PostgreSQL 10.12 Documentation

The PostgreSQL Global Development Group

PostgreSQL 10.12 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2020 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2020 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN “ASIS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

== o PP XXXil
1. What 1S POSIGIESQL? ...ttt ettt et e e et e XXXl
2. A Brief History Of POSIGrESQLvuuiiiiiiiiieeiiii ettt XXXl

2.1. The Berkeley POSTGRES PrOjECEccuuuiiiiiiiieiiiie e XXXl
2.2, POSIOrESOS ... XXXl
2.3, POSIOrESQL ...ttt XXXIV
3. CONVENTIONS ...ttt e ettt sttt e ettt e et ettt e et e et s e e e entn e e e enbn e e eeentnaaaees XXXV
4. FUrther INfOrmMationioieiue e e e e eeees XXXV
5. Bug Reporting GUIAEIINESiiiiiiieiii e XXXV
5.1, 1dentifying BUGSvuneeeiiiiieeeii et ettt ettt e et XXXV
5.2, WHEL 10 REDPOIT ...ttt e e XXXVi
5.3. Where to REPOI BUGSccvvuieiiiiii et XXXViii
N N 1o - PP 1
L. GEIING SEAMEAeeeeeie ettt e e e 3
L1 INSEAITBIION ..ttt 3
1.2. Architectural FUNDamMENLalSuuiiiiiiiieeii e e 3
1.3. Creating @ Dal@Daseccuuuiiiiiiiet e 4
1.4, ACCESSING 8 DAADESE ceeeiiie et 5
2. The SQL LBNGUBGE ceeetieeeiei ettt ettt et e e et et e e e 7
2.1 INEFOQUCTION ...ttt ettt ettt e e et et e e e e et e e e eeba e eeenes 7
A O 04 = o = PP TPPTPPTI 7
2.3. Creating aNew Talleoiiiiii e 7
2.4. Populating @ Table With ROWScocuuuiiiiiiiicie e 8
25, QUEYING A TaADIE .ot 9
2.6. J0INS BEWEEN TaDIES ... 11
2.7. AQOregate FUNCLIONSuiiiieie ettt et e e 13
2.8 UPUELES ... ettt ettt eaaas 14
2.9, DEELIONS ..ottt 15
3. AGVANCE FEALUMNES ... ettt ettt ettt e et eeane s 16
I3 W [L oo (8o (o o RO P PP PPPPTTN 16
T VT Y S PRSPPI 16
3.3 FOrEIgN KEBYS ..o 16
B4 THANSACHIONS ...ttt ettt ettt e e et e e e s 17
3.5, WINAOW FUNCHIONS ...ttt 19
3.6, INNEITTANCE ...oeeee ettt 22
7. CONCIUSION ..ttt ettt ettt ettt e et et e et et e e e e et reeeentaeeees 23
[1. THE SQL LBNGUBGE ... ceettneeeeit ettt ettt et e et e ettt e et e e et e e et rb e e e eanaas 24
A, SQL SYNEBX . eeettneteeti ettt ettt st ettt ettt ettt e e 32
A1, LEXICal SHUCKUME ...ttt ettt e e e e 32
4.2, ValUE EXPIESSIONS ...cevtieeiiiti ettt ettt e ettt ettt e ettt e e ettt r e e e eeb e e e ena e eeee 41
4.3. CalliNg FUNCLIONSceiiiiiieiiit ettt 54
5. Dat@ DEFINITION ...ttt 57
5.1 TADIE BASICS ...t 57
5.2. DEFAUIT VAIUBS ...t 58
5.3, CONSITAINES ... eett ettt ettt ettt ettt e ettt e e ettt e et e et e e e et e e eenbaeeees 59
5.4, SYyStEM COIUMNS ...oiiineiiii et ettt et e e e e eeeas 67
5.5. MOdifying TaDIES .. .coueiiiiii e 68
5.6, PrIVIIEOES .. e 71
5.7. ROW SECUNtY POIICIESvuiiiiiii e 72
5.8, SCREMAS ... e 78
5.9, INNEITTANCE ...oovtiieei ettt e enaans 83

PostgreSQL 10.12 Documentation

5.10. Table Partitioningcccuieiiiiiiiiieei e e e e e e e e e e e e eeas 86
LI o = To o I - 98
5.12. Other Database ODJECESvvvuiiiiei e e 99
5.13. Dependency TraCKiNgccceuuieiuiieiiii e ee e e e e e e e e e e e ea e eees 99
SR BT = \Y = o 10 = 1 o o 101
L 1S i Vo 0 7 - N 101
(SR T o = 1] o T - L 102
SRR D= I i aTo - v PR 103
6.4. Returning Data From Modified ROWScc.ooiviiiiiiiici e 103
28O 1 = 1= 105
T L OVEIVIBIW ottt e e et e e et e e e et e e e e ab e e e et e e e e et s 105
7.2. TahlE EXPrESSIONS .. cevuiiiiieiiii et e e e et e e e e e e e e e e e e e e e eeees 105
SRS = o B I £ P 120
7.4. CombiNiNG QUETESuiiiiiiiiiee e e e e e e e e e e e e e e e e et e e et e e eanaeees 121
7.5, SOMING ROWS ...oiiiii e e e e e e e e e an s 122
T76. LIM T and OFFSET ..ottt e e et e e et eeeene e eeees 123
AT A/ I S R IR £ PPN 123
7.8. W TH Queries (Common Table EXPreSSioNS)vevveeeiiiieiiiieeiiieesiiieeiineeaneens 124
T DL = B Y/ 01 PP PRPRPRPRR 131
300 O N[0 0= o Y/ o= PPN 132
8.2, M ONEAIY Ty P ittt 137
I O o= ot (= G Y/ o= 138
S 2 T o A B T = W Y/ o= 140
SR Y= =Vl T 1T Y/ o= P 142
LIS = T To =T I Y/ o= 152
A 1040 = = B Y o= 153
R € Tc o0 1 (Tl Y oS 155
8.9. NEtWOIK AdOreSS TYPES c.uuiivieiii e et e e e e e e e e e e e e eaens 157
8.10. Bit SIHNG TYPES oevuiiiii et et e e e e e e e e et e e et e e aan s 160
8.11. TEXt SEACH TYPES covneiii i e e e e e e 160
ST 2 U 1 T I/ o USRS 163
ST G Q1 I 1Y/ o= PR 164
ST N S @ N B Y/ o=~ TP 166
8L, AT A S ittt ittt e 173
8.16. COMPOSITE TYPES 1vuueeiueiiieeeiee et e et e et e e r e e e e e et e e et e et e e st e e et e eannns 182
817, RANGE TYPES .ttt ittt ettt et e e e e e e e e 188
8.18. ObjeCt 1deNtifier TYPES ..ucvviieiiii e e e eeaaas 194
TR T oo [o T 1Y o L= 196
ST =0 (o 0l N o1 196
LI U 0o 1o 5= 0 1o @ o= = 0 Tt 198
Lo I oo [or= I @ o= = (] £ N 198
9.2. Comparison FUNCLions and OPEratorsevviieiiieeiiiiecie e e e e e e aanns 198
9.3. Mathematical FuNctions and OPEratorsSc.uveiuieeiinieriiieeeiie e ee e e eaenns 201
9.4. String FUNCLioNS anNd OPEIaLOrScevueeiiieieiie e e e e e e e e e e e e eaanns 205
9.5. Binary String FuUNctions and OPEratorsvevuuieeiiieeiiieeeiieeeiee e e eaenns 219
9.6. Bit String FUNCtions and OPEratorsSeeeuieiiiieeiiieeeiiee e e s e e e e eanes 222
A = 1 (= o T\ (411 o 222
9.8. Data Type Formatting FUNCLIONScuviiiiiiiii e 238
9.9. Date/Time Functions and OPEratorseevvuieiieeeiiieeiii e e e e e eaenns 245
9.10. Enum SUPPOIt FUNCLIONSuuiiiiiiii e e e e e e e e e 258
9.11. Geometric FUNCtioNS and OPEraLOrSevvuieiiiieeiiieeiiiee e e e e e e e eaneees 259
9.12. Network Address Functions and OPEratorscoeeuueeerieviiieeeiieeeiieeeieeeaneens 263
9.13. Text Search FUNCLions and OPEratorsc.ueeivnieiiiieeiii e e e e e e e eenns 265
9.14. XML FUNCLIONS ...cevtiieiiii ettt e et e e e e e et s e e e eat s e e e eatnneeeees 271

PostgreSQL 10.12 Documentation

9.15. JSON FUNCtions and OPEratorsuueverueiriieiiiieeeieeeie e e e e e e e e eaeesaneee 285
9.16. Sequence Manipulation FUNCLIONScocvuieiiieii e e e e 294
9.17. Conditional EXPreSSIONSccvvueiiiieiiiiee e e e e e e e e e e e e 297
9.18. Array FUNCtions and OPEralorSc.uveivueeiiieeiiiieriie e e e e e e et e e e eannes 299
9.19. Range FUNCtions and OPEratorseeeuuieiiiieiii e eie e e e e e e e aenns 303
9.20. AQQregate FUNCLIONSiiii e e e e e e e e eaa e 305
9.21. WINAOW FUNCLIONSeiiiiiieeeiei e e e et e e et e e e eaae e eeeees 312
9.22. SUDQUENY EXPrESSIONS ...u.iveiiiiiiieiiieeeit ettt e e e et s e e e e et e et e e et e e et eeaneeeanaes 314
9.23. Row and Array COMPAIISONScvuueiiiieeiieeeitieeaieeeteestse st eetnaerateeeneeennns 317
9.24. Set RetUrNiNg FUNCLIONSiiii e e e e e e e 320
9.25. System Information FUNCLIONSccouviiiiiiiiii e e 323
9.26. System AdmInNistration FUNCHIONScccuuiiiiiiiiiiicii e e e 339
9.27. Trigger FUNCLIONSuiiii e e e e e e e e e e e et e e e eaa s 356
9.28. Event Trigger FUNCLIONSiiiiiiciiie e e e e e 357
O Y oL o 01V = o] o 361
O @ = 4T PR 361
F0.2, O AIONS .ttt ettt et et 362
L0 R ¥ o o 0] o LS 366
O R N oIS (o] - o =P 370
10.5. UNI ON, CASE, and Related CONSIIUCESvuveviiiiieeeiiiieeeciie e 370
10.6. SELECT OULPUL COIUMNSiiiiiiieeeiii e et e et e e et e e e et e e e eat s e e eeranaeeees 372
T o 1= =< PP 373
0 O o To 0 1o PP 373
2 1 o L= Y/ o === 374
11.3. MUItICOIUMN TNAEXES ...eevtieiiiii e eeaens 376
11.4. Indexes and ORDER BYcuuiiiiiiiiiiiiii e n e 377
11.5. Combining MUltiple INAEXESccvviiiiiiici e 378
12.6. UNIQUE INAEXES .. covveiiieeie et e e e e e e e e e aa s 378
11.7. INAEXES ON EXPrESSIONSevvuieiiieeiiieeii e e et e e e e e e e e e e e e e e et e e e et e e aaneeeens 379
11.8. Partial INAEXESvvnieiiiiiiiee it 380
11.9. Operator Classes and Operator Familiescovevviiiiiiiiiiii e 382
11.10. Indexes and Coll@tioNScovvuuiiiiiiiie e 383
1211, INAEX-ONIY SCAMNS ...uuivieiiieeii e e e e e e e e e e e et e e e e eanaeeeen 384
11.12. EXxamining INAeX USAQEu.cvvueiiii i e e e e e e e e e e 386
12, FUIL TEXE SEAICH ..uiieii et et e e e et e e e ereaeaees 388
2 O 1 oo [1o PR 388
12.2. Tables @and INAEXESuuiiiiiiiieeie e e 392
12.3. Controlling TeXt SEarChccoviiiiieii e 394
12.4. AdAItioNal FEAIUMESiiieiiie e 400
D25, PaISErS ..evuuieetiiii e ettt e et et a et a s 405
12.6. DICHONAITES ...cievieeieii et e et e e et e e e et eeeenen s 407
12.7. Configuration EXaMPIEc.uuiiii i 417
12.8. Testing and Debugging Text SEarchcoooviiiiiiiiiin e 418
12.9. GIN and GIiST INAEX TYPES ..vuueieiiieeiiiiieeeei e e et e e e et e et eeeaea s 423
2200 O T o 1= o ST o) oo o P 423
2 O T 1 = o) SRR 426
13. ConCUrrenCy CONLIOlouveiii e e e e e e e e e e e e e e e e aneees 428
G20 I 1 1o To [0 1o ISP 428
13.2. Transaction ISOIAONuieiieiiii e e e e eaees 428
T o T e o (] o P 434
13.4. Data Consistency Checks at the Application Levelccoocoiviiiiiiiiiiiiineennnn, 439
L35, CABVEALS ..eevuiee ittt ettt 441
13.6. LOCKiNg and INAEXEScovviiiiiiei e e e e e e 441
e (o 7= o =T T =P 443

PostgreSQL 10.12 Documentation

14.2. USING EXPLAIL N L.t e e e e e e e e aeeeannnn s 443

14.2. Statistics Used by the Planneroooiiiiiiiii e, 454

14.3. Controlling the Planner with Explicit JO N ClauseScccovevvvieviiiieiieeeine, 458

14.4. Populating @ Databasecvvuneeiiieiiii e 460

14.5. NON-DUrable SELNGSvvvneieiiei e e e e e e e e e e aaaees 463

15, Parallel QUETY ...ooieeiiiiie e e e ettt s e e e e et e e e e e e e a e e 464
15.1. How Parallel QUENY WOKKScciiiiiiii i 464

15.2. When Can Parallel Query Be Used?cvviiiiieiiiiiiiiiii e 465

15.3. Parallel PIansuiiiiiiiieiis s 466

R o 1= S Y 467

11, Server AAMINISITBIION ... ciiiei e e et e e e ettt e e e et e e e e et e e e e eat e e eaerenaeeeees 469
16. Installation from SOUrCE COUEoiiiiiiiieeiii et e e e eae 475
T S oo g Y= = o] o PP 475

16.2. REQUITEIMENES ...iiviiiii e e e e e e e e e e e e e e et e e et e e et e e et e e eaaeaaneees 475

16.3. GELHNG THE SOUICE .. .ivviiiiii e e e e e e e aeas a77

16.4. INStAllation ProCeAUMEcovuuiieiii e e 477

16.5. Post-INStallation SEIUPcvvvniiiiiei e e 488

16.6. Supported Platformsooiiiiiiii e 489

16.7. Platform-speCific NOLESvuiiii e 490

17. Installation from Source Code 0N WINAOWSveiiiiiieiiiiiieeecin e 498
17.1. Building with Visual C++ or the Microsoft Windows SDKcccevevvneennn. 498

18. Server Setup and OPEralioNccuuneiiiieiii e e e e 503
18.1. The PoStgreSQL USEr ACCOUNEuuviueiiieeiiee e e e e e et e e e e et e e et e e s e eaneees 503

18.2. Creating a Datahase CIUSLEYcvvviiiiii e 503

18.3. Starting the Databhase SEIVENccovuiiiiiieii e e 505

18.4. Managing Kernel RESOUICESccuuiiiiiieiiii e e e e e e e 508

18.5. Shutting DOWN the SEIVEriiii e aae s 517

18.6. Upgrading a POStOreSOQL CIUSEESccvuiiiiieiiieiie e e e e e 518

18.7. Preventing Server SPOOfiNgcvuveiiii e e r e 520

18.8. ENCryption OPLiONSviiiiciiieii e e e e e e e e e e 521

18.9. Secure TCP/IP Connections With SSLccovviiiiiiiiiii e, 522
18.10. Secure TCP/IP Connections with SSH TUNNEIScccvviieiiiiiiieiiii e 525
18.11. Registering Event Log on WINOWSoeviiiiiiiieii e ee e e e 526

19. Server ConfigUIAONiiie e e e e e e e e e e e e e e e anaees 528
19.1. SEtiNG Par@MELErS ... cvvi i et e e e 528

19.2. FIl@ LOCAIIONS ...eeevviieeeeiis e ettt e e e et e e et e e e et e e eaenns 532

19.3. Connections and AUtNENtICALIONoiviviiiieiii e 533

19.4. ResoUrce CONSUMPLION ...o.uuiiiteeii e e e e e e e e e e e e e e e et eeaaeeaanaaes 537

RS N ViV) (=Y 41" o I o o 544

RS S o] 1 o o PN 549

19.7. QUENY Planningcouiiiiiiii e 554

19.8. Error Reporting and LOGOiNG «..c.uueeurereinieiieeeiieeiieeesieeesieeeaeesinsessneesneenes 559

19.9. RUN-TIME SEALISHICS 1ovvvieeiiiiie e e e e 569
19.10. AULOMALIC VACUUMING .. cevuiiiieiiiee it ee e e e e e e e e e e et e e e e e e e e e eeaanns 570
19.11. Client ConneCtion DEfALITScceuuiiiiiiiiiiis e 572
19.12. LOCK MaANagEMENTvuiiiiieiiieeieee e e e e e e e e e et e e e e e et e e e eanaas 579
19.13. Version and Platform Compatibilityooeeeiiiiiiiiiiiiiie e 580
e o T 0T | o 582
19.15. PreSat OPLiONS ...uuiiiieiiieei e eeie e e e e e e e e e e e e et e e et e e et e e et e e et e eanaees 583
19.16. CUStOMIZEA OPLIONS .. cvvuiiii i eiie et e e e e e e e e e e e e e e et e eanaee 584
19.17. DEVEIOPEr OPLIONSuivvieiiieei et e e e e e e e e e e e e e et e et eeaa e eanaees 584
S 00 TS o A @ 1o P 587

20. Client AULNENLICALIONiiiiiiie e e e e s 589
20.1. The pg_hba. conf Filecooooiiii e 589

Vi

PostgreSQL 10.12 Documentation

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

20.2. USEN NAIME MBS .. euiiiiii it 596
20.3. Authentication MEthOSviiieiiieiiiii s 597
20.4. Authentication Problemsviieiiiiieiiiiii e e 606
Datahase ROIES ... 608
21.1. Datahase ROIES ... ccoeviieeiiie et 608
21.2. ROIE ALIDULES ..oevvneeeeii e e e et eeaaens 609
21.3. ROIE MEMDErSNIP .vuiiii e e 610
21.4. Dropping ROIEScouuiiii e 611
215, DEfAUIT ROIEScceviieeeiii e et e e e e aaens 612
21.6. FUNCLION SBCUMLY ...iivueiiiiee e e e e e e e e e e e e e et e e et e e e e eaanaaes 613
MaNaging Dalabaseseiiuieiiii e e 614
P T O Y= o= T 614
22.2. Creating @ Databaseuveiuiieiii i 614
22.3. Template Databasesovvvniiiiieii e 615
22.4. Databhase CONfigUIationoeceuniiiiiieiiie e e e e e e e e e eaa s 616
22.5. Destroying a DatahaSeccvuuiiiiieiie e 617
22.6. TADIESPACES . .evueei e 617
(oo 12 1o o RSSO 620
PG T I o oz L= IS o] oo o AN 620
23.2. COll@tion SUPPOIT .. .cvuneieteeiie e e e e e e e e e e e e e e e et e e et e e st eeaaeeannaes 622
23.3. CharaCter SEt SUPPOIeee i e e e e e e e e e 628
Routine Database MaintenanCe TasKSeveeuenieeeiiiiieeeiiiiieeeeiineeeeeiin e e eesin e eeeiineaeens 635
24.1. ROULINE VACUUMINGeitneiiiieeiiee et e e e e e e e e e e e e e eat e e et e e st e eeaneeanneeaens 635
24.2. ROULINE REINAEXING ..ovvueiiieiiiie i e e e e e e e e e e e e et e e et e e e e eaanaees 643
24.3. LOg File MAINIENANCEcvvniiiiieiie et e e e e e e e e e e e e aa s 643
Backup and RESIOIEciiiiii e e e 645
25.1. SQL DUMP ettt et e et e e e e e e e 645
25.2. File System Level Backupcoceuniiiiiieiiiieiie e 648
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccoevviiviiiiieiinn, 649
High Availability, Load Balancing, and Replicationcccooviiiiiiiniiii e, 661
26.1. Comparison of Different SOIUtIONScc.oviiiiiiiiii e, 661
26.2. Log-Shipping Standby SErVENSccoviiiiieiiiceie e e e e 664
26.3. FaIIOVEN ..o 673
26.4. Alternative Method for Log Shippingccvvveiiieiiiieeie e 674
26.5. HOt SEANADYoieeiieeee e 676
RECOVErY CONfIQUIAIONcvuiiiii e e e e e e e e e e e e e eaans 684
27.1. Archive RECOVENY SEIiNGSuuiiiiiiii i e 684
27.2. RECOVENY Target SBMNGS ..uuevvvneiii e e e e e e e e e e e e et e e e e e e e eanees 685
27.3. Standby SErVEr SELNGS ...vvveiii e 686
Monitoring Database ACLIVITYuiiiiiciii e 688
28.1. Standard UNiX TOOIS ...ueiiiiiieeeiii et e s e et e e s e e e e e e eat e e eeaannaeees 688
28.2. The StatisticS COHECONiivieiiieiiii e e 689
28.3. VIEWING LOCKSuiiiiiiii e e e 720
28.4. Progress REPOMINGcvvueiiiieiiii e et e e e e e e e e e e e e e e e e aanas 721
28.5. DYNAMIC TIACIMNQ «.uuivteiiieeiie e e e e e e e r e e e e e et e e et e e et e e et e e eaneeeannes 723
MONItOrNG DISK USBOEivviiiiiieii e e e e e e e e e et e e e eaes 733
29.1. Determining DiSK USAQEu.cvvvniiiii it e e e et e e e aanas 733
29.2. DiSK FUIl FaIlUM® ...vvieiee et e e e eanes 734
Reliability and the Write-AhEad LOguivvniiiiiic e 735
0 0 (= T] 1 P 735
30.2. Write-Ahead Logging (WAL)eeein e 737
30.3. ASyNchronous COMMITiiuiiiie e e e e e e e e e e e e eenas 737
30.4. WAL ConfigUurationcccuuniiiiieiiieeiiiie e e e e e et e e s e et e e s e eeaaeeanaees 739
30.5. WAL INEEINEIS ..eeetiieiiiii ettt et et e e et e e et e e eaeans 741

Vii

PostgreSQL 10.12 Documentation

1C I oo o= I 2= o] o= [743
G 0 = B o o= 1o o PP 743

G IS U 1=] o)1 o o IS 744

G G I 0o 1 T £ P 745

314, RESICHIONS ..evvtieieiiiie ettt e et e et e e e et e e e et e e e e et e e e e eaan s 745

G IR N o 1) (= 11 U 746

13 ST 1 g (o 1 oo PP 747

G S = ol 1) Y PP 747

31.8. Configuration SEINGSccvueiiiieiii e e e e e e e e e eaa e 747

31.9. QUICK SELUD ..oevvieieiii et e e e 748

A B L= | (== o 1= =P 749
G I 0 0 g To 1 ST = 749

A A == V= | U o o RPN 752

32.3. Variant Comparison FilEScouiiiiiiiii e 754

G A =~ £ PSP 755

32.5. Test Coverage EXamiNaionoeviuiiiiiieiiieeci e e e e e e e e e aanns 755

Y O 1= o g 1= == PSP 757
33, 1HDPG = C LIbrary v 762
33.1. Database Connection Control FUNCLIONScccuviiiiiiiiniecii e 762

33.2. CoNNECtion SEAtUS FUNCLIONSuuuieiiiiiieeeiii et e et e e e e e e eeees 774

33.3. Command EXeCUtion FUNCLIONScveuuiiiiiiiieeiiiiie e 779

33.4. Asynchronous Command ProCESSINGuuevvuneiiiieiiieeeiiieeiiieeene et ee e eeaneens 794

33.5. Retrieving Query Results ROW-BY-ROWccoveiiiiiiiiiiciiccci e 798

33.6. Canceling QUENES IN PrOgreSScvuuiiii e e e e e e e eaae e 799

33.7. The Fast-Path INterfaceoviiiiiiiii e 800

33.8. Asynchronous NOEFICAIIONuiiiiiiiii e e e e e 801

33.9. Functions Associated with the COPY Commandccceeveeviiiineeriiiineeeiiinnnnn, 801
33.10. CONLIOl FUNCHIONS .. .evevtieeeeei et et e e e e e aa e e eaeans 806
33.11. MisCellaneous FUNCLIONSuiiiiiiiieiiiii et e e eeeees 807
33.12. NOLICE PrOCESSING .evuueertieieieeete et i eeei e e e e e et e e e e e st eeeat e e et e e st e esneaannaees 810
33.13. EVENE SYSIOIM .. e 811
33.14. Environment VariableSoveiiiiiiiiii e 818
33.15. The Password FIleuuiiiiiiiieeii e e e 819
33.16. The Connection Service Fileooviiiiiiiiii e 820
33.17. LDAP Lookup of Connection Parameterscccuveviiieiiiiieiineciieeeieeeiiees 820
3318, SOL SUPPOIT .ttt aa 821
33.19. Behavior in Threaded Programsccouveiiiiiiiii i 825
33.20. Building [ibpg Programscoovuiiiiii e 826
33.21. EX@MPIE PrOQramS ... ccovieii et e e e et e e 827

7/ I (o[-l @ o[ox T PP 839
17 0 I g1 o [0 o [o PSP 839
34.2. Implementation FEAIUIEScouiiiii i e e e e 839

7 R O 1T o | B 1= = o= PSP 839

34.4. Server-Side FUNCLIONSiiiiiiiieiiiii e e e e e e e eaaes 843

34.5. EXAMPIE PrOgram .. c.vu et e e e e e e e e e e e e e et e e et eeaa e 844

35. ECPG - Embedded SQL iN C ...uiiiiiiiiiiis et e e 851
1L N I =T o ot o | P 851

35.2. Managing Database CONNECLIONScvvviiiiieiiiiecie e e e e e e e eaaeens 851

35.3. Running SQL ComMMAaNSoieiuiiiiiieiii e e e e e e 854

35.4. UsSing HOSt Variablesccouuiiiiiiiii e 857

35.5. DYNAMIC SQL ..uiiiiiiiieiiiii ettt e e e et e e 871

35.6. POLYPES LIbIarycovviiiiieii e 873

35.7. USING DESCIIPLOr ATEBS .. cvuuiiiiiiiiiee i et e e e e e e e e e e e e e aa s 886

35.8. Error Handlingoieuiiiiiciie e e e e 899

PostgreSQL 10.12 Documentation

35.9. PreproCessor DITECHIVESciiiiiii et e e e e e e e e e e e 905
35.10. Processing Embedded SQL Programsoeeviieiiieeiiieiiin e e e eieesans 907
35.11. Library FUNCLIONSiiiiiii e e 908
35.12. Large ObJECES ...uuuiiiieiii i eiiii e et e e e e e e e e e e a e 909
35.13. CH+ APPLICALIONS ...ouuiiiiieiii e e e e e e e e e 911
35.14. Embedded SQL COMMANGScccuuiiiiiieiiiieiie e e e e e e e e e eaaee e 914
35.15. Informix Compatibility MOdEcoovviiiiiic e 936
LN ST 11 1= 1 4 = PPN 950
36. The INfOrmMation SCHEMAviiiii e e e e eaees 953
36.1. The SChEMA ...covi e e 953
K S DT - B Y SO P 953
36.3.informati on_schema_catal og nameccooooiiviiiin i, 954
36.4.adm ni strable role _authorizationscc..ccooviiiiiiiiiin e, 954
36.5. applicabl @ rol €S .o 954
36.6. At 11T DUL ES Lo 955
36.7. Char ACt BF _SBL S ittt 958
36.8. check_constraint_routi Ne_USAQecccovevviiiiiiiiiiiieei e 959
36.9. CheCK_CONSErai NES oo e 960
36.10. COI T @t T ONS iiiiiii et e et eeeai e ees 960
36.11.col l ati on_character_set _applicabilitycccooiiiiiiiiiiiinnnnnn... 961
36.12. COl UM_dOMBI N_USAQE ..iovuiiiiiiii e e e e e e e e e e e e e e eaas 961
36.13. COl UNM_OPL i ONS covniiiiii e e e e e 962
36.14. COl UMM_Pri Vil €0ES i e 962
36.15. COl UNM_UAL _USAQE oivviiiii it e e e e e e 963
36.16. COI UMMIS oiiiiiiiiiiiii ettt e et e e et s e e et s e e e et aeeeerenaeeeees 963
36.17.constrai Nt _COl UNTM_USAQE ...uoivvviiiiieiii e eee e ee e e e e e e 968
36.18. constrai Nt _tabl @ USAQeoceviiiiiiiiiii e 968
36.19. data_type priVvil €0€S .o 969
36.20. dOMBI N_CONSE T Al NE'S ..iiiiiiiiii e e e e e 970
36.21. dOMBI N_UAL _USAQE iivviiiii i e e e e e e eanas 970
K o220 o [0 11 LN o =SSOSR 971
36.23. €l BIMENE L Y PES it 974
36.24. €Nabl €d IOl €S i 976
36.25. forei gn_data wrapper_Opti ONS ...ccoooviiiiiii i 977
36.26. fOr €i gn_dat @ W APPEI'S .uoiiiiiiiiii i 977
36.27. T Orei gn_Server _OPti ONS ..ooiiiiiiiiiie e e e 977
36.28. f OF BI g _SBI VI S uiiiiiieii e ettt e e e e e e et e e e e aanas 978
36.29.foreign_tabl e Options ...coooiiiiiiii i 978
36.30. fOrei gn_tabl €S ..o 979
36.3L. KEY_COl UM _USAQE .oivviiiiiiiii e e e e e et e et e e e eanas 979
36.32. PAI AIMTBE B S ottt 980
36.33.referential _CoNStraiNt'scccoiiiiii i 982
36.34. 10l €_COl UM _grant'S ..ocoiiiiiieiii e e e 983
36.35. 10l €_routiNe_grant's ..ooiiiiiiiiii i 984
36.36.r0l e _tabl e grantsoccooiiiii i 985
36.37. 10l €_UAL _grant'S .uoiiiiiiiiii e e e 985
36.38. 10l €_USAQE _grant S ..uiiiiiiiiiii e 986
36.39. rOUt i NE_Pri Vil BOBS .iiiiii e 987
KT o U A T 1= PP 987
36.41. SCREMAL @ ..vviiiiiiiii e e e et e e e e e e e e 993
36,42, SEUUEBINCES ittt ettt 993
36.43. SOl T AL UM ©S iiiiii i 994
36.44.sql _inplenmentati on_info ..o 995
36.45. SOl | ANQUAGES .civvniiiii i e 995

PostgreSQL 10.12 Documentation

36.46. SOl _PACKAGES .uiiiiiiiii e 996
36.47. SOl PAI T S i 996
36.48. SOl ST ZI N eieeieii i 997
36.49.sql _Si Zi NG _Profil @S ., 997
36.50.tabl € CONStrai NES .o e 998
36.5L. tabl € Pri Vil €S i 998
36.52. 1 AD] ©S it e 999
36.53. £ FANST OF ITB et 1000
36.54. triggered _update Col UMS ..ocooiiiiiiiiiiii e 1001
ST ST A g e [0 = =T 1001
36.56. Ut _Pri Vil 0SS i 1003
36.57. USAQE_Pri Vil BOES oo 1004
36.58. user _definNed tYPEeS .o 1004
36.59. user _mappPi NG_OPL i ONS ..o 1006
36.60. USEI _ITBPPI NUS oiitnieiiiiiiieeiie e e e e e e e e e e e e e et e e et e e aan e e et e eaaeeanns 1007
36.61. Vi EW _COl UMMN_USAQE ..vuiiiiieiiii i e et e e e e e e e e e e e 1007
36.62. Vi EBW I OUL i NE_USAQE .uuiivinieii i et ee e e e e e e e e e e et e eeaaeeees 1008
36.63. Vi ew tabl € _USAQE ...ooiiii i 1008
0.0, Vi BWS ...iiiiiiieiiiii ettt ettt et a et e e e e aaa 1009
A S = = g oo | = 01011 41 oo P 1010
7. EXIENAING SQL ..vueieiiiiee et 1016
37.1. How Extensibility WOrKSc.oiiiiiiii e 1016
37.2. The PostgreSQL TYPE SYSEM ...vuiiiiiciii e e e e e e e 1016
37.3. User-defined FUNCLIONSuiiiiiiieciei e e e 1018
37.4. Query Language (SQL) FUNCLIONScovuiiiiieiiii e e e e e 1018
37.5. Function OVerloadingcocouuieiiiiiiii e 1033
37.6. Function Volatility CategOriesieiuiiiiiii e e e e e e e e 1034
37.7. Procedural Language FUNCLIONSocvuuiiiiiieeii e 1036
37.8. INternal FUNCLIONSiiiiiiieiiii e e e 1036
37.9. C-Language FUNCLIONSccouuiiiiii e e e e aaes 1036
37.10. User-defined AQQregales ... ovvuueiiiieiiii e e e e e e e e e e 1058
37.11. USer-defiNed TYPES ..ovuniiiii i et e e e e e e e e e e e aeas 1065
37.12. User-defined OPEratorscccuuieiunieiiiieiiieeeiieeeei e e ie e e e e e e et e e s e eanaees 1069
37.13. Operator Optimization INfOrMationccuviiiiiieiiiieii e 1070
37.14. Interfacing EXtensions TO INAEXESccuuiiiiiiiiiieei e 1074
37.15. Packaging Related Objects into an EXteNSIONccovvvviieiiiiiiiiiecii e 1086
37.16. Extension Building INfrastruCtureccccuiieiiiiiiiiieieeee e 1093
G T I oo = 1097
38.1. Overview of Trigger BEhaViorcocviiiiiiiiii e 1097
38.2. Visibility of Data ChangeScvvuniiiiiieii e e e 1099
38.3. Writing Trigger FUNCLIONS IN Cuviiiiiiiii e e e 1100
38.4. A Complete Trigger EXamPlec..uiiiiiiiiieci e e e e 1103
L T = o A N T o (= £ PP 1107
39.1. Overview of Event Trigger BENAVIONccvviiiiiiiiii e 1107
39.2. Event Trigger FIriNg MalliXcccuuiiiiieiiieiiii e e e e e e e e 1108
39.3. Writing Event Trigger FUNCLIONSIN Coovniiiiiciiecc e, 1113
39.4. A Complete Event Trigger EXamplecoovviiiiiiii e, 1114
39.5. A Table Rewrite Event Trigger EXampleoovvvvieiiiiiiiiiieciie e 1116
0. The RUIE SYSLEIM ...uiiieiii e e et e e e e aa e e eaeens 1117
L I o TN @ 111 Y I = = TP 1117
40.2. Views and the RUIE SYSIEMcovniiiii i 1118
40.3. MAErialiZE VIBIWS ...ooveiiiiiii ettt e eeaenns 1125
40.4. Rules on | NSERT, UPDATE, and DELETEcccciviviiiiiieiiii e 1128
40.5. RUlES aNd PrIVIIEJESiiii i 1139

