10-06','2021-10-06', '92')
;

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon;

Declare the masking rules
Paul wants to hide the last name and the phone numbers of his clients. He will
use the dummy_last_name() and partial() functions for that:

SECURITY LABEL FOR anon ON COLUMN customer.lastname
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

100

SECURITY LABEL FOR anon ON COLUMN customer.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$X-XXX-XX$$,2)';

Apply the rules permanently
SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, phone
FROM customer;

This is called Static Masking because the real data has been
permanently replaced. We’ll see later how we can use dynamic
anonymization or anonymous exports.

Exercises
E101 - Mask the client’s first names

Declare a new masking rule and run the static anonymization function again.

E102 - Hide the last 3 digits of the postcode

Paul realizes that the postcode gives a clear indication of where his customers
live. However he would like to have statistics based on their postcode area.

Add a new masking rule to replace the last 3 digits by ‘x’.

E103 - Count how many clients live in each postcode area?

Aggregate the customers based on their anonymized postcode.

E104 - Keep only the year of each birth date

Paul wants age-based statistic. But he also wants to hide the real birth date of
the customers.

Replace all the birth dates by January 1rst, while keeping the real year.

� You can use the make_date or date_trunc functions !

See https://www.postgresql.org/docs/current/functions-datetime.html#
FUNCTIONS-DATETIME-TABLE

E105 - Singling out a customer

Even if the “customer” is properly anonymized, we can still isolate a given
individual based on data stored outside of the table. For instance, we can
identify the best client of Paul’s boutique with a query like this:

101

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id)

� This is called Singling Out a person.

We need to anonymize even further by removing the link between a person and
its company. In the payout table, this link is materialized by a foreign key on
the field fk_company_id. However we can’t remove values from this column or
insert fake identifiers because if would break the foreign key constraint.

How can we separate the customers from their payouts while respecting the
integrity of the data?

Find a function that will shuffle the column fk_company_id of the payout table

� Check out the shuffling section of the documentation.

Solutions
S101

SECURITY LABEL FOR anon ON COLUMN customer.firstname
IS 'MASKED WITH FUNCTION anon.dummy_first_name()';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname
FROM customer;

S102

SECURITY LABEL FOR anon ON COLUMN customer.postcode
IS 'MASKED WITH FUNCTION anon.partial(postcode,2,$$xxx$$,0)';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, postcode
FROM customer;

102

https://www.pnas.org/content/117/15/8344
https://postgresql-anonymizer.readthedocs.io/en/stable/

S103

SELECT postcode, COUNT(id)
FROM customer
GROUP BY postcode;

S104

SECURITY LABEL FOR anon ON FUNCTION pg_catalog.date_trunc(text,interval)
IS 'TRUSTED';

SECURITY LABEL FOR anon ON COLUMN customer.birth
IS $$ MASKED WITH FUNCTION pg_catalog.date_trunc('year',birth) $$;

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, birth
FROM customer;

S105

Let’s mix up the values of the fk_customer_id:

SELECT anon.shuffle_column('payout','fk_customer_id','id');

Now let’s try to single out the best client again :

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id);

WARNING

Note that the link between a customer and its payout is now completely false.
For instance, if a customer A had 2 payouts. One of these payout may be linked
to a customer B, while the second one is linked to a customer C.

In other words, this shuffling method with respect the foreign key constraint
(aka the referential integrity) but it will break the data integrity. For some use
case, this may be a problem.

103

In this case, Pierre will not be able to produce a BI report with the shuffle data,
because the links between the customers and their payments are fake. — title:
runbooks/2-dynamic_masking draft: false toc: true —

2- Dynamic Masking
� With Dynamic Masking, the database owner can hide personal data for some
users, while other users are still allowed to read and write the authentic data.

Requirements
Please check out the intro of this tutorial if you haven’t read it yet

The Story
Paul has 2 employees:

• Jack is operating the new sales application, he needs access to the real
data. He is what the GPDR would call a ”data processor”.

• Pierre is a data analyst who runs statistic queries on the database. He
should not have access to any personal data.

How it works
Objectives
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of dynamic masking
• The concept of ”Linkability” of a person

The company table
DROP TABLE IF EXISTS supplier CASCADE;

DROP TABLE IF EXISTS company CASCADE;

CREATE TABLE company (
id SERIAL PRIMARY KEY,
name TEXT,
vat_id TEXT UNIQUE

);

INSERT INTO company
VALUES
(952,'Shadrach', 'FR62684255667'),

104

(194,E'Johnny\'s Shoe Store','CHE670945644'),
(346,'Capitol Records','GB663829617823')
;

SELECT * FROM company;

The supplier table
CREATE TABLE supplier (

id SERIAL PRIMARY KEY,
fk_company_id INT REFERENCES company(id),
contact TEXT,
phone TEXT,
job_title TEXT

);

INSERT INTO supplier
VALUES
(299,194,'Johnny Ryall','597-500-569','CEO'),
(157,346,'George Clinton', '131-002-530','Sales manager')
;

SELECT * FROM supplier;

Activate the extension
ALTER DATABASE boutique
SET session_preload_libraries TO 'anon';

CREATE EXTENSION IF NOT EXISTS anon;

SELECT anon.init();

Dynamic Masking
Activate the masking engine

ALTER DATABASE boutique
SET anon.transparent_dynamic_masking TO true;

Masking a role

SECURITY LABEL FOR anon ON ROLE pierre IS 'MASKED';

GRANT pg_read_all_data to pierre;

Now connect as Pierre and try to read the supplier table:

SELECT * FROM supplier;

105

For the moment, there is no masking rule so Pierre can see the original data in
each table.

Masking the supplier names
Connect as Paul and define a masking rule on the supplier table:

SECURITY LABEL FOR anon ON COLUMN supplier.contact
IS 'MASKED WITH VALUE $$CONFIDENTIAL$$';

Now connect as Pierre and try to read the supplier table again:

SELECT * FROM supplier;

Now connect as Jack and try to read the real data:

SELECT * FROM supplier;

Exercises
E201 - Guess who is the CEO of “Johnny’s Shoe Store”

Masking the supplier contact is clearly not enough to provide anonymity.

Connect as Pierre and write a simple SQL query that joins the
supplier and the company tables. See how that could reindentify some
suppliers based on their job and their company.

With this request we managed to link a person to a company and we know it’s
job title. Since company names and job positions are available in many public
datasets: a simple search on Linkedin or Google would give us the real names
of many of the employees of these companies…

� This is called Linkability: the ability to connect multiple records concerning
the same data subject.

E202 - Anonymize the companies

We need to anonymize the company table, too. Even if they don’t contain
personal information, some fields can be used to infer the identity of their
employees…

Connect as Paul and write 2 masking rules (security labels) for the
company table.

• The first one will replace the name field with a fake name.
• The second rule will replace the vat_id with a random sequence of 10

characters

106

� Go to thedocumentation and look at the faking functions and the random
functions !

Connect as Pierre and check that he cannot view the real company info.

Connect as Jack and check that he can view the real values.

E203 - Pseudonymize the company name

Because of dynamic masking, the fake values will be different every time Pierre
tries to read the table.

Pierre would like to have always the same fake values for a given company.

� This is called pseudonymization.

Connect as Paul and write a new masking rule over the vat_id field by
generating a hash of 10 characters using the anon.digest() function.

Write a new masking rule over the name field by using a pseudonymiz-
ing function.

Solutions
S201

SELECT s.id, s.contact, s.job_title, c.name
FROM supplier s
JOIN company c ON s.fk_company_id = c.id;

S202

SECURITY LABEL FOR anon ON COLUMN company.name
IS 'MASKED WITH FUNCTION anon.dummy_company_name()';

SECURITY LABEL FOR anon ON COLUMN company.vat_id
IS 'MASKED WITH FUNCTION anon.random_string(10)';

Now connect as Pierre and read the table again:

SELECT * FROM company;

Pierre will see different “fake data” every time he reads the table:

SELECT * FROM company;

Jack still sees the real data

SELECT * FROM company;

107

https://postgresql-anonymizer.readthedocs.io/en/stable/

S203

SECURITY LABEL FOR anon ON COLUMN company.vat_id
IS $$ MASKED WITH FUNCTION anon.left(anon.digest(vat_id, 'xxx', 'md5'),10) $$;

SECURITY LABEL FOR anon ON COLUMN company.name
IS 'MASKED WITH FUNCTION anon.pseudo_company(id)';

Connect as Pierre and read the table multiple times:

SELECT * FROM company;

SELECT * FROM company;

Now the fake company name is always the same.
title: runbooks/3-anonymous_dumps draft: false toc: true —

3- Anonymous Dumps
� In many situation, what we want is basically to export the anonymized data
into another database (for testing or to produce statistics). We will simply use
pg_dump for that !

The Story
Paul has a website and a comment section where customers can express their
views.

He hired a web agency to develop a new design for his website. The agency
asked for a SQL export (dump) of the current website database. Paul wants to
clean the database export and remove any personal information contained in
the comment section.

How it works
Learning Objective

• Extract the anonymized data from the database
• Write a custom masking function to handle a JSON field.

Load the data
DROP TABLE IF EXISTS website_comment CASCADE;

CREATE TABLE website_comment (
id SERIAL PRIMARY KEY,
message JSONB

);

108

INSERT INTO website_comment
VALUES
(1, json_build_object(

'meta', json_build_object(
'name', 'Lee Perry',
'ip_addr','40.87.29.113'),

'content', 'Hello Nasty!')),
(2, json_build_object(

'meta', json_build_object(
'name', '',
'email', 'biz@bizmarkie.com'),

'content', 'Great Shop')),
(3,json_build_object(

'meta', json_build_object(
'name','Jimmy'),

'content','Hi ! This is me, Jimmy James'));

Check the content of the website comments:

SELECT
message->'meta'->'name' AS name,
message->'content' AS content

FROM website_comment
ORDER BY id ASC;

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon;

Masking a JSON column
The comment field is filled with personal information and the fact the field does
not have a standard schema makes our tasks harder.