PostgreSQL 10.12 Documentation

40.6. Rules and Command SEALUSueeiiuinieeiiiiiee et e e e e 1141
40.7. RUIES VEISUS TIIQOENS ©uuevttneeeieeeieeeii e e e e et eeete e st e e et e e et e e st e e st e eaneeaens 1141
41, Procedural LanQUABOEScvuueiiiieiieeiieeee e e e e s e e e e e st e e et e e et e e et e e et e e aaeeeenns 1144
41.1. Installing Procedural LanQUaOgESueevuniiiinieiiieeeiieceiee e e e e e e eaaeens 1144
42. PL/pgSQL - SQL Procedural LanQUagEccevueiinieiiiieeiiieeeieeee e e e e e eeaes 1147
A T @Y= VP 1147
42.2. Structure of PL/PGSQL ...cvnniiiiiie e 1148
42.3. DECIArAHONSvvuieieiiie ettt e e 1150
O e d o (== 0] 1N 1155
42.5. BASIC SEALEIMENES ...ievviieiieiii ettt et e et e e et e e et e e et e e e e aae s 1156
42.6. CONLTOl SITUCLUMES ...oevveeeieie ettt e e e et e e et e e e e aen s 1163
A O 1 o = TP 1177
42.8. Errors ant MESSA0ES ..uucvvuniiiiieii et ee e e e e e e e e e e e e e 1183
42.9. Trigger PrOCEAUIEScviiieii e e eaeas 1185
42.10. PL/pgSQL Under the HOOdccuviiiiiiiiiiiii e 1194
42.11. Tips for Developing in PL/PGSQLcvvniiiieiieee e 1198
42.12. Porting from Oracle PL/SQLccouviiiiieiii e 1200
43. PL/Tcl - Tcl Procedural LanQUagEceuuiviinieiiie e e e e e e e e e e e eans 1211
T I @Y= VP 1211
43.2. PL/Tcl Functions and ArQUMENEScouuneiiiieiieeeieeeie e e e e e e e e e e 1211
43.3. Data Values in PLITCl cooovuiiiei e 1213
43.4. Globa Datain PLITCl ...t 1213
43.5. Database AcCeSS From PL/ITCl ..ooveveiiiiii e 1214
43.6. Trigger Procedures in PLITCl ..o 1216
43.7. Event Trigger ProceduresS in PLITClovvniiiiiii e 1218
43.8. Error Handling in PLITCl ...ouiiiii e 1218
43.9. Explicit SubtransaCtions in PL/TClc.ovviiiiiiiiiicie e 1219
43.10. PL/TCl CONfiQUIaioNcveuneiieeiiiieeiee e e e e e e e e e e e et e e e e aaes 1220
43.11. Tcl Procedure NEIMEScoeeviiieiiiiie e e e e et e eeeaineeaees 1221
44, PL/Perl - Perl Procedural LangQUagEcvuuniieieeiiiieeieeeieee e e et e e e e e 1222
44.1. PL/Perl Functions and ArQUMENTScouuieiiiieeiiieeiiieeeie e e e et eeineeeaneeeeen 1222
44.2. Data Values in PLIPErl ..oooviiii e 1226
A4.3. BUIE-IN FUNCHIONS ..viiiiiiiii e 1226
44.4. Globa ValueS in PLIPENcoiiiiieiii e 1230
44.5. Trusted and Untrusted PL/PEroviiiiiiiiiiiiie e 1231
Y T I = 4 T I e o = 1233
Yy e W= I = 0| A e o = £ 1234
44.8. PL/Perl Under the HOOcoovviiiiiiiiiiiecis e 1234
45, PL/Python - Python Procedural Languageoevvvieiiiieiiiiec e ee e 1237
45.1. Python 2 vS. PYthOn 3 ...ooeii e 1237
45.2. PL/PYthon FUNCHIONSiiiiiciie e e e e e 1238
5.3, DAA VAIUBS .. .ceeeeiiieeie et 1239
Y 1= 4] oo D - L 1245
45.5. AnonymouS Code BIOCKSciiiiiiiiii e 1245
45.6. Trigger FUNCHIONScouuiiiii e e e e e e e e e e e e e ees 1245
A5.7. DAADASE ACCESSeieeiiieeeeii ettt e ettt e e et e et e e et e e et e b 1246
45.8. EXpliCit SUDLrANSACIONSc.vuiiiiieiiii e e e e e e 1249
45.9. ULility FUNCHIONSiiiiiii e e e e e e aeas 1251
45.10. Environment Variablescoouuuiiiiiiiiiiii e 1252
46. Server Programming INtErfacecooviiiii i 1254
46.1. INterface FUNCLIONSuiiiiiiiie e e e e eaees 1254
46.2. Interface SUPPOrt FUNCLIONSc.viiiiieiii e e e e e e e e 1287
46.3. MemOory ManagemMENtouuiiuiiiiieie et anas 1295
46.4. Visibility of Data Changescccoviiiiiiiiii e 1305

Xi

PostgreSQL 10.12 Documentation

4B.5. EXAMPIES ...ttt 1305
47. Background WOTKEr PrOCESSESuiviueiiiieiiii e e e e e e e e et e e e e e e e et e e e e eanaeeees 1309
R T o I D= wo o [o [P 1312

48.1. Logical Decoding EXaMPIESccvuiiiiiiiiiii e 1312

48.2. Logical Decoding CONCEPLScvvuneiiiieiiiieeiiiee e ee e e e e e e e e e e e anes 1315

48.3. Streaming Replication Protocol Interfaceccooveviiiiiiiiiiiiieiie e, 1316

48.4. Logical Decoding SQL INtErfatec.vveviiiiiiiiieii e 1316

48.5. System Catalogs Related to Logical Decodingcceevvvveviieiineiiineeeieeeenn, 1316

48.6. Logical Decoding OULPUL PIUGINSccuuiiiiiiiiiicie e e e e e 1316

48.7. Logical Decoding OULPUL WIHTEISccvvniiiiiciie e 1320

48.8. Synchronous Replication Support for Logical Decodingccooevvveeinnennnn. 1320
49. Replication Progress TraCkingceueeeeiieiiieiiiie e e e e e e e e e e e e e e e e aenas 1322

VL REFEIBNCE ...ttt e et et e e e 1323
S @ I o 4109 To P 1328

N =1 | USRI 1332

ALTER AGGREGATE ..ottt ettt a s 1333

F Y I I O | 0 I 1335

ALTER CONVERSION ..ottt e et e et e e et e eeaaan s 1337

ALTER DATABASE ..o 1338

ALTER DEFAULT PRIVILEGESccoiiiiiiiiiii e 1341

ALTER DOMAIN Lottt e et e e et e e e e e s 1344

ALTER EVENT TRIGGERouiiiiiiiiieiiii ettt 1347

ALTER EXTENSION ...ttt e et e e et 1348

ALTER FOREIGN DATA WRAPPERccuiiiiiiiiiieiiiiie e 1351

ALTER FOREIGN TABLEutiiiiiiieece et e e e 1353

ALTER FUNCTION L.ttt e et e e et s e e e et s e e eeneaeaees 1358

ALTER GROUP ...t e e et e e e e e 1361

ALTER INDEX ..ottt ettt e et e et e e e et eeeeaan s 1363

ALTER LANGUAGEoiiiii ittt eeai e e 1365

ALTER LARGE OBUJECT ...uiiiiiiiieiiiiiiieteiie et e et e et e et e e et e e ena e 1366

ALTER MATERIALIZED VIEW ...ooviiiiiiiii e 1367

ALTER OPERATOR ...ouiiiiiii ettt e et e a et e eeaaens 1369

ALTER OPERATOR CLASS ...ttt ettt e et e e e e 1371

ALTER OPERATOR FAMILY .ottt 1372

F Y I I B = I O P 1376

ALTER PUBLICATION ...ttt e et e e et e e e eane e eaees 1378

ALTER ROLE ... it e e et 1380

ALTER RULE ... e e et 1384

ALTER SCHEMA ..ttt e a et e e eaa e e eaeen 1385

ALTER SEQUENCEcoitiiiiiiiie et e e et e e e s 1386

ALTER SERVER ...ouiiiii et 1389

ALTER STATISTICS ..ottt e e et e e eaan e eees 1391

ALTER SUBSCRIPTIONuuiiiiiiiiiiiiiiee et e e e et e e e 1392

ALTER SYSTEM .ottt ettt e et e e e et e e e eaaanaeeees 1394

ALTER TABLE ..ot e e 1396

ALTER TABLESPACEoiiiiii it e s 1410

ALTER TEXT SEARCH CONFIGURATIONiiiiiiiiieiiiiii et 1412

ALTER TEXT SEARCH DICTIONARY ...ttt 1414

ALTER TEXT SEARCH PARSERccotiiiiiiiiiiietii e 1416

ALTER TEXT SEARCH TEMPLATE ..ot 1417

ALTER TRIGGER ..ottt e 1418

ALTER TY PE oot e s 1420

ALTER USER .ottt e et e e et e e e et e e e eeans 1423

ALTER USER MAPPING ..ottt ettt e et e e et e eeeeans 1424

Xii

PostgreSQL 10.12 Documentation

ALTER VIEW .o 1425
ANALYZE ..o 1427
BEGIN ot 1430
CHECKPOINT .o e 1432
LS e 1433
CLUSTER .o 1434
COMMENT oo 1436
COMMIT e 1440
COMMIT PREPAREDcouiiiiiiiiiie e 1441
0P Y 1442
CREATE ACCESS METHOD ..ottt 1452
CREATE AGGREGATE ...t 1453
CREATE CAST e 1460
CREATE COLLATION ..ttt 1464
CREATE CONVERSION ..ottt 1466
CREATE DATABASE ... 1468
CREATE DOMAIN .o 1471
CREATE EVENT TRIGGERccciiiiiiiiiii e 1474
CREATE EXTENSION ..ot 1476
CREATE FOREIGN DATA WRAPPERcoctiiiiiii e, 1478
CREATE FOREIGN TABLE ..ot 1480
CREATE FUNCTION ..ttt 1484
CREATE GROUP ..ot 1492
CREATE INDEX ..o 1493
CREATE LANGUAGE ... 1499
CREATE MATERIALIZED VIEW ... 1502
CREATE OPERATOR ..ottt 1504
CREATE OPERATOR CLASS ...t 1507
CREATE OPERATOR FAMILY oo 1510
CREATE POLICY oottt 1511
CREATE PUBLICATION ...ttt 1517
CREATE ROLE ... 1519
CREATE RULE ..o 1524
CREATE SCHEMA ..o e 1527
CREATE SEQUENCEoiiiiiiiici e 1530
CREATE SERVERcoiiiii e 1534
CREATE STATISTICS ... 1536
CREATE SUBSCRIPTIONiiiiiiiiiiiiiici e 1538
CREATE TABLE ..o 1541
CREATE TABLE AS ..o 1560
CREATE TABLESPACE ...t 1563
CREATE TEXT SEARCH CONFIGURATIONcooviiiiiiiiiiiiieeeeen, 1565
CREATE TEXT SEARCH DICTIONARYoiiiiiiiiiiic e 1566
CREATE TEXT SEARCH PARSERoiiiiiiiii e 1568
CREATE TEXT SEARCH TEMPLATE ..o, 1570
CREATE TRANSFORMooiiiiiiiiiii e 1571
CREATE TRIGGERiiiiiiiii 1573
CREATE TYPE e 1580
CREATE USER ..o 1589
CREATE USER MAPPING ..ottt 1590
CREATE VIEW Lo 1592
DEALLOCATE .o 1597
DECLARE ... 1598
DELETE oo 1602

PostgreSQL 10.12 Documentation

DISCARD ...t 1605
DO 1606
DROP ACCESS METHODccviiiiiiiiiiii e 1608
DROP AGGREGATE ...t e 1609
DROP CAST i 1611
DROP COLLATION .ottt ra e 1612
DROP CONVERSIONiiiiiiiiiiiii it 1613
DROP DATABASE ... 1614
DROP DOMAIN oo 1615
DROP EVENT TRIGGERcccviiiiiiiiiiii e 1616
DROP EXTENSION ..ot 1617
DROP FOREIGN DATA WRAPPERcooiiiii 1618
DROP FOREIGN TABLE ...t 1619
DROP FUNCTION .oiiiiiiiiii e 1620
DROP GROUPoiiiiiiiii e 1622
DROP INDEX ...oiiiiiiiiiii e 1623
DROP LANGUAGE ..ot 1625
DROP MATERIALIZED VIEW ... 1626
DROP OPERATOR ...ttt 1627
DROP OPERATOR CLASS ... 1629
DROP OPERATOR FAMILY .ot 1631
DROP OWNED ..ottt 1632
DROP POLICY .ottt 1633
DROP PUBLICATION ..ottt 1634
DROP ROLE ...t 1635
DROP RULE ...t 1636
DROP SCHEMA ..o 1637
DROP SEQUENCEouiiiiiiic e 1638
DROP SERVER ...t 1639
DROP STATISTICS ... 1640
DROP SUBSCRIPTION ...ouiiiiiiiiiieii i 1641
DROP TABLE ..o 1643
DROP TABLESPACE ... 1644
DROP TEXT SEARCH CONFIGURATIONcoiiiiiiiiiiiiiir e 1645
DROP TEXT SEARCH DICTIONARY ..o 1646
DROP TEXT SEARCH PARSERoiiiiiii 1647
DROP TEXT SEARCH TEMPLATE ... 1648
DROP TRANSFORM ...ttt 1649
DROP TRIGGERciiiiiiiiiiiic e 1650
DROP TYPE ..o 1651
DROP USER ..ot 1652
DROP USER MAPPING ...ttt 1653
DROP VIEW .o 1654
END o 1655
EXECUTE ..o 1656
EXPLAIN Lo 1657
FET CH o 1662
GRAIN T 1666
IMPORT FOREIGN SCHEMA ..o 1673
INSERT o 1675
LISTEN oo 1682
LOAD oo 1684
L O CK i 1685
MOVE 1688

Xiv

PostgreSQL 10.12 Documentation

N[O 1 1 S SPPTN 1690
PREPARE ...ttt ettt e et aaaan 1693
PREPARE TRANSACTION ...ttt ettt e et e e eeeaa s 1696
REASSIGN OWNEDciiiiiiiiiiiiieeeiie ettt e et e e st eeena s 1698
REFRESH MATERIALIZED VIEWiiiiiiiiciiie e 1699
REINDEX ..ot eititis ettt ettt e e et n e et e e e e et e e e e ananeeeanes 1701
RELEASE SAVEPOINT ..oiiiiiiieeee ettt e e e e e 1704
L S 1706
REVOKE ..t 1707
ROLLBACK . ittt ettt e ettt e e et r e e e et n e e e et s e e e ertnaeeaees 1711
ROLLBACK PREPAREDiiiiiiiiiitiiiie ettt e e e e e eannns 1712
ROLLBACK TO SAVEPOINT ..ttt e e e e enees 1713
SAVEPOINT Lottt et e e et e e e et e e e et e e e eaa e aaee 1715
SECURITY LABEL ...ttt 1717
S I PPN 1720
SELECT INTO oiiiiiiiiiieeie ettt e e e e e et e e e et eeeeaa s 1740
S PP 1742
SET CONSTRAINTS .ottt et e e e e e et e et e e eeean s 1745
S I (O P 1747
SET SESSION AUTHORIZATION ...uiiiiiiieeiiiii e 1749
SET TRANSACTION .ottt e et e e et e e e et e e e eareaeeeees 1751
SHOW e e e et e et a e aae 1754
START TRANSACTION ...ttt et e e e e aa e 1756
TRUNGCATE .ottt e et e e e e et e e e e et e e e eetanaeaees 1757
UNLISTEN oottt e et a e e et e e e e et e e e eete e e e entnnaeeeaes 1759
L N I PP 1761
VACUUM Lo e e e et e e et e e et e e eaaan s 1765
VALUES ..o 1768
[1. PostgreSQL Client APPIICAIONSiiuueiii et e e e e e e e e e e aen 1771
(o1 (o | o PPN 1772
(o= 1= | o PP 1775
(o= (T PP PTPTPRR 1778
(0 10] o o U 1782
(01 0] 11 1784
L= o¢ o o PP 1786
PG _DESEDACKUD ..eiii e 1788
070070 o TP 1795
oo w0 0 o 1808
oo 0 L0 1o T 1811
PO AUMPAEIL ... 1823
Lo TS (= |V P 1828
Lo T = o= AV L=V 1830
o To T (= w17 oo o= P 1834
10 (=[] (PP 1838
0 o | 1846
(=T 070 1= | o PSP 1883
A= e U110 o o TP 1886
[11. PostgreSQL Server APPHCALIONSccvuiiiiieiiii e e e e e e e e e e e e eaes 1890
INIEAD e 1891
PO _arChiVECIEANUDcovviii e 1895
[oTo w011 0] [=1 - 1897
oo N o | PPN 1898
o105 =11 | 1903
oo T (=11 o 1906

XV

PostgreSQL 10.12 Documentation

10 T (=S 5/ P
o To === A (1421 PN
o100 oo =" [T
o102z Lo 1 4o o S
8015 0=
8011 = = PP

VII. Internas

50. Overview of POStOreSQL INtEMElSuuiiiiiiii e e
50.1. The Path Of @ QUETYcovniiiii i e

50.2.

How Connections are EStabliShedcc..oeiiniiiiiiieeeee e

50.3. ThE Parser SEAgE .. ccvueiiiieii et e e e e e e e e et e e e e aanaees
50.4. The PostgreSQL RUIE SYStEM ... c.uueiiiiiiiiiecieee e e

50.5.
50.6.

Planner/OPtiMIZErc.uiiiiiiieii et
EXECULOT ...ttt e ettt e e e e e e e

Y ISV (= 0 (IO [0 o P

51.1.
51.2.
51.3.
51.4.
51.5.
51.6.
51.7.
51.8.
51.9.

(@Y1 VL=

Yo =11 0T o LR
PO At L rdef

PO At riBUL @ (s
PO_AUL NI 0 oo
PO_AUt h_MBNDEIS e

Lo 00 O o o T o3 - 11 PPN
BLAL PO Cl @SS ittt
51.12. PG _COl L At i ON e
Loy I K T o To R o oY 1 11 4 - Y I o | P
Lo I S o To R o oY 0 A VZ=Y o= I o P
51.15. Pg_dat @DaS@ ..uuiiiiiiiii i
51.16. pg_db rol @ SettiNg .oociiiiiii i
51.17. pg_defaul t _acl ..o
Lo I S 0 o To o =Y 11 o (o [0S
Lo I K T o To o [=F=Y of I o) A o o [
LY 20 A o To T = 0 16 o PPN
Loy W2 o To =1 V2= | A A T Lo [
51.22. PO EXE ENST ON 1iiiiiiiiii e e
51.23. pg_forei gn_dat @ W apPer ..cciciuiiiiiiieiiii e
Y I o To R B oY =TI [=X =1 V4= S
51.25. pg foreign tabl @ .o
LY 2 T o To T o 1 G
oY Iy o To T T 01 1= T A=
Ly 2 S I o To T o VI S 1 Y2 TP
LY 2 I o To T - Y 1o U = Vo 1=
51.30. pg_l @rgeobj Ct ..o
51.31. pg_l argeobj ect _netadat @ccooeeuieiiiiiiiiieci e
5132, PO NI B S PACE ettt e
51.33. PO _OPCl @SS oiiiiiiiii i
LY IRC 7 o To T o] o =1 - U o] (R PP PRPRPTPR
51.35. PG _OPF @M [Y oo
51.36. pg_partitioned tabl ecooooiiiiii i
51.37. pg_Pltenpl at @ oo
51.38. PO POl i Y ereiiieii e
LY IRC 1 o To N o (o 1o JN PPN

XVi

PostgreSQL 10.12 Documentation

51.40.
51.41.
51.42.
51.43.
51.44.
51.45.
51.46.
51.47.
51.48.
51.49.
51.50.
51.51.
51.52.
51.53.
51.54.
51.55.
51.56.
51.57.
51.58.
51.59.
51.60.
51.61.
51.62.
51.63.
51.64.
51.65.
51.66.
51.67.
51.68.
51.69.
51.70.
51.71.
51.72.
51.73.
51.74.
51.75.
51.76.
51.77.
51.78.
51.79.
51.80.
51.81.
51.82.
51.83.
51.84.
51.85.
51.86.
51.87.
51.88.
51.89.
51.90.
51.91.
51.92.
51.93.

PO_PUDL i Cat i ON oo 1988
Pg_publicati On_rel . 1989
0o L= [0 [< PP 1989
pg_replicati ON_Ori giN e 1990
oo T =1 T = TN 1990
PO_SeCl abel .o 1991
00 JEST=T0 (1= o Lo = PP RPRNS 1992
PO_ShAEPENA ..o 1992
PO_ShAESCIi PLi ON i 1993
PO_ShsecCl @abel ..o 1994
PO_StAti STi € cirriiiiiiiiii e 1994
PO_Stati StiC _BXE i 1996
PO_SUDSCI I PtiON (o e 1997
PY_SUDSCription_rel . 1998
PO_tabl ESPACE .iiii e 1999
POt anST OF M. 1999
oo T O g o o 1= N 2000
[oTo TR A=Y o3 0] 1) H o P 2002
[oTo R A oXo Lo} S o T 122 o S 2002
PO TS i Cl i e 2003
PO b S POl S I ittt 2003
PO_tS tenPlat @ oo 2004
|00 00V ¢ L= TP 2004
[oTo RV EY =Y Sl 12=1 o] o N o o [2011
Y S (= IV A= V£ 2012
pg_avail abl @ _ext eNSi ONScccoiiiiiiiiiii 2013
pg_avai |l abl e_ext ensi on_Versi ONscccoeciiiiiiiiiiiiieciieeceeeann, 2013
oo TR oo] 2} S o N 2014
0o T o3 U1 g =T 0] g PP RPN 2014
PO _Fil @ SEILTINGS oo 2015
oo o | o 18| o I PP 2016
Pg_hba fil e Ul @S . 2016
oo TN 41 1= == 2017
PO | OCKS i 2017
oo T 2= LRV AT - 2020
PO_ POl T Cl 8BS i 2021
pg_prepared St at EMBNES ..o 2022
PO _Prepar €d_XaACE S .ioiiiiiiiiiii e 2023
pg_publication_tabl €S ..o 2023
pg_replication origin_statuscccooviiiiiiiiiiiiii e 2023
pg_replicati on_SIOtS . 2024
oo TN o 1= 1= 2025
oo TN SV 1= 2026
PO_SECl Abel S oo 2027
|00 JEST=T0 (1= 4 (o <3S PP PPN 2028
oo JESY= 1 A A T 4 Vo 1= 2028
PO _ShAOOW ...ueiii e 2031
PO ST AL S ittt 2032
PO _tabl BS o 2034
Pg_timezone_abbrevs ... 2035
PO _ti MBZONE _NAITES .iivuiiiiii et e et e e e e e e e e eeaa e 2035
00 LT 1= TP 2035
[oTo U EY =Y S 12=1 o] o I o o 1= 2036
oo TV A =1L 2037

PostgreSQL 10.12 Documentation

52. Frontend/Backend ProtOCOIcoovuuuiiiiiiiiei it e e e e e e e e e 2038
YA I O Y= a1 PP 2038
52.2. MESSAE FIOW ...eeiciii e 2040
52.3. SASL AULhENTICAION ...cevvviieeiiii e e e e 2050
52.4. Streaming Replication ProtoColcccouiiiiiiieiiiieiiii e, 2051
52.5. Logical Streaming Replication Protocolccooeeviiiiiiiiiiccie e, 2057
52.6. MESSAgE Dala TYPES .uvvieiiiiiiiiiei ettt et et 2058
52.7. MESSA0E FOIMMELS ... eviiuiiiiiii it e e ens 2059
52.8. Error and Notice Message FieldScooovviiiiiiiiii e, 2073
52.9. Logical Replication Message FOrMELSccvvieiiueeiiiieiiiieeiie e e eeieeeaneeeee 2075
52.10. Summary of Changes since Protocol 2.0ccveeiiiiiiiiiiiin e 2078
53. PostgreSQL Coding CONVENLIONSuiivuniiiiiieeieeeiiieeie e e e e e e et e e e e eeenns 2080
ESYC T o 0=] o N 2080
53.2. Reporting Errors Within the SErVeroovviiiiiii e 2080
53.3. Error Message StYl€ GUIEceuiiiiiiiiici e e 2084
53.4. Miscellaneous Coding CONVENLIONSccevuieiiiieiiiieeiie e e e e e 2088
54. Native Language SUPPOITciiiieii e e e e e e e e e e e e e te e st e e et e e st e e e e eaneeaenns 2090
54.1. FOr the TranSlalorooeiieiiieeeiie e e e e s 2090
54.2. FOr the PrOgramimercccuiiiiie e e e e e e e e e eeeen 2092
55. Writing A Procedural Language Handlercoovviiiiiiiiiii e 2095
56. Writing A FOreign Data WIaDPEroouuiiiieiiii et e e e e e e e e e eens 2098
56.1. Foreign Data Wrapper FUNCHIONScocuuiiiiiiiiiicce e e e 2098
56.2. Foreign Data Wrapper Callback ROULINEScocvvvieiiiiiiiiieccieece e, 2098
56.3. Foreign Data Wrapper Helper FUNCLIONSccvviiiiiiiiiiciec e, 2111
56.4. Foreign Data Wrapper Query Planningcoooeviveiiieiiiiiieeee e, 2112
56.5. Row Locking in Foreign Data WIapPEr'Suvviviieiiiieeiiieeeieeeee e e e 2114
57. Writing A Table Sampling Methodccooiiiiiii e, 2116
57.1. Sampling Method SUpport FUNCLIONSccovviiiiiiieiee e 2116
58. Writing A Custom SCan ProVIderocvuuiiiiiiiiii e 2119
58.1. Creating Custom SCan PathScccoviiiiiiiii e 2119
58.2. Creating Custom SCan PlansSciviiiiiiiicii e 2120
58.3. EXECULING CUSLOM SCANScvvvieiiieiiiee e e et e e e e e e e e e e e e ean e e eanaas 2121
59. GENELIC QUETY OPLIMIZEN .uuiiiiieiiie e e e e e e e e e e e e et e e aa e eens 2124
59.1. Query Handling as a Complex Optimization Problemcccoecviiiiineeennnn. 2124
59.2. GENELiC AlQOMItNMS .. cove e 2124
59.3. Genetic Query Optimization (GEQO) in PostgreSQLcevvvvvviveiiiieeiieennn. 2125
59.4. FUrther REAMINGcvvniiiii e e e e aens 2126
60. Index Access Method Interface Definitioncocooviiiiiiiiiiiii e 2128
60.1. Basic APl Structure for INAEXEScuvuiiiiiiiiieeeee e 2128
60.2. Index Access Method FUNCLIONScocvveiiiiiiii e 2130
60.3. INAEX SCANMNING ...vuivetneeii et e e e e e e e e e e e s e e et eeaaeeeanaas 2135
60.4. Index Locking CoNSIAErationScvevuuieiiiieiiii e e e e e e 2137
60.5. Index Uniqueness ChECKScciuiiiiii e e e e 2138
60.6. Index Cost EStimation FUNCLIONSviiiiiiieiiiieeeeiii e 2139
B1. GENENIC WAL RECOMS ...eevviieiiiii ettt e et e e et aeeeeaenaeeeees 2143
B2. GIST INAEXES ..oevvieieeii ettt e et e e e e et e e e eba e 2145
L7228 W 1 1 0o (8o [o PSP 2145
62.2. BUIlt-iN Operator ClasseS ...u.vvuuiiii et e e e e e e e e e eaans 2145
62.3. EXENSIDIILY ©ovneeeiii e 2146
62.4. IMPIEMENTBEION ...\u'iiei i e e e e e e e e e e e e e ean s 2155
B2.5. EXBMPIES .vviieieiiiie ettt 2155
B3, SP-GIST INUEXES ...eeetiieiiii et e et e ettt e e et e e e et e e e eatnaaaees 2157
(2G50 1 g1 0o (8o [o PP 2157
63.2. BUIlt-iN Operator ClasseSuuuuiiiii et e e e e e e aans 2157

PostgreSQL 10.12 Documentation

63.3. EXENSIDIILY ©.vnieeiiiiee e e 2158

63.4. IMPIEMENTBEION ...\u.iiei e e e e e e e e e e e e eanes 2165

B35, EXBMPIES .veieiiiiiie ettt 2166

B4. GIN TNAEXES ...oeveieiiiii et e et e et e e e et e e e e 2167
L7 0 1 0o (8o [o PSP 2167
64.2. BUIlt-iN Operator ClasseS ...u.vvuuiiii et ee e e e e e e e e aans 2167

B4.3. EXIENSIDIITY ©.vueeeiiiiee e 2167

64.4. IMPIEMENTBEION'iieieii e e e e e e e e e e e e e e ean s 2170

64.5. GIN TipS aNd THICKS ...civtiiiii e e e e e e e e eaaes 2171

7 N I I 1] = o) PPN 2172

B4.7. EXBMPIES .veietieii ettt 2172

B5. BRIN INOEXES ...vueeiiii ettt e e e e e e e et e e e e et 2173
L300 1 g1 o (8o [o PSP 2173
65.2. BUIlt-iN Operator ClasseSvvuuiiiiiieii e e e e e e e e e e e e eaans 2174

65.3. EXIENSIDIITY ©ovnieeiii e e 2175

66. Databhase PhySICal SIOraQgeccvuiiiiiieiiie e e e e e e aaeees 2178
66.1. Datahase FIle LayOULccuuieiiiieiiii e e e 2178

B6.2. TOA ST ittt ettt e et e et aaan 2180

66.3. Free SPaCe Map ..ovuiiiiiiee e 2183

66.4. VISIDIIITY MaD ooeiiiiiiii e 2183

66.5. The INitidization FOrKccoovuiieiiii e 2184

66.6. Datahase Page LayOuLcc.uieiiiiiiiiiiii e e e e e e e 2184

67. BKI Backend INTErfaceuiiiiiiiieiiie et e 2187
67.1. BKI Fil@ FOMMELoieiiiiiieeii e e 2187

67.2. BKI COMMENGSuuieiiiiiieeiiiie e e et e e e e e 2187
67.3. Structure of the Bootstrap BKI Fil€ccoooviiiiiiiiiiiie e, 2188

B7. 4. EXBMPIE ettt 2189

68. How the Planner USES SEALISHCS ...vuuiiiieiieiiiii ettt 2190
68.1. Row EStimation EXamMPIESociuniiiiiiciie e e e e e e 2190

68.2. Multivariate StatisticsS EXampPleSc..oiviiiiiiiciii e 2195

68.3. Planner Statistics and SECUNILYcovviiiiiiii e e 2197

RV L Y o] = o 1= 2199
A. POSIOrESQL ErrOr COUESivviieiiiieiieee et e e e e e e e e e e e e e e e aaaaas 2206
B. DA€/ TimE SUPPOIT ...ovuieiii e et e e e e e e e e e e e e e et s e e e e et e e et e e eanaeeanaes 2215
B.1. Date/Time Input INterpretationcc.veiiiiiiii e 2215

B.2. Handling of Invalid or Ambiguous Timestampscccoceuiveviineiiinneiieeeinennn, 2216

B.3. Date/Time K&Y WOIAS ... ccvniiiiici e e e e 2217

B.4. Date/Time Configuration FIlESc.couiiiiii i 2218

B.5. HIiStory Of UNItSciiiiiiii e e e e 2219

C. SOL KEBY WOKASvuiiiiiieii et e e e e e e e e e et e e et e e e eanns 2222
D. SQL CONfOIMANCEeuniieii e e e e e e e e e e e e et e et e e e eaaeannas 2246
D.1. SUPPOIE FEAUIESuueiiiieii e e e e e aaaas 2247

D.2. UNSUPPOIEd FEAEUIESivviieiii e eee e e e e e e e e e e e e e e e eeees 2263

D.3. XML Limits and Conformance to SQL/XMLcccoceviiiiiiiiiiiiiiiieeeee e, 2276

I C 1=z S N o] (== PP 2280
E.L REEESE 10.12 ..oooniiieiiiieee et 2280

E.2. REIEASE 10.11 ..ouuiiiiiiieeee ettt 2284

E.3. REIEASE 10.10 ...uuiiiiiiiiieeeii e 2289

B4 REIE8SE 10.9 ..ooiiiiiiiii e 2291

ED. REIEESE 10.8 ...oveiiiiiiii e 2294

E.B. REIEASE 10.7 ..ooveiiiiiiiii e 2297

E7. REIEESE 10.6 ..covviieiiiiiicee e 2302

E.8. REIEASE 10.5 ..ooiiiiiiiii i 2307

E.O. REIEASE 10.4 ..o 2312

XiX

PostgreSQL 10.12 Documentation

E.10. REEASE 10.3 ..oiiiiiiii e 2316
E. 1L REEESE 10.2 oiiiiiiiii ettt 2318
E.12. REEASE 10.1 ooviiiiiiii it 2323
G (= == = = 0 OSSP 2326
E.14. Prior REIBASES . .ooviiieeiii et e et e e et eae 2349
F. Additional Supplied MOAUIEScoiiiiiiii e e 2350
F.L admMinpacKoouiiiiii e 2351
Fo2. @MCNECK vt 2352
F.3. AUth delay ..o 2354
[0| (o T = o) =1 o 2355
FLB. BIOOM <. 2357
[ST o1 (==Y o o 2360
A o (==Y o [2361
FL8. ChKPASS .. e 2362
[T o) (=4 SR 2363
FLL0. CUDE et 2365
Nt I o | o] o PRSPPI 2371
[t 22 o [A T | 2402
[o o A 6/ o 2403
F.14. €artNAiSIANCE ... 2404
[LS 1= o PPN 2406
F.16. fUZZYSIIMAECH .uuiie e 2408
I A 0 o) PSP 2411
S T 17 o o 2417
L T o v - Y PN 2419
0 I = o PSPPSRI 2421
26 o PSP 2425
[| = PPN 2426
(A I 070 (=] 41 o)< v N 2433
F.24. passWOrdCNECKciveiiiici e e e 2439
F.25. pg BUFfEICACE ... e 2440
FL26. POCTYPLO . oneiie et 2442
[A oo [=== 0= 0= 1 7= 2453
(2 A oo [o (= V= 1 [P 2454
2 oo | 1011, o o 2455
F.30. PO_Stal StalBMENTS ...uieiii e 2456
[oo 0o T 2461
[oo [1 (0 [0 P PP 2466
F.33. PO_VISIDHILY et 2470
F.34. POSIOrES FOW ..uiiiiiciii e 2472
LT o PP 2477
G TS = oo o | N 2480
L A o USSP 2488
[TS 1T o o TSRS 2490
F.39. tADIEFUNC ..vviieeii e 2492
2 I (o o 2502
[(== o =0 o] oo [P 2503
[= 0 IS YA = 0 A T (01T T PR 2503
B = o TSV (= 0. 0 (10 2504
U o= ol o | TP 2505
TN 01T B0 T 2507
41 1] P 2508
G. Additional SUPPIIEd Programscouuciiieeiiie e e e e e e e e e e e aaa s 2514
G.1. Client APPHICALIONSuiiiiii i e aens 2514

XX

PostgreSQL 10.12 Documentation

G.2. Server APPlICALIONScvvecii e e 2520

L I (= g = I (0= £ 2525

H.L CHENt INEEITACES .ovvve it e e et e eeeaae e eees 2525

H.2. AdMINIStration TOOISiiieiiieiiiiis e eeaees 2525

H.3. Procedural LanQUAagESoeeuuieiiiieiiii e e e e e e e e e e e e e e e aes 2526

HA EXLENSIONS ...iiiitiieeeiii ettt e et e et e e e et e e e e et e e e e et e e e e et eas 2526

I. The Source Code REPOSITOMYuuiiiiieiiieiie e e e e e e e e e et e e e e e e eaens 2527

[.1. Getting The SOUrCE VIa Gtcvvvuiiii i 2527

B B o o100 01 - 1o R SUPRTN 2528

J L DOCBOOK ...cvieeeei et 2528

J2. TOOI SEES ..ttt aanen 2528

J.3. Building The DoCUMENEAioNccvuuiiiiiiiiiiece e e e e 2532

J.4. Documentation AULNOINGovveiiiiiicie e e e e e e 2533

J5. SEYIE GUITE ... 2534

NN 01011/ 1 = T PPN 2537

23] o] oo r="o] /R 2542
g0 1= PP 2544

XXi

List of Figures

9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLooiiiiiiiiiiiieeecie,

59.1. Structured Diagram of a Genetic Algorithm

XXii

List of Tables

4.1. BaCKSlash ESCAPE SEOUENCESccouuueiiiit ettt e ettt e ettt e e eett e e e e et e e e eett e e e eete e e eeeneaeaees 34
4.2. Operator Precedence (highest tO TOWESE)uiiiiiiieiii e 40
I D - r= T Y o= T TP PTRPPTPP 131
S 10100 Lol Y o= ST SUPPPPRUPPPTPRSPPPIN 133
8.3, IMONELAIY TYPES ...ttt ettt et et et 137
O T ol (= g Y o= T PP P PP UPPPTRRPP 138
8.5. SPECial CharaCler TYIPES ... ieeii ettt ettt ettt e e e e e e era s 140
8.6. BINAIY Daa TYPES ... eeetietiiii ettt ettt ettt et e et e e e et e e e e erb s 140
8.7. byt ea Literal ESCAPEI OCLELSciiiiiieieiiii ettt ettt e e et e e eees 141
8.8. byt ea OUutput ESCAPEI OCLELSccvuuiiiiiiiie ettt eeeans 142
8.0, DAE/TIME TYPES ...eeeetti ettt ettt et e et e et e e et et e et e e e e et et e e e et e e e enna s 142
8.10. DAE INPUL ...ttt 144
8. L1, THME INPUL ettt ettt ettt et e ettt e ettt e e et ettt e et et e e e e ettt e e eebe e e e eennaeeees 144
8.12. TiME ZONE INPULeeettieeeei ettt e e ettt e e et e e e et e e e e b e e enea s 145
8.13. Special Dae/TIME INPULSuieiii ettt e e et e e e 146
8.14. DAe/TIME OULPUL SEYIES ...t 147
8.15. Date Order CONVENTIONSceeruneeiiti ettt e ettt ettt ettt e et eeee e et e e e e enaa e eeennnns 147
8.16. 1SO 8601 Interval Unit ADDIeVialionsSuiiiiiiiiiieiii e 150
8.L7. INEIVEl TNPUL ... ettt e e e e et 151
8.18. Interval Output Style EXAMPIESuiiiiiii e 152
8.19. BOOIEAN DELA TYPE .. eevtueteeti ettt ettt ettt ettt e e r e 152
8.20. GEOMELNC TYPES . evtneteett ettt ettt ettt ettt ettt ettt et et et e et e e e e et e e e e eae e e ennes 155
8.21. NEtWOrK AQArESS TYPES ..ottt ettt ettt ettt e et e e e e e e b 157
8.22. Ci dr Type INPUL EXAMPIESccoiiiieieii et 158
8.23. JSON primitive types and corresponding PoStgreSQL tyPeSvevvviiiieiiiiiiieiiiiieeeeeiiee 167
8.24. ODJECt IdeNtifier TYPES ..eiri et 195
825, PSEUTO-TYPES ...t ittt ettt ettt ettt 196
9.1. COMPATSON OPEIGIOIS ... eeeeetieeeeti ettt ettt et e e e ettt et e e et et e et e b e e e e e e e e eraa s 198
9.2. COMPATISON PreEdiCALESceeeii ettt e eaaans 199
9.3. COMPATISON FUNCLIONSiiitiieieii ettt e e 201
9.4. MathematiCal OPEIALONSccuuueeiiiii ettt ettt ettt e et e e e e e e ena s 201
9.5. MathematiCal FUNCLIONSuuiiiiiiiiee et 202
9.6. RANAOM FUNCLIONS ...ttt ettt e et e et e e et eeeae s 204
9.7. TrigONOMELNIC FUNCLIONSieitti ettt ettt e et eeeae s 204
9.8. SQL String FUNCLIONS 8N OPEIIOISceeeriieeeiiii et e ettt e ettt e e et e e eeni e e eeni e eeens 205
9.9. Other SING FUNCLIONS ...ttt ettt e et e e e e s 207
9.10. BUIE-IN CONVEISIONS ...ttt ettt ettt ettt e e et e e e et e e e enaa s 214
9.11. SQL Binary String FUNCtioNS @nd OPEFaOrSc.uuuerirriieieiiiee it e et e et e e 220
9.12. Other Binary String FUNCLIONSiieiiieiiiii et e s 220
9.13. Bit SING OPEIGIOIS ... eeeeetiieeeeit ettt ettt ettt e et e et e e e st e e e e aaa s 222
9.14. Regular EXpression MatCh OPEIraOrSuuueierrieiieiii ettt et e e e e e enees 225
9.15. Regular EXPression ATOIMSiieuuu ettt e ettt e et et e e e ee e e ara e eenans 229
9.16. Regular EXpression QUENTITIENSeiieiieieii et 230
9.17. Regular EXPression CONSITAINTScovetieeiiiiiee ettt e et e e 230
9.18. Regular Expression Character-entry ESCAPESc.uuiiiiiiiiieiiii e 232
9.19. Regular Expression Class-shorthand ESCaPESc.uuuviiiiiiiiiiiiiieeeei e 233
9.20. Regular Expression ConstraiNnt ESCAPESuiiiiiiiiiiiiii e 233
9.21. Regular Expression Back REFEIENCESuiiiiiiieiiii e 234
9.22. ARE Embedded-0ption LEIErSiiieiieeeei et 234
9.23. FOrMAtting FUNCLIONSiiiiii ettt ettt e e aa e e eneas 238
9.24. Template Patterns for Date/Time FOrMatingviiieriiieiiiie e 239

XXiii

PostgreSQL 10.12 Documentation

9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.
9.75.
9.76.
9.77.
9.78.

Template Pattern Modifiers for Date/Time FOrmattingcocouveviiieiiiniiiieeiiiieeieeeieeens 241
Template Patterns for Numeric FOrmattingcc.oveviiiiiiiiiiiiic e 243
Template Pattern Modifiers for Numeric FOormattingccoovueeiiiniiiiiieiiie e, 244
1O _Char EXAMPIES ...t 244
D (A TSN @] o= = (0] £ P 245
DA€/ TIME FUNCHIONS ...t e et e et e e e et e e e e aan s 246
AT TINE ZONE VANHTANES .oeevtiieeiiiis ettt e e e et e e et s e e e et s e e eeat e e e eenenaeaaees 255
ENuM SUPPOIt FUNCLIONSooviiiici e e e e e e e e e e aaeees 258
(€100 L= (o @] 1= - (0= PP 259
GEOMELTTC FUNCLIONSuiiieiti ettt e e e et e e et e e et e e e eba s 261
Geometric Type Conversion FUNCLIONScccuuiiiiii e e e 261
oI o DO 0 To I o Lo Y @ o= = 0] £ T 263
Cldr and i NEt FUNCHONSiiiiiiiieii e e et eeaaen s 264
ap=Tox=To Lo | N = ¥ o Tox o] LY U PTT 265
ap=Tox=To Lo [gt S I W o 1 o) U PRTP 265
RS = o A [O 0= = (0] ¢ T RN 266
TEXE SEACH FUNCHIONSieiiie et e e e e et e e e e e e e aan e 267
Text Search Debugging FUNCLIONSccuuiiiiiieiiie e e e e e e e e e ees 270
j SON aNd | SOND OPEIAIOIS .. cevuiii e e et e e e e e e e s e et eran e eees 286
Additional | SOND OPEIELOISuiiiiieiie e e e e e e aanees 286
JSON Creation FUNCLIONSuuiiiiiiiie ettt e e e e e et e e e et e e e et e eeenans 288
JSON Processing FUNCLIONSiiiiiiii e et e e e e e e e e e e eaes 289
= [01= Lo Y W 0 1P 294
ATTAY OPBIAIOIS ..ttt e e et e e et e 299
F N 4= YA U o1 o 300
RANGE OPEIEIONS . eu ittt e 303
T (= U ot 0] 1PN 304
General-Purpose Aggregate FUNCHIONSuuiiiiiiiii e e e e e e e e e 305
Aggregate FUNCIONS fOr SEAISHICSvvvuiiiieiie e e e e e 308
Ordered-Set Aggregate FUNCHIONScouuiiiiiiiii e e e e e e e e eeens 309
Hypothetical-Set Aggregate FUNCLIONSccuuiiiiiiiiiie e e e 311
(CTCoTN o1 aTo @] o= = 1 Lo o TP 312
General-Purpose WIiNdow FUNCLIONScoouiiiiiciiie e e e e e e 313
Series Generating FUNCLIONSiiiiieiii e e e e e e e e e e e e e e e e e e eanees 320
Subscript Generating FUNCLIONScuuiiiiieiie e e e e e e e e e e e e e e e aaeees 321
Session INFOrmMation FUNCLIONSiiiiiiiiieiii et e s 323
Access Privilege Inquiry FUNCHIONSoiiiiiiiiici e e e e 326
Schema Visibility InqQUiry FUNCEIONSuiiiiiiii e 329
System Catalog INformation FUNCLIONSuiiiiieiiiie e ee e e e e 330
INAEX COlUMN PrOPEMIESuiiiiicii e e e e e e et eeaa s 333
F g0 L = 1] 1= g 1=t 333
Index Access Method Properti€suviiiiiiiii e e e e 333
Object Information and Addressing FUNCLIONSuieiiiieiiiiici e e 335
Comment INformation FUNCHIONScovuuiiiiiiie e 336
Transaction IDS and SNAPSNOLScvuuiiiiicii e e e e e e e e e e 336
SNAPSNOt COMPONENES ..vuiiiieii e e e e e e e e e e e et e e e e e et e e et e e et e e et e eaneeennas 337
Committed transaction INfOrMELIONcoiuuiiiiii e 337
Control Dat@ FUNCHIONS ...t e e e e e eeaans 338
pg_control _checkpoi Nt COlUMNSc.cooiiiiiiii e 338
pg_control _Syst €mMCOIUMNScccuiiiiii e e e e e e et e e eees 339
Pg_control _iNit COlUMNScouuiiiiiiii e e e e e e 339
Pg_control _recovery COlUMNScociuiiiii e e e e e e e e e 339
Configuration Settings FUNCLIONSccuuiiiiii e e e e e e e e e ees 340
Server SIgnaling FUNCLIONSuiiiii e e e e e 340

PostgreSQL 10.12 Documentation

9.79. Backup Control FUNCLIONSiiiieiiiciii e e e e e e e e e e e e e et e e ean e e aanees 341
9.80. Recovery Information FUNCHIONSuiiiieiiici e e e e e e e e eaaas 344
9.81. Recovery Control FUNCHIONSccuuuiiiiiiiii e e e e e e e e e e e e e e aeaas 345
9.82. Snapshot Synchronization FUNCHIONSuiiiiiiiiiic e e e e e e e 345
9.83. Replication SOL FUNCLIONSuiiiiiiiiicii e e e e e e e e et e et e e e e ean s 346
9.84. Database ObJeCt SIZ€ FUNCLIONScivviiiicc e e e e e e 350
9.85. Database Object LOoCation FUNCLIONScccuuiiiiiiiii e e e e e e e e e e e 352
9.86. Collation Management FUNCLIONSc..uiiiiiiiiii e e e e e e e e e e e e eaaeees 352
9.87. Index MaintenanCe FUNCLIONScceuuniiiiii et e e et e e e e eaees 353
9.88. Generic File ACCESS FUNCLIONSuuiiiiiiiieiiiie ettt e et eeaaees 353
9.89. AdVISOry LOCK FUNCLIONSciiviiciii et et e e e e e e e e e et e et e e e e e eanns 355
9.90. Table REWNIte INFOMMELIONuuuieieiitie e e e e e et e e et e e e e et e e e eeraneeeeees 359
12.1. Default Parser's TOKEN TYPES ..uuiiiueiiiieii et e e et e e e e e e e e e e e et e e et e e st e e st e eaanaees 405
13.1. Transaction IS0lation LEVEISiiiiiiiieieii et e e e e e et e e e e 429
13.2. Conflicting LOCK MOESciiiiiiiiiii e e e e e e e eaaas 436
13.3. Conflicting ROW-IEVEI LOCKSccvuiiiiieii e e 437
18.1. System V IPC PalramMELErSvuiiiiiiiii e e e eans 509
18.2. SSL SerVer File USAQE .. .oiiiiiieiiiii et e e e e e 523
19.1. MeSSage SEVENTY LEVEIS ..o 563
RS S 0o Ao o o TN =Y 587
P20 N B L = 0 A = (o =< PP 612
23.1. PoStgreSQL CharaCter SELSuuiiiiiieii et e e e e e e e e e e e e et e e e ean s 628
23.2. Client/Server Character Set CONVEISIONSuuieiiiiiieeiiiiie et e e et e e et e e et eaein s 632
26.1. High Availability, Load Balancing, and Replication Feature MatriXcccoeevuvevinnerinnnnns 663
28.1. DYNAMIC SEAISHCS VIEWS ..uiiiiicii e e et e e e e e e e e e e et e e e een s 690
28.2. Collected SEAISHCS VIBWS ..eeevueiiiiiieeeeii ettt et e e et e e et e e aaaan s 691
28.3.pg_Stat _aCti Vi ty VIBW (oo e 693
28.4. Wai t_€VENT DESCIHPLION ...ttt e e e e e et e e e e e aanas 696
285.pg_stat _replicati ON VIBW ..o e 706
28.6. pg_stat _Wal eCEI VEI VIiBW ..o e e 709
28.7.pg_stat _SUDSCIri Ption VIEW ..o e 710
28.8. PO _St At _SSI ViBW oo 711
28.9. pg_stat _arChi VEI VIBW ... e e e 711
28.10. pg_Stat _BOWE it &5 VIBW v e e e 712
28.11. pg_stat _dat @base VIEW ..o 712
28.12. pg_stat _database _confliCts VIBW .oocoiiiiiiiiiiii e 714
28.13. pg_stat_all _tabl @S VIEW ..cuiiii i 714
28.14. pg_stat _all i NAEXES VIBW ..u.iiiiiiiii e 716
28.15. pg_statio_all _tabl @S VIEW ..o 716
28.16. pg_statio_all 1 NAEXES VIBW .oevniiiiiiii e e 717
28.17.pg_stati o_all _SeqUENCES VIBW ...c.uuiiiiiiiii i 717
28.18. pg_stat _user _fUNCLi ONS VIBWciiiiiiiiii i e e 718
28.19. Additional StatiStiCS FUNCLIONSuiiiiiiieiiiis e eeeae s 718
28.20. Per-Backend StatiStiCs FUNCHIONSiiiiiiiciiii e et a e 720
28.21. pg_stat _progress _VAaCUUMVIBWiiiiiiiiii e ee e e e e e e e e e e e et e eanaeee 721
28.22. VACUUM PRESES ...ttt ettt e et e e et e e e et n e e et e e e e aae s 722
28.23. BUIlt-iN DTTaCe PrODESvuiiiiii et e e 723
28.24. Defined Types Used in Probe Parametersocvviiiiiiiiiiicie e 730
33.1. SSL MOE DESCIIPLIONS ...cevuiiiiieeie et e e et e e e eeaens 823
33.2. Libpg/Client SSL FIlE@ USAQEouuiiiiieiiii e et e e e e e e e e e e eeeen 824
34.1. SQL-oriented Large ObJECt FUNCLIONSccuuiiiiiiii e e e e e e e e 843
35.1. Mapping Between PostgreSQL Data Typesand C Variable TYpeSccocevvveviiiiiiiieiinennnn. 859
35.2. Valid Input Formats for PGTYPESdat € from ascccocciveeiiiiiiiiiiii e, 877
35.3. Vdid Input Formats for PGTYPESdat € fnt_asCccoveviiiiiiiicii e 879

XXV

PostgreSQL 10.12 Documentation

35.4. Valid Input Formats for rdef mtdat €cooiiiiiiiiii e, 879
35.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoeveviviiiiiiiiiicieeeeiees 880
36.1.i nformati on_schenma_catal og_name Columnsccoeeviiiiiiiiieiiineie e 954
36.2. adm ni strabl e rol e _authorizations Columns............cccoveiiiiiin i, 954
36.3. applicabl @ rol €5 COlUMNScciiiiiiii e 955
36.4. At L 11 DUL €S COIUMNS ...t e e e e eaanas 955
36.5. charact er _Set'S COUMNSciiuniiiii i e e e e e e e e e ees 959
36.6. check_constraint_routine_usage ColumMNS.........c.occiveiiiieiiiiiiiiieeiin e 959
36.7. check _constrai NS COlUMNSoiiiiiiiii e e e aa s 960
36.8. COl 1 @t i ONS COIUMNS ... it e e e e e e e eaanns 960
36.9.col l ation_character_set_applicability Columns...........ccooeeviiiiiniiinnnnnnnn. 961
36.10. col uim_domai N_USage COIUMNSciiiieiii e e e e e e eaaas 961
36.11. cOl UMM_0Pt i ONS COIUMMNSuuiiiiiiiic e e e e e e e e e e e e e aanaees 962
36.12. col umMm_pri vil €ges COlUMNSco.uiiiiiiiii e e 962
36.13. col umMm_udt _USAQE COIUMNS .. .couiiii e e e e e e ean s 963
36.14. COl UMMS COIUMINS ...ttt ettt et e e et e e et e e e et e e e et e e e e eann s 963
36.15. constrai nt _col unmn_usage ColUMNSc.veiiieiiiiieii e e 968
36.16. constrai nt _tabl e_usage ColUmMNSccoieiiiiiiiiiiiii e e 969
36.17.data_type privileges ColumNSccooeiiiiiiiiiiiii e 969
36.18. domai n_constrai Nt'S COIUMNScooiiiiiiii e 970
36.19. domai N_udt _USAQE COIUMNScuuiiiiicii e e e e e e ean s 970
36.20. dOMBI NS COIUMINS ...ttt e et e et e et e e e et e e et e e e e et e e e e enanas 971
36.21. el emEnt _t Y PES COIUMNSuuiiii e e e e e e e e e e et e e e e aneees 974
36.22. enabl €d_r 0l €S COIUMNSiiiiiiiiii e e e e e e e e e e e e aneees 976
36.23. forei gn_data_ wrapper _opti ons ColUmMNScccoveviiiiiiiieiiii e e 977
36.24.foreign_data wrappers COlUMNScocouiiiiiiiiiii e e 977
36.25. forei gn_server_opti 0Ns ColUMNScciiuiiiiiieiii e e eaes 977
36.26. fOr ei gn_Servers COIUMNSooiiiiiiii e e e e e e e e e eaaees 978
36.27.foreign_tabl e options ColUMNScooviiiiiiiiiiii e, 978
36.28. forei gn_tabl €5 COlUMNSccouiiiiiiiiii e e 979
36.29. key_col umm_USaQge COIUMNSuiiiii e e e e e e ean s 979
36.30. par @Bt €S COIUMNS .. .ouuiiiii e e e e e e e e e e e e et e e s e e st eeaaeeaanaaes 980
36.3L. referential _constraints ColUMNSccoceviiiiiiiiiiin e 983
36.32.rol e_col um_grants COlUMNScoeiiiiiiiiiii e e 983
36.33.r0l e _routine _grants COolUMNScccouuiiiiiiiiiiieeiii e e e e e e 984
36.34.rol e _tabl e grants ColUMNScoiiiiiiiiiiiii e e 985
36.35.r0l e_udt _grants COIUMNScoouiiiiiiiie e e e e e e e e eaaes 986
36.36. rol e_usage_grants COlUMMSoiiiiiiiiiiiiiie e e e e e e e e e e 986
36.37.routine_privileges ColUMNSccociiiiiiiiiiii e 987
36.38. T OUL i NES COIUMNS ...uiiiiiiieee ettt e et e et e e et e ettt s e e ettt e e e et e e e et e eeenanns 987
36.39. SChEMBL @ COIUMNS ...ttt e e e e et e e e et e e e et e e eeeanns 993
36.40. SEQUENCES COIUMNSiiiiiiii et e e e e e e e e e et e e et e et e e et e e e aaeeaanaees 993
36.41. sql _feat ures COIUMNSoiiiiiiie e e e e e e et e eaaeees 994
36.42. sql _inplenmentation_info ColuMNSc.ooiiiiiiiii e 995
36.43. sl _| anguAgESs COIUMNSiiiiiiiiiieii e e e e e e e e e e e e e st e e e e eaneees 995
36.44. sl _packages COIUMNSociiiiiiiiiii e e e e e et e eaaeee 996
36.45. SOl _PArtS COIUMNSiiiniiiiieei e e e e e e e e et e e et e e e eanaees 997
36.46. SOl _Si Zi NG COIUMNS .. .couiiiiii e e e e e e e e e et e e et e e aanaees 997
36.47.sql _Si zing _profil es ColUmMNSc.ccciiiiiiiiiiiici e e 997
36.48.tabl e _constrai Nts COlUMNSco.uiiiiiiiii e e 998
36.49.tabl e privil eges ColUMNScocouiiiiiiiii e 999
36.50. t @bl €S COIUMNSuuiiiiii e e e e e e 999
36.51. t ranST Or MB COIUMNS .. .iiiiii e e et e e et e e e et s eeeeaanaeeeen 1000
36.52.triggered _update_col umms COlUMNScoiiiiiiiiiieiiie e e 1001

XXVi

PostgreSQL 10.12 Documentation

36.53. t 11 GOEI'S COIUMNSuuiiiiiiii e et e e e e e e e e e e et e e s e et e eat e e eaneeeanes 1002
36.54. udt _pri Vil eges COolUMNScccuiiiiiiiiii e e e 1003
36.55. usage _Pri Vil €ges COlUMNScciuiiiiii e e e e s 1004
36.56. user _defined_types COIUMNScoeiuiiiiiiiiii e e 1005
36.57. user _mappi NG_0Pti ONS COlUMNSccouiiiiiieie e e e e 1006
36.58. user _mBpPi NQGS COIUMNSiiiiici e e e e e e e e e et e eanas 1007
36.59. vi ew_col umm_usage COlUMNSccuuiiiiiiiiiii e e e e e e e e eaens 1007
36.60. vi ew_routi ne_usage COIUMNScoeiuiiiiiiiiei e e e e e e aeas 1008
36.61. vi ew t abl e _usage ColUMNScooiiiiiiiii e e 1008
36.62. Vi €WS COIUMNS ...eiitiieeeii ettt e e e e ettt e e et e e e et r e e e eba s e e e eaenneeeennnns 1009
37.1. Equivalent C Types for Built-in SOL TYPESccuuiiiiiieiii e e e e e e e aaaes 1040
R S (= TS 1 - (= o [P 1075
YA o oS S 1 = 1= PRSP 1075
37.4. GIST Two-Dimensional “R-treg” SIrat@gieSuveiuuieiiiieiiiieeiiieeeii e e e e e 1075
37.5. SP-GIST POINE SITELEJIES ... eeevtiieeeeii et e et e ettt e e e e e ettt e e e et s e e e eataeeeeatnaaaees 1076
37.6. GIN AITAY SITAIEJIES ..uevvnieiiieeei et e e e et e e e e e e e e e e e et e et e e et e e et r e et e eaaneeannns 1076
37.7. BRIN MiNMaX SIALEOIES ...uuuiiineeiiieiiti et e et e e e e e e e e e e e e e et e e et e e et e e et e e et eeanaeeaes 1076
37.8. B-tree SUPPOIt FUNCHIONSiiiicii e e e e e e e e e e e e e e e e et e e e e eaneees 1077
37.9. Hash SUPPOIt FUNCLIONSo.uuiiiiiii e e e e e e e e e e e e et e e e e ean s 1077
37.10. GiST SUPPOIt FUNCLIONS .. .ivuieii i e e e e e e e e e e e e e e e et e et e e ean e ean s 1077
37.11. SP-GiST SUPPOIt FUNCHIONSuuiiiieiiieeii e e e e e e e e e e e e e e e e e e et e e e e eaneees 1078
37.12. GIN SUPPOIt FUNCLIONSiiviiieecii e e e e e e e e e e e e e et e e e e e e eanes 1078
37.13. BRIN SUPPOIt FUNCLIONSuiitiiiiieii e eeie et e e ennaeaenees 1079
39.1. Event Trigger Support by Command Tagcceuiiiiieiiieiiie e e e e 1108
42.1. Available DIiagnoStiCS ItEIMScovueiiiii e e e e e e e e aans 1162
42.2. Error DIiagnOStiCS ITBIMSiiii i e e e e e e e aaa s 1176
240. Policies Applied by Command TYPEueiiiiiii e e e e 1514
241, AULOMALIC VariahlES ...oeeeeieieii e 1801
2/ e o= o To: a I U o 1 o] 1802
LY I IS Y/ 1= 0 (B O - o o =P 1943
51.2. pg_aggregat € COlUMMSoiiiiiieiii e e e e e e e et e et e aaaaas 1945
oY G T o o T =1 .4 1)10 0 TN 1947
Loy I o o [=V .o o O[22 1 1948
51.5. Pg_anPr OC COIUMNSiiiiiiii e et e e e e e e e e e e e e e et e e et e et e e et e e ean e eannas 1949
51.6. pg_attrdef COlUMNSoiiii i e 1949
51.7.pg_attribut @ COolUMNSoouuiiiiiii e e 1950
51.8. pg_aut hi d COlUMNScoouiiiii e e r e e e eaa s 1953
51.9. pg_aut h_menbers ColUMNScooiiiiiiiii e 1954
51.10. PG _CASt COIUMNS ..ottt e e e e e e e e e e e e et e e e s e e et e e et e eaanaes 1955
Lo I I O o T TR o = C= T 0 1 4T 1956
51.12. pg_col 1 ati on COlUMNSuiiiiiiii e e e e e e 1960
51.13. pg_CONStrai Nt COIUMNS .. .ovuiiiii i e e e e e e e e et e eaan s 1961
51.14. pg_CONVET Si ON COIUMNS .. .ovuiiiiiieii et ee e e e e e e e e e e et e e et e eeanaas 1963
51.15. pg_dat abase COlUMNSiiiiiiiiii e e e e e aaas 1964
51.16. pg_db _role_setting ColUMNScoeiuuiiiiiiiiii e e 1966
51.17. pg_defaul t _acl ColUMNSiiiiiiiiii e 1966
51.18. pg_depend COlUMNSuiiiiiieiii e e e e e e e e e e et e eaaas 1967
51.19. pg_descCri ption COlUMNSccouiiiiiiiiie e e e e e e e e e 1968
Loy 2O o To =1 10 4 1] 102 T PP 1969
51.21. pg_event _trigger COlUMNScocoiiiiii e e e e e aaaas 1970
51.22. pg_ext ensi 0N COIUMNSuiiiiiiiii e e e e e e 1970
51.23. pg_foreign_data wapper ColUMNSooeiiuiiiiiiieiiii e e e 1971
51.24. pg_forei gn_server COlUMNSoiiiiiieiiii e e e e e e e e eaans 1972
51.25. pg _foreign_tabl @ ColUMNSc.couuiiiiiiiii e 1972