In general, unstructured data are difficult to mask.

As we can see, web visitors can write any kind of information in the comment
section. Our best option is to remove this key entirely because there’s no way
to extract personal data properly.

We can clean the comment column simply by removing the content key in the
message column !

SELECT message - ARRAY['content'] AS message_without_content
FROM website_comment
WHERE id=1;

109

First let’s create a dedicated schema and declare it as trusted. This means the
anon extension will accept the functions located in this schema as valid masking
functions. Only a superuser should be able to add functions in this schema.

CREATE SCHEMA IF NOT EXISTS my_masks;

SECURITY LABEL FOR anon ON SCHEMA my_masks IS 'TRUSTED';

Now we can write a function that remove the message content:

CREATE OR REPLACE FUNCTION my_masks.remove_content(j JSONB)
RETURNS JSONB
AS $func$
SELECT j - ARRAY['content']

$func$
LANGUAGE SQL
;

Let’s try it!

SELECT my_masks.remove_content(message)
FROM website_comment;

And now we can use it in a masking rule:

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.remove_content(message)';

Then we need to create a dedicated role to export the masked data. We will call
this role anon_dumper (the name does not matter) and declare that this role is
masked.

CREATE ROLE anon_dumper LOGIN PASSWORD 'CHANGEME';

ALTER ROLE anon_dumper SET anon.transparent_dynamic_masking TO TRUE;

SECURITY LABEL FOR anon ON ROLE anon_dumper IS 'MASKED';

GRANT pg_read_all_data TO anon_dumper;

For convenience, add a new entry in the .pgpass file.

cat > ~/.pgpass << EOL
::boutique:anon_dumper:CHANGEME
EOL

Finally we can export an anonymous dump of the table with pg_dump:

110

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
pg_dump -U anon_dumper boutique --table=website_comment > /tmp/dump.sql

Exercises
E301 - Dump the anonymized data into a new database

Create a database named boutique_anon and transfer the entire database into
it.

E302 - Remove the email address

Replace the remove_content function with a better one called remove_content_and_ip
that will nullify the email key.

� HINT: you can use jsonb_set(message, '{meta, email}', '{}') to re-
move the email value.

E303 - Pseudonymize the IP address

Pierre plans to extract general information from the metadata. For instance,
he wants to calculate the number of unique visitors based on the different IP
addresses.

But an IP address is an indirect identifier, so Paul needs to anonymize this
field while maintaining the fact that some values appear multiple times.

� HINT: First you can create a new meta object using jsonb_build_object()
and then use function jsonb_set replace the meta key

Solutions
S301

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
dropdb -U paul --if-exists boutique_anon
createdb -U paul boutique_anon --owner paul
pg_dump -U anon_dumper boutique | psql -U paul --quiet boutique_anon

export PGHOST=localhost
psql -U paul boutique_anon -c 'SELECT COUNT(*) FROM company'

S302

CREATE OR REPLACE FUNCTION my_masks.remove_content_and_ip(message JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL

111

AS $func$
SELECT
jsonb_set(message, '{meta, email}', '{}')
- ARRAY['content'];

$func$;

SELECT my_masks.remove_content_and_ip(message)
FROM website_comment;

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.remove_content_and_ip(message)';

S303

CREATE OR REPLACE FUNCTION my_masks.clean_comment(message JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT
jsonb_set(
message,
ARRAY['meta'],
jsonb_build_object(

'name',anon.fake_last_name(),
'ip_address', md5((message->'meta'->'ip_addr')::TEXT),
'email', NULL

)
) - ARRAY['content'];

$func$;

SELECT my_masks.clean_comment(message)
FROM website_comment;

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.clean_comment(message)';

4- Generalization
� The main idea of generalization is to blur the original data. For example,
instead of saying Mister X was born on July 25, 1989, we can say Mister
X was born is the 80's. The information is still true, but it is less precise
and it can’t be used to reidentify the subject.

The Story
Paul hired dozens of employees over the years. He kept a record of their hair
color, size and medical condition.

112

Paul wants to extract weird stats from these details. He provides generalized
views to Pierre.

How it works
Learning Objective
In this section, we will learn:

• The difference between masking and generalization
• The concept of K-anonymity

The employee table
DROP TABLE IF EXISTS employee CASCADE;

CREATE TABLE employee (
id INT PRIMARY KEY,
full_name TEXT,
first_day DATE, last_day DATE,
height INT,
hair TEXT, eyes TEXT, size TEXT,
asthma BOOLEAN,
CHECK(hair = ANY(ARRAY['bald','blond','dark','red'])),
CHECK(eyes = ANY(ARRAY['blue','green','brown'])) ,
CHECK(size = ANY(ARRAY['S','M','L','XL','XXL']))

);

� This is awkward and illegal.

Loading the data:

INSERT INTO employee
VALUES

(1,'Luna Dickens','2018-07-22','2018-12-15',180,'blond','blue','L',True),
(2,'Paul Wolf','2020-01-15',NULL,177,'bald','brown','M',False),
(3,'Rowan Hoeger','2018-12-01','2018-12-15',202,'dark','blue','XXL',True)
;

SELECT count(*) FROM employee;

SELECT full_name,first_day, hair, size, asthma
FROM employee
LIMIT 3;

Data suppression
Paul wants to find if there’s a correlation between asthma and the eyes color.

He provides the following view to Pierre.

113

DROP MATERIALIZED VIEW IF EXISTS v_asthma_eyes;

CREATE MATERIALIZED VIEW v_asthma_eyes AS
SELECT eyes, asthma
FROM employee;

SELECT *
FROM v_asthma_eyes
LIMIT 3;

Pierre can now write queries over this view.

SELECT
eyes,
100*COUNT(1) FILTER (WHERE asthma) / COUNT(1) AS asthma_rate

FROM v_asthma_eyes
GROUP BY eyes;

Pierre just proved that asthma is caused by blue eyes ;-)

K-Anonymity
The asthma and eyes columns are considered as indirect identifiers.

Indirect personal identifiers (or “quasi-identifiers”) are pieces of information
that, when combined with other data can identify an individual. Examples of
indirect identifiers include: Date of birth, Gender, Zip code, etc.

With PostgreSQL Anonymizer, we can declare that a column is an indirect
identifiers, like this:

SECURITY LABEL FOR k_anonymity
ON COLUMN v_asthma_eyes.eyes
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity
ON COLUMN v_asthma_eyes.asthma
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_asthma_eyes');

The v_asthma_eyes has ‘2-anonymity’. This means that each quasi-identifier
combination (the ‘eyes-asthma’ tuples) occurs in at least 2 records for a dataset.

In other words, it means that each individual in the view cannot be distinguished
from at least 1 (k-1) other individual.

Range and Generalization functions
Now let’s add another view over the employee table.

114

We will generalize the dates of to keep only the month and year.

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_month;
CREATE MATERIALIZED VIEW v_staff_per_month AS
SELECT

anon.generalize_daterange(first_day,'month') AS first_day,
anon.generalize_daterange(last_day,'month') AS last_day

FROM employee;

SELECT *
FROM v_staff_per_month
LIMIT 3;

Pierre can write a query to find how many employees were hired in november
2021.

SELECT COUNT(1)
FILTER (

WHERE make_date(2019,11,1)
BETWEEN lower(first_day)
AND COALESCE(upper(last_day),now())

)
FROM v_staff_per_month;

Declaring the indirect identifiers

Now let’s check the k-anonymity of this view by declaring which columns are
indirect identifiers :

SECURITY LABEL FOR k_anonymity
ON COLUMN v_staff_per_month.first_day
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity
ON COLUMN v_staff_per_month.last_day
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_month');

In this case, the k factor is 1 which means that there is at least one unique
individual who be identified directly by his/her first and last dates.

Exercises
E401 - Simplify v_staff_per_month and decrease granularity

Generalizing dates per month is not enough. Write another view called
v_staff_per_year that will generalize dates per year.

115

Also simplify the view by using a range of int to store the years instead of a
date range.

E402 - Staff progression over the years

How many people worked for Paul for each year between 2018 and 2021?

E403 - Reaching 2-anonymity for the v_staff_per_year view

What is the k-anonymity of v_staff_per_month_years?

Solutions
S401

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_year;

CREATE MATERIALIZED VIEW v_staff_per_year AS
SELECT
int4range(
extract(year from first_day)::INT,
extract(year from last_day)::INT,
'[]'

) AS period
FROM employee;

� '[]' will include the upper bound

SELECT *
FROM v_staff_per_year
LIMIT 3;

S402

SELECT
year,
COUNT(1) FILTER (

WHERE year <@ period
)

FROM
generate_series(2018,2021) year,
v_staff_per_year

GROUP BY year
ORDER BY year ASC;

116

S403

SECURITY LABEL FOR k_anonymity
ON COLUMN v_staff_per_year.period
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_year');

Conclusion

Clean up !
DROP DATABASE IF EXISTS boutique;

REASSIGN OWNED BY jack TO postgres;

REASSIGN OWNED BY paul TO postgres;

REASSIGN OWNED BY pierre TO postgres;

DROP ROLE IF EXISTS jack;
DROP ROLE IF EXISTS paul;
DROP ROLE IF EXISTS pierre;
DROP ROLE IF EXISTS dump_anon;

Also…
Other projects you may like

• pg_sample : extract a small dataset from a larger PostgreSQL database

Help Wanted!
This is a free and open project!

labs.dalibo.com/postgresql_anonymizer

Please send us feedback on how you use it, how it fits your needs (or not), etc.
— title: sampling draft: false toc: true —

Sampling
Principle
The GDPR introduces the concept of “[data minimisation]” which means that
the collection of personal information must be limited to what is directly relevant

117

https://github.com/mla/pg_sample
https://labs.dalibo.com/postgresql_anonymizer

and necessary to accomplish a specified purpose.

If you’re writing an anonymization policy for a dataset, chances are that you
don’t need to anonymize the entire database. In most cases, extract a subset
of the table is sufficient. For example, if you want to export an anonymous
dumps of the data for testing purpose in a CI workflow, extracting and masking
only 10% of the database may be enough.

Furthermore, anonymizing a smaller portion (i.e a “sample”) of the dataset will
be way faster.

With PostgreSQL Anonymizer, you can use 2 different sampling methods :

• Sampling with TABLESAMPLE
• Sampling with RLS Policies

You can also Truncate Tables for the masked users !

Sampling with TABLESAMPLE
Let’s say you have a huge amounts of http logs stored in a table. You want to
remove the ip addresses and extract only 10% of the table:

CREATE TABLE http_logs (
id integer NOT NULL,
date_opened DATE,
ip_address INET,
url TEXT

);

SECURITY LABEL FOR anon ON COLUMN http_logs.ip_address
IS 'MASKED WITH VALUE NULL';

SECURITY LABEL FOR anon ON TABLE http_logs
IS 'TABLESAMPLE BERNOULLI(10)';

Now you can either do static masking, dynamic masking or an anonymous
dumps. The mask data will represent a 10% portion of the real data.

The syntax is exactly the same as the TABLESAMPLE clause which can be
placed at the end of a SELECT statement.

You can also defined a sampling ratio at the database-level and it will be applied
to all the tables that don’t have their own TABLESAMPLE rule.

SECURITY LABEL FOR anon ON DATABASE app
IS 'TABLESAMPLE SYSTEM(33)';

118

https://wiki.postgresql.org/wiki/TABLESAMPLE_Implementation
https://www.postgresql.org/docs/current/sql-select.html

Sampling with RLS policies
Another approach for sampling is to use Row Level Security Policies, also known
as RLS or Row Security Policies.

Let’s use the same example as a above, this time we want to define a limit so
the mask users can only see the logs of the last 6 months.

CREATE TABLE http_logs (
id integer NOT NULL,
date_opened DATE,
ip_address INET,
url TEXT

);

SECURITY LABEL FOR anon ON COLUMN http_logs.ip_address
IS 'MASKED WITH VALUE NULL';

ALTER TABLE http_logs ENABLE ROW LEVEL SECURITY;

CREATE POLICY http_logs_sampling_for_masked_users
ON http_logs
USING (

NOT anon.hasmask(CURRENT_USER::REGROLE)
OR date_opened >= now() - '6 months'::INTERVAL

);

This RLS policy is based on 2 conditions:

• if the current user is not masked, the first condition is true and he/she
can read all the lines

• if the current user is masked, the first condition is false and he/she can
only read the lines that satisfy the second condition

Sampling with RLS policies is more powerful than the TABLESAMPLE method,
however maintaining a set of RLS policies is known to be difficult in the long run.
The benefits from Postgres RLS can dissipate when the size of the organization,
the amount of data collected, and the number of restrictions grow in size and
complexity.

Maintaining Referential Integrity
!!! note

The sampling methods described above **MAY FAIL** if you have
foreign keys pointing at the table you want to sample.

Extracting a subset of a database while maintaining referential integrity is tricky
and it is not supported by this extension.

119

https://www.postgresql.org/docs/current/ddl-rowsecurity.html

If you really need to keep referential integrity in an anonymized dataset, you
need to do it in 2 steps:

• First, extract a sample with pg_sample
• Second, anonymize that sample

There may be other sampling tools for PostgreSQL but pg_sample is probably
the best one.

Truncate Tables for the masked users
In certain situations, you can also erase complety a table instead of just masking
some of the columns.

For instance, let’s say that masked users should not see anything in the
http_logs table below

CREATE TABLE http_logs (
id integer NOT NULL,
date_opened DATE,
ip_address INET,
url TEXT

);

Using the TABLESAMPLE clause, you can simply set the sampling ratio to 0

SECURITY LABEL FOR anon ON TABLE http_logs IS ' TABLESAMPLE SYSTEM (0)';

Now the table will be erased for the masked users !

SET ROLE the_database_owner;

SELECT count(*) FROM http_logs;
count

156706

SET ROLE a_masked_user;

SELECT count(*) FROM http_logs;
count

0

Security
Permissions
Here’s an overview of what users can do depending on the privileges they have:

120

https://github.com/mla/pg_sample
https://github.com/mla/pg_sample
https://wiki.postgresql.org/wiki/TABLESAMPLE_Implementation

Action Superuser Owner Masked Role
Create the extension Yes
Drop the extension Yes
Init the extension Yes
Reset the extension Yes
Configure the extension Yes
Put a mask upon a role Yes
Start dynamic masking Yes
Stop dynamic masking Yes
Create a table Yes Yes
Declare a masking rule Yes Yes
Insert, delete, update a row Yes Yes
Static Masking Yes Yes
Select the real data Yes Yes
Regular Dump Yes Yes
Anonymous Dump Yes Yes
Use the masking functions Yes Yes Yes
Select the masked data Yes Yes Yes
View the masking rules Yes Yes Yes

Limit masking filters only to trusted schemas
By default, the database owner can only write masking rules with functions that
are located in the trusted schemas which are controlled by the superusers.

Out of the box, only the anon schema is declared as trusted. This means that
by default the functions from the pg_catalog cannot be used in masking rules.

For more details, read the Using pg_catalog functions section.

Security context of the functions
Most of the functions of this extension are declared with the SECURITY INVOKER
tag. This means that these functions are executed with the privileges of the user
that calls them. This is an important restriction.

This extension contains another few functions declared with the tag SECURITY
DEFINER. — title: selective_masking draft: false toc: true —

Selective Masking (BETA)
Principle
In some context, it is relevant to mask only certain row of a table.

The selective masking syntax allows to filter based on a condition.

121

masking_functions.md#using-pg_catalog-functions

This feature is currently under heavy development. This implementation of
Selective Masking is provided for testing purpose only. Major breaking changes
may be introduced at any time and we may even remove this feature entirely if
we feel it does not reach our standard of quality and stability

Example
Imagine a users table containing all the users of an application.

SELECT * FROM users;
id | login | password | admin

----+-------+---------------------------------+-------
1 | alice | adfsqfcksqhdqijsdizjdfiqqlq<iqq | f
2 | bob | a_very_bad_password | t
3 | carol | 1234 | f

We want to anonymize the login and password columns with the 2 masking rules
below:

SECURITY LABEL FOR anon ON COLUMN users.login IS 'MASKED WITH VALUE NULL';
SECURITY LABEL FOR anon ON COLUMN users.password IS 'MASKED WITH VALUE NULL';

We may want to anonymize most of the users in the table while keeping the
real data of the administrators so that they can still use the application in
anonymized environments.

We can add a rule on table to filter out all the admin users:

SECURITY LABEL FOR anon ON TABLE users IS 'MASKED WHEN admin IS FALSE';

Now let’s anonymize the table:

SELECT anon.anonymize_table('users');

SELECT * FROM users;
id | login | password | admin

----+-------+---------------------------------+-------
1 | | | f
2 | bob | a_very_bad_password | t
3 | | | f

NOTE: The Selective Masking is incompatible with Sampling.

Sampling: Sampling.md
title: static_masking draft: false toc: true —

122

Permanently remove sensitive data
Sometimes, it is useful to transform directly the original dataset. You can do
that with different methods:

• Applying masking rules
• Shuffling a column
• Adding noise to a column

These methods will destroy the original data. Use with care.

PostgreSQL Static Masking

Applying masking rules
You can permanently apply the masking rules of a database with anon.anonymize_database().

Let’s use a basic example :

CREATE TABLE customer(
id SERIAL,
full_name TEXT,
birth DATE,
employer TEXT,
zipcode TEXT,
fk_shop INTEGER

);

INSERT INTO customer
VALUES
(911,'Chuck Norris','1940-03-10','Texas Rangers', '75001',12),
(312,'David Hasselhoff','1952-07-17','Baywatch', '90001',423)
;

SELECT * FROM customer;

id | full_name | birth | employer | zipcode | fk_shop
-----+------------------+------------+---------------+---------+---------
911 | Chuck Norris | 1940-03-10 | Texas Rangers | 75001 | 12
112 | David Hasselhoff | 1952-07-17 | Baywatch | 90001 | 423

Step 1: Load the extension :

CREATE EXTENSION IF NOT EXISTS anon CASCADE;
SELECT anon.init();

Step 2: Declare the masking rules

123

declare_masking_rules.md

SECURITY LABEL FOR anon ON COLUMN customer.full_name
IS 'MASKED WITH FUNCTION anon.dummy_name()';

SECURITY LABEL FOR anon ON COLUMN customer.employer
IS 'MASKED WITH FUNCTION anon.dummy_company_name()';

SECURITY LABEL FOR anon ON COLUMN customer.zipcode
IS 'MASKED WITH FUNCTION anon.random_zip()';

Step 3: Replace authentic data in the masked columns :

SELECT anon.anonymize_database();

SELECT * FROM customer;

id | full_name | birth | employer | zipcode | fk_shop
-----+-------------+------------+-------------------------+---------+---------
911 | jesse Kosel | 1940-03-10 | Marigold Properties LLC | 62172 | 12
312 | leolin Bose | 1952-07-17 | Inventure Inc | 20026 | 423

You can also use anonymize_table() and anonymize_column() to remove data
from a subset of the database :

SELECT anon.anonymize_table('customer');
SELECT anon.anonymize_column('customer','zipcode');

WARNING : Static masking is a slow process. The principle of static
masking is to update all lines of all tables containing at least one masked col-
umn. This basically means that PostgreSQL will rewrite all the data on disk.
Depending on the database size, the hardware and the instance config, it may
be faster to export the anonymized data (See Anonymous Dumps) and reload
it into the database.