PostgreSQL 10.12 Documentation

51.26.
51.27.
51.28.
51.29.
51.30.
51.31.
51.32.
51.33.
51.34.
51.35.
51.36.
51.37.
51.38.
51.39.
51.40.
51.41.
51.42.
51.43.
51.44.
51.45.
51.46.
51.47.
51.48.
51.49.
51.50.
51.51.
51.52.
51.53.
51.54.
51.55.
51.56.
51.57.
51.58.
51.59.
51.60.
51.61.
51.62.
51.63.
51.64.
51.65.
51.66.
51.67.
51.68.
51.69.
51.70.
51.71.
51.72.
51.73.
51.74.
51.75.
51.76.
51.77.
51.78.
51.79.

oo TR 01 L= @141 1973
PY_i NNErits COlUMNS ...coeeni e e e e 1975
PO i NIt _Privs COIUMNS ...t e e e 1976
PY_| anguage COIUMNSuiiiiiiii e e e e e e e e e eaes 1977
Pg_| argeobj €Ct COlUMNSciuiiiii e e e eaas 1978
pg_| argeobj ect _nmetadat a ColUMNSoveiiieiiiieiiiieeie e e e 1978
PY_NANMBSPACE COIUMNS ...cuuiiiiieiiieei e et e e e e e e e e e e e e e e et e et e eanaeeaen 1979
PY_OPCI @SS COIUMNSciiiciii e e e e e et e e e e eens 1979
PY_OPEr at Or COIUMNSieei i e e e e e e e e e e e e e eaes 1980
PY_0Pfam |y COUMNScooeni e e e 1981
pg_partitioned tabl e ColumNSccccovuiiiiiiiiiiii e 1981
pg_pltenplate ColUMNSooiiiii e e 1983
PO_POl i CY COIUMNS ...ouuiiiciie e e e e e e e e eaans 1983
oo T o1 o Toa @o! 11 421 1 1984
Pg_publicati on ColUMNSccooiiiiiii e e eaas 1988
pg_publication_rel ColumMNSscocoiiiiiiiiiiiin e 1989
oo TR = Ua Lo [T @101 0 P 1989
pg_replication_origin ColumMNSccooiiiiiiiiiiiiii e e 1990
PO_TFEeWr it COUMNSiiiiiiii i e e e e e e e e e e e eeas 1990
pPg_secl abel ColUMNSciiiiii e 1991
PY_SEQUENCE COIUMNSiiiiiiiii e e e e e e e e e e et e e e eaes 1992
Pg_shdepend COIUMNSccouiiiiii e e e eaes 1993
Pg_shdescri pti on COUMNSooiiiiiii e e 1994
pg_shsecl abel ColUMNScccouiiiiiii e 1994
PO_Stati StiC COlUMNSuiiiiiiiii e e e e e e e e e aen 1995
pg_statistic_ext COIUMNSccooeiiiiiii e 1997
P _SUbSCription COlUMNScouiiiiiiiii e e 1998
pg_subscription_rel ColumnSccocoiiiiiiiiiiii e 1998
pPg_tabl espace COUMNSooiiiiiiii e 1999
PY_transf Or MCOIUMNScoiuniiiii e e e e e e e e eaen 1999
PO_trigger COUMNScouuiiii e e e e e e e e eeeas 2000
PY_tS_CONFi g COIUMNS ...couiiiiiiiii e e e e e e e e e aen 2002
pg_ts_confi g _mMaP COIUMNSoiiiiiiii e e 2002
PO_tS_di Ct COUMNSoiiiiiiii e e e e e e e eans 2003
PO 1S _PArSEr COIUMNS ...cuuiiiiiieiii e e e e e e e e e e e e e et e eanaeeaen 2003
Pg_ts tenplat @ ColUMNSc.couuiiiiiiiiii e e 2004
oo T A4 LI o 11 421 1 2005
0V o Jo- L =T (o] YA o o == 2011
pg_user _mappi NG COlUMNSoiiiiii e e 2011
Y (= VAT TSP 2012
pg_avail abl e_ext ensi 0Ns COlUMNSoviiiiiiiiiieiie e e 2013
pg_avai |l abl e_extensi on_versi ons ColuUmNSccoeeviiieiiiieeiiieciiineeeeeennn 2013
PY_CONTI g COIUMNS ...ouuiiiieii e e e e e e e e e e eaans 2014
PO_CUISOI'S COIUMNS ...ttt e e e e e e e e e e e e et e et e e e e eens 2015
pg_file settings COlUMNScoooeiuiiiiiii i e 2015
PO_groUP COIUMNS ...t e e e e e et e et e et e e aa e aenas 2016
pg_hba file rul s ColUmMNScccoiiiiiiiiiiii e e e 2016
PO_i NAEXES COIUMNSiiiiiiii e e e e e e e e et e e e e eans 2017
PO_| OCKS COIUMNS ...ttt e e e e e e e e e eaaas 2018
PY_MBE Vi @WS COIUMNS ...t e e e e e e e e et e ean e eaes 2021
PY_ POl i Ci €S COIUMNS ...t e eaes 2021
pg_prepared_stat ements COlUMNScccouiiiiiiiiiii e e e 2022
pg_prepared _Xact s COlUMNSccuuiiiiiieeiie e e e e e e e e eaans 2023
pg_publication_tables ColumMNSsccccciiiiiiiiiii e 2023

XXVii

PostgreSQL 10.12 Documentation

51.80.pg_replication_origin_status ColUmNS..........ccoeeeiiieiiiiiiiiiieiii e 2024
51.8L.pg_replication_slots COolUMNSc..oiiiiiiiiiiiiiii e e e 2024
51.82. PG I 0l €S COIUMNS ...ttt ee e e e e e et e e e e e e e e et e e e et e e ean e eans 2026
51.83. PG _F Ul €S COlUMNSuuiiiiiiiii e e e e et e e e e e e e e et e e e et e e eaneeranes 2027
51.84. pg_secl abel s COlUMNSooiiiiiii e 2027
51.85. pg_SequUENCES COIUMNScouuiiiii i e e e e e e e e aanas 2028
51.86. Pg_SettiNGS COIUMNSouiiiiiiiiii e e e e e e e e e et e e e e aaaas 2029
51.87. pg_Shadow COlUMNSuiiiici e e e e s 2031
51.88. PG ST At'S COIUMNS ...ttt e ee e e e e e e e e e e e e e e e et e e et e e aaneeeanes 2032
51.89. pg_tabl €5 COlUMNSccuuiiiiiiii e e 2034
51.90. pg_ti mezone_abbrevs COlUMNSccciiiiiiiiiiie e e 2035
51.91. pg_ti mezone _Names COlUMNSccuiiiiiieiiii e e e e e et e e e eaans 2035
LY I 7 o To TR FY =] A][4 T PP 2036
51.93. pg_user _nmappi NGS COIUMNScciiiiiii e e e e e eanas 2036
51.94. PG Vi @WS COIUMNSuuiiiiiiiii et e e et e e e e e e e e et e e s e et e e et e e sanaesanas 2037
62.1. BUilt-iN GIST OPErator ClaSSESuiivnieiiieeiiie e eeie e e e e e e e e e et e e et e e aeeas 2145
63.1. BUilt-in SP-GIST Operator ClaSSEScvuuueiiieiiiiieiieeeiiee e e e e e e e e e e e e e e eaanns 2157
64.1. BUilt-iN GIN OPErator ClaSSESuueiiiiiiiiieiiieeei et e e e e e e e e et e e e e et e e e eaans 2167
65.1. Built-in BRIN Operator ClaSSEScvuuiiiiiieiii i iee e e e e e s e et e e e et e e e eaans 2174
65.2. Procedure and Support Numbers for Minmax Operator Classescccvvvevveevinievinneennnnn. 2176
65.3. Procedure and Support Numbers for Inclusion Operator ClasseSocvuvvevveeviierinneennnnn. 2176
B6.1. CONLENES OF PCGDATA ..ouiiiieiii ettt ettt e et e et e et e e et e e e et r e e e et aeaeaaa e eesnans 2178
B6.2. PAOE LAYOULceeiuiieiiii ettt e e e e e et e e e et e e et e aanes 2184
66.3. PageHeaderData LayOULoiuuniiiiieiiie e e e e e e e e e e e e et e e et e e e e an e eeen 2185
66.4. HeapTupleHeaderData LayOULccuuieiiiiiiiiiciii e e e e e e e e e e e e e e e e eanes 2186
A.L POSIOreSQL ErrOr COUES ...u.iiveeiiiiei it ee et e et e e e e e e e e e e e e e e et e e e e aa e e aanas 2206
2300 Ve 011 1 = 0 1= PP 2217
B.2. Day Of the Week NAIMEScoouiiii e e 2217
B.3. Date/Time Field MOGIfIErSuuiiiiiii e 2218
C.L. SOL KEY WOKAS ..ottt i e et e e e e e et e e e e e e e et e e et e et e e e et e e aaneeeens 2222
[- Yo [g o o= Ul Q= U o1 o 2351
F.2. Deprecated adm nNPack FUNCHIONSccuuiiiiiiiiii e e e 2352
F.3. Cube External REPreSeNtalionsiiiuiiiiii i e e e e e e e e e e e et e et e e e e eeaaees 2366
R 0oL @ o= = o] ¢ TP 2366
F.5. CUDE FUNCLIONS ...ttt e e ettt e e e e et r e e e eatenaeeeatnneeeenes 2368
F.6. Cube-based Earthdistance FUNCLIONSuuiiiiiiiiieeiii e e e e 2405
F.7. Point-based EarthdiStance OPEratorsc.uuiiiniiiiieiiieee e e e e e e e e e e e e e aenas 2406
[T ESY o T @ o= o) £ 2412
F.O. NSt Or @ FUNCHONS ...uiiiiii et e e e e et e e e eaa e eees 2413
F.10. i ntarray FUNCHONScuuiii e e e e e e e e e e e e an s 2419
L I oL = L = | VA @ o= =) = 2420
[I T B T = W Y/ o= PN 2422
[T Y o I U e i T L USRS 2423
L I T @ o= (] £ 2428
[LN I O T W T o PRSPPI 2429
F.16. pg_buffercache Columnscoooiiiiiiii e 2440
F.17. Supported AIgorithms fOr CryPt () covveieriieie e e 2443
F.18. Iteration Counts fOr CTYPL () wuvieeiieiiiiii e e e e e e e e eaneees 2444
F.19. Hash AlQOrithm SPEEAScvvniiiii e e aaees 2444
F.20. Summary of Functionality with and without OpenSSLcccciivviiiiiiiii e, 2451
F.21. pgr oW 0cks OULPUL COIUMNScvvniiiii e e e e aea s 2455
F.22. pg_stat_statenments COlUMNScccoouiiiiiiiiiiii e 2457
F.23. pgstatt upl @ OUtPULt COIUMNSuiiiieiii e e e e e e aa s 2462
F.24. pgst at t upl e_appr ox Output CoOlUMNSccuiiiiieiiii e e e e e 2465

XXiX

PostgreSQL 10.12 Documentation

F.25. POt FgMEUNCHONSiiiiiii e e e e e e e e e e et eeaa s 2466
e R o Lo I A e 11 1@ o< = (o = TP 2467
F.27. seg External REPreSeNtationsiiiiuiiiii e e e e e e e e 2478
F.28. Examples of Valid SEQ INPULoiiiiiiiic e e e e e e 2478
F.29. SO GiST OPEraOrS ...uucivtiieiiieeiiie e e et e et e e e e e e e et e e et e e et e e e et e e st e e st e e st eeaneeannns 2479
LGOS~ oo = | I 10 Tox o) PP 2487
F.3L. t abl €f UNC FUNCLONSiiiiiii e 2492
F.32. CONNECE DY Palr@mMEtErsSuuiiiiiiii e e e e e e eaens 2500
F.33. FUNCtions fOr UUID GENEIAONuuuieiiiiiieeiiiiie e et e e et e et eeeeet e e e eeti e e e eeneneeeees 2507
F.34. Functions Returning UUID CONSLANESccuuiiiiiiiiieeiiiieeieeeieeeein e e e st e s e eaaeeaanns 2508
TSI W 0 1o PSP 2509
F.36. xpat h_t abl @ Parameterscc.uiiiiiiiiii e e 2510
H.1. Externally Maintained Client INterfacescoovvviiiii e 2525
H.2. Externally Maintained Procedural LangUagESc.eevuiieiiiiieiii e e e 2526

XXX

List of Examples

8.1. USING the CharaCter TYPES .. .ceeuuieiiii ettt ettt ettt e et e e e eaaas 139
8.2. USING the DOOI €8N TYPE . eiii it 152
8.3. USING the Bit SIHNG TYPES ..eeiiieieiiii ettt ettt e e e e e e 160
10.1. Factorial Operator TYPE RESOIULIONiiiiiii ittt e e e e 363
10.2. String Concatenation Operator TYpe RESOIULIONocoviviiieiiiiiiieciii e 364
10.3. Absolute-Value and Negation Operator Type RESOIULIONcoevveniiiiiiiiieiiiiieceii e, 364
10.4. Array Inclusion Operator TYPe RESOIULIONiiiiiiiiiiiiii et 365
10.5. Custom Operator 0N @ DOMaIN TYPEiiiiiieieiii ettt e een e e 365
10.6. Rounding Function Argument TYPe RESOIULIONooiiuriiiiiiiiieieiie e 368
10.7. Variadic FUNCtION RESOIULIONccvuiiiiiiie et 368
10.8. Substring FUNCtion TYPe RESOIULIONieiiiiiiieiiiii e 369
10.9. char act er Storage TYPE CONVEISIONccuuuniiiirtneeiiii ettt e e eeat e eeeat e e eent e eeeainaaaees 370
10.10. Type Resolution with Underspecified Typesin @UNioncooeeveviieeiiinieeiiiieeceiien 371
10.11. Type Resolution in @ SIMPIe UNiONccoouiiiiiiiii e 371
10.12. Type Resolution in @ Transposet UNIONcccuuuiiiiiiiieiiii et e e 372
10.13. Type Resolution in @ Nested UNIONieiiiiiieiiiii et e e e e 372
11.1. Setting up a Partial Index to Exclude Common ValUEScccuuiieiiiiiiieiiiiiieeecie e 380
11.2. Setting up a Partial Index to Exclude Uninteresting ValUesocovvviiiiiiiiieiiiiiieceienn 381
11.3. Setting up a Partial UNiqUe INAEXuuiiiiiiiiiieii e 381
20.1. Example pg_hba. conf ENtrESoiiiiiiiiii e 594
20.2. An Example pg_i dent . conf File 597
33.1. libpg EXample Program Looeeeiieiiie et 827
33.2. libpg EXample Program 2 ... 830
33.3. libpg Example Program 3 ... 833
34.1. Large Objects with libpg Example Program ..o 845
35.1. EXample SQLDA PrOQIaIMcceetieeeiiii ettt e et e et e e et e e et eeena s 895
35.2. ECPG Program Accessing Large ODJECESueiiiiiiieeiiiiieeeeei ettt 909
41.1. Manual Installation Of PLIPENTcouuiiiiiii e 1145
42.1. Quoting Vaues IN DYNamiC QUETTESccuuuiiiiiiiieeeiii ettt ettt e e et e eeena e eees 1160
42.2. Exceptions With UPDATE/I NSERTcoiiiiiiiiiie et ettt e e e 1175
42.3. A PL/PGSQL Trigger PrOCEOUIEceeveieeeiiie ettt et 1187
42.4. A PL/pgSQL Trigger Procedure FOr AUdItINGcccuvunieiiiiiieiiii e 1188
42.5. A PL/pgSQL View Trigger Procedure FOr AUAItiNGccuuuieieiinieieiiiieieiieeeeii e 1189
42.6. A PL/pgSQL Trigger Procedure For Maintaining A Summary Tableccoiiiiiiiinnnnee. 1190
42.7. Auditing With Transition Tablesccouuiiiiii e 1193
42.8. A PL/pgSQL Event Trigger PrOCEAUIEuuiiiiiiiieieii e 1194
42.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuiviiiiiiiiiiiieieii e, 1201
42.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1202
42.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/

01015 PSPPSR 1204
42.12. Porting a Procedure from PL/SQL t0 PL/POSQLueiiiiiieiiiiieeeei e 1205
F.1. Create a Foreign Table for POStgreSQL CSV LOGS ... cvvvvuieiiiiieeiiiiieeeei e 2407

XXXI

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes al the
functionality that the current version of PostgreSQL officialy supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

Part | isan informal introduction for new users.

Part Il documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

Part 111 describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

Part IV describes the programming interfaces for PostgreSQL client programs.

Part V containsinformation for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

Part VII contains assorted information that might be of use to PostgreSQL devel opers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2%, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

data types
functions

operators
aggregate functions

L http://db.cs.berkeley.edu/postgres.html

XXXii

http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operationa in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston904], was released to a few externa users in June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: afinancial dataanalysissystem, ajet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at severa universities. Finaly, Illustra Information Technologies
(later merged into Informix?, which is now owned by 1BM3) picked up the code and commercialized it.
In late }992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project”.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres9s

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a hew
name, Postgres95 was subsequently rel eased to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 http://www.informix.com/
8 http://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXl

http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

» The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

A new program (psql) was provided for interactive SQL queries, which used GNU Readline. Thislargely
superseded the old monitor program.

» A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgreso5 server.

» The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (Theinversion file system was removed.)

» Theinstance-level rule system was removed. Rules were till available as rewrite rules.

A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgreso5 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the origina POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in al capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, asis usual in Tcl.) Braces
({ and}) and vertical lines (|) indicate that you must choose one aternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should

XXXIV

Preface

not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :

Wiki
The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODOY ligt,
and detailed information about many more topics.

Web Site
The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!
PostgreSQL isan open-source project. Assuch, it dependson the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which is not in the documentation, writeit up and contribute
it. If you add featuresto the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to seeif the bug happensthere. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhapsit is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Beforeyou report abug, pleaseread and re-read the documentation to verify that you can really do whatever
itisyou aretrying. If it is not clear from the documentation whether you can do something or not, please
report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

S https://wiki.postgresql .org

6 https://wiki.postgresqgl.org/wiki/Frequently_Asked_Questions
! https://wiki.postgresqgl .org/wiki/Todo

8 https://www.postgresqgl.org

XXXV

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

» A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a“disk full” message, since you have to fix that
yourself.)

A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

» A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

* PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing listsfor help in tuning your applications. Failing to comply to the SQL standard is not necessarily
abug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to seeif your bug is aready known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare factsisrelatively
straightforward (you can probably copy and paste them from the screen) but al too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CREATE
TABLE and | NSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

Thebest format for atest casefor SQL -related problemsisafilethat can be runthrough the psgl frontend
that shows the problem. (Be sure to not have anything in your ~/ . psql r ¢ start-up file.) An easy way
to create thisfileisto use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. Y ou are encouraged to minimize the size of your example, but thisis not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files’ or “midsize
databases’, etc. since thisinformation is too inexact to be of use.

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
the terminal, if possible.

XXXVi

Preface

Note

If you are reporting an error message, please obtain the most verbose form of the
message. Inpsgl, say\ set VERBOSI TY ver bose beforehand. If you are extracting
the message from the server log, set the run-time parameter log_error_verbosity to
ver bose sothat al details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also ook at the log output of the database server. If you
do not keep your server's log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisisnot what | expected.”, we might run it ourselves, scan the output, and think it looks
OK andisexactly what we expected. We should not haveto spend thetimeto decode the exact semantics
behind your commands. Especially refrain from merely saying that “ Thisis not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not afun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit thisitem.)

Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. Y ou can run the command SELECT ver si on(); to find out the version
of the server you are connected to. Most executable programs also support a- - ver si on option; at
least post gres --versionandpsql --versi on shouldwork. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 10.12 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support for
sites using older releases of PostgreSQL; if you require more than we can provide, consider acquiring
acommercial support contract.

Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have
installation problems then information about the toolchain on your machine (compiler, make, and so
on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input

XXXVii

Preface

files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. Thiswill
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
Wewill find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL", sometimes “ Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes’. A crash of asingle backend processis quite different
from crash of the parent “postgres’ process; please don't say “the server crashed” when you mean asingle
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “ psgl”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for your
email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering a bug
report thisway causesit to be mailedtothe<pgsql - bugs@i st s. post gresql . or g> mailing list.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the user maling lists, such as
<pgsql -sqgl @i sts. postgresql . org> or
<pgsql -general @i sts. postgresqgl.org> These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they are
unlikely to fix them.

Also, please do not send reports to the developers mailing list
<pgsql - hackers@i st s. post gresqgl . org>. This list is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take up
adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql -docs@i st s. post gresql . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mall to
<pgsql - hackers@i st s. post gresql . or g>, so we (and you) can work on porting PostgreSQL
to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be
moderated unlessyou are subscribed. That meansthere will be some delay before the email

° http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXViii

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

is delivered. If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/
for instructions.

XXXIX

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experienceis
required. Thispartismainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part |1 to gain a more formal
knowledge of the SQL language, or Part IV for information about devel oping applications for PostgreSQL . Those who
set up and manage their own server should also read Part 111.

Table of Contents

L. GELING SEAMEAceeeeieeeeee et e e et e et et e e e 3
O O 1 1= =1 = 1o o N 3
1.2. Architectural FUNDamENtalSoouiiiiiiie e 3
1.3. Creating @ Dalahaseuuiiiiiii et 4
1.4, ACCESSING 8 DAIANESE ... ceiiiii et 5
2. ThE SQL LBNGUBGE ... eeeetieeieit ettt ettt ettt e ettt e e ettt e e et et e e e erb e e e eenanaeeees 7
b2 I 1 11 {0 o (U o 1) o [PPSR 7
A O 01 /= o = PP 7
2.3. Creating @ NEW Table ... e 7
2.4. Populating @ Table With ROWScc.uuuiiiiiiiiei e 8
2.5, QUENYING A TADIE ..o s 9
2.6. J0INS BEIWEEN TADIES .. cuiitiiiiitii et eaas 11
2.7. AQOregate FUNCLIONSiiiiiiiee ettt e ettt e et eeene s 13
2.8 UPUELES ... ettt et aaaas 14
R I B L= = (0] o 15
R Y0 (V7= o= s B s 1 = PR 16
G I O 11 oo (U Tox 1o o [16
I VA= VP 16
3.3 FOrEIgN KBYS .ottt et 16
I I =01 o o LR 17
3.5, WINAOW FUNCLIONS .. .uviiiiiiiiee ettt e e et e e aees 19
ST 101015 g1 7= 1 oL 22
G I o o Tox 11 Lo o PR 23

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set thingsup in the default way, you might have some morework to do. For
example, if the database server machineisaremote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom lineisthis: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL usesaclient/server model. A PostgreSQL session consistsof thefollowing
cooperating processes (programs):

» A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
caled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applications
can bevery diversein nature: aclient could be atext-oriented tool, agraphical application, aweb server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. Y ou should keep thisin mind, because the files that
can be accessed on aclient machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve thisit starts
(“forks’) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original post gr es process. Thus, the master server processis
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of thisis of courseinvisible to the user. We only mention it here for completeness.)

Getting Started

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create anew database, in this example named mydb, you use the following command:
$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to includeit. Try calling the command with an absolute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to
server: No such file or directory

I's the server running locally and accepting

connections on Uni x donmain socket "/tnp/.s.PGSQL. 5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role
does not exi st

j oe

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you arethe administrator, see Chapter 21 for help creating accounts. Y ou will need to become
the operating system user under which PostgreSQL was installed (usually post gr es) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the - U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

creat edb: database creation failed: ERROR perm ssion denied to
create database

Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of thistutorial under the user account that you started the server as. !

Y ou can also create databases with other names. PostgreSQL allows you to create any number of databases
at agiven site. Database names must have an alphabetic first character and are limited to 63 bytesin length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:
$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) Thisaction physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the PostgreSQL interactive terminal program, called psgl, which allows you to interactively
enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV,

Y ou probably want to start up psql to try the examplesin this tutorial. It can be activated for the nydb
database by typing the command:

$ psql nydb

If you do not supply the database name then it will default to your user account name. You already
discovered this schemein the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:

psqgl (10.12)
Type "hel p* for help.

mydb=>

Thelast line could also be:

Lasan explanation for why thisworks: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user hame to connect as; if you don't, it will default to the same name as your current operating system account.
Asit happens, there will always be aPostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the - U option everywhere
to select a PostgreSQL user name to connect as.

Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islisteningto you and that you
can type SQL queriesinto awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

Post greSQ@. 10.12 on x86_64-pc-1linux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit

(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

The psqgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h
To get out of psql , type:
nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at the
psql prompt.) Thefull capabilitiesof psql aredocumented in psgl. In thistutorial wewill not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. Thistutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some PostgreSQL
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named ny db, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory sr c/
tutori al /. (Binary distributions of PostgreSQL might not compile thesefiles.) To use thosefiles, first
change to that directory and run make:

$cd..../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$cd..../tutorial
$ psql -s mydb

nydb=> \i basi cs. sql

The\i command reads in commands from the specified file. psql 's- s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
inthefilebasi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of aspecific datatype. Whereas columns have afixed order in each row, it isimportant
to remember that SQL does not guarantee the order of the rowswithin the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter thisintopsql withthelinebreaks. psql will recognizethat the command isnot terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- - ") introduce
comments. Whatever follows them isignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifiesadatatypethat can store arbitrary character strings up to 80 charactersin length.
i nt isthenormal integer type. r eal isatypefor storing single precision floating-point numbers. dat e
should be self-explanatory. (Y es, the column of typedat e isalso named dat e. Thismight be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types i nt, snal lint, real, doubl e precision,
char (N) ,varchar (N),date,ti ne,ti mest anp,andi nt er val , aswell asother typesof genera
utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

);
Thepoi nt typeisan example of aPostgreSQL -specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994- 11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by singlequotes(*), asintheexample. Thedat e typeisactually quiteflexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The SQL Language

The syntax used so far requires you to remember the order of the columns. An aternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Franci sco', 43, 57, 0.0, '1994-11-29');

Y ou canlist thecolumnsin adifferent order if you wish or even omit somecolumns, e.g., if the precipitation
is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_|lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter al the commands shown above so you have some datato work with in the following sections.

Y ou could also have used COPY to load large amounts of data from flat-text files. Thisis usually faster
because the COPY command is optimized for this application while allowing lessflexibility than | NSERT.
An example would be;

COPY weat her FROM '/ hone/ user/ weat her.txt';

where the file name for the source file must be available on the machine running the backend process, not
the client, since the backend process reads the file directly. Y ou can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optiona qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;
Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T I O
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (tenp_hi+tenp _lo0)/2 AS tenp_avg, date FROM weat her;

This should give:

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

city | temp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are alowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Francisco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T e I e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | tenp_lo | tenp_hi | prcp | dat e
--------------- T T e T gy
Haywar d | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so
ORDER BY is unnecessary. But thisis not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the
rows to be ordered.

10

The SQL Language

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed one table at atime. Queries can access multiple tables at once, or
access the same table in such away that multiple rows of the table are being processed at the sametime. A
query that accesses multiple rows of the same or different tables at onetimeis called ajoin query. Asan
example, say you wish to list al the weather records together with the location of the associated city. To
do that, we need to compare the ci t y column of each row of theweat her table with the nane column
of al rowsintheci ti es table, and select the pairs of rows where these values match.

Note

Thisis only a conceptual model. Thejoin isusualy performed in a more efficient manner
than actually comparing each possible pair of rows, but thisisinvisible to the user.

Thiswould be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)

(2 rows)

Observe two things about the result set:

» Thereisnoresult row for the city of Hayward. Thisisbecausethereisno matching entry intheci ti es
table for Hayward, so the join ignores the unmatched rowsin the weat her table. We will see shortly
how this can be fixed.

* There are two columns containing the city name. Thisis correct because the lists of columns from the
weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.
Since the columns all had different names, the parser automatically found which table they belong to. If

there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, asin:

11

The SQL Language

SELECT weat her.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities.name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't fail
if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her INNER JO N cities ON (weather.city = cities. nane);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan theweat her table and for each row to find the matching ci t i es row(s). If no matching row is
found we want some “empty values’ to be substituted for theci t i es table'scolumns. Thiskind of query
iscalled an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | temp_lo | tenp_hi | prcp | dat e | nane

| location
--------------- T LT T gy
o e e e e oo - - T ——

Haywar d | 37 | 54 | | 1994-11-29 |

|

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the |eft of the join operator will have
each of itsrows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a |eft-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
thetenp_| o andt enp_hi columns of each weat her row tothet enp_| o andt enp_hi columns
of all other weat her rows. We can do this with the following query:

SELECT WL.city, W..tenp_lo AS |low, W..tenp_hi AS high,
W.city, W2.tenmp_lo AS low, W.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE WL.tenp_lo < W2.tenp_l o
AND W.. tenmp_hi > W2.tenp_hi;

city | Tow | high | city | lTow | high

12

The SQL Language

San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the wesather table as WL and W2 to be able to distinguish the left and right side of
thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, e.9.:

SELECT *
FROM weat her w, cities c
WHERE w. city = c.nane;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum avg (average), max (maximum) and mi n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, asis often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
WHERE tenp | o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco

(1 row

ThisisOK becausethe subquery isanindependent computation that computesits own aggregate separately
from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city;

13

The SQL Language

city | max
_______________ Fe e - - -
Haywar d | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ Fe e - - -
Hayward | 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Finaly, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_l o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The L1 KE operator does pattern matching and is explained in Section 9.7.

It isimportant to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and
aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenp_hi = tenp_hi - 2, tenp lo =tenp lo - 2
VWHERE date > ' 1994-11-28";

Look at the new state of the data:

SELECT * FROM weat her;

14

The SQL Language

city | temp_lo | tenp_hi | prcp | dat e
--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form
DELETE FROM t abl enane;

Without aqualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL .. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will ook at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found inadvanced. sql
inthetutorial directory. Thisfile also contains some sample datato load, which is not repeated here. (Refer
to Section 2.1 for how to use thefile)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VI EW nyvi ew AS
SELECT city, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of viewsisakey aspect of good SQL database design. Views allow you to encapsul ate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in amost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weat her table that do not have a matching entry in
theci t i es table. Thisis called maintaining the referential integrity of your data. In simplistic database
systems thiswould be implemented (if at al) by first looking at theci t i es tableto check if amatching
record exists, and then inserting or rejecting the new weat her records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:
CREATE TABLE cities (
city varchar (80) primary key,

| ocation point

)

CREATE TABLE weat her (

16

Advanced Features

city varchar (80) references cities(city),
temp_lo int,

t enmp_hi int,

prcp real,

dat e dat e

)
Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" viol ates foreign key
constraint "weather city fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this ssimple
exampleinthistutorial, but just refer you to Chapter 5 for moreinformation. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essentia point of atransaction isthat
it bundles multiple stepsinto asingle, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at al.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nane = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_nane FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nane = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_nane FROM accounts WHERE nane
' Bob');

The details of these commands are not important here; the important point isthat there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if shewas debited without Bob being credited. We need aguarantee that if something goeswrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at all.

We also want a guarantee that once atransaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database

17

Advanced Features

guarantees that all the updates made by atransaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if onetransaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but alsoin
termsof their visibility asthey happen. The updates made so far by an open transaction areinvisibleto other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, atransaction is set up by surrounding the SQL commands of the transaction with BEG N
and COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

-- etc etc

COW T,

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and al our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not issue
a BEG N command, then each individual statement has an implicit BEG N and (if successful) COVWM T
wrapped around it. A group of statements surrounded by BEG N and COVM T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you
might get the effect of transaction blocks without asking. Check the documentation for the
interface you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back
to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it severa times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All thisis happening within the transaction block, so none of it isvisible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice'saccount, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEG N,

18

Advanced Features

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

SAVEPO NT ny_savepoi nt ;

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there'salot of control possiblein atransaction block through
the use of savepoints. Moreover, ROLLBACK TOisthe only way to regain control of atransaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting

again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his or
her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane)
FROM enpsal ary;

depnanme | enpno | salary | avg
----------- L T T Ty Syt
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020. 0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
per sonnel | 5 3500 | 3700. 0000000000000000
per sonnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row
for each row in the table. The fourth column represents an average taken across al the table rows that
have the same depnane value as the current row. (This actually isthe same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). This is what syntactically distinguishes it from a normal function or non-window
aggregate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTI TI ON BY clause within OVER divides the rows into groups, or partitions,

19

Advanced Features

that share the same values of the PARTI TI ON BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

Y ou can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Hereisan example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- S
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by awindow function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rowsis not important. It isalso possible
to omit PARTI TI ON BY, in which case there is asingle partition containing all rows.