Disabling Static Masking
You may be scared that someone could accidentally run anon.anonymize_database()
and wipe out all the data.

If so, you can disable this feature globally with:

ALTER SYSTEM SET anon.static_masking TO off

Or disable it for a single user :

ALTER ROLE bob SET anon.static_masking TO off;

Or disable it everyone except one user

ALTER DATABASE mydb SET anon.static_masking = FALSE;
ALTER ROLE daniel SET anon.static_masking = TRUE;

124

anonymous_dumps.md

Static Masking and Multiple Masking Policies
When using multiple masking policies, you can simply add the policy name at
the end of the static masking functions.

For instance, if you defined a masking policy named “rgpd”, you can apply it
with

SELECT anon.anonymize_table('customer','rgpd');
SELECT anon.anonymize_column('customer','zipcode','rgpd');

By default, there’s a single masking policy named “anon”.

Shuffling
Shuffling mixes values within the same columns.

• anon.shuffle_column(shuffle_table, shuffle_column, primary_key)
will rearrange all values in a given column. You need to provide a primary
key of the table.

This is useful for foreign keys because referential integrity will be kept.

IMPORTANT: shuffle_column() is not a masking function because it works
“vertically” : it will modify all the values of a column at once.

Adding noise to a column
There are also some functions that can add noise on an entire column:

• anon.add_noise_on_numeric_column(table, column, ratio) if ratio
= 0.33, all values of the column will be randomly shifted with a ratio
of +/- 33%

• anon.add_noise_on_datetime_column(table, column, interval) if
interval = ‘2 days’, all values of the column will be randomly shifted by
+/- 2 days

IMPORTANT : These noise functions are vulnerable to a form of repeat
attack. See demo/noise_reduction_attack.sql for more details. — title:
tutorials/0-intro draft: false toc: true —

Welcome to Paul’s Boutique !
This is a 4 hours workshop that demonstrates various anonymization techniques
using the PostgreSQL Anonymizer extension.

The Story
Paul’s boutique

125

masking_functions.md
https://labs.dalibo.com/postgresql_anonymizer

Paul’s boutique has a lot of customers. Paul asks his friend Pierre, a Data
Scientist, to make some statistics about his clients : average age, etc…

Pierre wants a direct access to the database in order to write SQL queries.

Jack is an employee of Paul. He’s in charge of relationship with the various
suppliers of the shop.

Paul respects his suppliers privacy. He needs to hide the personal information
to Pierre, but Jack needs read and write access the real data.

Objectives
Using the simple example above, we will learn:

• How to write masking rules
• The difference between static and dynamic masking
• Implementing advanced masking techniques

About GDPR
This tutorial does not go into the details of the GPDR act and the general
concepts of anonymization.

For more information about it, please refer to the talk below:

• Anonymisation, Au-delà du RGPD (Video / French)
• Anonymization, Beyond GDPR (PDF / english)

Requirements
In order to make this workshop, you will need:

• A Linux VM (preferably Debian 12 bookworm or Ubuntu 24.04)
• A PostgreSQL instance (preferably PostgreSQL 17)
• The PostgreSQL Anonymizer (anon) extension, installed and initialized

by a superuser
• A database named “boutique” owned by a superuser called “paul”
• A role “pierre” and a role “jack”, both allowed to connect to the database

“boutique”

Check out the INSTALL section to learn how to install the PostgreSQL
Anonymizer extension:

!!! tip

A simple way to deploy a workshop environment is to install [Docker Desktop]
and download the image below:

ANON_IMG=registry.gitlab.com/dalibo/postgresql_anonymizer:stable
docker pull $ANON_IMG

126

https://www.youtube.com/watch?v=KGSlp4UygdU
https://public.dalibo.com/exports/conferences/_archives/_2019/20191016_anonymisation_beyond_GDPR/anonymisation_beyond_gdpr.pdf
https://postgresql-anonymizer.readthedocs.io/en/stable/INSTALL/
https://labs.dalibo.com/postgresql_anonymizer
https://labs.dalibo.com/postgresql_anonymizer

And you can then launch it with:

docker run --name anon_tuto --detach -e POSTGRES_PASSWORD=x $ANON_IMG
docker exec -it anon_tuto psql -U postgres

!!! tip Check out the INSTALL section in the documentation to learn how to
install the extension in your PostgreSQL instance.

The Roles
We will with 3 different users:

CREATE ROLE paul LOGIN SUPERUSER PASSWORD 'CHANGEME';

CREATE ROLE pierre LOGIN PASSWORD 'CHANGEME';

CREATE ROLE jack LOGIN PASSWORD 'CHANGEME';
GRANT pg_read_all_data TO jack;
GRANT pg_write_all_data TO jack;

Unless stated otherwise, all commands must be executed with the role paul.

!!! Tip Setup a .pgpass file to simplify the connections !

cat > ~/.pgpass << EOL
::boutique:paul:CHANGEME
::boutique:pierre:CHANGEME
::boutique:jack:CHANGEME
EOL
chmod 0600 ~/.pgpass

The Sample database
We will work on a database called “boutique”:

CREATE DATABASE boutique OWNER paul;

We need to activate the anon library inside that database:

ALTER DATABASE boutique
SET session_preload_libraries = 'anon';

1- Static Masking
� Static Masking is the simplest way to hide personal information! This idea is
simply to destroy the original data or replace it with an artificial one.

Requirements
Please check out the intro of this tutorial if you haven’t read it yet

127

https://postgresql-anonymizer.readthedocs.io/en/stable/INSTALL
https://postgresql-anonymizer.readthedocs.io/en/stable/

The story
Over the years, Paul has collected data about his customers and their purchases
in a simple database. He recently installed a brand new sales application and
the old database is now obsolete. He wants to save it and he would like to
remove all personal information before archiving it.

How it works
Learning Objective
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of static masking
• The concept of “Singling Out” a person

The “customer” table
DROP TABLE IF EXISTS customer CASCADE;

DROP TABLE IF EXISTS payout CASCADE;

CREATE TABLE customer (
id SERIAL PRIMARY KEY,
firstname TEXT,
lastname TEXT,
phone TEXT,
birth DATE,
postcode TEXT

);

Insert a few persons:

INSERT INTO customer
VALUES
(107,'Sarah','Conor','060-911-0911', '1965-10-10', '90016'),
(258,'Luke', 'Skywalker', NULL, '1951-09-25', '90120'),
(341,'Don', 'Draper','347-515-3423', '1926-06-01', '04520')
;

SELECT * FROM customer;

id firstname lastname phone birth postcode
107 Sarah Conor 060-911-0911 1965-10-10 90016
258 Luke Skywalker None 1951-09-25 90120
341 Don Draper 347-515-3423 1926-06-01 04520

128

The “payout” table
Sales are tracked in a simple table:

CREATE TABLE payout (
id SERIAL PRIMARY KEY,
fk_customer_id INT REFERENCES customer(id),
order_date DATE,
payment_date DATE,
amount INT

);

Let’s add some orders:

INSERT INTO payout
VALUES
(1,107,'2021-10-01','2021-10-01', '7'),
(2,258,'2021-10-02','2021-10-03', '20'),
(3,341,'2021-10-02','2021-10-02', '543'),
(4,258,'2021-10-05','2021-10-05', '12'),
(5,258,'2021-10-06','2021-10-06', '92')
;

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon;

Declare the masking rules
Paul wants to hide the last name and the phone numbers of his clients. He will
use the dummy_last_name() and partial() functions for that:

SECURITY LABEL FOR anon ON COLUMN customer.lastname
IS 'MASKED WITH FUNCTION anon.dummy_last_name()';

SECURITY LABEL FOR anon ON COLUMN customer.phone
IS 'MASKED WITH FUNCTION anon.partial(phone,2,$$X-XXX-XX$$,2)';

Apply the rules permanently
SELECT anon.anonymize_table('customer');

anonymize_table
True

SELECT id, firstname, lastname, phone
FROM customer;

129

id firstname lastname phone
107 Sarah Abshire 06X-XXX-XX11
258 Luke Goldner None
341 Don Sauer 34X-XXX-XX23

This is called Static Masking because the real data has been
permanently replaced. We’ll see later how we can use dynamic
anonymization or anonymous exports.

Exercises
E101 - Mask the client’s first names

Declare a new masking rule and run the static anonymization function again.

E102 - Hide the last 3 digits of the postcode

Paul realizes that the postcode gives a clear indication of where his customers
live. However he would like to have statistics based on their postcode area.

Add a new masking rule to replace the last 3 digits by ‘x’.

E103 - Count how many clients live in each postcode area?

Aggregate the customers based on their anonymized postcode.

E104 - Keep only the year of each birth date

Paul wants age-based statistic. But he also wants to hide the real birth date of
the customers.

Replace all the birth dates by January 1rst, while keeping the real year.

� You can use the make_date or date_trunc functions !

See https://www.postgresql.org/docs/current/functions-datetime.html#
FUNCTIONS-DATETIME-TABLE

E105 - Singling out a customer

Even if the “customer” is properly anonymized, we can still isolate a given
individual based on data stored outside of the table. For instance, we can
identify the best client of Paul’s boutique with a query like this:

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout

130

https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE
https://www.postgresql.org/docs/current/functions-datetime.html#FUNCTIONS-DATETIME-TABLE

GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id)

id firstname lastname phone birth postcode
341 Don Sauer 34X-XXX-XX23 1926-06-01 04520

� This is called Singling Out a person.

We need to anonymize even further by removing the link between a person and
its company. In the payout table, this link is materialized by a foreign key on
the field fk_company_id. However we can’t remove values from this column or
insert fake identifiers because if would break the foreign key constraint.

How can we separate the customers from their payouts while respecting the
integrity of the data?

Find a function that will shuffle the column fk_company_id of the payout table

� Check out the shuffling section of the documentation.

Solutions
S101

SECURITY LABEL FOR anon ON COLUMN customer.firstname
IS 'MASKED WITH FUNCTION anon.dummy_first_name()';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname
FROM customer;

S102

SECURITY LABEL FOR anon ON COLUMN customer.postcode
IS 'MASKED WITH FUNCTION anon.partial(postcode,2,$$xxx$$,0)';

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, postcode
FROM customer;

131

https://www.pnas.org/content/117/15/8344
https://postgresql-anonymizer.readthedocs.io/en/stable/

S103

SELECT postcode, COUNT(id)
FROM customer
GROUP BY postcode;

postcode count
90xxx 2
04xxx 1

S104

SECURITY LABEL FOR anon ON FUNCTION pg_catalog.date_trunc(text,interval)
IS 'TRUSTED';

SECURITY LABEL FOR anon ON COLUMN customer.birth
IS $$ MASKED WITH FUNCTION pg_catalog.date_trunc('year',birth) $$;

SELECT anon.anonymize_table('customer');

SELECT id, firstname, lastname, birth
FROM customer;

S105

Let’s mix up the values of the fk_customer_id:

SELECT anon.shuffle_column('payout','fk_customer_id','id');

shuffle_column
True

Now let’s try to single out the best client again :

WITH best_client AS (
SELECT SUM(amount), fk_customer_id
FROM payout
GROUP BY fk_customer_id
ORDER BY 1 DESC
LIMIT 1

)
SELECT c.*
FROM customer c
JOIN best_client b ON (c.id = b.fk_customer_id);

132

id firstname lastname phone birth postcode
258 Lydia Toy None 1951-01-01 90xxx

WARNING

Note that the link between a customer and its payout is now completely false.
For instance, if a customer A had 2 payouts. One of these payout may be linked
to a customer B, while the second one is linked to a customer C.

In other words, this shuffling method with respect the foreign key constraint
(aka the referential integrity) but it will break the data integrity. For some use
case, this may be a problem.

In this case, Pierre will not be able to produce a BI report with the shuffle data,
because the links between the customers and their payments are fake. — title:
tutorials/2-dynamic_masking draft: false toc: true —

2- Dynamic Masking
� With Dynamic Masking, the database owner can hide personal data for some
users, while other users are still allowed to read and write the authentic data.

Requirements
Please check out the intro of this tutorial if you haven’t read it yet

The Story
Paul has 2 employees:

• Jack is operating the new sales application, he needs access to the real
data. He is what the GPDR would call a ”data processor”.

• Pierre is a data analyst who runs statistic queries on the database. He
should not have access to any personal data.

How it works
Objectives
In this section, we will learn:

• How to write simple masking rules
• The advantage and limitations of dynamic masking
• The concept of ”Linkability” of a person

133

The company table

DROP TABLE IF EXISTS supplier CASCADE;

DROP TABLE IF EXISTS company CASCADE;

CREATE TABLE company (
id SERIAL PRIMARY KEY,
name TEXT,
vat_id TEXT UNIQUE

);

INSERT INTO company
VALUES
(952,'Shadrach', 'FR62684255667'),
(194,E'Johnny\'s Shoe Store','CHE670945644'),
(346,'Capitol Records','GB663829617823')
;

SELECT * FROM company;

id name vat_id
952 Shadrach FR62684255667
194 Johnny’s Shoe Store CHE670945644
346 Capitol Records GB663829617823

The supplier table
CREATE TABLE supplier (

id SERIAL PRIMARY KEY,
fk_company_id INT REFERENCES company(id),
contact TEXT,
phone TEXT,
job_title TEXT

);

INSERT INTO supplier
VALUES
(299,194,'Johnny Ryall','597-500-569','CEO'),
(157,346,'George Clinton', '131-002-530','Sales manager')
;

SELECT * FROM supplier;

134

id fk_company_id contact phone job_title
299 194 Johnny Ryall 597-500-569 CEO
157 346 George Clinton 131-002-530 Sales manager

Activate the extension
ALTER DATABASE boutique

SET session_preload_libraries TO 'anon';

CREATE EXTENSION IF NOT EXISTS anon;

SELECT anon.init();

Dynamic Masking
Activate the masking engine

ALTER DATABASE boutique
SET anon.transparent_dynamic_masking TO true;

Masking a role

SECURITY LABEL FOR anon ON ROLE pierre IS 'MASKED';

GRANT pg_read_all_data to pierre;

Now connect as Pierre and try to read the supplier table:

SELECT * FROM supplier;

id fk_company_id contact phone job_title
299 194 Johnny Ryall 597-500-569 CEO
157 346 George Clinton 131-002-530 Sales manager

For the moment, there is no masking rule so Pierre can see the original data in
each table.

Masking the supplier names
Connect as Paul and define a masking rule on the supplier table:

SECURITY LABEL FOR anon ON COLUMN supplier.contact
IS 'MASKED WITH VALUE $$CONFIDENTIAL$$';

135

Now connect as Pierre and try to read the supplier table again:

SELECT * FROM supplier;

id fk_company_id contact phone job_title
299 194 CONFIDENTIAL 597-500-569 CEO
157 346 CONFIDENTIAL 131-002-530 Sales manager

Now connect as Jack and try to read the real data:

SELECT * FROM supplier;

id fk_company_id contact phone job_title
299 194 Johnny Ryall 597-500-569 CEO
157 346 George Clinton 131-002-530 Sales manager

Exercises
E201 - Guess who is the CEO of “Johnny’s Shoe Store”

Masking the supplier contact is clearly not enough to provide anonymity.

Connect as Pierre and write a simple SQL query that joins the
supplier and the company tables. See how that could reindentify some
suppliers based on their job and their company.

With this request we managed to link a person to a company and we know it’s
job title. Since company names and job positions are available in many public
datasets: a simple search on Linkedin or Google would give us the real names
of many of the employees of these companies…

� This is called Linkability: the ability to connect multiple records concerning
the same data subject.

E202 - Anonymize the companies

We need to anonymize the company table, too. Even if they don’t contain
personal information, some fields can be used to infer the identity of their
employees…

Connect as Paul and write 2 masking rules (security labels) for the
company table.

• The first one will replace the name field with a fake name.
• The second rule will replace the vat_id with a random sequence of 10

characters

136

� Go to thedocumentation and look at the faking functions and the random
functions !

Connect as Pierre and check that he cannot view the real company info.

Connect as Jack and check that he can view the real values.

E203 - Pseudonymize the company name

Because of dynamic masking, the fake values will be different every time Pierre
tries to read the table.

Pierre would like to have always the same fake values for a given company.

� This is called pseudonymization.

Connect as Paul and write a new masking rule over the vat_id field by
generating a hash of 10 characters using the anon.digest() function.

Write a new masking rule over the name field by using a pseudonymiz-
ing function.

Solutions
S201

SELECT s.id, s.contact, s.job_title, c.name
FROM supplier s
JOIN company c ON s.fk_company_id = c.id;

id contact job_title name
299 CONFIDENTIAL CEO Johnny’s Shoe Store
157 CONFIDENTIAL Sales manager Capitol Records

S202

SECURITY LABEL FOR anon ON COLUMN company.name
IS 'MASKED WITH FUNCTION anon.dummy_company_name()';

SECURITY LABEL FOR anon ON COLUMN company.vat_id
IS 'MASKED WITH FUNCTION anon.random_string(10)';

Now connect as Pierre and read the table again:

SELECT * FROM company;

id name vat_id
952 Bashirian LLC Yg1GmRm0WW
194 Towne and Sons IzzSE2QmEC

137

https://postgresql-anonymizer.readthedocs.io/en/stable/

id name vat_id
346 Cartwright and Sons LjTIY7QrBm

Pierre will see different “fake data” every time he reads the table:

SELECT * FROM company;

id name vat_id
952 Wolf and Haley Group T0UjIXqLu5
194 Rippin Inc EpB97liUYC
346 Weber and Bayer LLC flyM5UaRPV

Jack still sees the real data

SELECT * FROM company;

id name vat_id
952 Shadrach FR62684255667
194 Johnny’s Shoe Store CHE670945644
346 Capitol Records GB663829617823

S203

SECURITY LABEL FOR anon ON COLUMN company.vat_id
IS $$ MASKED WITH FUNCTION anon.left(anon.digest(vat_id, 'xxx', 'md5'),10) $$;

SECURITY LABEL FOR anon ON COLUMN company.name
IS 'MASKED WITH FUNCTION anon.pseudo_company(id)';

Connect as Pierre and read the table multiple times:

SELECT * FROM company;

id name vat_id
952 Wilkinson LLC 2db762afa4
194 Johnson PLC 61fddf8d83
346 Young-Carpenter 86fe3f164c

SELECT * FROM company;

id name vat_id
952 Wilkinson LLC 2db762afa4

138

id name vat_id
194 Johnson PLC 61fddf8d83
346 Young-Carpenter 86fe3f164c

Now the fake company name is always the same.
title: tutorials/3-anonymous_dumps draft: false toc: true —

3- Anonymous Dumps
� In many situation, what we want is basically to export the anonymized data
into another database (for testing or to produce statistics). We will simply use
pg_dump for that !