There is another important concept associated with window functions: for each row, thereis a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rowsin the partition. ! Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum
________ i,
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20

Advanced Features

4200 | 47100

4500 | 47100

4800 | 47100

6000 | 47100

5200 | 47100
(10 rows)

Above, since thereis no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY isthe whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ e e am -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVI NG and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa

If there is aneed to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but thisis duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example:

21

Advanced Features

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let'screatetwo tables: A tableci t i es andatablecapi t al s. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list al cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

nane t ext,
popul ati on real,
altitude int, -- (in ft)
state char (2)
)
CREATE TABLE non_capitals (
nane t ext,
popul ati on real,
altitude i nt -- (in ft)
)

CREATE VIEWcities AS
SELECT nane, popul ation, altitude FROM capitals
UNI ON
SELECT nane, popul ation, altitude FROM non_capitals;

Thisworks OK asfar asquerying goes, but it gets ugly when you need to update several rows, for onething.
A better solution isthis:

CREATE TABLE cities (
nane t ext,
popul ati on real,
altitude i nt -- (in ft)

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

In this case, arow of capi t al s inheritsall columns (nanme, popul ati on,and al tit ude) fromits
parent, ci ti es. The type of the column nane ist ext , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, st at e, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an altitude over 500 feet:

22

Advanced Features

SELECT nane, altitude
FROM cities
VWHERE al titude > 500;

which returns;

nanme | altitude
___________ T,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al titude > 500;

nanme | altitude
___________ T,
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and not
tablesbelow ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritanceisfrequently useful, it has not been integrated with unique constraints
or foreign keys, which limitsits usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2 https://www.postgresqgl.org

23

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

Theinformationin this part isarranged so that anovice user can follow it start to end to gain afull understanding of the
topicswithout having to refer forward too many times. The chapters areintended to be self-contained, so that advanced
users can read the chaptersindividually asthey choose. The information in this part is presented in anarrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SOQL SYNEBX .eeetieeteeti ettt ettt ettt ettt ettt et e et et e e e e s 32
A1, LEXICE SIUCKUME ... ettt ettt e e e e e e e e 32
4.1.1. Identifiers and Ky WOIASooieuuiiiiiiiie et 32
.02, CONSLANES ...evieirieiet ettt ettt 34
4.0.3. OPEIELOIS ...cvueieieiet ettt ettt et et 38
4.1.4. SPECial CharGCLEN'Sceeviieieeie ettt e 39
.05, COMMENES ..oetiiiitie ettt e et et et e et e e e e e e ean e eens 39
4.1.6. OPErator PrECEABNCEvuu ittt 40

4.2, VAlUE EXPIESSIONS ...c.vueieiti ettt ettt et e ettt ettt e et e e e e et e e et et e e eeb e aene 41
4.2.1. COlUMN REFEIEINCESueiiiiii ettt e 42
4.2.2. POSItIONal PalaMELENSoiieiiieieie ettt 42
A.2.3. SUDSCIIS ..ottt e e 42
424, Field SEIECHON ...ooeieieieei e 43
4.2.5. OPErator INVOCAHONSueiiitieieeii ettt ettt ettt e e e e eeneans 43
4.2.6. FUNCHON CallSuuiiiiii et 44
4.2.7. AQOregate EXPIESSIONSuueiiiitneeiitiaeeeeti e e eett e e eeti e e eeti e e e eert s eeeeraaeeeens 44
4.2.8. Window FUNCLION CallSuiiiiiiieiiii e 46
4.2.9. TYPL CASLS ..eeeiiiiit it 48
4.2.10. Collation EXPrESSIONScccutueiiitiieee ittt 49
4.2.11. SCAlar SUBQUENTESoeviieeiii ettt 50
4.2.12. Array CONSIIUCLOISc.uuiiiiiii ettt ettt et e e eeeas 50
4.2.13. ROW CONSITUCTONSiieieiiiie ettt sttt e r e e e e e e enes 51
4.2.14. Expression Evaluation RUIESccouuuiiiiiiiiiii e 53

4.3, CalliNg FUNCLIONSceiiiteeeei ettt e e e e 54
4.3.1. Using POSItional NOBLIONuuiiiiiieiiiiii et 55
4.3.2. USiNg NamMed NOLAIONueiiiiieeiiiii et eees 55
4.3.3. USING MiXEA NOLALTIONieeiiiieiiiiie e 56

5. Dal@ DEFINITION ...ttt et e e 57
DL TADIE BASICS ... eeitii ettt 57
5.2, DEFAUIT VAIUBS ...ttt e 58
5.3, CONSITAINES ...ttt ettt ettt ettt ettt ettt e et et e e et et e e et et e e e e et e e e e eba e aee 59
5.3.1. CheCK CONSITAINESeeeiiiieeeiit ettt ettt e et e e et e e e e e e eeenes 59
5.3.2. NO-NUIT CONSIFAINES ... 61
5.3.3. UNIQUE CONSITBINTS ... ieeeitiieeeeeii e ettt ettt ettt e e e et e e e eat e e e enan e eeees 62
534, PrIMAIY KEYS ..oeieiiiii ettt e 63
5.3.5. FOTEIgN KEBYS ..ottt 64
5.3.6. EXCIUSION CONSITAINTSueiieeieeeeii ettt e et e e 67

5.4, SyStEM COIUMNS ...ttt ettt et e e et e e e e ennans 67
5.5. MOAIfYiNg TabIES .. .oouiiiiiii e e e e 68
55.1. AddiNg @ COIUMNuuiiiiii ettt e e e e e eees 69
5.5.2. ReEMOVING @ COIUMNuuiiiiiiiiieee e 69
5.5.3. AddiNg @ CONSIFAINTuuuiiiiiiiieieeii ettt e e e e 70
5.5.4. ReMOVING @ CONSIFAINTceuuniiiiiiee ettt 70
5.5.5. Changing a Column's Default Valueccouiiiiiiiiiiiiiiiccc e 70
5.5.6. Changing a Column'S Daa TYPEueveuuiieieiiieeeei et 71
5.5.7. Renaming @ COIUMINcouuuiiiiiiii e 71
55.8. ReNaMing @ Tahleouniiiiiii e 71

BB, PrIVIIEOES ..t 71
5.7. ROW SECUNtY POIICIES ...t 72
5.8, SCREMAS ... 78
5.8.1. Creating @ SCNEMAuciiiiii ettt e 79

25

The SQL Language

5.8.2. The PUDIIC SCREMAcceviieiii e 80
5.8.3. The Schema Search Pathcoooiiiiiiiiii e 80
5.8.4. Schemas and PriVIlEEScc.uiiiiiiiii e 81
5.8.5. The System Catalog SChEMAccouiiiiiiiii e 81
5.8.6. USAQE PalEINS ...oviiiitiii i 82
5.8.7. POrability ..oevvveieiiii i 82

5.9, INNEITTANCE ..ottt e e e et e et e et et 83
50,1, CABVEALS .oevviieieiie ettt 86

5.10. Table Partitioningccuuiiiiiieiie e e e e e e e e e e e e e e e e e et e e e e e aee 86
B.10. L. OVEIVIEIW evviieeiiii ettt e et e et e e e et n e e e et a e e e et n e e e et aeeeanens 86
5.10.2. Declarative Partitioningc.couueeiiiiiiiiiei e e e e e 87
5.10.3. Implementation Using INeritanCecoooviiiiiiiciinccin e, 91
5.10.4. Partitioning and Constraint EXCIUSIONooviviiiiiiiieiiiiec e, 96
5.10.5. Declarative Partitioning Best PractiCesc.coovvviieiiiiiiiii e 97

TN o (= o o I - 98
5.12. Other Datahase ODJECESc.vuiiiiiiiiii e e e e e e e e e eeen 99
5.13. DePENdENCY TraCKiNGuuueiiieiiiieiiii e e e e e e e e e e e e e e et e et e e et e e st e e eanaeeaneens 99
SR BT = 1Y = T o 10 = 1 o T 101
Lo 1S g To [- - NP 101
SR UL o = (] g o I DT - Lt 102
ORI D= I (] aTo I v U 103
6.4. Returning Data From Modified ROWSooiiiiiiiiiicii e 103
28 8 = =P 105
T L OVEIVIBIW ottt e e e e e ettt e e e ettt e e e e et e e e et e e e e et e e e eaa s 105
T - o [l (0 =S Lo P 105
7.2.1. TRE FROMCIBLISEuueiiiiiie ettt e et e e e et e e e eataaeeeees 106
7.2.2. TREVWHERE ClalSE ... eiiiiiie ettt e et e et e e e 114
7.2.3. The GROUP BY and HAVI NG ClaUSESccvvunieiiiiiiieiiiiiieeeeieee e 115
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPoviiiiiiiieicii e 117
7.2.5. Window FUNCEION PrOCESSINGccvuniiiiieiiii e e e e e e e 119

SRS = [ox I £ TP 120
7.3. 1. SEECE-LISt ITOMS ..uiiiiiiieeeee et 120
7.3.2. COlUMN LADEIS ... 120
7.3.3. DI STINCT ittt et e e et e e et e e et 121

7.4. ComMBINING QUEESuiiiiieiii et e e e e e e e e e e e e e et e e et e e e e et e e et e aeenaes 121
S o] 1T 0o T 0PN 122
T76. LIM T AN OFFSET ..ottt ettt e e s e et e e et eeeenen 123
AT A/ I S R I £ PP 123
7.8. W TH Queries (Common Table EXPreSSIONS)cccuueeeinieiiiieeiieeaiieeeieesineessneesaneens 124
7.8.1L SELECT INWW TH ooiiiiiiie e 125
7.8.2. Data-Modifying Statements in W TH ..., 128

ST DL = R Y/ 01 PP PP 131
o300 O N 10 0= o Y/ == 132
o I R 1 0110 = g Y 0T PPN 133
8.1.2. Arbitrary Precision NUMDBENSooiiiiiiiiii e 133
8.1.3. Floating-POINt TYPES ..vuiiiiiiii e e e e e e e e e e e 135

B. LA SEIAl TYPES et ittt 136

82, M ONE A Y Ty DS ettt e e 137
I O o= ot (= g Y/ o= P 138
I o T g A B T v T Y/ o 1= P 140
8.4.1. byt €a HEX FOIMELciviiiiii i 140
8.4.2. byt €a ESCape FOrMALcovuiiiii i e e e 141

R Y= =V T2 (ST Y/ o= N 142
8.5.1. Date/TimeE INPUL ...vutiiiiieie e e e e e e et e e e eaaes 143

26

The SQL Language

8.5.2. DAE/TIME OULPULeeevvieeeiiii ettt e ettt e e et e et e e et e e e eae e e e aean e eeananns 147
8.5.3. TIME ZONES ...ceitiieeeii ettt e e 148
8.5.4. INterval INPULovuneii e e e e e e e e e e 149
8.5.5. INTEIVA OULPULceeiiiieeeiie et e e e et e e e e 151
S = ToTo =g N Y/ o= PP 152
A 1000 = =0 B Y/ o= 153
8.7.1. Declaration of Enumerated TYPESvuiiiiniiiiiieiii e e e e eies 153
A @ (1= 4T 0T P 153
B.7.3. TYPE SAIELY .vvneieeiiie ettt 154
8.7.4. Implementation DELaAIlSoceuiiiii i 154
R €= o0 1= (Lo Y o P 155
B.8.L. POIMLS ..eitiieiiit et 155
B.8.2. LINES ittt e e e ae 155
8.8.3. LiNE SEgMENLSvuiii it e e e e e e e 156
8.8, BOXES ..iitiieiiit ettt 156
B.8.5. PalNS .. it 156
8.8.6. POIYQONSiiiiiii i 157
S O] (o[-~ SRR 157
e I = Y[N [0 (== Y/ o= 157
S I R T = PSP 157
80,2, Gl Al oo 158
e A I 1= V£ o3 o | PP 158
S I 1 ¢ (o= Vo o | PP 159
8.9.5. MACAUAI 8 ...t 159
8.10. Bit SIHNG TYPES coetuiiiiiiiii et e e e e e e e e e e e e et e e e e et e e et e aanaeeaes 160
B.11. TEXt SEAICH TYPES coui ettt e e e e e e et 160
S 00 O T = VT o3 A o PP 161
S I A=Y o [U 1= PPN 162
S0 22 U1 L T I/ o= PR 163
ST Q1 I 1Y/ o= PP 164
8.13.1. Creating XML ValUBScccuuiiiiiiiiieeeii et e 164
8.13.2. ENcoding Handlingccouuiiiiiiiiii e e e e e 165
8.13.3. ACCESSING XML VaAlUES ...ciiiiiii e 166
ST N S @ N T Y/ o=~ PP 166
8.14.1. JSON Input and OULPUE SYNEAXvvvneiiieeii e e e e e e eaens 167
8.14.2. Designing JSON documents effectivelycoocvvviiiiiiiiiiii e, 168
8.14.3.] sonb Containment and EXIStENCEcooviiiiiiiiiie e 169
8.14.4. | SOND INUEXING ..ovvniiiieii e e e e e e e eaneaees 170
S I N = Y PP PP 173
8.15.1. Declaration Of Array TYPES ..oouuiiiieiii et e e e e e e e e e e e e eaes 173
8.15.2. Array ValUB INPULiiiiiiiii e e e e e e e aes 174
8.15.3. ACCESSING ATTAYS ..evtuieiineeii et et e et e et e e s e e et e e et e e et e e et e e et e eetnaeranaees 175
8.15.4. MOAITYING ATTAYS ...eeviieei et e e e e e e e e e e e aanas 177
8.15.5. SEarChING IN ATTAYS ..uuiiiieei et e e e e e e e et e e e e eaanns 180
8.15.6. Array Input and OULPUL SYNEAXccvvuiiiineeiiieeiieeie e e e e e e e e e eaaes 181
8.16. COMPOSITE TYPES .uueetniiitiieitieeeiee et e et et et e e e ae e et e e et e e et e e et e et e ean e eatnaeeanaeennns 182
8.16.1. Declaration of COmMPOSItE TYPES ...cvvuiiiinieiiiieii i e e e e e e e e e eanees 182
8.16.2. Constructing CompoSite VAIUESccuuiiiiiiiii e e e eaae e 183
8.16.3. AcCesSiNg COMPOSIEE TYPES . ovvueriieiiieiiie et e e e e e e e et e e e e et e e et e eaneens 184
8.16.4. Modifying COmMPOSItE TYPESuuiiiiieiiiieeiii et et e e e e e e e e e e e 185
8.16.5. Using Composite TYPeS iN QUENEScuueiiiieiiieeii e e ea e e e e e 185
8.16.6. Composite Type Input and OULPUE SYNAXc.uvevveieiiiiiiiiieeeieeee e, 187
e I A m = g0 (< Y/ o PP 188
8.17.1. BUIIt-IN RANGE TYPES . .ovviiiii et e e e e e e e aaaas 188

27

The SQL Language

8.17.2. EXAMPIES ..ottt e e e 189
8.17.3. Inclusive and EXCIUSIVE BOUNGScveiiiiiieiiiiieeeiiiie e 189
8.17.4. Infinite (Unbounded) RaNGESccvviiiiiiiiiii e 189
8.17.5. RaNge INPUL/OULPULuuiiiiieiie e ee e e e e e e e et e e e eaaees 190
8.17.6. CONSIIUCtING RANGEScvvieiii et e e e e e eanas 191
8.17.7. DISCrete RANGE TYPES covvuiiiiiieii et e et e e e e e e e e e e et e e et e e e e e aanaees 191
8.17.8. Defining New RaANGE TYPESvvuiiiiiieii et e e e e e e 192
B.17.9. INAEXING ...eitiiiii e e e e e aa e 193
8.17.10. COoNStraiNtS 0N RANGEScvvvieiiieeiii e ee e e e e e e e et e e e e e aanas 193

8.18. ObJECt 1AENIFIEr TYPES .. iivieiii i eiei e e e e e e e e e e e aaaeees 194
ST T oo [o T 1Y o L= TN 196
ST e =0 (o 0l I 01PN 196
LI N 0 Tex i [0 g 5= 0 o @ o= = o 198
1S I oo o= I @ o= = (o] £ 198
9.2. Comparison FUNCtions and OPEraLOrSovvuuieiiieeiiieeiiieeeiee e e e e e e e e eeaens 198
9.3. Mathematical FUNCtions and OPEratorSveiuueeiiiieiiiieei e e e e e eaens 201
9.4. String FUNCioNS anNd OPEIAIOrSovvvnieiiieeii e e e e e e e e e e e e e e eeaens 205
S T o 11 | PP UPTRPPPP 218

9.5. Binary String FUNCtions and OPEratorsSuveeuueeiiiieeeiieeiiiee e e e e e s eeanaeeaes 219
9.6. Bit String FUNCtioNS and OPEratorsc.ueviunieiiieeeiie e ee e e e e e e e e e 222
S A = 1 (= TN\ (11 o PP 222
O0.7. L LEKE e 223
9.7.2. SIM LAR TORegular EXPreSSIONScvvueiiiieiiieeiiieeiiieeaeeeaneeesineesnneeeens 224
9.7.3. POSIX RegUIAr EXPrESSIONS .. .cuuiiiiieiiiieeieeeiii e e e et e e e e e e e e e e e eanaeeeen 225

9.8. Data Type FOrmatting FUNCLIONSco.uiiiii e e e e e e e e 238
9.9. Date/Time FUNCtioNs and OPEratorSuiiiuuieiiiieeii e e e e e e e e e e e eeaens 245
9.9.1. EXTRACT, dat € _Part .oiiiiiiiiiiiieiie e e e e e e 250
0.9.2. At @ LT UNC covviiiii i e 254
ST N B I Y R @ N P 255
9.9.4, CUITENt DA/ TIMEiiiiiii e e et e e et e e e eate e eaeees 256
9.9.5. Delaying EXECULIONcvvueiiiieiii e e e e et e e e e e e e e e e e e e ean s 257

9.10. ENUM SUPPOIT FUNCLIONS .. .c.uuiiiiiii e e e e e e e e e e e e e e eanes 258
9.11. Geometric FUNCioNS and OPEIAtOrSccuuueiiinieiieeeiieeeieeeteeeen e e eeeeteeeaaeeaneens 259
9.12. Network Address FUNCtions and OPEratorsSevvuieiiieiiieeeiieeee e e e e eaneens 263
9.13. Text Search FUNCIONS aNd OPEIaLOrSc.uuiiiiieeiiieiie e e e e e e e e e e eanaeeaes 265
9.14. XML FUNCLIONS ...eettiieeiiii ettt e et e e et e e e et e e e e et e e e e et s e e e eetanaeeeees 271
9.14.1. Producing XML CONENEuueiiiieiiiieeii e e e e e e e e e e e e e eaanns 272
9.14.2. XML PradiCates ... iiiiviieeeeii ettt e et eeeena e e eees 276
9.14.3. ProCessiNg XML ...ciiiiiiiiiii et 277
9.14.4. Mapping TableSto XML ...ccoviiiiiiii e 282

9.15. JSON FUNCLIONS aN0 OPEIELOIScvvuieiiieeiieeeeieeetieee e e et e e e eat e e st e e st aesaneeanaens 285
9.16. Sequence Manipulation FUNCLIONSccuuiiiiiiiiiie e e e e e 294
9.17. Conditional EXPrESSIONSuciviiieiiiieii et e e e e e e e e s e et e e e e e aanas 297
0.17. 0. CASE ..ot 297
9.17.2. COALESCEtuiiiiiiii ettt e e e e e et e e e et e e e b 298

L 2 U I PP 299
9.17.4. GREATEST and LEAST ...ttt e e e e 299

9.18. Array FUNCiONS and OPEIatOrSccuueiiiieiiieeiieeeiie e e eie e e e e e e e e e e eanaeeaes 299
9.19. Range FUNCLiONS anNd OPEratOrScvvvueeiiieiiieeiiee e e e e e e e e e e e e e e e eeaens 303
9.20. AQQregate FUNCLIONSciiii e e e e e e e et e aan s 305
9.21. WINAOW FUNCHIONSeiiiiiiei it e e e e et e e et e e e eaa e eeenans 312
0.22. SUDQUENY EXPrESSIONS ...u.iivieiiieiiii et e et e e e e e e e e e e e et e e et e e et e e e s e eat e e et esananes 314
0.22. 1. EXI ST oottt ettt 314
0,22, 2. I N it 315

28

The SQL Language

2 T\ | I N S SPTRUPPN 315
S N N ST 1Y PSP 316
0.22.5, ALL ittt 316
9.22.6. SINGIE-TOW COMPANISON ..vuuiiiieiiieeiiieeeieeei e e e e e e e et e e st e e et e e st e raneeannns 317

9.23. Row and Array COMPAISONSccuuuieuneeeinieeteertaeesteesteesteesataeeaneestnaesraesrnaaees 317
22 35 I N PSP 317
122 @ | I N USRI 317
9.23.3. ANY/SOVE (BITAY) +evvuereeruneteiiiietetiiaeteti e eeainaeeetin e s eataaeseriaeeerinaens 318
S A I = - Y) P UPPPS 318
9.23.5. Row Constructor COMPAIiSONeveuuerrnieriiieeeteesiieeeiiesanaeesaeesieesanaaees 318
9.23.6. Composite Type COMPAISONcvvuueeeieeiiieeeiieeeeee e e e ee e et eeataeeeneeaans 319

9.24. Set REtUrNING FUNCHIONSiiiiciie e e e e e e e e e e e e e eaaes 320
9.25. System Information FUNCLIONSccuuiiiiiiiiiie e e e e e 323
9.26. System AdmINiStration FUNCLIONSc.uiiiiiieiiii e e e e e e e e eanes 339
9.26.1. Configuration SettingS FUNCLIONSoovviieiii e e e 340
9.26.2. Server SIgnaling FUNCLIONSccovuiiiii e 340
9.26.3. Backup Control FUNCLIONSciiiiiii e e e e e eaaes 341
9.26.4. Recovery Control FUNCLONScvvuiiiiiiiiin e e e e 344
9.26.5. Snapshot Synchronization FUNCLIONScoevviiiiiiieciiiec e, 345
9.26.6. RePlication FUNCLIONSuiiiiiiciiicii e e e e e e e e eaa e 346
9.26.7. Database Object Management FUNCLIONSc..oveiiieiiiieiiii e e e 350
9.26.8. Index MaintenanCe FUNCLIONScoeuuuiieiiiiieeiiiie e e e e 352
9.26.9. Generic File ACCESS FUNCHIONSiiieiiieiiii e 353
9.26.10. AdViSOry LOCK FUNCLIONScovuniiiiiiiii e e e e 355

S A O I o o = Gl U o o) 356
9.28. Event Trigger FUNCLIONSuuiiiiei e e e e e e e e e aaas 357
9.28.1. Capturing Changes at Command Endccoiiiiiiiiiiiiiiie e, 357
9.28.2. Processing Objects Dropped by a DDL Commandc.oovevveiiiieiiineninnns 358
9.28.3. Handling a Table REWIItE EVENLccvuiiiiiieii e e e 359

O Y oL @0 017/ = '] o N 361
FO. L. OVEIVIBIW eetiieeiii ettt e et e e e et r e e e ettt e e e et e e e e et n e e e st neeeenan s 361
O @ o< - o = T P 362
L0 A o o] 0 PP 366
O Y NI (o] - o = PPt 370
10.5. UNI ON, CASE, and Related CONSITUCESvveviiieiiiiiieeeeii e 370
10.6. SELECT OULPUL COIUMNSeiiiiiiee et ee et e et e e et s e e et s e e e eat s e e eest s e eeeaenaaeeees 372
T o 1= = PP 373
0 O oo 0 1o PP 373
A 1 o L= G Y/ o === RN 374
11.3. MUItICOIUMN TNOEXES ...evvieeeiiie et e e et e e e e e e eaenns 376
11.4. Indexes and ORDER BYuuiiiiiiiiiiiiiiiie et e e et e e et e e e 377
11.5. Combining MUItiple INAEXEScvvuiiiiiiee e e e e e 378
SR U T o [0 T B o L=<t 378
11.7. INAEXES ON EXPrESSIONS ... cvviiiiiiieiie e et e e e e e e e e e e e e e et e e et e e et e e ean e eenaes 379
11.8. Partial INOEXESvuiieeieii ettt e e e et e et e e e e 380
11.9. Operator Classes and Operator FamilieScooovviiiiiiiiiii e 382
11.10. Indexes and COl@HONScoveuinieiiiiie e e 383
I O 1 0o 1= T @ T S = PN 384
11.12. EXamining INAEX USAQEu.ivvniiiiiieiiie et e e e et e e e e e e s e e e et e e et e e eaneees 386
A T = = o o PPN 388
2 O 1 oo (0 1o TSP 388
12.1.1. What 1S @ DOCUMENE?iiiiii et e e s 389
12.1.2. BasiC Text MaChingooouiiiiii e e 389
12.1.3. CONIQUIBLIONS ...uuieieiit i ee e e e e e e e e e e e et e e e e et e e st eeaaeeanaees 391

29

The SQL Language

12.2. TAhleS @Nd INAEXESvvueiiiiiiee e 392
12.2.1. Searching @ Table ...vuiii e 392
12.2.2. Creating INGEXESiiieiei e e e e e e e e e e eaaaees 393

12.3. Controlling TEXt SEAICHccovniiii e 394
12.3.1. ParSiNg DOCUMENES ... civuuiii e iee e ee e e e e e e e e et e et e e e e e aanas 394
12.3.2. ParSiNGg QUETTESuuiiiiieii e e et e e e e et e e e et e e e e aanas 395
12.3.3. Ranking Search RESUILScivuiiiiiiici e 397
12.3.4. Highlighting RESUILS .. .c.uuiiiiiiii e e e e e 399

12,4, AdAItIoNal FEAIUMESuiieiiiii e e e e 400
12.4.1. Manipulating DOCUMENEScvvueiiiiiiii e e e e e e e e e e e e e eens 400
12.4.2. Manipulating QUENIESc.uuiiiiieiii et e e e e e e e e e e e ees 401
12.4.3. Triggers for Automatic UPdatescevuveiinieiiiiieii e ee e e 403
12.4.4. Gathering DOCUMENt SEaLiSHICS ...vuuvvvnieiiii e e e e e e 405

T T 405

12.6. DICHONAITES ...eevvieeeiii ettt e e e e e et e e e et e e e et e e e e et e e e e et eas 407
3 IS (o o IV o (o [408
12.6.2. SIMPIE DICHIONAIY ...iiveiiiieii e e e e e e e e e e e eaens 409
12.6.3. SYNONYM DICHIONAIYuiviinieiiiieii e e e e e e e e e e e e e e e e e e eeeen 410
12.6.4. TheSaUruS DiCtONAIYcccvuiiiiiiiiiici e e e e e aaaas 412
12.6.5. ISPEI DICHONAIY ...vuiviiiiiicee e e e e e e e e e e e eens 414
12.6.6. SNOWDEI DICHIONAIY ...covunciiiieci e e e e e e e e eae s 416

12.7. Configuration EXAMPIEiiiuiieii e e e e e e e e e 417

12.8. Testing and Debugging Text SEarchccooviiiiii i 418
12.8.1. Configuration TESLNG ... ccuuuiiiineeiiieiiie e e e e e e e e e e e e e eaneeaes 418
A o 6 = N I~ 1] 1o [421
RGN B Tox i[04 = VA == (Vo [422

12.9. GIN and GiST INAEX TYPES .vvvvuniieeeriieiiiiiieseeeeeeeetiiss s e e e eeearate e e e aeeaesrnnaaaes 423

200 O T 1= o ST o) oo o N 423

2 T T 1] = 1 o) PSPPSR 426

13. ConCUITENCY CONLION ...iiveiiii e e e e e e e e e e e e et e e e e et e e ean e eanaas 428

G20 1 oo [0 1o TSP 428

13.2. TransaCtion I1SOIAHONuiiiiiiie i e e e e e eaaens 428
13.2.1. Read Committed IS0lation LEVEiviiiiiiiiiiiiiieece e 429
13.2.2. Repeatable Read 1S0lation LEVE!oeviiiiiiiiiiiec e 431
13.2.3. Serializable [S0lation LEVE!coceviiiiiiiiieieces e 432

I TC I (o[T N o T 434
13.3.1. TADIETEVE LOCKS ..oevveieiiiiie ettt 434
13.3.2. ROW-IEVE LOCKS ..evviiiiiiii ettt 436
13.3.3. Pagelevel LOCKS ...couiiiiiicii e 437
13.3.4. DEBAIOCKScevviieieiii e 437
13.3.5. AQVISONY LOCKS ...civiciiiieiii e e e e e e e e e e e e e e e et e e et e e e e eaaaees 438

13.4. Data Consistency Checks at the Application Levelcooeeiiiiiiiiiinieeeean, 439
13.4.1. Enforcing Consistency With Serializable Transactionscccooevvieeeinnnnnn. 440
13.4.2. Enforcing Consistency With Explicit Blocking LOCKScccceviviiiiiiiieiinnnnns 440

ST O Y= 441

13.6. LOCKING @NA INAEXES .. .cvviiiiiieii et e e e e e e e e aen s 441

e (o 7= o =T T = 443

14.2. USING EXPLAIL N ...ttt e e e e et e s e e e e e e e aaa e e e e e eaaeeannes 443
I o Y Y I AV 27 oSSR 443
14.2.2. EXPLAI N ANALYZE ...oviiiii e e e e s e e e e e aannanns 449
I O " £ 453

14.2. Statistics Used by the Plannercooviiiiiiii e 454
14.2.1. SINgIE-ColUMN SEALISHICS ..vuuiieieiii i e e e e e e e een 454
A 1= 00 1= IS - 1 oS 456

30

The SQL Language

14.3. Controlling the Planner with Explicit JO N ClaUSESc.oevviiiiiiieiiiecei e 458
14.4. Populating @ Databaseoevvuiiiiiiiei e 460
14.4.1. Disable AULOCOMIMITiiiiiiieiiiie et e et e e e et eeeaaes 460
A U L X @ @ PSS 460
14.4.3. REMOVE INOEXES ...vviieeiiiiieee et e et e e e et e e et e e e e et e e e eatn s aeaees 461
14.4.4. Remove Foreign Key CONSITaiNtSccuuieiiiieiiiieeiiieeiieeeeieeeiee e e eaenns 461
14.4.5. Increase mai Nt enance_WOr K_ MBM......ccoiiiii i 461
14.4.6. Increase MAX_Wal _Si Z€ ..oiiiiiiii i 461
14.4.7. Disable WAL Archival and Streaming Replicationcccoociiveiiiniiinnennnn. 462
14.4.8. RUN ANALYZE AFtErWardsccovvvvnniiiieeieiiiiiiiiese e eee e e e e e e eeeasnnnnns 462
14.4.9. Some Notes ADBOUL PG AUMP ..eveiiiniii e e 462

14.5. NON-DUrable SELNGSovvvneiieiii e e e e e e e e e e et e e e e eeas 463
ST = = O U= oSSR 464
15.1. How Parallel QUENY WOTKScoviiiiii e e 464
15.2. When Can Parallel Query BE USE?vvvviiiieiiiieii e 465
15.3. Parallel PLanSuuiiiiiiiee e 466
15.3.1. Parall€l SCANSvvuuiiieeiiiiiiii et s e et e e e e e e e e aaaae 466
15.3.2. Parallel JOINSiieeiiiiiiiiie e 466
15.3.3. Parallel AQQregationccouuiiii i 467
15.3.4. Parallel Plan TiPS . .cuuciiiiiiii et e e 467

15.4. Parallel SafElY ..ovvvvveeiiiiee ettt 467
15.4.1. Parallel Labeling for Functions and AggregatesScovvevviieiiinieiiieeiiieecieens 468

31

Chapter 4. SQL Syntax

This chapter describesthe syntax of SQL. It formsthe foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;"). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, aliteral (or constant), or a specia character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not beif thereisno
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

Thisisasequence of three commands, one per line (although thisis not required; more than one command
can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a“SELECT”, an“UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
I NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names’. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether atoken is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be |etters,
underscores, digits (0-9), or dollar signs ($). Notethat dollar signsare not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

32

SQL Syntax

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAVEDATALENis 64 so the maximum identifier length
is63 bytes. If thislimit is problematic, it can beraised by changing the NAMEDATALEN constantinsr c/
i ncl ude/ pg_confi g _nanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g.:
UPDATE ny_table SET a = 5;

Thereisasecond kind of identifier: the delimited identifier or quoted identifier. It isformed by enclosing
an arbitrary sequence of characters in double-quotes (). A delimited identifier is aways an identifier,
never akey word. So" sel ect " could be used to refer to a column or table named “ select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where atable or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_tabl e" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiersallowsincluding escaped Unicode charactersidentified by their code points.
Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spacesin between, for example U&" f 00" . (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or aternatively abackslash followed by aplus sign followed by asix-digit hexadecimal
code point number. For example, the identifier " dat a" could be written as

U&" d\ 0061t \ +000061"
Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, adouble quote, or awhitespace character. Note that the escape character iswritten in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-digit and the 6-

33

SQL Syntax

4.1.2.

digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makesthis unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas ungquoted names are always folded to lower
case. For example, the identifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from these three and each other. (The folding of unquoted namesto lower
case in PostgreSQL is incompatible with the SQL standard, which says that unguoted names should be
folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to the standard. If
you want to write portabl e applicationsyou are advised to always quote aparticular name or never quoteit.)

Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These aternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL isan arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string'.Toincludeasingle-quote character within astring constant, write two adjacent
singlequotes, e.g.,' Di anne' ' s hor se' . Notethat thisisnot the same asadouble-quote character ().