The Story
Paul has a website and a comment section where customers can express their
views.

He hired a web agency to develop a new design for his website. The agency
asked for a SQL export (dump) of the current website database. Paul wants to
clean the database export and remove any personal information contained in
the comment section.

How it works
Learning Objective

• Extract the anonymized data from the database
• Write a custom masking function to handle a JSON field.

Load the data
DROP TABLE IF EXISTS website_comment CASCADE;

CREATE TABLE website_comment (
id SERIAL PRIMARY KEY,
message JSONB

);

INSERT INTO website_comment
VALUES
(1, json_build_object(

'meta', json_build_object(
'name', 'Lee Perry',

139

'ip_addr','40.87.29.113'),
'content', 'Hello Nasty!')),

(2, json_build_object(
'meta', json_build_object(
'name', '',
'email', 'biz@bizmarkie.com'),

'content', 'Great Shop')),
(3,json_build_object(

'meta', json_build_object(
'name','Jimmy'),

'content','Hi ! This is me, Jimmy James'));

Check the content of the website comments:

SELECT
message->'meta'->'name' AS name,
message->'content' AS content

FROM website_comment
ORDER BY id ASC;

name content
Lee Perry Hello Nasty!

Great Shop
Jimmy Hi ! This is me, Jimmy James

Activate the extension
CREATE EXTENSION IF NOT EXISTS anon;

Masking a JSON column
The comment field is filled with personal information and the fact the field does
not have a standard schema makes our tasks harder.

In general, unstructured data are difficult to mask.

As we can see, web visitors can write any kind of information in the comment
section. Our best option is to remove this key entirely because there’s no way
to extract personal data properly.

We can clean the comment column simply by removing the content key in the
message column !

SELECT message - ARRAY['content'] AS message_without_content
FROM website_comment
WHERE id=1;

140

message_without_content
{’meta’: {’name’: ’Lee Perry’, ’ip_addr’: ’40.87.29.113’}}

First let’s create a dedicated schema and declare it as trusted. This means the
anon extension will accept the functions located in this schema as valid masking
functions. Only a superuser should be able to add functions in this schema.

CREATE SCHEMA IF NOT EXISTS my_masks;

SECURITY LABEL FOR anon ON SCHEMA my_masks IS 'TRUSTED';

Now we can write a function that remove the message content:

CREATE OR REPLACE FUNCTION my_masks.remove_content(j JSONB)
RETURNS JSONB
AS $func$

SELECT j - ARRAY['content']
$func$
LANGUAGE SQL
;

Let’s try it!

SELECT my_masks.remove_content(message)
FROM website_comment;

remove_content
{’meta’: {’name’: ’Lee Perry’, ’ip_addr’: ’40.87.29.113’}}
{’meta’: {’name’: ”, ’email’: ’biz@bizmarkie.com’}}
{’meta’: {’name’: ’Jimmy’}}

And now we can use it in a masking rule:

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.remove_content(message)';

Then we need to create a dedicated role to export the masked data. We will call
this role anon_dumper (the name does not matter) and declare that this role is
masked.

CREATE ROLE anon_dumper LOGIN PASSWORD 'CHANGEME';

ALTER ROLE anon_dumper SET anon.transparent_dynamic_masking TO TRUE;

141

SECURITY LABEL FOR anon ON ROLE anon_dumper IS 'MASKED';

GRANT pg_read_all_data TO anon_dumper;

For convenience, add a new entry in the .pgpass file.

cat > ~/.pgpass << EOL
::boutique:anon_dumper:CHANGEME
EOL

Finally we can export an anonymous dump of the table with pg_dump:

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
pg_dump -U anon_dumper boutique --table=website_comment > /tmp/dump.sql

Exercises
E301 - Dump the anonymized data into a new database

Create a database named boutique_anon and transfer the entire database into
it.

E302 - Remove the email address

Replace the remove_content function with a better one called remove_content_and_ip
that will nullify the email key.

� HINT: you can use jsonb_set(message, '{meta, email}', '{}') to re-
move the email value.

E303 - Pseudonymize the IP address

Pierre plans to extract general information from the metadata. For instance,
he wants to calculate the number of unique visitors based on the different IP
addresses.

But an IP address is an indirect identifier, so Paul needs to anonymize this
field while maintaining the fact that some values appear multiple times.

� HINT: First you can create a new meta object using jsonb_build_object()
and then use function jsonb_set replace the meta key

Solutions
S301

export PATH=$PATH:$(pg_config --bindir)
export PGHOST=localhost
dropdb -U paul --if-exists boutique_anon

142

createdb -U paul boutique_anon --owner paul
pg_dump -U anon_dumper boutique | psql -U paul --quiet boutique_anon

export PGHOST=localhost
psql -U paul boutique_anon -c 'SELECT COUNT(*) FROM company'

S302

CREATE OR REPLACE FUNCTION my_masks.remove_content_and_ip(message JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT
jsonb_set(message, '{meta, email}', '{}')
- ARRAY['content'];

$func$;

SELECT my_masks.remove_content_and_ip(message)
FROM website_comment;

remove_content_and_ip
{’meta’: {’name’: ’Lee Perry’, ’email’: {}, ’ip_addr’: ’40.87.29.113’}}
{’meta’: {’name’: ”, ’email’: {}}}
{’meta’: {’name’: ’Jimmy’, ’email’: {}}}

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.remove_content_and_ip(message)';

S303

CREATE OR REPLACE FUNCTION my_masks.clean_comment(message JSONB)
RETURNS JSONB
VOLATILE
LANGUAGE SQL
AS $func$
SELECT
jsonb_set(
message,
ARRAY['meta'],
jsonb_build_object(

'name',anon.fake_last_name(),
'ip_address', md5((message->'meta'->'ip_addr')::TEXT),
'email', NULL

)
) - ARRAY['content'];

143

$func$;

SELECT my_masks.clean_comment(message)
FROM website_comment;

clean_comment
{’meta’: {’name’: ’Gill’, ’email’: None, ’ip_address’:
’1d8cbcdef988d55982af1536922ddcd1’}}
{’meta’: {’name’: ’Henson’, ’email’: None, ’ip_address’: None}}
{’meta’: {’name’: ’Mcmahon’, ’email’: None, ’ip_address’: None}}

SECURITY LABEL FOR anon ON COLUMN website_comment.message
IS 'MASKED WITH FUNCTION my_masks.clean_comment(message)';

4- Generalization
� The main idea of generalization is to blur the original data. For example,
instead of saying Mister X was born on July 25, 1989, we can say Mister
X was born is the 80's. The information is still true, but it is less precise
and it can’t be used to reidentify the subject.

The Story
Paul hired dozens of employees over the years. He kept a record of their hair
color, size and medical condition.

Paul wants to extract weird stats from these details. He provides generalized
views to Pierre.

How it works
Learning Objective
In this section, we will learn:

• The difference between masking and generalization
• The concept of K-anonymity

The employee table
DROP TABLE IF EXISTS employee CASCADE;

CREATE TABLE employee (
id INT PRIMARY KEY,
full_name TEXT,
first_day DATE, last_day DATE,

144

height INT,
hair TEXT, eyes TEXT, size TEXT,
asthma BOOLEAN,
CHECK(hair = ANY(ARRAY['bald','blond','dark','red'])),
CHECK(eyes = ANY(ARRAY['blue','green','brown'])) ,
CHECK(size = ANY(ARRAY['S','M','L','XL','XXL']))

);

� This is awkward and illegal.

Loading the data:

INSERT INTO employee
VALUES

(1,'Luna Dickens','2018-07-22','2018-12-15',180,'blond','blue','L',True),
(2,'Paul Wolf','2020-01-15',NULL,177,'bald','brown','M',False),
(3,'Rowan Hoeger','2018-12-01','2018-12-15',202,'dark','blue','XXL',True)
;

SELECT count(*) FROM employee;

count
3

SELECT full_name,first_day, hair, size, asthma
FROM employee
LIMIT 3;

full_name first_day hair size asthma
Luna Dickens 2018-07-22 blond L True
Paul Wolf 2020-01-15 bald M False
Rowan Hoeger 2018-12-01 dark XXL True

Data suppression
Paul wants to find if there’s a correlation between asthma and the eyes color.

He provides the following view to Pierre.

DROP MATERIALIZED VIEW IF EXISTS v_asthma_eyes;

CREATE MATERIALIZED VIEW v_asthma_eyes AS
SELECT eyes, asthma
FROM employee;

SELECT *
FROM v_asthma_eyes

145

LIMIT 3;

eyes asthma
blue True
brown False
blue True

Pierre can now write queries over this view.

SELECT
eyes,
100*COUNT(1) FILTER (WHERE asthma) / COUNT(1) AS asthma_rate

FROM v_asthma_eyes
GROUP BY eyes;

eyes asthma_rate
brown 0
blue 100

Pierre just proved that asthma is caused by blue eyes ;-)

K-Anonymity
The asthma and eyes columns are considered as indirect identifiers.

Indirect personal identifiers (or “quasi-identifiers”) are pieces of information
that, when combined with other data can identify an individual. Examples of
indirect identifiers include: Date of birth, Gender, Zip code, etc.

With PostgreSQL Anonymizer, we can declare that a column is an indirect
identifiers, like this:

SECURITY LABEL FOR k_anonymity
ON COLUMN v_asthma_eyes.eyes
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity
ON COLUMN v_asthma_eyes.asthma
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_asthma_eyes');

k_anonymity
1

146

The v_asthma_eyes has ‘2-anonymity’. This means that each quasi-identifier
combination (the ‘eyes-asthma’ tuples) occurs in at least 2 records for a dataset.

In other words, it means that each individual in the view cannot be distinguished
from at least 1 (k-1) other individual.

Range and Generalization functions
Now let’s add another view over the employee table.

We will generalize the dates of to keep only the month and year.

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_month;
CREATE MATERIALIZED VIEW v_staff_per_month AS
SELECT

anon.generalize_daterange(first_day,'month') AS first_day,
anon.generalize_daterange(last_day,'month') AS last_day

FROM employee;

SELECT *
FROM v_staff_per_month
LIMIT 3;

first_day last_day
[2018-07-01, 2018-08-01) [2018-12-01, 2019-01-01)
[2020-01-01, 2020-02-01) (None, None)
[2018-12-01, 2019-01-01) [2018-12-01, 2019-01-01)

Pierre can write a query to find how many employees were hired in november
2021.

SELECT COUNT(1)
FILTER (

WHERE make_date(2019,11,1)
BETWEEN lower(first_day)
AND COALESCE(upper(last_day),now())

)
FROM v_staff_per_month;

count
0

Declaring the indirect identifiers

Now let’s check the k-anonymity of this view by declaring which columns are
indirect identifiers :

147

SECURITY LABEL FOR k_anonymity
ON COLUMN v_staff_per_month.first_day
IS 'INDIRECT IDENTIFIER';

SECURITY LABEL FOR k_anonymity
ON COLUMN v_staff_per_month.last_day
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_month');

In this case, the k factor is 1 which means that there is at least one unique
individual who be identified directly by his/her first and last dates.

Exercises
E401 - Simplify v_staff_per_month and decrease granularity

Generalizing dates per month is not enough. Write another view called
v_staff_per_year that will generalize dates per year.

Also simplify the view by using a range of int to store the years instead of a
date range.

E402 - Staff progression over the years

How many people worked for Paul for each year between 2018 and 2021?

E403 - Reaching 2-anonymity for the v_staff_per_year view

What is the k-anonymity of v_staff_per_month_years?

Solutions
S401

DROP MATERIALIZED VIEW IF EXISTS v_staff_per_year;

CREATE MATERIALIZED VIEW v_staff_per_year AS
SELECT
int4range(
extract(year from first_day)::INT,
extract(year from last_day)::INT,
'[]'

) AS period
FROM employee;

� '[]' will include the upper bound

148

SELECT *
FROM v_staff_per_year
LIMIT 3;

period
[2018, 2019)
[2020, None)
[2018, 2019)

S402

SELECT
year,
COUNT(1) FILTER (

WHERE year <@ period
)

FROM
generate_series(2018,2021) year,
v_staff_per_year

GROUP BY year
ORDER BY year ASC;

year count
2018 2
2019 0
2020 1
2021 1

S403

SECURITY LABEL FOR k_anonymity
ON COLUMN v_staff_per_year.period
IS 'INDIRECT IDENTIFIER';

SELECT anon.k_anonymity('v_staff_per_year');

Conclusion

Clean up !
DROP DATABASE IF EXISTS boutique;

149

REASSIGN OWNED BY jack TO postgres;

REASSIGN OWNED BY paul TO postgres;

REASSIGN OWNED BY pierre TO postgres;

DROP ROLE IF EXISTS jack;
DROP ROLE IF EXISTS paul;
DROP ROLE IF EXISTS pierre;
DROP ROLE IF EXISTS dump_anon;

Also…
Other projects you may like

• pg_sample : extract a small dataset from a larger PostgreSQL database

Help Wanted!
This is a free and open project!

labs.dalibo.com/postgresql_anonymizer

Please send us feedback on how you use it, how it fits your needs (or not), etc.
— title: tutorials/DO_NOT_MODIFY_THESE_FILES draft: false toc:
true —

DO NOT MODIFY THESE FILES
The files in the docs/tutorial folder are artifacts generated based on the source
files in docs/runbooks.

If you want to improve the tutorial, edit the docs/runbooks/*.md files.

And then run make tutorial to update the artifacts.

Upgrade
Currently there’s no way to upgrade easily from a version to another. The
operation ALTER EXTENSION ... UPDATE ... is not supported.

You need to drop and recreate the extension after every upgrade.

Upgrade to version 2.0 and further versions
With version 2, the entire core library was rewritten in Rust. This is a major
change that brings new features, better performances and improved stability.

150

https://github.com/mla/pg_sample
https://labs.dalibo.com/postgresql_anonymizer

However the changes are mostly internal and for the most part the public inter-
face of the extension does not change. A masking policy written with version
1.3 should work with version 2.0 !

!!! warning New RPM repository !

Version 2.0 is not available on the PGDG RPM repository.
If you installed PostgreSQL Anonymizer 1.x using the RPM package, you need
to install the Dalibo Labs repository with the following command:
`dnf install https://yum.dalibo.org/labs/dalibo-labs-4-1.noarch.rpm`

Upgrade to version 1.3 and further versions
Starting with version 1.3, the extension enforces a series of security checks and
it will refuse some masking rules that were previously accepted.

Here’s a few example of the changes you may need to make to your masking
policy

Using custom masking functions

If you have developed custom masking functions, you now need to place them
inside a dedicated schema and declare that this schema is trusted

For example, let’s say you have a function remove_phone that delete phone
numbers from a JSONB field

First create a schema:

CREATE SCHEMA IF NOT EXISTS my_masks;

Then a superuser must declare it as trusted:

SECURITY LABEL FOR anon ON SCHEMA my_masks IS 'TRUSTED';

Now you can write the function:

CREATE OR REPLACE FUNCTION my_masks.remove_phone(j JSONB)
RETURNS JSONB
AS $$

SELECT j - ARRAY['phone']
$$
LANGUAGE SQL ;

And finally use it in a masking rule:

SECURITY LABEL FOR anon ON COLUMN player.personal_details
IS 'MASKED WITH FUNCTION my_masks.remove_phone(personal_details)';

See the Write your own Masks ! section of the doc for more details…

151

masking_functions.md#write-your-own-masks

Using pg_catalog functions

With version 1.3 and later, the pg_catalog schema is not longer trusted because
it contains system administration functions that should not be used as masking
functions.

However the extension provides bindings to some useful and safe commodity
functions from the pg_catalog schema.

For instance, the following rule

SECURITY LABEL FOR anon ON COLUMN employee.phone
IS 'MASKED WITH FUNCTION md5(phone)'

SECURITY LABEL FOR anon ON COLUMN employee.phone
IS 'MASKED WITH FUNCTION anon.md5(phone)'

See the Using pg_catalog functions section of the doc for more details…

Operators

The MASKED WITH FUNCTION syntax is now more strict and in particular opera-
tors are not allowed as a masking value.

For instance, until version 1.3

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.fake_first_name() || anon.fake_last_name()';

Now operators must be replaced by an actual function. For instance, the ||
operator would be replaced by anon.concat

SECURITY LABEL FOR anon ON COLUMN player.name
IS 'MASKED WITH FUNCTION anon.concat(anon.fake_first_name(),anon.fake_last_name())';

Conditional masking rules

The MASKED WITH VALUE CASE WHEN ... was never an intended feature but it
work by accident.

Until version 1.3, the syntax below was accepted:

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH VALUE CASE WHEN score IS NULL

THEN NULL
ELSE anon.random_int_between(0,100)
END';

The CASE syntax is now rejected and can be replaced by the anon.ternary()
function:

SECURITY LABEL FOR anon ON COLUMN player.score
IS 'MASKED WITH FUNCTION anon.ternary(score IS NULL,

152

https://www.postgresql.org/docs/current/functions-admin.html
masking_functions.md#Using-pg_catalog-functions

NULL,
anon.random_int_between(0,100)

)';

See the Conditional Masking section of the doc for more details…

153

masking_functions.md#conditional-masking

	Anonymization & Data Masking for Postgres
	Quick Start
	Success Stories
	Support
	open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/issues

	Backup Masking (aka Anonymous Dumps)
	Transparent Anonymous Dumps
	1. Create a masked user
	2. Grant read access to that masked user
	3. Launch pg_dump with the masked user

	Anonymizing an SQL file
	Masking primary keys with Backup Masking
	DEPRECATED : pg_dump_anon.sh and pg_dump_anon

	Definitions of the terms used in this project
	Configuration
	anon.algorithm
	anon.maskschema
	anon.restrict_to_trusted_schemas
	anon.salt
	anon.sourceschema

	Custom Fake Data
	Alternative fake data packages
	Generate your own fake dataset
	Load your own fake data
	Using the PostgreSQL Faker extension
	Advanced Faking: masking_functions.md#advanced-faking

	Put on your Masks !
	Principles
	Escaping String literals
	Listing masking rules
	Debugging masking rules
	Removing a masking rule
	Multiple Masking Policies
	Limitations

	Searching for Identifiers
	Limitations
	Contribute to the dictionaries
	open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/-/issues

	Development Notes
	Hide sensitive data from a “masked” user
	Principles
	Limitations
	How to unmask a role
	Legacy Dynamic Masking
	Legacy Dynamic Masking: legacy_dynamic_masking.md

	Welcome to Paul’s Boutique !
	The Story
	Objectives
	About PostgreSQL Anonymizer
	About GDPR
	Requirements
	The Roles
	The Sample database
	Authors
	License
	Credits

	1 - Static Masking
	The story
	How it works
	Learning Objective
	The “customer” table
	The “payout” table
	Activate the extension
	Declare the masking rules
	Apply the rules permanently
	Exercises
	E101 - Mask the client’s first names
	E102 - Hide the last 3 digits of the postcode
	E103 - Count how many clients live in each postcode area?
	E104 - Keep only the year of each birth date
	E105 - Singling out a customer

	Solutions
	S101
	S102
	S103
	S104
	S105

	2- How to use Dynamic Masking
	The Story
	How it works
	Objectives
	The “company” table
	The "supplier" table
	Activate the extension
	Dynamic Masking
	Activate the masking engine
	Masking a role

	Masking the supplier names
	Exercises
	E201 - Guess who is the CEO of "Johnny's Shoe Store"
	E202 - Anonymize the companies
	E203 - Pseudonymize the company name

	Solutions
	S201
	S202
	S203

	Now the fake company name is always the same.