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated asif the string had been written as one constant. For example:

SELECT ' f oo’
"bar';

is equivalent to:

SELECT ' f oobar"';

but:

SELECT ' f o0 " bar'’

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts“ escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
guote, e.qg., E' f 0o’ . (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
seguence, in which the combination of backslash and following character(s) represent aspecial bytevalue,
asshownin Table4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nterpretation
\b backspace
\ f form feed

SQL Syntax

Backslash Escape Sequence I nterpretation

\n newline

\r carriage return

\ t tab

\o,\00,\000(0=0-7) octal byte value

\xh,\xhh (h=0-9,A-F) hexadecimal byte value

\Uuxxxx, \ UXXXXxxxx (x =0-9,A-F) 16 or 32-hit hexadecimal Unicode character value

Any other character following a backslash istaken literally. Thus, to include a backslash character, write
two backslashes (\ \). Also, asingle quote can be included in an escape string by writing \ * , in addition
to the normal way of * ' .

It isyour responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, composevalid charactersinthe server character set encoding. When the server encodingisUTF-8,
then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The aternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code pointsin the ASCII range (upto\ u007F) can be specified. Both the 4-digit
and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, athough the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF8, they are first combined into a single
code point that isthen encoded in UTF-8.)

Caution

If the configuration parameter standard conforming_strings is of f, then PostgreSQL
recoghizes backslash escapes in both regular and escape string constants. However, as of
PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized only
in escape string constants. This behavior is more standards-compliant, but might break
applications which rely on the historical behavior, where backslash escapes were always
recognized. Asaworkaround, you can set this parameter to of f , but it is better to migrate
away from using backslash escapes. If you need to use a backslash escape to represent a
specia character, write the string constant with an E.

In addition to st andard_conforni ng_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supportsanother type of escape syntax for stringsthat allows specifying arbitrary Unicode
characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for
example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces around the
operator to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by
writing abackslash followed by the four-digit hexadecimal code point number or alternatively abackslash

35

SQL Syntax

followed by a plus sign followed by a six-digit hexadecimal code point number. For example, the string
' dat a' could bewritten as

U&' d\ 0061t \ +000061'
Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-digit and the 6-
digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, athough the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into asingle code point
that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisisbecause otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, writeit twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To alow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “ Dianne's horse” using dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Noticethat inside the dollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the

opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

$f uncti on$
BEG N

RETURN ($1 ~ g[\t\r\n\v\\]q);
END;

36

SQL Syntax

$f uncti on$

Here, the sequence q[\ t \ r\ n\ vi\] g representsadollar-quoted literal string [\ t\r\n\vi\],
which will be recognized when the function body is executed by PostgreSQL . But since the sequence does
not match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect, but
$TAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often amore convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
guote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashesin parsing the original string constant, and then to one when theinner
string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed within bit-
string constantsare 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X' 1FF' . Thisnotation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across linesin the sameway asregular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where di gi t s isone or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if oneis used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

3.5

4.

.001

5e2
1.925e-3

37

SQL Syntax

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 hits); otherwiseitis presumed to betypebi gi nt if
itsvaluefitsin type bi gi nt (64 bits); otherwise it istaken to betype nuner i ¢. Constants that contain
decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most casesthe constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force anumeric value to be treated astyper eal (f | oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

4.1.3.

A constant of an arbitrary type can be entered using any one of the following notations:
type 'string'

"string' ::type

CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. Theresult is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it
isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.
It isalso possible to specify atype coercion using a function-like syntax:

typenane ('string')

but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype ' stri ng’
syntax can only be used to specify the type of asimple literal constant. Another restriction on thet ype
"string' syntax isthat it does not work for array types; use: : or CAST() to specify the type of an
array constant.

The CAST() syntax conformsto SQL. Thet ype ' string' syntax isageneralization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL alows it for al types. The syntax
with: : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-*[<>=~1 @QHWN& | ?
There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

38

SQL Syntax

4.1.4.

4.1.5.

« A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#%N& | ?

For example, @ isan allowed operator name, but * - isnot. Thisrestriction allows PostgreSQL to parse
SQL -compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@ you cannot write X* @Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some charactersthat are not al phanumeric have aspecial meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digitsis used to represent a positional parameter in the body of afunction
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

 Parentheses(()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

e Commas (,) are used in some syntactical constructs to separate the elements of alist.

» Thesemicolon (;) terminates an SQL command. It cannot appear anywhere within acommand, except
within a string constant or quoted identifier.

» Thecolon (:) isused to select “dlices’ from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contextsto denote all the fields of atable row or compositevalue. It al'so
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

-- This is a standard SQ. conment
Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

39

SQL Syntax

4.1.6.

where the comment beginswith/ * and extends to the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL . Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators. For
instance:

SELECT 5! - 6;
will be parsed as:
SELECT 5! (- 6);

because the parser has no idea— until it istoo late— that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

Thisisthe price one pays for extensibility.

Table4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
| eft table/column name separator
| eft PostgreSQL -style typecast
[] left array element selection
+ - right unary plus, unary minus
n | eft exponentiation
* | % | eft multiplication, division, modulo
+ - | eft addition, subtraction
(any other operator) | eft all other native and user-defined
operators
BETWEEN IN LIKE |ILIKE range containment, set
SIM LAR membership, string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE IS FALSE IS
NULL, I S DI STINCT FROM
etc
NOT right logical negation
AND | eft logical conjunction
oR | eft logical digunction

40

SQL Syntax

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a“+" operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:
SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dightly different operator precedence rules. In
particular, <= >= and <> used to be treated as generic operators; | S tests used to have
higher priority; and NOT BETWEEN and related constructs acted inconsistently, being
taken in some cases as having the precedence of NOT rather than BETVEEEN. These rules
were changed for better compliance with the SQL standard and to reduce confusion from
inconsistent treatment of logically equivalent constructs. In most cases, these changes will
result in no behavioral change, or perhaps in “no such operator” failures which can be
resolved by adding parentheses. However there are corner cases in which a query might
change behavior without any parsing error being reported. If you are concerned about
whether these changes have silently broken something, you can test your application with
the configuration parameter operator_precedence warning turned onto seeif any warnings
are logged.

4.2. Value Expressions

Value expressions are used in avariety of contexts, such asin the target list of the SELECT command, as
new columnvaluesinl NSERT or UPDATE, or in search conditionsin anumber of commands. Theresult of
avalueexpressionissometimescalled ascalar, to distinguish it from theresult of atable expression (which
is atable). Value expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax allows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:

A constant or literal value

A column reference

» A positiona parameter reference, in the body of afunction definition or prepared statement
* A subscripted expression

» A field selection expression

» An operator invocation

» A function call

* An aggregate expression

e A window function call

41

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

* A typecast

A collation expression

A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have aready discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:
correl ati on. col utTmnane

correl ati on isthe name of atable (possibly qualified with a schema name), or an dlias for a table
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused toindicate avaluethat is supplied externally to an SQL statement.
Parametersare used in SQL function definitionsand in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter referenceis:

$nunber
For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$%
LANGUACE SQ.;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields avalue of an array type, then a specific element of the array value can be extracted
by writing

expressi on[subscri pt]
or multiple adjacent elements (an “array dice”) can be extracted by writing

expression[| ower _subscri pt: upper_subscri pt]

42

SQL Syntax

4.2.4.

4.2.5.

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression, which
must yield an integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nmyt abl e. arraycol um| 4]

nyt abl e. two_d_col um[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dnane

In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(conposi tecol).sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not a table name, or
that myt abl e isatable name not a schema name in the second case.

You can ask for al fields of acomposite value by writing . *:
(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or isa qualified operator name in the form:

OPERATOR(schenm. oper at or nane)

43

SQL Syntax

4.2.6.

4.2.7.

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for afunction call isthe name of afunction (possibly qualified with a schemaname), followed
by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style.
That is, the notationscol (t abl e) andt abl e. col areinterchangeable. Thisbehavior
is not SQL-standard but is provided in PostgreSQL because it alows use of functions to
emulate “computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such asthe sum or average
of theinputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter _clause)]
aggregate nane ([expression [, ...]]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_narme isapreviously defined aggregate (possibly qualified with aschemaname) and
expr essi on isany value expression that does not itself contain an aggregate expression or a window
function call. The optional or der _by_cl ause andfi |l t er _cl ause are described below.

Thefirst form of aggregate expression invokes the aggregate once for each input row. The second formis
the same asthefirst, since ALL isthe default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,

44

SQL Syntax

it is generally only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yieldsthetotal number of input rows; count (f 1) yieldsthe number of input
rowsinwhichf 1 isnon-null, sincecount ignoresnulls;andcount (di sti nct f1) yieldsthenumber
of distinct non-null values of f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, ni n produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and stri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by _cl ause can be used to specify the desired ordering. The or der _by_cl ause has the
same syntax asfor aquery-level ORDER BY clause, asdescribed in Section 7.5, except that its expressions
are aways just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT is specified in addition to an or der _by_cl ause, then al the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that isnot included
inthe DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a
PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There is
a subclass of aggregate functions called ordered-set aggregates for which an or der _by_cl ause is
required, usually because the aggregate's computation isonly sensiblein terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the or der _by cl ause iswritteninside W THIN GROUP (.. .), asshown
inthefinal syntax alternative above. The expressionsintheor der by cl ause are evaluated once per
input row just like regular aggregate arguments, sorted as per the or der _by _cl ause's requirements,
and fed to the aggregate function as input arguments. (Thisis unlike the case for anon-W THI N GROUP
order by cl ause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from
the aggregated argumentslisted intheor der _by_cl ause. Unlikeregular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can

45

SQL Syntax

4.2.8.

contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*) . (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY inconme) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of the i ncone column from table househol ds.
Here, 0. 5 isadirect argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FI LTER s specified, then only the input rows for which thefi | t er _cl ause evaluatesto true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggregate
isnormally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(and filter_cl ause if any) contain only outer-level variables: the aggregate then belongs to the
nearest such outer level, and is evaluated over the rows of that query. The aggregate expression asawhole
is then an outer reference for the subquery it appears in, and acts as a constant over any one evaluation
of that subquery. The restriction about appearing only in the result list or HAVI NG clause applies with
respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has accessto all the rows that would be part of the current row's group according to the grouping
specification (PARTI TI ON BY list) of the window function call. The syntax of a window function call
is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane

46

SQL Syntax

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni t i on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
| LAST } 1 [, ---11

[frane_cl ause]
and the optional f r ame_cl ause can be one of

{ RANGE | RON5 } frane_start
{ RANGE | ROA5 } BETWEEN frane_start AND frane_end

wherefrane_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
val ue PRECEDI NG
CURRENT ROW

val ue FOLLOW NG
UNBOUNDED FOLLOW NG

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_narne is a reference to a named window specification defined in the query's W NDOWCclause.
Alternatively, afull wi ndow_def i ni ti on can be given within parentheses, using the same syntax as
for defining anamed window in the W NDOWclause; see the SELECT reference page for details. It'sworth
pointing out that OVER wnarme is not exactly equivaent to OVER (wnane ...); thelatter implies
copying and modifying the window definition, and will be rejected if the referenced window specification
includes aframe clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI Tl ON BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

Theframe_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functionsthat act on the frameinstead of the whole partition. Theframe
can be specified in either RANGE or ROAS mode; in either case, it runs from the f r ane_st art tothe
frame_end. If f rame_end isomitted, it defaultsto CURRENT ROW

A franme_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the
partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends with
the last row of the partition.

In RANGE mode, afrane_start of CURRENT ROWmeans the frame starts with the current row's
first peer row (arow that ORDER BY considers equivalent to the current row), whileaf r ame_end of

47

SQL Syntax

4.2.9.

CURRENT ROWmeansthe frame endswith thelast equivalent ORDER BY peer. In ROAS mode, CURRENT
ROWsimply means the current row.

Theval ue PRECEDI NGandval ue FOLLOWN NGcasesare currently only allowed in ROAS mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row. val ue
must be an integer expression not containing any variables, aggregate functions, or window functions. The
value must not be null or negative; but it can be zero, which just selects the current row.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this setsthe frame to
be all rowsfrom the partition start up through the current row'slast ORDER BY peer. Without ORDER BY,
all rows of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f rane_end cannot be
UNBOUNDED PRECEDI NG, and thef r ame_end choice cannot appear earlier in the above list than the
franme_start choice— for example RANGE BETWEEN CURRENT ROWAND val ue PRECEDI NG
is not allowed.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
aFl LTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTITION BY x ORDER BY y). Theasterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-timetype conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that thisis subtly
different from the use of casts with constants, as shownin Section 4.1.2.7. A cast applied to an unadorned
string literal representsthe initial assignment of atypeto aliteral constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity asto the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” inthe system catal ogs. Other casts must beinvoked with explicit casting syntax. Thisrestriction
isintended to prevent surprising conversions from being applied silently.

48

SQL Syntax

It is also possible to specify atype cast using afunction-like syntax:
typenane (expression)

However, this only worksfor types whose names are also valid as function names. For example, doubl e
preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the namesi nt er val ,
time,andti mest anp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax isin fact just afunction call. When one of the two standard cast
syntaxesis used to do arun-time conversion, it will internally invoke aregistered function
to perform the conversion. By convention, these conversion functions have the same name
as their output type, and thus the “function-like syntax” is nothing more than a direct
invocation of the underlying conversion function. Obvioudly, thisis not something that a
portable application should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overridesthe collation of an expression. It isappended to the expression it appliesto:
expr COLLATE coll ation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';
and overriding the collation of a function or operator call that has local e-sensitive results, for example:
SELECT * FROMtbl WHERE a > 'foo' COLLATE "C';

Notethat in thelatter case the COLLATE clauseis attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis attached to,
becausethe collation that isapplied by the operator or function isderived by considering al arguments, and
an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 23.2.)
Thus, this gives the same result as the previous example:

SELECT * FROM tbhl WHERE a COLLATE "C' > 'foo';
But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

49

SQL Syntax

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
typebool ean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
samerulesasfor UNI ON or CASE constructs (see Section 10.5). Y ou can override thisby explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3, 4]];
array

{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

50

SQL Syntax

{{1,2},{3,4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to al the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROM arr
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}
(1 row

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
iswritten with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE proname LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5,10}}

(1 row

The subguery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case al the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

51

SQL Syntax

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally aright parenthesis. For example:

SELECT RON1,2.5,'this is a test');
The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owal ue. *, which will be expanded to alist of the elements
of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if tablet has columnsf 1 and f 2, these are the same;

SELECT RON(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that
writing RON(t . *, 42) created atwo-field row whosefirst field was another row value.
Thenew behavior isusually more useful. If you need the old behavior of nested row values,
write the inner row value without . *, for instance RO t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can be
cast to anamed composite type — either the row type of atable, or acomposite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nytabl e) RETURNS int AS ' SELECT $1.f1' LANGUAGE
SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

52

SQL Syntax

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
valuesortest arow with| S NULL or | S NOT NULL, for example:

SELECT RON1,2.5,'this is atest') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressionsis not defined. In particular, theinputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();
then somef unc() would (probably) not be called at all. The same would be the case if one wrote:
SELECT sonefunc() OR true;

Note that this is not the same as the left-to-right “ short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 37.6, functions

53

SQL Syntax

and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROMt ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row inthetablehasx > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart nment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functionsthat have alarge number of parameters, sinceit
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be written
inthecall at al. But thisis particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat _| ower _or _upper(a text, b text, uppercase
bool ean DEFAULT f al se)

RETURNS t ext

AS

$$

SQL Syntax

4.3.1.

4.3.2.

SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LOVER($1 || ' ' || $2)
END;

$$

LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is
one optional parameter upper case which defaultstof al se. Thea and b inputs will be concatenated,
and forced to either upper or lower case depending on the upper case parameter. The remaining details
of this function definition are not important here (see Chapter 37 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
exampleis:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified ast r ue.
Another exampleis:

SELECT concat _| ower _or_upper(' Hello', "Wrld');
concat _| ower _or _upper

hell o world

(1 row

Here, the upper case parameter is omitted, so it receivesits default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left solong asthey have defaults.

Using Named Notation

In named notation, each argument's nameis specified using => to separateit from the argument expression.
For example:

SELECT concat | ower _or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o worl d

(1 row

Again, the argument upper case was omitted so itisset to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or_upper(a => 'Hello', b => "Wrld', uppercase =>
true);
concat _| ower _or _upper

HELLO WORLD
(1 row

55

SQL Syntax

4.3.3.

SELECT concat _| ower _or _upper(a => 'Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as aready mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate
function (but they do work when an aggregate function is used as a window function).

56

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what datais stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like atable on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much datais stored at a given moment. SQL does not make any guarantees about the order
of the rows in atable. When atable is read, the rows will appear in an unspecified order, unless sorting
isexplicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in atable. This is a consequence of
the mathematical model that underlies SQL but is usualy not desirable. Later in this chapter we will see
how to deal with thisissue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept amost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are i nt eger for whole numbers,
numer i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, t i ne for time-
of-day values, and t i nest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first_tabl e with two columns. The first column is named
first_col um and hasadatatype of t ext ; the second column has the name second_col um and
thetypei nt eger . The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of datathey store. So let's ook at a more realistic example:

CREATE TABLE products (
product _no i nteger,

57

Data Definition

name text,
price nunmeric

)

(Thenurmer i ¢ type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, thereis a choice of using singular or plural nouns
for table names, both of which are favored by some theorist or other.

Thereisalimit on how many columns atable can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columnswill befilled with their respective default values. A data manipulation
command can al so request explicitly that acolumn be set to its default value, without having to know what
that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for at i mest anp column to have a default of

58

Data Definition

CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)

where the next val () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)

The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

5.3.1.

Datatypesare away to limit the kind of datathat can be stored in atable. For many applications, however,
the constraint they provideistoo coarse. For example, acolumn containing aproduct price should probably
only accept positive values. But thereis no standard datatype that accepts only positive numbers. Another
issueisthat you might want to constrain column data with respect to other columns or rows. For example,
in atable containing product information, there should be only one row for each product number.

To that end, SQL alows you to define constraints on columns and tables. Constraints give you as much
control over the datain your tables as you wish. If a user attempts to store data in a column that would
violate aconstraint, an error israised. Thisapplieseven if the value came from the default value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

Asyou see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

You can aso give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,

59

Data Definition

name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store aregular price and adiscounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted price > 0),
CHECK (price > discounted _price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to
a particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted _price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

)
or even:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted price > 0 AND price > discounted price)

)
It's a matter of taste.
Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

60

Data Definition

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null valuesin the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the
new or updated row being checked. While a CHECK constraint that violates this rule may
appear to work in simple tests, it cannot guarantee that the database will not reach a state
in which the constraint condition is false (due to subsequent changes of the other row(s)
involved). Thiswould cause a database dump and reload to fail. Thereload could fail even
when the complete database state is consistent with the constraint, due to rows not being
loaded in an order that will satisfy the constraint. If possible, use UNI QUE, EXCLUDE, or
FOREI GN KEY constraints to express cross-row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintai ned consistency guarantee, acustom trigger can be used to implement
that. (This approach avoids the dump/reload problem because pg_dump does not reinstall
triggers until after reloading data, so that the check will not be enforced during a dump/
reload.)

Note

PostgreSQL assumes that CHECK constraints conditions are immutable, that is, they will
always give the same result for the same input row. This assumption is what justifies
examining CHECK constraints only when rows are inserted or updated, and not at other
times. (The warning above about not referencing other table datais really a special case
of thisrestriction.)

An example of a common way to break this assumption is to reference a user-defined
functioninaCHECK expression, and then change the behavior of that function. PostgreSQL
does not disallow that, but it will not notice if there are rows in the table that now violate
the CHECK constraint. That would cause a subsequent database dump and reload to fail.
The recommended way to handle such a change is to drop the constraint (using ALTER
TABLE), adjust the function definition, and re-add the constraint, thereby rechecking it
against all table rows.

5.3.2. Not-Null Constraints

61

Data Definition

5.3.3.

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating acheck constraint CHECK (col utmm_nane |'S NOT NULL) , but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, acolumn can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

);
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price numeric

62

Data Definition

5.3.4.

)
when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)

when written as atable constraint.

To define aunique constraint for a group of columns, write it as atable constraint with the column names
separated by commas:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
)

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT rust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint is violated if there is more than one row in the table where the values of all
of the columnsincluded in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rowsin the table. Thisrequires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product _no integer UNI QUE NOT NULL,
name text,

63

Data Definition

5.3.5.

price nunmeric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the samething, but only one can beidentified asthe primary key.) Relational
database theory dictatesthat every table must have aprimary key. Thisruleisnot enforced by PostgreSQL,
but it isusually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of atable to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orderstable
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table;

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

Data Definition

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in the
products table.

We say that in this situation the orderstabl e isthe referencing table and the productstable is the referenced
table. Similarly, there are referencing and referenced columns.

Y ou can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qguantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c¢) REFERENCES ot her_table (cl, c2)
);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Y ou can assign your own name for aforeign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,

65

Data Definition

PRI MARY KEY (product_no, order_id)
)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
aproduct is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have afew options:

 Disalow deleting areferenced product
» Delete the orders aswell
» Something else?

Toillustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (viaor der _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRI MARY KEY (product_no, order_id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of
a referenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTI ON allows the check to be deferred until later in
the transaction, whereas RESTRI CT does not.) CASCADE specifiesthat when areferenced row is deleted,
row(s) referencing it should be automatically deleted as well. There are two other options: SET NULL
and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or
their default values, respectively, when the referenced row is deleted. Note that these do not excuse you
from observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
arenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes satisfying the
constraint only if al its referencing columns are null (so a mix of null and non-null values is guaranteed

66

Data Definition

5.3.6.

to fail aMATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of areferenced column will require a scan of the referencing
tablefor rows matching the old value, it is often agood ideato index the referencing columnstoo. Because
thisis not aways needed, and there are many choices available on how to index, declaration of aforeign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (¢ WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the nameisakey word or not; quoting aname will not allow you to escape these restrictions.) Y ou do not
really need to be concerned about these columns; just know they exist.

oi d
The object identifier (object ID) of arow. This column isonly present if the table was created using
W TH O DS, or if the default_ with_oids configuration variable was set at the time. This column is
of type oi d (same name as the column); see Section 8.18 for more information about the type.

t abl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.9), since without it, it's difficult to tell which individual
table a row came from. The t abl eoi d can be joined against the oi d column of pg_cl ass to
obtain the table name.

Xm n

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of arow; each update of arow creates a new row version for the same logical row.)

67

Data Definition

cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possiblefor this column to be nonzero in avisiblerow version. That usually indicates that the del eting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although thect i d can be used to
locate the row version very quickly, arow'sct i d will changeif it is updated or moved by VACUUM
FULL. Thereforect i d isuselessasalong-term row identifier. The OID, or even better auser-defined
serial number, should be used to identify logical rows.

OIDs are 32-hit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
afew additional precautions are taken:

* A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, thisis only possible if the table
contains fewer than 2% (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

» OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and row
OID if you need a database-wide identifier.

» Of course, thetablesin question must be created W TH O DS. Asof PostgreSQL 8.1, W THOUT O DS
isthe default.

Transaction identifiers are al'so 32-bit quantities. In along-lived database it is possible for transaction IDs
towrap around. Thisisnot afatal problem given appropriate maintenance procedures; see Chapter 24 for
details. It is unwise, however, to depend on the uniqueness of transaction 1Ds over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is already
filled with data, or if thetableisreferenced by other database objects (for instance aforeign key constraint).
Therefore PostgreSQL provides afamily of commands to make modificationsto existing tables. Note that

68

Data Definition

5.5.1.

5.5.2.

thisis conceptually distinct from altering the data contained in the table: here we are interested in altering
the definition, or structure, of the table.

Y ou can:

* Add columns

* Remove columns

» Add constraints

» Remove constraints

e Change default values

» Change column data types
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:
ALTER TABLE products ADD COLUWN descri ption text;

Thenew columnisinitially filled with whatever default valueisgiven (null if you don't specify aDEFAULT
clause).

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description <>
)

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Tip

Adding a column with a default requires updating each row of the table (to store the new
columnvalue). However, if no default isspecified, PostgreSQL isableto avoid the physical
update. So if you intend to fill the column with mostly nondefault values, it's best to add the
column with no default, insert the correct values using UPDATE, and then add any desired
default as described below.

Removing a Column
To remove a column, use acommand like:
ALTER TABLE products DROP COLUW descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not

69

Data Definition

5.5.3.

5.5.4.

5.5.5.

silently drop that constraint. Y ou can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:
ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAI NT some_name UNI QUE (product _no);

ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:
ALTER TABLE products ALTER COLUWN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane can
be helpful here; other interfaces might also provide away to inspect table details. Then the command is:
ALTER TABLE products DROP CONSTRAI NT some_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to makeit avalid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An exampleisthat aforeign key constraint depends on aunigue or primary key constraint
on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUWN product _no DROP NOT NULL;

(Recdll that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:
ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:

70

Data Definition

5.5.6.

5.5.7.

5.5.8.

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nureric(10, 2);

Thiswill succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.

It's often best to drop any constraints on the column before atering its type, and then add back suitably
modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product_no TO product _numnber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAVE TO iterns;

5.6. Privileges

When an object iscreated, it isassigned an owner. The owner isnormally therolethat executed the creation
statement. For most kinds of objects, theinitial stateisthat only the owner (or a superuser) can do anything
with the object. To allow other rolesto useit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRl GGER, CREATE, CONNECT, TEMPCRARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object's type (table, function, etc). For complete
information on the different types of privileges supported by PostgreSQL, refer to the GRANT reference
page. The following sections and chapters will also show you how those privileges are used.

Theright to modify or destroy an object is always the privilege of the owner only.
An object can be assigned to anew owner with an ALTER command of the appropriate kind for the object,
e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the

current owner of the object (or amember of the owning role) and a member of the new owning role.

Toassign privileges, the GRANT command isused. For example, if j oe isanexistingrole,andaccount s
isan existing table, the privilege to update the table can be granted with:

71

Data Definition

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLI C;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
their own ordinary privileges, for example to make a table read-only for themselves as well as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
itispossibleto grant aprivilege“with grant option”, which givesthe recipient theright to grant it in turn to
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

5.7. Row Security Policies

In addition to the SQL -standard privilege system available through GRANT, tables can have row security
policiesthat restrict, on aper-user basis, which rowscan be returned by normal queriesor inserted, updated,
or deleted by data modification commands. This feature is also known as Row-Level Security. By default,
tables do not have any policies, so that if a user has access privileges to a table according to the SQL
privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
all normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table's owner istypically not subject to row security policies.) If no policy existsfor
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned
to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to apolicy, an expressionisrequired that returns
aBooleanresult. Thisexpression will be evaluated for each row prior to any conditionsor functionscoming
fromtheuser'squery. (The only exceptionstothisrulearel eakpr oof functions, which are guaranteed to
not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)
Rows for which the expression does not return t r ue will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed
to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table owners normally bypass row security aswell, though atable owner can choose to
be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of the
table owner only.

72

Data Definition

Policiesare created using the CREATE POLICY command, altered usingthe ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
usethe ALTER TABLE command.

Each policy has a name and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to agiven query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). Thisis similar to the rule that a given role
has the privileges of al roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As asimple example, here is how to create a policy on theaccount relation to allow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmnager text, conpany text, contact_email
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE PCLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesa W TH CHECK clause identical to its USI NG clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or
DELETE existing rows belonging to a different manager) and to rows modified by a command (so rows
belonging to a different manager cannot be created vial NSERT or UPDATE).

If noroleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users onthe
system. To alow all usersto access only their own row in auser s table, asimple policy can be used:

CREATE POLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rowsthat are being added to the table compared to those rowsthat are visible,
multiple policies can be combined. This pair of policies would allow al users to view all rows in the
user s table, but only modify their own:

CREATE PCLI CY user_sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below isalarger example of how thisfeature can be used in production environments. The table passwd
emulates a Unix password file:

73

Data Definition

-- Sinmple passwd-file based exampl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Admi nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admn', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash');
| NSERT | NTO passwd VALUES

("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh");
| NSERT | NTO passwd VALUES

("alice',"xxx",2,1," Alice','098-765-4321" ,null,"/home/alice','/bin/
zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, hone_dir,
shel 1)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE

74

Data Definition

(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role adm n;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admn | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _namne, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root | /
bi n/ dash

bob | Bob | 123-456-7890 | | /home/ bob | /
bi n/ zsh

alice | Alice | 098-765-4321 | | /hone/alice | /
bi n/ zsh

(3 rows)

post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane =
"admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”
post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

75

Data Definition

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating
ot her rows

post gr es=> update passwd set pwhash = 'abc’;
UPDATE 1

All of the policies constructed thusfar have been permissive policies, meaning that when multiple policies
are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add arestrictive policy to require the administrator
to be connected over alocal Unix socket to access the records of the passwd table:

CREATE POLI CY admin_l ocal _only ON passwd AS RESTRI CTI VE TO admin
USI NG (pg_catal og.inet_client_addr() 1S NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net_client_addr

127.0.0.1
(1 row

=> SELECT current _user;
current _user

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nane | hone_phone | extra_info
| honme_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such asunique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when developing
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contextsit isimportant to be sure that row security is not being applied. For example, when taking
abackup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of f . This does not in itself

76

Data Definition

bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could allow information
leakage if careis not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
("very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

77

Data Definition

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO publi c;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decidesthat mal | ory
should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id = 1 WHERE user_nane = '"mallory';

UPDATE information SET info = 'secret frommallory' WHERE group_id =
2;

COW T;

That looks safe; there is no window wherein mal | or y should be able to see the “secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possible for her to see “secret from mallory”.
That happensif her transaction reachesthei nf or mat i on row just after al i ce'sdoes. It blockswaiting
for al i ce'stransaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from user s, because that
sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mal | or y's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR SHARE
in sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (hereuser s) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT
could be embedded into a security definer function.) Also, heavy concurrent use of row share locks on
the referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an exclusive lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.
Or one could just wait for al concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, j oe
in two databasesin the same cluster; but the system can be configured to allow j oe access
to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas al so contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used

78

Data Definition

5.8.1.

in different schemas without conflict; for example, both schenal and myschenma can contain tables
named myt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» Toalow many users to use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by adot:

schena. t abl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax
dat abase. schenn. t abl e

can be used too, but at present thisisjust for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE nyschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:
DROP SCHENMA nyschens;

To drop a schemaincluding all contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.13 for a description of the general mechanism behind this,

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your usersto well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

79

Data Definition

5.8.2.

5.8.3.

Y ou can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into aschemanamed “public”’. Every new database contains such
aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is alist
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ahility to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, amalicious user ableto create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

The first schemanamed in the search path is called the current schema. Aside from being the first schema
searched, it is also the schemain which new tableswill be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:
SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)

80

Data Definition

5.8.4.

5.8.5.

the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:
SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;

Also, since nyschena isthefirst element in the path, new objects would by default be created in it.
We could also have written:

SET search_path TO nyschens;

Then we no longer have accessto the public schemawithout explicit qualification. Thereisnothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path worksin the same way for datatype names, function names, and operator names asit does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, thereis a special provision: you must write

OPERATOR(schermma. oper at or)
Thisis needed to avoid syntactic ambiguity. An exampleis:
SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can aso be allowed to create objectsin someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schemapubl i c. Thisallowsall usersthat are able to connect to a given database to create objectsin
itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second senseit isakey word, hence the different capitalization; recall the guidelinesfrom
Section 4.1.1.)

The System Catalog Schema

Inadditionto publ i ¢ and user-created schemas, each database containsapg_cat al og schema, which
containsthe system tables and all the built-in datatypes, functions, and operators. pg_cat al og isalways

81

Data Definition

5.8.6.

5.8.7.

effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it isbest to avoid such names to ensure that you won't suffer a
conflictif somefuture version definesasystem table named the same asyour table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to the
empty string or otherwise removing non-superuser-writable schemas from sear ch_pat h. Thereare a
few usage patterns easily supported by the default configuration:

» Consgtrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create aschemafor each user with the same name asthat user.
Recall that the default search path starts with $user , which resolves to the user name. Therefore, if
each user has a separate schema, they accesstheir own schemas by default. After adopting thispatternin
a database where untrusted users had aready logged in, consider auditing the public schemafor objects
named like objects in schema pg_cat al og. This pattern is a secure schema usage pattern unless an
untrusted user is the database owner or holds the CREATEROLE privilege, in which case no secure
schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the ahility to
create objectsin the public schema, but only qualified nameswill choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If you
create functions or extensions in the public schema, use the first pattern instead. Otherwise, like the
first pattern, this is secure unless an untrusted user is the database owner or holds the CREATEROLE

privilege.

» Keep the default. All users access the public schema implicitly. This simulates the situation where
schemasarenot availableat all, giving asmooth transition from the non-schema-aware world. However,
thisisnever asecure pattern. It is acceptable only when the database has a single user or afew mutually-
trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privilegesto allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schema name, or they can put the additional schemas into their search path, as they choose.

Portability

Inthe SQL standard, the notion of objectsin the same schemabeing owned by different usersdoes not exist.
Moreover, someimplementations do not allow you to create schemasthat have a different name than their
owner. Infact, the concepts of schemaand user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names

82

Data Definition

torealy consist of user _nane. t abl e_nane. Thisis how PostgreSQL will effectively behave if you
create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define atypeinheritance feature, which differsin many respectsfrom the features described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
itinheritsfromci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on fl oat,
altitude i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthiscase, thecapi t al s tableinherits all the columns of its parent table, ci t i es. State capitals also
have an extracolumn, st at e, that showstheir state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of atable or al rows of atable plus al of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of al cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT nane, altitude
FROM cities
VWHERE al ti tude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | altitude
___________ N,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT nane, altitude

83

Data Definition

FROM ONLY cities
VWHERE al titude > 500;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only toci t i es, and not any tables below
ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

Y ou can also writethetable namewith atrailing * to explicitly specify that descendant tables are included:

SELECT nane, altitude
FROM ci ti es*
WHERE al titude > 500;

Writing * isnot necessary, since thisbehavior isawaysthe default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.altitude
FROM cities c
VWHERE c. al titude > 500;

which returns;

tabl eoid | name | altitude
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin with
pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.altitude
FROM cities ¢, pg _class p
WHERE c. altitude > 500 AND c.tabl eoid = p.oid,;

which returns:

rel name | name | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use ther egcl ass alias type, which will print the table OID
symbolicaly:

SELECT c.tabl eoi d::regclass, c.nane, c.altitude
FROM cities ¢
WHERE c. al titude > 500;

Data Definition

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT INTO cities (name, popul ation, altitude, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
I NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossibleto redirect theinsertion
using arule (see Chapter 40). However that does not help for the above case because theci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columnsare“merged” so that thereisonly one such columninthe child table. To be merged, columns
must have the same datatypes, else an error israised. Inheritable check constraints and not-null constraints
are merged in asimilar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause of
the CREATE TABLE statement. Alternatively, atable which is aready defined in a compatible way can
have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. To do thisthe new
child table must aready include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO | NHERI T variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child isto use the L1 KE
clausein CREATE TABLE. This creates a new table with the same columns as the source table. If there
are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to
LI KE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of itschildren remain. Neither can columnsor check constraints
of child tables be dropped or altered if they are inherited from any parent tables. If you wish to remove a
table and all of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columnsthat are depended on by other tablesis only possiblewhen
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the ci t i es table implies permission to update rows in the capi t al s table
as well, when they are accessed through ci t i es. This preserves the appearance that the data is (also)
in the parent table. But the capi t al s table could not be updated directly without an additional grant.
Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions on the child tables
are always checked, whether they are processed directly or recursively via those commands performed
on the parent table.

85

Data Definition

5.9.1.

5.10

Inasimilar way, the parent table's row security policies (see Section 5.7) are applied to rows coming from
child tables during an inherited query. A child tabl€e's policies, if any, are applied only when it isthe table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tablesand
do not support recursing over inheritance hierarchies. Therespective behavior of each individual command
is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign key
constraints only apply to singletables, not to their inheritance children. Thisistrue on both the referencing
and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

e If wedeclaredci ti es.nanme tobe UNI QUE or aPRI MARY KEY, thiswould not stopthecapi tal s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci ti es. In fact, by default capi t al s would have no unique
congtraint at al, and so could contain multiple rows with the same name. You could add a unique
congtraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if we were to specify that ci t i es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative

partitioning. Considerable careis needed in deciding whether partitioning with legacy inheritanceis useful
for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

e Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more likely
that the heavily-used parts of the indexes fit in memory.

86

Data Definition

» When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTI TI ON or dropping
an individua partition using DROP TABLE is far faster than a bulk operation. These commands also
entirely avoid the VACUUMoverhead caused by a bulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which atable will benefit from partitioning depends on the application, although arule of thumb
isthat the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:

Range Partitioning
The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning
Thetableis partitioned by explicitly listing which key values appear in each partition.

If your application needs to use other forms of partitioning not listed above, aternative methods such as
inheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

PostgreSQL offers a way to specify how to divide a table into pieces called partitions. The table that is
divided isreferred to as a partitioned table. The specification consists of the partitioning method and alist
of columns or expressions to be used as the partition key.

All rows inserted into a partitioned table will be routed to one of the partitions based on the value of the
partition key. Each partition has a subset of the data defined by its partition bounds. Currently supported
partitioning methods include range and list, where each partition is assigned a range of keys and alist of
keys, respectively.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning. Partitions
may have their own indexes, constraints and default values, distinct from those of other partitions. Indexes
must be created separately for each partition. See CREATE TABLE for more detail son creating partitioned
tables and partitions.

It is not possible to turn aregular table into a partitioned table or vice versa. However, it is possible to
add aregular or partitioned table containing data as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more about the
ATTACH PARTI Tl ONand DETACH PARTI Tl ON sub-commands.

Individual partitions are linked to the partitioned table with inheritance behind-the-scenes; however, it
is not possible to use some of the inheritance features discussed in the previous section with partitioned
tables and partitions. For example, a partition cannot have any parents other than the partitioned table
it is a partition of, nor can a regular table inherit from a partitioned table making the latter its parent.
That means partitioned tables and partitions do not participate in inheritance with regular tables. Since a
partition hierarchy consisting of the partitioned table and its partitionsis still an inheritance hierarchy, all
the normal rules of inheritance apply as described in Section 5.9 with some exceptions, most notably:

87

Data Definition

e Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO | NHERI T are not allowed to be created on partitioned tables.

e Using ONLY to add or drop a constraint on only the partitioned table is supported when there are no
partitions. Once partitions exist, using ONLY will result in an error as adding or dropping constraints on
only the partitioned table, when partitions exist, is not supported. Instead, constraints can be added or
dropped, when they are not present in the parent table, directly on the partitions. As a partitioned table
does not have any data directly, attempts to use TRUNCATE ONLY on a partitioned table will always
return an error.

* Partitions cannot have columnsthat are not present in the parent. It isneither possibleto specify columns
when creating partitionswith CREATE TABLE nor isit possible to add columnsto partitions after-the-
fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... ATTACH
PARTI TI ONonly if their columns exactly match the parent, including any oi d column.

* You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in the
parent table.

Partitions can also be foreign tables (see CREATE FOREIGN TABLE), athough these have some
limitations that normal tables do not. For example, data inserted into the partitioned table is not routed
to foreign table partitions.

5.10.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

CREATE TABLE neasurement (

city id int not null,
| ogdat e date not null,
peakt enmp int,

uni t sal es i nt

)

We know that most queries will accessjust the last week's, month's or quarter's data, since the main use of
thistable will beto prepare online reports for management. To reduce the amount of old data that needsto
be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet al of our
different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1. Create measur enent table as a partitioned table by specifying the PARTI TI ON BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition

key.

CREATE TABLE neasur enent (
city_ id int not null,
| ogdat e date not null,
peakt enp int,
uni t sal es i nt

) PARTI TI ON BY RANGE (| ogdate);

Y ou may decide to use multiple columnsin the partition key for range partitioning, if desired. Of course,
thiswill often result in alarger number of partitions, each of whichisindividually smaller. On the other

88

Data Definition

hand, using fewer columns may lead to a coarser-grained partitioning criteria with smaller number of
partitions. A query accessing the partitioned table will have to scan fewer partitions if the conditions
involve some or al of these columns. For example, consider a table range partitioned using columns
| ast nane andf i r st name (in that order) as the partition key.

. Create partitions. Each partition's definition must specify the bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition’'s values
will overlap with those in one or more existing partitions will cause an error. Inserting data into the
parent table that does not map to one of the existing partitions will cause an error; an appropriate
partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify atablespace and storage parameters for each partition separately.

It is not necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification whenever
thereis need to refer to them.

CREATE TABLE neasurenent _y2006nD2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01") TO (' 2006-03-01");

CREATE TABLE neasurenent _y2006nD3 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-03-01") TO (' 2006-04-01");

CREATE TABLE neasurenent _y2007mL1l PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-11-01") TO ('2007-12-01");

CREATE TABLE neasurenent _y2007mL2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenent _y2008nD1 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (paral |l el _workers = 4)
TABLESPACE f astt abl espace;

To implement sub-partitioning, specify the PARTI TI ON BY clause in the commands used to create
individual partitions, for example:

CREATE TABLE neasur enent _y2006n0D2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any data inserted into neasur enment
that is mapped to neasurenent _y2006n02 (or data that is directly inserted into
nmeasur enent _y2006nm02, provided it satisfiesits partition constraint) will be further redirected to
one of its partitions based on the peakt enp column. The partition key specified may overlap with
the parent's partition key, although care should be taken when specifying the bounds of a sub-partition
such that the set of data it accepts constitutes a subset of what the partition's own bounds allows; the
system does not try to check whether that's really the case.

. Create an index on the key column(s), as well as any other indexes you might want for every partition.
(Thekey index is not strictly necessary, but in most scenariosit is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

CREATE | NDEX ON neasur enent _y2006n0D2 (| ogdate);

89

Data Definition

CREATE | NDEX ON neasur enent _y2006n03 (| ogdate);

CREATE | NDEX ON neasur enent _y2007nmll (| ogdate);
CREATE | NDEX ON neasur enent _y2007nml2 (| ogdate);
CREATE | NDEX ON neasur enent _y2008n0D1 (| ogdate);
4. Ensure that the constraint_exclusion configuration parameter is not disabled in post gr esql . conf .
If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table are not intended to remain static.
It iscommon to want to remove old partitions of dataand periodically add new partitionsfor new data. One
of the most important advantages of partitioning is precisely that it allows this otherwise painful task to
be executed nearly instantaneously by manipulating the partition structure, rather than physically moving
large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:
DROP TABLE neasur enent _y2006n02;

This can very quickly delete millions of records because it doesn't haveto individually delete every record.
Note however that the above command requirestaking an ACCESS EXCLUSI VE lock on the parent table.

Another option that is often preferableisto remove the partition from the partitioned table but retain access
toit asatableinitsown right:

ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006nD2;

This allows further operations to be performed on the data before it is dropped. For example, thisis often
auseful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful timeto
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add anew partition to handle new data. We can create an empty partition in the partitioned
table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008n0D2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to
it appearing in the partitioned table:

CREATE TABLE neasur enent _y2008nD2
(LI KE measurenent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nD2
CHECK (| ogdate >= DATE ' 2008-02-01" AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent_y2008n02 from ' nmeasurenent y2008n0D2'

90

Data Definition

possi bly some other data preparati on work

ALTER TABLE neasurenment ATTACH PARTI TI ON nmeasur ement _y2008n02

FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

Before running the ATTACH PARTI TI ON command, it is recommended to create a CHECK constraint
on the table to be attached matching the desired partition constraint. That way, the system will be ableto
skip the scan to validate the implicit partition constraint. Without the CHECK constraint, the table will be
scanned to validate the partition constraint while holding an ACCESS EXCLUSI VE lock on the parent
table. It may be desired to drop the redundant CHECK constraint after ATTACH PARTI TI ONisfinished.

5.10.2.3.

Limitations

The following limitations apply to partitioned tables:

5.10.3.

There is no facility available to create the matching indexes on all partitions automatically. Indexes
must be added to each partition with separate commands. This also means that there is no way to create
a primary key, unique constraint, or exclusion constraint spanning all partitions; it is only possible to
constrain each leaf partition individually.

Since primary keys are not supported on partitioned tables, foreign keys referencing partitioned tables
are not supported, nor are foreign key references from a partitioned table to some other table.

Usingthe ON CONFLI CT clausewith partitioned tableswill cause an error, because unique or exclusion
constraints can only be created on individual partitions. There is no support for enforcing uniqueness
(or an exclusion constraint) across an entire partitioning hierarchy.

An UPDATE that causes arow to move from one partition to another fails, because the new value of the
row fails to satisfy the implicit partition constraint of the original partition.

Row triggers, if necessary, must be defined on individual partitions, not the partitioned table.

Mixing temporary and permanent relations in the same partition tree is not alowed. Hence, if the
partitioned tableis permanent, so must beits partitionsand likewiseif the partitioned tableistemporary.
When using temporary relations, all members of the partition tree have to be from the same session.

Implementation Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where amore flexible approach may be useful. Partitioning can beimplemented using table
inheritance, which allowsfor several features which are not supported by declarative partitioning, such as:

Partitioning enforces arule that al partitions must have exactly the same set of columns as the parent,
but table inheritance allows children to have extra columns not present in the parent.

Table inheritance allows for multiple inheritance.

Declarative partitioning only supportslist and range partitioning, whereas table inheritance allows data
to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion is unable
to prune partitions effectively, query performance will be very poor.)

Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, adding or removing a partition to or from a partitioned table requires taking
an ACCESS EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE EXCLUSI VE lock
is enough in the case of regular inheritance.

91

Data Definition

5.10.3.1. Example

We use the same measur enent table we used above. To implement it as a partitioned table using

inheritance, use the following steps:

1. Create the “master” table, from which all of the partitions will inherit. This table will contain no data.
Do not define any check constraints on this table, unless you intend them to be applied equally to all
partitions. Thereisno point in defining any indexes or unique constraintson it, either. For our example,
the master tableisthe measur enent table as originally defined.

2. Create severa “child” tablesthat each inherit from the master table. Normally, these tables will not add
any columns to the set inherited from the master. Just as with declarative partitioning, these partitions
arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasur enment _y2006n02 ()
CREATE TABLE neasur enment _y2006n03 ()

CREATE TABLE neasurenent _y2007nill ()
CREATE TABLE neasurenment _y2007nl2 ()
CREATE TABLE neasurenment _y2008n01 ()

| NHERI TS (measurenent);
| NHERI TS (measurenent);

| NHERI TS (measurenent);
| NHERI TS (measurenent);
| NHERI TS (measurenent);

3. Add non-overlapping table constraints to the partition tables to define the allowed key values in each

partition.
Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',

"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake isto set up range constraints like:

CHECK (outletl D BETWEEN 100 AND 200)
CHECK (outletl D BETWEEN 200 AND 300)

Thisiswrong sinceit is not clear which partition the key value 200 belongsin.

It would be better to instead create partitions as follows:

CREATE TABLE neasur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006-02-01' AND | ogdate < DATE

' 2006- 03-01')
) I NHERI TS (neasurenent);

CREATE TABLE neasur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE

' 2006- 04-01')
) I NHERI TS (neasurenent);

CREATE TABLE neasur enent _y2007nill (

CHECK (| ogdate >= DATE '2007-11-01' AND | ogdate < DATE

'2007-12-01')
) I NHERI TS (neasurenent);

92

Data Definition

CREATE TABLE measur enent _y2007nil2 (

CHECK (| ogdate >= DATE ' 2007-12-01'" AND | ogdate < DATE
' 2008-01-01")
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008-02-01")
) INHERI TS (neasurenent);
. For each partition, create an index on the key column(s), as well as any other indexes you might want.

CREATE | NDEX measur enent _y2006n02_| ogdat e ON nmeasur enment _y2006n02

(1 ogdate);
CREATE | NDEX measur enent _y2006n03_| ogdat e ON neasur enment _y2006n03

(1 ogdate);
CREATE | NDEX measur enent _y2007nll_| ogdat e ON nmeasur enment _y2007ni1l

(1 ogdate);
CREATE | NDEX measur enent _y2007nl2_| ogdat e ON neasur enment _y2007ni2

(1 ogdate);
CREATE | NDEX measur enent _y2008n01_| ogdat e ON neasur enment _y2008n01

(1 ogdate);
. We want our application to be ableto say | NSERT | NTO neasurenent ... and havethe data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If datawill be added only to the latest partition, we can use avery simple
trigger function:

CREATE OR REPLACE FUNCTI ON nmeasurement _i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurement _trigger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE PROCEDURE neasurenent insert _trigger();

We must redefine the trigger function each month so that it always points to the current partition. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON measurement _i nsert _trigger()
RETURNS TRI GGER AS $%
BEG N
| F (NEWI ogdate >= DATE ' 2006- 02- 01" AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
I NSERT | NTO nreasur enent _y2006n02 VALUES (NEW *);
ELSIF (NEW | ogdat e >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN

93

Data Definition

I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

ELSIF (NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;
$$
LANGUAGE pl pgsdl ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger's tests in the same order asin
other parts of this example.

A different approach to redirecting inserts into the appropriate partition table isto set up rules, instead
of atrigger, on the master table. For example:

CREATE RULE neasurenent _insert_y2006nmD2 AS
ON I NSERT TO measur enment WHERE

(| ogdate >= DATE ' 2006-02-01'" AND | ogdate < DATE ' 2006-03-01')
DO | NSTEAD

| NSERT | NTO nmeasur enent _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008nmD1 AS
ON I NSERT TO measur enent WHERE

(| ogdate >= DATE ' 2008-01-01'" AND | ogdate < DATE ' 2008-02-01')
DO | NSTEAD

I NSERT | NTO nmeasur enent _y2008n01 VALUES (NEW *);

A rule hassignificantly more overhead than atrigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however,
the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no ssmple way to force an error if the set of
rules doesn't cover the insertion date; the datawill silently go into the master table instead.

. Ensure that the constraint_exclusion configuration parameter is not disabled in post gr esql . conf .
If itis, querieswill not be optimized as desired.

94

Data Definition

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Partition Maintenance
To remove old data quickly, simply drop the partition that is no longer necessary:
DROP TABLE neasurenent _y2006n02;
To remove the partition from the partitioned table but retain accessto it asatableinits own right:
ALTER TABLE neasurenent _y2006n02 NO I NHERI T neasurenent ;

To add a new partition to handle new data, create an empty partition just as the origina partitions were
created above:

CREATE TABLE neasur ement _y2008n02 (
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008- 03-01')
) INHERI TS (neasurenent);

Alternatively, one may want to create the new table outside the partition structure, and make it a partition
after the datais loaded, checked, and transformed.

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasur enent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;

ALTER TABLE neasurenent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE

' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'

-- possibly sonme other data preparation work

ALTER TABLE neasur enent _y2008nD2 | NHERI T nmeasur enent ;

5.10.3.3. Caveats

The following caveats apply to partitioned tables implemented using inheritance:

» Thereisno automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates partitions and creates and/or modifies associated objects than to write each
by hand.

» The schemes shown here assume that the partition key column(s) of arow never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the partition tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them on
each partition individually. A command like:

ANALYZE neasur enment ;
will only process the master table.

e | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not its
child relations.

95

Data Definition

 Triggersor ruleswill be needed to route rowsto the desired partition, unless the application is explicitly
aware of the partitioning scheme. Triggers may be complicated to write, and will be much slower than
the tuple routing performed internally by declarative partitioning.

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above (both declaratively partitioned tables and those implemented using
inheritance). As an example:

SET constrai nt_excl usi on = on;
SELECT count (*) FROM neasur enent WHERE | ogdate >= DATE ' 2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measur enent
table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query's
VWHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
const rai nt _excl usi on on and a plan with it off. A typical unoptimized plan for this type of table
setupis:

SET constraint_exclusion = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 w dt h=0)
-> Append (cost=0.00..151.88 rows=2715 wi dt h=0)
-> Seq Scan on neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2006nm02 neasurenent
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2006nm03 neasur enment
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent _y2007nml2 neasur enent
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2008nmD1 neasurenent
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or al of the partitions might useindex scans instead of full-table sequential scans, but the point here
isthat thereis no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constrai nt_excl usi on = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

96

Data Definition

Aggregate (cost=63.47..63.48 rows=1 wi dt h=0)
-> Append (cost=0.00..60.75 rows=1086 wi dt h=0)
-> Seq Scan on neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2008nmD1 neasur enment
(cost=0.00. . 30. 38 rows=543 w dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Thereforeit isn't necessary to defineindexes on the key columns. Whether an index needsto be created for
a given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just asmall part. Anindex will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of f, but an
intermediate setting called par t i t i on, which causes the technique to be applied only to queriesthat are
likely to beworking on partitioned tables. The on setting causesthe planner to examine CHECK constraints
inal queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion, which is used by both inheritance and partitioned
tables:

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TI MESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-tree-
indexable operators, which applies even to partitioned tables, because only B-tree-indexable column(s)
are allowed in the partition key. (Thisis not a problem when using declarative partitioning, since the
automatically generated constraints are simple enough to be understood by the planner.)

» All constraints on all partitions of the master table are examined during constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably. Partitioning using these
techniques will work well with up to perhaps a hundred partitions; don't try to use many thousands of
partitions.

5.10.5. Declarative Partitioning Best Practices

The choice of how to partition a table should be made carefully as the performance of query planning and
execution can be negatively affected by poor design.

One of the most critical design decisionswill be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear
in WHERE clauses of queries being executed on the partitioned table. WHERE clause items that match and
are compatible with the partition key can be used to prune unneeded partitions. Removal of unwanted data
is also afactor to consider when planning your partitioning strategy. An entire partition can be detached
fairly quickly, so it may be beneficial to design the partition strategy in such a way that al data to be
removed at onceislocated in asingle partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision to
make. Not having enough partitions may mean that indexes remain too large and that datalocality remains

97

Data Definition

5.11

poor which could result in low cache hit ratios. However, dividing the table into too many partitions
can also cause issues. Too many partitions can mean longer query planning times and higher memory
consumption during both query planning and execution. When choosing how to partition your table, it's
also important to consider what changes may occur in the future. For example, if you choose to have one
partition per customer and you currently have asmall number of large customers, consider theimplications
if in several yearsyou instead find yourself with alarge number of small customers. In this case, it may be
better to choose to partition by RANGE and choose a reasonable number of partitions, each containing a
fixed number of customers, rather than tryingto partition by L1 ST and hoping that the number of customers
does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions, although excessive sub-partitioning can easily lead to large numbers of partitions and can cause
the same problems mentioned in the preceding paragraph.

It is also important to consider the overhead of partitioning during query planning and execution. The
guery planner isgenerally ableto handle partition hierarchieswith up to afew hundred partitions. Planning
times become longer and memory consumption becomes higher as more partitions are added. This is
particularly truefor the UPDATE and DEL ETE commands. Another reason to be concerned about having a
large number of partitionsisthat the server's memory consumption may grow significantly over aperiod of
time, especialy if many sessions touch large numbers of partitions. That's because each partition requires
its metadata to be loaded into the local memory of each session that touchesit.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload,
it isimportant to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never assume that more partitions are better than fewer partitions and vice-versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are atype of constraint within the database.)

Foreign datais accessed with help from aforeign data wrapper. A foreign datawrapper isalibrary that can
communicate with an external data source, hiding the details of connecting to the data source and obtaining
datafromit. There are someforeign datawrappersavailableascont ri b modules; see Appendix F. Other
kinds of foreign data wrappers might be found as third party products. If none of the existing foreign data
wrappers suit your needs, you can write your own; see Chapter 56.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of theremote data. A foreign
table can be used in queries just like a normal table, but aforeign table has no storage in the PostgreSQL
server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the external
source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

98

Data Definition

5.12. Other Database Objects

5.13

Tables are the central objectsin arelationa database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use
and management of the data more efficient or convenient. They are not discussed in this chapter, but we
giveyou alist here so that you are aware of what is possible:

* Views

 Functions and operators

» Datatypes and domains
 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objectsthat other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.3.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on
tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objectswill be removed, aswill any objectsthat depend on them, recursively. In this
case, it doesn't remove the orderstable, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will
do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRI CT instead of
CASCADE to get the default behavior, which isto prevent dropping objects that any other objects depend
on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE isrequired in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

99

Data Definition

If aDROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence of aforeign
key referencing t ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with afunction'sexternally-visible
properties, such as its argument and result types, but not dependencies that could only be known by
examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
‘green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUAGE SQ@.;

(See Section 37.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function depends on the r ai nbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todepend onthemy_col or s table, and so will not drop the function if the tableis
dropped. While there are disadvantages to this approach, there are also benefits. The functionis still valid
in some sense if the table is missing, though executing it would cause an error; creating anew table of the
same name would allow the function to work again.

100

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it istime
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atable is created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To createanew row, usethe INSERT command. The command requiresthetable name and column values.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

);
An example command to insert arow would be:
| NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To avoid
thisyou can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

I NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
9.99);

| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99,
1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the | eft with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

I NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;
| NSERT | NTO products DEFAULT VALUES;

101

Data Manipulation

Y ou can insert multiple rowsin a single command:

| NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

| NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting alot of data at the same time, consider using the COPY command. Itisnot
asflexible asthe INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

Themodification of datathat isalready inthe databaseisreferred to asupdating. Y ou can updateindividual
rows, all the rows in atable, or a subset of al rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Thereforeit is
not always possible to directly specify which row to update. Instead, you specify which conditions arow
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access toolsrely on thisfact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let'slook at that command in detail. First isthe key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of al products by
10% you could use:

UPDATE products SET price = price * 1.10;

102

Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clauseisan
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean resullt.

Y ou can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss how
to remove data that is no longer needed. Just as adding datais only possible in whole rows, you can only
remove entire rows from atable. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify
the exact row. But you can also remove groups of rows matching a condition, or you can remove all rows
in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM products;

then all rowsin the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimesit is useful to obtain datafrom modified rows while they are being manipulated. The | NSERT,
UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use of
RETURNI NG avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNI NG * , which selects all columns of the target table in order.

Inan| NSERT, thedataavailableto RETURNI NGistherow asit wasinserted. Thisisnot so useful intrivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using aser i al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnane text, id serial primary
key);

I NSERT | NTO users (firstnanme, |astname) VALUES ('Joe', 'Cool")
RETURNI NG i d;

103

Data Manipulation

The RETURNI NG clauseis also very useful with | NSERT ... SELECT.
In an UPDATE, the data available to RETURNI NGis the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
VWHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM products
WHERE obsol etion_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 38) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case for
RETURNI NG

104

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wit h_queries] SELECT select_list FROMtabl e_expression
[sort _specification]

Thefollowing sections describe the detail s of the select list, the table expression, and the sort specification.
W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM t abl el;

Assuming that thereisatable caled t abl el, thiscommand would retrieve all rows and all user-defined
columnsfromt abl el. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functionsto extract
individual values from the query result.) The select list specification * means al columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl e1 has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tabl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimplekind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4,

Thisis more useful if the expressions in the select list return varying results. For example, you could call
afunction thisway:

SELECT randon();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions smply refer to atable
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transformations
produce avirtual table that provides the rows that are passed to the select list to compute the output rows
of the query.

105

Queries

7.2.1. The FROMClause

The FROMClause derives atable from one or more other tables given in acomma-separated table reference
list.

FROM tabl e_reference [, table_reference [, ...]]

A tablereference can be atable name (possibly schema-qualified), or aderived table such asasubquery, a
JA Nconstruct, or complex combinations of these. If more than one table reference is listed in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FROMIist is an intermediate virtual table that can then be subject to transformations by the
VWHERE, GROUP BY, and HAVI NG clauses and isfinally the result of the overall table expression.

When atable reference names atabl e that isthe parent of atableinheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write* after the table name to explicitly specify
that descendant tables are included. Thereis no real reason to use this syntax any more, because searching
descendant tablesis now alwaysthe default behavior. However, it issupported for compatibility with older
releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (rea or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined table is

Tl join_type T2 [join_condition]

Joins of &l types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control the join order. In the absence of parentheses,
JOA Nclauses nest | eft-to-right.

Join Types
Crossjoin
T1 CRCSS JON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain arow consisting of all columnsin T1 followed by all columnsin T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivadentto FROM T1 INNER JON T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear,
because JO Nbindsmoretightly than comma. For example FROM T1 CROSS JO N
T2 INNER JO N T3 ON condi ti onisnotthesameasFROM T1, T2 | NNER
JO N T3 ON conditi on becausethecondi ti on canreference T1 inthefirst
case but not the second.

106

Queries

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

ON bool ean_expressi on

T1 { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

The words | NNER and OUTER are optional in al forms. | NNER is the default; LEFT, Rl GHT, and
FULL imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are;

I NNER JO N
For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT QUTER JO N
First, aninner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null values in columns of T2. Thus, the joined
table aways has at least one row for each row in T1.

Rl GHT QUTER JO N
First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, ajoined row is added with null valuesin columns of T1. Thisisthe converse
of aleft join: the result table will always have arow for each row in T2.

FULL QUTER JO N
First, aninner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null valuesin columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, ajoined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind asis used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list
of the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) producesthejoinconditionON T1. a
= T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: thereisno need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of
the listed column pairs (in the listed order), followed by any remaining columns from T1, followed
by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG it forms a USI NGist consisting of all column
names that appear in both input tables. Aswith USI NG, these columns appear only once in the output
table. If there are no common column names, NATURAL JO NbehaveslikeJO N ... ON TRUE,
producing a cross-product join.

107

Queries

Note

USI NGis reasonably safe from column changes in the joined relations since only the
listed columns are combined. NATURAL is considerably more risky since any schema
changes to either relation that cause a new matching column name to be present will
cause the join to combine that new column as well.

To put this together, assume we have tablest 1:

then we get the following results for the various joins:

=> SELECT * FROMt1l CROSS JO N t 2;
num| name | num| val ue

T WWWNNNRP, R PP
<
<
<

7
~0 00T UT® 9O

(9

=> SELECT * FROMt1 INNER JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1 INNER JO N t2 USING (num;
num | nane | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROM t1l NATURAL INNER JO N t 2;

108

Queries

num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USI NG (nunj;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
3| ¢ | 31 yyy

| | 51| zzz
(4 rows)

Thejoin condition specified with ON can a so contain conditionsthat do not relate directly to thejoin. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| name | num| val ue
----- Ty
1| a | 1| xxx
2] b | |
3] c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1 LEFT JONt2 ON t1.num = t2. num WHERE t 2. val ue =

XXX

109

Queries

Thisisbecause arestriction placed in the ON clause is processed before the join, while arestriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a
lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. Thisis called atable alias.

To create atable alias, write

FROM t abl e_reference AS alias

or

FROM t abl e_reference alias

The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very_long_table nanme s JON
another _fairly_long_nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsawhere in the query. Thus, thisis not valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining atable
to itself, e.q.:

SELECT * FROM peopl e AS nother JO N people AS child ON nother.id =
chi I d. not her _i d;

Additionally, an aliasisrequired if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, thefirst statement assignsthe dias
b to the second instance of ny_t abl e, but the second statement assignsthe alias to the result of the join:

SELECT * FROM ny_table AS a CROSS JON ny _table AS b ...
SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing givestemporary namesto the columns of thetable, aswell asthetableitself:
FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

110

Queries

When an alias is applied to the output of a JO N clause, the alias hides the original name(s) within the
JA N. For example:

SELECT a.* FROM ny_table AS a JO N your _table AS b ON ...
isvalid SQL, but:
SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) AS c

isnot valid; thetable alias a is not visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned atable aias
name (asin Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

Thisexampleisequivalentto FROM t abl el AS al i as_nane. Moreinteresting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aliasis required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like atable, view, or subquery in the FROMclause of
a query. Columns returned by table functions can be included in SELECT, JO N, or WHERE clauses in
the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the ROAS FROMsyntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WTH ORD NALITY] [[AS] table_alias [(columm_alias

[, .. DII
ROAS FROM function_call [, ...]) [WTH ORDI NALI TY]

[[AS] table_alias [(colum_alias [, ... 1)]]

If the W TH ORDI NALI TY clause is specified, an additional column of type bi gi nt will be added to
thefunction result columns. This column numbersthe rows of the function result set, starting from 1. (This

is a generalization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.) By default,
the ordinal column is called or di nal i t y, but a different column name can be assigned to it using an
AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table_alias [(colum_alias [, ...])]11]

111

Queries

If notabl e_al i as is specified, the function name is used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis also
the same as the function name. For afunction returning a composite type, the result columns get the names
of theindividua attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $3%
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQ.;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
VWHERE f oosubid I N (
SELECT foosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

);

CREATE VI EW vw _getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_get f 00;

In some casesit is useful to define table functions that can return different column sets depending on how
they areinvoked. To support this, the table function can be declared asreturning the pseudo-typer ecor d.
When such afunction is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (colum_definition [, ...])
ROA5 FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the ROAS FROM) syntax, the col umm_def i ni ti on list replaces the column alias
list that could otherwise be attached to the FROMitem; the namesin the column definitions serve as column
aliases. When using the ROA5S FROM) syntax, acol unm_defi ni ti on list can be attached to each
member function separately; or if thereisonly one member function and noW TH ORDI NALI TY clause,
acol um_defi ni ti on list can be written in place of acolumn aiaslist following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM pg _proc')
AS t1(proname nane, prosrc text)
VWHERE pronane LI KE 'bytea%;

The dblink function (part of the dblink module) executes aremote query. It isdeclared to returnr ecor d
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

7.2.1.5. LATERAL Subqueries

112

Queries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This alows them to
reference columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan al so be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or within aJO Ntree. In the latter case it can
also refer to any items that are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each row of
the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROMitems providing
the columns, the LATERAL item is evaluated using that row or row set's values of the columns. The
resulting row(s) are joined as usual with the rows they were computed from. Thisis repeated for each row
or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisis not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo. bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s) to
bejoined. A common application is providing an argument val ue for aset-returning function. For example,
supposing that ver t i ces(pol ygon) returns the set of vertices of a polygon, we could identify close-
together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

or in severa other equivalent formulations. (As already mentioned, the LATERAL key word isunnecessary
in this example, but we useit for clarity.)