	3- Anonymous Dumps
	The Story
	How it works
	Learning Objective
	Load the data
	Activate the extension
	Masking a JSON column
	Exercises
	E301 - Dump the anonymized data into a new database
	E302 - Pseudonymize the meta fields of the comments

	Solutions
	S301
	S302

	4 - Generalization
	The Story
	How it works
	Learning Objective
	The "employee" table
	Data suppression
	K-Anonymity
	Range and Generalization functions
	Declaring the indirect identifiers

	Exercises
	E401 - Simplify v_staff_per_month and decrease granularity
	E402 - Staff progression over the years
	E403 - Reaching 2-anonymity for the v_staff_per_year view

	Solutions
	S401
	S402
	S403

	Conclusion
	Clean up !
	Many Masking Strategies
	Many Masking Functions
	Advantages
	Drawbacks
	Also…
	Help Wanted!
	This is a 4 hour workshop!
	Questions?

	PostgreSQL Anonymizer How To
	Write
	Build
	Type make help for more details

	Anonymization & Data Masking for Postgres
	Quick Start
	Success Stories
	Support

	Anonymization & Data Masking for Postgres
	Quick Start
	Success Stories
	Support
	open an issue: https://gitlab.com/dalibo/postgresql_anonymizer/issues

	INSTALL
	Choose your version : Stable or Latest ?
	Install on RedHat / Rocky Linux / Alma Linux
	Install on Debian / Ubuntu
	Install with Ansible
	Install With PGXN
	Install From Source
	Install with Docker
	Install as a “Black Box”
	Install on MacOS
	Install on Windows
	Install in the cloud
	Addendum: Alternative way to load the extension
	Addendum: Troubleshooting
	Check that the extension is present
	Check that the extension is loaded
	Check that the extension is created
	Check that the extension is initialized

	Uninstall
	Compatibility Guide

	Hide sensitive data from a “masked” user using legacy dynamic masking
	How to change the type of a masked column
	How to drop a masked table
	How to unmask a role
	Limitations
	Listing the tables
	Only one schema
	Performances
	Graphic Tools

	2- Navigate to Database > Schemas > mask > Views > foo

	Ideas and Resources
	Videos / Presentations
	Similar technologies
	Similar Implementations
	GDPR
	Concepts
	Academic Research

	Masking Data Wrappers
	Example

	Various Masking Strategies
	Destruction
	Adding Noise
	Randomization
	Basic Random values
	Random between
	Random in Array
	Random in Enum
	Random in Range
	Random Sequence ID

	Faking
	Advanced Faking
	Pseudonymization
	Generic hashing
	Partial Scrambling
	Conditional Masking
	Generalization
	Using pg_catalog functions
	Image bluring
	Write your own Masks !

	Masking Views
	Generalization
	Example
	Generalization Functions
	Limitations
	Singling out and extreme values
	Generalization is not compatible with dynamic masking

	k-anonymity
	References
	How Google Anonymizes Data

	Performances
	Static Masking
	Dynamic Masking
	Anonymous Dumps
	How to speed things up ?
	Prefer MASKED WITH VALUE whenever possible
	Sampling
	Materialized Views

	Materialized Views: https://www.postgresql.org/docs/current/static/sql-creatematerializedview.html

	Privacy By Default
	Principle
	Example
	Unmasking columns
	Caveat: Add a DEFAULT to the NOT NULL columns

	Anonymous Replica
	WARNING! DO NOT USE IN PRODUCTION
	Principle
	Preamble: Learn about logical replication !
	Quick Setup
	Example
	A- On the publisher database
	B- On the subscriber database

	Changing the masking rules
	Anonymized Standby
	Security
	Limitations
	But I want to anonymize a primary key!
	Pseudonymization Is Not Anonymization: masking_functions.md#pseudonymization

	Welcome to Paul’s Boutique !
	The Story
	Objectives
	About GDPR
	Requirements
	The Roles
	The Sample database

	1- Static Masking
	Requirements
	The story
	How it works
	Learning Objective
	The “customer” table
	The “payout” table
	Activate the extension
	Declare the masking rules
	Apply the rules permanently
	Exercises
	E101 - Mask the client’s first names
	E102 - Hide the last 3 digits of the postcode
	E103 - Count how many clients live in each postcode area?
	E104 - Keep only the year of each birth date
	E105 - Singling out a customer

	Solutions
	S101
	S102
	S103
	S104
	S105

	2- Dynamic Masking
	Requirements
	The Story
	How it works
	Objectives
	The company table
	The supplier table
	Activate the extension
	Dynamic Masking
	Activate the masking engine
	Masking a role

	Masking the supplier names
	Exercises
	E201 - Guess who is the CEO of “Johnny’s Shoe Store”
	E202 - Anonymize the companies
	E203 - Pseudonymize the company name

	Solutions
	S201
	S202
	S203

	Now the fake company name is always the same.

	3- Anonymous Dumps
	The Story
	How it works
	Learning Objective
	Load the data
	Activate the extension
	Masking a JSON column
	Exercises
	E301 - Dump the anonymized data into a new database
	E302 - Remove the email address
	E303 - Pseudonymize the IP address

	Solutions
	S301
	S302
	S303

	4- Generalization
	The Story
	How it works
	Learning Objective
	The employee table
	Data suppression
	K-Anonymity
	Range and Generalization functions
	Declaring the indirect identifiers

	Exercises
	E401 - Simplify v_staff_per_month and decrease granularity
	E402 - Staff progression over the years
	E403 - Reaching 2-anonymity for the v_staff_per_year view

	Solutions
	S401
	S402
	S403

	Conclusion
	Clean up !
	Also…
	Help Wanted!

	Sampling
	Principle
	Sampling with TABLESAMPLE
	Sampling with RLS policies
	Maintaining Referential Integrity
	Truncate Tables for the masked users

	Security
	Permissions
	Limit masking filters only to trusted schemas
	Security context of the functions

	Selective Masking (BETA)
	Principle
	Example
	Sampling: Sampling.md

	Permanently remove sensitive data
	Applying masking rules
	Disabling Static Masking
	Static Masking and Multiple Masking Policies
	Shuffling
	Adding noise to a column

	Welcome to Paul’s Boutique !
	The Story
	Objectives
	About GDPR
	Requirements
	The Roles
	The Sample database

	1- Static Masking
	Requirements
	The story
	How it works
	Learning Objective
	The “customer” table
	The “payout” table
	Activate the extension
	Declare the masking rules
	Apply the rules permanently
	Exercises
	E101 - Mask the client’s first names
	E102 - Hide the last 3 digits of the postcode
	E103 - Count how many clients live in each postcode area?
	E104 - Keep only the year of each birth date
	E105 - Singling out a customer

	Solutions
	S101
	S102
	S103
	S104
	S105

	2- Dynamic Masking
	Requirements
	The Story
	How it works
	Objectives
	The company table
	The supplier table
	Activate the extension
	Dynamic Masking
	Activate the masking engine
	Masking a role

	Masking the supplier names
	Exercises
	E201 - Guess who is the CEO of “Johnny’s Shoe Store”
	E202 - Anonymize the companies
	E203 - Pseudonymize the company name

	Solutions
	S201
	S202
	S203

	Now the fake company name is always the same.

	3- Anonymous Dumps
	The Story
	How it works
	Learning Objective
	Load the data
	Activate the extension
	Masking a JSON column
	Exercises
	E301 - Dump the anonymized data into a new database
	E302 - Remove the email address
	E303 - Pseudonymize the IP address

	Solutions
	S301
	S302
	S303

	4- Generalization
	The Story
	How it works
	Learning Objective
	The employee table
	Data suppression
	K-Anonymity
	Range and Generalization functions
	Declaring the indirect identifiers

	Exercises
	E401 - Simplify v_staff_per_month and decrease granularity
	E402 - Staff progression over the years
	E403 - Reaching 2-anonymity for the v_staff_per_year view

	Solutions
	S401
	S402
	S403

	Conclusion
	Clean up !
	Also…
	Help Wanted!

	DO NOT MODIFY THESE FILES
	Upgrade
	Upgrade to version 2.0 and further versions
	Upgrade to version 1.3 and further versions
	Using custom masking functions
	Using pg_catalog functions
	Operators
	Conditional masking rules