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product _names() returns the names of products made by a manufacturer, but some
manufacturersin our table currently produce no products, we could find out which onesthose arelike this:

SELECT m name
FROM manuf acturers m LEFT JO N LATERAL get product _nanes(m i d) pnamne
ON true

113

Queries

7.2.2.

WHERE pnanme | S NULL;

The WHERE Clause

The syntax of the WHERE Clauseis
WHERE sear ch_condition

where sear ch_condi ti on is any value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROMclause is done, each row of the derived virtua table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause
will befairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the
JA Nclause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROMa INNER JON b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JON b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROM
clauseisprobably not as portableto other SQL database management systems, even though
itisinthe SQL standard. For outer joinsthereis no choice: they must be donein the FROM
clause. The ON or USI NG clause of an outer join is not equivalent to a WHERE condition,
becauseit resultsin the addition of rows (for unmatched input rows) aswell asthe removal
of rowsin thefinal result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROMfdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 = fdt.cl +
10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t 2 WHERE c2 =

fdt.cl + 10) AND 100

114

Queries

7.2.3.

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 > fdt.c1l)

f dt isthe table derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt is referenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column in
the derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. Thisexample shows how the column naming scope of an outer query extendsintoitsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVI NG clause.

SELECT select _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col umm_r ef erence
[, grouping_colum_reference]...

The GROUP BY Clauseis used to group together those rowsin atable that have the same valuesin all the
columns listed. The order in which the columns are listed does not matter. The effect isto combine each
set of rows having common values into one group row that represents all rowsin the group. Thisis done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM test1;

x|y
[
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a

b

c

(3 rows)

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, becausethere
isno single valuefor the columny that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In generad, if atableis grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressionsis:

=> SELECT x, sun{y) FROMtest1l GROUP BY X;

X | sum
i,
a | 4
b | 5
c | 2

115

Queries

(3 rows)

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin
acolumn. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sun(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct _i d, p. nane, and p. pri ce must bein the GROUP BY clause
since they are referenced in the query select list (but see below). The column s. uni t s does not have to
beinthe GROUP BY list sinceitisonly used in an aggregate expression (sunt . . .)), which represents
the sales of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, pr oduct _i d isthe primary key, then it would be enough to
group by pr oduct _i d in the above example, since name and price would be functionally dependent
on the product 1D, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column namesis also alowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressions in the HAVI NG clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sunm(y) FROM testl GROUP BY x HAVI NG sun(y) > 3;
X | sum

i,
a | 4
b | 5
(2 rows)

=> SELECT x, sunm(y) FROM testl GROUP BY x HAVING x < 'c';
X | sum

116

Queries

7.2.4.

i,
a | 4
b | 5
(2 rows)

Again, amore realistic example:

SELECT product _id, p.name, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sales s USI NG (product _id)
WHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the exampl e above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVI NG clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
asingle group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG). The same
istrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FROMand VWHERE clauses is grouped separately by each specified grouping
set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ .
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun(sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ e
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columns or expressions and isinterpreted the
same way asthough it were directly inthe GROUP BY clause. An empty grouping set means that all rows
are aggregated down to asingle group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

117

Queries

References to the grouping columns or expressions are replaced by null valuesin result rows for grouping
setsin which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivaent to

GROUPI NG SETS (

(el, e2, e3, ...),
(el, e2),

(el),

()

)

Thisis commonly used for analysis over hierarchical data; e.g. total salary by department, division, and
company-wide total.

A clause of theform

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e. the power set). Thus
CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (

(a b, c),
(a b)
(a, c),
(a)
(b, ¢c),
(b)
(c),
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPI NG SETS (
(a b, c, d),
(a b)
(c, d),
()

118

Queries

7.2.5.

)

and

ROLLUP (a, (b, c), d)
isequivalent to

GROUPI NG SETS (
(a b, c, d)
(a b, c),

(a)

()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
aGROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the effect is the
same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping sets
isthe cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

Note

Theconstruct (a, b) isnormally recognized in expressions as arow constructor. Within
the GROUP BY clause, this does not apply at the top levels of expressions, and (a, b)
is parsed as a list of expressions as described above. If for some reason you need a row
constructor in agrouping expression, use RON a, b).

Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if the
guery uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions are the
group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated in
asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does
not uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTI TI ON BY or ORDER BY specifications. (In such cases a sort step is typicaly
required between the passes of window function evaluations, and the sort is not guaranteed to preserve
ordering of rowsthat its ORDER BY sees as equivalent.)

119

Queries

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clauseif you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

7.3.2.

Asshown in the previous section, the table expression in the SEL ECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

Select-List Iltems

Thesimplest kind of select listis* which emitsall columnsthat the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:
SELECT tbhl1l.a, thl2.a, thll.b FROM...

When working with multiple tables, it can aso be useful to ask for all the columns of a particular table:
SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. Thevalue expression isevaluated once for each result row, with the row's val ues substituted
for any column references. But the expressions in the select list do not have to reference any columnsin
the table expression of the FROMclause; they can be constant arithmetic expressions, for instance.

Column Labels

Theentriesin the select list can be assigned namesfor subsequent processing, such asfor usein an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

120

Queries

SELECT a value, b + ¢ AS sum FROM . ..
but this does:
SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in
the select list is the one that will be passed on.

7.3.3. DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

SELECT DI STI NCT sel ect _1i st

(Instead of DI STI NCT thekey word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DI STI NCT ON (expression [, expression ...]) select list

Hereexpr essi on isan arbitrary value expression that is evaluated for al rows. A set of rowsfor which
all the expressions are equa are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT ON processing
occurs after ORDER BY sorting.)

TheDl STI NCT ONclauseisnot part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueriesin
FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

qgueryl UNION [ALL] query?2
queryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

quer yl andquer y2 arequeriesthat can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

121

Queries

queryl UNI ON query2 UNI ON query3
which is executed as:
(queryl UNI ON query2) UNI ON query3

UNI ON effectively appendstheresult of quer y2 to theresult of quer y1 (although thereis no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
fromitsresult, in the sameway as DI STI NCT, unlessUNI ON ALL isused.

| NTERSECT returnsall rowsthat are bothintheresult of quer y1 andintheresult of quer y2. Duplicate
rows are eliminated unless| NTERSECT ALL is used.

EXCEPT returns al rows that are in the result of quer y1 but not in the result of query?2. (Thisis
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”’, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An exampleis:
SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the
sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller values
first, where“smaller” isdefined in terms of the < operator. Similarly, descending order is determined with
the > operator.

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort asif larger than any non-null value;
thatis, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, whichisnot the same as ORDER BY x
DESC, y DESC.

1 Actualy, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

122

Queries

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM t abl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name hasto stand aone, that is,
it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum + c; -- wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item isasimple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. Thiswould only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in this
caseit is only permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT sel ect _|i st
FROM t abl e_expressi on
[ORDER BY ...]
[LIMT { nunmber | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LI M T ALL is the same as omitting the LI M T clause, asisLI M T with a
NULL argument.

OFFSET saysto skip that many rows before beginning to return rows. OFFSET 0 isthe same as omitting
the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the LIM T
rows that are returned.

When using LI M T, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows. Y ou might be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takesLI M T into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you givefor LI M T and OFFSET. Thus,
using different LI M T/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. Thisisnot abug; itisan inherent
conseguence of the fact that SQL does not promise to deliver the results of aquery in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

123

Queries

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generatesarow inthetable. Thelists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
samerules asfor UNI ON (see Section 10.5).

Asan example:
VALUES (1, 'one'), (2, '"two'), (3, '"three');
will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assignsthe namescol unm1, col uim?2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
soit'susually better to override the default names with atable aliaslit, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) ASt

(numletter);
num| letter

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNI ON, or attach a
sort _specification(ORDER BY,LI M T, and/or OFFSET) toit. VALUES is most commonly used

asthe data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

W TH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTESs, can be thought of as defining temporary
tablesthat exist just for one query. Each auxiliary statement in aW TH clause can bea SELECT, | NSERT,
UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that can also be a
SELECT, | NSERT, UPDATE, or DELETE.

124

Queries

7.8.1. SELECT in WTH

Thebasic value of SELECT in W THisto break down complicated queriesinto simpler parts. An example
is:

W TH regi onal _sal es AS (
SELECT region, SUManount) AS total _sales
FROM or der s
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total _sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT regi on,
pr oduct,
SUM quantity) AS product_units,
SUM anount) AS product _sal es
FROM or der s
WHERE region IN (SELECT regi on FROM top_regi ons)
GROUP BY region, product;

which displays per-product salestotalsin only thetop salesregions. The W TH clause definestwo auxiliary
statementsnamed r egi onal _sal es andt op_r egi ons, wherethe output of r egi onal _sal es is
used int op_r egi ons and the output of t op_r egi ons isused in the primary SELECT query. This
exampl e could have been written without W TH, but we'd have needed two levels of nested sub-SELECTSs.
It'sabit easier to follow thisway.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into a feature that
accomplishesthings not otherwise possiblein standard SQL. Using RECURSI VE, aW TH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sum(n) FROM t;

The genera form of arecursive W TH query is always a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain a reference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows. Include
al remaining rows in the result of the recursive query, and aso place them in a temporary working
table.

2. Solong asthe working tableis not empty, repeat these steps:

a. Evauate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and rows

125

Queries

that duplicate any previous result row. Include all remaining rows in the result of the recursive
query, and also place them in atemporary intermediate table.

b. Replacethe contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the
terminology chosen by the SQL standards committee.

In the example above, the working table has just asingle row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful exampleis
thisquery to find all the direct and indirect sub-parts of aproduct, given only atable that showsimmediate
inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"’
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead of
UNI ON ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
acycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or afew fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches atable gr aph usingal i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM sear ch_gr aph;

This query will loop if the | i nk relationships contain cycles. Because we require a “depth” output, just
changing UNI ON ALL to UNI ON'would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again whilefollowing aparticular path of links. We add two columnspat h
and cycl e to the loop-prone query:

126

Queries

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[g.id],
fal se
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_gr aph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[RON(g.f1, g.f2)],
fal se
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1, g.f2),
RONg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
VWHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_graph;

Tip

Omit the RON() syntax in the common case where only one field needs to be checked
to recognize a cycle. This allows a simple array rather than a composite-type array to be
used, gaining efficiency.

Tip

Therecursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query ORDER
BY a*“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in the
parent query. For example, this query would loop forever without theLI M T:

W TH RECURSI VE t (n) AS (

127

Queries

7.8.2.

SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIM T 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try to
fetch al of the W TH query's output anyway.

A useful property of W TH queriesisthat they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling W TH queries. Thus, expensive
calculationsthat are needed in multiple places can be placed within aW THquery to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
guery down into aW TH query than an ordinary subquery. The W TH query will generally be evaluated as
written, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only alimited number of rows.)

The examples above only show W THbeing used with SELECT, but it can be attached in the same way to
| NSERT, UPDATE, or DELETE. In each caseit effectively providestemporary table(s) that can bereferred
to in the main command.

Data-Modifying Statements in W TH

Y ou can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. This alows you to
perform several different operationsin the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM products
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_|I og
SELECT * FROM noved_r ows;

This query effectively movesrowsfrom pr oduct s topr oduct s_I| og. The DELETE in W TH deletes
the specified rows from pr oduct s, returning their contents by means of its RETURNI NG clause; and
then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above exampleisthat the W TH clauseisattached to thel NSERT, not the sub-SELECT
within the | NSERT. This is necessary because data-modifying statements are only alowed in W TH
clauses that are attached to the top-level statement. However, normal W TH visibility rules apply, soitis
possible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown in
the example above. It is the output of the RETURNI NG clause, not the target table of the data-modifying
statement, that formsthe temporary tablethat can bereferred to by therest of the query. If adata-modifying
statement in W THlacks a RETURNI NGclause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is

128

Queries

WTH t AS (
DELETE FROM f 00

)
DELETE FROM bar ;

This example would remove al rows from tablesf oo and bar . The number of affected rows reported to
the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part |IN (SELECT part FROM i ncl uded_parts);

This query would remove al direct and indirect subparts of a product.

Data-modifying statementsin W TH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is carried only
asfar asthe primary query demands its output.

The sub-statementsin W THare executed concurrently with each other and with the main query. Therefore,
when using data-modifying statementsin W TH, the order in which the specified updates actually happen
isunpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“see” one another's effects on the target tables. This alleviates the effects of the unpredictability of the
actua order of row updates, and means that RETURNI NG data is the only way to communicate changes
between different W TH sub-statements and the main query. An example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SEL ECT would return the updated data.

Trying to update the same row twice in asingle statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. Thisalso applies
to deleting arow that was aready updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid

129

Queries

writing W TH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

At present, any table used asthetarget of adata-modifying statement in W THmust not have aconditional
rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

130

Chapter 8. Data Types

PostgreSQL has arich set of native datatypes available to users. Users can add new types to PostgreSQL
using the CREATE TY PE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the aternative names listed in the
“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial 8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

bool ean bool logical Boolean (true/false)

box rectangular box on a plane

byt ea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying|varchar [(n)] variable-length character string

[(n)]

cidr IPv4 or IPv6 network address

circle circleon aplane

date calendar date (year, month, day)

doubl e preci sion float8 double precision floating-point
number (8 bytes)

i net IPv4 or IPv6 host address

i nt eger int,int4 signed four-byte integer

interval [fields] time span

[(p)]

json textual JSON data

j sonb binary JSON data, decomposed

l'ine infinite line on a plane

| seg line segment on a plane

macaddr MAC (Media Access Control)
address

macaddr 8 MAC (Media Access Control)
address (EUI-64 format)

noney currency amount

nuneric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

pat h geometric path on aplane

131

Data Types

Name Aliases Description

pg_I sn PostgreSQL Log Sequence
Number

poi nt geometric point on a plane

pol ygon closed geometric path on aplane

real float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoincrementing two-byte
integer

seri al serial4 autoincrementing four-byte
integer

t ext variable-length character string

time [(p) 1 [wthout time of day (no time zone)

time zone]

time [(p)] with tinejtinetz time of day, including time zone

zone

timestanmp | (p)] date and time (no time zone)

[without time zone]

timestamp [(p)] withftinestamptz date and time, including time zone

time zone

t squery text search query

t svect or text search document

t xi d_snapshot user-level transaction | D snapshot

uui d universally unique identifier

xm XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bi gi nt, bit, bit
varyi ng, bool ean, char, character varying, character, varchar,
dat e, doubl e precision,integer,interval,nuneric, decimal,real,
snal | 'int,time (withorwithouttimezone),t i nest anp (with or without time zone),
xm .

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functionsare not invertible, i.e., the result of an output function might lose accuracy when
compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

132

Data Types

8.1.1.

8.1.2.

Table 8.2. Numeric Types

Name Storage Size Description Range

smal |int 2 bytes small-range integer -32768 to +32767

i nt eger 4 bytes typical choice for integer |-2147483648 to
+2147483647

bi gi nt 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807

deci nal variable user-specified precision,|up to 131072 digits

exact before the decimal point;

up to 16383 digits after
the decimal point

nuneric variable user-specified precision,|up to 131072 digits
exact before the decimal point;
up to 16383 digits after
the decimal point

r eal 4 bytes variable-precision, 6 decimal digits
inexact precision

doubl e precision [8bytes variable-precision, 15 decimal digits
inexact precision

smal | seri al 2 bytes small autoincrementing| 1 to 32767
integer

seri al 4 bytes autoincrementing integer | 1 to 2147483647

bi gseri al 8 bytes large autoincrementing| 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

Integer Types

Thetypessmal | i nt,i nt eger,andbi gi nt storewhole numbers, that is, numberswithout fractional
components, of variousranges. Attemptsto store values outside of the allowed rangewill result in an error.

The typei nt eger isthe common choice, asit offers the best balance between range, storage size, and
performance. Thesnal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt type
is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifies the integer typesi nt eger (ori nt), smal | i nt, and bi gi nt. The type names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ can store numberswith avery large number of digits. It isespecially recommended for
storing monetary amounts and other quantities where exactnessis required. Calculations with nuner i ¢
values yield exact results where possible, e.g. addition, subtraction, multiplication. However, calculations
onnuner i ¢ values are very ow compared to the integer types, or to the floating-point types described
in the next section.

133

Data Types

We use the following terms below: The precision of anuner i ¢ isthetotal count of significant digitsin
thewhole number, that is, the number of digitsto both sides of the decimal point. The scale of anuneri ¢
isthe count of decimal digitsinthefractional part, to theright of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To declare
acolumn of type nurrer i ¢ use the syntax:

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of thiskind will not coerce input values
to any particular scale, whereas numrer i ¢ columns with a declared scale will coerce input values to that
scale. (The SQL standard requires adefault scale of 0O, i.e., coercion to integer precision. Wefind thisabit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERI C without a specified precision is subject to the limits described in Table 8.2.

If the scale of avalue to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digitsto theleft of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nurner i ¢ type
ismore akin to var char (n) thanto char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nuner i ¢ type allows the special value NaN, meaning “ not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE t abl e SET x = ' NaN . Oninput,
the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to
any other numeric value (including NaN). In order to allow nurmrer i ¢ valuesto be sorted
and used in tree-based indexes, PostgreSQL treats NaN values as equal, and greater than
all non-NaN values.

Thetypesdeci nmal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

134

Data Types

8.1.3.

When rounding values, the nuner i ¢ type rounds ties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,

round(x: : numeric) AS numround,

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ e
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 2| 2

2.5 | 3| 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The data types r eal and doubl e preci si on are inexact, variable-precision numeric types. In
practice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the nuner i c type
instead.

« If youwant to do complicated cal culationswith these typesfor anything important, especialy if you rely
on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

» Comparing two floating-point values for equality might not always work as expected.

On most platforms, the r eal type has a range of at least 1E-37 to 1E+37 with a precision of at least
6 decimal digits. The doubl e pr eci si on type typicaly has a range of around 1E-307 to 1E+308
with aprecision of at least 15 digits. Vaues that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note

Theextra_float_digits setting control sthe number of extrasignificant digitsincluded when
afloating point valueis converted to text for output. With the default value of 0, the output
isthe same on every platform supported by PostgreSQL. Increasing it will produce output
that more accurately represents the stored value, but may be unportable.

135

Data Types

8.1.4.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the IEEE 754 specia values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow |EEE 754, these values will
probably not work as expected.) When writing these values as constants in an SQL command, you must
put quotes around them, for example UPDATE table SET x = '-Infinity'.Oninput, these
strings are recognized in a case-insensitive manner.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value
(including NaN). In order to allow floating-point values to be sorted and used in tree-based
indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations f | oat and f | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) tofl oat(24) as sdecting the real type, while fl oat (25) to fl oat (53) select
doubl e preci si on. Values of p outside the allowed range draw an error. f | oat with no precision
specified istaken to mean doubl e preci si on.

Note

The assumption that r eal and doubl e pr eci si on have exactly 24 and 53 bits in
the mantissa respectively is correct for |EEE-standard floating point implementations. On
non-1EEE platformsit might be off alittle, but for simplicity the same ranges of p are used
on al platforms.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column.
Another way is to use the SQL-standard identity column feature, described at CREATE
TABLE.

The datatypes snal | seri al , seri al and bi gseri al arenot true types, but merely a notational
conveniencefor creating uniqueidentifier columns (similar tothe AUTO | NCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)
is equivalent to specifying:
CREATE SEQUENCE t abl enanme_col name_seq AS i nteger;

136

Data Types

CREATE TABLE t abl enane (

col name i nteger NOT NULL DEFAULT nextval ('tabl ename_col name_seq')
)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl ename. col nane;

Thus, we have created an integer column and arranged for its default val ues to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that anull value cannot be inserted. (In most cases
you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note

Becausesnal | seri al ,serial andbi gseri al areimplemented using sequences,
theremay be"holes" or gapsin the sequence of valueswhich appearsin the column, evenif
norowsareever deleted. A valueallocated from the sequenceisstill "used up” evenif arow
containing that valueis never successfully inserted into the tabl e column. This may happen,
for example, if the inserting transaction rolls back. See next val () in Section 9.16 for
details.

Toinsert the next value of the sequenceintotheser i al column, specify that theser i al column should
be assigned its default value. This can be done either by excluding the column from the list of columnsin
the | NSERT statement, or through the use of the DEFAULT key word.

Thetypenamesseri al andseri al 4 are equivalent: both createi nt eger columns. The type names
bi gseri al andseri al 8 work the sameway, except that they createabi gi nt column. bi gseri al
should be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The
typenamessnal | seri al andseri al 2 alsowork the sameway, except that they createasmal | i nt
column.

Thesequencecreated foraseri al columnisautomatically dropped when the owning columnisdropped.
Y ou can drop the sequence without dropping the column, but thiswill force removal of the column default
expression.

8.2. Monetary Types

The noney type stores a currency amount with afixed fractional precision; see Table 8.3. The fractional
precision is determined by the database'slc_monetary setting. The range shown in the table assumesthere
are two fractiona digits. Input is accepted in a variety of formats, including integer and floating-point
literals, as well astypical currency formatting, such as' $1, 000. 00" . Output is generaly in the latter
form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size Description Range

noney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this datatypeislocale-sensitive, it might not work to load noney datainto a database
that has a different setting of | c_nobnet ary. To avoid problems, before restoring a dump into a new
database make surel c_npnet ar y hasthe same or equivalent value as in the database that was dumped.

137

Data Types

Vauesof thenuneri c,i nt,andbi gi nt datatypescan becasttonmoney. Conversion fromther eal
anddoubl e preci si on datatypes can be done by casting to nuner i c first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A nmoney vaue can be cast to numer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of anobney value by an integer valueis performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the noney value to nuneri c
before dividing and back to money afterwards. (The latter is preferable to avoid risking precision 10ss.)
When anoney valueisdivided by another noney value, theresultisdoubl e preci si on (i.e, apure
number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL .

SQL definestwo primary character types: char act er varyi ng(n) andchar act er (n) ,wherenis
apositive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are al spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type char act er will be space-padded; values of type char act er varyi ng will simply
store the shorter string.

If one explicitly castsavalueto char act er varyi ng(n) or charact er (n), then an over-length
value will betruncated to n characterswithout raising an error. (Thistoo isrequired by the SQL standard.)

The notations var char (n) and char(n) are diases for character varying(n) and
char act er (n), respectively. char act er without length specifier isequivalenttochar act er (1) .
If char act er varyi ng isused without length specifier, the type accepts strings of any size. The latter
isaPostgreSQL extension.

In addition, PostgreSQL providesthe t ext type, which stores strings of any length. Although the type
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Vauesof typechar act er arephysically padded with spacesto the specified width n, and are stored and
displayed that way. However, trailing spaces aretreated as semantically insignificant and disregarded when
comparing two values of type char act er . In collations where whitespace is significant, this behavior
can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C' < E a

138

Data Types

\'n' :: CHAR(2) returnstrue, even though Clocale would consider a space to be greater than anewline.
Trailing spaces are removed when converting achar act er valueto one of the other string types. Note
that trailing spaces are semantically significant inchar act er varyi ng andt ext values, and when
using pattern matching, that is LI KE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of char act er . Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the datatype declaration isless than that. It wouldn't be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quitedifferent. If you desireto store long stringswith no specific upper limit, uset ext orchar act er
varyi ng without alength specifier, rather than making up an arbitrary length limit.)

Tip

Thereis no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and afew extra CPU cycles to check the length
when storing into alength-constrained column. Whilechar act er (n) has performance
advantages in some other database systems, there is no such advantage in PostgreSQL ; in
fact char act er (n) isusualy the slowest of the three because of its additional storage
costs. In most situationst ext or char act er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 23.3.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ T,

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

I NSERT | NTO test2 VALUES (' good "y

| NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT | NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Iength(b) FROM test2;

b | char_length
_______ T,
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

139

Data Types

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiersin the internal system catalogs and is not intended for use by the
general user. Itslength is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
istherefore adjustable for special uses); the default maximum length might changein afuture release. The
type" char" (note the quotes) is different from char (1) inthat it only uses one byte of storage. It is
internally used in the system catal ogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

8.4. Binary Data Types

8.4.1.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytes plus the actual binary | variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
intwo ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usualy, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and also
disallow any other octet values and sequences of octet values that are invalid according to the database's
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes’, whereas character strings are appropriate for
storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT. The
input format is different from byt ea, but the provided functions and operators are mostly the same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some contexts,
theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the hexadecimal
digits can be either upper or lower case, and whitespace is permitted between digit pairs (but not within
adigit pair nor in the starting \ x sequence). The hex format is compatible with a wide range of external
applications and protocols, and it tendsto be faster to convert than the escape format, soitsuseis preferred.

Example:
SELECT ' \ xDEADBEEF' ;

140

Data Types

8.4.2. byt ea Escape Format

The “escape” format is the traditional PostgreSQL format for the byt ea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practiceit isusually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can aternatively be represented by
double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative escape
sequences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet|Description Escaped Input | Example Hex
Value Representation Representation
0 zero octet "\ 000 SELECT \ x00
"\ 000" : : byt ea;
39 single quote "'t or'\047" |SELECT \ x27
""" byt ea
92 backdash "\\" or'\ 134" |SELECT "\ [\ x5¢c
\ byt ea;
0 to 31 and 127 to|“non-printable’ "\ xxx' (octal | SELECT \ x01
255 octets value) "\ 001" :: bytea;

The requirement to escape non-printable octets varies depending on local e settings. In some instances you
can get away with leaving them unescaped.

Thereason that single quotes must be doubled, asshownin Table 8.7, isthat thisistruefor any string literal
in a SQL command. The generic string-literal parser consumes the outermost single quotes and reduces
any pair of single quotes to one data character. What the byt ea input function sees is just one single
guote, which it treats as a plain data character. However, the byt ea input function treats backslashes as
special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one backslash.
Most “printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea output = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

141

Data Types

Table 8.8. byt ea Output Escaped Octets

Decimal Octet|Description Escaped Output|Example Output Result
Value Representation
92 backslash \\ SELECT \\
"\ 134" :: byt ea;
0 to 31 and 127 to|"non-printable” \ xxx (octal value) |SELECT \ 001
255 octets "\ 001" :: byt ea;
32t0 126 “printable” octets |client character set| SELECT ~
representation "\ 176" : : byt ea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supportsthefull set of SQL date and timetypes, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.5 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value Resolution
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time (no time
[wi t hout Zone)
time zone]
ti mestanp |8 bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time, with time
W th tinme zone
zone
date 4 bytes date (no time of | 4713 BC 5874897 AD 1 day
day)
tinme 8 bytes time of day (no|00:00:00 24:00:00 1 microsecond
[(p) 1] date)

[wi t hout
tinme zone]

time 12 bytes time of day (no|00:00:00+1459 |24:00:00-1459 |1 microsecond
[(p)] date), with time
with tine zone
zone
i nterval [|16 bytes time interval -178000000 178000000 1 microsecond
fields] years years
[(p)]
Note

The SQL standard requires that writing just t i mest anp be equivalenttot i nest anp
wi thout tinme zone, and PostgreSQL honors that behavior. ti mest anpt z is

142

Data Types

8.5.1.

accepted as an abbreviationforti mestanp with ti ne zone; thisisaPostgreSQL
extension.

tinme,tinestanp, andi nt erval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Note that if both fi el ds and p are specified, the f i el ds must include SECOND, since the precision
applies only to the seconds.

Thetypetime with ti me zone isdefined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, ti me, ti nestanp
wi thout tine zone,andtinestanp with tinme zone should provide a complete range of
date/time functionality required by any application.

The types abstinme and rel ti ne are lower precision types which are used internally. You are
discouraged from using these typesin applications; these internal types might disappear in afuture release.

Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to sel ect day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digitsin the seconds field.
Precision can be specified for ti e, ti mest anp, and i nt er val types, and can range from O to 6.

143

Data Types

8.5.1.1.

If no precision is specified in a constant specification, it defaults to the precision of the literal value (but
not more than 6 digits).

Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

8.5.1.2.

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMY mode; February 3, 2001 in YNMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YVD mode

19990108 SO 8601; January 8, 1999 in any mode

990108 SO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

Times

The time-of-day typesaretine [(p)] without time zoneandtinme [(p)] wth
time zone.tine aoneisequivalenttoti me wi thout tinme zone.

Valid input for these types consists of atime of day followed by an optional time zone. (See Table 8.11 and
Table8.12.) If atimezoneisspecifiedintheinputfort i me wi t hout ti me zone,itissilently ignored.
You can aso specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as Arrer i ca/ New_Yor K. In this case specifying the date is required in
order to determine whether standard or daylight-savings time applies. The appropriate time zone offset is
recordedinthetime with time zone value

Table8.11. Time Input

Example Description
04: 05: 06. 789 SO 8601
04: 05: 06 SO 8601

144

Data Types

Example Description

04: 05 SO 8601

040506 SO 8601

04: 05 AM same as 04:05; AM does not affect value
04: 05 PM same as 16:05; input hour must be <= 12
04: 05: 06. 789-8 SO 8601

04: 05: 06- 08: 00 SO 8601

04: 05- 08: 00 SO 8601

040506- 08 SO 8601

04: 05: 06 PST time zone specified by abbreviation
2003-04-12 04: 05: 06 Amer i cal/ |time zone specified by full name
New_Yor k

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)
Aneri ca/ New_Yor k Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

- 800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zul u Military abbreviation for UTC

z Short form of zul u

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, ADYBC can appear before the time

zone, but thisis not the preferred ordering.) Thus:

1999- 01- 08 04: 05: 06

and:

1999- 01- 08 04: 05: 06 - 8: 00

are valid values, which follow the 1SO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiatest i nest anp wi t hout tinme zoneandtinestanp with tine
zone literalsby the presence of a“+” or “-” symbol and time zone offset after the time. Hence, according

to the standard,

145

Data Types

TI MESTAMP ' 2004- 10- 19 10: 23: 54'
isati nestanp w thout tine zone,while
TI MESTAMP ' 2004-10- 19 10: 23: 54+02'

isatimestanp with tine zone. PostgreSQL never examines the content of alitera string before
determining itstype, and therefore will treat both of theaboveast i mest anp wi t hout tine zone.
To ensurethat aliteral istreated ast i mest anp with ti ne zone, giveit the correct explicit type:

TI MESTAMP W TH TI ME ZONE ' 2004-10- 19 10: 23: 54+02'

In alitera that has been determined to bet i nest anp wi thout tine zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time fields
in the input value, and is not adjusted for time zone.

For timestanp with tine zone, theinternaly stored value is aways in UTC (Universa
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If no
time zone is stated in the input string, then it is assumed to be in the time zone indicated by the system's
TimeZone parameter, and is converted to UTC using the offset for thet i mezone zone.

Whenati nestanp with ti me zone vaueisoutput, itisalwaysconverted from UTC to the current
ti mezone zone, and displayed as local time in that zone. To see the time in another time zone, either
changet i nezone or usethe AT Tl ME ZONE construct (see Section 9.9.3).

Conversions betweent i nestanp without time zoneandtinmestanp with time zone
normally assume that theti nestanp without time zone value should be taken or given as
ti mezone local time. A different time zone can be specified for the conversion using AT Tl ME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13. The
valuesi nfinity and-infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
asthey areread.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti mest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity dat e, ti nmest anp later than all other time stamps

-infinity dat e, ti nestanp earlier than all other time stamps

now date,time,ti nestanp current transaction's start time

t oday dat e, ti mest anp midnight (00: 00) today

t onor r ow date,ti nmest anp midnight (00: 00) tomorrow

yest er day dat e, ti nestanp midnight (00: 00) yesterday

all balls time 00:00:00.00 UTC

146

Data Types

8.5.2.

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT _DATE, CURRENT _TI ME, CURRENT_TI MESTAMP, LOCALTI ME,
LOCALTI MESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default isthe 1SO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the dat e and t i ne types is generally
only the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only valuesin SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

Post gres origina style Wed Dec 17 07:37:16
1997 PST

Ger man regional style 17.12.1997 07:37:16.00
PST

Note

I SO 8601 specifiesthe use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above.
Thisisfor readability and for consistency with RFC 3339 as well as some other database
systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQL, Dw day/mont h/year 17/ 12/ 1997 15:37:16.00
CET

SQL, MY nmont h/day/year 12/17/ 1997 07:37:16.00
PST

Post gres, DMWY day/mont h/year Wed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user us